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Abstract

This thesis presents research aimed at improving the quality of facial shape information

that can be recovered from single intensity images using shape-from-shading, with the

aim of exploiting this information for the purposes of face recognition and view synthe-

sis. The common theme throughout this thesis is the use of statistical methods to offer

enhanced accuracy and robustness over existing techniques for facial shape-from-shading.

The work presented goes some way to reinstating shape-from-shading as a viable means

to recover facial shape from single, real world images.

In Chapter 2 we thoroughly survey the existing literature in the areas of face recogni-

tion, shape recovery and skin reflectance modelling. We draw from this review a number

of important observations. The first is that existing solutions to the general shape-from-

shading problem prove incapable of recovering accurate facial shape from real world

images. The second is that statistical models have been shown to be highly effective in

modelling facial appearance and shape variation and have been applied successfully to the

problem of face recognition. Finally, we highlight the complex nature of light interaction

with skin and note that previous attempts to apply shape-from-shading to real world face

images have, almost exclusively, discounted these effects.

Chapter 3 presents our first contribution, which is to explore the idea of incorporating

a statistical model within an iterative shape-from-shading framework. In order to do so,

we first show how a statistical model can be constructed in the domain of fields of surface

normals. We overcome problems of modelling directional data using ideas borrowed from

directional statistics and cartography. We use the model as a regularisation constraint

within a shape-from-shading algorithm which imposes satisfaction of Lambert’s law as a

hard constraint. We show how the approach provides both a model-based and data-driven

solution and how the model-based solution can be used to estimate facial albedo. We use

the estimated shape and albedo information for the purposes of novel view synthesis.
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In Chapter 4 we extend the ideas presented in Chapter 3 in a number of ways. We

begin by reformulating the statistical model for fields of surface normals in terms of a

distribution of points on a spherical manifold. We call on techniques from differential

geometry and arrive at a model formulation which is more elegant and allows the whole

shape-from-shading process to be couched in terms of operations on the tangent plane to

the unit sphere. Our second contribution in this chapter is to show how robust statistics

can be used to reduce the impact of regions of low albedo and cast shadows. This ap-

proach allows us to identify regions in which the image intensity obeys our simple local

illumination model. In those regions which do not, we can use the statistical model to

complete the surface. The result is improved performance under significantly non-frontal

lighting and reduced sensitivity to albedo variation. We explore the use of the recovered

shape and albedo information for face recognition.

In Chapter 5 we expand our consideration of facial shape recovery into the domain

of surface height. We present two statistical approaches to the problem of recovering

surface height from fields of surface normals (the surface integration problem). The first

is based on learning the relationship between the parameters of statistical models for

the two representations. The second shows how the parameters of a statistical surface

height model can be recovered from the field of surface normals directly. We extend this

second approach further by showing how a statistical surface height model can be used to

provide a constraint on the estimated field of surface normals within a shape-from-shading

framework. The resulting algorithm retains the advantages of the techniques described in

the preceding two chapters (strict satisfaction of local irradiance constraints) but yields a

height map directly without having to integrate the surface normals.

Our final contribution in Chapter 6 is to relax the assumptions made about the re-

flectance properties of skin. We show how an arbitrary radiance function can be estimated

as part of a shape-from-shading algorithm, using the surface height constraint developed
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in the previous chapter. Further, we show how spatially varying reflectance properties can

be accounted for by estimating a local albedo term as part of the iterative process. By

fitting a parametric reflectance model to the recovered data we are able to extrapolate the

reflectance properties beyond those present in the input image. We also demonstrate how

the method can be applied to colour images and how this provides a route to facial colour

constancy.

The work in this thesis suggests that constraints provided by statistical models of

face shape render the facial shape-from-shading tractable, even when complex, non-

Lambertian reflectance effects are considered. The results suggest that information useful

for illumination and pose insensitive face recognition may be recovered from one training

image.
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Chapter 1

Introduction

It is the common wonder of all men, how among so many millions of faces

there should be none alike.

- Sir Thomas Browne [20]

The capacity for humans to distinguish between large numbers of faces under varying

conditions of illumination, viewpoint and expression is remarkable, even more so when

one considers the subtle variations that differentiate faces. It is not uncommon for a per-

son to instantly recognise a face that has not been seen since childhood, while seemingly

minute changes in facial expression can evoke a powerful emotional response, for exam-

ple the difference between surprise and terror. Clearly, face perception has developed as

a powerful element of the human visual processing system in its own right.

Attempts to explain the means by which humans perform these tasks have preoccupied

psychology researchers for a number of decades. One of the fundamental questions to

arise from this research is whether the neural representation of a face is based on storing

an abstract 3D model or many different characteristic views of the face. The model-based

paradigm is attractive in its power to provide an elegant explanation for the capabilities of

human face processing. However, it presupposes that the human visual system contains
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Figure 1.1: Demonstration of the supra-luminance assumption in human SFS. Shaded
circles are perceived as convex hills when the image gradient is from top to bottom and
as concave valleys when from bottom to top. This is consistent with an interpretation in
which the illumination is from above. Rotating the page will invert the effect.

the necessary mechanism for recovering precise, abstract 3D information from one or

more views of a face. In contrast, the view- or appearance-based paradigm requires only a

mechanism for computing similarity between an observed and stored view. The challenge

here is to explain how such a large volume of different views can be efficiently stored and

searched.

Although this fundamental question remains unanswered, there are a number of inter-

esting visual phenomena, the implications of which provide a basis for speculation. The

human visual system exploits a range of cues in order to infer 3D information from the

2D image projected onto the retina. These include: perspective, stereo, motion parallax,

interposition, shadowing and accommodation. However, in the absence of all others some

perception of 3D shape is still possible using variations inshadingas a cue. In the case

of observing faces, this cue appears to play a particularly important role. Of interest to

psychologists is whether the shading cue is used to infer 3D information or whether it

simply forms an important part of an appearance-based representation.

On the left of Figure 1.1 we show a collection of circles shaded with a gradient from

white to black. The first thing to note is that from this shading pattern we do infer some 3D

shape. There is a strong sense that the circles correspond to either convex hills or concave
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Figure 1.2: Bottom-lit face of Frankenstein’s monster [58]. Our perception of a face is
altered dramatically when it is illuminated from below. The effect is well used in horror
films.

valleys. A further observation is that the circles which are brighter at the top are perceived

as convex, whereas the circles which are brighter at the bottom are perceived as concave.

To further convince the reader, if the page is inverted the effect is reversed. Since this

is consistent with an interpretation in which the illumination is from above [95], we can

conclude that the human visual system incorporates an assumption of supra-luminance

into the process of recovering shape from shading patterns. This appears reasonable when

one considers that the human visual system evolved in conditions where the major source

of light was from the sun.

When this assumption is breached, our perception of a face is dramatically altered.

This effect is well known through its use in cinematography to enhance the frightening

appearance of a face. In Figure 1.2 we show an example from the filmFrankenstein.

In fact, the explanation behind this effect may lie in the disruption of the shape re-

covery process. It can be shown that faces are treated as a special case by the human

shape-from-shading system. There is a sufficiently strong prior constraint on the range

of face shapes that are allowable that certain interpretations are considered impossible.

This is demonstrated to great effect by thehollow face illusion[78] (also known as Gre-

gory’s mask [67]). The image on the left of Figure 1.3 shows a mask of a face illuminated

from above. The image on the right shows the same mask after a rotation of180◦, i.e.
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Figure 1.3: The hollow face illusion.

a view into the back of the mask, with the same lighting conditions as on the left. This

is perceived as being a convex face with illumination from below, instead of the correct

interpretation which is a concave face illuminated from above.

We can draw two conclusions from this result. The first is that the supra-luminance

assumption may be overridden if it would result in an interpretation in which a face is

globally concave. This implies that in some cases shape-from-shading in humans makes

use of prior class knowledge to constrain the shape recovery process. The second con-

clusion is that lighting from above aids in the derivation of 3D face shape [79]. This is

compelling evidence that shape-from-shading is exploited to some degree by the human

face processing system.

1.1 The Recovery of Shape from Shading Patterns

This thesis is concerned with the recovery of shape information from the shading patterns

in images, specifically face images. Developing a computational method by which to

recover shape-from-shading is a classical problem in computer vision. The process was

originally known asphotoclinometryand was considered a branch ofphotogrammetry

(the science of measuring objects from images). Its earliest use was to recover informa-

tion about the surface of the moon in preparation for moon landings [134, 150]. Terrain
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Model Acquisition Virtual reality, computer games, avatars, facial re-
animation

Image-based Rendering/EditingFace re-lighting, expression editing, face re-
touching/editing, pose normalisation/adjustment,
facial super-resolution

Gaze/Expression Analysis Virtualised reality/head-up displays, driver safety,
crowd counting and dynamics, human-computer
interaction

Recognition See Table 1.2

Table 1.1: Applications of Face Shape Recovery.

analysis using shape-from-shading remains a major area of potential application [17].

An intuitive way in which to conceive the problem is that its aims are the exact inverse

of those of computer graphics. In graphics the idea is to produce a realistic image from

a description of the scene and imaging conditions. In contrast, shape-from-shading seeks

to recover information about the shape of objects in a scene from a single image. This

is a considerably more difficult problem since information is lost in the image formation

process. This analogy has led to the problem also being referred to asinverse rendering.

Although shape-from-shading presents a notoriously difficult challenge, it has never-

theless attracted sustained research over a period of over three decades. The reason for

this is that its potential applications are broad ranging and of great utility while it seem-

ingly imposes few restrictions, requiring only a single intensity image as input. In the

context of face images, its potential applications are particularly numerous. In Table 1.1

we list some potential applications of facial shape-from-shading. One of the most alluring

applications is to use the information extracted from an image using shape-from-shading

for the purposes of face recognition. Since shape information and surface markings are

independent of viewing conditions, this holds out the possibility of recognising a face,

previously seen only once, under dramatically different pose or illumination conditions.
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Shape-from-shading for Face Recognition

Machine face recognition is a classical vision problem in its own right. This is primar-

ily because the potential applications are numerous and of great utility. In addition, face

recognition represents an achievable subset of the general computer vision problem. Faces

are all very much alike, have a consistent orientation and are generally only viewed from a

limited subset of the complete viewing sphere. This has allowed the development of sys-

tems with acceptable performance in controlled conditions. Commonly these are broken

down into three classes of application: authentication (“Am I who I say I am?”), recog-

nition (“Who am I?”) and watch list (“Are you looking for me?”). Table 1.2 lists some

recognition applications within these categories.

However, face recognition is a very challenging problem. The very fact that all faces

are alike makes recognising their differences all the more difficult. In fact, the difference

between two images of the same face under grossly different lighting conditions can be

greater than between two images of different faces. Yet humans can perform the task well,

which shows it is possible.

The appearance of a face in an image is dependent on several factors besides the iden-

tity of the subject. These are: pose or viewpoint, lighting conditions, facial expression

and skin reflectance properties. Figure 1.4 shows the intrinsic facial features and extrinsic

parameters which contribute to the process of forming an image of a face. In particu-

lar, the FERET evaluations highlighted variation in pose and lighting as presenting the

biggest challenges to face recognition systems [126]. For this reason, there is great inter-

Authentication Facility or vehicular access, national ID cards, voter
registration, driver’s licenses, desktop logon

Recognition Mug-shot database search
Watch list Advanced video surveillance, most wanted watch

list alarm

Table 1.2: Applications of Face Recognition.
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Figure 1.4: The facial image formation process.

est in techniques which can potentially offer pose and lighting invariant recognition, yet

only require a single training image (as opposed to multiple images or data from a 3D

acquisition device). One way to pose this problem is to attempt to separate these intrinsic

facial properties from extrinsic imaging conditions, given only an image of a face (how

it ‘appears’). This motivates methods that explicitly model the image formation process

and account for the underlying physical quantities that give rise to the measured appear-

ance, for example shape and surface reflectance properties. In this thesis we investigate

one such technique, and one which is fairly under-represented in the face recognition

literature, that of shape-from-shading.

The use of 3D shape information for face perception tasks has been a longstanding

goal in computer vision. In addition to biological motivation, 3D shape information would

provide invariance to changes in lighting and pose as well as allowing a more principled

understanding of the image formation process. Unfortunately, acquiring 3D shape infor-

mation in a way which maintains real world applicability is an open problem. It is possible

to recover accurate high resolution 3D shape information using a laser range finder. How-

ever, this is time consuming, requires the subject’s participation and requires expensive

equipment. An alternative is to make use of one of a class of techniques which attempt to

recover shape from an image or images of an object. Such techniques are known as shape-
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from-X modules and include shape-from-shading, -texture, -contours, -edges, -stereo and

-motion. Of these, shape-from-shading holds out the possibility of recovering 3D shape

from a single image and, moreover, allows the recovery of far richer shape information

than other shape-from-X modules. This is due to the fact that shape-from-shading uses

the information contained in every available pixel as opposed to solely structures such as

edges.

Despite being an active area of research in its own right for over three decades, shape-

from-shading is still an open problem. Applying shape-from-shading to images of faces

has proven challenging due to complex and spatially varying reflectance properties. The

use of shape information extracted by shape-from-shading for face recognition has previ-

ously been criticised on three counts:

1. Inaccuracy of shape information recovered

2. Prior knowledge of illumination conditions required

3. Assumptions made about reflectance are too general

In this thesis we address these issues and go some way to reinstating shape-from-shading

as a viable tool for face recognition.

1.2 Contribution

This thesis presents research aimed at improving the accuracy of the shape information

that may be recovered from face images using shape-from-shading. The overarching

theme is the use of statistical methods to provide additional constraints for the problem.

Noting the success of model-based methods in both face modeling and facial shape re-

covery evidenced in the literature, we aim to exploit similar techniques for use in facial

shape-from-shading. The contributions of the thesis are as follows:
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• Statistical Surface Normal Models: Our first aim is to construct a statistical model

which is suitable for incorporation into a shape-from-shading scheme. The model

we construct captures variation in facial shape in terms of a deformable field of

surface normals. In order to construct this model, we must tackle the problem of

how to model a distribution of unit vectors which are nonlinear in nature. We have

developed two approaches to overcoming this problem. The first uses ideas from

directional statistics and cartography and is intuitive. This is the model used in

Chapter 3. The second uses ideas derived from differential geometry and results in

a complex but more elegant formulation. We present this model in Chapter 4.

• Statistical Shape-from-shading: We show how to incorporate these models into a

shape-from-shading algorithm, by combining the statistical constraint provided by

the model with irradiance constraints suggested by Lambert’s law. The resulting al-

gorithms offer significant performance improvements over traditional shape-from-

shading algorithms that use generic constraints. We then extend this approach to

account for the effects of cast shadows and variations in facial albedo using tech-

niques from robust statistics.

• Statistical Surface Integration: We take our analysis further by considering how

statistical models can aid in the process of recovering surface height from fields of

surface normals. We propose two methods for doing this. The first is based on a

simplistic statistical analysis which uses linear methods in order to try to learn the

relationship between the parameters of a surface normal and a surface height model.

The second approach goes further by examining the relationship between surface

height parameters and the resulting field of surface normals. We show how surface

height parameters can be recovered from a field of surface normals and how this

can provide a constraint for accurate surface normal recovery.
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• Estimation of Skin Reflectance Properties: Central to facial shape-from-shading

is a principled understanding of the image formation process and the way in which

faces reflect light. We therefore present improved methods for estimating facial

reflectance properties and show how these estimates can be incorporated into the

shape recovery process. We develop an algorithm that recovers an accurate face

surface, field of surface normals and reflectance information from a single image.

We also show how the method can be applied to colour images and used for colour

constancy.

1.3 Overview of Chapters

The remainder of this Thesis is arranged into the following Chapters:

In Chapter 2 we thoroughly review the relevant literature. This is necessarily broad

ranging, since this thesis is concerned with topics from a number of fields: face recog-

nition, statistical face modeling, shape-from-shading and skin reflectance modeling. We

also discuss the psychological foundations of human recognition and shape-from-shading.

In Chapter 3 we introduce the geometric shape-from-shading framework and develop

a statistical model for fields of surface normals. We show how the model can be used

as a constraint within a shape-from-shading algorithm and how the resulting best-fit of

the model can be used to estimate facial albedo. We demonstrate that the method offers

significant improvements over existing shape-from-shading algorithms and that the esti-

mated shape and albedo recovered from real world images is sufficient for convincing

view synthesis.

In Chapter 4 we extend the work in the previous chapter in a number of ways. Firstly,

we begin by reformulating the model in terms of the exponential map and use principle

geodesic analysis to learn the modes of variation. Secondly, we show how the geometric
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shape-from-shading framework can be expressed in terms of operations under the expo-

nential map, allowing the model to be incorporated into the framework in a particularly

elegant and efficient manner. Thirdly, we consider the difficulties posed by albedo vari-

ations and cast shadows and show how performance can be improved by using robust

statistics to downweight areas whose intensity suggests an unlikely normal direction. Fi-

nally, we consider how we can use the recovered information to perform face recognition

in a number of ways. We build on previous work by performing illumination insensitive

recognition given only a single training image per subject.

In Chapter 5 we present our two approaches to recovering 3D facial surfaces from

orientation estimates. This leads us to develop a new constraint that can be applied within

a shape-from-shading algorithm which enforces both integrability on the field of surface

normals and a statistical constraint on the corresponding surface height function.

In Chapter 6, we consider for the first time the issue of non-Lambertian reflectance.

Building on the work in the previous three chapters, we develop a facial shape-from-

shading algorithm in which the surface radiance function is estimated alongside face

shape and a spatially varying albedo term. In relaxing the Lambertian assumption we

are able to recover face shape of considerably higher accuracy and by fitting a reflectance

model to the estimated data are able to synthesise physically meaningful images in novel

poses and under novel illumination.

Finally, in Chapter 7, we review the contributions made in the thesis, highlight weak-

nesses in the work as it stands and suggest future areas for consideration and ways in

which the current work could be extended.
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Chapter 2

Literature Review

The features of our face are hardly more than gestures which have become

permanent.

- Marcel Proust [132]

In this chapter we provide a thorough review of the literature relevant to this thesis.

The review covers psychological foundations, computational shape-from-shading, skin

reflectance modelling and machine face recognition. The review focusses on facial shape

recovery, particularly where the intended application is face recognition. We also pay

special attention to statistical methods, which have proven very successful in a range of

face processing tasks. The chapter is organised as follows.

We commence in Section 2.1 with a broad overview of the psychological foundations

of face perception, providing biological motivation and highlighting difficulties encoun-

tered by the human face processing system. In Section 2.2 we review the face recognition

literature, paying greater attention to methods which attempt to use shape or curvature

information for recognition. We use the face recognition literature to provide motivation

for our work on face shape recovery. Further, the statistical models developed for the

purposes of face recognition provide background to the models developed in this thesis.
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In Section 2.3 we then review the shape-from-shading literature, specifically where the

methods have been applied to the problem of face shape recovery. We discuss previous

attempts to use shape-from-shading for face recognition, the challenges encountered and

attempts to overcome them. Finally, in Section 2.4 we discuss attempts to model the prop-

erties of skin reflectance and highlight work which incorporates these models into a face

shape recovery scheme.

2.1 Psychological Foundations

The notion of face recognition as a subset of object recognition and visual processing in

general is based on the ability of humans to perform the task. Similarly, performance

measures for machine face recognition systems are defined with respect to human face

recognition performance. Therefore, an understanding of the human face recognition sys-

tem is useful in providing inspiration for potential machine face recognition approaches

and assessing their successes. Also, an understanding of the limits of face recognition by

humans and how a machine system may overcome these limits will help demonstrate the

motivation behind and the possibilities made available by the development of machine

face recognition.

2.1.1 Human Face Perception

Humans have a remarkably accurate and robust ability to perceive faces, giving them the

ability to detect, recognise and make inferences from the expression of another human

face [21]. A human face undergoes dramatic transformations over a lifetime, entirely

changing itself from birth through to adolescence [87], after which the effects of the

environment and aging continue to alter its appearance [98]. Despite this, recognising

an adult face from a 40-year-old school photograph is not an unlikely feat for the human
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face processing system to perform. This is all the more impressive when it is considered

that all faces are very much alike, sharing similar size, proportions, feature locations and

skin tone (where the faces are from the same race).

Historically, there was interest in whether facial characteristics reflected traits of per-

sonality or character. This idea found particular favour during the Victorian era, as ex-

pressed by Schopenhauer [137] who believed that a man’s face was “the monogram of all

his thoughts and aspirations.” The field of phrenology emerged entirely to establish if the

characteristics of a face could indicate criminality [152].

From a natural selection perspective, face perception abilities are a clear evolutionary

advantage when it is considered that pre-civilised humans cared for their young and ex-

isted in co-operative tribes. Correctly identifying known faces would therefore be of great

use in making sure the correct young were cared for and differentiating the friendly from

the hostile. The ability to read the messages and emotion conveyed in an expression, par-

ticularly before the development of spoken communication, would also be of considerable

importance.

Evidence for Face Specialisation in Humans

A question of principal interest is whether humans employ a distinct mechanism for recog-

nising faces as opposed to objects in general. If this were established to be the case, we

could attempt to distinguish between how the two tasks are accomplished and employ

similar approaches in machine face recognition. The weight of evidence suggests that hu-

mans do indeed make use of a face-specific process [41,45,93]. There is however recent

contradictory evidence [61], which suggests face recognition is in fact a process of expert

discrimination of similar objects.

Desimone [45] provides a critical review of the neurophysiological evidence for ‘face

detector cells’. Several independent sets of researchers have found that in monkeys there
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are neurons that respond preferentially to facial stimuli which did not respond to other

simple stimuli or complex objects. Further evidence of a dedicated face recognition mod-

ule within the human brain is the existence ofprosopagnosia[41]. This is an extraordinary

condition in which sufferers have a total inability to recognise previously familiar faces,

while suffering no other profound agnosia. Prosopagnosia patients retain the ability to vi-

sually recognise non-face objects, which suggests the two are separate processes, located

in different parts of the brain. Somewhat more observational evidence comes from visual

tracking of faces by humans. Infants appear to posses an innate preference for track-

ing face-like patterns as opposed to those with no pattern or jumbled facial features [113].

This suggests some preconception of a face as a unique object and a pre-wired mechanism

for its detection.

Weaknesses of Human Face Recognition

A common observation made of human face processing for a range of perception tasks

is the stark difference in performance between ‘familiar’ faces versus those which are

‘unfamiliar’. For example, recognition performance is significantly more robust for faces

which are well known to the observer [71]. The implication is that the human face pro-

cessing system must observe a face many times under a variety of conditions before it

becomes sufficiently well-known to be regarded as familiar [30]. What information is ex-

tracted in these repeated viewings is unclear but some evidence suggests it does not enable

recovery of an abstract 3D representation [147]. The most recent findings go even further,

suggesting that unfamiliar faces are not treated as faces at all by the human visual system,

but are processed entirely differently [111]. They show that recognition performance on

unfamiliar faces, even in ideal conditions is surprisingly poor.

One of the primary limitations that the human system encounters is an apparent capac-

ity limit of familiar faces that can be stored [170], i.e. those that can be reliably recognised
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in future. This limit is something machine face recognition systems may aim to exceed.

A related weakness is the lack of robustness in human face recognition performance. In

particular, large changes in pose or illumination result in significant decreases in perfor-

mance. Similarly, images of low resolution, high noise, blur or other distortions reduce

recognition accuracy. As suggested above, the effect is reduced for familiar faces, but this

is nonetheless a weakness on which machine systems could hope to improve.

2.1.2 Human Face Recognition and Shape from Shading

The most convincing evidence to suggest that shading information plays a major role in

human face perception is the severe degradation in performance when faces are illumi-

nated from below. Hill and Bruce [79] studied this phenomenon in depth and concluded

that the results were consistent with a process in which lighting from above helps the

derivation of 3D shape. More evidence of the role played by shape-from-shading in hu-

man face perception comes in the form of face specialisation in the shape-from-shading

process itself. The supra-luminance assumption may be overridden if the assumption

would result in an interpretation where a face is globally concave. This is demonstrated

to great effect by the ‘hollow face illusion’ [78] discussed in the Chapter 1. However, Liu

et al [105] present contradictory evidence, suggesting that the role played by 3D shape

information is fairly small. They suggest it is the shading information itself which is most

important, not the underlying 3D shape which was responsible for the shading patterns.

An alternative answer may lie with an intermediate representation, such as Marr’s

concept of the21
2
D sketch. The21

2
D sketch provides a viewer-centered representation

of an observed surface, comprising a field of local surface orientation estimates in a

retinocentric coordinate frame. Such a representation could be derived using shape-from-

shading. Were such a representation to be used, this may explain the partial viewpoint

invariance in human performance [80] without implying the use of a full, abstract 3D
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model. There is strong psychophysical evidence that such a representation plays a part

in human face processing and that this information is recovered, at least in part, using

shape-from-shading [79].

2.2 Automated Face Recognition

Endowing computers with the ability to recognise people would allow the development of

a large number of exciting and extremely useful applications. This is the primary reason

that face recognition was one of the first areas of computer vision to be significantly

researched [16, 92, 94]. Abiometric is a measurable, physical characteristic which can

be used to recognise the identity, or verify the claimed identity, of a subject. Besides

the face, there are other biometrics which have proven to be more accurate in machine

recognition systems, including fingerprints [106] and retinal or iris scans [43]. The reason

that interest in face recognition still continues is that it is the only biometric which may

be measured non-intrusively. It does not require the participant to cooperate and it is

possible they might not even be aware of the image acquisition process. This improves

its social acceptability, whilst increasing the number of potential applications. Another

advantage is that face recognition is concerned with data that is readily understandable

by humans. Any human would be capable of comparing two face images and making

informed deductions, the same would not be true of fingerprints or iris scans.

Face recognition lies within a more general class offace perceptionor face process-

ing problems. A number of these other problems are similarly well-known, for example

expression analysis [145], aging simulation [98] and facial reanimation [12]. However,

of these problems, face recognition is perhaps the most compelling, presents a difficult

challenge and, as yet, is unsolved in a general setting. In this part of literature review we

restrict ourselves primarily to face recognition. Significant literature surveys have been
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carried out in 1995 [27], 2000 [171] and 2003 [170] along with the publication of books

surveying the state of the art [69,104,169].

2.2.1 Early Work

The earliest attempts at machine face recognition [16, 92, 94] used a seemingly intuitive

approach, based on the ideas of physiognomy [21]. The idea was to decide upon a set

geometric features which described a face in sufficient detail that they would allow dif-

ferentiation between faces. These features included the distance between the eyes, length

of the nose or width of the face and were chosen so that they could be measured from an

image of the face. Recognition was performed by applying classical pattern recognition

techniques to the set of features. To overcome the lack of an absolute scale in the input

images, Kanade [92] measured all these features relative to the distance between the eyes.

However, no attempt was made to compensate for the warping effect of subject pose on

the measured features.

The fundamental weakness in the approach is that features which appear intuitively

to be important are, in fact, weak in their discriminative power. This is especially true

when measured from low resolution images. Consider that humans can recognise faces

at very low resolutions, for example down to a width of 15 pixels, where the size of these

geometric features varies little between subjects. This suggests that, in humans at least,

some other mechanism is being used. Additionally, the use of geometric features alone

discounts the important information conveyed by texture, 3D shape and colour.

Kanade’s work can now be seen as among the first of what are known as feature-based

approaches. More recent work has succeeded in identifying features which allow for

robust recognition performance, for example Penev and Atick’s Local Feature Analysis

[120]. An early influential paper by Brunelli and Poggio [22] compared a feature based

system to one in which image templates were used to describe areas of the face. They
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concluded that templates outperformed features. This second major class of approaches,

based on a more holistic face representation, has proven more fruitful. Subsequently, the

majority of research has concentrated on holistic representations.

2.2.2 Image-based Statistical Approaches

Image-based statistical approaches assume that images of faces occupy a subspace, or

‘facespace’, in the space of all possible images. From a representative training set of face

images, a manifold learning technique is chosen to attempt to ‘learn’ this subspace. By far

the best known statistical technique isEigenfacesproposed by Turk and Pentland [149].

Due to ease of implementation and high execution speed this has led to a plethora of

work based on extending or improving the technique [9, 40, 75, 123] as well as being the

underlying approach to a number of commercial systems [127]. It has also been shown to

closely mimic human perceptions of facial similarity and memorability [70].

Eigenfaces

Eigenfaces [149] usesprincipal components analysis(PCA) to derive a basis set of images

with which to express a training set of face images in fewer dimensions. PCA or the

Karhunen-Lòeve transformis a classical statistical technique for dimensionality reduction

[90]. To apply PCA to a set of images, the eigenvectors and eigenvalues of the centred

covariance matrix of the data are found. The first to apply PCA to images of faces were

Kirby and Sirovich [139]. They used the technique to derive an efficient representation for

face images, without using this representation to perform recognition. Turk and Pentland

[149] coined the term eigenfaces to describe the eigenvectors which, themselves have a

face-like appearance. Intuitively, the first eigenvector will say as much as it is possible to

say about a face’s appearance in one dimension.

A face is represented by a vector of weights corresponding to each eigenface. An
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image from within the training set can be represented or reconstructed accurately or per-

fectly (depending on whether all the eigenfaces are used). This in-sample truncation error

is known theoretically; the R.M.S. error of the reconstruction is simply the sum of the

eigenvalues of the unused eigenfaces [5]. The accuracy of representing an out-of-sample

image (either a new subject or a subject in the training set but observed under different

conditions) depends on whether the training set contained similar images. Recognition

using eigenfaces is achieved by calculating the distance between the parameter vector

of two faces (e.g. their distance in face space). The identity associated with the closest

gallery vector to a given probe vector is reported as the identity.

Recognition using eigenfaces is extremely limited, requiring highly controlled con-

ditions. Fundamentally, the approach suffers from two weaknesses. The first is due to

the underlying assumption that face images are linear combinations of a small orthogonal

basis set. Were this the case, then the average of any two face images would result in

a viable third face image. This is clearly not the case. Secondly, the eigenfaces capture

modes ofappearancevariation and so do not distinguish between image variations due

to changes of identity and other sources of variation such as lighting, face expression,

subject pose etc.

Image normalisation addresses the first problem to some extent, for example by align-

ing features such as the eye centres [149]. This reduces the problem, but does not ensure

that other features will be correctly aligned. The result is that the model is inefficient

and capable of representing non-face images [40]. Heseltine et al. [75] assessed whether

image pre-processing could be used to normalise for variation in illumination, hence ad-

dressing the second problem. Belhumeur et al. [9] noted that the first three eigenfaces

appeared to be strongly linked to variation in illumination. By discarding the first three

principal components, dependency on illumination conditions is reduced. However, im-

portant identity information is also sacrificed.
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Rather than providing a realistic route to robust face recognition performance, the

real legacy of eigenfaces is that it caused a paradigm shift amongst face recognition re-

searchers. This encouraged focus to move towards developing abstract holistic represen-

tations which were suitable features for use in recognition.

Discriminant Analysis

PCA makes no distinction between image variation due to identity and variation due to

other sources such as lighting or expression when deriving a face space. Linear Discrim-

inant Analysis (LDA) is another classical statistical technique for dimensionality reduc-

tion. However, in contrast to PCA it seeks to maintain the separability of different classes

by maximising between-class scatter whilst minimising within-class scatter. By apply-

ing the technique to images of faces, the essential idea is to derive a face space which

maximises the distance between images of different faces while minimising the distance

between images of the same face.

Belhumeur et al. [9] were the first to apply LDA to face recognition and coined the

technique Fisherfaces (after R.A. Fisher, who first developed LDA [53]). The method

is shown to produce well separated classes in a low-dimensional subspace, even under

severe variation of lighting conditions or facial expression. This technique has been em-

pirically shown to far exceed the performance of the eigenfaces algorithm and, given three

training images, is robust to gross variations in the conditions of illumination.

The criticism of any discriminant analysis technique is that to perform the analysis

requires many training images of each subject, a fact which limits its applicability to real

world applications. In the last decade, ever more complex ‘manifold learning’ techniques

have been used to attempt to model directly the variability in face images [73, 158, 162].

However, by developing more sophisticated representations which capture appearance in

more abstract terms, these complex workarounds can be avoided.
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Separating Shape and Intensity

Craw and Cameron [40] were the first to report that images of faces can be more accu-

rately modeled in linear spaces if shape and intensity are considered independently. In

this context, by shape we refer to the 2D shape of facial features in the image plane. They

proposed morphing a set of training images of faces to an average shape prior to applying

PCA to the image intensities. Landmark points were manually identified on each training

image, from which an average shape was calculated. The ‘shape-free’ eigenfaces pro-

duced by applying PCA to this morphed training set show more sharply-defined features

and capture more subtle variations in intensity across the facial surface.

Intuitively, it is clear that the average of two shape-free faces is likely to result in

a viable third face image, since with sufficient landmark points all features will be in

alignment. The separation of shape and intensity has led to a body of work under the

name Active Appearance Models, which are reviewed in more depth in the following

section.

2.2.3 Facial Modeling

The task of machine face recognition is composed of two parts: deriving a representation

of the face and then using this representation to perform recognition. If a given face can be

accurately represented, it seems likely that the parameters which were used to represent

the face could be used for accurate recognition. In particular, if a human can recognise the

face after its reconstruction using the recovered parameters, this suggests the parameters

contain sufficient information to perform recognition. For this reason facial modeling has,

in its own right, been the subject of a large volume of research [15,33,36,37,39,40].

A facial model is an attempt to encapsulate facial appearance using a model controlled

by a small set of parameters. Ideally, these parameters would explicitly account for effects
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such as pose and lighting variation, so as to allow identity to be controlled independently.

Such models are generative in nature, in that they allow viable instances of a face to be

generated from a set of parameters. Often model parameters are recovered from an input

image by iteratively adjusting parameters from their mean position until a chosen error

functional is minimised with respect to the input image. This can be a computationally

expensive process.

Facial models make possible a number of additional potential applications besides

recognition. These include: construction of novel faces from intuitive appearance parame-

ters, synthesis of novel poses, image based rendering, expression analysis, low bandwidth

face coding and facial warping such as simulated aging. Previous work on constructing

models of facial appearance can be divided into two classes: two-dimensional and three-

dimensional models, each of which have associated benefits and drawbacks. The most

relevant of these models are surveyed in the following sections.

Two dimensional modeling

The most well known work on two-dimensional facial modeling has been undertaken by

Cootes and co-workers over the last ten years [33, 36, 37, 39]. They began by developing

a statistical model of shape, using a similar technique to that used to produce shape-free

eigenfaces [40]. Instead of measuring the shape of each training face purely to derive an

average shape, Cootes et al. built an ‘Active Shape Model’ (ASM) [36] by applying PCA

to the set of vectors describing the shapes in the training set. Just as PCA on intensity

images produces a set of eigenvectors describing decreasing amounts of variance, PCA

on a set of shape vectors produces a set of eigenvectors which deform the average shape

in various ways. When added or subtracted to the average shape, these deformations are

known as ‘modes of variation’. Often, these modes appear to correspond to identifiable

facial features or expressions or describe out-of-plane rotations.
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Modeling shape alone may be sufficient for tasks such as expression analysis or

pose estimation, however for recognition this is not fundamentally different to Kanade’s

feature-based approach [92] described above. In order to make use of the intensity infor-

mation contained within the shape, Cootes et al. developed the Active Appearance Model

(AAM) [33]. Here, shape is modeled as for ASMs and intensity is modeled using shape-

free eigenfaces. PCA is then applied to the combined parameters, yielding one set of

parameters which simultaneously control shape and texture.

To fit an AAM to an image of a face, a gradient descent technique is used to iteratively

adjust the appearance parameters until a best fit to the image is found. This can require

high computational resources for an accurate fit. Hence, a lot of recent work has focused

on improving the efficiency of this process [110]. AAM fitting is also highly dependent

on a good initialisation as the search process finds only local minima. There are two

fundamental criticisms of AAMs which limit their power as a model of facial appearance:

1. It is not clear how AAMs can model 3D rotations. Landmark points selected for

one view may not be visible in another. Cootes et al. attempted to overcome this

problem using view-based AAMs [37], by building an AAM for a number of dif-

ferent poses and learning the relationship between poses. More recently, Xiao et

al. [160] have shown how to impose constraints of a 3D face model within the 2D

AAM fitting process.

