
An Infrastructure for Video-Augmented

Environments

Daniel Parnham

PhD

Department of Electronics

University of York

December 2006

Abstract

The development of a Video-Augmented Environment requires an integrated

set of programming and image processing elements. Each of these elements is

presented here as both an independent subject and part of a coherent infras-

tructure. The primary aim of this research was to realise an infrastructure

that would provide a basis for the rapid development of Video-Augmented

Environment applications. The OpenIllusionist framework is introduced as

an embodiment of this infrastructure and provides a platform for further

research and stable application development.

This thesis presents agent-based design as an efficient technique for de-

velopment. It then explains how a framework can support agents along with

other necessary infrastructure elements. Fiducials are suggested as a means

for both calibration and interaction. A new fiducial design is presented and

shown to be more reliable than that used in a large proportion of augmented

reality research. Automated and efficient calibration algorithms are intro-

duced that are straightforward to incorporate into a framework. Shadow

removal is discussed and then one particular technique is adapted for use

in a finger detection algorithm providing an improvement over background

subtraction methods. Finally a practical realisation of a Video-Augmented

Environment is presented that was developed using OpenIllusionist.

Overall, this thesis not only shows the feasibility of rapid VAE devel-

opment, but also provides a practical framework, comprising a range of

experimentally-verified technologies, to support efficient and robust appli-

cations.

2

Contents

1 Introduction 15

1.1 Augmented Reality . 15

1.2 Video-Augmented Environments 16

1.3 History of VAEs . 16

1.4 Towards a Software Framework for VAEs 21

1.4.1 Platform Decisions for OpenIllusionist 22

1.5 Infrastructure . 24

1.6 Contributions . 26

2 Agent-Based Design 27

2.1 Introduction . 27

2.2 Background . 28

2.3 Requirements . 30

2.3.1 Object-Oriented Design 30

2.3.2 Threading . 31

2.3.3 Sensors . 32

2.3.4 Imaging . 32

2.3.5 Messaging . 33

2.3.6 Memory . 33

2.4 The OpenIllusionist Agent . 33

2.4.1 Agent Details . 34

2.4.2 The Agent Cycle . 36

2.4.3 Sensors . 37

2.5 Rapid Development . 38

3

2.6 Conclusions . 38

2.6.1 Further Work . 39

3 Framework 40

3.1 Introduction . 40

3.2 Requirements for a Framework 40

3.2.1 Support for the Agent 41

3.3 Design . 42

3.4 The OpenIllusionist Framework 43

3.4.1 Major Elements of the Framework 45

3.4.2 Major Methods of the Framework 48

3.5 Rapid Development . 50

3.6 Conclusions . 50

3.6.1 Further Work . 50

4 Fiducials 52

4.1 Introduction . 52

4.1.1 What is a fiducial? . 52

4.1.2 Examples . 52

4.2 Background . 53

4.3 Requirements . 57

4.3.1 General Requirements for a Fiducial System 57

4.3.2 Specific Requirements for a Video Augmented Envi-

ronment . 58

4.4 Proposed Design . 60

4.4.1 Introduction . 60

4.4.2 Ellipses . 61

4.4.3 Segments . 61

4.4.4 Centre Spot . 62

4.4.5 Ternary . 62

4.5 Implementation . 62

4.5.1 Edge Detection . 63

4.5.2 Object Finding . 64

4

4.5.3 Ellipse Fitting . 65

4.5.4 Fiducial Transform Calculation 71

4.5.5 Fiducial Verification 72

4.5.6 Fiducial Orientation and Identification 75

4.6 Optimisation . 80

4.6.1 Test Platform . 81

4.6.2 Buffer Size . 83

4.6.3 Segment Start and End 83

4.6.4 Centre Spot Radius . 90

4.6.5 Local Optimisation . 91

4.7 Testing . 93

4.7.1 False Positives . 93

4.7.2 Size of Fiducial . 93

4.7.3 Comparison . 94

4.7.4 Binary or Ternary? . 98

4.8 Results . 98

4.8.1 False Positives . 98

4.8.2 Size of Fiducial . 100

4.8.3 Comparison . 101

4.8.4 Binary or Ternary? . 105

4.9 Conclusions . 106

4.9.1 Further Work . 107

5 Calibration 110

5.1 Introduction . 110

5.2 Scenarios . 111

5.3 Background . 111

5.4 Specification . 117

5.5 Photometric Calibration . 118

5.5.1 Algorithm Overview 119

5.5.2 Algorithm Description 122

5.5.3 Background Compensation 123

5.5.4 Plane Calibration . 123

5

5.6 Geometric Calibration . 126

5.6.1 Projective Transform 127

5.6.2 Optimising the Transform 129

5.7 Results . 129

5.7.1 Plane Calibration . 130

5.8 Conclusions . 131

5.8.1 Further Work . 133

6 Shadow Removal 134

6.1 Introduction . 134

6.2 Background . 135

6.3 Invariance Method . 137

6.3.1 Colour Constancy . 137

6.3.2 Entropy Minimisation 138

6.3.3 Retinex . 139

6.4 Implementation . 140

6.4.1 Preliminary Results . 140

6.5 Conclusions . 142

6.5.1 Further Work . 142

7 Finger Detection 144

7.1 Introduction . 144

7.1.1 Requirements . 144

7.2 Background . 144

7.3 Letessier and Bérard Method 146

7.3.1 Problems . 148

7.4 Proposed Method . 150

7.4.1 Overview . 150

7.4.2 Analysis of the Invariance Image 150

7.4.3 Thresholding . 151

7.5 Implementation . 154

7.5.1 Overview . 154

7.5.2 Frame Capture . 154

6

7.5.3 Finger Verification . 155

7.5.4 Testing Framework . 156

7.5.5 Test Setup . 156

7.6 Results . 157

7.6.1 Optimisation . 157

7.6.2 Comparison . 161

7.7 Conclusions . 163

7.7.1 Problems . 163

7.7.2 Further Work . 164

8 Robot Ships:

An OpenIllusionist Application 165

8.1 Introduction . 166

8.2 Overview . 167

8.3 Design . 168

8.4 Development . 169

8.4.1 Engine . 169

8.4.2 Queen . 169

8.4.3 Scout . 170

8.4.4 Beacon . 171

8.4.5 Worker . 171

8.4.6 Tanker . 174

8.4.7 Spill . 174

8.4.8 Code . 174

8.5 Final Evaluation . 175

8.6 Conclusions . 175

9 Conclusions 177

9.1 Summary . 177

9.2 Overall . 178

9.3 Further Work . 179

A Agent Example 181

A.1 Header . 181

7

A.2 Source . 182

B Framework Example 184

B.1 Header . 184

B.2 Source . 185

8

List of Figures

1.1 OpenIllusionist layer diagram. 23

2.1 OpenIllusionist agent class diagram. 34

2.2 OpenIllusionist agent flow diagram. 36

3.1 OpenIllusionist full class diagram. 44

4.1 A selection of example fiducials. 54

4.2 A selection of example fiducials. 55

4.3 Proposed fiducial in some example configurations. 60

4.4 Flow diagram of the edge detection algorithm. 63

4.5 Flow diagram of the object finding algorithm. 65

4.6 Parameters of an ellipse. 66

4.7 Focus points of an ellipse. 70

4.8 Images of fiducials indicating how they are processed at each

stage. 73

4.9 Images of fiducials indicating how they are scanned. 77

4.10 Fiducial parameter dimensions. 80

4.11 Internal rendering of fiducials for optimisation tests. 81

4.12 Graph of buffer size results. 84

4.13 Reasons for failure. 85

4.14 Graph of segment end results. 86

4.15 Reasons for failure. 87

4.16 Graph of segment start results. 88

4.17 Reasons for failure. 89

4.18 Graph of centre spot results. 90

9

4.19 Reasons for failure. 91

4.20 Local optimisation of parameters. 92

4.21 The optimised fiducial design. 93

4.22 Fiducial test sheet. When printed the fiducials each have a

width of 47mm. 95

4.23 An example from each group of test images. 97

4.24 Binary against ternary fiducial test sheet. 99

4.25 False positives detected in test footage. 100

4.26 Fiducial size performance results. 101

4.27 An example of output images from the testing software. 102

4.28 Fiducial comparison results — not found. 102

4.29 Fiducial comparison results — incorrect identification. 103

4.30 Fiducial comparison results — true positives. 104

4.31 Binary against ternary — simulation test results. 106

4.32 Binary against ternary — captured image test results. 106

5.1 A typical camera-surface-projector configuration. 116

5.2 A flowchart of the photometric calibration algorithm. 120

5.3 Flowcharts of processes involved in the photometric calibration

algorithm. 121

5.4 Pixel values for an image captured from a VAE. 130

5.5 Pixel values for an image captured from a VAE after plane

calibration. 131

5.6 An image captured from a VAE before and after plane sub-

traction. 132

5.7 The corresponding histograms of an image captured from a

VAE before and after plane subtraction. 132

6.1 Inaccuracies in edge detection caused by shadows. 134

6.2 Entropy minimisation example 138

6.3 Results of invariance method with a single light source. 141

6.4 Results of invariance method with multiple light sources. . . . 141

10

7.1 Captured frames (left) and the corresponding invariance im-

ages (right). 150

7.2 Results of invariance method without plane correction. 152

7.3 An invariance image thresholded at −3 SD. 153

7.4 An invariance image after thresholding and filtering 154

7.5 An image being processed by the finger verification application 155

7.6 Optimisation of LB method — True positives. 158

7.7 Optimisation of invariance method — True positives. 158

7.8 Optimisation of LB method — False positives. 159

7.9 Optimisation of invariance method — False positives. 160

7.10 Optimisation of methods — True positives against false posi-

tives for all lighting conditions. 160

7.11 Comparison of methods after optimisation — Overhead lights

only. 161

7.12 Comparison of methods after optimisation — Overheads and

overcast daylight. 162

7.13 Comparison of methods after optimisation — Overheads and

bright daylight. 162

7.14 Example output from the proposed finger detection algorithm. 163

8.1 Photo of the installation at the Royal Museum in Edinburgh. . 165

8.2 Screenshot of Robot Ships. 166

8.3 Arrangement of sensors for the scout agent. 170

8.4 Arrangement of sensors for the worker agent. 173

11

List of Tables

4.1 Number of codes available in each of the possible fiducial con-

figurations. 61

4.2 Parameter ranges for testing. 82

4.3 Optimised parameter values. 92

4.4 False positive results. 99

4.5 Algorithm performance results. 105

5.1 Setup scenarios. 111

5.2 Background scenarios. 112

5.3 Foreground scenarios. 113

5.4 Dealing with different types of clutter during calibration. . . . 113

5.5 Indirect lighting scenarios. 114

5.6 Direct lighting scenarios. 115

7.1 Table showing the size and type of test image sets. 156

7.2 Table showing the ranges over which parameters were varied. . 157

8.1 Number of lines of code per class in Robot Ships. 174

12

List of Acronyms

AR Augmented Reality

BDI Belief-Desire-Intent

CED Chrominance Euclidean Distance

ELF Elliptical Luminance Fiducial

FRF Fast Rejection Filter

GPL General Public License

GUI Graphical User Interface

HMD Head-Mounted Display

LC Log-Chromaticity

L-GPL Library General Public License

LMS Least Mean Squares

MR Mixed Reality

OCR Optical Character Recognition

RAG Region Adjacency Graph

RANSAC Random Sample Consensus

TRIP Target Recognition using Image Processing

TUI Tangible User Interface

VAE Video-Augmented Environment

V4L Video For Linux

VR Virtual Reality

13

Acknowledgements

I would like to thank my supervisor, John Robinson, for his support and

guidance throughout my research. I would also like to express my gratitude

to the National Museums of Scotland for giving us the opportunity to develop

Robot Ships.

Many thanks to Justen Hyde for his part in creating and developing the

OpenIllusionist framework, for his support and friendship, and for the many

late nights spent solving a variety of implementation issues.

Finally, I would like to thank Caroline and my family for all of their love

and encouragement.

14

Chapter 1

Introduction

The aim of this research is to examine, define and then meet the require-

ments of the Video-Augmented Environment (VAE). A software framework

for the rapid development of stable VAE applications will be implemented in

order to validate the solutions provided by the research.

1.1 Augmented Reality

Augmented Reality (AR), sometimes referred to as Mixed Reality (MR),

brings together the real, physical world surrounding us and the synthetic

world of Virtual Reality (VR). In the real world we interact with everything

around us using all of our senses and motor abilities. In VR we interact with

virtual objects and although the technology attempts to simulate the real

world as accurately as possible, it is not yet at a point where a user finds the

differences imperceptible, especially with regards to senses other than vision

and hearing.

AR is concerned with enhancing the real world with virtual information.

This augmentation could be anything from overlaying instructions on how to

use a particular piece of machinery, to generating a virtual pet that appears

to exist in the physical world and responds to the environment accordingly.

15

Although AR often makes use of VR technology, the interactions of the

user remain anchored in the real world and therefore a different set of ap-

plications present themselves. These applications extend to areas such as

education, entertainment, surgery and urban planning to name but a few.

The implementation of AR also presents different design problems to those

in VR, including the accurate detection of a user’s actions and an appro-

priate response in real-time. These problems are investigated and solutions

proposed in this thesis.

1.2 Video-Augmented Environments

Although a large proportion of research is carried out in the field of Head-

Mounted Display (HMD) and hand-held AR, a significant amount of research

is concerned with VAEs which are based upon projected AR.

The typical setup for a VAE is the camera-surface-projector configuration

where a surface such as a wall or a tabletop is both projected onto and

observed by the system. The projector is used to augment physical objects

on or in front of the surface and can also render virtual objects directly

onto the surface. Although a VAE can be used by a single person, a major

advantage is that it can provide group-oriented interaction and collaboration.

This type of AR is the focus of the thesis.

1.3 History of VAEs

The seminal work of Wellner [73, 74] describes the DigitalDesk which at-

tempted to bridge the gap between a desktop computer where files are manip-

ulated and the physical desktop where paper is manipulated. He introduced

a vision-based system that gave rise to the VAE and inspired researchers in

AR.

The DigitalDesk incorporated two important techniques in order to provide

an example of what was possible then and what could be possible in the

16

future. The first technique was Optical Character Recognition (OCR) so that

the system could read what was written on a printed page and the second

was finger detection so that it knew where the user was pointing. Using

these image processing methods the DigitalDesk would allow a user to point

at a number on a printed page and copy that number to a virtual calculator

which was projected onto the desk. The user could then tap buttons on the

virtual calculator to perform a calculation (finger taps were detected by a

microphone attached to the desk).

An interesting point to note from [74] is that users of the DigitalDesk were

not bothered by the occlusion and shadows produced when using projection

from above. This was attributed to the fact that they were already accus-

tomed to shadowing on desks from overhead lights.

In 1991, Stafford-Fraser and Robinson introduced the BrightBoard which

was an augmented whiteboard [64]. Instead of developing an active white-

board, which can be expensive, the system uses an ordinary one and mon-

itors what is happening through a vision system. It was designed so that

the software could be run on a workstation continuously and therefore uses a

triggering system to detect when it should capture an image to process. This

same triggering system attempted to capture images in which a user is not

obstructing the whiteboard. Commands could be drawn on the whiteboard

by the user in the form of letters surrounded by a box. The commands would

then activate scripts for specific tasks such as printing or saving what was

written on the board. One of the principal limitations of the system is that

it required the camera to be looking straight at the whiteboard resulting in

a greater probability of occlusion by the user.

An update to the DigitalDesk was presented in [42] named Marcel. Instead

of relying on a high-resolution camera focussed on a small part of the desk

to perform OCR, Marcel used a low resolution camera. It simply matched

sheets of paper with pre-processed scans via a simple set of checks involving

the length of lines, paragraph heights and word breaks on a page. This meant

17

that it could monitor the entire desk for activity, although at the time it still

took around 8 seconds to process a full image. An additional application

to the virtual calculator was also presented in which the user could select a

word on a page and a translation would be projected elsewhere on the desk.

The Origami Project was yet another modification to the DigitalDesk de-

scribed in [60]. This relied on pages that were marked with an identification

number in an OCR font for easy recognition. It could then provide aug-

mented content that was correctly aligned with the page. The project also

included a method of interaction using a pen fitted with an LED for easy

recognition by a vision system.

The LivePaper system [59] provides a VAE in which individual sheets of

paper are treated as objects with additional “magical” properties. A sheet of

paper is detected through boundary extraction in a captured image and then

the contents of that page are recognised by the system and the associated

augmentations are displayed. The augmentations will remain attached to the

page, as if written on it, when moved and a finger-triggered menu system is

displayed beside it to provide additional functionality.

One of the most active groups in AR is that of the Tangible Media Group

at MIT led by Hiroshi Ishii. In [32] they present the Tangible User Interface

(TUI) which provides a link between the elements of the Graphical User

Interface (GUI) that computer users are familiar with, such as windows and

menus, and the physical desktop used in the real world. Their research fo-

cusses on interactive surfaces that use physical, tangible objects to provide

the interaction. Using a combination of image processing and sensor tech-

nology they are able to detect the position and orientation of objects and

provide feedback by way of projection onto the surface.

An interesting point that is made by Ishii and Ullmer in [32] is the im-

portance of ambience and how we are aware of many details within our

environment even if we are concentrating on just one. If a change occurs in

18

our peripheral awareness we are able to instantly shift focus to that event. It

is possible to exploit this ability by incorporating subtle elements within our

surroundings that indicate the status of information which will attract our

attention if that status changes. An example given by Ishii and Ullmer is a

web page hit counter which produces the sound of rain drops; when the hit

rate changes the rain becomes heavier or lighter accordingly providing the

user with ambient feedback about digital information.

A TUI for musical performance is presented in [48] which uses RF tagged

pucks to control various parameters of sampled sounds. It describes how the

use of both hands provides a more natural interface to a computer than the

typical mouse. Although the paper concentrates on the iterative design of

the TUI elements, the particular application highlights the need to “make

interactions legible for observers”. In other words, an application should

provide an interesting and understandable experience for both users and

spectators.

In [56] they present two implementations of a VAE application for the

process of landscape design. The most accurate, and expensive, method is

called Illuminating Clay which incorporates a projector and laser scanner.

With this method simple clay can be used as a 3D landscaping construct and

the system is capable of dealing with objects or even hands placed on the

surface. The alternative method, named SandScape, employs infra-red light

which is transmitted through a bed of glass beads (the sand) and detected

by a camera above. The intensity of the transmitted light can be used to

calculate the height of the surface at any given point. This method, however,

will only work with transparent beads and will not cope with objects placed

on the surface. In both cases the applications can then provide information

for the user graphically, such as how water will flow in different areas of the

surface model.

A further application developed by the Tangible Media Group is an ur-

ban planning workbench called Luminous Table [31]. The workbench allows

19

urban designers to construct a combination of 3D physical models and 2D

drawings and then overlay them with digital simulation information, as in

the landscape design application. This allows designers to see the effects of

shadows, reflections and wind flow caused by buildings along with traffic flow

around roads. The application makes use of two projectors and two cameras

to provide a large working space that can support many users. This provides

a good scenario in which a VAE promotes social interaction.

The Luminous Room was presented in [69] where Underkoffler et al. discuss

various applications of the VAE. Their applications rely on an appliance

called the I/O Bulb which is intended as a replacement for the ordinary

light bulb and incorporates both projection and camera imaging technologies.

Currently in a prototype stage, the I/O Bulb is supposed to unobtrusively

integrate VAE technology into a room. By marking simple real-world objects

with retro-reflective coloured dots in specific patterns the system can identify

and locate those objects to provide interactive elements for the application.

The Luminous Room is perhaps one way of realising the “office of the

future” as described by Raskar et al. [54]. In this paper they describe an

office in which surfaces are augmented to overlay information and walls are

augmented to provide the user with views of other offices in such a way as to

effectively create one large room. This uses a dynamic image-based model

of a room to generate a 3D view that can be then be transmitted to users

in other rooms. Those views are projected so that the perspective is correct

for a user by tagging them and thus knowing their location. Their proof-of-

concept implementation introduces an impressive technology called imper-

ceptible structured light which allows patterns to be hidden within normal

projected images. The patterns are invisible to humans but can be detected

by a correctly synchronised camera. This structured light is used to calculate

the model of a room by providing depth information. The 3D model can be

further improved by merging information from multiple devices.

20

At present many of the research groups continue their work on VAEs and

some of the individual contributions will be reviewed in more detail at ap-

propriate points throughout this thesis.

1.4 Towards a Software Framework for VAEs

Researchers in AR often make use of software libraries that provide sup-

port for particular technological features. The most widely used is probably

the ARToolkit [35] which provides marker tracking capabilities. It does not

provide a framework on which AR applications can be built, but it does

provide useful functionality to use within a framework.

Studierstube [65] is a project that provides a freely available framework

with which researchers and developers can build AR applications. The pri-

mary aim of the framework is to incorporate 3D virtual information into a

real world scene using HMD technology and hand-held devices.

Another development framework is the MR Platform [68] for Linux. As

with Studierstube, it provides a framework on which to develop applications

aimed at HMD devices which require very accurate and complex calibration

routines. The project that resulted in the development of the MR Platform

was also responsible for producing an innovative HMD named COASTAR

which allows the optical axes of the see-through displays and the cameras

to coincide; this greatly improves the accuracy with which 3D augmentation

can be applied.

At the beginning of the current thesis work there were no publicly avail-

able software frameworks directed towards VAEs. In response to this, the

author and Justen Hyde initiated the OpenIllusionist Project [45] to develop

an open-source framework with which to produce VAE applications. It is

not concerned with specialist equipment such as the HMD but with read-

ily available hardware (projectors, modern PCs and webcams) meaning that

anybody should be able to setup their own VAE. This ease of use is a vital

21

part of helping to take AR out of the research lab and into people’s homes

and offices.

The framework is not only designed to produce simple to setup appli-

cations, but to also simplify the application development process itself. By

providing the underlying image processing, calibration, threading and general

structure, OpenIllusionist allows a developer to concentrate on the important

aspects of the application without having to worry about producing a stable

infrastructure.

The inspiration behind OpenIllusionist as an agent-based system came

from PenPets [44] developed by Sean O’Mahony. PenPets was a VAE ap-

plication that allowed users to interact with virtual pets by drawing lines or

placing objects on a whiteboard.

The OpenIllusionist framework was created as a means to reproduce the

PenPets demo, to help create future applications and to assist in further

research. The potential of rapid development for both developers and re-

searchers alike led to the release of the framework under the GNU General

Public License (GPL).

1.4.1 Platform Decisions for OpenIllusionist

Even though much of the research presented in this thesis can apply to

any VAE, OpenIllusionist provides a practical constraint and a means with

which to check the feasibility of possible solutions. Before explaining the

major areas of research in section 1.5, the remainder of this section provides

a little more detail about the nature of the constraint.

OpenIllusionist was originally developed as a Windows framework that ac-

cessed the Windows API directly. However, it was later decided to move to

a cross-platform library which would also provide some useful utility classes.

The main two libraries to choose between were wxWidgets [76] and Qt [52].

22

Qt has restrictive licensing and prohibitive costs for commercial develop-

ment whereas wxWidgets is released under a modified Library General Public

License (L-GPL) license meaning that developers can release both commer-

cial and open-source software with any license they wish. The flexibility of

the wxWidgets licensing and the ease with which it can be used made it the

obvious choice.

The rendering aspect of the framework required a likewise cross-platform

and flexible library. Direct3D is powerful but difficult to develop with and

restricted to the Windows platform only. OpenGL has been implemented

on all major platforms, and most minor ones too, and provides a simple

method with which to render graphics; it is therefore used by OpenIllusionist

extensively.

Capturing frames from an external device such as a camera usually relies

on very platform specific methods. Therefore OpenIllusionist uses a frame-

grabber library designed by the author to provide a level of abstraction such

that different frame-grabbers can be developed for different platforms. Since

the primary platform on which the framework is currently used is Windows,

the method of capturing frames uses DirectShow since it provides access to al-

most any available capture device on the system (including all webcams with

appropriate drivers). DirectShow also provides a standard mechanism for

adjusting camera parameters which thereby allow the framework to change

the camera setup during calibration. Future developments are intended to

include a frame-grabber library for Linux using Video For Linux (V4L).

Fig. 1.1: OpenIllusionist layer diagram.

23

The diagram in figure 1.1 depicts the relationship between OpenIllusionist,

the Windows platform and VAE applications.

OpenIllusionist contains all of the elements discussed in this thesis except

those concerning shadow removal and finger detection, although they will be

included in the future. It currently consists of approximately 5500 lines of

code and is compiled as a binary library file for simple inclusion in a VAE

application.

1.5 Infrastructure

This thesis is concerned with all of the necessary elements of an infrastruc-

ture for the rapid development of stable VAE applications. It also discusses

how some of those elements have been implemented within the OpenIllusion-

ist framework. The primary input to a VAE is through a vision system and

therefore many of the elements presented deal with aspects of image pro-

cessing. Relevant image processing topics are selected that are required to

support an intuitive user interface and that can also provide the means with

which to calibrate the system and cope with different environmental condi-

tions. The remaining elements discussed in this thesis approach the software

development concerns.

Although some research has been published that combines agents with AR

there is currently no other VAE development platform that inherently sup-

ports agents. Therefore chapter 2 introduces agent-based design and explains

how it can provide an appropriate model with which to develop VAE appli-

cations. It goes on to describe how OpenIllusionist provides an agent-based

development platform and then chapter 3 illustrates how a framework can

support an agent-based design. It also shows how all of the infrastructure

elements can fit together in a cohesive and efficient manner.

The detection of fiducials (markers) is an important requirement for an in-

frastructure of this kind since the system must have a method with which it

24

can recognise interactive objects and perform automated calibration. There-

fore chapter 4 provides an extensive look at this subject and proposes a new

design of fiducial that incorporates multi-level data.

A VAE must be able to calibrate itself, preferably in an automated and ef-

ficient way. Many of the earlier VAE systems, as discussed in the background

section, were based in controlled laboratory conditions and required manual

calibration. Chapter 5 presents an automated method for calibration that

can be incorporated into a framework.

Surprisingly the problems caused by shadows in vision systems are often

ignored or disregarded, but they can cause serious problems for image pro-

cessing algorithms. Chapter 6 tackles the problem of shadows that a VAE is

likely to face, especially when placed in uncontrolled lighting conditions.

