
Minimizing Dynamic and Higher Order Energy

Functions using Graph Cuts

Pushmeet Kohli

Thesis submitted in partial fulfilment of the requirements of the award of

Doctor of Philosophy

Oxford Brookes University

November 2007

Abstract

Over the last few years energy minimization has emerged as an indispensable

tool in computer vision. The primary reason for this rising popularity has been the

successes of efficient graph cut based minimization algorithms in solving many low

level vision problems such as image segmentation, object reconstruction, image

restoration and disparity estimation. The scale and form of computer vision

problems introduce many challenges in energy minimization. In this dissertation,

I will focus on some aspects of these problems.

The first problem I address relates to the efficient and exact minimization of

groups of similar functions which are known to be solvable in polynomial time.

I will present a novel dynamic algorithm for minimizing such functions. This

algorithm reuses computation from previous problem instances to solve new in-

stances resulting in a substantial improvement in the running time. I will present

the results of using this approach on the problems of interactive image segmen-

tation, image segmentation in video, human pose estimation and segmentation,

and measuring uncertainty of solutions obtained by minimizing energy functions.

The second part of my dissertation will deal with the minimization of multi-

label higher order functions which are np-hard to minimize. These functions

are able to model interactions among groups of random variables and can be

used to formulate many vision problems. The runtime complexity of commonly

used algorithms for approximate energy minimization such as Max-product Belief

Propagation or Tree-reweighted message passing grows exponentially with the

clique size, which makes them inapplicable to problems with even moderate sized

cliques. I will show how certain higher order energy functions can be minimized

using the graph cut based expansion and swap move algorithms. This method is

extremely efficient and is able to handle cliques involving thousands of variables.

I will use these higher order energy functions to model the problems of object

segmentation and recognition, and texture segmentation. The results of this

approach will be compared with those obtained using conventional methods which

model these problems using second order energy functions.

i

To my parents

ii

Acknowledgements

This dissertation would not have been possible without the help and encour-

agement of a number of people. I start by thanking my advisor, Prof. Philip Torr

who made it possible for me to come to England to pursue my graduate studies.

During the course of my stay in Oxford, I have learned a lot from Phil. His

passion for research is infectious, and has helped me immensely in my research.

I cannot thank him enough for his time and support. I would also like to thank

Prof. Ramin Zabih and Prof. David Duce for examining this dissertation.

During my PhD studies I was fortunate to work with a number of people. I

have enjoyed collaborating with M. Pawan Kumar, Mathieu Bray, Yunda Sun,

Jonathan Rihan, Lubor Ladicky, Vladimir Kolmogorov, Carsten Rother, Andrew

Fitzgibbon, Derek Hoeim, Martin Szummer, Karteek Alahari, Sanjiv Kumar,

Alexander Shekhovtsov and Nikos Komodakis. I thank them for the many en-

lightening discussions we have had in the last few years. I would also like to thank

Alyosha Efros, Andrew Blake, Andrew Zisserman, Antonio Criminisi, Bill Triggs,

Dan Huttenlocher, Hiroshi Ishikawa, John Winn, Mark Everingham, Michael

Black, Olga Veksler, Ramin Zabih, Yuri Boykov and many others for conversa-

tions which have influenced my research.

My stay in Oxford and Cambridge was made pleasurable by numerous friends

and colleagues who I would like to thank for their company. These include Mukta

Prasad, Carl Henrik Ek, Pawan Kumar, Karteek Alahari, Christopher Russell,

Jonathan Rihan, Mathieu Bray, Srikumar Ramalingam, Ankur Agarwal, Man-

mohan Chandrakar, Oliver Woodford, Josef Sivic, Ondra Chum, James Philbin,

Florian Schroff, Patrick Buehler, Rob Fergus, Anurag Bana, Aman Iqbal, Sarah

Iqbal, Christophe Restif and others. Finally, I thank my parents who have sup-

ported me in all my endeavors.

iii

Contents

Contents

1 Energy Minimization 1

1.1 Introduction 2

1.1.1 Outline of the Dissertation . 3

1.2 Energy Minimization in Computer Vision 5

1.2.1 Markov and Conditional Random Fields 5

1.2.2 Discrete Energy Minimization 7

1.2.3 Submodular Functions . 8

1.2.4 Minimizing Submodular Functions 9

1.3 Graph Cuts for Energy Minimization 9

1.3.1 The st-Mincut Problem . 10

1.3.2 Minimizing Submodular Functions using Graph Cuts 12

1.4 Minimizing Non-submodular Functions 14

1.4.1 LP Relaxation of the Integer Program 15

1.4.2 Partial Optimality . 16

1.4.3 Summary . 16

2 Minimizing Dynamic Energy Functions 17

2.1 Dynamic Graph Cuts 18

2.1.1 Dynamic Computation . 18

2.1.2 Outline of the Chapter . 20

2.2 Energy and Graph Reparameterization 20

2.3 Recycling Computation 21

2.3.1 Updating Residual Graphs . 23

2.3.2 Computational Complexity of Update Operations 25

2.4 Improving Performance by Recycling Search Trees 26

2.4.1 Reusing Search Trees . 26

2.4.2 Tree Recycling for Dynamic Graph Cuts 27

3 Applications of Dynamic Graph Cuts 29

3.1 Dynamic Image Segmentation 30

3.1.1 CRFs for Image Segmentation 30

3.1.2 Image Segmentation in Videos 33

3.1.3 Experimental Results . 34

3.1.4 Reusing Flow Vs Reusing Search Trees 36

iv

Contents

3.2 Simultaneous Segmentation and Pose Estimation of Humans 37

3.2.1 Pose Specific CRF for Image Segmentation 42

3.2.2 Formulating the Pose Inference Problem 46

3.2.3 Experiments . 49

3.2.4 Shape Priors for Reconstruction 53

3.2.5 Discussion . 56

3.2.6 Summary and Future Work . 59

3.3 Measuring Uncertainty in Graph Cut Solutions 59

3.3.1 Introduction . 60

3.3.2 Preliminaries . 61

3.3.3 Uncertainty in Label Assignments 61

3.3.4 Computing Min-marginals using Graph Cuts 63

3.3.5 Computational Complexity and Experimental Evaluation 69

3.3.6 Applications of Min-marginals 69

4 Minimizing Higher Order Functions 73

4.1 Move Making Algorithms 74

4.1.1 Previous Work . 75

4.1.2 Binary Moves and Move Energies 76

4.2 Characterizing Solvable Pn Functions 78

4.2.1 Conditions for αβ-swaps . 78

4.2.2 Conditions for α-expansions . 80

4.2.3 Graph Cuts for the Pn Potts Model 82

4.2.4 Planarity Preserving Clique Potentials 85

4.2.5 Proofs of Lemmas . 86

5 Graph Cuts for Minimizing Higher Order Functions 88

5.1 Robust Higher Order Potentials 89

5.2 Computing Moves for Higher Order Potentials 90

5.2.1 Swap Moves . 90

5.2.2 Expansion Moves . 92

5.3 Proofs of Theorems 93

6 Applications of Higher Order Potentials 97

6.1 Enforcing Label Consistency in Superpixels 98

6.1.1 Object Segmentation and Recognition 99

6.1.2 Pairwise CRFs for Object Segmentation 101

v

Contents

6.1.3 Incorporating Higher Order Potentials 103

6.1.4 Experiments . 109

6.1.5 Summary . 114

6.2 Texture Based Segmentation 114

6.2.1 Pairwise CRF for Texture Segmentation 115

6.2.2 Higher Order Patch Potentials 115

6.2.3 Results . 116

7 Conclusion 120

7.1 Summary 121

7.2 Our Contributions 121

7.3 Directions for Future Work 122

Bibliography 125

vi

List of Figures

List of Figures

1.1 Some labelling problems in computer vision. 6

1.2 Function minimization problems. 7

1.3 Graph reparameterization. 12

1.4 Energy minimization using graph cuts. 13

2.1 Dynamic image segmentation using graph cuts. 19

2.2 Graph reparameterization. 22

2.3 Restoring consistency using graph reparameterization. 25

3.1 Interactive image segmentation. 31

3.2 Pairwise Markov Random Field model for image labelling prob-

lems. 32

3.3 Segmentation in videos using user seeds. 33

3.4 Segmentation results of the human lame walk video sequence. . 34

3.5 Running time and number of augmenting paths found by static

and dynamic st-mincut algorithms. 35

3.6 Behavior of the dynamic algorithm. 37

3.7 Improving segmentation results by incorporating more informa-

tion in the CRF. 40

3.8 The human upper body model. 43

3.9 Different terms of our pose specific CRF. 45

3.10 Inferring the optimal pose. 46

3.11 Optimizing the pose parameters. 48

3.12 Resolving ambiguity in pose using multiple views. 49

3.13 Results showing the effect of incorporating a shape prior on the

segmentation results. 50

3.14 Segmentation results using the 2D upper body model. 51

3.15 Segmentation results obtained by Grimson-Stauffer [100] and

posecut. 52

3.16 Segmentation (middle) and pose estimation (bottom) results

from posecut. 53

3.17 More segmentation (middle row) and pose estimation (bottom

row) results obtained using posecut. 54

3.18 Ambiguity in object reconstruction due to few views. 55

3.19 3D Object reconstruction using strong object-specific priors. Also

shows camera positions and orientations. 56

3.20 Pose inference and 3D object reconstruction results. 57

3.21 Real time face segmentation using face detection. 58

3.22 Pruning false object detections. 58

vii

List of Figures

3.23 Flow potentials of graph nodes. 64

3.24 Computing min-marginals using graph cuts. 65

3.25 Graph construction for projections of energy functions involving

multiple labels. 67

3.26 Image segmentation with max-marginal probabilities. 71

4.1 Graph construction for computing the optimal moves for the Pn

Potts model. 83

5.1 Graph construction for minimizing higher order functions. . . . 92

6.1 Using higher order potentials for object segmentation. 100

6.2 Quality sensitive region consistency prior. 103

6.3 Behaviour of the rigid P n Potts potential and the Robust P n

model potential. 105

6.4 Object segmentation and recognition using the Robust P n higher

order potentials. 107

6.5 Generating multiple segmentations. 108

6.6 Qualitative object segmentation and recognition results. 108

6.7 Qualitative results from the higher order CRF. 110

6.8 Accurate hand labelled segmentations which were used as ground

truth. 111

6.9 Qualitative results of our method. 112

6.10 The relationship between qualitative and quantitative results. . 112

6.11 Boundary accuracy evaluation using trimap segmentations. . . . 113

6.12 Pixelwise classification error in our results. 114

6.13 Segmented keyframe of the garden sequence. 116

6.14 Qualitative texture segmentation results of the garden sequence. 117

6.15 The keyframe of the ‘Dayton’ video sequence segmented into

three segments. 118

6.16 Segmentation results of the ‘Dayton’ sequence. 119

viii

List of Tables

List of Tables

3.1 Quantitative segmentation results of posecut. 50

3.2 Algorithm for computing min-marginal energies using dynamic

graph cuts. 68

3.3 Time taken for min-marginal computation. 70

ix

Chapter 1

Energy Minimization

1

1.1. Introduction

The last few years have seen energy minimization emerge as an indispensable tool

in computer vision. This increasing popularity has primarily been the result of

the successes of graph cut based minimization algorithms in solving many low

level vision problems such as image segmentation, object reconstruction, image

restoration and disparity estimation. These algorithms not only produce good

results but are also extremely efficient.

Energy minimization generally refers to the problem of finding the values at

which a function reaches its minimum value. Many important vision problems

such as image segmentation can be formulated in terms of minimizing a function,

usually called the energy or cost function. Although, the problem of minimizing

a general function is np-hard, there exist classes of functions which can be min-

imized in polynomial time. For instance, it is well known that one such class of

functions which is frequently encountered in computer vision can be minimized

by solving a minimum cost st-cut (st-mincut) problem.

Although graph cuts have been known in computer vision since the 1980’s [32],

they were not extensively used for a long time. This changed at the turn of the

century when a number of papers [9,11,41] reinvigorated interest in graph cuts by

showing that they can be used for energy minimization. These methods were ex-

tremely efficient and easy to implement which made them quite popular. Graph

cuts have since been successfully applied to many vision problems. The scale and

form of computer vision problems introduce many challenges in energy minimiza-

tion. For example, computer vision problems require minimizing functions taking

millions of variables as arguments. In this dissertation, we will focus on some of

these problems and propose new methods for minimizing discrete functions.

The first problem dealt with in the dissertation concerns the efficient and ex-

act minimization of groups of similar functions which can be minimized optimally

by solving a st-mincut problem. I will present a novel dynamic st-mincut algo-

rithm for minimizing such functions and demonstrate its use in solving a number

of vision problems. This algorithm reuses computation from previous problem

instances to solve new instances resulting in substantial improvement in the run-

ning time. I will present the results of using this approach on the problems of

interactive image segmentation, image segmentation in video, human pose esti-

mation and segmentation, and measuring uncertainty of solutions obtained by

minimizing energy functions.

The second part of the dissertation will deal with the minimization of multi-

label higher order functions which are np-hard to minimize. These functions

2

1.1. Introduction

are able to model interactions among groups of random variables and can be

used to formulate many vision problems. The runtime complexity of commonly

used algorithms for approximate energy minimization such as Max-product Belief

Propagation or Tree-reweighted message passing grows exponentially with the

clique size, which makes them inapplicable to problems with even moderate sized

cliques. I will show how certain higher order energy functions can be minimized

using the graph cut based expansion and swap move algorithms. This method is

extremely efficient and is able to handle cliques involving thousands of variables.

I will use these higher order energy functions to model the problems of object

segmentation and recognition, and texture segmentation. The results of this

approach will be compared with those obtained using conventional methods which

model these problems using second order energy functions.

1.1.1 Outline of the Dissertation

A brief outline of the dissertation follows.

Chapter 1 In chapter 1 we review the basic concepts of discrete optimization

and discuss its use in solving computer vision problems. We explain the Markov

and Conditional Random Field models used in computer vision and show how

they can be solved by minimizing an energy function. We talk about the class of

submodular functions and explain how some functions belonging to this class can

be minimized by solving an st-mincut problem. The chapter concludes by briefly

reviewing some of the work done in minimizing non-submodular functions.

Chapter 2 In this chapter we describe a fast new fully dynamic algorithm for

the st-mincut/max-flow problem. This algorithm can be used to efficiently mini-

mize dynamically changing submodular energy functions encountered in computer

vision. Specifically, given the solution of the max-flow problem on a graph, the

dynamic algorithm efficiently computes the maximum flow in a modified version

of the graph. The time taken by it is roughly proportional to the total amount of

change in the edge weights of the graph. Our experiments show that, when the

number of changes in the graph is small, the dynamic algorithm is significantly

faster than the best known static graph cut algorithm. Previous versions of this

chapter appeared as [48] and [50].

Chapter 3 The dynamic graph cut algorithm described in the previous chapter

can be used to dynamically perform map inference in an mrf or crf. Such an

3

1.1. Introduction

inference procedure is extremely fast and has been used for a number of prob-

lems [12, 35, 49, 84, 102]. In this chapter we describe few applications of the dy-

namic graph cut algorithm. Specifically, I will present the results of using this

approach on the problems of interactive image segmentation, image segmentation

in video, human pose estimation and segmentation, and measuring uncertainty

of solutions obtained by minimizing energy functions. Parts of this chapter pre-

viously appeared in [12, 49, 50, 102].

Chapter 4 In chapter 4 we extend the class of energy functions for which the

optimal α-expansion and αβ-swap moves can be computed in polynomial time.

Specifically, we introduce a novel family of higher order clique potentials and show

that the expansion and swap moves for any energy function composed of these

potentials can be found by minimizing a submodular function. We go on to show

that for a subset of these potentials (which we call the Pn Potts model family),

the optimal move can be found by solving an st-mincut problem. The Pn Potts

model is a higher order generalization of the well known Potts model pairwise

potential. We conclude the chapter by providing an example of a useful higher

order potential for which it is np-hard to compute the optimal move. Parts of

this chapter previously appeared as [46, 47].

Chapter 5 In chapter 5 we introduce a novel family of higher order potentials

which we call the Robust P n model (see equation 5.1.1). We show that the

optimal expansion and swap moves for functions composed of such potentials can

be found by solving an st-mincut problem. Our method for computing the optimal

expansion and swap moves is extremely efficient and can handle potentials defined

over cliques consisting of thousands of random variables. The Robust P n model

can be used for modelling many computer vision problems. In fact the P n Potts

model introduced in the previous chapter is a member of this family of higher

order potentials.

Chapter 6 In chapter 6 we show two applications of higher order potentials

in computer vision. Our first example shows how higher order potentials can be

used for enforcing consistency in labelling of sets of random variables. We use

this method for the problem of multi-class object segmentation by augmenting

the conventional crf used for object segmentation with higher order potentials

defined on image regions. These potentials encourage solutions assigning the

same label to all pixels belonging to a segment. The second example deals with

the problem of texture based segmentation. In both problems we compare the

results of our method with those obtained using state of the art methods based

on pairwise crfs.

4

1.2. Energy Minimization in Computer Vision

Chapter 7 In the last and concluding chapter of this dissertation, I give a

summary of this work and list its main contributions. I end the chapter by

discussing some promising directions for future research.

1.2. Energy Minimization in Computer Vision

Many problems in computer vision and scene understanding can be formulated

in terms of finding the most probable values of certain hidden or unobserved

variables. These variables encode a desired property of the scene and can be

continuous or discrete. For the case of discrete variables, these problems are

commonly referred to as labelling problems as they involve assigning a label to

the hidden variables. Labelling problems occur in many forms, from lattice based

problems of dense stereo and image segmentation [11,104] to the use of pictorial

structures for object recognition [23]. Some examples of problems which can be

formulated in this manner are shown in figure 1.1.

One of the major advances in computer vision in the past few years has been

the use of efficient deterministic algorithms for solving discrete labelling prob-

lems. In particular, efficient graph cut based minimization algorithms have been

extremely successful in solving many low level vision problems. These methods

work by inferring the maximum a posteriori (map) solutions of conditional and

markov random fields which are generally used to model these problems.

1.2.1 Markov and Conditional Random Fields

Random fields provide an elegant probabilistic framework to formulate labelling

problems. They are able to model complex interactions between hidden variables

in a simple and precise manner. The power of this representation lies in the fact

that the probability distribution over different labellings of the random variables

factorizes, and thus allows efficient inference.

Consider a discrete random field X defined over a lattice V = {1, 2, . . . , n}
with a neighbourhood system N . Each random variableXi ∈ X is associated with

a lattice point i ∈ V and takes a value from the label set L = {l1, l2, . . . , lk}. The

neighbourhood system N of the random field is defined by the sets Ni, ∀i ∈ V,

where Ni denotes the set of all neighbours of the variable Xi. A clique c is a

set of random variables Xc which are conditionally dependent on each other.

Any possible assignment of labels to the random variables is called a labelling

or configuration. It is denoted by the vector x, and takes values from the set

L = Ln.

5

1.2. Energy Minimization in Computer Vision

(a) (b) (c)

Figure 1.1: Some labelling problems in computer vision. (a) Object segmentation

and recognition: Given any image, we want to find out which object each pixel

in the image belongs to. There is one discrete random variable for each pixel in

the image which can take any value from a set L of object labels. For instance,

we can use the object set {road, building, tree, sky}. (b) Image denoising: Given

a noisy image of the scene, we want to infer the true colour of each pixel in the

image. The problem is formulated in a manner similar to object segmentation.

Again we use one discrete random variable per pixel which can take any value

in rgb space. (c) Human pose estimation: Given an image, we want to infer

the pose of the human visible in it. The problem is formulated using a vector of

continuous pose variables which encode the orientation and different joint angles

of the human.

A random field is said to be a Markov random field (mrf) with respect to a

neighbourhood system N = {Nv|v ∈ V} if and only if it satisfies the positivity

property: Pr(x) > 0 ∀x ∈ X n, and the Markovian property:

Pr(xv|{xu : u ∈ V − {v}}) = Pr(xv|{xu : u ∈ Nv}) ∀v ∈ V. (1.2.1)

Here we refer to Pr(X = x) by Pr(x) and Pr(Xi = xi) by Pr(xi). The pairwise

mrf commonly used to model image labelling problems is shown in figure 3.2.

A conditional random field (crf) may be viewed as an mrf globally condi-

tioned on the data. The conditional distribution Pr(x|D) over the labellings of

the crf is a Gibbs distribution and can be written in the form:

Pr(x|D) =
1

Z
exp(−

∑

c∈C

ψc(xc)), (1.2.2)

where Z is a normalizing constant known as the partition function, and C is the

set of all cliques [61]. The term ψc(xc) is known as the potential function of the

6

1.2. Energy Minimization in Computer Vision

Figure 1.2: Function minimization problems.

clique c where xc = {xi, i ∈ c} is the vector encoding the labelling of the variables

constituting the clique. The corresponding Gibbs energy is given by

E(x) = − log Pr(x|D) − logZ =
∑

c∈C

ψc(xc) (1.2.3)

The most probable or maximum a posteriori (map) labelling x∗ of the random

field is defined as

x∗ = arg max
x∈L

Pr(x|D). (1.2.4)

and can be found by minimizing the energy function E. This equivalence to

map inference has made discrete energy minimization extremely important for

problems which are solved using probabilistic methods.

1.2.2 Discrete Energy Minimization

Minimizing a discrete function is one of the core problems of optimization. Many

combinatorial problems such as maxcut and constraint satisfaction (csp) can

be formulated in this manner.

Although minimizing a function is np-hard in general, there exist families of

energy functions for which this could be done in polynomial time. Submodular

set functions constitute one such well studied family. The algorithms for mini-

mizing general functions belonging to this class of functions have high runtime

complexity. This characteristic renders them useless for most computer vision

problems which involve large number of random variables. Functions belonging

to certain subclasses of submodular functions can be solved relatively easily i.e.

are less computationally expensive to minimize. For instance, certain families of

functions can be minimized by solving a st-mincut problem for which fast and

efficient algorithms are available [10, 25, 39, 88].

7

1.2. Energy Minimization in Computer Vision

Many problems in computer vision result in energy functions which are not

submodular, and are np-hard to minimize. A number of approximate minimiza-

tion algorithms have been proposed for solving these functions. α-expansion and

αβ-swap [11] are two such algorithms. They are widely used to minimize en-

ergy functions involving multi-valued discrete variables. The different types of

function minimization problems are shown in figure 1.2.

1.2.3 Submodular Functions

Submodular set functions are encountered in many areas of research. They

are particularly useful in combinatorial optimization, probability and geome-

try [29,67]. Many optimization problems relating to submodular functions can be

solved efficiently. In some respects they are similar to convex/concave functions

encountered in continuous optimization.

Consider the set N = {1, 2, . . . , n}. A set function fs : 2N → R is said to be

submodular if and only if for all subsets A,B ⊆ N the function satisfies:

fs(A) + fs(B) ≥ fs(A ∪B) + fs(A ∩ B). (1.2.5)

Every set function fs : 2N → R can be written in terms of a function of binary

variables fb : {0, 1}n → R. For each element i in set N , a corresponding binary

variable Xi ∈ {0, 1} is needed for this representation. Any subset G of the set

N can be represented by a labelling of the binary variables. For instance, if an

element i is in the subset G then the corresponding binary variables Xi will take

value 1. This will be made clearer by the following example.

Example 1 Consider a set function fs defined over the set N = {1, 2}. As

the set N contains 2 elements, the corresponding function (fb) of binary vari-

ables takes two binary variables X1 and X2 as arguments. Under the above de-

fined encoding scheme, the subset G = {2} will be represented by the labelling

(X1, X2) = (0, 1). Similarly, the empty subset G = Ø will result in the labelling:

(X1, X2) = (0, 0). The submodularity condition (1.2.5) for two particular subsets

A = {1} and B = {2} of G is:

fs({1}) + fs({2}) ≥ fs({1, 2}) + fs(Ø). (1.2.6)

This condition for the equivalent binary function fb becomes:

fb(1, 0) + fb(0, 1) ≥ fb(1, 1) + fb(0, 0). (1.2.7)

We will now extend the definition of submodularity to functions of binary

variables. For this however, we will first need to define the concept of a projection

of a function.

8

1.3. Graph Cuts for Energy Minimization

Definition 1 A projection of a function f : Ln → R on s variables is a function

f p : Ls → R which is obtained by fixing the values of n − s arguments of f(·).
Here p refers to the set of variables whose values have been fixed.

Example 2 The function f {x1=0}(x2, . . . , xn) = f(0, x2, . . . , xn) is a projection

of the function f(x1, x2, . . . , xn).

Definition 2 A function of one binary variable is always submodular. A function

f(x1, x2) of two binary variables {x1, x2} is submodular if and only if:

f(0, 1) + f(1, 0) ≥ f(0, 0) + f(1, 1) (1.2.8)

A function f : Ln → R is submodular if and only if all its projections on 2

variables are submodular [8, 54].

The definition of submodularity can also be extended to functions of multi-valued

variables (referred to as multi-label functions). However, this requires the exis-

tence of an ordering over the labels that each variable can take.

Definition 3 Let L be a completely ordered set of labels where the label li+1 is

above label li. A second order multi-label function f : L2 → R is submodular if

f(l1, l2) − f(l1 + 1, l2) − f(l1, l2 + 1) + f(l1 + 1, l2 + 1) ≤ 0. (1.2.9)

1.2.4 Minimizing Submodular Functions

Many problems in combinatorial optimization can be formulated as minimizing

a submodular set function. The first strongly polynomial time algorithm for this

problem was given independently by [42] and [90]. These algorithms had high

runtime complexity. Although recent work has been partly successful in reduc-

ing the complexity of algorithms for general submodular function minimization,

they are still quite computationally expensive and cannot be used to minimize

large problems. For instance, the current best algorithm for general submodular

function minimization has complexity O(n5Q + n6) where Q is the time taken

to evaluate the function [71]. This algorithm improved upon the previous best

strongly polynomial time algorithm by a factor of n logn.

Certain submodular functions can be minimized by solving an st-mincut prob-

lem [8]. Specifically, all submodular functions of binary variables of order at most

3 can be minimized in this manner [54]. Researchers have shown that certain

higher order functions can be transformed into submodular functions of order 2,

and thus can also be minimized [27]. The same transformation technique can be

used to minimize some functions of multi-valued variables [25, 39, 88].

9

1.3. Graph Cuts for Energy Minimization

1.3. Graph Cuts for Energy Minimization

Graph cuts have been extensively used in computer vision to compute the max-

imum a posteriori (map) solutions for various discrete pixel labelling problems

such as image restoration, segmentation, voxel occupancy and stereo [9,12,40,41,

53, 82, 116]. Greig et al. [32] were one of the first to use graph cuts in computer

vision. They showed that if the pairwise potentials of a two label pairwise mrf

were defined as an Ising model, then its exact map solution can be obtained in

polynomial time by solving a st-mincut problem.

One of the primary reasons behind the growing popularity of graph cuts is the

availability of efficient algorithms for computing the maximum flow (max-flow)

in graphs of arbitrary topology [2, 10]. These algorithms have low polynomial

runtime complexity, and enable fast computation of the minimum cost st-cut

(st-mincut) problem. This in turn allows for the computation of globally opti-

mal solutions for important classes of energy functions which are encountered in

many vision problems [48, 54]. Even in problems where they do not guarantee

globally optimal solutions, these algorithms can be used to find solutions which

are strong local minima of the energy [11, 46, 55, 109]. These solutions for cer-

tain problems have been shown to be better than the ones obtained using other

inference methods [104].

1.3.1 The st-Mincut Problem

In this section we provide a general overview of the st-mincut/maxflow problem

and give the graph notation used in this dissertation. A directed weighted graph

G(V,E, C) with non-negative edge weights, is defined by a set of nodes V , a set

of directed edges E, and an edge cost function C : E → R which maps each edge

(i, j) of the graph to a real number cij
1. We will use n andm to denote the number

of nodes |V | and the number of edges |E| in the graph respectively. Graphs used

in the st-mincut problem have certain special nodes called the terminal nodes,

namely the source s, and the sink t. The edges in the graph can be divided

into two disjoint categories: t-edges which connect a node to a terminal node,

and n-edges which connect nodes other than the terminal nodes with each other.

We make the following assumptions in our notation: (i, j) ∈ E ⇒ (j, i) ∈ E,

and (s, i) ∈ E ∧ (i, t) ∈ E for all i ∈ V . These assumptions are non-restrictive

as edges with zero edge weights are allowed in our formulation. Thus we can

1We will restrict our attention to edge cost functions of the form C : E → R
+∪{0}.

10

1.3. Graph Cuts for Energy Minimization

conform to our notation without changing the problem.

A cut is a partition of the node set V into two parts S and S = V −S, and is

defined by the set of edges (i, j) such that i ∈ S and j ∈ S. The cost of the cut

(S, S) is given as:

CS,S =
∑

i∈S,j∈S

cij. (1.3.1)

An st-cut is a cut satisfying the properties s ∈ S and t ∈ S. Given a directed

weighted graph G, the st-mincut problem is that of finding a st-cut with the

smallest cost. By the Ford-Fulkerson theorem [26], this is equivalent to computing

the maximum flow from the source to the sink with the capacity of each edge equal

to cij [2].