2. AAMs still encode global modes of variation. They capture not only identity but

also encode changes in illumination and expression. Costen et al. [39] attempted

to learn these subspaces using an expectation maximisation algorithm, allowing

differentiation between them.

AAMs have no model of illumination or reflectance, hoping to learn these from the

data itself. To treat an image of a face as essentially a ‘black box’ seems simplistic.
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The notion of ‘intensity’ can in fact be related to shape, reflectance and illumination,

something which three dimensional models have gone some way to exploiting.

Three dimensional modeling

The first notable attempt to build a model of facial appearance using a 3D model was

undertaken by Atick, Griffin and Redlich [5,6]. In analogy with Sirovich and Kirby [139]

and Turk and Pentland [149], they showed that human faces whether imaged or as surfaces

have few degrees of freedom and thus can be represented with a relatively small number

of parameters. They applied PCA to a set of laser range scanned face surfaces repre-

sented in cylindrical coordinates to derive a set of eigenvectors describing perturbations

from the mean head shape. They coined the modes of variation ‘eigenheads’. Critically,

these eigenheads seem to capture modes of variation which are easily identifiable as facial

characteristics. They found that an out-of-sample head could be represented with approx-

imately1% error using 100 modes of variation. Yan and Zhang [161] extended Atick et

al’s technique to allow the model to be fitted to non-frontal images.

However, it is clear that rendering a 3D head using Lambertian reflectance without

variation in albedo yields very unreal images. Evidently, their model lacks sufficient com-

plexity to realistically capture facial appearance. Nevertheless, they used a minimization

technique to fit their model to frontal face images assuming known illumination and found

that the recovered shape appeared qualitatively accurate. For synthetic Lambertian images

the error was on the order of 2%, though this would obviously be higher for real world

images with variation in albedo and which exhibit non-Lambertian reflectance.

Blanz and Vetter [14] enhanced this model by using a device which simultaneously

captures shape and albedo (in the three color channels). This allowed them to construct

a model whose appearance parameters controlled both 3D shape and surface albedo (or

‘texture’ as they call it). Further, they used a method based on optical flow to find the
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dense correspondence between each head. This ensured that every vertex in the model

corresponds to the same point on each face in the training sample. When combined with a

complex rendering process which simulated camera settings and illumination conditions,

near photo-realistic face images can be generated. One of the weaknesses of their ap-

proach is the lack of a realistic model of skin reflectance. They used the generic Phong

model [128] which combines ambient, diffuse and specular reflectance to capture the re-

flectance properties of skin. They use a similar technique to Atick et al. [5] to recover

model parameters from a given input image of a face, though their optimisation proce-

dure is far more complex. Besides shape parameters, they also adjust albedo, camera

parameters, pose and illumination until an optimal match is achieved. This is a very com-

putationally intensive process. Although near photo-realism is achieved for some input

images, under extremes of illumination or reflectance the results are poor. It could also be

said that these approaches are model dominated. Its ability to represent a face is dependent

upon the training set having contained similar faces. The technique also relies heavily on

its optimisation procedure, which may return a local rather than a global minimum and is

dependent upon a good initialisation.

2.2.4 Two Challenges: Pose and Illumination

In real world trials of face recognition systems, two challenges have consistently proven

to present the biggest obstacle to robust recognition performance. The first is the problem

of variation in subject pose (or alternatively, variation in viewpoint). The FERET [126]

and FRVT [127] evaluations have highlighted the performance degradation introduced by

rotations in depth. For example, FRVT2000 [127] found the best recognition rate fell to

68% for rotations of40◦ in a database of 200 subjects. The second problem is extreme

variation in illumination, particularly the complex illumination conditions encountered in

real world images such as multiple and extended light sources. Recently, attention has
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focussed specifically on addressing these two issues. In this subsection we summarise

this work.

Illumination Variation

Over the last decade, two avenues of research have yielded encouraging results in dealing

with the problem of coping with lighting variations in face recognition. The first of these

is a class of appearance-based approaches in which a linear subspace is used to capture

the variation of a particular face due variations in illumination [8, 64, 100]. The second

approaches the problem from a model-based point of view and exploits 3-dimensional

facial shape information [15,19,164].

3D shape information has the obvious advantage that it is an intrinsic property of the

face and hence is invariant to illumination conditions. Although some work has consid-

ered the use of non-standard sensing modalities which recover accurate shape [19], to

remain widely applicable it is important that the only necessary input is image intensity

data [15,164]. Recovering accurate 3D facial shape information from a single image is a

challenging problem that has eluded efforts in both the shape-from-shading and statistical

shape modeling literature for a number of decades. The most promising results exploit

a morphable model, which captures variation in both 3D shape and texture [15], in an

analysis-by-synthesis framework. The difficulty here is that fitting the model to an im-

age requires the costly minimisation of an error functional, the solution of which suffers

from model dominance. The result is that the recovered shape only weakly satisfies image

irradiance constraints.

In contrast, appearance-based approaches [8, 64, 100] do not aim to recover intrinsic

facial features from an image, but rather model the image variability caused by changes in

illumination. This work has demonstrated that a low-dimensional subspace can accurately

capture the variation in images of a face resulting from arbitrarily complex variations in
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illumination. The advantage here is that the basis set can be used in a generative manner to

synthesise photorealistic images under arbitrary and possibly extreme lighting conditions.

This provides a powerful representation for recognition, in which the identity associated

with the subspace which lies closest to a query image is reported as the unknown identity.

Impressive illumination-insensitive face recognition performance can be achieved using

these approaches. A variety of techniques of varying complexity have been proposed to

build these subspaces. The drawback is that these methods either require multiple training

images (typically 7-9) or knowledge of the underlying shape and reflectance information

(which may be recovered from the multiple training images).

Early work [51, 68] on this subject followed the eigenfaces approach of Turk and

Pentland. Rather than attempt to model the variability of all face images using PCA, the

idea here was to model only the within class variation in images of one subject caused

by changes in illumination. Hallinan [68] and Epstein et al. [51] collected large sets of

images of real objects (including faces) with varied lighting conditions. After applying

PCA to these sets of images, they found that images of Lambertian objects do lie close to

a low-dimensional linear space, the dimensionality of which appears to be approximately

5± 2.

The set of images of an object in a fixed pose under all possible illumination conditions

forms a convex cone in image space, termed the ‘illumination cone’ [64]. However, the

number of images required to completely define the illumination cone is extremely large

(all the possible images obtained with a single light source). Georghiades et al. [64] over-

came this problem by assuming that the illumination cone can be well approximated by a

low dimensional linear subspace. This assumption is motivated by empirical observations

that the typical illumination cone for a human face is flat. The most straightforward way

to derive this subspace is by applying PCA to a sample of images which span the illumi-

nation cone. Practically this means either acquiring a large number of images of a subject
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under a wide variety of illumination conditions, or synthesising such images from a 3D

model. Georghiades et al. [64] used photometric stereo to recover an accurate 3D model

from a small training sample of images from which they synthesised the large training set

necessary. They call the approach a ‘few-to-many’ training strategy. For face images, it

has been found that 11 dimensions of this subspace need to be retained to capture 99% of

the variance in the images.

The quality of the approximation to the illumination cone described above depends

heavily on the sample images on which the PCA is applied. A biased or small set of

samples will produce a subspace which only poorly captures the variance of the cone.

Moreover, collecting or synthesising a sufficiently large training sample is cumbersome.

In contrast, Basri and Jacobs [8] present an elegant approach based on spherical harmon-

ics in which the low-dimensional subspace is derived analytically from a model. They

show that under any lighting conditions, at least 98% of the variability in the reflectance

function is captured by the first 9 harmonic images. Their analysis therefore suggests that

images of a convex Lambertian surface will lie close to a 9D subspace. This subspace

can be derived exactly from the surface normals and albedo of the face without being

dependent on the quantity or variability of a sample of training images.

The subspace based on the illumination cone approximation described above requires

either a set of training images that samples the entire illumination sphere or the synthesis

of such images from a recovered 3D model. Likewise, the subspace based on harmonic

images requires the acquisition of a 3D model. Both of these therefore rely on complex

and potentially brittle computations. Having made this observation, Lee et al. [100] take

the simplest possible approach to constructing a subspace which captures the variation in

illumination. Motivated by the spherical harmonics results, they ask whether it is pos-

sible to use 9 real images to form the basis images of the low-dimensional space. They

determine the best way in which to arrange the physical lighting such that the correspond-

29



ing images obtain the best possible approximation of the illumination cone. They call

these 9 lighting directions the universal configuration, given here in spherical coordinates:

{(0, 0), (68,−90), (74, 108), (80, 52), (85,−42), (85,−137), (85, 146), (85,−4), (51, 67)}.
Their approach requires no training, simply the acquisition of 9 images in which the sub-

ject is illuminated by each of the lights from the universal configuration.

Pose Variation

There have been numerous attempts to overcome the problem of variation in pose without

explicitly synthesising new views. Pentland et al. [123] extended the Eigenfaces technique

of Turk and Pentland [149] in order to achieve pose invariant recognition. In this work, an

individual eigenspace is built for each pose. The eigenspace which best describes an input

image is selected by finding the lowest residual description error using each viewspace’s

eigenvectors. The image is then described using the eigenvectors of that viewspace and

recognition can be performed. The major criticism of this approach is that many example

images of each subject are required to cover all possible views. A feature based approach

was proposed by Wiskott et al. [155] which used elastic bunch graph matching. Their

system represents a face as a graph with wavelet feature vectors as nodes (“jets”). By

learning the way in which these jets transform under face rotation, they were able to

perform pose invariant recognition. For rotations of22◦ they achieved a recognition rate

of 88%, though varying illumination would make feature location more difficult. Cootes

et al. [37] extended the Active Appearance Model discussed in Section 2.2.3 to account

for variation in pose by building an AAM for a number of different poses, for example

0◦, 45◦ and90◦. For each model, a different set of features is used, which overcomes

the problem of different features being visible in different views. They then proposed

learning the relationship between models at different views allowing them to represent a

face in a particular view, given an image of the face in another view. This essentially 2D
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model-based approach was shown to give a reasonable prediction of novel views.

An alternative to developing a pose invariant recognition system is to introduce a

preprocessing stage in which a pose corrected image of the input face is generated. This

is known as recognition by synthesis. Previous work on facial view synthesis can be

divided into those techniques which require more than one example image and those that

require only one.

Given more than one image from different viewpoints, a generic stereo technique

could be applied [136]. However, the lack of intensity features in a typical face image

and the occlusion between views makes finding correspondences difficult. An example

of a multi-image technique is the work of Avidan and Shashua [7]. Given two closely

spaced model images they are able to synthesise a new view through warping which is

far outside the viewing cone of the model images without recovering camera or scene

geometry. They do this by deriving the trilinear tensor that describes the transformation

from a given tensor of three views to a novel tensor of a new configuration of three views.

The synthesised images are realistic, though the method includes no model of lighting

or reflectance. Georghiades et al. [64] used their few-to-many approach to recover a 3D

model from a sample of training images using a variant of photometric stereo. They were

able to synthesise views of face under novel lighting and pose given as few as three images

of the face taken under variable lighting.

However, for many applications it is desirable to be able to synthesise novel views

of a face given only a single example view. This requires assumptions to be made about

occluded areas of the face and therefore the majority of single view techniques use a

model which encapsulates prior knowledge of face structure and appearance. Beymer and

Poggio [11] proposed such a technique based on image warping. They used optical flow

to learn how images of a prototype face change under rotation and then applied the same

warp to an image of a novel face. However, any method based on image warping takes
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no account of reflectance and lighting, and moreover this technique cannot synthesise

occluded areas of the face. More recently, Blanz et al. [13] used their morphable model

framework to correct for variations in pose. Having fitted the model to an image, any

novel pose can be rendered under any arbitrary lighting conditions. Occluded areas of

the input face are implicitly recovered when estimating the face shape parameters that

most closely match the visible areas of the face. However, the technique requires manual

initialisation and is reliant on the model successfully capturing all possible face shapes.

Shape-from-shading holds out the possibility of recovering 3D shape from a single im-

age, under variable lighting and with a meaningful model of reflectance. This potentially

allows the synthesis of new poses from a single image without requiring a prior model of

head shape. Previous attempts to use shape-from-shading for novel facial view synthesis

have been limited. The most well known work is that of Zhao and Chellappa [166, 167].

They exploited the symmetry in a frontal view of a face to constrain the shape-from-

shading process and cancel the effects of variation in albedo, although they did assume

Lambertian reflectance. They used this to synthesise novel lighting for frontal images.

However, images of rotated faces are not symmetric and hence the constraint cannot be

applied. They therefore used image warping based on a single 3D model to generate a

frontal view before applying symmetric shape-from-shading. The only results presented

were based on pure image warping of very low resolution images, though they did report

improved recognition performance.

2.2.5 Depth- or Curvature-based Face Recognition

As described in the previous sections, a representation of a face can be derived from a two-

dimensional image of a face in two ways. Either a set of facial features which describe

the face can be extracted [22], or the image itself can be projected into a low dimensional

space giving an holistic description of the face as a parameter vector [139]. Similarly,
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3D shape or curvature information can be used as a source of features [66,140] or can be

described holistically in low dimensional space [5].

However, a representation that uses depth or curvature information will have several

advantages over a representation based on a two-dimensional image:

1. Depth or curvature information is implicitly invariant to changes in illumination,

reflectance properties and viewpoint

2. Depth or curvature information is better suited to providing a rich description of

areas such as the cheeks, forehead and chin

3. There is considerable evidence that humans use shape information for face recog-

nition and very strong evidence that it is used for classification [118]

It is therefore surprising that the attention given to such approaches in the past has

been limited. A number of researchers have developed systems for recognising faces

from depth information extracted using a laser range scanner [65], stereo camera [76] or

other 3D acquisition device [18]. While it is clear that the data recovered by these devices

is of high accuracy and resolution, their use severely limits the real world applicability of a

face recognition system which uses them. Most importantly, it removes the non-intrusive

nature of face recognition by requiring the subject to participate in the data acquisition

process.

Gordon [65, 66] presented the first face recognition system based on depth and cur-

vature information. She motivated her work by commenting that traditional approaches

have been limited in the feature base available, usually just using the eyes, nose, mouth,

and face boundary in their description of a face. It is extremely difficult to describe low

contrast areas of the face directly from intensity images with any sort of reliability. How-

ever, a depth or curvature-based approach can take advantage of the significant additional

33



information contained in areas such as the jaw boundary, cheeks and forehead. In gen-

eral, the larger the feature base, the less strict the accuracy requirements. Therefore an

approach that can utilise more features will represent the face more accurately and thus

improve its chance of correctly recognising a face.

Gordon used the acquired range data to perform recognition in two ways. The first

was based on a global comparison found by calculating the volume between two facial

surfaces after an alignment procedure. The second was to extract a set of facial features

such as the mean and Gaussian curvature at the tip of the nose in order to describe a face.

Both techniques gave good results, with recognition rates above 90% with automated

alignment.

Coombes [31,32] calculated the curvature across the surface of a face from range data

acquired using a profile scanner. She used this to produce a shape-based description of a

face to measure the effect of facial surgery. Achermann et al. [2] combined data from two

coded light cameras to recover facial depth. They applied two classic face recognition

approaches to the range images: eigenfaces and hidden Markov models, both of which

produced encouraging results. Chang et al. [26] used the surface normal components

extracted from range data to build a phase-only vector filter. This allowed recognition

between a range face and intensity face in a way that was less sensitive to illumination

changes than traditional intensity-based methods.

More recently, Bronstein et al. [18,19] have developed a technique for representing a

facial surface which is invariant to isometric deformations, such as those resulting from

different expressions. Using data captured from a structured light camera, they were able

to distinguish between identical twins under varying illumination and expression. Hes-

eltine et al. [76] used a fast graph matching algorithm to compare facial surface meshes

acquired using a stereo camera.

Besides their limited real world applicability, techniques which use only depth infor-
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mation ignore the part played in determining identity by albedo and reflectance properties.

For example, the eyes are thought to play a strong role in human face recognition [138],

yet without albedo all eyes look very much alike. Likewise, it appears possible that two

humans may share very similar facial shape, yet have entirely different coloured skin.

Shape-from-shading holds out the possibility of recovering three dimensional facial

shape from a single two dimensional image. This would combine the benefits of using

3D shape information with the real life applicability of working with 2D intensity images.

Moreover, as suggested in Section 2.1, there is strong evidence that shape-from-shading

is employed by the human face recognition system. Despite this, shape-from-shading has

received little attention in the face recognition literature, being described as “not robust

enough” [171] and “not shown to be sufficient for the face recognition task” [114]. In the

next section we review the shape-from-shading literature and previous attempts to apply

shape-from-shading to face images.

2.3 Shape-from-shading

As mentioned in Chapter 1, shape-from-shading has been an active area of research since

the 1970s. Even prior to this, photogrammetric work attempted to exploit shading as cue

for shape recovery [134,150]. The computational formulation of the shape-from-shading

problem can be stated as follows:

From one 2-dimensional grayscale intensity image of an object, compute the

shape of the object which gave rise to the image.

By ‘shape’, we refer to 3-dimensional shape information of some kind, the means of

representation of which may vary. There are few other monocular cues which provide

shape information at every point in the image and hence, shape-from-shading as a problem

is almost unique. In this section we review the literature concerning attempts to solve the
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shape-from-shading problem in a general setting. Two major surveys and evaluations of

state of the art shape-from-shading algorithms took place in 1999 [165] and 2004 [50].

2.3.1 Ambiguous Shading Patterns

We have already shown in Chapter 1 that a shading pattern may have more than one inter-

pretation. The example in that case could be perceived as either a convex hill or concave

valley. In fact, these ambiguities turn out to be quite fundamental to understanding the

problem of shape-from-shading and can be classified as eitherbas-relief ambiguitiesor

convex/concave ambiguities.

The example given in Chapter 1 falls into the category of the bas-relief ambiguity.

Here, a change in the estimation of the parameters of the lighting results in the perception

of a different surface shape. This category of ambiguity was generalised by Belhumeur

et al. [10], who proved that when the illumination direction and albedo of a Lambertian

surface are unknown, the same image can be produced by a continuous class of surfaces

which depend linearly on three parameters. This sort of ambiguity is resolved by the

human visual system either by a prior constraint on the illumination direction (lighting

from above in the hill/valley example) or by a prior constraint on the recovered shape

(global convexity in the case of faces). This ambiguity is often encountered in uncali-

brated photometric stereo [64] where additional constraints must be enforced to produce

an unambiguous result.

In computational shape-from-shading, it is often assumed that the parameters of the

light source are known. In this case, binary convex/concave ambiguities arise in which

two interpretations of the shape are valid either side of a critical point. Figure 2.1 pro-

vides a contrived 1-dimensional example of this. All of the surfaces in (a) would produce

the same 1D image shown in (b) when illuminated from above. Convexity-concavity

ambiguities are unavoidable in single image shape-from-shading. Their effect typically
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Illumination

(a)

(b)

Figure 2.1: All of the surfaces in (a) are valid interpretations of the ambiguous 1D image
in (b).

manifests itself in facial shape-from-shading results by imploding the nose and exagger-

ating the cheeks [25].

2.3.2 Early Work

Van Diggelen [150] was the first to consider the problem of 3D shape recovery from

photometric images. Here, the aim was to estimate lunar surface topography and the

work focused on the special case in which the angle between the local tangent plane

and incident light was very small. With the same application in mind, Rindfleisch [134]

proposed a solution applicable only to the special properties of the material in the maria

of the moon. The first to give the problem serious attention, provide a general formulation

and coin the term “shape-from-shading” was Horn [81,82]. In his seminal work, he posed

the problem as that of solving a nonlinear first-order partial differential equation (PDE). If

(x, y) is a point in the image plane and the corresponding intensity at this point isI(x, y),

the image irradiance equationis given by:

I(x, y) = R (n(x, y)) . (2.1)
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The reflectance map, R, relates points in gradient space (i.e. all possible surface orien-

tations) to the measured image intensityI(x, y). Stated in these terms, the image irra-

diance equation is entirely general, since the reflectance map may describe any surface

reflectance properties. However, almost without exception the shape-from-shading liter-

ature makes the assumption that the surface reflectance follows Lambert’s law (the few

examples that do not include [133] and [102], also [59] and [17] in the radar shape-from-

shading literature).

Horn [83] showed how to solve theEikonal equationwhich results from the image

irradiance equation using the method of characteristic strips. There are a number of

weaknesses in this approach. The first is the problem of error integration, inherent in

any line-based integration technique. The second is that determination of the characteris-

tic strips themselves becomes a new problem in itself. The result is that the technique is

very sensitive to the chosen boundary conditions.

In retrospect, the earliest work was rather ambitious in its aims, attempting to account

for non-Lambertian reflectance effects [82,134] and trying to directly compute numerical

solutions to the shape-from-shading PDE. Subsequently, questions about the uniqueness

and existence of solutions have been posed and answered in certain cases [85]. Horn’s

work [83] is now seen as the first of a class of shape-from-shading techniques based

on propagation. One of the advantages of these methods is that they do not introduce

additional biases by imposing external constraints on the solution. The current state-of-

the-art techniques fall into this class and attempt to directly solve the PDE using viscosity

solutions.

Other recent shape-from-shading work has typically been classified as either global

or local and is based on regularisation techniques, linearisation of the image irradiance

equation or intensity gradient constraints. We review a selection of these methods and

state-of-the-art viscosity solutions in the following subsections.
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2.3.3 Global Methods

Perhaps the most well known solution proposed for the shape-from-shading problem is

the variational approach developed by Horn and Brooks [84]. The fundamental idea be-

hind such regularisation approaches is to find a weak solution of the image irradiance

constraint, by minimising an error functional which penalises departures from the im-

age irradiance equation and encourages satisfaction of additional constraints. Horn and

Brooks used a smoothness term as their additional constraint, which requires adjacent

normals to assume similar directions. A similar approach was adopted by Zheng and

Chellappa [172] who employ an intensity gradient consistency constraint, while Frankot

and Chellappa [59] require that the normals satisfy an integrability constraint.

There are a number of weaknesses that can be leveled at regularisation approaches.

Additional parameters must be introduced in order to control the influence of the various

constraints. Finding optimum values for these parameters is non-trivial and in order to

ensure numerical stability, often conservative values are necessary. This causes the re-

sulting field of surface normals to be oversmoothed and the image irradiance equation to

be only weakly satisfied. The estimated shape lacks fine detail and suffers from model

dominance. In addition the methods are iterative and hence require convergence criterion

to be chosen and are typically slow to execute.

Worthington and Hancock [156] overcame the problem of oversmoothing by enforc-

ing satisfaction of the image irradiance equation as a hard constraint at each iteration

of their algorithm. They also investigated the use of more sophisticated smoothness

constraints which aimed to preserve discontinuities in the recovered surfaces. Lee and

Kuo [101] solve for surface height directly using a stiffness constraint on a triangular

mesh and approximating the reflectance map by a locally linear function. This formula-

tion reduces the problem to solving a sparse linear system of equations, but introduces

errors through the linearisation of the reflectance function.
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2.3.4 Local Methods

Pentland [125] also uses a linear approximation to the reflectance map but in a local

setting in which the image intensity and its first and second derivatives are used to recover

information about the local surface topography. His approach is non-iterative but is based

on the assumption of the local sphericity of the surface. Lee and Rosenfeld [99] avoid

using the second derivative of the image intensity, reducing the sensitivity to noise but

still require that the surface be locally spherical.

Tsai and Shah [148] use a Jacobi scheme to solve a linear system equations (one for

each pixel) to recover a surface, again based on a linear approximation of the reflectance

map. Their approach is attractive in that it is straightforward to implement and very

efficient. However, because of sensitivity to noise the resulting surface must be smoothed

and hence fine detail is lost.

2.3.5 Perspective and Viscosity-based Methods

The most recent approaches to shape-from-shading, the results of which are considered

state of the art, use the notion ofviscosity solutionsto first order PDEs. Prados and

Faugeras [131] replace the typical modeling assumption of an orthographic camera with

a perspective projection. In this case, when the light source is at the optical centre and the

surface reflectance follows Lambert’s law, they show that the shape-from-shading prob-

lem is well-posed. They recover what are perhaps the first usable surface estimates from

real world images including: faces, medical images and document surfaces. However,

although the recovered shape is, in a global sense, a dramatic improvement over previous

work, it is still highly inaccurate and not comparable with the results from multi-image

methods.
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2.3.6 Shape-from-Shading for Face Recognition

Of the limited attempts to use shape-from-shading for face recognition, the most well

known is the work of Zhao and Chellappa [166–168]. Their principal contribution was

to exploit facial symmetry in frontal images of faces which allowed them to cancel for

the effects of varying albedo. This so called ‘symmetric shape-from-shading’ allowed

them to generate prototype images with novel lighting, which led to improved recognition

performance using standard PCA- and LDA-based techniques [166]. They also combined

the technique with a generic 3D head model to allow the synthesis of frontal poses from

rotated views [167]. Using a single 3D model appears to be a gross simplification and

their view synthesis results are of poor quality. In addition, in all their work they assume

skin to be a Lambertian reflector composed of piecewise constant albedo patches, which

they identify manually.

The eigenhead technique of Atick et al. [5], was posed as a parametric solution to

shape-from-shading for face images. They called the minimisation process ‘statistical

shape-from-shading’. More recently, Dovgard and Basri [47] have combined the tech-

nique with the symmetric SFS of Zhao and Chellappa [168], allowing a closed-form so-

lution which satisfies both symmetry and statistical constraints in the best possible way

and which accounts for varying facial albedo. However, the technique assumes Lamber-

tian reflectance and requires a frontal view. Nandy and Ben-Arie [115] attempt to learn

the relationship between 3D shape and image intensity for a number of face parts. Their

shape-from-recognition framework helps to constrain the space of solutions to the image

irradiance equation, but relies on statistical methods to learn the effects of illumination

variation. However, none of these methods for face shape reconstruction were applied to

the recognition problem.

Castelan and Hancock [23,25] combined an integrability constraint with the geometric

SFS framework of Worthington and Hancock [156], before applying curvature constraints
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to force the convexity of the recovered facial surface. They managed to recover convinc-

ing 3D surfaces from single, real world face images, though without a model of skin

reflectance or albedo variation.

Worthington and Hancock’s geometric SFS [156] has been shown to recover reliable

local topographic information. The authors in previous work [140], used histograms of

mean and Gaussian curvature extracted by applying the geometric SFS algorithm to im-

ages of faces to perform pose invariant recognition. Although the curvature information

itself is viewpoint invariant, it is not clear how stable the histogram of curvatures is under

facial rotation. In addition, it has not been determined how discriminating these his-

tograms are and whether, even if they were entirely accurate, they would be sufficient for

distinguishing between different faces.

2.4 Skin Reflectance Modeling

Variation in images of faces can be conceptually divided into a number of subspaces,

which are chosen to reflect useful facial dimensions. Commonly these subspaces are con-

sidered to include: identity, expression, pose and lighting. A further and often neglected

source of variation is due to the reflectance properties of skin, which can cause dramatic

differences in the appearance of a face. In previous attempts at machine face recognition

almost exclusively, where skin reflectance has been considered at all, it has been assumed

to be Lambertian [5,28,63,140,166,167].

Often statistical methods ignore reflectance properties entirely, hoping that they will

be learnt implicitly from image intensity [39]. As well as only allowing a simplistic

understanding of the image formation process, such an approach also makes no attempt

to distinguish between elements of reflectance that may be useful for recognition (such as

skin colour and surface markings) and those which vary with time (such as the presence
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of perspiration which causes specularities). We suggest that, just as shape free faces have

proven more suitable for recognition using principal component analysis [40], reflectance

normalised faces would also be more accurately modeled in linear spaces. In addition, the

reflectance properties could also be used as a feature vector in their own right which may

prove useful for recognition.

Reflectance is of particular importance if image intensity is to be used to recover shape

information for recognition, for example using shape-from-shading or photometric stereo.

It is for this reason that the topic of skin reflectance is considered in some detail here.

Skin reflectance is extremely complex consisting of Fresnel reflection, sub-surface

scattering, asperity scattering and absorption. It is a topic that has been studied exten-

sively in computer graphics and biology and there are some relevant physical models.

Potential applications of skin reflectance models include skin detection, photo-realistic

skin rendering and detection of skin diseases in vivo. However, only a limited number of

these models are applicable to computer vision. A survey of these models is presented in

the following sections, preceded by an overview of the biological and optical properties

of skin.

2.4.1 The anatomy and optics of skin

Human skin is composed of three distinct layers: the epidermis, the dermis and the hy-

podermis. Each layer performs a role in the overall function of skin. Skin reflectance

is primarily determined by the pigments melanin and hemoglobin which are distributed

through these layers. Theepidermisis the outermost layer of skin. Its thickness varies

considerably between different points on the body and between comparable points on dif-

ferent individuals. The epidermis contains melanin which contributes to skin colouring.

Thedermisis mostly composed of collagen fibres. These run in a regular direction over a

small area and are responsible for the anisotropic properties of skin reflectance [116]. The
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dermis contains the blood vessels which supply the surface of the skin. The hemoglobin

contained in this blood plays a significant part in skin reflectance and is the cause of the

pink or red colour of light skinned individuals whose lack of melanin allows more light to

penetrate to the dermis. Scattering in the dermis is primarily caused by the collagen fibres

and its behavior is accounted for by a combination of Rayleigh and Mie scattering [151].

The hypodermis does not play a significant role in skin reflectance.

Approximately 4% to 7% of incident light is reflected by the epidermis at the air-skin

boundary [143]. This regular reflectance follows Fresnel’s equations relating reflectance

to the angle of incidence, plane of polarization and refractive index. The remaining light

enters the skin and is either absorbed or, after one or more scattering events, re-emerges

from the skin as backscattered light, possibly at a different location to that at which it

entered. When the angle of incidence exceeds60◦, the proportion of light that is regu-

larly reflected increases substantially. This explains why white skin appears pinker when

illuminated straight on, whereas with a large incident angle it takes on the color of the

illuminant [129].

2.4.2 Other considerations

Besides regular reflectance at the air-skin boundary and back-scattering within the der-

mis and epidermis, there are a number of other factors which contribute to the reflectance

properties of skin and are worthy of consideration. Namely asperity scattering, hair folli-

cles and sweat glands.

An ‘asperity’ refers to a slight projection from a surface, for example hair tips, dust or

fluff. Asperity scattering mostly affects the occluding boundary and shadow terminator

and although its effect on outgoing radiance is quantitatively small, it is thought to play a

strong perceptual role. Koenderink and Pont [96] suggest it is this that gives female skin

its ‘peachy’ quality whereas subsurface scattering is responsible for more ‘milky’ skin.
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Figure 2.2: Asperity scattering at the face contours.

Sparse asperities result in a single scattering event. The effect is a reflectance function

whose behaviour is almost exactly opposite to that of Lambertian reflectance. This is

demonstrated in figure 2.2. The area where asperity scattering is prominent is highlighted

and enlarged.

The second additional consideration is the presence of facial hair follicles, not only

on the scalp, but also in the eye brows, eye lashes and facial hair. There exist numerous

reflectance models for hair shading developed by the graphics community, for example

the Kajiya-Kay model [91]. However, these are very unlikely to be useable in a vision

context. We suggest that it will be sufficient to consider facial hair as dark patches of skin

where much of the incident light is absorbed.

Finally, perhaps the most important additional factor to consider is the strong effect

of perspiration or oil at the skin’s surface [141]. A number of different fluids are pro-

duced by glands in the skin and secreted at the skin’s surface. Their effect is to cause

increased specular reflection, which for highly perspiring faces can dominate skin re-

flectance. Analyzing such images using shape-from-shading would be highly inaccurate

without including specular reflection in the reflectance model.

45



2.4.3 Empirical skin reflectance measurements

Two notable attempts have been made to learn the BRDF of skin by making empirical

estimates [42, 109]. The main problem with this approach is that the BRDF has four

degrees of freedom, that correspond to the zenith and azimuth angles for the light source

and the viewer. As a result the tabulation of empirical BRDF’s can be slow and labour

intensive. Moreover, since these methods require a perfectly stationary, flat sample, they

are badly suited to taking measurements from skin samples of live subjects.

Dana et al [42] included skin reflectance measurements in their Columbia-Utrecht

Reflectance and Texture (CUReT) database. They used anin vitro skin sample (extracted

from a cadaver) which overcame the problems of stability and shape (the skin could be

forced onto a flat surface). However, since skin reflectance is largely dependent on blood

flow, it is not clear whether results on dead skin are particularly meaningful, unless the

aim is realistic rendering of dead skin.

Marschner et al [109] went some way to solving these problems by using an inverse

rendering approach allowing them to take in vivo measurements. Having laser range

scanned each subject, they attached a location pattern to their head, allowing them to

accurately tabulate surface orientation against measured intensity for a number of differ-

ent viewpoints and illumination directions. They found that skin reflectance is almost

Lambertian at small incidence angles but exhibits strong forward scattering as the inci-

dent angle increases. They also found that the application of artificial perspiration had a

marked effect but that makeup did not.

Rather than measure the complete BRDF, Angelopoulou [4] instead measured the

spectral response of living human skin over the visible spectrum for a fixed incident and

viewing angle. She found that the skin of all volunteers showed similar characteristics

and all contained a distinct shape at around 575nm to a greater or lesser extent. She was

able to derive a simple algorithm for recognizing this shape and showed it could be used
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Figure 2.3: The van Gemert [151] simplified model of skin reflectance.

to autonomously distinguish between the spectral response of human skin and that of a

mannequin.

However, given the enormous variation in skin reflectance properties both between

different subjects and between the same subject at different times, it is unlikely that any

single empirically measured set of reflectance properties will suffice to characterise skin

reflectance in general. Further, any attempts to use such measurements in vision tasks

would require carefully calibrated equipment. For this reason, empirical measurements

will not be used to model skin reflectance in this research, though they may serve to

validate any reflectance data recovered in other ways.

2.4.4 Physical skin reflectance models

Van Gemert et al. [151] were amongst the first to attempt to build a model of skin re-

flectance based on measurable physical quantities. They used a simplified model of skin

composed of two plane parallel layers as shown in figure 2.3, wherene andnd are the

refractive indexes of the epidermis and dermis. They assumed that a different density of

absorbers and scatterers are distributed throughout the two layers. They used the Henyey-

Greenstein phase function to model scattering within the tissue and found a good agree-

ment with experimental data.
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However, their model requires a number of parameters to be either known or searched

for to minimise an error functional. Moreover, it lacks two of the features of skin re-

flectance described previously: specular reflection caused by perspiration and asperity

scattering. Nevertheless, it may provide a starting point for building a model of reflectance

which could be utilised in vision tasks.

A more recent model based on a complete physical model of skin was proposed by

Hanrahan and Krueger [72]. They perform a full multiple scattering simulation using a

Monte Carlo numerical integration method. They propose a model of subsurface scat-

tering in layered surfaces and use one-dimensional linear transport theory to model the

scattering. They use measurable optical properties to describe each layer. The technique

is hugely computationally intensive and is not invertible in any sense due to the stochastic

sampling used. It is not at all suitable for use in computer vision, but serves to demonstrate

the complexity of existing physical models.

2.4.5 Phenomenological skin reflectance models

Photo-realistic skin rendering has been a focus of research for the computer graphics

community for many years and is still an unsolved problem. Swerdlow [144] went as far

as to say that “Computer Graphics artists will capture the holy grail of animation when

they can bring virtual skin to life.” The aim in graphics is to develop models which are

sufficiently complex to capture many skin types and are controlled by intuitive parameters

whilst allowing photo-realistic rendering but which are sufficiently efficient to be useable

for real-world applications.

The state of the art in graphical skin rendering is the subsurface transport model of

Jensen et al. [88]. Rather than use a BRDF and a model of subsurface scattering, they used

the complete Bidirectional Subsurface Reflectance Distribution Function (BSSRDF). This

allows them to simulate effects that BRDF models cannot capture, such as colour bleeding
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within materials and diffusion of light across shadow boundaries and silhouettes. As with

the Hanrahan and Krueger model, it is impossible to envisage how this could be used in a

vision context, but as the state of the art is worthy of mention.

