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Abstract

Camera based localization can provide extremely accurate 3D pose information, even

from consumer grade video lenses. Advances in lens distortion correction, pose com-

putation and feature detection would permit low cost cameras to be used in many

applications that currently require more expensive equipment. I show how: (1) careful

modelling and (2) careful fitting of these models to data; provides increased camera

accuracy from the same camera equipment with little or no additional computational

overhead.

The primary contribution towards camera modelling is a lens distortion model based on

rational functions that can represent standard, fisheye and catadioptric lens systems.

Three separate calibration methods are demonstrated, making this a useful technique

that can be implemented in a wide range of applications. Evaluation of calibration pre-

cision indicates that the proposed model accurately represents real-world lens distortion

and provides lower errors than other models in common use. Although sensitivity to im-

age noise can be a problem with such flexible models, several techniques are presented

here that yield robust calibration in the midst of image uncertainty. I demonstrate

multiple view camera auto-calibration on fisheye lens sequences using point correspon-

dences alone, without first requiring the removal of lens distortion.

Fitting of the camera model is improved by including a non-linear optimization to tune

the model parameters against a known error measure. Careful optimizer construction

is shown to avoid local minima, converge in realtime and achieve very high levels of

precision. Image feature detection error is transmitted through the entire calibration

process, so a robust exemplar based learning scheme is proposed to accurately detect

known fiducial markers. This efficient classification approach handles the challenges of

changing scene conditions (lighting variation, motion blur, clutter) without the large

increase in false detections that plague other detection algorithms.

i



Acknowledgements

I would like to thank Andrew Fitzgibbon for his patient instruction, guidance, and
assistance throughout the course of my research. I could not have asked for a better
supervisor.

Thanks to Jamie Paterson, Nicholas Apostoloff, Aeron Buchanan and the others in the
Visual Geometry Group for all your assistance and input.

My research was made possible through the funding of the Rhodes Trust; I would like
to thank the Warden and all of the staff at Rhodes House for making my stay in Oxford
that much more enjoyable.

Finally, I would like to thank my wife, Krista, for all her support and encouragement
during both the research and the writing phases of this project. I did finish it in the
new year; it is just a different year.

ii



For Apsley

iii



Contents

1 Introduction 1
1.1 Why Localize? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Notational Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Authorship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Definitions 5
2.1 Imaging Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Pinhole projection . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Aberrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Non-central cameras . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.4 Cubic Polynomial Camera . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Camera Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Internal Calibration . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 External Calibration . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Nonlinear Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Levenberg-Marquardt . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Bundle Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.1 Sampson Distance . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.2 Camera ringing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.3 Direct Linear Transform . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.4 Centre Shift Under Projection . . . . . . . . . . . . . . . . . . . 30
2.4.5 Pattern Classification . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.6 Receiver Operator Characteristic Curves . . . . . . . . . . . . . . 35

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Lens Distortion: Modelling 37
3.1 Distortion Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Forward and Reverse Camera Models . . . . . . . . . . . . . . . 39
3.2 Rational Function Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 General Mathematical Framework . . . . . . . . . . . . . . . . . 40
3.2.2 Physical Interpretation of A . . . . . . . . . . . . . . . . . . . . . 42
3.2.3 Back-projection and Projection . . . . . . . . . . . . . . . . . . . 43
3.2.4 Canonicalization of A . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.5 Parametrizations for Specific Lenses . . . . . . . . . . . . . . . . 45

3.3 Two-view geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.1 Epipolar curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

iv



CONTENTS v

4 Lens Distortion: Calibration 51
4.1 Linear Calibration from an Arbitrary Planar Grid . . . . . . . . . . . . 51
4.2 Calibration by Plumb-line Constraints . . . . . . . . . . . . . . . . . . . 54

4.2.1 Linear Factorization Method . . . . . . . . . . . . . . . . . . . . 55
4.2.2 Optimization Method . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.3 Condensed vs. Full Parametrization . . . . . . . . . . . . . . . . 63
4.2.4 Plumbline data from multiple views . . . . . . . . . . . . . . . . 65

4.3 Multiview Calibration from Epipolar Constraints . . . . . . . . . . . . . 66
4.3.1 Linear method for G . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.2 Rank 2 nonlinear optimization method for G . . . . . . . . . . . . 68
4.3.3 Recovery of A from G . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.4 Parameterizing G using the reduced RF model . . . . . . . . . . . 70

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 Lens Distortion: Evaluation 73
5.1 Approximation of existing distortion models . . . . . . . . . . . . . . . . 73
5.2 Planar Grid Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3 Plumbline Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.1 Reduced RF consistency . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.2 RF vs. the Matlab Calibration Toolbox . . . . . . . . . . . . . 83

5.4 Multiview results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4.1 Noise sensitivity of computing G . . . . . . . . . . . . . . . . . . 90
5.4.2 Results on image sequences . . . . . . . . . . . . . . . . . . . . . 97

5.5 Three-Dimensional Reconstruction . . . . . . . . . . . . . . . . . . . . . 101
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 Camera Localization 104
6.1 World Points and Corresponding Image Locations . . . . . . . . . . . . 105
6.2 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2.1 Camera Intrinsics . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2.2 Extrinsics from coplanar data . . . . . . . . . . . . . . . . . . . . 107
6.2.3 Extrinsics from general point data . . . . . . . . . . . . . . . . . 108

6.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.3.1 Analytic Derivatives for Reprojection Error . . . . . . . . . . . . 110
6.3.2 Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3.3 Zoom lenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.4 Surveying Fiducial Positions Optically . . . . . . . . . . . . . . . . . . . 112
6.4.1 Structure from Motion . . . . . . . . . . . . . . . . . . . . . . . . 113
6.4.2 Surveying procedure . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.5.1 Coordinate Measurement System Ground Truth . . . . . . . . . 115
6.5.2 ARToolkit comparison . . . . . . . . . . . . . . . . . . . . . . . . 130

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7 Fiducial Detection 136
7.1 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.1.1 Target Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.1.2 Training Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.1.3 Cascading Classifier . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.1.4 Cascade Stage One: Ideal Bayes . . . . . . . . . . . . . . . . . . 143
7.1.5 Cascade Stage Two: Nearest Neighbour . . . . . . . . . . . . . . 145

7.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.2.1 Training Data Filtering . . . . . . . . . . . . . . . . . . . . . . . 147
7.2.2 Target verification . . . . . . . . . . . . . . . . . . . . . . . . . . 149



CONTENTS vi

7.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.3.1 Engineered Detector . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.3.2 Adaptive Thresholding . . . . . . . . . . . . . . . . . . . . . . . . 152
7.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.4 Locating a Circle’s Projected Centre . . . . . . . . . . . . . . . . . . . . 156
7.4.1 Homography from target coordinates . . . . . . . . . . . . . . . . 157
7.4.2 Homography Calculation from Four Circles . . . . . . . . . . . . 159

7.5 Target Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
7.6 Fiducial Localization Trials . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

8 Photometric Stereo Application 166
8.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
8.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

8.2.1 Lens Distortion Correction . . . . . . . . . . . . . . . . . . . . . 170
8.2.2 Light position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
8.2.3 Cone Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
8.2.4 Camera pose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
8.2.5 Light Attenuation . . . . . . . . . . . . . . . . . . . . . . . . . . 177
8.2.6 Light Fall-off Correction . . . . . . . . . . . . . . . . . . . . . . . 181
8.2.7 Surface Integration . . . . . . . . . . . . . . . . . . . . . . . . . . 186
8.2.8 Parallax Correction . . . . . . . . . . . . . . . . . . . . . . . . . 188

8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
8.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

9 Conclusion 194
9.1 Modelling lens distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
9.2 Camera calibration and localization . . . . . . . . . . . . . . . . . . . . 196
9.3 Reliable fiducial detection . . . . . . . . . . . . . . . . . . . . . . . . . . 196
9.4 Application areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
9.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
9.6 Further extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Appendices 199

A Pinhole Camera Calibration Methods 199
A.1 Extrinsics from Coplanar Data . . . . . . . . . . . . . . . . . . . . . . . 199
A.2 Extrinsics from General Point Data . . . . . . . . . . . . . . . . . . . . . 200

B Rotations 202
B.1 Quaternions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

C Computing A from G 204

Bibliography 212



Chapter 1

Introduction

This thesis topic was born out of necessity. The original topic was to be surveying

(in a building construction sense) with a video camera: merging structure-from-motion

(SfM) and simultaneous localization and mapping (SLAM) to accurately measure three

dimensional positions over an area the size of a football pitch. It seemed a reasonable

starting point to pick up the nearest camera and go outside to record some video of

buildings — “Whatever you do, avoid shooting your own video footage” and “Try to

get some professional video clips to analyze” were two pieces of advice that came too

late in my introduction to computer vision.

Three things became apparent as I processed that early video: 1) detecting and

locating features in video recorded under widely varying scene conditions is harder than

it looks; 2) precise camera calibration is essential, and often not fully taken advantage

of; and finally 3) lens distortion must be carefully compensated for when using low-cost

consumer grade lenses. But I’m getting ahead of myself; let us first take a step back

and discuss measurements in general.

Measurements are important, particularly in engineering. If an engineer is to apply

scientific theory to the solution of a problem he or she will often need to measure some

physical quantity to provide an input to theoretical equations or methods. Many times

it is also essential that these measurements be taken without disturbing the process

under observation.

A camera is a measurement device; it records a projection of both the wavelength

and intensity of light. Specifically, it measures the light falling upon its sensor from

directions in space as dictated by the lens system. Because light can travel through a

vacuum it is a truly non-contact measurement instrument. In practical terms this per-

mits object properties to be recorded at a distance, and the physics of lens construction

provides the relationship between image locations and directions in space. Thus the

camera is a remote measurement device. This angle measurement function is exploited

1



CHAPTER 1. INTRODUCTION 2

in both SfM and vision-based SLAM. However, angle measurement depends on camera

calibration: the properties of the lens must be known in order to relate image positions

to directions in space. Furthermore, surveying requires the camera location be known

so that all the measurements can be tied in (or referenced) to some physical location

or object.

1.1 Why Localize?

What are the potential uses for a precise camera localization algorithm? First, let

us define what we mean by camera localization: camera localization is the process of

computing the position and orientation of a camera from the images it recorded.

The most obvious application is as a position sensor. A camera that can report

where it is can be attached to robots, aircraft, or even held by the user. Such a camera

then provides a visual record of its surroundings and a position measurement for each

frame. This has uses in robot navigation, but can also be employed for object tagging

inventory systems, mapping and even simply keeping track of where one’s holiday

photos were taken.

A second application for camera localization is in cinema special effects. A computer

rendered object that is to be added into footage of a real scene must be registered

relative to the background. If the camera does not move this is a job for artists; the

objects are painted in front of a static background. A virtual object inserted into

a sequence from a moving camera, however, will appear to float through the scene

unless it is aligned correctly in each frame. Re-drawing the scene for each frame is

too much for artists, and even slight alignment errors are noticeable. This type of

virtual reality requires that the camera location be known so that the virtual object

can be rendered from the right viewpoint and then placed at the correct position in

the image. In this case the camera could be tracked using other types of sensors

(inertial, ultrasonic, etc.) but it is simpler to use the camera alone and the resulting

image/virtual object registration is much tighter. A third application area is surveying.

If the camera location is known then the angle formed by any two points in an image

can be determined.

This list of potential applications for camera localization techniques is quite long;

here we will close with one final example. Where the relative positions of several

cameras must be determined it can be faster and more accurate to localize each of the

cameras in a common reference frame than it would be to physically measure their

positions. This sort of self-calibration could be used to set up surveillance systems

or rigs for studio filming. This is the basis for the single moving camera photometric
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stereo system described in Chapter 8.

1.2 Outline

So if camera localization is such a useful technology, how does one go about it? Or,

since the theory is well known and not too difficult, perhaps the more pertinent question

is “What are the tricks to include and the pitfalls to avoid so that my localization

algorithm is a success?” That is what I describe in this thesis. The background chapter

deals with some of the physics of image formation and provides technical details on

several of the concepts employed later on. After that is established we shall look at

a method for correcting lens distortion. The rational function model can render the

images from a wide variety of lenses as pinhole images. This greatly simplifies the

mathematics of localization, and even permits Structure from Motion autocalibration

from distorted image correspondences (please refer to Chapter 3 for details on what

that means). A chapter is then devoted to each of distortion model calibration and

evaluation: a model is only useful if a lens can be calibrated, and this calibration must

also be compared with existing models. The proposed model is shown to be both simple

to calibrate and extremely accurate for modelling a wide range of lens distortion. The

theory is presented first, and then followed in a later chapter by the description of

experimental results. This structure was adopted to help the reader; hopefully it is

easy to follow.

With the distortion out of the way Chapter 6 is able to focus on localization itself.

This is best handled with a nonlinear optimizer, and I present methods for assembling

fast and precise fitting algorithms. These were tested both in a registration framework

for placing virtual objects in cinema productions and against absolute position values

obtained by physically measuring the camera path. Central to localization is the ability

to reliably and repeatedly detect the same features in an image. Chapter 7 presents

a method for detecting known markers (fiducials) in video. It is an exemplar-based

classifier that locates fiducials which are similar in appearance to those it was shown

beforehand. This allows us to deal with detection challenges such as motion blur,

variable illumination and oblique viewpoints.

To bring it all together we will examine a system that relies upon accurate camera

localization. The photometric stereo application of Chapter 8 uses a single camera

as input. Although the camera is free to move, the application requires images that

were all recorded from a common viewpoint. For this we use distortion correction

and localization from fiducial markers to determine the camera position of each image.

The images are re-rendered and parallax corrected to yield the required fronto-parallel
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views. Not only does this system produce highly detailed photometric data, the moving

camera permits depth recovery so that accurate 3D surface models can be produced.

Thus a simple camera and flash rig can be used as a 3D scanner provided the camera

localization is accurate.

1.3 Notational Conventions

Throughout this thesis a number of notational conventions will generally apply. Matri-

ces are denoted by uppercase Roman letters in typewriter font (e.g. H). All vectors are

column vectors. Points in Euclidean space E3 are denoted by bold uppercase Roman

letters (e.g. X = [x y z]>) while points within an image are denoted by bold lower-

case Roman letters (e.g. x = [u v]>). Both types of points will often be expressed in

homogeneous coordinates:

X = [kx ky kz k]> x = [ku kv k]>

= [x y z 1]> = [u v 1]>

where k is an arbitrary scale factor and equality is up to scale. Such homogeneous

points define a projective space; setting the third coordinate to zero produces points at

infinity. Let us also define the perspective projection function π (x, y, z) = [x/z y/z]>

so that X = π
(
X̊
)

and x = π (̊x). Where several vectors are collected into a set it will

be denoted by uppercase scripted letters (e.g. E = {e1 . . . em}).

1.4 Authorship

This thesis has been solely authored by me, and describes the research I carried out

under the supervision of Andrew Fitzgibbon. Several portions of the work have been

previously published in conference papers. The fiducial detection methods of Chapter

4 were presented in (Claus and Fitzgibbon 2004, Claus 2004). Camera localization

and photogrammetry for virtual reality environment initialization was demonstrated in

(Claus and Fitzgibbon 2005c). The rational function lens distortion model appeared

in (Claus and Fitzgibbon 2005b), while the reduced parametrization and plumbline

methods were covered in (Claus and Fitzgibbon 2005a). The photometric stereo ap-

plication (Chapter 8) was joint work done with Jamie Paterson (Paterson et al. 2005).

I handled the image preparation (distortion correction, camera localization and regis-

tration) and surface rendering while he covered the photometric stereo aspects of the

project (Paterson 2005). This division is reflected in our respective theses; please refer

to (Paterson 2005) for a detailed description of the photometric portions of that work.



Chapter 2

Definitions

We will occasionally use this arrow notation unless there is danger of no

confusion. – Ronald Graham, “Rudiments of Ramsey Theory”

This chapter sets out the framework in which we shall discuss camera calibration and

pose estimation. A brief review of the standard pinhole projection model and non-

linear distortion relates the physics of image formation to the practicalities of modern

cameras. Internal and external camera calibration are then explained. We close the

chapter with a discussion of several important tools in estimation and camera modeling

including nonlinear optimization.

2.1 Imaging Model

This section examines the physics of the imaging device and the mathematics used to

represent the image formation process. The conceptual problem, illustrated in Fig-

ure 2.1, is to record some representation of a scene as a two dimensional image. There

are many sensor systems capable of performing this task, but we will concentrate on

cameras operating in the visible light spectrum.

The task of taking photons and converting to an electrical signal is performed by a

Charge Coupled Device (CCD) or, increasingly in consumer cameras, a Complementary

Metal-Oxide Semiconductor (CMOS) sensor. These are generally arranged in a two

Imaging ImageScene device

Figure 2.1: An imaging device measures photons emanating from a scene and produces
a two dimensional image.

5
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Theoretical
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Lens
nonlinear

distortion

(a) Pinhole camera (b) Single lens camera

Figure 2.2: Pinhole camera model (a) A pinhole camera records only the light which
passes through a tiny hole. Although theoretically a ray, the actual light enters as a
cone which causes blur. (b) A lens camera still follows the pinhole model, but focuses
light from a larger diameter onto the image plane. Careful lens design aims to minimize
aberrations (§2.1.2) such as nonlinear distortion.

dimensional array on a silicon chip that replaces the film in an analog film camera. This

dense grid of sensors (pixels) integrates incident light over a period of time (exposure

length) and convert the result into a number (the intensity value). A single pixel

integrates the light from all directions; it is necessary to impose geometric restrictions

in order to produce a structured, coherent image. The simplest way to do this is with

a pinhole camera.

2.1.1 Pinhole projection

A pinhole camera (Figure 2.2) produces an image from the light which passes through a

single point, the pinhole. A theoretical pinhole has zero area so the light falling on each

pixel is restricted to that travelling along a specific ray in space (pixel A in Figure 2.2).

An actual pinhole must have a finite diameter in order to let light through, and thus

a cone of light falls on each pixel rather than a ray. The sharpness of the image is

therefore directly related to the size of the pinhole. A smaller hole will allow less light

through, and requires a longer exposure time to produce an image. This makes it

difficult or impossible to record moving subjects.

A lens can be used to increase both the amount of light falling on the CCD and

the sharpness of the image. As shown in Figure 2.2(b), a lens captures light from a

larger area than the pinhole, and then focuses it to a point. An ideal lens contains a

single point through which all light rays will pass. This camera centre is analogous to a

pinhole. Using a lens results in a brighter image in a shorter exposure time, but restricts

the amount of the scene which can be in focus at any one time. While a pinhole camera

reproduces the entire scene at a moderate level of sharpness, a lens camera can only

focus objects at a specific distance from the camera. For objects that are effectively
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Figure 2.3: Perspective projection. All light rays from the scene pass through a virtual
pinhole, the camera centre. The principal point is the intersection of the optical axis
and the image plane. The focal length f is the distance between the camera centre
and the image plane; for simplicity we often consider a correctly oriented virtual image
located in front of the camera centre.

at infinity (parallel light rays reach the lens) the distance along the optical axis to the

focused image plane is the focal length, f , as shown in Figure 2.3. Varying the distance

between the lens and the image plane changes the distance to the world plane that will

be in focus. The optical axis passes through the camera centre, and is perpendicular

to the lens surfaces and the image plane. The point at which the optical axis intersects

the image plane is termed the principal point and denoted by (u0, v0). Two additional

parameters are required to describe digital image formation. The image is recorded by

a CCD array consisting of many rectangular detectors arranged in a dense grid. The

aspect ratio a relates the horizontal and vertical axes scales, while the skew s measures

the angle of the coordinate axes (actually, the difference between this angle and a right

angle). For most modern lenses the skew is negligible, but the aspect ratio can rarely be

ignored because CCDs are manufactured to produce images of different aspect ratios.

For example, the European PAL video standard uses frame dimensions of 720 × 576

while the normal display format is 4:3. The pixel aspect ratio is set to 1.067 so that

the images are displayed without any scaling of the axes.

We have now introduced all of the elements needed to define a mathematical model

for image formation. Despite its simplicity, the pinhole perspective model provides an

accurate approximation to many real camera systems. It relates 3D points in camera

coordinates X = (x, y, z) in R3 to image pixel coordinates x = (i, j) in R2 according to

i = f
x

z
+ s

y

z
+ u0 (2.1)

j = αf
y

z
+ v0. (2.2)
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This can be expressed more concisely in matrix notation as x = π (KX) where K

encompasses the parameters of the pinhole projection model:

K =

f s u0

0 af v0

0 0 1




f is focal length;
(u0, v0) is principal point;
a is aspect ratio; s is skew.

(2.3)

The pinhole projection (or central projection) model provides a linear relationship

between image and world points, and forms an underlying assumption in much com-

puter vision work. While it is a reasonable first approximation, a number of factors

cause deviation from this simplified theory. The next section examines a number of

these effects.

2.1.2 Aberrations

Real lens systems do not follow the pinhole projection model exactly, but suffer from a

number of aberrations. The task of the lens designer is to minimize these aberrations,

however a knowledge of their attributes is useful for image understanding. Their effects

are observed in high precision computer vision applications, and some compensation

methods are proposed later in this thesis.

The pinhole projection model presented in the previous section is based on the

approximation that the angle α between a light ray and the optical axis is small and

therefore sin α ≈ α. This is referred to as paraxial or first-order optics. Without

going into exhaustive detail (the reader is referred to (Hecht 1998) for a more thorough

treatment), Snell’s law describes surface refraction, upon which lenses depend, as a sine

relationship between the incident and refracted ray directions. The paraxial refraction

equation describes thin lenses using the small angle assumption. Additional accuracy

can be obtained by taking the first two terms of the Taylor expansion sin α ≈ α− α3

3!
.

The differences between the resulting third-order model and the (ideal) first-order model

are referred to as the Seidel aberrations, after Philipp Ludwig von Seidel (1821-1896).

An aberration is any departure from the desired behavior. In lenses, chromatic

aberrations vary with wavelength, while the five principal (or Seidel) aberrations in-

fluence all wavelengths equally. It is these latter effects which are of primary interest

in visual geometry, although the former will crop up during the course of this thesis

as well. We will now examine each of the principal aberrations in turn, subsequent

chapters will concentrate on the distortion aspect. A lens designer compensates for

these effects using a combination of stops, multiple lens elements, and aspherical lens

surfaces.



CHAPTER 2. DEFINITIONS 9

object

point
circle

of least

confusion
Image

plane

caustic

F

Figure 2.4: Spherical aberration causes the light from a point on the optical axis to be
focused to a line along the axis.

Spherical aberration Spherical aberration is a dependence of focusing point on the

radius at which a ray strikes the lens. It affects only light rays emanating from object

points along the optical axis, and it is unique in that it can alter the centre of an image.

The result is a blurring of the image. As illustrated in Figure 2.4, the envelope of all

rays originating along the optical axis forms a caustic. The circle of least confusion

lies in the plane where the blur caused by spherical aberration will be minimal. An

aperture can be used to restrict light passing through the perimeter of the lens, and

thus reduce the effects of spherical aberration.

Coma Coma prevents off-axis objects from focusing at a single point due to unequal

magnification of light rays striking the outer portions of the lens (Figure 2.5). This

produces a characteristic comet-shaped blur of off-axis light, often observed when pho-

tographing sunlight at an oblique angle. The effect is similar to spherical aberration

except that it operates on off-axis points and the defocus is not restricted to the focal

axis.

Astigmatism In a stigmatic image, each object point is focused at a single position

somewhere in the image volume. This is not the case if spherical aberration or coma are

present, as then a point is “focused” over some image region. A lens that suffers from

astigmatism focuses small object details differently depending on their orientation. The

observed effects are radial and tangential (Slama 1980). As shown in Figure 2.6, radial

lines in the image are blurred by the tangential focus while the sagittal focus affects

the sharpness of tangential lines. A lens has surfaces for which all objects will be in

either sagittal or tangential focus. These surfaces need not be the same, nor planar,

and will generally not coincide with the image plane. This results in complex patterns
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Figure 2.5: Coma prevents object points that are not on the optical axis from focusing
at a single point. Although the light rays which pass through the central portion of the
lens are focused on the correct location in the image plane, rays from the lens perimeter
are incorrectly magnified.

of lost focus.

Field curvature Field (or Petzval) curvature images planar objects onto a non-

planar focal surface (Figure 2.7). It is a relationship between focal length and the

distance an object point is from the optical axis. This is closely related to astigmatism

since both produce non-planar surfaces which are in focus.

Distortion Distortion denotes any deviation from geometric similarity between an

object and its image. For a rotationally symmetric lens this takes the form of a scaling in

the distance from the optical axis, or radial distortion (Figure 2.7). Although this radial

sagittal

focus

tangential

focus

no

astigmatism

Figure 2.6: Astigmatism affects the sharpness of an image, but depends on the local
orientation of the feature. Tangential focus has blurred the radial spokes, while sagittal
focus blurs the hubs and rim. This separation between the two planes of focus is an
oversimplification; in practice the two overlap and vary spatially.
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Figure 2.7: (a) Field curvature focuses planar points onto a curved focal surface. (b)
Distortion results from spatial variation of the magnification power of a lens. Most
distortion is radial, and a given lens will exhibit either pincushion or barrel distortion.

component is often the dominant distortion, any spatial variation in the magnifying

power of a lens will induce some form of distortion. Compensation for this type of

aberration can be performed in image space, and is examined in Chapter 3.

All of the Seidel aberrations describe a deviation from the pinhole camera assump-

tion, and thus give rise to non-central cameras. The next section describes computer

vision models for such cameras.

2.1.3 Non-central cameras

The cameras discussed so far have all been central; that is, all light rays pass through

a single point (the camera centre or pinhole). This is a reasonable assumption for most

modern optics. However, there is a large class of optical instruments which are clearly

non-central. These include fish-eye lenses, catadioptric cameras, and many flatbed

scanners.

Removing the constraint that all light rays must pass through a single point allows

us to model cameras that are non-central by construction (such as fish-eyes and some

catadioptric systems) as well as sets of images from multiple perspective viewpoints. In

the latter case, pixels from several pinhole images are treated as coming from a single

non-central camera. This construct has been successfully applied to the problems of

mosaicing (Pajdla 2002) and image based rendering (Rademacher and Bishop 1998).

A typical pinhole camera has too narrow a field of view for many applications. In

an effort to increase the field of view of a lens yet still have a planar focal volume (to

match the planar CCD) the central point constraint is often relaxed or discarded from

the design criteria altogether. Such lenses induce parallax effects in the outer regions

of an image, even under pure rotation. A linear pushbroom camera consists of a 1D

sensor array that records an image as the camera is moved, often through rotation
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Figure 2.8: Left A para-catadioptric camera is constructed from a parabolic mirror
and an orthographic lens. This produces a central camera; all the world rays project
onto a single point, even though that point is neither inside the camera nor does the
light actually pass through it. Right A catadioptric camera with a spherical mirror is
non-central because the light rays do not intersect at a single point.

(orbiting satellite based photogrammetry) or translation (flatbed document scanners).

Each line of pixels in the 2D image is recorded from a different position, which ensures

a non-central camera. Fish-eye lenses compose another common example of cameras

that are non-central by construction. The light rays that pass through the perimeter

of the lens are furthest from the virtual camera centre (the point that is closest to all

light rays passing through the lens). This divergence causes motion parallax even in

images taken by rotating the camera about its virtual centre. Even so the circle of least

confusion is typically small enough that the central assumption provides a reasonable

approximation.

Catadioptric cameras enable the field of view to be expanded even beyond what is

attainable with a fish-eye lens. A catadioptric system consists of a camera (generally

pinhole but orthographic cameras are often used) viewing light reflected from a mirror

surface. This mirror is typically a surface of revolution; the use of a parabolic mirror

(para-catadioptric system) produces a central camera, provided the lens is orthographic

and the axes are collinear. A hyperbolic mirror and a pinhole camera also constitute a

central system. The following paragraph outlines the unifying theory for central camera

projections, as described by Geyer and Daniilidis (2000).

Spherical-perspective projection Central panoramic cameras can be represented

as a projection onto a sphere combined with a subsequent perspective projection onto a

plane (Geyer and Daniilidis 2000), as illustrated in Figure 2.9. The homogeneous world

point X = [x y z w]> is projected (via the origin) onto the sphere as q = [x y z]>/r and

q′ = −[x y z]>/r, where r =
√

x2 + y2 + z2. The image point x = [i j − a]> ' [i j]>
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Figure 2.9: Projection onto a sphere followed by perspective projection onto the image
plane. Catadioptric and radially distorted pinhole image formation can be modelled as
this type of double projection. Note that points q and q′ are projected onto the image,
they are not points of reflection; the sphere is not a mirror.

is given by

i = ±x

(
b + a

br ∓ z

)
(2.4)

j = ±y

(
b + a

br ∓ z

)
. (2.5)

Perspective projection is obtained by setting a = 1, b = 0 so that x becomes (−x/z −
y/z 1). When a = 0, b = 1 this double projection yields a special case of stereographic

projection.

Consider the parabolic catadioptric camera with orthographic projection illustrated

in Figure 2.8. If the paraboloid mirror is defined as z = f − 1
4f

(
x2 + y2

)
then the

projection from world coordinates to the image plane is


x

y

z

 =


cx +

2fx

−z +
√

x2 + y2 + z2

cy +
2fy

−z +
√

x2 + y2 + z2

1

 (2.6)

As shown in Figure 2.8, a spherical mirror produces a non-central catadioptric

camera.

The methods for scene reconstruction using para-catadioptric cameras were laid

out by (Peleg et al. 2001, Shum and He 1999). This was extended to establish the

epipolar constraint for general non-central cameras (Pajdla 2001). Sturm (2002) pre-

sented models for back-projection of rays into affine, perspective and para-catadioptric

images. These models permit the mixing of catadioptric and perspective cameras by

defining the fundamental matrices between such image types. The paper also extends
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calibration transfer and plane-homography self-calibration to these types of views. The

work was later extended to incorporate structure from motion with more general cam-

era types (including non-central), both for triangulation and analytical bundle adjust-

ment (Ramalingam and Sturm 2004).

This was taken a step further by Grossberg and Nayar (2001) to work with general

cameras. This treats a camera as a black box which maps light rays onto a 2D image,

but there need not be any sort of ordering or correlation between adjacent pixels. Each

pixel samples from an arbitrary ray in 3D space. Although this approach disregards

the structure inherent in physical optical devices, it facilitates the analysis of unique

collections of cameras and has stimulated much recent work in the field of computer

vision (Nistér et al. 2005, Ramalingam et al. 2005, Stewénius et al. 2005). Pless (2003)

defined the generalized epipolar constraint, and Sturm (2005) put forward multiview

geometry for non-central cameras using the general model.

2.1.4 Cubic Polynomial Camera

Hartley and Saxena (1997) proposed a cubic polynomial camera to model a wide variety

of imaging sensors. The transformation from world points to image coordinates is given

by

x = π (Cχ3(X)) (2.7)

where

χ3(x, y, z) =

[x3 x2y x2z xy2 xyz xz2 y3 xy2 y2z z3 xz2 yz2 x2 xy xz y2 yz z2 x y z 1]

and C is a 22× 3 matrix of coefficients. Fitting the coefficients of so many parameters

directly from observed data was found to be an extremely noise-sensitive operation.

The generality and modelling power of the polynomial camera has led to its adop-

tion as a standard means for providing the properties of the imaging device used to

record a set of images (Tao and Hu 2001). It has become something of a lingua franca

in the satellite imaging industry, facilitating the use of and translation between various

imaging models. It allows a vendor to supply the parameters required for stereo recon-

struction without having to disclose the methods and models used for their particular

camera calibration. Generic photogrammetry and analysis software can then load the

rational polynomial parameters for post-processing. Because the specific calibration

procedure used to generate the polynomial coefficients is tailored to the camera (and

thus has a lower overall parameter count) the noise and over-fitting problems associated

with the polynomial camera model applied to real data are avoided.



CHAPTER 2. DEFINITIONS 15

A camera model based on rational functions will be presented in Chapter 3. We

show that it provides a very general camera model while accurately fitting the physics

of the camera/lens system with a minimal number of parameters.

2.2 Camera Calibration

Camera calibration involves determining the mapping between world rays and image

pixels for a specific camera. The techniques used for measuring the camera parame-

ters depend upon which underlying model will be used. It is possible to calibrate a

camera by taking physical measurements of its components on an optical bench, with

the aid of a collimator and goniometer. However, if a lens has already been assembled

and mounted in a camera this process is physically so awkward that is not a practical

camera calibration method (Brown 1971). Thus, I shall focus on camera calibration

by optical methods. Typically an image or sequence of images are taken of a scene or

object that possesses some particular geometry. That scene property is then exploited

to compute the camera model coefficients. The scene properties used for calibration

vary greatly depending on the chosen model and calibration technique. Some proce-

dures require that the camera be held in a specific position relative to some precisely

machined object (Foxlin and Naimark 2003), some require straight lines (Devernay and

Faugeras 2001) or circles (Kim et al. 2005), while others only ask for multiple views of

a static scene recorded by the same camera. This last type establishes point correspon-

dences between the images in order to use the underlying 3D positions as invariants

for calibration. This is commonly referred to as camera auto-calibration because no

specialist knowledge or object is required, only generic footage from the camera.

Camera calibration is often divided into two phases: internal calibration to de-

termine the parameters of the camera itself, and external calibration to establish its

position in some world coordinate frame. Compensating for nonlinear lens distortion is

one aspect of internal calibration. Many cameras can be modeled as pinhole projection

systems once the distortion has been removed from an image. The transformation be-

tween world points and image points is then a projective homography. Given a set of

world/image point correspondences it is a straightforward task to compute this homog-

raphy P; it is often desirable to separate Pinto internal and external camera parameters:

P = K [ R | t ]. (2.8)

Here K is the matrix of camera internal parameters that describes the pinhole model and

the rotation R and translation t specify the external parameters or camera orientation
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in space.

2.2.1 Internal Calibration

Internal calibration measures the parameters that pertain to the camera itself; they

are independent of the camera’s orientation in space. Prior to discussing the history of

pinhole calibration with lens distortion, we shall turn our attention to general camera

calibration, the most recent statement of the problem (Grossberg and Nayar 2001).

General Calibration The general camera model states that a camera acquires im-

ages consisting of pixels; each pixel captures light that travels along a ray in 3D. In this

way we can relate world rays to camera pixels without any parametric model. These

rays need not pass through the photosensitive element associated with the pixel; al-

ternatively they can be constrained to pass through a virtual element that is at some

arbitrary location in space. Generally it is safe to assume that the photosensitive ele-

ments in a conventional camera are adjacent to one another and can be integer indexed,

but they may be on a 3D curved surface or scattered through space.

An early formulation of a general camera was provided by Grossberg and Nayar

(2001), who also described a patterned light method for calibration. One of the chief

challenges encountered when working with the general camera model comes in rep-

resenting the ray directions for all of the pixels in an image. Grossberg and Nayar

handled this by associating each pixel with a position and tangential direction on a

caustic surface.

Another means of recording the direction for each pixel is to calibrate a subset of

the pixel directions and interpolate between these for the remaining pixels. This is

the approach taken in the efficient and straightforward method for calibration model

introduced by Sturm and Ramalingam (2004). This closed form algorithm provides

calibration of unknown camera positions from three or more images recording some

known structure. We will now describe this calibration technique in a little more detail

in order to better understand the advantages and disadvantages of the general camera

model.

The first step is to record three images of the same object in different positions.

Assign the coordinate frame attached to the object in the first image to be the common

frame in which the camera rays will be determined. The unknown motions between this

frame and the remaining two are given by R′, R′′ and t′, t′′. Throughout this section

we will denote the second view with a single prime and the third view with a double

prime.
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The light ray from a single pixel will intersect the object in a different position for

each view; these 3D positions will be denoted as Q, Q′ and Q′′ respectively. Expressed

in the common reference frame these positions are

Q

[R′|t′]Q′ (2.9)

[R′′|t′′]Q′′.

In the common frame, each of these points must lie along the camera ray for that pixel;

the points must be collinear. This constraint means that the following matrix must

have rank less than 3 (it is comprised of three collinear points):
Q1 [R′

1 t1]Q′ [R′′
1 t1]Q′′

Q2 [R′
2 t2]Q′ [R′′

2 t2]Q′′

Q3 [R′
3 t3]Q′ [R′′

3 t3]Q′′

Q4 Q′
4 Q′′

4

 (2.10)

where Ri denotes the ith row of a rotation matrix. Each 3×3 submatrix must have zero

determinant; these submatrices give rise to trifocal tensors whose coefficients depend

upon the motion parameters. These can be estimated by solving linear equations;

the camera parameters can then be extracted using the methods described in Sturm

and Ramalingam (2003, 2004). This formulation does not require a central camera;

simplified algorithms are given in the above references for central cameras. It is also

possible to use planar calibration targets for both central and non-central cameras.

One aspect of the calibration that hasn’t been discussed yet is the task of deter-

mining the locations Q′ and Q′′ on the calibration object. Let us assume that a planar

target printed with a rectilinear pattern of dots is to be used. The camera rays used for

calibration will be those which pass through the image of each dot in the first (reference

or common frame) view.

The point where the camera ray intersects the object is then one of the defined

control points (a printed dot), and the physical coordinates of Q are known. The

corresponding image location q then determines which camera ray we are solving for.

This position doesn’t correspond to a specific pixel; it is the center of the imaged dot

interpolated to sub-pixel accuracy. For the subsequent views we need to determine the

point on the calibration plane that corresponds to the image location q. Because the

camera and calibration target undergo arbitrary motion between views this location will

not generally fall on one of the printed dots. An interpolation scheme is required to find

the positions Q′ and Q′′. Sturm and Ramalingam use a homography to warp the four

closest dots into the fronto-parallel plane and measure the location in that plane. This
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assumes a locally linear (or pinhole) image and is not strictly accurate, particularly

for images with large amounts of nonlinear distortion. However for moderate levels

of distortion or a dense grid of dots this assumption yields reasonable results without

introducing excessive computational overhead.

Because the correspondence matching for Q′ and Q′′ depends upon the imaged grid

of dots, this method is only able to calibrate the portion of the image that lies within

the convex hull of the dot pattern in all images. For fisheye lenses and other cameras

with large fields of view this can restrict the method to a small portion of the image.

Bundle adjustment methods that allow the use of many input images and calibration

that covers the entire image region have also been developed.

This method for general camera calibration yields precise values for the camera

extrinsics: the rotation and translation between views. For central cameras it provides

an accurate means to recover the position of the camera centre relative to a known

object. The process of intersecting many 3D rays provides a solid constraint on the

position of each view and permits an informed definition of the camera centre where

a camera is only approximately central. Error measures such as the centre of least

confusion or the mean shortest distance to each ray can be attached to proposed camera

centres and used to evaluate their merits.

Many applications that depend upon camera calibration also require the camera’s

intrinsic parameters. These are not easily recovered from such a general camera model,

but that isn’t its purpose. The model is useful for nonparametric distortion correction.

By intersecting the camera rays with a plane and then using the local homography

method to warp the image it is possible to rectify images without any knowledge of the

form of the distortion. The downsides to this approach are that it is piecewise linear

(which may introduce “creases” into the image) and any error in detecting the centre

of one of the original calibration dots translates into a local warping error in the final

image.

In summary, the general camera model is a useful construct for dealing with multiple

camera systems and for accurately determining a camera centre. As a nonparametric

technique it is able to handle a wide variety of lens types without the need for special

case code. One disadvantage to this type of calibration is that it requires at least four

parameters (to specify a line in R3) for each pixel. Such a verbose parametrization is

unwieldy and not necessary for many cameras and applications. It is often desirable to

reduce the number of coefficients by using a more specific camera model, such as that

used by the pinhole calibration methods described in the next section.
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Pinhole Calibration For the ubiquitous pinhole camera model these parameters

are: focal length f , aspect ratio a, skew s, and principal point (u0, v0). The pinhole

projection model is linear as formulated. However most lenses in common usage are

not linear due to the presence of lens distortion. Compensation for lens distortion is

therefore also part of internal camera calibration using the pinhole model. Often this is

treated as a separate task where distortion correction is performed on all input images

prior to computing the classical pinhole parameters. This assumes that the pinhole

parameters are independent of the radial distortion. Weng et al. (1992) has observed

that these two aspects of a pinhole camera may not be sufficiently de-coupled for this

assumption to hold; there is a dependency between focal length and radial distortion.