1.3.1.1 Formulating The Max-Flow Problem

For a network G(V,E) with a non-negative capacity cij associated with each edge,

the max-flow problem is to find the maximum flow f from the source node s to

the sink node t subject to the edge capacity (1.3.2) and mass balance (1.3.3)

constraints:

0 ≤ fij ≤ cij ∀(i, j) ∈ E, and (1.3.2)
∑

i∈ N(j)

(fji − fij) = 0 ∀j ∈ V (1.3.3)

where fij is the flow from node i to node j and N(j) is the neighbourhood of

node j i.e. N(j) consists of all nodes connected by an edge to j [2].

Observe that we can initialize the flows in the t-edges of any node i of the

graph as fsi = fit = min(csi, cit). This corresponds to pushing flow through these

edges from the source to the sink and has no effect on the final solution of the

st-mincut problem. From this it can be deduced that the solution of the st-

mincut problem is invariant to the absolute value of the terminal edge capacities

csi and cit. It only depends on the difference of these capacities (cit−csi). Adding

or subtracting a constant to these capacities changes the objective function by

a constant and does not affect the overall st-mincut solution as can be seen in

figure 1.3. Such transformations result in a reparameterization of the graph and

will be explained later in chapter 2.

1.3.1.2 Augmenting Paths, Residual Graphs

Given a flow fij , the residual capacity rij of an edge (i, j) ∈ E is the maximum

additional flow that can be sent from node i to node j using the edges (i, j) and

(j, i) or formally rij = cij − fij + fji. A residual graph G(f) of a weighted graph

G consists of the node set V and the edges with positive residual capacity (with

11

1.3. Graph Cuts for Energy Minimization

Figure 1.3: Graph reparameterization. The figure shows a graph G, and its repa-

rameterization G1 obtained by adding a constant α to both the t-edges of node

a2. The edges included in the st-mincut are depicted by dotted lines. Observe

that although the cost of the st-mincut in G and G1 is different, the st-mincut

includes the same edges for both graphs and thus induces the same partitioning of

the graph.

respect to the flow f). An augmenting path is a path from the source to the sink

along unsaturated edges of the residual graph.

1.3.2 Minimizing Submodular Functions using

Graph Cuts

The problem of finding the minimum cost st-cut (st-mincut) in any graph can be

written in terms of minimizing a sum of functions defined on individual and pairs

of binary variables. Conversely, any submodular function of binary or boolean

variables which can be written as a sum of unary and pairwise terms can be min-

imized by finding the st-mincut in the corresponding graph. In this dissertation,

we will call functions of this form ‘second order functions’ or ‘functions of order

2’.

Definition 4 We say that a function f : Ln → R is of order k if it can be written

in terms of a sum of functions fi : Lk → R, each of which is defined on at most

k variables.

In the above definition we use the function representation which leads to the

smallest order.

12

1.3. Graph Cuts for Energy Minimization

Figure 1.4: Energy minimization using graph cuts. The figure shows how individ-

ual unary and pairwise terms of an energy function taking two binary variables

are represented and combined in the graph. Multiple edges between the same nodes

are merged into a single edge by adding their weights. For instance, the cost w1

of the edge (s, xa) in the final graph is equal to: w1 = θa;0 + θab;00. The cost of a

st-cut in the final graph is equal to the energy E(x) of the configuration x the cut

induces. The minimum cost st-cut induces the least energy configuration x for

the energy function.

Example 3 The function fa(x1, x2, x3) = 4x1 + 5x2x3 + 3x2 is of order 2 be-

cause of the maximal order term 5x2x3. Similarly, the function

fa(x1, x2, x3) = 4x1 + 5x1x2x3 (1.3.4)

is of order 3 because of the maximal term 5x1x2x3.

Algorithms for finding the st-mincut require that all edges in the graph have

non-negative weights. This condition results in a restriction on the class of en-

ergy functions that can be solved in this manner. For instance, binary second

order functions can be minimized by solving a st-mincut problem only if they are

submodular [54].

We will now show how second order functions of binary variables (also referred

as Pseudo boolean functions) can be minimized by solving a st-mincut problem.

The procedure for energy minimization using graph cuts comprises of building

a graph in which each st-cut defines a configuration x. The cost of an st-cut

is equal to the energy E(x|θ) of its corresponding configuration x. Finding the

minimum cost st-cut in this graph thus provides us with the configuration having

the least energy. Kolmogorov and Zabih [54] described the procedure to construct

graphs for minimizing pseudo-boolean functions of order at most 3. The graph

13

1.4. Minimizing Non-submodular Functions

constructions for functions of multi-valued variables were given later by [39] and

[88].

We now explain the graph construction for minimizing energies involving bi-

nary random variables. We use the notation of [51] and write a second order

function as:

E(x|θ) = θconst +
∑

v∈V,i∈L

θv;iδi(xv) +
∑

(u,v)∈E,(j,k)∈L2

θuv;jkδj(xu)δk(xv), (1.3.5)

where θv;i is the penalty for assigning label i to latent variable xv, θuv;ij is the

penalty for assigning labels i and j to the latent variables xu and xv respectively.

Further, each δj(xv) is an indicator function, which is defined as:

δj(xv) =

{

1 if xv = j,

0 otherwise.

Functions of binary variables (pseudo-boolean functions) can be written as:

E(x|θ) = θconst +
∑

v∈V

(θv;1xv + θv;0xv)

+
∑

(u,v)∈E

(θst;11xuxv + θst;01xuxv + θst;10xuxv + θst;00xuxv).(1.3.6)

The individual unary and pairwise terms of the energy function are repre-

sented by weighted edges in the graph. Multiple edges between the same nodes

are merged into a single edge by adding their weights. The graph construction for

a two variable energy function is shown in figure 1.4. The constant term θconst
of the energy does not depend on x and thus is not considered in the energy

minimization procedure. The st-mincut in this graph provides us with the mini-

mum solution x∗. The cost of this cut corresponds to the energy of the solution

E(x∗|θ). The labelling of a latent variable depends on the terminal it is discon-

nected from by the minimum cut. In our notation, if the node is disconnected

from the source, we assign it the label zero and one otherwise.

1.4. Minimizing Non-submodular Functions

Up until now we have not addressed the problem of minimizing non-submodular

functions. For certain functions belonging to this class, specifically, those defined

on trees or graphs with only one cycle, it is possible to compute the exact globally

optimal solution in polynomial time1. However, minimizing a non-submodular

1Graphs containing multiple loops can be transformed into trees. The tree resulting from

such a conversion has sets of vertices of the original graph as its nodes. The tree width of a

14

1.4. Minimizing Non-submodular Functions

function is in general a np-hard problem. Many problems in computer vision give

rise to such functions and making progress towards their solution is of paramount

importance. A number of algorithms have been proposed in the literature for

solving this problem. These methods can be divided into two broad categories:

1) methods which work by minimizing a related submodular function [7, 77, 85],

and 2) methods which solve a relaxation of the integer programming problem

arising from the function minimization problem [14,112].

1.4.1 LP Relaxation of the Integer Program

General discrete energy minimization can be seen as an integer programming

problem [14]. The integer program (ip) is formulated with binary variables

y [112]. We use the formulation introduced in [13] and later used in [55] for

the metric labelling problem. The integer program for the labelling problem can

be written as:

min
y



θconst +
∑

v∈V,i∈L

θv;iyv,i +
∑

(u,v)∈E,(j,k)∈L2

θuv;jkyuv,ij



 , (1.4.1)

s.t.
∑

i∈L yv,i = 1 ∀v ∈ V (1.4.2)
∑

i∈L yuv,ij = yv,j ∀j ∈ L, ∀(u, v) ∈ E (1.4.3)
∑

j∈L yuv,ij = yu,i ∀i ∈ L, ∀(u, v) ∈ E (1.4.4)

yv,i, yuv,ij ∈ {0, 1} ∀v ∈ V, ∀(u, v) ∈ E , i, j ∈ L

The {0, 1} variable yv,i of the ip indicates whether variable Xv has been assigned

label i or not. For instance, if Xv is assigned label k then yv,k = 1 and yv,i = 0 for

all other values i in L. Similarly, yuv,ij = 1 indicates that variable Xu is assigned

label i and variable Xv is assigned label j. The reader should note that the

variables yst,ij and yts,ji indicate the exact same thing. The IP formulated above

is np-hard to solve exactly. We can relax the {0, 1} constraints in the problem

to ys,i > 0, yst,ij > 0 to get a simple linear program which can be solved using

any lp solver like simplex or barrier function methods [44,89]. The relaxation of

the integrality constraints may result in a fractional solution of the optimization

problem. This solution is typically converted to a valid integer solution using

various rounding schemes [14, 51].

graph is the size of the biggest set in this tree minus one. This conversion procedure provides

us with an algorithm to minimize non-submodular functions defined on general graphs whose

complexity is exponential in the tree width of the graph.

15

1.4. Minimizing Non-submodular Functions

The linear programs which arise in computer vision problems contain many

variables and are thus computationally expensive to solve using the general meth-

ods mentioned above. A number of algorithms have been developed [51, 55, 112,

115] which attempt to solve the lp relaxation by exploiting the special structure

of the problem. In particular, researchers have proposed a number of message

passing algorithms which are able to approximately solve large lp problems ex-

tremely efficiently [51, 112].

1.4.2 Partial Optimality

Some algorithms for the minimization of non-submodular functions return a par-

tial solution x ∈ {L ∪ ǫ}n of the energy [6, 8, 57, 84]. The assignment xi = ǫ

implies that no label has been assigned to random variable Xi. For instance,

the qpbo algorithm [8,76,84] for minimizing energy functions of binary variables

returns a partially labelled solution x with the property that there exists a global

minimum x∗ of the energy function such that xi = x∗i for all labelled variables

Xi. This property of the solution is called weak persistency. There are certain

partial solutions of the energy for which a stronger condition called strong persis-

tency holds true. This property states that if a variable Xi is labelled, then it is

assigned the same label in all global minima x∗ of the energy, i.e. xi = x∗i for all

x∗ ∈ {arg minxE(x)}.
It has been shown that tree-reweighted message passing gives a part of an

optimal solution when applied to functions of binary variables [112]. A method

for finding partially optimal solutions of multi-label energy functions was recently

proposed by [57]. The key step of this algorithm is the construction of a submod-

ular subproblem Pk for each label lk ∈ L. It was shown that the solution of the

subproblem Pk can be used to isolate variables which are assigned label lk in all

the globally optimal solutions of the energy function.

1.4.3 Summary

In this chapter we have given a brief overview of the energy minimization problem.

We have explained how vision problems can be formulated in terms of minimizing

a function, and reviewed the commonly used methods for function minimization.

The family of submodular functions was introduced in the chapter. We explained

the importance of submodular functions in discrete optimization, and listed some

of their properties. We also explained how second order submodular functions can

be minimized by solving a st-mincut problem. In the next chapter, we explain how

this procedure can be made more efficient by reusing computation from previous

problem instances.

16

Chapter 2

Minimizing Dynamic Energy

Functions

17

2.1. Dynamic Graph Cuts

In many real world applications, multiple similar instances of a problem need to be

solved sequentially e.g. performing image segmentation on the frames of a video.

The data (image) in this problem changes from one time instance to the next.

Given the solution to an instance of the problem, the question arises as to whether

this solution can help in solving other similar instances. In this chapter we answer

this particular question positively for functions that can be minimized exactly

using graph cuts. Specifically, we show how the maxflow solution corresponding

to an energy minimization problem can be used for efficiently minimizing another

similar function with slightly different energy terms.

Our algorithm records the flow obtained during the computation of the max-

flow corresponding to a particular problem instance. This recorded flow is used as

an initialization in the process of finding the max-flow solution corresponding to

the new problem instance (as seen in figure 2.1). Our method belongs to a broad

category of algorithms which are referred to as dynamic. These algorithms solve a

problem by dynamically updating the solution of the previous problem instance.

Their goal is to be more efficient than a recomputation of the solution after every

change from scratch. Given a directed weighted graph, a fully dynamic algorithm

should allow for unrestricted modification of the graph. The modification may

involve addition and deletion of nodes and edges in the graph as well as changes

in the cost (capacity) of any graph edge.

2.1.1 Dynamic Computation

Dynamic algorithms are not new to computer vision. They have been extensively

used in computational geometry for problems such as range searching, point loca-

tion, convex hull, proximity and many others. For more on dynamic algorithms

used in computational geometry, the reader is referred to [15]. A number of al-

gorithms have been proposed for the dynamic mincut problem. Thorup [105]

proposed a method which had a O(
√
m) update time and took O(log n) time per

edge to list the cut edges. Here n and m denote the number of nodes and edges

in the graph respectively. However, the dynamic st-mincut problem has remained

relatively ignored.

Gallo et al. [30] introduced the problem of parametric max-flow and used a

partially dynamic graph cut algorithm for the problem. Their algorithm had a

low polynomial time complexity but was unable to handle arbitrary changes in the

18

2.1. Dynamic Graph Cuts

Figure 2.1: Dynamic image segmentation using graph cuts. The images in the

first column are two consecutive frames of the grazing cow video sequence. Their

respective segmentations are shown in the third column. The first image in the

first column also shows the user segmentation seeds (pixels marked by black (back-

ground) and white (foreground) colours). The user marked image pixels are used

to learn histograms modelling foreground and background appearance (as in [9]).

These histograms are used to compute a likelihood for each pixel belonging to a

particular label. This likelihood is incorporated in the crf used for formulating

the image segmentation problem. The optimal segmentation solution (shown in

column 3) is obtained by minimizing the energy function corresponding to the

crf. In column 2, we observe the n-edge flows obtained while minimizing the en-

ergy functions using graph cuts. It can be clearly seen that the flows corresponding

to the two segmentations are similar. The flows from the first segmentation were

used as an initialization for the max-flow problem corresponding to the second

frame. The time taken for this procedure was much less than that taken for find-

ing the flows from scratch.

19

2.2. Energy and Graph Reparameterization

graph. Recently, Cohen and Tamassia [16] proposed a dynamic algorithm for the

problem by showing how dynamic expression trees can be used for maintaining

st-mincuts with O(logm) time for update operations. However, their algorithm

could only handle series-parallel diagraphs1.

Boykov and Jolly [9] were the first to use a partially dynamic st-mincut al-

gorithm in a vision application by proposing a technique with which they could

update capacities of certain graph edges, and recompute the st-mincut dynam-

ically. They used this method for performing interactive image segmentation,

where the user could improve segmentation results by giving additional segmen-

tation cues (seeds) in an online fashion. Specifically, they described a method for

updating the cost of t-edges in the graph. In this chapter we present a new fully

dynamic algorithm for the st-mincut problem which allows for arbitrary changes

in the graph2. Recently, Juan and Boykov [43] proposed an algorithm in which

instead of reusing flow, they used the st-mincut solution corresponding to the

previous problem for solving a new st-mincut problem.

2.1.2 Outline of the Chapter

An outline of the chapter follows. The relationship between energy and graph

reparameterization is explained in section 2.2. Section 2.3 shows how exact st-

mincut solutions of dynamically changing graphs can be efficiently computed by

reusing flow. Specifically, it describes how the residual graph can be transformed

to reflect the changes in the original graph using graph reparameterization, and

discusses issues related to the computational complexity of the algorithm. In

section 2.4, we describe how the process of recomputing the st-mincut/max-flow

can be further optimized by using recycled search trees.

2.2. Energy and Graph Reparameterization

We will now explain the concept of graph reparameterization which will be used

later to show how we can minimize dynamic energy functions.

Recall from equation 1.3.6 that a second order energy function can be written

1Series-Parallel digraphs are graphs which are planar, acyclic and connected.
2An earlier version of this chapter appeared as [48].

20

2.3. Recycling Computation

in terms of an energy parameter vector θ as:

E(x|θ) = θconst +
∑

v∈V

(θv;1xv + θv;1xv)

+
∑

(u,v)∈E

(θst;11xuxv + θst;01xuxv + θst;10xuxv + θst;00xuxv).(2.2.1)

Two energy parameter vectors θ1 and θ2 are called reparameterizations of each

other if and only if ∀x, E(x|θ1) = E(x|θ2) [8, 51, 88, 112]. This definition simply

means that all possible labellings x have the same energy under both parameter

vectors θ1 and θ2, and does not imply that θ1 = θ2. There are a number of

transformations which can be applied to an energy parameter vector θ to obtain

its reparameterization θ. For instance the transformations given as:

∀i θv;i = θv;i + α, θconst = θconst − α and (2.2.2)

∀i, j θst;ij = θst;ij + α, θconst = θconst − α (2.2.3)

result in the reparameterization of the energy parameter vector.

As both parameters θ and θ define the same energy function, the minimum

energy labelling for both will be the same i.e.

x∗ = arg min
x
E(x|θ1) = arg min

x
E(x|θ2) (2.2.4)

This in turn implies that the graphs constructed for minimizing the energy func-

tions E(x|θ1) and E(x|θ2) (using the procedure explained in the previous chapter)

will have the same st-mincut. We call these graphs reparameterizations of each

other. For any transformation of the energy function which results in such a

reparameterization we can derive a corresponding transformation for a graph.

Under these transformations the resulting graph will be a reparameterization of

the original graph and thus will have the same st-mincut. The graph transfor-

mations corresponding to energy transformations given by equations (2.2.2) and

(2.2.3) are shown in figure 2.2.

The transformations given above are not the only way to obtain a reparam-

eterization. In fact pushing flow through any path in the graph can be seen as

performing a valid transformation. The residual graph resulting from this flow

is a reparameterization of the original graph where no flow was being passed.

This can be easily observed from the fact that the residual graph has the same

st-mincut as the original graph, albeit with a different cost. In the next section

we show how the property of graph reparameterization can be used for updating

the residual graph when the original graph has been modified and the st-mincut

needs to be recomputed.

21

2.3. Recycling Computation

Figure 2.2: Graph reparameterization. The figure shows a graph G, its two repa-

rameterizations G1 and G2 along with their respective st-mincuts. The edges

included in the st-mincut are marked by dotted lines. The reparameterized graphs

G1 and G2 are a results of two different valid transformations of graph G. It can

be clearly seen that reparameterized graphs G1 and G2 have the same st-mincut

as graph G.

2.3. Recycling Computation

We now show how the max-flow solution obtained while minimizing an energy

function can be used to efficiently minimize other similar energy functions.

Consider two energy functions Ea and Eb which differ by a few terms. As

we have seen in the previous chapter, this implies that the graph Gb representing

energy Eb differs from that representing energy Ea (Ga) by a few edge costs. Sup-

pose we have found the optimal solution of Ea by solving the max-flow problem

on the graph Ga and now want to find the solution of Eb. Instead of following

the conventional procedure of recomputing the max-flow on Gb from scratch, we

perform the computation by reusing the flows obtained while minimizing Ea.

Boykov and Jolly [9], in their work on interactive image segmentation used this

technique for efficiently recomputing the map solution when only the unary terms

of the energy function change (due to addition of new hard and soft constraints

by the user). However, they did not address the problem of handling changes in

the pairwise terms of the energy function which result in changes in the cost of

the n-edges of the graph. Our method (explained below) can handle arbitrary

changes in the graph.

22

2.3. Recycling Computation

2.3.1 Updating Residual Graphs

The flows through a graph can be used to generate a residual graph (as explained

in chapter 1). Our algorithm works by updating the residual graph obtained from

the max-flow computation in graph Ga to make it represent Gb. This is done by

reducing or increasing the residual capacity of an edge according to the change

made to its cost going from Ga to Gb.

Recall from equation (1.3.2) that the flow in an edge of the graph has to

satisfy the edge capacity constraint:

0 ≤ fij ≤ cij ∀(i, j) ∈ E. (2.3.1)

While modifying the residual graph, certain flows may violate the new edge ca-

pacity constraints (2.3.1). This is because flow in certain edges might be greater

than the capacity of those edges under Gb. To make these flows consistent with

the new edge capacities, we reparameterize the updated graph (using reparame-

terizations described in the previous section) to make sure that the flows satisfy

the edge capacity constraints (2.3.1) of the graph. The max-flow is then com-

puted on this reparameterized graph. This gives us the st-mincut solution of

graph Gb, and hence the global minimum solution of energy Eb.

We now show how the residual graph is transformed to make sure that all

edge capacity constraints are satisfied. We use the two graph transformations

given in section 2.2 to increase the capacities of edges in Gb in which the flow

exceeds the true capacity. These transformations lead to a reparameterization of

the graph Gb. We can then find the st-mincut on this reparameterized graph to

get the st-mincut solution of graph Gb.

The various changes that might occur to the graph going from Ga to Gb can

be expressed in terms of changes in the capacity of t-edges and n-edges of the

graph. The methods for handling these changes will be discussed now. We use

c
′

si to refer to the new edge capacity of the edge (s, i). r
′

si and f
′

si are used to

represent the updated residual capacity and flow of the edge (s, i) respectively.

Modifying t-edge Capacities Our method for updating terminal or t-edges

is similar to the one used in [9] and is described below.

The updated residual capacity of an edge (s, i) can be computed as:

r
′

si = rsi + c
′

si − csi. (2.3.2)

This can be simplified to: r
′

si = c
′

si − fsi. If the flow fsi is greater than the updated

edge capacity c
′

si, it violates the edge capacity constraint (2.3.1) resulting in r
′

si

becoming negative. To make the flow consistent a constant γ = fsi−c′si is added

23

2.3. Recycling Computation

to the capacity of both the t-edges {(s, i),(i, t)} connected to the node i. As has

been observed in section 2.2 and in [9], this transformation is an example of graph

reparameterization which does not change the minimum cut (its cost changes but

not the cut itself). For an illustration see figure 1.3. The residual capacities thus

become: r
′

si = c
′

si − fsi + γ = 0 and, r
′

it = cit − fit + γ, or r
′

it = rit − c
′

si + fsi.

Modifying n-edge Capacities We now describe how the residual graph is

updated when n-edge capacities are changed. Observe that updating edge capac-

ities in the residual graph is simple if the new edge capacity c
′

ij is greater than

or equal to the old edge capacity cij. This operation involves addition of extra

capacity and thus the flow cannot become inconsistent. The updated residual

capacity r
′

ij is obtained as:

r
′

ij = rij + (c
′

ij − cij). (2.3.3)

Even if c
′

ij is less than cij, the procedure still remains trivial if the flow fij is

less than the new edge capacity c
′

ij. This is due to the fact that the reduction

in the edge capacity does not affect the flow consistency of the network i.e., flow

fij satisfies the edge capacity constraint (2.3.1) for the new edge capacity. The

residual capacity of the edge can still be updated according to equation (2.3.3).

The difference in this case is that (c
′

ij − cij) is negative and hence will result in

the reduction of the residual capacity. In both these cases, the flow through the

edge remains unchanged i.e. f
′

ij = fij .

The problem becomes complex when the new edge capacity c
′

ij is less than the

flow fij . In this case, fij violates the edge capacity constraint (2.3.1). To make

fij consistent, we have to retract the excess flow (fij - c
′

ij) from the edge (i, j). At

this point, the reader should note that a trivial solution for this operation would

be to push back the flow through the augmenting path it originally came through.

However such an operation would be extremely computationally expensive. We

now show how we resolve this inconsistency in constant i.e. O(1) time.

The inconsistency arising from excess flow through edge (i, j) can be resolved

by a single valid transformation of the residual graph. This transformation is the

same as the one shown in figure 1.3 for obtaining graph G2 from G, and does not

change the st-mincut. It leads to a reparameterization of the residual graph which

has non-negative residual capacity for the edge (i, j). The transformation involves

adding a constant α = fij − c
′

ij to the capacity of edges (s, i), (i, j), and (j, t) and

subtracting it from the residual capacity of edge (j, i). The residual capacity

rji of edge (j, i) is greater than the flow fij passing through edge (i, j). As α is

always less than fij the above transformation does not make the residual capacity

of edge (j, i) negative. The procedure for restoring consistency is illustrated in

figure 2.3.

24

2.3. Recycling Computation

Figure 2.3: Restoring consistency using graph reparameterization. The figure

illustrates how edge capacities can be made consistent with the flow by reparam-

eterizing the residual graph. It starts by showing a residual graph consisting of

two nodes i and j obtained after a max-flow computation. For the second max-

flow computation the capacity of edge (i, j) is reduced by 3 units resulting in the

updated residual graph in which the residual capacity of edge (i, j) is equal to -1.

To make the residual capacities positive we reparameterize the graph by adding

α = 1 to the capacity of edges (i, j), (s, i) and (j, t) and subtracting it from the

capacity of edge (j, i). This gives us the reparameterized residual graph in which

the edge flows are consistent with the edge capacities.

2.3.2 Computational Complexity of Update Op-

erations

In this section we analyze the computational complexity of various update op-

erations that can be performed on the graph. Modifying an edge cost in the

residual graph takes constant time. Arbitrary changes in the graph like addition

or deletion of nodes and edges can be expressed in terms of modifying an edge

cost. The time complexity of all such changes is O(1) except for deleting a node

where the update time is O(k). Here k is the degree of the node to be deleted1.

After the residual graph has been updated to reflect the changes in the energy

function, the augmenting path procedure is used to find the maximum flow. This

involves repeatedly finding paths with free capacity in the residual graph and

saturating them. When no such paths can be found i.e., the source and sink are

disconnected in the residual graph, we reach the maximum flow.

The maximum flow from the source to the sink is an upper bound on the

1The capacity of all edges incident on the node has to be made zero which takes O(1) time

per edge.

25

2.4. Improving Performance by Recycling Search Trees

number of augmenting paths found by the augmenting path procedure. Also, the

total change in edge capacity bounds the increase in the flow ∇f defined as:

∇f ≤
m

′

∑

i=1

|c′ei
− cei

|, where ei ∈ E

or, ∇f ≤ m
′

cmax where cmax = max(|c′ei
− cei

|). Thus we get a loose O(m
′

cmax)

bound on the number of augmentations, where m
′

is the number of edge capacity

updates.

2.4. Improving Performance by Recycling

Search Trees

We have seen how by dynamically updating the residual graph we can reduce the

time taken to compute the st-mincut. We can further improve the running time

by using a technique motivated by [10].

Typical augmenting path based methods start a new breadth-first search for

(source to sink) paths as soon as all paths of a given length are exhausted. For

instance, Dinic [21] proposed an augmenting path algorithm which builds search

trees to find augmenting paths. This is a computationally expensive operation as

it involves visiting almost all nodes of the graph and makes the algorithm slow if

it has to be performed too often. To counter this, Boykov and Kolmogorov [10]

proposed an algorithm in which they reused the search tree. In their experiments,

this new algorithm outperformed the best-known augmenting-path and push-

relabel algorithms on graphs commonly used in computer vision.

Motivated from their results we decided to reuse the search trees available from

the previous max-flow computation to find the solution in the updated residual

graph. This technique saved us the cost of creating a new search tree and made

our algorithm substantially faster. The main differences between our algorithm

and that of [10] are the presence of the tree restoration stage, and the dynamic

selection of active nodes. We will next describe how the algorithm of [10] works

and then explain how we modify it to recycle search trees for dynamic graph cuts.

2.4.1 Reusing Search Trees

The algorithm described in [10] maintains two non-overlapping search trees S and

T with roots at the source s and the sink t respectively. In tree S all edges from

each parent node to its children are non-saturated, while in tree T edges from

children to their parents are non-saturated. The nodes that are not in S or T are

26

2.4. Improving Performance by Recycling Search Trees

called free. The nodes in the search trees S and T can be either active (can grow

by acquiring new children along non-saturated edges) or passive. The algorithm

starts by setting all nodes adjacent to the terminal nodes as active. The three

basic stages of the algorithm are as follows:

Growth Stage The search trees S and T are grown until they touch each other

(resulting in an augmenting path) or all nodes become passive. The active nodes

explore adjacent non-saturated edges and acquire new children from the set of

free nodes which now become active. As soon as all neighbours of a given active

node are explored, the active node becomes passive. When an active node comes

in contact with a node from the other tree, an augmenting path is found.

Augmentation Stage In this stage of the algorithm, flow is pushed through

the augmenting path found in the growth stage. This results in some nodes

of the trees S and T becoming orphans since the edges linking them to their

parents become saturated. At this point, the source and sink search trees have

decomposed into forests.

Adoption Stage During the adoption stage the search trees are restored by

finding a new valid parent (of the same set) through a non-saturated edge for

each orphan. If no qualifying parent can be found, the node is made free.

2.4.2 Tree Recycling for Dynamic Graph Cuts

We now explain our method for recycling search trees of the augmenting path

algorithm. Our algorithm differs from that of [10] in the way we initialize the set

of active nodes and in the presence of the Tree restoration stage.

2.4.2.1 Tree Restoration Stage

While dynamically updating the residual graph (as explained in section 2.3) cer-

tain edges of the search trees may become saturated and thus need to be deleted.

This operation results in the decomposition of the trees into forests and makes

certain nodes orphans. We keep track of all such edges and before recomputing

the st-mincut on the modified residual graph restore the trees by finding a new

valid parent for each of them. This process is similar to the adoption stage and

is explained below.