It may be that a generic phenomenological reflectance model may suffice to model

skin reflectance for computer vision tasks. For example, the rough surface model of Oren

and Nayar [117] captures limb brightening effects which could be used to model asperity

scattering at the occluding boundary in skin. The simplest analytical model to have been

used to approximate skin reflectance is the classical specular reflection model of Phong

[128]. Blanz and Vetter [15] estimated the parameters of the Phong reflectance model

alongside illumination conditions and camera, shape and texture parameters in order to

fit their morphable model to a given image of a face. This is based on the anecdotal

observation that skin is shinier than a Lambertian surface, but no physical justification

can be made.

2.4.6 Image-based methods

Given the huge variation in skin reflectance properties of a subject over time or between

different subjects, and the lack of a model of skin reflectance which is applicable to vision

tasks, the attractiveness of an image based method is obvious. There is a clear need to be

able to estimate the BRDF of a given subject at a given time if analysis by shape-from-

shading is to be performed.

For images of arbitrary surfaces Dror [48] developed a reflectance recognition tech-

nique which used single images. This was motivated by the fact that humans seem to

be able to estimate reflectance properties accurately without contextual information to

specify the illumination [55]. Dror showed that the regular statistical properties of natural

illumination lead to predictable relationships between reflectance and certain image statis-

tics. These statistics can be used to classify reflectance properties reliably even though
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the problem of reflectance recognition under arbitrary illumination is under constrained.

However, Dror’s aim was to distinguish between surfaces with gross differences in re-

flectance properties and the technique is probably ill-suited to the more subtle variations

found in the reflectance properties of different subject’s skin.

Georghiades [62] presented a technique which was shown to accurately recover shape,

albedo and reflectance properties from 12 aligned images of a surface under variable

lighting. The technique was in essence an extended uncalibrated photometric stereo tech-

nique and used the Torrance and Sparrow reflectance model [146]. He applied the tech-

nique to images of faces and confirmed that the recovered BRDF closely matched that of

Marschner et al. [109]. The technique also allowed qualitatively accurate view synthesis.

A similar technique was proposed by Debevec et al. [44]. However, the need for multiple

images in both techniques makes their applicability to real world vision tasks limited.

Claridge et al. [29] derived a model of the spectral response of healthy skin based on

three parameters: melanin concentration, haemoglobin concentration and the thickness of

the dermis. They then found the relationship between the spectral composition of the light

emitted from the skin and these parameters. This allowed the histological parameters of

a skin sample to be estimated from a colour image, and abnormal areas to be highlighted.

This technique may provide a way to estimate useful model parameters from an input im-

age, helping to initialise a complete model of the BRDF of skin. However, the technique

requires calibrated measurements and knowledge of the surface orientation.

Robles-Kelly and Hancock [135] proposed a parameter free technique for estimating a

slice of the BRDF of a given surface from a single image. They note that under the retro-

reflection condition and assuming an isotropic and homogeneous reflectance function, the

reflectance function is dependent only on the angle of incidence at a given point. They

use the image gradients to estimate a tabular representation of this function. In this thesis

we make use of this technique as a preprocessing step. We discuss the method in more
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detail in Chapter 3.

2.5 Conclusions

There is some psychological evidence for the use of shape-from-shading in the perception

of faces by humans. However, existing computational methods for shape-from-shading

are insufficiently robust to recover usable shape information from real world images of

faces. In fact, the most successful methods for automated face processing have been

based on statistical models that capture the appearance of a face in an image [33, 149].

The weakness of these approaches is that they make no attempt to decouple the measured

image intensity into the physical facial properties (shape and reflectance) and imaging

parameters (illumination, viewpoint and camera properties) that produce the resulting

appearance. The effect is that the models find it hard to distinguish between changes in

identity and changes in imaging conditions.

Recent work using 3D morphable models [14] has gone some way to addressing these

issues. Here, the imaging process is modeled explicitly and the statistical model captures

only changes in facial shape and reflectance properties. By fitting the model to an im-

age we recover the underlying facial shape and reflectance information, albeit it at the

cost of solving a computationally expensive optimisation problem. However, it is the

overdependence on this model that proves to be a weakness. By relying entirely on a

model-driven parametric process, the information that can be directly extracted from an

image is ignored. The problem is model dominance, in which the recovered information

relies entirely on the capacity of the model to generalise to unseen examples. The result

is that the fitted model only weakly reconstructs the input image, with no notion of local

data-closeness, and failure to recover atypical features.

These observations motivate the use of shape-from-shading to recover facial shape
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information. Within a shape-from-shading framework, image intensity constraints may

be strictly satisfied at every pixel in an image. This ensures accurate recovery of local

surface features and that the recovered shape recreates the measured intensities exactly,

without having to solve a computationally expensive model fitting optimisation problem.

However, the success of statistical models in both facial appearance modeling and facial

surface recovery and the face specialisation present in human shape-from-shading provide

strong motivation for the use of a statistical constraint within this context. The hope is that

such an approach could combine the robustness of statistical methods with the advantages

of a classical shape-from-shading algorithm.

One specific weakness of existing shape-from-shading approaches in the context of

faces is their lack of a realistic model of skin reflectance. Having reviewed the skin re-

flectance modeling literature, we conclude that no existing models are suitable for appli-

cation in a shape-from-shading context. We suggest that image based empirical measure-

ments provide the most flexible way of accounting for varying skin reflectance properties.
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Chapter 3

A Statistical Model for

Shape-from-shading

I never saw an ugly thing in my life: for let the form of an object be what it

may - light, shade, and perspective will always make it beautiful.

- John Constable [103]

Shape-from-shading provides an alluring yet somewhat elusive route to recovering

3D surface shape from single 2D intensity images [165]. In particular, there has been

sustained interest in using the method to recover realistic 3D face shape from single face

images [5, 24, 47, 130, 168]. Unfortunately, the method has proved ineffective due to

problems inherent to shape-from-shading: convexity-concavity ambiguities [156] and the

bas-relief ambiguity [10], and challenges specific to face images: variations in pigmenta-

tion and facial hair resulting in non-constant reflectance properties. Convexity-concavity

ambiguities are unavoidable in single image shape-from-shading and are responsible for

a number of illusions, including Gregory’s famous inverted mask [67]. Their effect typi-

cally manifests itself in shape-from-shading results by imploding the nose and exaggerat-
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ing the cheeks [24]. For these reasons, multi-image methods such as photometric stereo

have proven more successful [64].

Contribution

Our aim in this chapter is to show how a statistical model of face shape may be embedded

within a shape-from-shading framework. The aim here is to recover a field of surface nor-

mals (a needle-map) from a single intensity image, by exploiting the direct relationship

between surface orientation and measured intensity. Unfortunately, the construction of a

statistical model for the distribution of facial needle-maps is not a straightforward task.

The statistical representation of directional data has proved to be considerably more dif-

ficult than that for Cartesian data [74]. Surface normals can be viewed as points residing

on a unit sphere and may be specified in terms of the elevation and azimuth angles. This

representation makes the computation of distance difficult. For instance, if we consider a

short walk across one of the poles of the unit sphere, then although the distance traversed

is small, the change in azimuth angle is large. Hence, constructing a statistical model that

can capture the statistical distribution of directional data is not a straightforward task.

In this chapter we provide an intuitive way in which to overcome this problem, draw-

ing on ideas from cartography and directional statistics. Our starting point is theazimuthal

equidistantor Postel projection [142]. This projection has the important property that it

preserves the distances between locations on the sphere. It is used in cartography for

path planning tasks. Another useful property of this projection is that straight lines on the

projected plane through the centre of projection correspond to great circles on the sphere.

The projection is constructed by selecting a reference point on the sphere and constructing

the tangent plane to the reference point. Locations on the sphere are projected onto the

tangent plane in a manner that preserves arc-length.

We exploit this property to generate a local representation of the field of surface nor-
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mals. We commence with a set of needle-maps, i.e. fields of surface normals which in

practice are obtained from range images. We begin by computing the mean field of sur-

face normals. The surface normals are represented using elevation and azimuth angles

on a unit sphere. At each image location the mean-surface normal defines a reference

direction. We use this reference direction to construct an azimuthal equidistant projection

for the distribution of surface normals at each image location. The distribution of points

on the projection plane preserves the distances of the surfaces normals on the unit sphere

with respect to the mean surface normal. We then construct a deformable model over the

set of surface normals by applying the Cootes and Taylor [34] point distribution model to

the co-ordinates that result from transforming the surface normals from the unit sphere to

the tangent plane under azimuthal equidistant projection. On the tangent projection plane,

the points associated with the surface normals are allowed to move in a manner which is

determined by the principal component directions of the covariance matrix for the point-

distribution. Once we have computed the allowed deformation movement on the tangent

plane, we recover surface normal directions by using the inverse transformation onto the

unit sphere.

Spheres as Manifolds

The general idea of projecting from the Gauss map of a surface to a plane in such a way

as to preserve geodesic distance is of course central to the exponential map in differential

geometry [46]. In fact, Pennec [122] has recently developed a framework for the analysis

of statistical data on manifolds using the exponential map, and has applied the method to

the analysis of medical images. In Chapter 4, we revisit the problem of building a sta-

tistical model for surface normals and formulate our model using the tools of differential

geometry. The resulting representation is both more flexible and elegant. However, in

this chapter we adhere to the cartographic analogy since this provides a more intuitive
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explanation of the processes involved and is true to the chronological development of the

work.

Using the Model To Constrain Shape-from-shading

We use the model to provide a statistical constraint within a geometric shape-from-shading

framework. When the surface reflectance follows Lambert’s law, the surface normal is

constrained to fall on a cone whose axis is in the light source direction and whose opening

angle is the inverse cosine of the normalised image brightness. This method commences

from an initial configuration in which the surface normals reside on the irradiance cone

and point in the direction of the local image gradient. The statistical model is fitted to

recover a revised estimate of the surface normal directions. The best-fit surface normals

are projected onto the nearest location on the irradiance cones. This process is iterated to

convergence, and the height map for the surface recovered by integrating the final field

of surface normals. We show how albedo maps can be recovered using the difference

between observed and reconstructed image intensity. With the albedo maps to hand we

explore how faces can be realistically reilluminated from different lighting and viewing

directions.

Chapter Outline

The outline of this chapter is as follows. We begin in Section 3.1 by introducing shape-

from-shading and describing a framework which can be used to approach the problem. In

Section 3.2 we show how a statistical model may be constructed that captures variations in

facial shape in terms of a field of surface normals. In Section 3.3 we describe two methods

for incorporating this model into a shape-from-shading framework. Finally, in Section 3.4

we provide experimental results on model construction, fitting and view synthesis on both

ground truth and real world data.
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3.1 Shape-from-shading

In this section we describe a framework for shape-from-shading within which a wide vari-

ety of constraints can be incorporated. We begin by describing the radiometric processes

which underpin the shape-from-shading problem and provide the necessary formalisms.

3.1.1 Radiometry and Photometry

Radiometryis the science of the measurement of light in terms of its absolute power. Light

may also be measured using the techniques ofphotometry, in which light is measured

according to its brightness as perceived by the human eye. The two share analogous

quantities, with photometric units weighting the measured power at each wavelength with

a factor that represents how sensitive the eye is at that wavelength.

Shape-from-shading is effectively a photometric process (or radiometric, depending

on the type of imaging device used) since it seeks to recover information about surface

shape from measurements of light made from a scene. We begin this chapter by providing

a brief overview of the physical quantities involved and explain how the quantities we

measure with a digital imaging device correspond to light in the real world.

Light at Surfaces

When incident light strikes a surface, it may interact with it in a number of ways. The

light may be absorbed, scattered or transmitted or a combination of these effects. We

make the assumption that reflectance effects are local. That is, light leaving a point is due

only to light arriving at this point.

In order to describe the way in which light interacts with a surface we use a func-

tion that captures the relationship between incoming and reflected light. This function

is known as thebi-directional reflectance distribution function(BRDF) and is expressed
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Figure 3.1: The geometry of surface reflectance.

in terms of three unit vectors describing the direction of: the incident illuminationL, the

viewerV and the local surface normalN. The vectors are usually written in a local spher-

ical coordinate system whosez axis is given by the surface normal vector. We therefore

write the illumination and viewer direction as spherical coordinates:(θi, αi) and(θo, αo)

respectively. The geometry of this notation is clarified in Figure 3.1.

The appropriate unit for representing incoming power isirradiance, defined as inci-

dent power per unit area. We denote the irradiance from direction(θi, αi) by the function

fi(θi, αi). The appropriate unit for measuring the distribution of light in space isradiance,

defined as power per unit area per unit solid angle. We denote the radiance in direction

(θo, αo) by the functionfo(θo, αo).

The BRDF describes the ratio of the emitted surface radiance to the incident irradi-

ance. If a surface illuminated by irradiancefi(θi, αi) from a differential region of solid

angledω was to emit radiancefo(θo, αo), its BRDF would be:

ρ(θi, αi, θo, αo) =
fo(θo, αo)

fi(θi, αi)cos(θi)dω
. (3.1)
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Lambertian Reflectance

Surfaces which exhibit perfectly matte reflectance have a BRDF which is independent of

direction. In other words, incoming light is scattered equally in all directions. A perfectly

diffuse surface such as this is known asLambertianand has a particularly simple BRDF:

ρLambert(θi, αi, θo, αo) =
ρd

π
, (3.2)

whereρd is the intrinsic reflectivity of the surface, known as thealbedo. The observed

brightness of a Lambertian surface will be independent of viewing direction and shading

variations are purely due to foreshortening effects with respect to the incident illumina-

tion. More precisely, the outgoing radiance is proportional to thecos(θi) term. This is

known as Lambert’s Law [97].

We return to the BRDF in Chapter 6, where we consider more complex models of

reflectance that provide better approximations of real world skin reflectance properties.

However, in the remainder of this chapter we deal only with Lambertian surfaces.

Measuring Light with a Camera

We assume our camera comprises a thin lens which concentrates the light radiating from

a scene onto an image plane. In a digital camera, incident light falling on the image plane

is measured using a CCD. In Figure 3.2 we illustrate this process with an example.

We denote the object radiance from a scene patch∂A centred onP asL and the image

irradiance on the image patch∂A′ centred onP ′ asE. The solid angle subtended by∂A

from the centre of the lens of diameterD is dω. We can show that the image irradiance at

the sensor element is proportional to the outgoing radiance from the surface [57]:

E =

[
π

4

(
D

z′

)2

cos4 α

]
L. (3.3)
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Figure 3.2: Object radiance and image irradiance for a thin lens.

The utility of this relationship is that it shows that what we measure (the image irradiance

at the sensor element) is proportional to what we are interested in (the scene radiance).

We can further simplify this relationship, since the field of view of a camera is typically

small. This means that the effect of thecos4 β term is small and we can normalise it to

unity. Hence, the position on the image plane relative to the optical axis does not effect

the image irradiance.

In the case of a Lambertian surface illuminated by a point light source of unit intensity,

the result is that the image irradiance is proportional to the albedo and foreshortening

term:

E ∝ ρd cos θi = ρd(N · L). (3.4)

Thecamera response functionrelates the image irradiance at the sensor element,E,

to the measured pixel brightness reported by the camera,I:

gcam : E 7→ I. (3.5)
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If the camera response is linear, then the pixel intensity is directly proportional to image

irradiance. Otherwise, an estimate ofg−1
cam is required in order to recover image irradiance

values from the image intensity. In our experimental sections we either use images taken

by a camera with a linear response function or discuss how it has been estimated.

3.1.2 Geometric Shape-from-shading

Suppose that a facial surfaceF ∈ R3 is projected orthographically onto the image plane

and parameterised by the functionz(x, y). We denote the local surface normal at a pixel

indexed(x, y) on the image plane asn(x, y) and the corresponding measured intensity

asI(x, y). The image irradiance equationcaptures the relationship between the surface

normal, light source,s, and measured intensity. We assume that the light source is of unit

intensity and therefore that the vectors is of unit length. For a perfectly diffuse surface

this relationship is given by Lambert’s law:

I(x, y) = ρd(x, y)(n(x, y) · s), (3.6)

whereρd(x, y) is the diffuse albedo at the pixel(x, y). Albedo describes the intrinsic

reflectivity of the surface, i.e. the proportion of light that is reflected, and lies in the closed

interval [0, 1]. However, at this stage we disregard the effect of albedo by assuming its

value has been normalised to unity.

In general, the surface normaln(x, y) can not be recovered from a single brightness

measurementI(x, y) since it has two degrees of freedom corresponding to the elevation

and azimuth angles on the unit sphere. Clearly, Lambert’s law provides a partial constraint

on the direction of the surface normal, namely that the angle between the light source and

normal is:

θ(x, y) = arccos(n(x, y) · s) = arccos I(x, y). (3.7)
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Geometrically, this means that the surface normal must lie on a right circular cone whose

axis is the light source direction and whose half angle isθ(x, y). By constraining the

surface normal to lie on the cone, we satisfy the image irradiance equation and hence

ensure the fullest possible use of the input image. Assuming the direction of the light

source vector,s, is known or can be estimated, the task is therefore to choose the correct

position of the surface normal on the cone.

Worthington and Hancock [156] provide a particularly simple iterative framework

for solving this problem. They employ an iterative process in which the surface normal

is free to move to an off-cone position subject to smoothness or curvature consistency

constraints. However, the hard irradiance constraint is re-imposed by rotating each surface

normal back to its closest on-cone position. This process ensures that the recovered field

of surface normals satisfies the image irradiance equation after every iteration.

Suppose that̃n(t)(x, y) is an off-cone surface normal at iteration(t) of the algorithm.

Let Θ
(
(u, v, w)T , φ

) ∈ SO(3) denote a rotation matrix which rotates a unit vector about

an axis(u, v, w)T by an angleφ, computed using:

Θ
(
(u, v, w)T , φ

)
=




c + u2c′ −ws + uvc′ vs + uwc′

ws + uvc′ c + v2c′ −us + vwc′

−vs + uwc′ us + vwc′ c + w2c′




, (3.8)

wherec = cos(φ), c′ = 1− c ands = sin(φ).

To restore a surface normal to its closest on-cone position it must be rotated by an

angleφ = θ(x, y) − arccos
[
ñ(t)(x, y) · s] about the axis(u, v, w)T = ñ(t)(x, y) × s.

Therefore the update equation is:

n(t+1)(x, y) = Θ
(
ñ(t)(x, y)× s, θ(x, y)− arccos

[
ñ(t)(x, y) · s]) ñ(t)(x, y). (3.9)
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The method is initialised by placing the surface normals on their reflectance cones

such that they are aligned in the direction opposite to that of the local image gradient.

This initialisation is consistent with the assumption that the object under study is globally

convex [156]. The polar angleα(x, y) of the local negative image gradient is given by:

α(x, y) = arctan

(−∂yI(x, y)

−∂xI(x, y)

)
, (3.10)

and hence, each normal is initialised as follows:

n(0)(x, y) =




sin θ(x, y) cos α(x, y)

sin θ(x, y) sin α(x, y)

cos θ(x, y)




. (3.11)

3.2 A Statistical Model for Surface Normals

Previous work has shown that both images of faces [149] and facial surfaces [5] can be

efficiently modeled in a low-dimensional space, derived by applying principal compo-

nents analysis (PCA) to a training set of images or surfaces. However, fields of surface

normals also provide an important source of information from which a statistical model

of face-shape can be constructed. A field of surface normals, or needle-map, provides a

more detailed description of an object than a corresponding brightness image. Surface

normals are invariant to changes in illumination and surface reflectance. Moreover, to-

pographic information such as surface curvature can be computed from a field of surface

normals [157]. Using shape-from-shading [156], the field of surface normals is also more

easily recovered from an image than the underlying surface height function, since it is

orientation and not depth information which is conveyed by variations in image intensity.

In the remainder of this section we show how to build a statistical model of surface normal

variation by applying PCA to a training sample of fields of surface normals.
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3.2.1 Azimuthal Equidistant Projection

The description of a surface by its field of surface normalsn(x, y) projected onto the

view plane is known as aneedle-map. Suppose we have a training set comprisingK such

needle-maps and thatnk(x, y) = (nk(x, y)x, nk(x, y)y, nk(x, y)z)
T is the unit surface

normal at the pixel indexed(x, y) in the kth training sample. We assume that the face

surfaces in the training set have been aligned, such that the pixel(x, y) corresponds to the

same point on each face in the training set.

In directional statistics [107], the measure of the average direction of a set of unit

vectors is known as themean directionand is given by

n̂0(x, y) =
n̄0(x, y)

||n̄0(x, y)|| , (3.12)

where

n̄0(x, y) =
1

K

K∑

k=1

nk(x, y). (3.13)

There are other measures of the average direction on a sphere. If the sphere is treated as a

manifold, then the intrinsic mean of a distribution of point lying on a sphere is thespher-

ical median[107]. In Chapter 4 we return to these alternative representations. However,

we found that aligned facial needle-maps produce surface normal distributions which are

highly Fisherian [54] (i.e. have a high concentration parameter) and hence the mean direc-

tion is a very good approximation to the spherical median. Because of the computational

ease of calculating the mean direction we use this as our definition of the average surface

normal in this chapter.

On the unit sphere, the surface normalnk(x, y) has elevation angleθk(x, y) = π
2
−

arcsin nk(x, y)z and azimuth angleαk(x, y) = arctan nk(x,y)y

nk(x,y)x
, while the mean surface

normal at the location(x, y) has elevation anglesθ0(x, y) = π
2
− arcsin n̂0(x, y)z and

azimuth angleα0(x, y) = arctan n̂0(x,y)y

n̂0(x,y)x
.
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We wish to transform the field of surface normals into a representation in which we can

apply standard linear PCA. As a rich source of transformations from the sphere to a plane,

we turn to the field of cartography and specifically the azimuthal equidistant projection.

To construct the azimuthal equidistant projection we proceed as follows. We commence

by constructing the tangent plane to the unit-sphere at the location corresponding to the

mean-surface normal. We establish a local co-ordinate system on this tangent plane. The

origin is at the point of contact between the tangent plane and the unit sphere. Thex-axis

is aligned parallel to the local circle of latitude on the unit-sphere.

Under the azimuthal equidistant projection at the location(x, y), the surface normal

nk(x, y) maps to the point with co-ordinate vectorvk(x, y) = (xk(x, y), yk(x, y))T . The

transformation equations between the unit-sphere and the tangent-plane co-ordinate sys-

tems are

xk(x, y) = k′ cos θk(x, y) sin[αk(x, y)− α0(x, y)]

yk(x, y) = k′
(
cos θ0(x, y) sin αk(x, y)−sin θ0(x, y) cos θk(x, y) cos[αk(x, y)−α0(x, y)]

)

(3.14)

wherecos c = sin θ0(x, y) sin θk(x, y) + cos θ0(x, y) cos θk(x, y) cos[αk(x, y)− α0(x, y)]

andk′ = c
sin c

.

Thus, in Figure 3.3,CP ′ is made equal to the arcCP for all values ofθ. The projected

position ofP , namelyP ′, therefore lies at a distanceθ from the centre of projection and

the direction ofP ′ from the centre of the projection is retained. The equations for the

inverse transformation from the tangent plane to the unit-sphere are

θk(x, y)= arcsin
(
cos c sin θ0(x, y)− 1

c
yk(x, y) sin c cos θ0(x, y)

)

αk(x, y)= α0(x, y) + arctan ω(x, y)
(3.15)
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Figure 3.3: The azimuthal equidistant projection.

where

ω(x, y) =





xk(x,y) sin c
c cos θ0(x,y) cos c−yk(x,y) sin θ0(x,y) sin c

if θ0(x, y) 6= ±π
2

−xk(x,y)
yk(x,y)

if θ0(x, y) = π
2

xk(x,y)
yk(x,y)

if θ0(x, y) = −π
2

(3.16)

andc =
√

xk(x, y)2 + yk(x, y)2.

3.2.2 Point Distribution Model

Suppose that each training example is a range image which consists of an array of depth

data. For the pixel indexed(x, y) in thekth training sample the depth iszk(x, y). Using

the range data we estimate the surface normal directions, and the surface normal at the

pixel location(x, y) for thekth training image isnk(x, y). The components of the vector

are transformed into the coordinates(xk(x, y), yk(x, y)) using the azimuthal equidistant

projection. If the range images haveN = Xres×Yres pixels arranged inXres rows andYres

columns, the surface normal coordinates of each training sample may be represented by

the long vector:

Uk = [xk(1, 1), . . . , xk(Xres, Yres), yk(1, 1), . . . , yk(Xres, Yres)]
T , (3.17)
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ordered according to the raster scan (left-to-right and top-to-bottom). Hence,Uk is a

vector of length2N that represents an observed field of surface normals. The firstN

components of the vector contain thex-coordinates obtained by applying the azimuthal

equidistant projection to the surface normals stacked in column order. The secondN

components of the vector contain they-coordinates. Since the azimuthal equidistant pro-

jection involves centering the local co-ordinate system, the coordinates corresponding to

the mean direction are(0, 0) at each image location. Hence, the long-vector correspond-

ing to the mean direction at each image location is zero.

TheK training samples can be used to form the2N ×K data-matrix

D = [U1| . . . |UK ]. (3.18)

The2N × 2N covariance matrix is therefore given by

L =
1

K
DDT . (3.19)

Since in practice,2N À K, we use the numerically efficientsnap-shotmethod of

Sirovich [139] to compute the eigenvectors ofL. Accordingly, we construct the ma-

trix L̂ = 1
K
DTD and find the eigenvalues and eigenvectors. Theith eigenvector̂Ψi of L̂

can be used to find theith eigenvectorΨi of L usingΨi = DΨ̂i. The eigenvalues ofL

may also be found using the eigen-decomposition ofL̂. Let λi be theith eigenvalue ofL

andλ̂i theith eigenvalue of̂L. For i ≤ K, λi = λ̂i. For i > K, λi = 0.

Figure 3.4 illustrates this process. On the left a distribution of surface normals at one

pixel in a model is shown as points on the unit sphere. On the right the azimuthal equidis-

tant projection of the points are shown with the mean point as the centre of projection.

The first PCA axis is shown by the line labeled PCA1. This line corresponds to a great cir-

cle on the sphere through the mean direction which minimises the distance on the tangent
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Figure 3.4: Azimuthal equidistant projection of points on the unit sphere (a) to points on
the tangent plane at the mean point (b).

plane to each point.

3.3 Fitting the Model to Intensity Images

The ability to fit the model to single intensity images is clearly attractive. The represen-

tation of a needle map in the model parameter space provides a compact description of

a face which is invariant to changes in illumination and surface reflectance. In addition,

using the model to help constrain the fitting process results in an improvement in the

shape information recovered from an image and allows an estimate of the albedo map to

be made. In this section we present two approaches to fitting the model intensity images.

The first of these involves projecting a measured field of surface normals delivered by a

geometric shape-from-shading algorithm [156] onto the nearest model configuration in

the eigenspace of the training data. The second approach is an iterative one which at-

tempts to ensure that the recovered field of surface normals satisfies Lambert’s law. In

other words the model provides a statistical constraint which guides the geometric shape-

from-shading algorithm.
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3.3.1 Projection onto the Model Eigenspace

Worthington and Hancock [156] used a local smoothness constraint regulated by a robust

kernel to update the field of surface normals within the geometric shape-from-shading

framework. We use this constraint to recover a field of surface normals from an intensity

image, and then fit the model to the estimated normals using the matrix multiplication

b = PTUo, whereUo is the observed needle-map under azimuthal equidistant projection

andP = [Ψ1| . . . |ΨK ] the eigenvectors of the model. The resulting algorithm is described

in Algorithm 3.1.

Existing shape-from-shading algorithms are not capable of reliably recovering accu-

rate needle-maps from real world images [165]. Hence the shape information recovered

using the geometric shape-from-shading algorithm is likely to be of a low quality. Nev-

ertheless, we investigate this approach in our experimental section to contrast the perfor-

mance of existing shape-from-shading algorithms with the method we propose below.

3.3.2 Combining the Statistical Model and Geometric SFS

A more attractive alternative is to use the statistical constraint provided by the model

itself in the process of fitting the model to an intensity image. Once trained, the statistical

model represents the space of valid face shapes. We can exploit this prior knowledge in

order to help resolve the ambiguity in the shape-from-shading process. We do this using

an iterative approach which can be posed as that of recovering the best-fit field of surface

normals from the statistical model, subject to constraints provided by the image irradiance

equation. As noted above, when the surface reflectance follows Lambert’s law, then the

surface normal is constrained to fall on a cone whose axis is in the light source direction

and whose opening angle is the inverse cosine of the normalised image brightness.

This method commences from an initial configuration in which the surface normals
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Algorithm 3.1: Model fitting by projecting a field of surface normals estimated
using shape-from-shading onto the model.

Input : Light sources, image intensitiesI(x, y), robust smoothing kernel%,
statistical modelP and average normalŝn0(x, y)

Output : Estimated field of on-cone surface normalsn(x, y) and best-fit model
normalsñ(x, y)

Set iterationt = 0;1

Initialise eachn(0)(x, y) using Equation 3.11;2

repeat3

Enforce smoothness constraint using robust regulariser:4

ñ(t)(x, y) = %n(t)(x, y);
Rotate back to closest on-cone position:n(t+1)(x, y) =5

Θ
(
ñ(t)(x, y)× s, arccos [I(x,y)]− arccos

[
ñ(t)(x,y) · s]) ñ(t)(x, y);

Set iterationt = t + 1;6

until
∑

x,y

[
arccos

(
n(t)(x, y) · n(t−1)(x, y)

)]2
< ε ;7

Each normal in the estimated fieldn(x, y) undergoes an azimuthal equidistant8

projection (Equation 3.14) to give a vector of transformed coordinatesUo;
The vector of best fit model parameters is given byb = PTUo;9

The best fit needle-map̃n(x, y) is given by the inverse azimuthal equidistant10

projection (Equation 3.15) of the best fit vector of transformed coordinates
U = PPTUo;

reside on the irradiance cone and point in the direction of the local image gradient. The

statistical model is fitted to recover a revised estimate of the surface normal directions.

The best-fit surface normals are then projected onto the nearest location on the irradiance

cones. Our approach to fitting the model to intensity images is hence an iterative process

in which we interleave the process of fitting the statistical model to the current field of

estimated surface normals, and then re-enforcing the data-closeness constraint provided

by Lambert’s law by mapping the surface normals back onto their reflectance cones. The

height map for the surface is recovered by integrating the final field of surface normals us-

ing the method of Frankot and Chellappa [59]. The algorithm is summarised in Algorithm

3.2.
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Algorithm 3.2: Model fitting by iteratively combining the cone constraint with
the statistical model constraint.

Input : Light sources, image intensitiesI(x, y), statistical modelP and
average normalŝn0(x, y)

Output : Estimated field of on-cone surface normalsn(x, y) and best-fit model
normalsñ(x, y)

Set iterationt = 0;1

Initialise eachn(0)(x, y) using Equation 3.11;2

repeat3

Each normal in the estimated fieldn(t)(x, y) undergoes an azimuthal4

equidistant projection (Equation 3.14) to give a vector of transformed
coordinatesUo;
The vector of best fit model parameters is given byb = PTUo;5

The best fit needle-map̃n(t)(x, y) is given by the inverse azimuthal6

equidistant projection (Equation 3.15) of the best fit vector of transformed
coordinatesU = PPTUo;
Rotate back to closest on-cone position:n(t+1)(x, y) =7

Θ
(
ñ(t)(x, y)× s, arccos [I(x,y)]− arccos

[
ñ(t)(x,y) · s]) ñ(t)(x, y);

Set iterationt = t + 1;8

until
∑

x,y

[
arccos

(
n(t)(x, y) · n(t−1)(x, y)

)]2
< ε ;9

Initialisation

We have experimented with a number of different initialisations for the fitting process

given above and found that the final solution is fairly insensitive to the choice of initiali-

sation, even to the extent that every normal can be initialised to point in the same direction

on their reflectance cones. However, in this chapter we retain the negative image gradient

of Worthington and Hancock [156]. In Chapter 4 we consider an alternative initialisation

which exploits the statistical model and results in a lower starting error and reduces the

number of iterations required to achieve convergence.

3.3.3 Practical Considerations

Upon convergence, we have a choice between two solutions. On the one hand, the ‘on-

cone’ surface normaln(x, y) provides a strict solution of the image irradiance equation
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within the framework of geometric shape-from-shading. This represents a data-driven so-

lution in that reillumination of the recovered normals with the input lighting configuration

will exactly reproduce the original image. On the other hand, the ‘best-fit’ surface nor-

mal ñ(x, y) provides a least squares fit of the statistical model to the shape-from-shading

normals. This represents a model-driven solution in which the field of surface normals is

globally constrained to correspond to a valid face shape.

In the ideal Lambertian, unit albedo case, the strict on-cone solution is likely to pro-

vide a more accurate solution. It is also likely that this solution will recover more of

the fine surface detail and discriminating features which are not captured by the model.

However, real world face images contain albedo variations caused by skin pigmentation

and facial hair. By enforcing data-closeness, pixels of low albedo will be interpreted as

having large incident angles. In Figure 3.5 we show the angular change as data-closeness

is restored five final best fit needle-maps, i.e. the angular difference between the best-

fit surface normal̃n(x, y) and the corresponding on-cone surface normaln(x, y) at every

pixel. We show the input images in the first row. From the plots it is clear that the changes

are almost solely due to the variation in albedo at the eyes, eye-brows, lips and facial hair.

Aside from these regions there is very little change in surface normal direction, indicat-

ing that the needle-map has converged to a solution which satisfies the data-closeness

constraint except in regions of actual variation in albedo. In this case, the best-fit of the

statistical model may in fact provide a more accurate estimate of the underlying facial

shape. We provide empirical evidence of this observation in our experimental results.

Albedo and Data-closeness

For a real world image, should we choose the best-fit normalsñ(x, y) as our estimate

of the underlying facial shape, we can still ensure satisfaction of the data-closeness con-

straint in some sense. To do so, we allow albedo to vary. In other words we relax the data-
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Figure 3.5: Angular difference betweenn(x, y) andñ(x, y) at convergence (second row).
Input images shown in the first row.

closeness constraint at the final iteration and account for differences between predicated

and observed image brightness by variations in albedo. The imposition of data-closeness

in previous iterations ensures the model-fit has been encouraged towards a solution which

closely satisfies the constraint. If the final best-fit field of surface normals is reilluminated

using a Lambertian reflectance model, then the predicted image brightness is given by

I(x, y) = ρd(x, y)[ñ(x, y) · s], (3.20)

whereρd(x, y) is the Lambertian albedo at position(x, y). SinceI, s, andñ are all known,

we can estimate the albedo at each pixel using the formula:

ρd(x, y) =
I(x, y)

ñ(x, y) · s . (3.21)

The combination of the best-fit needle-map and corresponding estimated albedo map will

still exactly recreate the input image when reilluminated with the original lighting. Addi-

tionally, albedo estimated in this manner may vary arbitrarily. This means distinguishing

pigmentation or facial hair is accurately recovered.

In Section 3.4 we demonstrate how the strict solution within the geometric shape-
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from-shading framework represents a significant improvement over the needle maps esti-

mated using the original curvature consistency constraints proposed by Worthington and

Hancock [156]. Moreover, we show how the best-fit needle-map and estimated albedo

result in realistic synthesised images under novel illumination and viewpoint, of compa-

rable accuracy to the more computationally intensive analysis-by-synthesis approach of

Blanz and Vetter [14].

Alignment and Reflectance Normalisation

In the above analysis we have assumed that during training the sample facial surfaces have

been aligned, i.e. that a pixel(x, y) corresponds to the same point on all sample faces.

Furthermore, our shape-from-shading algorithm assumes that the input image has been

aligned with the model. In this thesis we have chosen not to address the issue of alignment

and we have therefore used a combination of existing methods and manual alignment

which we describe below. Clearly, there is scope for integrating a fine-scale alignment

process into the iterative model fitting. However, this would serve to confuse the main

contribution of this chapter, a method for accurate facial shape recovery. Moreover, the

fact that good results are obtainable with only an approximate alignment is a strength of

the method.