In the DigitalDesk, single fingertip detection was employed to allow inter-

action with a virtual calculator. Finger detection is a desirable, although

not a necessary, element for any augmented environment. Recent advances

in finger detection methods and faster computers mean that multi-finger de-

tection is efficient enough to incorporate into a VAE system. Chapter 7

reviews finger detection methods and then presents an algorithm that uses

an alternative to background differencing.

A practical example of an application developed with OpenIllusionist is

described in chapter 8 and finally the overall conclusions are discussed in

chapter 9.

Since this thesis covers a wide range of topics most of the chapters contain

their own background sections and conclusions.

The terms “infrastructure” and “framework” can usually be used inter-

changeably. However, within this thesis “infrastructure” refers to the com-

25

bination of elements required for a practical VAE and “framework” refers to

the actual implementation of such an infrastructure.

1.6 Contributions

The research discussed here has led to the development of the OpenIllu-

sionist framework both as a means to validate the research and to develop

full applications. Although the framework itself does not provide an advance-

ment of “state-of-the-art”, since many of the techniques used are already well

known in the field, it does bring together these techniques in a coherent and

practical way. This provides a solid foundation on which future research can

be built.

A method for calibration is introduced that attempts to cancel out the

effects caused by uneven lighting across a planar surface. Initial testing

suggests that it has potential for use in a VAE.

This thesis proposes a new fiducial design that can incorporate either bi-

nary or ternary identification codes. It is proved to be a reliable alternative

to other widely used fiducials.

An adaptation to an existing finger detection algorithm is also proposed

that provides a significant increase in performance.

26

Chapter 2

Agent-Based Design

2.1 Introduction

This chapter describes the motivation for using an agent-based design and the

specific features required by an agent within a VAE. A framework built upon

the model of an autonomous mobile agent gives the flexibility of producing

artificial-life style applications with ease whilst still being able to produce a

user interface with static controls. A static control can simply be an agent

with rudimentary behaviour and very little, if any, animation.

Consider an object in the physical world such as a pen; it is an autonomous

entity and as such will move completely independently of other objects on

a desk when pushed. Virtual objects in an augmented environment must

be able to respond in a similarly independent and parallel way to reinforce

the illusion of the augmentation, to further blur the boundaries between the

physical and virtual world. When a physical object is capable of moving

itself it has an even higher degree of autonomy, in fact it appears to have

agency. Similarly, virtual objects that move and interact with each other

and the physical world can naturally be thought of, and therefore designed,

as agents.

A developer working on a custom application should be able to create

individual elements in a modular way. Productivity would be greater if the

27

methods with which these elements are executed, how they interact and

how they communicate are already defined and implemented. An agent-

based system would allow this modularity and support the requirement of

autonomy along with other desirable characteristics such as complexity and

adaptability. An agent could be any number of things that contribute to the

VAE experience, some examples are:

• A graphical button that responds to a user’s finger.

• A simulation of an animal that can move around and react to its envi-

ronment.

• A simple animated object that does not respond to anything but is

simply there to provide information or context.

• An invisible agent that responds to user interaction by triggering events

elsewhere.

The diverse properties and capabilities of agents allow developers to cre-

ate complex systems with emergent behaviours and has the advantage that a

particular unforeseen circumstance is far less likely to bring down the whole

application. Additionally an agent-based framework means that the agents

inherently have limited information available to them and therefore provide

a good foundation for developing an application such as an artificial-life sim-

ulation.

2.2 Background

The Belief-Desire-Intent (BDI) agent model [9, 28], which is the most well

known practical reasoning method (i.e., based around the same practical

reasoning used by humans), defines an agent as having:

• Belief

An agent has beliefs about the world based on information it has about

its environment.

28

• Desire

An agent has desires such as goals it must achieve.

• Intent

An agent has intentions meaning that it has committed to plans based

on its beliefs and desires.

Although this chapter is not considering the development of support for

systems such as those proposed in [9, 28], the structure should be flexible

enough that it could be added if required. The BDI model is a logical way

of describing how even the simplest of agents function.

Incorporating a knowledge-based system such as that discussed in [18] into

an agent-based system is also possible and could act as an alternative to the

BDI agent model.

One of the earliest uses of an agent in an AR application was the ALIVE

system [40]. Maes et al. introduce a mirror paradigm in which the user can see

themselves in a virtual reflection of the room on a projection screen. Through

gesture a user can interact with autonomous virtual characters within the

scene.

Although there is a large amount of literature on agent research, a good

overview being provided in [33], there is very limited information about

agents currently being used in augmented reality. The only active devel-

opment that the author is aware of in this area is within the Studierstube

project headed by Dieter Schmalstieg.

The Studierstube project is concerned with producing a framework for

developing augmented reality applications. However, unlike OpenIllusion-

ist, they tend to concentrate on HMD technology and hand-held systems.

Barakonyi et al. [3] discuss an agent framework referred to as “AR Puppet”

which is based upon a hierarchy as used in theatre where there is a direc-

tor, choreographer, puppeteer and puppet. In this scenario the director and

29

choreographer have global views of the environment and agents whereas the

puppeteer and puppet only have local views and deal with low-level details.

Barakonyi et al. continue in [4] to discuss applying the agent model to com-

puter entertainment and education and then in [5] introduce an AR agent-

based game called “MonkeyBridge”. The game relies on a set of physical

building blocks that shape both the physical surface and the virtual world,

HMD technology and fiducials (refer to chapter 4) to provide a novel inter-

active environment in which autonomous agents are integrated.

2.3 Requirements

The following section describes some of the requirements necessary or de-

sirable to produce an extensible and flexible agent structure. As with all

elements of a VAE, the agent and the code that supports the agent must be

efficient since many elements will be running concurrently.

2.3.1 Object-Oriented Design

Although an object in object-oriented programming is not an agent it can

offer a good basis for agent design:

• Objects can be designed to run concurrently through multi-threading

(modern computing power can allow many agents to run concurrently).

• Autonomy can be achieved by concealing and controlling their internal

state.

• They can be made aware of their local environment through feedback

mechanisms such as sensors.

• Communication abilities can be included that convey information to

other agents or users.

30

A primary concern is efficiency and so when dealing with a large, complex

infrastructure that is required to respond quickly it may not be sensible to

adhere to the strict rules of object-oriented design. For example, making all

member variables private and only providing access through function calls

could seriously inhibit the speed of the system. However, the structure can

still take advantage of some of the desirable features of object-oriented design

such as classes, inheritance and polymorphism.

2.3.2 Threading

Within the framework there must be a means by which agents can run

concurrently and the simplest way to achieve this is to create each agent as a

thread in the current process. Additionally the VAE requires other elements

to be running simultaneously such as frame-grabbing, image processing and

rendering, all of which can be allocated threads.

Current computer architectures can actually take advantage of threaded

applications and improve their performance with the use of multi-processor

and hyper-threading technology.

Unfortunately there are many potential dangers concerning the use of

threads, primarily to do with the synchronisation between them. Multi-

ple threads cannot be permitted to write to the same location at the same

time and so a critical section (or a mutex) must be used. Overuse of critical

sections, however, can have a detrimental effect on performance so keeping

the critical parts of the code as brief and rarely used as possible is desirable.

Performance is a key issue with regards to this kind of system since so many

elements are required to run concurrently.

Ideally the framework should hide as much of the threading as possible

from the application developer to reduce the chances that they produce un-

safe code whilst also improving their productivity by obscuring the complex-

ity.

31

2.3.3 Sensors

An agent requires a method through which it perceives the physical and

virtual world; this will govern its beliefs. It must be simple and efficient since

complex sensors, such as giving an agent binocular vision, would require huge

amounts of calculation, rendering and data exchange. This would result

in major performance issues with even a small number of agents running.

Another point is that the sensor system should not ordinarily give agents a

view of the entire world since this could result in less believable behaviour.

A sensor could simply be a line, corresponding to a single ray in a vision

paradigm, along which the agent can “see” other objects. A vector sensor

like this would be quick to scan and simple to implement. Strategic placing

of the sensors, or even dynamic adjustment of them, can allow the agent to

have a reasonable view of the world.

2.3.4 Imaging

An addition, or alternative, to the sensor system can be provided through

imaging. By allowing an agent to request a localised rectangular image it can

perform its own image processing internally. Since the image provided would

be taken from that of the original captured frame it would not provide clear

information about other virtual agents but could allow the agent to extract

information about the physical world.

As with the sensor system, the image should provide an agent with a

limited view of the world. This should be based on what is reasonable for

that agent to detect or “see” from its current location. However, both the

sensor and imaging systems should be flexible enough that a developer could

provide an agent with a global view of the world but only if it is absolutely

necessary for a particular application.

32

2.3.5 Messaging

Another important attribute of an agent is the ability to communicate

with others. A messaging system needs to be a part of the infrastructure

so that the problem of communication between threads can be dealt with

internally. This means that developers building a custom application do not

have to concern themselves with the complexity of messaging, but can just

create and post a message in a straightforward way.

Communication can allow agents to share beliefs, desires and intents so

that they can collaborate to tackle much bigger goals, alongside attempts to

complete personal goals.

2.3.6 Memory

An agent must be able to store information, especially if a developer in-

tends to design an agent capable of learning. The base class should contain

storage for all of the information that is relevant to all agents, however stor-

age for information that a particular agent requires can simply be included

in the derived class. This ensures that the base class remains as clear and

efficient as possible.

The memory is not only useful for storing the current state and beliefs of

an agent, but can also be used to store previous beliefs, desires and intents

that could govern future decisions.

2.4 The OpenIllusionist Agent

The base agent class in OpenIllusionist (oiAgent) has been developed such

that it meets the requirements described in section 2.3. A UML class diagram

is shown in figure 2.1 indicating all of the most important attributes of the

class and its associated structures.

33

Fig. 2.1: OpenIllusionist agent class diagram.

This class-based approach provides a logical, hierarchical process to de-

veloping agents. The complicated functionality vital to the running of the

agent is completely contained in the base class. Therefore any derived class

need only implement the functionality that is specific to the behaviour and

graphic design of that particular agent.

2.4.1 Agent Details

The agent class is derived from a generic thread class (from the wxWidgets

library) to provide it with inherent threading capabilities. An agent retains

information relevant to the infrastructure in public variables, which are public

out of a necessity for efficiency since other parts of the framework can access

them directly. These variables provide data such as the unique identity of the

agent, which behavioural model it has and its size, location and orientation

in the virtual world.

The “Inbox” is a message pointer that is either NULL or contains a message

for the agent to process during that cycle (a cycle, in this case, referring to

a single pass through the main execution loop of the thread).

34

The “SendMessage” function is provided as a straightforward means of

posting a message. The messaging process within OpenIllusionist is described

in more detail in chapter 3.

The remaining functions are virtual and must be overridden when creating

a custom (derived) agent:

• AgentConstruct

This is executed during the start-up of the thread and is where any

extra memory that a custom agent uses must be declared. Agent vari-

ables should be initialised here plus any sensors that are required must

be created.

• AgentDestruct

Executed during the shut-down of the thread and is where extra mem-

ory must be cleaned up.

• AgentSensors

This is where the sensors are setup. If an agent has moving sensors

then this function can be called each cycle or whenever is necessary.

Alternatively, it can be called just once if the agent has fixed sensors.

• AgentBehaviour

The most important function of all and where the sensor information

is processed, messages are read, decisions are made, movements are

performed, messages are posted and much more.

• AgentRender

Called from outside the agent thread during the OpenGL render cycle,

it is a request for the agent to draw itself.

• AgentCollision

Also called from outside the agent thread, this function asks the agent

whether or not a specific coordinate collides with it and the function

returns true or false. This means that it is the responsibility of the

agent to decide what collision boundaries it has, therefore, it can have a

35

complex shape without burdening the rest of the system with knowledge

about that shape. If a particular agent simply returns false here then

it is invisible to all other agents.

2.4.2 The Agent Cycle

The main execution loop of the agent (see figure 2.2) consists of a simple

set of function calls which are then implemented in the derived agents as

described above. The “AgentFeedback” function is a call-back to the oiIl-

lusionistEngine which owns all of the agents. The call-back represents the

point at which the agent synchronises with the main process and acquires

updated information about the local environment.

Fig. 2.2: OpenIllusionist agent flow diagram.

36

The feedback function provides the agent with beliefs about the environ-

ment. The “AgentBehaviour” is where an agent forms intents based on what

it is trying to achieve (“desires”) and then acts upon them accordingly.

2.4.3 Sensors

A sensor in OpenIllusionist is a vector defined by start and end coordinates

which are relative to the agent. The “IncludeMask” variable is a bit mask

that tells the engine what this sensor is permitted to see. The “SeeAll” flag

indicates whether or not the agent is permitted to see more than one item

along a sensor. If set to false a sensor will act like vision in that everything

behind the first item will be occluded whereas if set to true an item could be

sensed even when occluded, similar to hearing.

The agent initialises its sensors and modifies them if and when necessary.

Each sensor also contains a fixed number of feedback structures that are

updated by the engine. When the “AgentFeedback” function is called the

engine populates the feedback structures with information relating to the

local environment. Each item of feedback contains the following information

(as seen in figure 2.1):

• Data

Indicates what is visible on the sensor. It could be a physical object,

another agent or nothing at all.

• Distance

Informs at what distance along the sensor an item was seen.

• ID

If another agent is visible on the sensor then this provides the ID of

that agent. This allows one agent to post a message to another if in

close proximity.

• Signal

Each agent contains a signal that can be used to indicate their current

status. Another agent can read this signal via the sensors.

37

2.5 Rapid Development

The C++ source code for an example agent has been provided in appendix

A. When compiled into an OpenIllusionist application this agent will be

rendered as a simple red rectangle capable of moving forwards and then

turning on the spot when it encounters an obstruction (virtual or physical).

Comments in the source code explain in detail how the agent works.

The emphasis on agent design within the framework is that a developer

should be able to concentrate on the behaviour of an agent and not need

concern themselves with issues such as threading and messaging. Although

messaging is not used in this example, sending a message asynchronously is

simply a case of calling the “SendMessage” function (more information is

provided about the messaging system in chapter 3).

The rendering example uses a few simple OpenGL commands but a devel-

oper could use any of the available OpenGL features for rendering. Therefore

an agent could be anything from a simple coloured polygon, as in the exam-

ple, to a complex, textured and animated mesh.

The agent was produced in approximately 80 lines of code and yet is capa-

ble of moving and interacting with other virtual and physical objects. This

shows that an agent-based approach is appropriate to the development of

VAEs. Due to the class-based implementation of the agent, many instances

of it can be created and run concurrently.

2.6 Conclusions

This chapter provides the motivation and specification for an agent-based

design and then proposes an implementation that allows a developer to pro-

duce reliable agents in an efficient manner. The example in appendix A shows

that very little code is required to get a basic agent running since the im-

plementation of threading, messaging and synchronisation is handled within

38

the library itself and is therefore hidden from the application developer.

A real example that makes extensive use of the agent model and messaging

system is Robot Ships which is described in more detail in chapter 8.

The primary drawback to using an agent-based model is apparent where a

large number of agents are required. Since the agents are threaded to allow

them to run concurrently this means that there could be a large number of

threads which would seriously affect the responsiveness of the application.

This problem is only likely to occur with many hundreds of complex agents

when using a modern computer and the advancement of multi-processor sys-

tems should soon provide the power to deal with many thousands of agents.

2.6.1 Further Work

Multiple threaded agents can reduce the responsiveness of the system and

so the majority of further work should be concerned with optimisations to

the code that supports the agents. In particular, the point at which an agent

synchronises with the main thread provides the largest bottleneck. Removing

as much calculation as possible from the feedback process and keeping it as

short and efficient as possible will help with the overall speed of the process.

In order to promote the development of intelligent agents the base agent

class could be modified to provide additional functionality for developing

BDI agents.

By producing subsets of behavioural functions it would be possible to allow

agent design to consist of simply plugging in the behaviours that are desired.

This can then be further extended by providing a graphical design interface

for the agents that allows anybody (not just developers) to construct agents

using “plug-and-play” behaviours, appearances and sensors.

39

Chapter 3

Framework

3.1 Introduction

To develop an agent-based VAE requires a framework that can support

the agents and perform the other necessary tasks such as image process-

ing. This chapter discusses some of the requirements for such a framework,

it describes the implementation within OpenIllusionist and then how that

implementation allows for rapid development of VAE applications.

3.2 Requirements for a Framework

One of the primary features of a VAE is the ability to provide interaction

through an interface that does not encumber the user. This interface is vision

and so the framework should support the following capabilities:

• Capturing images from a camera.

• Concurrent execution with other parts of the framework.

• Self-calibration.

• Extensible image processing.

40

The framework must provide multi-threading support so that various sec-

tions are able to run concurrently including individual agents. Ideally the

threading support must be transparent to the developer using the framework

library and so all issues with synchronisation should be dealt with internally.

Agents, and indeed other parts of the framework, must be able to send

messages to each other. The process of sending and receiving messages must

be implemented in a thread-safe way and yet remain efficient enough to

prevent slowing down the system.

The input to the framework is via the image capture and processing sys-

tem, but it also needs an output that can provide the user with feedback.

This output could provide information to any of the senses, however, this

framework is primarily concerned with video-augmentation and so should

concentrate on the visual aspect, therefore providing graphical rendering ca-

pabilities.

3.2.1 Support for the Agent

The framework must be designed to deal with many agents. As men-

tioned before they require threading and messaging capabilities that should

be implemented to run as efficiently as possible. They must also have a fast

method of retrieving sensor information from the main thread so as not to

produce a bottleneck in the system.

As suggested in chapter 2 it would also be useful if an agent could request

a small section of image (captured from the camera) so that it would be

possible to perform localised image processing within that agent. To this end,

the framework should provide the capabilities to request and provide image

segments during the same feedback method in which sensor information is

updated.

41

3.3 Design

Since object-oriented design is well suited to developing an agent model

then it makes sense to use a class-based structure for the entire framework.

Ordinarily an application has a main execution thread from which it launches

child threads, therefore the main thread requires an overall controlling class

that instantiates, monitors and communicates with all of the other major

classes. It should have the following responsibilities:

• Launching agents and providing them with feedback about their envi-

ronment.

• Administering the messaging system.

• Controlling the synchronisation of threads.

• Controlling the classes related to image capture.

• Handling user interaction such as key-presses.

• Rendering anything an application requires that is not handled by the

agents themselves.

An object-oriented approach will also provide a framework that is simpler

to extend since classes can be overridden and functionality added. The design

of the system should be adaptable to this type of modification by providing

logical and flexible base class structures.

As mentioned in the agent-based design chapter, the sensor system for an

agent (i.e., the method with which it perceives the virtual and physical world)

should be as efficient as possible. Sensor feedback requires synchronisation

with the main thread and if an application contains many agents then this

could result in a major processing bottleneck. Ideally, the system would

render the world view from the perspective of the agent, but this would be

very inefficient. Instead a simple vector sensor design, as proposed in chapter

2, is more appropriate since it is very adaptable and will consume far less

processing time.

42

wxWidgets contains a well established, cross-platform and simple to use

thread class which can provide a good basis for all objects within OpenIl-

lusionist that require threading. With additional support in the core in-

frastructure, threading can be completely obscured from the developer of an

application. This can be achieved by completely handling the thread loop

inside the framework and then calling various functions at the appropriate

points in the thread cycle. These functions can be overridden in a derived

class without the need to consider how and when they will be executed.

The rendering process must maintain a reasonable frame-rate and so can-

not rely on waiting for an agent to render itself during the thread cycle. In

fact, a rendering context will not normally support rendering from multiple

threads. One possibility is to allow an agent, on initialisation, to provide the

framework with a description of how it is rendered which the renderer can

simply refer to each frame. The major disadvantage to this solution is that

an agent cannot dynamically change how it looks very easily. Therefore it

would be better if an agent was responsible for rendering itself and so func-

tionality must be provided that allows an agent to safely render itself even

while its thread cycle is running in parallel with the rendering thread.

3.4 The OpenIllusionist Framework

Refer to figure 3.1 for an overview of the framework and how the elements

relate to each other. Some of the less important variables and functions have

been excluded to avoid further complication of the diagram.

The high-level design of the OpenIllusionist framework [45] was the result

of an equal contribution from both the author and Justen Hyde, although

much of the implementation was by the author. All other topics covered in

this thesis are comprised entirely of the author’s own research.

43

Fig. 3.1: OpenIllusionist full class diagram.

44

3.4.1 Major Elements of the Framework

This section provides descriptions of each major element within the frame-

work, as seen in the class diagram.

oiVirtualWorld

The VirtualWorld contains most of the status flags and critical section

variables and is also where the map is referenced. The map is what provides

the link to the physical world; it is updated by the capture system and

represents a boolean image of the world where any pixels that are “true”

indicate the presence of a physical object. Since the capture system uses a

fast edge detection method to generate the map it results in an image of lines

that are referred to as walls.

The critical section variables are used by all of the threaded elements

to ensure that safe synchronisation can be achieved. This includes critical

sections for updating the agents, modifying flags and posting messages.

The status flags are used to inform the renderer what should be visible

and to store the current state of the calibration process. Utility functions

are also provided to allow safe access to the current map.

oiCapture

The capture thread is responsible for acquiring live video images from

the frame-grabber, performing the primary image processing and updating

the map. It also handles the photometric and geometric calibration of the

camera, which is explained in more detail in chapter 5.

Since the copying of an image is a time consuming process the framework

employs a double-buffering system. This ensures that updating the map does

not unduly affect other framework elements that rely on the data. It is very

fast because the map is copied into Buffer[1] while the rest of the system is

looking at Buffer[0], then within the critical section the system is told that

45

the current map is now Buffer[1]. This means that the only map updating

code contained within a critical section is a simple flag switch.

oiRender

This class performs all of the relevant OpenGL initialisation and is not

threaded but instead runs as part of the main process. At regular intervals a

timer triggers the “OnPaint” event, which in turn calls the internal “Render”

function. The “Render” function informs the engine to render all of the

agents as well as ensuring that any other elements that need to be displayed

are rendered in the appropriate order.

Agents are sorted into order based on their given type, this then provides

the order of precedence for rendering. Performing the rendering in this way

allows particular agent types to always be rendered before others which is

important for alpha-blending. For example, if a developer was producing

a semi-transparent agent that is capable of moving over other agents then

those other agents must be rendered first so that the transparent agent can

be alpha-blended correctly.

oiMessage

The messaging system is based around a simple class that can be extended,

if necessary, in a custom application. The class contains some basic useful

variables such as ID and coordinate information, but additional member

variables could easily be added by creating a new class that is derived from

it. A “Clone” function is provided which must be overridden in any child

class since it allows the system to make a copy of a message when needed.

oiModule

A module is similar to an agent in that it can send or receive messages and

is threaded, however its purpose is to perform any secondary image process-

ing that is not as time critical as the updating of the map. The framework

contains core modules that can be activated by a custom application, but a

46

developer can also create custom modules descended from this class. Cur-

rently a module informs the rest of the application of its findings via the

messaging system but there are plans to extend it (see section 3.6.1).

Each module owns a buffer (oiModuleBuffer) in which a captured image

can be stored for processing. However, if this buffer was to be updated every

time the module finished processing an image and requested another then

there would be a significant amount of copying going on, especially if there

were a large number of modules. Therefore the framework uses a shared

buffer system in which each module contributes its buffer to a pool.

If a module requests a new image to process then the system first checks

whether or not this module has already processed the latest image in the

buffer pool. If it has then a new image is requested from the capture device

and stored in the next free buffer to which the module is then provided with a

pointer; if the module has not then it is simply given a pointer to the buffer

containing the latest image. Using a thread-safe counting system ensures

that each buffer is correctly handled by the system and that a module will

not delete itself whilst other modules are accessing its buffer.

The benefit of this method becomes apparent if you consider four modules,

one of which is capable of processing images at intervals of one second and

the other three which are capable of processing images at intervals of three

seconds. If each module was provided with its own copy of the latest image

to process then in the space of 9 seconds image copying would have occurred

a total of 18 times. Using the proposed method the fastest module would

dictate how much copying would be required and so only 9 images would

have been copied in total in the same scenario.

oiModuleController

The ModuleController is the owner of all of the modules and handles the

assignment of images to process (as described above) along with the delivery

of messages. It liaises with the capture thread to acquire new images to

47

process but in such a way as to not hinder the performance of the primary

image processing.

oiIllusionistEngine

The engine is the heart of the framework. It owns all of the agents, pro-

vides them with feedback and is the common structure through which they

are synchronised. It is responsible for initialising most of the other classes

within the system and is where the global message queue is handled. A cus-

tom application must override this class and provide implementations for the

“KeyHandler” and “MessageHandler” functions but the developer does not

need to know about the internal workings of the base class and the synchro-

nisation of threads.

3.4.2 Major Methods of the Framework

Agent Feedback

The “AgentFeedback” function is a call-back that each agent uses to syn-

chronise with the world during its cycle. It consists of three main stages:

• Sensors

Each sensor is scanned and the corresponding coordinates are checked

depending on the configuration of the sensor. The map may be checked

for physical objects and other agents may be checked for collision. The

current information is updated via the oiAgentFeedback class which can

then be processed by the agent behaviour method later in the cycle.

• Inbox

If there is a message currently in the inbox then it is assumed that the

agent has already processed it during the previous cycle and is therefore

deleted. This prevents the message queues getting clogged if an agent

does not bother to read its messages. The following section describes

how the inbox is filled.

48

• Buffers

An agent is not just restricted to viewing the world using sensors, if

necessary it can request small buffer images that are relative to that

agent (i.e., located and oriented with respect to the agent). This stage

updates the buffers within the agent so that it can then perform lo-

calised image processing.

Messaging System

When an agent or module sends a message it is handled by the “PostMas-

ter” function inside the engine. If the message is destined for the engine itself

then the function simply calls the “MessageHandler” function (implemented

in the custom application) and then deletes the message. On the other hand,

if the message is destined for agents or modules, the main message queue

is searched to find an empty slot (the length of the message queue is deter-

mined during initialisation of the engine). The message is inserted into the

queue and a recipients counter is set to zero. The postmaster then checks to

see if the message is intended for a module or number of modules and if so

then it is passed to the module controller. If the message is intended for an

agent or number of agents then the postmaster adds a reference for the queue

item to each of the intended agent’s message queues (FIFO implemented as

a circular buffer with a head and tail index). The recipients counter is in-

cremented for each agent that receives the message. The module controller

delivers messages to the modules in exactly the same way.