The aim of the tree restoration stage is two fold. First to find parents for

orphaned nodes, and secondly but more importantly, to make sure that the length

27

2.4. Improving Performance by Recycling Search Trees

of the path from the root node to all other nodes in the tree is as small as possible.

This is necessary to reduce the time spent passing flow through an augmenting

path. Note that longer augmenting paths would lead to a slower algorithm. This

is because the time taken to update the residual capacities of the edges in the

augmenting path during the augmentation stage is proportional to the length of

the path.

The first objective of the restoration stage can be met by using the adoption

stage alone. For the second objective we do the following: Suppose node i be-

longed to the source tree before the updates. For each graph node i which has

been affected by the graph updates we check the residual capacities of its t-edges

((s, i) or (i, t)). We can encounter the following two cases:

1. rsi ≥ rit : The original parent of the node (in this case, the source (s)) is

reassigned as the parent of the node.

2. rsi < rit : The parent of the node is changed to the other terminal node

‘sink’ (t). This means that the node has now become a member of sink tree

T . All the immediate child nodes of i are then made orphans as they had

earlier belonged to the source tree.

The reassignment of parents of updated nodes according to the above mentioned

rules resulted in a moderate but significant improvement in the results.

2.4.2.2 Dynamic Node Activation

The algorithm of [10] starts by marking the set of all nodes adjacent to the

terminal nodes as active. This set is usually large and exploring all its constituent

nodes is computationally expensive. However this is necessary as an augmenting

path can pass through any such node.

In the case of the dynamic st-mincut problem, we can isolate a much smaller

subset of nodes which need to be explored for possible augmenting paths. The key

observation to be made in this regard is that all new possible augmenting paths are

constrained to pass through nodes whose edges have undergone a capacity change.

This results in a much smaller active set and makes the max-flow computation

significantly faster. When no changes are made to the graph, all nodes in the

graph remain passive and thus our augmenting path algorithm for computing the

max-flow takes no time.

28

Chapter 3

Applications of Dynamic Graph

Cuts

29

3.1. Dynamic Image Segmentation

The dynamic graph cut algorithm proposed in the previous chapter can be

used to dynamically perform map inference in an mrf or crf. Such an inference

procedure is extremely fast and has been used for a number of computer vision

problems [12, 35, 49, 84].

In this chapter we describe some applications of dynamic graph cuts. To

demonstrate the efficiency of the algorithm, we will provide quantitative results

comparing its performance with the dual-search tree algorithm proposed in [10]

which has been experimentally shown to be the fastest for several vision problems

including image segmentation1.

We will call the algorithm of [10] static since it starts afresh for each problem

instance. The dynamic algorithm which reuses the search trees will be referred

to as the optimized dynamic graph cut algorithm. It should be noted that while

comparing running times the time taken to allocate memory for graph nodes

was not considered. Further, to make the experimental results invariant to cache

performance we kept the graphs in memory.

3.1. Dynamic Image Segmentation

Image segmentation has always remained an iconic problem in computer vision.

The past few years have seen rapid progress made on it driven by the emergence

of powerful optimization algorithms such as graph cuts. Early methods for per-

forming image segmentation worked by coupling colour appearance information

about the object and background with the edges present in an image to obtain

good segmentations. However, this framework does not always guarantee good

results. In particular, it fails in cases where the colour appearance models of the

object and background are not discriminative.

A semi-automated solution to this problem was explored by Boykov and

Jolly [9] in their work on interactive image segmentation. They showed how users

could refine segmentation results by specifying additional constraints. This can

be done by labelling particular regions of the image as ‘object’ or ‘background’

and then computing the map solution of the crf again. The interactive image

segmentation process is illustrated in figure 3.1.

3.1.1 CRFs for Image Segmentation

The image segmentation problem is commonly formulated using the crf model

described in chapter 1. In the context of image segmentation, the vertex set V
1For the static algorithm we used the author’s original implementation.

30

3.1. Dynamic Image Segmentation

(a) (b) (c)

Figure 3.1: Interactive image segmentation. The figure shows how good segmen-

tation results can be obtained using a set of rough region cues supplied by the

user. (a) An image with user specified segmentation cues (shown in blue and

red). These cues were used to obtain the segmentation shown in image (b). This

segmentation is not perfect and can be improved by specifying additional cues

which are shown in (b). The final segmentation result is shown in image (c).

corresponds to the set of all image pixels, N is a neighbourhood defined on this

set1, the set L consists of the labels representing the different image segments

(which in our case are ‘foreground’ and ‘background’), and the value xv denotes

the labelling of the pixel v of the image. Every configuration x of such a crf

defines a segmentation. The image segmentation problem can thus be solved by

finding the least energy configuration of the crf.

The energy function characterizing the crfs used for image segmentation can

be written as a sum of likelihood (φ(D|xi)) and prior (ψ(xi, xj)) terms as:

Ψ1(x) =
∑

i∈V

(

φ(D|xi) +
∑

j∈Ni

ψ(xi, xj)

)

+ const. (3.1.1)

The term φ(D|xi) in the crf energy is the data log likelihood which imposes

individual penalties for assigning any label k ∈ L to pixel i. If we only take the

appearance model into consideration, the likelihood is given by

φ(D|xi) = − log Pr(i ∈ Sk|Hk) if xi = k, (3.1.2)

where Hk is the rgb (or for grey scale images, the intensity value) distribution for

the segment Sk denoted by label k ∈ L 2. The probability of a pixel belonging to a

particular segment i.e. Pr(i ∈ Sk|Hk) is proportional to the likelihood Pr(Ii|Hk),

where Ii is the colour intensity of the pixel i. The likelihood Pr(Ii|Hk) is generally

computed from the colour histogram of the pixels belonging to the segment Sk.

1In this work, we have used the standard 8-neighbourhood i.e., each pixel is connected to

the 8 pixels surrounding it.
2In our problem, we have only 2 segments i.e., the foreground and the background.

31

3.1. Dynamic Image Segmentation

Figure 3.2: The pairwise MRF commonly used to model image labelling problems.

The random field contains a hidden node corresponding to each pixel in the image.

The MRF shown in the figure has a 4-neighbourhood, i.e. each node representing

the random variables is connected to 4 neighbouring nodes.

The prior ψ(xi, xj) terms takes the form of a Generalized Potts model:

ψ(xi, xj) =

{

Kij if xi 6= xj ,

0 if xi = xj .
(3.1.3)

The crf used to model the image segmentation problem also contains a contrast

term which favours pixels with similar colours having the same label [4, 9]. This

term is incorporated in the energy function by increasing the cost within the

Potts model (for two neighbouring variables being different) in proportion to the

similarity in intensities of their corresponding pixels. In our experiments, we use

the function:

γ(i, j) = λ exp

(−g2(i, j)

2σ2

)

1

dist(i, j)
, (3.1.4)

where g2(i, j) measures the difference in the RGB values of pixels i and j and

dist(i, j) gives the spatial distance between i and j. This is a likelihood term (not

prior) as it is based on the data, and hence has to be added separately from the

smoothness prior. The energy function of the crf now becomes

Ψ2(x) =
∑

i∈V

(

φ(D|xi) +
∑

j∈Ni

(φ(D|xi, xj) + ψ(xi, xj))

)

(3.1.5)

The contrast term of the energy function has the form

φ(D|xi, xj) =

{

γ(i, j) if xi 6= xj

0 if xi = xj .
(3.1.6)

By adding this term to the energy, we have diverged from the strict definition of

an mrf. The resulting energy function in fact now characterizes a Conditional

Random Field [61]. The pairwise mrf commonly used to model image labelling

problems is shown in figure 3.2.

32

3.1. Dynamic Image Segmentation

Figure 3.3: Segmentation in videos using user seeds. The first image shows one

frame of the input video with user segmentation seeds (the black and white boxes).

The image pixels contained in these boxes are used to learn histograms modelling

foreground and background likelihoods. The second image shows the segmentation

result obtained using these likelihoods with the method of [9]. The result contains

a certain portion of the background wrongly marked as the foreground due to

similarity in colour. This error in the segmentation can be removed by the user

by specifying a hard constraint. This involves marking a set of pixel positions in

the wrongly labelled region as background (shown as the checkered region in the

second image). This constraint is used for all the frames of the video sequence.

The third image is the final segmentation result.

3.1.2 Image Segmentation in Videos

The object-background segmentation problem aims to cut out user specified ob-

jects in an image [9]. We consider the case when this process has to be performed

over all frames in a video sequence. The problem is formulated as follows.

The user specifies hard and soft constraints on the segmentation by providing

segmentation cues or seeds on only the first frame of the video sequence. The soft

constraints are used to build colour histograms for the object and background.

These histograms are later used for calculating the likelihood term φ(D|xi) of the

energy function (3.1.5) of the crf. This is done for all the frames of the video

sequence.

The hard constraints are used for specifying pixel positions which are con-

strained to take a specific label (object or background) in all the frames of the video

sequence. Note that unlike soft constraints, the pixel positions specified under

hard constraints do not contribute in the construction of the colour histograms for

the object and background. This is different from the user-input strategy adopted

in [9]. In our method the hard constraints are imposed on the segmentation by

incorporating them in the likelihood term φ(D|xi). This is done by imposing

33

3.1. Dynamic Image Segmentation

Figure 3.4: Segmentation results of the human lame walk video sequence.

a very high cost for a label assignment that violates the hard constraints in a

manner similar to [9]. This method for specifying hard constraints has been cho-

sen because of its simplicity. Readers should refer to [113] for a sophisticated

method for specifying hard constraints for the video segmentation problem. Fig-

ure 3.3 demonstrates the use of constraints in the image segmentation process.

The segmentation results are shown in figure 3.4.

3.1.3 Experimental Results

In this section we demonstrate the performance of our dynamic graph cut algo-

rithm on the image segmentation problem. We compare the time taken by our

algorithm with that needed by the algorithm proposed in [10].

In the interactive image segmentation experiments, we observed that dynamic

graph cuts resulted in a massive improvement in the running time. For the image

shown in figure 3.1, the time taken by the static st-mincut algorithm to compute

the refined solution (from scratch) was 120 milliseconds. The dynamic algorithm

computed the same solution in 45 milliseconds, while the dynamic (optimized)

algorithm only required 25 milliseconds.

We now discuss the results of image segmentation in videos. The video se-

quences used in our tests had between one hundred to a thousand image frames.

For all the video sequences dynamically updating the residual graph produced a

decrease in the number of augmenting paths. Further, the dynamic algorithms

(normal and optimized) were substantially faster than the static algorithm. The

average running times per image frame for the static, dynamic and optimized-

dynamic algorithms for the human lame walk sequence3 of size 368x256 were 91.4,

3Courtesy Derek Magee, University of Leeds.

34

3.1. Dynamic Image Segmentation

Figure 3.5: Running time and number of augmenting paths found by static and

dynamic st-mincut algorithms. Observe that as the first and second frames of the

video sequence are the same, the residual graph does not need to be updated, which

results in no augmenting paths found by the dynamic algorithms when segmenting

frame 2. Further, the optimized dynamic algorithm takes no time for computing

the segmentation for the second image frame as the crfs corresponding to the first

and second image frames are the same and thus no modifications were needed in

the residual graph and search trees. However, the normal dynamic algorithm

takes a small amount of time since it recreates the search trees for every problem

instance from scratch.

66.0, and 33.6 milliseconds and for the grazing cow sequence of size 720x578 were

188.8, 151.3, and 78.0 milliseconds respectively. The time taken by the dynamic

algorithm includes the time taken to recycle the search trees. The experiments

were performed on a Pentium 4 2.8 GHz machine.

The graphs in figure 3.5 show the performance of the algorithms on the first

sixty frames of the human lame walk sequence. Observe that the number of

augmenting paths found is lowest for the dynamic algorithm, followed by the

35

3.1. Dynamic Image Segmentation

dynamic (optimized) and then the static algorithm. The use of more augmenting

paths by the dynamic (optimized) algorithm is due to the utilization of recycled

search trees which produce long augmenting paths.

3.1.4 Reusing Flow Vs Reusing Search Trees

In this section, the relative contributions of reusing flow and search trees in im-

proving the running time of the dynamic algorithm are discussed.

The procedure for constructing a search tree has linear time complexity and

thus should be quite fast. Further as seen in figure 3.5 using a fresh search

tree after every graph update results in fewer augmenting paths. From these

results it might appear that recycling search trees would not yield a significant

improvement in running time. However this is not the case in practice as seen in

figure 3.6. This is because although the complexity of search tree construction is

linear in the number of edges in the graph, the time taken for tree construction is

still substantial. This is primarily due to the nature of graphs used in computer

vision problems. The number of nodes/edges in these graphs may be of the order

of millions. For instance, when segmenting an image of size 640 × 480, max-flow

on a graph consisting of roughly 3 × 105 nodes and more than 2 million edges

needs to be computed. The total time taken for this operation is 90 milliseconds

(msec) out of which almost 15 msec is spent on constructing the search tree.

The time taken by the dynamic algorithm to compute the st-mincut decreases

with the decrease in the number of changes made to the graph. However, as the

time taken to construct the search tree is independent of the number of changes,

it remains constant. This results in a situation where if only a few changes to the

graph are made (as in the case of min-marginal computation [49]), the dominant

part of computation time is spent on constructing the search tree itself. By

reusing search trees we can get rid of this constant cost of creating a search tree

and replace it with a change dependent tree restoration cost.

The exact amount of speed-up contributed by reusing flow and search trees

techniques varies with the problem instance. For a typical interactive image

segmentation example, the first st-mincut computation takes 120 msec out of

which 30 msec is spent on constructing the search tree. We need to recompute the

st-mincut after further user interaction (which results in changes in the graphs).

For the later st-mincut computation, if we construct a new search tree then the

time taken by the algorithm is 45 msec (a speed up of roughly 3 times) out of

which 30 msec is used for tree creation and 15 msec is used for flow computation.

However, if we use reuse the search trees, then the algorithm takes only 25 msec

(a speed up of 5 times) out of which 7 msec is used for recycling the tree and 18

36

3.2. Simultaneous Segmentation and Pose Estimation of Humans

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Edge Cost Changed (%)

F
ra

ct
io

n
of

 T
im

e
T

ak
en

dynamic(op)
dynamic

Figure 3.6: Behavior of the dynamic algorithm. The figure illustrates how the time

taken by the dynamic algorithm (with/without tree recycling) changes with the

number of modifications made to the graph. The graph shows the fraction of time

taken to compute the st-mincut in the updated residual graph (with/without tree

recycling) compared to that taken for computing the st-mincut in the original graph

using the algorithm of [10]. For this experiment, we used a graph consisting of

1×105 nodes which were connected in a 8-neighbourhood. The dynamic algorithm

with tree recycling is referred as dynamic(op).

msec is used for flow computation.

Our results indicate that when a small number of changes are made to the

graph the recycled search tree works quite well in obtaining short augmenting

paths. The time taken for recycling search trees is also small compared to the time

taken to create a new search tree in a large graph. With increased change in the

graph the advantage in using the recycled search tree fades due to the additional

number of flow augmentations needed as a result of longer augmentation paths

obtained from the search tree.

3.2. Simultaneous Segmentation and Pose

Estimation of Humans

In this section of the dissertation I will present a novel algorithm for performing

integrated segmentation and 3D pose estimation of a human body from multiple

views. Unlike other state of the art methods which focus on either segmentation

37

3.2. Simultaneous Segmentation and Pose Estimation of Humans

or pose estimation individually, our approach tackles these two tasks together.

Our method works by optimizing a cost function based on a Conditional Random

Field (crf). This has the advantage that all information in the image (edges,

background and foreground appearances), as well as the prior information on

the shape and pose of the subject can be combined and used in a Bayesian

framework. Optimizing such a cost function would have been computationally

infeasible earlier. However, our recent research in dynamic graph cuts allows this

to be done much more efficiently than before. We demonstrate the efficacy of our

approach on challenging motion sequences. Although we target the human pose

inference problem in this work, our method is completely generic and can be used

to segment and infer the pose of any rigid, deformable or articulated object.

Human pose inference is an important problem in computer vision. It stands

at the crossroads of various important applications ranging from Human Com-

puter Interaction (hci) to surveillance. The importance and complexity of this

problem can be gauged by observing the number of papers which have tried to

deal with it [1, 20, 23, 31, 45, 62, 68, 79, 92, 96, 98, 107]. Most algorithms which

perform pose estimation require the segmentation of humans as an essential in-

troductory step [1, 45, 92]. This precondition limits the use of these techniques

to scenarios where good segmentations are made available by enforcing strict

studio conditions like blue-screening. Otherwise a preprocessing step must be

performed in an attempt to segment the human, such as [100]. These approaches

however cannot obtain good segmentations in challenging scenarios which have:

complex foreground and background, multiple objects in the scene, and moving

camera/background. Some pose inference methods exist which do not need seg-

mentations. These rely on features such as chamfer distance [31], appearance [96],

or edge and intensity [98]. However, none of these methods is able to efficiently

utilize all the information present in an image, and fail if the feature detector

they are using fails. This is partly because the feature detector is not coupled to

the knowledge of the pose and nature of the object to be segmented.

The question is then, how to simultaneously obtain the segmentation and hu-

man pose using all available information contained in the images?

Some elements of the answer to this question have been described by Kumar et

al. [59]. Addressing the object segmentation problem, they report that “samples

from the Gibbs distribution defined by a Markov Random Field very

rarely give rise to realistic shapes”. As an illustration of this statement,

figure 3.7(b) shows the segmentation result corresponding to the maximum a

posteriori (map) solution of the Conditional Random Field (crf) incorporating

38

3.2. Simultaneous Segmentation and Pose Estimation of Humans

information about the image edges and appearances of the object and background.

It can be clearly seen that this result is nowhere close to the ground truth.

Shape priors and segmentation In recent years, a number of papers have

tried to couple mrfs or crfs used for modelling the image segmentation problem,

with information about the nature and shape of the object to be segmented [28,

38, 59, 119]. One of the earliest methods for combining mrfs with a shape prior

was proposed by Huang et al. [38]. They incrementally found the map solution of

an extended mrf1 integrated with a probabilistic deformable model. They were

able to obtain a refined estimate of the object contour by using belief propagation

in the area surrounding the contour of this deformable model. This process was

iterated till convergence.

The problem however was still far from being completely solved since objects

in the real world change their shapes constantly and hence it is difficult to as-

certain what would be a good choice for a prior on the shape. This complex

and important problem was addressed by the work of Kumar et al. [59]. They

modelled the segmentation problem by combining crfs with layered pictorial

structures (lps) which provided them with a realistic shape prior described by a

set of latent shape parameters. Their cost function was a weighted sum of the

energy terms for different shape parameters (samples). The weights of this energy

function were obtained by using the Expectation-Maximization (em) algorithm.

During this optimization procedure, a graph cut had to be computed in order to

obtain the segmentation score each time any parameter of the crf was changed.

This made their algorithm extremely computationally expensive.

Although their approach produced good results, it had some shortcomings. It

was focused on obtaining good segmentations and did not provide the pose of the

object explicitly. Moreover, a lot of effort had to be spent to learn the exemplars

for different parts of the lps model. Recently, Zhao and Davis [119] exploited the

idea of object-specific segmentation to improve object recognition and detection.

Their method worked by coupling the twin problems of object detection and

segmentation in a single framework. They matched exemplars to objects in the

image using chamfer matching and thus like [59] also suffered from the problem

of maintaining a huge exemplar set for complex objects. We will describe how

we overcome the problem of maintaining a huge exemplar set by using a simple

articulated stickman model, which is not only efficiently renderable, but also

provides a robust human-like segmentation and accurate pose estimate. To make

our algorithm computationally efficient we use the dynamic graph cut algorithm.

1It is named an extended mrf due to the presence of an extra layer in the mrf to cope with

the shape prior.

39

3.2. Simultaneous Segmentation and Pose Estimation of Humans

Figure 3.7: Improving segmentation results by incorporating more information in

the CRF. (a) Original image. (b) The segmentation obtained corresponding to

the MAP solution of a CRF consisting of colour likelihood and contrast terms as

described in [9]. We give the exact formulation of this CRF in section 3.1.1. (c)

The result obtained when the likelihood term of the CRF also takes into account

the Gaussian Mixture Models (GMM) of individual pixel intensities as described

in section 3.2.1.1. (d) Segmentation obtained after incorporating a ‘pose-specific’

shape prior in the CRF as explained in Section 3.2.1.2. The prior is represented as

the distance transform of a stickman which guarantees a human-like segmentation.

(e) The stickman model after optimization of its 3D pose (see Section 3.2.2).

Observe how incorporating the individual pixel colour models in the CRF (c) gives

a considerably better result than the one obtained using the standard appearance

and contrast based representation (b). However the segmentation still misses the

face of the subject. The incorporation of a stickman shape prior ensures a human-

like segmentation (d) and provides simultaneously (after optimization) the 3D

pose of the subject (e).

40

3.2. Simultaneous Segmentation and Pose Estimation of Humans

Shape Priors in Level Sets Prior knowledge about the shape to be segmented

has also been used in level set methods for obtaining an object segmentation. Like

[59] these methods learn the prior using a number of training shapes. Leventon

et al. [65] performed principal component analysis on these shapes to get an

embedding function which was integrated in the evolution equation of the level

set. More recently, Cremers et al. [18] have used kernel density estimation and

intrinsic alignment to embed more complex shape distributions. Compared to [59]

and [119] these methods have a more compact representation of the shape prior.

However, they suffer from the disadvantage that equations for level set evolution

may lead to a local minima.

Human Pose Estimation In the last few years, several techniques have been

proposed for tackling the pose inference problem. In particular, the works of

Agarwal and Triggs [1] using relevance vector machines and that of Shakhnarovich

et al. [92] based on parameter sensitive hashing induced a lot of interest and have

been shown to give good results. Some methods for human pose estimation in

monocular images use a tree-structured model to capture the kinematic relations

between parts such as the torso and limbs [23, 68, 79]. They then use efficient

inference algorithms to perform exact inference in such models. In their recent

work, Lan and Huttenlocher [62] show how the tree-structured restriction can be

overcome while not greatly increasing the computational cost of estimation.

Overview of the Method Our method does not require a feature extraction

step but uses all the data in the image. We formulate the problem in a Bayesian

framework building on the object-specific crf [59] and provide an efficient method

for its solution called PoseCut. We include a human pose-specific shape prior in

the crf used for image segmentation, to obtain high quality segmentation results.

We refer to this integrated model as a pose-specific crf. Unlike Kumar et al. [59],

our approach does not require the laborious process of learning exemplars. Instead

we use a simple articulated stickman model, which together with an crf is used

as our shape prior. The experimental results show that this model suffices to

ensure human-like segmentations.

Given an image, the solution of the pose-specific crf is used to measure the

quality of a 3D body pose. This cost function is then optimized over all pose

parameters using dynamic graph cuts to provide both an object-like segmenta-

tion and the pose. The astute reader will notice that although we focus on the

human pose inference problem, our method is in-fact general and can be used to

segment and/or infer the pose of any object. We believe that our methodology is

completely novel and we are not aware of any published methods which perform

41

3.2. Simultaneous Segmentation and Pose Estimation of Humans

simultaneous segmentation and pose estimation. To summarize, the novelties of

our approach include:

• An efficient method for combined object segmentation and pose estimation

(PoseCut).

• Integration of a simple ‘stickman prior’ based on the skeleton of the object

in a crf to obtain a pose-specific crf which helps us in obtaining high

quality object pose estimate and segmentation results.

3.2.1 Pose Specific CRF for Image Segmenta-

tion

The crf framework for image segmentation described in section 3.1.1 uses like-

lihood terms which are only based on the pixel colour. This term is quite weak

and thus does not always guarantee good results. In particular, it fails in cases

where the colour appearance models of the object and background are not dis-

criminative as seen in figure 3.7(b). The problem becomes even more pronounced

in the case of humans where we have to deal with the various idiosyncracies of

human clothing.

From the work of Boykov and Jolly [9] on interactive image segmentation we

made the following interesting observations:

• Simple user supplied shape cues used as rough priors for the

object segmentation problem produced excellent results.

• The exact shape of the object can be induced from the edge in-

formation embedded in the image.

Taking these into consideration, we hypothesized that the accurate exemplars

used in [59] to generate shape priors were in-fact an overkill and could be replaced

by much simpler models. Motivated by these observations we decided against

using a sophisticated shape prior. We have used two simple models in our work

which are described below.

Stickman model We used a simple articulated stickman model for the full

body human pose estimation problem. The model is shown in figure 3.7(e). It

is used to generate a rough pose-specific shape prior on the segmentation. As

can been seen from the segmentation results in figure 3.7(d), the stickman model

helped us to obtain excellent segmentation results. The model has 26 degrees of

freedom consisting of parameters defining absolute position and orientation of the

42

3.2. Simultaneous Segmentation and Pose Estimation of Humans

Figure 3.8: The human upper body model. (a) The human upper body model

parameterized by 6 parameters encoding the x and y location of the two shoulders,

the length of the neck, and the angle of the neck with respect to the vertical. (b)

The shape prior generated using the model. Pixels more likely to belong to the

foreground/background are green/red. (c) and (d) The model rendered in two

poses.

torso, and the various joint angle values. There were no constraints or joint-limits

incorporated in our model.

The Upper body Model The second model was primarily designed for the

problem of segmenting the human speaker in video conference scenarios. The

model can be seen in figure 3.8. It is parameterized by 6 parameters which

encode the x and y location of the two shoulders and the length and angle of the

neck.

We now describe how the image segmentation problem can be modeled us-

ing a pose-specific crf. Our pose specific crf is obtained by augmenting the

conventionally used crf model for image segmentation (see section 3.1.1) with

potentials based on the shape of the object to be segmented, and appearances of

individual pixels.

3.2.1.1 Modeling Pixel Intensities by Gaussian Mixture

Models

The crf defined in section 3.1.1 performs poorly when segmenting images in

which the appearance models of the foreground and background are not highly

discriminative. When working on video sequences, we can use a background

model developed using the Grimson-Stauffer [100] algorithm to improve our re-

sults. This algorithm works by representing the colour distribution of each pixel

position in the video as a Gaussian Mixture Model (gmm). The likelihoods of

43

3.2. Simultaneous Segmentation and Pose Estimation of Humans

a pixel for being background or foreground obtained by this technique are inte-

grated in our crf. Figure 3.7(c) shows the segmentation result obtained after

incorporating this information in our crf formulation.

3.2.1.2 Incorporating the Pose-specific Shape Prior

Though the results obtained from the above formulation look decent, they are

not perfect. Note that there is no prior on the segmentation to look human

like. Intuitively, incorporating such a constraint in the crf would improve the

segmentation. In our case, this prior should be pose-specific as it depends on what

pose the object (the human) is in. Kumar et. al. [59], in their work on interleaved

object recognition and segmentation, used the result of the recognition to develop

a shape prior over the segmentation. This prior was defined by a set of latent

variables which favoured segmentations of a specific pose of the object. They

called this model the Object Category Specific crf, which had the following

energy function:

Ψ3(x,Θ) =
∑

i

(φ(D|xi) + φ(xi|Θ) +
∑

j

(φ(D|xi, xj) + ψ(xi, xj))) (3.2.1)

with posterior p(x,Θ|D) = 1
Z3

exp(−Ψ3(x,Θ)). Here Θ ∈ Rp is used to denote

the vector of the object pose parameters. The shape-prior term of the energy

function for a particular pose of the human is shown in figure 3.9(e). This is a

distance transform generated from the stick-man model silhouette using the fast

implementation of Felzenszwalb and Huttenlocher [22].

The function φ(xi|Θ) was chosen such that given an estimate of the location

and shape of the object, pixels falling near to that shape were more likely to be

labelled as ‘foreground’ and vice versa. It has the form: φ(xi|Θ) = − log p(xi|Θ).

We follow the formulation of [59] and define p(xi|Θ) as

p(xi = figure|Θ) = 1 − p(xi = ground|Θ) =
1

1 + exp(µ ∗ (d(i,Θ) − dr))
, (3.2.2)

where d(i,Θ) is the distance of a pixel i from the shape defined by Θ (being

negative if inside the shape). The parameter dr decides how ‘fat’ the shape should

be, while parameter µ determines the ratio of the magnitude of the penalty that

points outside the shape have to face, compared to the points inside the shape.

3.2.1.3 Inference in the CRF using graph cuts

Recall from chapter 1 that energy functions like the one defined in (3.2.1) can be

solved using graph cuts if they are sub-modular [54]. A function f : {0, 1}n → R

44

3.2. Simultaneous Segmentation and Pose Estimation of Humans

Figure 3.9: Different terms of our pose specific CRF. (a) Original image.

(b) The ratios of the likelihoods of pixels being labelled foreground/background

(φ(D|xi = ‘fg’)−φ(D|xi = ‘bg’)). These values are derived from the colour inten-

sity histograms. (c) The segmentation results obtained by using the GMM models

of pixel intensities. (d) The stickman in the optimal pose (see Sections 3.2.1.2

and 3.2.2). (e) The shape prior (distance transform) corresponding to the opti-

mal pose of the stickman. (f) The ratio of the likelihoods of being labelled fore-

ground/background using all the energy terms (colour histograms defining appear-

ance models, GMMs for individual pixel intensities, and the pose-specific shape

prior (see sections 3.1.1,3.2.1.1 and 3.2.1.2)) Ψ3(xi = ‘fg’,Θ)−Ψ3(xi = ‘bg’,Θ).