Most auto-calibration methods assume that radial distortion is negligible, either due to

the lens used or because it has already been compensated for. Those that do account

for it tend to include a single radial distortion component.

Much of the theory for camera calibration within computer vision was initially de-

veloped within the discipline of photogrammetry. Brown published a series of papers

that dealt with distortion of a magnitude and type that is relevant to the type of cam-

era often used in computer vision. Brown (1966) described the decentering distortion

caused by mis-aligned optical elements, and provided analytical means for calibrat-

ing such distortion. Most camera calibration methods rely upon images of a pattern of

dots or corners; points whose 3D coordinates are known and that can easily be detected

in an image (Tsai 1987, Weng et al. 1992). Brown (1971) introduced the concept of

plumbline calibration. This method relies upon images of straight lines to compute the

parameters of the distortion model.

In 1987 Roger Tsai published a pivotal paper on camera calibration for computer

vision. He set forth the criteria for judging a camera calibration technique:

1. Autonomous - no user initialization required
2. Accurate - precise modelling of the imaging process
3. Efficient - able to be implemented efficiently
4. Versatile - able to handle a wide range of cameras, accuracy requirements and

applications
5. Common equipment - should be able to accommodate consumer grade optics and

camera technology

The key difference was that here was a straightforward method for using a readily

available, yet clearly non-metric camera for accurate measurement. To achieve the

first four aims while using off-the-shelf camera equipment it was necessary to carefully

treat each step of the calibration process. Tsai’s work served to define those steps

for much of the computer vision community. He drew a clear distinction between
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intrinsic and extrinsic camera parameters and stressed the need for lens distortion

correction. Only by ignoring lens distortion is it possible to have a linear calibration

algorithm. In his two stage procedure the rotation and tx, ty for the camera are

computed first, and the second stage computes the focal length, distortion parameters

and tz. The radial alignment constraint upon which this calibration technique is based

relies on the assumption of only radial distortion. The method considers only the

first two polynomial terms of radial distortion; it states that tangential distortion is

insignificant and higher order radial terms merely cause numerical instability. While

this may have been the case for the lenses being calibrated at the time, it will be shown

in this work that modelling distortion beyond the first two radial terms is stable and

increases the accuracy significantly. Nevertheless, Tsai’s calibration technique based on

the radial alignment constraint encompassed lens distortion and the two stage process

was a reasonably straightforward means towards accurate calibration of the cameras in

common usage.

Tsai (1987) also noted the difficulty of obtaining high accuracy ground truth for

camera calibration. The three methods put forward in that work are 1) triangulate

3D positions from images recorded with the calibrated cameras and compare with

physically measured ground truth, 2) use the calibrated camera parameters to project

world points into the image and measure the error relative to the actual imaged points,

and 3) make relative measurements of lengths on 3D objects within an image.

A different two stage calibration procedure was suggested by Weng et al. (1992).

He computes all of the perspective camera parameters in an initial linear stage that

does not account for lens distortion. This provides an estimate that can be used to

initialize the nonlinear optimization in the second stage. This optimization differs from

Tsai’s second stage in that it updates all of the camera parameters, including those

computed in the first stage. The interaction between the perspective and distortion

parameters is minimized by updating each independently, with the other fixed. Tsai’s

distortion model is also expanded to include decentering and thin prism effects.

2.2.2 External Calibration

External calibration computes the camera position and orientation relative to some

world coordinate system. This is often termed camera localization, a topic which is

covered in detail in Chapter 6. Generally external calibration begins with known camera

intrinsic parameters, but some of the calibration methods described in the previous

section compute both sets of variables simultaneously. This is the approach taken

by classical photogrammetry: all of the camera parameters are fed into a nonlinear
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optimization that tunes the entire model in one step (Slama 1980, Triggs et al. 2000).

To compute the camera extrinsics for a pinhole camera with known intrinsic pa-

rameters it is necessary to separate the projection matrix P into P = K [R|t]. One

simple method for performing this decomposition is described in §6.2.2. The accuracy

of this decomposition depends upon the precision of the computed P matrix; Harker

and O’Leary (2005) present an improved computation method ideally suited to this

application. Another technique is the POSIT algorithm put forward by Dementhon

and Davis (1995). Their method uses several iterative steps to update an initial affine

camera model to full projective perspective.

All of the calibration methods described above minimize some error to obtain an

optimal set of parameters. Often this minimization is concealed within a singular value

decomposition (as with the DLT) and the error is the norm of a convenient design

matrix. In the following section we examine non-linear optimization methods where

this minimization is performed explicitly on a carefully selected error measure.

2.3 Nonlinear Optimization

Nonlinear optimization computes the solution (that is in some sense optimal) to a

problem by varying the input parameters until the error reaches some preset threshold.

The problem must be expressed in terms of some parameters with a function that

computes an error measure from those parameters. Given these components and a

reasonable initial estimate of the parameters (where reasonable depends on the shape

of the functional manifold you have selected to convert the parameters into errors), an

optimization routine is called to vary the parameters until the desired tolerances are

reached. The way in which the parameters are varied from one iteration to the next

is what differentiates the many optimization strategies. The next section describes the

optimizer used in the context of this thesis, but first we shall discuss two common

criticisms of iterative methods.

Complaints Two complaints often directed towards iterative methods in general,

and non-linear optimizations in particular, are: 1) they are inexact, and 2) they take

too long. The former statement is misleading and the latter is often not the case,

particularly for real world problems.1

Optimization is often regarded as an inexact hack, to be attempted only when direct

linear methods of solution cannot be tracked. The implication is that the resulting so-
1These ideas were introduced to me by Prof. L. N. Trefethen and have been published in (Trefethen

1992)
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lution is an approximation, and not as accurate as one obtained by direct computation.

In reality, every numerical computation on a computer is inexact; the best that can be

achieved are errors on the order of machine precision. Iterative methods can converge

to the level of machine precision, and therefore are able to match the level of accuracy

achieved by any other means. In some cases they can return such an answer in less time

than a direct method may require (Trefethen and Bau 1997). A direct method returns

no answer until all O(m3) steps have been completed, while an optimization method

finishes as soon as the requested error tolerance is reached. For well-posed problems,

or if functional derivatives are available, or efficient methods for evaluating the func-

tion are known, then this process might be very fast indeed. Section 6.3 demonstrates

the efficient use of numerical optimization to rapidly obtain highly accurate camera

positions.

2.3.1 Levenberg-Marquardt

Unless otherwise noted, all optimizations within this thesis were performed using the

Levenberg-Marquardt method. Matlab’s lsqnonlin function was used for all except the

realtime camera pose code; this used the implementation of lmdif (Moré et al. 1980)

in VXL (The TargetJr Consortium 2000).

The Levenberg-Marquardt (Levenberg 1944, Marquardt 1963)(abbr. LM) algorithm

finds a minimum of F (x), a sum of squares

F (x) =
1
2

m∑
i=1

[fi(x)]2, (2.11)

in a manner that is regularized and fast to converge, even for over-parametrized prob-

lems. The functions fi(x) are typically nonlinear, though the steps taken for each

iteration are linear.

From an initial starting point Pk, the algorithm progresses by selecting a search

direction pk, advancing some distance λk in that direction, and re-evaluating the sum

of squares at the new point F (Pk+1). These steps comprise one iteration; the search

direction and distance are determined by the algorithm’s update strategy. The LM up-

date strategy is a hybrid of the Gauss-Newton iteration and gradient descent methods.

Prior to discussing any of these methods we must set forth some notation and define

the terms.

Given a (vector) set of measurements X and a function F (P) that transforms the

parameter vector P according to

X = F (P), (2.12)
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we seek the set of parameters P̂ in X = F (P̂) − ε so that the error ‖ε‖ is minimized.

Let us define

G(P) =
1
2
‖F (P)−X‖2

=
1
2
‖ε(P)‖2 (2.13)

= ε(P)>ε(P)/2

so that our goal in this least squares minimization is to find the minimum of G(P).

The Taylor series expansion of (2.13) about some initial point P0 is

G(P0 + D) = G(P0) + G′(P0)D +
1
2
D>G′′(P0)D + . . . (2.14)

where the prime denotes differentiation and the vector D is some small change in all

elements of the parameter vector. To minimize (2.14) we differentiate with respect to

D and set the result equal to zero:

G′(P0) + G′′(P0)D = 0

=⇒ G′′(P0)D = −G′(P0). (2.15)

By differentiating (2.13) we see that the gradient vector G′(P) = ε′(P)>ε(P). The

Jacobian matrix is defined as

J =
∂F

∂P
, (2.16)

which can also be expressed as J = F ′(P) = ε′(P). This last result allows the gradient

to be given as

G′(P) = J>ε(P). (2.17)

The second derivative matrix H(P) = G′′(P) is the Hessian of G, with entries defined

as

Hij =
∂2G

∂pi∂pj
(2.18)

where pi and pj are the ith and jth parameters in P. The Hessian and Jacobian allow

us to express (2.15) as

J>ε(P0) = −H(P0)D. (2.19)

The Jacobian and the error term are readily evaluated; the optimization algo-

rithms vary in how they approximate the Hessian. In Newton iteration a quadratic

cost function near the minimum is assumed, and the Hessian is approximated as

H = ε′(P)>ε′(P) + ε′′(P)>ε(P). The Gauss-Newton method drops the quadratic term

to assume a linear cost function: H = ε′(P)>ε′(P) = J>J. This change allows the

approximation to often be computed much more efficiently, and converges well if the
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initial estimate is close to the minimum so that the linearity assumption is reasonable.

The gradient descent algorithm takes an entirely different approach and sets H = λI

where I is the identity matrix and λ is some scalar. This sets the search direction to

be the steepest descent; convergence is often slow and displays a characteristic zig-zag

pattern.

As was mentioned earlier, the LM method is a hybrid of Gauss-Newton and gradient

descent. The linear system to be solved (2.15) for LM is

(J>J− λI)D = −J>ε. (2.20)

The value of λ allows the algorithm to switch seamlessly between Gauss-Newton and

gradient descent updates at each iteration. For each update, if the computed D yields

a reduced error then λ is reduced and execution proceeds to the next iteration. If,

however, the solution obtained for D does not yield a reduced error then λ is increased

and D re-solved until there is a reduced error. This corresponds to an iteration where

a gradient descent update is preferred.

The performance of LM can be tweaked by adjusting the parameters that control λ:

the step size increment/decrement as well as its initial value. As with any optimization

strategy, the termination criteria can also be varied to suit the problem. For large

problems in particular it is important that parameters be carefully grouped together

to enhance the sparsity inherent in the derivative matrices. These matrices can be

computed through numerical differentiation (finite difference derivatives) but the speed

of the optimization can often be dramatically improved by supplying error functions

complete with the analytic Jacobian. The key to success, however, is how closely the

two primary assumptions are met: 1) there exists a well-defined minimum in the cost

function space, and 2) the initial parameter estimate P0 is reasonably close to that

minimum.

Important Practical Considerations

Numerical optimization bears some resemblance to a black art; at first it appears that

one can assemble a few ingredients (write an error function), say a few magic words

(call the optimization routine) and voila! the answer will appear by magic. In practice

there are all sorts of ways in which this process can go very much awry. This section

sets out a few points that were useful in keeping the minimizations used in this thesis

under control.

Scale your parameter vector so that all entries stay within the range [−1 . . . 1]. Try

to formulate the problem so that the distribution of entries in ε is centered about zero.
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While setting up an optimization algorithm it is often helpful to set the convergence

parameters very loose (tolerance function of 1×10−3), and limit the number of iterations

(typically to 200). These values are then tightened once the optimization is functioning

correctly. Generally, I would set the tolerance function to 1× 10−6, maximum number

of function evaluations to 1×106 and total number of iterations to 1×108. The iteration

counts should be set large enough that the algorithm converges to the tolerance function

long before it executes too many iterations.

2.3.2 Bundle Adjustment

Within the field of photogrammetry, bundle adjustment refers to the process of updat-

ing an initial estimate of the camera parameters and world positions to more accurately

match the observed image feature locations. It is an iterative method that fits a non-

linear model to measured point correspondences. Here it will be described to provide a

tangible example of nonlinear optimization, and in particular the Levenberg-Marquardt

algorithm.

This thesis doesn’t directly pertain to bundle adjustment, but the technique is

used to examine calibration results and demonstrate 3D reconstructions. The topic is

briefly described here as a primer for readers who may be unfamiliar with this aspect of

photogrammetry (further details are available in (Triggs et al. 2000), for example). A

commercially available structure-from-motion software package, boujou (2d3 Ltd. 2003),

was used to perform any bundle adjustment required for this thesis. It provided a high

quality, versatile solver without the need to implement one from scratch.

Bundle adjustment is really the third and final stage in assembling a 3D reconstruc-

tion. The first is to establish image point correspondences between multiple views of

a scene. These matches are then used to generate a preliminary reconstruction con-

sisting of 1) a camera matrix Pi at each frame, and 2) a set of world point locations

X. Pinhole camera parameters are implicit in Pi, but additional distortion parameters

are often also included in the representation. These values form the initial parameter

vector estimate which will be refined in the bundle adjustment.

The components of the reconstruction are shown in Figure 2.10. Picture all the

rays joining world points to their corresponding image locations (the blue lines in Fig-

ure 2.10) as a bundle of sticks or dowels. Bundle adjustment is a nonlinear optimization

that adjusts all of these rays to obtain the optimal reconstruction. This is similar to

twisting a handful of sticks back and forth until they all align in a tight bundle. The

solution is optimal in that it minimizes the error based on the chosen image point

inaccuracy model.
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Figure 2.10: Bundle adjustment is the simultaneous optimization of world points and
camera parameters over a multiple view sequence. The red arrows indicate the degrees
of freedom, both for the world points Xj and the camera matrices Pi. Note that the
drawing does not show all the degrees of freedom for the cameras.

Not all of the real world points will be visible in every view from the image sequence;

some points will be obscured part of the time, and sometimes it will not be possible

to establish a correspondence. These non-matched points lead to missing data in the

optimization framework, and serve to enhance the inherent sparsity. Modern solvers

take advantage of this sparsity so that a typical bundle adjustment problem can be

solved surprisingly fast.

The choice of cost function affects the accuracy of the final result, the speed of

convergence, and also the overall stability of the optimization. Mismatched point cor-

respondences produce erroneous and misleading data (outliers) which the bundle ad-

justment software must be able to handle. For this reason robust cost functions are

often preferred over the default quadratic error measure.

Careful planning prior to recording the video shoot is important for successful 3D

reconstruction. The camera path and the number of easily recognizable features both

affect the results. The distance between furthest camera positions (baseline) should be

as large as possible; including both rotation and translation aids in avoiding degenerate

camera paths. The detected features should neither be coplanar nor grouped in a subset

of the image area. The resulting reconstruction should be checked for plausibility:

triangulated points to the rear of the camera often indicate an inverted solution, while

reprojected points that jump from one location to another between frames may be the
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Figure 2.11: Concentric conic sections: hyperbolas and ellipses. These families repre-
sent equal error contours under Bookstein’s conic fitting error measure. Points along the
“flat” portions of the conics receive undue weighting; this is the basis for the curvature
based re-weighting in the Sampson distance.

result of mismatched point correspondences. Analytic evaluation of the reconstruction

accuracy requires some knowledge of the true positions of the reconstructed points.

Such position data is often not available. An alternative is to measure the reconstruction

accuracy based on the precision of the computed camera path. Section 6.5.1 reports a

set of test reconstructions where camera path ground truth was obtained independently

to provide some measure against which to evaluate the reconstruction results.

2.4 Miscellaneous

This section describes several approximations and algorithms useful in distortion correc-

tion, camera calibration and scene reconstruction. The background on these techniques

is not essential for understanding this thesis, so readers who are pressed for time or are

already familiar with these subjects are free to proceed to Chapter 3 without loss of

continuity.

2.4.1 Sampson Distance

The Sampson distance (Sampson 1982) is a first order approximation to the distance

from a point to a conic. Computing the Euclidean distance along the normal to the

conic requires solving a quartic equation and is therefore too expensive to be included

in the inner loop of an optimization.

Sampson proposed an improvement to Bookstein’s (1979) conic fitting error measure

that amounts to a re-weighting by the inverse of the gradient magnitude at each point.

Bookstein’s error of fit is

Q(i, j) = θχ(i, j) = Axxi2 + Axyij + Ayyj
2 + Axi + Ayj + A0 (2.21)

where θ are the conic parameters and χ is the lifted point vector. Note that the



CHAPTER 2. DEFINITIONS 28

contours of equal error are conic sections concentric with the fit conic Q(i, j) = 0. This

error measure tends to over-fit in the “flat” portions of conics where the concentric

sections are closer to each other (see Figure 2.11).

Sampson suggested approximating the distance from a point to a conic by the per-

pendicular distance from the concentric conic through the point (shown in Figure 2.12).

A linear approximation to this distance is

Q(ia′′ , ja′′) ≈ Q(ia, ja)− d′′ |∇Q(ia, ja)| (2.22)

where |∇Q(ia, ja)| is the norm of the concentric conic’s gradient at a. Since a′′ is

on the conic, Q(ia′′ , ja′′) = 0 and

d′′ =
Q(ia, ja)

|∇Q(ia, ja)|
(2.23)

is the approximate distance we wish to perform the optimization with. Expressed in

terms of the conic parameters, our minimization is

n∑
k=1

[
θ>χ (ik, jk)

[(2Axxik + Axyjk + Ax)2 + (2Ayyjk + Axyik + Ay)2]
1/2

]2

(2.24)

where the denominator represents the re-weighting by the cross-product matrix.

2.4.2 Camera ringing

A digital image of a white/black transition (e.g. a checkerboard pattern, or a fiducial

from Chapter 7) does not exhibit a perfect step-edge in intensity. Rather, there is an

Sampson¬Distance

Approximation

a

d ′′

a
′′

d ′

a
′ True¬Closest¬Point

Sampson¬Distance

Approximation

True

Closest

Point

Hyperbola Ellipse

Figure 2.12: Sampson distance is a linear approximation to the distance from a point
to a conic.
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(c) Horizontal intensity cross-section

Figure 2.13: Electronic ringing causes spikes in intensity at the step edges in an image;
this can bias the location of Canny detected edges. (a) An image of two black and
white shapes with detected edges shown in yellow. (b) A vertical cross-section of the
image intensity shows the spikes at each step change in intensity. The Canny-detected
edges are marked by round dots; the detections are nearly balanced in this direction.
(c) The horizontal cross-section also exhibits intensity spikes, but here the detected
edges are biased to the left.

intensity spike at one or both intensity changes, as shown in Figure 2.13. This effect is

known as “ringing” and results from the camera electronics’ inability to reproduce the

step edge. In computer vision, the result can be an inaccuracy in detecting image points

corresponding to large changes in greylevel. Subpixel Canny edge detection (Canny

1986) is used in the course of this thesis to locate the perimeter of dots. This detection

method can return spurious results at either edge of the spike, and the true edge

detections can be biased. Due to the sequence in which pixel intensities are read off a

chip, ringing is often symmetric only in one direction. In the example of Figure 2.13

the ringing on horizontal edges is not symmetrical and there is an overall downward

bias in the horizontal Canny edges.

2.4.3 Direct Linear Transform

The Direct Linear Transform (DLT) (Sutherland 1963) is a method for computing the

matrix H that relates two corresponding sets of homogeneous points x′ = Hx. This
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Figure 2.14: Centres of circles and squares under projective transformation. Note that
the centre of the square can still be located as the intersection of the diagonals. The
circle transforms to an ellipse whose centre of gravity no longer corresponds to the
centre of the original circle.

technique has applications in homography estimation, in determining the projection of

world points to image points, and in fundamental matrix computation; in §4.3.1 the

method is used on Veronese lifted points to compute a 6× 6 fundamental matrix.

Here we shall briefly outline the DLT method; a more detailed presentation can

be found in Hartley and Zisserman (2003). Consider two points xi = (xi, yi, wi)> and

x′i = (x′i, y
′
i, w

′
i)
>. By assuming that w′

i = 1 and with a little rearranging we see that

each point correspondence gives rise to two equations

[
0> −x>i y′ix

>
i

x>i 0> x′ix
>
i

]h1>

h2>

h3>

 = 0. (2.25)

Equations from each point correspondence are then stacked into a 2i× 9 design matrix

D so that Dh = 0. Four point correspondences yield an exact solution for h that can be

rearranged into the solution H.

In the over-determined case where more than four point correspondences are known,

the Singular Value Decomposition (SVD) is generally used. Then the solution h is

taken to be the unit singular vector corresponding to the smallest singular value. This

amounts to finding the matrix D̂ which is closest to D in Frobenius norm, and for

which an exact solution does exist. This minimizes ‖Dh‖ subject to the constraint

‖h‖ = 1. Although convenient, this constraint has no geometric significance and the

resulting solution can be unstable at even moderate levels of image noise. Careful data

normalization can help to stabilize the solution, and should be included in any DLT

scheme. Discussions of normalization for the DLT can be found in Hartley (1997),

Chojnacki and Brooks (2003) and Hartley and Zisserman (2003); an example of its

importance is described in §5.4.

2.4.4 Centre Shift Under Projection

As shown in Figure 2.14, the centres of both circles and squares shift under projective

transformation. The original centre of the square (marked in green) can still be located
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as the intersection of the diagonals; this requires fitting lines to a large number of

edge sample points, determining the corners by intersection, and finally the centre by

another intersection. The centre of the ellipse formed by the circle projection can be

efficiently and accurately computed as a weighted centroid. However, this can only

yield its centre (marked by the red cross), which no longer corresponds to the original

centre position (marked by the green cross). Thus it is not possible to recover the

centre of a single circle.

2.4.5 Pattern Classification

The fiducial detector described in Chapter 7 employs a series of classifiers to label every

pixel within an image as either target or non-target. This section provides a review

of several non-parametric classification strategies as background. Particular emphasis

is given to the nearest neighbour technique, which despite its simplicity is regaining

influence as processing speeds increase and memory limitations are relaxed.

Given two classes of points in n–D space, a “classifier” seeks to assign additional

query points to the correct class, often by employing knowledge of the probability

density function over each class. For example, let us consider a binary classification

problem where each 2-D point (2-D being chosen for ease of visualization only) is in one

of two classes: positive or negative. The training data consists of a set of points labeled

positive and a set labeled negative; these sets are used to generate the probability

density functions for each class. For an observed point x the classifier produces the

positive and negative a posteriori probabilities (or loss functions) gp(x) and gn(x). The

class of the query point is then assigned according to:

classification(x) =
{

+1 if λ · gp(x) > gn(x)
−1 otherwise

(2.26)

where λ is the relative cost of a false negative over a false positive. Classifiers include

neural networks, support vector machines, and nearest neighbour techniques; they vary

in the way that the loss functions are defined.

Ideal Bayes Classification

With only the a priori probability for each of two states ω1 and ω2, the Bayes decision

surface that results in the lowest error rate is simply:

decide ω1 if P (ω1) > P (ω2); otherwise decide ω2.

When a measurement x is incorporated this surface becomes:

decide ω1 if P (ω1|x) > P (ω2|x); otherwise decide ω2.
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Through the application of Bayes Rule this can be written in terms of conditional and

a priori probabilities:

decide ω1 if p(x|ω1)P (ω1) > p(x|ω2)P (ω2); otherwise decide ω2.

For problems where the the state-conditional probability density p(x|ωj) can be com-

puted this provides the classification ωj which will minimize the probability of error.

Nearest Neighbour

Among the various methods of supervised statistical pattern recognition, the nearest

neighbour rule (Cover and Hart 1967) achieves consistently high performance (Ripley

1997). The strategy is very simple: given a training set of examples from each class,

a new sample is assigned the class of the nearest training example. In contrast with

many other classifiers, this makes no a priori assumptions about the distributions from

which the training examples are drawn, other than the notion that nearby points will

tend to be of the same class.

For a binary classification problem given sets of positive and negative examples

{pi} and {nj}, subsets of Rd where d is the dimensionality of the input vectors, the NN

classifier is formally written as:

classification(x) = −sign(min
i
‖pi − x‖2 −min

j
‖nj − x‖2) (2.27)

This is extended in the k-NN classifier, which reduces the effects of noisy training data

by taking the k nearest points and assigning the class of the majority. The choice of

k should be performed through cross-validation, though it is common to select k small

and odd to break ties (typically 1, 3 or 5).

One of the chief drawbacks of the nearest neighbour classifier is that it is slow to

execute. Testing an unknown sample requires computing the distance to each point

in the training data; as the training set gets large this can be a very time consuming

operation. A second disadvantage derives from one of the technique’s advantages: that

a priori knowledge cannot be included where it is available. Both have been the subject

of much research, which is summarized in the remaining part of this section.

Speeding Up Nearest Neighbour

There are many techniques available for improving the performance and speed of a near-

est neighbour classification (Wilson and Martinez 2000). One approach is to pre-sort the

training sets using kd-trees (Sproull 1991) or Voronoi cells (Berchtold et al. 1998), how-

ever these strategies become less effective as the dimensionality of the data increases.
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store = {pos(1),neg(1)}
grabbag = {pos(2 : n),neg(2 : m)}

repeat
num transfers = 0
for i = 1 : length(grabbag)

if classify NN (grabbag [i], store) 6= class(grabbag [i]) then
grabbag = grabbag \ {grabbag [i]}
store = store ∪ {grabbag [i]}
num transfers = num transfers + 1

until num transfers = 0 or is empty(grabbag)

return store

Figure 2.15: Condensed nearest neighbour dataset reduction technique (Hart 1968).

Another solution is to choose a subset of the training data such that classification by

the 1-NN rule (using the subset) approximates the Bayes error rate (Ripley 1997).

This can result in significant speed improvements as k can now be limited to 1 and

redundant data points have been removed from the training set. These data mod-

ification techniques can also improve the classifier performance because points that

cause mis-classifications can be removed. Two of the many techniques for obtaining a

training subset will be examined here: condensed nearest neighbour and edited nearest

neighbour.

The problem that these two techniques solve is to choose S ⊂ T such that the

performance of a 1-NN search on S is equal to the performance of a k-NN search on T ,

and the size of S is minimized.

Condensed Nearest Neighbour The condensed nearest neighbour algorithm (Hart

1968) is a simple pruning technique that begins with one example in the subset and

recursively adds any examples that the subset misclassifies. The algorithm is given in

Figure 2.15 and a binary classification example is shown in Figure 2.16. Drawbacks to

this technique include sensitivity to noise and no guarantee of the minimum consistent

training set. The minimum consistent training set is the smallest subset of training ex-

amples that will correctly classify all of the original training examples (see Figure 2.16).

Condensation is an incremental technique: the subset is built up by adding samples

one at a time. The first few samples to be added have a larger effect on the final subset

as there are only a couple of (possibly misleading) samples present with which to clas-

sify them. These effects are minimized if the subset is initialized with a representative

positive and negative sample.
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(a) (b) (c)

Figure 2.16: Example of condensed nearest neighbour technique for removing redundant
training data. (a) The complete two class dataset; the nearest neighbour classifier will
label any point within the shaded region as a circle. (b) Condensing drastically reduces
the total number of examples. Note that the decision boundary has moved, but the new
boundary still correctly classifies all of the original training examples. The two bold
points denote the (randomly selected) initialization points. (c) Minimum consistent
dataset obtained by manually specifying the initialization points. The boundary defined
by these two initial samples (shown in bold) correctly classifies all the original training
data (shown as dots for reference).

Parameterization of Nearest Neighbour

Another enhancement to the nearest neighbour classification involves favouring specific

training data points through weighting (Cost and Salzberg 1993). In cases where the

cost of a false positive is greater than the cost of a false negative it is desirable to

weight all negative training data so that negative classification is favoured. This cost

parameter allows a ROC curve (see §2.4.6) to be constructed, which is needed later.

To introduce this weighting, a transition is made from a strict nearest neighbour

classifier to a Parzen window density estimator (Duda et al. 2001) with a Gaussian

smoothing function. The Parzen window estimate of the density of positive examples

{pi} is:

fp(x) =
1
n

∑
i

N(pi, σp;x) (2.28)

where n is the number of examples and

N(µ, σp;x) =
1√

2πσp

e
−(x−µ)2

2σ2
p (2.29)

with an analogous formula for the negative distribution fn(x). Then the Bayes decision

boundary occurs at fn(x) = fp(x), and the classification is:

classification(x) =
{

+1 if fn(x) < fp(x)
−1 otherwise

(2.30)

If all the σp are small, then fp(x) ≈ maxi N(pi, σp;x)and the classifier output is

then determined by the maximum probability at a given test point:

classification(x) =

{
+1 if max

i
N(pi, σp;x) < max

j
N(nj , σn;x)

−1 otherwise
(2.31)
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If p and n denote the points which maximize the positive and negative probabilities

respectively, this amounts to a scaling and offsetting of the negative distances. This

can be seen as follows:

N(p, σp;x) < N(n, σn;x) (2.32)

1√
2πσn

e
−(x−n)2

2σ2
n >

1√
2πσp

e
−(x−p)2

2σ2
p (2.33)

(x− p)2 >

(
σp

σn

)2

(x− n)2 + 2 · σq
p2 ln

(
σn

σp

)
(2.34)

If the distance metric for the classifier is then defined to be the square of the Euclidean

distance and the weight w = (σp/σn)2 this simplifies to:

dpos > w · dneg − σ2
p lnw (2.35)

The standard deviation of each class can then be varied to reflect the relative costs of

false positives and false negatives. If σp is set to be small then there remains only the

single parameter w.

This weighting w is the parameter varied to produce an ROC curve. If w is set

to unity then positive and negative training points at equal distance from the sample

point are given equal consideration. If the weighting is set to 0.5 then negative training

data up to twice as far away as positive data will cause the example to be labeled as

negative.

2.4.6 Receiver Operator Characteristic Curves

A receiver operator characteristic (ROC) curve (Courtney and Thacker 2001) displays

the response of the classifier as the weighting parameter is varied. This allows the ideal

weighting to be determined for each specific set of costs. The axes on a ROC curve are

conventionally sensitivity on the vertical and 1-specificity on the horizontal where:

sensitivity =
true positives

true positives + false negatives
(2.36)

1− specificity = 1− true negatives
true negatives + false positives

(2.37)

Thus sensitivity is the percentage of true samples correctly identified, and specificity

is the percentage of negative samples correctly identified. Sometimes what should be a

positive match will end up being closer to a negative training point. This results in a

Type I error where a positive sample is rejected. At other times a negative match will

successfully pose as a target dot, resulting in a Type II error.
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2.5 Summary

This chapter has described the classical theory of image formation as well as some of

the recent developments in the treatment of lens distortion and non-central cameras.

It provides the context and background theory required for discussion of the proposed

rational function model for lens distortion, camera localization, and fiducial detection.

The spherical projection and cubic polynomial camera models set the stage for the

distortion model presented in the next chapter. Nonlinear optimization and its applica-

tion in bundle adjustment are invaluable aids to accurate camera calibration. They can

be defined up to an arbitrary level of precision and careful formation. These concepts

are integral to the distortion correction, camera calibration and camera localization

methods presented in this thesis. The pattern classification concepts are used to con-

struct a robust fiducial detector based on fast, efficient matching to example images

of fiducials (see Chapter 7). Light attenuation is another use where an understanding

of the physics of image formation points to a highly successful correction technique.

In this case the theory will be used for the photometric stereo application detailed in

Chapter 8.

With the physical basis of image formation firmly in hand, and a full toolbox of

important techniques described, we now turn our attention to the subject matter of

this thesis. First on the block is lens distortion, covered in three separate chapters:

modelling describes the theory, calibration describes how it is applied in practice, and

a third chapter evaluates various distortion correction strategies.



Chapter 3

Lens Distortion: Modelling

Geometric lens distortion refers to the deviation of a lens and camera system from the

pinhole perspective projection model. For high quality lenses, the pinhole projection

model accurately reflects the physics of the camera. However, video and consumer

digital cameras often exhibit significant levels of nonlinear lens distortion. From §2.1.2

we see that perspective projection assumes sinα = α for small α, while any extensions to

higher order terms encompass “geometric distortions”. This chapter reviews a number

of models for lens distortion, and then introduces the Rational Function model, a

general purpose model for representing the nonlinearity observed in many lenses.

3.1 Distortion Models

Parametric lens distortion models tend to decompose the effects into radial and tan-

gential components (Slama 1980). The geometric distortion listed in the Seidel aber-

rations (§2.1.2) is purely a radial effect, and therefore many lens models account for

radial distortion. Lenses are designed to be rotationally symmetric, and modern optics

are remarkably close to this ideal. However, small errors in alignment and centering of

multi-element lenses give rise to tangential distortion.

Both radial and tangential distortion are measured relative to a point called the

centre of distortion. This point is invariant under both types of transformation. In the

model of Tsai (1987) the centre of distortion corresponds with the principal point, and

is assumed to be at the centre of the image. He claims that although the true distortion

centre may deviate from the image centre by up to 10 pixels, this has a negligible effect

on the calibration. A note in the appendix of Tsai (1987) calls this statement into

question; later Lenz and Tsai (1988) stated that the observed deviation can be as high

as 40 pixels, and that it is important to actually measure the true distortion centre for

applications requiring 3D measurements. The distortion centre need not coincide with

37
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the principal point, and any deviation is manifested as decentering distortion (Devernay

and Faugeras 2001). Decentering distortion (Brown 1966) results when the centres of

curvature of the optical surfaces in a lens are not collinear; it has both a radial and a

tangential component. A thorough discussion of the different types of image centres

and methods for measuring them are given in by Willson and Shafer (1994).

Many of the camera calibration techniques used within the computer vision commu-

nity have been adopted from the field of photogrammetry. The Manual of Photogram-

metry (Slama 1980) is an excellent reference on such matters, and presents (§4.8.8.2)

the following model for radial and decentering distortion. The mapping from image

pixels (i, j) to distortion corrected points (p, q) is given by:

p = (1 + k1r
2
d + k2r

4
d + . . .) id + [p1(r2

d + 2i2d) + 2 p2id jd][1 + p3r
2
d + . . .]

q = (1 + k1r
2
d + k2r

4
d + . . .) jd + [2 p1id jd + p2(r2

d + 2j2
d)][1 + p3r

2
d + . . .]

(3.1)

where

(ic, jc) is the distortion centre
rd =

√
(i− ic)2 + a2(j − jc)2

(id, jd) = (i− ic, j − jc) are the image coordinates relative to the distortion centre
k1, k2 are the radial distortion parameters, and
p1, p2, p3 are the decentering distortion parameters.

This model has been used extensively (Bouguet 2003, Brown 1971, Heikkilä 2000, Weng

et al. 1992). Tsai (1987) observed that, for industrial machine vision applications, one

term of radial distortion is sufficient to model a lens. Others have included additional

polynomial distortion terms (Hartley and Zisserman 2003).

The division model (Fitzgibbon 2001) is an alternative to the above distortion

functions. It also includes only one distortion term, but takes a simpler form in homo-

geneous coordinates and therefore finds more application in multiple view geometry.

Undistorted coordinates are given by:

1
(1 + λr2

d)
(id, jd). (3.2)

More complex models are used in photogrammetry. One example is the Bicubic

model (Kilpelä 1980):

p = b1i
3
d + b2i

2
djd + b3idj

2
d + b4j

3
d + b5i

2
d + b6idjd + b7j

2
d + b8id + b9jd + b10

q = c1i
3
d + c2i

2
djd + c3idj

2
d + c4j

3
d + c5i

2
d + c6idjd + c7j

2
d + c8id + c9jd + c10

(3.3)

The Field of View (FOV) model (Devernay and Faugeras 2001) was developed for use

with the high distortion levels evident in fish-eye lenses. A fish-eye lens is intended

to cover a very wide field of view, and in order to meet this requirement a significant
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divergence from the pinhole model is included in the design specification. This means

that standard distortion models that are meant to account for slight deviations from

pinhole are not suited to fisheye lenses. The FOV model assumes that the radius of

an image point is proportional to the angle between the corresponding 3D point, the

camera centre and the optical axis:

(p, q) =
tan(rdφ)

2rd tan(φ/2)
(id, jd). (3.4)

Furthermore, there are specific models for the catadioptric cameras described in §2.1.3.

3.1.1 Forward and Reverse Camera Models

Geometric distortion can be expressed either in distorted camera pixel coordinates, or

in a world coordinate frame. The later is termed a forward distortion model, and it

converts 3D world coordinates to distorted image coordinates. A reverse distortion

model takes distorted image coordinates and computes the corresponding rays in 3D.

A forward distortion model is convenient for projecting known world points into an

image: simply compute the point’s perspective projection and then apply the distor-

tion model. However, back-projecting the 3D ray corresponding to a given distorted

pixel location (as required for triangulation) is more difficult. This task involves com-

puting the inverse of the distortion model, after which triangulation from perspective

images is routine. There is no analytic solution to the inverse mapping if both radial

and tangential components are included (Heikkilä and Silvén 1997). The alternative to

inverting the fifth order polynomial camera model (3.1) is to develop an approximate

inverse (Heikkilä 2000, Mallon and Whelan 2004). Wei and Ma (1993) compute this

inverse by determining a set of implicit parameters from a dense grid of features ob-

served in the image. Heikkilä and Silvén (1997) adopted the the same approach except

that the dense grid of features is generated using the forward model whose inverse is

sought.

A reverse distortion model is ideally suited to rendering distortion corrected frames

and to computing the line of sight for a given distorted image coordinate. However, pro-

jection is often more computationally expensive since it involves inverting the model.

Bundle adjustment requires that many points have to be projected into the image plane

in order to measure the error between each projected point and the corresponding mea-

sured image location. Under the proposed rational function model this can be done

efficiently using the Sampson distance approximation rather than computing the actual

projection. Another option is to make these measurements in the perspective frame

obtained after distortion correction has been applied (provided the distortion coeffi-
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cients are known—this doesn’t apply to point correspondences for auto-calibration).

Projection into this frame is then a linear operation.

These differences are mentioned here to highlight that the Rational Function model

is a reverse model, while the cubic rational polynomial camera (Hartley and Saxena

1997) is a forward model. Although the functional form of these two models is similar,

they operate in opposing directions and are thus more easily adapted to different tasks.

3.2 Rational Function Model

In mathematics, a “rational function” refers to a quotient of polynomials. In this

chapter we shall define a camera model that relates image locations to ray directions

through a quotient of polynomials expressed in terms of the image coordinates.1 The

familiar pinhole camera is a special case of this rational function model where the

polynomials are linear. More importantly, the use of quadratic polynomials permits

the accurate modelling of non-linear lens distortion within a convenient mathematical

framework.

3.2.1 General Mathematical Framework

As described in (Grossberg and Nayar 2001, Pless 2003, Sturm and Ramalingam 2004),

calibration of a camera amounts to determining the 3D ray from which each pixel

samples. For a central camera, this means finding the mapping from pixels (i, j) in R2

to rays d(i, j) in R3. This mapping takes the form of some vector of polynomials in

(i, j) multiplied by a matrix of coefficients.

This process can be separated into two transformations. The first is a rotation

R and translation t between the world and camera coordinate systems, referred to

as the external calibration. The second is a projection from world points (x, y, z) in

R3 to image pixels (i, j) in R2. For a central pinhole camera the overall mapping is

represented by

(i, j) = π
(
K [R | t] (x, y, z, 1)>

)
,

where the 3D-to-2D perspective projection function is defined as π (x, y, z) = (x/z, y/z).

The matrix K represents the internal calibration parameters of the camera:

K =

f s u0

0 af v0

0 0 1




f is focal length;
(u0, v0) is principal point;
a is aspect ratio; s is skew

1Hartley and Saxena’s formulation sets out a quotient of cubic polynomials expressed in terms of
the world coordinates. We will refer to this type of camera as a Rational Polynomial Camera to be
consistent with the literature and to distinguish it from our inverse rational function model
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Figure 3.1: The task of distortion correction is to determine the mapping between
image coordinates (i, j) and 3D rays dij . The green lines superimposed on the image
of the planar grid of calibration dots indicate the accuracy of the RF model.