During the feedback function an agent or module will check their queue

for a message and if one exists then it clones the message and gives the

reference to the agent or module via the inbox variable. It then decrements

the recipients counter and if it was the last object to copy the message then

it deletes the original and makes that slot in the main queue available again.

The messaging system uses critical sections appropriately to avoid poten-

tial conflicts and the structure of it allows for an efficient delivery system

49

that will not have too great an adverse effect on the overall performance of

the system.

The primary drawback to this method of message handling is that an agent

or module is only able to process a single message each cycle.

3.5 Rapid Development

The C++ source code for a derived engine can be found in appendix B.

This complements the sample agent discussed in chapter 2 and together they

represent all that is needed to create a full VAE application. The comments

in the source code provide more detail about how the engine works. As with

the agent, very little code is actually required to produce a working engine.

3.6 Conclusions

In this chapter the requirements of a framework for a VAE are specified.

The elements of the OpenIllusionist framework are then described showing

that it meets those requirements. The examples provided in the appendices

show that a fully-functional VAE can be developed with minimal code. The

technical issues such as threading, image processing, calibration and message

handling are dealt with in the library. This leaves a developer with only the

visual and behavioural design of the application to worry about and allows

for very rapid development.

3.6.1 Further Work

As mentioned in chapter 2, the point at which most thread synchronisation

occurs is the “AgentFeedback” function and is therefore the point at which

speed of execution is crucial. Currently the algorithm for updating the sen-

sor information calculates each location to be checked based on the start and

end coordinates. This could be improved by incorporating a calculation step

in the base agent class that is performed before the feedback synchronisation

50

occurs and stores the relevant coordinates in an array. Then, inside the criti-

cal section, the array can simply be stepped through thus removing the need

for calculation. This means that the sensor coordinate calculations are exe-

cuted during the agent’s own time and not that of the main process. Further

optimisation can then be achieved by only updating the sensor coordinate

arrays when the agent has actually changed the sensor configuration or has

moved.

The module system for extra image processing was a recent addition to

the OpenIllusionist framework and so there are still some major modifica-

tions planned in future development of the library. The calibration system is

currently integrated into the oiCapture class, however modules may require

calibration steps of their own. Therefore, by pulling out the calibration sys-

tem into a separate entity and providing it with access to the modules, it

should be feasible to allow those modules to “plugin” their own calibration

steps alongside the primary ones.

Another plan for the modules is to implement a map overlay system as

an addition or alternative to using messaging. This would allow modules to

present information to the system that can be “seen” via the agent sensors.

It would work in much the same way as the wall map except that each

module could also contain a map which may or may not be seen by an

agent depending on the configuration of its sensors. To implement this the

sensor configuration system must be changed to keep the task of setting

up the sensors as clear as possible. Efficiency is a major concern since it

would provide even more information that the feedback function must search

through.

The experience of an augmented environment is not just limited to vision.

To expand the immersive nature of a VAE it would be desirable to include

audio feedback along with the visual aspect. There are plans to extend the

capabilities of the framework to include an audio thread to which the engine,

agents and modules alike can post messages requesting sounds to be played.

51

Chapter 4

Fiducials

4.1 Introduction

4.1.1 What is a fiducial?

A fiducial (also known as a marker or target) is a symbol that can be

easily recognised and interpreted by a computer vision system in a real scene.

Fiducials have a variety of uses such as:

• Calibration: Fiducials placed in known locations allow a vision appli-

cation to calibrate the orientation and position of a camera relative to

the scene.

• Tracking : An object can be marked so that it may be detected and

then tracked by a vision application.

• Interaction: A fiducial can be used to interact with a computer system.

• Information: They can also be used to associate some information with

a location or object

4.1.2 Examples

One of the earliest uses of the fiducial is in robot placement tasks both

in automated manufacturing and research systems. For example, fiducials

52

can be printed onto circuit boards so that robots equipped with machine

vision can precisely attach components. The accuracy and reliability of this

method is dependent on tightly controlled conditions such as lighting and

camera resolution.

The BBC developed a tracking system for their virtual studios [67] to allow

them to accurately calculate the location of a camera. It allows the computer

rendered elements to always match the actors and objects in the live scene

regardless of where the camera is or how much it moves during a shot. This

system uses a set of concentric-ring fiducials mounted on the ceiling of the

studio, the normal cameras are then fitted with auxiliary cameras pointing

upwards that can track the fiducials. This allows each camera to work out

exactly where it is in the studio and which way it is pointing.

A potential use, in terms of studio production, could be motion capture

where major sections of the body are labelled with fiducials and can be

tracked to produce motion data for a virtual character. Another use could

be the tracking of an individual throughout a building by giving them a

fiducial badge and having cameras in each room. As an example, this would

be useful for analysing the path that people take through a museum and

which sections they spend the most time in.

A few companies are now using fiducials combined with mobile phone

software to provide links to websites. One example is ShotCode [63] who

provide markers which other companies can then place in their advertising

thus allowing customers to connect to a website just by taking a photo of it

with their phone.

4.2 Background

Bar codes are probably the most commonly used fiducials. They are re-

liable and although they can potentially be used to provide coarse location

53

data they do not provide accurate information about the orientation and lo-

cation of the object that they are attached to. They also normally rely on

a set of laser scanners to read them and can be difficult to detect and read

via a vision system with an ordinary camera. Therefore they are not really

suitable for AR applications.

QR Code developed by Denso Wave [51] is a 2-dimensional bar code that

can contain a reasonably large amount of data (such as a URL), with error

correction, in a very small space but like normal bar codes they require a

scanner or camera to be very close for processing. However they do contain

enough information so that orientation could be determined if necessary. See

figure 4.1a for an example QR Code.

(a) QR Code (b) ARToolkit (c) ARTag

Fig. 4.1: A selection of example fiducials.

The most well known fiducial system for AR applications is probably the

ARTookit [35] which uses square fiducials with a thick black border and con-

taining a greyscale pattern or image (figure 4.1b). The detection algorithm

works as follows:

1. Threshold the image.

2. Determine outlines (edge detection).

3. Find any outlines that can be fitted with four connected line segments.

4. The internal image is then compared with known patterns to identify

the fiducial (or eliminate it).

54

The ARToolkit has been used to develop applications where virtual 3D

objects are overlaid on the fiducial [36], to calibrate for shared spaces [35]

and positioning systems [2] and even to provide novel input devices [75]. It

is also one of the few fiducial libraries available open-source and is released

under the GNU GPL.

To address the false detection and misidentification issues that can occur

with ARToolkit an alternative has been developed named ARTag [19]. ARTag

still relies on the outer black border and square shape, but internally it uses

a robust binary coding system arranged in a grid (see figure 4.1c).

(a) ShotCode (b) Region Adjacency Tree

Fig. 4.2: A selection of example fiducials.

The ShotCode fiducials (figure 4.2a) mentioned in the examples (section

4.1.2) appear to be based on a similar system to that developed in Cambridge

called Target Recognition using Image Processing (TRIP) [16]. TRIPcodes

are circular fiducials that incorporate a central black spot and solid ring; the

code, which is stored in two concentric rings around the central ring, can be

broken up into sectors where each sector represents a value. There are two

data rings present in every sector thereby providing two binary digits, but

the combined value 112 is reserved to indicate the orientation of the fiducial

and is referred to as the synchronisation sector. The method contains the

following stages:

1. Threshold the image.

55

2. Edge detection.

3. Edge following and filtering.

4. Apply ellipse fitting algorithm to any potential ellipses.

5. Find concentric ellipses.

6. Decipher the code (with parity check).

Topological fiducials are different to the aforementioned types since they

do not rely on geometry. Instead they rely on the hierarchical structure of

regions or elements within an image, in the case of region adjacency trees

[13] this corresponds to regions of black and white (refer to figure 4.2b). The

method of detecting a topological fiducial is as follows:

1. Adaptive thresholding.

2. Build a region adjacency tree of the entire image.

3. Search within the tree for sub-trees corresponding to known fiducials.

This system has the advantage that a fiducial can take any form such as a

square (as in figure 4.2b), a circle or even a binary picture. It is also far more

resilient to fiducial warping than geometric fiducials which generally need to

be printed onto a planar surface, therefore a topological fiducial could easily

be printed onto clothes for example.

Johnston and Clark [34] developed a topological fiducial system that incor-

porates a tri-level thresholding algorithm. Areas that are definitely white or

black are assigned appropriately and areas that are ambiguous are marked as

such. The system will build a Region Adjacency Graph (RAG) of the entire

image that includes both the known and unknown regions and then, using

a simple set of rules, will merge the unknown regions with known regions.

Since this is performed at the graph level and not the image level it is much

faster. Once the graph has been thinned, a search is performed for a known

56

key RAG which corresponds to a pattern that all of the fiducials contain.

The identity of the fiducial can then be determined since the identification

RAG is always connected to the key RAG via a single black node.

A good evaluation of coding schemes for the data within fiducials can

be found in [57] and although they are not covered in this thesis they can

certainly be applied to many of the fiducial designs presented here, including

the proposed one.

4.3 Requirements

4.3.1 General Requirements for a Fiducial System

The design of a fiducial is greatly dependent on the requirements for the

system and can affect both the way it looks and how it is processed. Some

of the criteria and constraints that a system may include are as follows:

• Reliability

– Detection: A true fiducial should be detected.

– Identification: The identity (code) of a fiducial should be deter-

mined without error.

– Mis-detection: Natural elements in a scene should not be inter-

preted as fiducials.

– Efficiency : The detection and identification algorithms should be

as fast as possible.

• Robustness

– Lighting conditions : Detection should not be affected by illumi-

nation effects such as shadows.

– Deformation: Detection should be possible even when the fiducial

is displayed upon a deformed surface.

57

– Occlusion: If part of the fiducial is occluded it should still be

found and identified correctly.

– Pose: The fiducial should be detected when seen from any angle.

• Size

– Compactness : The fiducial should be as compact as possible.

– Information content : The fiducial should contain as much infor-

mation as possible.

• Accuracy

– Location in image: The location of the fiducial should be accu-

rately determined in the image.

– Location in world : The location and orientation of the fiducial

should be accurately determined in the world.

• Simplicity

– Ease of rendering : The fiducial must be easy to reproduce, for

example, monochrome may be preferable to colour.

4.3.2 Specific Requirements for a Video Augmented

Environment

Many AR systems deal with HMDs and the use of fiducials for registra-

tion of a scene so that computer graphics can be accurately overlaid. The

interest of this thesis lies with the VAE, concentrating on the requirements

for such a system and therefore with specific fiducial properties. The two

primary uses of a fiducial within an augmented environment are calibration

and interaction.

Calibration

Geometric calibration (see chapter 5) of a projector-camera system is nec-

essary so that interaction between the physical and virtual world is seamless.

58

The system must therefore be able to accurately translate between pixel lo-

cations in a captured frame and the corresponding locations in the projected

image. Since calibration is usually performed during the start up phase of the

application, efficiency of fiducial detection is not too important although ex-

cessive times would prolong the calibration stage. The accuracy with which

the system can locate fiducials in the image is of the utmost importance

since this will ultimately affect how well the transform between projector

and camera performs.

The system must perform well regardless of whether fiducials are projected

or printed since a calibration system could use either. Although the ability to

detect fiducials that have been warped (such as those projected onto uneven

surface) is desirable it is not essential since the majority of VAE systems are

projected onto planar surfaces. Calibration fiducials do not need to contain

much information since even if only one fiducial is used it can simply be

displayed in different locations at different times.

Interaction

A fiducial system for calibration may only be run at the beginning, but a

fiducial system for interaction must be running continually. Hence it must be

as efficient as possible to avoid interfering with the operation of the rest of the

VAE and yet also provide believable interaction through fast response times.

There is more of a requirement than with calibration to be able to uniquely

identify fiducials so that different ones can provide different interactions, but

there is no need to have a huge number of combinations since an application

with too many types of interaction would prove too complex for an end-user.

Accuracy is fairly important but not as critical as for calibration; if a

fiducial is being used as a controller for one or more parameters a lack of

accuracy could produce jitter or aliasing. The system must be able to detect

a fiducial regardless of pose (assuming a sensible proportion of the fiducial

is still visible) and if being used as a controller it would be advantageous to

be able to exploit the pose if it can be measured. For example, if a fiducial

59

was to be used as a controller much like a joystick, then accurate calculation

of the pose would allow the system to extract the roll, pitch and yaw along

with the location.

Overall

Both the calibration and interaction elements need a fiducial system that

can function in a variety of lighting conditions since that is a requirement for

the VAE as a whole, combined with the complication that a marker could be

printed or projected. A system that is both fast and accurate would be ideal

since only one implementation would need to be developed to cover the two

elements.

4.4 Proposed Design

4.4.1 Introduction

In this section a fiducial design is proposed that is similar to that in [16]

except that it has an outer boundary and the option of using ternary codes

instead of binary. The system, named Elliptical Luminance Fiducial (ELF),

contains a novel method of decoding the fiducials that means it is resilient to

both shadowing effects and perspective distortion. The algorithms described

here also include a new adaptive edge detection method which provides a

potential improvement in efficiency over the Canny edge operator [11] used

in the original design described in [47].

(a) Binary - 7 (b) Binary - 19 (c) Ternary - 11

Fig. 4.3: Proposed fiducial in some example configurations.

60

4.4.2 Ellipses

Circles were chosen for this design because of certain properties that can

aid in their detection:

• A circle under perspective projection is an ellipse.

• There is a unique affine transformation between a plane circle and the

same circle under perspective projection if the orientations of both are

known.

• Efficient and robust ellipse detection methods already exist.

4.4.3 Segments

Examples of the design can be seen in figure 4.3 where 4.3a represents a

binary configuration with 7 code segments, 4.3b represents a binary config-

uration with 19 code segments and 4.3c represents a ternary configuration

with 11 segments. Due to optimisations the system only deals with integer

angles (0–359) when scanning a fiducial and so segment sizes are chosen ac-

cordingly. Table 4.1 describes the possible configurations and combinations

for the ELF.

Segments Binary Ternary
3 8 27
7 128 2187

11 2048 177147
17 131072 129140163
19 524288 1162261467

Table 4.1: Number of codes available in each of the possible fiducial configurations.

The number of segments available for coding is odd in each case because

one segment is reserved for indicating the orientation of the fiducial. This is

clearest to see in the ternary fiducial (4.3c) and consists of a segment with

outer-half black and inner-half white. The orientation segment is referred to

as the marker.

61

The use of a split segment for the marker suggests that all of the segments

could be divided to hold twice as many data bits, with one particular com-

bination reserved for the marker. However, in practice, locating a change

from white to black required to detect the marker is simpler and requires

less accuracy than scanning two separate rings around the entire fiducial.

Scanning multiple rings would require a much greater accuracy in the el-

lipse parameters since they must also include compensation for perspective

distortion.

4.4.4 Centre Spot

The centre spot in this design provides two functions - verification and

perspective hint. After detecting the outer ellipse the system will then search

for the spot to confirm whether or not it is currently dealing with a valid

fiducial and thus reducing the number of false positives. Additionally, the

centre of a circle under perspective is actually slightly shifted in the minor

axis compared with the exact centre of the ellipse. This shift can provide a

useful clue as to which direction the fiducial is actually tilted.

4.4.5 Ternary

The ternary option (black, grey and white) for this design has remained

in place following the developments since [79]. Ternary has been shown to

be almost as robust as binary [47] and yet provides a considerably larger

number of code combinations (see table 4.1).

4.5 Implementation

The steps necessary for detecting and decoding fiducials of the proposed

design are as follows:

1. Edge detection.

2. Object finding.

62

3. Ellipse fitting.

4. Fiducial transform calculation.

5. Fiducial verification.

6. Fiducial orientation and identification

4.5.1 Edge Detection

Earlier implementations of the system incorporated an optimised Gaussian

blur and Canny edge operator (as mentioned in section 4.4). However, these

were found to be the most time consuming parts of the system and so a new

adaptive threshold based edge detection algorithm was adopted (developed

by John Robinson [58]). This algorithm also addresses the issue of ringing

edges that often occur in images captured from low-end cameras such as web-

cams. The ringing can cause edge detectors to find multiple edges where there

is only a single edge and it also reduces the accuracy of the real edge which

can affect the results in later stages of image processing.

Fig. 4.4: Flow diagram of the edge detection algorithm.

63

Blur

During optimisation of the algorithm it was found that the edge detection

performed almost as well using a simple 3 × 3 box filter as with using a

Gaussian blur filter. Since even a heavily optimised Gaussian filter is slower

than a box filter it was decided that the fiducial library should use the latter.

A 3 × 3 filter would usually require an extra border of pixels around the

image but this means that the border must be created and extra pixels anal-

ysed. Instead, as a compromise for optimisation, the outside pixels of the

image are simply copied to the new blurred image and the filter is applied

to every pixel just inside the image boundaries.

Algorithm Overview

The diagram (figure 4.4) provides an overview of the steps involved in the

adaptive edge detection algorithm. There are a greater number of steps in

this process than there would be in an alternative method such as Canny,

but since most of the steps are being performed using quarter-size images

(half the width and height of the original captured image) this method still

provides a significant performance increase.

4.5.2 Object Finding

Object detection is simply a case of following edge chains within the edge

detected image. It is implemented using a recursive function to follow an

edge in any direction. It would normally be necessary to store the nodes (x,y)

of a chain in the order that they were found, especially if later processing

stages rely on this order (e.g. if there was a need to calculate the smoothed

gradient of the edge so that peaks and troughs could be located). However

the ellipse fitting function described next is not affected by the node order

and therefore the algorithm can be optimised. Ordinarily an object finder

would use a reference image where it can indicate which pixels have already

been processed (otherwise the recursive function would get stuck repeating

pixels and cause a stack overflow) and it would add nodes to a chain along

64

Fig. 4.5: Flow diagram of the object finding algorithm.

the way (a linked list being the most efficient way of doing this). This means

that memory is being declared each time a node is added and since memory

allocation can be slow it has a negative effect on the efficiency. To take

advantage of the fact that the nodes are not required to be in order, an

alternative has been implemented (figure 4.5).

4.5.3 Ellipse Fitting

An ellipse can be represented in a number of ways, usually as either a

polynomial or [xo yo θ a b] where (xo, yo) are the coordinates of the

ellipse origin, θ is the angle, a is the length of the major axis and b is the

length of the minor axis (see figure 4.6). Ellipse fitting is concerned with

finding ellipse parameters that fit the majority of nodes in an object.

When first implementing ellipse fitting a simple method was developed

based around the known properties of an ellipse. The method worked as

follows:

1. Find the two nodes that are furthest apart and assume that these lie

on the major axis.

2. Find the centre of the major axis to determine the ellipse centre.

65

Fig. 4.6: Parameters of an ellipse.

3. Calculate a line from the centre that is perpendicular to the major axis.

4. Find the closest nodes to that line to determine the length of the minor

axis.

This algorithm proved to be very unstable and a slight improvement was

made by adjusting the rotation of the major axis based on distances from

half-way along the axis to the outer edge. Equation (4.1) is the calculation for

adjustment where θ′ is the new angle for the major axis, θ is the old angle and

a is length of the estimated major axis. d1 and d2 are the distances between

the major axis and the ellipse edges on a vector that is perpendicular to the

major axis and intersects it at 0.5a.

θ′ = θ + tan−1

(
d1 − d2

0.5a

)
(4.1)

This adjustment did not provide enough of an improvement and the ellipse

fitting still suffered severe errors primarily caused by a lack of sub-pixel

accuracy in the edge detection combined with the fact that only a few of

the nodes are actually used. A slightly more advanced method that is still

based around the geometric properties of the ellipse is proposed in [77]. It

processes all of the edge pixels in an image and attempts to classify them

66

as belonging to different ellipses at the same time as producing the ellipse

parameters. Although it is fairly efficient it also suffers from problems with

accuracy and requires that every combination of pixel pairs are considered.

At this stage it was decided to attempt an approach based around statis-

tical techniques. The Hough transform (originating from Hough’s work in

[30]) is probably the most common way to extract lines and circles. It calcu-

lates straight lines through each node at different angles and then calculates

at what angle and distance a perpendicular line would go through the ori-

gin. The data for all nodes is overlaid and the point at which the majority

meet provides an estimate of a straight line through the nodes. This can be

expanded by including circle radius as a third parameter to allow the estima-

tion of circle or arc segment parameters. The main problem with the Hough

transform is that it is rather slow and even with an optimisation where the

edge direction provides a starting point for the angle it is too inefficient for

real-time fiducial detection.

A probabilistic method [70] that incorporates elements of Random Sample

Consensus (RANSAC) [24] is based around tracking of ellipses. At the time

it was developed real-time robust ellipse detection was not easy to achieve on

commodity hardware and so this method presented a unique technique that

used tracking lines and was aimed specifically at ellipses. These lines were

arranged around an ellipse (already detected using conventional methods) at

perpendicular angles to the gradient of the point at which they were placed.

In each frame that followed, these lines were used to find potential edges

and then a RANSAC like voting method was employed to choose which edge

points should be used to update the ellipse parameters.

Other regression techniques such as Least Mean Squares (LMS) can pro-

vide a much faster solution to the problem of calculating ellipse parameters.

The method described in [37] uses a fast line extraction algorithm to find

arc segments as short straight lines and then a least squares ellipse fitting

algorithm is applied to extract the ellipse parameters.

67

Direct Least Squares Ellipse Fitting

The chosen technique for ellipse fitting was developed at the University of

Edinburgh by Fitzgibbon et al. [25, 49] and is a direct least squares method.

Their research shows that a direct solution can be achieved without the need

for an iterative method. This solution has been found to be stable, efficient

and provides very accurate results. In their workings they show that ellipse

fitting can be solved by minimisation of (4.2) with an imposed constraint

(4.3).

E = ‖Da‖2 (4.2)

aT Ca = 1 (4.3)

where D is the design matrix (see (4.4)), a are the parameters of a polynomial

that describes the ellipse (a = [a b c d e f]T), C is the constraint

matrix defined as (4.5) and n is the number of data points to be processed.

D =


x2

1 x1y1 y2
1 x1 y1 1

x2
2 x2y2 y2

2 x2 y2 1
...

...
...

...
...

...

x2
n xnyn y2

n xn yn 1

 (4.4)

C =



0 0 2 0 0 0

0 −1 0 0 0 0

2 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(4.5)

This leads to the simultaneous equations (4.6) of which the solution to the

eigensystem produces a single positive eigenvalue. The corresponding eigen-

vector then represents the parameters of an elliptical polynomial. Whereas

other methods of ellipse fitting can be destabilised by noisy data, the unique

68

solution provided by this method has a low eccentricity bias which will always

produce an ellipse and therefore remain stable.

Sa = λCa

aT Ca = 1 (4.6)

where S is the scatter matrix (S = DT D).

C++ Realisation

Fitzgibbon et al. provide an implementation of the ellipse fit algorithm using

6 lines of Matlab code [25]. However, the OpenIllusionist framework is writ-

ten in C++ and so an implementation in this language was required. The

following list outlines the algorithm used in the fiducial library:

1. Construct the design matrix D.

2. Calculate the scatter matrix S = DT D.

3. Apply the constraint matrix C.

(a) Find the Cholesky decomposition of the scatter matrix (since

Cholesky is twice as fast as standard LU decomposition for solving

linear equations and is far simpler than finding the inverse of the

scatter matrix) L where S = LLT .

(b) Calculate the inverse Cholesky L−1 which provides the inverse of

the scatter matrix as S−1 = (L−1)T L−1.

(c) Multiply the inverse Cholesky by the constraint matrix by the

transpose of the inverse Cholesky M = L−1C(L−1)T which is

equivalent to M = S−1C.

4. Initialise the eigenvector and eigenvalue matrices Evec and Eval.

5. Solve the generalised eigensystem using a Jacobi transformation.

69

6. Multiply the transpose of the inverse Cholesky with the eigenvector

matrix E ′
vec = (L−1)T Evec.

7. The method described here results in negated eigenvalues so determine

the only negative eigenvalue and extract the corresponding eigenvector.

This vector (a) corresponds to the solution of the polynomial and the

ellipse parameters can be calculated directly from it.

Descriptions of the Jacobi transformation and the various decomposition

methods can be found in [50].

Final Checks

Since the direct least squares method always returns an ellipse solution

the system must then confirm whether or not the object really is an ellipse

and whether its parameters are sensible. First of all the origin of the ellipse

is checked to ensure it is actually within the boundaries of the image. Then

the major axis is checked to make sure it is not larger than the image.

Fig. 4.7: Focus points of an ellipse.

Finally the fitness of the ellipse is evaluated by exploiting a property of

the elliptical focus points. These foci are found along the major axis at a

distance (f) from the origin given by (4.7). If the distance from any point

of the perimeter to one focus point (d1) is summed with the distance to the

70

other focus point (d2) then it is equal to twice the length of the major axis

as in (4.8). The diagram in figure 4.7 is an example where d1 is the distance

between a node on the ellipse p and focus point f1 and d2 is the distance

between p and focus point f2.

f =
√

a2 − b2 (4.7)

d1 + d2 = 2a (4.8)

Scanning through all of the nodes in an object, tallying those that satisfy

the equation (4.8) within a threshold and then dividing the tally by the total

number of nodes results in a fitness value between 0 and 1. Any object in

which more than 95% of the nodes fit the ellipse parameters (i.e., a fitness

value > 0.95) is accepted as an ellipse and passed through to the next stage

of fiducial detection.

4.5.4 Fiducial Transform Calculation

To allow all of the following stages to treat each fiducial in the same way,

regardless of their orientation in the image, a transform is required. This

will provide a conversion between fiducial space (circular) and image space

(elliptical). Since an elliptical space can be described by an affine transfor-

mation (as mentioned in section 4.4.2) the calculation of a transform matrix

is trivial.

A =

[
a cos θ −b sin θ

a sin θ b cos θ

]
(4.9)

A−1 =

[
cos θ

a
sin θ

a
− sin θ

b
cos θ

b

]
(4.10)

The equation (4.9) describes the affine transformation A where a is the

length of the major axis, b is the length of the minor axis and θ is the angle of

the ellipse relative to the image axes. The second matrix (A−1) provides the

71

inverse of the transformation and although not needed for fiducial detection

it can be used by an application to apply 2D or even 3D overlays.