(g) The segmentation result obtained from our algorithm which is the MAP solu-

tion of the energy Ψ3 of the pose-specific CRF.

45

3.2. Simultaneous Segmentation and Pose Estimation of Humans

Figure 3.10: Inferring the optimal pose. a) The values of minx Ψ3(x,Θ) obtained

by varying the global translation and rotation of the shape prior in the x-axis. b)

Original image. c) The pose obtained corresponding to the global minimum of the

energy.

is submodular if and only if all its projections on 2 variables (f p : {0, 1}2 → R)

satisfy:

f p(0, 0) + f p(1, 1) ≤ f p(0, 1) + f p(1, 0). (3.2.3)

For the pairwise potentials, this condition can be seen as implying that the energy

for two labels taking similar values should be less than the energy for them taking

different values. In our case, this is indeed the case and thus we can find the

optimal configuration x∗ = minx Ψ3(x,Θ) using a single graph cut. The labels

of the latent variable in this configuration give the segmentation solution.

3.2.2 Formulating the Pose Inference Problem

Since the segmentation of an object depends on its estimated pose, we would like

to make sure that our shape prior reflects the actual pose of the object. This

takes us to our original problem of finding the pose of the human in an image. In

order to solve this, we start with an initial guess of the object pose and optimize

it to find the correct pose. When dealing with videos, a good starting point for

this process would be the pose of the object in the previous frame. However,

more sophisticated methods could be used based on object detection [101] at the

expense of increasing the computation time.

46

3.2. Simultaneous Segmentation and Pose Estimation of Humans

One of the key contributions of this work is to show how given an image of the

object, the pose inference problem can be formulated in terms of an optimization

problem over the crf energy given in (3.2.1). Specifically, we solve the problem:

Θopt = arg min
Θ,x

Ψ3(x,Θ)). (3.2.4)

The minimization problem defined above contains both discrete (x ∈ {0, 1}n) and

continuous (Θ ∈ RP) valued variables and thus is a mixed integer programming

problem. The large number of variables involved in the energy function Ψ3(x,Θ))

make it especially challenging to minimize. To solve the minimization problem

(3.2.4), we decompose it as: Θopt = arg minΘ F(Θ), where

F(Θ) = min
x

Ψ3(x,Θ)). (3.2.5)

For any value of Θ, the function Ψ3(x,Θ)) is submodular in x and thus can be

minimized in polynomial time by solving a single st-mincut problem to give the

value of F(Θ).

We will now explain how we minimize F(Θ) to get the optimal value of

the pose parameters. Figure 3.10 shows how the function F(Θ) depends on

parameters encoding the rotation and translation of our stickman model in the x-

axes. It can be seen that the function surface is unimodal in a large neighbourhood

of the optimal solution. Hence, given a good initialization of the pose Θ, it can

be reliably optimized using any standard optimization algorithm like gradient

descent. In our experiments, we used the Powell minimization [74] algorithm for

optimization.

Figure 3.11(a) shows how the function F(Θ) changes with changes to the neck

angle and length parameters of the upper body model shown in figure 3.8. Like

in the case of the 3D stickman model, the energy surface is well behaved near the

optimal pose parameters. Our experiments showed that the Powell minimization

algorithm is able to converge to almost the same point for different initializations

(see figure 3.11(b)).

Failure Modes It can be seen that the function F(Θ) is not unimodal over the

whole domain and contains local minima. This multi-modality of F(Θ) can cause

a gradient descent algorithm to get trapped and converge to a local minimum.

In our experiments we observed that these spurious minima lie quite far from the

globally optimal solution. We also observed that the pose of the human subject

generally does not change substantially from one frame to the next. This lead

us to use the pose estimate from the previous frame as an initialization for the

current frame. This good initialization for the pose estimate made sure that

spurious minima do not effect our method.

47

3.2. Simultaneous Segmentation and Pose Estimation of Humans

5
10

15
20

25

5

10

15

20

25

6000

7000

8000

9000

10000

11000

(a) (b)

Figure 3.11: Optimizing the pose parameters. (a) The values of minx Ψ3(x,Θ)

obtained by varying the rotation and length parameters of the neck. (b) The image

shows five runs of the Powell minimization algorithm [74] which are started from

different initial solutions.

The failure rate of our method can be further improved by using object de-

tection systems which provide a better initialization of the pose of the object.

Scenarios where the method still converges to a local minima can be detected

and dealt with using the strategy discussed in section 3.2.5 which was used in our

recent work on object detection and segmentation [81].

Resolving Ambiguity using multiple views The human pose inference

problem in the context of monocular images suffers from ambiguity. This is

because of the one-many nature of the mapping that relates a human shape as

seen in an image and the corresponding human pose. In other words, many possi-

ble poses can explain the same human shape. This ambiguity can be resolved by

using multiple views of the object (‘human’). Our framework has the advantage

that information from multiple views can be integrated into a single optimization

framework. Specifically, when dealing with multiple views we solve the problem:

Θopt = arg min
Θ

(
∑

Views

min
x

(Ψ3(x,Θ)). (3.2.6)

The framework is illustrated in figure 3.12.

Dynamic energy minimization using graph cuts As explained earlier

global minima of energies like the one defined in (3.2.1) can be found by graph

cuts [54]. The time taken for computing a graph cut for a reasonably sized crf is

of the order of seconds. This would make our optimization algorithm extremely

48

3.2. Simultaneous Segmentation and Pose Estimation of Humans

Figure 3.12: Resolving ambiguity in pose using multiple views. The figure shows

how information from different views of the human can be integrated in a single

energy function, which can be used to find the true pose of the human subject.

slow since we need to compute the global optimum of Ψ3(x,Θ) with respect to x

multiple number times for different values of Θ. The graph cut computation can

be made significantly faster by using the dynamic graph cut algorithm proposed

in chapter 2. This algorithm works by using the solution of the previous graph

cut computation for solving the new instance of the problem. We obtained a

speed-up in the range of 15-20 times by using the dynamic graph cut algorithm.

3.2.3 Experiments

We now discuss the results obtained by our method. We provide the segmentation

and pose estimation results individually.

3.2.3.1 Segmentation Results

As expected, the experimental results show that the segmentation results im-

prove considerably as we increase the amount of information in our crf frame-

work. Figure 3.13 shows how integrating more information in the crf improves

the segmentation results. Quantitative results for the segmentation problem are

shown in table 3.1.

In order to demonstrate the performance of our method, we compare our

segmentation results with those obtained using the method proposed in [100].

It can be seen from the results in figure 3.15 that the segmentations obtained

using the method of [100] are not accurate: They contain “speckles” and often

49

3.2. Simultaneous Segmentation and Pose Estimation of Humans

Figure 3.13: Results showing the effect of incorporating a shape prior on the seg-

mentation results. The first image is the original image to be segmented. The sec-

ond, third and fourth images show the segmentation results obtained using colour,

colour + smoothness prior and colour + smoothness + shape prior respectively.

Information Used Correct object pixels All correct pixels

Colour 45.73% 95.2%

Colour + GMM 82.48% 96.9%

Colour + GMM +Shape 97.43% 99.4%

Table 3.1: Quantitative segmentation results. The table shows the effect of adding

more information in the Bayesian framework on the quantitative segmentation

accuracy. The accuracy was computed over all the pixels in the image. The

ground truth for the data used in this experiment was generated by hand labelling

the foreground and background regions in the images.

50

3.2. Simultaneous Segmentation and Pose Estimation of Humans

Figure 3.14: Segmentation results using the 2D upper body model. The first row

shows some frames from the video sequence. The second row shows the initial val-

ues of the pose parameters of the model and the resulting segmentations. The last

row shows the final pose estimate and segmentation obtained using our method.

segment the shadows of the feet as foreground. This is expected as they use

only a pixelwise term to differentiate the background from the foreground and

do not incorporate any spatial term which could offer a better “smoothing”. In

contrast, PoseCut which uses a pairwise potential term (as any standard graph

cut approach) and a shape prior (which guarantees a human-like segmentation),

is able to provide accurate results.

Our experiments on segmenting humans using the 2D upper body model (fig-

ure 3.8) also produced good results. For these experiments, video sequences from

the Microsoft Research bilayer video segmentation dataset [52] were used. The

results of our method are shown in figure 3.14.

3.2.3.2 Segmentation and pose estimation

Figures 3.16 and 3.17 present the segmentations and the pose estimates obtained

using PoseCut. The first data set comprises of three views of human walking

circularly. The time needed for computation of the 3D pose estimate, on an

Intel Pentium 2GHz machine, when dealing with 644×484 images, is about 50

seconds per view2. As shown in these figures, the pose estimates match the

original images accurately. In Figures 3.16 and 3.17, it should be noted that

the appearance models of the foreground and background are quite similar: for

2However, this could be speeded up by computing the parameters of the crf in an fpga

(Field programmable gate array).

51

3.2. Simultaneous Segmentation and Pose Estimation of Humans

Figure 3.15: Segmentation results obtained by Grimson-Stauffer [100] and pose-

cut.

52

3.2. Simultaneous Segmentation and Pose Estimation of Humans

Figure 3.16: Segmentation (middle) and pose estimation (bottom) results from

PoseCut.

instance, in Figure 3.17, the clothes of the subject are black in colour and the floor

in the background is rather dark. The accuracy of the segmentation obtained

in such challenging conditions demonstrates the robustness of PoseCut. An

interesting fact to observe in Figure 3.16 about frame 95 is that the torso rotation

of the stickman does not exactly conform with the original pose of the object.

However, the segmentation of these frames is still accurate.

3.2.4 Shape Priors for Reconstruction

Obtaining a 3D reconstruction of an object from multiple images is a funda-

mental problem in computer vision. Reflecting the importance of the problem a

number of methods have been proposed for its solution. These range from meth-

ods such as shape from silhouettes [103] and space carving [60] to image based

methods [87]. However, the problem of obtaining accurate reconstructions from

sparse multiple views still remains far from being solved. The primary problem

afflicting reconstruction methods is the inherent ambiguity in the problem (as

shown in figure 3.18) which arises from the many-one nature of the mapping that

relates 3D objects and their images.

Intuitively the ambiguity in the object reconstruction can be overcome by us-

53

3.2. Simultaneous Segmentation and Pose Estimation of Humans

Figure 3.17: Segmentation (middle row) and pose estimation (bottom row) results

obtained using PoseCut. Observe that although the foreground and background

appearances are similar, our algorithm is able to obtain good segmentations.

ing prior knowledge. Researchers have long understood this fact and weak priors

such as surface smoothness have been used in a number of methods [53, 99, 111].

Such priors help in recovering from the errors caused by noisy data. Although

they improve results, they are weak and do not carry enough information to

guarantee a unique solution. Taking inspiration from the success of using strong

prior knowledge for image segmentation, we use 3D shape priors to overcome the

ambiguity inherent in the problem of 3D reconstruction from multiple views.

Our framework uses a volumetric scene representation and integrates conven-

tional reconstruction measures such as photoconsistency, surface smoothness and

visual hull membership with a strong object specific prior. Simple parametric

models of objects are used as strong priors in our framework. Our method not

only gives an accurate object reconstruction, but also provides us the pose or

state of the object being reconstructed. This work previously appeared in [102].

54

3.2. Simultaneous Segmentation and Pose Estimation of Humans

Figure 3.18: Ambiguity in object reconstruction due to few views. The figure shows

how two completely different objects can have the same visual hull. Further, if

both objects have the same colour, the photo hull and their projections on multiple

viewpoints would also be the same.

Experimental Results The data set for our experiments consists of video

sequences of four views of a human subject walking in a circle. This data set

was earlier used in [3]. It comes with silhouettes of the human subject obtained

using pixel wise background intensity modelling. The positions and orientations

of the 4 cameras with respect to the object are shown in figure 3.19(i).

The first step in our method is the computation of the visual hull. The

procedure starts with the quantization of the volume of interest as a grid of

cubical voxels of equal size. Once this is done, each voxel center is projected into

the input images. If any of the projections falls outside the silhouette, then the

voxel is discarded. All remaining voxels constitute the visual hull. Some visual

hull results are shown in figure 3.19(ii). It can be observed that because of the

skewed distribution of the cameras, the visual hull is quite different from the

true object reconstruction. Further, as object segmentations are not accurate,

it has large errors. The prominent defects in the visual hull results include:

(i) the presence of holes because of segmentation errors in the object silhouettes

(bottom row (b)), (ii) the presence of auxiliary parts caused by shadows, (iii) the

third-arm effect resulting from self-occlusion and ambiguity in the reconstruction

due to the small number of views (bottom row (a)). It can be seen that our

reconstruction results do not suffer from these errors (bottom row (c) and (d)).

The final results of our method for a few frames of the human walking sequence

55

3.2. Simultaneous Segmentation and Pose Estimation of Humans

(i) (ii)

Figure 3.19: i) Camera Positions and Reconstruction. The figure shows the po-

sition and orientations of the four cameras which were used to obtain the images

which constituted the data-set for our first experiment. We also see the reconstruc-

tion result generated by our method. ii) 3D Object Reconstruction using Strong

Object-Specific priors. The first and second rows show the images and silhouettes

used as the data. Two views of the visual hull generated using the data are shown

in the first two columns of the bottom row ((a) and (b)). The visual hull is noisy

and contains artifacts like the spurious third arm caused by the ambiguity in the

problem. We are able to overcome such problems by using strong prior knowledge.

The reconstructions obtained by our method are shown in column 3 and 4 ((c)

and (d)).

are shown in figure 3.20.

3.2.5 Discussion

Localizing the object in the image and inferring its pose is a computationally

expensive task. Once a rough estimate of the object pose is obtained, the seg-

mentation can be computed extremely efficiently using graph cuts [12]. In our

work on real time face detection and segmentation [81], we showed how an off the

shelf face-detector such as the one described in [110] can be coupled with a crf

to get accurate segmentation and improved face detection results in real time.

The object (face) localization estimate (obtained from any generic face detec-

tor) was incorporated in a discriminative crf framework to obtain robust and

56

3.2. Simultaneous Segmentation and Pose Estimation of Humans

Figure 3.20: Pose inference and 3D object reconstruction results. The data used

in this experiment is taken from [3]. It consists of 4 views of a human subject

walking in a circular path. Middle row: Reconstruction result. Bottom row:

Pose estimate. Observe that we are able to get excellent reconstruction and pose

estimation results even when the visual hull contains large errors (as seen in frame

60 and 74).

accurate face segmentation results as shown in figure 3.21. The energy E(x∗) of

any segmentation solution x∗ is the negative log of the probability, and can be

viewed as a measure of how uncertain that solution is. The higher the energy of

a segmentation, the lower the probability that it is a good segmentation. Intu-

itively, if the face detection is correct, the resulting segmentation obtained from

our method should have high probability and hence have low energy compared

to that of false detections. This characteristic of the energy of the segmentation

solution can be used to prune out false face detections thus improving the face

57

3.2. Simultaneous Segmentation and Pose Estimation of Humans

Figure 3.21: Real time face segmentation using face detection. The first image in

the first row shows the original image. The second image shows the face detection

results. The third image shows the segmentation obtained using shape priors

generated from the detection and localization results.

Figure 3.22: Pruning false object detections. The figure shows an image from

the INRIA pedestrian data set. After running our algorithm, we obtain four

face segmentations, one of which (the one bounded by a black square) is a false

detection. The energy-per-pixel values obtained for the true detections were 74,

82 and 83 while that for the false detection was 87. As you can see the energy of

false detection is higher than that of the true detections, and can be used to detect

and remove it.

58

3.3. Measuring Uncertainty in Graph Cut Solutions

detection accuracy. The procedure is illustrated in figure 3.22. A similar strategy

was recently used in [78].

3.2.6 Summary and Future Work

This work sets out a novel method for performing simultaneous segmentation

and 3D pose estimation (PoseCut). The problem is formulated in a Bayesian

framework which has the ability to utilize all information available (prior as well as

observed data) to obtain good results. We showed how a rough pose-specific shape

prior could be used to improve segmentation results significantly. We also gave a

new formulation of the pose inference problem as an energy minimization problem

and showed how it could be efficiently solved using dynamic graph cuts. The

experiments demonstrate that our method is able to obtain excellent segmentation

and pose estimation results. This method was recently also used for the problem

of reconstructing objects from multiple views [102].

Searching over Pose Manifolds It is well known that the set of all human

poses constitutes a low-dimensional manifold in the complete pose space [96,107].

Most work in exploiting this fact for human pose inference has been limited to

finding linear manifolds in pose spaces. The last few years have seen the emer-

gence of non-linear dimensionality reduction techniques for solving the pose in-

ference problem [97]. Recently, Urtasun et al. [107] showed how Scaled Gaussian

Process Latent Variable Models (SGPLVM) can be used to learn prior models

of human pose for 3D people tracking. They showed impressive pose inference

results using monocular data. Optimizing over a parametrization of this low di-

mensional space instead of the 26D pose vector would intuitively improve both

the accuracy and computation efficiency of our algorithm. Thus the use of di-

mensionality reduction algorithms is an important area to be investigated. The

directions for future work also include using an appearance model per limb, which

being more discriminative could help provide more accurate segmentations and

pose estimates.

3.3. Measuring Uncertainty in Graph Cut

Solutions

Over the years researchers have asked the question whether it might be possible

to compute a measure of uncertainty associated with the graph cut solutions.

In this section we answer this particular question positively by showing how the

59

3.3. Measuring Uncertainty in Graph Cut Solutions

min-marginals associated with the label assignments of a random field can be

efficiently computed using a new algorithm based on dynamic graph cuts. The

min-marginal energies obtained by our proposed algorithm are exact, as opposed

to the ones obtained from other inference algorithms like loopy belief propagation

and generalized belief propagation. We also show how these min-marginals can

be used to compute a confidence measure for label assignments in the image

segmentation problem.

3.3.1 Introduction

Graph cuts based minimization algorithms do not provide an uncertainty mea-

sure associated with the solution they produce. This is a serious drawback since

researchers using these algorithms do not obtain any information regarding the

probability of a particular latent variable assignment in a graph cut solution. In-

ference algorithms like lbp [73], gbp [118], and trw [51,112] provide the user with

marginal or min-marginal energies associated with each latent variable. However,

these algorithms are not guaranteed to find the optimal solution for graphs of ar-

bitrary topology. Note that for tree-structured graphs, the simple max-product

belief propagation algorithm gives the exact max-marginal probabilities/min-

marginal energies1 for different label assignments in O(nl2) time where n is the

number of latent variables, and l is the number of labels a latent variable can

take.

We address the problem of efficiently computing the min-marginals associated

with the label assignments of any latent variable in a mrf2. Our method works

on all mrfs that can be solved exactly using graph cuts. First, we give the

definition of flow potentials (defined in section 3.3.3.1) of a graph node. We

show that the min-marginals associated with the labellings of a binary random

variable are related to the flow-potentials of the node representing that variable

in the graph constructed in the energy minimization procedure. In fact the exact

min-marginal energies can be found by computing these flow-potentials. We then

show how flow potential computation is equivalent to minimizing projections of

the original energy function3.

1We will explain the relation between max-marginal probabilities and min-marginal energies

later in section 3.3.2. To make our notation consistent with recent work in graph cuts, we

formulate the problem in terms of min-marginal energies (subsequently referred to as simply

min-marginals).
2This first version of this section appeared as [49].
3A projection of the function f(x1, x2, ..., xn) can be obtained by fixing the values of some

of the variables in the function f(.). For instance f1(x2, ..., xn) = f(0, x2, ..., xn) is a projection

of the function f(.).

60

3.3. Measuring Uncertainty in Graph Cut Solutions

Minimizing a projection of an energy function is a computationally expensive

operation and requires a graph cut to be computed. In order to obtain the min-

marginals corresponding to all label assignments of all random variables, we need

to compute a graph cut O(nl) number of times. In this work, we present an

algorithm based on dynamic graph cuts [48] which solves these O(nl) graph cuts

extremely quickly. Our experiments show that the running time of this algorithm

i.e., the time taken for it to compute the min-marginals corresponding to all latent

variable label assignments is of the same order of magnitude as the time taken to

solve a single st-mincut problem.

3.3.2 Preliminaries

As explained in chapter 1, a pairwise mrf can be solved by minimizing a second

order energy function. The energy of the map configuration of the mrf can be

computed by solving the problem:

ψ(θ) = min
x∈L

E(x|θ). (3.3.1)

The map solution of the mrf will be referred to as the optimal solution.

3.3.2.1 Min-marginal energies

A min-marginal is a function that provides information about the minimum values

of the energy E under different constraints. Following the notation of [51], we

define the min-marginal energies ψv;j , ψuv;ij as:

ψv;j(θ) = min
x∈L,xv=j

E(x|θ), and (3.3.2)

ψuv;ij(θ) = min
x∈L,xu=i,xv=j

E(x|θ).

In words, given an energy function E whose value depends on the variables

(x1, . . . , xn), ψv;j(θ) represents the minimum energy value obtained if we fix the

value of variable xv to j and minimize over all remaining variables. Similarly,

ψuv;ij(θ) represents the value of the minimum energy in the case when the values

of variables xu and xv are fixed to i and j respectively.

3.3.3 Uncertainty in Label Assignments

Now we show how min-marginals can be used to compute a confidence measure

for a particular latent variable label assignment. Given the function Pr(x|D),

which specifies the probability of a configuration of the mrf, the max-marginal

61

3.3. Measuring Uncertainty in Graph Cut Solutions

µv;j gives us the value of the maximum probability over all possible configurations

of the mrf in which xv = j. Formally, it is defined as:

µv;j = max
x∈L;xv=j

Pr(x|D) (3.3.3)

Inference algorithms like max-product belief propagation produce the max-marginals

along with the map solution. These max-marginals can be used to obtain a con-

fidence measure σ for any latent variable labelling as:

σv;j =
maxx∈L,xv=j Pr(x|D)

∑

k∈L maxx∈L,xv=k Pr(x|D)
=

µv;j
∑

k∈L µv;k

(3.3.4)

where σv;j is the confidence for the latent variable xv taking label j. This is the

ratio of the max-marginal corresponding to the label assignment xv = j to the

sum of the max-marginals for all possible label assignments.

We now proceed to show how these max-marginals can be obtained from the

min-marginal energies computed by our algorithm. Recall from equation (1.2.3)

that the energy and probability of a labelling are related as:

E(x) = − log Pr(x|D) − const (3.3.5)

Substituting the value of Pr(x|D) from equation (3.3.5) in equation (3.3.3), we

get

µv;j = max
x∈L;xv=j

(exp (−E(x|θ) − const)) (3.3.6)

=
1

Z
exp (− min

x∈X ;xv=j
E(x|θ)), (3.3.7)

where Z is the partition function. Combining this with equation (3.3.2a), we get

µv;j =
1

Z
exp (−ψv;j(θ)). (3.3.8)

As an example consider a binary label object-background image segmentation

problem, where there are two possible labels i.e., object (‘ob’) and background

(‘bg’). The confidence measure σv;ob associated with the pixel v being labelled as

object can be computed as:

σv;ob =
µv;ob

µv;ob + µv;bg

=
1
Z
exp (−ψv;ob(θ))

1
Z
exp (−ψv;ob(θ)) + 1

Z
exp (−ψv;bg(θ))

, (3.3.9)

or σv;ob =
exp (−ψv;ob(θ))

exp (−ψv;ob(θ)) + exp (−ψv;bg(θ))
(3.3.10)

Note that the Z’s cancel and thus we can compute the confidence measure from

the min-marginal energies alone without knowledge of the partition function.

62

3.3. Measuring Uncertainty in Graph Cut Solutions

3.3.3.1 Flow Potentials in Graphs

Given a directed weighted graph G(V,E, C) with non-negative edge weights and

flows f flowing through the edges E, we define the source/sink flow potential of

a graph node v ∈ V as the maximum amount of net flow that can be pumped

into/from it without invalidating any edge capacity (1.3.2) or mass balance con-

straint (1.3.3) with the exception of the mass balance constraint of the node v

itself. Formally, we can define the source flow potential of node v as:

f s
v = max

f

∑

i∈N(v)

fiv − fvi

Subject to:

0 ≤ fij ≤ cij ∀(i, j) ∈ E, and (3.3.11)
∑

i∈ N(j)\{s,t}

(fji − fij) = fsj − fjt ∀j ∈ V \{s, t, v} (3.3.12)

where maxf represents the maximization over the set of all edge flows

f = {fij, ∀(i, j) ∈ E}. (3.3.13)

Similarly, the sink flow potential f t
v of a graph node v is defined as:

f t
v = max

f

∑

i∈N(v)

fvi − fiv (3.3.14)

subject to constraints (3.3.11) and (3.3.12).

The computation of a flow potential of a node is not a trivial process and in

essence requires a graph cut to be computed as explained in figure 3.24. The flow

potentials of a particular graph node are shown in figure 3.23. Note that in a

residual graph G(fmax) where fmax is the maximum flow, all nodes on the sink

side of the st-mincut are disconnected from the source and thus have the source

flow potential equal to zero. Similarly, all nodes belonging to the source have

the sink flow potential equal to zero. We will later show that the flow-potentials

we have just defined are intimately linked to the min-marginal energies of latent

variable label assignments.

3.3.4 Computing Min-marginals using Graph Cuts

We now explain the procedure for the computation of min-marginal energies

using graph cuts. The total flow ftotal flowing from the source s to the sink t in

a graph can be found by computing the difference between the total amount of

flow coming in to a terminal node and that going out as:

ftotal =
∑

i∈N(s)

(fsi − fis) =
∑

i∈N(t)

(fit − fti). (3.3.15)

63

3.3. Measuring Uncertainty in Graph Cut Solutions

Figure 3.23: Flow potentials of graph nodes. The figure shows a directed graph

having seven nodes, two of which are the terminal nodes, the source s and the

sink t. The number associated with each directed edge in this graph is a capacity

which tells us the maximum amount of flow that can be passed through it in the

direction of the arrow. The flow potentials for node 4 in this graph when no flow

is passing through any of the edges are f s
4 = 2 and f t

4 = 11.

The cost of the st-mincut in an energy representing graph is equal to the energy

of the optimal configuration. From the Ford-Fulkerson theorem, this is also equal

to the maximum amount of flow fmax that can be transferred from the source

to the sink. Hence, from the minimum energy (3.3.1) and total flow equation

(3.3.15) for a graph in which maxflow has been achieved i.e. ftotal = fmax, we

obtain:

ψ(θ) = min
x∈L

E(x|θ) = fmax =
∑

i∈N(s)

(fsi − fis). (3.3.16)

Note that flow cannot be pushed into the source i.e. fis = 0, ∀i ∈ V , thus

ψ(θ) =
∑

i∈N(s) fsi. The map configuration x∗ of a mrf is the one having the

least energy and is defined as x∗ = arg minx∈LE(x|θ).
Let a be the label for random variable xv under the map solution and b be

any label other than a. Then in the case of xv = a, the min-marginal energy

ψv;x∗
v
(θ) is equal to the minimum energy i.e.

E(x|θ) = ψ(θ) (3.3.17)

Thus it can be seen that the maximum flow equals the min-marginals for the case

when the latent variables take their respective map labels.

The min-marginal energy ψv;b(θ) corresponding to the non-optimal label b can

be computed by finding the minimum value of the energy function projection E
′

64

3.3. Measuring Uncertainty in Graph Cut Solutions

Figure 3.24: Computing min-marginals using graph cuts. In (a) we see the graph

representing the original energy function. This is used to compute the minimum

value of the energy ψ(θ) which is equal to the max-flow fmax = 8. The residual

graph obtained after the computation of max-flow is shown in (b). In (c) we show

how the flow-potential f s
5 can be computed in the residual graph by adding an

infinite capacity edge between it and the sink and computing the max-flow again.

The addition of this new edge constrains node 5 to belong to sink side of the st-cut.

A max-flow computation in the graph (c) yields f s
5 = 4. This from theorem 1, we

obtain the min-marginal ψ5;c = 8 + 4 = 12, where T(c) = source(s). The dotted

arrows in (b) and (c) correspond to edges in the residual graph whose residual

capacities are due to flow passing through the edges in their opposite direction.

obtained by constraining the value of xv to b as:

ψv;b(θ) = min
x∈Ln,xv=b

E(x|θ) (3.3.18)

or, ψv;b(θ) = min
(x−xv)∈Ln−1

E(x1, .., xv−1, b, xv+1..xn|θ). (3.3.19)

In the next sub-section, we will show that this constraint can be enforced in

the original graph construction used for minimizing E(x|θ) by modifying certain

edge weights ensuring that the latent variable xv takes the label b. The exact

modifications needed in the graph for the binary label case are given first, while

those required in the graph for the multi-label case are discussed later.