By defining the camera coordinate system to be coincident with the camera center the

pinhole projection reduces to

(i, j) = π
(
KR(x, y, z)>

)
.

By aligning camera coordinates it is possible to set R→ Identity. Thus, for a perspective

camera, the mapping from image pixels to 3D rays d(i, j) in R3 can be expressed as:

d(i, j) =

B11i + B12j + B131
B21i + B22j + B231
B31i + B32j + B331

 = B

i
j
1

 , (3.5)

where the 3× 3 matrix B = R>K−1.

The pinhole camera model (3.5) maps image pixels to 3D rays via a vector of linear

polynomials in (i, j). Because it is linear in image coordinates it is unable to model non-

linear distortion. The rational function model handles this lens distortion by permitting

i and j to appear in higher order polynomials, in particular quadratic:

d(i, j) =

A11i
2 + A12ij + A13j

2 + A14i + A15j + A16

A21i
2 + A22ij + A23j

2 + A24i + A25j + A26

A31i
2 + A32ij + A33j

2 + A34i + A35j + A36

 . (3.6)

This model may be written as a linear combination of the distortion parameters,

in a 3× 6 matrix A (analogous to B above), and a 6-vector χ of monomials in i and j.

Define χ as the “Veronese lifting” (Sample and Kneebone 1998) of image point (i, j)

to a six dimensional space

χ(i, j) = [i2 ij j2 i j 1]> (3.7)

The imaging model may then be written

d(i, j) = Aχ(i, j) (3.8)
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Figure 3.2: The three rows of the calibration matrix A denote conics in the image plane,
and correspond to the Y Z,XZ and XY planes respectively. Conics corresponding to
parallel lines intersect; lines which are also parallel to the image plane intersect on the
conic A3, the image plane horizon.

where d is the ray direction along which pixel (i, j) samples (see Figure 3.1). Undis-

torted image coordinates (p, q) are computed by the perspective projection of d:

(p, q) =
(

A>
1
χ(i, j)

A>
3
χ(i, j)

,
A>

2
χ(i, j)

A>
3
χ(i, j)

)
(3.9)

where the rows of A are denoted by A>
1..3. We see that the mapping (i, j) → (p, q) is a

quotient of polynomials, or rational function (Clapham 1996), in the image coordinates.

3.2.2 Physical Interpretation of A

Each row in the calibration matrix A may be identified with a conic in the image plane.

d(i, j) =

A>
1
χ(i, j)

A>
2
χ(i, j)

A>
3
χ(i, j)

 (3.10)

Placing the first row (for example) in an expression of the form

A11i
2 + A12ij + A13j

2 + A14i + A15j + A16 = 0 (3.11)

yields the quadratic equation of a conic. Points described by this equation correspond

to world rays where d1 = 0, indicating that the conic A1 is the image of the world

Y Z plane. Similarly, rays derived from image points along the second row conic A2

have world coordinate d2 = 0 and represent the XZ plane. Points at infinity on the

image plane have d3 = 0, and are imaged onto the conic A3, which is visible in the

image only for cameras with a field of view greater than 180◦ (see Figure 3.2).
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3.2.3 Back-projection and Projection

The RF model is defined as a reverse distortion model (see §3.1.1), so back-projecting

an image point to a ray in 3D space is a simple matter of lifting the point to χ(i, j)

and applying d(i, j) = Aχ(i, j). Often such reverse models are difficult to invert, but

this section describes a straightforward method for projecting 3D points into the image

plane.

To project a 3D point X (in camera coordinates) into the image plane we must

determine the (i, j) corresponding to the ray d = −X. As (3.8) is defined only up to

scale, we must solve

d = λAχ(i, j) (3.12)

for i, j, and λ. Recall that each row A>
1..3 of A may be identified with a conic in the

image plane A>
i
χ(i, j) = 0. The skew-symmetric matrix corresponding to d is

[d]× =

 0 −d3 d2

d3 0 −d1

−d2 d1 0

 .

This representation of the cross product (a × b = [a]×b = (a>[b]×)>) can be used to

eliminate λ from (3.12)

[d]×d = λ[d]×Aχ

1
λ

0 = [d]×Aχ

By multiplying out the right hand side we obtain the points of intersection of the pair

of conics
(d1A3 − d3A1)>χ(i, j) = 0

(d2A3 − d3A2)>χ(i, j) = 0,
(3.13)

yielding up to four possible image locations (i, j). In practice there are only two inter-

sections; one corresponds to the pixel which images ray d, and the other to −d. For

cameras with viewing angles less than 180◦ the correct intersection is closest to the

center of the viewable area (the boundary of which is given by the conic A3). More

general cameras require a further check of the viewing quadrant of the point in order

to determine the correct intersection.

Solving for the intersection of these two conics means that projection of a point

involves the solution of a 4th order polynomial. A common application of projec-

tion is in bundle adjustment. Each purported 3D point is projected into the image

plane so that the distances to each corresponding measured image location can be tal-

lied and compared from one iteration to the next. The Sampson distance (2.4.1) to

each conic can provide an approximation to the distance without having to compute
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Figure 3.3: The distance from a measured image location m to a projected point p is
required for bundle adjustment. Measuring the true distance requires expensive conic
intersection to find p. Instead, the sum of the Sampson distances from point m to each
conic can be used to efficiently approximate this error measure.

the intersection of the two conics (the projected point). This is illustrated in Fig-

ure 3.3. For a measured point m = (i′, j′) and a projected point p = (i, j) we wish to

measure d(m,p) = ‖m − p‖2. Computing p requires solving the polynomial, so use

d(m,p) ≈ d(m, conic1) + d(m, conic2). Each d(m, conic) is then computed using the

Sampson distance approximation. In this manner we obtain an efficient measure of the

reprojection accuracy of the model.

3.2.4 Canonicalization of A

As mentioned above for the pinhole camera, we can recover the internal calibration

by defining the world coordinate origin to be at the camera centre. The general RF

model also calibrates only the intrinsic camera parameters, and so the overall camera

calibration is recovered up to an unknown projective homography. The true camera

intrinsics, Atrue, are related to the recovered calibration matrix A by an unknown pro-

jective homography

Atrue = HA. (3.14)

This homography is analogous to the unknown homography encountered when recover-

ing pinhole projection matrices P from a pinhole fundamental matrix. In some applica-

tions the choice of H is unimportant. For example, if our goal was to produce distortion

corrected pinhole images, then the unknown homography is irrelevant as the image

corners should be mapped to the output corners of the image in order to make the best

use of the available image resolution. On the other hand, for wide angle surveillance

cameras an output homography can be used to render only a selected portion of the

viewing area fronto-parallel. This avoids having to render the entire image area, and

in particular the corners which are subject to very oblique perspective skewing. These

examples illustrate that the unknown projective homography is not always a limitation.

In general, however, we would like to remove the ambiguity in A as much as possible,
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and this section discusses a canonical form to which an arbitrary A can be transformed,

without loss of generality. Because we are calibrating only the camera intrinsics, we

are at liberty to define the camera coordinate system in a convenient manner. We shall

therefore insist that the camera Z-axis passes through the pixel (i, j) = (0, 0). This

implies that Aχ(0, 0) ∝ [0, 0, 1]>, and thus, as χ(0, 0) = [0, 0, 0, 0, 0, 1]>, that the last

column of A can be fixed to be of the form [0, 0, ·]>, where the dot denotes an arbitrary

scalar. The two conics A1 and A2 correspond to the Y Z and XZ planes (see §3.2.2).

We require that the tangents to these conics be aligned with the i and j axes at

the distortion centre. The normal to the conic ai2 + bij + cj2 + di + ej + f = 0 is

(2ai+ bj + d, bi+2cj + e), and evaluated at the origin, the normal is (d, e). In terms of

A we require that the normal to A1 is along (1, 0) and that the normal of A2 is along

(0, 1), fixing A14, A15, A24, and A25. Thus we have the canonical form of A:

A =

× × × × 0 0
× × × 0 × 0
× × × × × ×

 .

We now present a method for transforming any A into the above canonical form.

The matrix of parameters A is defined only up to a homography, so we are free to

pre-multiply by a transformation matrix. By selecting this transformation to be the

inverse of the last three columns of A we obtain

Acan =

× × × 1 0 0
× × × 0 1 0
× × × 0 0 1

 ,

which is a specific case of the canonical form. This nine parameter expression of A is

the recommended form for general fitting where the underlying distortion model is

completely unknown. It can cover the complete range of the full A, but the reduced

parameter count is more efficient for fitting. The next section examines additional

simplifications that can be performed if the lens or distortion type is known in advance.

3.2.5 Parametrizations for Specific Lenses

Many lens types do not require the full generality of the RF model in order to achieve

an accurate calibration. Trimming the parameter count to a level that is suited to the

lens in question reduces the chances of over-fitting and stabilizes the fitting algorithms.

This section describes reductions in the RF model suited for several common lens or

camera types.
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Pinhole Camera

A pinhole camera does not exhibit any non-linear distortion, but for completeness we

show that it can be modelled as a rational function:

A =


0 0 0

1
f

−s

f2a

uaf − sv

f2a

0 0 0 0
1
fa

−v

fa

0 0 0 0 0 1

 (3.15)

where the parameters are defined as in (3.2.1) and the coordinate system is centred

on the camera origin with R equals the identity. Since A is defined only up to a

homography, it is possible to factor out the pinhole projection aspect of the camera

model; this is done to help simplify the notation for the following distortion models.

Division Model

The division model (Fitzgibbon 2001) given in (3.2) can be expressed as

A =

0 0 0 1 0 0
0 0 0 0 1 0
λ 0 λ 0 0 1

 (3.16)

where we are assuming that the distortion is centred at the origin and the aspect

ratio is one. Closed form solutions for this model using the plumbline constraint are

available (Strand and Hayman 2005).

Reduced Rational Function Model

Observation of the distortion present in actual lenses led to the development of a

reduced parametrization of the rational function model that can accurately represent

more general distortion functions.

The general form of the rational function model images straight lines in the world as

conics, but enforces no restrictions on the form of the conic. While fitting the model to

noisy image data, it was observed that cases where the conics took the form of ellipses

produced the most stable reconstructions. A parametrization that would constrain the

conics to be ellipses was therefore developed. These ellipses would be circles except

for the aspect ratio of the pixels. Parallel lines in the world produce ellipses which

intersect at two points; the reduced model yields families of such ellipses. Many lenses

can be assumed to have negligible skew at the centre of the image. Thus the conics

representing the coordinate axes will intersect at the origin, be perpendicular to one

another at the origin, and be centred on their respective axes. The overall diameter
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(a) Axes conics (b) Detail of origin

(0, 2b)

(b, ab)(−b/a, b)

(2b, 0)

(r, 0)

(0, ra)

Image

boundary

Figure 3.4: Conics pertaining to the three rows (shown in green, blue and red, re-
spectively) in the reduced form of the rational function model. The images of the
horizontal and vertical axes are each an ellipse with a “radius” large enough that the
axis appears straight in the image. For this example, a = 0.7, b = 2e7, φ = 0.5 and
r2 = ((wa)2 + h2)/(4φ2a2). The image origin has been set to the centre of the image
to simplify the notation in this figure.

of these two axes conics is not significant for most applications; it shall be set to a

value large enough to approximate straight lines within the image region. Finally, the

parameter φ encapsulates the overall curvature (or distortion level) of the lens. The

resulting set of conics are illustrated in Figure 3.4.

The three conics that make up the rows in A are then

A1 :
(
i− (b + w

2 )
)2 +

1
a2

(
j − h

2

)2
= b2 (image of the world Y Z plane)

A2 :
(
i− w

2

)2 +
1
a2

(
j − (b + h

2 )
)2

= b2 (image of the world XZ plane)

A3 :
(
i− w

2

)2 +

(
j − h

2

)2
a2

=
(wa)2 + h2

4φ2a2
(image of the world XY plane horizon)

where (i, j) are image coordinates, with the image origin in the top-left; w, h are the

width and height of the image in pixels and a is the pixel aspect ratio. This can be

expressed as a calibration matrix A:

A =



1 0
1
a2

−2b− w − h

a2

1
bw + w2

4 + h2

4a2

1 0
1
a2

−w −2b + h

a2

1
bh + w2

4 + h2

4

1 0
1
a2

−w − h

a2

(
(wa)2 + h2

) (
φ2 − 1

)
4φ2a2


(3.17)

Two important shape parameters for the lens are φ, representing the field of view;

and b, which represents the diameters of the first two conics. The image dimensions are
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known, so this parametrization reduces the number of unknowns in A from 14 (for the

canonical form) to 3. The pixel aspect ratio is typically known, (e.g. for PAL cameras

a = 576/720× 4/3 = 1.0667), and the conic radius b can be set to a large number (e.g.

2 × 107). The field of view parameter can also be reasonably guessed for most lenses

(e.g. φ = 1× 10−5 for pinhole, 0.5 for fish-eye). Note that as φ → 0 the radius of the

third conic becomes infinite. This is correct since this conic represents the image of the

horizon, which cannot be viewed unless there is either some nonlinearity in the camera

model or a focal length of zero. In practice a distortion free image can be represented

by setting φ to be very small.

This reduced rational function model is essentially a single parameter (φ) model

similar to the FOV model proposed for fish-eye lenses. The algebraic form of the

two models differs, but the rational function model can very closely approximate the

FOV fit to certain lenses. Is there any advantage to using one model over the other,

particularly for fish-eye lenses? One of the chief advantages of the rational function

model is the full suite of available calibration methods. A single image linear calibration

will be much more straightforward than the current FOV calibration methods (which

require multiple images and nonlinear optimization procedures). Furthermore, if the

RF model is allowed to deviate from the reduced parameterization, there is significantly

more modelling power available than that offered by the FOV approach: the rational

functions can fit many other lens types than just fish-eye.

Para-catadioptric Camera Model

The rational function model can represent more general cameras in addition to pin-

hole cameras with radial distortion. One example is the parabolic mirror catadioptric

system (2.6). By simple algebraic manipulation we obtain

A =

0 0 0 4f 0 −4cxf
0 0 0 0 4f −4cyf
1 0 1 −2cx −2cy c2

x + c2
y − 4f2

 . (3.18)

3.3 Two-view geometry

This section examines the relationships between two distorted images of a scene, and

how these can be exploited to compute A. This permits calibration of a camera without

the need for a calibration grid, or even the camera; only two images are required.

A 3D point imaged in two views gives rise to a pair of point correspondences (i, j) ↔
(i′, j′) in the image. Their back-projected rays d, d′ must intersect at the 3D point,
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that is to say they must satisfy the Essential matrix constraint

d>Ed′ = 0. (3.19)

Substituting d = Aχ, we obtain

χ>A>EA′χ′ = 0 (3.20)

and writing G = A>EA′ we obtain the constraint satisfied by the lifted 2D correspon-

dences
χ>Gχ′ = 0. (3.21)

This “lifted fundamental matrix” is rank two and can be computed from 36 point cor-

respondences in a manner analogous to the 8-point algorithm (Longuet-Higgins 1981)

for projective views. We shall refer to this method for computing G as the Direct Linear

Transform (DLT) technique (described in detail in §2.4.3). Although the DLT permits

G to be computed in a strictly linear manner, greater accuracy is achieved through

a nonlinear optimization using the Sampson distance approximation, as discussed in

§5.4. The immediate consequence is that, because G can be determined solely from

image-plane correspondences, it is possible to remove distortion from image pairs for

which no calibration is available. This depends upon two things: 1) G must be stably

estimated in the presence of image noise, and 2) we must have a method for recovering

the calibration matrix A from this G. Both of these issues will be addressed in §4.3.

The next section investigates the epipolar curves induced by the new model.

3.3.1 Epipolar curves

For a given pixel (i′, j′) in one of the images, its epipolar curve in the other image is

easily computed, as the set of (i, j) for which χ(i, j)>Gχ′ = 0. This is the conic with

parameters Gχ′. Figure 3.5 shows epipolar curves computed from point correspondences

on two real-world images. We note that all the curves intersect at two points, because

G is rank 2, so all possible epipolar conics are in the pencil of conics generated by any

two columns of G. The two intersection points in each image are the two intersections

of the baseline with the viewing sphere of that image.

3.4 Summary

This chapter has presented a rational function model for lens distortion. The geometry

of the model was outlined and equations for representing many existing camera models

were provided.
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Bridge of Sighs, Hertford College

Jenkin basement (revisited)

Figure 3.5: Epipolar curves recovered from the G matrix computed using point cor-
respondences. For the Bridge of Sighs images, 36 point correspondences were used.
Note that the curves converge to the camera viewpoints on either side of the street.
The Jenkin basement featured in some of the early structure-from-motion work. This
fisheye pair contains a total of 300 point correspondences; some of the epipolar lines
have been omitted for clarity.



Chapter 4

Lens Distortion: Calibration

A camera model is only as useful as the methods available for calibration. To this end

we will present three separate calibration algorithms for the Rational Function model:

one based on a planar calibration target, a plumbline method, and an autocalibration

technique that uses only point correspondences between multiple images.

4.1 Linear Calibration from an Arbitrary Planar Grid

The simplest and most reliable of the calibration methods we present for the RF model

involves the use of a planar calibration target. This target is photographed under any

arbitrary orientation (it does not have to be fronto-parallel, as is sometimes impracti-

cally required for planar calibration) and all calibration equations are linear.

Prior to explaining the calibration algorithm, a few comments on planar calibration

targets are in order. A planar target is used to easily establish known 3D positions.

Calibration proceeds by establishing the correspondence between the physical location

and a position in image coordinates. The advent of laser printers and the abundance

of flat surfaces in a modern office or laboratory environments have made it inexpensive

and precise to construct planar targets. Designing a custom calibration target provides

the opportunity to use point markers that are easy to locate precisely. A checkerboard

pattern is often used (caveat emptor: bias in corner or line detectors, aliasing, and lens

distortion can significantly affect the accuracy of checkerboard corner detection), but

any detectable features can be employed. I recommend small dots (see Figure 4.1) for

reasons given in Chapter 7. Using a target imposes the constraint that we must have an

image of a known object. While this is an easy task if one has access to the camera, it

is not a practical method for archive footage (for example). However, when the camera

to calibrate is available for testing the other advantages of planar calibration grids far

outweigh this limitation.

51
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~

A′χk

Aχk-
Huk�

xk uk

Recorded Distortion Planar
image corrected calibration

(with distortion) image object

Figure 4.1: Relationships between calibration plane, image plane, and the distortion
corrected image.

The grid is used to provide some number N of correspondences between (lifted)

2D points χk and 2D plane points pk. As the plane is in an unknown position and

orientation, the mapping between plane and camera coordinates is an (unknown) planar

homography H. Thus each correspondence provides a constraint of the form

Hpk = λkAχk (4.1)

=⇒ pk = λkH
−1Aχk (4.2)

=⇒ pk = λkA
′χk. (4.3)

Two constraint equations are obtained for each point correspondence, and a linear so-

lution can be obtained through the use of the DLT (§2.4.3). For completeness, these

steps are described here as well. As is always the case when using the DLT, data con-

ditioning is essential. The quadratic terms in χ amplify any noise, and this propagates

through the algorithm. Typical image dimensions are 720 × 576 pixels, so the values

of χ range in magnitude from 105 to 1. This large range can make the factorization

unstable. The condition number, a measure of stability, of the factorization can be

improved by scaling and translating the input data so that all image points have zero

mean and standard deviation
√

2.

The lifted image point is given by χ(u, v) = [u2 uv v2 u v 1]>. We can set the

z-component of pk → 1 simply by defining the calibration target to be the z = 1 plane

(recall that this is a 3D point on the planar calibration object). The world point is then

given by pk = [xk, yk, 1]. Pre-multiplying both sides of (4.3) by the skew symmetric
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matrix corresponding to pk eliminates the unknown scale parameter:

[pk]×pk = λk[pk]×A
′χk (4.4)

1
λk

0 = [pk]×A
′χk (4.5)

Writing out both the skew symmetric matrix and the lifted components of χk yields

0 =

 0 −1 yk

1 0 −xk

−yk xk 0

A′1

A′2

A′3




u2
k

ukvk

v2
k

uk

vk

1

 . (4.6)

where A′m denotes the rows in A′. With a little re-arranging we obtain the following

3× 18 constraint matrix 0> −χ>
k ykχ

>
k

χ>
k 0> −xkχ

>
k

−ykχ
>
k xkχ

>
k 0>

A′1>

A′2>

A′3>

 = 0. (4.7)

Each point correspondence yields a triplet of constraint equations of this form, and they

are all stacked into a design matrix so that Da′ = 0. The vector a′ is obtained through

the SVD (for cases where greater than the minimal number of point correspondences

are available)

(USV>) = SVD(D) (4.8)

a′ = V18 or V(:, 18) (4.9)

where V18 denotes the last column in V. This is the unit singular vector corresponding

to the smallest singular value. The original matrix A′ is reconstructed from a′ as

A′ =

 a′1 a′2 a′3 a′4 a′5 a′6
a′7 a′8 a′9 a′10 a′11 a′12
a′13 a′14 a′15 a′16 a′17 a′18

 . (4.10)

The solution obtained in this manner is correct up to an unknown projective ho-

mography

Atrue = KA′. (4.11)

It is not essential to solve for this homography explicitly; the calibration matrix A′

is sufficient to remove the nonlinear distortion from the image. If one were to apply

only this correction to an image, lines would appear straight but there would likely be

evidence of skew, an unbalanced aspect ratio or some other perspective effects. The

resulting image still follows the pinhole model, but it corresponds to an image plane
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that is at some odd orientation relative to the optical axis. Generally, the image plane

is expected to be perpendicular to the optical axis, the following paragraph describes

a method for simulating this.

Compensating for the unknown projective homography is simple, the user merely

applies whichever homography is required to bring the distortion corrected image into

a suitable range for the current application. Often it is useful for the distortion cor-

rected image to have the same overall dimensions as the original image. The projective

matrix K that performs this rectification is computed using the corner coordinates of

the original image xcorners . The corners are pushed through the distortion correction

process

χcorners = veronese(xcorners) (4.12)

x′corners = Aχcorners . (4.13)

We can then compute the projective homography that satisfies

xcorners = Kx′corners . (4.14)

This matrix is then applied to the distortion correction parameter matrix Arectified = KA.

This rectified set of distortion parameters can then be used to rectify distorted points

or images into a coordinate system that fits within the original image bounds. Unless

otherwise noted, all images included in this thesis that have been corrected by the

rational function model have had this rectification applied.

4.2 Calibration by Plumb-line Constraints

In sequences where there are straight lines in the scene, it is desirable to be able to

impose the constraint that the back-projections of their images are straight (Figure 4.2).

This plumbline technique was first mooted by Brown (1971), and has been applied to

various distortion models (Stein 1997, Swaminathan and Nayar 2000, Devernay and

Faugeras 2001). We will show that the rational function model images straight lines as

conics, and this permits an elegant factorization of the conics into the camera calibration

and the equations of the straight lines.

A line in the scene forms a plane with the origin of camera coordinates, and is

imaged to the set of d in that plane. This yields the line equation l>d = 0 which, in

terms of image points (i, j) becomes

l>Aχ = 0 ⇐⇒ θ>χ = 0, (4.15)
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Figure 4.2: Plumbline methods use image curves corresponding to straight lines in the
world to compute the distortion parameters. Here the detected edgels from 22 lines in
a single frame of video have been used to calibrate the distortion. The unwarped image
displays correct rectification; the lines are now straight.

where θ = A>l = (Axx, Axy, Ayy, Ax, Ay, A0 )> are the parameters of a conic in image

coordinates (i, j) and χ is given by (3.7). Here we observe the important property that

lines in the world are imaged as conics under the rational function model. The task of

calibration is then to find an A which will map these conics in the distorted image back

to straight lines. Figures 4.3 to 4.5 describe the two different plumbline methods for

finding A that are detailed in subsequent sections.

4.2.1 Linear Factorization Method

By fitting a conic to the image of the line, we obtain parameters θ, and thus the

constraint

θ = A>l

for unknown A and l. The equality is exact (i.e. not just up to scale) as any scale factor

is included in l. Collecting L such constraints, we obtain

[θ1 | . . . | θL]︸ ︷︷ ︸
6×L

= A>︸︷︷︸
6×3

[l1 | . . . | lL]︸ ︷︷ ︸
3×L

(4.16)

C = A>L (4.17)

so the matrix of conic parameters C is of rank no greater than 3. This matrix can be

assembled directly from image measurements: fit conics to the detected edges of lines

that are straight in the real world. From a knowledge of C, A can be computed up to a

homography by factorization: if

USV> = C
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Figure 4.3: Plumbline constraints on a single synthetic image. Left Input image Cen-
tre Fit conics to several of the lines. Note that conics corresponding to parallel lines
(e.g. the horizontal ones) intersect. Right The input image rectified by a linear cali-
bration from the fit conics. The noise free case can be rectified with the elegant linear
factorization.

Figure 4.4: Linear plumbline constraints on a single synthetic image including noise
at 0.01 pixels RMS. Left Input image Centre Fit conics to several of the lines. The
parallel conics no longer intersect. When fitting to such incomplete data, the conic
parameters are highly unstable. Right The rectification fails, demonstrating that even
at this artificially low noise level the linear solution begins to break down. The linear
method minimizes the error in conic parameter space, which is not an appropriate error
measure for rectification.

Figure 4.5: Nonlinear optimization of plumbline constraints on a single synthetic image
including noise at 2.0 pixels RMS. The optimization minimizes the distance between
image points and their corresponding line projected as a conic into the image plane.
Left Input image Centre top Straight lines fit to the point data for each line segment
are used to initialize the world line positions. Centre bottom The initial line estimates
projected into the image as conics based on the initialization of A. Right Rectification
after optimizing for distortion coefficients and world line positions. The grey lines
indicate the noise free edge locations.
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is the SVD of C, then

A = S(1:3,1:3)U(:,1:3)
> (4.18)

is one member of the equivalence class of solutions.

The matrix C will not be rank 3 if the conics were obtained by fitting to noisy

image data. The above factorization truncates C to rank 3 by taking only the first

three singular values in (4.18). This finds the rank 3 matrix Ĉ that is nearest to C

by the Frobenius norm (square root of the sum of the squared entries). This is a

minimization of the error in the conic parameter space. Figure 4.3 shows the results

of an implementation on synthetic data, leading to an accurately rectified house in the

absence of noise, but with reduced performance on more noisy data (Figure 4.4).

To quantify this numerically, the rectification error was measured for linear fac-

torization of a synthetic house image with various levels of random noise added. The

original image and seven selected lines are those shown in Figure 4.3. A conic was fit

to the data for each line using the approximate Sampson distance (Taubin 1991). Data

conditioning (as described in 4.1) was performed on the input points prior to fitting

the conics. A calibration was also performed using the raw input data to compare

the effects of this conditioning. The conic parameters were assembled into C and the

rational function distortion matrix A computed via the truncated SVD. This set of

distortion parameters was then used to unwarp the input images; this output should

contain only straight lines. Evaluation thus consists of fitting straight lines to each set

of data and reporting the perpendicular distance of each unwarped edgel to its line.

The standard deviation of these residuals over all edgels (959 data points in total, 607

of which are included in the seven calibration lines) was reported (in Figure 4.6) as

the error for that calibration run. A total of 21 noise levels ranging in amplitude from

σ = 10−6 to σ = 3 pixels were tested. As this is normally distributed random noise

there will be a few data points which receive a perturbation that is much larger than

the standard deviation. The position of these very noisy points along the length of

each line can have a significant effect on the conic fitting. Fifty different sets of random

noise were used to perform fifty calibration tests at each noise level. This way a single

noise distribution cannot unduly influence the results. The mean of these trials was

reported for each noise level, but the maximum and minimum are also plotted (as the

solid lines in Figure 4.6) to indicate the range induced by the distribution of the noise.

In addition to the linear calibrations with and without conditioning, Figure 4.6

includes the results for a nonlinear optimization calibration (described in §4.2.2) and a

noise free result, for comparison. The noise free ground truth baseline was established
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Figure 4.6: Performance of the linear plumbline factorization algorithm in the presence
of image noise. The linear algorithm demands careful conditioning, yet still fails in the
presence of realistic image noise. Errors measured perpendicular to straight lines fit to
rectified image data. The solid lines denote the minimum and maximum error from 50
runs with random noise.
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Figure 4.7: The singular values obtained in factoring the conic parameters to obtain
A. The three smallest singular values should be zero if the conic parameter matrix C
truly is rank 3. As the noise level increases this is no longer true, and the factorization
algorithm fails. The solution is to perform an optimization using a parametrization
that enforces the rank 3 constraint while minimizing image plane error.
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by computing A from the noise free data (via the linear factorization method with

conditioning) and then using that calibration to rectify the noisy input data at each

level of noise. This provides a measure of the best performance that could be achieved

given the input data, and is plotted as the black line in Figure 4.6. Note that this

line is essentially linear with a slope of 1. This demonstrates that a calibration does

exist such that the noisy input data can be rectified to an error level that is directly

proportional to the input noise. In the case of the ground truth line this calibration

was artificially determined using the synthetic noise free input data, but it provides a

realistic bound on what can be achieved.

The results of the conditioned linear calibration are parallel to the ground truth up

to a noise level of ∼ 10−1, however the vertical offset indicates a higher error level. Even

at extremely low noise levels the linear algorithm is unable to produce a calibration

whose accuracy is on the order of the theoretical limit. This is due to errors in the

conic fitting, which then propagate through the algorithm.

Conditioning of the input data is essential for the linear factorization method. The

linear method uses the SVD to truncate C to rank 3. The implied assumption is that

the last three singular values are negligible and can therefore be discarded. Figure 4.7

plots the six singular values for both the conditioned and the non-conditioned cases.

With conditioned data we observe that the three smallest singular values gradually

increase with increasing noise level. At some noise level (certainly not higher than

σ = 10−2 pixels) the assumption that d4:6 are insignificant relative to d1:3 is no longer

valid. At this point the rank 3 truncation is discarding useful information from the

matrix of conic parameters.

The singular values for the linear algorithm without data conditioning (Figure 4.7

right) do not exhibit the same regular behavior. Beyond the threshold around σ = 10−2,

the noise totally dominates the solution. The last three singular values d4:6 are no longer

insignificant relative to d1:3, and the matrix of conic parameters is far from rank 3. The

Frobenius norm minimization implied in the SVD solution to (4.17) minimizes an error

in the conic parameter space, but this does not necessarily leave us with meaningful

conics in the image (see Figure 4.8).

Even with careful data conditioning, the linear algorithm fails at an unrealistically

low noise level. A reasonable rule of thumb for the best performance that can be ex-

pected from an edge detector is 1/5 of a pixel of noise (indicated by the faint horizontal

and vertical grey lines in Figure 4.6). The linear method with data conditioning falls

short of this mark by at least a factor of 100. This instability stems from fitting conics

to very short segments of a curve: there can be large variations in the actual parameter
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(a) Fit with conditioning (b) Fit without conditioning

(c) Rank 3 with conditioning (d) Rank 3 without conditioning

Figure 4.8: Data conditioning is essential for the linear plumbline method. (a) and
(b) Conics fit to data from seven input lines for conditioned data and non-conditioned
data, respectively. The dashed lines are conics fit to noise free image points, while
the solid conics are fit to data with σ = 0.01 pixels of noise. (c) and (d) The conics
after enforcing the rank 3 constraint in the SVD. These are the conics that are used
to calibrate the distortion. Note that without careful data conditioning the rank 3
truncation produces meaningless conic data; the curves no longer even approximately
pass through their respective data points.

values representing wildly varying conics that are still very similar in the region of the

data we are fitting to. The same underlying problem gives rise to the sensitivity to

data conditioning. Conditioning helps to minimize the effects, but cannot correct the

root cause. That would require that much more of the conic be visible in the image,

something that is not possible with conventional or even fish-eye lenses.

What is needed is a means of ensuring that the fit conics are all ellipses. Or,

expressed more strongly: all conics must be ellipses of the same family such that

parallel lines produce intersecting ellipses. This constraint is the starting point for

the reduced parametrization of §3.2.5. In the following section we describe a method

for computing A from noisy image data of straight lines in the real world by using this
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reduced parametrization.

4.2.2 Optimization Method

The overall strategy for fitting A from noisy image data is to run a non-linear optimiza-

tion that finds the A which minimizes the error between the image data and straight

lines projected (as conics) into the distorted image (see Figure 4.9). This requires a

reasonable initialization of A, knowledge of straight lines in the real world, and an error

measure in the image plane.

The overall parametrization is analogous to bundle adjustment (§2.3.2) and the

ellipse fitting approach of (Gander et al. 1994): the world line directions and image

projection parameters are simultaneously updated. The parameter vector is partitioned

into two types of variables; coordinates describing the position and direction of straight

lines in the real world, and the parameters of the camera model. In this case the

camera model is the reduced parametrization (3.17) of the rational function model

(§3.2.5). This model is very forgiving in the choice of initial parameters; the basin of

convergence is wide and well-defined. We guessed that the field of view for our fish-eye

lens is roughly 90◦ so φ = 0.5 using (3.17). The primary conic radius was set at b = 2e7.

The image dimensions are h = 576, w = 720 and a = 1.0667.

The world lines are 3D, but since they will always be projected into the image we

can parameterize them as 2D lines in a plane parallel to the image plane. The lines

are then represented using 2D homogeneous coordinates so that ax + by + c = 0 is

parametrized as

l = (a, b, c)>. (4.19)

The complete parameter vector for the plumbline optimization is therefore (a, b, φ, l1 . . . lL)

giving a total of 3 + 3L variables, where L is the number of lines.

The method for initializing the straight lines L in the world must still be discussed.

It would not be practical to require that the true orientation of each straight line

used for calibration be physically measured to initialize the algorithm. However, the

optimization is based upon projecting the world lines into the image. To overcome this,

we supply only a very rough approximation as the initial line positions and then allow

the optimization to refine that estimate (recall that the line positions are included as

parameter variables, not as supplied constants). The initial estimate is made by fitting

straight lines to the detected image edgels, even though they lie along segments curved

by the lens distortion. This is essentially an initialization that assumes no distortion,

at least for the line fitting.1

1There is an inconsistency though, because the initial estimate for the camera parameters does
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Initial estimate

Converged solution

Linit

L

C = A>initLinit

C = A>L

Figure 4.9: Non-linear optimization to fit A to the distorted images of straight lines.
Top (left to right) The initial lines L are fit to edge data in the distorted image. These
lines are projected into conics C in the distorted image via A. The image with distortion
corrected via A. Bottom The optimization varies A and L to minimize the error measured
between the edgels and the projected conics C.

We then project the lines into conics in the image using (4.17) and measure the

Sampson distance (§2.4.1) from the conics to the detected edgels. The Sampson distance

is a first order approximation to the distance from a point to a conic. The error function

we minimize is then given by:

ε(C, L) =
L∑

`=1

nl∑
k=1

[
θ>` χ (ilk, jlk)

[(2Axxilk + Axyjlk + Ax)2 + (2Ayyjlk + Axyilk + Ay)2]
1/2

]2

.

(4.20)

Figure 4.10 shows detailed pseudocode for the equation of the error. MATLAB’s

lsqnonlin was used to perform the minimization. The Levenberg-Marquardt algorithm

computes the least squares error, and performs the squaring operation itself. For this

reason it is important to supply the signed error (inside the square brackets in (4.20)).

Then there is a zero crossing in the error space, which results in more stable and faster

convergence. The coordinates of the detected edgels are static throughout the opti-

mization, so their lifted coordinates χ (ilk, jlk) can be pre-computed to lend additional

computational efficiency. Finally, it is beneficial to normalize the parameter vector

so that all entries are in the range [−1 . . . 1]. If the relative scales of the parameter

variables vary widely the optimization can seem to favour certain variables, and not

include distortion. This is resolved during the optimization, when the line parameters are updated.
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Given: A ∈ R3×6 (distortion parameters)

{L1...L} (parameters for each of L lines)

Data:
{
{x`k

}nk
k=1

}L

`=1
(original 2D points for each line)

Compute:
L∑

`=1

nk∑
k=1

sampson
(
A
>
Lk , x`k

)2

where Lk represents the line parameters, x`k
=
(

ilk
jlk

)
,

and A
>
Lk =



Axx

Axy

Ayy

Ax

Ay

A0

 = θk are conic parameters.

Here sampson(θk , x`k
) is defined as

Axxi2lk + Axyilkjlk + Ayyj
2
lk + Axilk + Ayjlk + A0√

2Axxilk + Axyjlk + Ax)2 + (2Ayyjlk + Axyilk + Ay)2

Figure 4.10: Pseudocode for computing the Sampson error measure between image
points and plumblines projected as conics under the rational function model.

optimize others as full as it can when they are all more equally scaled.

Note that this optimization computes the error measured on detected edgels in the

distorted image. That is, we compute the model that best fits the observed data in

its least altered state. The detected edgels are not projected into some other viewing

plane, nor are we trying to align the model to some curve fit. The model is evaluated

based on the measured distance to each observation, in situ.

4.2.3 Condensed vs. Full Parametrization

After minimization using the reduced parametrization of §3.2.5, the full 18-parameter

model can be fit nonlinearly. The complete model contains too many degrees of freedom

to be fit directly via nonlinear optimization; even with multiple restarts from random

initializations it converges to incorrect local minima. The restricted parameter space of

the condensed model provides a robust constraint that provides easy initialization (rea-

sonable guesses can be made since the parameters correspond to physically meaningful

parameters) and stable convergence. This is shown in Figure 4.9 where the initialization

parameters are far from the true values, yet the correct optimization result is reached
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Figure 4.11: Decentred distortion can be handled by fitting the full RF model after
initialization using the reduced parametrization. Top row The reduced model assumes
the distortion centre is at the image centre. The dashed black lines denote the horizontal
and vertical planes; their intersection is the distortion centre. The thick coloured lines
are detected edgels in the image. The thin coloured lines are the conics fit to these
edgels; these are the input data for calibration in both cases. The horizontal green
line at the top of the window passes through the detected edgels, but does not match
the curve of the window frame. Such mis-matched conics near the periphery of an
image are one indication of a poor distortion fit. Bottom row Fitting the full RF model
reduces the residuals from 1.98 to 0.53 pixels rms and produces a better rectification;
this is most evident at the top edge of the window. Note where the dashed black lines
intersect that the distortion is not centred and that the fitted model requires significant
skew in the image plane.
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Figure 4.12: Calibration from multiple views. Lines observed in separate views can be
combined in a single calibration because A describes the internal properties of a camera.
This rectification used only 14 lines (7 from each view), some of which are made up of
a collection of very short edgel chains.

every time.

So do we really need the full modelling power of the 18 parameter RF model? In

short, yes. The reduced model assumes that: the distortion centre is located at the

centre of the image, there is no skew, and that the distortion is symmetric. These

assumptions will not always hold, particularly for low cost lenses. Figure 4.11 gives

an example of an image where the distortion centre has moved significantly from the

image centre, most likely due to a misalignment of the lens relative to the CCD. This

image is part of a sequence of photographs of the same scene; the rest of the images

were calibrated accurately using the reduced parametrization, it was only this one that

exhibited the displaced distortion centre. This dataset highlights another feature of

optimization based plumbline method: it is possible to identify lines that may have

been incorrectly labelled as straight. As illustrated in Figure 5.5, it is difficult to

automatically detect lines that should be straight, particularly if the physical object

is gently curved. The roofline visible through the window in Figure 4.11 is actually

curved. This was realised solely by evaluating the error distribution across the fit line

segements.

4.2.4 Plumbline data from multiple views

The plumbline constraint obtained from edgels in one image is entirely independent

of the camera’s external calibration parameters, so repositioning the camera does not

alter the internal calibration A. This enables us to combine constraints C obtained from

M views in a single calibration:

[C1 | . . . | CM ] = A> [L1 | . . . | LM ] .

These views may be of different scenes or even calibration grids; the only requirement

is that there be straight lines visible and that the same camera be used. Figure 4.12
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shows a calibration obtained from two views of a wrought iron fence.