4.5.5 Fiducial Verification

Fiducial verification is broken up into a small set of tests and corrections.

They not only verify that the object currently being analysed is a fiducial

but they also help correct for slight errors due to perspective. The centre of

the ellipse can be found very accurately, but as described in section 4.4.4 the

centre of a fiducial at an acute angle does not necessarily lie precisely in the

elliptical centre. This can lead to errors in the fiducial identification stages

that follow. The centre spot allows the system to correct for the perspective

shift and therefore improve the accuracy of later stages. The verification

stage consists of the following elements:

1. Contrast check.

2. Confirmation of the fiducial border (inside and out).

3. Centre spot check.

(a) Check for an offset.

(b) Correct the temporary centre coordinates.

4. Centre spot tally.

(a) Scan centre spot.

(b) Correct fiducial centre and calculate perspective direction.

The example images in figure 4.8 are orthogonal to the camera and are

therefore perfectly circular. For the purpose of illustration it is assumed that

the elliptical minor axis is vertical and the major axis is horizontal.

72

(a) Contrast check (b) Border check

(c) Centre spot check (d) Centre spot tally

Fig. 4.8: Images of fiducials indicating how they are processed at each stage.

73

Contrast

With the proposed fiducial design there will be both black and white re-

gions found towards the centre of the ellipse. This first step simply scans a

line through the centre as indicated in figure 4.8a by the red line. Maximum

and minimum grey levels are recorded and if the difference between them is

lower than a threshold then the fiducial is rejected since it is deemed to have

too low a contrast level for accurate identification.

Border

The next step confirms that the fiducial has a black border surrounded by

white. Figure 4.8b shows the points at which the fiducial is tested along the

major and minor axes. The points represented by the red dots are measured

exactly in the centre of the fiducial border and are expected to be black. The

points represented by the blue dots are measured at a fixed distance outside

of the fiducial and are expected to be white.

Centre Spot Check

A check, as illustrated in figure 4.8c, indicates whether or not the centre

spot is actually located close to the origin of the ellipse. This simply tests

whether the very centre is black and either side is white. If this fails then

it could mean one of two things: either the ellipse being processed is not a

fiducial or the shift due to perspective is significantly large. The check is

performed along the minor axis since that will always be the direction of tilt

and therefore the axis in which perspective shift will occur.

In case a failure is due to shift the algorithm then attempts to compensate

for it. It scans up and down the minor axes, alternating direction with each

step to avoid bias. At each step it performs the check of the same three

points and if it finds the correct combination of white and black then it

stores the current origin coordinates temporarily. If the correct combination

is not found then the ellipse is rejected.

74

Centre Spot Tally

The temporary origin coordinates are now used to provide a more accurate

centre location using a tally. A line is scanned (as in figure 4.8d) along the

minor axis and a tally of the consecutive white-black-white regions is stored.

The same scan is also performed in the major axis except a tally is not

taken. If there are more than two transitions in either scan then the ellipse is

rejected. The two white tallies from the minor axis then provide the means

with which to calculate a more accurate fiducial centre using the following

equations:

d =
(t1 − t2)

2
(4.11)[

xo

yo

]
= A[0 d] +

[
x

y

]
(4.12)

In (4.11), d is the shift distance, t1 is the lower white tally and t2 is the

upper white tally. In (4.12), (xo, yo) are the corrected origin coordinates, A

is the affine transform matrix (calculated in section 4.5.4) and (x, y) are the

temporary origin coordinates.

The reliable extraction of ellipse parameters should ensure that scanned

lines will always be appropriately placed. Although analysing areas may

provide slightly more accurate information, the scanning of a single line will

always be faster.

4.5.6 Fiducial Orientation and Identification

The final stage of detection is concerned with scanning the segments within

the fiducial and determining both its orientation and identity. To improve

upon the efficiency of the steps within this section the algorithms described

use an integer step size of 1◦ combined with sine and cosine lookup tables.

The following list describes the steps involved in reading a fiducial:

1. Grey Ranges - Measure the grey range at each angle.

75

2. Gather Data - Construct an array containing the information at each

angle.

3. Collate Data - Classify and tally data.

4. Merging

(a) Remove boundaries.

(b) Merge consecutive segments.

(c) Merge ends if necessary.

5. Marker - Locate the marker segment.

6. Fit Data - Attempt to fit the tallied data (multiple pass).

7. Identify - Calculate the identity of the fiducial.

Each of the steps, described in the following sections, must be able to

read pixel values from the original image. Therefore the transform described

earlier combined with simple linear interpolation provides sub-pixel sampling.

Every point within the fiducial is represented as polar coordinates (angle θ

and radius r) which is converted to cartesian coordinates (xf , yf). The ellipse

transform is then applied to give (x′, y′) where (xo, yo) is the centre of the

fiducial.

[
xf

yf

]
=

[
r sin θ

r cos θ

]
(4.13)[

x′

y′

]
= A

[
xf

yf

]
+

[
xo

yo

]
(4.14)

Grey Ranges

Calculating the minimum and maximum grey levels for every angle that is

to be scanned around the fiducial provides the means with which to adapt to

local light and shadow effects within the image. To this end, the first step is

76

(a) Grey Scan (b) Data Scan

Fig. 4.9: Images of fiducials indicating how they are scanned.

to gather the levels as illustrated in figure 4.9a where the red line represents

a single angle to scan and the blue line indicates the direction of circular

scanning.

Gather Data

Using the local minimum and maximum grey levels to scale values, data

is scanned from around the fiducial and stored in an array. Each scan line

starts and ends inside the data segment with a buffer region each side as

shown by the red region in figure 4.9b. The buffer helps to prevent slight

inaccuracies due to perspective from causing erroneous readings.

During a single scan line the algorithm calculates the average value (after

scaling) and also monitors any transitions. If a single transition is found then

the array item is tagged with the value −1 else the average value for the scan

line is used.

Collate Data

Each value (v) in the array is then classified (c) as described in equation

(4.15) for binary fiducials and equation (4.16) for ternary fiducials. If v = −1

the item is classified as a marker. LOW , MID and HIGH are the classifica-

77

tion thresholds (systematic preliminary tests have shown that suitable values

are 64, 128 and 196 respectively).

cb =

{
0 , if v < MID

1 , if v ≥ MID
(4.15)

ct =


0 , if v < LOW

1 , if LOW ≤ v ≤ HIGH

2 , if v > HIGH

(4.16)

The data is tallied into groups and the system creates a new group each

time there is a change in the data. The boundary flag is determined at each

change and is dependent on the size of the group. For each group it stores:

• A tally of the number of items.

• The angle at which the section started.

• The value of the section (0, 1 or 2).

• Whether or not the section is a marker.

• Whether or not the section is a boundary.

Merging

Data merging has three sections. First of all boundary removal simply

removes any groups that are small enough to have been classed as boundaries.

The removal of boundaries could mean that two or more groups of the same

value then become adjacent and so the second section involves combining

these into larger groups. Finally the algorithm performs a check of the two

items at each end of the array. Since the previous steps involved scanning a

full circle there is a good chance that the scan will have started in the middle

of a segment and so the items at each end of the array will be the same; if

this is the case then they are merged.

78

Marker

Determining the direction of the marker is simply a case of finding the

appropriate group. All of the groups are processed and any that are flagged

as markers are checked that they are a reasonable size and therefore not

an anomaly. If only one marker is found then this is a valid fiducial else

it is rejected. Since the starting angle (s) and the tally (t) for the group

are known, the marker angle (φ radians) is simply calculated as in equation

(4.17).

φ =
π(s + t

2
)

180
(4.17)

Fit Data

This is the most important step in identifying the fiducial and involves

a multi-pass attempt (if necessary) to fit the data to the expected fiducial

type. In the first attempt a segment size threshold (ST) is set which is

adjusted on subsequent attempts. Each group is then processed in sequence

starting with the first one following the marker segment, looping around and

ending with the one before the marker. The fiducial type dictates how many

segments there are and the size of a segment (SS). Each group size (g) could

potentially represent a single or multiple data segments and so it is divided

by the segment size to provide an integer estimate of the number of segments

(n). However, inaccuracies in the angle stepping due to perspective distortion

can result in disproportionately sized groups and so the remainder (r) of the

aforementioned division is then compared against the threshold and if it is

greater then the number of segments is incremented by one, refer to equation

(4.18).

n = b g

SS

c+

{
0 , if r ≤ ST

1 , if r > ST

(4.18)

When the estimated number of segments has been found the corresponding

number of digits are added to the code string with the value for that group. If,

79

after processing all of the groups, the number of digits is found to correspond

to the expected number of segments for that fiducial type then the algorithm

proceeds to the final stage. If not then the segment size threshold (ST) is

adjusted and another iteration is attempted. The threshold is incremented

if the string length was too high and decremented if too low. If the number

of attempts reaches a specified limit then the fiducial is rejected.

Identify

The final step simply involves converting the binary or ternary string of

numbers into a single identification number.

4.6 Optimisation

A simulation over a range of typical fiducials was performed to optimise

the design and implementation of the proposed method. A test platform

was developed which can vary some of the parameters involved in drawing

and detecting the fiducial. All parameter values are normalised such that a

radius of 1.0 corresponds to the outside edge of the fiducial.

Fig. 4.10: Fiducial parameter dimensions.

80

The diagram in figure 4.10 depicts the main parameters of interest which

are to be optimised. The buffer size (b) has an effect on most elements of

the fiducial and is therefore the first parameter to be tested. It represents

the gap between the radius at which an element is drawn (such as a data

segment) and the radius at which it is scanned. The other parameters consist

of the segment start (s), segment end (e) and the centre spot radius (c).

4.6.1 Test Platform

The test platform consists of a renderer capable of drawing fiducials at

any orientation and scale, the fiducial library and two threads to test com-

binations of parameters. This use of two threads allows the platform to take

advantage of multiple processors if available.

Renderer

The renderer utilises the fiducial library to draw a particular fiducial into

a bitmap to be used as a texture in OpenGL. This texture is mapped onto a

single polygon which is then rendered to an off-screen buffer at the requested

angle and scale. It generates images such as those in figure 4.11.

Fig. 4.11: Internal rendering of fiducials for optimisation tests.

Test Threads

Each thread is presented with a different range of fiducial types to deal

with. It loops through parameter combinations, fiducial types, codes, angles

and scales requesting images from the renderer. It processes each image with

the fiducial library and then checks whether it succeeded in detecting and

identifying the current fiducial. The thread tallies the successes and failures,

writing them to file as it goes (one line for each parameter combination).

81

Parameter Ranges and Combinations

The following table (4.2) provides the ranges over which the various param-

eters are to be tested. The ranges were selected based on the requirements of

the proposed method and to also yield as much variation as is possible and

sensible.

Parameter Range Step Size
Buffer Size (b) 0.01 – 0.10 0.01

Segment Start (s) 0.20 – 0.80 0.01
Segment End (e) 0.60 – 0.95 0.01

Centre Spot Radius (c) 0.05 – 0.40 0.01

Table 4.2: Parameter ranges for testing.

Some combinations of parameters over the ranges described can be ig-

nored, for example the segment start cannot be greater than the segment

end (s < e must hold true). The test platform automatically detects invalid

combinations and skips over them.

The remaining variables are concerned with the inner iterative loops and

provide multiple tests for each combination of parameters. The fiducial types

and number of possible codes were listed in table 4.1. The angles used are

−60◦ to 60◦ at increments of 30◦ in both the x-axis and the y-axis (as seen in

figure 4.11). Most of the parameter tests involve little variation in the scale

except for those dealing specifically with the centre spot radius (see section

4.6.4 for more details). This is due to the centre spot being the smallest

feature of the fiducial and is therefore likely to be the first element affected

by distance.

Method

Although an optimisation via a method such as gradient descent could

provide a much faster result, the following sections perform an exhaustive

search instead. The reasoning behind this is apparent from the following

82

graphs in which some parameter changes can cause sudden shifts or discon-

tinuities thus producing an optimisation surface that is not suitable for a

descent method.

4.6.2 Buffer Size

The sheer magnitude of parameter combinations and other variables would

result in a prohibitively long test and so for the buffer size estimation a

subset of the combinations was selected. The full variation of parameters

as described in table 4.2 were used, but only a single fiducial type and code

were included.

Each line in the results, shown in figure 4.12, represent the performance

against buffer size for a fixed set of the remaining parameters (centre spot,

segment start and end). Although rather variable in shape there is a point

at which every line reaches 100%. This point corresponds to a buffer size of

0.05 and so this value is used in all further optimisation tests.

The next graph (figure 4.13) presents the reasons for detection failure at

each buffer size, averaged over the remaining parameters. It can clearly be

seen that the dominant effect of buffer size is on the ability to successfully

check outside of the border. This could be due to the point of measurement

being too close to the edge of the fiducial and therefore detecting low values

instead of high when the edge is out of focus.

4.6.3 Segment Start and End

With the buffer size fixed, the segment start and end were considered next.

The tests were performed over the full ranges described in section 4.6.1 and

the results analysis first concentrated on the segment end. The segment end

is important for the detection of the fiducial perimeter since a narrow border

could result in the outer edge not being visible at greater distances or smaller

scales. It also has an effect on the data segment size and so the results are

83

Fig. 4.12: Graph of buffer size results.

84

Fig. 4.13: Reasons for failure.

85

presented as in figure 4.14. Each line in the graph represents the performance

against segment end for a fixed centre spot radius and segment start.

Fig. 4.14: Graph of segment end results.

A common peak amongst those lines which actually start at a value of 0.6

is that at a segment end radius of 0.66. When compared with the graph of

figure 4.15 this point corresponds to a combined dip in the failures at marker

detection and the low end of the failures due to ellipse and contrast detection.

The segment start radius is considered next. As with the previous graphs,

each line in figure 4.16 represents the performance of this parameter against

other fixed parameters (centre spot and segment end).

The results show a distinct stepping although this is actually directly re-

lated to the segment end value. With a lower segment end the results for the

86

Fig. 4.15: Reasons for failure.

87

Fig. 4.16: Graph of segment start results.

segment start are confined, due to the restrictions described in section 4.6.1,

to even lower values. This causes a drop-off in performance as the segment

start comes into close proximity with the segment end. Since the highest step

corresponds to the lower values for segment end this corroborates the results

seen in figure 4.14. The value of 0.38 provides the highest result across all of

the lines in the topmost step.

The reasons for failure (figure 4.17) across all of the tested parameters and

variables are as expected. Ellipse detection remains fairly consistent up until

the point where the segment start position reduces the possibilities for the

segment end position. The marker detection failures increase, again due to

the segment start and end points getting closer together, although the drop

towards the end is purely related to the number of parameter combinations.

88

Fig. 4.17: Reasons for failure.

89

4.6.4 Centre Spot Radius

Next, with all other parameters fixed, the centre spot radius is optimised.

Since the only parameter now being adjusted is the centre spot the effects

of the scale variable can be fully tested. A difference in scale of up to 0.3 in

increments of 0.02 are applied via the rendering system alongside the same

fiducial types, codes and angles used in previous tests.

Fig. 4.18: Graph of centre spot results.

The graph for the centre spot results (figure 4.18) is much simpler than

the others because it represents the last parameter to be varied. It shows

a clear peak around the value of 0.15 and in the failure graph (figure 4.19)

most elements remain fairly constant.

90

Fig. 4.19: Reasons for failure.

4.6.5 Local Optimisation

Finally the segment start, end and centre spot are all varied locally around

their optimised values (±0.01 at increments of 0.002). It was found that the

centre spot radius had little effect on the overall results and so was left at

a fixed value of 0.15. The segment start and end are then plotted as a 3D

surface (figure 4.20).

The 3D surface contains distinct peaks and troughs running in channels

diagonally through the segment start and end axes. The point at which the

largest average peak area occurs is at a start value of 0.378 and an end value

of 0.664. To recap, the optimised fiducial parameters to be used in all further

tests can be found in table 4.3. The resulting fiducial is shown in figure 4.21.

91

Fig. 4.20: Local optimisation of parameters.

Parameter Value
Buffer Size (b) 0.05

Centre Spot Radius (c) 0.15
Segment Start (s) 0.378
Segment End (e) 0.664

Table 4.3: Optimised parameter values.

92

Fig. 4.21: The optimised fiducial design.

4.7 Testing

The following sections describe a number of tests performed using the

optimised fiducial design. The results are then presented in section 4.8.

4.7.1 False Positives

The ability of the ELF algorithms to reject non-fiducials is important since

false positives could cause calibration mechanisms to fail or user interaction

could become confusing. To this end, the algorithms can be tested by ap-

plying them to process a large number of images from a variety of sources

and counting the number of fiducials found. Since the proposed fiducial de-

sign is circular, including source footage that contains ellipses will allow the

rejection capabilities at later stages of detection to be tested.

4.7.2 Size of Fiducial

A camera within a VAE could be placed a large distance from the surface

that is to be augmented. If the system requires fiducials of a large scale

in the image this could lead to prohibitively large fiducials, especially for

user interaction. Therefore the fiducial detection algorithms must be able to

cope with fiducials of a reasonably small size. This can be tested using the

93

framework developed for optimisation through the rendering of increasingly

distant (or decreasingly scaled) fiducials over the ranges of codes and angles

described in section 4.6.1.

Since testing in this way is artificial, actual captured images of small fidu-

cials are also tested in the comparison section (4.7.3).

4.7.3 Comparison

The ARToolkit was selected for comparison since it is probably the most

widely used fiducial library to date and the C++ source code is freely avail-

able to download.

A simple test framework was developed consisting of two applications. The

first simply captures frames from a USB camera and saves them as bitmaps.

The second application utilises both the ARToolkit library and the ELF

library to process a sequence of bitmaps. The output consists of text files of

results and copies of the processed bitmaps in which any detected fiducials

are indicated.

A test sheet was produced containing both ELF and ARToolkit fiducials

(see figure 4.22). Capturing the test data using a single sheet means that both

fiducial types are analysed under the same lighting and camera conditions.

The two ARToolkit fiducials used are labelled “Hiro” and “Kanji” and are

standard patterns that are included with the library. The ELF fiducials are

7-segment ternary with codes 0, 42, 588 and 2186.

The ARToolkit has a potential advantage here in that it is only concerned

with matching the two aforementioned patterns. The ELF system, however,

works by reading the code and so there are 2187 combinations that it could

identify in this particular case.

Groups of images were then captured under the following conditions:

94

Fig. 4.22: Fiducial test sheet. When printed the fiducials each have a width of
47mm.

95

• Distance - see figure 4.23a

The camera was slowly moved further away with the test sheet fixed.

• Fast Moving - see figure 4.23b

The camera was fixed and the test sheet was moved quickly so as to

create motion blur.

• Forced Over-Exposure - see figure 4.23c

The camera was fixed and manually set to over-expose the image while

the test sheet was moved and tilted slowly.

• Forced Under-Exposure - see figure 4.23d

The camera was fixed and manually set to under-expose the image

while the test sheet was moved and tilted slowly.

• Local Shadows - see figure 4.23e

The camera and test sheet were fixed and a single light source was used

to produce changing local shadows.

• Low Light - see figure 4.23f

The camera was fixed and the lighting level set low while the test sheet

was moved and tilted slowly.

• Normal Light - see figure 4.23g

The camera was fixed while the test sheet was moved and tilted slowly.

• Very Low Light - see figure 4.23h

The camera was fixed and the lighting level set very low while the test

sheet was moved and tilted slowly.

The images were processed using the second application and the results

collated manually. The software was then modified to measure the efficiency

of different aspects of the ELF detection algorithm and run again using the

same test images.

96

(a) Distance (b) Fast Moving (c) Over-Exposure

(d) Under-Exposure (e) Local Shadows (f) Low Light

(g) Normal Light (h) Very Low Light

Fig. 4.23: An example from each group of test images.

97

4.7.4 Binary or Ternary?

The final test is concerned with the reliability and benefits of using ternary

fiducials. Building on the same tools used for the comparison with ARToolkit

in section 4.7.3 another test sheet was produced (see figure 4.24). The test

sheet contains a single fiducial of each type with codes chosen that provide

a reasonable amount of variation within the structure of the fiducial.

As in the previous section, images were captured under different conditions;

in this case distance, low light and normal light. The software would then

perform multiple passes on the images looking for each type of fiducial and

outputting the results as images with overlaid fiducial identities.

The system developed for the optimisation of the fiducial design was also

adapted so that tests could be performed on simulated data. Since the cap-

tured images are limited to testing only one of each type of fiducial, the

simulation allows for testing of a large selection of code combinations. Each

fiducial was tested at the same scales and angles as in section 4.6.1 and the

results were then collated and output to file.

4.8 Results

4.8.1 False Positives

The false positives test was run on a total of 198,631 frames from a variety

of sources and the results are displayed in table 4.4. A section of the film “Le

Mans” was included due to the large number of circles present in the footage

(racing car tyres), although there was only a single false positive found in

32,229 frames which was not a tyre and can be seen in figure 4.25c. The

Honda television commercial “The Cog” was also included because of a high

quantity of ellipses in the footage and fiducials were mistakenly identified in

four of the frames (see figure 4.25a).

98

Fig. 4.24: Binary against ternary fiducial test sheet.

Source Footage Dimensions Frames Fiducials
Alien vs. Predator (Film) 704× 288 78914 8

Hex (TV) 640× 352 67506 0
Honda (Commercial) 720× 480 3131 4

Kill Bill (Film) 400× 160 3875 0
Le Mans (Film) 347× 234 32229 1

Reservoir Dogs (Film) 416× 176 3278 0
Scrubs (TV) 512× 384 6326 0

Shaun of the Dead (Film) 432× 184 3372 0

Table 4.4: False positive results.

99

The “Alien vs. Predator” clip contained 78,914 frames in which eight false

positives were found. These were detected in a circular section of a satellite

with dark and light patches that could easily be mistaken for fiducial elements

(refer to figure 4.25b). No fiducials were found in any of the remaining footage

which consisted of clips from both film and television. The false positive

detection rate is therefore 0.0065% across all of the test data.

(a) Honda

(b) Alien vs. Predator (c) Le Mans

Fig. 4.25: False positives detected in test footage.

4.8.2 Size of Fiducial

The graph in figure 4.26 indicates that a fiducial with a radius of 11 pixels

or more should be detectable. This equates to a fiducial area of 380 pixels

which is a large improvement over the original design proposed in [47] which

started detecting fiducials reliably at a size of approximately 800 pixels.

100

Fig. 4.26: Fiducial size performance results.

The range between 4 and 11 is not a smooth, steep slope as expected. This

is primarily due to the sub-pixel changes in the rendered images which cause

sudden failures in the ellipse detection when the inside sections merge with

the outer ring. Another major reason is the failure of the marker detection

and since both of these reasons are binary (either pass or fail) they can

produce rather erratic results when approaching the thresholds.

4.8.3 Comparison

Figure 4.27 provides examples of the output images from the testing soft-

ware. Image 4.27a is the output from the ARToolkit thread where the red

numbers 0 and 1 represent successful detection of the “Hiro” and “Kanji”

fiducials respectively. Image 4.27b is the output from the ELF thread and

each red number represents the code read from that fiducial.

Figure 4.28 shows the proportion of fiducials not detected at all. Under

the conditions of shadowing, low light and under-exposure the ability of

the ARToolkit to detect the outer square of the fiducial is seriously affected

whereas the proposed system shows far greater resilience.

101

(a) ARToolkit (b) ELF

Fig. 4.27: An example of output images from the testing software.

Fig. 4.28: Fiducial comparison results — not found.

102

Figure 4.29 presents the proportion of fiducials that were detected but in-

correctly identified. The ARToolkit suffered the most problems with fiducial

identification during the distance tests with nearly 30% incorrect. The pro-

posed system was most affected when the camera exposure was forced high

or low which causes the fiducial centre estimate to be perturbed. This in

turn affects the accuracy of the fiducial scanning stages resulting in a higher

number of misidentifications.

Fig. 4.29: Fiducial comparison results — incorrect identification.

The graph in figure 4.30 compares the true positives (i.e., detected and

correctly identified) found by each fiducial system through all of the testing

conditions. It is clear that the proposed fiducial design performs better or as

well as the ARToolkit in all but one of the conditions. In the case of forced

over-exposure the ability of the ELF detection falls well below that of the

ARToolkit. This appears to be due to inaccuracies in the calculation of the

fiducial centre and is most likely caused by the severe ghosting generated by

the camera inside the edges which affects both the edge detection and the

pixel values scanned inside the fiducial.

The section of the graph relating to normal lighting condition actually

reports slightly lower performance than some of the other sections. This is

103

due to the variation in angle of the test sheet as it was moved during frame

capture. This resulted in that particular set of images containing fiducials at

greater angles than in other sets and thereby reducing the detection rate.

Fig. 4.30: Fiducial comparison results — true positives.

As mentioned earlier, the ARToolkit has the advantage here since it only

needs to discriminate between two fiducial types whereas the ELF contains

2187 combinations.

Efficiency

The following table (4.5) provides the time taken for each stage of the

fiducial detection system to run. The times are an average across all of the

test images from the ARToolkit comparison. The images were captured from

a USB camera at a resolution of 640 × 480 and processed on a 2GHz AMD

machine with DDR memory.

The total time of processing was 28.73 ms which corresponds to an average

frame rate of 34.8 fps. The largest bottleneck in the system is the edge de-

tection which accounted for half of the overall processing time. The scanning

of the fiducial for verification and identification is also a major concern when

it comes to optimising the algorithms further.

104

Stage of Fiducial Detection Time (ms)
Edge Detection 14.33
Object Finding 3.74
Ellipse Fitting 0.83

Verification and Identification 9.82
Total 28.73

Table 4.5: Algorithm performance results.

In comparison, the ARToolkit averaged 5 ms for the entire detection pro-

cess. Although it has the advantage of many more years of development over

ELF with plenty of people working on optimisations, it does have the prob-

lem of scalability. In the test scenarios presented here it was only concerned

with matching two patterns, but what if it was given the same number of

combinations that are possible with the 7-segment ternary ELF? The AR-

Toolkit supports up to 50 patterns by default and measurements over this

range suggest that it could take over 50 ms if 2000 patterns are used.

4.8.4 Binary or Ternary?

The final results compare the binary and ternary options of the proposed

fiducial system. The graphs in figure 4.31 provide the results for the sim-

ulated tests which covered a large number of code combinations. In these

simulations the binary fiducials showed a slight drop in performance with

an increase in the number of segments as expected. However, the ternary

fiducials showed a significant drop in performance at 17 and 19 segments.