During training we use a database of facial range images in which the surfaces have

been aligned using an existing registration algorithm [14]. Prior to applying our shape-

from-shading algorithm the input images were manually cropped to remove background,

hair and clothing. Finally, the images were aligned and scaled to be brought into corre-

spondence with the model using a number of manually marked feature points.

As is common in the vision literature, we have also assumed that skin reflects light

according to Lambert’s law. However, to improve the real world applicability of the ap-

proach we use a preprocessing step to correct for deviations from Lambertian reflectance.
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Rather than incorporate a reflectance model that tries to capture some of the properties

of skin reflectance, we exploit a recently reported image based reflectance estimation

method [135].

This is a computationally efficient process of complexityO(N), for anN pixel image,

which provides a good estimate of an isotropic, monotonic BRDF from a single image.

By assuming the surface under study is locally spherical, the method uses the local image

gradient to find correspondences between points on the surface and points on a conceptual

reflectance sphere. An estimate may then be made of the radiance function which relates

the incidence angle to measured intensity. Lambertian correction is then simply a case of

inverting the radiance function for each pixel to recover the incident angle, from which

the Lambertian intensity can be calculated.

3.4 Experiments

In this section we present experiments with our method. There are three elements to this

study. We commence by examining the model when trained on fields of surface normals

extracted from range data. Second, we show the results of fitting the model to intensity

data, and show the surface height data that can be reconstructed from the fitted fields of

surface normals. Third, we illustrate how the fitted models can be used synthesise realistic

novel facial views.

3.4.1 Model Training

We begin by describing how our model is constructed from real-world data. We com-

mence by building a “ground truth” model using fields of surface normals extracted from

range data. This allows us to show the utility of the model in capturing facial shape in a

compact manner when trained on relatively ‘clean’ data. We used the 3DFS dataset [1]
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Figure 3.6: The first five modes of variation of a statistical surface normal model trained
on a set of facial needle-maps extracted from range data. The deformed needle-maps
are visualised as: fields of vectors (first three columns), and rendered with Lambertian
reflectance and frontal illumination (second three columns). The mean face is shown in
the central column and± 3 standard deviations along each of the first 5 principal modes
of variation are shown in the first and third columns.

which consists of 100 high resolution scans of subjects in a neutral expression. The scans

were collected using aCyberwareTM 3030PS laser scanner. The database is pre-aligned,

registration being performed using the optical flow correspondence algorithm of Blanz

and Vetter [14]. Fields of surface normals were extracted by orthographically project-

ing the 3 surface normal components onto a view plane positioned fronto-parallel to the

aligned faces.
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Figure 3.7: Visualisation of local variation in facial surface orientation. Plot of model
concentration shown aslog(κ), whereκ is the von Mises-Fisher concentration parameter.

We begin by examining the principal modes of variation for a model trained on fields

of surface normals derived from range images of faces. In Figure 3.6 we show the first

5 modes of variation of this model. In each case we deform the points under azimuthal

equidistant projection by±3 standard deviations along each of the first 5 principal axes.

We then perform the inverse azimuthal equidistant projection and visualise the result-

ing needle-maps as fields of vectors (first three columns) and rendered with Lambertian

reflectance and frontal illumination (second three columns). The modes encode shape

only, since the needle-maps are invariant to illumination conditions and the training set

contained no variation in expression. The modes clearly capture distinct facial charac-

teristics. For example, mode 1 encodes head size and also seems to be correlated with

gender. This is manifested in the broader jaw, brow and nose in the negative direction,

all of which are masculine features. The third mode encodes the difference between long,

narrow faces and short, wide faces, whereas the second mode encodes the difference be-

tween a pointy and a rounded chin. Note that there is a real sense of 3D deformation in the

rendered images, caused only by locally rotating the surface normals along great circles.

In Figure 3.7 we provide a visualisation of the variability in the shape of different

facial regions. Since it is the natural model for multivariate directional data we fit a von

Mises-Fisher (vMF) distribution to the distribution of surface normals at each location.

The vMF distribution is analogous to the multivariate Gaussian distribution inRq [54].
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The distribution is specified by two parameters: the mean direction vector, which in our

case iŝn0, and the concentration parameterκ. Forq = 3, the distribution over the vector

n is described by the following probability density function:

f (n; n̂0, κ) =
κ

1
2

2π
3
2 I 1

2
(κ)

eκn̂T
0 n, (3.22)

whereI 1
2

is a modified Bessel function of the first kind and order1
2
. Using the algorithm

in [77] we estimateκ at each location and plotlog(κ) in Figure 3.7. The larger the value of

κ, the greater the density of the distribution of surface normal directions around the mean

direction. Thus, white corresponds to an area of very low variance, and black to an area

of very high variance. The plot demonstrates that much of the variation in facial surface

orientation is confined to the eyes, nose, lips and chin, while the cheeks and forehead vary

less between subjects.

3.4.2 Fitting the Model to Data

In this section we explore the fitting of the model to data using the two methods outlined

in Section 3.3. We examine the influence of illumination direction, the number of itera-

tions, the number of model dimensions and non-constant albedo on the accuracy of the

recovered surface normals. We use a larger database of range scans for this study in order

to provide ground truth data. In this case the model is trained on 180 examples, with 20

retained as ground truth to measure out-of-sample fitting accuracy.

Fitting the model to needle-maps

We begin by fitting the model to fields of surface normals extracted from an image using

shape-from-shading, as described in Section 3.3.1. We use the shape-from-shading tech-

nique of Worthington and Hancock [156]. In Figure 3.8 we show an example of fitting to

78



Input SFS Output Projection

Figure 3.8: Behaviour of the projection fitting process. The input image is shown on
the top left. The first row shows the needle map delivered by SFS followed by its pro-
jection onto the model eigenspace. The needle maps are reilluminated by a light source
with directions = (−1, 0, 1)T . The second row shows the surfaces recovered from the
corresponding needle maps.

a field of surface normals extracted from a real world image. The input image is shown on

the left, followed by the needle-map recovered using shape-from-shading. The projection

of the needle-map onto the model eigenspace is shown on the right. Since the recovered

needle-map is guaranteed to satisfy data-closeness, it would appear identical to the input

image when rendered with a light source from the original direction (s=(0, 0, 1)T ). For this

reason in the top row we show the needle-maps reilluminated with a light source moved

along the negativex-axis to subtend an angle of45◦ with the viewing direction. From the

reilluminations it is clear that there are severe flaws in the initial needle-map recovered

using shape-from-shading. Although the gross distribution of intensity appears correct,

the resulting image is noisy and not realistic and suffers from convex/concave errors and

feature implosions. This is made explicit in the corresponding recovered surface shown

in the second row. The projection onto the model eigenspace helps resolve some of these

errors, resulting in a more plausible image. From the corresponding recovered surface it

is clear that many of the feature implosions are corrected and noise reduced. However,

given the gross errors in the initial needle-map, it seems unlikely that this represents the
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Input Initial 1 Iteration 2 Iterations 5 Iterations 25 Iterations

Figure 3.9: Behaviour of the iterative fitting process over 25 iterations. The input image
is shown on the top left. The first row shows the recovered needle maps reilluminated
by a light source with directions = (−1, 0, 1)T . For comparison the second row shows
similarly reilluminated needle maps recovered by the Worthington and Hancock algo-
rithm. The third and fourth rows show the surfaces recovered fromñ(x, y) (third row)
andn(x, y) (fourth row).

closest model fit of the underlying facial shape of the input face.

Fitting the model to intensity images

We now show how the statistical model may be fitted to intensity data using the method

outlined in Section 3.3.2. We commence by considering the iterative behaviour of the

algorithm. The top row of Figure 3.9 shows how a needle map develops over 25 iterations

of the algorithm. In this figure the input face is shown on the top left. Since the needle

maps satisfy data-closeness at every iteration, they would all appear identical when ren-

dered with a light source from the original direction (s = (0, 0, 1)T ). For this reason in

80



the top row we show the needle maps reilluminated with a light source moved along the

negativex-axis to subtend an angle of45◦ with the viewing direction. After one itera-

tion there is a significant global improvement in the recovered needle map. Subsequent

iterations make more subtle improvements, helping to resolve convex/concave errors and

sharpening defining features. For comparison the second row shows the corresponding

needle maps recovered using the original curvature consistency constraint of Worthington

and Hancock [156] reilluminated in the same manner. Although there is a steady im-

provement in the quality of the recovered normals, there are gross global errors as well as

feature implosions around features such as the nose.

In Figure 3.9 we also show the surfaces recovered from the current best fit needle

maps,ñ(x, y), (third row) and the needle maps which satisfy data-closeness,n(x, y),

(bottom row) as the algorithm iterates. Surface recovery is effected using the method of

Frankot and Chellappa [59]. As one would expect, the imposition of data-closeness results

in errors in the recovered surface where there is variation in albedo, most notably around

the eyes and eye-brows. In both sets there is a clear improvement in the recovered surface

as the algorithm iterates. The implosion of the nose is corrected, the surface becomes

smoother and finer details become evident, for example around the lips.

In Figure 3.10 we provide a quantitative analysis of the iterative behavior of the fitting

process using ground truth data. For each of the 20 out-of-sample faces we render the

needle-map with a light source situated at the viewpoint to yield an image to which we

apply the fitting process. In (a) we render the needle-maps with Lambertian reflectance

and unit albedo, whereas in (b) we render the needle-maps with the albedo recorded by

the Cyberware scanner. We plot the average normal error across all needle-maps in de-

grees against the number of iterations. The solid curve shows the error for the best-fit

needle map in the model space,ñ(x, y), and the broken curve for the needle-map with

data-closeness enforced,n(x, y). From both plots it is clear that the algorithm converges

81



5 10 15 20 25 30 35 40
5

10

15

20

25

30

Number of Iterations

A
ve

ra
g
e

N
o
rm

a
l

E
rr

o
r

(◦
)

 

 
Model space best fit
Hard data-closeness constraint

5 10 15 20 25 30 35 40
15

20

25

30

35

40

Number of Iterations

A
ve

ra
g
e

N
o
rm

a
l

E
rr

o
r

(◦
)

 

 
Model space best fit
Hard data-closeness constraint
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Figure 3.10: Average normal error versus number of iterations of the algorithm when
fitting to synthetic data with: (a) constant albedo (b) varying albedo.

rapidly, particularly in the first few iterations. As would be expected, the introduction

of varying albedo reduces the accuracy of the recovered normals. An interesting feature

to note is that in (a) when fitting to images with constant albedo, the imposition of data-

closeness results in higher accuracy. However, in (b) when fitting to images with varying

albedo, this is reversed and the best-fit to the needle-map in the model space gives higher

accuracy and hence is closer to the underlying shape. This adds quantitative evidence to

our observation that on real world images,ñ(x, y) is a better estimate of the true facial

shape.

In Figure 3.11 we examine the influence of illumination direction on the accuracy of

the recovered needle-map. Again, we render the out-of-sample ground truth needle-maps

with Lambertian reflectance and unit albedo but we vary the elevation (θL) and azimuth

(αL) of the light source through(−90◦, 90◦). When θL = αL = 0 the light source

direction is coincident with the viewing direction, whenαL < 0 it is from the left, when

θL < 0 it is from below and vice versa. The plot in (a) shows the average normal error

over all out-of-sample needle-maps in degrees as bothθL andαL are varied. For clarity,

in (b) we show contours from (a) in which only the azimuth is varied (solid line) and only
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Figure 3.11: Analysis of the accuracy of the fitting process under varying illumination. (a)
Average error in the estimated surface normal direction as both the azimuth and elevation
of the light source are varied. (b) Contours from (a) in which the elevation of the light
source is set to 0 and the azimuth varied (solid line) and the azimuth is set to 0 and the
elevation varied (broken line).

83



the elevation is varied (broken line). From both plots it is clear that the process is robust

to variations in illumination of±45◦ of both azimuth and elevation (note the plateau of

values under10◦). Another feature evident from the plots is that extreme elevation values

have a greater detrimental effect than extreme azimuth angles.

Since faces are approximately bilaterally symmetric, the errors introduced by varying

αL (i.e. moving the light source left and right) are approximately symmetric. A more

interesting feature is visible whenθL is varied (i.e. the light source is moved up and

down). In both Figure 3.11 (a) and (b) it is clear that greater errors are introduced whenθL

is large and negative than when large and positive. In other words, using our algorithm, it

is harder to recover facial shape when the light source is moved below the face than above.

This potentially has some interesting psychological implications. Typically, poor human

performance when perceiving images of faces illuminated from below has been attributed

to an illumination direction estimation process in which the light source is constrained to

come from above [89]. However, with perfect knowledge of the illumination direction,

our algorithm recovers less accurate facial shape information when the illumination is

from below compared to above. This suggests that there is something implicit in human

face shape which makes it harder to recover shape accurately when illuminated from

below. Hence, at least part of the degradation noted in human performance may be related

to this fact.

Finally, in Figure 3.12 we investigate the effect of the number of eigenmodes (or di-

mensions) retained in the model on the accuracy of the recovered facial shape. We plot

the average normal error at convergence versus the number of eigenmodes retained. In-

creasing the number of eigenmodes retained has the effect of increasing the accuracy.

However, the effect is more evident for the best-fit needle map than the on-cone surface

normal. Moreover, only the first 40 or so dimensions have a significant impact on the

accuracy. In other words, even a limited number of dimensions provides a statistical con-
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Figure 3.12: Average surface normal error at convergence versus the number of model
eigenmodes retained.

straint which is sufficient to guide the shape-from-shading process to an accurate solution

when combined with the hard data-closeness constraint.

Comparing Iterative Fitting and Fitting to Shape-from-shading Normals

In Figure 3.13 we quantitatively compare the two approaches to fitting the model using

ground truth data. In the top row we fit the model to surface normals recovered using

shape-from-shading, in the bottom row we use the iterative fitting process. The esti-

mated needle-map is shown in column 2, reilluminated by a light source with direction

s = (−1, 0, 1)T . For comparison, the ground truth needle map is shown similarly reillu-

minated in the third column. It is clear that using shape-from-shading normals results in

major structural differences between the best fit and ground truth needle map, in partic-

ular the exploded cheeks and inaccurate jaw line. In the fourth column the angular error

for each surface normal is shown. There are clearly large errors around the nose, jaw and

eyes as well as evidence of general noise. The overall average angular error of the fitted
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Input Reilluminated Reilluminated Angular Error Depth Error

Ground Truth

Figure 3.13: Accuracy of fitting process on ground truth data. From left to right: the
input image, the recovered needle-map reilluminated by a light source with directions =
(−1, 0, 1)T , the ground truth needle map similarly reilluminated, the angular error and the
height error. The projection fitting method is shown on the top row, the iterative fitting
method is shown on the bottom row.

needle-map was 13.25◦. In contrast, the needle-map recovered using the iterative fitting

process appears very close to the reilluminated ground truth needle-map with no obvious

errors. An interesting exception is the dimple in the chin which is not visible in the in-

put image, but which becomes visible when the ground truth needle map is reilluminated

from a different direction. The fitting process fails to recover this structure. The angular

errors are much reduced, mainly limited to the occluding boundary. The overall average

angular error of the fitted needle map was 3.93◦. This represents more than 3 times greater

accuracy than the projection fitting method. In the final column we also show an error plot

of the reconstructed height. Similar results were obtained with a variety of ground truth

data.

3.4.3 Synthesising Novel Views

In this section we focus on how the fitted models can be used for the purposes of novel

view synthesis. We focus on the results obtained using the iterative method outlined in

Section 3.3.2, since from the previous section this appears to outperform the projection
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method. The data used in this study comes from the Yale-B database [64]. In the im-

ages the faces are in a frontal pose and were illuminated by a point light source situated

approximately at the viewpoint, i.e. in directions = (0, 0, 1)T .

In Figures 3.14 and 3.15 we present the results of the albedo estimation process and

show synthesised images under novel illumination. In the first column we show the input

images of the ten subjects from the Yale-B database. In the second column we show the

albedo maps estimated using Equation 3.21. The results of the albedo estimation process

appear intuitively convincing. For instance, the albedo map identifies the eyes, eyebrows,

facial hair, nostrils and lips. Moreover, there are no residual shading effects in the albedo

map, for example the nose is assigned approximately constant albedo. The method works

well because albedo is approximately constant across much of a face’s surface and hence

the gross structure of the needle map is not overly disrupted by the imposition of data-

closeness at each iteration.

The remaining four columns of Figures 3.14 and 3.15 show the best fit needle maps

reilluminated with Lambertian reflectance and the estimated albedo maps. The light

source is moved to subtend an angle of45◦ with the view direction along the positive and

negativex andy-axes. The needle maps show considerable stability under large changes

in illumination direction and result in near photo-realistic synthesised images.

In Figure 3.16 we show synthesised images of the input faces in novel pose. In the

first and third rows the surfaces are shown rotated30◦ about the vertical axis. As with the

previous images, the surfaces are rendered with Lambertian reflectance and the estimated

albedo maps. The light source remains fronto-parallel with respect to the face (i.e. from

the original direction). The resulting synthesised images are near photo-realistic under a

large change in viewpoint. Certainly, the results are comparable with those of Georghi-

ades et al. [64] in which 7 input images were used per subject. Rows 2 and 4 of Figure

3.16 show the meshes of the recovered surfaces to allow inspection of the recovered shape

87



Figure 3.14: Column 1 shows the input images of subjects 1-5 from the Yale B database.
Column 2 shows the estimated albedo maps. Columns 3-6 show synthesised views of
the subjects under novel illumination. The light source directions ares = (−1, 0, 1)T ,
(1, 0, 1)T , (0, 1, 1)T and(0,−1, 1)T respectively.

alone. In Figure 3.17 we demonstrate that the recovered surface and albedo map are suf-

ficiently stable to synthesise images in both novel pose and novel illumination. We show

the surface of subject 8 rendered as in the previous figure, except that the light source is

circled from left profile to right profile.

Finally, in Figure 3.18 we demonstrate the use of our method in a practical application.

In (a) we have synthesised novel poses of famous faces from frontal images for use as

stimuli in a neuropsychological study. The input images have been texture mapped onto
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Figure 3.15: Column 1 shows the input images of subjects 6-10 from the Yale B database.
Column 2 shows the estimated albedo maps. Columns 3-6 show synthesised views of
the subjects under novel illumination. The light source directions ares = (−1, 0, 1)T ,
(1, 0, 1)T , (0, 1, 1)T and(0,−1, 1)T respectively.

the recovered shape and so in effect the illumination remains stationary with respect to

the face. In this case, little control was exercised over the conditions present in the input

images, which include varying illumination direction and facial expression, yet we are

still able to synthesise useful images of the subjects in novel poses. In (b) we show the

recovered surfaces, rendered with Lambertian reflectance and rotated30◦ from frontal.

Distinguishing features of the input face shape have been clearly recovered.
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Figure 3.16: Surfaces recovered from the ten subjects in the Yale B database. In the first
and third rows, the surfaces are rendered with their estimated albedo maps, Lambertian
reflectance and are shown rotated30◦ about the vertical axis. The light source remains
fronto-parallel with respect to the face. In the second and fourth rows the surface meshes
are shown rotated40◦ about the horizontal axis.

Figure 3.17: Surface recovered from subject 8 of the Yale B database. The surface is
again rendered with the estimated albedo map, Lambertian reflectance and rotated30◦

about the vertical axis. The light source is circled from full left profile to full right profile
with respect to the face.
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(a).

(b).

Figure 3.18: (a) Synthesised views of famous faces. Input images are shown in the cen-
tral column, synthesised poses of−24◦, −12◦, 12◦ and24◦ from frontal are shown in
columns 1, 2, 4 and 5 respectively. (b) Recovered shape shown rendered with Lambertian
reflectance and rotated30◦ from frontal.
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3.5 Conclusions

In this chapter we have shown how a statistical model of shape may be constructed from

fields of surface normals using the azimuthal equidistant projection. We demonstrated

that such a model trained on facial needle maps extracted from range data captures facial

shape in a compact manner and is capable of generalising to out-of-sample faces.

We presented two methods for fitting the model to image brightness data. The first

of these involves fitting the model to a field of surface normals extracted from the image

using shape-from-shading. The second method is an iterative one in which the model

is used as a statistical constraint in a geometric shape-from-shading framework. This

process can be posed as that of recovering the best-fit field of surface normals from the

statistical model, subject to constraints provided by the image irradiance equation. The

method proves rapid to converge, is robust to variations in illumination direction of up to

45◦ from the viewing direction and delivers realistic surfaces when the fields of surface

normals are integrated. We then showed how the fitted models could be used to improve

the reilluminations of fields of surface normals recovered using shape-from-shading and

to estimate an albedo map of the face.

In Chapter 4 we reformulate the statistical model presented in this chapter using the

tools of differential geometry. With this more elegant formulation to hand, we show how

to improve the accuracy of the recovered shape information by using techniques from

robust statistics.
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Chapter 4

Incorporating Principal Geodesic

Analysis and Robust Statistics

Where there is much light, the shadow is deep.

- Johann Wolfgang von Goethe [153]

The approach developed in the previous chapter allows shape and albedo information

to be recovered from single images which is of a significantly higher quality than would

be possible using existing shape-from-shading techniques. The key was to construct a

statistical model for fields of surface normals and show how to incorporate this into the

geometric shape-from-shading framework. The power of the technique can be attributed

to the combination of a strict global constraint (projection onto the statistical model) with

a hard local constraint (satisfaction of the image irradiance equation).

However, the approach suffers from a serious drawback. During fitting, the effects

of albedo are ignored (the image irradiance equation used assumes unit albedo). Simi-

larly, there is no model of cast shadow formation (regions in which the light source is

intercepted by another part of the surface). The effects of both of these phenomena are
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effectively treated as noise and not explicitly accounted for. The result is that the fit of

the statistical model is subject to a systematic error and becomes increasingly inaccurate

when regions of low albedo dominate (for instance in the presence of facial hair) or when

cast shadows become significant (as the light source direction is more extreme).

Cast Shadows

We have already shown how regions of low albedo cause large differences between the

surface normals predicted by the statistical model and those suggested by the image ir-

radiance equation (see Figure 3.5). The presence of cast shadows results in a similar

problem.

When a surface is illuminated by a single point light source, a point on the surface is

in shadowwhen it is not visible from the light source. In other words, no light reaches

the point and the measured intensity at the pixel which corresponds to the point is zero.

We restrict our consideration to single point light sources, since extended or multiple light

sources produce more complicated effects.

There are two scenarios which result in a point being in shadow and these are modeled

in quite different ways. Anattached shadow(also called a self-shadow) occurs when a

point on the surface is oriented away from the light source, thereby occluding itself from

the illumination. Shadows of this sort are easily modeled, since they depend only upon

the local geometry of the surface (the normal direction). On the other hand,cast shadows

are caused when an entirely different region of the surface intersects the path from the

light source to the point in question. Cast shadows are more complex to model since they

are dependent on the global geometry of the surface. In Figure 4.1 we show an artificial

example to illustrate the difference between the two types of shadow. We render a surface

of Gaussian peaks with a single light source from behind the peaks to the top right. The

non-shadow regions have been shaded red with Lambertian reflectance. The regions of
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Figure 4.1: Example of cast and attached shadows.

attached shadow are shown in green, while the regions shown in blue are cast shadows

caused by the peaks intercepting the light source.

For a given illumination condition, the regions of a surface (whose height function

is known) that lie in cast shadow may be calculated using ray-tracing. In the context of

shape-from-shading the situation is more complicated. Inter-reflections and the presence

of ambient illumination mean that shadow pixels in real world images will not necessar-

ily be measured as having zero intensity. To recover the surface height function (which

is necessary to identify cast shadow regions) the surface orientation at every point is re-

quired. However, shadow regions convey no information about facial shape or texture

and so we cannot make an estimate of the surface orientation at these points. The result is

a ‘chicken or egg’ situation: accurate knowledge of global shape is required to estimate

cast shadow regions, but cast shadow regions disrupt the accurate estimation of the global

shape from image intensity.

Contribution

In this chapter, we consider ways in which to extend the work of Chapter 3 in order to

tackle the problems discussed above. To do so, we provide an alternative formulation for

the model based on techniques from differential geometry. We show how to incorporate
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robust statistics into the process of fitting this model to an image and how the method can

be used to mitigate the effects of varying albedo and cast shadows. Moreover, this robust

fitting process provides a means to perform surface completion for those areas in which

we cannot recover reliable shape information. Finally, we investigate how the informa-

tion we can recover from a single image using this technique can be used to perform

face recognition. We summarise the contributions of this chapter in the areas of shape

representation, facial shape recovery and face recognition below.

Shape Representation: Our representation of the distribution of normal directions is

based on the exponential map from a unit sphere onto a Cartesian plane. To capture the

statistics of the distribution of the surface normals under the exponential map, we borrow

ideas from principal geodesic analysis. This is a technique first proposed by Fletcher,

Joshi, Lu and Pizer [56] for the analysis of tensor MRI data, and recently extended to the

general problem of statistical analysis on Riemannian manifolds by Pennec [122]. We

adopt this approach since the use of the exponential map to represent the distribution of

surface normal directions allows us formulate our facial shape-from-shading method in a

compact geometric way.

Shape Recovery: With the model to hand, we demonstrate how it may be fitted to

image brightness data, so as to satisfy constraints provided by Lambert’s law. The re-

sulting iterative update rule for the fitted surface normal is particularly simple and can

be couched in terms of rotation operations on the exponential map. To deal with shad-

owing and variations in albedo, we extend the fitting method to deal with outliers using

the apparatus of robust statistics [86]. We use the residuals of model fit to compute a

weight for each pixel. The weights are used to exclude shadow regions and regions of

low albedo in the shape-parameter estimation process. The parameter update scheme is

based on M-estimators [86].

The resulting algorithm has a number of attractive features. In the previous chapter,
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we showed how to construct a statistical model for surface normal direction by applying

principal components analysis to the distribution of points obtained by transforming the

surface normals from a sphere to a tangent-plane using the azimuthal equidistant projec-

tion. By using the exponential and logarithmic maps we are able to capture the statistical

variations in the distribution of surface normals using principal geodesic analysis. This

leads to a way of updating the surface normal directions which is both more efficient and

more elegant. In particular it establishes a means of incorporating the differential geome-

try of geodesics into shape-from-shading. Although this topic is addressed in the work of

Oliensis and Dupuis [49] and Fua and Leclerc [60] here we take a step further by demon-

strating links to the exponential map. Moreover, by using robust statistics to fit the model

to intensity data, we have a method that can deal with both shadowing and facial albedo

variations.

We experiment with the resulting shape-recovery method on both synthetic images

with known ground truth and real-world images from the Yale-B database. The results

indicate that the method works well even when the angle between the light source and the

image-normal exceeds 60 degrees. Moreover, the fitting method is able to reliably fill-in

shadowed regions of the face.

Face Recognition: The final aim of this chapter is to investigate the use of an inter-

mediate representation, based on2.5D shapeinformation. This is a somewhat neglected

source of information with which to perform face recognition. By 2.5D shape infor-

mation, we refer to Marr’s [108] concept of the21
2
D sketch. The21

2
D sketch provides

a viewer-centered representation of an observed surface, typically comprising a field of

local surface orientation estimates in a retinocentric coordinate frame. There is strong

psychophysical evidence that such a representation plays a part in human face processing

and that this information is recovered, at least in part, using shape-from-shading [79].

This representation provides a natural extension to view-based approaches which use in-
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tensity, whilst incorporating some of the advantages of 3D shape, such as invariance to

changes in illumination. The hope is that we will combine the benefits of full 3D shape

with the generative power of appearance-based approaches. We show how our shape-

from-shading algorithm allows us to recover accurate 2.5D facial shape information and

albedo from a single image.

We explore the various ways in which the shape parameters extracted from a single

image using the shape-from-shading algorithm can be used for face recognition. Our first

recognition approach explicitly compares 2.5D shape information recovered from a probe

image with that previously recovered from a gallery image. We do so by measuring the

distance between the two sets of data in the space of the principal geodesic parameters.

We contrast this approach with using the shape and reflectance information recovered

from a probe image to generate prototype illumination-normalised images which can be

compared to similarly illuminated gallery images. Here we show that the 2.5D shape

information is sufficient to correct for variations in illumination. The most similar work

in spirit to this is that of Zhao and Chellappa [166], who used a symmetric shape-from-

shading algorithm to generate prototype images. However, their approach required a

manual segmentation of the image into regions of piecewise constant albedo.

Finally we show that, from a single input image, we are able to generate the basis

images employed by a number of illumination-insensitive recognition algorithms (Illumi-

nation Cone [64], Harmonic Images [8] and Nine Points of Light [100]). At the expense

of a slight increase in the overall error rate, we remove the need for multiple training

images. Furthermore, recent work [164] has shown that the space of harmonic images

provides a powerful representation that can capture any face under arbitrary illumination.

In this chapter we make a contribution to this work. Specifically, we show how the har-

monic images may be expressed directly in terms of the parameters of our surface normal

model. We demonstrate that this provides a more efficient and principled means with
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which to construct a low-dimensional representation of harmonic images in comparison

to applying a linear analysis directly to the harmonic images.

4.1 A Statistical Surface Normal Model using PGA

Most statistical shape models rely on Principal Components Analysis (PCA) to construct

an efficient parameterisation of shape variation [5,14,36]. However, as discussed in Chap-

ter 3, a linear combination of unit vectors is not a unit vector. Hence, the analysis of

the distribution of surface normals cannot be effected in a linear way. In Chapter 3 we

overcame this problem by using the azimuthal equidistant projection to transform surface

normals to points on a tanget plane on which a linear PCA could be applied. We now

revisit this problem and provide a more formal treatment of the model construction pro-

cess, turning to the tools of differential geometry. This provides an alternative definition

for our notion of the ‘average’ facial needle-map and a significantly more elegant formu-

lation with which to work. We are also able to express the cone constraint in a similar

manner resulting in a particularly simple expression of the shape-from-shading algorithm.

We choose to model a distribution of surface normals as a distribution of points lying

on a spherical manifold and exploit the Principal Geodesic Analysis (PGA) approach of

Fletcher et al. [56] in order to build our statistical model. In this section we describe PGA,

demonstrate how it may be applied to a set of needle-maps and then show how we use the

principal geodesics to deform the field of surface normals.

4.1.1 Preliminaries

A unit vectorn ∈ R3 may be considered as a point lying on a spherical manifoldn ∈ S2,

whereS2 is the unit 2-sphere. The two are related byn = Φ(n) whereΦ : S2 7→ R3

is an embedding. Likewise, a field of surface normalsU ∈ RN×3 describing a surface

99



v

n

Expn(v)
TnS

2

||v ||

Figure 4.2: The exponential map.

may be considered as a point on a manifoldU ∈ S2(N) =
∏N

i=1 S2. Shape variations

in Euclidian space are typically analysed using standard linear techniques, i.e. linear

averaging and PCA. For data lying on a non-linear manifold, we turn to the concept of the

intrinsic mean and PGA [56].

In this section, we describe the application of PGA to needle-map data and begin by

introducing some prerequisite theory.

The Log and Exponential Maps

If v ∈ TnS2 is a vector on the tangent plane toS2 at n ∈ S2 andv 6= 0, theexponential

map, denoted Expn, of v is the point onS2 along the geodesic in the direction ofv at

distance‖v‖ from n. Geometrically, this is equivalent to marking out a length equal to

‖v‖ along the geodesic that passes throughn in the direction ofv. The point onS2 thus

obtained is denoted Expn(v). This is illustrated in Figure 4.2. The inverse of the expo-

nential map is thelog map, denoted Logn. Therefore, the equality Logn(Expn(v)) = v

holds. Note that the log map is analogous to the azimuthal equidistant projection de-
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scribed in Chapter 3. Likewise, the exponential map is analogous to the inverse azimuthal

equidistant projection.

The geodesic distance between two pointsn1 ∈ S2 andn2 ∈ S2 can be expressed in

terms of the log map, i.e.d(n1, n2) = ‖Logn1
(n2)‖. The exponential and log maps for the

space of a field ofN surface normals,S2(N), are simply the direct products ofN copies

of the maps forS2 given above.

Spherical Medians and Variance

In Chapter 3, we characterised a distribution of spherical directional datan1, . . . ,nK ∈
R3 using themean direction[107] n̂0 = n̄

‖n̄‖ wheren̄ = 1
K

∑K
i=1 ni.

If we consider the distribution of unit vectors as a distribution of points on a spherical

manifold n1, . . . , nK ∈ S2, whereΦ(nk) = nk, it is clear that the mean direction is

dependent on the embeddingΦ and is theextrinsic meanof a distribution of spherical

data:

µΦ = arg min
n∈S2

K∑
i=1

‖Φ(n)− Φ(ni)‖2. (4.1)

If we define the projectionπ : R3 7→ S2 as

π(n) = arg min
n∈S2

‖Φ(n)− n‖2, (4.2)

we may show that the mean direction is the extrinsic mean:

µΦ = π(n̄) = π

(
1

K

K∑
i=1

Φ(ni)

)
. (4.3)

In other words, the extrinsic mean is the Euclidian average (or centre of mass) of the

distribution of points inR3, projected back onto the closest point on the sphere.

A more natural definition of the average of a distribution of points on the unit sphere
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uses arc length as the choice of distance measure. Since a 2-sphere is a Riemannian

manifold and great circles are geodesics, this is the Riemannian distanced(., .) between a

pair of points,d(n1, n2) = arccos (Φ(n1) · Φ(n2)). Using this definition of distance, we

can define theintrinsic mean:

µ = arg min
n∈S2

K∑
i=1

d(n, ni). (4.4)

For spherical data, this is known as thespherical median[52]. This point cannot be found

analytically, but can be solved iteratively using the gradient descent method of Pennec

[121]. We initialise our estimate as the Euclidian mean of distribution, i.e.µ(0) = µΦ.

The current estimate is then updated iteratively as follows:

µ(j+1) = Expµ(j)

(
1

K

K∑
i=1

Logµ(j)
(ni)

)
. (4.5)

To find the intrinsic meanµ ∈ S2(N) of a sample ofK fields of N surface normals:

U1, . . . , UK ∈ S2(N), we replace the exponential and log maps in Equation 4.5 with the

corresponding maps for the spaceS2(N).

We can use the log map and intrinsic mean to define the sample variance of a distri-

bution of points on the sphere:

σ2 =
1

K

K∑
i=1

d(µ, ni)
2 =

1

K

K∑
i=1

‖Logµ(ni)‖2. (4.6)

Projection onto Principal Geodesics:

In standard PCA, the lower-dimensional subspaces form a linear subspace of the space in

which the data lies. In PGA, this notion is replaced by ageodesic submanifold. In other

words, whereas each principal axis in PCA is a straight line, in PGA each principal axis

is a geodesic curve. In the spherical case this corresponds to a great circle.
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In PCA a datum may be projected onto a subspace using linear projection. In the

case of PGA, a different kind of projection operator is required. Consider a geodesic

submanifoldH of the Riemannian manifoldM . In order to project a pointx ∈ M onto

the point onH that is closest tox in terms of Riemannian distance, we use the projection

operatorπH : M → H given byπH(x) = arg min
y∈H

d(x, y)2. If H ⊂ M is a geodesic

submanifold at a pointµ, we may approximateπH linearly in the tangent space ofM at

µ, TµM . If v1, ..., vK is an orthonormal basis forTµH, then the projection operatorπH

can be approximated in the tangent plane using:

Logµ (πH(x)) ≈
K∑

i=1

vi

(
vi · Logµ(x)

)
(4.7)

Computing Principal Geodesics:

With the preliminaries above to hand, the principal geodesics ofU1, . . . , UK ∈ S2(N)

may be computed. By analogy with PCA, the goal of PGA is to find a sequence of nested

geodesic submanifolds which account for decreasing amounts of variance in the data.

The principal geodesics are defined by first constructing an orthonormal basis of tangent

vectorsv1, . . . , vK ∈ TµS
2(N). These are the principal directions on the tangent plane

TµS
2(N).

Using the approximation (4.7), the first principal direction is given by:

v1 ≈ arg max
‖v‖=1

N∑
i=1

(
v · Logµ(Ui)

)2
(4.8)

the remaining principal directions are defined recursively as:

vk ≈ arg max
‖v‖=1

N∑
i=1

k−1∑
j=1

(1− ‖vj · v‖)2 +
(
v · Logµ(Ui)

)2
(4.9)

This minimisation problem is equivalent to the standard principal components analysis of
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the vectors Logµ(Ui) in TµS
2(N). Hence, the crucial observation made by Fletcher et al.