We have shown how the rational function model permits an elegant formulation of

the plumbline constraint, and have demonstrated camera calibration from a single view

of straight lines. The simple form of the model (world lines expressed as image conics)

accurately and succinctly represents the underlying camera properties. The model can

be fit to noisy data by a nonlinear optimization which minimizes a geometric quantity

in the image plane. The linear factorization algorithm for calibration is elegant but

its sensitivity to noise makes it effectively useless for real world problems. An area for

future research would be to explore whether this deficiency can be somehow corrected.

4.3 Multiview Calibration from Epipolar Constraints

This section describes three methods for computing the lifted fundamental matrix G

from point correspondences. The first is a strictly linear algorithm based on the DLT

which works in the absence of image noise. Two nonlinear optimization approaches

are then described which use different parameterizations. One enforces only the rank 2

constraint on the fundamental matrix, while the second includes an explicit formulation

of the calibration matrix A but does not represent the full rational function model. A

method for recovering A from a computed G in the absence of image noise is also

described. Testing and evaluation of all the algorithms described here is included in

§5.4.

4.3.1 Linear method for G

The Veronese lifting (see §3.2.1) of image points to a six-dimensional space encom-

passes the nonlinear aspect of the lens distortion and permits a linear solution for the

fundamental matrix. Careful data conditioning is in general important for computing

a fundamental matrix from noisy image correspondences (Hartley 1997), but it proves

essential in this lifted case as the higher order terms amplify the noise. The steps of

the linear algorithm are as follows.

1. Condition the input image data points so that all data lies within the range

[−0.5 . . . 0.5]. This produces a conditioning matrix C which conditions the homo-

geneous data as per

xc = π (Cx) (4.21)

where xc represents the conditioned input points x. At this time we also produce

the lifted conditioning matrix ζ which can be used to condition and de-condition
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lifted image points.
χc = ζχ (4.22)

If the elements of C are

C =

c1 c2 c3

c4 c5 c6

c7 c8 c9


then the elements of ζ are

ζ =



c2
1 0 0 2c1c3 0 c2

3

0 c1c5 0 c1c6 c3c5 c3c6

0 0 c2
5 0 2c5c6 c2

6

0 0 0 c1 c2 c3

0 0 0 c4 c5 c6

0 0 0 c7 c8 c9

 .

2. Lift the point correspondence data from each view according to the Veronese

mapping
χ = veronese (xc) (4.23)

3. Condition the lifted points so that each dimension of the data has RMS magnitude

of
√

2 and zero mean.
χjc = Ljχj (4.24)

For the ith dimension of χ we compute the mean mi and RMS magnitude si

(about that mean) to produce the conditioning matrix

Lj =



1/s1 0 0 0 0 −m1/s1

0 1/s2 0 0 0 −m2/s2

0 0 1/s3 0 0 −m3/s3

0 0 0 1/s4 0 −m4/s4

0 0 0 0 1/s5 −m5/s5

0 0 0 0 0 −m6/s6

 . (4.25)

This second stage of conditioning is somewhat redundant, but ensures that the

linear algorithm receives data in a condition that is most likely to produce a stable

output. The subscript j in (4.24) denotes the view; a different condition matrix

is generated for each view.

4. Assemble the design matrix D in a manner analogous to the dlt, except in six

dimensions rather than three. This is most easily made precise with Matlab’s

meshgrid and column indexing commands:

[ii,jj] = meshgrid([1:6]); % indexing
D = chi 1t(:,ii(:)’).*chi 2t(:,jj(:)’); % design matrix
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where chi 1t is a matrix of point data with each row corresponding to the trans-

pose of a point χ1c.

5. Compute the singular value decomposition of the design matrix

[UDSDVD] = svd (D) (4.26)

6. Assemble Gproposed by reshaping the singular vector corresponding to the selected

singular value. This is generally the smallest singular value, so we reshape the

last column VD(:, 36), but others may be tested for robustness to noise — see

below for discussion.

7. Truncate G to be rank 2 by computing [UG, SG, VG] = svd (Gproposed) and recon-

structing Gtruncated using S′G where all but the first two diagonal entries in SG

have been set to zero. The resulting Gtruncated is then scaled so that its Frobenius

norm is 1.

8. De-condition the result to factor out the scaling and translations applied to the

input data:

G = ζ>L>2 GtruncatedL1ζ (4.27)

This linear algorithm to compute G is highly susceptible to image noise, even when

two-stage conditioning is used. The truncation to enforce the rank 2 constraint (Step

7 above) introduces significant error because the truncation is rather arbitrary. It

minimizes the error in the matrix norm space, but this has little or no bearing on the

actual constraint. This is explored in §5.4, but we now turn our attention to a nonlinear

method for computing G that enforces the rank 2 constraint explicitly.

4.3.2 Rank 2 nonlinear optimization method for G

The fundamental matrix should be rank 2. This section therefore describes a nonlinear

optimization that seeks a rank 2 G that minimizes the Sampson error in both views.

The parametrization defines a rank 2 matrix, so the solution obtained is guaranteed to

meet the constraint; no truncation is required.

To ensure that the result was rank 2, G was parameterized as a sum of two rank-one

matrices thus:

G = u1u
>
2 + u3u

>
4 , u1..4 ∈ R6. (4.28)

The optimization requires an initialization, and for this we shall use the output of the

linear algorithm of the preceding section. Matlab’s lsqnonlin was used to perform the

optimization (fminsearch was also tested but was found to provide inferior performance).
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This 24 parameter representation of the lifted fundamental matrix (4.28) enforces

the rank constraint, but does not expose a simple means for recovering the calibration

matrix A. Section 4.3.3 describes a method for performing this extraction in the absence

of noise, but the parametrization of §4.3.4 is superior in that it defines a G to both

include A and enforce the rank constraint. Prior to presenting these two methods we

will describe the error measure used to evaluate G.

Measuring the error for G

For a given G and known point correspondences the error is computed using the Sampson

distance approximation in each view. The error in the first view is the distance from a

point in that view to the epipolar curve of the corresponding point in the other view.

The epipolar curve is a conic θ = χ2G and the distance to the point χ1 in the first view

is given by (4.20). The error in the second view, for this same point correspondence,

is computed in the same manner. The error measure used to evaluate G obtained for a

pair of views is

error =
1
n

n∑
i=1

√
1
2
(s2

i + s′2i ) (4.29)

where si and s′i are the Sampson distance approximations for point i in the two views

respectively.

4.3.3 Recovery of A from G

We now demonstrate that the distortion matrix A can be recovered from the matrix G,

up to a projective homography. This A can then be used to rectify the two images of

the scene. Once rectified, the images and 2D correspondences can be passed through

standard structure-from-motion algorithms for multiple views (based on the pinhole

projection model, and also only determined up to a projective ambiguity) to recover

3D scene geometry.

Given G, we wish to decompose it into factors A′>FA, where F is rank two. It

is clear that any such factorization can be replaced by an equivalent factorization

(HA′)>(H−>FH−1)(HA) so we can at best expect to recover A up to a premultiplying

homography. By ensuring F has the form of an essential matrix (i.e. [t]×R where R is a

rotation) this ambiguity can be reduced to a rotation of camera coordinates.

A method for computing A by extracting its 3D orthogonal complement from the

nullspace of G is given in Appendix C.

Figure 5.12 shows the result of an implementation of this process on synthetic

data generated using the real-world A obtained from our fisheye lens. The recovered
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A does indeed rectify the house, showing that the algorithm works in principle on

noise free data. However, the assumption that the A matrix is common to both views

is not represented in the methods used to compute G. Neither the linear nor the

nonlinear methods described above enforce this constraint2. We shall now describe a

parametrization for G that corrects this deficiency.

4.3.4 Parameterizing G using the reduced RF model

Here we describe a method for parameterizing G (for nonlinear optimization) that uses

few parameters and explicitly solves for A. This speeds convergence, increases the

robustness to image noise, and simplifies the initialization.

Section 4.3.2 described a nonlinear optimization to refine the estimate of G given

a set of lifted point correspondences. The lifted fundamental matrix G is rank 2 and

this trait is used to define the 24 parameter representation (sum of two rank one

matrices). Once this G has been obtained a further step (§4.3.3) is required to extract

the calibration matrix A. This process is cumbersome and error-prone in the presence

of image noise (see §5.4).

An alternative parametrization of G is suggested by (C.1) and the reduced RF

model of §3.2.5. The reduced model for A involves only two parameters, so it is possible

to initialize the computation of G without the linear algorithm of §4.3.1. Reasonable

values for the aspect ratio a and field of view φ can be chosen or guessed for most

types of lenses. The initialization then consists of removing distortion using the initial

A and estimating a pinhole fundamental matrix F using existing techniques (Longuet-

Higgins 1981). The entire calibration involves the following steps

1. Initialize A using a guessed aspect ratio a and field of view φ according to (3.17),

the reduced Rational Function model (see §3.2.5 for a detailed description). The

constants are h = image height in pixels,
w = image width in pixels,
b =20, 000.

A transformation H is applied so that the corrected image corners are mapped

onto the original image corners.

Ainitial = HAreduced (4.30)

2. Remove the lens distortion (approximately) from the image using Ainitial. If the

2The described procedure solves for A alone; repeating the calculations with G> yields a solution for
A′. If A and A′ are the same (such as when analyzing two images taken by the same camera with fixed
internal parameters) then both of these constraints can be used to recover A. This was realized later
on, and as such has not yet been implemented.



CHAPTER 4. LENS DISTORTION: CALIBRATION 71

lifted image point data from the ith view is denoted χi then

x′i = π (Ainitialχi) (4.31)

is the distortion corrected point data for that view.

3. Condition this distortion corrected data using the 3 × 3 transformation Ti to

ensure that each dimension has RMS magnitude
√

2 and zero mean. The matrix

Ti is defined in a similar fashion to Lj in (4.25).

4. Compute the standard fundamental matrix from the conditioned, distortion cor-

rected points. This Finitial is then converted to the parameterized form

F =

× ×
× ×
× ×

[1 0 ×
0 1 ×

]
(4.32)

where × denotes a parameter entry in the matrix. This eight parameter form

ensures that F is rank two.

5. Perform nonlinear optimization with

G = A>T>2 FT1A. (4.33)

The ten parameter optimization vector contains two parameters for A and eight

for F. The conditioning transformations are passed in as constants, as are the

image points.

There is now no need for a subsequent step to decompose G, since A is explicitly

defined within the optimization. Not only does this approach simplify the algorithm, it

also makes it more robust to noise (§5.4). The reduced parametrization constrains the

form of G so that the optimization’s search space is reduced, and only includes valid

calibration matrices.

These constraints represent a number of assumptions made about the cameras we

are trying to solve for. The reduced RF model assumes a central camera with zero skew

and a distortion centre at the image centre. While this is not strictly true in general (see

§4.2.3 and Figure 4.11 for an example), it does provide a close approximation suitable

for initialization. The second assumption is more likely to be true: that the camera

parameters are the same for both views. Even if this is not known to be true it is

easily tested for. The formulation of §4.3.2 is more general in that it permits different

camera matrices, however these are needless degrees of freedom if one can determine

beforehand that the cameras are the same. In a video sequence without zoom this will

be the case, as it will for many other image sequences.
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4.4 Summary

This chapter has presented three calibration techniques for the rational function lens

distortion model, each using a different type of image information. Linear calibration

using a planar calibration grid is the simplest, and in situations where the camera

is available for offline calibration this provides a reliable calibration technique. Dot

detection is easily automated so another key feature is that this calibration can be

performed without any user intervention.

The plumbline method based on straight lines in images relies on user input to

identify which lines are truly straight in the real world. Although an elegant linear

factorization solution exists, optimization is required to make the nonlinear plumbline

method a viable calibration technique in the presence of image noise.

The multiple view calibration method also requires nonlinear optimization to pro-

vide stable camera parameters in the presence of image noise. The reduced camera

models have fewer parameters to vary and therefore constrain the optimization enough

that a stable solution can be reliably found. This reduced solution can be used to ini-

tialize an optimization of the general model. With a good starting point the nonlinear

search converges to the correct fit even with the full model.

Armed with a suitable optimization strategy, both the plumbline and multiple view

calibration methods yield very accurate camera parameters through a process that is

simple yet robust enough for general application. We turn our attention to evaluating

the performance and precision of each of these three calibration methods in the next

chapter.



Chapter 5

Lens Distortion: Evaluation

In this chapter, both fisheye and standard lenses are calibrated using the RF model

fitting algorithms described in Chapter 4. These results are compared with calibra-

tions by existing methods. We shall see that the RF model accurately represents the

distortion present in real world lenses, and provides a simplified and scalable family of

calibration procedures.

5.1 Approximation of existing distortion models

This section investigates how accurately the RF model can approximate existing dis-

tortion models. If the distortion correction provided by an existing model is taken to

be the gold standard, then this test will show how well the rational function model can

match the performance of that algorithm.

Lens distortion is often approximated by the first few even terms of a radial Tay-

lor series expansion (Hartley and Zisserman 2003, Heikkilä 2000, Tsai 1987), and this

model has been shown to achieve high accuracy (Beyer 1992). We selected a fourth or-

der polynomial and measured typical values for a lens with moderate distortion (Nikon

Coolpix). The 4th order radial model was then used to generate a synthetic set of

distorted image coordinates. Figure 5.1 shows the fitting error of several alternative

models on this synthetic data. The rational function model provides the closest ap-

proximation to the 4th order radial model, with a maximum difference less than 0.25

pixels.

For fish-eye and other lenses with extreme distortion it may be necessary to include

many higher order terms of the Taylor expansion. Devernay and Faugeras (2001)

suggest that a more concise representation is obtained through parameterizing on the

field of view (FOV), since these lenses are designed so that the image resolution is

roughly proportional to the distance from the image centre.

73
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Figure 5.1: Synthetic comparison of the rational function model with existing lens
distortion models. Left Moderate polynomial distortion corresponding to a standard
consumer lens. All models are compared to the 4th order fit as it seems to be the most
commonly used. Note that for low distortion the FOV model collapses to the division
model. Right Fish-eye lens distortion is fit best by the FOV model, so it is taken as
ground truth. The rational function model provides a very close approximation, and
can be fit linearly.

Figure 5.1 also provides a comparison against this FOV model (synthetic data was

generated based on the observed parameters of a Raynox 0.3X fish-eye adapter fitted

to a Canon XM2 digital camcorder). Once again, the rational function model provides

an extremely close approximation while the polynomial models vary widely.

Both of these tests compare the rational function model against other distortion

correction methods. While this provides an indication of how well the new model will

perform on data that the existing techniques model exactly, such an exact fit is never

realized in an application. It is important to bear in mind that all of these models are

merely approximations to a camera’s true distortion function; we would like to select

the model which most accurately fits this underlying (unknown, and potentially highly

complex) function with the least number of parameters. The next section therefore

compares each of the distortion models (including the rational function model) against

real image data.

5.2 Planar Grid Calibration

This section compares the accuracy of removing lens distortion from an actual image

of a calibration target using the various distortion models under consideration. The

overall approach is to detect some positions within a distorted image, correct the dis-
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Figure 5.2: Comparison of distortion removal for the lower right corner of the grid
in the image shown. For each of the comparison models, distortion parameters and
a planar homography were fit via nonlinear optimization. The RMS errors (in mm)
for each calibration method are listed in the legend; with no distortion correction the
RMS error is 6.76 mm, and the overall dimensions of the target are 277 × 184 mm.
The RF model is comparable with the fish-eye specific FOV model, but permits linear
estimation.

tortion, and then measure the error as the distance between the distortion corrected

points and some known ground truth locations for the points. The challenge is in how

to define the ground truth. Since all of the distortion correction techniques I study

allow the production of an image that follows the pinhole projection model (refer to

the introduction to this chapter for a discussion of this point), one might try to produce

the pinhole image that corresponds to the distorted one to use as ground truth. This

requires knowledge of the feature positions in the real world, internal camera para-

meters, and the camera position in the world coordinate frame. The first of these is

easily obtained by using a planar calibration grid of known dimensions and defining the

world coordinate system relative to that plane. The camera parameters and position,

however, are in general not known a priori and are difficult to measure independently

of lens distortion (Heikkilä 2000).

A camera’s internal and external parameters can all be treated as a single projective

homography that maps planar world points to planar image points under the pinhole

projection model (see §2.2 for further details). We therefore adopted a two-stage ap-

proach for obtaining the ground truth: the lens distortion was compensated for by

the chosen model, and then a projective homography was used to map the distortion

corrected points onto the planar locations of the calibration grid markers. These two

stages are illustrated in Figure 4.1 (as it is the same as the process used for linear

calibration of the rational function model). Error measurements can now be made in
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Model Equation

Rational Function (p, q) =
(

A>
1
χ(i, j)

A>
3
χ(i, j)

,
A>

2
χ(i, j)

A>
3
χ(i, j)

)
Field of View (3.4) (p, q) =

tan(rdφ)
2rd tan(ω/2)

(id, jd)

4th order Radial (3.1) (p, q) = (1 + k1r
2
d + k2r

4
d)(id, jd)

Division (3.2) (p, q) =
1

(1 + λr2
d)

(id, jd)

Bicubic (3.3)
p = b1i

3
d + b2i

2
djd + b3idj

2
d + b4j

3
d + b5i

2
d + b6idjd + b7j

2
d + b8id + b9jd + b10

q = c1i
3
d + c2i

2
djd + c3idj

2
d + c4j

3
d + c5i

2
d + c6idjd + c7j

2
d + c8id + c9jd + c10

Table 5.1: Summary of the distortion models used in planar calibration grid image
correction tests. Aside from the rational function model, each of the comparison models,
distortion parameters and a planar homography were fit via nonlinear optimization.
The rational function model was fit linearly and includes the homography.

millimeters on the calibration grid.

Model specific calibration procedures are available for several of these distortion

models, however for this test they were all calibrated by nonlinear optimization (see

Figure 5.3 to confirm that global rather than local minima were achieved in all cases).

This consistency ensures that it is the models that are compared and not the models

coupled with their calibration methods. Although the latter would also be an interesting

study, it is relegated to the realm of future work. The optimization was initialized

to be a pinhole camera for each different model; this was found to yield the global

minimum in each case. This optimal solution was tested by repeating the search both

with random initialization values and by initializing with the parameters of the most

accurate solutions found by any of the algorithms. In every trial the error either

matched or was larger than that reached from initialization as a pinhole camera.

Figure 5.2 shows the input image for calibration and a plot of the distortion correc-

tion results for the lower right-hand portion of the calibration grid. This section of the

grid is highlighted because it is near the corner of the image — the area where errors

in distortion correction tend to be greatest. As described above, the ground truth data

is the dot pattern on the planar calibration grid. These locations are plotted as grey

circles in Figure 5.2 right. The distorted image locations (i, j) are mapped onto this

grid by first removing lens distortion according to the chosen model
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RMS errors (mm)
Model Raw Transformed a cx cy Model parameters

None 6.76
Division 2.32 2.30 -1.05 -37.5 -101.2 λ = -0.994
Radial 2.31 2.01 1.07 6.9 -152.7 k1 = -0.115 k2 = -4.16
Bi-cubic 0.69 0.69 -2.19 31.6 -158.0 See below
FOV 2.34 0.14 1.07 12.7 -84.4 φ = -1.77
Rational 0.20 0.20 n/a n/a n/a See below

Bi-cubic parameters:
b = [ 1.69 14.10 7.89 54.36 0.94 2.59 7.48 1.15 9.36 1.32 ]
c = [−10.70 7.12 −45.44 27.18 −1.42 −2.90 1.99 −6.71 4.70 1.49 ]

Rational parameters: A>
1 = [ 0.009 −0.011 −0.035 0.879 −0.069 0.018 ]

A>
2 = [−0.005 0.050 −0.014 0.068 0.816 0.103 ]

A>
3 = [−1.122 0.005 −0.983 0.107 −0.282 1.000 ]

Table 5.2: Table of residual errors and calibration parameters for planar grid distortion
correction by various models.

(p, q, 1) = F (i, j) (5.1)

and then applying the projective homography H

(x, y) = π
(
HF (v; i, j)>

)
. (5.2)

which minimizes the difference between the transformed locations (x, y) and the coor-

dinates of the dots printed on the calibration target. The distortion models F (v; i, j)

(with v denoting the model parameters) are described in §3.2.5, but the pertinent

equations are listed in Table 5.1 for easy reference. The distorted radius is given by

rd =
√

(i− ic)2 + a2(j − jc)2 where (ic, jc) is the distortion centre and a is the pixel

aspect ratio. As discussed in §3.1, the distortion centre need not coincide with the

principal point in an image. A reasonable initialization for these values is to set the

distortion centre at the image centre, and the aspect ratio to one. However, this should

only be viewed as an initialization; particularly for lenses with significant distortion

these values lead to unacceptably large calibration errors. Table 5.2 lists the numerical

results of calibration using each of the distortion models. The column of “raw” RMS

errors are for a calibration centred at the image centre with an aspect ratio of one.

The errors reported in the “transformed” column include the centre of distortion and

aspect ratio in the distortion function optimization:

(x, y) = π
(
HF (v; i− w/2− cx, (j − h/2− cy)/a)>

)
. (5.3)
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Here w and h are the scaled width and height of the 720× 576 pixel image. The cali-

bration grid measures 277× 184 mm overall, but both sets of coordinates were centred

and scaled so that the horizontal axes’ ranges were [−0.5 . . . 0.5]. The parameters in

Table 5.2 are for the transformed input data and expressed in these scaled coordinates,

with the exception of the distortion centre offsets. These are given in original image

pixels to maintain a familiar frame of reference. The error measure was the RMS value

of the distances between the 850 mapped image points and their true grid locations.

These distances are measured in the plane of the calibration target, and are therefore

expressed in millimeters.

The distortion correction results listed in Table 5.2 highlight a number of points

regarding these models and their ability to fit wide angle distortion. The Division

and Radial models have large error values, and incorporating the aspect ratio and

distortion centre makes very little difference. These errors result from the model’s

inability to fit the underlying distortion function. As a point of reference, the error

is 6.76 mm if only an alignment homography is used. This is the pinhole projection

case where lens distortion is ignored. The Bi-cubic and Rational models also do not

exhibit any change in error with the addition of the pre-transformation parameters

because the model itself is compensating for the centre offset and aspect ratio. In this

case, however, the errors are identical and much lower. Note that the Rational error is

substantially lower than the Bi-cubic, even though the latter employs a larger number

of parameters. The additional parameters and higher order polynomials of the bi-cubic

model are insufficient to compensate for the lack of a rational function denominator.

The FOV model is the only one that exhibits a significant change with the inclusion

of aspect ratio and centering parameters. When these pre-transformation parameters

are correct, the single parameter FOV model produces the best fit of all the models

tested. This indicates that its underlying function of trigonometric relations models

wide angle lens distortion quite well. However, its performance is highly dependent on

the aspect ratio and distortion centre; if these are incorrect the performance degrades

to the level of the worst models tested. In essence this is then a three parameter model

with v = [a, cx, cy, φ]. If only the aspect ratio is varied the error was found to be 2.31

mm, but if the distortion centre alone was varied the error was 0.54 mm. Thus for this

model, the distortion centre is more important than the aspect ratio, but using both

produces the best results. A further test was made using the aspect ratio and centre

offsets obtained from the FOV optimization as the values for the other models. Fixing

these values for the division and radial models (the only others where these values made

a difference) was found to increase the error. This indicates that the optimizations are
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Figure 5.3: Residual errors after removing distortion from a wide angle image (Fig-
ure 5.2) of a planar calibration target. The projected error measured in the plane of
the calibration object is plotted at each image pixel location within the convex hull of
the detected dots. The rational function model nearly matches the performance of the
fisheye specific FOV model, yet can be fit linearly. All dimensions are in pixels.

functioning correctly (finding the parameters to produce the lowest error) and that the

problem lies with the form of the underlying model rather than with the parameters.

We will now discuss some of the details of the optimizations used to compare these

models. All models were initialized with the pinhole perspective model; that is, dis-

tortion parameters were set to zero, no image centre offset and an aspect ratio of one.

Each optimization converged to the results given in Figures 5.2 & 5.3 and Table 5.2.

Each optimization was then repeated 100 times with random initial values to test if

these results represent a global (as opposed to a local) minimum. In no case was a

lower residual error obtained, and between 43% (for the FOV model) and 80% (for the

Bi-cubic model) of the runs converged to the minimal error reached from the pinhole

initialization.

The results plot in Figure 5.2 indicates the direction and relative magnitude of errors

from the different distortion models, but it doesn’t indicate the error distribution over

the image area. For this we turn to the error plots of Figure 5.3. The x and y axes

of each plot are the image dimensions in pixels, while the vertical axes indicates the

error for that pixel location when it is projected into the plane of the calibration grid.
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This error is measured in millimeters, the unit of measure for the calibration plane.

Note that the FOV and RF plots have been scaled by a factor of 10 to show detail; the

colormap is consistent with the other plots however, to facilitate comparison. The gap

in each surface is from the missing data point where there is a small rectangle in the

calibration grid. This rectangle is used in establishing the dot correspondences.

Note the predominant wave shape in the first three plots of Figure 5.3, which

indicates a failure to accurately model the lens distortion. This shape is less pronounced

in the bi-cubic plot as the higher order polynomials provide a better fit. Some artifacts

remain however, which indicates that a still higher order polynomial model may perform

better. By contrast, both the FOV and Rational models do not exhibit the same gross

fitting error. Recall that the vertical scale on these last two plots is amplified by a factor

of 10; the fitting error is almost on the order of the image noise, which has become

evident in these plots. The FOV model is based on the fish-eye lens design parameters;

this physical basis results in an excellent distortion fit. There is a slight bias from left

to right, but very little residual curvature. The flexibility of the RF model yields a

very close approximation to both the FOV solution and the true lens parameters, and

can be fit linearly from a calibration grid. Here we have seen that the rational function

model can be fit linearly in a single step, without the need to first estimate the aspect

ratio and distortion centre, and that the residual errors are on the same order as the

best lens-specific model available.

5.3 Plumbline Calibration

The noise sensitivity of the linear factorization was already explored in §4.2.1; careful

conditioning of the input data helps somewhat, but the calibration still fails to rectify

above a noise level of 0.01 pixels. For this reason the linear plumbline method is not

recommended for use in practice. The recommended optimization method is examined

later in this section, but first we shall describe the line detection process used to gather

the input data to these plumbline methods.

Line Detection for Plumbline Methods The first task in finding straight lines

is to detect curved line segments in the distorted image. This is accomplished semi-

automatically as shown in Figure 5.4.

Edgels are detected to subpixel accuracy using the Canny edge detector (Canny

1986) with image smoothing σ = 1.6 and edge magnitude threshold t = 6.0. This

returns a set of locations where strong edges were located, but no relationships between

the edgels are known. Delaunay triangulation is the first step in assembling the edgels
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(a) (b) (c) (d)

Figure 5.4: Steps used to detect plumblines in an image. (a) Subpixel Canny edge
detection (b) link adjacent edges into chains (c) break the chains into linear sections
by thresholding on curvature (d) manually identify sections that belong to individual
lines that correspond to straight lines in the real world.

into linked chains. This triangulation links each edge to its nearest neighbours. Any

triangle edges longer than some threshold (set to 3 pixels in our tests) are deleted. Any

remaining junctions or branches are evaluated and only the longest possible chains are

kept.

Since we are collecting edge segments as input data to a plumbline distortion correc-

tion method we cannot assume that the line segments will be linear. We can however,

expect that any curvature induced by the lens distortion will be smooth. Thus we are

seeking smoothly varying edge chains; which can be obtained by breaking the linked

chains from above at every point where there is an abrupt change in edge orientation.

If the orientation of a specific edgel is given by φ(k) then a chain is broken at each

point that

|φ(k)− φ(k + a)|+ |φ(k)− φ(k − a)| > thresh (5.4)

where the offset a = 5 and thresh = 0.4 radians.

The task of determining which curved image line segments correspond to straight

lines in the real world scene was performed manually for the tests described here.

Although it may be possible to partially automate this difficult task (Devernay and

Faugeras 2001), the prior knowledge possessed by a human operator is too great to try

reproducing it in digital logic for this task (refer to Figure 5.5 for an example). It takes

only seconds for a user to view an image and select half a dozen lines which stand a

good chance of arising from truly straight world features. These lines do not need to

be continuous; it is advantageous to have data from long lines, but there may be large

gaps between detected edgels if they are all identified as part of the same line.

Thus we have adjacent edgels linked into curved segments e = e1 . . . eL that repre-

sent straight lines in the real world. We shall refer to the kth edgel in linked segment `

as e`k = (ilk, jlk).
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Figure 5.5: An example of a common scene that contains many gently curved lines. A
human operator can easily identify the edges of the television set as curved surfaces
based on prior knowledge. It would take considerable effort to replicate that information
in an automatic line detection scheme.

5.3.1 Reduced RF consistency

The first test of the RF plumbline technique compares the parameters obtained by

fitting the reduced model to lines from different image sequences. This is the stan-

dard procedure whereby a camera is calibrated based on several images and then that

calibration is applied to other images from the same camera. To examine the validity

of this procedure, we performed separate calibrations on three different sets of images

from a single camera and then compared the calibration parameters obtained from each

image set.

The first image set used for calibration is actually a single image (see Figure 4.2

left) of a man-made building where 21 lines were detected. A total of 5805 edgels were

available for this calibration. The second set is also only a single image, this time of

a planar target chosen for plumbline calibration (see Figure 4.9). Twenty-three lines

containing 10, 716 edgels were detected in this set of concentric rectangles. Finally, two

images of a wrought iron fence constitute the third set. These images contain 4574

edgels in seven lines from each image, and are shown in Figure 4.12.

The calibration parameters for the three image sets are summarized in Table 5.3.

The aspect ratio and field of view parameters agree across these three sets. The low

residual error indicates that the reduced parametrization fits this lens quite well. The

initialization values were a = 1.07, φ = 0.5, and b was fixed at 2 × 107. All images

are 720× 576. It should be noted that in practice all the lines from all the image sets
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Image set Lines Edgels a φ Residual
Tower 21 5805 1.03 0.68 0.42
Grid 23 10,716 1.04 0.63 0.36
Fence 14 4574 1.06 0.70 0.62

Table 5.3: Consistency of the reduced RF model. The residual errors are the RMS
Sampson distances from the edgels to the corresponding conics, measured in pixels.
The parameters for each set, estimated from only one or two images, display excellent
agreement.

would subsequently be combined into a single calibration. Using all available input

data will provide an increase in accuracy in the parameter estimation for this lens.

The optimization framework is quite efficient, so although this combined calibration

contains over 21, 000 data points, the algorithm converges in under 200 s on a 1.6 GHz

laptop.

The reduced parametrization is a stable framework in which to perform the opti-

mization for calibration parameters. One measure of this robustness is the sensitivity

to changes in initialization values. In Figure 4.9 the optimization was initialized with

both φ = 0.001 (pinhole camera, shown) and φ = 1 (180◦ field of view); each converged

to the same result, implying a wide basin of convergence. A second measure is the

ability to cope with noisy input data. Convergence was also verified on synthetic data

with a noise level of 2 pixels (Figure 4.5).

5.3.2 RF vs. the Matlab Calibration Toolbox

The checkerboard image sequence shown in Figure 5.6 was used to compare the RF

plumbline calibration with the Matlab Camera Calibration Toolbox (Bouguet 2003).

The Toolbox requires multiple images taken from different camera orientations; a to-

tal of 14 images were supplied as input. The corners between checkerboard squares

are detected based on overall grid corners, spacing, grid dimensions, and distortion

estimates supplied by the user. From these corners the intersections are detected then

camera intrinsic and extrinsic parameters are computed through an iterative refinement

procedure. Figure 5.6 shows the points used from one of the input images.

The distortion model includes radial, tangential and decentering terms as detailed

in (3.1). The resulting calibration coefficients are listed in Table 5.4. The standard

deviation of the reprojection error in each coordinate direction (reported as pixel error)

is well below one pixel. This indicates that the model has accurately modeled the input

data. However, the majority of the calibration points used by the toolbox were located

in the central portion of the image and the many-parameter model diverges outside

the region where calibration data is available. Figure 5.7 shows the same input image
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Checkerboard image sequence

X

Y O

Input image #12 Calibration Toolbox Data Rational Function Data

Figure 5.6: Rational function reduced parametrization compared with the Matlab
Calibration Toolbox (Bouguet 2003). Both models were calibrated from the checker-
board image sequence; 14 images were used by the toolbox, while the RF plumbline
method was applied to eight lines from the single image shown.

rectified by the Toolbox model. Note that the interior squares of the checkerboard have

straight edges, but the square in the lower left corner is far from aligned. This problem

may be partially alleviated by using images where the calibration pattern occupies a

larger portion of the image. With wide angle lenses such as was used in this example it

is, however, quite difficult to obtain an in-focus image of a planar target that fills the

view. An additional problem is that the Toolbox requires all the corners in an m × n

grid to be detected, something which is difficult as the grid is pushed further towards

the perimeter of the image area.

To make a fair comparison between the Toolbox results and those obtained from

the RF model, plumblines were only taken from within the image area of the corners

used by the Toolbox. A sample set of detected lines are shown in Figure 5.6. Each

Radial Distortion: k1 =-0.30884± 0.0019 k2 =0.09597± 0.0020
Tangential Distortion: p1 = 0.00011± 0.00018 p2 = 0.00031± 0.00024

x y Units

Focal length: 412.312± 0.706 438.873± 0.678 pixels
Principal point: 370.674± 0.560 275.392± 0.570 pixels
Skew: Not estimated
Pixel error: 0.13192 0.11100 pixels

Table 5.4: Results from Matlab Calibration Toolbox for fisheye images. The input
images are shown in Figure 5.6 and the result of using these parameters to remove the
distortion in an image is shown in Figure 5.7. The pixel error is the standard deviation
of the reprojection error in the x and y directions respectively.
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Calibration Toolbox Rational Function

Figure 5.7: Distortion corrected input images. The toolbox implements a full radial,
tangential and decentering model (3.1), yet it fails to rectify towards the image bound-
ary. Distortion correction via the RF model does a much better job of generalizing to
the entire image. Compare the squares in the lower left corner of each image.

line selects edgels from every other square in the checkerboard pattern; the reversing

gradient direction between squares causes an offset (due to edge detection bias) that

could introduce oscillations into the curve fit. The outer two lines all around the

perimeter of the calibration region were selected for a total of eight lines per input

image. Calibration was performed using lines from a single image, as well as using the

lines from all 14 images.

A test image is needed to observe how well the distortion corrections generalize to

other images taken with the same lens, and also to measure their ability to extrapolate

to the image boundary. An image of concentric rectangles (Figure 5.8) can be used

to measure the residual errors after removing the (predominantly radial) distortion.

Define a set of ground truth rectangles based on the spacing and aspect ratio of the

physical pattern. We then find the homography that maps the distortion-corrected

edgels onto the ground truth rectangles by minimizing the perpendicular distance be-

tween each mapped edgel and its corresponding rectangle side. This was done via

nonlinear optimization for each set of residuals. The result is a least squares optimal

placement of the corrected data relative to the ground truth. This method could be

extended to include weighting of the residuals based on distance from the distortion

centre, for example. For our tests we are interested in the error distribution across the

entire image equally, so no spatial weighting was applied.

The results of this alignment via projective homography are shown in Figure 5.8.

The Calibration Toolbox image clearly shows the failure of the many parameter model

to extrapolate to the image perimeter. Some curvature is evident even in the interior



CHAPTER 5. LENS DISTORTION: EVALUATION 86

Input Calibration Toolbox RF Planar grid

RF Plumbline RF Plumbline RF Plumbline RF Plumbline
1 image, reduced 1 image, full 14 images, reduced 14 images, full

Figure 5.8: Generalization test: various calibration techniques were applied to data
from the checkerboard image sequence 5.6. The concentric rectangles illustrate the
ability of the calibration to rectify the entire image region. Qualitative inspection
indicates that the Calibration Toolbox fails to rectify the outer portion of the image,
but comparing the RF models requires the quantitative analysis of Figure 5.9.

rectangles. Compare this image with the rectification from the RF planar grid method.

In the latter case there is little or no residual curvature evident in any of the lines.

This calibration is a linear algorithm (§4.1), yet it removes distortion better than the

iterative Toolbox model. The linear algorithm only needs a single image for calibration

(Figure 5.2) while the Toolbox used 14 checkerboard images. To ensure that this is a

fair comparison, a RF calibration was also performed using the checkerboard images.

The checkerboard edges shown in Figure 5.6 were fed to the RF Plumbline method, and

the resulting distortion model was used to correct the images shown in the bottom row

of Figure 5.8. As noted in the caption, the calibration was performed using data from

a single checkerboard image, as well as from all 14 images. Both the full and reduced

parameterizations were used, but the results for all of these test cases are not visually

different, so we turn our analysis to the residuals themselves.

Figure 5.9 contains visualizations of the spatial error distributions. Each mapped

edgel is colour coded based on its residual error; edgels that are closer to the centre of

the image than their ground truth line are shaded red, while those outside are blue. An

edgel that coincides directly with its ground truth line (zero error) is shaded purple.

The ground truth rectangles are shown in white for reference. The colour scale for

each image is defined by three times the standard deviation of its residuals, so the
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Calibration Toolbox (7.32) RF Planar Grid (1.47)

RF Plumbline reduced, 1 image (1.53) RF Plumbline full model, 1 image (1.44)

RF Plumbline reduced, 14 images (1.34) RF Plumbline full, 14 images (1.03)

Figure 5.9: Extrapolation of calibration from checkerboard data in Figure 5.6. Residu-
als are measured relative to concentric rectangle ground truth (thin white lines) fit via
homography; the colour coding conveys the spatial error distribution with red indicat-
ing residual errors inside the ground truth and blue being outside. The rms pixel error
for each calibration is given in parentheses.
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RF Plumbline reduced (1.18) RF Plumbline full (1.11)

Figure 5.10: Rational Function plumbline calibration based on edgels in the concentric
rectangle image to demonstrate the level of rectification possible by direct fit. The
edgels used for this calibration are the ones used to measure the residuals in Figure 5.9.
The rms pixel error for each calibration is given in brackets, and the colour coding is
the same as for Figure 5.9. Refer to the text for an explanation of the higher error
(1.11 pixels) than observed in the previous figure (1.03 pixels)

shading does not permit comparisons between images. The error magnitude between

methods is evaluated by the rms pixel error. The error on the Toolbox image is over

four times greater than for any of the RF models. The results obtained using lines from

a single image compares favorably with the RF planar grid results, particularly if the

full model is used. Using data from additional lines (all 14 images) improves the result;

if the full model is used the residuals are the lowest observed for calibrating this lens.

This indicates that the RF model extrapolates well to the image boundaries, even if

the full model is used.

The RF plumbline model was calibrated on the line data from the verification im-

age (concentric rectangles) itself to evaluate the generalization of the calibration. The

results (Figure 5.10) indicate a higher rms error (1.11 pixels) than was obtained with

the calibration on the checkerboard images (1.03 pixels). Although the checkerboard

calibration has to extrapolate to the image boundary, and the images are from a differ-

ent sequence, the additional data available in that set (from using eight lines from 14

images) provides such an advantage that the resulting calibration is better than that

obtained by calibration on the test image itself.

These higher residuals are not the result of premature convergence of some local

minima in the homography optimization. Instead, they are higher because the A ob-

tained from the plumbline calibration on the rectangular line data from this single

image is not as accurate as the A obtained by the plumbline method on data from all

14 checkerboard images.
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Input image of a courtyard in Venice Rectified image

Figure 5.11: A 180◦ field of view fisheye image of a Venetian courtyard corrected via
plumbline calibration of the reduced parametrization. Only the central portion of the
rectified image is shown so that the highlighted buildings would be displayed at a
higher resolution. Although there is some residual curvature evident at the vertical
building edge in the centre of the image, the reduced model has done a remarkable job
of correcting this complicated lens.

Another fisheye lens Figure 5.11 shows the result of calibrating the distortion

from pinhole that is present in an image taken with a Sigma 8mm-f4-EX lens fitted

to a Canon EOS-1D digital camera. The input image is one of thirteen images from

the Venice Yard QY dataset recorded by Branislav Mičuš́ık, although calibration lines

were selected from several of the images for convenience. We observe that all of the

foreground lines have been accurately rectified. There is a slight curve to the vertical

edge of the building on the right in the centre of the image, but this is fairly minimal.