The graphs of results for the captured image test are shown in figure

4.32. In this case the binary and ternary fiducials perform at a similar level

throughout, both dropping as the number of segments increases. There is

an anomaly in which the 19 segment fiducials actually perform better than

the 17 level segments but this could simply be due to the position of the

fiducials on the test sheet or even that the particular codes chosen for 19

were more reliable to read. Since only a single code was used for each type

it is unreasonable to draw conclusions from this data alone and hence the

105

(a) Against Number of Segments (b) Against Code Length (Log Scale)

Fig. 4.31: Binary against ternary — simulation test results.

inclusion of simulated data.

(a) Against Number of Segments (b) Against Code Length (Log Scale)

Fig. 4.32: Binary against ternary — captured image test results.

4.9 Conclusions

This chapter has proposed a fiducial design which has proven to be more

reliable than the popular ARToolkit. In section 4.3 a set of requirements were

specified and then two of these in particular were described as being impor-

tant to a VAE. Accuracy is vital when it comes to calibrating an augmented

environment and through the use of circles in the design, very precise ellipse

centres can be calculated. Efficiency is important since a fiducial system

could be running alongside many other elements within a VAE. Although

the proposed design may not be as fast as some other designs available it is

106

still in the early stages of development and further optimisation is possible

(see section 4.9.1).

The single false positive detected in the “Le Mans” footage is inconse-

quential since the addition of a tracking layer to the fiducial system would

ignore it. The remaining false positives are of more concern since fiducial-like

objects were detected over a number of consecutive frames. However, con-

sidering the similarity of those objects to actual fiducials the small number

of false positives found are acceptable.

The ELF design performed as well as, and in some cases better than, the

ARToolkit over a range of tests. The only problem area was that of forced

over-exposure which had a detrimental effect on the accuracy of the fiducial

centre calculations.

The binary and ternary comparison shows that ternary can potentially

perform as well as binary especially considering the number of combinations

available in each. For example, if smaller fiducials were required (or fiducials

at a greater distance) then it is logical to select a fewer number of segments

to improve the reliability and therefore if 2000 codes were needed it may be

better to choose 7-segment ternary over 11-segment binary.

The ELF design proposed in this chapter has been successfully incorpo-

rated into the OpenIllusionist framework and provides support for the cali-

bration system (see chapter 5) along with an additional approach for inter-

acting with a VAE.

4.9.1 Further Work

Optimisation

The results indicated that the major bottlenecks of the ELF algorithm are

the edge detection and the fiducial verification and identification. Improve-

ments can certainly be made to the verification stage since it is currently too

107

complex; the set of criteria that accept or reject a fiducial must be reviewed,

simplified and can then be further optimised. The identification stage re-

lies on a more holistic approach to read the fiducial code and the processing

time could be reduced by adapting the method to reach the solution in fewer

iterations.

The edge detection method used in the proposed system is also a recent

development. Improvements in the efficiency could certainly be achieved by

optimising certain internal techniques such as image rescaling and blurring.

Additionally, other stages of the method could be merged to reduce the

number of independent loops within the code.

Object finding can be modified not only to improve efficiency but also

remove the possibility of a stack overflow by replacing the recursive algorithm

with an iterative equivalent.

Reliability

The majority of problems with the proposed system were either related

to incorrect rejection of the fiducial or incorrect reading of the fiducial code.

Both of these can be linked to an accuracy problem with the fiducial centre

calculation which is first estimated by starting at the centre of the ellipse and

then adjusted using the centre spot as reference. Since a simplification of the

verification stage was suggested to improve efficiency it would also be a good

opportunity to revise the method of adjustment, perhaps using a technique

adapted from [38].

Although the edge detection method is adaptive it still relies on an initial

threshold value and so in low contrast situations it can struggle to distinguish

edges. Therefore a fast pre-processing stage could be included that would

calculate a sensible threshold value to pass on to the edge detector.

The algorithm currently rejects a fiducial if more than one marker is found.

It may be worth investigating the performance when the system is modified

108

to instead select the most likely candidate for the marker. This modification

could, however, increase the number of false positives detected.

Binary vs. Ternary

The results certainly suggest that ternary is a viable option when choosing

a fiducial specification. The methods described in this chapter would bene-

fit from further development which could improve the reliability of ternary

fiducial identification. The testing stage relied on both simulated data and

real captured data but the range of tested fiducials and situations in the

real data was limited. Therefore further testing is necessary before it can be

stated that ternary is as reliable as binary and the results here imply that

additional research is justified.

109

Chapter 5

Calibration

5.1 Introduction

Accurate and reliable calibration is vital for any augmented reality system

so that it can maintain the illusion that virtual elements are responding to

physical user interaction. For a VAE infrastructure, the calibration process

must provide the means with which to sustain a coherent spatial relationship

between physical objects and virtual elements in a continually changing visual

environment. The system must perform this task reliably and as close to real-

time as possible, even when objects are being moved.

This chapter begins by presenting an extensive, although not exhaustive,

range of possible scenarios, each with a possible technical solution. Based on

a suitable subset of the scenarios, a specification is then defined that provides

a practical basis for developing a calibration system. A review of existing

calibration methods is presented and then techniques for dealing with the

two aspects of calibration, photometric and geometric, are considered.

The proposed photometric algorithms are concerned with practical, auto-

mated adjustment of camera parameters and performing pre-processing on

captured frames. The geometric aspect deals with calculating a projective

transform and then providing an optimised method with which to apply that

transform to live video images.

110

5.2 Scenarios

The following tables describe a large number of possible situations which

could require differing calibration techniques. A possible solution to each

problem is also suggested. The first table (5.1) considers setup scenarios

such as the hardware being used and how it is aligned.

Scenario Possible Solution

Camera does not see the
entire projection area

Project many fiducials to gauge the area that
can be seen and then provide projected feed-
back as to which way to move the camera or
projector.

Non-adjustable camera Throughout the calibration routine provide
feedback to the user about what to adjust
(focus, aperture etc).

Fully-adjustable camera Calibration system can automatically make
changes to the camera setup.

Grey-scale camera Calibrate for brightness, contrast and expo-
sure.

Colour camera Same as grey-scale camera but include colour
and white balancing.

Table 5.1: Setup scenarios.

Table 5.2 presents likely scenarios for the background, i.e., what will be

visible to the camera all of the time. Table 5.3 considers possibilities for the

foreground and table 5.4 expands on some particular examples of foreground

clutter.

Tables 5.5 and 5.6 cover potential indirect and direct lighting conditions.

5.3 Background

A large proportion of AR developments are concerned with HMDs. How-

ever, the infrastructure requirements of this thesis are based upon augmented

environments where the user is not encumbered with equipment but can, for

111

Scenario Possible Solution

Plain background Set background level to mid-luminance level by
adjusting the camera. Check the luminance
range by projecting full white.

Patterned background Attempt using histogram analysis on the back-
ground to provide a reasonable dynamic range
and adjust the camera accordingly.
Capture the background with and without full
projection. Subtract and scale to allow geomet-
ric calibration when the fiducials are projected.
Subtract background when running to prevent
the pattern features being detected by the sys-
tem.

Using monitor instead
of projector

Account for flicker due to the refresh rate by en-
suring that the camera exposure time is great
enough.
Display black, set low-level luminance of the
camera.
Request that a user points a finger in the centre
of the screen, set the mid-level luminance of the
camera.
Display white, set high-level luminance of the
camera.
Perform geometric calibration and then repeat
the previous steps but only considering the area
of interest (it could possibly skip the stage re-
quiring user interaction on the first pass).

Non-flat surface Perform photometric calibration as above.
Project many fiducials and allow the area to be
broken up into blocks and then perform geomet-
ric calibration on each block independently.
Merge this information to form an approximate
calibration grid.

Table 5.2: Background scenarios.

112

Scenario Possible Solution

Empty Request that a hand or object is placed in the centre
of the area to determine the low and mid-levels of
the camera. Then remove the hand and project full
white to set the high-level ready to perform geometric
calibration.

Clutter Calculate the level peaks based on the histogram and
then adjust the camera accordingly.
Project full white and use background subtraction
and scaling to allow fiducials to be detected even
when they are overlapped by shallow objects.
Project many coded fiducials so that at least some
should be visible. Pick the outermost and least dis-
torted four to perform the geometric calibration.

Table 5.3: Foreground scenarios.

Clutter Possible Solution

Pen Lines Request that lines be drawn so that levels for edge
detection can be determined.

Objects Leave in the scene to assist level finding during cali-
bration.

Hands Keep still but leave in the scene.
Heads Request that all but hands are removed and that

hands are kept still. The process could start by check-
ing for motion.

Table 5.4: Dealing with different types of clutter during calibration.

113

Scenario Possible Solution

Low Ambient Possibly provide advice on how to adjust the cam-
era (iris) if either the camera cannot be automat-
ically adjusted or it is hitting the noise level when
the system tries changing the brightness, contrast
or exposure. Another option is to use the projec-
tor as a back-light and gradually add illumination
until the system can set reasonable levels for the
camera.

Extreme Ambient Reduce the camera settings automatically. If this
is not enough (or not possible) then provide advice
on how to adjust the camera manually (i.e., closing
the iris).

Soft Shadows Smoothing of the input images can reduce the
chances of detecting shadow edges. Consider us-
ing colour-space based shadow removal (see chap-
ter 6).

Hard Shadows A shadow removal technique is necessary to pre-
vent false detection of edges.

Table 5.5: Indirect lighting scenarios.

114

Scenario Possible Solution

Bright Spots A similar technique to shadow removal could be
employed or simply clip the values at a certain
level so that the spots are classed as projector
light and thus ignored.

Light Source in Frame Should not be allowed since this would greatly
affect the camera exposure and could cause se-
vere blooming.

Weak Projector If the projection cannot be detected then re-
quest that the ambient light be reduced.

Strong Projector Allow it to clip and either suggest turning up
the ambient light (which would improve the re-
alism of the display) or use the projector as a
partial direct light source and therefore reduce
the effect of shadows produced by other light
sources.

Projector Refresh Ensure that the camera exposure is long enough
to capture a full projection frame.

Dynamic Lighting This would normally be caused by the projector.
Set the levels so that the dynamic lighting is
above the ambient level threshold and therefore
ignored.

Table 5.6: Direct lighting scenarios.

115

example, simply walk up to a table and begin interacting. It therefore re-

quires calibration for camera-surface-projector systems, as in figure 5.1, or

occasionally camera-monitor systems.

Fig. 5.1: A typical camera-surface-projector configuration.

Calibration techniques for both HMDs and projected systems are discussed

in [27]. However, in both cases they rely on the use of a magnetically tracked

stylus which is not relevant for the framework that this thesis is proposing.

Raskar et al. present a calibration technique in [55] that is capable of

dealing with non-planar surfaces and multiple, overlapping projectors. In

this way it can provide a wide field-of-view display that is correct from one

particular location (i.e., where the camera used for calibrating is placed). It

projects one pixel at a time and registers the corresponding location in the

captured image thus building a transform between projected space and the

view-port of the camera. The projection is then warped on rendering such

that it appears correctly to a spectator in the perfect position. Overlap of

116

projectors is dealt with by alpha-blending edges using a linear gradient (or

non-linear if the function of projector intensity is known).

A technique that extends non-planar surface projection by also adapting

for radiometrically complex surfaces is described in [8, 7]. This method of

calibration allows an image to be projected onto a patterned background and

yet appear as if displayed on a plain surface. In [8], Bimber et al. also deal

with the problem of view-dependent stereoscopic vision where the projection

must adjust the displayed images based on the physical position of the user.

They propose a solution that does not require an accurate 3D model of

the projection surface but instead uses a set of known parameters measured

from multiple camera viewpoints. The parameters are then weighted and

interpolated appropriately to estimate the correct parameters for a user in

an arbitrary position. They also propose a method with which to cope with

projector focus on a non-planar surface since a projector can only provide

planar focus. The proposed method involves overlapping multiple projectors,

focussed on different planes, and measuring how well focussed every pixel is

from each projector. The contributions of each projector are then combined

appropriately so as to produce a display of consistent focus.

A review of calibration techniques is presented in [46] covering aspects of

geometric and appearance problems for both single and multiple projector

configurations. Of particular interest is the discussion of curved surface pro-

jection in which the problem can be simply broken up and dealt with as a

piecewise planar system.

5.4 Specification

The scenarios described above cover a wide range of possibilities but to

begin developing a calibration stage for the framework this chapter only

considers a subset of them. To begin with a foundation that provides a

general, yet practical solution, the following assumptions are made:

• A camera-surface-projector setup is used.

117

• The camera can see the entire projection area and is grey-scale or

colour.

• The camera is at least partially adjustable (exposure, brightness and

contrast).

• The background is a planar surface and is of a plain colour.

• The ambient light level is variable, multiple soft shadows are present.

• A powerful projector is used which can also provide direct lighting if

the ambient is too low.

• Foreground objects of reasonable contrast can be exploited to help ad-

just camera levels.

In a situation where the entire projection area is not visible the second

assumption can still be applied by only using the section of projection area

that is visible.

The problem can be split into two parts, one which deals with photometric

calibration (section 5.5) and the other which deals with geometric calibration

(section 5.6).

5.5 Photometric Calibration

Photometric calibration is concerned with adjusting the camera and light-

ing situation so that the VAE has a good dynamic range to work with. It can

be achieved through direct control of the camera or as a set of instructions

to the user. Since a camera that is partially adjustable has been specified,

coupled with the fact that many of the available USB and FireWire cameras

provide some degree of control over their parameters, this method will aim

to adjust the camera directly.

118

As mentioned in section 1.4.1, DirectShow was chosen as the method for

capturing images from a camera on the Windows platform. The DirectShow

libraries provide the ability to control all aspects of a camera and this func-

tionality was therefore incorporated and simplified in the experiments here,

and subsequently in the oiFrameGrabber class.

If the exact response of a camera is known then it may be possible to

perform a measurement and then jump directly to the appropriate settings

for exposure, brightness and contrast. However, as mentioned above, any

type of camera could be used with the proposed system and therefore an

adaptable method is desirable. By adjusting the parameters a little at a

time and monitoring the effect it is possible to calibrate for any connected

camera.

In some situations it may even be feasible to allow the camera to automat-

ically adjust itself. This is usually performed by the driver software, which

has been designed to deal with images containing plenty of detailed objects

or people. A VAE, as proposed in this thesis, will often have a plain white

background with maybe a few sparse objects in the foreground and rapidly

changing images being projected, all of which can confuse the normal au-

tomatic control algorithms. It is therefore desirable to take full control of

the camera within the framework and calibrate specifically for the aforemen-

tioned scenarios.

5.5.1 Algorithm Overview

The main aspect of the photometric calibration is adjusting the camera

using a set of logical decisions as described by the flowchart in figure 5.2.

This part of the photometric calibration is performed with the projector set

to display nothing (i.e., the render output is completely black).

The process labelled “Adjust high peak” is shown in more detail in figure

5.5.1 and the one labelled “Adjust low peak” is shown in figure 5.5.1.

119

Fig. 5.2: A flowchart of the photometric calibration algorithm.

120

(a) Adjust high peak (b) Adjust low peak

Fig. 5.3: Flowcharts of processes involved in the photometric calibration algorithm.

121

The values involved are the high and low peak values which are calculated

from the histogram of the greyscale input image and are therefore in the

range 0–255. The adjustable camera parameters are exposure, brightness

and contrast which are all scaled to the range 0–1.

5.5.2 Algorithm Description

The algorithm attempts to simultaneously adjust the exposure, contrast

and brightness to achieve a greyscale image in which the predominant range

is 0–128 and anything projected would then appear above the 128 level. In

the early iterations it performs a coarse adjustment of the exposure to adjust

the high peak into the range 64–192. If the limits of the exposure parameter

are reached then the brightness is adjusted instead.

Once the coarse adjustment is complete a finer level of adjustment is per-

formed by varying the brightness. If the limits of the brightness are reached

then the exposure is increased or decreased accordingly, the brightness is

reset to default and the fine adjustment continues. The aim is to achieve a

high peak level of approximately 128.

Throughout the coarse and fine adjustments for exposure and brightness

the contrast level is also modified so that the low peak drops below 32. If

a low peak cannot be ascertained then both the brightness and contrast are

adjusted until it can.

If the system approaches the upper limit for either the brightness or con-

trast (> 0.9) then it decides that the light level is too low for the camera and

therefore begins to use the projector to provide illumination. Each time the

level of projected light is raised the parameter that triggered this response is

decreased back below the threshold (0.9).

122

5.5.3 Background Compensation

The previous steps require a plain surface with objects placed on it in order

to gauge the high and low levels detected by the camera. Ideally this should

be a white background with black objects or vice versa. Since these objects

could be placed anywhere there is a good possibility that they will affect the

geometric calibration stage because black objects will reflect much less light

from the projector than a white background. The system therefore attempts

to compensate for this as much as possible.

A reference frame is captured with the projector rendering full black (all

pixels switched off) and then a second frame is captured with the projector

rendering full white (all pixels switched on). During the next stage of cali-

bration each image that is processed undergoes an initial modification step.

This modification rescales each pixel based on the corresponding pixels in

the two reference frames. Equation (5.1) describes how each pixel is scaled

where i is the pixel index, C is the current frame, Rb is the black reference

frame, Rw is the white reference frame and C ′ is the rescaled image.

C[i]′ = 255× C[i]−Rb[i]

Rw[i]−Rb[i]
(5.1)

A pixel in the frame that corresponds to a dark object would have a lower

dynamic range when light from the projector hits it and so the rescaling

stretches this range. A pixel that corresponds to the white background will

have a much higher dynamic range and so the rescaling will have a mini-

mal effect. Overall this results in an image in which the dark objects have

been almost completely removed and is therefore more suitable for further

processing.

5.5.4 Plane Calibration

Setting a single threshold level when performing image processing tasks

within a VAE, such as edge detection, can be problematic since the lighting

123

level across the projection surface could vary considerably. This is particu-

larly apparent in uncontrolled lighting situations where there is likely to be

multiple light sources coming from different directions.

This section proposes a calibration method to reduce the effects of uneven

lighting. The theory is based on the assumption that the variation in lighting

across a planar surface with constant reflectance is also a plane.

The steps involved in the method to cancel the effect of lighting variation

are as follows:

1. Capture a reference image with no illumination from the projector.

2. Capture a reference image with full illumination from the projector.

3. Subtract the reference images from each other and threshold to create

a mask of only the background surface.

4. Fit a plane to the pixel values that fall within the mask (for each colour

channel independently).

Fitting a Plane

Fitting a plane equation (5.2) to the pixel values requires a minimisation

method such as least squares where the system attempts to minimise the

sum of the squares of the residuals.

f(x, y) = ax + by + c (5.2)

In this case the summed, squared residuals are given by the error equation

(5.3) where a, b and c are the parameters of the plane (to be determined), x

and y are the image coordinates, v is the pixel value, i is the pixel index and

N is the number of pixels.

E =
N∑

i=1

(axi + byi + c− vi)
2 (5.3)

124

Finding the derivative of the error equation with respect to each of the

three plane parameters results in three equations which can then be used as

a set of linear simultaneous equations to solve for the parameters, see (5.4),

(5.5) and (5.6).

∂E

∂a
= 2

N∑
i=1

(axi + byi + c− vi)xi = 0 (5.4)

∂E

∂b
= 2

N∑
i=1

(axi + byi + c− vi)yi = 0 (5.5)

∂E

∂c
= 2

N∑
i=1

(axi + byi + c− vi) = 0 (5.6)

Expanding the equations gives (5.7), (5.8) and (5.9).

a
N∑

i=1

x2
i + b

N∑
i=1

xiyi + c
N∑

i=1

xi =
N∑

i=1

xivi (5.7)

a
N∑

i=1

xiyi + b
N∑

i=1

y2
i + c

N∑
i=1

yi =
N∑

i=1

yivi (5.8)

a
N∑

i=1

xi + b
N∑

i=1

yi + cN =
N∑

i=1

vi (5.9)

These can be arranged in matrix form (5.10) and then rearranged as an

augmented matrix (5.11).
∑

x2
i

∑
xiyi

∑
xi∑

xiyi

∑
y2

i

∑
yi∑

xi

∑
yi N


 a

b

c

 =


∑

xivi∑
yivi∑
vi

 (5.10)


∑

x2
i

∑
xiyi

∑
xi

∑
xivi∑

xiyi

∑
y2

i

∑
yi

∑
yivi∑

xi

∑
yi N

∑
vi


 a

b

c

 (5.11)

125

For simplicity the augmented matrix will be represented as follows: a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

 (5.12)

Performing Gaussian elimination on the augmented matrix provides a

solution in upper-triangular form as in equation (5.13). s11 s12 s13 s14

0 s22 s23 s24

0 0 s33 s34

 (5.13)

Rearranging from an augmented matrix back into normal matrices allows

the system of simultaneous equations to be solved giving:

c =
s34

s33

(5.14)

b =
s24 − s23c

s22

(5.15)

a =
s14 − s12b− s13c

s11

(5.16)

Subtracting the Plane

Now that the plane parameters have been determined each frame can be

adjusted by simply subtracting the ax+by term of the plane which results in

an image with greatly reduced illumination shift across the surface and that

can be thresholded around the value of c.

5.6 Geometric Calibration

As described earlier, accurate geometric calibration is necessary to main-

tain the perception that the user is interacting directly with virtual objects.

The aim of geometric calibration is to produce a transform that maps pix-

els in image space (captured from the camera) to pixels in rendered space

126

(displayed by the projector) with as little error as possible.

The algorithm must begin by locating points in image space for which the

coordinates in rendered space are known. Methods to locate known points

can involve projecting straight lines or coloured points which simplify the

image processing task. Another common method is to use fiducials and since

the proposed fiducials in chapter 4 are circular the centres can be located

very accurately [25].

The fiducial detection algorithm is easily modified to search for concentric

circles projected onto the surface. Concentric circles are simpler than coded

fiducials and are therefore less likely to be affected by objects on the surface.

Objects not only cause a reflectance problem (as discussed in section 5.5.3)

but also a displacement problem if the objects are too tall. Displacement

occurs because the projector and camera are not “looking” along the same

vector (see figure 5.1) and therefore the camera can potentially see breaks in

a projected pattern as it overlaps an object. Even if they were both pointing

along the same vector, the overlap would still cause distortion of the projected

marker.

Since the renderer can be controlled to project a single pair of concentric

circles at a time, the identification of fiducials is no longer an issue (although

rendering a single screen with multiple coded fiducials would be faster). How-

ever, the lag between the rendering system and the camera could result in the

same fiducial being detected twice and so simple logic can be included that

ignores a marker that is located, within tolerance, at the same coordinates

as the previous marker.

5.6.1 Projective Transform

An affine transformation, equation (5.17), is the result of a linear combination

of translation, rotation, scaling and sometimes shearing. This transform

preserves straight lines and the parallelism of lines which can work well if the

127

camera is aligned perpendicular to the projection surface and the projection

has had the correct keystone adjustment. In general the camera will not be

perpendicular and so the affine transform will produce inaccurate results.

x′ = ax + by + c

y′ = dx + ey + f (5.17)

The projective transform (5.18) is similar to the affine except that it con-

tains a denominator term. This results in a transform that preserves straight

lines but not the angles between them and is therefore capable of accurately

mapping geometry that has undergone projective distortion.

x′ =
ax + by + c

gx + hy + 1

y′ =
dx + ey + f

gx + hy + 1
(5.18)

Since there are eight unknowns in the projective transform, four coordinate

pairs are required to solve it and thus four fiducials must be projected and

then located in image space. Following that, calculation of the unknown

parameters is simply a case of solving the eight simultaneous equations using

either a direct algebraic method or an iterative method.

Alternatively, many more points could be detected and then a least squares

method used to fit the projective transform to the data. This method could

provide better accuracy but it would also be slower and less able to deal with

objects laying on the surface. However, the proposed method has been found

to provide acceptable accuracy and could easily be adapted to avoid areas of

the surface where tall objects are present.

128

5.6.2 Optimising the Transform

Once the parameters for the projective transform have been found the sys-

tem has an equation it can use to transform coordinates from image space

to rendered space. The problem with this is that a number of multiplica-

tions and divisions need to be performed for every pixel in each frame which

will cause a serious performance hit especially with so many other processes

running within the framework simultaneously.

This problem can be solved since the projective transform never changes

(assuming the camera, projector and surface are static) and, using pointer

indirection, a form of lookup table can be generated. The lookup table is

handled by the system as an image that is the same dimension as the rendered

space except that at every pixel location lies a pointer to the transformed

pixel location in image space. This means that the VAE can simply read the

pixel values using world coordinates (render space) and not be concerned with

calculating the appropriate coordinates in the captured frames. Transformed

coordinates are not likely to be integer values and so the main limitation of

this method is the inability to interpolate pixel values, although the gain

in performance far outweighs the loss in pixel accuracy. Some specific ap-

plications may require better pixel accuracy and so it could be beneficial

to implement a slower alternative within the framework that provides the

developer with a choice.

5.7 Results

Although there has been no formal testing of the base photometric and

geometric calibration algorithms, they have been successfully used within the

OpenIllusionist framework for more than two years (at the time of writing).

Furthermore, the Robot Ships exhibit (chapter 8) has been running daily for

almost a year, encountering a variety of lighting conditions and foreground

object configurations.

129

5.7.1 Plane Calibration

The graph in figure 5.4 shows the pixel values for a single colour channel

(green in this case) as a surface. This data supports the assumption that the

change in lighting level across the surface is approximately planar, the spikes

in the corners are where the edge of the table ends and the spikes in the

middle are caused by dark objects on the surface. The graph was generated

using a sample of data every 20 pixels in both the x and y dimensions.

Fig. 5.4: Pixel values for an image captured from a VAE.

This indicates that fitting a tilted plane to the data will provide a very

good estimation of the ambient lighting variation across the surface.

The graph in figure 5.5 is the result of applying plane calibration to the

data and provides a clear view of the positive effect of plane calibration.

The images in figure 5.6 show a captured frame before and after plane

subtraction, with the graphs in figure 5.7 being the corresponding histograms

130

Fig. 5.5: Pixel values for an image captured from a VAE after plane calibration.

(for the green channel).