65

3.3. Measuring Uncertainty in Graph Cut Solutions

3.3.4.1 Min-marginals and Flow potentials

We now show how in the case of binary variables, flow-potentials in the residual

graph G(fmax) are related to the min-marginal energy values. Again, a and b are

used to represent the map and non-map label respectively.

Theorem 1 The min-marginal energies of a binary latent variable xv are equal

to the sum of the max-flow and the source/sink flow potentials of the node rep-

resenting it in the residual graph G(fmax) corresponding to the max-flow solution

i.e.

ψv;j(θ) = min
x∈L,xv=j

E(x|θ) = ψ(θ) + fT (j)
v = fmax + fT (j)

v (3.3.20)

where T (j) is the terminal corresponding to the label j, and fmax is the value of

the maximum flow in the graph G representing the energy function E(x|θ).

Proof The proof is trivial for the case where the latent variable takes the optimal

label. We already know that the value of the min-marginal ψv;a(θ) is equal to

the lowest energy ψ(θ). Further, the flow potential of the node for the terminal

corresponding to the label assignment is zero since the node is disconnected from

the terminal T (a) by the minimum cut4.

We already know from (3.3.19) that the min-marginal ψv;b(θ) corresponding

to the non-optimal label b can be computed by finding the minimum value of

the function E under the constraint xv = b. This constraint can be enforced in

our original graph (used for minimizing E(x|θ)) by adding an edge with infinite

weight between the graph node and the terminal corresponding to the label a,

and then computing the st-mincut on this updated graph5. In section 3.3.4.3

we shall explain how to solve the new st-mincut problem efficiently using the

dynamic graph cut algorithm proposed in the previous chapter.

It can be easily seen that the additional amount of flow that would now flow

from the source to the sink is equal to the flow potential f
T (b)
v of the node. Thus

the value of the max-flow now becomes equal to ψ(θ) + f
T (b)
v where T (b) is the

terminal corresponding to the label b. The whole process is shown graphically in

figure 3.24.

We have shown how minimizing an energy function with constraints on the

value of a latent variable, is equivalent to computing the flow potentials of a node

4The amount of flow that can be transferred from the node to the terminal T (a) in the

residual graph is zero since otherwise it would contradict our assumption that the max-flow

solution has been achieved.
5Adding an infinite weight edge between the node and the terminal T (a) is equivalent to

putting a hard constraint on the variable xv to have the label b. Observe that the addition of

an infinite weight edge can be realized by using an edge whose weight is more than the sum

of all other edges incident on the node. This condition would make sure that the edge is not

saturated during the max-flow computation.

66

3.3. Measuring Uncertainty in Graph Cut Solutions

Figure 3.25: Graph construction for projections of energy functions involving

multiple labels. The first graph G shows the graph construction proposed by

Ishikawa [39] for minimizing energy functions representing mrfs involving la-

tent variables which can take more than 2 labels. All the label sets L, v ∈ V

consist of 4 labels namely l1, l2, l3 and l4. The map configuration of the mrf

induced by the st-mincut is found by observing which data edges are cut (data

edges are depicted as black arrows). Four of them are in the cut here (as seen in

graph G), representing the assignments x1 = l2, x2 = l3, x3 = l3, and x4 = l4.

The graph G′ representing the projection E ′ = E(x1, x2, x3, l2) can be obtained by

inserting infinite capacity edges from the source and the sink to the tail and head

node respectively of the edge representing the label l2 for latent variable x4.

in the residual graph G(fmax). Note that a similar procedure can be used to

compute the min-marginal ψuv;ij(θ) by taking the projection and enforcing hard

constraints on pairs of latent variables.

3.3.4.2 Extension to Multiple labels

Graph cuts can also be used to exactly optimize convex energy functions which

involve variables taking multiple labels [39, 88]. Graphs representing the projec-

tions of such energy functions can be obtained by incorporating hard constraints

in a fashion analogous to the one used for binary variables. In the graph construc-

tion for multiple labels proposed by Ishikawa [39], the label of a discrete latent

variable is found by observing which data edge is cut. The value of a variable can

be constrained or ‘fixed’ in this graph construction by making sure that the data

67

3.3. Measuring Uncertainty in Graph Cut Solutions

1. Construct graph G for minimizing the mrf energy E.

2. Compute the maximum s-t flow in the graph. This induces

the residual graph Gr consisting of unsaturated edges.

3. For computing each min-marginal, perform the following

operations:

3.1 Obtain the energy projection E ′ corresponding to the

latent variable assignment.

3.2 Construct the graph G′ to minimize E ′.

3.3 Use dynamic graph cut updates as given in [48] to

make Gr consistent with G′, thus obtaining the new

graph G
′

r.

3.4 Compute the min-marginal by minimizing E ′ using

the dynamic (optimized) st-mincut algorithm on G
′

r.

Table 3.2: Algorithm for computing min-marginal energies using dynamic graph

cuts.

edge corresponding to the particular label is cut. This can be realized by adding

edges of infinite capacity from the source and the sink to the tail and head node

of the edge respectively as shown in figure 3.25. The cost of the st-mincut in this

modified graph will give the exact value of min-marginal energy associated with

that particular labelling. It should be noted here that the method of Ishikawa [39]

applies to a restricted class of energy functions. These do not include energies

with non-convex priors (such at the Potts model) which are used in many com-

puter vision applications. Measuring uncertainty in solutions of such energies is

thus still an open problem.

3.3.4.3 Minimizing Energy Function Projections using Dy-

namic Graph Cuts

Having shown how min-marginals can be computed using graph cuts, we now

explain how this can be done efficiently. As explained in the proof of Theorem 1,

we can compute min-marginals by minimizing projections of the energy function.

However, it might be thought that such a process is extremely computationally

expensive as a graph cut has to be computed for every min-marginal computation.

However, when modifying the graph in order to minimize the projection E
′

of the

68

3.3. Measuring Uncertainty in Graph Cut Solutions

energy function, only a few edge weights have to be changed6 as seen in figure

3.24, where only one infinite capacity edge had to inserted in the graph. We have

shown earlier how the st-mincut can be recomputed rapidly for such minimal

changes in the problem by using dynamic graph cuts. Our proposed algorithm

for min-marginal computation is given in Table 3.2.

3.3.5 Computational Complexity and Experimen-

tal Evaluation

We now discuss the computational complexity of our algorithm, and report the

time taken by it to compute min-marginals in mrfs of different sizes. In step

(3.4) of the algorithm given in Table 3.2, the amount of flow computed is equal

to the difference in the min-marginal ψv;j(θ) of the particular label assignment

and the minimum energy ψ(θ). Let Q be the set of all label assignments whose

corresponding min-marginals have to be computed. Then the number of aug-

menting paths to be found during the whole algorithm is bounded from above

by:

U = ψ(θ) +
∑

q∈Q

(ψq(θ) − ψ(θ)). (3.3.21)

For the case of binary random variables, assuming that we want to compute all

latent variable min-marginals i.e.

Q = {(u; i) : u ∈ V, i ∈ L}, and (3.3.22)

qmax = max
q∈Q

(ψq(θ) − ψ(θ)), (3.3.23)

the complexity of the above algorithm becomes O((ψ(θ) + nqmax)T (n,m)), where

T (n,m) is the complexity of finding an augmenting path in the graph with n nodes

and m edges and pushing flow through it. Although the worst case complexity

T (n,m) of the augmentation operation is O(m), we observe experimentally that

using the dual search tree algorithm of [10], we can get a much better amortized

time performance. The average time taken by our algorithm for computing the

min-marginals in random mrfs of different sizes is given in table 3.3.

3.3.6 Applications of Min-marginals

Min-marginal energies have been used for a number of different purposes. How-

ever, prior to our work, the use of min-marginals in computer vision was severely

6The exact number of edge weights that have to be changed is of the order of the number

of variables whose value is being fixed for obtaining the projection.

69

3.3. Measuring Uncertainty in Graph Cut Solutions

MRF size 105 2 × 105 4 × 105 8 × 105

4-neighbourhood 0.18, 0.70 0.46, 1.34 0.92, 3.156 2.17, 8.21

8-neighbourhood 0.40, 1.53 1.39, 3.59 2.42, 8.50 5.12, 15.61

Table 3.3: Time taken for min-marginal computation. For a sequence of randomly

generated mrfs of a particular size and neighbourhood system, a pair of times

(in seconds) is given in each cell of the table. On the left is the average time

taken to compute the map solution using a single graph cut while on the right is

the average time taken to compute the min-marginals corresponding to all latent

variable label assignments. The dynamic algorithm with tree-recycling was used

for this experiment. All experiments were performed on an Intel Pentium 2GHz

machine.

restricted. This was primarily due to the fact that they were computationally

expensive to compute for mrfs having a large number of latent variables. Our

new algorithm is able to handle large mrfs which opens up possibilities for many

new applications. For instance, in the experiments shown in figure 3.26, the

time taken for computing all min-marginals for a mrf consisting of 2 × 105 bi-

nary latent variables was 1.2 seconds. This is roughly four times the time taken

for computing the map solution of the same mrf by solving a single st-mincut

problem.

Min-marginals as a confidence measure We had shown in section 3.3.2

how min-marginals can be used to compute a confidence measure for any latent

variable assignment in a mrf. Figure 3.26 shows the confidence values obtained

for the mrf used for modeling the two label (foreground and background) image-

segmentation problem as defined in [9]. Ideally we would like the confidence map

to be black and white showing extremely ‘low’ or ‘high’ confidence for a particular

label assignment. However, as can be seen from the result, the confidence map

contains regions of different shades of grey. Such confidence maps can be used for

many vision applications. For instance, they could be used in interactive image

segmentation to direct user interaction at regions which have high uncertainty.

They can also be applied in coarse-to-fine techniques for efficient computation of

low level vision problems. Here confidence maps could be used to isolate variables

which have low confidence in the optimal label assignment. These variables can

be solved at higher resolution to get a better solution.

Computing the M most probable configurations One of the most impor-

tant uses of min-marginals has been to find the M most probable configurations

70

3.3. Measuring Uncertainty in Graph Cut Solutions

Figure 3.26: Image segmentation with max-marginal probabilities. The first image

is a frame of the movie Run Lola Run. The second shows the binary foreground-

background segmentation where the aim was to segment out the human. The

third and fourth images shows the confidence values obtained by our algorithm

for assigning pixels to be foreground and background respectively. In the image,

the max-marginal probability is represented in terms of decreasing intensity of the

pixel. Our algorithm took 1.2 seconds for computing the max-marginal probabili-

ties for each latent variable label assignment. The time taken to compute the map

solution was 0.3 seconds.

(or labellings) for latent variables in a Bayesian network [117]. Dawid [19] showed

how min-marginals on junction trees can be computed. This method was later

used by [70] to find the M most probable configurations of a probabilistic graph-

ical network. The method of [19] is guaranteed to run in polynomial time for

tree-structured networks. However, for arbitrary graphs, its worst case complex-

ity is exponential in the number of the nodes in the graphical model. By using

our method, the M most probable solutions of some graphical models with loops

can be computed in reasonable time.

We end this section by giving a brief summary of this work. We have addressed

the long-standing problem of computing the exact min-marginals for graphs with

arbitrary topology in polynomial time. We propose a novel algorithm based on

dynamic graph cuts [48] that computes the min-marginals extremely efficiently.

Our algorithm makes it feasible to compute exact min-marginals for mrfs with

71

3.3. Measuring Uncertainty in Graph Cut Solutions

large number of latent variables. This opens up many new applications for min-

marginals which were not feasible earlier.

72

Chapter 4

Minimizing Higher Order

Functions

73

4.1. Move Making Algorithms

The energy functions typically used for modelling computer vision problems

are written as a sum of unary and pairwise clique potentials. This representa-

tion severely restricts the expressive power of these models making them unable

to capture the rich statistics of natural scenes [63]. Higher order clique poten-

tials are able to model complex interactions of random variables, and thus could

overcome this problem. Researchers have long recognized this fact and have

used higher order functions to improve the expressive power of the mrf and crf

frameworks [63, 72, 82]. The initial work in this regard has been quite promising

and higher order clique potentials have been shown to improve results. However,

their use has still been very limited. This is primarily due to the lack of efficient

algorithms for minimizing energy functions composed of such potentials.

Traditional inference algorithms such as bp are quite computationally expen-

sive for potentials defined on higher order cliques. Lan et al. [63] recently made

some progress towards solving this problem. They proposed approximation meth-

ods for bp to make efficient inference possible in higher order mrfs. However their

results indicate that bp gave results comparable to standard gradient descent. In

contrast, we use powerful move making algorithms such as α-expansion and αβ-

swap to minimize such functions. In this chapter, we provide a characterization

of energy functions defined on cliques of size 3 or more which can be solved using

these algorithms. More specifically, we prove that the optimal α-expansion and

αβ-swap moves for this class of functions can be computed in polynomial time

by minimizing a submodular function. It should be noted that our results are

a generalization of the class of energy functions specified by [11]. We also give

examples of higher order potential functions for which it is np-hard to compute

the optimal move.

4.1. Move Making Algorithms

Many energy functions encountered in computer vision are np-hard to minimize.

They are instead solved using algorithms for approximate energy minimization.

These algorithms can be divided into two broad categories: message passing

algorithms such as belief propagation and its variants [54, 112, 118], and move

making algorithms such as Iterated Conditional Modes (icm), α-expansion, and

αβ-swap.

Move making algorithms start from an initial solution and proceed by making

a series of changes which lead to solutions having lower energy. At each step, the

algorithms search a move space and choose the move which leads to the solution

having the lowest energy. This move is referred to as the optimal move. The

algorithm is said to converge when no lower energy solution can be found.

74

4.1. Move Making Algorithms

The size of the move space is the defining characteristic of any move making

algorithm. A large move space means that bigger changes to the current solution

can be made. This makes the algorithm less prone to getting stuck in local minima

and also results in a faster rate of convergence. Our work deals with two particular

large move making algorithms, namely α-expansion and αβ-swap [11], whose move

space size increases exponentially with the number of variables involved in the

energy function.

Both α-expansion and αβ-swap are extremely efficient and have been shown to

produce good results for a number of computer vision problems [104]. The moves

of these algorithms can be encoded by a vector of binary variables t ={ti, ∀i ∈ V}.
At each step of these algorithms, the optimal move, i.e. the move decreasing the

energy of the labelling by the most amount is computed in polynomial time.

However, this can only be done for a certain class of energy functions.

Boykov et al. [11] provided a characterization of potential functions for which

the optimal moves can be computed by solving an st-mincut problem. However,

their results were limited to potential functions defined over cliques of size at

most two. We call this class of energy functions P2. In this chapter we extend

the results of [11] by providing a characterization of higher order energy functions

(which are defined over cliques of sizes 3 and beyond) for which the optimal moves

can be computed in polynomial time. We refer to the class of functions defined

on cliques of size n as Pn. It should be noted that this class is different from the

class Fn of energy functions which involve only binary random variables [27,54].

4.1.1 Previous Work

We will now describe the move making algorithms of [11] for approximate en-

ergy minimization, and explain the conditions under which they can be applied.

Boykov et al. [11] addressed the problem of minimizing energy functions consist-

ing of unary and pairwise potentials. These functions can be written as

E(x) =
∑

i∈V

ψi(xi) +
∑

i∈V ,j∈Nj

ψij(xi, xj). (4.1.1)

They proposed two move making algorithms called α-expansion and αβ-swap

for this problem. These algorithms work by starting from an initial labelling

x and making a series of changes (moves) which lower the energy iteratively.

Convergence is achieved when the energy cannot be decreased further. At each

step, the move decreasing the energy of the labelling by the most amount is made.

We will refer to such a move as optimal.

Boykov et al. [11] showed that the optimal moves for certain energy functions

of the form (4.1.1) can be computed by solving an st-mincut problem. Specifically,

75

4.1. Move Making Algorithms

they showed that if the pairwise potential functions ψij define a metric then the

energy function in equation (4.1.1) can be approximately minimized using α-

expansion. Similarly, if ψij is a semi-metric, it can be minimized using αβ-swap.

4.1.1.1 Metric and Semi-metric Potential functions

We now provide the constraints under which pairwise potentials are said to define

a metric or a semi-metric.

Semimetric: A potential function ψij(a, b) defined on a clique of two random

variables {xi, xj} is said to be a semi-metric if it satisfies the conditions

ψij(a, b) = 0 ⇐⇒ a = b, (4.1.2)

ψij(a, b) = ψij(b, a) ≥ 0 (4.1.3)

for all labels a and b in L.

Metric: A potential function is metric if in addition to the above mentioned

constraints it also satisfies the condition

ψij(a, d) ≤ ψij(a, b) + ψij(b, d) (4.1.4)

for all a, b and d in L. For example, the function ψij(a, b) = |a − b|2 is a semi-

metric but not a metric as it does not always satisfy condition (4.1.4).

4.1.2 Binary Moves and Move Energies

The moves of both α-expansion and αβ-swap algorithms can be encoded by a

vector of binary variables t ={ti, ∀i ∈ V}. A transformation function T (x, t) takes

the current labelling x and a move t and returns the new labelling x̂ which has

been induced by the move. The energy of a move t (denoted by Em(t)) is defined

as the energy of the labelling x̂ it induces, i.e. Em(t) = E(T (x, t)). The optimal

move is defined as t∗ = arg mintE(T (x, t)).

The optimal move t∗ can be computed in polynomial time if the function

Em(t) is submodular. Recall that a function f : Ln → R is submodular if and only

if all its projections on 2 variables are submodular [8,54]. This definition implies

that for the optimal move to be computable in polynomial time all projections of

Em(t) on two variables should be submodular, i.e.

Ep
m(0, 0) + Ep

m(1, 1) ≤ Ep
m(0, 1) + Ep

m(1, 0), ∀p ∈ V × V. (4.1.5)

76

4.1. Move Making Algorithms

4.1.2.1 The α-expansion algorithm

An α-expansion move allows any random variable to either retain its current

label or take label ‘α’. One iteration of the algorithm involves making moves

for all α in L in some order successively. Recently an alternative interpretation

of α-expansions was given in [55]. They showed that α-expansion can be seen

as a special case of a primal-dual schema based method for solving the energy

minimization problem.

The transformation function Tα() for an α-expansion move transforms the

label of a random variable Xi as

Tα(xi, ti) =

{

xi if ti = 0

α if ti = 1.
(4.1.6)

The optimal α-expansion move can be computed in polynomial time if the energy

function Eα(t) = E(Tα(x, t)) satisfies constraint (4.1.5). Substituting the value

of Eα in (4.1.5) we get the constraint

Ep(xi, xj) + Ep(α,α) ≤ Ep(xi, α) +Ep(α, xj), ∀p ∈ V × V. (4.1.7)

The condition given in [11], i.e. if the pairwise potential functions ψij define a

metric then the energy function can be approximately minimized using the α-

expansion algorithm, easily follows by observing that all metric potentials satisfy

equation (4.1.7).

4.1.2.2 The αβ-swap algorithm

An αβ-swap move allows a random variable whose current label is α or β to either

take label α or β. One iteration of the algorithm involves performing swap moves

for all α and β in L in some order successively. The transformation function

Tαβ() for an αβ-swap transforms the label of a random variable xi as

Tαβ(xi, ti) =

{

α if xi = α or β and ti = 0,

β if xi = α or β and ti = 1.
(4.1.8)

The optimal αβ-swap move can be computed in polynomial time if the energy

function

Eαβ(t) = E(Tαβ(x, t)) (4.1.9)

satisfies (4.1.5). As before, substituting the value of Eαβ in (4.1.5) we get the

constraint

Ep(α,α) + Ep(β, β) ≤ Ep(α, β) + Ep(β, α), ∀p ∈ V × V. (4.1.10)

77

4.2. Characterizing Solvable Pn Functions

The condition given in [11], i.e. if the pairwise potential functions ψij define

a semimetric then the energy function can be approximately minimized using

the αβ-swap algorithm, can be easily verified by observing that all semi-metric

potentials satisfy equation (4.1.10).

4.2. Characterizing Solvable Pn Functions

In this section we show how the above mentioned move algorithms can be used

to minimize higher order energy functions. Specifically, we characterize a class

of higher order clique potentials for which the expansion and swap moves can be

computed in polynomial time. Recall that Pn functions are defined on cliques of

size at most n. From the additivity theorem [54] it follows that the optimal moves

for all energy functions composed of these clique potentials can be computed in

polynomial time. We constrain the clique potentials to take the form:

ψc(xc) = fc(Qc(⊕,xc)). (4.2.1)

where Qc(⊕,xc) is a functional defined as:

Qc(⊕,xc) = ⊕i,j∈cφc(xi, xj). (4.2.2)

Here fc is an arbitrary function of Qc, φc is a pairwise function defined on all

pairs of random variables in the clique c, and ⊕ is an operator applied on these

functions φc(xi, xj).

4.2.1 Conditions for αβ-swaps

We will now specify the constraints under which all αβ-swap moves for higher

order clique potentials can be computed in polynomial time. For the moment we

consider the case ⊕ =
∑

, i.e.

Qc(xc) =
∑

i,j∈c

φc(xi, xj). (4.2.3)

Theorem 2 The optimal αβ-swap move for any α and β ∈ L can be computed

in polynomial time for a potential function ψc(xc) of the form (4.2.1) if fc(·) is

a concave1 non-decreasing function, ⊕ =
∑

and φc(·, ·) satisfies the constraints

φc(a, b) = φc(b, a) ∀a, b ∈ L (4.2.4)

φc(a, b) ≥ φc(d, d) ∀a, b, d ∈ L (4.2.5)

1A function f(x) is concave if for any two points (a, b) and λ where 0 ≤ λ ≤ 1: λf(a)+ (1−
λ)f(b) ≤ f(λa+ (1 − λ)b).

78

4.2. Characterizing Solvable Pn Functions

Proof

To prove that the optimal swap move can be computed in polynomial time we

need to show that all projections on two variables of any αβ-swap move energy

are submodular. From equation (4.1.10) this implies that ∀i, j ∈ c the condition:

ψc({α, α} ∪ xc\{i,j}) + ψc({β, β} ∪ xc\{i,j}) ≤
ψc({α, β} ∪ xc\{i,j}) + ψc({β, α} ∪ xc\{i,j}) (4.2.6)

should be satisfied. Here xc\{i,j} denotes the labelling of all variables Xu, u ∈ c

except i and j. We use ({la, lb}∪xc\{i,j}) to denote a labelling of variables in clique

c in which variable xi and xj have been assigned labels la and lb respectively. The

cost of any configuration ({xi, xj} ∪ xc\{i,j}) of the clique can be written as

ψc({xi, xj} ∪ xc\{i,j}) = fc(Qc({xi, xj} ∪ xc\{i,j}))

= fc(φc(xi, xj) + Qc\{i,j}(xc\{i,j}) +
∑

u∈c\{i,j}

φc(xi,xu) +
∑

u∈c\{i,j}

φc(xj ,xu)) (4.2.7)

Let D represent Qc\{i,j}(xc\{i,j}), Dα represent
∑

u∈c\{i,j} φc(α,xu), and Dβ rep-

resent
∑

u∈c\{i,j} φc(β,xu). Using equation (4.2.7), the condition (4.2.6) becomes

fc(φc(α, β) +Dα +Dβ +D) + fc(φc(β, α) +Dβ +Dα +D) (4.2.8)

≥ fc(φc(α, α) + 2Dα +D) + fc(φc(β, β) + 2Dβ +D).

As φc(β, α) = φc(α, β) from constraint (4.2.4) this condition transforms to:

2fc(φc(α, β) +Dα +Dβ +D) ≥ (4.2.9)

fc(φc(α, α) + 2Dα +D) + fc(φc(β, β) + 2Dβ +D).

To prove (4.2.9) we need lemma 1.

Lemma 1 For a non decreasing concave function f(x):

2c ≥ a + b =⇒ 2f(c) ≥ f(a) + f(b). (4.2.10)

Proof in section 4.2.5.

Using the above lemma together with the fact that

2φc(α, β) ≥ φc(α, α) + φc(β, β) ∀α, β ∈ L (4.2.11)

(see constraint (4.2.5)), we see that the theorem holds true.

The class of clique potentials described by Theorem 2 is a strict generalization

of the class specified by the constraints of [11]. This can be verified by consid-

ering only pairwise cliques, choosing fc() as a linear increasing function, and

constraining φc(a, a) = 0, ∀a ∈ L. Recall that all linear functions are concave.

79

4.2. Characterizing Solvable Pn Functions

4.2.2 Conditions for α-expansions

In this section we characterize the higher order clique potentials for which the

optimal α-expansion move can be computed in polynomial time ∀α ∈ L,x ∈ L.

Theorem 3 The optimal α-expansion move for any α ∈ L can be computed in

polynomial time for a potential function ψc(xc) of the form (4.2.1) if fc(·) is an

increasing linear function, ⊕ =
∑

and φc(·, ·) is a metric.

Proof

To prove that the optimal expansion move can be computed in polynomial time

we need to show that all projections of any α-expansion move energy on two

variables of the clique are submodular. From equation (4.1.7) this implies that

∀i, j ∈ c the condition

ψc({α, α} ∪ xc\{i,j}) + ψc({a, b} ∪ xc\{i,j}) ≤
ψc({a, α} ∪ xc\{i,j}) + ψc({α, b} ∪ xc\{i,j}) (4.2.12)

is satisfied. Here a and b are the current labels of the variables Xi and Xj

respectively.

Let D represent Qc\{i,j}(xc\{i,j}), and Dl represent
∑

u∈c\{i,j} φc(l,xu) for any

label l. Then, using equation (4.2.7) the constraint (4.2.12) becomes

fc(φc(α, b) +Dα +Db +D) (4.2.13)

+ fc(φc(a, α) +Da +Dα +D)

≥ fc(φc(α, α) + 2Dα +D)

+ fc(φc(a, b) +Da +Db +D).

Let R1 = φc(α, b) +Dα +Db +D, R2 = φc(a, α) +Da +Dα +D, R3 = φc(α, α)+

2Dα + D, and R4 = fc(φc(a, b) + Da + Db + D). Since φc(·, ·) is a metric, we

observe that

φc(α, b) + φc(a, α) ≥ φc(α, α) + φc(a, b) (4.2.14)

⇒ R1 +R2 ≥ R3 +R4. (4.2.15)

Thus, we require a function f such that

R1 +R2 ≥ R3 +R4 =⇒ f(R1) + f(R2) ≥ f(R3) + f(R4). (4.2.16)

The following lemma provides us the form of this function.

Lemma 2 For a function f : R → R,

y1 + y2 ≥ y3 + y4 =⇒ f(y1) + f(y2) ≥ f(y3) + f(y4) (4.2.17)

for all y1, y2, y3, y4 ∈ R if and only if f is linear. Proof in section 4.2.5.

80

4.2. Characterizing Solvable Pn Functions

Since f(·) is linear, this proves the theorem.

It should be noted that the class of higher order potentials specified by the

above theorem is a small subset of the family of functions which can be used

under αβ-swap (characterized in Theorem 2). In fact it is the same class of

energy functions which was specified in [11], i.e. P2. This can be verified by

observing that the potentials specified by Theorem 3 can be represented as a sum

of metric pairwise functions. This raises the question whether we can define a

class of higher order clique potentials which cannot be decomposed into a set of

P2 potentials and can still be solved using α-expansion. To answer this we need

to define the Pn Potts model.

4.2.2.1 Pn Potts Model

We now introduce the Pn Potts model family of higher order clique potentials.

This family is a strict generalization of the Generalized Potts model [11] and can

be used for modelling many problems in Computer Vision.

We define the Pn Potts model potential for cliques of size n as

ψc(xc) =

{

γk if xi = lk, ∀i ∈ c,

γmax otherwise.
(4.2.18)

where γmax > γk, ∀lk ∈ L. For a two variable clique, this reduces to the P2 Potts

model potential defined as:

ψij(a, b) =

{

γk if a = b = lk,

γmax otherwise.
(4.2.19)

Further, if we use γk = 0, for all lk, this function becomes an example of a metric.

4.2.2.2 Going Beyond P2

We now show how the class of potential functions specified in Theorem 3 can be

extended by using: ⊕ =‘max’ instead of ⊕ =
∑

which has been used up till now.

To this end we define Qc(xc) as

Qc(xc) = max
i,j∈c

φc(xi, xj). (4.2.20)

Theorem 4 The optimal α-expansion move for any α ∈ L can be computed in

polynomial time for a potential function ψc(xc) of the form (4.2.1) if fc(·) is

a increasing linear function, ⊕ = ’max’ and φc(·, ·) defines a P2 Potts Model

(4.2.19).

81

4.2. Characterizing Solvable Pn Functions

Proof

The cost of any configuration {xi, xj}∪ xc\{i,j} of the clique under ⊕ =‘max’ can

be written as

ψc({xi, xj} ∪ xc\{i,j}) = fc(Qc({xi, xj} ∪ xc\{i,j})) (4.2.21)

= fc(max(φc(xi, xj),Qc\{i,j}(xc\{i,j}),

max
u∈c\{i,j}

φc(xi,xu), max
u∈c\{i,j}

φc(xj ,xu))) (4.2.22)

Substituting this value of ψc in constraint (4.2.12) and again using D to represent

Qc\{i,j}(xc\{i,j}) and Dl represent
∑

u∈c\{i,j} φc(l,xu) for any label l, we get:

fc(max(φc(α, b), Dα, Db, D))

+ fc(max(φc(a, α), Da, Dα, D))

≥ fc(max(φc(α, α), Dα, Dα, D))

+ fc(max(φc(a, b), Da, Db, D)). (4.2.23)

As fc is a linear function, from lemma 2 we see that the above condition is true

if:

max(φc(α, b), Dα, Db, D) + max(φc(a, α), Da, Dα, D) ≥
max(φc(α, α), Dα, Dα, D) + max(φc(a, b), Da, Db, D).