One of the assumptions of the plumbline method is that lines chosen for calibration

represent straight line in the real world. With old buildings (particularly those built

on wooden pilings in a lagoon, such as those in Venice) this may not be strictly true.

In spite of this, the plumbline calibration provides a highly accurate image rectification

of this 180◦ field of view fisheye lens.

5.4 Multiview results

We present results on two experimental questions: how stable is the computation of G

as measured by the quality of epipolar curves; and how effective is rectification using

the recovered A. The performance of the linear algorithm and the rank two optimiza-
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tion are examined first. Both of these methods use the entire modelling power of the

rational function model, but make assumptions that cause them to be unstable in the

presence of noise. This establishes the motivation for moving towards a more reduced

parametrization that can provide auto-calibration from point correspondences in real

images.

5.4.1 Noise sensitivity of computing G

Synthetic tests of the recovery of G were carried out by distorting two images of a

3D model using an A obtained from the calibration of an actual fisheye lens. The

two images and a view of the original model are shown in Figure 5.12. The model

contains 959 points which are imaged in each view, and make up a set of image point

correspondences. Gaussian noise was added to these points at known amplitude levels

to study the stability of the algorithms. The RMS value of the Sampson distances

from the points to their epipolar conics was used as the error measure; this is the same

error used in the nonlinear optimizations, as described in §4.3.2. The results are shown

in Figure 5.13.

Ground truth was established by removing the distortion using the same Acalibration

used to introduce it, and then computing the pinhole fundamental matrix F for the pair

of views. The lifted fundamental matrix is reconstructed as

Gground = A>calibrationFAcalibration. (5.5)

This is the same procedure as the initialization of the reduced parametrization opti-

mization described in §4.3.4, except that the initial A is actually the correct one in this

case. The ground truth establishes a lower bound (plotted as the dotted black line in

Figure 5.13) for the amount of Sampson error that is introduced by the noise on the

image points alone; any error above this level can be attributed to the calibration pro-

cedure. One other aspect of the results plot should be mentioned before we move onto

(a) (b) (c) (d)

Figure 5.12: Rectification can be performed from two views and no additional infor-
mation. (a),(b) two synthetic images of a house model (c) rectified structure computed
from two views (d) original 3D model.
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Figure 5.13: Sampson error for computing the fundamental matrix G from synthetic
data with various noise levels applied. Ground truth (black dotted line) was established
using the calibration A and then fitting F to pinhole data. Data conditioning and
nonlinear optimization (NL) reach the base error level for low noise. With a nonlinear
RANSAC strategy (refer to text for details) the global Sampson minimum is found
even for practical noise levels. Fitting G parameterized by the reduced model for A
demonstrates modelling error at low noise, but is stable at higher levels. It also provides
an explicit definition of A within the fundamental matrix.

discussing the various calibration methods. Vertical and horizontal lines are included

at 0.2 pixels. These mark a threshold of either realistic image noise or acceptable error,

respectively. The actual values will vary from one application to the next, but this level

provides a reference point for discussion.

The first calibration method listed in the legend of Figure 5.13 is the linear method

without conditioning. This approach is not recommended, as the error crosses the

0.2 pixel threshold at a noise level barely above 10−4 pixels. Note also that the error

axis has a logarithmic scale, so the flat portion at the top of this curve represents a

Sampson error of over 100 pixels. Clearly this is not an effective strategy for removing
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Figure 5.14: Singular values obtained for various noise levels. If the solution is always
taken to be the unit singular vector corresponding to the smallest singular value then
an incorrect choice is made after the transition at noise level 10−3. The correct singular
value is the one which lies along the diagonal line.

lens distortion.

Conditioning the linear algorithm helps somewhat1, but the method still fails at

the unacceptably low noise level of 10−3 pixels. The reason for this failure is the rank

truncation of the matrix; without truncation the errors closely follow the ground truth.

However, we require that the fundamental matrix be rank two, so an alternative means

of meeting this constraint is needed.

The nonlinear optimization of §4.3.2 parameterizes G as a rank two matrix. The

first test of this optimization aims to verify that there is a stable minimum in the opti-

mization error space that corresponds to our goal. The algorithm was initialized with

Gground and the results of the optimization are plotted as black circles in Figure 5.13.

This curve exactly matches the ground truth, indicating that this is a stable minimum

in the solution space.

When this optimization is initialized with the results of the linear algorithm the

same minimum is reached for low noise levels. The slight increase over the ground

truth error at very low noise levels is not significant as a noise level of 10−5 pixels is

not practically achievable. Just above 10−3 pixels the result for the algorithm without
1Discussions of normalization for this type of linear algorithm (based on the Direct Linear Transform)

can be found in Hartley (1997), Chojnacki and Brooks (2003) and Hartley and Zisserman (2003).
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conditioning undergoes a dramatic increase. It is at this point that the image noise

becomes significant: as with any nonlinear optimization, this one requires a reasonable

initialization. The linear algorithm used for this initialization constructs G from one

of the singular vectors of the design matrix D (refer to 2.4.3). The singular vector

corresponding to the smallest singular value is chosen to provide the null vector. The

smallest singular value should be much far less than the others and in the absence of

image noise, this is the case. However, as shown in Figure 5.14, this singular value d36

increases linearly with noise. At approximately 10−3 pixels of noise we observe that d36

intersects the path of d35. At this point the noise level is the order of the solution data.

Beyond this level the smallest singular value is no longer the correct one; the correct

one to use continues to increase in proportion to the noise level. Although one might

expect that a situation such as this would use a linear combination of the eigenvectors

corresponding to the two smallest eigenvalues, in this case it was found that the correct

answer is obtained by using the correct eigenvector on its own. This surprising result

suggests that there is some structure to the problem which means that there should be

a singular value at 10−3.

The slope of the line in Figure 5.14 and the transition noise levels aren’t known

ahead of time, so an exhaustive test procedure was employed to determine the correct

singular value. Each singular vector was used, in turn, to generate Gproposed and the

Sampson error for that fundamental matrix and all image points was measured. The

singular vector that produces the lowest error was then chosen. Note that Figure 5.14 is

for conditioned data with the linear algorithm; without conditioning there is insufficient

spread in the singular values for the noise to have a significant affect on their relative

magnitude. This is reflected in Figure 5.13, where we see that the conditioned nonlinear

result continues to follow the ground truth beyond 10−3 pixels of noise (at least for

several more data points) while the non-conditioned linear results degenerate.

The conditioned nonlinear algorithm (with singular value testing) still fails at a noise

level of 0.2 pixels. Fortunately we still have one more trick up our sleeve. RANSAC is

normally used to reject mismatched image point correspondences within the context of

multiple view geometry. We can use it here to reject as outliers those points which have

had large amounts of noise added. By throwing out the noisiest point correspondences

we can remove the data which is causing the algorithm to converge on the wrong

minimum.

The RANSAC strategy used here selects a random set of 40 point correspondences

to use in computing the linear initialization for G. This is done using conditioning and

exhaustive singular value search. The initial G is passed to a nonlinear optimization
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that uses all of the point correspondences (not just the subset chosen for this RANSAC

iteration) for refinement. This process was repeated for 500 iterations at every noise

level. The results were evaluated on the Sampson error for the nonlinear G; the best

iteration at each of the higher levels of noise is plotted as a blue asterisk in Figure 5.13.

Selecting a subset of the points has produced linear initializations that fall within the

basin of convergence of the nonlinear optimization. The error level has been reduced

to that of the ground truth, but at significant computational cost. Each sample test

involves a full nonlinear optimization, and 500 samples were tested for this analysis.

This is not a practical approach for most applications.

We now present results of the nonlinear optimization parameterized by the reduced

RF model, an approach that yields comparable results with much less computational

effort. The reduced parametrization of §3.2.5 defines A as three ellipses which describe

the lens distortion. Once the distortion is removed the two views are related by a pinhole

F so G = A>FA. Using this parametrization in the nonlinear optimization (the algorithm

is described in detail in §4.3.4) provides stable convergence at all measured levels of

image noise (green curve in Figure 5.13). At very low noise levels this algorithm has a

Sampson error that is considerably higher than the level for the other algorithms. The

flat portion of the curve in Figure 5.13 indicates the level of modeling error associated

with the reduced parametrization for A. Constraining the model to use fewer parameters

(this case used five: aspect ratio a, field of view φ, radius b, and two ellipse centering

terms to model skew and distortion) limits its ability to fit very general lens distortion.

In practice this is not an issue because the model error is only significant below a noise

level of 0.05 pixels, and even then the Sampson error that it introduces is 0.04 pixels in

magnitude. So the error introduced is too small to be significant for most applications,

and it is only observed at artificially low noise levels.

The first advantage of the reduced parametrization in multi-view calibration is

increased stability in estimation of G in the presence of image noise. We now turn

our attention to the second advantage: it provides an explicit definition for A. The

previous algorithms rely on the technique of §4.3.3 to extract A from a given G. The

rectified house in Figure 5.12c demonstrates that this extraction works, however that

is a noise-free example. The algorithm is unstable at even low levels of image noise,

as shown in Figure 5.15. That plot is really a continuation of the analysis and results

for Figure 5.13, for a fundamental matrix G (even with low Sampson error) is only as

useful as the A calibration that can be recovered from it. The fundamental matrix

was computed by the most successful methods described above, and then an extracted

A was used to rectify the left house image (Figure 5.12a). A straight line was fit to
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Figure 5.15: Error in removing distortion from synthetic images using A recovered from
correspondences in two views. An error baseline (clean A) was obtained by rectifying
the noisy data with the A used to generate the distorted views. The algorithm to
extract A from G (used for the three datasets marked by points only) is highly unstable,
whereas parameterizing G by the reduced A model provides stable recovery at all noise
levels.

each line segment and the perpendicular distance from each rectified point to that line

was measured. The RMS value over all 959 points is reported as the perpendicular

error in Figure 5.15. A lower bound error was plotted by fitting Aclean to image points

without noise and then using that result to rectify the noisy image points. Although

this provides a baseline, it isn’t exactly the lowest error as adding noise to the data

could alter it such that Aclean is no longer optimal. This is likely the cause for the

slight offset observed in the results for Aclean in Figure 5.15 (solid black line). The

calibration A and pinhole fundamental matrix data (black crosses in Figure 5.15) was

the ground truth for the Sampson error analysis, but here we see that even with such

a reliable G the decomposition of A is not stable. At several noise levels the lower

bound was reached, suggesting that further work may improve the performance of this

technique. The general fundamental matrix optimization (conditioned and RANSAC)

demonstrates similar behaviour, although the lowest observed errors are higher than in

the calibrated A case.

A more reliable approach is to optimize using the reduced parametrization. This

provides A without needing to decompose G, a technique that is better conditioned

because it constrains the optimization in a manner which matches the underlying model.

These results are shown as the green curve in Figure 5.15. The flat portion up to a
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Figure 5.16: Images rectified using A matrices recovered from G using point corre-
spondences alone. Left This reconstruction used the full 18 parameter A which is too
general for stable fitting from real data. Although the epipolar curves have correctly
been straightened, the vertical lines are not straight. Right Using the reduced parame-
trization for A results in a correct rectification.

noise level of 0.05 pixels of noise is at 0.04 pixels of error, and represents the error

introduced by the simplifications of the reduced model for A. As mentioned earlier in the

discussion of the Sampson error, this error is only significant at impractically low levels

of noise, and even then the error is small enough to be tolerated for most applications.

The fact that the rectification error so closely matches the Sampson error reinforces the

suitability of Sampson error as a metric for judging the performance of this type of image

rectification. Returning to Figure 5.15, we see that the reduced parametrization closely

follows the lower bound error for the last seven data points. This range of “reasonable”

noise levels (from 0.05 to 3 pixels) corresponds to the practical performance band, and

we see that the reduced parametrization provides a stable, low error solution.

This synthetic data analysis provides compelling quantitative reasons for using the

reduced parametrization. Figure 5.16 gives a qualitative comparison of the two methods

for parameterizing the nonlinear optimization. Although the full model/decompose A

method has straightened the epipolar curves (Figure 5.16 left), there are insufficient

constraints to ensure that the vertical lines are straightened. By contrast, the reduced

parametrization image (Figure 5.16 right) has had all lines rectified, including those

which are perpendicular to the epipolar lines. It should be noted that no outliers

were included in the sets of point correspondences, and the inclusion of a nonlinear

optimization step means that any RANSAC based outlier rejection strategy will be

computationally expensive. Likewise, detecting outliers where the required number of

inliers is greater than 35 necessitates a very large number of RANSAC iterations.
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5.4.2 Results on image sequences

We now present the results of multi-view calibration for a number of different video

sequences. A digital camcorder equipped with a wide-angle lens was used to capture

some real-world footage, and point correspondences were identified between each of

two frames. The topic of establishing such wide baseline correspondences is beyond

the scope of this work (the reader is referred to e.g. (Matas et al. 2002)). For these

examples they were established either by: manually matching Harris corners; or else

by rectifying the sequence (using an approximate distortion model) so that the pinhole

methods of commercial structure-from-motion software (2d3 Ltd. 2003) could detect

the correspondences, and then re-applying the distortion.

All attempts to correct the distortion using a general G and decomposing A failed

(see Figure 5.16 left for an example that almost worked). By contrast, the reduced

parametrization enabled each sequence to be corrected with very little computational

time. Figures 5.17 to 5.20 show the calibration results for four different video sequences.

All were recorded on a hand-held Canon XM2 digital camcorder fitted with a Raynox

0.3X fisheye converter. The caption for each figure lists the number of frames separating

the two views (PAL video is 25 frames per second), the number of point correspondences

used, the RMS Sampson error (the residuals of the optimization, and also a good

indication of rectification precision), and the time required to perform the optimization.

These times are for a straightforward Matlab implementation, and indicate order of

magnitude rather than the fastest possible timings. Note in the epipolar curve figures

that the curves for the majority of the established point correspondences have been

omitted for clarity. The office sequence (Figure 5.17) is predominantly a laterally

translating camera, as indicated by the horizontal epipolar lines. The Jenkin sequence

(Figure 5.18) has a much shorter baseline (9 frames) and an almost forward translating

camera (the epipole is visible in the image). Figure 5.19 represents the type of image

that is difficult to calibrate by plumbline methods. There are very few long, straight

lines and the vertical wall edge (in the centre of the image) appears to represent a line

which perhaps should be straight, but in reality is curved. In addition, the large wall

which occupies the right half of the image provides no line data at all, so the plumbline

calibration would have to extrapolate to fill that portion of the frame. The large expanse

of rubble course wall is actually an asset to multi-view calibration because it provides

so many feature correspondences. The large number of correspondences results in this

sequence having the lowest Sampson error of those tested. Finally, Figure 5.20 shows a

correct rectification of the Bridge of Sighs. Note that all straight lines are now straight;

the sides of the street are curved by construction.
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Input views Correspondences and epipolar curves

Left output view Right output view

Figure 5.17: Distortion correction and epipolar geometry computed from point cor-
respondences alone for two frames from an office sequence. These two images are 78
frames apart in the video sequence. (200 point correspondences, 0.48 pixels RMS
Sampson error, 2.7 seconds)

Input views Correspondences and epipolar curves

Left output view Right output view

Figure 5.18: Distortion correction and epipolar geometry computed from point cor-
respondences alone for two frames from a sequence of the Jenkin Building basement,
University of Oxford. These two images are 9 frames apart in the video sequence. (300
point correspondences, 0.62 pixels RMS Sampson error, 1.6 seconds)
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Input views Correspondences and epipolar curves

Left output view Right output view

Figure 5.19: Distortion correction and epipolar geometry computed from point corre-
spondences alone for two frames from a sequence of The Slype at New College. These
two images are 9 frames apart in the video sequence. (880 point correspondences, 0.20
pixels RMS Sampson error, 7.3 seconds)

Input views Correspondences and epipolar curves

Left output view Right output view

Figure 5.20: Distortion correction and epipolar geometry computed from point cor-
respondences alone for two frames from a sequence of the Bridge of Sighs, Hertford
College. These two images are 330 frames apart in the video sequence. (135 point
correspondences, 0.67 pixels RMS Sampson error, 4.2 seconds)



CHAPTER 5. LENS DISTORTION: EVALUATION 100

Input views from the Jenkin sequence

Point correspondences and epipolar curves (some omitted for clarity)

Output views

Figure 5.21: Distortion correction and epipolar geometry computed from point corre-
spondences alone. A total of 300 point correspondences were used to compute A and
G for this pair of views using the reduced parametrization.
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Figure 5.22: Top view of the reconstructed Bridge of Sighs showing the building walls
(lines of blue points) and the camera path (in red). Note that the walls are straight,
indicating that the rational function model has correctly removed the distortion. This
reconstruction is only up to a projective homography; the reconstructed walls converge
more than the physical ones. This can easily be rectified while establishing a metric
coordinate frame. Although this is a non-metric reconstruction, the approximate scale
is metres.

5.5 Three-Dimensional Reconstruction

Once the lens distortion has been corrected we are left with pinhole-equivalent images

and it is possible to perform a 3D reconstruction using standard structure-from-motion

techniques. This section describes such a reconstruction performed on the Bridge of

Sighs sequence. First the image were distortion-corrected using an A from a planar grid

calibration. This represents the easiest and most reliable method for calibration; either

plumbline or multiview calibration could be used, with similar results. The commercial

software package boujou (2d3 Ltd. 2003) was then used to: 1) track features through

the sequence, 2) establish correspondences 3) reject outliers (incorrect matches between

frames) 4) compute camera matrices for all frames, and 5) reconstruct the 3D position

of each point via bundle adjustment. The resulting point positions and camera path

are plotted in Figure 5.22. This top view shows the walls on either side of the street,

and the front face of the bridge which joins them. The straight walls indicate that the

distortion has effectively been removed from the input images; residual distortion tends

to curve the reconstruction space. The walls do converge more than they should, this

is a consequence of the solution being only up to a projective homography. Note that

boujou returns a Euclidean reconstruction under the assumption that there is zero skew

in the camera matrix, but with the general distortion model there is no guarantee that

the skew will in fact be zero. As a result, the coordinate axes in the reconstruction space
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Figure 5.23: A virtual arch superimposed on the Bridge of Sighs sequence. The original
sequence was distortion corrected, tracked, and reconstructed so that the arch could be
defined relative to the moving scene. The inverse distortion model was then applied to
warp the arch according to the distortion present in the original images.

are not necessarily orthogonal, but a 4D projective homography will correct this. Such

a homography is required anyway to map the solution space onto a metric coordinate

frame.

A further test of a 3D reconstruction is to insert a virtual object into the original

sequence. This tests both the quality of the camera localization (poor localization re-

sults in object jitter between frames) and the effectiveness of the distortion modelling.

The distortion model is used to remove the distortion (and thus influences the recon-

struction, as described above) and the inverse distortion model is required to distort

the virtual object for insertion into the original view. Figure 5.23 shows four frames

from the Bridge of Sighs sequence with a virtual arch superimposed. The full sequence

can be downloaded from

http://www.robots.ox.ac.uk/~dclaus/thesis/rf model.avi.

5.6 Summary

Here we have seen that the rational function model can be fit linearly in a single step,

without the need to first estimate the aspect ratio and distortion centre; the residual

errors are on the same order as the best lens-specific model available. The proposed ra-

tion function model is capable of accurately fitting existing distortion models: synthetic

tests indicate that the proposed method is on par with existing models for approximat-

ing polynomial distortion.

Furthermore, both the existing and the proposed models were tested against real

image data. Even when calibrated using nonlinear optimization including all model

parameters plus optical centre and aspect ratio it is clear that not all models represent

the imaging process with comparable accuracy. In our tests the general purpose rational

function method performed as well as the lens-specific field of view model, yet the

proposed method can be calibrated linearly for the planar calibration grid used in this

example.
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For the plumbline method of calibrating the rational function model we demon-

strated that calibration for a given lens is consistent from one image sequence to the

next (does not depend on input data), and is robust to changes in initialization values

and image noise.

Comparison with MATLAB Camera Calibration Toolbox revealed that its model

does not represent the distortion near the image periphery as accurately as the rational

function model does. The RF model is also calibrated from a single image rather than

the 14 used by the Toolbox.

Evaluating the various rational function models and calibration techniques indicates

that the plumbline method is slightly more precise than the planar grid method. This is

to be expected because the latter uses much more calibration input data. The reduced

parametrization incurs a slight loss of accuracy over the full rational function model,

but not enough to discourage its use for any applications.

The multiple view method for calibrating the rational function model demonstrates

that it is possible to perform auto-calibration of fisheye camera parameters from point

correspondences in real images. Nonlinear optimization using a reduced parametriza-

tion achieves stable convergence and provides an explicit definition of the model para-

meters.

Finally, image rectification results and a scene reconstruction from distorted input

images demonstrate that these techniques are applicable to real world scenarios.



Chapter 6

Camera Localization

The previous three chapters discussed distortion and concluded that the Rational Func-

tion model does an excellent job of removing lens distortion from many video sequences.

This holds true for a wide variety of lenses, and even for archive footage where nei-

ther knowledge of the lens nor calibration images are available. Thus it is possible to

produce images that follow the pinhole lens model, and this chapter shall address the

remaining components in camera calibration: computing the projection homography

P and then decomposing it into the internal camera parameters and external pose.

The first step is to establish correspondences between world points and locations in

an image. It is easy to define the world coordinates of features on a planar calibration

grid (relative positions at least), however measuring the 3D position of general out of

plane features proves to be a difficult and error-prone task. We advocate an optical

technique for surveying the positions of points in a calibration environment. Markers

placed in arbitrary locations are filmed with a video camera; the resulting images

alone are sufficient to accurately determine the 3D locations of each marker in the

environment. This is based on bundle adjusted structure from motion, and can also

provide camera intrinsics for the camera used to perform the survey.

An environment that contains a set of easily recognizable features in known 3D

positions can be used to calibrate both camera intrinsics and extrinsics. If this can be

done quickly and reliably for every frame of video it can provide a basis for augmented

reality; once the camera pose and projection are known it is a simple matter to insert

scene registered virtual objects. We show that by computing the analytic derivatives

of the reprojection function it is possible to perform nonlinear pose and focal length

optimization in realtime. The resulting individual frame camera path achieves accuracy

that is comparable to the path obtained through offline bundle adjustment over the

entire sequence.

This chapter concludes with an evaluation of pose estimation methods for aug-

104
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mented reality, but first we examine some of the components required to construct

such an environment: homography calculation, optical surveying for point initializa-

tion, computing camera intrinsics and extrinsics, and pose estimation through fast

nonlinear optimization.

6.1 World Points and Corresponding Image Locations

Many computer vision tasks require that geometric features in an image be reliably

located. Sometimes the form of these geometric entities is important (such as finding

straight lines for plumbline calibration methods), but often it is only required that

the features be suitable for identification and localization. Identification requires that

the selected features be distinctive and easily recognized. Precise localization ensures

that the image coordinates returned for the point always refer to the same physical

location on the feature. This can be a challenging requirement particularly under

oblique viewing angles and in the presence of motion blur.

Interest operators aim to identify naturally occurring points that satisfy the above

two criteria. Many interest operators have been proposed, including those of Moravec

(1979), Harris and Stephens (1988), Deriche and Giraudon (1993), Smith and Brady

(1997) and Kadir et al. (2004). It is possible to divide these into two broad categories:

feature detectors and feature descriptors. We will classify as a detector any single

low level image operation that makes no attempt to establish uniqueness (e.g. edge

or corner detectors). Descriptors become well suited to establishing unique image

correspondences by combining detectors, and also achieve some level of invariance to

changes in viewpoint, scale or illumination (Tuytelaars and Van Gool 1999). One

approach is to use moment invariants to describe features in an affine invariant way

(Van Gool et al. 1996). One such descriptor is Scale Invariant Feature Transform (SIFT)

keypoints (Lowe 1999) developed for image feature generation in object recognition

applications. They are fully invariant to image translation, scaling and rotation, and

partially invariant to changes in illumination or viewpoint. However, such invariance

comes at a price: there is a tradeoff between invariance and localization precision. It is

necessary to relax the registration criteria in order to ensure that a feature is identified

under a wide variety of conditions.

Rather than relying on interest operators to identify naturally occurring landmarks,

fiducial detection places markers of known geometry within the scene and employs a

detector specifically designed to recognize them. A fiducial is a point, line etc. that is

assumed as a fixed basis of comparison (Simpson and Weiner 1989). Fiducial detection

is an important problem in real-world vision systems: the task of identifying the position
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World coordinate system (WCS):

O = (0, 0, 0) the origin
C = −R>t the camera center
X = (x, y, z)> a point in space

Camera coordinate system:

O = t origin of WCS
C = (0, 0, 0) origin of the camera
X = R(x, y, z)> + t world point expressed

in camera coordinates

Figure 6.1: Transformations and relations between world and camera coordinate sys-
tems. The rotation matrix R and vector t are the extrinsic camera parameters which
must be computed during camera calibration.

of a pre-defined target within a scene is central to augmented reality and many image

registration tasks. Once again, we will defer the discussion of detecting and localizing

fiducials to Chapter 7. This chapter assumes that, given an image with some markers

present, we have an algorithm that can return the precise image coordinates and identity

of each fiducial mark.

6.2 Initialization

There exist many methods for determining the internal calibration parameters of a

camera given a set of image/world correspondences. Several of these were described

in §2.2.1. The approach taken in this section is to compute an approximate initialization

for both the internal and external camera parameters and then perform a nonlinear

optimization to refine them both simultaneously. This is often implicitly included in a

bundle adjustment stage. Simultaneous optimization is simpler and more accurate due

to the high degree of dependency between the various camera parameters.

This section describes methods for computing the camera parameters from sets

of image/world point correspondences where the points are either coplanar or in an

arbitrary configuration. It is assumed that point data consisting of a set of 3D world

points and their corresponding image locations is available. Refer to §6.4 for one method

for obtaining such calibration input data.
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The camera pose and calibration for a given image is represented as a 3×4 projection

matrix

P = K [ R | t ] (6.1)

where K represents the internal calibration parameters of the camera, R is a 3 × 3

rotation matrix, and t is the translation of the camera.

6.2.1 Camera Intrinsics

A camera’s internal calibration K typically encompasses five parameters: focal length,

aspect ratio, skew and principal point (as laid out in (2.3). It is often useful to be able to

supply initial values of K to a nonlinear optimization or even a full bundle adjustment.

Fortunately, camera manufacture is a very precise art, and so these values can often be

reliably estimated from several “rules of thumb”.

The focal length for a standard lens (roughly corresponding to a 50mm focal length

lens on a 35 mm SLR system) will be on the order of 1000 pixels/m. A simple method

for actually computing the focal length using the vanishing points of two parallel lines

is given in (Simon et al. 2000). Additional computational methods for the focal length

are described in (Hartley and Zisserman 2003). From §2.1.1 we see that a = 1.067 for

PAL video, otherwise set a = 1. The skew is generally zero, and approximating the

principal point as the centre of the image is a reasonable starting point.

6.2.2 Extrinsics from coplanar data

An algorithm for computing the camera extrinsics from a set of coplanar world points

was presented by Simon et al. (2000). Combined with an estimate of the intrinsic

parameters, this can be used to initialize a nonlinear optimization for full camera cali-

bration.

The transformation between image coordinates and planar points can be expressed

as a homography. Given K (the internal parameters), this method recovers the rotation

and translation between the camera coordinate system and the target plane from this

homography. Details of the technique are provided in Appendix A.

This procedure provides an approximate calibration from planar data, however it is

not very precise. Calibration from planar data is highly susceptible to image noise and

feature localization error as these directly translate into camera parameter error. Also,

truncating the rotation matrix columns to unit length and to be orthogonal introduces

error. Table 6.1 gives the camera position accuracy and solution time for this method;

a full explanation of the experimental procedure is provided in the next section.
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Initialization Computation Camera centre
method time (ms) RMS error (cm)

Planar target 3.1 69.6
DLT 3.5 3.2
POSIT 2.0 1.4

Table 6.1: Comparison of camera pose initialization methods. The planar target algo-
rithm uses only four coplanar dots, while the other two were given twelve dot positions
from widely spaced targets. The higher error for the planar case is partly due to this
discrepancy in input data. The DLT method is the only one which also computes K;
otherwise the calibration matrix must be supplied to the algorithm. POSIT is mar-
ginally faster and more precise, and was generally used for initialization throughout
the tests for this thesis.

6.2.3 Extrinsics from general point data

For more than five point correspondences which do not all lie on a single plane there are

more general methods for recovering the camera calibration parameters. The Direct

Linear Transform method is often used (refer to §2.4.3 and Appendix A for details).

Another method for computing camera parameters from a set of world/image point

correspondences is the POSIT algorithm (Dementhon and Davis 1995). It computes an

initial affine camera and then upgrades it to full perspective through several iterative

steps. This technique has a lower computational overhead, and is therefore preferable

for many realtime applications. A downside is that this algorithm does not include the

estimation of the camera intrinsics; these must be supplied.

Table 6.1 lists the convergence times and error for both of these methods, and for the

planar calibration described in §6.2.2. The test sequence consists of 180 frames viewing

three calibration targets with a mean distance to the camera of 3.36 m. Ground truth

was established through full bundle adjustment by boujou (2d3 Ltd. 2003), which also

furnished the intrinsic parameters required by the planar algorithm and by POSIT; the

DLT method computes K for each frame. The error measure is the Euclidean distance

from the ground truth camera centre to the centre computed for each frame by each

method. This encompasses any error arising from both the translation t and rotation

R. Table 6.1 gives the RMS value over the whole sequence. The computation time is

the average for a single frame, all algorithms implemented in Matlab.

For most of the work listed in this thesis, POSIT was use to provide the initial

estimate of camera pose with camera intrinsics estimated as per §6.2.1. When only

coplanar calibration point data was available the planar target method was used. Al-

though this method is less precise, the subsequent nonlinear optimization is still able

to converge on the correct solution.



CHAPTER 6. CAMERA LOCALIZATION 109

6.3 Optimization

The camera initialization methods described in the previous section provide an approx-

imate estimate of a camera’s pose and internal parameters, but additional accuracy

can be obtained through nonlinear optimization. This section describes the optimiza-

tion, details the use of analytic derivatives to speed convergence, and shows that this

introduces very little computational overhead.

The pose optimization problem is to find K R and t to minimize the reprojection

error

ε2(K, R, t) =
∑

j

‖xj − π (K(RXj + t)) ‖ (6.2)

for each frame j.

Estimates for the optimization variables are obtained by the methods of §6.2. The

2D marker positions xj and corresponding 3D locations Xj are known, and constant

throughout the optimization. The entire camera calibration matrix is not usually varied

for every frame. The aspect ratio, skew and principal point will be constant for a given

camera, so need not be estimated separately for every frame. Often the same is true for

the focal length. In this case one can construct an optimization where K is common over

the whole sequence while R and t are fit to each frame. This approach is unsuitable

for online operations (it requires the entire sequence at the outset), or for zooming

lenses (changing focal length). In these cases K is either fixed, or reduced to a variable

focal length for optimization at each frame. A comparison between these approaches is

given in §6.3.3; in describing the optimization we will assume K is constant, for simplicity

and maximum generality in describing the methods since constant parameters require

special attention.

Thus the variable set is reduced to the camera extrinsics, R and t for each frame.

The rotation matrix R is an over-parametrization of a 3D rotation, and should be

represented in a more concise format prior to optimizing. The work presented here uses

a four element quaternion, but a three element Rodrigues vector would also work with

a little extra attention to singularities. Refer to Appendix B for additional discussion

of rotation parameterizations. The parameter vector for the optimization is therefore

[ q1 q2 q3 q4 tx ty tz ]>. (6.3)

These seven variables require at least four known image points (at two dimensions per

point this gives eight equations for seven unknowns) to determine a solution. It is

possible to perform the optimization on image data for a single planar four dot target,

although greater precision is attained through the use of multiple targets.
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6.3.1 Analytic Derivatives for Reprojection Error

The ability to compute the derivative of the cost function is central to nonlinear op-

timization (§2.3). Most implementations use finite differencing to approximate the

derivative, but it is often possible to supply an analytic function for computing the

exact derivative. This can speed convergence dramatically.

The Jacobian (§2.3.1) is the first derivative of a function, and is also used in the

Levenberg-Marquardt algorithm to approximate the second derivative (§2.3.1). The ith

column of the finite difference Jacobian of a function F about point P is given by

J(:, i) =
F (P + δi)− F (P− δi)

2ε
(6.4)

where δi = ε[0 . . . 1i . . . 0]> is a delta function with a one in the ith row, multiplied

by some small epsilon (typically ε = 1 × 10−4). Notice that this approximation can

be generically implemented because it only requires the ability to evaluate the input

function F , however, it assumes a linear function in the vicinity of the evaluation point.

To correct this, we can evaluate the actual Jacobian rather than the finite difference

approximation.

For a given point correspondence x ↔ X the reprojection error e is

e = x− π (K(RX + t)) (6.5)

(
e1

e2

)
=
(

u
v

)
− π
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The Jacobian is made up of the derivatives with respect to each variable:

J =


∂e1
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 (6.7)

Each of the n point correspondences gives rise to a 2× 7 section of the 2n× 7 element

Jacobian produced for a single frame optimization. If camera parameters are to be

optimized over all frames then the overall dimensions of the Jacobian get quite large

and sparse matrix techniques should be used. Otherwise, constructing the Jacobian

proceeds in much the same manner, with some additional indexing considerations.

6.3.2 Timing

Providing an analytic derivative to the optimization routine speeds convergence to the

point where it is practical to include this step in realtime camera tracking operations.
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Pose algorithm Time (ms/frame)

Initialization only: 0.4
Nonlinear, finite differencing: 11.1
Nonlinear, analytic derivative: 3.2

Table 6.2: Time to compute camera extrinsics (pose) per frame of video. Using an
analytic derivative decreases the required computation time considerably. The resulting
nonlinear optimization is fast enough to be included in realtime pose computation
algorithms.

Table 6.2 gives timing results for computing camera pose with and without analytic

derivatives and optimization. These results are average time per frame for the 182 frame

sequence described in §6.5.2; timing values for the other sequences described in this

chapter are comparable. The algorithms were implemented in C++ and ran on a 1GHz

laptop. The nonlinear optimization with analytic derivatives requires less than three

milliseconds (excluding the initialization time of 0.4 ms). For video streaming at roughly

30 frames per second this represents less than 3% of the available computing time for

each frame. A realtime demonstration of this nonlinear pose optimization (together

with the fiducial detection described in Chapter 7) was presented at the Workshop on

Applications in Computer Vision in January 2005 (Claus and Fitzgibbon 2005c).

When provided with correct image/world correspondences and reasonable internal

camera parameters this algorithm exhibits very stable convergence. Of the over two

thousand frames computed for the tests in this chapter, plus the thousands of frames

of the realtime demonstration, all converged to the correct pose. The only instances of

failed convergence were when the correspondences were incorrectly established (usually

an indexing problem) or when the incorrect camera calibration was supplied (e.g. using

a wide angle calibration for a standard lens).

6.3.3 Zoom lenses

If the camera is changing focal length during tracking, this is also readily included in

the optimization for pose, although with a reduction in position accuracy. To check the

accuracy of this computation, we ran pose estimation including variable focal length

on the fixed-focal-length ground-truth sequence of §6.5.2. The results are listed in

Table 6.3. Comparison values were obtained from the Matlab Camera Calibration

Toolbox (Bouguet 2003), and boujou’s fully bundle-adjusted solution. The pose opti-

mization results include the focal length obtained by optimizing over the entire sequence

simultaneously (similar to bundle adjustment, but without including the world marker

positions), and the mean of the focal lengths individually optimized for each frame. If
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Method f
Matlab Calibration Toolbox 846.6
boujou calibration 848.7
Pose optimization - entire sequence 849.1
Pose optimization - individual frames 849.7

Table 6.3: Comparison of computed focal lengths, expressed in units of image pixels.
The results agree to within the tolerances required for most applications; the individual
frame optimization had µ = 849.7 and σ = 10.14 pixels over 182 frames. Optimizing
for the focal length at each individual frame is sufficiently accurate that this method
can be used for realtime pose computation with variable focal length lenses.

the focal length is known to be fixed it can be obtained by optimizing over the entire

sequence simultaneously; for realtime operations or variable focal length it is possible

to estimate the focal length from individual frames.

6.4 Surveying Fiducial Positions Optically

All of the camera localization methods described in this chapter require images of

markers for which accurate 3D coordinates are known. This section examines how one

goes about obtaining that measurement data.

The key to accurate camera localization is accurate surveying of the markers in the

environment; the resulting calibration will only be as precise as the input data allows.

The markers should be well spaced throughout the workspace volume, which makes

accurate measurement difficult. An environment with an abundance of flat surfaces

helps somewhat, but ensuring that all coordinate measurements are at right angles is

not a simple task (many walls, ceilings and floors are not precisely perpendicular to

each other, particularly in older buildings). One solution is to construct a calibration

object with markers at known positions. This is straightforward for planar calibration

(targets can be produced on a laser printer and then mounted on any flat surface), but

it is expensive, awkward and time consuming to produce the size of 3D target object

required for calibrating wide field of view cameras.

Instead, we automate this difficult measurement task by using boujou, an off-the-

shelf structure and motion system (2d3 Ltd. 2003). Such systems are frequently used for

extremely demanding augmented reality tasks in cinema post-production, where virtual

objects must be added to real-world footage with jitter of the order of half a pixel in

a 4096 × 3312 image, and drift over hundreds of frames of the order of a few pixels.

However, because they depend on batch computation and bundle adjustment (Hartley

and Zisserman 2003), they are unsuitable for online operation, although ideal for offline

calibration and surveying.
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To survey the environment, a video of the calibration workspace is captured, ensur-

ing that each marker of interest is visible from at least two widely-spaced viewpoints.

The fiducials are detected and their locations determined in each frame of the video

sequence. These positions are fed to the structure and motion solver, which returns a

single K for the entire sequence, and per-frame rotation and translation estimates. We

now turn our attention to the details of the structure from motion solution process.

This section first describes the theory used by the SfM software package and then gives

some practical details of the actual surveying procedure.

6.4.1 Structure from Motion

The field of computer vision that deals with the recovery of scene structure from camera

motion (Structure from Motion, or SfM) has advanced greatly over the past decade.

There are now commercial software packages available that include fast, robust imple-

mentations of the algorithms and user friendly interfaces. This is a tremendous boon

to the researcher, as the package can be relied upon to perform feature detection and

matching, bundle adjustment and scene reconstruction (triangulation). This frees one

up to focus on other aspects of a project. In the context of camera localization, we use

the software to survey the 3D locations of the fiducial markers.

In order to determine the position of a particular disc, we gather its 2D positions

in every frame in which it was detected, as a list of (x, y, f) tuples, where (x, y) is the

marker’s position in frame f . The camera intrinsics are defined by a fixed aspect ratio

(typically 1.0667), zero skew, fixed principal point (the centre of the image by default)

and a variable focal length. Then the 3D point we require is that which minimizes the

reprojection error (Hartley and Zisserman 2003) over all frames in the sequence

ε(X) =
num detections∑

i=1

∥∥∥∥( xi

yi

)
− π (K(Rfi

X + tfi
))
∥∥∥∥ . (6.8)

The variable parameters in this optimization are of two groups. The first group includes

the focal length (although this can be optimized on a per-frame basis as well) and the

point positions X. These variables are common to the entire image sequence. The

second group contains parameters that are unique to each frame: the rotation matrix

Rfi
and translation tfi

. Although this minimization has no closed-form solution, it is

readily solved by initialization using one of the methods from §6.2 followed by nonlinear

optimization of ε(X). This process is referred to as bundle adjustment (§2.3.2), which

differs from the optimization of §6.3 by including the world points X and simultaneously

considering all frames. The §6.3 algorithm considers a single frame at a time (so it can
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be used for online computation) and requires that the world marker positions be known.

Here bundle adjustment is being used to determine those world positions.