5.8 Conclusions

This chapter presents methods to calibrate for both photometric and ge-

ometric conditions in a typical camera-surface-projector system. Although

not a comprehensive test, these methods have been used reliably in OpenIl-

lusionist for more than two years.

Plane calibration was also proposed as a means to reduce the variation

in illumination across the background surface. The results were positive

and warrant further research into the use of this method as a preliminary

stage in image processing. Chapter 7 takes it a stage further by combining

plane calibration with shadow removal to provide a better image for finger

detection. It also shows the effectiveness of the method under a number of

different lighting conditions.

131

(a) Before plane subtraction (b) After plane subtraction

Fig. 5.6: An image captured from a VAE before and after plane subtraction.

(a) Before plane subtraction (b) After plane subtraction

Fig. 5.7: The corresponding histograms of an image captured from a VAE before
and after plane subtraction.

132

5.8.1 Further Work

The photometric calibration algorithm currently suffers from problems

with efficiency, especially if the camera is slow at adjusting its parameters.

Adapting a binary search or gradient descent method could improve the speed

at which the system calibrates.

The purpose of geometric calibration is to provide an accurate registration

method between the image space of the camera and the rendered space of the

projector. As it stands, the accuracy of the system will be affected by lens

distortion which is not currently considered. However, methods for determin-

ing the intrinsic camera parameters can be widely found in the literature.

Therefore, correction for lens distortion and camera-projector registration

could easily be combined in future development.

As discussed in section 4.9.1 the accuracy of the fiducial centre calculation

is reduced at acute angles and this is accentuated when there is no centre

spot for reference. The geometric calibration method proposed here makes us

of concentric circles instead of coded fiducials, nevertheless there are unique

properties of concentric circles that allow very accurate centre coordinates to

be calculated [38].

The next step with the plane calibration method is to incorporate it into

the framework so that further image processing tasks, such as simple thresh-

olding, can benefit from a uniform background.

Further adaptations to the framework calibration system could include

methods to calibrate multiple overlapping cameras and projectors which

would allow much larger surfaces to be augmented. Breaking up the geo-

metric calibration into a piecewise planar problem would provide the ability

to automatically correct projection onto non-planar surfaces.

133

Chapter 6

Shadow Removal

6.1 Introduction

Shadows present a significant problem with regards to image processing. A

VAE is often subject to numerous shadows due to multiple light sources such

as windows and overhead lights. Shadows, for example, can result in edge

detection inaccuracies (as in figure 6.1) or they can be seen by the system as

additional objects in the scene.

Fig. 6.1: Inaccuracies in edge detection caused by shadows.

This chapter aims to provide an overview of possible solutions to the prob-

lem of shadow removal. It also presents a review of one particular method

that shows potential and could be used as a pre-processing stage for other

systems. This is then extended and applied in chapter 7.

134

6.2 Background

The majority of shadow removal techniques tend to be rather complex and

are therefore not aimed at real-time application but instead deal with post-

processing of single images or in some cases sequences of images. However,

with the most recent advances in processing power it is feasible that some of

these techniques may be suitably adapted for use in a VAE.

A technique of real-time shadow removal that is concerned with tracking

and pose estimation of people is given in [29]. This method is based around

image differencing and provides a way to remove segmented pixels that are

a result of shadowing effects. It describes an algorithm called colour nor-

malised cross correlation which produces a brightness and contrast invariant

comparison of the texture of a region in the reference image and the same re-

gion in the current frame. If the textures are similar then the region is likely

to be a shadow on the background and the corresponding pixel is therefore

removed from the segmented image.

The term “intrinsic images” refers to a set of images in which each repre-

sents an intrinsic characteristic and was first used by Barrow and Tenenbaum

[6]. For example, it would be possible to represent a scene in a photo by the

reflectance of objects within the scene and the quantity of illumination across

the scene; taking the product of these two images effectively results in the

original image. If the intrinsic images can be determined from the original

image then they could prove very useful in further image processing stages:

A reflectance image is ideally suited to tasks such as edge detection since

shadows are not present.

The primary problem remains that determining these intrinsic images is

not a simple task. Barrow and Tenenbaum suggest a method that actually

uses edge classification by analysing pixels on either side of an edge. These

edges are used to initialise the corresponding intrinsic images and certain

local constraints are then applied (such as continuity) to adjust all other

135

values within those images iteratively.

Weiss [72] describes a method that requires a sequence of images in which

the reflectance is constant (camera and subject remain the same) and the

illumination varies (such as change in sun position). It is based on the sta-

tistical assumption that derivative filters applied to a natural illumination

image tend to result in a sparse histogram. By applying a temporal median

filter to the derivatives of the original image both the reflectance and illumi-

nation images can be estimated. This method is not suitable for real-time

processing since it requires multiple images to produce a single reflectance

image.

A method capable of estimating intrinsic images from a single image is

presented in [66]. This is also based around some of the assumptions de-

scribed by Weiss except that it uses both colour and greyscale information

to determine whether pixel value changes are due to reflectance or shading.

In colour space, changes due to shading tend to be proportional across all

three colour channels (RGB) whereas changes due to reflectance are not. A

greyscale classifier is trained using sets of images containing no shading and

others containing no reflectance. This relies on the assumption that local

patterns due to shading have a unique appearance which is clearly different

to most reflectance patterns. After using both classifiers there are still some

parts of the images which are ambiguous and so contours and probabilities

are used to propagate known information.

An alternative improvement over the Weiss method is proposed in [12]

which works with a single image. Three metrics are applied to derivatives of

the original image — intensity, blur and chromaticity. These metrics exploit

different properties that result from shading and reflectance and can then be

combined to more accurately classify pixels.

Another technique [61] that is only concerned with detecting the shadow

itself also begins by classifying edge pixels. By calculating an edge map

136

for each colour channel independently the gradients in each map can be

compared. An edge pixel is classified as shadow where the gradients are in

the same direction since it is assumed that shadowing affects each colour

channel proportionally. The edge pixels are further refined by eliminating

unconnected elements.

The ShadowFlash method [78] can be used to analyse pairs of images that

either show the independent effects of two light sources or a single light

source in two different positions. However, the limitation of only handling

up to two light sources means that it would be unsuitable for use in a VAE

system. ShadowFlash could be extended to cope with a greater number of

light sources but it would then require the same number of images as sources

where each image shows the result of a single source. Since this would be

needed for each frame it is impractical.

6.3 Invariance Method

6.3.1 Colour Constancy

In 2001 Finlayson and Hordley introduced a novel method of calculating in-

variance images [21]. Instead of generating a 2D colour constancy image they

proposed a 1D invariance image based on two straightforward assumptions.

Firstly, that illuminant chromaticities lie on a Planckian locus and secondly,

that a camera sensor response is a Dirac delta function (i.e., each sensor for

red, green and blue has an impulse response at a specific wavelength).

By applying these assumptions Finlayson and Hordley show that a varia-

tion in illumination corresponds to a linear shift in Log-Chromaticity (LC)

space. This shift is parallel for all reflectance chromaticities and therefore

rotating the colour space so that the shifts are vertical will result in a graph

in which the x-axis corresponds to surface reflectance and the y-axis corre-

sponds to illumination. Converting only the values along the x-axis into a

greyscale range produces an image that is invariant to illumination.

137

They then prove that although most illuminants do not lie perfectly on

a Planckian locus they do tend to lie close enough for the assumption to

remain valid. Camera responses, on the other hand, vary significantly and

each sensor could actually respond to a reasonably wide bandwidth of light.

However, the findings in [21] show that if the correct calibration angle for a

camera can be found then calculating an invariance image with reasonable

accuracy is possible.

6.3.2 Entropy Minimisation

In later work, Finlayson et al. describe a method of automatically select-

ing an illumination invariant angle using entropy minimisation [20] which

removes the requirement for camera calibration. After calculating an intrin-

sic image they then build on previous work [22, 17, 26] to reconstruct a full

colour image without shadows. However it is the construction of a 1D invari-

ance image which is of interest since many common image processing tasks,

such as edge detection, only require greyscale images.

Fig. 6.2: Entropy minimisation example (based on a similar diagram in [20]).

The graphs in figure 6.2 provide an example of distributions in LC space.

The blue dots represent the colour of individual pixels from the source image,

the red dashed lines represent the invariant direction, the solid red lines are

perpendicular to the invariant direction and the green dots represent the

projection of the blue dots onto the perpendicular line.

138

The first graph shows the effect of projecting onto the perpendicular line

when the invariant direction has been correctly identified — the pixels are

tightly clustered with those of similar reflectance. The second and third

graphs show the result when the invariant direction has been incorrectly

identified — the pixels are spread out along the perpendicular line.

It is clear from the graphs that at the appropriate invariant angle the re-

sulting projection to 1D results in an image with the least amount of entropy.

This suggests that an estimate of the invariant angle can be found by cal-

culating the entropy of each 1D image over a range of invariance angles and

finding the minimum. Finlayson et al. go on to show that this is a reliable

method of calculating the invariant angle for their test camera and further

results show that it should apply to any camera.

6.3.3 Retinex

In a later paper [23] Finlayson et al. present an adaption to Land’s Retinex

algorithm that allows removal of shadows from full colour images.

Retinex theory uses human vision as a model for understanding how we

interpret colour and shading information. The algorithm looks at relative

pixel values in each colour channel independently by averaging the ratios of

one pixel to many other pixels. By thresholding the ratios such that values

close to 1 are set to 1, the method effectively removes gradual illumination

changes across an image.

Finlayson et al. propose a modification to the thresholding that incorpo-

rates shadow edge information retrieved by comparing an invariance image

with the original image. By setting the ratios of pixels that lie on a shadow

edge to 1 alongside the aforementioned threshold, both gradual changes of

illumination and abrupt changes caused by shadows are removed from the

image.

139

6.4 Implementation

A C++ implementation of Finlayson’s invariance method was developed.

It begins by calibrating for the first captured frame using the reviewed en-

tropy minimisation technique. Varying an angle in 1◦ steps and projecting

values from LC space onto a line perpendicular to that angle produces a 1D

image. By calculating the entropy of each 1D image over the range of angles

the system can then pick the point of least entropy as the invariant angle to

be used in all further processing.

Every frame is then transformed into LC space where each pixel is calcu-

lated using equations (6.1) and (6.2)

C1 = ln R− ln G (6.1)

C2 = ln B − ln G (6.2)

where C is the LC value of the pixel and R,G,B are the red, green and blue

values of the pixel respectively. This part of the implementation is easy to

optimise since the range of values in each colour channel is only 0–255 and

so the corresponding logarithms can be stored in a small lookup table.

The LC values are then projected along the calibrated angle to produce

an invariance image using equation (6.3).

I = exp(C1 cos θ + C2 sin θ + 4.844) (6.3)

where I is a pixel in the invariance image, θ is the invariant angle and the

value 4.844 (ln 127) adds a constant illumination back into the image.

6.4.1 Preliminary Results

Figure 6.3 presents the result of applying the invariance algorithm to a

simple image with a strong shadow lit from a single light source (incandes-

140

cent). Although the invariance image is noisy it is very clear that the shadow

has been successfully removed.

(a) Captured frame (b) Invariance image

Fig. 6.3: Results of invariance method with a single light source.

The next figure (6.4) shows a frame captured from a VAE and the resulting

invariance image. In this case multiple overhead light sources were present

(flourescent) causing numerous shadows. Only some of the shadows have

been removed in the invariance image, but even with those that are left the

difference in value between background and shadows has been reduced whilst

the difference between hands and shadows has been increased. This will allow

for much clearer segmentation of hands in later stages of image processing.

(a) Captured frame (b) Invariance image

Fig. 6.4: Results of invariance method with multiple light sources.

141

The objects placed on the table actually become less clear in the invariance

image. This is due to the fact that all greyscale values (i.e., those of equal red,

green and blue components) are 0 in LC space and the objects themselves

are black and white. With the background surface also being white the

differences between objects and surface become far less discernible in the

invariance image.

6.5 Conclusions

The invariance method was originally developed by Finlayson et al. as

a post-processing stage for photos. However, it has been found that with

current processing capabilities it is possible to perform invariance image cal-

culation on live video.

Initial results look promising with the method working very well on images

where the scene was illuminated by a single light source. Where multiple light

sources are concerned the algorithm seems unable to completely remove all

of the shadows but it does appear to have reduced the effect of those that

are left.

The production of full colour images without shadows requires that the

adapted Retinex algorithm be applied to each colour channel separately.

This is currently too processor intensive for use on live video within a VAE

infrastructure.

6.5.1 Further Work

In [20] they suggest an improvement over
[
log R

G
, log B

G

]
by using the ge-

ometric mean (3
√

R×G×B). Dividing by the geometric mean instead of

a single colour channel removes the dependency on one colour, which could

cause problems if that colour is not very prevalent in a particular image.

Since this chapter is considering methods suitable for real-time applications

this improvement would seriously affect processing time; the log values of

142

individual colour channels can be optimised with lookup tables but the cal-

culation of the geometric mean cannot. However, informal results during the

development of the finger detection system show that using the green channel

as a reference provides reasonable results.

The main concern with the method described here is the time taken to

determine the invariant angle. The use of a search method such as gradient

descent could provide a performance increase.

The production of a greyscale image from the invariance projection could

benefit from further investigation. Currently the implementation used in

the finger detection method simply adds a constant value before conversion

to greyscale so that artificial light is added to what is otherwise a purely

reflectance image. Finlayson et al. suggest a way of calculating how much

light to add back into the equation based on the brightest pixels in the

original image since they are assumed to not be in shadow.

143

Chapter 7

Finger Detection

7.1 Introduction

The principal feature of a VAE is intuitive user interaction. Since this

research has focussed on an infrastructure for tabletop projection this user

interaction is normally concerned with hands. Therefore finger detection

capabilities should be a core feature of any VAE framework and hence this

chapter considers some of the currently available techniques, then it proposes

a new method based around invariance images.

7.1.1 Requirements

A finger detection system for use in an augmented environment application

must be efficient so as to be responsive and not adversely affect the perfor-

mance of the rest of the system. It must also require little manual calibration,

preferably none at all, so that it can be inserted into a framework with ease.

The system must be resilient to the effect of various lighting conditions and

shadows.

7.2 Background

The majority of current finger detection techniques rely on either back-

ground differencing [41] or skin colour detection [1] for the initial stage of

144

image processing. Other methods require the use of gloves or markers [15, 10]

but this section will not be considering those since a user should be able to

walk up to a VAE system and begin interacting without the need for extra

equipment.

A colour detection method described in [1] distinguishes hands using a

Bayesian classifier plus a small set of training data. It then finds the contours

of the hands and employs a curvature analysis algorithm, at a variety of

scales, to determine peaks which could correspond to fingertips.

Using a mask to perform template matching [14] is another way to detect

fingertips. This requires that the system already has a template with which

to match and orientation also becomes an issue. Since a finger could be

pointing in any direction the template must attempt to track not only the

position of the fingertip but also the orientation by updating the template.

If the tracking of a fingertip is lost it can be very difficult to re-acquire and

also the algorithm could be rather computationally expensive.

FingerMouse [53] was a system developed to allow a pointing finger to

control the cursor of a desktop machine thus removing the need for a mouse.

The purpose was to eliminate the time wasted by moving a hand back and

forth between keyboard and mouse. Their method involved segmentation via

a probabilistic colour look-up table which required training (user-specific)

and then a principal axis-based fingertip detection algorithm.

A method is presented in [43] that works with plain background, greyscale

images. It involves spatial filtering and then a trained neural network to

detect the fingertip locations. The paper provides results to show that it

works even when there is very low contrast, such as when a finger is viewed

over the palm of a hand.

Using an infra-red camera can provide a very clean binary image for further

processing. In [62] they make use of this type of camera in an augmented

145

desktop scenario and then perform fingertip detection using template match-

ing within the estimated hand region.

7.3 Letessier and Bérard Method

This chapter focusses on a technique developed by Letessier and Bérard

[39] that combines a method for image differencing and a simple, yet effective

algorithm for the detection of potential fingertips that they have named the

Fast Rejection Filter (FRF). The FRF does not rely on template matching,

special gloves or hand-colour detection but a simple set of rules to classify

pixels. It is efficient, straightforward to implement and thus a good choice

for use in an augmented environment.

The FRF is concerned with detecting fingertips but not hand shape and

is therefore unable to detect fingers that are pressed together.

Image Differencing

Letessier and Bérard propose a method for image differencing which is

based upon a colour-space metric referred to as Chrominance Euclidean

Distance (CED). The following equation (7.1) provides a summary of the

algorithm used for CED where p refers to a pixel in the current image and

R,G,B the corresponding channels, p′ refers to a pixel in the background

image and R′, G′, B′ the corresponding channels.

d(p, p′) =

∣∣∣∣∣∣∣∣[R

R + G + B
,

G

R + G + B

]
−

[
R′

R′ + G′ + B′ ,
G′

R′ + G′ + B′

]∣∣∣∣∣∣∣∣
(7.1)

One of the reasons for using chrominance space is that it should reduce the

effect of shadows during processing. This may work in a laboratory situation

where the lighting can be controlled, but in a more common situation it may

not be as reliable. An example is a room with overhead lights combined with

daylight admitted through windows.

146

The final stage of image differencing is thresholding which will provide the

finger detection algorithm with a binary map of changed pixels to analyse.

The CED method described in this section results in a difference image with

a histogram typically containing two modes. Therefore the threshold must

be chosen to separate those modes since the lower one represents background

noise. Letessier and Bérard describe a threshold based on the median and

median absolute deviation.

Background Maintenance

To be able to perform image differencing a background image must be

stored for comparison. The simplest way to maintain a background image is

to use a recursive temporal filter as follows:

Bgt+1
(x,y) = αImt

(x,y) + (1− α)Bgt
(x,y) (7.2)

The basic equation (7.2) uses a learning rate (α) to impart a proportion

of power from each pixel in the current frame (Im) to the background image

(Bg). This simple method, however, produces some unwanted problems such

as dark areas of the image not updating as quickly as lighter areas. Results

can be improved somewhat by biasing the learning rate using results from

the image differencing. This leads to a slightly modified background formula

(7.3), as suggested in [39].

Bgt+1
(x,y) = αt

(x,y)Imt
(x,y) + (1− αt

(x,y))Bgt
(x,y) (7.3)

In this case the learning rate is adapted on a pixel-by-pixel basis depending

on the image differencing results.

Finger Detection

The FRF is a simple set of criteria applied to each pixel in the thresholded

difference image and is an improvement over the earlier filter proposed in

[71]. It provides the basis for finger detection in both the method currently

being described and the proposed method for this chapter. This method

147

of pixel classification means that the algorithm is simple, robust and there

is no requirement to implement a more complex object recognition system

or employ template matching. The filter, as proposed in [39], relies on the

following criteria:

1. Pixel is not background.

2. Pixel is connected to a region of foreground pixels large enough to be

a hand.

3. Pixel is completely surrounded by foreground pixels at a radius small

enough to fit inside a fingertip.

4. While scanning at a radius large enough to fit around a fingertip exactly

one arc of foreground pixels and one arc of background pixels are found.

5. The distance between the two endpoints of the foreground arc found in

4 is approximately the size of a finger.

This method is based on a simple model of the finger (a semi-circle con-

nected to a rectangle) and because it relies on radial scans it is not affected by

finger orientation which can cause serious problems for other methods such

as template matching. The output of the FRF is an image that indicates

at which stage each pixel was rejected or whether it is potentially part of

a fingertip. A simple fill algorithm can then be used to find areas of pixels

that pass all of the criteria. Any region that is large enough is classified as a

fingertip and the centroid for that region provides the coordinates.

7.3.1 Problems

As described earlier, existing methods tend to rely on a system of back-

ground differencing and then perform the actual finger location on the resul-

tant image. There are two major problems with this method, first of all the

background image needs to be maintained and it usually requires a constant

as in equation (7.2). This constant affects how quickly something becomes

148

part of the background and so if set incorrectly it can cause a hand to disap-

pear or an object that, long after it has been moved, remains visible in the

original position. The second problem is that caused by shadows; a shadow

in a live image appears as a change along with the hand itself and so can

obscure features such as the actual edges of a hand.

The technique described in section 7.3 approaches these problems by using

an adaptive method of background maintenance, as in equation (7.3). It also

uses CED instead of RGB euclidean distance in an attempt to reduce the

effect of shadows.

Another problem that will affect any system that relies on the FRF is to do

with scale. A typical VAE setup could result in the camera being positioned

high above the area of interest which would mean that hands appear small

and fingertips could end up as being only a few pixels in area. This would

make the task of eliminating false positives based on the region size far more

difficult, although this can be partly overcome through the use of temporal

filtering and tracking.

Their results seem to show that this method works reliably, but tests per-

formed as part of this research found problems. A VAE must be able to

work well under any lighting condition and the most common situation is

that with multiple light sources. The test setup used consisted of overhead

fluorescent lights plus daylight entering through windows on one side of the

room. It was found that the CED method did not deal with shadows as well

as described. It also had severe problems with very dark areas of a frame

causing a large amount of noise in the corresponding difference image. This

is a common problem with chromaticity methods due to variations in small

values being amplified in log space.

149

7.4 Proposed Method

7.4.1 Overview

Ideally finger detection should be resilient to shadows and not rely on

background images. Therefore, if a user does leave their hand in one loca-

tion for an extended period of time, it would not disappear. This section

proposes a technique involving a combination of plane calibration (section

5.5.4), shadow removal (chapter 6) and the FRF (section 7.3).

7.4.2 Analysis of the Invariance Image

Figure 7.1 shows the result of applying plane calibration and the invariance

method presented in the shadow removal chapter to captured frames in a

VAE.

(a) Overhead lighting only

(b) Overhead lights and bright daylight

Fig. 7.1: Captured frames (left) and the corresponding invariance images (right).

Both images show that the plane calibration results in a very uniform

150

background which remains that way even after conversion to an invariance

image. Shadows still remain visible however since the invariance method can

only minimise the effect of shadows caused by a single light source and even

the overhead lighting will vary as each fluorescent bulb could be a different

colour temperature. In the majority of cases the calibration of the invariance

method simply attempts to reduce the impact of all of the shadows as much

as possible.

Although the shadows in the upper image of figure 7.1 remain it still repre-

sents a significant improvement. The difference in greyscale values between

the hand and the shadow in the original frame is approximately 20 levels

whereas in the invariance image this is more like 60 levels. This difference

means that the invariance image can be thresholded with less chance of over-

lapping values causing distortion of the hand shape.

In the lower image of figure 7.1 it can be seen that the dominant shadow

is actually lighter than the background and this is caused by the daylight

coming through the windows. Daylight has a colour temperature that is fur-

ther towards the blue end of the spectrum than the internal lights. Therefore

the colour space conversion results in the pixel values of daylight shadows

moving in a different direction to values of other shadows. In this particu-

lar case, where the shadow is lighter than the background in the invariance

image, thresholding becomes a simpler task since a threshold to distinguish

hand from background will also completely eliminate the shadow.

7.4.3 Thresholding

It is difficult to visually analyse the histogram of a thresholded invariance

image since the plane calibration results in a large spike at the value for the

background. This spike causes the rest of the histogram to be scaled down so

much that the detail is lost; instead, an invariance image that has not been

subjected to plane correction is analysed (figure 7.2).

The red line on the histogram represents the mean pixel value and the

151

(a) Captured frame (b) Invariance image

(c) Histogram

Fig. 7.2: Results of invariance method without plane correction.

152

other lines show -1, -2 and -3 standard deviations (SD) from the mean. With

the background being clearly shown in an almost Gaussian distribution it

has been found that a stable and effective threshold can be automatically

selected based on a multiple of standard deviations from the mean. The

following (figure 7.3) is an example of the invariance image from figure 7.2

after thresholding at a level of 3 SD below the mean.

Fig. 7.3: An invariance image thresholded at −3 SD.

This thresholded image is then at a stage where it can be passed through

the FRF to determine possible fingertips within the image. Figure 7.4 is the

result of thresholding the invariance image from chapter 6 and applying the

FRF. The colours represent the stage at which a pixel was rejected:

1. White - Pixel is background or is not connected to a region of fore-

ground pixels large enough to be a hand.

2. Black - Pixel is not completely surrounded by foreground pixels at a

radius small enough to fit inside a fingertip.

3. Green - While scanning at a radius large enough to fit around a fingertip

exactly one arc of foreground pixels and one arc of background pixels

are not found.

4. Blue - The distance between the two endpoints of the foreground arc

is not the approximate size of a finger.

5. Red - This pixel could be part of a fingertip.

153

(a) Captured frame (b) FRF results

Fig. 7.4: An invariance image after thresholding and filtering where the different
colours represent the stages of rejection for each pixel.

7.5 Implementation

7.5.1 Overview

Three test programs were developed to aid in the development and testing

of the invariance-based finger detection. The first (section 7.5.2) provides

live frame capture and initial image processing, the second (section 7.5.3)

provides a utility to manually select fingertip locations and the third (section

7.5.4) provides a framework within which to fully test and compare the finger

detection methods.

7.5.2 Frame Capture

An application was developed to test the Letessier-Bérard (LB) method

of finger detection on live video. It was then later adapted to allow experi-

mentation with the invariance method and to capture frames to disk. It was

developed to provide full-screen rendering capabilities on the primary display

plus a feedback and control window on the secondary, so that when run on

a VAE with a projector connected to the primary display it provides a good

testing platform. The frame-grabber library from OpenIllusionist was used

to provide the program with live video images and elements of the OpenGL

renderer were also utilised.

154

The renderer can be used to generate calibration feedback for whatever

algorithm is being used and in this case it assists in selecting the area of

interest when performing plane calibration. When switched to capture mode,

the application begins saving consecutive frames to disk. For each frame a

number of images are produced:

• Original image

• Original image with mask to show area of interest

• Plane calibrated image with mask

7.5.3 Finger Verification

This is a simple application that allows a sequence of images (generated by

the frame capture program) to be loaded one at a time. The user can then

manually click the image in the centre of every fingertip present (see figure

7.5). This data is saved out to a text file and provides the ground truth for

later tests.

Fig. 7.5: An image being processed by the finger verification application, the white
spots indicate where the user has clicked to specify the location of a fingertip.