We only consider the case a 6= α and b 6= α. For all other cases it can be easily

seen that the above inequality is satisfied by a equality. As φc is a P2 Potts

model potential, the lhs of the above inequality is always equal to 2γmax. As

the maximum value of the rhs is 2γmax the above inequality is always true. This

proves the Theorem.

The class of higher order potentials specified by the above Theorem is the

same as the family of clique potentials defined by the Pn Potts model (4.2.18)

for a clique c of size n. This proves that the optimal α-expansion move for the

Pn Potts model can be computed in polynomial time. In the next section we

will show how the optimal α-expansion and αβ-swap moves for this subset of

potential functions can be found by solving an st-mincut problem.

4.2.3 Graph Cuts for the Pn Potts Model

We now consider the minimization of energy functions whose clique potentials

take the form of a Pn Potts model (see equation (4.2.18)). Specifically, we show

that the optimal αβ-swap and α-expansion moves for such potential functions can

be computed by solving an st-mincut problem. The graph in which the st-mincut

82

4.2. Characterizing Solvable Pn Functions

Figure 4.1: Graph construction for computing the optimal moves for the Pn Potts

model.

needs to be computed is shown for only a single clique potential. However, the

additivity theorem [54] allows us to construct the graph for an arbitrary number

of potentials by simply merging those corresponding to individual cliques.

4.2.3.1 αβ-swap

Given a clique c, our aim is to find the optimal αβ-swap move (denoted by t∗c).

Since the clique potential ψc(xc) forms a Pn Potts model, we do not need to

consider the move from a configuration in which any variable in the clique is

assigned a label other than α or β. In this scenario the clique potential only

adds a constant to the αβ-swap move energy and thus can be ignored without

changing the optimal move. For all other configurations, the potential function

after an αβ-swap move tc = {ti, i ∈ c} (where ti ∈ {0, 1}) is given by

ψc(Tαβ(xc, tc)) =











γα if ti = 0,∀i ∈ c,

γβ if ti = 1,∀i ∈ c,

γmax otherwise.

(4.2.24)

Further, we can add a constant κ to all possible values of the clique potential

without changing the optimal move t∗c . We choose κ = γmax − γα − γβ. Note that

since γmax ≥ γα and γmax ≥ γβ, the following hold true:

γα + κ ≥ 0, γβ + κ ≥ 0, (4.2.25)

γα + κ+ γβ + κ = γmax + κ. (4.2.26)

83

4.2. Characterizing Solvable Pn Functions

Without loss of generality, we assume tc = {t1, t2, . . . , tn}. Fig. 4.1 shows the

graph construction corresponding to the above values of the clique potential.

Here, the node vi corresponds to move variable ti. In other words, after the

computation of the st-mincut if vi is connected to the source (i.e. it belongs to

the source set) then ti = 0 and if vi is connected to the sink (i.e. it belongs to the

sink set) then ti = 1. In addition, there are two extra nodes denoted byMs andMt

respectively. The weights of the graph are given by wd = γβ +κ and we = γα +κ.

Note that all the weights are positive (see equations (4.2.25)). In order to show

that this graph corresponds to the clique potential in equation (4.2.24) (plus the

constant κ) we consider three cases:

• ti = 0, ∀i ∈ c : In this case, the st-mincut corresponds to the edge connect-

ing Mt with the sink which has a cost we = γα + κ. Recall that the cost of

an st-mincut is the sum of weights of the edges included in the st-mincut

which go from the source set to the sink set.

• ti = 1, ∀i ∈ c : In this case, the st-mincut corresponds to the edge connect-

ing the source with Ms which has a cost wd = γβ + κ.

• All other cases: The st-mincut is given by the edges connecting Mt with the

sink and the source withMs. The cost of the cut is wd+we = γα+κ+γβ+κ =

γmax + κ (from equation (4.2.26)).

Thus, we can find the optimal αβ-swap move for minimizing energy functions

whose clique potentials form an Pn Potts model using an st-mincut operation.

4.2.3.2 α-expansion

Given a clique xc, our aim is to find the optimal α-expansion move t∗c . Again,

since the clique potential ψc(xc) forms a Pn Potts model, its value after an α-

expansion move tc is given by

ψc(Tα(xc, tc)) =











γ if ti = 0, ∀i ∈ c,

γα if ti = 1, ∀i ∈ c,

γmax otherwise,

(4.2.27)

where γ = γβ if xi = β for all i ∈ c and γ = γmax otherwise. The above clique

potential is similar to the one defined for the αβ-swap move in equation (4.2.24).

Therefore, it can be represented using a graph by adding a constant κ = γmax −
γα − γ. This proves that the optimal α-expansion move can be computed by

solving an st-mincut operation.

84

4.2. Characterizing Solvable Pn Functions

4.2.4 Planarity Preserving Clique Potentials

In this chapter we characterized a class of higher order potentials for which the

optimal expansion and swap moves can be computed in polynomial time. How-

ever, there exist a number of useful higher order potential functions for which it

is np-hard to compute the optimal expansion and swap moves. In this section,

we discuss one such potential which encourages planarity in disparity estimation.

Most approaches for disparity estimation assume a Potts model prior on the

disparities of neighbouring pixels. This prior favours regions of constant disparity

and penalizes discontinuities in the disparity map. This has the severe side-effect

of assigning a high cost to planar regions in the scene which are not orthogonal

to the camera-axis.

The above problem can be rectified by using a higher order clique potential

which is planarity preserving. We define this potential as follows. Consider a

higher order clique consisting of three variables X1,X2, and X3 which can take a

disparity label from the set L ={1, 2, . . . , k}. As before, we will use xi to denote a

labelling of variable Xi. We say that the clique potential function ψc() is planarity

preserving if it is defined as:

ψc(x1, x2, x3) =

{

γ1 if x2 − x1 = x3 − x2 = δ, ∀δ
γ2 otherwise.

(4.2.28)

where γ1 < γ2. This potential function favours labellings of random variables

which are planar. For example, for the 3 variables (X1, X2, X3) the cost of the

planar configurations (1, 2, 3) or (1, 1, 1) is γ1 which is less than the cost of the

non-planar configuration (1, 2, 1) which is γ2.

We will now show the optimal α-expansion moves for this family of clique

potentials cannot be always computed in polynomial time.

Theorem 5 The optimal expansion move for the clique potential ψc of the form

(4.2.28) cannot be always computed in polynomial time for all α and configura-

tions x.

Proof

We prove the theorem by contradiction. We need to show that the move energy

of a particular α-expansion move is non-submodular.

Consider the configuration {x1, x2, x3} = {1, 2, 1} on which we want to per-

form a α-expansion move with α = 3. The move energy Em is a function of the

three move variables t1,t2, and t3 and is defined as:

85

4.2. Characterizing Solvable Pn Functions

Em(t1, t2, t3) = E123
m =

Em(0, 0, 0) Em(0, 0, 1)

Em(0, 1, 0) Em(0, 1, 1)

Em(1, 0, 0) Em(1, 0, 1)

Em(1, 1, 1) Em(1, 1, 1)

which can be written in terms of ψc as:

E123
m =

ψc(Tα({0, 0, 0},x) ψc(Tα({0, 0, 1},x)

ψc(Tα({0, 1, 0},x) ψc(Tα({0, 1, 1},x)

ψc(Tα({1, 0, 0},x) ψc(Tα({1, 0, 1},x)

ψc(Tα({1, 1, 0},x) ψc(Tα({1, 1, 1},x)

For α = 3 and x ={1, 2, 1} this becomes:

ψc(1, 2, 1) ψc(1, 2, 3)

ψc(1, 3, 1) ψc(1, 3, 3)

ψc(3, 2, 1) ψc(3, 2, 3)

ψc(3, 3, 1) ψc(3, 3, 3)

=

γ2 γ1

γ2 γ2

γ1 γ2

γ2 γ1

From the definition of submodularity all projections of the move energy E123
m

need to be submodular. Consider the submodularity constraints of the projection

Em(0, t2, t3):

Em(0, 0, 0) + Em(0, 1, 1) ≤ Em(0, 0, 1) + Em(0, 1, 0) (4.2.29)

or γ2 + γ2 ≤ γ1 + γ2. This constraint is not satisfied as γ1 < γ2 in the definition

of the planarity preserving potential.

A similar result can also be proved for αβ-swap moves considering the config-

uration x ={1, 2, 1} and the 1, 3-swap move.

4.2.5 Proofs of Lemmas

Lemma 1 For a non decreasing concave function f(·)

2c ≥ a + b =⇒ 2f(c) ≥ f(a) + f(b). (4.2.30)

Proof

Given: c ≥ a+b
2

.

=⇒ f(c) ≥ f(
a+ b

2
) (f is non decreasing) (4.2.31)

=⇒ f(c) ≥ f(a) + f(b)

2
(f is concave) (4.2.32)

=⇒ 2f(c) ≥ f(a) + f(b) (4.2.33)

86

4.2. Characterizing Solvable Pn Functions

Lemma 2 For a function f : R → R,

y1 + y2 ≥ y3 + y4 =⇒ f(y1) + f(y2) ≥ f(y3) + f(y4) (4.2.34)

for all y1, y2, y3, y4 ∈ R if and only if f is linear.

Proof

We only prove the ‘only if’ part. The proof for the forward implication (‘if’) is

trivial.

x+ ǫ ≥ (x− ǫ) + 2ǫ (4.2.35)

f(x) + f(ǫ) ≥ f(x− ǫ) + f(2ǫ) (4.2.36)

f(x) − f(x− ǫ) ≥ f(2ǫ) − f(ǫ) (4.2.37)

Similarly, starting from x+ ǫ ≤ (x− ǫ) + 2ǫ, we get

f(x) − f(x− ǫ) ≤ f(2ǫ) − f(ǫ). (4.2.38)

From equations (4.2.37) and (4.2.38) we get:

f(x) − f(x− ǫ) = f(2ǫ) − f(ǫ). (4.2.39)

Taking limits with ǫ → 0 we get the condition that the derivative (slope) of the

function is constant. Hence, f(·) is linear.

87

Chapter 5

Graph Cuts for Minimizing

Higher Order Functions

88

5.1. Robust Higher Order Potentials

In the previous chapter we reviewed the expansion and swap move making

algorithms for approximate energy minimization. We then characterized a class

of higher order clique potentials for which the optimal expansion and swap moves

can be computed by minimizing a submodular function. However, minimizing

a general submodular function is quite computationally expensive and thus it is

infeasible to apply this procedure for minimizing large functions encountered in

computer vision.

In this chapter we introduce a novel family of higher order potentials which we

call the Robust P n model. This family contains the P n Potts model (which was

introduced in the previous chapter) as well as its robust variants, and can be used

for modelling many computer vision problems. We will show that the optimal

swap and expansion moves for energy functions composed of such potentials can

be computed using graph cuts. The complexity of our algorithm for computing

the optimal move increases linearly with the size of the clique. This enables us

to handle potential functions defined over very large cliques.

5.1. Robust Higher Order Potentials

The Robust P n model potentials take the form:

ψc(xc) = min{min
k∈L

((|c| − nk(xc))θk + γk), γmax} (5.1.1)

where |c| is the number of variables in clique c, nk(xc) denotes the number of

variables in clique c which take the label k in labelling xc, and γk, θk, γmax are

potential function parameters which satisfy the constraints:

θk =
γmax − γk

Q
and γk ≤ γmax, ∀k ∈ L. (5.1.2)

Q is called the truncation parameter of the potential and satisfies the constraint

2Q < |c|. Recall that the P n Potts model is defined as:

ψc(xc) =

{

γk if xi = lk, ∀i ∈ c,

γmax otherwise.
(5.1.3)

where γmax ≥ γk, ∀lk ∈ L. It can be seen that the Robust P n model (5.1.1)

becomes a P n Potts model (5.1.3) when the truncation parameter is set to 1 i.e.

Q = 1.

Example 4 Consider the set of variables X = {X1, X2, . . . , X5} where each

Xi, i ∈ {1, 2, . . . , 5} takes a value for the label set L = {a, b, c}. The P n Potts

model assigns the cost γmax to all labellings of the random variables except those

89

5.2. Computing Moves for Higher Order Potentials

where all variablesXi take the same label. Thus, the configuration x = {a, a, b, a, c}
will be assigned cost γmax even though there are only 2 variables (specifically, X3

and X5) which are assigned labels (b and c) different from the dominant label a.

In contrast, the Robust P n model with truncation 3, i.e. Q = 3, assigns the cost:

γa + (γmax−γa)
3

× 2 to the same configuration.

5.2. Computing Moves for Higher Order

Potentials

We will now explain how the optimal swap and expansion moves for energy func-

tions containing potential functions belonging to the Robust P n model family

(5.1.1) can be computed using graph cuts. In what follows we show that any

swap or expansion move energy for higher order potentials of the form (5.1.1)

can be converted to a sub-modular pairwise function. These pairwise functions

corresponding to all potentials constituting the energy can be combined together

to get a composite move energy. This move energy function is a second order sub-

modular function and can be minimized exactly by solving an st-mincut problem

(as shown in chapter 1) to get the optimal swap and expansion move.

5.2.1 Swap Moves

Recall from equation (4.1.8) that the transformation function for a swap move is

defined as

Tαβ(xi, ti) =

{

α if xi = α or β and ti = 0,

β if xi = α or β and ti = 1.
(5.2.1)

As expressed in the transformation function, only variables which are currently

assigned labels α or β can take part in a αβ-swap move. We call these variables

active and denote the vector of their indices by ca. tca
will be used to denote the

corresponding vector of move variables. Similarly, variables in the clique which

do not take part in the swap move are called passive, and the set of their indices

is denoted by cp. The functions nm
k (tca

), k ∈ {0, 1} count the number of move

variables assigned the label k in the move tcαβ
, or formally:

nm
1 (tca

) = |ca| − nm
0 (tca

) =
∑

i∈ca

ti. (5.2.2)

The move energy of a αβ-swap move from the current labelling xp
c is equal to

the energy of the new labelling xn
c induced by the move and is given as

ψm
c (tca

) = ψc(x
n
c). (5.2.3)

90

5.2. Computing Moves for Higher Order Potentials

The new labelling xn
c is obtained by combining the old labelling of the passive

variable Xcp
with the new labelling of the active variables Xca

as:

xn
c = xp

cp
∪ Tαβ(xp

ca
, tca

). (5.2.4)

On substituting the value of xn
c from (5.2.4) in (5.2.3), and using the definition

of the Robust P n model (5.1.1) we get:

ψm
c (tca

) = ψc(x
p
cp
∪ Tαβ(xp

ca
, tca

)). (5.2.5)

= min{min
k∈L

((|c| − nk(x
p
cp
∪ Tαβ(xp

ca
, tca

)))θk + γk), γmax} (5.2.6)

It can be easily observed that if the number of active variables (those assigned

label α or β) in the clique are less than |c| −Q, i.e. |ca| ≤ |c| −Q the expression

(|c| − nk(x
p
cp
∪ Tαβ(xp

ca
, tca

)))θk + γk (5.2.7)

is greater than γmax for both k = α and k = β. Thus, in this case the move

energy ψm
c (tca

) is independent of tca
and is equal to the constant:

η = min{ min
k∈L\{α,β}

((|c| − nk(x
p
c))θk + γk), γmax} (5.2.8)

which can be ignored while computing the swap moves. However, this is not true

when |ca| > |c| −Q. In this case the move energy can be written as:

ψm
c (xp

ca
, tca

) = min{(|ca|−nm
0 (tca

))θα +λα, (|ca|−nm
1 (tca

))θβ +λβ, λmax} (5.2.9)

where λα = γα +Qαβθα, λβ = γβ +Qαβθβ, λmax = γmax and Qαβ = |c|−|ca| = |cp|.
The minimization in (5.2.9) can be removed by defining the move energy as:

ψm
c (tca

) =











λα + (|ca| − nm
0 (tca

))θα if nm
0 (tca

) > |ca| − Q̂

λβ + nm
0 (tca

)θβ if nm
0 (tca

) ≤ Q̂

λmax otherwise

(5.2.10)

where Q̂ = Q−Qαβ. Next we will show that this higher order move energy can be

written as a second order submodular function with the addition of the auxiliary

binary variables m0 and m1.

Theorem 6 The higher order move energy (5.2.9) can be transformed into a

pairwise energy function by introducing binary meta-variables m0 and m1 as:

ψm
c (tc) = min

m0,m1

w0(1−m0)+θβm0

∑

i∈ca

(1−ti)+w1m1+θα(1−m1)
∑

i∈ca

ti−δ. (5.2.11)

where w0 = λα + δ, w1 = λβ + δ, and δ = λmax − λα − λβ.

91

5.2. Computing Moves for Higher Order Potentials

(a) Swap Move (b) Expansion Move

Figure 5.1: (a) Graph construction for minimizing the swap energy function

(5.2.11). (b) Graph construction for minimizing the expansion move energy func-

tion (5.2.15). For every binary move variable ti in the energy function there is

a corresponding graph node vi. The minimum cost source sink cut (st-mincut)

divides the graph into two sets: the source set (S) and the sink set (T). vi ∈ (S)

implies ti = 1 while vi ∈ (T) implies ti = 0.

Proof

The proof for the theorem can be found in section 5.3.

The property γmax ≥ γk, ∀k ∈ L of the clique potential (5.1.1) implies that

all coefficients of the energy function (5.2.11) are non-negative. The function is

thus submodular and can be minimized by solving a st-mincut problem [54]. The

graph construction corresponding to the energy (5.2.11) is shown in figure (5.1a).

The constant δ in (5.2.11) does not affect the minimization problem i.e. it does

not change the move having the least energy and thus is ignored.

5.2.2 Expansion Moves

We now describe how optimal expansion moves can be computed for the higher

order potentials (5.1.1).

Let ck denote the set of variables in clique c that have been assigned label k in

the current solution xp
c . We find the dominant label d ∈ L such that |cd| > |c|−Q

where d 6= α. The constraint 2Q < |c| of the Robust P n model makes sure that

there is at most one such label. If we find such a label in the current labelling,

92

5.3. Proofs of Theorems

then the expansion move energy can be written as:

ψm
c (tc) = ψc(Tα(xp

c , tc)) (5.2.12)

= min{λα + θα

∑

i∈c

ti, λd + θd

∑

i∈cd

(1 − ti), λmax}. (5.2.13)

where λα = γα, λd = γd + Qdθd, λmax = γmax and Qd = |c| − |cd|. Without the

minimization operator the function definition (5.2.13) becomes:

ψm
c (tc, tcd

) =











λα + (|c| − nm
0 (tc))θα if nm

0 (tc) > |c| −Q

λd + nm
0 (tcd

)θd if nm
0 (tcd

) ≤ Q−Qd

λmax otherwise

(5.2.14)

Next we will show that this higher order move energy can be written as a second

order submodular function with the addition of the auxiliary binary variables m0

and m1.

Theorem 7 The expansion move energy (5.2.13) can be transformed into the

pairwise function:

ψm
c (tc) = min

m0,m1

w0(1−m0)+θdm0

∑

i∈cd

(1−ti)+w1m1+θα(1−m1)
∑

i∈c

ti−δ. (5.2.15)

where w0 = λα + δ, w1 = λd + δ, and δ = λmax − λα − λd.

Proof

The proof for the theorem can be found in section 5.3.

The energy function (5.2.15) is submodular and can be minimized by finding

the st-mincut in the graph shown in figure (5.1b). If a dominant label cannot be

found then the move energy can be written as:

ψm
c (tc) = min{λα + θα

∑

i∈c

ti, λmax} (5.2.16)

where λα = γα, and λmax = γmax. This can be transformed to the binary pairwise

energy: w1m1 + θα(1 −m1)
∑

i∈c ti + λα, where w1 = λmax − λα. The proof for

this transformation is similar to the one shown for Theorem 7.

5.3. Proofs of Theorems

Theorem 6 The higher order move energy (5.2.9) can be transformed into a

pairwise energy function by introducing binary meta-variables m0 and m1 as:

ψm
c (tc) = min

m0,m1

w0(1−m0)+θβm0

∑

i∈ca

(1−ti)+w1m1+θα(1−m1)
∑

i∈ca

ti−δ. (5.3.1)

93

5.3. Proofs of Theorems

where w0 = λα + δ, w1 = λβ + δ, and δ = λmax − λα − λβ .

Proof

We decompose the function (5.3.1) as:

ψm
c (tc) = f 0(tca

) + f 1(tca
) − δ where (5.3.2)

f 0(tca
) = min

m0

w0(1 −m0) + nm
0 (tca

)θβm0 (5.3.3)

= min
m0

(λα + δ)(1 −m0) + θβm0n
m
0 (tca

) (5.3.4)

= min
m0

(λmax − λβ)(1 −m0) +
γmax − γβ

Q
m0n

m
0 (tca

) (5.3.5)

On substituting the value of λmax and λβ we get

f 0(tca
) = min

m0

(γmax − γβ −Qαβθβ)(1 −m0) +
γmax − γβ

Q
m0n

m
0 (tca

) (5.3.6)

= min
m0

(γmax − γβ)(1 −m0) +
γmax − γβ

Q
m0(n

m
0 (tca

) +Qαβ) −Qαβθβ

=

{

λmax − λβ if nm
0 (tca

) > Q−Qαβ

nm
0 (tca

)θβ if nm
0 (tca

) ≤ Q−Qαβ

(5.3.7)

Similarly,

f 1(tca
) =

{

λmax − λα if nm
1 (tca

) > Q−Qαβ

(|ca| − nm
0 (tca

))θα if nm
1 (tca

) ≤ Q−Qαβ

(5.3.8)

=

{

λmax − λα if nm
0 (tca

) ≤ |ca| − (Q−Qαβ)

(|ca| − nm
0 (tca

))θα if nm
0 (tca

) > |ca| − (Q−Qαβ).
(5.3.9)

Adding equations (5.3.7) and (5.3.9) and from the constraint 2Q < |c| we get

f 0(tca
) + f 1(tca

) =











λmax − λβ + (|ca| − nm
0 (tca

))θα if nm
0 (tca

) > |ca| − Q̂

nm
0 (tca

)θβ + λmax − λα if nm
0 (tca

) ≤ Q̂

λmax − λα + λmax − λβ otherwise,

(5.3.10)

where Q̂ = Q−Qαβ . Substituting this in (5.3.2) and simplifying we get:

ψm
c (tca

) =











λα + (|ca| − nm
0 (tca

))θα if nm
0 (tca

) > |ca| − Q̂

λβ + nm
0 (tca

)θβ if nm
0 (tca

) ≤ Q̂

λmax otherwise.

(5.3.11)

which is same as (5.2.10).

94

5.3. Proofs of Theorems

Theorem 7 The expansion move energy (5.2.13) can be transformed into the

pairwise function:

ψm
c (tc) = min

m0,m1

w0(1−m0)+θdm0

∑

i∈cd

(1−ti)+w1m1+θα(1−m1)
∑

i∈c

ti−δ. (5.3.12)

where w0 = λα + δ, w1 = λd + δ, and δ = λmax − λα − λd.

Proof

We decompose the move energy (5.3.12) as:

ψm
c (tc) = f 0(tcd

) + f 1(tc) − δ where (5.3.13)

f 0(tcd
) = min

m0

w0(1 −m0) + nm
0 (tcd

)θdm0 (5.3.14)

= min
m0

(λα + δ)(1 −m0) + θdm0n
m
0 (tcd

) (5.3.15)

= min
m0

(γmax − γd −Qdθd)(1 −m0) +
γmax − γd

Q
m0n

m
0 (tcd

) (5.3.16)

= min
m0

(γmax − γd)(1 −m0) +
γmax − γd

Q
m0(n

m
0 (tcd

) +Qd) −Qdθd

=

{

λmax − λd if nm
0 (tcd

) > Q−Qd

nm
0 (tcd

)θd if nm
0 (tcd

) ≤ Q−Qd,
(5.3.17)

and f 1(tc) = min
m1

w1m1 + nm
1 (tc)θα(1 −m1) (5.3.18)

= min
m1

(λd + δ)m1 + θα(1 −m1)n
m
1 (tc) (5.3.19)

= min
m1

(γmax − γα)m1 +
γmax − γα

Q
(1 −m1)n

m
1 (tc) (5.3.20)

=

{

λmax − λα if nm
1 (tc) ≥ Q

nm
1 (tc)θα if nm

1 (tc) < Q.
(5.3.21)

=

{

λmax − λα if nm
0 (tc) ≤ |c| −Q

nm
1 (tc)θα if nm

0 (tc) > |c| −Q
(5.3.22)

Adding (5.3.17) and (5.3.22) and using the relations

nm
0 (tcd

) ≤ Q−Qd =⇒ nm
0 (tc) ≤ |c| −Q (5.3.23)

nm
0 (tc) > |c| −Q =⇒ nm

0 (tcd
) > Q−Qd (5.3.24)

which are derived from the constraints 2Q < |c| and |cd| > |c| −Q, we get:

f 0(tca
) + f 1(tca

) =











λmax − λd + (|c| − nm
0 (tc))θα if nm

0 (tc) > |c| −Q

nm
0 (tcd

)θd + λmax − λα if nm
0 (tcd

) ≤ Q−Qd

λmax − λα + λmax − λd otherwise.

(5.3.25)

95

5.3. Proofs of Theorems

Substituting in (5.3.13) and simplifying we get:

ψm
c (tc, tcd

) =











λα + (|c| − nm
0 (tc))θα if nm

0 (tc) > |c| −Q

λd + nm
0 (tcd

)θd if nm
0 (tcd

) ≤ Q−Qd

λmax otherwise

(5.3.26)

which is the same as (5.2.14).

96

Chapter 6

Applications of Higher Order

Potentials

97

6.1. Enforcing Label Consistency in Superpixels

In this chapter we show how higher order potential functions can be used for

modelling computer vision problems. We use potentials which take the form of

the Robust P n model (5.1.1). This enables us to use the st-mincut based method

explained in chapter 5 for minimizing the resulting energy functions.

In the first part of the chapter we propose a novel framework for labelling

problems which is capable of merging regions from multiple image segmentations

in a principled manner. Many recently proposed methods for image labelling

problems such as object segmentation [34] and single view reconstruction [36]

work by merging image segments (so called superpixels) generated using unsu-

pervised image segmentation algorithms. They are inspired from the observation

that pixels constituting these superpixels often have the same label; for instance,

they may belong to the same object or may have the same surface orientation.

The methods used for integrating or merging segments are heuristics which lack

any optimality guarantees.

Our approach uses higher order conditional random fields (crfs) to define po-

tentials on sets of pixels. These novel higher order potentials enforce label consis-

tency in image regions and can be seen as a strict generalization of the commonly

used pairwise contrast sensitive smoothness potential. We test our method on

the problem of multi-class object segmentation by augmenting the conventional

crf used for object segmentation with higher order potentials defined on image

regions. Experiments on challenging data sets show that integration of higher or-

der potentials quantitatively and qualitatively improves results leading to much

better definition of object boundaries. We believe our method can be used to

yield similar improvements for many other labelling problems.

Higher order potentials provide a probabilistic formulation for a wide variety

of exemplar based applications in computer vision, such as 3D reconstruction [69]

and object recognition [58]. In the second half of this chapter, we show how higher

order potentials defined over texture patch exemplars can be used for the problem

of texture segmentation. Our experiments show that the use of such potentials

leads to significant improvements in the segmentation results.

6.1. Enforcing Label Consistency in Superpixels

In recent years an increasingly popular way to solve labelling problems like object

segmentation, stereo and single view reconstruction is to formulate them using

image segments (or superpixels) generated using unsupervised segmentation al-

gorithms such as mean shift or normalized cut [34, 36, 75]. These methods are

inspired from the observation that pixels constituting some of these segments

often have the same label; for instance, they may belong to the same object or

98

6.1. Enforcing Label Consistency in Superpixels

may have the same surface orientation. This approach has the benefit that higher

order features based on all the pixels constituting the segment can be computed

and used for classification. Further, as inference now only needs to be performed

over small number of superpixels rather than all the pixels in the image, this

approach substantially decreases the running time of the algorithm. The final

advantage of this method is that the problem of scene understanding is decou-

pled from the image resolution given by the hardware; it is conducted using more

natural primitives that are independent of resolution.