6.4.2 Surveying procedure

We survey the fiducial positions by filming them, and computing their locations from

the video. When recording the video it is important to have multiple targets in view so

that their relative positions can be computed. The first step in processing the video is to

detect the fiducials in each frame. The fiducial detection scheme (see Chapter 7) locates

each fiducial with subpixel precision and identifies each marker so that correspondences

between frames are already established. It is possible to use the feature detection and

matching functions of the SfM package, but we require the image locations of the

fiducial markers and have on hand a reliable method for finding them. Sometimes it

is helpful to augment the fiducial feature set with detected features (particularly when

few fiducial markers are used or visible), but this is not required. The next step is to

remove any lens distortion. Depending on the lens used, this can be done using the

built-in functions of the SfM software, but it is often necessary to use more sophisticated

models as described in the previous chapters. The fiducial positions are then ready to

be saved in a format that can be loaded into the SfM package.

If the SfM solver is fed precise and labelled image points it is a quick and straightfor-

ward optimization to compute the scene geometry (3D location of each fiducial marker)

and camera parameters. However the solution is in an arbitrary space, so we must im-

pose scale and coordinate system constraints to obtain measurements in a Euclidean

space. The scale is set by assigning the (known) distance between the dots in each

target. Likewise, any three dots in a single target form a right angle; provided all

of the targets are not coplanar then any two are sufficient to establish a rectangular

coordinate frame. If there is a target aligned with each of the three coordinate planes

this simplifies the establishment of a reference frame considerably. Once the coordi-

nate system has been defined we can export out the 3D fiducial positions and internal

camera calibration parameters (if required). Note that in surveying the fiducials, we

independently compute the 3D position of each of the four discs on each target. This

allows for deviations from planarity in paper targets.

Table 6.4 gives the results of one such optical environment survey. The results are

compared with target positions manually measured with a tape measure and plumb

line. The calibration environment is pictured in Figure 6.13; note that making the

measurements involved climbing on the desk while measuring around the shelving and

electrical channels. This highlights some of the difficulties encountered when making
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Target 2 Target 3
x y z x y z

Measured 1475 -99 704 321 -917 747
Computed 1474 -106 714 304 -923 752

Difference 1 7 -10 17 6 -5

Table 6.4: Comparison of surveyed target position coordinates obtained by manual
measurement and computed by the optical method described in the text. Target 1
was used as the origin and to define the coordinate frame; all dimensions are given in
mm. The minor differences are well within the 20 mm confidence level associated with
manually recording these arbitrary 3D positions.

this type of 3D coordinate survey, and is one of the primary motivations for the optical

technique described in this section.

6.5 Evaluation

This section presents the results of optimized camera localization with distortion cor-

rected by the full rational function model. The main question to answer is “How precise

can camera localization be and what are the important components in reaching that

result?” We present results on raw image data, distortion corrected data, and results

that include a skew parameter in the camera model.

Two separate experiments were performed to measure the accuracy of the camera

localization methods described in this chapter. The principal difference between the two

is the type of ground truth to which the localization results are compared: the first uses

absolute coordinates from a physical measurement system, while the second compares

to the Augmented Reality Toolkit (Kato and Billinghurst 1999). The ARToolkit is an

existing optical camera localization technique that is readily available. Both of these

methods are in turn compared to a fully bundle adjusted solution.

6.5.1 Coordinate Measurement System Ground Truth

The main challenge in evaluating a camera pose algorithm is establishing the ground

truth coordinates for comparison. One approach is to constrain the camera motion to

a particular path and then measure the perpendicular deviation. This can be done in

a straight line (Wei and Ma 1994), or a circle by using a turntable (Mičuš́ık 2004), but

it severely limits the range of camera motion to be tested. We measure the absolute

camera motion using the coordinate measurement system on a machine shop milling

machine, and also by standard structure from motion techniques (as implemented in

boujou) to provide the type of ground truth relevant for augmented reality applications.
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Figure 6.2: Apparatus for camera pose ground truth from a milling machine coordinate
measurement system. The camera was clamped in the mill’s vice, and then its pose was
computed from the targets and compared with the positions displayed on the digital
display.

The coordinate measurement system (CMS) on a milling machine was used to pro-

vide accurate and absolute ground truth camera motion. This type of CMS is used

by machinists to indicate the motion of the milling machine table relative to the mill’s

cutting tool. The Accurite III model used in this experiment provides digital x and y

measurements to the nearest 10 microns. Camera motion was restricted to the z plane

by fixing the z-axis of the mill’s table. The x and y axes on this particular mill are

both fitted with constant velocity drives. These drives were used to provide a smooth

path from which baseline data could be interpolated; the z-axis lacks such a drive so

it was locked in place. The camera was securely clamped in the tabletop vice, so the

camera viewing direction was also fixed. Thus the camera pose degrees of freedom were

restricted to x and y translations. The experimental setup is shown in Figure 6.2.

Procedure The experimental procedure consisted of translating the camera while

simultaneously viewing a set of fiducials and the output of the coordinate measurement

system. This section describes the environment calibration, data recording, and post

processing performed to evaluate the pose algorithms relative to the milling machine

measurements.

Initialization The first task was to estimate the radial distortion for both the stan-

dard and fisheye lenses. An image of concentric planar rectangles was recorded with

each lens, and the plumbline method used to calibrate the full rational function model

as described in §4.2.

The environment for fiducial-based camera pose estimation was calibrated by sur-

veying the target positions as described in §6.4. Four planar targets were placed at

arbitrary locations chosen to be within the field of view for the camera while it was
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Target dot positions (mm) Camera intrinsics
x y z x y z Focal length (px)

Target 1 -53 -53 0 Target 3 726 46 -668 fnormal = 801.5
-53 53 0 824 44 -698 ffisheye = 236.6
53 53 0 822 -60 -686
53 -53 0 725 -60 -660 Principal point (px)

Target 2 729 829 -1314 Target 4 90 256 1179 p(x, y) = (360,288)
731 934 -1314 161 251 1102
813 934 -1249 159 146 1107 Aspect ratio
812 828 -1248 87 150 1183 a = 1.0667

Table 6.5: Initialization values obtained from milling machine calibration sequence.
The camera intrinsics and target dot positions were used as inputs for the camera pose
computation.

clamped to the milling machine. A calibration sequence was then recorded with the

camera held freehand. All fiducial locations were then detected, and bundle adjustment

was used to estimate the camera’s intrinsic parameters, camera path (for the calibration

sequence) and target positions. These target positions were computed in a coordinate

frame centred on one of the targets. Later this coordinate system will be transformed

to align it with the coordinate system of the milling machine measurement system, but

for now this procedure provides the relative world positions of each fiducial dot and the

camera intrinsics. This data, required as inputs to the pose algorithm, is summarized

in Table 6.5.

Capture After initialization, the camera was clamped into the vice on the milling

machine. The coordinate measurement system measures the motion of the mill’s table;

this rigid clamping ensures that the camera and mill table move together. The constant

feed mechanism on the mill table was then used to translate the camera along three

linear paths while video footage was recorded. This procedure was repeated for both a

normal and a fisheye lens.

Ground truth for each frame As shown in the sample frames of Figure 6.4, the

coordinate measurement system’s digital display is visible in the captured video. The

ground truth camera motion for each sequence was determined by manually record-

ing the displayed x and y coordinates from approximately twenty frames distributed

throughout the sequence. A function (y = f(x)) was fit to this sparse data, and in-

terpolated values computed for every frame. A second order polynomial function was

used: the residual errors on a linear fit were found to be quadratic, implying that the

underlying path was quadratic. The maximum residual was 0.38 mm, while the mean
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Figure 6.3: Ground truth data for the milling machine sequences. Left Camera paths
for three sequences with each lens. The dots indicate data points recorded from the
video and used to interpolate the position at each individual frame. Right The residual
error for each observed point after fitting a smooth (quadratic) path.

was 0.08 mm. The ground truth paths and data points used for interpolation are shown

in Figure 6.3.

Fiducial detection and distortion correction The fiducial detection and target

identification code described in Chapter 7 was used to precisely locate the target dots

in each frame. The position of each dot was adjusted to correct for lens distortion using

the rational function model parameters computed in the initialization step. Note that

it is not necessary to perform an expensive image warping to remove this distortion:

the dots are detected in the original image (containing distortion) and then the dot

coordinates alone need be corrected. Figure 6.4 shows an example frame from both

lenses with the detected dot tracks overlaid.

Lens distortion causes a warping of the reconstructed coordinates space. Figure 6.5

Normal lens Fisheye lens
Figure 6.4: Sample frames from sequences using each lens. The yellow lines track the
dot positions through the entire sequence. The dot positions were then corrected for
lens distortion prior to computing the camera pose at each frame.
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Figure 6.5: Target geometry and camera path reconstructed with lens distortion correc-
tion (blue) and with no correction (red). Failing to provide the reconstruction algorithm
with input image data that has been corrected to follow the pinhole assumption results
in an unstable camera track, and a warping of the solution coordinate space.

shows a plan view of the reconstructed target dot locations and camera positions for

the freehand initialization sequence. The two coordinate systems were aligned based

on the target centred at the origin. The sequence without distortion correction (shown

in red) is less stable, and the target dot positions do not line up correctly. The jagged

portions of the red camera path are due to oscillations between two possible camera

paths. This sort of instability is often observed in sequences where lens distortion has

not been adequately compensated for. Although it is possible to apply a smoothness

prior to the camera track while performing the bundle adjustment, this does not correct

the overall warping due to the lens distortion.

Camera Pose The camera pose was computed by the methods described in this

chapter, and also by boujou. The algorithms used the same input dot positions, but

boujou performs a full bundle adjustment over camera pose for every frame plus the

world target dot positions. By comparing the results we see how well a single frame

pose algorithm can compare with bundle adjustment (global optimization over the

whole sequence).

Coordinate System Transformations Before the various camera pose solutions

can be compared it is necessary to express them all in a single coordinate system. The

milling machine coordinate frame was selected as the reference frame because it provides
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the ground truth, and so that the measurements would be in units of millimeters. The

rotation and translation between the mill coordinates and the targets attached to the

walls was established by aligning the boujou track with the milling machine ground

truth. This is a similarity transformation and was computed using the method of Arun

et al. (1987). The rational function model includes a skew term in the solution, so a

coordinate system transformation including skew was also tested. Finally, the distortion

correction introduces an unknown projective homography into the final solution, so a

full three dimensional projective homography was used to align the coordinate systems

from any distortion corrected track. These alignment homographies were computed

via nonlinear optimization initialized with just a rotation and translation. The ground

truth track is planar, so the target dot positions were included in each optimization to

prevent the z-dimension from being compressed into the plane.

Results The results of computing the camera locations for the milling machine ground

truth experiment are summarized in Tables 6.6 and 6.7. The error was measured as the

Euclidean distance between the computed camera centre and the measured position

provided by the milling machine coordinate measurement system. This is measured

after performing each type of coordinate alignment described above. For each lens and

distortion correction we report the RMS, standard deviation and maximum error over

all frames. The covariance Σ of the camera position estimate can be calculated from

the Jacobian used in the nonlinear optimization

Σ = [J>J]−1. (6.9)

A transformation was applied to the solution space to bring it into a metric coordinate

grid aligned with the milling machine. If the transformation applied to the optimization

parameters Θ is given by Θ′ = F(Θ), then the covariance is transformed according to

Σ′ = ∇F Σ ∇F>. (6.10)

The ∇F term is the Jacobian of F(Θ) and was computed using finite differences. The

covariance values reported in Table 6.8 are the diagonal elements corresponding to the

three dimensions of the camera position.

Each sequence was tested with both distortion corrected by the rational function

model and by processing the raw image coordinates. Each lens exhibited a significant

error reduction when the distortion correction was included. The camera position

error for the normal lens is less than 1 cm, even without correcting the distortion.

However, even with such a low distortion lens there is a substantial improvement to
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Distortion Camera Transformation rms std max

Raw Focal Similarity 2.85 1.32 5.49
Raw Full Similarity 1.41 0.52 2.55
Corrected Focal Similarity 0.21 0.09 0.54
Corrected Full Similarity 0.22 0.09 0.57

Raw Focal R,t,s 0.38 0.16 0.82
Raw Full R,t,s 0.44 0.19 0.93
Corrected Focal R,t,s 0.21 0.08 0.57
Corrected Full R,t,s 0.21 0.08 0.57

Raw Focal Projective 0.15 0.05 0.37
Raw Full Projective 0.15 0.05 0.36
Corrected Focal Projective 0.16 0.07 0.48
Corrected Full Projective 0.15 0.07 0.47

Table 6.6: Camera localization results for a normal lens. For each set of distortion
correction, camera model and coordinate alignment transformation we report the error
(measured in mm) between the computed camera position and the ground truth for
that frame. The tabulated statistics are for the entire 1447 frame sequence. Fiducial
based camera localization with pose optimization can provide sub-millimeter precision.
Refer to the text for additional discussion.

be realized by distortion modelling: the results here demonstrate that sub-millimeter

position estimation is possible with a commercial video camera. Furthermore, the

distortion correction models the fisheye lens so that the pose error for that sequence is

less than a quarter of a millimeter.

For both lenses, the full camera model made little difference except on data where no

distortion correction had been used, and only a similarity transformation was applied

for coordinate alignment. In this case the extra camera parameters are modelling some

of the nonlinearity due to the lens distortion.

For the normal lens, correcting the distortion yields a tenfold improvement for

the focal length camera model. For both lenses, including the distortion correction

removes the difference between the two camera models. When the rotation, translation

and skew (R,t,s) transformation was used the focal-only camera model outperforms the

full model. The full model is expected to always produce an equal or lower error level

because the focal-only model is a reduced case of the more general full model. The

discrepancy observed here is explained by the way in which the camera model was fit

to the data. A subset of frames from the diagonal portion of each camera lens sequence

was used to compute the camera model. Using fewer frames is more efficient (faster

to compute) and also provides an indication of the generalization ability of the model.

This is what we are observing here; the full camera model is over-fitting to the subset

of frames, so its performance is worse on the complete sequence(s). The focal-only
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Distortion Camera Transformation rms std max

Raw Focal Similarity 6.10 2.39 10.82
Raw Full Similarity 5.79 2.11 10.69
Corrected Focal Similarity 1.68 0.85 3.76
Corrected Full Similarity 1.65 0.81 3.58

Raw Focal R,t,s 0.73 0.27 1.48
Raw Full R,t,s 0.91 0.32 1.75
Corrected Focal R,t,s 0.38 0.18 1.5
Corrected Full R,t,s 0.44 0.21 1.20

Raw Focal Projective 0.35 0.12 0.75
Raw Full Projective 0.35 0.12 0.77
Corrected Focal Projective 0.22 0.08 0.55
Corrected Full Projective 0.23 0.08 0.54

Table 6.7: Camera localization results for a fisheye lens. The camera position errors
are measured in millimeters relative to the milling machine ground truth, and reported
over the entire 1839 frame sequence. Even for a lens with such a high level of distortion
it is possible to achieve camera position estimates that are accurate to within a quarter
of a millimeter. Refer to the text for additional discussion.

model, with its single parameter, is less susceptible to over-fitting, and it follows that

the complete sequence error is lower.

The progression of coordinate system transformations from similarity, to similarity

plus skew, to full projective homography in 3D decreases the position error at each

instance. This is to be expected, as the transformations become more powerful. The

purpose of this transformation is to align the coordinate system in which the camera

position has been solved with the ground truth coordinate system. If both were Euclid-

Lens Type Distortion Camera X Y Z

Normal Raw Focal 6.92 0.56 0.72
Raw Full 7.25 0.57 0.74
Corrected Focal 7.81 0.61 0.78
Corrected Full 7.81 0.61 0.78

Fisheye Raw Focal 10.65 1.89 3.57
Raw Full 11.57 1.92 3.62
Corrected Focal 33.20 5.69 10.75
Corrected Full 32.85 5.67 10.84

Table 6.8: Covariance for the camera positions computed for both types of lens. The
largest element is along the camera axis; this coincides approximately with the x di-
rection for the milling machine coordinate system. The increase in covariance for the
fisheye lens is a result of the targets occupying a much smaller portion of the viewing
area. Correcting the distortion brings the targets into an even smaller region. Dimen-
sions are in mm2.
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ean systems with orthogonal axes this would only require a similarity. However, the

fiducial target surveying method using boujou was never constrained to have orthogonal

axes so it may include significant 3D skew. Only the scale in each direction was set

as part of the calibration procedure. In practice 3 targets should be set up at right

angles to one another to aid in assigning an orthogonal coordinate system. The effect

of this skew will be minimal for a normal, low distortion lens such as the one used for

Table 6.6. The distortion corrected results are almost identical with and without the

skew term added to the similarity transform. When the projective transformation is

used the error drops from 0.21 mm to 0.15 mm, and we notice that the solution without

distortion correction has a lower standard deviation. This is likely due to over-fitting

to the specific camera path used in this experiment.

The fisheye sequence was recorded at roughly the same distance from the targets

as the normal lens sequence. Because the targets were kept in the same locations, the

image area occupied by the targets is much less for the fisheye lens sequence. This

means that there is much less observed parallax in the wide angle shots, which in

turn increases the numerical instability of the camera pose recovery. The principal

advantage of a wide angle lens is that it can image a wider field of view. In this test we

have restricted the utilized field of view (by not relocating the targets further apart)

while introducing the lens distortion; this incorporates all the drawbacks without taking

advantage of the enhancements. This causes the increase in covariance observed for the

wide angle lens localization in Table 6.8. In spite of this, the results demonstrate that

accurate pose estimation is possible for a wide angle lens.

The covariance was reported for only the projective coordinate system alignment.

The other alignment methods are not significantly different in terms of the global coor-

dinate system scaling, and so will have very similar effects on the computed covariance.

Note that the standard deviation of the position error (reported in Tables 6.9 and 6.10)

is always much lower than the covariance.

Tables 6.9 and 6.10 give the camera localization results from boujou’s fully bun-

dle adjusted solution. These results agree with those obtained by optimizing for the

camera parameters from the fiducial targets alone. This indicates that once the initial

target survey is completed it is possible to achieve single-frame localization accuracy

comparable to entire sequence bundle adjusted results. Single frame optimization can

be done in realtime on streaming video, while bundle adjustment cannot.

The individual frame errors are plotted in Figures 6.6 to 6.9. These plots indicate

the distribution of the errors both temporally and in each of the coordinate axes. In

each figure the results for the proposed algorithm are shown in red, while the boujou
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Distortion Transformation rms std max

Raw Similarity 6.40 2.93 11.31
Corrected Similarity 0.21 0.09 0.61
Raw R,t,s 0.55 0.22 1.2
Corrected R,t,s 0.21 0.09 0.61
Raw Projective 0.17 0.07 0.71
Corrected Projective 0.16 0.07 0.52

Table 6.9: Camera localization results for boujou with a low-distortion lens. Com-
pare these fully bundle-adjusted errors with the camera-only optimization results in
Table 6.6. All dimensions are in millimeters.

results are given in blue. The proposed algorithm includes the full camera matrix and

a projective homography for the coordinate system alignment. These figures illustrate

the errors on each frame of the sequence, and show the differences in solved camera

path for the various methods.

Figure 6.6 shows the vertical error for the normal lens with and without distortion

correction. The milling machine was constrained so that the camera could only move

in the z = 0 plane, so any deviation from this plane is an error in camera position. A

front and right view are supplied for each set of data (refer to Figure 6.3 for a top view

showing the camera paths for each lens). The results from the two methods are more

correlated in the distortion corrected case, and the few outliers in the boujou solution

without distortion correction have been fixed in the corrected case. Of interest is the

overall accuracy of the camera localization methods: with twelve well localized image

point correspondences it is possible to achieve millimeter level camera path data with

a commercial video camera.

Figure 6.7 shows the error relative to milling machine ground truth along each of

the coordinate axes. Again, the red curve gives the optimization localization results

while the blue denotes the boujou solution. By comparing the top and bottom sets

Distortion Transformation rms std max

Raw Similarity 7.16 3.15 14.99
Corrected Similarity 2.77 1.55 6.61
Raw R,t,s 0.46 0.19 1.54
Corrected R,t,s 0.41 0.20 1.13
Raw Projective 0.26 0.14 1.51
Corrected Projective 0.20 0.08 0.49

Table 6.10: Camera localization results for boujou with a fisheye lens. Compare these
fully bundle-adjusted errors with the camera-only optimization results in Table 6.7. All
dimensions are in millimeters.
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Figure 6.6: Normal lens Camera positions recovered by camera localization with a
normal lens. The results from the proposed method are shown in red, the full bundle
adjustment solution is in blue, and the ground truth is shown in black. The original
sequence and the distortion corrected sequence were separately used to calibrate a full
camera matrix including skew. A 4D projective homography was used to bring each
camera path solution space into alignment with the ground truth.
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Figure 6.7: Normal lens Camera position errors relative to milling machine ground
truth. The horizontal axis denotes the video frame, and the vertical grey lines delineate
each distinct camera path as shown in Figure 6.3. The errors for the proposed method
are shown in red, while the boujou errors are in blue. Note the decrease in incorrect
positions for the boujou solution when distortion correction is used.
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Figure 6.8: Wide angle lens Errors for wide angle lenses where the camera position
was solved by single frame optimization based on the fiducials (in red), and by full
bundle adjustment using boujou (in blue). Correcting the distortion removes the over-
all curvature from the solved camera path. Although it appears that correcting the
distortion results in a larger standard deviation in errors, the plots on the next page
illustrate that the bulk of the error has shifted into the z-axis.
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Figure 6.9: Wide angle lens Camera position errors relative to milling machine ground
truth. Refer to Figure 6.7 for a description of the axes and legend. Modelling and re-
moving the distortion corrects the overall curvature observed in the error plots without
distortion correction. These results have had a projective homography applied to bring
the camera paths into alignment with ground truth; without this coordinate system
transformation the errors and overall curvature is much greater.
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Lens Distortion Camera rms std max

Normal Raw Focal 1.96 0.85 4.79
Normal Raw Full 0.55 0.28 1.64
Normal Corrected Focal 0.06 0.04 0.44
Normal Corrected Full 0.06 0.04 0.45

Fisheye Raw Focal 2.36 0.99 5.18
Fisheye Raw Full 1.08 0.67 3.44
Fisheye Corrected Focal 0.24 0.07 0.49
Fisheye Corrected Full 0.10 0.06 0.32

Table 6.11: Reprojection errors for the milling machine sequences. Modelling the
lens distortion more accurately represents the imaging process, resulting in a lower
reprojection error. The full camera model is only significant for the fisheye lens. All
measurements are in pixels.

of plots we observe the improvements due to distortion correction. The upper set of

plots are for positions recovered using a full camera projection matrix and per frame

optimization but without correcting the lens distortion. A 4D projective homography

has been used to bring the computed path into alignment with ground truth, so the

variability observed is only due to pose error and not some global coordinate system

misalignment (refer to Figure 6.5 for a depiction of the global misalignment caused by

distortion). For the normal lens shown in Figure 6.7 the focal length is quite long and

there is minimal distortion evident in the images. There is therefore very little difference

between the two sets of plots for this lens. We do observe, however, a slight bias in

the case without distortion correction. This is removed by modelling and removing

the distortion. Another result of distortion in the images is that the boujou solution

converges to an incorrect position more often. This can be seen as the spikes in the

blue curve of Figure 6.7 top, which are far fewer in the distortion corrected bottom

figure.

Figure 6.8 shows the vertical error for the fisheye lens. The solution space curvature

induced by uncorrected lens distortion is very evident in the top set of plots, and absent

in the lower set. On a lens with such extreme levels of distortion it is essential to

model the distortion prior to computing camera pose. The position errors plotted in

Figure 6.9 again demonstrate a reduction in both noise and overall curvature when

distortion correction is included.

Reprojection error A secondary result to report when computing the camera lo-

cation is the reprojection error. Using the camera parameters (including location) to

reproject the known survey locations into the image provides a measure of how accurate
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the camera parameter estimation is. It is expected that a model that includes addi-

tional parameters will be better able to reproduce the image; this experiment verifies

that hypothesis and also provides a quantitative measure of the improvement realized

through distortion correction.

Two different camera models were tested. One varied only the focal length, with

all other internal camera parameters fixed as described in §6.2.1. The other model

varied focal length, aspect ratio, principal point and skew. The reprojection errors

for each camera model with both a normal and a fisheye lens are given in Table 6.11.

Correcting the lens distortion significantly reduces the reprojection error, which shows

(as expected) that the model more accurately represents the imaging process. For the

normal lens, using the full camera model makes no appreciable difference, but for the

fisheye lens the full model is necessary. This implies that the skew and principal point

are parameters that should not be set to default values for this type of fisheye lens.

6.5.2 ARToolkit comparison

A second calibration environment was configured in order to compare the proposed

fiducial-based localization system with an existing fiducial technique. The Augmented

Reality Toolkit (ARToolkit) (Kato and Billinghurst 1999) is a set of C libraries for

camera localization that can be freely downloaded from

http://www.hitl.washington.edu/resarch/shared space/download/.

It uses a global binarization threshold to detect square targets and then identify pre-

defined patterns. Once these fiducials have been located it looks up the corresponding

3D location for each corner in a table which the user has defined. The set of image/world

correspondences are used to compute the camera position to facilitate the introduction

of virtual objects into video of a real scene (augmented reality).

Figure 6.10 shows the calibration environment for this comparison. A target was

attached to each of the walls and the desk to establish an orthogonal coordinate system.

This eliminates the need for skew or projective homographies to align the coordinate

systems of the camera localization methods; both scale and orthogonality are imposed in

the process of surveying with boujou. Target markers were produced for the ARToolkit

system whose square edge length matched the spacing between dots on the proposed

algorithm’s targets. After performing the survey, a test sequence was recorded with the

proposed markers in place. ARToolkit targets were then placed in the same physical

locations for recording another test sequence. Placing the markers in the same loca-

tions ensures that the same geometric configuration is used by both solution methods,

and requires the 3D coordinates to be surveyed only once. All image sequences had
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Figure 6.10: Sample frame from the sequence used to survey the environment for
comparison of the ARToolkit with the proposed method.

distortion corrected by calibrating the distortion and then warping the source images

prior to fiducial detection. This procedure is time consuming, but it permits the same

distortion correction to be used by each pose algorithm and boujou. Finally, boujou was

used to establish baseline camera locations for each sequence. The boujou camera path

is computed from tracks of a dense set of high quality features. This path produces

augmented scenes which are visually accurate; since visual accuracy is the goal of aug-

mented reality, this is taken to be the camera path against which others are compared.

As boujou’s bundle adjustment chooses an arbitrary coordinate system, the two paths

were aligned using a similarity transform, without skew or projection, before making

the comparison.

The mean distance to the camera for the ARToolkit sequence was 3.33 m, which is

on the edge of the operating range for the ARToolkit (Malbezin et al. 2002). Training

patterns for each marker were recorded under the same lighting and viewpoint condi-

tions as used in the test in order to maximize the marker recognition rate. However, the

system was unable to reliably track multiple markers at this scale. The square border

detection is successful for all three targets in 88% of the frames, but the pattern identi-

fication fails on most frames. In order to make a three-target comparison, we exported

the image coordinates of every square pattern found and then manually established

the marker identifications and world correspondences. This manual procedure yielded

a listing of image coordinates that was then fed through the same nonlinear pose opti-

mization as the proposed algorithm. As a result, the fiducial detection step is the only

difference between the way the two camera paths under comparison were computed. It
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Figure 6.11: Errors in camera position computed by various optimizations on different
numbers of targets. Plot shows absolute Euclidean camera position error for a sample
set of 50 frames; the RMS errors over the entire sequence are given in Table 6.12.

should be noted that this pose optimization is more accurate than the pose computa-

tion method supplied with the ARToolkit; this change improves its results rather than

degrading them.

The camera position errors measured between the computed path and the boujou

solution are shown in Figure 6.11 and listed in Table 6.12. Several different pose

estimation strategies were tested. First, both methods were used to compute the camera

pose from a single target, the one on the left wall. This planar pose estimation task is

more susceptible to fiducial detection error than the full 3D case, and this is reflected

in the pose errors. The coordinates returned from the ARToolkit fiducial detection

are less precise than the propose fiducial detection method, and thus the pose error is

almost three times larger.

One method for obtaining a more accurate camera pose is to compute the average of

the solutions obtained from several individual targets. The single target minimization

was performed on each of the three targets, and then the mean of these three camera

positions was reported. This does provide an improvement over the single target so-

lution, but the iterative posit algorithm (see §6.2.3) does even better. Simultaneous

optimization for camera pose based on the data from targets distributed in 3D space

provides the most accurate camera pose of all the techniques tested. The errors re-

ported in this section are higher than those from the milling machine sequence. This

is likely due to the distortion correction methods used: the division model (see §3.1) is

only a single parameter approximation, and the process of warping the image prior to

fiducial detection introduced significant image noise.
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Figure 6.13: A virtual wireframe inserted into the scene using the camera position
computed via the proposed method and the ARToolkit. Both are compared with the
baseline solution.
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Figure 6.12 shows a plan view of the computed camera paths. The coordinate

system origin is at the centre of the target on the left wall. The camera path for the

calibration sequence is also shown, with the pose estimation results from the proposed

algorithm. The two test sequences provide an analysis of the generalization ability of

the proposed optical marker surveying technique for camera localization; none of this

data was used for calibration, so it is strictly a single-frame pose estimation algorithm.

A virtual 3D object has been superimposed on a sample frame from each sequence in

Figure 6.13. The wireframe is aligned with the coordinate axes, and one end is attached

to the origin on the left wall target. The image position and focal length are set by the

camera parameters computed by either the proposed method or the ARToolkit. The

yellow lines and red dots were rendered using the ground truth camera from boujou,

while the green/blue set are from the to algorithms under test. Notice that all sets are

well aligned with the target on the left wall; virtual objects tend to line up well in the

vicinity of the reference points (fiducial targets in this case). However, further away

from the targets, particularly out of the plane of the target, the alignment begins to

break down. This misalignment is due to error in the camera parameters, and causes

jitter and swaying for virtual objects inserted into video sequences.

6.6 Summary

Given a set of known world positions and their corresponding image locations, cam-

era localization computes the pose of the camera when the image was recorded. This

chapter has presented camera localization as a nonlinear optimization problem. Initial-

ization of the camera parameters (internal and external, other than distortion which is

Number of Targets Localization Method rms error (mm)
1 ARToolkit 360†

1 Non-linear reprojection minimization 130
3 ARToolkit (refer to text) 43∗

3 Mean of three positions 25
3 posit 14
3 Non-linear reprojection minimization 9.7

† Omitted 54% of frames where identification failed.
∗ Omitted 12% of frames where border detection failed. Non-linear opti-
mization added, manual target identification required.

Table 6.12: Camera position error relative to bundle-adjusted ground truth. Non-linear
minimization of the reprojection errors from only twelve fiducial markers (three targets)
provides centimeter level camera position accuracy.
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handled beforehand as per the previous chapters) is handled by existing methods such

as POSIT or the DLT. The optimization minimizes the distance between the detected

image points and the location of the world points projected by the camera model. De-

pending on the sequence being solved for, these parameters may include focal length,

aspect ratio, principal point, a rotation and translation. Computing the error function

using analytic derivatives rather than finite differences speeds up convergence to the

point where the optimization can be performed in realtime. It was shown that this

method of computing the camera’s intrinsic parameters such as focal length produces

results that are comparable to dedicated calibration methods.

This chapter also presented an optical surveying procedure for determining the 3D

position of the 3D markers. Structure from motion software is used to automate this

difficult and error prone measurement task. This technique could also be applied to

general position measurement tasks, and is an example of how a precisely calibrated

consumer grade camera becomes a powerful yet inexpensive measurement instrument.

The final section of this chapter examined how precise such measurements can be.

Camera localization results were compared with independent absolute measurements

of the camera position. A normal lens corrected using the rational function model

produced camera locations for each individual frame that are accurate to 0.15 mm

RMS and 0.47 mm maximum. The results for a fisheye lens were 0.23 mm RMS and

0.54 mm maximum. This indicates that sub millimeter position accuracy is possible

for single frame camera localization using nonlinear optimization with appropriate lens

distortion correction. Moreover, these results are comparable to those obtained through

bundle adjustment on the entire sequence; single frame methods suitable for realtime

applications need not suffer in accuracy for lack of bundle adjustment.



Chapter 7

Fiducial Detection

The image position of four or more known points can be used to compute the camera

position. Often these known points are special visual markers referred to as fiducials

or landmarks. Fiducial detection is an important problem in real-world vision systems.

It requires fast, accurate registration of unique landmarks under widely varying scene

and lighting conditions. Numerous systems have been proposed which deal with various

aspects of this task, all based around the concept of selecting some sort of feature or

shape and then assembling a set of low level vision operators capable of identifying

that feature. An example of an easily recognizable fiducial is the circle with alternating

white and black quadrants used on crash test dummies. The operations used to detect

the fiducials often include Canny edge detection, Hough transforms, and a collection of

geometric heuristics (ellipse eccentricity, area vs. edge length, etc.). A good detector

is then a product of careful engineering: selecting a recognizable feature, assembling

the right mix of image operations, defining the identification logic, and tweaking all

the parameters to tune the overall system. Such a system that demonstrates reliable

performance on a wide variety of scenes has not yet been reported.

Figure 7.1 illustrates the difficulties inherent in a real-world solution of this problem,

including background clutter, motion blur (Klein and Drummond 2002), large differ-

ences in scale, foreshortening, and the significant lighting changes between indoors and

out. These difficulties mean that a reliable general-purpose solution calls for a new

approach. In fact, this chapter shows how the power of machine learning techniques,

for example as applied to the difficult problem of generic face detection (Viola and

Jones 2001), can benefit even the most basic of computer vision tasks. Even these

tasks become challenging when high reliability is included in the design constraints.

The problem addressed in this chapter is to design a planar pattern which can be

reliably detected in real world scenes. One of the main challenges in fiducial detection

is handling variations in scene lighting. Transitions from outdoors to indoors, backlit

136
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Figure 7.1: Sample frames from various test sequences. The task is to reliably detect
the targets (four disks on a white background) which are visible in each image. It is a
claim of this report that no technique currently in use is robust over a large range of
scales, lighting and scene clutter. In real-world sequences, it is sometimes difficult even
for humans to identify the target. The goal is to detect the target with high reliability
in such images.
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for input frame I
for scale = 1 : 4

S = resize(I, 1/scale)
for i, j ⊂ S

ω = window12×12 centered(i, j)
if classify fast(ω) then

out(i, j) = classify full(ω)
dots(scale) = non maxima suppression(out)

targets = verify target(dots)

Figure 7.2: Overall algorithm to locate fiducials. The key components are the cas-
caded classifiers classify fast and classify full which rapidly mark each pixel window
as fiducial or non-fiducial.

objects and in-camera lighting all cause global thresholding algorithms to fail.

Existing systems (refer to (Claus 2004) for a review) all rely on transformations

(such as adaptive thresholding) to produce invariance to some of the properties of

real world scenes. However, lighting variation, scale changes and motion blur still

affect performance. This chapter describes a new fiducial detection system which deals

with these effects through machine learning, and concludes with a comparison of the

learning-based and traditional approaches.

Detection versus tracking

The system described here does not use any prediction of the fiducial locations; the

entire frame is processed every time. This is in contrast to systems which only search

the region located in the previous frame. This assumes that the target will only move a

small amount between frames and causes the probability of tracking subsequent frames

to depend on success in this frame. As a result, the probability of successfully tracking

through to the end of a sequence is the product of the frame probabilities, and rapidly

falls below the usable range. An inertial measurement unit can provide a motion

prediction (Klein and Drummond 2002), but there is still the risk that the target will

fall outside the predicted region. Another difficulty with such prediction strategies

involves occlusion of the target. If a person (for example) walks in front of the camera,

the target will not be visible for a number of frames. Algorithms based on search region

prediction will fail if there was any camera movement during the period of occlusion.

This work will therefore focus on the problem of detecting the target independently in

each frame, without prior knowledge from the earlier frames.
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(a) (b) (c) (d) (e)

Figure 7.3: Overall algorithm to locate fiducials. (a) Input image, (b) output from
the fast classifier stage, (c) output from the full classifier superimposed on the original
image. Every pixel has now been labelled as fiducial or non-fiducial. The size of the
circles indicates the scale at which that fiducial was detected. (d) The target verification
step rejects non-target fiducials through photometric and geometric checks. (e) Fiducial
coordinates computed to subpixel accuracy.

7.1 Strategy

The fiducial detection strategy adopted in this thesis is to collect a set of sample

fiducial images under varying conditions, train a classifier on that set, and then classify

a subwindow surrounding each pixel of every frame as either fiducial or not. There are

a number of challenges, not least of which are speed and reliability.

Representative training samples were collected in the form of 12×12 pixel images;

larger fiducials are scaled down to fit this window. This training set is then used to

classify subwindows as outlined in the algorithm of Figure 7.2 and shown in Figure 7.3.

The distance measure used to compare two images is the sum-of-squared-differences

(SSD) between the intensity at each corresponding pair of pixels. This often-used

method does not always give an accurate indication of proximity; two images misaligned

by a single pixel may result in a very large discrepancy. For example, a checkerboard

image with alternating white and black pixels will display maximal difference if offset by

a single pixel, but the distance measure reports perfect alignment if offset by a multiple

of two pixels. This is a synthetic example, however. Real images have smoothly varying

intensity, so the SSD should provide a more representative measure of the difference

in alignment between two images. To test this hypothesis, a sample dot was given a

horizontal offset ranging from -3.5 to 3.5 pixels, and the SSD distance from the original

image reported for each translation value. With no translation the difference between
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Figure 7.4: Sum of squared difference between a sample dot and the same dot translated
from -3.5 to 3.5 pixels horizontally.

the two images is zero, and as the offset increases the difference grows. This difference

can be interpreted as the alignment error due to the offset, and is given a negative sign

to emphasize this. The results in Figure 7.4 demonstrate that there is a very sharp

peak in the response when the samples are aligned, and the function drops off cleanly

on either side. It follows that sliding a window over the image and measuring the SSD

is an effective method for dot localization.

Each frame is subsampled (by half) four times to cover dots at multiple scales.

For each location and scale, a centred 12×12 subwindow is extracted and fed to the

classifier. The classifier must be fast and reliable enough to perform half a million

classifications per frame and still permit recognition of the target within the positive

responses.

High efficiency is achieved through the use of a cascade of classifiers (Viola and Jones

2001). The first stage is a fast “ideal Bayes” lookup that compares the intensities of a

pair of pixels directly with the distribution of positive and negative sample intensities

for the same pair. If that stage returns positive then a more discriminating (and

expensive) tuned nearest neighbour classifier is used. This yields the probability that

a fiducial is present at each location within the frame; non-maxima suppression is used

to isolate the peaks for subsequent target verification.

The target verification is also done in two stages. The first checks that the back-

ground between fiducials is uniform and that the separating distance falls within the

acceptable range for the scale at which the fiducials were identified. The second step is

to check that the geometry is consistent with the corners of a square under perspective

transformation. The final task is to compute the weighted centroid of each fiducial
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Figure 7.5: Representative samples of positive target images. Note the wide variety of
positive images that are all examples of a black dot on a white background.

within the found target and report the coordinates.

The following section elaborates on this strategy; the fiducial design is presented

first, followed by the selection of training data, and then each stage of the classification

cascade is covered in detail.

7.1.1 Target Design

A circular fiducial has been selected because the centroid is easily and efficiently mea-

sured to sub-pixel accuracy. One drawback to a circular fiducial is that the centre of

the original circle is lost under projective transformation (as described in §2.4.4).

Four known points are required to compute camera pose (a common use for fiducial

detection) so four circles are arranged in a square pattern to form a target. This

arrangement allows the original circle centres to be located, because the approximate

projection can be determined and recursively updated. This centroid shift is only an

issue in extreme projective cases, and the error resulting from the mismatched centres

is in practice quite small (§7.3.3), so this scheme converges. Finally, the centre of

the target may contain a bar-code or other marker to allow different targets to be

distinguished.