155

7.5.4 Testing Framework

The testing framework is an application which allows both the LB and

invariance methods of finger detection to be run and the results to be au-

tomatically compared against the ground truth data. It provides the ability

to vary parameters within each method to produce a large set of results for

a group of images. Since this can be rather time consuming, the program

was adapted so that each method runs in a thread thus improving efficiency

when run on a multi-processor system.

Both methods share a common class which contains functions to perform

the final stage of the finger detection (the FRF) as well as functions to load

and check against the ground truth data. This means that the tests are fair

and will prove which method generates the most effective binary images for

the filter.

7.5.5 Test Setup

Three sets of images were captured in different lighting conditions (see

table 7.1) and the ground truth data manually generated. The daylight

entered the room from windows along one side and so interacted with the

scene at an acute angle; this produced elongated shadows and caused shifts

in the ambient light level on the table when a person moved to that side.

Lighting Condition Number of Images
Overheads only (fluorescent) 138
Overheads and overcast daylight 126
Overheads and bright daylight 99

Table 7.1: Table showing the size and type of test image sets.

The testing threads were setup as in table 7.2 where “first image” repre-

sents what the method does with the first image in each set. The parameter

type is a description of the variable parameter for that method, the range

is the range of values used for testing and the step is the step-size used to

156

iterate through that range. The finger scale range and step are common to

both methods since the scale has not been calibrated, but the variation of

that parameter provides a good indication of whether a particular method

works well regardless of the finger scale accuracy.

LB Method Invariance Method

First Image Set as the background
image

Used to calibrate the in-
variance angle

Parameter Type Median Absolute Devia-
tion multiplier

Standard Deviation mul-
tiplier

Parameter Range 0.0 to 25.0 0.0 to 5.9
Parameter Step 1.0 0.2

Finger Scale Range 1.0 to 4.0 1.0 to 4.0
Finger Scale Step 0.02 0.02

Table 7.2: Table showing the ranges over which parameters were varied.

7.6 Results

The results are in two sections of which the first is concerned with opti-

misation and the second with comparison of the methods. The optimisation

stage was performed using all of the even numbered images in the test set

and then the comparison with the odd numbered images.

7.6.1 Optimisation

Figures 7.6 and 7.7 show the number of true positives found by each

method over the parameter ranges given in table 7.2 under each lighting

condition. Both methods have a definite curve at which the peak represents

the optimum parameter value for finding true positives.

The next figures (7.8 and 7.9), however, are not so clear since the produc-

tion of false positives is a little more erratic. In the LB method an increase

in the threshold parameter corresponds to a continuous drop in the number

of false positives found and yet in the invariance method the number of false

positives drops and then increases again. This could be due to breaking up

157

Fig. 7.6: Optimisation of LB method — True positives.

Fig. 7.7: Optimisation of invariance method — True positives.

158

of foreground areas as the threshold increases thereby creating smaller areas

that are roughly the size and shape of fingers.

Fig. 7.8: Optimisation of LB method — False positives.

The final graph (figure 7.10) in this section is a combination of the data

used in the previous ones. It shows the percentage of true positives against

the average number of false positives per frame for each threshold parameter

value across both methods. The labelled point is that of highest true positive

rate which also corresponds to a level of false positives that is low enough to

be ignored assuming an algorithm is employed to track the fingertips. The

indicated threshold parameter values are used in the following section when

comparing the two methods.

This graph and the following ones are similar to Receiver Operating Char-

acteristics (ROC) graphs commonly used in signal processing, however they

differ in that the true positive scale is along the horizontal axis and the false

negative scale has not been normalised.

159

Fig. 7.9: Optimisation of invariance method — False positives.

Fig. 7.10: Optimisation of methods — True positives against false positives for all
lighting conditions.

160

7.6.2 Comparison

The following graphs (figures 7.11, 7.12 and 7.13) are scatter plots where

each point represents the percentage of true positives against the average

number of false positives per frame for a particular finger scale value. The

blue points correspond to the results of the LB method and the red points

to those of the invariance method.

Fig. 7.11: Comparison of methods after optimisation — Overhead lights only.

It is clear from these that the invariance method performed better than

the LB method overall since it managed to achieve higher true positive values

and lower false positive values over a wide range of finger scales and under

different lighting conditions.

The images in figure 7.14 are an example of the output from the proposed

finger detection algorithm; the white dots represent detected fingertips.

161

Fig. 7.12: Comparison of methods after optimisation — Overheads and overcast
daylight.

Fig. 7.13: Comparison of methods after optimisation — Overheads and bright
daylight.

162

Fig. 7.14: Example output from the proposed finger detection algorithm.

7.7 Conclusions

This chapter shows that the invariance method of finger detection is at

least as effective as the more common background differencing methods and

in fact provides better results in complex lighting situations. There is a

greater separation in the effectiveness of both methods in the second two

graphs (7.12 and 7.13) where the lighting was more varied than in the first

(7.11) which had only overhead lights. The situation with only overhead

lighting is approaching a controlled laboratory condition whereas the other

two are far more likely scenarios when trying to set up a VAE as an exhibit.

Therefore the invariance method is definitely worth investigating further, not

just for finger detection but for other image processing tasks as well.

7.7.1 Problems

One of the main advantages of the LB method is that it does not require

any calibration (except perhaps finger scale, but that is common to both

methods). Unfortunately it does have the overhead of having to maintain a

background image which can hamper the performance of the algorithm. The

invariance method, however, requires an initial calibration to find the opti-

mum angle at which to transform from 2D LC space to 1D invariance space

(refer to chapter 6). Fortunately this calibration stage can be automated and

would therefore not require user interaction to initialise it.

163

Another minor problem is that of selecting which side of the mean to

threshold; as shown in figure 7.1 some shadows can actually appear on the

opposite side of the mean to the hands. Therefore it can be beneficial to

ignore that half of the histogram and thus ignore the corresponding shadows

altogether. But how can the system tell which side of the histogram contains

hands and which side shadows? They could be either way around depending

on the angle that is chosen during the calibration stage. This may have to

be solved through user interaction although an automated method would be

preferable and so further investigation is desirable.

7.7.2 Further Work

Testing under a greater variety of lighting conditions would be beneficial as

would comparisons with other finger detection systems. Since finger detection

is required for a VAE infrastructure it would also be worth testing how well

the system performs when projecting onto the surface. Coloured light from a

projector could cause problems in LC space and thus corrupt the invariance

images.

The proposed technique for finger detection could be incorporated into

OpenIllusionist as a core feature. This would provide a developer with an

additional input to an application and would also present a familiar method

of interaction for the user.

164

Chapter 8

Robot Ships:

An OpenIllusionist Application

Fig. 8.1: Photo of the installation at the Royal Museum in Edinburgh.

165

8.1 Introduction

Robot Ships is an interactive exhibit on permanent display in the “Con-

nect” gallery of the Royal Museum in Edinburgh. It is an example of using

groups of simple autonomous agents to perform a more complex task, in this

case the clearing up of a simulated toxic oil spill. The application is loosely

modelled on the process with which ants collect food by laying down a trail

of pheromones that other ants can follow.

Figure 8.1 shows the exhibit running in the museum and figure 8.2 illus-

trates the rendered output of Robot Ships. This chapter provides an overview

of the Robot Ships application, an outline of the development and some eval-

uation results.

Fig. 8.2: Screenshot of Robot Ships.

166

8.2 Overview

Robot Ships has been developed with six agents, three of which are sta-

tionary and three that are mobile.

• Queen

A stationary agent that is displayed as the base in the centre of the

world. It is responsible for keeping track of all of the other primary

agents and spawning new ones when required.

• Scout

The scout searches the world by picking random points to head towards.

If it finds a spill then it heads back to base dropping beacons along the

way. It will attempt to go around any objects, physical or virtual, in

its path.

• Beacon

This agent does not move and contains a decay value. When the value

reaches zero the agent will kill itself.

• Worker

The worker is the most complicated agent and follows beacons laid

down by the scouts until it reaches the spill. It proceeds to clear some

of it up and return to base with a full load. They will attempt to follow

the strongest beacons and if they are returning with a full load then

they reinforce the beacons passed on the way back.

• Tanker

A very simple mobile agent that appears on one side of the world and

moves slowly to another. If it hits anything along the way then it sinks

and spawns a spill.

• Spill

A spill is another simple agent that decreases in size as the worker

agents clear it up.

167

Robot Ships is configured to run the calibration routines automatically on

start-up and to launch a Queen agent that in turn spawns most of the other

agents. Spawning of agents via other agents is achieved through messages

posted to the engine. The agents rely on their sensors to view the world and

utilise the messaging system extensively.

8.3 Design

A simple prototype of Robot Ships was developed with no textures but

simple coloured rectangles and circles. An initial evaluation by the museum

provided the following suggestions to improve the application:

• Scouts need to look like they are searching.

• Scouts should move slower so that it is easier for users to interact.

• Workers must make it clear that they are removing part of the spill.

• Workers must be better controlled in that they only head out from the

base when there is a trail to follow.

• Spill must be cleaned up by no more than 3 visits from workers.

• Beacons must be rendered so as their purpose is obvious.

• Scouts and workers that are not currently being useful should disappear

inside the base.

Possible scenarios for Robot Ships were considered before the toxic spill

clean-up application was decided upon. These included a search and rescue

scenario in which an ambulance had to get to a casualty or a coastguard to a

stranded boat. Another suggestion was rubbish collection where the worker

would be a dustbin lorry.

These decisions and suggestion led to the final development of the appli-

cation which is described in detail below.

168

8.4 Development

This section discusses how each of the classes function within Robot Ships

and how they work together to shape the full exhibit.

8.4.1 Engine

The Robot Ships engine is derived from the oiIllusionistEngine class within

the framework. When initialised it switches to calibration mode and ensures

that if the calibration takes too long a previously saved setup will be loaded

as a fail-safe and continue running the exhibit as normal.

During execution the derived engine is responsible for the following:

• Rendering of the blue background (water) and a black mask so that

the exhibit fits to a circular table.

• Handling key presses (although this is primarily for debugging since

the installed exhibit does not use a keyboard).

• Processing messages from agents and spawning new agents accordingly.

This is on top of the duties that the ancestor class is already performing

internally in the framework library.

8.4.2 Queen

The queen is an agent that is rendered as the base of operations in the

centre of the display. It is the location from which scout and worker ships

are launched and is not only responsible for rendering itself but also manages

most of the other agents.

There are two control structures owned by the queen each of which is

responsible for a fixed number of scouts and workers. The queen performs

the following tasks:

169

• Process messages from other agents and react appropriately.

• If there are no spills to clean up then launch a new tanker.

• If there are no discovered spills then launch scouts.

• If there are discovered spills then launch workers to clean them up.

8.4.3 Scout

The purpose of the scout agent is to search for the spills. Although the

queen keeps count of the number of spills it has no knowledge of where the

spills are located and the same is true of the scouts and workers. The scouts

must rely on their sensors to detect a spill as they move randomly from

waypoint to waypoint.

Fig. 8.3: Arrangement of sensors for the scout agent.

The diagram in figure 8.3 illustrates the sensor array used by the agent.

The agent itself is represented as a blue rectangle, the green lines represent

the “radar” which is swept back and forth searching for spills as indicated by

the black arrows (for aesthetic purposes the agent rendering routines employ

a searchlight effect which mimics the sweeping motion of the sensors). The

red line in the centre of the agent detects when the scout has actually moved

over a spill, the line at the front of the agent (on the bow) is the collision

detection sensor pair and the horizontal line out in front of the scout is the

collision avoidance sensor pair.

170

The scout has two modes of operation: searching and homing. When

searching it chooses a random location (waypoint) and heads towards it as

directly as possible. If a spill is detected on any of the radar sensors the

agent steers in the corresponding direction until it travels over the spill and

the centre sensor is triggered; this switches the scout into homing mode.

In homing mode the agent attempts to head back to the base at the centre

in as straight a line as possible. As the scout moves it drops beacons (it

actually spawns beacon agents) at regular intervals until it reaches the base

at which point it terminates itself.

During both modes of operation the agent relies on a simple collision avoid-

ance algorithm to move around the table. The collision detection and avoid-

ance sensors are capable of seeing other agents within the virtual world along-

side objects in the real world. The collision avoidance sensors are placed at a

suitable distance that is determined by the speed of the agent. When some-

thing is detected by these sensors the agent attempts to swerve around it as

it continues to travel forwards. If the scout does not manage to avoid an ob-

ject and ends up detecting it with the collision sensors then the agent stops,

reverses whilst turning until the sensors are clear and then continues moving

forwards. While the scout is reversing the collision sensors are switched to

the rear so that it does not accidentally reverse over another object or agent.

8.4.4 Beacon

A beacon is simply rendered as a small flashing marker. It contains a

power value that is attenuated over time until it reaches zero at which point

the beacon destroys itself. The agent accepts messages from workers which

can either give it a power boost or a drain.

8.4.5 Worker

The purpose of the worker is to follow the trail of beacons created by the

scouts, clear up some of the spill and then return to base. They are bigger

171

and much slower than the scouts and rely on their sensors to detect both the

beacons and spills.

The worker has three primary modes of operation: searching, filling and

homing. It also has a secondary mode (stopped) which changes the behaviour

depending on whether the primary mode is searching or homing.

In searching mode a worker scans the immediate surroundings for beacons

and attempts to follow the trail. If multiple beacons are detected then the

strongest one is followed and since the beacons get charged and discharged

accordingly this produces an effect similar to that of ants using pheromones

where the strongest trail is that leading to the food.

When the worker reaches a spill it stops and begins cleaning it up, sending

messages to the spill agent throughout indicating that a unit of toxic waste

has been taken. When either the worker is full or the spill is gone the worker

switches to homing mode.

A worker will retrace its steps in homing mode so that it should pass by

all of the beacons that it originally followed until it reaches the base. If the

agent is full it sends messages to every beacon it detects so that the beacon

is recharged. If the agent is not full (i.e., the spill has now been cleared) then

it sends messages to discharge each beacon it passes. This method ensures

that a redundant trail is removed while a valid trail is reinforced.

If the worker reaches the end of the beacon trail and there is no spill to

be found, or it becomes lost, then it heads back home discharging beacons

along the way.

The diagram in figure 8.4 shows the configuration of the sensors in the

two main operational modes. The red sensors are identical to those found

in the scout and are used for collision avoidance. The centre green sensor

is scanned back and forth searching for either beacons or spills. The two

172

(a) Searching (b) Homing

Fig. 8.4: Arrangement of sensors for the worker agent.

remaining green sensors are scanned synchronously in a sweeping motion

(see black arrows in the diagram) also looking for beacons and spills.

In homing mode the centre green sensor remains the same and continues

scanning ahead for beacons. The other two sensors switch to stationary

positions at right angles to the agent, they are also much shorter than before.

This reduction in sensor size means that the agent is less likely to modify

beacon energy levels if those beacons are further away from the actual trail.

The secondary stopped mode allows the agents to adhere to a right-of-way

rule:

• Worker A collides with Worker B.

• A is searching. B is homing.

• A stops for a random time.

• B attempts to continue using the collision avoidance algorithm.

• A continues after a time or if the way ahead clears.

The random time-out prevents agents becoming locked in the stopped

mode. If an agent is searching and it collides with a scout then it also

stops and allows the scout to continue. The main rule emphasised here is

that a searching agent must stop since collision avoidance could result in it

losing the trail of beacons it had been following.

173

8.4.6 Tanker

The tanker is a large agent which moves very slowly in a straight line across

the virtual world. It has a sensor at the front and another that runs through

the middle so that the agent can respond to collisions with virtual and real

objects and can also be hit by a user. If the tanker detects a hit on either

sensor then it sinks and spawns a spill at that location.

8.4.7 Spill

The spill agent is spawned at a random size and is rendered as a green

blob. It accepts messages from the worker which inform the spill that it is

being cleared up. The agent responds by shrinking in size until it disappears

and then destroys itself.

8.4.8 Code

The list in table 8.1 describes the approximate number of lines of code for

each class of Robot Ships. It can be seen that the majority of coding was

concerned with the agents but even these were not actually very long.

Robot Ships Class Lines
Engine 250
Queen 525
Scout 550

Beacon 145
Worker 850
Tanker 245

Spill 150
Total 2715

Table 8.1: Number of lines of code per class in Robot Ships.

174

8.5 Final Evaluation

Before the “Connect” gallery was opened to the public Robot Ships was

evaluated by the museum and the results (courtesy of the National Museums

of Scotland via personal communication, 28th April, 2006) are summarised

below.

• Sample

Eight family groups consisting of 21 individuals.

• Observations

Visitors spent quite a long time interacting with the exhibit (on average

91
2

minutes). Only one third interacted fully without any hints.

• Comments

– A lot of social interaction.

– Suitable for any age group.

– Visitors have a tendency to find novel ways to interact with the

exhibit.

– Visitors liked figuring it out and the fact that it was “hands-on”.

– It was memorable and addictive.

The fact that two thirds of visitors required hints is due to there being no

instructions or information provided during testing. Moreover, VAE tech-

nology is not yet commonplace in everyday life and so people are not aware

that they can interact with it.

8.6 Conclusions

Once people understand that they can interact with a VAE it proves to be

a popular form of exhibit and makes a welcome change from the standard

touch-screen displays that only one person can use at a time.

175

OpenIllusionist was not yet fully developed when the Robot Ships project

began and so the project itself prompted changes to the calibration system

as well as the addition of a messaging system. The final application was

supported by approximately 5500 lines of code in the OpenIllusionist library.

Robot Ships is an example of a practical augmented environment as a com-

mercial development. It was designed and implemented using OpenIllusionist

and the agent model presented in this thesis. The application itself consisted

of 2715 lines of code which is small considering the overall complexity of the

exhibit and it was implemented by a single programmer (the author). This

demonstrates the potential of the framework for use in the rapid develop-

ment of VAE applications and therefore implies that the claims regarding

“infrastructure” in this thesis are valid.

176

Chapter 9

Conclusions

9.1 Summary

All of the chapters presented in this thesis contain their own conclusions

which are summarised as follows:

• Agent-Based Design

A design method for rapid development is presented and justified here.

The only real limitation is the number of agents that a computer is

capable of dealing with, but this will increase as computers continue to

improve.

• Framework

The OpenIllusionist framework is shown to provide a basis for rapid

application development. Thus, a VAE application developer need only

concern themselves with the visual and behavioural design and not the

lower-level technical issues of creating an infrastructure.

• Fiducials

A new design of fiducial and corresponding detection algorithm is pro-

posed in this chapter. The design is shown to be as reliable as the

leading brand and that ternary can provide a greater number of fidu-

cial combinations without compromising that reliability.

177

• Calibration

Methods for the complete calibration of a VAE framework are pre-

sented. An additional calibration method to reduce the illumination

variation across a surface was also proposed and the effectiveness was

substantiated.

• Shadow Removal

A technique for shadow removal was analysed in this chapter. Re-

sults suggest that the method, although originally designed for post-

processing photos, could be applied to live video using modern hard-

ware.

• Finger Detection

A finger detection algorithm is reviewed and then improved perfor-

mance is achieved through a combination of plane calibration and

shadow removal.

• Robot Ships

A realisation of a VAE is presented in this chapter and proves that rapid

development of a stable application is possible using OpenIllusionist.

9.2 Overall

The results of this research have been embodied in a practical realisation.

OpenIllusionist provides a useful platform on which to develop stable VAE

applications. It already contains all of the requirements for an infrastructure

and can be easily expanded to include extra features. It allows for rapid ap-

plication development and will hopefully encourage a shift of the technology

from the research lab to homes and offices.

Some of the earlier VAE implementations have employed distributed com-

puting to handle the various aspects of a software infrastructure, but with

the advances in modern computing, frameworks such as OpenIllusionist are

178

becoming more practical to run on a single, off-the-shelf PC. Recent avail-

ability of multi-core processors at reasonable prices will allow the heavily

threaded framework to run even more efficiently. This will mean that it can

be further expanded without degrading the responsiveness of the system.

This thesis shows that all of the infrastructure elements necessary to pro-

duce a VAE cannot only be merged into a cohesive framework but can also

run simultaneously on commodity hardware at interactive speeds.

9.3 Further Work

As mentioned before, many of the infrastructure elements would benefit

from further optimisation of the code and thus improve the responsiveness

of the system as a whole. Optimisation would also provide more processing

time such that dealing with greater numbers of agents or including additional

complex modules becomes feasible.

Allowing users to build agents by selecting from a library of predefined

behavioural functions would then allow non-programmers to experiment with

topics such as interactive artificial-life simulations without having to worry

about producing code.

There are many planned improvements for the framework in general as

described in section 3.6.1. One addition that should be implemented is au-

dio, especially when considering the usefulness of ambience in an augmented

environment as discussed in the introduction. As with vision, audio can pro-

vide both an input and an output. By setting up a number of calibrated

microphones the system could determine where sounds originated relative to

the projection surface. Multiple speakers would allow the system to generate

spatialised audio which could, for example, be used to provide the illusion

that a particular agent is making a sound.

179

The proposed fiducial algorithm is worth researching further, in particular

the comparison between binary and ternary fiducials. The calibration system

could be expanded to deal with more of the possible scenarios. The frame-

work should be modified to allow calibration to be overridden in a custom

application and also allow modules to request calibration steps.

Communications would be another big step for OpenIllusionist since it

could allow collaborative interaction in multiple locations simultaneously. It

could even allow overlapping systems within the same room to self-organise

and produce larger interactive areas that are calibrated to merge correctly.

Although OpenIllusionist has been used by the author (and colleagues in

the same research group) to develop applications, the full usability of the

framework can only be validated through third party development of VAE

applications.

180

Appendix A

Agent Example

A.1 Header

1 #include <Agent.h>

2
3 // Define a class that is derived from oiAgent

4 class oiSimpleAgent : public oiAgent

5 {

6 public:

7 // Standard constructor and destructor

8 oiSimpleAgent(void *Illusionist , int Type , double X, double Y, double Rotation , int ID) :

oiAgent(Illusionist , Type , X, Y, Rotation , ID, true) {}

9 virtual ~oiSimpleAgent () {}

10 protected:

11 // Overridden primary functions

12 void AgentConstruct ();

13 void AgentDestruct ();

14 void AgentBehaviour ();

15 void AgentSensors ();

16 void AgentRender ();

17 bool AgentCollision(double SensorX , double SensorY);

18 private:

19 // Custom private variables and functions for this particular agent

20 bool m_bForward;

21 double m_dTurnDirection , m_dTurnAngle;

22
23 void ProcessSensors(int &LeftCollision , int &RightCollision);

24 };

Listing A.1: simple agent.h

181

A.2 Source

1 #include "simple_agent.h"

2
3
4 void oiSimpleAgent :: AgentConstruct ()

5 {

6 // Initialise with a random size

7 m_dSize = (int)(30 * (float)rand() / (float)RAND_MAX);

8 if (m_dSize < 15) m_dSize += 15;

9
10 // Initialise with a random speed

11 m_dStepSize = 0.5+(float)(0.02 * (float)m_dSize * (float)rand()/(float)RAND_MAX);

12
13 m_dTurnAngle = 2; // Set the speed at which it can turn

14 m_dTurnDirection = 0; // Initialise the current direction

15 m_bForward = true; // Initialise the movement flag

16
17 CreateAgentSensors (2); // Utility function for allocating sensors

18 }

19
20
21 // No memory was dynamically allocated for this agent , so nothing to cleanup

22 void oiSimpleAgent :: AgentDestruct () {}

23
24
25 void oiSimpleAgent :: AgentBehaviour ()

26 {

27 int LeftCollision , RightCollision;

28
29 if (m_Inbox)

30 {

31 // If there is a message in the inbox then it would be handled here

32 }

33
34 // Process sensor information

35 ProcessSensors(LeftCollision , RightCollision);

36
37 // If either of the sensors was triggered then respond accordingly else allow agent to move

forwards

38 if (LeftCollision || RightCollision)

39 {

40 m_bForward = false; // Stop the agent moving forwards

41
42 // If a direction to turn has not been set already then do so

43 if (! m_dTurnDirection)

44 {

45 // If both sensors were triggered then pick a random direction to turn

46 if (LeftCollision && RightCollision)

47 {

48 if (rand() > (RAND_MAX /2)) m_dTurnDirection = 1;

49 else m_dTurnDirection = -1;

50 }

51 else if (LeftCollision) m_dTurnDirection = 1;

52 else m_dTurnDirection = -1;

53 }

54 }

55 else m_bForward = true;

56
57 // If agent is permitted to move forwards then do so , else turn on the spot

58 if (m_bForward)

59 {

60 m_dTurnDirection = 0;

61
62 // Update the location of the agent according to speed and current rotation

63 m_dX = m_dX + (m_dStepSize * sin((m_dRotation /180.00) * M_PI));

64 m_dY = m_dY + (m_dStepSize * cos((m_dRotation /180.00) * M_PI));

65 }

66 else m_dRotation += m_dTurnDirection * m_dTurnAngle;

67 }

68
69
70 void oiSimpleAgent :: ProcessSensors(int &LeftCollision , int &RightCollision)

71 {

72 // If either sensor was triggered them return the corresponding data

73 LeftCollision = (m_pSensors [0]. FeedbackNumber > 0) ? m_pSensors [0]. Feedback [0]. Data : 0;

74 RightCollision = (m_pSensors [1]. FeedbackNumber > 0) ? m_pSensors [1]. Feedback [0]. Data : 0;

75 }

76
77
78 void oiSimpleAgent :: AgentSensors ()

79 {

182

80 // Set the left collision sensor positions

81 m_pSensors [0]. Start.x = 0;

82 m_pSensors [0]. End.x = -(int)(0.2 * m_dSize) - 1;

83
84 // Set the right collision sensor positions

85 m_pSensors [1]. Start.x = 0;

86 m_pSensors [1]. End.x = (int)(0.2* m_dSize) + 1;

87
88 for (int i=0; i<2; i++)

89 {

90 m_pSensors[i]. Start.y = (int)(0.6 * m_dSize); // The y coords are common to both sensors

91 m_pSensors[i].End.y = (int)(0.6 * m_dSize);

92 m_pSensors[i]. IncludeMask = 0xFFFFFFFF; // See any agent type and walls

93 m_pSensors[i]. SeeAll = false; // Only see first item along sensor

94 }

95
96 m_bCalculateSensors = false; // Do not calculate the sensors again

97 }

98
99

100 void oiSimpleAgent :: AgentRender ()

101 {

102 // Render a simple red rectangle

103 glColor4f (1.0f, 0.0f, 0.0f, 1.0f);

104 glBegin(GL_QUADS);

105 glVertex3f (-0.2f, 0.6f, 0.0f);

106 glVertex3f (-0.2f, -0.6f, 0.0f);

107 glVertex3f(0.2f, -0.6f, 0.0f);

108 glVertex3f(0.2f, 0.6f, 0.0f);

109 glNormal3f(0.0f, 0.0f, 1.0f);

110 glEnd ();

111 }

112
113
114 bool oiSimpleAgent :: AgentCollision(double SensorX , double SensorY)

115 {

116 double RotX , RotY;

117
118 // Utility function to calculate the relative coordinates to this agent

119 RotateSensor(SensorX , SensorY , &RotX , &RotY);

120
121 // If the coordinates lie within the rendered rectangle then report a collision

122 if ((RotX >= -(0.2* m_dSize)) && (RotX <= (0.2* m_dSize)))

123 {

124 if ((RotY >= -m_dSize) && (RotY <= m_dSize)) return true;

125 }

126
127 return false;

128 }

Listing A.2: simple agent.cpp

183

Appendix B

Framework Example

B.1 Header

1 #include <Illusionist.h>

2
3 // Definition of an agent type

4 #define SIMPLE 1

5
6 // Define a class that is derived from oiIllusionistEngine

7 class oiSimpleEngine: public oiIllusionistEngine

8 {

9 public:

10 // Standard constructor passing a reference to the parent window to the base class

11 // and setting some initialisation parameters

12 oiSimpleEngine(wxFrame *Parent): oiIllusionistEngine(Parent , false , 255, CALIBRATION_RADIUS ,

CALIBRATION_COORDS) {}

13
14 protected:

15 // Overridden primary functions

16 virtual void KeyHandler(int Keypress);

17 virtual void AgentLaunch(int AgentType , double X, double Y, double Rotation);

18 virtual void MessageHandler(oiMessage *Message);

19
20 virtual void PreAgentRender ();

21 virtual void PostAgentRender ();

22 };

Listing B.1: simple engine.h

184

B.2 Source

1 #include "simple_engine.h"

2 #include "simple_agent.h"

3
4 void oiSimpleEngine :: KeyHandler(int Keypress)

5 {

6 switch(Keypress)

7 {

8 // If F1 is pressed then create and initialise the example simple agent

9 case WXK_F1: AgentLaunch(SIMPLE , m_World ->m_SpawnPoint.dX , m_World ->m_SpawnPoint.dY ,

m_World ->m_SpawnPoint.dR);

10 break;

11 // If F8 is pressed then kill the last agent to be created

12 case WXK_F8: AgentKill (-1);

13 break;

14 // If F9 is pressed then toggle the calibration mode

15 case WXK_F9: if (!m_World ->m_cCalibrationMode) CalibrationSetMode(CM_FULL);

16 else CalibrationSetMode(CM_OFF);

17 break;

18 // If F11 is pressed then toggle the render sensors flag. This will inform

19 // the renderer to draw any sensors that the agents may have.