Methods based on grouping segments make the assumption that segments

are consistent with object boundaries in the image [34], i.e. segments do not

contain multiple objects. As observed by [37] and [86] this is not always the

case and segments obtained using unsupervised segmentation methods are often

wrong. To overcome these problems [37] and [86] use multiple segmentations of

the image (instead of only one) in the hope that although most segmentations

are bad, some are correct and thus would prove useful for their task. They merge

the multiple superpixels using heuristic algorithms which lack any optimality

guarantees and thus may produce bad results. What is needed then are algorithms

that can compute the solution of the labelling problem (using features based on

superpixels) in a principled manner. In this chapter we address this problem and

show that it can be solved using potential functions defined on sets of pixels.

Such potentials can be coupled with conventional unary and pairwise cues using

higher order crfs. We test the performance of this method on the problem of

object segmentation and recognition. Our experiments show that the results of

our approach are significantly better than the ones obtained using pairwise crf

models (see figure 6.1).

6.1.1 Object Segmentation and Recognition

Combined object segmentation and recognition is one of the most challenging

and fundamental problems in computer vision. The last few years have seen

the emergence of object segmentation algorithms which integrate object specific

top-down information with image based low-level features [5,33,38,59,66]. These

methods have produced excellent results on challenging data sets. However, they

typically only deal with one object at a time in the image independently and do

not provide a framework for understanding the whole image. Further, their mod-

els become prohibitively large as the number of classes increases. This prevents

their application to scenarios where segmentation and recognition of many object

classes is desired.

Shotton et al. [95] recently proposed a method (Textonboost) to overcome this

99

6.1. Enforcing Label Consistency in Superpixels

Figure 6.1: Using higher order potentials for object segmentation. (a) An image

from the MSRC-23 dataset. (b),(c) and (d) Unsupervised image segmentation

results generated by using different parameters values in the mean-shift segmen-

tation algorithm [17]. (e) The object segmentation obtained using the unary like-

lihood potentials from Textonboost [95]. (f) The result of performing inference

in the pairwise CRF defined in section 6.1.2. (g) Our segmentation result ob-

tained by augmenting the pairwise CRF with higher order potentials defined on

the segments shown in (b),(c) and (d). (h) The rough hand labelled segmentations

provided in the MSRC data set. It can be clearly seen that the use of higher order

potentials results in a significant improvement in the segmentation result. For

instance, the branches of the tree are much better segmented.

problem. In contrast to using explicit models to encode object shape they used a

boosted combination of texton features which jointly modeled shape and texture.

They combine the result of textons with colour and location based likelihood

terms in a condition random field (crf). Although their method produced good

segmentation and recognition results, the rough shape and texture model caused

it to fail at object boundaries. The problem of extracting accurate boundaries

of objects is considerably more challenging. In what follows we show that incor-

poration of higher order potentials defined on superpixels dramatically improves

the object segmentation result. In particular, it leads to results with much better

definition of object boundaries as shown in figure 6.1.

The higher order energy functions characterizing the higher order crfs arising

from our work take the form of a Robust P n model (5.1.1) and thus can be

minimized efficiently using the algorithm given in the previous chapter.

This section proposes a general framework for solving labelling problems which

has the ability of utilizing higher order potentials defined on segments. We test

100

6.1. Enforcing Label Consistency in Superpixels

this framework on the problem of object segmentation and recognition by inte-

grating label consistency and shape based terms defined on segments with conven-

tional unary and pairwise potentials. We show how inference in this framework

can be efficiently performed by extending our recent work on minimizing energy

function with higher order cliques [46]. To summarize, the novelties of our ap-

proach include:

1. A novel higher order region consistency potential which is a strict gen-

eralization of the commonly used pairwise contrast sensitive smoothness

potential.

2. The application of higher order crfs for object segmentation and recog-

nition which integrate the above mentioned higher order potentials with

conventional unary and pairwise potentials based on colour, location, tex-

ture, and smoothness.

We now give a brief outline of the sections to follow. In section 6.1.2 we show

how pairwise crfs can be used to model labelling problems like object segmenta-

tion. In section 6.1.3 we augment the pairwise crf model by incorporating novel

higher order potentials based on superpixel segmentations. The experimental

results of our method are given in section 6.1.4. These include qualitative and

quantitative results on well known and challenging data sets for object segmen-

tation and recognition. The conclusions and directions for future work are listed

in section 6.1.5.

6.1.2 Pairwise CRFs for Object Segmentation

The crf models commonly used for object segmentation are characterized by

energy functions defined on unary and pairwise cliques as:

E(x) =
∑

i∈V

ψi(xi) +
∑

i∈V ,j∈Ni

ψij(xi, xj). (6.1.1)

Here V corresponds to the set of all image pixels, N is a neighbourhood defined

on this set which is commonly chosen to be either a 4 or 8 neighbourhood. The

labels constituting the label set L represent the different objects. The random

variable xi denotes the labelling of pixel i of the image. Every possible assignment

of the random variables x (or configuration of the crf) defines a segmentation.

The unary potential ψi of the crf is defined as the negative log of the likeli-

hood of an object label assigned to pixel i. It can be computed from the colour

of the pixel and the appearance model for each object. However, colour alone

is not a very distinguishing feature and fails to produce accurate segmentations.

101

6.1. Enforcing Label Consistency in Superpixels

This problem can be overcome by using sophisticated potential functions based

on colour, texture, location, and shape priors as shown by [4, 12, 59, 83, 95]. The

unary potential used by us can be written as:

ψi(xi) = θTψT (xi) + θcolψcol(xi) + θlψl(xi) (6.1.2)

where θT , θcol, and θl are parameters weighting the potentials obtained from

TextonBoost(ψT) [95], colour(ψcol) and location(ψl) respectively. The pairwise

terms ψij of the crf take the form of a contrast sensitive Potts model:

ψ(xi, xj) =

{

0 if xi = xj ,

g(i, j) otherwise,
(6.1.3)

where the function g(i, j) is an edge feature based on the difference in colors of

neighbouring pixels [9]. It is typically defined as:

g(i, j) = θp + θv exp(−θβ ||Ii − Ij||2), (6.1.4)

where Ii and Ij are the colour vectors of pixel i and j respectively. θp, θv, and θβ

are model parameters whose values are learned using training data. We refer the

reader to [9, 83, 95] for more details.

6.1.2.1 Inferring the Most Probable Segmentation

The object segmentation problem can be solved by finding the least energy config-

uration of the crf defined above. As the pairwise potentials of the energy function

(6.1.1) are of the form of a Potts model it can be minimized approximately using

the well known α-expansion algorithm [11]. The resulting segmentation can be

seen in figure 6.1. We also tried other energy minimization algorithms such as

sequential tree-reweighted message passing (trw-s) [51, 112]. The α-expansion

algorithm was preferred because it was faster and gave a solution with lower

energy compared to trw-s.

6.1.2.2 The Need for Higher Order CRFs

The use of smoothness potentials in the crf model makes it favour smooth ob-

ject boundaries. Although this improves results in most cases it also introduces

an undesirable side effect. Smoothness potentials make the model incapable of

extracting the fine contours of certain object classes such as trees and bushes.

As seen in the results, segmentations obtained using pairwise crfs tend to be

oversmooth and quite often do not match the actual object contour. In the next

section we show how these results can be significantly improved by using higher

order terms derived from multiple segmentations obtained from an unsupervised

image segmentation method.

102

6.1. Enforcing Label Consistency in Superpixels

Figure 6.2: Quality sensitive region consistency prior. (a) An image from the

MSRC data set. (b) and (c) Two different segmentations of the image obtained

using different parameter values for the mean-shift algorithm. (d) A hand labelled

object segmentation of the image. (e) and (f) The value of the variance based

quality function G(c) (see equation 6.1.8) computed over the segments of the two

segmentations. Segments with high quality values are darker. It can be clearly

seen that segments which contain multiple object classes have been assigned low

quality. For instance, the top segment of the left tree in segmentation (c) includes

a part of the building and thus is brighter in the image (f) indicating low quality.

Potentials defined on such segments will have a lower labelling inconsistency cost

and will have less influence in the CRF.

6.1.3 Incorporating Higher Order Potentials

We augment the pairwise crf model explained above by incorporating higher

order potentials defined on sets or regions of pixels. The Gibbs energy of this

higher order crf can now be written as:

E(x) =
∑

i∈V

ψi(xi) +
∑

i∈V ,j∈Ni

ψij(xi, xj) +
∑

c∈S

ψc(xc), (6.1.5)

where S refers to the set of all regions or segments, and ψc are higher order

potentials defined on them. We will now describe how these potentials are defined.

6.1.3.1 Region based consistency potential

Methods based on grouping regions for segmentation make the assumption that all

pixels constituting a particular segment (or region) belong to the same object [34].

103

6.1. Enforcing Label Consistency in Superpixels

Instead of using this assumption as a hard constraint, we wish to embed it as

a soft constraint in the crf model. This potential which we refer to as the

region consistency potential is similar to the smoothness prior present in pairwise

crfs [9]. It favours all pixels belonging to a segment taking the same label, and

as will be shown later is particularly useful in obtaining object segmentations

with fine boundaries. It takes the form of a Pn Potts model [46]:

ψp
c (xc) =

{

0 if xi = lk, ∀i ∈ c,

θh
p |c|θα otherwise.

(6.1.6)

where |c| is the cardinality of the pixel set c which in our case is the number

of pixels constituting superpixel c. The expression θh
p |c|θα gives the label incon-

sistency cost, i.e. the cost added to the energy of a labelling in which different

labels have been assigned to the pixels constituting the segment. The parameters

θh
p and θα are learned from the training data by cross validation as described in

section 6.1.4. The reader should note that this potential cannot be expressed in

a pairwise crf model.

6.1.3.2 Quality sensitive consistency potential

Not all segments obtained using unsupervised segmentation are equally good, for

instance, some segments may contain multiple object classes. A region consis-

tency potential defined over such a segment will encourage an incorrect labelling

of the image. This is because the potential (6.1.6) does not take the quality or

goodness of the segment. It assigns the same penalty for breaking ‘good’ segment

as it assigns to ‘bad’ ones. This problem of the consistency potential can be over-

come by defining a quality sensitive higher order potential (see figure 6.2). This

new potential works by modulating the label inconsistency cost with a function of

the quality of the segment (which is denoted by G(c)). Any method for estimat-

ing the segment quality can be used in our framework. A good example would

be the method of [80] which uses inter and intra region similarity to measure the

quality or goodness of a segment. Formally, the potential function is written as:

ψv
c (xc) =

{

0 if xi = lk, ∀i ∈ c,

|c|θα(θh
p + θh

vG(c)) otherwise.
(6.1.7)

For our experiments, we use the variance of the response of a unary feature

evaluated on all constituent pixels of a segment to measure the quality of a

segment, i.e.

G(c) = exp

(

−θh
β

‖∑i∈c(f(i) − µ)2‖
|c|

)

, (6.1.8)

104

6.1. Enforcing Label Consistency in Superpixels

Figure 6.3: Behaviour of the rigid P n Potts potential and the Robust P n model

potential. The figure shows how the cost enforced by the two higher order potentials

changes with the number of variables in the clique not taking the dominant label

i.e. Ni(xc) = mink(|c| − nk(xc)).

where µ =
∑

i∈c f(i)

|c| and f() is a function evaluated on all constituent pixels of the

superpixel c. If we restrict our attention to only pairwise cliques i.e. |c| = 2, the

variance sensitive potential becomes

ψv
c (xi, xj) =

{

0 if xi = xj ,

|c|θα(θh
p + θh

v exp(−θh
β‖f(i) − f(j)‖2)) otherwise.

(6.1.9)

This is the same as the pairwise potential (6.1.3) commonly used in pairwise

crfs for different image labelling problems [9, 83]. Thus, the variance sensitive

potential can be seen as a higher order generalization of the contrast preserving

potential. The variance function response over two segmentations of an image is

shown in figure 6.2.

6.1.3.3 Making the potentials robust

The P n Potts model enforces label consistency very rigidly and thus might not be

able to deal with inaccurate superpixels or resolve conflicts between overlapping

regions of pixels. This phenomenon is illustrated in figure 6.4 wherein a part of the

bird is merged with the ‘sky’ superpixel and results in an inaccurate segmentation.

Intuitively, this problem can be resolved using the Robust higher order potentials

defined as:

ψv
c (xc) ==

{

Ni(xc)
1
Q
γmax if Ni(xc) ≤ Q,

γmax otherwise,
(6.1.10)

where Ni(xc) denotes the number of variables in the clique c not taking the

dominant label, i.e. Ni(xc) = mink(|c| − nk(xc)), γmax = |c|θα(θh
p + θh

vG(c)), and

Q is the truncation parameter which controls the rigidity of the higher order clique

105

6.1. Enforcing Label Consistency in Superpixels

potential. This potential is of the form of the Robust P n model (5.1.1) introduced

in the previous chapter, where we showed how energy functions composed of such

potentials can be minimized using move making algorithms such as α-expansion

and αβ-swap.

Unlike the rigid P n Potts model, this potential function gives rise to a cost

that is a linear truncated function of the number of inconsistent variables (see

figure 6.3). This enables the robust potential to allow some variables in the

clique to take different labels. In the image shown in figure 6.4, the Robust P n

model potential allows some pixels of the ‘sky’ segment to take the label ‘bird’

thus producing a much better segmentation. Experimental results are shown for

multiple values of the truncation parameter Q. More qualitative results can be

seen in figure 6.7.

6.1.3.4 Generating multiple segmentations

We now explain how the set S of segments used for defining the higher order

energy function (6.1.5) was generated. Our framework is quite flexible and can

handle multiple overlapping or non-overlapping segments. The computer vision

literature contains algorithms for sampling the likely segmentations of an im-

age [106] or for generating multi-scale segmentations [93]. However, following

in the footsteps of [86] we choose to generate multiple segmentations by vary-

ing the parameters of the mean shift segmentation algorithm [17]. This method

belongs to the class of unsupervised segmentation algorithms which work by clus-

tering pixels on the basis of low level image features [17,24,94]. They have been

shown to give decent results which have proved to be useful for many applica-

tions [36, 37, 113].

The kernel used in the mean shift algorithm is defined as the product of spatial

and range kernels. The spatial domain contains the (x, y) coordinates, while the

range domain contains pixel colour information in luv space. An assumption of

Euclidian metric in both of them allows the use of a single bandwidth parameter

for each domain, hs for spatial and hr for range.

Shown in figure 6.5 are segmentation results obtained using 2 different spatial

{7, 18} and 3 different range parameter values {6.5, 9.5, 15}. It can be seen that

the results do not change dramatically on small images by modifying hs. The

only difference occurs on very noisy parts of the image like trees and bushes. By

increasing the range parameter hr we can get a range of segmentations which vary

from over-segmented to under-segmented. We decided to use three segmentations

with parameters (hs, hr) = {(7, 6.5), (7, 9.5), (7, 15)}.

106

6.1. Enforcing Label Consistency in Superpixels

Figure 6.4: Object segmentation and recognition using the Robust P n higher order

potentials (5.1.1). (a) Original Image. (b) Labelling from unary likelihood poten-

tials from Textonboost [95]. (c) and (d) Segmentations obtained by varying the

parameters of the Mean shift algorithm for unsupervised image segmentation [17].

(e) Result obtained using pairwise potential functions as described in [95]. (f)

Result obtained using P n Potts model potentials defined on the segments (or su-

perpixels) shown in (c) and (d). These higher order potentials encourage all pixels

in a superpixel to take the same label. The P n Potts model enforces label con-

sistency in regions very rigidly thus causing certain pixels belonging to the ‘bird’

to erroneously take the label ‘sky’ as they were included in the ‘sky’ superpixel.

This problem can be overcome by using the Robust P n model potentials defined

in (5.1.1) which are robust and allow some variables in the clique to take differ-

ent labels. (g) and (h) show results obtained by using the robust potentials with

truncation parameter Q equal to 0.1|c| and 0.2|c| respectively. Here |c| is equal to

the size of the superpixel over which the Robust P n model potential is defined. (i)

Hand labelled segmentation from the msrc dataset.

107

6.1. Enforcing Label Consistency in Superpixels

Figure 6.5: Generating multiple segmentations. The figure shows the segmen-

tations obtained by using different parameters in the mean-shift algorithm. The

parameters used for generating the segmentation are written below it in the format

(hs, hr), where hs and hr are the bandwidth parameters for the spatial and range

(colour) domains.

Figure 6.6: Qualitative object segmentation and recognition results. The first

column shows the original image from the Sowerby-7 dataset. Column 2 shows

the result of performing inference in the pairwise crf model described in section

6.1.2. The result obtained using the P n Potts potential (6.1.7) is shown in column

3. The results of using the Robust P n potential (6.1.10) is shown in column 4.

The hand labelled segmentation used as ground truth is shown in column 5.

Inference in Higher Order CRFs The map solution of the higher order

crf is inferred by minimizing the energy function composed of the potentials

described above. This can be done using the algorithm proposed in the previous

chapter.

108

6.1. Enforcing Label Consistency in Superpixels

6.1.4 Experiments

In this section we provide the details of our experiments. For comparative evalu-

ation of our method we implemented the state of the art TextonBoost [95] algo-

rithm which uses a pairwise crf. We then augmented the crf model by adding

higher order potentials defined on segments obtained from mean-shift [17].

6.1.4.1 Datasets

We tested both the pairwise crf and higher order crf models on the MSRC-

23 [95] and Sowerby-7 [34] datasets. The MSRC dataset contains 23 object classes

and comprises of 591 colour images of 320×213 resolution. The Sowerby dataset

contains 7 object classes and comprises of 104 colour images of 96×64 resolution.

In our experiments, 50% of the images in the dataset were used for training and

the remaining were used for testing.

6.1.4.2 Setting CRF parameters

The optimal values for different parameters of the higher order crf were found

in a manner similar to the one used for the pairwise crf in [95]. The model

parameters were learned by minimizing the overall pixelwise classification error

rate on a set of validation images - a subset of training images which were not

used for training unary potentials.

A simple method for selecting parameter values is to perform cross-validation

for every combination of unary, pairwise and higher order parameters within a

certain discretized range. Unfortunately, the space of possible parameter values

is high dimensional and doing an exhaustive search is infeasible even with very

few discretization levels for each parameter. We used a heuristic to overcome this

problem. First we learned the weighting between unary potentials from colour,

location and Textonboost. Then we kept these weights constant and learned the

optimal parameters for pairwise potentials. Pairwise and higher order potentials

have similar functionality in the framework, thus learning of higher order param-

eters from the model with optimal unary and pairwise parameters would lead to

very low weights of higher order potentials. Instead we learned optimal higher

order parameters in CRF with only unary and higher order potentials and in the

last step the ratio between pairwise and higher order potentials.

The final trained coefficients for the msrc dataset were θT = 0.52, θcol = 0.21,

θl = 0.27, θp = 1.0, θv = 4.5, θβ = 16.0, θα = 0.8, θh
p = 0.2, θh

v = 0.5, θh
β = 12.0.

The results of our experiments show that integration of higher order P n Potts

model potentials quantitatively and qualitatively improves segmentation results.

109

6.1. Enforcing Label Consistency in Superpixels

Figure 6.7: Some qualitative results. Please see in colour. First Row: Origi-

nal Image. Second Row: Unary likelihood labelling from Textonboost [95]. Third

Row: Result obtained using a pairwise contrast preserving smoothness potential

as described in [95]. Fourth Row: Result obtained using the P n Potts model po-

tential [46]. Fifth Row: Results using the Robust P n model potential (5.1.1) with

truncation parameter Q = 0.1|c|, where |c| is equal to the size of the superpixel

over which the Robust P n higher order potential is defined. Sixth Row: Hand la-

belled segmentations. Observe that the results obtained using the Robust P n model

are significantly better than those obtained using other methods. For instance, the

leg of the sheep and bird have been accurately labelled which was missing in other

results. Same can be said about the tail and leg of the dog, and the wings of the

aeroplane.

110

6.1. Enforcing Label Consistency in Superpixels

Figure 6.8: Accurate hand labelled segmentations which were used as ground truth.

The figure shows some images from the msrc data set (column 1), the hand la-

belled segmentations that came with the data set (column 2), and the new seg-

mentations hand labelled by us which were used as ground truth (column 3).

The use of the robust potentials lead to further improvements (see figure 6.4,6.6,

6.7 and 6.9). Inference on both the pairwise and higher order crf model was

performed using the graph cut based expansion move algorithm [11,46]. The opti-

mal expansion moves for the energy functions containing the Robust P n potential

(6.1.10) were computed using the method given in section 5.2.

6.1.4.3 Quantitative Segmentation Results

The hand labelled ‘ground truth’ images that come with the msrc-23 data set

are quite rough. In fact qualitatively they always looked worse than the results

obtained from our method. The hand labelled images suffer from another draw-

back. A significant numbers of pixels in these images have not been assigned any

label. These unlabelled pixels generally occur at object boundaries and are crit-

ical in evaluating the accuracy of a segmentation algorithm. It should be noted

that obtaining an accurate and fine segmentation of the object is important for

many tasks in computer vision.

Ground Truth In order to get a good estimate of our algorithm’s accuracy,

we generated accurate segmentations which preserved the fine object boundaries

present in the image. Generating these segmentations is quite time consuming.

It takes between 15-60 minutes to hand label one image. We hand labelled 27

images from the msrc data set. Figure 6.8 shows the original hand labelled

111

6.1. Enforcing Label Consistency in Superpixels

Figure 6.9: Qualitative results of our method. (a) Original Images. (b) Segmen-

tation result obtained using the pairwise CRF (explained in section 6.1.2). (c)

Results obtained by incorporating the Robust P n higher order potential (6.1.10)

defined on segments. (d) Hand labelled result used as ground truth.

Figure 6.10: The relationship between qualitative and quantitative results. (a)

Original Image. (b) Segmentation result obtained using the pairwise CRF (ex-

plained in section 6.1.2). Overall pixelwise accuracy for the result is 95.8%. (c)

Results obtained by incorporating the Robust P n higher order potential (6.1.10)

defined on segments. Overall pixelwise accuracy for this result is 98.7%. (d) Hand

labelled result used as ground truth. It can be seen that even a small difference

in the pixelwise accuracy can produce a massive difference in the quality of the

segmentation.

112

6.1. Enforcing Label Consistency in Superpixels

Figure 6.11: Boundary accuracy evaluation using trimap segmentations. The

first column shows some images from the MSRC dataset [95]. The ground truth

segmentation of these images are shown in the column 2. Column 3 shows the

trimap used for measuring the pixel labelling accuracy. The evaluation region

is coloured gray and was generated by taking an 8 pixel band surrounding the

boundaries of the objects. The corresponding trimaps for an evaluation band

width of 16 pixels are shown in column 4.

images of the msrc data set and the new segmentations manually labelled by us

which were used as ground truth.

Evaluating Accuracy Typically the performance of a segmentation algorithm

is measured by counting the total number of mislabelled pixels in the image. We

believe this measure is not appropriate for measuring the segmentation accuracy

if the user is interested in obtaining segmentations with fine object boundaries.

As only a small fraction of image pixels lie on the boundary of an object, a

large qualitative improvement in the quality of the segmentation will result in

only a small increase in the percentage pixel-wise accuracy. This phenomenon is

illustrated in figure 6.10.

With this fact in mind, we evaluate the quality of a segmentation by counting

the number of pixels misclassified in the region surrounding the actual object

boundary and not over the entire image. The error was computed for different

widths of the evaluation region. The evaluation regions for some images from the

msrc dataset are shown in figure 6.11. The accuracy of different segmentation

methods is plotted in the graph shown in figure 6.12.

113

6.2. Texture Based Segmentation

Figure 6.12: Pixelwise classification error in our results. The graph shows how

the overall pixelwise classification error varies as we increase the width of the

evaluation region.

6.1.5 Summary

In this part of the chapter we proposed a novel framework for labelling problems

which is capable of utilizing features based on sets of pixels in a principled man-

ner. We tested this approach on the problem of multi-class object segmentation

and recognition. Our experiments showed that incorporation of P n Potts and

Robust P n model type potential functions (defined on segments) in the condi-

tional random field model for object segmentation improved results. We believe

this method is generic and can be used to solve many other labelling problems. In

the future we would like to investigate the use of more sophisticated higher order

potentials based on the shape and appearance of image segments. We believe

that such potentials would be more discriminative and will result in even better

performance.

6.2. Texture Based Segmentation

We now consider the problem of texture based segmentation. This problem can

be stated as follows. Given a set of distinct textures (e.g. a dictionary of rgb

114

6.2. Texture Based Segmentation

patches or histograms of textons [91]) together with their object class labels, the

task is to segment an image. In other words, the pixels of the image should be

labelled as belonging to one of the object classes (e.g. see Fig. 6.14).

The above problem can be formulated within a probabilistic framework using

a crf [61]. A crf represents the conditional distribution of a set of random

variables X = {X1, X2, . . . , Xn} given the data D. Each of the variables can take

one label xi ∈ L = {1, 2, . . . , ns}. In our case, ns is the number of distinct object

classes, a variable Xi represents a pixel Di and x = {x1, x2, . . . , xn} describes

a segmentation. The most (or a highly) probable (i.e. maximum a posteriori)

segmentation can be obtained by (approximately) minimizing the corresponding

Gibbs energy.

6.2.1 Pairwise CRF for Texture Segmentation

For the problem of segmentation, it is common practice to assume a pairwise crf

where the cliques are of size at most two [4,9,83]. In this case, the Gibbs energy

of the crf is of the form:

E(x) =
∑

i∈V

ψi(xi) +
∑

i∈V ,j∈Ni

ψij(xi, xj), (6.2.1)

where Ni is the neighbourhood of pixel Di (defined in this work as the 8-neighbourhood).

The unary potential ψi(xi) is specified by the rgb distributions Ha, a = 1, . . . , ns

of the segments as

ψi(xi) = − log p(Di|Ha), when xi = a. (6.2.2)

The pairwise potentials ψij(xi, xj) are defined such that they encourage contigu-

ous segments whose boundaries lie on image edges, i.e.

ψij(xi, xj) =

{

λ1 + λ2 exp
(

−g2(i,j)
2σ2

)

if xi 6= xj,

0 if xi = xj,
(6.2.3)

where λ1, λ2 and σ are some parameters. The term g(i, j) represents the difference

between the rgb values of pixels Di and Dj . We refer the reader to [9] for

details. Note that the pairwise potentials ψij(xi, xj) form a metric. Hence, the

energy function in equation (6.2.1) can be minimized using both αβ-swap and

α-expansion algorithms.

6.2.2 Higher Order Patch Potentials

The Pn functions presented in chapter 4 allow us to go beyond the pairwise crf

framework by incorporating texture information as higher order cliques. Unlike

115

6.2. Texture Based Segmentation

Figure 6.13: Segmented keyframe of the garden sequence. The left image shows the

keyframe while the right image shows the corresponding segmentation provided by

the user. The four different colours indicate pixels belonging to the four segments

namely sky, house, garden and tree.

the distributions Ha which describe the potential for one variable Xi, texture

captures rich statistics of natural images [64,108]. In this work, we represent the

texture of each object class s ∈ {1, 2, · · · , ns} using a dictionary Ps of np×np rgb

patches. Note, however, that our framework is independent of the representation

of texture. As we will describe later, the likelihood of a patch of the image D

belonging to the segment s can be computed using the dictionary Ps.

The resulting texture based segmentation problem can be formulated using a

crf composed of higher order cliques. We define the Gibbs energy of this crf

as
E(x) =

∑

i∈V

ψi(xi) +
∑

i∈V ,j∈Ni

ψij(xi, xj) +
∑

c∈C

ψc(xc), (6.2.4)

where c is a clique which represents the patch Dc = {Di, i ∈ c} of the image D

and C is the set of all cliques. Note that we use overlapping patches Dc such that

|C| = n. The unary potentials ψi(xi) and the pairwise potentials ψij(xi, xj) are

given by equations (6.2.2) and (6.2.3) respectively. The clique potentials ψc(xc)

are defined such that they form a Pn Potts model (n = n2
p), i.e.

ψc(xc) =

{

λ3G(c, s) if xi = s,∀i ∈ c,

λ4 otherwise.
(6.2.5)

Here G(c, s) is the minimum difference between the rgb values of patch Dc

and all patches belonging to the dictionary Ps. Note that the above energy

function encourages a patch Dc which is similar to a patch in Ps to take the label

s. Since the clique potentials form a Pn Potts model, they can be minimized

using the αβ-swap and α-expansion algorithms as described in section 5.2.

6.2.3 Results

We tested our approach for segmenting frames of a video sequence. A keyframe of

the video was manually segmented and used to learn the distributions Ha and the

116

6.2. Texture Based Segmentation

Figure 6.14: Qualitative texture segmentation results of the garden sequence. The

first row shows four frames of the garden sequence. The second row shows the

segmentation obtained by minimizing the energy of the pairwise crf (in equa-

tion (6.2.1)) using the αβ-swap algorithm. The four different colours indicate

the four segments. The segmentations obtained using α-expansion to minimize

the same energy are shown in the third row. The fourth row shows the results ob-

tained by minimizing the energy containing higher order clique terms which form

a Pn Potts model (given in equation (6.2.4)) using the αβ-swap algorithm. The

fifth row shows the results obtained using the α-expansion algorithm to minimize

the energy in equation (6.2.4). The use of higher order cliques results in more

accurate segmentation.