[56] is that the principal geodesics can be approximated by applying standard linear PCA

in to the vectors Logµ(Ui). In other words, we transform the distribution of unit vectors to

points on the tangent plane toS2(N) atµ and use standard PCA. In the following section

we show how to apply principal geodesic analysis to a set of exemplar facial needle-maps

for the purposes of learning a statistical model of face-shape.

4.1.2 PGA of Needle-Maps

Suppose that each of theK training examples is a range image which consists of an array

of depth data each containingN = Xres×Yres pixels. In this chapter we find it convenient

to use an alternative notation to index pixel position in the image plane. We refer to a

pixel at position(x, y) using a single indexp = (Xres− 1)x + y, e.g. the surface normal

at pixelp is np. For the pixel indexedp in thekth training sample the depth iszk
p . Using

the range data we estimate the surface normal directions, and the surface normal at the

pixel locationp for thekth training image isnk
p =

(
(nk

p)x, (n
k
p)y, (n

k
p)z

)T
, where(. . . )x

denotes thex component of the parenthesised vector, and they andz components are

defined similarly.

We calculate the spherical medianµp of the distribution of surface normalsn1
p, . . . ,n

K
p

at each pixel locationp using Equation 4.5. The surface normalnk
p is represented by its

position on the tangent planeTµpS
2 given by the log map:vk

p = Logµp
(nk

p) ∈ R2.

The vectors are used as the columns of the data matrixD = [v1| . . . |vK ] ∈ R2N×K

wherevk = [vk
1 , . . . , v

k
N ]T . From the data-matrix, we compute the covariance matrix

L =
1

K
DDT . (4.10)

We find the eigenvectors and eigenvalues of the covariance matrixL and use them
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to perform PGA. Theith principal geodesic is given by the eigenvector,Ψi, with theith

largest eigenvalue,λi. To retainc percent of the total model variance we need only retain

E eigenmodes, whereE is the smallest integer that satisfies:
∑E

i=1 λi ≥ c
100

∑K
i=1 λi.

From theE leading eigenvectorsP = (Ψ1|Ψ2| . . . |ΨE) ∈ R2N×E, we can generate

a new facial needle-map,U ∈ RN×3, from the parameter vectorb = [b1, b2, . . . , bE]T ∈
RE:

U = Expµ(Pb). (4.11)

So the estimated field of surface normals,U, that lies within the span of the model is found

by projecting the linear model from the tangent plane atµ onto the spherical manifold. In

fact, the result is quite general and can be used to construct a statistical model over more

complex manifold surfaces.

4.2 Incorporating Principal Geodesics into SFS

We now show how to incorporate the statistical constraint provided by the principal

geodesics into the geometric shape-from-shading algorithm. To do so, we show how

the cone constraint can be expressed in terms of linear operations on the tangent plane.

The resulting algorithm is particularly elegant.

Let the long vectorI ∈ RN denote theN -pixel input image, formed by stacking

the rows of the image into a column vector. We can now state our shape-from-shading

formulation in terms of the principal geodesics as recovering the parameter vector whose

corresponding field of surface normals minimises the irradiance error:

b∗ = arg min
b

‖I − Expµ(Pb)s‖2. (4.12)

We assume that the light source direction,s, is known and solve this minimisation prob-
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lem using the geometric shape-from-shading framework described above. We begin by

recasting the framework in terms of operations on the tangent plane and show how the

whole algorithm can be expressed algebraically in terms of matrix operations.

At iteration(t) the parameter vector estimate:

b(t) = PT Logµ(U(t)), (4.13)

represents the best fit in the model space to the current estimate of the field of surface

normalsU(t). Under the log map, the off-cone surface normal at pixelp is given by

ũ
(t)
p = (Pb(t))p.

The unit vectors describing the direction of the point light source may be considered

as a point on the unit spheres ∈ S2, such thatΦ(s) = s. In order to satisfy the im-

age irradiance equation (Equation 3.7), the off-cone normalñ
(t)
p = Expµp

(ũp) must be

transformed such that the geodesic distance on the sphere between the light sources and

the normal at iteration(t + 1) equalsarccos(Ip), i.e. ‖Logs(n
(t+1)
p )‖ = arccos(Ip). The

closest normal tõn(t)
p which satisfies this condition is given by:

n(t+1)
p = Exps

(
arccos(Ip)

Logs(ñ
(t)
p )

‖Logs(ñ
(t)
p )‖

)
. (4.14)

This is equivalent to moving along a geodesic froms in the direction ofñ(t)
p a distance

arccos(Ip). The result of Logs(ñ
(t)
p )

‖Logs(ñ
(t)
p )‖ is a unit vector inTsS

2 in the direction of̃u(t)
p . This

is scaled to be of lengtharccos(Ip) and transformed back into a point on the sphere by

taking the exponential map ats.

The geometry of this process is highlighted in Figure 4.3 which shows the tangent

planeTsS
2. The circle represents the log map of the cone on which the normal must lie

to satisfy the image irradiance equation. In other words, points on the circle correspond

to surface normals that satisfyIp = np · s. Hence the intersection of the circle and vector
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Ip = np · s

ũ
(t)
p

arccos(Ip)

TsS
2

Logs(n
(t+1)
p )

s

Figure 4.3: Restoring a normal to the closest position on the cone in terms of operations
on the tangent plane.

ũp represents the closest normal toũp which strictly satisfies data-closeness.

4.2.1 Initialisation

We may exploit the statistical model to provide an improvement over the negative gradient

initialisation used in Chapter 3. We set the initial off-cone estimate to be the local intrin-

sic mean surface normal. After enforcing data-closeness, this initialisation is equivalent

to selecting the position on the cone closest to the local intrinsic mean direction. This

initialisation alone is sufficient to recover coarse, but useful, estimates of facial shape.

4.2.2 Algorithm

The algorithm is summarised in Algorithm 4.1. It should be noted that this is in essence

a re-expression of Algorithm 3.2 using the tools of differential geometry. As suggested

in the introduction, fitting the model using this model results in a systematic error and

becomes increasingly inaccurate when regions of low albedo dominate (for instance in
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Algorithm 4.1: Geometric shape-from-shading using principal geodesics as a
statistical constraint.

Input : Light sources, image intensitiesIp, PGA modelP and intrinsic mean
normalsµp

Output : Estimated field of on-cone surface normalsnp and best-fit model
parameter vectorb

Set iterationt = 0;1

Initialise parameter vectorb(0) = (0, 0, . . . , 0)T ;2

repeat3

Enforce image irradiance constraint:4

n(t)
p = Exps

(
arccos(Ip)

Logs(Expµp
((Pb(t))p))

‖Logs(Expµp
((Pb(t))p))‖

)
;

Estimate parameter vector:b(t+1) = PT Logµ(U(t)), where5

U(t) =
[
n

(t)
1 | . . . |n(t)

N

]
;

Set iterationt = t + 1;6

until
∑N

i=1

∥∥∥d
(
n

(t−1)
i , n

(t−2)
i

)∥∥∥
2

< ε ;7

the presence of facial hair) or when cast shadows become significant (as the light source

direction is more extreme). In this case, a significant portion of the face may be in shadow

and fitting the statistical model globally results in erroneous shape parameter estimates.

For this reason, we now turn show how to incorporate robust statistics into the process to

mitigate these problems.

4.3 Robust Statistics

It is clear that we require a more robust means to fit our statistical model to a potentially

noisy observed field of normals,np. According to the PGA framework, the quality of this

fit can be measured by calculating the distance between the observed and fitted normals

on the tangent plane, i.e. the geodesic distance. Ifb is the estimated parameter vector, the

residual at pointp is given byηp = ‖Logµp
(np)− (Pb)p‖. The standard least squares fit
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given above, minimises the quantity:

b∗ = arg min
b

N∑
i=1

η2
i . (4.15)

This approach is unstable in the presence of outlying data, such as normals erroneously

estimated from regions of low albedo or in cast shadow. In particular, the effect of outliers

is to severely distort the estimated facial shape.

In this chapter, we turn to the apparatus of robust statistics to help overcome this

problem. M-estimators [86] (maximum likelihood type estimators) aim to reduce the

effect of outliers by replacing the squared residualsη2
i by a kernel function that limits the

effects of large residuals:

b∗ = arg min
b

N∑
i=1

%σ(ηi), (4.16)

where% is a robust kernel with width parameterσ.

The influence of a residual on the parameter estimate under a given M-estimator can

be studied by examining itsinfluence function, ψσ. This is the derivative of the error

kernel:

ψσ(ηp) =
∂%σ(ηp)

∂ηp

. (4.17)

Hence, in the least squares case where%σ(η) = η2, the influence of a datum isψσ(η) = 2η

and therefore increases linearly with the size of the error. This is the source of the lack of

robustness in least-squares estimation.

4.3.1 Huber’s M-estimator

We propose a robust solution to Equation 4.16 using a simple one-step weighted least

squares approximation. To do so, we make use of theweight function, wσ, which is
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wσ(η) =

{
1
σ
|η|

%σ(η) =

{
η2

2σ|η| − σ2
ψσ(η) =

{
2η

2σSign(η)

Figure 4.4: Huber’s M-estimator.

related to the influence function by:

wσ(ηp) =
ψσ(ηp)

ηp

. (4.18)

The standard least-squares estimator applies a constant weight to each datum. On the

other hand, an error kernel such as Huber’s estimator [86] down-weights a datum once its

residual exceedsσ:

%σ(η) =





η2 if |η| < σ

2σ|η| − σ2 otherwise

wσ(η) =





1 if |η| < σ

σ
|η| otherwise

(4.19)

We show the weight function, error kernel and influence function for Huber’s M-estimator

in Figure 4.4. This is the M-estimator we use in the remainder of this chapter.

4.3.2 Weighted Best-fit

We can incorporate the Huber weights into the least squares expression in Equation 4.13

by constructing a diagonal matrix of weightsW = diag(wσ(η1), . . . , wσ(ηN)). Our one-
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step weighted least squares approximation ofb is given by:

b(t) = CPTW(t)Logµ(U(t)), (4.20)

whereC is a constant which compensates for the overall scaling effect ofW onb. If C is

set to the sum of the reciprocals of the weights, this amounts to a one-step weighted least

squares fit. However, this approach becomes unstable when a large number of normals

have been assigned low weights. The result is over-fitting to sparse and potentially noisy

data. We overcome this problem by introducing a control parameter,ς, which represents

the trade-off between goodness of fit and distance from the mean. Accordingly, we setC

as follows:

C = ς

N∑
p=1

1

wσ(ηp)
, (4.21)

whereς is allowed to lie in the interval[0, 1]. If ς = 0, the result at every iteration is the

mean field of normals since the parameter vectorb(t) will be zero. If ς = 1, a one-step

weighted least squares fit is performed. For robust performance on real world data, a

value somewhere in between is preferable. The weights are recalculated at each iteration

using residuals calculated from the previous iteration.

Computing Equation 4.20 requires an initial estimate ofW and hence the residuals.

To do this, we initialise the parameter vector tob(0) = 0 (as in Section 4.2.1) and calculate

the residuals when data-closeness is enforced on the resulting field of surface normals. In

effect, we are initialising the weights based on measuring departure from the intrinsic

mean direction at each pixel. We find this provides a reliable initialisation. For each sub-

sequent iterationt of the algorithm, we can use the weights calculated from the residuals

at iteration(t− 1).
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4.3.3 Median Absolute Deviation

Implicit in the discussion above is that we have a means to estimate the standard deviation

of the residual errorsσ, which acts as the width parameter of the error kernel%. A robust

estimate ofσ is required in order to distinguish outliers from inliers. For this reason, we

use themedian absolute deviation(MAD) estimator:

MAD = median(|ηp −median(ηp)|) , p = 1 . . . N, (4.22)

which is related to the standard deviation byσ = 1.4826 × MAD. We recalculateσ at

each iteration.

4.3.4 Algorithm

The robust version of our algorithm, in which a weighted fit of the surface normal model

is used to update the estimated normal directions is given in Algorithm 4.2.

It is clear that our algorithm shares much in common with the iteratively reweighted

least-squares algorithm [86], in that the weights are calculated using the residuals from the

previous iteration. The difference is that in step 4 we adjust the data to which the model

is being fitted. The result of this is that during earlier iterations when the majority of

residuals are large and the weight function serves only to coarsely mask unreliable areas,

convergence is driven primarily by the hard irradiance constraint. During later iterations

as reliable pixels contain accurate estimates of the normal direction, the adjustment made

in step 4 is minimal and therefore the residuals are small. Hence, the effects of the weight-

ing becomes more subtle and the parameter estimate converges towards a robust solution.

The algorithm retains its efficiency, since each operation may still be implemented as a

matrix multiplication.
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Algorithm 4.2: Geometric shape-from-shading using a robust fit of the principal
geodesics as a statistical constraint.

Input : Light sources, image intensitiesIp, PGA modelP and intrinsic mean
normalsµp

Output : Estimated field of on-cone surface normalsnp, best-fit model
parameter vectorb and robust fit weightswσ(ηp)

Set iterationt = 0;1

Initialise parameter vectorb(0) = (0, 0, . . . , 0)T ;2

repeat3

Enforce image irradiance constraint:4

n(t)
p = Exps

(
arccos(Ip)

Logs(Expµp
((Pb(t))p))

‖Logs(Expµp
((Pb(t))p))‖

)
;

Calculate residuals:η(t)
p = ‖Logµp

(n
(t)
p )− (Pb(t))p‖;5

Calculate standard deviation of residuals:6

σ(t) = 1.4826×median
(
|η(t)

p −median(η(t)
p )|

)
;

Calculate weight matrix:W(t) = diag(wσ(t)(η1), . . . , wσ(t)(ηN));7

Calculate robust estimate of parameter vector:8

b(t+1) = CPTW(t)Logµ(U(t)), whereU(t) =
[
n

(t)
1 | . . . |n(t)

N

]
;

Set iterationt = t + 1;9

until
∑N

i=1

∥∥∥d
(
n

(t−1)
i , n

(t−2)
i

)∥∥∥
2

< ε ;10

4.3.5 Combining Evidence and Classifying Shadow Pixels

If upon convergence a pixelp has weightwfinal
p ≈ 1, this indicates a high confidence that

the normalnfinal
p is reliable. However, as the weight tends to 0, the normalnfinal

p is likely

to be erroneous due to violation of the assumptions of Lambert’s law, e.g. non-constant

albedo or lying in a cast shadow region. In this case, a more accurate estimate is given by

the robust fit of the model to the global field of normals, e.g. Expµp

(
(Pbfinal)p

)
. With ref-

erence to Figure 4.3, the normalnfinal
p lies on the circle, while the normal Expµp

(
(Pbfinal)p

)

lies within the span of the model.

For this reason, our best estimate of the underlying shape of the face is a weighted

combination, in which pixels with a low weight are given a higher proportion of the nor-
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mal Expµp

(
(Pbfinal)p

)
and a lower proportion of the normalnfinal

p , vice-versa for pixels

with a high weight. This gives a weighted average for the estimated surface normal direc-

tion which may be expressed in terms of tangent plane operations as:

nest
p = Expnfinal

p

[
(1− wfinal

p )Lognfinal
p

(Expµp

(
(Pbfinal)p

)]
. (4.23)

With the estimated facial shape to hand, we may now go further and distinguish be-

tween pixels of low albedo and those in cast shadow regions. We may recover the surface

heightzp by integrating [59] the field of normalsnest. Using a simple ray-tracing algo-

rithm, we can assign a binary cast-shadow map:

shadow(z, s, p) =





0 if pixel p is in cast shadow under illuminations

1 otherwise

(4.24)

For non-shadow regions, the albedoρd,p can be estimated by rearranging the image irra-

diance equation:

ρd,p =
Ip

nest
p .s

(4.25)

For pixels lying in cast shadow, we estimate the albedo using facial symmetry.

4.4 Recognition using 2.5D Shape Information

The principal geodesic shape-from-shading approach described above allows us to re-

cover accurate 2.5D facial shape information along with albedo estimates from a single

image. Moreover, the parameters of the principal geodesics provide a low-dimensional

characterisation of the facial shape. There are a number of ways we can use these intrinsic

features of the face to perform recognition. In this section we first present two ways in

which the recovered shape information can be used directly to perform recognition. Sec-
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ondly, we show how the information recovered from a single image can be used to derive

linear subspaces which are suitable for recognition.

4.4.1 Direct Recognition

For a given probe image, assuming the illumination is known, we can recover the pa-

rameter vectorb which characterises the field of 2.5D shape information. The simplest

recognition strategy is to measure the Euclidian distance betweenbprobe and the param-

eter recovered from each gallery image,‖bprobe− bgallery‖. This is analogous to Eigen-

faces [149], but in the domain of 2.5D shape as opposed to intensity.

An alternative is to use the shape and albedo information recovered from a probe

image to synthesise an illumination normalised prototype image and compare this with

a similarly illuminated gallery image. Suppose the ‘normal’ illumination conditions is

snorm = (0, 0, 1)T , the prototype image is given by:Ip = ρd,pn
est
p .snorm. Recognition may

then be effected by measuring the distance to each gallery image:‖Iprototype− Igallery‖.

4.4.2 Linear Subspaces

Previous work [8, 64, 100] has demonstrated that a low-dimensional subspace can accu-

rately capture the variation in images of a face resulting from arbitrarily complex varia-

tions in illumination (the three techniques used are introduced in Section 2.2.4). These

linear subspace methods provide a powerful solution to the problem of illumination in-

sensitive face recognition, in which the identity associated with the subspace which lies

closest to a query image is reported as the unknown identity. A variety of approaches of

varying complexity have been proposed to build these subspaces.

In this section we show how the 2.5D shape information recovered from a single

image using the principal geodesic shape-from-shading approach described above com-

plemented with the albedo is sufficient to build each of these subspaces.
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Illumination Cone

Using the shape and albedo information recovered from a single image using the approach

described in Section 4.3.4, we can synthesise novel images illuminated by a light source

ssynth and which include cast shadows using:

Ip = shadow(z, ssynth, p)ρd,pn
est
p .ssynth (4.26)

Therefore, we can approximate a training set which samples the entire illumination cone

by synthesising images with a range of light source directions across the illumination

sphere. This is essentially a ‘one-to-many’ training strategy. In practise we follow [64]

and build a training set comprising 45 images each synthesised with illumination from

a single point light source from a different direction. We apply PCA to this training set

and retain the first 11 dimensions, giving us anN × 11 matrix B in which each column

is a basis image. The closest subspaceB to an imageI is the one which minimises

‖BBT I − I‖. The identity associated with this subspace is the recognition result for the

image.

Spherical Harmonic Basis Images

Let ~ρd denote a vector of lengthN containing the albedo values across a face’s surface,

such thatρd,p is the albedo at pointp. Similarly, thex, y andz components of the surface

normals are stacked to form a further three vectors of lengthN : ~nx, ~ny and~nz, such that

nx,p is thex component of the surface normal at pointp. We define:~nx2 = ~nx.∗~nx, where

we use the operator.∗ to express the component-wise product of any two vectors of the

same length. Similarly for~ny2, ~nz2, ~nxz, ~nyz and~nxy. The first nine harmonic images for
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a surface with known normals and albedo are given by:

b00 = 1√
4π

~ρd, be
10 =

√
3
4π

~ρd. ∗ ~nz,

bo
11 =

√
3
4π

~ρd. ∗ ~ny, be
11 =

√
3
4π

~ρd. ∗ ~nx,

b20 = 1
2

√
3
4π

~ρd. ∗ (2~nz2 − ~nx2 − ~ny2),

bo
21 = 3

√
5

12π
~ρd. ∗ ~nyz, be

21 = 3
√

5
12π

~ρd. ∗ ~nxz,

bo
22 = 3

√
5

12π
~ρd. ∗ ~nxy, be

22 = 3
2

√
5

12π
~ρd. ∗ (~nx2 − ~ny2)

(4.27)

It is clear that these harmonic images may be derived from precisely the information

recovered by our shape-from-shading algorithm. Once again, we form a matrixB con-

taining the basis images as columns (this time of dimensionN×9). However, this basis is

not orthonormal. Using a QR decomposition, we find theN × 9 orthonormal basisQ and

9 × 9 matrix R, such thatQR = B. We may now compute the distance to the subspace

using:‖QQT I − I‖ and perform recognition as described above.

The Space of Harmonic Images:There has been recent interest in deriving an ef-

ficient representation of the space of harmonic images [164]. The aim is to allow the

harmonic basis images of any subject to themselves be described by a low-dimensional

parameter vector. Zhang et al. [164] represented this space using convex linear combi-

nations of exemplar harmonic bases. However, since the harmonic images contain di-

rectional components which are elements of a non-linear space, it is not clear that the

application of a linear analysis will result in an efficient representation. Instead, we show

that the principal geodesics of our model provide a more efficient representation.

It is clear that the spherical harmonic images may be written in terms of the princi-

pal geodesic parametersb representing a field of surface normals. To do so, we simply

need rewritenx as: nx =
(
Expµ(Pb)

)
x
, where(. . . )x denotes the selection of thex-

components of the parenthesised vector. We may similarly rewriteny andnz in terms

of b. In order to fully represent the harmonic basis images, our representation must also
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Figure 4.5: Cumulative variance versus number of eigenmodes for two different repre-
sentations of the harmonic basis images.

capture the albedo. We suggest that it is more justifiable to apply linear analysis to the

albedo values and perform PCA on the albedo separately.

In Figure 4.5 we provide empirical evidence of the improved efficiency of our rep-

resentation using ground truth surface normals and albedo for 100 subjects. We plot the

cumulative variance captured as a function of the number of leading eigenvectors retained

for two different representations of the harmonic images. The broken line shows the cu-

mulative variance when linear PCA is applied directly to the harmonic bases. The solid

line shows the cumulative variance for a combined model in which albedo is modeled

linearly using PCA and the surface normals are modeled using PGA (the albedo values

are scaled such that they are commensurate with the units of the surface normals). The

plot shows that a greater number of eigenmodes are required to capture the variance in the

harmonic bases when a linear analysis is applied directly to the basis images as opposed

to modeling albedo and surface normal variation separately. Quantitatively, to capture

95% of the variance, the linear model requires 71 dimensions whereas the model which

uses PGA requires only 58.

It is also worth noting that the eigenvectors obtained by applying linear PCA directly
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to the harmonic images are of sizeO(9N), whereas the eigenvectors obtained by mod-

eling the albedo and surface normals separately are of sizeO(3N). Hence, the storage

needed for such a model is smaller.

9 Points of Light

Lee et al. [100] use the simplest possible approach to constructing a subspace which cap-

tures the variation in illumination, in which 9 real images form the basis images of the

low-dimensional space. They determine the best way in which to arrange the physical

lighting in these images, which they call the universal configuration. We render images

using Equation 4.26 for each of the universal lighting directions, given here in spher-

ical coordinates:{(0, 0), (68,−90), (74, 108), (80, 52), (85,−42), (85,−137), (85, 146),

(85,−4), (51, 67)}. These images are then used to form the basis images of the linear

subspace. Recognition is once again effected by choosing the subspace which lies closest

to a probe image.

4.5 Experimental Results

In this section we experiment with the methods for facial shape recovery and recognition

described above. We commence by evaluating the performance of the method for shadow

removal, albedo estimation and facial shape reconstruction. We then explore the use of

the shape-parameters for the purposes of face recognition, and compare our method with

the alternatives outlined in Section 4.4.2.

We begin by deriving the principal geodesics of a training sample of facial needle-

maps. We once again use the 3DFS database [1], comprising laser range scans of 100

subjects collected using aCyberwareTM 3030PS laser scanner, in which the facial surfaces

have been registered using Blanz and Vetter’s algorithm [15]. From this database we
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extract fields of surface normals onto a124 × 142 pixel image plane. For ground truth,

we use a leave-one-out strategy in which we train the model with 99 sets of data, leaving

the remaining needle-map as out-of-sample ground truth.

4.5.1 Reconstruction

We begin by applying the method to known ground truth data allowing us to quantitatively

assess the performance of the approach. We then apply the method to real world images,

demonstrating the robustness of the approach under real world conditions. For the real

world images, we show reconstructions and reilluminations of images from the Yale-B

database [64]. These contain albedo variation and cast shadows. The algorithm executed

in under 5 seconds using Matlab code running on a 2.4GHz Pentium 4 PC.

Ground Truth Data

In Figure 4.6 we demonstrate the performance of our method on ground truth data. We

apply our algorithm to a selection of images of rendered ground truth needle-maps in-

cluding cast shadows. In column (a) we show the input images. The needle-maps of the

out-of-sample subjects are rendered with Lambertian reflectance and a point light source

with directions = (−1, 0, 1)T , i.e. 45◦ from the viewing direction. We also simulate

the effect of cast shadows using the shadow map shown in column (b). We calculate

shadow(z, s, p) from ground truth depth data. In column (c) we show the weight function

wσ(ηp) for each pixel. It is clear that regions in cast shadow have been successfully down-

weighted. In column (d) we show the needle-mapnest calculated from the input image,

rendered with frontal illumination. For comparison, in column (e) we show the ground

truth needle-map similarly illuminated. There is a good agreement between the two, even

in areas in which no information was present in the input image (i.e. those in cast shad-

ows). This suggests that the robust fit of the model has recovered globally accurate shape
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(a) (b) (c) (d) (e) (f)

Figure 4.6: Fitting to images of ground truth needle-maps rendered with Lambertian re-
flectance and cast shadows.

information, and has filled-in the shadowed areas of the face. The mean surface normal

error was typically< 8◦ across the whole needle-map. Finally, in column (f) we show the

shadow map shadow(zest, s, p), wherezest is the height map integrated fromnest. Again,

there is a good agreement between columns (b) and (f), suggesting that this represents a

viable means to estimate regions which are in cast shadow.

In Figure 4.7 we examine the influence of illumination direction on the accuracy of

the recovered surface normals. Once again we render ground truth, out-of-sample needle-

maps with Lambertian reflectance and a point light source for which we simulate cast

shadows. The direction of the light source is varied through a horizontal and vertical

arc, i.e. from left to right and from top to bottom. Figure 4.7 plots the average surface

normal error against the angle between the light source and viewing direction. The arc

from left to right (s = (−1, 0, 0)T , . . . , (1, 0, 0)T ) is shown as a solid line, while the arc
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Figure 4.7: Average angular error of the recovered normal versus illumination direction.

from top to bottom (s = (0, 1, 0)T , . . . , (0,−1, 0)T ) is shown as a broken line. The plot

demonstrates that our method recovers globally accurate shape information, even when

the lighting direction is extreme and hence, much of the face is in shadow. For example,

illumination from the extreme right or left still results in an average normal error of less

than10◦.

Real World Data

In Figure 4.8 we begin by providing a quantitative analysis of the control parameterς, as

defined in Section 4.3.2. We use our method to recover facial shape from an image which

contains significant cast shadows and for which ground truth shape information is known.

We show the (normalised) total angular error between the estimated and actual surface

normals asς is varied. It is clear there is a minima at approximatelyς = 0.8 and that any
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Figure 4.8: Plot of parameterς versus normalised total angular error.

greater value sharply increases the error due to over-fitting. Asς tends to zero there is a

smoother degradation as the recovered shape tends towards the mean face. For real world

data, a more conservative setting ofς is required, but its effect is similar. In Figure 4.9 we

show the shape recovered from a real world image asς is varied. The effects of overfitting

are clear asς tends to one.

In Figure 4.10 we show results of applying our method to real world images. In the

first column we show input images in which the subjects are illuminated by a light source

50◦ to the left. In the second column we show the recovered shape, rendered with constant

albedo and frontal illumination. It is clear that the surface in the shadowed regions has

been convincingly filled in. In the third column we show the shadow map calculated from

the recovered shape. These agree well with the cast shadows visible in the first column.

In particular, note the bump present in the shadow cast by the nose in the third row.
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ς = 0.4 ς = 0.6 ς = 0.8 ς = 1

Figure 4.9: Effect ofς parameter fitting to real-world image.

Finally, in the fourth column, we demonstrate the quality of the shape information that

can be recovered by our method, even for significantly non-frontal illumination. From

the estimated needle-map,nest, we use the surface integration method of Frankot and

Chellappa [59] to recover the surface height function. We show these surfaces rotated to

a novel viewpoint and with the input image texture mapped onto the surface. The images

show considerable stability under large change in viewpoint.

In Figure 4.11, we apply the method to the task of normalising variations in illumina-

tion for real world images. The first row shows the input images of a single subject under

varying illumination. The subject is a challenging choice due to the large albedo varia-

tions caused by facial hair. The light source is moved in an arc along the horizontal axis

to subtend an angle of−50◦, −25◦, −10◦, 0◦, 10◦, 25◦ and50◦ with the viewing direc-

tion. We use our method to estimate the normals, albedo and shadow map. We use facial

symmetry to fill-in the missing albedo values for the shadow regions. In the second row

we show the recovered needle-maps rendered with the estimated albedo and frontal light-

ing, effectively correcting for variation in input lighting. These synthesised images are

of a good quality, even under large changes in illumination. Moreover, the effects of cast

shadows are absent. The method does begin to break down for significantly non-frontal

lighting, as can be seen for the results when the subtended angle is50◦.
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Input Est. Shape Est. Shadow Map Est. Surface

Figure 4.10: Shape and shadow map estimation for real world images.

−50◦ −25◦ −10◦ 0◦ 10◦ 25◦ 50◦

Figure 4.11: Correcting for variations in illumination for real world images.
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Figure 4.12: The input images of the 10 Yale B subjects.

4.5.2 Recognition

In this section we present recognition results using our shape recovery algorithm. For

testing we have used the Yale Face Database B [64] which contains images of 10 indi-

viduals (disjoint from the model training data) under 45 different illumination conditions.

We group the lighting variation into 4 subsets of differing extremity (see [64] for details).

The images have been manually aligned, cropped and resized to establish correspondence

with the model.

In all cases, we use a single gallery image with known lighting. Although we could

choose any illumination for the training image, we use frontal illumination for two rea-

sons. Firstly, this configuration ensures that none of the face is in shadow. Non-frontal

lighting would result in a degradation in the accuracy of the recovered shape and subse-

quent recognition performance. Secondly, this corresponds to a useful and realistic sce-

nario in which the training image is captured using a standard camera with a flash lamp.

We show the input images used in Figure 4.12. We apply our principal geodesic shape-

from-shading algorithm as described in Section 4.3.4 to each training image and use the

resulting shape and albedo information according to the recognition strategy employed.

In Figure 4.13 we show an example of each of the subspaces described in Section 4.4.2

constructed from shape and albedo information extracted from a single image. In (a) we
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(a)

(b)

(c)

Figure 4.13: Linear subspaces generated from shape and albedo information recovered
from a single image: (a) The (re-scaled) first 9 dimensions of an 11D approximation of
the illumination cone [64] (b) The first 9 harmonic images [8] (c) Synthesised images of
a subject illuminated by lights from the universal configuration [100].

show the first 9 dimensions of an 11D approximation to the illumination cone. These have

been rescaled to the interval(0, 1). In (b) we show the first 9 harmonic images scaled

such that negative values are shown in black, positive values in white. In (c) we show

synthesised images of the subject illuminated by lights from the universal configuration.

These images appear plausible, including the estimated cast shadows.

In Table 4.1 we show recognition results using the methods described in sections 4.4

and 4.4.2. The first 6 rows show previously published results. The first three methods are

baseline recognition approaches which perform poorly under large variations in illumi-

nation. The second three methods show the original results of using the linear subspaces

described above for recognition. In each case, either multiple training images were used

(> 7) or a 3D model was required. We then show results using the linear subspaces

constructed using shape and albedo information extracted from only one training image.

These result in an increase of about3− 4% in the total error rate over the originally pub-
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Comparison of Recognition Methods

Method
Error Rate(%) vs. Illum

Subset Subset Subset Total
1&2 3 4

Correlation [64] 0.0 23.3 73.6 29.1
Eigenfaces [64] 0.0 25.8 75.7 30.4

Eigenfaces 0.0 19.2 66.4 25.8
w/o 1st 3 [64]

Harmonic Images [100] 0.0 0.0 3.571 1.1
Cones-cast [64] 0.0 0.0 0.0 0.0

9PL [100] 0.0 0.0 0.0 0.0
Harmonic Images(SFS) 0.0 0.0 12.86 4.0

Cones-cast(SFS) 0.0 0.0 13.57 4.2
9PL (SFS) 0.0 0.0 15.0 4.6

PGA Parameters(SFS) 0.0 15.0 48.6 19.1
Prototype Images(SFS) 0.0 3.57 28.57 16.2

Table 4.1: Recognition results on the Yale B database.

lished results, all the errors being concentrated into the most extreme lighting subset. We

believe the reason the Harmonic Images outperform the other two subspaces in this case

is because in constructing this subspace we use the recovered shape and albedo informa-

tion directly, whereas for the Illumination Cone and 9 Points of Light, additional errors

are introduced by the extra step of synthesising training images (in particular, estimating

the cast shadows from the integrated surface). Finally we show the results using the 2.5D

shape information directly. Although both methods outperform the baseline methods,

both breakdown under extreme illumination, where extracting accurate shape information

is very difficult (for example, the most extreme illumination in Figure 4.11).

4.6 Conclusions

In this chapter we have presented a statistical shape-from-shading framework in which

the principal geodesics learnt from an exemplar distribution of surface normals provide a
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global constraint which we use to update the surface normal estimates. We fit the statisti-

cal model globally, but use robust statistics to ensure that regions of low albedo or which

fall into a cast shadow have little or no impact on the parameter estimate. The technique

is capable of recovering a useful estimate of facial shape, even when significant portions

of the face are entirely in shadow.

We used the technique for a number of face analysis tasks. We began by examining

the accuracy of the method on data with known ground truth. We then showed how a cast

shadow map can be estimated from both ground truth and real world imagery. This may

prove useful to further analysis of the face using other methods. Finally, we demonstrated

that the facial shape estimated by our method, combined with an estimate of the albedo

and shadow map, is sufficient to synthesise images under frontal lighting from extreme

input lighting directions.

We have presented a comprehensive evaluation of the viability of using 2.5D shape

information to perform face recognition. In particular we have explored using facial

shape recovered using shape-from-shading. We have presented an efficient and robust

shape-from-shading algorithm which combines irradiance constraints and constraints on

the principal geodesics of the field of surface normals.

We can conclude that shape-from-shading provides a realistic route to building robust,

illumination invariant subspaces from single images. Our method may be used to com-

plement existing methods for building these subspaces, in the case where only a single

training image exists. However, the poor results obtained when using shape information

recovered from probe images suggest that it is significantly simpler to infer the appearance

of a face under extreme lighting having first recovered its shape under close-to-frontal

lighting rather than the converse.
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Chapter 5

Statistical Relations between Surface

Normals and Height

She had one of those characteristic British faces that once seen are never

remembered.

- Oscar Wilde

In the preceding two chapters, we have focussed solely on estimating surface orienta-

tion information from single images of faces. As we have demonstrated, this21
2
D shape

representation is useful in its own right for synthesising novel illuminations, performing

recognition and estimating albedo maps. However, for many purposes, the ultimate aim

of facial shape-from-shading is to provide an estimate of the true 3-dimensional surface

of the face. This is essential if we wish to synthesise images from a novel viewpoint or for

model acquisition for applications such as animation. Up to this point, where we have re-

quired surface height information we have relied on existing generic methods to calculate

it [59]. In this chapter we extend our consideration of the statistical modeling of surface

normals to encompass height information. We show how to use the resulting models to

reliably recover facial surfaces from images.
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5.1 From Surface Orientation to Surface Height

Suppose that a facial surfaceF ∈ R3 is projected orthographically onto the image plane

and parameterised by the functionz(x, y). The second partial derivatives of this surface

are independent of the order of differentiation:

∂xyz(x, y) = ∂yxz(x, y). (5.1)

If the surface gradients of a field of surface normalsn(x, y) arep(x, y) = n(x,y)x

n(x,y)z
and

q(x, y) = n(x,y)y

n(x,y)z
, they are said to beintegrableif they also satisfy this condition, i.e.