7.1.2 Training Data

A subset of the positive training images is shown in Figure 7.5. These samples indicate

the large variations that occur in real-world scenes. They were acquired from a series

of training videos recorded under a variety of scene conditions. A dot was manually

selected in one frame and then a simple tracking algorithm was used to locate the same

dot in the subsequent frames. In this manner a large number of sample dots were

obtained with minimal effort. The window size was set at 12×12 pixels, which limited
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Figure 7.6: Geometry of the 12×12 scanning window used to detect fiducials. The size
of the detected fiducials ranges from 4-9 pixels in diameter, and is shaded in the figure
for reference. The first classifier stage consists of seven sequential probes on pairs of
inner and outer pixels, as shown. The second stage is a 144 dimensional tuned nearest
neighbour classifier acting on all pixels in the window.

the sample dot size to between 4 and 9 pixels in diameter (see Figure 7.6); larger dots

are scaled down by a factor of two until they fall within the specification. Samples were

rotated and lightened or darkened to artificially increase the variation in the training

set. This proves to be a more effective means of incorporating rotation and lighting

invariance than ad hoc intensity normalization, as discussed in §7.3.3.

Every third image was designated as a training image, and the remainder form the

test set. When we get to testing, it is important that the test and training sets not over-

lap: the training data should not include any samples from the video sequence being

tested. This is accomplished through leave-one-out learning where any training sam-

ples from the video under examination are removed prior to generating the condensed

nearest neighbour subset (§2.4.5).

7.1.3 Cascading Classifier

The target location problem here is firmly cast as one of statistical pattern classification.

The criteria for choosing a classifier are speed and reliability: the four subsampled scales

of a 720×576 pixel video frame contain 522,216 subwindows requiring classification.

Similar to (Viola and Jones 2001), this work adopts a system of two cascading probes:

• fast Bayes decision rule classification on sets of two pixels from every window in

the frame

• slower, more specific nearest neighbour classifier on the subset passed by the first

stage

The first stage of the cascade must run very efficiently, have a near-zero false negative

rate (so that any true positives are not rejected prematurely) and pass a minimal
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Figure 7.7: Distribution of (a) negative pairs, and (b) positive pairs used to construct
the fast classifier.

number of false positives. The second stage should offer high classification accuracy,

but may incur a higher computational cost.

7.1.4 Cascade Stage One: Ideal Bayes

The first stage of the cascade constructs an ideal Bayes decision rule from the positive

and negative training data distributions. Two pixels are selected within each subwin-

dow: one at the centre of the dot and the other on the background. The distribution of

the training data is shown in Figure 7.7. Notice in the negative distribution that nearby

image pixels in natural scenes tend to have similar intensity values. These distributions

were built into an ideal Bayes classifier as described in §2.4.5. The parameter λ (from

Eqn 2.26) was varied to produce the ROC curve shown in Figure 7.8. A weighting of

λ = e12 produces the decision boundary shown in Figure 7.8b, and corresponds to a

sensitivity of 0.9965 and a specificity of 0.75. The specificity predicts the number of

negatives that will be rejected by this stage of the classifier cascade.

The multiple application of the Bayes classification probe reduces the number of

positives let through as the specificity is compounded. If an outer/inner pixel test is

included from three outer edges then the predicted percentage of positives is 0.253 =

1.56% (assuming the subsequent probes are independent) where 0.25 = 1− specificity.

The observed number of positives was found to be 1.5%, which agrees with the predic-

tion. With all seven pairs applied the observed pass rate was 0.33%.

Using the same two dimensional training data but rotating the probe seven times
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creates a pseudo-eight dimensional probe. Figure 7.6 shows the geometry of the probe,

including the locations of the seven rotated probe pairs. A subwindow is marked as a

possible fiducial if all seven intensity pairs all lie within the positive decision region.

The outer edge pixels were selected to minimize the number of false positives based

on the above empirical distributions. An early-bailout is implemented in practice so

that a sample is rejected as soon as one probe fails; thus eliminating much unnecessary

computation.

The first stage of the cascade seeks dark points surrounded by lighter backgrounds,

and thus functions like a well-trained edge detector (refer to Figure 7.9c). Note however

that the decision criteria is not simply

(edge− center) > threshold

as would be the case if the center was merely required to be darker than the outer edge.

Instead, the decision surface in Figure 7.8b encodes the fact that {dark center,dark

edge} are more likely to be background, and {light center, light edge} are rare in the

positive examples. The simple thresholding strategy was compared against both the

learnt decision surface and an artificially generated decision surface (based on what one

would reasonably expect to differentiate between a dark dot and a light background).

Slight changes to the learnt surface (such as removing islands) were found to improve

the classifier, but wholesale modification did not; the thresholding method was also
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Figure 7.8: (a) The ROC curve used to determine the value of λ (indicated by the
dashed green line). (b) The decision surface generated by λ = e12, which corresponds
to a 1-specificity value of 0.25. This is the optimal decision boundary given the costs
of positive and negative errors.
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(a) (b)

(c) (d)

Figure 7.9: Sample output for the stages of the cascading fiducial classification al-
gorithm (a) Original image of the Oxford city wall, also processed by the adaptive
thresholding algorithm (see Figure 7.19). (b) A single pair in the fast classifier returns
1393 positive regions. (c) All seven rotated pairs in the fast classifier reduce the number
of positive returns to 489. (d) The second classifier stage uses a parameterized nearest
neighbour search and non-maxima suppression to select the most probable fiducials.
The 32 positive responses are denoted by red circles.

found to be too simple of a decision surface.

7.1.5 Cascade Stage Two: Nearest Neighbour

The second stage of the classifier uses a nearest neighbour classifier to identify possible

fiducials. Each 12×12 window is re-shaped into a 144 dimensional vector of pixel

intensities, and the nearest samples identified in this 144 dimensional space.

The nearest neighbour condensing algorithm (Hart 1968) was used to reduce the

size of the training data sets. Testing showed that attempts to remove noisy points

(such as edited nearest neighbour (Duda et al. 2001) dataset reduction) decreased the

performance. The condensed nearest neighbour algorithm (§2.4.5) does not produce

the globally minimal consistent subset of the original dataset; the choice of starting

examples influences the final subset. The initial positive and negative samples should

be representative of their representative classes in order to improve the generalization

performance of the resulting subset. This was achieved through the use of a synthetic

“ideal” fiducial image. All training data was compared to this image, and the training
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Figure 7.10: Positive training samples retained by the condensed nearest neighbour
algorithm. These 37 samples were condensed from an initial training set of 8,506
samples.

Figure 7.11: Negative training samples retained by the condensed nearest neighbour
algorithm. These 345 samples were condensed from an initial training set of 19,052
samples (a compilation of the original samples plus warped and normalized copies).

examples with the shortest and longest distance were used as the positive and negative

initial examples, respectively. The combined (test and training) data was condensed

from 8,506 positive and 19,052 negative examples to 37 positive and 345 negative ex-

amples. The resulting subset is displayed in Figures 7.10 and 7.11.

The second classifier stage examines a window centered on each positive classifi-

cation of the first stage. For each of these sample points the classifier computes the

distance to the nearest positive and negative training examples, and returns the ratio

min(neg distances)/min(pos distances). A non-maxima suppression step then identi-

fies the most ‘dot-like’ pixel within each region of positive classification. Figure 7.14

shows the results of this second classification stage.

Lower Dimensional Probes

Several probe configurations (Figure 7.12) were initially proposed as a means of feature

selection. The aim is to select a number of pixels from the 12×12 subwindows that will

permit classification by examining fewer dimensions. These were based on engineering

intuition and a knowledge of the layout of the target. For instance, the target is a

black dot with a white background, so some pixels should capture the black centre,

while others should focus on the background. This implies that a probe with both
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(a) (b) (c) (d) (e) (f)
Figure 7.12: Test feature selection probes of various dimensions: (a) Initial 8D (b)
Learnt 8D (c) Random 8D (d) Initial 40D (e) Learnt 40D (f) Random 40D For a given
number of points, the learning process determines the best layout of query pixels.

centre and edge pixels should perform better, but the very corner pixels tend to pick

up features that are off the target background.

In order to determine if these ‘designed’ probes are indeed the optimal configura-

tions, a series of probes were assembled and ROC curves computed for each one. Eight-

dimensional probes with four axes of symmetry, four interior and four exterior pixels

were assembled. Forty-dimensional probes with twelve interior pixels and twenty-four

exterior pixels were generated along similar lines. A set of random 8 and 40 dimensional

probes were also generated. The top-performing designed probes and representative

random probes are given in Figure 7.12. The ROC curves for each probe are given in

Figure 7.13.

Classification with the feature selection probes resulted in a higher number of true

target rejections (false negatives). The decrease in computational complexity was not

sufficient to offset the drop in performance, so the nearest neighbour classification stage

operates on the full 144 dimensional images.

7.2 Implementation

The implementation of the algorithm explained in §7.1 is straightforward for all but

the target verification step. The cascading classifier identifies all dots within each

video frame, but some false positives are found, in addition to the true target dots.

Figure 7.14 shows a typical example of the classifier output, where the true positive

responses are accompanied by a small number of false positives. These verifications

steps are described in this section, but first we will address the issue of incorrect training

data in the training sets.

7.2.1 Training Data Filtering

It is essential to ensure that the training data does not contain misleading data. For

instance, negative examples that actually appear to be dots should not be included in

the negative set as they will cause legitimate dots to be rejected. Likewise, positive

examples where the background clutter encroaches at the edges will cause additional
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false positives. One option is to model the positive training examples as a Gaussian

distribution and reject the extreme outliers. However, the positive sample probability

density function shown in Figure 7.7b demonstrates that the distribution is far from

Gaussian. Instead, training data filtering was done manually: any dots with background

clutter or improperly centred dots were rejected.
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Figure 7.13: ROC curves for lower dimensional probes: (a) 8D probes (b) 40D probes
(c) 1-NN outperforms k-NN for k> 1 (d) Learnt probes for each dimension. As the
probes have both a high sensitivity and a high specificity, the results are displayed on
log-log scales with 1-sensitivity plotted on a reversed vertical axis.
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Figure 7.14: Example output of the classification stages, at multiple scales, showing
the true target fiducials identified along with a number of false positives. The target
verification stage seeks to remove the remaining false positives.

7.2.2 Target verification

Target verification is merely used to identify the target amongst the positive classifica-

tion responses; this section outlines one approach but there are any number of suitable

techniques.

Photometric Check The Delaunay triangulation of all positive points is first com-

puted to identify the lines connecting each positive classification with its neighbours.

The Delaunay triangulation was used as a means to connect all of the points without

introducing an unduly large computational load. A weighted average adaptive thresh-

olding is used to segment the line into light and dark regions. This is essentially the

adaptive thresholding algorithm described in §7.3.2 simplified to one dimension. The

photometric test checks that there are two transitions, and that the centre region is

over half the overall length. An example line check is shown in Figure 7.15 and detailed

pseudocode is given in Figure 7.16. All lines that fail this test are removed; points that

retain two or more connecting lines are passed to the geometric check.

Geometric Check The geometric check is used to identify groups of points whose

positions are consistent with the layout of the target (i.e. fit the four corners of a

square under perspective projection). The Delaunay triangulation is re-computed for

the points that passed the photometric test, and all groups that cannot form the tar-

get at the current scale are removed (Figure 7.17). For each remaining group, all

combinations of four points are tested. Three of the points are used to compute the

transformation that maps them onto the corners of a unit right triangle. This transfor-
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Figure 7.15: Example of the one-dimensional photometric check to verify that two
proposed dots are joined by a smooth, light coloured background.

Inputs: image (current frame)
endpoints (coordinates of the line)
scale (current search scale as a fraction)

Initialization: offset = 20
threshold pos = 0.8 ∗ offset = 16
threshold neg = −5.0 ∗ offset = −100
line = get line pixels(image, endpoints)
wgt sum = line[0] ∗ s (initialize the weighted sum)
s = max[length(line)/8, 2]
num transitions = 0
region sign = [1 –1 1]

if length(line) < 4/scale or length(line) > 60/scale then return false
if standard deviation(line) > 1 then normalize(line, µ = 128, σ = 30)
else return false
while i < length(line) and num transitions < 4 do

if (line[i]− wgt sum/s) < threshold neg ∗ region sign[num transitions] then
return false (step too large in wrong direction)

if (line[i]− wgt sum/s) < threshold pos ∗ region sign[num transitions] then
num transitions = num transitions + 1
wgt sum = wgt sum ∗ (1− 1/s) + line[i]

i = i + 1
loop
if num transitions 6= 2 or length(center region) < length(line)/2 then

return false (line is not a match)
else return true

Figure 7.16: Algorithm for the photometric test used in target verification. Each pixel
intensity is compared with a weighted average of the previous pixels; if the difference is
greater than a set threshold (for the dot regions, less than for the center region) then a
transition to the next region is triggered. For a line to pass it must have exactly three
regions, with the lighter interior region being at least as long as the two dark outer
regions combined.
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(a) (b)

Figure 7.17: Target verification (a) All positive detections for a certain scale. The pho-
tometric test is performed on each Delaunay edge (shown in blue), and failed edges are
deleted. Points that retain more than two edges are preserved. (b) Delaunay triangula-
tion re-computed for those points that passed the photometric test. Edges that are too
long for the current scale are removed (dashed blue lines), and once again only points
with more than two edges are preserved. Groupings with fewer than four connected
points cannot form a possible target, so these are also removed. The remaining groups
are tested as described in §7.2.2.

mation is then applied to the fourth point, and the result plotted against an empirical

distribution (see Figure 7.18). This empirical set of observations was generated from

the ground truth coordinates of the training video sequences, and is distributed about

the predicted fourth point (1,1) due to foreshortening in the image. The radius is

determined by the amount of foreshortening, but is limited because the fiducials are

(1,0) (0,0) 

(0,1) 

Figure 7.18: To check the geometry of a set of four prospective target dots, first com-
pute the homography used to map three of the dots to the unit right triangle. The
fourth dot is then plotted and compared with the empirical distribution for test target
configurations (region shown in grey above). The small “tails” at the top and bottom
of the distribution are due to foreshortened views within the training dataset.
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only detected up to a foreshortening threshold. During testing, if the mapped point

lies within the empirical region, then the group of points are considered to be a target

match. The dot centres are then calculated by weighted centroid to achieve sub-pixel

accuracy.

7.3 Evaluation

The intention of this work was to produce a fiducial detector which offered extremely

high reliability in real-world problems. To evaluate this algorithm, a number of video

sequences were captured with a DV camcorder and manually marked up to provide

ground truth data. The sequences were chosen to include the high variability of input

data under which the algorithm is expected to be used. It is important also to compare

performance to a traditional “engineered” detector, and one such was implemented as

described in the next section.

7.3.1 Engineered Detector

One important comparison for this work is how well it compares with traditional ad

hoc approaches to fiducial detection. This section outlines a local implementation of

such a system.

Each frame is converted to grayscale, binarized using adaptive thresholding as de-

scribed in §7.3.2, and connected components used to identify continuous regions. The

regions are split into scale bins based on area, and under or over-sized regions removed.

Regions are then rejected if the ratio of the convex hull area and actual area is too

low (region not entirely filled or boundary is not continually convex), or if they are too

eccentric (if the ratio of axis lengths for an ellipse with the same second moments is

too high).

7.3.2 Adaptive Thresholding

Many detection algorithms require a binary image, but changes in intensity make it

difficult to select a global threshold value that will differentiate between foreground and

background across an entire image. One solution to this is the adaptive thresholding

proposed by Wellner (1993), which uses a weighted moving average of the previous

pixels to set the threshold value for each pixel. Although this method is reasonably fast

and produces adequate results, the averaging method and technique for initialization

is somewhat ad hoc.
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Figure 7.19: Adaptive thresholding an image of the Oxford city wall. Thresholding
this natural scene produces 1269 regions from which to identify the target. In contrast,
the cascading probe technique shown in Figure 7.9 returns a set of 32 possible target
fiducials.

The threshold is defined as:

g(n)
s

100− T

100
(7.1)

g(n) = p(n) + (1 +
1
s
)g(n− 1) (7.2)

where:
p(n) is the pixel at position n
g(n) is the weighted average of the previous pixels
s governs the number of previous pixels to include
T is the percentage to offset the threshold

This sort of moving average requires initialization, which can be set to the midrange

value or the value of the first pixel. The rate at which the weighting falls off is set

through the parameter s. For smaller values the effect of the initialization value drops

off sooner.

7.3.3 Results

The fiducial detection system was tested on six video sequences containing indoor/outdoor

lighting, motion blur and oblique camera angles. The reader is encouraged to view the

video of detection results available from

http://www.robots.ox.ac.uk/~dclaus/thesis/fiddetect.mpg.

Ground truth target coordinates were manually recorded for each frame and com-

pared with the results of three different detection systems: learnt classifier, learnt clas-

sifier with subwindow normalization, and the engineered detector described in §7.3.1.

This provided a total of 3356 frames of video on which to test the algorithms. Table

7.1 lists the average number of positives found per frame. Each 720×576 pixel frame

requires 524,554 classifications; the fast classification stage returned just 0.33% of the
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True Fast Full Normalized Engineered
Sequence positives classifier classifier full classifier detector
Church 4 5790 107 135 121
Lamp 4 560 23 30 220
Lounge 4 709 36 55 43
Bar 4 82 5 6 205
Multiple 7.3† 2327 79 107 96
Library 4 1297 34 49 82

Average - 1794 47 64 128
†The Multiple sequence contains between 1 and 3 targets per frame.

Table 7.1: Average number of positive fiducial classifications per frame. The full clas-
sifier is only applied to the positive results of the fast classifier. This cascade allows
the learnt detector to run faster and return fewer false positives than the engineered
detector.

subwindows as positive, allowing the classification system to process the average frame

at four scales in 120 ms.

Subwindow Normalization

Normalizing each subwindow to have mean 135 and variance 35 then classifying with

normalized data increases the number of positives found. From Table 7.2 the false

positive rate increased from 0.4% to 2.3% when normalization was incorporated. For

the sequences studied here the normalized detector returned more false positives than

even the engineered detector. The target verification stage must then examine a larger

number of features; since this portion of the system is currently implemented in Matlab

alone it causes the entire algorithm to run slower. This is added to the increased com-

plexity of computing the normalization of each subwindow prior to classification. By

contrast, appending normalized and rotated copies of the training data to the training

set was found to increase the range of classification without significantly affecting the

number of false positives or processing time. These modified copies of the training data

were added prior to the condensing; after eliminating redundant data the set of posi-

tive/negative samples increased from 13/58 to 37/345. The success rate on the dimly

lit bar sequence was increased from below 50% to 89.3% by including these normalized

training samples.

Detection Rate Comparisons

A perfect response from the fiducial classifier would return only 4 (or 7.3 for the mul-

tiple sequence) positives per frame. In practice it is necessary to accept additional
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Learnt Normalized Engineered
detector detector detector

Sequence Targets True False True False True False
Church 300 98.3% 2.0% 99.3% 8.7% 46.3% 0.0%
Lamp 200 95.5% 0.5% 99.5% 3.0% 61.5% 0.0%
Lounge 400 98.8% 0.5% 96.5% 1.0% 96.5% 0.0%
Bar 975 89.3% 0.0% 91.3% 0.0% 65.7% 0.5%
Multiple 2100 95.2% 0.7% 93.5% 3.5% 83.0% 1.4%
Library 325 99.1% 0.6% 94.2% 0.0% 89.8% 5.2%

Summary 4300 94.7% 0.4% 94.0% 2.3% 77.3% 1.1%

Table 7.2: Success rate of target verification with various detectors. Normalizing each
window prior to classification improves the success rate on some frames, but more false
positive frames are introduced and the overall performance is worse. The engineered
detector cannot achieve the same level of reliability as the learnt classifier.

(false) positives to keep the number of missed fiducials (false negatives) down. The

photometric (§7.2.2) and geometric (§7.2.2) target tests can be used to reject false pos-

itives (results are given in Table 7.2) but there can be no recovery from a premature

rejection of a true positive. In Table 7.2 we see that the number of false positives

returned by the two stage learnt detector is the lowest of all the methods tested. The

preprocessing normalization actually increases the number of false positives by bringing

more background subwindows into the range where they appear as true fiducials. This

requires additional processing time downstream to identify the true fiducials from a

larger collection of candidates.

The performance of the overall target detector (fiducials plus target identifica-

tion/verification) is listed in Table 7.2. The success rate for true detections is the

percentage of the targets present in the video that were located by the algorithm. A

correct identification requires all four dots be found and that their reported coordi-

nates coincide with the ground truth location. The learnt detector on its own achieved

the highest detection rate: 94.7%. The poor performance of the engineered detector

results from missed detections on poorly lit or blurred frames. Altering the algorithm

(by adjusting thresholds or adding image processing steps) to improve the performance

on one scene was found to decrease the performance on some of the other scenes. The

parameters of the engineered detector were manually tuned so that the reported results

are the best observed on the collection of sequences. Evaluated on its own this is a

reasonably good detector: the scenes used for testing here were purposely selected to

demonstrate difficult aspects of fiducial detection.

The reliability of a detector depends on both the number of missed targets (false
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negatives) and the mistaken identifications (false positives). We see in the summary

line of Table 7.2 that the proposed detector without normalization provides the best

results in both categories.

Operating Range

The bounding criteria that determine the operating range of the target locating algo-

rithm include: camera optical axis nearly perpendicular to target normal, motion blur,

and small (far away) targets. As the camera is moved so that it shows the edge of

the target, rather than head on, the target dots become ellipses rather than circles. If

this is taken to the extreme the circles become lines and then vanish. The algorithm

was found to detect targets at angles up to 75 degrees from the target normal. As the

camera is panned or zoomed rapidly the image becomes blurred. A very fast blur would

be a series of stripes, which can’t be identified as a four dot target. A less severe case

would enlarge the dots and the grey blurred edges could bias the location of the centres.

The minimum dot that can be recognized is two by three pixels, which corresponds to

a distance of approximately 10 m with a 50 mm lens.

7.4 Locating a Circle’s Projected Centre

The fiducial detection algorithm described in this chapter provides an image location

where a fiducial dot is located. This location is based on the pixel that was at the

centre of the 12× 12 probe when the positive identification was made, and is therefor

accurate to one pixel at best. Many applications require more precise localization than

this.

The obvious choice is to threshold the image region containing the dot and then

compute the weighted centre of the dot based on the pixel intensity values. This

provides a reasonable measure of the dot’s location, but foreshortening can cause the dot

centre to shift in oblique views and other image effects can influence the thresholding.

To overcome both of these potential drawbacks we collect four fiducials into a square

target and compute the homography to warp their imaged locations into the corners of

the unit square. Simultaneously computing the centre of four dots mitigates some of

the problems with image noise, provides a grid for identifying the image regions where

the dots should be, and allows the centre shift under perspective to be overcome. The

following sections describe two approaches to computing this homography. The first

is an efficient method that resolves most of the accuracy issues, while the second is a

nonlinear optimization that precisely computes the dot positions.
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Figure 7.20: Errors in computed target coordinates for the church sequence. The
horizontal error is shown in red, and the vertical in blue.
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Figure 7.21: Errors in computed target coordinates for the “test” sequence (see Fig-
ure 7.1). The camera path is roughly one meter from the target, and begins with an
oblique view on the right, progresses to the left and then returns to the right. The bias
in error is due to the mismatch of the circle centres under the projective transformation
experienced in oblique camera angles at such close range. The large oscillations around
Frames 800-900 denote failed detections caused by camera angles outside the operating
range.

7.4.1 Homography from target coordinates

The registration accuracy can be evaluated by computing a planar homography from

the screen coordinates (or image plane) to the plane that the target is in (e.g. the wall

that it is taped to). Such a homography can be represented by a 3 × 3 matrix, and

computed from four corresponding point locations in both planes (such as the target

centres).

Once the homography has been computed it can be used to warp the target into

a plane that is fronto-parallel with the image plane. The accuracy of the homography

(and by extension, the computed target coordinates) can be evaluated by measuring

the offsets of the dot centres in the fronto-parallel image. Figures 7.20 and 7.21 show

the error in each direction for the church sequence and test sequences respectively. The

error is the mean between the four dots, so the absolute errors for specific dots could be

higher. For these two figures the blue curve denotes vertical error and the red denotes

the horizontal. The test sequence exhibits a cyclical bias caused by the circle centre

mismatch under perspective transformation (refer to §7.1.1). The test sequence was
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Figure 7.22: Single pass and double-pass error comparison for the “church” sequence
(see Figure 7.1). The double pass method (red curve) computes the dot centres from
the fronto-parallel target image obtained from the single pass homography. Note that
this plot displays the sum of the error distance of all four dots in the target.
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Figure 7.23: Single pass and double-pass error comparison for the “test” sequence (see
Figure 7.1). Note that the second pass (red curve) has corrected the centre mismatch
error observed in Figure 7.21.

filmed very close up, and alternates between very oblique views on the right, left and

finally the right side of the target. Note that the horizontal error (red curve) oscillates

accordingly.

The offset in computed dot centres is due to foreshortening, but the error is small

enough to be insignificant for most applications. Where this level of error is relevant

(computing camera pose, for example), accurate coordinates can be computed, in a

second pass, from the fronto-parallel image. This is done by first computing approxi-

mate dot centre locations from the original image. These locations are used to compute

the homography that will map the four dots to the unit square; this homography is

then used to warp the image. This warped image is approximately a fronto-parallel

view. The dot centres are then detected a second time in this newly warped image.

Again, the homography to warp the detected dot centre locations onto the unit square

is computed. This second homography should induce only a slight transformation as it

merely corrects for the error in the first dot detection. The overall homography is then

produced by concatenating the homographies computed in the first and second stages.

Figures 7.22 and 7.23 compare the error between the target coordinates computed di-

rectly and the error when a second pass is used. These figures show the sum of the
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Figure 7.24: Finding ellipse centres through homography optimization. (a) Target
consisting of four circular dots with known spacing and diameter. (b) A perspective
image of the target. (c) The true centre of a circle under perspective projection is
found by transforming the detected edgels (green points) into the fronto-parallel plane
(right view). (d) A non-linear optimization using the errors relative to the true circle
(red arrows) then yields the refined transformation. The original centre is found by
back-projecting the true circle centre into the image using this refined transformation.

error distance for each of the four dots.

The inverse homography can also be used to map an image into the same perspective

as the target. This has the effect of “pasting the image on the wall”. Each frame will

have a slightly different homography based on the computed dot centres for that view.

Any inaccuracies in the computed centres will cause the image to shift slightly on the

wall. This motion is noticeable and provides a qualitative measure of the target location

algorithm’s performance.

7.4.2 Homography Calculation from Four Circles

This section describes a non-linear method for finding the centres of four coplanar

circles by optimizing a planar homography. The four-fiducial target used throughout

this chapter and thesis is an example of such a set of coplanar circles. The centres are

computed by optimizing the homography that warps the detected edgels of the imaged

circles onto the perimeter of the true dots. This approach yields the precise centres

(irrespective of parallax) and the homography to warp the target fronto-parallel. The

homography can be used to initialize a pose computation (refer to §6.2.2), but the

precise centres are required for any further processing based on the fiducials. The

optimization presented here is a continuation of the double-pass approach described in

the previous section; here we use nonlinear optimization to iterate until convergence.

A fiducial pattern consisting of a set of four circular dots is sufficient to constrain

the homography (up to a forward/backward ambiguity that is trivially resolved for a

camera with less than 180◦ field of view).
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Our task is two-fold: find the homography that will warp the imaged dots fronto-

parallel, and locate the image projections of the dot centres. The problem is illustrated

in Figure 7.24. We begin with a planar target of known dimensions: each dot has

diameter d and is spaced a distance s from its neighbours. This analysis assumes that

the fiducials have been detected, so their centres are already approximately known.

These initial estimates of the centres will be denoted c′1...4. As discussed in §2.4.4, the

centre of a circle is not projectively invariant (see Figure 2.14), so the weighted centroid

method for computing the centre does not provide the true centre. Using all four dots

simultaneously, and basing the alignment on the perimeter rather than an assumed

centre, we are able to overcome this projective problem.

For each dot, a set of edgels e are found by extracting a region containing the dot

and performing Canny edge detection (Canny 1986) (Figure 7.24c). These edgels are

transformed into the fronto-parallel plane via an initial homography H0 computed from

the estimated dot centres in the image and the true dot centres in the fronto-parallel

view (denoted by C1...4) as follows

[C1| . . . |C4] = H0[c′1| . . . |c′4]. (7.3)

This initial homography is fed to the optimization, along with the complete set of edgels

and dimensions of the target. The set of edgels detected for the jth dot Ej = {e1
j . . . emj

j }
are individually transformed into the fronto-parallel view by E′ = He, where H is the

homography being optimized. The error for each edgel is computed by subtracting the

dot radius r:

ε(H) =
4∑

j=1

mj∑
k=1

∥∥∥∥∥
√∥∥∥Hek

j −Cj

∥∥∥2
− r

∥∥∥∥∥
2

. (7.4)

This error is not measured in the image plane, but rather in a world coordinate frame

that is approximately aligned with the target plane. This is not treating the edge

detection errors exactly correctly, but it yields an approximation that is reasonable.

The ellipse centres in the image are the back-projection of the known fronto-parallel

centres using the optimized homography

c = H−1C. (7.5)

7.5 Target Identification

The task of identifying which target has been found is again handled through a near-

est neighbour (sum of squared differences) match with a set of trained patterns (Fig-

ure 7.25). These patterns are easily recorded using the detection algorithm itself. The
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Figure 7.25: Multiple fiducials printed out on a single sheet of paper. The white overlay
shows the detected marker positions and the squares bounding the marker identification
codes. The target detection and assignment of the identification patterns is performed
automatically from a single frame of video.

target dots are automatically located, and the registration pattern is recorded for each

target found. In our tests, the patterns consist of non-symmetric binary patterns in a

3 × 3 grid, but in general any pattern could be used. A normalization step is used to

handle differences in lighting conditions. A higher degree of robustness can be obtained

by recording training images under a wide variety of lighting conditions, however in

this case we want to minimize the amount of storage and computational overhead asso-

ciated with the target recognition. Therefore a single image is recorded at the expense

of some robustness.

7.6 Fiducial Localization Trials

This section describes an experiment to measure the precision of fiducial localization.

We recorded a video of fiducials moving along a circular path and measure the deviation

in the computed location. The circular paths were generated by placing a four-fiducial

(dot) target on a turntable and filming it from directly above. As shown in the sample

frame of Figure 7.26, the target was offset from the centre of the turntable so that each

fiducial would trace out a different radius. The camera’s viewing axis was aligned with

the turntable’s axis of rotation to produce a nearly circular rather than an elliptical

path. The turntable was approximately centred in the camera’s field of view so that

any radial lens distortion effects would be mitigated. Lens distortion was corrected

(using the division model described in §3.1) as a precautionary measure.

A 524 frame sequence was recorded, totalling 3.3 complete rotations. The ground

truth paths were determined by fitting a circle to the path of each fiducial. This was

done after the pixel aspect ratio was computed (from the axis ratio of the elliptical

path) and factored out. The radial and tangential errors were computed by comparing

each fiducial dot localization result with the location predicted by the circular path.
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Figure 7.26: A target consisting of four fiducials was placed on a turntable to measure
the fiducial localization accuracy. Each dot traces out a circle, and the position error
for the dots detected in each frame is measured relative to this known path.

Radial Errors Tangential Errors
Radius Mean Max Std.Dev Mean Max Std.Dev

Dot 1 187.0 0.04 0.18 0.03 0.11 0.46 0.09
Dot 2 151.8 0.04 0.25 0.04 0.11 0.44 0.09
Dot 3 113.2 0.03 0.15 0.03 0.12 0.52 0.09
Dot 4 28.0 0.02 0.08 0.02 0.15 0.91 0.13

Table 7.3: Errors measured relative to the circular path for each fiducial dot. The
computed values are averaged over all 524 frames in the sequence; all measurements
are in pixels. The tangential errors are elevated due to sampling rate issues (refer to
text). The radial errors indicate that the proposed method can provide very precise
marker localization.

The results are tabulated in Table 7.3 and plotted in Figure 7.27. Note that the plotted

errors denote the radial error only and have been amplified by a factor of 100 so that

they are visible. Observe that the errors are predominantly noise; there is little or no

systematic bias which would indicate a problem with the fiducial localization algorithm.

From Table 7.3 we see that the mean radial errors are below five hundredths of a

pixel. This level of precision is more than adequate for most computer vision tasks.

For comparison, the corners of the target identification pattern were tracked in boujou

(which uses a Harris corner type of detector) and the mean radial error was 0.07 pixels.

The tangential errors are slightly higher than the radial ones due to the difference

in operation frequency between the turntable and the camera. The turntable uses a
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Figure 7.27: Fiducial localization results with radial errors amplified by a factor of
100. By exaggerating the error we see that there is little systematic error; the position
errors reported in Table 7.3 are predominantly due to noise rather than bias in the
localization scheme.

stepper motor to advance in discrete intervals. Because this timing does not match the

frame rate of the camera the turntable will not rotate an equal amount between frames.

The ground truth data assumes a constant angular velocity; any deviation from this is

seen as tangential position error. As a result, the radial error is more representative of

the error level that can be expected.

In summary, the proposed fiducial detection method can provide localization accu-

racy on the order of 1
20th of a pixel, which is half the error level from a standard feature

detector for this test sequence.

7.7 Summary

This chapter has presented a fiducial detection scheme that uses example based learning

to handle lighting variation, scale changes and motion blur. Engineering a fiducial

detector by assembling image operations produces a narrowly focused algorithm that

is difficult to adapt to new scene challenges. By contrast, an exemplar based method
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is retrained simply by including relevant image samples.

The presented method tests a 12×12 pixel window surrounding very pixel in the

image; a two stage classifier is required to increase its efficiency. Once fiducial candi-

dates have been identified a series of ad-hoc tests are run to identify sets of hits that

constitute targets.

Evaluation on a varied collection of image video sequences demonstrated that the

learnt detector returns fewer false positives than an engineered one, while simulta-

neously identifying fiducials over a wider operating range. Adding image processing

steps such as normalization to the learnt detector actually decreases the performance

because more false positives are returned (0.4% false positives without normalization

versus 2.3% with the extra processing step).

Testing on a collection of videos containing fiducial targets in different scenes showed

that the learnt detector outperforms the engineered detector in terms of percentage of

targets found and number of objects incorrectly identified as targets. Adjusting the

engineered detector to improve its performance on one scene caused a corresponding

drop in performance on another. By contrast, the exemplar based algorithm can handle

new scene challenges simply by including relevant example images. There was little or

no observed increase in false detections from using this expanded training set. An

image normalization step prior to running the classification algorithm was also tested

and found to degrade the overall performance. Including relevant training data is a

more reliable and efficient method for improving the performance of the detector than

adding image processing steps to deal with specific input scenarios.

Any discussion of finding centres of circles where oblique views are possible should

address centre shift. This chapter measured the reprojection error in the plane for

compensated centres and for a single step correction. Although this foreshortening

induced error is generally small enough to be insignificant the single stage correction

drastically reduces it.

An iterative optimization technique is also presented for precisely computing both

the centres of four circles and the homography that warps them to a unit square. This

technique definitively solves the foreshortening issue, but is more important where

extreme accuracy in target location is required.

Finally, turntable based fiducial detection trials indicate that the proposed dot

detector computes the location of the dot centres to within 0.05 pixels of the true

location. This is without the homography optimization.

In summary, this exemplar based fiducial detection algorithm is fast enough for real-

time implementation, robust enough for use in a wide variety of real life environments,
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and precise enough for applications requiring accurate localization. This precision is

crucial to the photometric stereo application described in the next chapter; the accurate

image registration and camera localization depend upon this type of fiducial detection.



Chapter 8

Photometric Stereo Application

This final chapter describes an application of the various metrology strategies presented

in the preceding chapters. This particular system relies on accurate camera localiza-

tion, fiducial detection and distortion correction to produce high resolution 3D texture

models of real world objects.

The capture of real-world data is becoming increasingly important for accurate

computer modeling of real-world objects. Three dimensional object scanners are used

as part of the rapid prototyping process — an artist’s model can be scanned then

directly converted into a CAD object and even printed in 3D. The film and media

industries require texture maps for accurate rendering of synthetic objects. In the

past these textures have either been drawn manually of generated procedurally based

on the behavior of that particular class of materials. A simple method for creating

these textures by recording real-world surfaces has the potential to significantly alter

computer graphics rendering. A third application for real-world object capture is the

recording of historical artifacts. Museums could potentially showcase a larger portion

of their collections through media based presentation, while researchers could make use

of the data sharing, searching and analysis tools available for such digital data.

Just as there are many uses for digital models of real-world objects, there are

also many different technologies available for capturing that data. Here we will focus

on photometric stereo: using controlled lighting to illuminate an object from several

viewpoints and then inverting the illumination equations to recover the object’s shape.

This photometric stereo application was a joint project with James Paterson. It was

presented at Eurographics 2005 (Paterson et al. 2005) and comprises a portion of UK

patent application 0608841.3. This thesis describes only the portion of the project

which was my work.

The image of a 3D object depends upon the object’s shape, its reflectance proper-

ties and how it is lit. By controlling the lighting and making assumptions about the

166



CHAPTER 8. PHOTOMETRIC STEREO APPLICATION 167

reflectance properties it is possible to compute the shape. This is the basis for pho-

tometric stereo (Woodham 1980), which is usually recorded with a single camera in a

fixed position, multiple lights in known locations and the assumption that the object

has Lambertian reflectance properties. If the camera and object are fixed relative to

one another then a given pixel in any of the images will always correspond to the same

point on the object. Under the Lambertian assumption, the observed brightness at

that pixel is given by

I = n · L (8.1)

where n is the surface normal and L is the light direction. Collecting images from at

least three distinct light directions allows n to be solved for at every pixel.

This simple explanation is complicated by (among other things) the fact that very

few materials are purely Lambertian. A discussion of other reflectance models and

the details of a photometric stereo system are beyond the scope of this thesis, so the

interested reader is referred to Paterson (2005) for details on these aspects of the project.

There are three major steps to our reconstruction process: 1) transform all input

images so we have pixel-for-pixel alignment, 2) use photometric stereo techniques to

compute the surface normal and albedo at each pixel, and 3) integrate the surface

normals to recover the 3D shape of the test sample. Here we will only describe the

first and third steps. The transformation to align each pixel is facilitated by a fiducial

based target. Both the camera and light position are recovered through nonlinear

optimization.

8.1 Motivation

The novel approach taken by our photometric stereo system is to permit the camera

to move relative to the (approximately planar) object being sampled. A target with

fiducials is attached to the object and the camera localization techniques described in

this thesis are used to compute the viewing position for each image. A known camera

position permits the re-rendering of the simulated image that would be recorded by a

camera directly in front of the object (fronto-parallel). There are two advantages to

the moving camera photometric stereo setup which make the extra work required to

re-render aligned fronto-parallel images worthwhile. The first is that it simplifies the

lighting apparatus; we use a single light source that is rigidly attached to the camera.

As the camera is moved (rotated) between shots the light is in a different position

relative to the object for each image. Thus there is only one light whose position

must be determined during calibration. The second advantage to a moving camera is
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(a) (b) (c) (d)

Figure 8.1: Overview of the photometric stereo 3D reconstruction process. Top row:
Input images showing the calibration target stuck to an exterior wall. These images are
captured using a camera with flash. Second row: Images rectified to front-parallel view.
This chapter describes the processes required to obtain these views. Final row: Pho-
tometric stereo reconstruction results shown as (a) the computed normal map n(x, y),
(b) the recovered albedo, a part of a(x, y), (c) 3D geometry depicted by a colour-coded
height field z(x, y), and (d) a resynthesized image.

that views which are not fronto-parallel permit the computation of an object’s depth.

Traditional photometric stereo with a single fixed camera solves for the surface normal

at every point on the object, but there is still a depth ambiguity that cannot be resolved

from a single viewpoint. By allowing the camera to move we introduce parallax that

can be used to establish a depth scale. This scale is then used to constrain the surface

integration so that an accurate representation of a 3D surface can be recovered.