117

6.2. Texture Based Segmentation

Figure 6.15: The keyframe of the ‘Dayton’ video sequence segmented into three

segments.

dictionary of patches Ps. The αβ-swap and α-expansion algorithms were used

to perform segmentation on the other frames. In all our experiments, we used

patches of size 4 × 4, together with the following parameter setting: λ1 = 0.6,

λ2 = 6, λ3 = 0.6, λ4 = 6.5 and σ = 5. All experiments were performed on an

Intel Pentium 2GHz machine.

Fig. 6.13 shows the segmented keyframe of the well-known garden sequence.

Fig. 6.14 (row 2) shows the segmentation obtained for four frames by minimizing

the energy function of the pairwise crf (defined in equation (6.2.1)) using the

αβ-swap algorithm. Note that these frames are different from the keyframe (see

Fig. 6.14 (row 1)). The results obtained by the α-expansion algorithm are shown

in Fig. 6.14 (row 3). The α-expansion algorithm takes an average of 3.7 seconds

per frame compared to the 4.7 seconds required by the αβ-swap algorithm. Note

that the segmentations obtained by both the algorithms are inaccurate due to

small clique sizes.

Fig. 6.14 (row 4) shows the segmentations obtained when the energy function

of the higher order crf (defined in equation (6.2.4)) is minimized using αβ-swap.

Fig. 6.14 (row 5) shows the results obtained using the α-expansion algorithm. On

average, α-expansion takes 4.42 seconds while αβ-swap takes 5 seconds which is

comparable to the case when the pairwise crf is used. For both αβ-swap and

α-expansion, the use of higher order cliques provides more accurate segmentation

than the pairwise crf formulation.

Fig. 6.15 shows another example of a segmented keyframe from a video se-

quence. The segmentations obtained for four frames of this video are shown in

Fig. 6.16. Note that even though we do not use motion information, the segmen-

tations provided by higher order cliques are comparable to the methods based on

layered motion segmentation.

118

6.2. Texture Based Segmentation

Figure 6.16: Segmentation results of the ‘Dayton’ sequence. Rows 2 and 3 show the

results obtained for the frames shown in row 1 by minimizing the energy function

in equation (6.2.1) using αβ-swap and α-expansion respectively. Row 4 and 5

show the segmentations obtained by minimizing the energy in equation (6.2.4)

using αβ-swap and α-expansion respectively. The use of higher order cliques

results in more accurate segmentation.

119

Chapter 7

Conclusion

120

7.2. Our Contributions

7.1. Summary

This dissertation addresses the problem of minimizing functions of discrete vari-

ables using graph cuts. The last few decades have seen function minimization

being used extensively in computer vision where it is called discrete energy min-

imization. This rise in popularity has primarily been on the back of its very

successful application in solving low level vision problems such as image seg-

mentation, object reconstruction and disparity estimation. The scale and form

of computer vision problems introduce many challenges in solving this problem,

some of which have been dealt in this thesis.

The first part of this dissertation targets the problem of minimizing multiple

similar functions. We showed how algorithms for solving the minimization prob-

lem can be made efficient by reusing (or ‘recycling’) computation performed for

solving previous problem instances. This strategy results in dramatic improve-

ments in the running time, which makes us able to solve problems1 which were

considered intractable due to computational cost earlier.

Higher order potential functions can be used to model the rich statistics of

natural scenes which are considered extremely important for solving vision prob-

lems [82,114]. These functions however cannot be minimized efficiently using the

graph cut based move making algorithms generally used in computer vision for

energy minimization. We have studied this problem in detail in this dissertation

and provided a characterization of higher order functions which can be minimized

using move-making algorithms. We proposed new methods for efficiently solving

such functions and showed the results of these methods on the problems of object

segmentation and recognition.

7.2. Our Contributions

The major contributions discussed in this dissertation are listed below.

Dynamic Graph Cuts We proposed a fast new fully dynamic algorithm for

the st-mincut/max-flow problem which can be used to efficiently minimize dy-

namically changing submodular energy functions encountered in computer vision.

This algorithm enables the efficient minimization of several similar energy func-

tions.

1such as uncertainty estimation, refer to chapter 3.

121

7.3. Directions for Future Work

Simultaneous Segmentation/Reconstruction and Pose Estimation We

proposed a novel algorithm for performing integrated segmentation/reconstruction

and pose estimation of an object. Unlike other state of the art methods which fo-

cus on either segmentation or pose estimation individually, our approach tackles

these two tasks together. Our method works by efficiently optimizing a cost func-

tion based on a Conditional Random Field (crf) using the dynamic graph cut

algorithm. This framework has the advantage that all information in the image

(edges, background and foreground appearances), as well as the prior information

on the shape and pose of the subject can be combined and used in a Bayesian

framework.

Measuring Uncertainty in Graph Cut Solutions We proposed an efficient

algorithm for computing min-marginals in graphical models with loops. This

algorithm is based on the dynamic graph cut algorithm and runs in polynomial

time. The min-marginal energies obtained by our proposed algorithm are exact,

as opposed to the ones obtained from other inference algorithms like loopy belief

propagation and generalized belief propagation. This algorithm can be used on

all functions which can be minimized exactly using the st-mincut algorithm.

Characterization of Solvable Higher Order Potentials We provided a

characterization of energy functions defined on cliques of size 3 or more which

can be solved using move making algorithms. We proved that the optimal α-

expansion and αβ-swap moves for this class of functions can be computed in

polynomial time by minimizing a submodular function. The class of functions

characterized by us is a generalization of the class of energy functions specified

by [11].

Solving Robust P n Model Potentials using Graph Cuts We introduced

a novel family of higher order potentials which we call the Robust P n model.

We showed that the optimal expansion and swap moves for energy functions

composed of such potentials can be found by solving a st-mincut problem. Our

method for computing the optimal expansion and swap moves is extremely ef-

ficient and can handle potentials defined over cliques consisting of thousands of

random variables.

Higher Order Potentials for Merging Superpixels We proposed a general

framework for solving labelling problems which has the ability of incorporating

information derived from sets of pixels (superpixels or segments). We showed how

this framework can be used to merge regions from multiple image segmentations

in a principled manner.

122

7.3. Directions for Future Work

7.3. Directions for Future Work

I conclude this dissertation by providing some directions for future work. It was

shown in the thesis how dynamic computation can be used to make minimiza-

tion of submodular functions faster. There is a clear need for extending these

results for minimizing non-submodular functions which are quite common in vi-

sion. Some progress on this front has already been made by the work of [56] who

showed how solutions of previous problems can be reused while minimizing cer-

tain non-submodular functions of multi-valued variables. However, the problem

of extending these results for the general class of non-submodular still remains

an open problem. Another interesting and promising direction of research is the

development of efficient dynamic algorithms for functions which change in a pre-

defined manner. For instance, algorithms for parametric maxflow can efficiently

minimize dynamic energy functions if they change in a particular way [30]. Devel-

opment and application of such algorithms to computer vision problems should

intuitively improve performance.

Researchers have discovered that many vision problems require the minimiza-

tion of energy functions which are non-submodular. As we have discussed earlier

in chapter 1, no algorithms with polynomial run time complexity are known

for minimizing such functions. The algorithms commonly used for solving this

problem are only able to return a local minima or a partially optimal solution.

Further, these algorithms provide no approximation guarantees while solving gen-

eral energy functions. Even for functions for which such guarantees exist, they

are too weak to be useful in practice. For instance, the alpha-expansion algorithm

provides a very loose bound of 2 for Potts model potentials. The development

of efficient approximate algorithms with tighter bounds on the solutions is an

important direction for future work.

The use of higher order relations in modeling vision problems has become

increasingly popular in the last couple of years. However, such functions gener-

ally cannot be handled using graph cut based methods for energy minimization.

Recent work on graph cut based methods has contributed in trying to overcome

this limitation [27, 46]. However, these methods have restricted their attention

to particular subclasses of submodular higher order potentials. Developing effi-

cient algorithms for exact and approximate minimization of general higher order

functions is still an interesting and challenging problem to solve.

I conclude this dissertation by the following observations: Graph cut based

minimization algorithms have made a deep impact on the field of computer vision.

Not only have they provided extremely efficient and robust solutions for some of

123

7.3. Directions for Future Work

the most challenging vision problems, but have also contributed in encouraging

researchers to adopt the optimization paradigm to formulate their problems. The

recent interest in the development of new graph cut based algorithms shows that

these methods will remain popular in computer vision for a long time.

124

Bibliography

Bibliography

[1] A. Agarwal and B. Triggs. 3d human pose from silhouettes by relevance

vector regression. In IEEE Conference on Computer Vision and Pattern

Recognition, volume II, pages 882–888, 2004.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows. Prentice

Hall, Eaglewood Cliffs, NJ, 1993.

[3] S. Bhatia, L. Sigal, M. Isard, and M. J. Black. 3d human limb detection

using space carving and multi-view eigen models. In ANM Workshop, vol-

ume I, page 17, 2004.

[4] A. Blake, C. Rother, M. Brown, P. Perez, and P. H. S. Torr. Interactive

image segmentation using an adaptive GMMRF model. In European Con-

ference on Computer Vision, pages I: 428–441, 2004.

[5] E. Borenstein and J. Malik. Shape guided object segmentation. In IEEE

Conference on Computer Vision and Pattern Recognition, pages 969–976,

2006.

[6] E. Boros, P. L. Hammer, and G. Tavares. Preprocessing of unconstrained

quadratic binary optimization. Technical Report RRR 10-2006, RUTCOR,

Apr 2006.

[7] E. Boros, P. L. Hammer, and G. Tavares. Local search heuristics for

quadratic unconstrained binary optimization (QUBO). J. Heuristics,

13(2):99–132, 2007.

[8] E. Boros and P.L. Hammer. Pseudo-boolean optimization. Discrete Applied

Mathematics, 123(1-3):155–225, 2002.

[9] Y. Boykov and M. P. Jolly. Interactive graph cuts for optimal boundary and

region segmentation of objects in N-D images. In International Conference

on Computer Vision, pages I: 105–112, 2001.

[10] Y. Boykov and V. Kolmogorov. An Experimental Comparison of Min-

Cut/Max-Flow Algorithms for Energy Minimization in Vision. IEEE Trans.

Pattern Anal. Mach. Intell., 26(9):1124–1137, 2004.

[11] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimiza-

tion via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell., 23(11):1222–

1239, 2001.

125

Bibliography

[12] M. Bray, P. Kohli, and P. H. S. Torr. Posecut: Simultaneous segmentation

and 3d pose estimation of humans using dynamic graph-cuts. In European

Conference on Computer Vision, pages 642–655, 2006.

[13] C. Chekuri, S. Khanna, J. Naor, and L. Zosin. Approximation algorithms

for the metric labeling problem via a new linear programming formulation.

In Symposium on Discrete Algorithms, pages 109–118, 2001.

[14] C. Chekuri, S. Khanna, J. Naor, and L. Zosin. A linear programming

formulation and approximation algorithms for the metric labeling problem.

SIAM Journal of Discrete Mathematics, 18(3):608–625, 2005.

[15] Y. Chiang and R. Tamassia. Dynamic algorithms in computational geom-

etry. In IEEE Special Issue on Computational Geometry, volume 80, pages

362–381, 1992.

[16] R. F. Cohen and R. Tamassia. Dynamic expression trees and their appli-

cations. In Symposium on Discrete Algorithms, pages 52–61, 1991.

[17] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature

space analysis. IEEE Trans. Pattern Anal. Mach. Intell., 24(5):603–619,

2002.

[18] D. Cremers, S. Osher, and S. Soatto. Kernel density estimation and intrinsic

alignment for shape priors in level set segmentation. International Journal

of Computer Vision, 69(3):335–351, 2006.

[19] P. Dawid. Applications of a general propagation algorithm for probabilistic

expert systems. Statistics and Computing, 2:25–36, 1992.

[20] J. Deutscher, A. Davison, and I. Reid. Automatic partitioning of high

dimensional search spaces associated with articulated body motion cap-

ture. In IEEE Conference on Computer Vision and Pattern Recognition

(2), pages 669–676, 2001.

[21] E. A. Dinic. Algorithm for solution of a problem of maximum flow in

networks with power estimation. Soviet Math. Dokl., 11:1277–1280, 1970.

[22] P. F. Felzenszwalb and D. Huttenlocher. Distance transforms of sampled

functions. Technical Report TR2004-1963, Cornell University, 2004.

[23] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient matching of pictorial

structures. In IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 2066–2073, 2000.

126

Bibliography

[24] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graph-based image

segmentation. International Journal of Computer Vision, 59(2):167–181,

2004.

[25] B. Flach. Strukturelle bilderkennung. Technical report, Universit at Dres-

den, 2002.

[26] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University

Press, Princeton, 1962.

[27] D. Freedman and P. Drineas. Energy minimization via graph cuts: Settling

what is possible. In IEEE Conference on Computer Vision and Pattern

Recognition, pages 939–946, 2005.

[28] D Freedman and T. Zhang. Interactive graph cut based segmentation with

shape priors. In IEEE Conference on Computer Vision and Pattern Recog-

nition, volume I, pages 755–762, 2005.

[29] S. Fujishige. Submodular functions and optimization. North-Holland, Am-

sterdam, 1991.

[30] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A fast parametric maximum

flow algorithm and applications. SIAM J. on Comput., 18:18:30–55, 1989.

[31] D. M. Gavrila and L. S. Davis. 3D model-based tracking of humans in

action: a multi-view approach. In IEEE Conference on Computer Vision

and Pattern Recognition, pages 73–80, 1996.

[32] D. Greig, B. Porteous, and A. Seheult. Exact maximum a posteriori esti-

mation for binary images. RoyalStat, B: 51(2):271–279, 1989.

[33] X. He, R. S. Zemel, and M. Carreira-Perpiñán. Multiscale conditional ran-

dom fields for image labeling. In IEEE Conference on Computer Vision

and Pattern Recognition (2), pages 695–702, 2004.

[34] X. He, R. S. Zemel, and D. Ray. Learning and incorporating top-down

cues in image segmentation. In European Conference on Computer Vision,

pages 338–351, 2006.

[35] A. Hengel, A. Dick, T. Thormhlen, B. Ward, and P. H. S. Torr. Rapid

interactive modelling from video with graph cuts. In Eurographics, 2006.

[36] D. Hoiem, A. A. Efros, and M. Hebert. Automatic photo pop-up. ACM

Trans. Graph., 24(3):577–584, 2005.

127

Bibliography

[37] D. Hoiem, A. A. Efros, and M. Hebert. Geometric context from a single

image. In International Conference on Computer Vision, pages 654–661,

2005.

[38] R. Huang, V. Pavlovic, and D. N. Metaxas. A graphical model frame-

work for coupling MRFs and deformable models. In IEEE Conference on

Computer Vision and Pattern Recognition, volume II, pages 739–746, 2004.

[39] H. Ishikawa. Exact optimization for markov random fields with convex

priors. IEEE Trans. Pattern Anal. Mach. Intell., 25:1333–1336, October

2003.

[40] H. Ishikawa and D. Geiger. Occlusions, discontinuities, and epipolar lines in

stereo. In European Conference on Computer Vision, pages 232–248, 1998.

[41] H. Ishikawa and D. Geiger. Segmentation by grouping junctions. In IEEE

Conference on Computer Vision and Pattern Recognition, pages 125–131,

1998.

[42] S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial strongly polyno-

mial algorithm for minimizing submodular functions. J. ACM, 48(4):761–

777, 2001.

[43] O. Juan and Y. Boykov. Active graph cuts. In IEEE Conference on Com-

puter Vision and Pattern Recognition (1), pages 1023–1029, 2006.

[44] N. Karmarkar. A new polynomial-time algorithm for linear programming.

In ACM Symposium on Theory of Computing, pages 302–311, 1984.

[45] R. Kehl, M. Bray, and L. Van Gool. Full body tracking from multiple views

using stochastic sampling. In IEEE Conference on Computer Vision and

Pattern Recognition, volume II, pages 129 – 136, 2005.

[46] P. Kohli, M. P. Kumar, and P. H. S. Torr. P 3 and beyond: Solving energies

with higher order cliques. In IEEE Conference on Computer Vision and

Pattern Recognition, 2007.

[47] P. Kohli, M. P. Kumar, and P. H. S. Torr. Solving energies with higher

order cliques. Technical report, Oxford Brookes University, UK, 2007.

[48] P. Kohli and P. H. S. Torr. Efficiently solving dynamic markov random

fields using graph cuts. In International Conference on Computer Vision,

volume II, pages 922–929, 2005.

128

Bibliography

[49] P. Kohli and P. H. S. Torr. Measuring uncertainty in graph cut solutions:

Efficiently computing min-marginal energies using dynamic graph cuts. In

European Conference on Computer Vision, pages 30–43, 2006.

[50] P. Kohli and P. H. S. Torr. Dynamic graph cuts for efficient infer-

ence in markov random fields. IEEE Trans. Pattern Anal. Mach. Intell.,

29(12):2079–2088, 2007.

[51] V. Kolmogorov. Convergent tree-reweighted message passing for energy

minimization. IEEE Trans. Pattern Anal. Mach. Intell., 28(10):1568–1583,

2006.

[52] V. Kolmogorov, A. Criminisi, A. Blake, G. Cross, and C. Rother. Bi-layer

segmentation of binocular stereo video. In IEEE Conference on Computer

Vision and Pattern Recognition (2), pages 407–414, 2005.

[53] V. Kolmogorov and R. Zabih. Multi-camera scene reconstruction via graph

cuts. In European Conference on Computer Vision, pages 82–96, 2002.

[54] V. Kolmogorov and R. Zabih. What energy functions can be minimized

via graph cuts?. IEEE Trans. Pattern Anal. Mach. Intell., 26(2):147–159,

2004.

[55] N. Komodakis and G. Tziritas. A new framework for approximate labeling

via graph cuts. In International Conference on Computer Vision, pages

1018–1025, 2005.

[56] N. Komodakis, G. Tziritas, and N. Paragios. Fast, approximately optimal

solutions for single and dynamic MRFs. In IEEE Conference on Computer

Vision and Pattern Recognition, 2007.

[57] I. Kovtun. Partial optimal labeling search for a NP-hard subclass of (max,

+) problems. In DAGM-Symposium, pages 402–409, 2003.

[58] M. P. Kumar, P. H. S. Torr, and A. Zisserman. Extending pictorial struc-

tures for object recognition. In British Machine Vision Conference, pages

II: 789–798, 2004.

[59] M. P. Kumar, P. H. S. Torr, and A. Zisserman. Obj cut. In IEEE Conference

on Computer Vision and Pattern Recognition (1), pages 18–25, 2005.

[60] K. N. Kutulakos and M. Seitz. A theory of shape by space carving. Inter-

national Journal of Computer Vision, 38(3), 2000.

129

Bibliography

[61] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Prob-

abilistic models for segmenting and labelling sequence data. In International

Conference on Machine Learning, pages 282–289, 2001.

[62] X. Lan and D. P. Huttenlocher. Beyond trees: Common-factor models for

2d human pose recovery. In International Conference on Computer Vision,

pages 470–477, 2005.

[63] X. Lan, S. Roth, D. P. Huttenlocher, and M. J. Black. Efficient belief

propagation with learned higher-order markov random fields. In European

Conference on Computer Vision, pages 269–282, 2006.

[64] T. Leung and J. Malik. Recognizing surfaces using three-dimensional tex-

tons. In International Conference on Computer Vision, pages 1010–1017,

1999.

[65] M. E. Leventon, W. E. L. Grimson, and O. D. Faugeras. Statistical shape

influence in geodesic active contours. In IEEE Conference on Computer

Vision and Pattern Recognition, pages 1316–1323, 2000.

[66] A. Levin and Y. Weiss. Learning to combine bottom-up and top-down

segmentation. In European Conference on Computer Vision, pages 581–

594, 2006.

[67] L. Lovasz. Submodular functions and convexity. In Mathematical Program-

ming: The State of the Art, pages 235–257, 1983.

[68] G. Mori, X. Ren, A. A. Efros, and J. Malik. Recovering human body con-

figurations: Combining segmentation and recognition. In IEEE Conference

on Computer Vision and Pattern Recognition (2), pages 326–333, 2004.

[69] A. Neubeck, A. Zalesny, and L. van Gool. 3d texture reconstruction from

extensive BTF data. In Texture, pages 13–18, 2005.

[70] D. Nilsson. An efficient algorithm for finding the m most probable con-

figurations in bayesian networks. Statistics and Computing, 8(2):159–173,

1998.

[71] J. B. Orlin. A faster strongly polynomial time algorithm for submodular

function minimization. In Proceedings of Integer Programming and Combi-

natorial Optimization, pages 240–251, 2007.

[72] R. Paget and I. D. Longstaff. Texture synthesis via a noncausal nonpara-

metric multiscale markov random field. IEEE Transactions on Image Pro-

cessing, 7(6):925–931, 1998.

130

Bibliography

[73] J. Pearl. Fusion, propagation, and structuring in belief networks. Artif.

Intell., 29(3):241–288, 1986.

[74] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling. Numerical recipes

in C. Cambridge Uni. Press, 1988.

[75] A. Rabinovich, S. Belongie, T. Lange, and J. M. Buhmann. Model order

selection and cue combination for image segmentation. In IEEE Conference

on Computer Vision and Pattern Recognition (1), pages 1130–1137, 2006.

[76] A. Raj, G. Singh, and R. Zabih. MRF’s for MRI’s: Bayesian reconstruction

of mr images via graph cuts. In IEEE Conference on Computer Vision and

Pattern Recognition (1), pages 1061–1068, 2006.

[77] A. Raj and R. Zabih. A graph cut algorithm for generalized image deconvo-

lution. In International Conference on Computer Vision, pages 1048–1054,

2005.

[78] D. Ramanan. Using segmentation to verify object hypotheses. In IEEE

Conference on Computer Vision and Pattern Recognition, 2007.

[79] D. Ramanan and D. A. Forsyth. Finding and tracking people from the bot-

tom up. In IEEE Conference on Computer Vision and Pattern Recognition

(2), pages 467–474, 2003.

[80] X. Ren and J. Malik. Learning a classification model for segmentation. In

International Conference on Computer Vision, pages 10–17, 2003.

[81] J. Rihan, P. Kohli, and P. H. S. Torr. Objcut for face detection. In Indian

Conference on Computer Vision, Graphics and Image Processing, pages

576–584, 2006.

[82] S. Roth and M. J. Black. Fields of experts: A framework for learning image

priors. In IEEE Conference on Computer Vision and Pattern Recognition,

pages 860–867, 2005.

[83] C. Rother, V. Kolmogorov, and A. Blake. Grabcut: interactive foreground

extraction using iterated graph cuts. In ACM Trans. Graph., pages 309–

314, 2004.

[84] C. Rother, V. Kolmogorov, V. Lempitsky, and M. Szummer. Optimizing

binary MRFs via extended roof duality. In IEEE Conference on Computer

Vision and Pattern Recognition, 2007.

131

Bibliography

[85] C. Rother, S. Kumar, V. Kolmogorov, and A. Blake. Digital tapestry. In

IEEE Conference on Computer Vision and Pattern Recognition (1), pages

589–596, 2005.

[86] B. C. Russell, W. T. Freeman, A. A. Efros, J. Sivic, and A. Zisserman.

Using multiple segmentations to discover objects and their extent in image

collections. In IEEE Conference on Computer Vision and Pattern Recog-

nition (2), pages 1605–1614, 2006.

[87] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-

frame stereo correspondence algorithms. International Journal of Computer

Vision, 47(1-3):7–42, 2002.

[88] D. Schlesinger and B. Flach. Transforming an arbitrary minsum problem

into a binary one. Technical Report TUD-FI06-01, Dresden University of

Technology, April 2006.

[89] A. Schrijver. A Theory of Linear and Integer Programming. John Wiley

and Sons, 1998.

[90] A. Schrijver. A combinatorial algorithm minimizing submodular functions

in strongly polynomial time. J. Comb. Theory, Ser. B, 80(2):346–355, 2000.

[91] F. Schroff, A. Criminisi, and A. Zisserman. Single-histogram class mod-

els for image segmentation. In Indian Conference on Computer Vision,

Graphics and Image Processing, 2006.

[92] G. Shakhnarovich, P. Viola, and T.J. Darrell. Fast pose estimation with

parameter-sensitive hashing. In International Conference on Computer Vi-

sion, pages 750–757, 2003.

[93] E. Sharon, A. Brandt, and R. Basri. Segmentation and boundary detection

using multiscale intensity measurements. In IEEE Conference on Computer

Vision and Pattern Recognition (1), pages 469–476, 2001.

[94] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Trans.

Pattern Anal. Mach. Intell., 22(8):888–905, 2000.

[95] J. Shotton, J. M. Winn, C. Rother, and A. Criminisi. TextonBoost: Joint

appearance, shape and context modeling for multi-class object recognition

and segmentation. In European Conference on Computer Vision, pages

1–15, 2006.

132

Bibliography

[96] H. Sidenbladh, M. J. Black, and D. J. Fleet. Stochastic tracking of 3D hu-

man figures using 2D image motion. In European Conference on Computer

Vision, pages 702–718, 2000.

[97] C. Sminchisescu and A. D. Jepson. Generative modeling for continuous

non-linearly embedded visual inference. In International Conference on

Machine Learning, 2004.

[98] C. Sminchisescu and B. Triggs. Covariance scaled sampling for monocular

3D body tracking. In IEEE Conference on Computer Vision and Pattern

Recognition, pages 447–454, 2001.

[99] D. Snow, P. Viola, and R. Zabih. Exact voxel occupancy with graph cuts.

In IEEE Conference on Computer Vision and Pattern Recognition, pages

345–352, 2000.

[100] C. Stauffer and W. E. L. Grimson. Adaptive background mixture models for

real-time tracking. In IEEE Conference on Computer Vision and Pattern

Recognition, pages 246–252, 1999.

[101] B. Stenger, A. Thayananthan, P. H. S. Torr, and R. Cipolla. Filtering using

a tree-based estimator. In International Conference on Computer Vision,

pages 1063–1070, 2003.

[102] Y. Sun, P. Kohli, M. Bray, and P. H. S. Torr. Using strong shape priors

for stereo. In Indian Conference on Computer Vision, Graphics and Image

Processing, pages 882–893, 2006.

[103] R. Szeliski. Rapid octree construction from image sequences. Computer

Vision Graphics and Image Processing, 58:23–32, 1993.

[104] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. Agar-

wala, M. F. Tappen, and C. Rother. A comparative study of energy min-

imization methods for markov random fields. In European Conference on

Computer Vision, pages 16–29, 2006.

[105] M. Thorup. Fully-dynamic min-cut. In ACM Symposium on Theory of

Computing, pages 224–230, 2001.

[106] Z. Tu and S. C. Zhu. Image segmentation by data-driven markov chain

monte carlo. IEEE Trans. Pattern Anal. Mach. Intell., 24(5):657–673, 2002.

[107] R. Urtasun, D, J. Fleet, A. Hertzmann, and P. Fua. Priors for people

tracking from small training sets. In International Conference on Computer

Vision, pages 403–410, 2005.

133

Bibliography

[108] M. Varma and A. Zisserman. Texture classification: Are filter banks neces-

sary? In IEEE Conference on Computer Vision and Pattern Recognition,

pages 691–698, 2003.

[109] O. Veksler. Graph cut based optimization for MRFs with truncated convex

priors. In IEEE Conference on Computer Vision and Pattern Recognition,

2007.

[110] P. A. Viola and M. J. Jones. Robust real-time face detection. International

Journal of Computer Vision, 57(2):137–154, 2004.

[111] G. Vogiatzis, P.H.S. Torr, and R. Cipolla. Multi-view stereo via volumetric

graph-cuts. In IEEE Conference on Computer Vision and Pattern Recog-

nition, volume II, pages 391–398, 2005.

[112] M. J. Wainwright, T. Jaakkola, and A. S. Willsky. Map estimation via

agreement on trees: message-passing and linear programming. IEEE Trans-

actions on Information Theory, 51(11):3697–3717, 2005.

[113] J. Wang, P. Bhat, A. Colburn, M. Agrawala, and M. F. Cohen. Interactive

video cutout. ACM Trans. Graph., 24(3):585–594, 2005.

[114] Y. Weiss and W. T. Freeman. What makes a good model of natural images?

In IEEE Conference on Computer Vision and Pattern Recognition, 2007.

[115] T. Werner. A linear programming approach to max-sum problem: A re-

view. Research Report CTU–CMP–2005–25, Center for Machine Percep-

tion, Czech Technical University, December 2005.

[116] J. Xiao and M. Shah. Motion layer extraction in the presence of occlusion

using graph cut. In IEEE Conference on Computer Vision and Pattern

Recognition (2), pages 972–979, 2004.

[117] C. Yanover and Y. Weiss. Finding the m most probable configurations in

arbitrary graphical models. In Advances in Neural Information Processing

Systems 16. MIT Press, 2004.

[118] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Generalized belief propagation.

In NIPS, pages 689–695, 2000.

[119] L. Zhao and L. S. Davis. Closely coupled object detection and segmentation.

In International Conference on Computer Vision, pages 454–461, 2005.

134