∂yp(x, y) = ∂xq(x, y). (5.2)

Recovering the surface height function from a field of surface normals or surface

gradient estimates is known as thesurface integrationor height-from-gradientproblem.

Given a field of surface normals that satisfy the integrability condition, this problem is

straightforward to solve. It simply requires the assignment of an initial height to a chosen

starting point, an arbitrary path of integration to be followed through the field of normals

and the height to be summed from the surface gradients given by the local surface nor-

mal. However, difficulties arise when the surface normals are noisy or contain systematic

errors. In this case, the resulting surface will depend on the path of integration chosen.

This problem has received considerable attention in its own right. Typically it is posed

in either local or global terms. Local integration methods [159] are conceptually simpler

but are highly sensitive to noise and are hence unsuitable for use with normals estimated

using shape-from-shading. Global approaches tend to be more robust to noise and recover

smoother surfaces. Perhaps the most popular global method is that of Frankot and Chel-

lappa [59]. They project the estimated gradient field into the Fourier domain to impose
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integrability constraints and then recover surface height using an inverse Fourier trans-

form. Although this approach is both elegant and numerically efficient it is sensitive to

abrupt changes in orientation, for example at the object boundary. This means that careful

parameter selection is necessary to recover a stable surface. It also requires that the sur-

face be continuous. Wei and Klette [154] have enhanced this approach by incorporating

more complex regularisation constraints in the Fourier domain. More recently, Agrawal

et al. [3] have revisited this problem and shown how to pose it algebraically. They exclude

gradient measurements which do not have zero curl, i.e. where the surface is not locally

integrable, and provide improved results over the original method.

Although these methods are useful, they introduce errors of their own and when com-

bined with imperfect surface normals provided by shape-from-shading, the two sources of

error compound each other. Figure 5.1 highlights these problems. On the left of the figure

a depth map of a face is shown, which was recovered using a laser range sensor. The sec-

ond column shows a profile view of the depth map rendered with Lambertian reflectance

and a frontal light source. The third column shows the result of using shape-from-shading

to recover a field of surface normals from an image of the face in a frontal view and inte-

grating these normals into a surface (we use the Worthington and Hancock [156] shape-

from-shading algorithm and Frankot and Chellappa [59] surface integration algorithm).

The errors introduced by both processes are compounded resulting in a very inaccurate

surface. To illustrate this, the profile view of the surface recovered from ground truth sur-

face normals using the method of Frankot and Chellappa [59] is shown on the right of the

figure. Even with noise-free, ground truth normals the recovered surface is inaccurate.

Areas which were close to the occluding boundary in the front view have been poorly

recovered resulting in a loss of depth (the ear is too close to the nose). Also, the steepness

of the surface at the base of the nose has caused the height of the lower half of the face

to be exaggerated (in the ground truth surface the chin is at almost the same depth as the
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Figure 5.1: Errors compound each other when shape-from-shading is combined with sur-
face integration. From left to right: depth map, ground truth profile view, surface re-
covered using shape-from-shading, profile view of surface integrated from ground truth
surface normals using Frankot and Chellappa’s [59] method.

forehead, whereas in the estimated surface the chin is noticeably further forward).

5.1.1 Exploiting a Statistical Model of Surface Height

The improvements in the surface orientation information that may be recovered using the

methods described in Chapters 3 and 4, depend upon imposing a global statistical con-

straint on the field of surface normals. It seems clear that in applying a generic surface

integration technique to these normals ignores the important information we have recov-

ered in fitting this statistical model. In other words, the resulting surface height function

is free to assume any global shape, without being subject to a similar model-based con-

straint. Our aim is therefore to show how a shape model may be incorporated into the

surface integration process.

A Coupled Model

We begin this chapter by showing how a coupled statistical model may be built that jointly

describes variations in surface normal direction and height over the surface of a face.

We construct separate eigenspaces for the surface normal and height variations from the

covariance matrices of the training data. We fit the surface normal component of this

model in the same way as that described in Chapter 3. With the parameters of the surface
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normal subspace to hand, we use a quasi-Newton minimisation procedure to find the

parameters of the coupled model that give the best match to those in the surface normal

subspace. Hence, the model is fitted to needle-map data in the surface-normal subspace,

and the recovered parameters are used to project the fitted model into the height subspace

to recover the facial surface. This process implicitly recovers the surface height function

without having to explicitly integrate the recovered field of surface normals.

This somewhat naive approach relies entirely on the statistical learning method em-

ployed (namely PCA) to explain the relationship between the field of surface normals and

the surface height function. Nonetheless, we show that the approach provides improved

results over using a generic surface integration method.

Imposing Height Constraints on Surface Normals

We then take this analysis one step further by discarding the statistical model of surface

normals altogether. Instead we show that a statistical surface height model can be used to

provide a similar constraint for surface normals. We do so by examining the relationship

between the parameters of a surface height model and the surface normals of the resulting

surface. We first show how a field of surface normals may be expressed in terms of the pa-

rameters of a height model. We demonstrate that by minimising the error between a field

of normals expressed in these terms and an input field of normals, we find the closest field

of normals in which both integrability and a statistical constraint on the corresponding

surface are enforced.

We then show how the modes of variation of a surface height model can be used

to define modes of variation for the corresponding surface normals. By examining the

relationship between the height parameters and the surface normals we show that the

parameters of the height model may be recovered directly from the corresponding field

of normals. We use this observation to develop a robust iterative algorithm for facial
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surface recovery in which a field of surface normals is estimated subject to the constraints

of the height model. At each iteration the parameters of the surface model are known

implicitly and from these parameters we can recover the height map. We term this process

‘model-based integration’. The approach aims to retain the advantages of using a surface

normal model (speed and good data-closeness) but yields a height map without having to

explicitly integrate the surface normals.

5.2 Coupling Height and Surface Normal Variation

In this section we show how a statistical model may be constructed that captures variation

in both surface height and surface normal direction. The motivation behind the idea was

provided by the Active Appearance Model and Coupled View AAM developed by Cootes

et al. [33, 38]. In both cases the idea is to learn the relationship between two represen-

tations of the face. In the case of the standard AAM this is between shape and intensity

whilst in the coupled view AAM it is between the parameters of different AAMs built for

multiple views. Our aim is the same, in that we wish to jointly model two representations

of face shape.

The statistical model of surface normal direction is constructed in exactly the same

way as in Chapter 3. The matrix containing theK eigenvectors of surface normal variation

are captured inPs. Likewise, a field of surface normalsU may be represented by the

parameter vector:

bs = PT
s U. (5.3)

We now describe how the statistical model of variation in surface height is constructed.
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5.2.1 A Surface Height Model

The training set comprisesK range images of sizeN = Xres×Yrespixels. Thekth training

sample may be represented by the vector of height values ordered according to the raster

scan

zk = [zk(1, 1), zk(1, 2), . . . , zk(Xres, Yres)]
T . (5.4)

The mean surface height vectorẑ is given byẑ = 1
K

∑K
i=1 zi. We form theN ×K data

matrix of height values using:

Dh = [(z1 − ẑ)|(z2 − ẑ)| . . . |(zK − ẑ)]. (5.5)

In precisely the same manner as for the surface normals, we once again use PCA to

extract the set ofK orthogonal modes of variationPh from the covariance matrixLh =

1
K
DhD

T
h . Again, a long-vector of height valueszk can be projected onto the eigenvectors

and represented using the vector of model parametersbh = PT
h (zk − ẑ).

5.2.2 Coupling the Surface Normal and Height Models

Each training sample can be summarised by the parameter vectorsbs andbh, representing

the needle-map and height map of the sample respectively. Since surface height and the

field of surface normals are closely related (recall thatn(x, y) = (∂xz(x, y), ∂yz(x, y), 1))

the two sets of parameters will contain strong correlations. To illustrate this, Figure 5.2

shows the correlation matrix for the first 50 parameters of the surface normal and height

models. There are strong correlations between the two, particularly along the diagonal.

This suggests that modes of corresponding importance capture similar modes of variation.

Intuitively, our argument is that a similar combination of modes of variation will describe

a face’s shape in both the surface normal and surface height domain. We intend to learn
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Figure 5.2: Correlation matrix for the first 50 parameters of the surface normal and height
models.

this relationship using PCA.

In both models, we may consider small scale variation as noise. Hence, if theith

eigenvalue for the surface normal model isλs,i, we need only retainS eigenmodes to

retainc percent of the model variance. We chooseS as the smallest integer that satisfies
∑S

i=1 λs,i ≥ c
100

∑K
i=1 λs,i. Similarly for the height model we retainH eigenmodes to

capturec percent of the variance.

For thekth training sample we can generate the concatenated vector of lengthS + H:

bk =




Wsb
k
s

bk
h


 =




WsP
T
s Uk

PT
h (zk − ẑ)


 , (5.6)

whereWs is a diagonal matrix of weights for each surface normal model parameter,

allowing for the different relative weightings of the surface normal and depth models.

The reason for performing this weighting is that the elements ofbs have units of radians,

while bh have units of distance, so they cannot be compared directly. We follow Cootes

and Taylor [35] and setWs = rIS wherer2 is the ratio of the total depth variance to the

total surface normal variance, i.e.

r =

√∑H
i=1 λh,i∑S
i=1 λs,i

, (5.7)
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andIS is the identity matrix of sizeS. The coupled model data matrix isDc = [b1| . . . |bK ],

wherebk represents the concatenated vector for thekth training sample. Because of the

choice of weight matrix, the matrixDc is the correlation matrix for the concatenated pa-

rameters. In order to find redundancies in the correlations between the two models, we

now apply a final PCA to give the coupled model:

b = Pcc =




Pcs

Pch


 c, (5.8)

wherePc are the eigenvectors andc is a vector of coupled parameters controlling both

the surface normal model and height model simultaneously. The matrixPcs hasS rows,

and represents the firstS eigenvectors, corresponding to the surface normal subspace of

the model. The matrixPch hasH rows, and represents the finalH eigenvectors, corre-

sponding to the height subspace of the model.

Crucially, we may now express the vectors of projected surface normal directions and

height values directly in terms of the parameter vectorc:

U =PsW
−1
s Pcsc, (5.9)

z =ẑ + PhPchc. (5.10)

For compactness we write:Qs = PsW
−1
s Pcs andQh = PhPch.

5.2.3 Fitting the Coupled Model to Surface Normal Data

Fitting the model to data involves estimating the parameter vectorc from surface normal

data. To do this we seek the coupled model parameters which minimise the error between

the measured and reconstructed parameters describing the field of surface normals. In

doing so we implicitly recover the surface which is also represented by the coupled model
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parameters.

Suppose thatU is a vector of length2N that represents a field of surface normals under

azimuthal equidistant projection obtained by applying the shape-from-shading algorithm

of Chapter 3 to the brightness image of a face. We fit the model to data seeking the vector

c∗ of lengthS + H that satisfies the condition

c∗ = arg min
c

‖PT
s U−W−1

s Pcsc‖2. (5.11)

The corresponding best-fit vector of depth values is given by

z = ẑ + Qhc
∗. (5.12)

This provides us with a means by which to recover surface height from a field of sur-

face normals in a model-based way. In practise we use a Matlab implementation of a

quasi-Newton minimisation process to solve Equation 5.11. In our experiments, we con-

trast this with using a generic height-from-gradient technique and show that the method

is capable of recovering accurate profiles from frontal images.

5.3 Imposing Surface Height Constraints on Surface Nor-

mals

The surface height model described above can be used to efficiently represent a class of

surfaces such as human faces in a low-dimensional space. In the previous section we used

the model to solve the problem of surface integration. However, such a model also proves

useful to the problem of estimating facial shape from images by transforming the ill-posed

shape-from-shading problem into one of estimating a low-dimensional parameter vector.
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However, since surface reflectance and hence measured intensity is governed by the ori-

entation of the local surface and not directly by its height, the parameter estimate can only

be made by optimising the error between predicted and measured appearance. This is the

approach adopted by Atick et al. [5] and more recently Blanz and Vetter [15]. There are

two problems with this approach. Firstly, the optimisation process is computationally ex-

pensive and the error functional may contain local minima. Secondly, such an approach

leads to model dominance in which the recovered surface represents a viable facial shape

but lacks photorealism and only weakly satisfies data-closeness.

These weaknesses motivate the work presented in Chapters 3 and 4. Here, the normals

can be estimated directly from the image intensity and projection into the model space re-

quires only a matrix multiplication. In addition, hard local irradiance constraints can be

satisfied by simply rotating the surface normals from their directions given by the model

parameters. This approach ensures good data-closeness and hence realistic reillumina-

tions under novel lighting. By avoiding posing the problem as a non-linear minimisation

the method is also computationally efficient.

One drawback of this approach is that the recovered surface is in the form of surface

normals. If the desired output is a depth map (in order to allow the synthesis of novel

facial poses or to estimate shadow maps) then the surface normals must be integrated into

a surface as described above. This process introduces errors of its own and is potentially

computationally expensive.

In this section we take a step further than in Section 5.2, by showing that in fact we

can impose the constraints of a surface height model in the surface normal domain.

5.3.1 A Global Statistical Integrability Constraint

We can express the facial surfaceF ∈ R3 projected orthographically onto the image plane

and parameterised by the functionz(x, y) in terms of a base surfacêz(x, y) plus a linear
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combination ofK surface functionsΨi (or modes of variation):

zb(x, y) = ẑ(x, y) +
K∑

i=1

biΨi(x, y), (5.13)

where the coefficientsbi are the surface parameters. Two instances of this representation

have proven useful to the shape-from-shading problem. The first is that of Frankot and

Chellappa [59], where the fourier basis functions are used. These provide a complete

orthonormal basis forz. However, the power of representation of the fourier basis means

that they form a rather weak constraint on the surface. The second instance in which

this formulation has been used is where the basis functions form a statistical model learnt

from exemplar facial surfaces. This is the model used in the previous section where the

base shape and modes of variation are given by applying PCA to a representative sample

of exemplar surfaces. The base surfaceẑ is the mean average of the training samples and

Ψi is the eigenvector of the covariance matrix of the training samples corresponding to

theith largest eigenvalue. It is this model that we use in the following sections.

Normals from Height Parameters

We may express the normals of the surface directly in terms of the parameter vectorb:

nb(x, y) =




∂xẑ(x, y) +
∑K

i=1 bi∂xΨi(x, y)

∂yẑ(x, y) +
∑K

i=1 bi∂yΨi(x, y)

1




. (5.14)

In other words, the normal may be expressed in terms of the sum of the gradient of the

mean surface with a linear combination of the gradients of the eigenvectors at the cor-

responding point. If we write the partial derivatives of the mean surface as:p̂(x, y) =

∂xẑ(x, y) and q̂(x, y) = ∂yẑ(x, y) and definepi(x, y) = ∂xΨi(x, y) and qi(x, y) =
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∂yΨi(x, y), i.e. the partial derivatives of the eigenvectors in thex andy directions, we

may rewrite this as:

nb(x, y) =




p̂(x, y) +
∑K

i=1 bipi(x, y)

q̂(x, y) +
∑K

i=1 biqi(x, y)

1




. (5.15)

When we wish to refer to the corresponding vectors of unit length we use:n̂b(x, y) =

nb(x,y)
‖nb(x,y)‖ .

A field of normals expressed in this manner satisfies two constraints. First, the field of

normals will be integrable since they correspond exactly to the surface given by Equation

5.13. Second, the surface corresponding to the field of normals is also constrained to

lie within the span of the surface height model. We term this constraintmodel-based

integrability.

5.3.2 Relating Modes of Surface Height Variation and Normals

If the mean surface is deformed according to theith eigenvectorΨi by an amount given

by the parameterbi, the resulting height at a point(x, y) is ẑ(x, y) + biΨi(x, y). The

corresponding normal of the deformed surface is therefore given by:

nbi
(x, y) = (p̂(x, y) + bipi(x, y), q̂(x, y) + biqi(x, y), 1)T . (5.16)

Again we write:n̂bi
(x, y) =

nbi
(x,y)

‖nbi
(x,y)‖ for the unit length normal.

Mode of Surface Variation = Geodesic Submanifold

As the mean surface is deformed according to theith mode of variation, the surface normal

at each pixel is rotated along a great circle. This is of interest because it shows that a
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subspace of the surface height model corresponds to a subspace of the field of normals.

As discussed in Chapter 4, unit normals may be considered as points lying on a spherical

manifold, a subspace of which is a geodesic submanifold (a great circle in the spherical

case).

We now prove that a mode of surface height variation corresponds to perturbing the

mean surface normal along a geodesic submanifold (a great circle). To do this, we show

that the direction of the axis of rotation remains constant as the deformation parameter is

varied. In other words, asbi varies,n̂bi
(x, y) is rotated about a constant axis and therefore

traces out a great circle.

The surface normal of the mean surface isn0(x, y) = (p̂(x, y), q̂(x, y), 1)T . The cross

product ofn0(x, y) andnbi
(x, y) is:

n0(x, y)× nbi
(x, y) =




q̂(x, y)− (biqi(x, y) + q̂(x, y))

(bipi(x, y) + p̂(x, y))− p̂(x, y)

p̂(x, y) (biqi(x, y) + q̂(x, y))− q̂(x, y) (bipi(x, y) + p̂(x, y))




= bi




−qi(x, y)

pi(x, y)

p̂(x, y)qi(x, y)− q̂(x, y)pi(x, y)




.

Since we can factor outbi, it therefore has no effect on the direction of the axis of rotation

from n̂0(x, y) to n̂bi
(x, y).

The observation we would like to make here is that each subspace of a surface height

model corresponds to a subspace of the field of surface normals. This motivates our

attempts to enforce the constraints of a surface height model on a field of surface normals

in the same way that we have used statistical surface normal models in the previous two

chapters. In other words, the modes of variation of a surface height model can also be

considered as modes of variation for a surface normal model.
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Recovering Surface Parameters

Although we have shown that varying the surface height parameterbi corresponds to

rotating each surface normal locally about a great circle, the relationship between the

magnitude ofbi and the magnitude of the surface normal deformation is complex and

non-linear. From the field of normals of a surface projected onto theith mode of surface

height variation (i.e. a surface deformed according to theith eigenvector by an unknown

amount), we can recover the magnitude of the surface deformation,bi, locally at any point

using the following equality:

n0(x, y) · nbi
(x, y) = |n0(x, y)||nbi

(x, y)|n̂0(x, y) · n̂bi
(x, y). (5.17)

Substituting innbi
(x, y) = (p̂(x, y) + bipi(x, y), q̂(x, y) + biqi(x, y), 1)T andn0(x, y) =

(p̂(x, y), q̂(x, y), 1)T gives:

p̂(x, y)2+p̂(x, y)bipi(x, y)+q̂(x, y)2+q̂(x, y)biqi(x, y)+1 = |n0(x, y)||n(x, y)|n̂0(x, y)·n̂bi
(x, y)

(5.18)

bi =
|n0(x, y)||nbi

(x, y)|n̂0(x, y) · n̂bi
(x, y)− p̂(x, y)2 − q̂(x, y)2 − 1

p̂(x, y)pi(x, y) + q̂(x, y)qi(x, y)
. (5.19)

If a surfacez(x, y) is represented with minimum least squares error by the parameter

vectorb, we have shown that the parameterbi may be recovered from the field of normals

nbi
(x, y), i.e. the surface normals of the surface:ẑ(x, y) + biΨi(x, y). However, it is not

clear how the field of surface normalsnbi
(x, y) can be estimated from a field of surface

normalsn(x, y) which may not lie within the span of the model. Instead, we pose the

problem of imposing statistical integrability on a field of surface normals in terms of

operations relating the surface gradients. This results in a linear minimisation problem.
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5.3.3 Model-based Integration

To apply the constraint to a (possibly non-integrable) field of surface normalsn(x, y),

we seek the parameter vectorb∗, whose field of surface normals given by Equation 5.15

minimises the distance ton(x, y). We pose this as minimising the squared error between

the surface gradients ofn(x, y) and those given by Equation 5.15. The surface gradients

of n(x, y) arep(x, y) = nx(x,y)
nz(x,y)

andq(x, y) = ny(x,y)

nz(x,y)
. The optimal solution is therefore

given by:

b∗ = arg min
b

∑
x,y

[
p̂(x, y) +

∑K
i=1 bipi(x, y)− p(x, y)

]2

+
[
q̂(x, y) +

∑K
i=1 biqi(x, y)− q(x, y)

]2

.

(5.20)

The solution to this minimisation is linear inb and is solved using linear least squares

as follows. If the input image is of dimensionN = Xres× Yres, we subtract the mean

surface gradients from the surface gradients of the field of surface normalsn(x, y) to

form a centred vector of length2N :

G =




p(1, 1)− p̂(1, 1)

q(1, 1)− q̂(1, 1)

. . .

p(Xres, Yres)− p̂(Xres, Yres)

q(Xres, Yres)− q̂(Xres, Yres)




. (5.21)

We then form the2N ×K matrix of the surface gradients of the eigenvectors,Ψ, whose

ith column isΨi = [pi(1, 1), qi(1, 1), . . . , pi(Xres, Yres), qi(Xres, Yres)]
T . We may now state

our least squares problem in terms of matrix operations:

b∗ = arg min
b

‖Ψb−G‖2. (5.22)
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The least squares solution is found using the pseudoinverse ofΨ:

b∗ =
(
ΨTΨ

)−1
ΨTG. (5.23)

This is a computationally efficient operation since it consists of only matrix multiplica-

tions. With the optimal parameter vector to hand, the field of surface normals satisfying

the model-based integrability constraint is given by Equation 5.15. Furthermore, we have

also implicitly recovered the surface height, which is given by Equation 5.13. This pro-

vides a means to recover the surface height from a field of normals without explicitly

integrating the field of normals.

We can use this process in two ways:

1. As solely a surface integration technique, applied in the same way as the technique

described in Section 5.2. In this case we take as input a field of surface normals

recovered using the methods described in Chapter 3 or Chapter 4. We fit the surface

height model to this field of surface normals using Equation 5.23 and return the

corresponding surface height given by Equation 5.13.

2. Alternatively, we may use the surface height model to provide a constraint to be

used during shape-from-shading. The idea is to replace the constraint provided by

the statistical surface normal model with one on surface height. This is a stricter

constraint, since it requires not only that the normals lie within the span of a statis-

tical model, but also that they correspond to an integrable surface. Yet we can still

impose the constraint in the surface normal domain (using the techniques described

above) and may hence enforce data-closeness constraints locally as in the previous

two chapters.

We describe how this second process is performed in the following subsection.
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5.3.4 Shape-from-shading with Model-based Integrability

We incorporate the statistical model-based integrability constraint into geometric shape-

from-shading in the same way as in the previous two chapters. To do so we iteratively

interleave the two processes of strictly enforcing satisfaction of Lambert’s law and en-

forcing the model-based integrability constraint on the field of surface normals. However,

in contrast to the techniques presented in chapters 3 and 4, the method returns both a field

of surface normals (which strictly satisfy Lambert’s law) and the surface height function

(which lies within the span of the statistical surface height model). Moreover, since the

model is based on surface height as opposed to surface orientation it is more efficient

(fewer dimensions are required to retain the same proportion of the variance) while also

offering a stricter constraint.

The shape-from-shading algorithm using model-based integrability as the constraint

is described in Algorithm 5.1. Note that this algorithm is similar in structure to Algo-

rithm 4.1 in the previous chapter. The primary difference is that the statistical constraint

is now based on a surface height model as opposed to a surface normal model. In addi-

tion, Algorithm 5.1 returns an estimate of the surface height function without requiring

the use of a generic surface integration technique. We note once again that the imposi-

tion of both constraints is implemented using only matrix multiplications and is hence

computationally efficient.

5.4 Experiments

In this section we present experimental results using the two methods described in this

chapter for surface height recovery.

We begin by comparing the two statistical approaches to the problem of surface inte-

gration. We use ground truth fields of surface normals and compare the accuracy of the
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Algorithm 5.1: Geometric shape-from-shading using a model-based integrabil-
ity constraint.

Input : Light sources, image intensitiesI(x, y), surface gradients of statistical
surface height modelΨ and average surface gradientsp̂(x, y) and
p̂(x, y)

Output : Estimated surface normal mapn(x, y) and surface height function
zb(x, y)

Set iterationt = 0;1

Initialise parameter vectorb(0) = (0, 0, . . . , 0)T ;2

repeat3

Enforce local irradiance constraint:4

n(t)(x, y) = Exps

(
arccos(I(x, y))

Logs(n̂b(t)(x, y))

‖Logs(n̂b(t)(x, y))‖
)

;

Enforce model-based integrability. Estimated surface gradients are given by5

p(x, y) = n(t)(x,y)x

n(t)(x,y)z
andq(x, y) = n(t)(x,y)y

n(t)(x,y)z
. Calculate centred matrix of

surface gradientsG(t) using Equation 5.21 and findb(t+1) by solving:

b(t+1) =
(
ΨTΨ

)−1
ΨTG(t);

Set iterationt = t + 1;6

until
∑

x,y

[
arccos

(
n(t)(x, y) · n(t−1)(x, y)

)]2
< ε ;7

surfaces recovered using the coupled model described in Section 5.2 and the model-based

integration approach described in Section 5.3.

We then investigate the performance of the shape-from-shading algorithm described

in Algorithm 5.1 which uses the model-based integrability constraint. We compare the ac-

curacy of the recovered normals against using the principal geodesic shape-from-shading

algorithm described in Algorithm 4.1. In addition, we compare the accuracy of the re-

covered surface height against that recovered by integrating the fields of surface normals

recovered using the principal geodesic shape-from-shading algorithm.

We draw conclusions on which combination of methods appears to provide the best

accuracy in terms of both the recovered field of surface normals and surface height func-

tion.
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Figure 5.3: Comparison of average face surface and average field of surface normals.

5.4.1 Comparing Surface Normal and Height Models

We begin by comparing statistical models of facial shape constructed using surface nor-

mals and surface height. The models were trained on the 3DFS database as in chapters 3

and 4 and an additional 200 faces from the Max Planck database [15]. Although trained

on the same data and modelling the same underlying structures, the two models are in fact

quite different. In Figure 5.3 we show the average face surface on the left and the average

field of surface normals on the right (we use the intrinsic mean definition of the average

normal as in Section 4.1.1). Both surface representations are rendered with Lambertian

reflectance and frontal illumination. It is clear that the two show clear structural differ-

ences. This is because they are based on minimising different quantities. The average

field of surface normals aims to minimise the difference in terms of surface orientation

to all training samples while the average face surface aims to minimise the difference in

terms of surface height.

We now examine the efficiency of the two facial surface models and the coupled model

in terms of the cumulative variance captured. In Figure 5.4 we plot cumulative variance

against the number of eigenmodes retained. It is evident that fewer eigenmodes are re-

quired to capture variance in facial height than in facial needle maps. This is because

the surface normal at each point has two degrees of freedom whereas the surface height

value has only one. We retained 123 dimensions of the surface height model and 250
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Figure 5.4: Plot of cumulative variance versus number of eigenmodes used for surface
height model (solid line), coupled model (dashed line) and surface normal model (dotted
line).

dimensions of the surface normal model (each accounting for 99% of the variance). As

would be expected, the coupled model lies between the two and requires 207 dimensions

to capture 99% of the variance.

5.4.2 Surface Integration

We now evaluate the two surface integration methods proposed in sections 5.2 and 5.3

on ground truth data. We use the generic surface integration technique of Frankot and

Chellappa [59] to provide a comparison. We use a leave-one-out validation strategy, in

which we train the statistical models with all but one of the facial surfaces. For this out-

of-sample subject we compute the field of surface normals which we provide as input to
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each of the surface integration techniques. This is done as follows:

• Coupled Model: We fit the surface normal model to the input field of surface

normals by calculating the best fit parameter vector. We then recover the coupled

model parameters that best reconstruct this parameter vector using Equation 5.11.

The estimated surface height is then given by Equation 5.12.

• Model-based Integration: We find the surface height model parameters that pro-

duce a surface whose surface normals best reconstruct the input field of surface

normals by solving Equation 5.23. The estimated surface height is then given by

Equation 5.13.

For each of 200 subjects we calculate the root mean square (RMS) error between the

estimated and ground truth surfaces for the two proposed approaches and the result of

applying the Frankot and Chellappa [59] algorithm. In Figure 5.5 we show the RMS

errors (in centimetres) for each subject ordered from the best- to worst-case. The results

of the Frankot and Chellappa algorithm are shown by the blue dot-dashed line. The results

of using the coupled model are shown by the green dotted line and the results using model-

based integration are shown by the red dashed line. We also plot the error of projecting

the input ground truth surface onto the surface height model. This is the minimum error

with which the surface height model can represent the input surface. This represents a

baseline error which neither of the proposed methods could outperform.

The first feature to note is that both of the proposed methods substantially outper-

form the Frankot and Chellappa algorithm. The average RMS error across all subjects for

the Frankot and Chellappa method is0.4749 cm. The coupled model and model-based

integration approaches both offer improved performance with model-based integration

outperforming the coupled model. The average RMS error across all subjects for the cou-

pled model and model-based integration are0.2244 cm and0.1367 cm respectively. For
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Figure 5.5: RMS surface height errors for 200 subjects using 3 surface integration tech-
niques applied to ground truth normals.

comparison the average RMS error across all subjects for the baseline model projection is

0.0448 cm. In Figure 5.6 we present alternative visualisations of these errors. In the top

row we show frequency histograms showing the distribution of RMS errors across the 200

subjects for each of the three methods. In the second row we show error maps in which

the colour represents the average RMS error at that pixel (note that different scales are

used for each plot, the units are centimetres). These plots highlight the spatial distribution

of errors for the three methods.

In Figure 5.7 we show some specific examples from the above experiment. We com-

pare contours of the profile view of the recovered surface (the central vertical scan-line)

for 4 subjects. We show the ground truth contour as a solid black line and use the same

line labelling convention as in Figure 5.5 for the estimated surfaces. The units of both
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Figure 5.6: Surface integration results: frequency histograms of RMS surface height er-
rors and error maps of average RMS surface height errors at each pixel.

axes are centimetres.

In the first example, all three methods perform well. The second example shows a case

where model-based integration performs well, whilst the third example shows a case in

which both model-based integration and the coupled model perform well. In these latter

two cases the Frankot and Chellappa algorithm performs poorly. Here, the steepness of

the surface at the base of the nose has caused the surface to be warped, leaving the lower

half of the face estimated too high and the top half too low. This sensitivity to steeply

inclined surface patches is a known weakness of the Frankot and Chellappa algorithm.

5.4.3 Shape-from-shading using Model-based Integrability

In this section we evaluate the use of model-based integrability as a constraint for facial

shape-from-shading. We apply Algorithm 5.1 to ground truth face images and recover

a field of surface normals and facial surface. We compare the recovered field of surface

normals with those recovered using the principal geodesic shape-from-shading algorithm
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Figure 5.7: Evaluating surface integration results based on contour of profile view of
recovered surface. For three faces we compare results using the coupled model (left col-
umn) with results using model-based integration (right column). We also show ground
truth and the result of the Frankot and Chellappa algorithm for comparison.
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described in Algorithm 4.1. We then compare the recovered surfaces with those obtained

by applying a surface integration algorithm to the field of surface normals estimated using

Algorithm 4.1. As above, we experiment with two surface integration algorithms: the

generic method of Frankot and Chellappa and the method based on the coupled model

described in Section 5.2.

As for the surface integration experiments in the previous section, we use the same 200

out-of-sample ground truth facial surfaces for our experiments. From these face surfaces

we synthesise images using Lambertian reflectance and frontal illumination. To these im-

ages we apply the shape-from-shading algorithm which uses model-based integrability.

This returns both a field of surface normals and surface height estimate. In Figure 5.8 we

once again show the RMS errors (in centimetres) ordered from the best- to worst-case.

This is shown by the red dashed line. For comparison, we show the result of applying

a surface integration algorithm to the fields of surface normals recovered using the prin-

cipal geodesic shape-from-shading algorithm. The results using the coupled model as a

means of surface integration are shown by the green dotted line. The results using the

Frankot and Chellappa algorithm are shown by the blue dot-dashed line. Note that this

is effectively the method used in the previous two chapters, i.e. the use of a statistical

surface normal model to recover a field of surface normals followed by the application of

the Frankot and Chellappa algorithm to recover the surface height function.

From the plots it is evident that the shape-from-shading algorithm which uses model-

based integrability recovers the most accurate surfaces (the average RMS error over all

subjects was0.1850 cm). Using the coupled model to recover a surface from the field

of surface normals estimated using the principal geodesic shape-from-shading algorithm

gives slightly worse results (average RMS error of0.2438 cm), while the use of the

Frankot and Chellappa algorithm gives significantly worse results (average RMS error

of 0.4841 cm). In Figure 5.9 we show alternative visualisations of these errors. In the top
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Figure 5.8: RMS surface height errors for 200 subjects using 3 methods for face surface
recovery applied to images synthesised from ground truth face surfaces.

row we show frequency histograms of RMS errors, while in the second row we show the

spatial distribution of errors.

An interesting question is whether this superior performance is purely related to the

surface integration process or whether the surface normals recovered using the model-

based integrability constraint are also more accurate. To answer this question we also

calculated the average RMS error for thesurface normalsrecovered using this method in

comparison to the principal geodesic shape-from-shading algorithm. As would perhaps be

expected, the surface normals recovered using the principal geodesic shape-from-shading

algorithm are more accurate (0.1048 radians as opposed to0.2136 radians using model-

based integrability). This result is intuitive since we would expect the surface normal

model is likely to produce more accurate results in the surface normal domain.
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Figure 5.9: Surface recovery results: frequency histograms of RMS surface height errors
and error maps of average RMS surface height errors at each pixel.

Finally in Figure 5.10 we show the same profile reconstructions as in Figure 5.7,

except that this time they have been recovered from images rather than ground truth sur-

face normals. The most striking feature is the degradation in performance of the Frankot

and Chellappa algorithm when applied to imperfect normals. Note, for example, the

convex/concave reversal in the mouth of the first subject. The results using the cou-

pled model and shape-from-shading with model-based integrability remain good, with

the model-based integrability results more closely following the ground truth profile.

5.4.4 Comparison

In Table 5.1 we summarise all of the results of our ground truth experiments. We show the

average RMS errors in centimetres for height errors and radians for surface normal errors

(the parenthesised values are the standard errors) for each experiment. The first results

are for surface integration on ground truth surface normals. The second results are for
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Figure 5.10: Evaluating surface recovery results based on contour of profile view of re-
covered surface. For three faces we compare results using the coupled model (left column)
with results using model-based integration (right column). We also show ground truth and
the result of the Frankot and Chellappa algorithm for comparison.
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Comparison of Shape-from-shading and Surface Integration Methods

Surface Integration from Ground Truth Normals
Frankot and Chellappa Coupled Model Model-based Integration

0.4749cm
(SE = 0.0149cm)

0.2244cm
(SE = 0.0075cm)

0.1367cm
(SE = 0.0030cm)

Surface Normal Recovery from One Image
Principal Geodesic SFS SFS with Model-based Integrability

0.1048rad (SE = 0.0048rad) 0.2136rad (SE = 0.0038rad)

Surface Height Recovery from One Image
Principal Geodesic SFS +

Frankot and Chellappa
Principal Geodesic SFS +

Coupled Model
SFS with Model-based

Integrability
0.4841cm

(SE = 0.0147cm)
0.2438cm

(SE = 0.0075cm)
0.1850cm

(SE = 0.0053cm)

Table 5.1: Comparing the accuracy of different combinations of shape-from-shading and
surface integration methods. Values shown are average RMS errors over 200 samples.
The units are centimetres for height errors and radians for surface normals errors. The
parenthesised values are the standard errors of the RMS errors.

recovering fields of surface normals from images and the third results are for recovering

facial surfaces from images. The table highlights that both the methods developed in

this chapter offer an improvement over using the generic surface integration method of

Frankot and Chellappa. Moreover, they show that using a statistical surface height model

in the context of our model-based integrability constraint offers improved performance

over the statistical surface normal models developed in the previous two chapters. This is

true both in terms of the accuracy of the recovered field of surface normals and the surface

height.