20 case WXK_F11: m_World ->m_bRenderSensors = !(m_World ->m_bRenderSensors);

21 break;

22 // If F12 is pressed then toggle the render walls flag. This will inform the

23 // renderer to provide visualisation of the walls that have been detected by

24 // the primary image processing stage.

25 case WXK_F12: m_World ->m_bRenderWalls = !(m_World ->m_bRenderWalls);

26 break;

27 }

28 }

29
30
31 void oiSimpleEngine :: AgentLaunch(int AgentType , double X, double Y, double Rotation)

32 {

33 // Do not create more agents than defined by the constant MAX_AGENTS

34 if (AgentGetCount () > MAX_AGENTS) return;

35
36 switch(AgentType)

37 {

38 // Create a new oiSimpleAgent and pass the reference to the AgentStart

39 // utility function (implemented in the library)

40 case SIMPLE: AgentStart(new oiSimpleAgent(this , AgentType , X, Y, Rotation ,

m_iAgentIDCounter ++));

41 break;

42 }

43
44 }

45
46
47 void oiSimpleEngine :: MessageHandler(oiMessage *Message)

48 {

49 switch (Message ->m_iID)

50 {

51 // Any messages sent to the engine are handled here

52 }

53 }

54
55 // Any rendering that is required before the agents have been rendered is placed here

56 void oiSimpleEngine :: PreAgentRender ()

57 {

58 // Render the spawn point as a small green triangle

59 glPushMatrix ();

60 glTranslatef ((float)m_World ->m_SpawnPoint.dX , (float)m_World ->m_SpawnPoint.dY , 0.0);

61 glRotatef ((float)-m_World ->m_SpawnPoint.dR, 0.0f, 0.0f, 1.0f);

62 glColor4f (0.1f, 0.4f, 0.1f, 0.5f);

63 glBegin(GL_TRIANGLES);

64 glNormal3f (0.0f, 0.0f, 1.0f);

65 glVertex2f (-5.0f, -10.0f);

66 glVertex2f(5.0f, -10.0f);

67 glVertex2f(0.0f, 10.0f);

68 glEnd ();

69 glPopMatrix ();

70 }

71
72 // Any rendering that is required after the agents have been rendered is placed here

73 void oiSimpleEngine :: PostAgentRender () {}

Listing B.2: simple engine.cpp

185

Bibliography

[1] Argyros, A. A., and Lourakis, M. I. A. Vision-based interpre-

tation of hand gestures for remote control of a computer mouse. In In

proceedings of the HCI ’06 workshop (Graz, Austria, May 2006), pp. 40–

51.

[2] Au-Yeung, K., Johnston, D. J., and Clark, A. A comparison of

fiducial-based visual positioning systems. In 18th International Confer-

ence on Pattern Recognition (Hong Kong, August 06), pp. 758–761.

[3] Barakonyi, I., Psik, T., and Schmalstieg, D. Agents that

talk and hit back: Animated agents in augmented reality. In ISMAR

’04: Proceedings of the Third IEEE and ACM International Symposium

on Mixed and Augmented Reality (ISMAR’04) (Arlington, VA, USA,

November 2004), IEEE Computer Society, pp. 141–150.

[4] Barakonyi, I., and Schmalstieg, D. Augmented reality agents in

the development pipeline of computer entertainment. In Proceedings of

the 4th International Conference on Entertainment Computing (Sanda,

Japan, September 2005), pp. 345–356.

[5] Barakonyi, I., Weilguny, M., Psik, T., and Schmalstieg, D.

Monkeybridge: autonomous agents in augmented reality games. In ACE

’05: Proceedings of the 2005 ACM SIGCHI International Conference

on Advances in Computer Entertainment Technology (Valencia, Spain,

June 2005), ACM Press, pp. 172–175.

186

[6] Barrow, H. G., and Tenenbaum, J. M. Recovering intrinsic scene

characteristics from images. In Computer Vision Systems. New York:

Academic Press, 1978, pp. 3–26.

[7] Bimber, O., Emmerling, A., and Klemmer, T. Embedded enter-

tainment with smart projectors. Computer 38, 1 (2005), 48–55.

[8] Bimber, O., Wetzstein, G., Emmerling, A., and Nitschke, C.

Enabling view-dependent stereoscopic projection in real environments.

In ISMAR ’05: Proceedings of the Fourth IEEE and ACM International

Symposium on Mixed and Augmented Reality (Santa Barbara, Califor-

nia, USA, October 2005), IEEE Computer Society, pp. 14–23.

[9] Bratman, M. E., Israel, D., and Pollack, M. E. Plans and

resource-bounded practical reasoning. Computational Intelligence 4

(1988), 349–355.

[10] Buchmann, V., Violich, S., Billinghurst, M., and Cockburn,

A. FingARtips: gesture based direct manipulation in Augmented Real-

ity. In 2nd International Conference on Computer Graphics and Inter-

active Techniques in Australasia and SouthEast Asia (Graphite 2004)

(Singapore, June 2004), pp. 212–221.

[11] Canny, J. A computational approach to edge detection. IEEE Trans.

Pattern Anal. Mach. Intell. 8, 6 (1986), 679–698.

[12] Chung, Y.-C., Chang, S.-L., Wang, J. M., and Chen, S.-W. An

improved method for extraction of intrinsic images from a single image

with integrated measures. In Artificial Intelligence and Applications

(Innsbruck, Austria, February 2005), pp. 356–361.

[13] Costanza, E., and Robinson, J. A. A Region Adjacency Tree

approach to the detection and design of fiducials. In Video, Vision and

Graphics (Bath, UK, July 2003), pp. 63–70.

[14] Crowley, J., Bérard, F., and Coutaz, J. Finger tracking as

an input device for Augmented Reality. In International Workshop on

187

Gesture and Face Recognition (Zürich, Switzerland, June 1995), pp. 195–

200.

[15] Davis, J., and Shah, M. Visual gesture recognition. In IEEE Proceed-

ings - Vision, Image and Signal Processing (1994), vol. 141, pp. 101–10.

[16] de Ipiña, D. L., Mendonça, P. R. S., and Hopper, A. TRIP:

a Low-Cost Vision-Based Location System for Ubiquitous Computing.

Personal and Ubiquitous Computing 6, 3 (2002), 206–219.

[17] Drew, M., Finlayson, G., and Hordley, S. Recovery of chro-

maticity image free from shadows via illumination invariance. In IEEE

Workshop on Color and Photometric Methods in Computer Vision

(Nice, France, October 2003), pp. 32–39.

[18] Feiner, S., Macintyre, B., and Seligmann, D. Knowledge-based

augmented reality. Communications of the ACM 36, 7 (1993), 53–62.

[19] Fiala, M. ARTag, an improved marker system based on ARToolkit.

National Research Council Canada (NRC/ERB-1111), July 2004. NRC

Publication Number: NRC 47166.

[20] Finlayson, G. D., Drew, M. S., and Lu, C. Intrinsic images by

entropy minimization. In Proceedings of the 8th European Conference

on Computer Vision (Prague, Czech Republic, May 2004), pp. 582–595.

[21] Finlayson, G. D., and Hordley, S. Colour constancy at a pixel.

Journal of the Optical Society of America 18, 2 (2001), 253–264.

[22] Finlayson, G. D., Hordley, S. D., and Drew, M. S. Removing

shadows from images. In Proceedings of the 7th European Conference

on Computer Vision (Copenhagen, Denmark, May 2002), pp. 823–836.

[23] Finlayson, G. D., Hordley, S. D., and Drew, M. S. Removing

shadows from images using retinex. In Tenth Color Imaging Confer-

ence: Color Science and Engineering Systems, Technologies, Applica-

tions (Scottsdale, Arizona, USA, November 2002), pp. 73–79.

188

[24] Fischler, M. A., and Bolles, R. C. Random sample consensus:

a paradigm for model fitting with applications to image analysis and

automated cartography. Communications of the ACM 24, 6 (1981),

381–395.

[25] Fitzgibbon, A., Pilu, M., and Fisher, R. B. Direct Least Square

Fitting of Ellipses. IEEE Transactions on Pattern Analysis and Machine

Intelligence 21, 5 (May 1999), 476–480.

[26] Fredembach, C., and Finlayson, G. Hamiltonian path based

shadow removal. In British Machine Vision Conference (Oxford, UK,

September 2005), p. 49.

[27] Fuhrmann, A. L., Splechtna, R., and Prikryl, J. Compre-

hensive calibration and registration procedures for augmented real-

ity. In Proceedings of Eurographics Workshop on Virtual Environments

(Stuttgart, Germany, May 2001), pp. 219–228.

[28] Georgeff, M. P., and Lansky, A. L. Reactive reasoning and plan-

ning. In The Sixth National Conference on Artificial Intelligence (Seat-

tle, Washington, July 1987), pp. 677–682.

[29] Grest, D., Frahm, J.-M., and Koch, R. A color similarity mea-

sure for robust shadow removal in real time. In Vision, Modeling and

Visualization (Munich, Germany, November 2003), pp. 253–260.

[30] Hough, P. V. C. Machine analysis of bubble chamber pictures. In

International Conference on High-Energy Accelerators and Instrumen-

tation (1959), pp. 554–556.

[31] Ishii, H., Ben-Joseph, E., Underkoffler, J., Yeung, L., Chak,

D., Kanji, Z., and Piper, B. Augmented urban planning workbench:

Overlaying drawings, physical models and digital simulation. In ISMAR

’02: Proceedings of the International Symposium on Mixed and Aug-

mented Reality (ISMAR’02) (Darmstadt, Germany, September 2002),

IEEE Computer Society, p. 203.

189

[32] Ishii, H., and Ullmer, B. Tangible bits: towards seamless interfaces

between people, bits and atoms. In CHI ’97: Proceedings of the SIGCHI

conference on Human factors in computing systems (Atlanta, Georgia,

March 1997), ACM Press, pp. 234–241.

[33] Jennings, N. R., Sycara, K., and Wooldridge, M. A roadmap of

agent research and development. Autonomous Agents and Multi-Agent

Systems 1, 1 (1998), 7–38.

[34] Johnston, D. J., and Clark, A. F. A vision-based location system

using fiducials. In Vision, Video and Graphics (Bath, UK, July 2003),

pp. 159–166.

[35] Kato, H., and Billinghurst, M. Marker tracking and hmd calibra-

tion for a video-based augmented reality conferencing system. In IWAR

’99: Proceedings of the 2nd IEEE and ACM International Workshop on

Augmented Reality (San Francisco, California, 1999), IEEE Computer

Society, p. 85.

[36] Kato, H., Billinghurst, M., Poupyrev, I., Imamoto, K., and

Tachibana, K. Virtual object manipulation on a table-top AR envi-

ronment. In IEEE and ACM International Symposium on Augmented

Reality (Munich, Germany, October 2000), pp. 111–119.

[37] Kim, E., Haseyama, M., and Kitajima, H. Fast and Robust Ellipse

Extraction from Complicated Images. In International Conference on

Information Technology and Applications (Bathurst, Australia, Novem-

ber 2002), pp. 138–143.

[38] Kim, J.-S., Gurdjos, P., and Kweon, I.-S. Geometric and alge-

braic constraints of projected concentric circles and their applications

to camera calibration. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence 27, 4 (2005), 637–642.

[39] Letessier, J., and Bérard, F. Visual tracking of bare fingers for

interactive surfaces. In UIST ’04: Proceedings of the 17th annual ACM

190

symposium on User Interface Software and Technology (Santa Fe, New

Mexico, October 2004), ACM Press, pp. 119–122.

[40] Maes, P., Darrell, T., Blumberg, B., and Pentland, A. The

alive system: Wireless, full-body interaction with autonomous agents.

Multimedia Systems 5, 2 (1997), 105–112.

[41] Malik, S., and Laszlo, J. Visual touchpad: a two-handed gestural

input device. In ICMI ’04: Proceedings of the 6th international con-

ference on Multimodal interfaces (Pennsylvania, USA, October 2004),

ACM Press, pp. 289–296.

[42] Newman, W., and Wellner, P. A desk supporting computer-based

interaction with paper documents. In CHI ’92: Proceedings of the

SIGCHI conference on Human Factors in Computing Systems (Mon-

terey, California, USA, June 1992), ACM Press, pp. 587–592.

[43] Nölker, C., and Ritter, H. Detection of fingertips in human hand

movement sequences. In Proceedings of the International Gesture Work-

shop on Gesture and Sign Language in Human-Computer Interaction

(Bielefeld, Germany, September 1997), pp. 209–218.

[44] O’Mahony, S., and Robinson, J. A. Penpets: a physical environ-

ment for virtual animals. In CHI ’03: CHI ’03 extended abstracts on

Human factors in computing systems (Fort Lauderdale, Florida, USA,

April 2003), ACM Press, pp. 622–623.

[45] The OpenIllusionist Project. http://www.openillusionist.org.uk.

Retrieved December 2006.

[46] Park, H., and Park, J.-I. Modern approaches to direct-projected

augmented reality: A review. In International Symposium on Ubiquitous

VR (Yanji City, China, July 2006), pp. 5–8.

[47] Parnham, D., Robinson, J. A., and Zhao, Y. A Compact Fidu-

cial for Affine Augmented Reality. In Visual Information Engineering:

191

http://www.openillusionist.org.uk

Convergence in Graphics and Vision (Glasgow, Scotland, April 2005),

pp. 347–352.

[48] Patten, J., Recht, B., and Ishii, H. Interaction techniques for

musical performance with tabletop tangible interfaces. In ACE ’06:

Proceedings of the 2006 ACM SIGCHI international conference on Ad-

vances in computer entertainment technology (Los Angeles, USA, June

2006), ACM Press, p. 27.

[49] Pilu, M., Fitzgibbon, A., and Fisher, R. Ellipse-specific direct

least-square fitting. In The IEEE International Conference on Image

Processing (Lausanne, Switzerland, September 1996).

[50] Press, W., Teukolsky, S., Vetterling, W., and Flannery,

B. Numerical Recipes in C: The Art of Scientific Computing, 2nd ed.

Cambridge University Press, 1992.

[51] QR Code. http://www.denso-wave.com/qrcode/index-e.html. Re-

trieved December 2006.

[52] Qt, Cross-Platform Library. http://www.trolltech.com/products/

qt. Retrieved December 2006.

[53] Quek, F., Mysliwiec, T., and Zhao, M. FingerMouse: A Freehand

Pointing Interface. In International Workshop on Automatic Face and

Gesture Recognition (Zurich, Switzerland, June 1995), pp. 372–377.

[54] Raskar, R., Welch, G., Cutts, M., Lake, A., Stesin, L., and

Fuchs, H. The office of the future: a unified approach to image-based

modeling and spatially immersive displays. In SIGGRAPH ’98: Proceed-

ings of the 25th annual conference on Computer graphics and interactive

techniques (Orlando, Florida, USA, July 1998), ACM Press, pp. 179–

188.

[55] Raskar, R., Welch, G., and Fuchs, H. Seamless projection over-

laps using image warping and intensity blending. In Fourth International

192

http://www.denso-wave.com/qrcode/index-e.html
http://www.trolltech.com/products/qt
http://www.trolltech.com/products/qt

Conference on Virtual Systems and Multimedia (Gifu, Japan, November

1998).

[56] Ratti, C., Wang, Y., Ishii, H., Piper, B., and Frenchman, D.

Tangible User Interfaces (TUIs): A Novel Paradigm for GIS. Transac-

tions in GIS 8, 4 (October 2004), 407–421.

[57] Rice, A. C., Cain, C. B., and Fawcett, J. K. Dependable coding

of fiducial tags. In 2nd International Symposium on Ubiquitous Com-

puting Systems (Tokyo, Japan, November 2004), pp. 259–274.

[58] Robinson, J. NEAT - Negative Exponential/Adaptive Threshold Edge

Detector. Internal research report, Department of Electronics, Univer-

sity of York, 2006.

[59] Robinson, J. A., and Robertson, C. The livepaper system: aug-

menting paper on an enhanced tabletop. Computers & Graphics 25, 5

(2001), 731–743.

[60] Robinson, P., Sheppard, D., Watts, R., Harding, R., and Lay,

S. A framework for interacting with paper. In EUROGRAPHICS (Bu-

dapest, Hungary, September 1997), vol. 16, pp. 329–334.

[61] Salvador, E., Cavallaro, A., and Ebrahimi, T. Cast shadow

segmentation using invariant color features. Computer Vision and Image

Understanding 95, 2 (2004), 238–259.

[62] Sato, Y., Kobayashi, Y., and Koike, H. Fast tracking of hands and

fingertips in infrared images for augmented desk interface. In FG ’00:

Proceedings of the Fourth IEEE International Conference on Automatic

Face and Gesture Recognition 2000 (Grenoble, France, March 2000),

IEEE Computer Society, p. 462.

[63] ShotCode, Offline Weblinks. http://www.shotcode.com. Retrieved

December 2006.

193

http://www.shotcode.com

[64] Stafford-Fraser, Q., and Robinson, P. Brightboard: a video-

augmented environment. In CHI ’96: Proceedings of the SIGCHI con-

ference on Human Factors in Computing Systems (Vancouver, Canada,

April 1996), ACM Press, pp. 134–141.

[65] Studierstube Augmented Reality Project. http://studierstube.icg.

tu-graz.ac.at/. Retrieved December 2006.

[66] Tappen, M. F., Freeman, W. T., and Adelson, E. H. Recovering

intrinsic images from a single image. IEEE Transactions on Pattern

Analysis and Machine Intelligence 27, 9 (September 2005), 1459–1472.

[67] Thomas, G. A., Jin, J., Niblett, T., and Urquhart, C. A versa-

tile camera position measurement system for virtual reality tv produc-

tion. In International Broadcasting Convention (Amsterdam, Holland,

September 1997), pp. 284–289.

[68] Uchiyama, S., Takemoto, K., Satoh, K., Yamamoto, H., and

Tamura, H. Mr platform: A basic body on which mixed reality ap-

plications are built. In ISMAR ’02: Proceedings of the International

Symposium on Mixed and Augmented Reality (ISMAR’02) (Darmstadt,

Germany, September 2002), IEEE Computer Society, p. 246.

[69] Underkoffler, J., Ullmer, B., and Ishii, H. Emancipated pix-

els: real-world graphics in the luminous room. In SIGGRAPH ’99:

Proceedings of the 26th annual conference on Computer graphics and in-

teractive techniques (Los Angeles, California, USA, August 1999), ACM

Press/Addison-Wesley Publishing Co., pp. 385–392.

[70] Vincze, M. Robust tracking of ellipses at frame rate. Pattern Recog-

nition 34, 2 (2001), 487–498.

[71] von Hardenberg, C., and Bérard, F. Bare-hand human-computer

interaction. In PUI ’01: Proceedings of the 2001 workshop on Perceptive

User Interfaces (Orlando, Florida, USA, November 2001), ACM Press,

pp. 1–8.

194

http://studierstube.icg.tu-graz.ac.at/
http://studierstube.icg.tu-graz.ac.at/

[72] Weiss, Y. Deriving intrinsic images from image sequences. In The

Eigth IEEE International Conference on Computer Vision (Vancouver,

Canada, July 2001), vol. 2, pp. 68–75.

[73] Wellner, P. The digitaldesk calculator: tangible manipulation on

a desk top display. In UIST ’91: Proceedings of the 4th annual ACM

symposium on User Interface Software and Technology (South Carolina,

USA, November 1991), ACM Press, pp. 27–33.

[74] Wellner, P. Interacting with paper on the digitaldesk. Communica-

tions of the ACM 36, 7 (1993), 87–96.

[75] Woods, E., Mason, P., and Billinghurst, M. Magicmouse: an

inexpensive 6-degree-of-freedom mouse. In GRAPHITE ’03: Proceed-

ings of the 1st international conference on Computer Graphics and In-

teractive Techniques in Australasia and South East Asia (Melbourne,

Australia, February 2003), ACM Press, pp. 285–286.

[76] wxWidgets: Cross-Platform GUI Library. http://www.wxwidgets.

org/. Retrieved December 2006.

[77] Xie, Y., and Ji, Q. A new efficient ellipse detection method. In

Proceedings of the 16th International Conference on Pattern Recognition

(Quebec, Canada, August 2002), vol. 2, pp. 957–960.

[78] Yoon, J. J., Koch, C., and Ellis, T. J. Shadowflash: an approach

for shadow removal in an active illumination environment. In Proceed-

ings of the British Machine Vision Conference (Cardiff, UK, September

2002).

[79] Zhao, Y., and Robinson, J. A. Design and evaluation of multilevel

fiducials for augmented reality. In BMVA Symposium on Vision, Video

and Graphics (London, UK, July 2004).

195

http://www.wxwidgets.org/
http://www.wxwidgets.org/

	Introduction
	Augmented Reality
	Video-Augmented Environments
	History of VAEs
	Towards a Software Framework for VAEs
	Platform Decisions for OpenIllusionist

	Infrastructure
	Contributions

	Agent-Based Design
	Introduction
	Background
	Requirements
	Object-Oriented Design
	Threading
	Sensors
	Imaging
	Messaging
	Memory

	The OpenIllusionist Agent
	Agent Details
	The Agent Cycle
	Sensors

	Rapid Development
	Conclusions
	Further Work

	Framework
	Introduction
	Requirements for a Framework
	Support for the Agent

	Design
	The OpenIllusionist Framework
	Major Elements of the Framework
	Major Methods of the Framework

	Rapid Development
	Conclusions
	Further Work

	Fiducials
	Introduction
	What is a fiducial?
	Examples

	Background
	Requirements
	General Requirements for a Fiducial System
	Specific Requirements for a Video Augmented Environment

	Proposed Design
	Introduction
	Ellipses
	Segments
	Centre Spot
	Ternary

	Implementation
	Edge Detection
	Object Finding
	Ellipse Fitting
	Fiducial Transform Calculation
	Fiducial Verification
	Fiducial Orientation and Identification

	Optimisation
	Test Platform
	Buffer Size
	Segment Start and End
	Centre Spot Radius
	Local Optimisation

	Testing
	False Positives
	Size of Fiducial
	Comparison
	Binary or Ternary?

	Results
	False Positives
	Size of Fiducial
	Comparison
	Binary or Ternary?

	Conclusions
	Further Work

	Calibration
	Introduction
	Scenarios
	Background
	Specification
	Photometric Calibration
	Algorithm Overview
	Algorithm Description
	Background Compensation
	Plane Calibration

	Geometric Calibration
	Projective Transform
	Optimising the Transform

	Results
	Plane Calibration

	Conclusions
	Further Work

	Shadow Removal
	Introduction
	Background
	Invariance Method
	Colour Constancy
	Entropy Minimisation
	Retinex

	Implementation
	Preliminary Results

	Conclusions
	Further Work

	Finger Detection
	Introduction
	Requirements

	Background
	Letessier and Bérard Method
	Problems

	Proposed Method
	Overview
	Analysis of the Invariance Image
	Thresholding

	Implementation
	Overview
	Frame Capture
	Finger Verification
	Testing Framework
	Test Setup

	Results
	Optimisation
	Comparison

	Conclusions
	Problems
	Further Work

	Robot Ships: An OpenIllusionist Application
	Introduction
	Overview
	Design
	Development
	Engine
	Queen
	Scout
	Beacon
	Worker
	Tanker
	Spill
	Code

	Final Evaluation
	Conclusions

	Conclusions
	Summary
	Overall
	Further Work

	Agent Example
	Header
	Source

	Framework Example
	Header
	Source