5.5 Conclusions

In this chapter we have extended our consideration of the recovery of facial shape from

single images to include the recovery of the surface height function. In the previous two

chapters, we used statistical models of surface normal direction to constrain the shape-
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from-shading process. We motivated the work in this chapter by arguing that the surface

integration process should also be subject to a similar statistical constraint. For this reason

we developed two surface integration methods which use a statistical model of surface

height.

The first aims to learn the relationship between the parameters of a statistical sur-

face normal model and surface height model based on a linear analysis of the correlation

matrix between the two sets of parameters. To perform surface integration, we search

for the parameters of this coupled model that best reconstruct the surface normal model

parameters of the input field of surface normals.

The second method was based on a more thorough analysis of the relationship between

the parameters of the surface height model and the resulting field of surface normals. We

derive a method for recovering the surface height parameters directly from a field of sur-

face normals, a process we term ‘model-based integration’. In addition, we note that this

process can form a constraint on the field of surface normals to be used during shape-

from-shading. The resulting shape-from-shading algorithm has a number of advantages

over the methods developed in this and the previous two chapters. Firstly, the field of

surface normals is subject to a stricter constraint than previously since it must be both

integrable and lie within the span of the model. Secondly, the algorithm provides both the

surface height and normals as output. Thirdly, model-based integration is accomplished

using matrix multiplications only whereas fitting the coupled model requires the solution

of a minimisation problem. Finally, the depth model is more efficient in terms of the num-

ber of dimensions that must be retained to preserve a given amount of variance. Further,

half as many values are required to describe each dimension since only the surface height

is being modeled as opposed to the two components of surface orientation.

Our experimental results show that for the purposes of both surface integration and

surface recovery using shape-from-shading, the use of the model-based integrability con-
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straint outperforms the coupled model and the methods developed in the previous chapters

when applied to ground truth data.

161



Chapter 6

Estimating Skin Reflectance Properties

Often a silent face has voice and words.

- Ovid [119]

In this chapter we address the problem of estimating the reflectance properties of skin

from single images. In the work presented in the preceding three chapters, we have made

the assumption that skin reflects light according to Lambert’s law [97]. In other words,

we have assumed that skin is an ideal diffuse reflector and that incoming light is scattered

equally in all directions. In fact, the reflectance properties of skin are complex and far

from Lambertian in most cases [109].

In Chapter 2, we discussed a variety of reflectance models which may be used to

describe skin reflectance. In Table 6.1 we draw from this review a list of features which

would be desirable in a skin reflectance model with the application of facial shape-from-

shading in mind. We note that no existing models of reflectance satisfy all of these criteria.

The reason for this is that as the models incorporate more complex effects and parameters,

they inevitably lose their invertability and computational efficiency. Invertability is an

important property in order to perform shape-from-shading where we wish to be able to

infer some of the reflectance geometry from the measured intensity values.
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Skin Reflectance Model Wishlist

Invertible It would be beneficial if we can estimate from the
measured intensity some information regarding the re-
flectance geometry, e.g. using the Lambertian model we
can recover the incident angle.

Biophysically meaningful
parameters

If the parameters have a clear biophysical meaning (for
example melanin/haemoglobin concentration, skin layer
thicknesses etc), we can use those that we predict will
remain constant as part of a biometric. This would also
provide intuitive parameters for face image editing.

Captures important fea-
tures of skin reflectance

These range from simple effects such as “shininess,”
to more complex phenomena such as off-specular re-
flectance, asperity scattering and subsurface scattering.

Computationally simple Particularly important if the model is to be evaluated
within an iterative shape-from-shading framework.

Accurate over all possible
skin types

Since we wish to apply the model to arbitrary faces, it
must not have a bias to model one particular skin type
more accurately than another.

Table 6.1: A wish list of desirable properties of a skin reflectance model for use in com-
puter vision tasks.

In this chapter, we do not make use of an existing model of skin reflectance. Instead,

we aim to demonstrate that we can empirically measure skin reflectance properties from

a single image within a shape-from-shading framework.

We provide a method for estimating facial shape and reflectance properties from a

single image, which allows the surface reflectance function and albedo to vary arbitrar-

ily. The number of unknowns here is large and the problem is highly under-constrained.

The reason for this is that from each single intensity value we wish to estimate three lo-

cal values. These are the two components of the surface normal and the local albedo.

Additionally we wish to make a global estimate of the surface reflectance function. We

show that it is sufficient to enforce the model-based integrability constraint developed

in the previous chapter on the field of surface normals. In addition we employ standard

photometric constraints.

The idea underpinning the approach is to iteratively apply two processes: estimation
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of surface reflectance properties and surface shape estimation:

1. We use the estimated surface shape to calculate the reflectance geometry at each

pixel in the input image. This provides a scattered and potentially noisy sampling

of the global surface reflectance function, to which we fit a smooth and monotonic

curve. This is an estimate of a slice of the surface radiance function.

2. With this function to hand, we improve our estimate of the surface shape. This con-

sists of two steps. First, we locally enforce consistency with the global estimate of

the reflectance function. This ensures the estimated shape and reflectance function

will exactly recreate the input image. Second, we enforce a global statistical con-

straint on the field of surface normals. Model-based integrability ensures that the

surface normals are both integrable and correspond to a surface which lies within

the span of a statistical surface height model.

By iterating and interleaving these two processes we arrive at stable estimates of both the

surface shape and reflectance. We extend the method to real world images and, by calling

on additional photometric constraints, we may also simultaneously make an estimate of

the albedo at each pixel location. The resulting algorithm provides a means to perform

reliable non-Lambertian shape-from-shading on face images using a statistical constraint

on the surface height function.

Finally, we turn our attention to colour images of faces. We apply the same process

as for grayscale images to each colour channel independently. However, there is an addi-

tional constraint here which we may exploit. The underlying surface shape is fixed and

hence may not differ between colour channels. For this reason, we take as our estimate of

the surface shape at each iteration the average of the three fields of surface normals recov-

ered from each of the three colour channels. As an additional application, we demonstrate

how our method can be used to solve the problem of facial colour constancy. Our tech-

nique provides a means for estimating the colour and strength of the illuminant. We show
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how the estimated surface shape and reflectance properties can be used to render an image

in which the surface is illuminated by a white light, effectively removing the effect of the

original coloured light source.

6.1 Skin Reflectance

Light interaction with skin is a complex process involving reflection at the air-skin bound-

ary following Fresnel theory and subsurface scattering within the layers of the skin [151].

The process has been studied from several perspectives by the biology [163], graph-

ics [72], vision [44], psychophysics [96] and medical imaging communities [29]. Skin

reflectance is controlled by biological parameters such as melanin and haemoglobin con-

centration and the thickness of the component skin layers [151]. The most comprehen-

sive models have been developed by the graphics community, which explicitly account

for subsurface light transport [88].

However, for a wide range of tasks the complexities of subsurface scattering may

be discounted. Hence, the assumption is made that light enters and leaves the surface

at the same point. Under this assumption skin reflectance properties can be explained

by a bidirectional reflectance distribution function (BRDF). Attempts have been made

to empirically measure the BRDF of skin [42, 109]. However, this exhaustive process

requires either a stationary, flat sample (difficult to achieve with anin vivo sample) or

accurate knowledge of the 3D shape. For this reason, the computer vision community has

tended to employ simple, analytical reflectance models that can capture a range of surface

BRDFs. In particular, the Lambertian model has been widely used [8, 47, 64, 164, 168].

Examples of the use of more complex models of skin reflectance within a vision context

are rare. The examples being Blanz and Vetter [14] who used the Phong [128] model in

their analysis-by-synthesis framework, while Georghiades [62] incorporated the Torrance
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and Sparrow [146] model into an extended uncalibrated photometric stereo algorithm.

In this chapter, we do not call on an existing reflectance model and seek to estimate its

parameters. Instead, we aim to show that it is possible to make empirical reflectance

measurements using shape-from-shading.

As discussed in Chapter 3, the BRDF describes the ratio of the emitted surface ra-

diance to the incident irradiance. If a surface illuminated by irradiancefi(θi, αi) from a

differential region of solid angledω was to emit radiancefo(θo, αo), its BRDF would be:

ρ(θi, αi, θo, αo) =
fo(θo, αo)

fi(θi, αi) cos(θi)dω
. (6.1)

In the context of facial shape-from-shading, the focus is on single images and we restrict

ourselves to situations in which only a single source of illumination is present. In this

scenario, only a particular subset (or ‘slice’) of the BRDF is relevant. In such a setup,

the light source and viewing direction are fixed relative to each other with respect to each

point on the surface. Hence, the slice of the BRDF that we are interested in has only two

degrees of freedom.

For this purpose, it is more convenient to use a viewer centred coordinate system, in

which the spherical coordinates of the view vector are(0, 0). The light source vector may

be written in spherical coordinates as(θL, αL). The reduced slice of the BRDF,ρ̂, which

is observed in a single image varies over the range of surface normal directions(θ, α)

(also in viewer centred spherical coordinates) present in the image:

ρ̂(θ, α) = ρ (θ − θL, α− αL, θ, α) . (6.2)

We further assume that illumination is provided by a point light source situated at infinity

and that its direction is fixed across our slice of the BRDF measurement. We may there-

fore set the irradiance and solid angle terms to a constant,k = fi(θi, αi)dω, and write our
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reduced reflectance function as:

ρ̂(θ, α) =
1

k

fo(θ, α)

cos(θ)
. (6.3)

In Section 3.1.1, we showed that the image irradiance at the sensor element,E, is

proportional to the outgoing radiance from the surface. If we subsume the parameters

related to the optical properties of the camera into a constant:τ = π
4

(
D
z′

)2
, we may relate

the irradiance at the sensor to the BRDF directly:

E = τfo(θ, α) = τkρ̂(θ, α). (6.4)

As discussed in Section 3.1.1 the response function of the camera,gcam, determines the

relationship between the reported pixel brightness and the irradiance incident on the CCD.

Assuming this function is linear, the image intensity is directly proportional to the radi-

ance function:

I ∝ E = τfo(θ, α). (6.5)

The relationship between image intensity and the surface reflectance function is now ex-

plicit:

I ∝ ρ̂(θ, α) cos(θ). (6.6)

Therefore, estimating the radiance function from the measured image intensities provides

a means to estimate a slice of the BRDF (upto a scaling by constants related to the optical

properties of the camera). Repeating the process on multiple images with multiple light

source directions would provide a means to estimate a full BRDF.
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6.1.1 Radiance Function Estimation

If the surface normal directions at each point in the image are known then the surface

radiance functionfo(θ, α) can be estimated directly. IfI is the image brightness at the

surface location where the surface normal has elevation and azimuth anglesθ andα, then

fo(θ, α) = I
τ
.

In practice, the surface normals at each pixel are unknown and hence the radiance

function cannot be estimated directly. Instead, at each iteration of the algorithm we have

an estimate of the surface shape provided by shape-from-shading. Our aim is therefore to

make an estimate of the surface radiance function from the noisy surface normal estimates

and the input image intensities.

It is useful to couch the radiance function in terms of the Gauss map of the facial

surface onto a unit sphere. If we consider the face as an orientable surfaceF ∈ R3, the

Gauss mapG : F 7→ S2 maps points on the surfaceF onto locations on the unit sphere

S2 which have identical surface normal directions. Points on the surface with identical

normal directions have identical brightness values. By using the surface normal directions

to map brightness values from the image onto a unit sphere, we arrive at a representation

of the radiance function. The normalised polar distribution of brightness values on the

unit sphereS2 is the radiance functionfo(θ, α) for the surface. Intuitively, the image of

the Gauss sphere will be an image of a sphere exhibiting the same reflectance properties

as the surface under study.

6.1.2 The simplest case: Retro-reflection

If the viewer and light source directions are coincident, i.e.(θL, αL) = (0, 0) (a case

known asretro-reflection), the situation is simplified further. Assuming the radiance func-

168



tion is isotropic:

∂αfo(θ, α) = 0, (6.7)

then circles of latitude on the unit sphere will have constant brightness. Further, assuming

the radiance function decreases monotonically withθ, brightness on the unit sphere will

fall away from a maximum value at the visible pole to zero at the equator. In this case, the

latitude itself will be uniquely determined by a function of the image brightness. Hence,

the radiance function can be expressed in terms of a reduced function in one variable:

fo(θ, α) = g(θ). (6.8)

Since we requireg to be smooth and monotonic, we can calculate the inverse and for a

given brightness valueI, the value ofθ can be recovered using the fact thatθ = g−1(I).

We now show how to make an estimate of the functiong from a noisy estimate of the

field of surface normals.

Fitting to a noisy radiance function sampling

Suppose that we have to hand an estimate of the surface height function of the face,

z(x, y), and the corresponding field of surface normalsn(x, y). If the scene is illumi-

nated by a distant point light source from directions, the estimated incident angle for

the current surface normal estimate is given by:θ(x, y) = arccos(n(x, y) · s). From the

input image intensity at the corresponding pixel, we know the corresponding value of the

surface radiance function:g(θ(x, y)) = I(x, y). Tabulating these two values against each

other provides a dense but noisy sampling of the functiong. By fitting a function to this

scattered data we derive an estimate of the surface radiance function. We assume this

function is smooth and monotonic. We use the following process in order to fit a function

to the scattered data:
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1. The incident angleθ lies in the closed interval[0, π
2
]. We bin the values ofg(θ(x, y))

into n bins of widthw = π
2n

. Let Qi = {(x, y) | (i − 1)w ≤ I(x, y) < iw} be the

set of pixels whereθ(x, y) falls into theith bin. For each bin we find the median

value ofg:

h(i) = median
(x,y)∈Qi

I(x, y). (6.9)

The distribution of median values ofg(θ(x, y)) is stored as a vector

~h = (h(1), . . . , h(n))T . (6.10)

2. Bins in which no data points lie within the associated range of values ofθ will be

empty. We perform piecewise linear interpolation of the adjacent non-zero elements

in order to fill in these missing values of~h.

3. Due to noisy surface normal estimates, the estimate of the radiance functiong is

likely to be noisy. We therefore apply a 1D Gaussian smoothing operator to~h.

4. Finally, we enforce monotonicity ong. We discard values of~hi where~hi � ~hi−1.

The remaining values are both smooth and monotonic. Our final estimate of the

radiance functiong is given by fitting a piecewise cubic hermite interpolating poly-

nomial (PCHIP) to these remaining values. We use a PCHIP function in order to

preserve the smoothness and monotonicity of the sampled points.

In Figure 6.1(a)-(d) we demonstrate the effect of each of these steps on an artificial

sample of radiance data. The scattered radiance measurements are shown in black, while

the estimate of the radiance function is plotted as a solid blue line. Values ofg(θ) are

plotted on they-axis as a function ofθ on thex-axis. In Figure 6.1(a) the median bin

values are shown. In (b), linear interpolation has been applied to fill-in missing values,

(c) shows the result of the 1D smoothing, while in (d) we show our final estimate with

monotonicity enforced.
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(a) (b)

(c) (d)

Figure 6.1: Process of fitting BRDF function to scattered reflectance measurements: (a)
Calculate median bin values (b) Linear interpolation (c) Smoothing (d) Enforce mono-
tonicity and fit PCHIP for final function.

6.1.3 Enforcing Consistency with the Surface Radiance Function

Our aim in this chapter is to estimate both the surface radiance function and surface shape

from a single intensity image. In this case the surface normal directions at each point on

the surface are unknown. Estimating surface normal directions from intensity measure-

ments is the shape-from-shading problem, as presented in the previous three chapters. In

this chapter we exploit the model-based integrability constraint developed in the previous

chapter. Satisfaction of this constraint ensures not only integrability of the field of surface

normals, but also that the corresponding surface height function lies within the span of a

statistical model learnt from example facial surfaces. We combine this with an irradiance
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constraint which locally enforces consistency between the predicted and measured image

intensity.

With our estimate of the surface radiance function to hand, we can enforce a local

constraint on the current estimate of the field of surface normals, by enforcing consis-

tency with the input image intensities. The incident angle implied by the current esti-

mate of the surface radiance function and the image intensity at a pixel(x, y) is given by

θ(x, y) = g−1(I(x, y)). Suppose that the surface height parameter vector estimated using

the method described in the previous chapter isb, then we update each normaln̂b(x, y)

to ensure consistency with this constraint.

We again turn to the apparatus of the Log and Exponential maps to simplify the no-

tation involved. The normal̂nb(x, y) can be written in terms of a vector on the tangent

plane to the light source direction as:

v(x, y) = Logs(n̂b(x, y)). (6.11)

Straight lines through the centre of this tangent plane correspond to geodesics on the

sphere. Therefore, surface normals that lie in the direction given by the unit vector:

v̂(x, y) =
Logs(n̂b(x, y))

‖Logs(n̂b(x, y))‖ , (6.12)

will provide the closest normal tônb(x, y) for a desired value ofθ(x, y).

In order to ensure that the constraintθ(x, y) = g−1(I(x, y)) is satisfied, we update

n̂b(x, y) as follows:

n(x, y) = Exps (d(x, y)v̂(x, y)) , (6.13)

whered is the distance we move in the direction ofv(x, y). The distanced(x, y) is simply

given byd(x, y) = g−1(I(x, y)).
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The updated normalsn(x, y) satisfy the constraint thatg(arccos(n(x, y)·s)) = I(x,y).

In other words for a given normal, the intensity predicted by the current estimate of the

radiance function is equal to the measured input intensity.

6.2 Combining Radiance Function and Surface Shape Es-

timation

We now show how the process of radiance function estimation described in Section 6.1.1

can be combined with a shape-from-shading algorithm which employs the two constraints

described in Section 6.1.3. We interleave the two processes in an iterative framework.

Intuitively, our aim is to find the field of surface normals and surface radiance function

which best recreate the input image, subject to the surface normals obeying the model-

based integrability constraint. We commence from an initialisation in which we assume

average facial shape, i.e. we setb = 0 and hence,zb(x, y) = ẑ(x, y). We have found

that, although coarse, this initialisation allows us to make a reliable initial estimate of the

surface radiance function. The algorithm takes as input the light source direction vector,

s, and the image intensities,I(x, y), and is summarised in Algorithm 6.1.

Upon convergence we output our estimate of the surface radiance functiong and our

surface shape estimates. This is in the form of the surfacezb(final)(x, y) which lies in the

span of the surface height model and the normal mapn(final)(x, y) which satisfies the local

irradiance constraint.

It is important to note that the field of surface normalsn(final)(x, y) will not correspond

exactly to the surface normals of the surfacezb(final)(x, y). However, since this field of sur-

face normals satisfies the irradiance constraint, they are significantly more stable for the

purposes of rendering novel views and our experiments suggest they are more accurate.

Further, since they are not constrained by the statistical model they are free to accurately
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Algorithm 6.1: Iterative estimation of facial shape and surface radiance func-
tion.

Input : Light sources, image intensitiesI(x, y), surface gradients of statistical
surface height modelΨ and average surface gradientsp̂(x, y) and
p̂(x, y)

Output : Estimated surface normal mapn(x, y), surface heightzb(x, y) and
surface radiance functiong

Set iterationt = 0;1

Initialise parameter vectorb(0) = (0, 0, . . . , 0)T ;2

repeat3

Calculate the incident angle for each pixel:4

θ(t)(x, y) = arccos(n̂b(t)(x, y) · s);
From the estimated incident anglesθ(t)(x, y) and predicted radiance values5

g(θ(t)(x, y)) = I(x, y), estimate the surface radiance functiong using the
method described in Section 6.1.1;
Enforce local irradiance constraint:6

n(t)(x, y) = Exps

(
g−1(I(x, y))

Logs(n̂b(t)(x, y))

‖Logs(n̂b(t)(x, y))‖
)

;

Enforce model-based integrability. Estimated surface gradients are given by7

p(x, y) = n(t)(x,y)x

n(t)(x,y)z
andq(x, y) = n(t)(x,y)y

n(t)(x,y)z
. Calculate centred matrix of

surface gradientsG(t) using Equation 5.21 and findb(t+1) by solving:

b(t+1) =
(
ΨTΨ

)−1
ΨTG(t);

Set iterationt = t + 1;8

until
∑

x,y

[
arccos

(
n(t)(x, y) · n(t−1)(x, y)

)]2
< ε ;9

capture local or atypical shape features.

6.2.1 Spatially Varying Reflectance Properties

The analysis presented above assumes that surface reflectance properties are homogenous

across the surface. Clearly, for real world images this is not the case due to spatial vari-

ance in pigmentation, blood flow and facial hair distribution. We now show how to relax

this assumption by introducing an additional albedo parameter which we allow to vary
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arbitrarily over the surface.

Albedo is the intrinsic reflectivity of the surface and represents the ratio of reflected

to absorbed light. We use albedo to account for the absorption of light by melanin and

haemoglobin within the skin and facial hair on the skin’s surface. Although this formu-

lation is simplistic, it allows us to recover useful surface shape and reflectance estimates

from real world images.

We introduce a ‘combined’ albedo parameter, which acts in a multiplicative manner

on the image irradiance equation as follows:

I(x, y) = ρc(x, y)g(θ(x, y)), (6.14)

whereρc(x, y) is the combined albedo at pixel(x, y). We use the term ‘combined’ since,

were the radiance function considered to be comprised of a number of components (e.g.

diffuse and specular), then the albedo acts on this combined function. The algorithm

given above requires slight modification in order to account for this albedo term. At the

radiance function estimation step, the incident angles are calculated in the same way.

However, the value ofg against which we tabulate the incident angles now includes the

albedo:g(θi(x, y)) = I(x,y)
ρc(x,y)

. It is to this data that we fit the functiong. Similarly, in order

to enforce the local irradiance constraint we update the distance term in Equation 6.13 to

d(x, y) = g−1
(

I(x,y)
ρc(x,y)

)
, such that the incident angle is consistent with both the radiance

function and local albedo.

Finally, we add an additional albedo estimation step after enforcing model-based in-

tegrability on the field of surface normals. This is done by simply rearranging Equation

6.14. However, there are two additional constraints we may impose here. First, the albedo

may not be greater than 1 (a surface cannot reflect more light than was incident upon it)

and it may not be less than the intensity at the same point (this would mean the predicted
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intensity was less than the measured intensity regardless of the normal direction). The

albedo is therefore estimated using:

ρc(x, y) = max

(
min

(
I(x, y)

g(arccos(n̂b(x, y) · s)) , 1
)

, I(x, y)

)
. (6.15)

We initialise the albedo at every pixel to be the maximum intensity value across the

image:ρ(0)
c (x, y) = max

x,y
I(x, y). The updated algorithm in which we account for varying

albedo is described in Algorithm 6.2. The differences between this algorithm and Algo-

rithm 6.1 which assumes constant albedo are as follows. In step 5, the estimated values of

the radiance function take account of the current estimate of the local albedo. Similarly

in step 6, the magnitude of the update term takes into account the reduction in intensity

caused by the current estimate of the albedo. Finally, step 8 is added which calculates the

albedo values based on the current shape and radiance function estimates and the input

image.

6.2.2 Novel Pose Synthesis

The slice of the BRDF that we have measured is that in which the viewer and light source

directions are coincident. Using this information we can synthesise physically meaningful

images by rotating the estimated surface, but keeping the viewer and light source direction

constant. The incident angle at each pixel is given by the angle between the light source

and the local surface normal after rotation to the new position. We can use this angle,

the combined albedo and radiance function to calculate the intensity at each point. In our

experimental section we show that this approach results in synthesised images that are

stable under a large range of novel viewpoints. However, should we wish to synthesise

images in which the illumination and viewing direction are no longer coincident, we must

rely on a model to extrapolate the reflectance properties. We describe this approach in the
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Algorithm 6.2: Iterative estimation of facial shape, the surface radiance function
and spatially varying albedo term.

Input : Light sources, image intensitiesI(x, y), surface gradients of statistical
surface height modelΨ and average surface gradientsp̂(x, y) and
p̂(x, y)

Output : Estimated surface normal mapn(x, y), surface heightzb(x, y),
surface radiance functiong and combined albedoρc(x, y)

Set iterationt = 0;1

Initialise parameter vectorb(0) = (0, 0, . . . , 0)T and albedo2

ρ
(0)
c (x, y) = max

x,y
I(x, y);

repeat3

Calculate the incident angle for each pixel:4

θ(t)(x, y) = arccos(n̂b(t)(x, y) · s);
From the estimated incident anglesθ(t)(x, y) and predicted radiance values5

g(θ(t)(x, y)) = I(x,y)

ρ
(t)
c (x,y)

, estimate the surface radiance functiong using the

method described in Section 6.1.1;
Enforce local irradiance constraint:6

n(t)(x, y) = Exps

(
g−1

(
I(x, y)

ρ
(t)
c (x, y)

)
Logs(n̂b(t)(x, y))

‖Logs(n̂b(t)(x, y))‖

)
;

Enforce model-based integrability. Estimated surface gradients are given by7

p(x, y) = n(t)(x,y)x

n(t)(x,y)z
andq(x, y) = n(t)(x,y)y

n(t)(x,y)z
. Calculate centred matrix of

surface gradientsG(t) using Equation 5.21 and findb(t+1) by solving:

b(t+1) =
(
ΨTΨ

)−1
ΨTG(t);

Estimate combined albedo:8

ρ(t+1)
c (x, y) = max

(
min

(
I(x, y)

g(arccos(n̂b(t+1)(x, y) · s)) , 1
)

, I(x, y)

)
;

Set iterationt = t + 1;9

until
∑

x,y

[
arccos

(
n(t)(x, y) · n(t−1)(x, y)

)]2
< ε ;10
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next section.

6.3 Model Fitting

The radiance function estimation process described above can be used to estimate an

arbitrary radiance function that is monotonic and smooth. In some instances, it is useful

to fit a reflectance model to these estimated curves. There are a number of reasons for

doing this:

1. We can use the fitted model to extrapolate different slices of the BRDF other than

that which was estimated from the input image. For example, to allow the synthesis

of images under illumination from a different direction.

2. It allows us to separate the image into the components provided by the model, for

example a diffuse and specular component.

3. In the case of colour images (discussed below), we can estimate the colour and

strength of the light source as part of this model fitting process. Having done so we

can reilluminate the face with arbitrary strengths and colours of illuminant, allowing

us to normalise for the effects of varying illumination properties.

In this work we use the Phong [128] model of reflectance, which comprises a Lambertian

diffuse term and a specular term controlled by a shininess parameter. In principal any

parametric reflectance model could be used and the same method as we describe here

could be applied. Although the Phong model is rather simplistic, we choose to use it

here for a number of reasons. The first is that it is straightforward to compute and can

be easily manipulated into its component parts. The second reason is that it fits our data

well, probably because the deviations from Lambert’s law present in skin reflectance can

be explained well with the addition of a simple specular reflection model. The obvious
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weakness of the Phong model is that is has no physical basis and hence the parameters

do not have physically meaningful units. For this reason, we suggest future work could

include investigating incorporating alternative models of reflectance into the proposed

framework.

6.3.1 The Phong Model

The radiance function we use for the Phong model is as follows:

gphong(θi, θh, ρd, ρs, ηs, ‖s‖) = ρd‖s‖ cos(θi)︸ ︷︷ ︸
Diffuse term

+ ρs‖s‖ cosηs(θh)︸ ︷︷ ︸
Specular term

, (6.16)

whereρs is the specular coefficient,ηs is the shininess and‖s‖ is the intensity of the point

light source.θh is the angle between the surface normalN and the vectorH = L+V
‖L+V‖

which bisects the lightL and viewV direction vectors, e.g.

cos(θh) = H ·N. (6.17)

6.3.2 Fitting the Phong Model

We wish to estimate the parameters of the Phong reflectance model that best fit our es-

timated data. We fix our surface normal estimates as those that locally satisfied the irra-

diance constraint, i.e.n(x, y). We make the assumption that the specular parameters (ρs

andηs) are fixed across the image. This reduces the number of degrees of freedom of the

problem while still providing a good fit to the data. We allow the diffuse albedoρd to

vary arbitrarily across the surface and use the combined albedo valuesρc estimated using

Algorithm 6.2 as an initialisation.

The minimisation that we wish to solve in order to fit the Phong reflectance model is
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Algorithm 6.3: Iterative fitting of Phong reflectance model.
Input : Light sources, image intensitiesI(x, y), estimated field of surface

normalsn(x, y) and estimated combined albedoρc(x, y)
Output : Fitted global Phong parameters‖s‖, ρs andηs, and spatially varying

diffuse albedoρd(x, y)
Set iterationt = 0;1

Initialise the diffuse albedo from the combined albedo values estimated using2

Algorithm 6.2:ρ(0)
d (x, y) = ρc(x, y);

Initialise global Phong parameters:ρ
(0)
s = 0.5, η

(0)
s = 10 and‖s‖(0) = 0.8;3

repeat4

Solve minimisation of global parameters using a Matlab implementation of5

Newton’s method:

(ρ(t+1)
s , ‖s‖(t+1), η(t+1)

s ) =

arg min
ρs,‖s‖,ηs

∑
x,y

∥∥∥I(x, y)− gphong

(
θi(x, y), θh(x, y), ρ

(t)
d (x, y), ρs, ηs, ‖s‖

)∥∥∥
2

,

values at iteration(t− 1) are used as the initialisations;
Calculate diffuse albedo for each pixel by rearranging Equation 6.16:6

ρ
(t+1)
d (x, y) =

I(x, y)− ρ
(t+1)
s ‖s‖(t+1) cosη

(t+1)
s (θh(x, y))

‖s‖(t+1) cos(θi(x, y))
;

Set iterationt = t + 1;7

until t = 20 ;8

as follows:

arg min
ρd(x,y),ρs,‖s‖,ηs

∑
x,y

‖I(x, y)− gphong(θi(x, y), θh(x, y), ρd(x, y), ρs, ηs, ‖s‖)‖2 (6.18)

We solve this minimisation by iteratively applying two processes: we use Newton’s

method to solve for the three global parameters (‖s‖, ρs andηs), we then invert the ra-

diance function to calculate the diffuse albedo. The process is summarised in Algorithm

6.3. We find this process converges within approximately 20 iterations and the resulting

fit recreates the original image to within a negligible tolerance.
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6.3.3 Image Synthesis

With the estimated parameters to hand we can synthesise images under any pose and

illumination conditions. To do so, we simply calculate the intensity for each normal

n(x, y) with Equation 6.16 under the desired illumination and viewing directions using the

fitted values for the global Phong parameters and diffuse albedo. The resulting intensities

are texture mapped onto the surfacezb(x, y) which is then rotated to the specified pose.

In our experimental section we demonstrate that this approach yields stable images under

a wide variety of conditions in which the position of specularities and other complex

reflectance effects are realistically synthesised.

6.4 Colour Images

Prior to presenting our experimental results, our final contribution is to show how the

methods developed in this chapter may be applied to colour images. If an RGB colour

image comprises three colour channelsIred(x, y) containing intensity values in the red

channel,Igreen(x, y) in the green channel andIblue(x, y) in the blue channel, we may apply

the radiance function estimation process to each channel independently, yielding three

radiance functionsgred, ggreenandgblue. Enforcing the local irradiance constraint described

above to each channel provides three estimates of the field of surface normalsnred(x, y),

ngreen(x, y) andnblue(x, y). We choose as our estimate of the true field of surface normals

the average of the three, i.e.:

n(x, y) =
nred(x, y) + ngreen(x, y) + nblue(x, y)

‖nred(x, y) + ngreen(x, y) + nblue(x, y)‖ (6.19)

It is to this estimate that we apply the model-based integrability constraint. From the

resulting field of surface normals,̂nb(x, y), we calculate the combined albedo in each
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channel:

ρc,red(x, y) = max

(
min

(
Ired(x, y)

g(arccos(n̂b(x, y) · s)) , 1
)

, Ired(x, y)

)
(6.20)

Similarly for the green and blue channels.

6.4.1 Fitting the Phong Model to Colour Images

We can fit the Phong model in exactly the same way as described in Section 6.3.2. For

each colour channel, we estimate the diffuse albedo, e.g.ρd,red(x, y), the strength of the

light source at this wavelength, e.g.‖s‖red, and the two specular paramters, e.g.ρs,red and

ηs,red. In each case we use the field of surface normals estimated from all three colour

channels,n(x, y), and initialise the diffuse albedo using the combined albedo estimated

for that channel, e.g.ρ(0)
d,red(x, y) = ρc,red(x, y).

Colour Constancy

In fitting the Phong model to a colour image, we estimate the intensity of the light source

in each of the colour channels:srgb = [‖s‖red, ‖s‖green, ‖s‖blue]
T . In other words, we

have an estimate of the colour of the light source in terms of an RGB vector. If we

reilluminate the input face using Equation 6.16 with a white light source of unit intensity,

i.e. srgb = [1, 1, 1]T , we effectively normalise for the effects of the colour and intensity of

the light source. This may be a useful preprocessing step for algorithms which use colour

face images. In our experimental section we demonstrate that this process is stable across

different subjects and can be used to realistically remove the effects of coloured lighting

from real world images.
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6.5 Experiments

In this section we present experimental results of our reflectance estimation process. This

study is broken down into four parts. In Section 6.5.1 we begin by examining the iterative

behaviour of the algorithm. In Section 6.5.2 we then examine the quantitative perfor-

mance of the algorithm on ground truth data. In Section 6.5.3 we present results on real

world images. In Section 6.5.4 we show the results of applying our algorithm to colour

images. Finally, in Section 6.5.5 we compare the accuracy of the shape information recov-

ered from images of faces with non-Lambertian reflectance using a variety of the methods

developed in this thesis.

The surface height model we use was trained in exactly the same way as in Chapter 5.

6.5.1 Algorithm Behaviour

We begin by observing the iterative behavior of the algorithm. In Figure 6.2 we show

the scattered radiance data overlayed by the estimated radiance function (shown in blue).

From left to right we show results after mean face shape initialisation, 1 iteration and 10

iterations. As the algorithm iterates, the radiance data becomes more tightly clustered

around the radiance function estimate. In the final column we compare the estimated

function with ground truth (shown by the broken line). There is a good agreement be-

tween the two. In addition, we show the result of the Robles-Kelly and Hancock radiance

function estimation procedure (dotted line). It is clear that our method provides improved

accuracy. We obtained similar results for a range of synthetic data.

6.5.2 Synthetic Data

We begin with a qualitative analysis of the radiance function estimation process. In Figure

6.3 we show synthetic input images (first column) rendered with Phong parameters:(ρd =
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Figure 6.2: Iterative behavior of radiance estimation algorithm. Estimated radiance func-
tions plotted over current estimate of the scattered radiance measurements for differing
iteration numbers. In the top left panel we show the initial estimate using the average face
surface. In the top right and bottom left panels we show results after 1 and 10 iterations
respectively. Finally, in the bottom right panel we show the estimated radiance function
plotted against ground truth and the estimate provided by an existing technique.

1, ρs = 0, ηs = 0), (ρd = 0.7, ρs = 0.3, ηs = 100) and(ρd = 0.6, ρs = 0.4, ηs = 10)

respectively. In the second column we show unit spheres rendered with the radiance

function estimated from the corresponding input images using Algorithm 6.1. In the third

column we show ground truth radiance spheres. Visually, there is a good qualitative

agreement between the estimated and ground truth spheres. In Figure 6.4 we plot these

estimated radiance functions against ground truth for the same three input images (in other

words, the functions that were used to render the spheres in Figure 6.3). On each plot we
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Estimated Ground Truth
Input Radiance Sphere Radiance Sphere

Figure 6.3: Example results of the radiance estimation process on synthetic images. First
column: synthetic Phong images with parameters:(ρd = 1, ρs = 0, ηs = 0), (ρd =
0.7, ρs = 0.3, ηs = 100) and(ρd = 0.6, ρs = 0.4, ηs = 10) respectively. Second column:
image of a unit sphere rendered with the radiance function estimated using our method.
Third column: image of a unit sphere rendered with the ground truth radiance function.

show the estimated radiance function with a solid line and ground truth with a broken

line. The estimate appears accurate in all three cases. Errors in the estimated radiance

functions appear to be concentrated towards lower values of incident angle, i.e. when

θ ≈ 0.

We now provide quantitative results. As in Chapter 5 we used a leave-one-out testing

strategy in which we rebuilt the surface height model, excluding the surface under study

to avoid biasing the process. In other words, all testing data was out-of-sample of the

model. We rendered each facial surface with a point light source whose direction was

coincident with the viewing direction. We used the Phong reflectance model and varied
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Figure 6.4: Examples of estimated radiance functions. Estimated (solid line) and ground
truth (broken line) radiance functions for synthetic Phong images. From top to bottom, the
images were rendered with Phong parameters(ρd = 1, ρs = 0, ηs = 0), (ρd = 0.7, ρs =
0.3, ηs = 100) and(ρd = 0.6, ρs = 0.4, ηs = 10) respectively.
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the parameters to study their effect on the accuracy of the estimated radiance function.

Perhaps more interestingly, we can also examine the relationship between the reflectance

function parameters and the accuracy of the recovered shape. The radiance function used

was as described in Equation 6.16. For each surface we generated synthetic images with

three values of shininessη = 10, 100 and1000 and five values of the specular coefficient

ks = 0, 0.2, 0.4, 0.6 and0.8. Note that whenks = 0 the reflectance model is Lambertian.

We set the diffuse coefficient asρd = 1− ρs.

In Figure 6.5(a) we show the percentage error in the estimated radiance function. In

(b) we show the mean angular surface normal error, i.e. the average angular difference

between the estimated and ground truth surface normals. In (c) we show the mean ab-

solute error between the estimated and ground truth surface height function. From the

surface shape error plots we note that the error tends to increase with shininess, i.e. as the

specular spike becomes narrower. This adds empirical support to the anecdotal evidence

that it is harder to recover shape-from-shading for shiny objects [133]. There is also a

trend for the error to increase as the specular coefficient increases, i.e. as the specular

spike becomes taller. The reason for this is that the effect of a larger specular coefficient

is to compress a wider range of values of incident angle into a smaller range of intensity

values. Hence, quantisation noise becomes more significant. In other words, fewer gray

levels are used to represent a certain range of incident angles as the specular coefficient

increases.

6.5.3 Real World Data

We now present the results of applying Algorithm 6.2 to real world face images. In the

first column we show a selection of input images from the Yale Face Database B [62].

These images clearly show variation in surface reflectance properties (some are shinier

than others and some are darker or lighter) as well as variations in albedo. In the sec-
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Figure 6.5: Error plots for synthetic data rendered using the Phong model.
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ond column we show unit spheres rendered with the estimated radiance functions. These

appear to capture the corresponding reflectance properties well. In the third column we

show Lambertian corrected images, in which the estimated shape has been rendered with

Lambertian reflectance. The estimated shape appears qualitatively good (distinguishing

features are sharply defined) and the effect of varying reflectance properties has been

removed. Finally, in the last two columns we show the results of fitting the Phong re-

flectance model to the estimated data using Algorithm 6.3. We show the estimated diffuse

and specular components of the Phong model. The estimated specular reflectance agrees

well with empirically measured results [44].

In Figure 6.7 we show how changes to skin reflectance in the real world are recov-

ered using our method. We applied increasing amounts of artificial perspiration, in the

form of a water-based spray, to a subject’s face. The input images as the amount of sim-

ulated perspiration is increased are shown in the first column. In the second column we

show unit spheres rendered with the estimated radiance functions. Note how the specular

spike becomes more sharply defined as the perspiration increases. In the third column

we show the estimated radiance functions. Again, note that the gradient of the radiance

curve increases with increasing perspiration when the incident angle is close to zero. It is

this effect that is responsible for the sharper specular spike. Finally, we fitted the Phong

reflectance model to this data using Algorithm 6.3. From top to bottom, the values of

the shininess parameterηs were35.17, 173.7 and184.9 respectively. There is therefore a

strong correlation between the amount of simulated perspiration and the shininess param-

eter estimated using our technique.

Direct Synthesis

We now show the results of synthesising images in a novel pose directly using the esti-

mated radiance function and combined albedo values as described in Section 6.2.2. We
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Input Rad. Sphere Lambertian Diffuse Specular

Figure 6.6: In the first column we show the input images and in the second we show a
unit sphere rendered with the estimated radiance function. In the third column we show
the estimated shape rendered with Lambertian reflectance. Finally we show the estimated
diffuse (column 4) and specular (column 5) components of the surface reflectance having
fitted the Phong model to the estimated data.
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Figure 6.7: Reflectance measurements of simulated perspiration. From top to bottom the
first column shows input images of a subject with increasing amounts of artificial per-
spiration added. To simulate the effect of perspiring, a water-based solution was sprayed
onto the subject’s face. In the second column we show unit spheres rendered with the
estimated radiance functions. In the third column we show estimated radiance functions.
The shininess parameter of the fitted Phong model correlates well with the increased per-
spiration.
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show synthesised views in which the face is rotated about the vertical axis by an angle of

−45◦, −22.5◦, 0◦, 22.5◦ and45◦. The viewing and light source directions remain coinci-

dent and hence the position of specularities varies as the face rotates. Qualitatively, the

effect is convincing and shows that we can synthesise realistic images using the estimated

radiance function directly.

In Figure 6.9 we synthesise images under varying pose in the same manner. However,

this time we provide real views in approximately the same pose in order to provide a

comparison between the predicted and actual view. In many cases the position of the

specularities and the global shape estimate appear accurate.

Synthesis using fitted Phong Reflectance Model

By fitting the Phong reflectance model to the estimated data we are able to synthesise

images using a different slice of the BRDF to the one that was present in the original

input image. In Figure 6.10 we show each of the 10 subjects in the Yale B database under

4 different synthesised illumination conditions. In each case the light source subtends

an angle of45◦ with the viewing direction and, from left to right, is moved left, right,

above and below the subject. The input images are shown in the first column. Note

how the synthesised images capture the complex distribution of specular reflectance. For

comparison, the reader is referred back to Figures 3.14 and 3.15 in Chapter 3. Here, the

images are synthesised using the Lambertian reflectance model. Note how the results in

Figure 6.10 are substantially more life-like and more realistically capture the reflectance

properties of the different subjects.

6.5.4 Colour Images

We now present results related to the estimation of the colour of the illuminant and nor-

malising for its effect. We begin by examining the stability of this process on the 68 sub-
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−45◦ −22.5◦ Frontal +22.5◦ +45◦

Figure 6.8: Synthesising novel viewpoints directly using the estimated radiance functions
and albedo maps. The viewer and light source direction remain coincident. Note that the
specularities change position as the head rotates.
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Real Synthesised Real Synthesised

Figure 6.9: Comparing real views against synthesised for changes in pose.
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Figure 6.10: Synthesising images under novel illumination using the fitted Phong Re-
flectance Model. The first column shows the input images. From left to right, the remain-
ing four columns show images synthesised with a light source45◦ left, right, above and
below the subject. 195



jects in the CMU PIE database. For each subject, we apply the colour shape-from-shading

algorithm described in Section 6.4 to input images in which the subject is illuminated by

a frontal light source. The illumination in this database is provided by Minolta 220X

flash bulbs, which remain constant between subjects. All gain and gamma correction on

the cameras was switched off. The colour of the flashes is biased towards shorter wave-

lengths, and hence is strongest in the blue channel (this is evident in the input images in

which the subjects appear unnaturally blue). For this reason, these images are ideal for

analysing the performance of colour constancy algorithms.

We fit the Phong model to each colour channel of each image, as described in Section

6.4.1. We therefore estimate a diffuse albedo map for each colour channel, as well as

the shininess parameter, specular coefficient and the strength of the light source in each

channel. In Figure 6.11(a) we show the estimated light source colour vectors as a scatter

plot in RGB space. Because of the unknown scaling factor present in Equation 6.5, these

vectors cannot be compared directly. Instead, we consider the hue of the light source (i.e.

its intrinsic colour) by normalising the RGB vectors to unit length. We show a scatter plot

of these vectors in Figure 6.11(b). It is clear that the hue of the light source estimated

from the 68 input images is very stable (the points are tightly clustered). The intrinsic

mean of this distribution of unit vectors is:srgb = [0.4801, 0.5276, 0.7008]T . This agrees

well with the information available about the illumination used, i.e. it is strongest in the

blue channel and the intensity of the light source increases as the wavelength decreases.

The distribution of estimated hues also cluster well, the standard deviation across the 68

samples is only0.0459 radians or2.63◦ (these values are based on the directional errors

of unit vectors in RGB space).

In Figure 6.12 we show the results of our facial colour constancy algorithm. Having

recovered the facial shape and fitted the Phong reflectance model to the input colour im-

ages as described above, we synthesise an image in which the strength and colour of the
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Figure 6.11: Distribution of estimated light source colour vectors. In (a) we plot the raw
estimated RGB vectors of the colour of the illuminant for all 68 subjects in the CMU PIE
database. In (b) we plot the hue of these colour vectors (i.e. length normalised to unity).
The estimated hue of the light source is stable across all input images.

illuminant is normalised to unity. To do so, we simply render the estimated field of sur-

face normals using the fitted Phong parameters and a white light source of unit intensity.

The resulting images effectively normalise for the colour and strength of the illumination.

Qualitatively, the results demonstrate that the method works. The illumination-normalised

images appear more natural and traces of the blue illumination have been removed. Also

note that because of the increase in the strength of the illuminant, the specularities in-

crease in size.

6.5.5 Comparisons

We conclude our experimental section by demonstrating the effect of non-Lambertian re-

flectance on the various shape-from-shading techniques presented in this thesis. We use a

synthetic input image rendered using Phong reflectance with parameters(ρd = 0.7, ρs =
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Input White Illuminant Input White Illuminant

Figure 6.12: Colour input images are shown in the first and third columns. It is evident
that the illuminant is stronger in the blue channel than the red or green. In the second
and fourth columns we show the results of our colour constancy algorithm. Here the
estimated field of surface normals have been rendered with the Phong model using the
fitted parameters and a white light source of unit intensity.
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0.3, ηs = 100) (the input image is the same as in the second row of Figure 6.3). This im-

age contains strong specular reflection. In Figure 6.13 we provide a comparison between

the results of applying four shape-from-shading techniques to this image. The first is the

principal geodesic shape-from-shading algorithm given in Algorithm 4.1. The second ap-

proach uses the same shape-from-shading algorithm, but the input image is preprocessed

with the Lambertian correction technique of Robles-Kelly and Hancock [135]. This is the

same approach as is adopted in the experimental sections of Chapters 3 and 4. The third

approach is the Lambertian shape-from-shading algorithm which uses the model-based

integrability constraint, as described in Algorithm 5.1. The fourth and final approach is

the method described in this chapter in which the radiance function is estimated as part of

the shape-from-shading process (Algorithm 6.1).

In the second column we show error maps for the estimated fields of surface normals.

The scale is consistent across the four plots and the units of the colour bars are degrees.

The error plotted is the angular difference between the estimated and ground truth surface

normal. In the third column we show errors maps for the estimated surface heights. For

the first two techniques, the surface integration algorithm of Frankot and Chellappa is

used. The errors shown are the magnitude of the difference in height to the ground truth

surface and the units are centimetres. Finally, in the fourth column we show a profile view

of the recovered surface. A profile view of the ground truth surface is shown in the fifth

row for comparison.

The two techniques which assume Lambertian reflectance (rows one and three) show

significant errors in both the estimated surface and surface normals. In both cases, from

the surface normal error maps, it is clear that the largest errors fall in the regions con-

taining significant specular reflections, for example the tip of the nose, forehead and lips.

The effect of these errors is to warp the recovered surface, exaggerating features such as

the nose and forehead. In contrast, both methods that take account of non-Lambertian
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reflectance (rows two and four) have significantly reduced errors. In the case of the Lam-

bertian corrected input (row two), the surface normal errors are distributed fairly evenly

across the face. This is due to the inaccuracy of the one-shot reflectance estimation pro-

cess. On the other hand, the technique which incorporates radiance function estimation

(row four) has lower surface normal errors across much of the face. Where errors are

more significant (primarily around the lips and eye sockets) it is believed this is due to the

poor generalisation of the surface height model in these areas. From the profile views of

the recovered surfaces, it is clear that the approach developed in this chapter recovers the

most accurate surface. We obtained similar results on a wide range of ground truth data.

6.6 Conclusions

In this chapter we have significantly relaxed the assumptions made in the previous three

chapters regarding the shading model used. We have shown how an estimate of the ra-

diance function can be made from single, frontally-illuminated face images as part of

a shape-from-shading algorithm which incorporates the model-based integrability con-

straint developed in Chapter 5. We demonstrated on ground truth data that these estimated

radiance functions are quantitatively accurate. In addition, we allow the local albedo to

vary arbitrarily (subject to physical constraints). Where in Chapter 3 we ignored albedo

variations during fitting and in Chapter 4 used robust statistics to try and down-weight its

effects, in this chapter we have explicitly accounted for the albedo and calculate it as part

of the shape recovery process. We are able to estimate accurate fields of surface normals

using this approach and, using the estimated radiance function, can directly synthesise

images in which the light source and viewing direction remain coincident.

We then showed how a parametric reflectance model (in this case the Phong model,

though in principle it could be any such model) may be fitted to the estimated data. In do-
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Figure 6.13: Comparison between shape-from-shading techniques on non-Lambertian
images. We compare the performance of four shape-from-shading algorithms on a syn-
thetic image rendered with Phong reflectance and parameters(ρd = 0.7, ρs = 0.3, ηs =
100). Column two shows error maps in the estimated field of surface normals. The units
are degrees and the error is the angular error. Column three shows errors maps in the
estimated surface height. The units are centimetres and the error plotted is the magnitude
of the difference in surface height. Finally, in the fourth column we show a profile view
of the estimated surface.
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ing so, we can synthesise images in which the reflectance properties must be extrapolated

beyond those which were present in the original image. This allows us to synthesise im-

ages under arbitrary illumination and pose. Comparisons show that the predicted shading

patterns agree well with real world images.

Finally, we also showed how the same approach can be applied to colour images.

The number of unknowns relative to the amount of data is reduced here, since the shape

estimate is fixed across the three colour channels. We demonstrated that we can synthesise

realistic colour images as well as correcting for the colour of the illuminant. This shows

that the method provides a route to facial colour constancy, which may be of use as a

preprocessing step prior to applying existing colour face image analysis techniques.
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Chapter 7

Conclusions

In vain we fondly strive to trace

The soul’s reflection in the face;

In vain we dwell on lines and crosses,

Crooked mouths and short probosces;

Boobies have looked as wise and bright

As Plato and the Stagyrite

And many a sage and learned skull

Has peeped through windows dark and dull.

- Thomas Moore [112]

In this chapter we summarise the main contributions of the Thesis in the areas of facial

shape-from-shading, estimation of reflectance properties and face recognition. These are:

the development of two formulations of a statistical model for fields of surface normals,

the incorporation of these models into a geometric shape-from-shading framework, the

use of robust statistics to reduce the influence of areas of low albedo and cast shadows,

constructing linear subspaces for face recognition using the recovered shape and albedo

information, the development of statistical methods for surface integration and finally a

non-Lambertian facial shape-from-shading scheme which estimates reflectance properties
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alongside facial shape. In addition, weaknesses are highlighted in the work as it stands

and we provide suggestions for areas that warrant future attention.

7.1 Summary of Contributions

In the literature review in Chapter 2, we highlighted the fact that solutions to the classical

shape-from-shading problem perform poorly on real world images, including faces. The

work presented in this thesis has shown that statistical models of face shape can signifi-

cantly improve the quality of the shape information that can be recovered from a single

image.

7.1.1 Statistical Models for Field of Surface Normals

Our starting point was to consider the problem of constructing a statistical model that

captures variations in facial shape in the domain of fields of surface normals. The moti-

vation behind this aim was that shape-from-shading is concerned with recovering surface

orientation information as opposed to 3D surface shape. This is because it is the orien-

tation of a surface that determines the corresponding image brightness as opposed to the

surface height directly. To construct the model required overcoming the problem that a

distribution of unit vectors is nonlinear in nature. We proposed two ways in which to do

this.

The first was described in Chapter 3. This was based on the intuitive observation that

our model should linearly deform each surface normal from its average position along

great circles on the unit sphere. We defined the average field of normals using the notion

of the mean direction as defined in the directional statistics literature. We turned to the

field of cartography as a rich source of projections from the sphere to a plane and showed

how to transform a distribution of unit vectors from the sphere to the plane using the
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azimuthal equidistant projection. The resulting points retain their distance to the mean

and can be analysed using linear methods.

The second model formulation described in Chapter 4 was based on a more rigourous

analysis using techniques from differential geometry. We define the average field of sur-

face normals by calculating the intrinsic mean of a distribution of points on a spherical

manifold. We find the modes of variation of the data using principal geodesic analysis.

This second formulation results in a more elegant algorithm in which the whole shape-

from-shading process can be couched in terms of operations on tangent planes to the unit

sphere.

7.1.2 Statistical Shape-from-shading

We use these models to impose a statistical constraint on the recovered field of surface

normals within the framework of a geometric shape-from-shading algorithm. The method

proposed in Chapter 3 iterates between imposing Lambert’s law (that the cosine of the

angle between the estimated normal and light source vector must equal the correspond-

ing image intensity) as a hard constraint and the constraint provided by the model (by

finding the best fit of the model to the estimated field of surface normals). The method

offers significant improvements over the generic constraints employed within the origi-

nal geometric shape-from-shading work, enabling plausible facial shape information to

be recovered from single images. Where we required the 3D surface height function, we

applied an existing surface integration algorithm to the estimated field of surface normals.

Moreover, the algorithm provides as output two estimates of the field of surface nor-

mals which satisfy the two different constraints. The field of surface normals that satisfies

Lambert’s law is more likely to recover fine surface details and atypical local shape fea-

tures. However, the model-based estimate is likely to be less affected by areas of low

albedo. By taking this as our estimate of the underlying facial shape we can make an
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estimate of the albedo. We have shown that qualitatively, these albedo maps successfully

recover surface marking such as the eye brows and lips. By combining the estimated

shape and albedo we are able to synthesise images under widely varying conditions of

illumination and pose with considerable stability.

In Chapter 4 we extend this algorithm in a number of ways. First, by calling on

techniques from differential geometry we show how the constraint provided by both the

statistical model and Lambert’s law can be imposed using operations on the tangent plane.

Second, we use robust statistics to down-weight areas of low albedo or regions which

lie within a cast shadow. The result is that we effectively fit the statistical model only

to surface normals that satisfy our simple, local Lambertian shading model. A further

advantage of this technique is that the weights provide a principled means to combine

the two sets of estimated normals (satisfying the irradiance and model-based constraints

respectively), allowing the surface to be infilled across shadow regions.

7.1.3 Face Recognition

Much of the motivation for developing techniques for recovering intrinsic facial features

from single images comes from the potential of applying this information to the problem

of face recognition. We have explored this possibility to a limited degree in this thesis. In

Chapter 4 we considered a number of ways in which the recovered surface normals and

albedo information could be used for recognition. The first two techniques were based

on comparing the shape information recovered from each gallery image to that recovered

from a probe image. This strategy fails, since the accuracy of the recovered shape de-

grades significantly for highly non-frontal lighting. The conclusion here is that it is easier

to predict how a face will appear under extreme illumination given an image under frontal

lighting than vice versa. The second group of techniques are based on constructing linear

subspaces which capture the image variation due to changing illumination for one subject.
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Previously, these subspaces were constructed either from multiple training images (¿7) or

using information from a laser range scanner. Using the shape and albedo estimated from

a single training image we are able to synthesise these subspaces. The cost for reduc-

ing the training requirements to a single image, is an overall increase in the error rate of

around4% across a wide range of illumination conditions.

7.1.4 Statistical Surface Integration

In Chapter 5 we broadened our consideration of facial shape recovery to include estima-

tion of surface height in addition to surface orientation, once again in a statistical manner.

We present two surface integration techniques which make use of a statistical surface

height model. The first is based on a statistical coupling between the parameters of a

surface height and surface normal model. The second is based on fitting a surface height

model to a field of surface normals by minimising the error between the fitted and actual

surface gradients. We show that both techniques outperform the generic surface integra-

tion algorithm used in Chapters 3 and 4.

We then take this analysis further by showing that each subspace of a surface height

model corresponds to a subspace of the surface normals. In effect we show that a surface

height model may be used to impose a statistical constraint on a field of surface normals.

Using this constraint within a shape-from-shading algorithm retains the benefits of using a

statistical surface normal model (the ability to locally impose strict irradiance constraints

and computational efficiency) but brings a number of additional advantages. A surface

height model provides a stricter constraint, since the surface normals must not only sat-

isfy a statistical constraint, but must also correspond to a valid surface. The surface height

model is also more space efficient and allows the shape-from-shading algorithm to pro-

vide an estimate of the surface height function without calling on an additional surface

integration step.
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7.1.5 Estimation of Skin Reflectance Properties

Our final contribution was to relax the typical modelling assumptions made in the shape-

from-shading literature and in Chapters 3-5 of this thesis, namely of homogeneous, Lam-

bertian reflectance properties. In Chapter 6, we show that the model-based integrability

constraint developed in Chapter 5 is sufficiently strict that we can make an estimate of

the surface radiance function and a spatially varying albedo term as part of the shape-

from-shading process. The idea is to fit a curve to the scattered and noisy sampling of the

radiance function which arises from the current facial shape estimate and the measured

intensities. We do this at each iteration before enforcing consistency with this function

locally, in a similar way to enforcing Lambert’s law strictly in the previous three chapters.

We then showed how a parametric reflectance model can be fitted to the recovered

shape and reflectance data allowing the reflectance properties to be extrapolated beyond

those present in the input image. This allows us to synthesise realistic images under a

wide range of conditions of illumination and viewpoint. Finally, we show how the same

techniques can be applied to colour images and how, as part of the model fitting process,

we can make an estimate of the colour of the illuminant. This provides a route to facial

colour constancy.

7.2 Critical Analysis

There are a number of angles from which criticisms may be levelled at the work presented

in this thesis. Some of these weaknesses could be addressed by further work or by incor-

porating the techniques we have developed into other frameworks. We now discuss some

of these weaknesses, after which we provide a balanced comparison between the merits

of our work and the state of the art in the field of face shape reconstruction.
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7.2.1 Weaknesses

Registration and Alignment: Throughout this thesis we have chosen to disregard the

problems of registration and alignment. When we construct the statistical surface normal

models in Chapters 3 and 4 and surface height models in Chapters 5 and 6, we assume that

there is a dense correspondence between every point on each facial surface in the training

set. In fact, a particular point in our model does not correspond to the same point on

every face (this is not possible in a Cartesian parameterisation). We mitigate the problems

caused by this to a certain extent by aligning a sparse set of features (eye centres) and

(from Chapter 4 onwards) by cropping the faces such that areas of large spatial variance

(such as the occluding contour) are not included. We also do not consider the problem of

aligning an input image to the model (or vice versa) when we attempt to recover the facial

shape. Again, a coarse manual alignment is all that is used. Although clearly, a fine scale

alignment update could be included in the shape recovery process, this was not the theme

of the thesis and the fact that a coarse alignment is sufficient for good results is a strength

of the approach.

Iterative Fitting : The shape-from-shading, surface integration and reflectance model

fitting algorithms described throughout this thesis have been posed in iterative terms. This

is largely due to the use of the geometric shape-from-shading framework being used as the

foundation for much of the work. Also, given that many of the problems tackled are es-

sentially complex, nonlinear minimisation processes, this is inevitable to a certain degree.

The weakness of this approach is that iterative procedures are ill-suited to applications

which must operate in real time or on live streams of data. This problem is mitigated to

some extent by the fact that all the algorithms presented converge quickly (less than 20

iterations are typically sufficient) and by the numerical efficiency of the steps involved.

Unconstrained Albedo: In Chapters 3, 4 and 6 we present methods for estimating

surface albedo. Although we apply photometric constraints to this process (for example,

209



not allowing albedo values of greater than 1), we do not enforce any global constraints on

the form that the estimated albedo maps take. It is believed incorporating such a model

would help regularise the albedo estimation process and may significantly improve the

results presented in Chapter 6. However, there are a number of persuasive reasons for

allowing the estimated albedo to vary arbitrarily. It is not clear that a statistical model

is able to accurately describe all variations in albedo. Surface marking such as moles,

freckles and facial hair can appear at any position on the surface of a face and could not

be efficiently represented by a statistical model. The techniques described in Chapters 3,

4 and 6 are able to recover such surface markings. Yet it is these variations that are very

often the distinguishing feature of a face. Further, relying entirely on a statistical model

to describe albedo variations would result in a corruption of the estimated shape where

the albedo has not been correctly recovered.

Viewpoint Dependency: The statistical models used in this thesis are viewpoint spe-

cific, since the surface shape information is projected onto a fronto-parallel viewplane.

This means that the shape recovery techniques described are only applicable to images in

which the pose of the subject is the same as that of the model. The benefit of this approach

is computational efficiency and simplicity since we do not need to estimate pose parame-

ters as part of the shape recovery process or establish correspondence between the model

and the image. Nevertheless, the restriction on the range of acceptable inputs is clearly

a weakness. In future, there is no reason that our work could not be incorporated into a

viewpoint independent model such as the morphable model of Blanz and Vetter [14]. The

only significant difference would be a change from a Cartesian to a cylindrical coordinate

system and modification to some elements of the shape-from-shading algorithms.

Restrictions on Illumination Conditions: We have assumed throughout this thesis

that illumination is provided by a single, distant light source whose direction is known.

In Chapter 6 we make this restriction even stronger by requiring input images in which
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the viewer and light source directions are coincident. However, techniques do exist for

estimating the direction of a point light source from a single image [124], some of which

have been developed specifically for faces [5]. Hence, in a real world implementation of

our methods, a light source estimation module could be applied to the input image and

its results passed to the shape-from-shading module. It is also worth noting that our tech-

niques are fairly robust to poor estimates of the light source direction. For example, the

results in Figure 3.18 were achieved with a coarse manual estimate of the light source di-

rection. In addition, the techniques presented for face recognition using linear subspaces

only require knowledge of the light source direction at the training stage. At the recogni-

tion stage, the probe image may contain illumination of arbitrary complexity which does

not need to be estimated explicitly.

7.2.2 Shape-from-shading versus Analysis-by-synthesis

The work described in this thesis in principle tackles the classical shape-from-shading

problem, in that we focus on recovering fields of surface normals directly from image

intensity and recover surface height through surface integration techniques. The common

theme through the work is the use of statistical models to provide constraints which can be

incorporated into a shape-from-shading framework. The fields of surface normals recov-

ered using these techniques represent a significant improvement over previous attempts to

apply shape-from-shading to images of faces [165,168] using generic constraints.

However, the use of a statistical model limits the application of the methods we de-

velop to a particular class of objects (faces). Therefore our work must be judged with

respect to state of the art face reconstruction approaches as well as generic shape-from-

shading algorithms. For this reason, we now provide a comparison between our work and

the morphable model used by Blanz and Vetter [14] to recover facial shape.

In contrast to Blanz and Vetter’s model, our techniques require a more restrictive setup
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Figure 7.1: Demonstration of recovery of local shape features. The (exaggerated) sur-
face is shown on the right (both as a mesh and a rendered image), recovered from the
highlighted region of the image on the left.

(frontal face view and known illumination). However, our work offers a number of poten-

tial advantages. Since a field of surface normals may be estimated directly from an image

using shape-from-shading, the model parameters are recoverable using a matrix multipli-

cation. This avoids posing the fitting process as a minimisation problem and we therefore

avoid the pitfalls of local minima and slow convergence. In addition, data-closeness can

be restored locally by rotating each surface normal in the best fit needle-map onto the

irradiance cone (or to the position implied by the radiance function estimate in the case

of Chapter 6). The advantage brought to bear by the imposition of this local constraint is

clearly demonstrated in Figure 7.1. On the right we show the surface recovered by our

method from the highlighted region of the image on the left. The surface is displayed

as both a wire frame and rendered surface. Discriminating local surface features (in this

case wrinkles) not captured by the model have been accurately recovered. The shape of

the recovered surface is in good agreement with the highlighted intensity. This would

not be possible using a morphable model unless the training set contained examples of

similarly positioned wrinkles.

In Table 7.1 we compare the strengths and weaknesses of the two approaches. The

potential advantages of our method include: an efficient implementation (all of our shape-

from-shading algorithms consist of steps implemented as matrix multiplications), faster
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Comparison of Face Reconstruction Methods

Vetter and Blanz Non-Lambertian SFS (Chap-
ter 6)

Illumination: Unknown, single point Known, single point (could
be estimated [124])

Pose: Arbitrary Frontal
Minimum num-
ber of images:

1 1

Albedo: Linear Statistical Constraint Arbitrary
Reflectance: Phong Any isotropic, monotonic

BRDF.
Satisfaction of
Data-closeness:

Weak Strict

Alignment: Manually initialised with
sparse feature points, fitting
improves

Manual

Approximate
shape recovery
time:

4.5 minutes [12] 10 seconds

Table 7.1: Comparison between shape-from-shading and analysis-by-synthesis.

convergence (we obtain a stable solution from a variety of initialisations in 20-30 itera-

tions) and the potential for higher accuracy (enforcing data-closeness as a hard constraint

avoids model dominance and allows accurate recovery of atypical surface features). Fi-

nally, our model is consistent with psychological observations regarding human face per-

ception.

7.3 Future Work

Throughout this thesis we have drawn attention to areas which warrant further research

and routes by which the results presented may be improved upon. We conclude the thesis

by providing clear directions in which we intend to take the work in future.
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7.3.1 Combining Surface Normal Constraints with a Morphable Model

State of the art results in face reconstruction and recognition from single images have

been achieved by fitting a morphable model to images in an analysis-by-synthesis frame-

work and using the fitted model parameters to perform recognition [15]. More recently,

the spherical harmonic basis morphable model has extended this approach in order to

account for arbitrarily complex illumination in the input image [164]. We believe the

most fruitful avenue for extending our work would be to combine these state of the art

techniques with the methods developed in this thesis. The idea would be to combine the

benefits of the two approaches in the hope of exceeding the performance of the techniques

taken individually. For example, we would aim to improve the speed of convergence of

morphable model fitting through updating the model parameters based on surface normal

information extracted directly from the input image. In addition, the accuracy of local,

atypical shape features (such as the wrinkles shown above) would be better recovered

using local irradiance constraints on the surface normals.

In combining the two approaches, we would also address many of the weaknesses of

the work presented in this thesis, for example the lack of pose invariance and assumptions

made about illumination.

7.3.2 Constraints on Reflectance Properties

We have already highlighted that the lack of constraint on the recovered albedo values is

a weakness of our work. We would like to investigate in future enforcing a linear sta-

tistical constraint on the recovered albedo map. Likewise, the method we proposed for

recovering the radiance function in Chapter 6 allowed the skin reflectance properties to

vary arbitrarily. It is clear that this approach would benefit from additional constraints.

These could perhaps be provided by a biophysical skin reflectance model in which the pa-
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rameters of the model have biological meaning and, hence, a sensible range of allowable

values can be inferred.

7.3.3 Face Recognition and Classification

Much of the work presented in this thesis is ripe for exploitation in more complex face

recognition systems. Our consideration of recognition has been limited. Where we have

considered it, this has been based on the most simple of linear classifiers (nearest neigh-

bour in a PCA-derived space) or using existing techniques (linear subspace recognition).

However, clearly much of the shape and skin reflectance information we extract from sin-

gle images could prove useful to accurate pose and illumination insensitive recognition.

For example, there may be useful biometric information contained in the radiance func-

tion estimates or albedo maps. How these different sources of identity information would

be combined is also worthy of consideration.

The same argument applies to classification tasks such as gender or age discrimina-

tion. There is strong evidence from psychological research that shape information plays

a strong role in face classification tasks. There is therefore a significant motivation for at-

tempting to use the shape information we can recover from single images for the purposes

of classification.
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Appendix A

List of Publications

The research documented in this thesis has resulted in the following publications to date.
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• W.A.P. Smith and E.R. Hancock, “Recovering Facial Shape using a Statistical Model

of Surface Normal Direction,”IEEE Trans. on Pattern Analysis and Machine Intel-

ligence, Vol. 28, No. 12, pp. 1914-1930, 2006.

• W.A.P. Smith and E.R. Hancock, “Estimating Facial Albedo from a Single Image,”

International Journal of Pattern Recognition and Artificial Intelligence, Vol. 20,

No. 6, pp. 955-970, 2006.

• M. Casteĺan, W.A.P. Smith and E.R. Hancock, “A Coupled Statistical Model for

Face Shape Recovery from Brightness Images,”IEEE Trans. on Image Processing,

Vol. 16, No. 4, pp. 1139-1151, 2007.

• M.P. Ewbank, W.A.P. Smith, E.R. Hancock and T.J. Andrews, “The M170 Reflects

a Viewpoint-Dependent Representation for Both Familiar and Unfamiliar Faces,”

Cerebral Cortex, to appear, 2007.
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• W.A.P. Smith and E.R. Hancock, “Face Recognition using 2.5D Shape Informa-

tion,” Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Vol. 2, pp.

1407-1414, 2006.

• W.A.P. Smith and E.R. Hancock, “Recovering Facial Shape in the Presence of Cast

Shadows,”Proc. British Machine Vision Conference, 2006.

• W.A.P. Smith and E.R. Hancock, “Estimating Cast Shadows using SFS and Class-

based Surface Completion,”Proc. International Conference on Pattern Recogni-

tion, Vol. 4, pp. 86-90, 2006.

• Y. Li, W.A.P. Smith and E.R. Hancock, “Face Recognition using Patch-based Spin

Images,”Proc. International Conference on Pattern Recognition, Vol. 1, pp. 408-

411, 2006.

• W.A.P. Smith and E.R. Hancock, “Facial Shadow Removal,”Proc. SSPR, pp. 569-

577, 2006.

• M. Castelan, W.A.P. Smith and E.R. Hancock, “A Coupled Statistical Model for

Face Shape Recovery,”Proc. SSPR, pp. 898-906, 2006.

• J. Wu, W.A.P. Smith and E.R. Hancock, “Gender Classification using Principal

Geodesic Analysis and Gaussian Mixture Models,”Proc. CIARP, pp. 58-67, 2006.

• M. Castelan, W.A.P. Smith and E.R. Hancock, “Approximating 3D Facial Shape

from Photographs Using Coupled Statistical Models,”Proc. CIARP, pp. 89-98,

2006.

• Y. Li, W.A.P. Smith and E.R. Hancock, “Face Recognition with Region Division

and Spin Images,”Proc. CIARP, pp. 109-117, 2006.
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2005.

• W.A.P. Smith and E.R. Hancock, “Recovering Facial Shape using a Statistical Sur-

face Normal Model,”Proc. International Conference on Image Processing, pp.

113-116, 2005.

• W.A.P. Smith and E.R. Hancock, “A Model-based Method for Face Shape Recov-
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• W.A.P. Smith and E.R. Hancock, “Face Recognition using a Surface Normal Model,”

Proc. ICIAP, pp. 423-430, 2005.
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spiring Faces,”Proc. International Conference on Image Processing, pp. 1389-

1392, 2004.
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• W.A.P. Smith, A. Robles-Kelly and E.R. Hancock, “Skin Reflectance Modelling

for Face Recognition,”Proc. International Conference on Pattern Recognition, pp.
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• W.A.P. Smith, A. Robles-Kelly and E.R. Hancock, “Facial View Synthesis from a

Single Image using Shape from Shading,”Proc. International Symposium on 3D
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Appendix B

Stereo Pairs

For the sake of interest and as an alternative means of displaying our results, we include

a number of stereo pairs. These have been synthesised from the information recovered

from one image using the techniques described in this thesis. Stereo pairs exploit the

strong perceptual importance of the stereo cue to human vision in order to provide a

convincing 3D effect.

How to view a stereo pair

These are crossed stereo pairs, in which the idea is to view the left image with the right

eye and the right image with the left eye. This requires going ‘cross eyed’. The easiest

way to do this is to hold your finger about 10 centimetres in front of your face and focus

on it. Now slowly remove your finger while viewing the page from a distance of about 30

centimetres. When the pair of images have been successfully fused, a third image should

appear between the two in which the face is in a pose mid way between the outer images.

This fused view provides a means to visually inspect the quality of the reconstructions. In

particular, the nose and eye sockets should give a good sense of varying depth.
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