This chapter presents an application of the camera localization and fiducial detec-

tion techniques detailed in Chapters 6 & 7. We shall describe a photometric stereo

system that uses simple, standard equipment to produce high resolution models of 3D

geometry and reflectance. Precise camera localization under varying light and cam-

era directions permits a single camera and flash to provide the input images required

for traditional photometric stereo techniques. Careful engineering of all aspects of the

processing pipeline (in particular compensation for flash attenuation) yields very high

resolution surface geometry.

8.2 Overview

Photometric stereo requires images with pixel for pixel correspondence, but different

(known) lighting directions. Traditionally the correspondence is achieved by using a
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Figure 8.2: Photometric stereo system schematic. The camera is moved relative to the
surface to be sampled, generating multiple views of the surface with different lighting
directions. Photometric stereo is then used to recover surface geometry directly from
the camera image. The flash is a conventional camera flash, and does not project
structured light.

single stationary camera while several lights are permanently mounted in some sort of

frame. Then the light and camera positions are measured relative to the object in a

global 3D coordinate system. By contrast, the system detailed here employs a single

handheld camera with an attached flash (see Figures 8.2 and 8.3). This rig is free

to move arbitrarily around the sample. A specially designed target plate is used to

calibrate the light position relative to the camera, and then to compute the camera

position relative to the sample. Once the geometry is known, it is possible to establish

pixel for pixel correspondences between all the images. Standard photometric stereo

techniques are then used to compute surface normals. Due to the precision built into

the system, these normal measurements are largely free from bias. The non-static

viewpoint yields a depth constraint which can be applied while integrating the surface

normals to produce a reasonable 3D surface. For samples which are far from planar

this surface can be used to incorporate parallax correction in the task of producing

fronto-parallel views. This entire process is outlined in Figure 8.4 and detailed in the

next few sections.

The system (shown in Figure 8.2) uses a five-fiducial target to compute camera pose

and thus rectify all images. A commercial flash gun is used to provide illumination

which renders the ambient lighting insignificant. Four cones on the target cast shadows

which are used to compute the light position during calibration.
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Figure 8.3: The apparatus used for the photometric stereo image capture. The camera
and flash (highlighted) are rigidly attached to a boom so that they move together. Two
types of targets were used: one is attached to a metal plate with cones, and the other is
merely a laser printed sheet of paper with a window cut out of the middle. The cones
are used to solve for the light position relative to the camera (refer to text).

8.2.1 Lens Distortion Correction

Prior to performing any other processing, the input images were corrected for lens

distortion. For this sample application, the lens distortion model proposed by Heikkilä

as implemented in the Matlab Camera Calibration Toolbox ((Bouguet 2003)) was

used with only the second order radial term.1 This model is sufficient to handle the

low levels of distortion present in these images taken at moderate levels of zoom. The

code is freely available and easy to use; other researchers can therefore readily compare

the results.

Focal length: fx 7698.681 ±17.899 pixels
fy 7685.665 ±16.971 pixels

Image dimensions: width 2048 pixels
height 1536 pixels

Principal point: cx 1032.262 ±2.194 pixels
cy 778.622 ±2.828 pixels

Distortion: k 0.970 ±0.014
Pixel error: ex 0.307

ex 0.239

Table 8.1: Calibration values for radial distortion correction. These sample values were
output by the Matlab Camera Calibration Toolbox; note that only the second order
radial distortion term and principal point coefficients were used.

1The rational function model for lens distortion was not used in this work because it had not yet
been fully formulated.
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Offline calibration

1. Radial distortion

• Model the radial lens distortion for this specific camera/lens combination

2. Light position

• Compute the light position relative to the camera using shadows cast by
the cones on the target plate. This can be done online if the target plate
with cones is used rather than the paper target.

Online operation

1. Camera localization

• detect dots and use a homography optimization §7.4.2 to locate centres

• (optional: if using target plate for online light position calibration) detect
cone shadow tips

• optimize for camera pose (and optionally, light displacement)

2. Light attenuation

• sample the intensity on the white target periphery and use this to model
the light attenuation

• use the known light and camera positions to correct for light fall-off

3. Warp images

• use the known camera pose to warp a fronto-parallel image (this is a planar
warping as the height z = 0)

4. Photometric stereo

• compute the surface normal at each pixel

5. Surface integration

• triangulate several user-selected point correspondences across multiple
views to use as constraints

• integrate the surface normals to create a 3D surface, subject to the above
constraints

6. Parallax correction

• for highly non-planar samples the height map is used to correct for parallax
and occlusion when warping the fronto-parallel views

7. Iterate steps 4–6 as necessary

Figure 8.4: Photometric stereo system overview. A single camera with an attached
flash is free to undergo arbitrary motion relative to the sample due to precise camera
localization based on a target plate of known dimensions.
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Figure 8.5: Light position calibration geometry. The position of the light relative to
the camera is established using the images of the cone shadows and fiducial dots on the
target plate.

8.2.2 Light position

The second offline task is to calibrate the light/camera boom. We measure the 3D

position of the light relative to the camera centre using the target plate with attached

cones shown in Figure 8.5. The light is rigidly attached to the camera, so once its

position in camera coordinates is known we are only required to compute the camera

position for each input image. Since the camera pose can be recovered from the planar

dots alone the plate target with cones is only needed for the initial calibration (though it

is also useful for keeping the fiducial target planar while sampling non-planar objects).

The general calibration procedure is to locate the camera using the fiducials and then

to determine the light position by intersecting the rays from each cone tip and shadow.

Both the light and camera positions are thus defined relative to the known target

geometry, and their orientation relative to one another is easily computed.

The plate consists of a set of fiducials F1...5 and cone tips T1...4 with known coordi-

nates in the world coordinate system. The light and camera are rigidly attached to the

boom, and then a set of N images are recorded from different (arbitrary) camera/light

positions. In each image Ii we observe cone tip shadows at pixel locations s1...4. For

light position Li (in world coordinates) the preimage of shadow tip si
k is the intersection

of the line λTi
k + (1 − λ)Li with the world XY -plane. This plane corresponds to the

front face of the target plate, n = [0 0 1]>, and yields the constraint

n>
(
λTi

k + (1− λ)Li
)

= λn>
(
Ti

k − Li
)

+ n>Li = 0 (8.2)

⇒ λ =
n>Li

n>(Li −Ti
k)

. (8.3)
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The world position of the shadow tip can therefore be expressed as

Si
k =

(
n>Li

n>(Li −Ti
k)

)
Ti

k +
(

1− n>Li

n>(Li −Ti
k)

)
Li.

The world coordinates of the shadow tips are given by

[S1| . . . |S4] = H[s1| . . . |s4] (8.4)

where the planar homography H that maps the image plane onto the world plane is

computed as in §7.4.2 from the observed fiducial centres f1...5. The light position for

each view can be computed as the closest point to all four lines `i
k = γkTi

k +(1− γk)Si
k

where k = 1 . . . 4. This method provides the 3D light positions for each view, and is

used to initialize the light position.

For each image, we seek the rotation Ri and translation ti that will transform world

reference points into the coordinate frame centred in the camera. This transformation

can also be used to express the light position Li for each view as a constant displacement

from the camera

Lc = RiLi + ti. (8.5)

This constant light position can be included in the nonlinear optimization for camera

pose, and helps to constrain the overall solution.

The camera and light positions are then simultaneously optimized over all N images

by minimizing

ε(R1, t1,L1, . . . , RN , tN ,LN ) =
N∑

i=1

5∑
j=1

∥∥f i
j − π

(
H−1

{
RiFi

j + ti
})∥∥2︸ ︷︷ ︸

fiducial residuals

+
4∑

k=1

∥∥si
k − π

(
H−1

{
RiSi

k + ti
})∥∥2︸ ︷︷ ︸

shadow residuals

. (8.6)

Recall that the operator π computes non-homogeneous coordinates as described in §1.3.

The inverse homography H−1 is used to express world points in image coordinates, which

can then be compared to the measured location (either of a fiducial centre or a shadow

tip) to produce individual components of the error function.

By substituting (8.4) and incorporating Li = Ri>(Lc−ti) we obtain an error function

that depends only on the camera pose for each frame and the overall camera/light
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(a) (b) (c) (d) (e)

Figure 8.6: Cone tip shadow detection. (a) Region of the cone extracted from the
input image (b) Background masked off (c) Detected edgels (d) Edgels classified into
two line segments based on edge orientation (e) Shadow tip found by intersecting lines
fitted to detected edgels.

displacement.

ε(R1, t1, . . . , RN , tN ,Lc)

=
N∑

i=1

5∑
j=1

∥∥f i
j − π

(
H−1

{
RiFi

j + ti
})∥∥2 (8.7)

+
4∑

k=1

∥∥∥∥∥si
k − π

(
H−1

{
Rin>Ri>(Lc − ti)

[
Ti

k − Ri>(Lc − ti)
]

n>
[
Ri>(Lc − ti)−Ti

k

] + Lc

})∥∥∥∥∥
2

.

8.2.3 Cone Detection

The tip of each cone’s shadow (si
k) is located automatically using edge detection and

line fitting as illustrated in Figure 8.6. First, the image region containing a cone and

its shadow (this region is known because the fiducial locations gave the homography to

transform the reference plane into the image) are extracted and converted to greyscale.

Then the background is masked off using a circular mask of radius equal to the cone

height. This ensures that the shadow tip will fall within the mask window for light

angles up to 45◦ from the target plane normal. The light position can still be recovered

for angles greater than this design limit; the tip is then merely outside the region

used for edge detection. One could enlarge the region, but this introduces additional

background clutter which must then be differentiated from the shadow and rejected.

The masked region is set to the mean image region intensity, and a smooth fade to

transparent is used so that artificial edges are not introduced (Figure 8.6b).

Edge detection and line fitting is performed as an iterative process whose stopping

condition is a pair of lines supported by some percentage of the detected edges. This

follows from the assumption that the shadow will give rise to the strongest linear edges

in the masked region. Sub-pixel Canny edge detection (Canny 1986) with smoothing

σ and edge threshold t is used to identify the position and orientation of edgels within
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the masked greyscale image:

E(σ, t) = {e1 . . . em} where ej = [ex ey eφ]>. (8.8)

All detected edgels are then classified based on their orientation. The two dominant

directions are identified by sorting all edgels into bins and selecting the two with the

highest frequency. All remaining edgels are classified by their proximity to either of

these directions, with an absolute distance cutoff. Figure 8.6d shows the classified

edgels with their orientations. If the majority of the edgels are classified as the dom-

inant lines, then these lines are intersected to compute the tip of the shadow. If the

classification failed to identify two dominant lines within the detected edgels, then the

edge detection parameters σ and t are relaxed (so that some weak edges are rejected)

and the detect/classify procedure is repeated.

8.2.4 Camera pose

The camera pose is estimated from the imaged positions of five black dots on the target

plate as described in Chapter 6. Camera viewpoint and lighting direction are varied as

part of the photometric stereo requirement, making this an ideal application for robust

exemplar based fiducial detection.

A semi-automatic approach was taken to processing the input images for camera

pose estimation. This simplified the amount of special case code that had to be written,

and gave the user the opportunity for hands-on verification of the algorithms. The

variables that the user could tune were: search scales, nearest neighbour weighting

threshold, window size for non-maxima suppression, and the background area to mask

off. The automatically detected dot locations are superimposed on the image and

presented to the user for approval. The cones and their shadows tended to be identified

as possible fiducials, which is not unreasonable since they do make up a black blob

on a white background. Example images of the cones could have been added to the

set of negative exemplars to prevent these false identifications, but this was not done.

Instead, the dot detection criteria were relaxed to purposely include both the cones and

the dots. If the algorithm failed to correctly identify all five dots and four cones, the

above values could be altered until all were located (see Figure 8.7 for an example).

Such tweaking was only required for a small set of extremely oblique viewing angles or

poorly lit views.

The orientation of the target pattern was determined based on the position of the

fifth dot. As all the dots are identical, their proximity to one another was used to

identify the one that wasn’t on a corner. This was done by computing the convex hull
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Detection failed on one cone Detection succeeded

Figure 8.7: An example of an oblique view of the target where the fiducial detection
failed to locate one of the cones. Regions which might contain a fiducial are highlighted
in red; darker tones indicate a stronger response. The yellow markers indicate regions
that are above the threshold. In the left image one of the cones is not identified, but
by increasing the threshold from 0.85 to 1.35 (right image) we are able to detect all the
fiducials and properly label the four corners of the target.

of all detected fiducials and then measuring the distances between adjacent vertices.

The fiducial with the two nearest neighbours corresponds to the corner immediately

after (in a clockwise sense) the fifth dot (recall that the cones are included in the

fiducial set). Although the proximity test will fail for extreme perspective views, this

straightforward algorithm worked quite well in practice. Another approach would be

to test all the permutations of the detected points by computing the homography to

map each ordering onto the reference positions. The permutation that yields the lowest

residual error would be the correct orientation.

Once the approximate dot centres and their image-world correspondence were es-

tablished, the homography based circle centre finding optimization of §7.4.2 was used

to refine the centre positions. These image positions were then fed into the camera

pose optimization of §6.3. If the target plate with the cones was used, then the cone

shadow tips were also fed into the optimization and both camera and light positions

were simultaneously estimated. In either case, the output of the optimization is the

homography which maps the imaged target plane to be fronto-parallel. Applying this

homography to the image results in a view of the target and sample where both are at

specified image positions. Once each input image has been fit to this known template

it is a straightforward matter to locate the regions where the cone shadows will be, and

to mask off the matt target background.

The camera pose optimization includes the camera internal calibration matrix K.

As outlined in §2.1.1, K is parameterized by focal length f , aspect ratio a and principal
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point (cu, cv). Table 8.3 lists the results of the optimization for each of the sequences.

These are grouped into sets that were recorded in separate sessions; the light position

and camera parameters were kept constant through each set. Note that the parameters

for each set display a high degree of agreement. The primary exceptions to this are the

focal length and the z-component of the light position. The planar target geometry

produces an optimization that is poorly conditioned to solve for focal length. As a result

we expect to see some variability in the focal length, which corresponds to a range of

z-values for the position of the approximately fronto-parallel camera. By contrast,

the ray intersection for light position produces a strong constraint and a precise 3D

measurement of the light location. This means that if we consider the solution for the

camera and light positions in the same global coordinate frame, the light is fixed but

there is some “play” in the camera position. Because we solve for the light position

relative to the camera, this play is taken up in the z-component of the light position.

Thus there is some correlation between the focal length and the z-component of the

light position.

One means for evaluating the calibration via optimization is to compare it with

the results from a dedicated calibration package. Images of the Matlab Calibration

Toolbox checkerboard were already recorded for distortion correction, so it was also

used to provide focal length and principal point comparison values. The results shown

in Table 8.4 show that the calibration methods produce comparable results.

Included in the camera pose is a rotation matrix R which is parameterized by a 3-

element Rodrigues vector measured relative to the initial estimate (refer to Appendix B

for a description of this parametrization and the problems associated with singularities

in rotation matrices). The overall parameter vector for the optimization is therefore

v = [ K︸︷︷︸
4

Lc︸︷︷︸
3

R1 . . . RN︸ ︷︷ ︸
3N

t1 . . . tn︸ ︷︷ ︸
3N

]. (8.9)

For a typical set of N = 10 images this optimization is on 7+6N = 67 parameters which

is easy and quick to converge. The result of this optimization is the homography re-

quired to warp all images fronto-parallel and thus achieve pixel for pixel correspondence

between all images in each sequence.

8.2.5 Light Attenuation

A brief review of the physics of image formation will prove helpful in discussing the light

fall-off correction implemented for the photometric stereo system §8.2. Let us assume

that light emanates from a point source with equal power in all directions. Some of

this light falls upon an object’s surface. Neglecting absorbtion and transmission, this
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Wood 10 images Light: Box
Set A Target: Plate

Towel 8 images Light: Box
Set A Target: Plate

Tile A 10 images Light: Box
Set A Target: Plate

Tile B 9 images Light: Box
Set A Target: Plate

Polystyrene 11 images Light: Box
Set B Target: Plate

Bounty 8 images Light: Box
Set B Target: Plate

Card front 8 images Light: Box
Set B Target: Plate

Card back 7 images Light: Box
Set B Target: Plate

Drink can 11 images Light: Box
Set B Target: Plate

Glove 14 images Light: Box
Set B Target: Plate

Towel 4 images Light: Flash
Set C Target: Plate

Towel 4 images Light: Flash
Set C Target: Paper

Asphalt 8 images Light: Flash
Set D Target: Plate

Bricks 8 images Light: Flash
Set D Target: Paper

Hand 11 images Light: Flash
Set D Target: Plate

Tiles 5 images Light: Flash
Set D Target: Plate

Tiles 6 images Light: Flash
Set D Target: Paper

Face 10 images Light: Box
Set E Target: Plate

Table 8.2: Description of the sequences used in the photometric stereo application.
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Focal Aspect Principal pt Light position
Sequence Set length ratio cu cv x y z

Tile A A 5914 0.9990 1040 748 -538 -23 -5
Tile B A 5926 0.9993 1031 808 -536 -24 -6
Wood A 6146 0.9990 1044 798 -538 -20 37
Towel A 6870 0.9993 1080 859 -542 -24 174
Polystyrene B 5286 1.0000 1026 777 -540 -14 46
Bounty B 5065 0.9999 1023 745 -537 -11 -20
Card front B 4994 0.9995 990 764 -534 -16 -39
Card back B 5101 0.9997 994 756 -528 -13 -7
Drink can B 5346 0.9999 1053 763 -538 -12 44
Glove B 5329 0.9999 1023 763 -541 -13 40
Towel - plate C 7763 1.0006 1033 795 -552 -162 32
Towel - paper C 7582 0.9999 1023 786 - - -
Asphalt D 5400 0.9994 1034 767 -544 -151 39
Bricks D 5785 1.0001 1061 787 - - -
Hand D 5445 1.0008 1059 814 -546 -164 58
Tiles - plate D 5643 0.9982 1010 704 -537 -143 94
Tiles - paper D 6419 1.0000 1105 661 - - -
Face E 5085 1.0000 1076 806 528 -36 37

Table 8.3: Results of camera calibration optimization for sequences used in the pho-
tometric stereo application. All measurements are given in pixels, except for the light
positions which are in mm relative to the camera centre. Sequences that used the paper
calibration target do not permit the independent solution of light position, so no values
are given. Refer to Table 8.2 for a listing of which target and light source were used
for each image sequence.

Set Focal length cu cv

TBX OPT Diff. TBX OPT Diff. TBX OPT Diff.
A 6104 6214 (450) 1.8% 1019 1049 (22) 2.9% 823 803 (45) 2.4%
B 5313 5193 (173) 2.3% 1033 1015 (29) 1.7% 765 762 (4) 0.5%
C 7699 7672 (128) 0.3% 1032 1028 (7) 0.4% 779 790 (6) 1.5%
D 5449 5738 (411) 5.3% 1031 1054 (36) 2.2% 757 747 (63) 1.4%
E 5036 5085 - 1.0% 1033 1076 - 4.2% 760 806 - 6.0%

Table 8.4: Comparison of camera calibration parameters obtained from the Matlab
Camera Calibration Toolbox and the non-linear optimization on image locations of the
fiducials. For each set of calibration images, TBX denotes the value obtained by the
Toolbox calibration, OPT lists the mean value and standard deviation (in brackets)
across all sequences. The low percent difference values indicate that optimization of
the camera pose from a small set of fiducials provides comparable camera calibration
to a dedicated calibration package.
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Figure 8.8: Off-axis irradiance. (a) The image irradiance viewed through a thin lens
falls off as per cos4 α due to foreshortening of the projected areas. (b) The same cos4 θ
decrease is observed for a circular source and detector pair offset by an angle θ; this is
purely a geometric effect and not due to the thin lens.

light will then be reflected and we can say that the patch δA centred at point X

has radiance L. The photometric stereo derivation requires that the incident radiance

L(x, y) is known for every point on the object’s surface. A number of photometric

stereo implementations achieve this by assuming a point light source at infinity and

negligible attenuation. As shown in Figure 8.12, however, the observed irradiance does

not necessarily match this assumption. This section will first explain several of the

factors which contribute to the attenuation, and then describe an empirical method for

correcting it.

The off–axis irradiance falls off according to a cosine–to–the–fourth term for a thin

lens observing a Lambertian surface (Zalewski 1995, Forsyth and Ponce 2003). Consider

the surface area δA centred at point X and imaged by a lens of diameter d onto

the image plane area δA′ centred at x (Figure 8.8a). The two areas are related by

δAz′2 cos β = δA′z2 cos α. The solid angle of the lens is given by Ω = π
4

(
d
z

)2
cos3 α

and the emitted power from δA that reaches the lens is δP = LΩδA cos β. From these

definitions, the image irradiance is then

E =
δP

δA′ =
π

4

(
d

z′

)2

L cos4 α.

Note that for points further from the centre of the image the cos4 α term attenuates

the observed irradiance. This is due to foreshortening of the projected areas and an

increase in the overall distance between source and detector (as per the inverse square

law). To see this more clearly, consider a circular source and detector pair as shown in

Figure 8.8b. The irradiance observed by the two identical detectors are

Ealigned =
LAsAd

s2
Eoff-axis =

LAsAd

s2
cos4 α.
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Figure 8.9: Lens vignetting results when the physical components of the lens body and
the aperture obscure light passing through the lens. For the on-axis point P all light
reaches the image at p. When the aperture is wide open, some of the light from Q is
occluded by the lens body so point q is not as bright. This causes the outer edges of
the image to appear darker, but the effect is not as pronounced with a stopped down
lens.

The projected areas are As cos α and Ad cos α, while the distance from the source to

the detector is increased by 1/cos α.

Vignetting is another effect which contributes to a decrease in irradiance towards

the edges of an image. As shown in Figure 8.9, light originating from off-axis points

may be partially occluded by components of the lens body, including the aperture. The

amount of attenuation is proportional to the angle of the source relative to the optic

axis. Reducing the size of the aperture (stopping down the lens) increases the diameter

in the image plane where this effect sets in (Figure 8.9b).

8.2.6 Light Fall-off Correction

Prior to applying the photometric stereo algorithms and solving for the surface normals

it is important to apply radiometric correction to the aligned input images. Correcting

for radiometric attenuation reduces the amount of bias in the recovered surface normals.

When these normals are integrated to form a 3D surface, the bias is manifested as an

error in overall curvature (low frequency spatial variation). Figure 8.10 demonstrates

the dramatic reduction in reconstruction error that results from careful correction for

radiometric fall-off.

Vignetting and cosine fall-off (refer to §8.2.5) are observed image intensity variations

caused by the camera and optics. The light source employed by the photometric system

may also introduce a varying intensity caused by non-uniform light dispersion. An ideal

light source would originate from a point and irradiate equal power in all directions.

Any actual flash or light box will have a finite size and some sort of light dispersion

pattern. For this work the fall-off observed in the target plane is measured in order

to compute the correction terms. While it may be possible to measure the radiance
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(a) Without correction (b) With correction

Figure 8.10: Radiometric correction greatly improves the reconstruction of a planar
surface (Tile from Figure 8.12). Correcting for light attenuation in each input image
reduces the bias in the recovered surface normals. This bias manifests as low frequency
errors in the integrated surface reconstruction. The reconstruction with corrections is
much closer to the true shape of the flat tile. Colour indicates height; the same scale
is used for both surfaces.

at many points in space and build up a volumetric representation for a specific light

source, this would be difficult and does not account for possible time-varying changes

in the light properties.

Photometric stereo is only concerned with the light radiance in the sample area

as observed by the camera during the instant the image was recorded. The target

surrounds the sample area with a border of known photometric properties. By observing

the irradiance observed on this border it is possible to estimate the corrections required

to compensate for all attenuation effects: cosine fall-off, vignetting, spatial or temporal

variations of the light and any others. This is similar to the approach of Marschner

et al. (1999), who record calibration images of a flat white plane to calculate the

compensation. By contrast, we sample points on the target background to measure the

radiometric properties of each image and provide specific compensation.

A rough paper target will follow the Lambertian model well enough that the imaged

light intensity at each location on the matt background is given by I(x, y) = L(x, y)ρ0n·
li where ρ0 is the surface albedo, and n = [0, 0, 1]>. Then, for image i we have

Ii(x, y) = Li(x, y)ρ0n(x, y)>li(x, y) (8.10)

at each point on the target background (outside the sample window). We assume that

attenuation effects vary slowly over the image, and fit a smooth function Ai(x, y) to

Ii(x, y)/(n(x, y)>li(x, y)) to determine Li(x, y) = Ai(x, y)/ρ0.

We sample the intensity at a grid of locations on the background, masking off areas
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(a) Lightbox (b) Flash

Figure 8.11: The two different types of light source used for the photometric stereo
application. The lightbox contains a halogen bulb and is fitted with frosted glass to
act as a diffuser. The flash is covered by a piece of plastic with a small aperture cut in
it to approximate a point light source.

where the cone shadows or sample window may interfere (see Figures 8.12c and 8.13c),

and then use these values to fit an analytic function. This function then provides radi-

ance estimates within the sample region. Since the ambient light is assumed negligible,

the scale on L, and hence ρ0, is arbitrary; we specify it by selecting an intensity value

for the background that will maximize the dynamic range of the images.

The form of the analytic function depends on the properties of the light source used.

We used two light sources for this work: 1) a special light box, and 2) a commercial

flash gun fitted with a small aperture to approximate a pinhole light source. Both

of these are pictured in Figure 8.11. The light box constructed for these experiments

consists of a halogen bulb fitted with sandblasted glass to act as a diffusion plate.

The “frosted” glass is quite effective at providing a smooth spatial distribution, so a

biquadratic function

Ai(x, y) = a1x
2 + a2xy + a3y

2 + a4x + a5y + a6 (8.11)

provides a good fit. The commercial flash unit used in our experiments employs a

curved piece of plastic formed with horizontal grooves to achieve diffusion. This is

effective when the entire flash is uncovered, but we fit an opaque masking panel over

most of the flash area to closer approximate a point light source. The result for the

diffusion is that the few remaining visible grooves induce a saw-tooth intensity pattern

(see Figure 8.13d). Therefore a piecewise linear function was superimposed over the

biquadratic function when correcting for images recorded with the flash.

This lighting fall-off correction was performed separately on each colour channel.
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(a) Input image (b) Input image, normalized for emphasis
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(c) Sample points on matte background (d) Bi-quadratic fit to sample intensities

(e) Corrected image (f) Corrected image, normalized for emphasis

Figure 8.12: Radiometric calibration is performed on each sample image to compensate
for light fall-off across the target area. Points on the target background are sampled
(with non-white areas masked off automatically based on the known geometry), and a
biquadratic fit to the intensity values. The original image is then divided through by
this mask.
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(a) Input image (b) Input image, normalized for emphasis
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(e) Corrected image (f) Corrected image, normalized for emphasis

Figure 8.13: Radiometric compensation for images illuminated with a commercial flash
gun. A small aperture is used to restrict the light to approximate a point light source.
This negates the effects of the diffusion grooving, so the illumination varies spatially.
The biquadratic function described in Figure 8.12 is modulated by a piecewise linear
function to better approximate the observed intensity pattern.
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This provides white balance and intensity normalization such that the white card of

the background is imaged as true white with intensity determined by Lbg. Indexing the

colour channels by k = [R, G,B] the light intensity is given by

Lik(x, y) = Iik(x, y)/(lizAik(x, y)). (8.12)

This radiometrically corrected intensity value signifies the end of the pre-processing

required for the photometric stereo application. We have previously completed the

geometric alignment: each input image is aligned to pixel for pixel correspondence and

we know the light and camera positions for each view. The only remaining unknown

from (8.1) is the surface normal. Standard photometric stereo techniques can be used

to solve for this normal at each pixel given three or more views of that pixel that are lit

from different directions. Details of the techniques used for this project are provided

in Paterson’s thesis (Paterson 2005).

8.2.7 Surface Integration

We now turn our attention to the task of constructing a 3D surface based on the surface

normals returned by the photometric stereo algorithms. The normal map alone is useful

for applications such as graphics rendering, which can give the appearance of microscale

texture by using the normal map to modulate the reflected light. However it is often

desirable to have an actual representation of the 3D surface, and for that it is necessary

to integrate the surface normals.

The problem posed by surface integration is the reconstruction of a surface z(x, y)

given only the gradient information
∂z

∂x
,
∂z

∂y
. Surface integration is the task of com-

puting the 3D surface that is most consistent with the surface normals n(x, y) output

by the photometric stereo algorithm. The normal map corresponds to a gradient field

defined on a regular (pixel) grid. The task (illustrated in Figure 8.14) is to find, via

discrete integration, the function z(x, y) which could have given rise to these computed

derivatives.

A number of surface integration techniques have been proposed (refer to (Klette and

Schlüns 1996) for a summary and comparison). The methods can be broadly divided

into local integration along paths (Coleman and Jain 1982) and global minimization

techniques. While local integration is computationally very efficient, it is also sus-

ceptible to drift caused by errors or noise in the normal map. For this reason global

minimization (Horn and Brooks 1986) was selected for inclusion in our system. The

Fourier based integration of Frankot and Chellappa (1988) was found to produce a very

similar surface in less than 1/200th of the time.
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(c)

(a) (b) (d)

Figure 8.14: Surface integration from a normal map. (a) The true surface (b) The
discrete set of surface normals which are integrated to reconstruct the original height
map z(x, y). Vertical normals omitted for clarity. (c) Surface produced by quadratic
optimization (d) Surface produced by converting to the Fourier domain. Note the
differences at the discontinuity between the plane and the sphere.

One of the advantages of the quadratic optimization approach used here is the

ease with which boundary conditions are included. When integrating surface normals,

overall vertical (z) translation is unconstrained, so additional interpolation constraints

are introduced to establish the correct scale. Our photometric stereo system includes

multiple viewpoints, which permits the application of multiview geometry techniques

to recover the heights at a sparse set of points on the object. These keypoints are es-

tablished from user-selected point correspondences in the input image set. The process

of identifying these depth keypoint correspondences could be automated (especially

since the rectified images are available for initialization) but this was not done for the

current implementation since selecting the points is a half-minute task. The ability to

measure the depth scale is a significant advantage over single-viewpoint photometric

stereo methods.

These depth constraints cannot be relied upon to correct for low frequency errors

in the surface caused by bias in the underlying normals. The pre-processing steps

such as lens distortion correction and radiometric compensation correct for the most

significant causes of this bias in the normals, but an effective method for removing

the low frequency drift in the output surface would mitigate the effects of the other

un-modeled causes. This is an area for continued investigation. Although the output

surface is subject to some drift, the surface normal map obtained from photometric

stereo tends to be fairly free of high frequency noise. In the case where greater than

three input views are used the system is over constrained and a least squares optimal
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solution is computed. This has the effect of averaging out much of the high frequency

noise. For three view reconstruction noise is more of an issue, and noise reducing

integration methods such as non-linear 2D leap-frog (Noakes and Kozera 2003) may

produce a better surface.

8.2.8 Parallax Correction

The homography used to warp the input images fronto-parallel (described in §8.2.4)

assumes that the sample object is planar. A planar object does not induce parallax in

images produced from different viewpoints so a planar homography is all that is required

to fully align the images. Sample objects which are not planar (or even approximately

planar as is the case for many textured surfaces) will not be accurately aligned by

a simple homography due to motion parallax. The difference between such images

aligned by a planar homography is a function of the distance from each object point

to the camera: closer points move further in the images than more distant points.

If the camera position and surface geometry are known it is possible to predict (and

therefore correct for) these parallax effects. In this application the camera location is

known for each image, and an approximation of the object’s geometry can be obtained

using the surface integration described in the previous section. That integrated shape

is only an approximation because it was produced using a planar assumption, but it

provides a starting point. Parallax correction proceeds by iteratively estimating the

object’s shape, using that estimate to correct for parallax in the input images, and

then re-estimating the object’s shape using the corrected input images. In practice one

or two iteration are sufficient to produce a high-fidelity surface representation.

Parallax correction serves two purposes in this application. These are illustrated in

Figures 8.16 and 8.17. The first is to ensure proper alignment when rendering the fronto-

parallel views by reprojecting from the correct height. This reduces crosstalk at abrupt

changes in surface albedo. The second purpose is to correctly model occluded pixels.

A portion of the object that is hidden in an oblique view should not be rendered in

the fronto-parallel view corresponding to that input image. Pixels that are not visible

cannot contribute to the photometric solution. Without this occlusion handling the

hidden pixels are shaded according to whichever pixels cause the occlusion. This in

turn affects the recovered surface normal at those points.

Figure 8.16 shows how rendering based on the correct height at each point on the

object reduces crosstalk in the recovered albedo. We show a small one dimensional

slice of an object; the slice is flat but includes a step change in surface colour from blue

to red. The object has been photographed twice: once from the left and once from
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(a) (b) (c)

(d) (e) (f)

Figure 8.15: Parallax correction of a sample photographed from a very oblique angle.
(a) Original image (b) First iteration, z = 0. Note the undulating vertical lines. (c)
Second iteration, lines have been straightened (black pixels were occluded in the original
image). (d) The glove normal map before correction exhibits crosstalk between the
albedo and normal channels. (e) After correction, crosstalk is reduced. (f) Recovered
albedo for comparison.

the right. Figure 8.16 depicts two separate reconstructions of the imaging geometry

and the resulting sets of fronto-parallel images. The first is a reconstruction where

the object height is not incorporated, so z = 0. This represents the first photometric

stereo pass where a planar homography is used for image rectification. Our known

values include the camera poses, the location of the target, the layout of the pixel grid

for the fronto-parallel image and the images recorded from the two oblique viewpoints.

By fixing all of these and projecting onto the z = 0 plane we produce our two fronto-

parallel images (shown in between the two cameras). In each reconstruction the object

is shown twice, once for each view, because the views project differently. This is evident

in the fronto-parallel images where the red/blue transitions do not line up. Two images

of the same object from the same viewpoint should be aligned; the problem is in the

object height representation. For the second reconstruction in Figure 8.16 we assign

the height z = h to the object. For the small linear slice the effect is to raise it, but

over the entire object we produce an irregular surface. Projecting the two images onto
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Fronto-parallel Fronto-parallel

z = 0 z = h

Without height correction With height correction

Figure 8.16: Albedo crosstalk can be reduced through parallax correction. Left Two
views of the same red/blue object where each image has been warped fronto-parallel
using an incorrect height value. Notice that the stripes do not line up in the rendered
views. Right Using the correct height data produces fronto-parallel views where the
stripes line up properly. Green arrows indicate rendering into the fronto-parallel views.

this height map results in fronto-parallel images that are in alignment.

We present parallax correction as an image warping problem. Given an input image

recorded at an oblique viewpoint, a height map for the target object, and the position

of the camera relative to the object we aim to compute the warping function that will

produce a rerendered fronto-parallel image.

For each input image Ii we know the camera position Pi = K [Riti]. From the initial

photometric stereo run we have an approximation of the object height hj at each of the

pixels in the output image. The image location (uj , vj) to sample for pixel j is given

by (
uj

vj

)
= π

P


xj

yj

hj

1


 (8.13)

where (xj , yj) is the grid location of the jth pixel in the fronto-parallel image. The

image intensity at subpixel location (uj , vj) is sampled through bilinear interpolation.

Repeating this for every pixel in the rectified image produces a warping that “pulls”

parallax corrected intensity values into the fronto-parallel view.

Occlusions are handled by z-buffering. The distance from each object point (xj , yj , hj)

to the camera is computed and stored in a height (z) buffer. As illustrated in Fig-

ure 8.17, multiple destination pixels may sample from the same input image pixel.

However, that input pixel represents only the intensity at the nearest point. The height

buffer is used to determine which destination pixel is closest and should therefore be

filled in. All others are marked as invalid so they are not included in the photometric

stereo calculations; only visible points supply information for that view.
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Figure 8.17: Z-buffering is used to avoid rendering of pixels that are obscured in oblique
views. In this example, the centre pixel is not rendered into the fronto-parallel view
because it is obscured by the rightmost pixel. The z-buffer stores the distance from the
height for each pixel to the camera and then only the nearest pixel is rendered.

8.3 Results

Figure 8.18 shows the results of the photometric stereo application on a number of

different materials. From each set of input images we have computed the surface

normals, albedo and integrated the 3D surface shape. The hand demonstrates the

ability to accurately recover the normals for an object that is far from planar; the

resulting 3D shape is accurate and largely free from the systematic bias that is common

when integrating a surface from normal data. The checkered oven glove has been

separated into surface normals and albedo — very little crosstalk is evident in the

normal map. The polystyrene is a translucent material which does not follow the

Lambertian lighting model. Overall this reconstruction is successful, but there is some

darkening in the recovered albedo in the vicinity of abrupt changes in depth. These are

locations where the material translucence will allow light to shine through and therefore

disrupt the photometric stereo assumptions. The asphalt example demonstrates the

ability of this system to reconstruct an object photographed outdoors in sunlight. Our

flash apparatus causes the background illumination from the sun to be insignificant, so

it is not necessary to capture objects in complete darkness. This greatly simplifies the

acquisition process, and makes the system highly portable.

Figure 8.19 shows the results of an experiment designed to push the limits of the

photometric stereo system. A human face is far from planar, skin is quite specular

(non-Lambertian), and we are highly tuned to recognizing facial deformations. The

recovered surface model is very true to life. The specular properties of skin only pro-

duced visible artifacts on the eyelids; notice the peaks at the centre of each eye. These
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Figure 8.18: Results of the photometric stereo application on a selection of materials.
From top: Hand, Padded glove, Wood, Polystyrene (non-Lambertian), Tarmac, Tile,
Paper towel. From left to right: Input image, Normals, Albedo, 3D reconstruction.
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(a) (b) (c)

Figure 8.19: Face reconstruction through photometric stereo. (a) Recovered albedo
demonstrates accurate skin tones. (b) Depth shaded surface model (c) Mask created
by rapid prototyping at one quarter scale.

are the result of reflections in each input view which introduce noise into the surface

normal computations. Sharp depth changes and self-shadowing caused problems at the

corners of the mouth where there were not enough view with visible pixels to allow

the computation of meaningful surface information. Orange pixels in the albedo map

indicate the same problem.

8.4 Conclusions

We set out to build a photometric stereo system that was inexpensive to construct,

simple to operate, highly portable, could operate in ambient lighting, recovered accurate

height data, and produced high resolution albedo and normal maps. The results shown

above provide qualitative evidence to the quality of the output data. For quantitative

results and a more in-depth treatment of the photometric aspects of the project the

reader is referred to (Paterson et al. 2005, Paterson 2005). The aim in relation to

this thesis was to demonstrate an application of the camera localization and distortion

correction methods. Accurate fiducial detection is the key to the system’s portability:

because the camera position can be computed for each image the operator is free to

photograph with a handheld camera. Precise camera pose optimization is also key to

making the moving camera feasible. Fiducials, pose and distortion correction are all

required to precisely align the input images. Without such accurate alignment the

photometric stereo input data would be nonsense.



Chapter 9

Conclusion

This thesis has addressed three important components of any system that makes mea-

surements using a camera: 1) correcting lens distortion, 2) calibrating and localizing

the camera, and 3) reliably detecting features within the images. A camera based

measurement system must address all three. A perfect lens distortion model cannot

be calibrated without precisely detected image features. Likewise, detected image lo-

cations can only be transformed into metric coordinates up to the accuracy of the

camera calibration and distortion correction. My findings in each of these key areas

are described in the following sections. The thread that ties them all together is that

accurate modelling followed by careful fitting of those models to data yields highly

accurate camera calibration and pose data.

9.1 Modelling lens distortion

The primary contribution of this thesis is a rational function model for lens distortion.

A quotient of polynomials permits the accurate modelling of non-linear lens distortion

within a convenient mathematical framework. Image coordinates are “lifted” to a higher

dimensional (quadratic) space where the distortion can be represented linearly. The

formulation is capable of modelling a wide variety of lenses; specific representations were

described for pinhole, distorted and catadioptric cameras. These representations use

fewer parameters than the full model and are therefore more robust in everyday usage.

Finally, epipolar geometry for multiple views was defined within the new framework.

Three calibration techniques for the rational function lens distortion model were

presented, each using a different type of image information. Linear calibration from a

planar calibration grid is the simplest, and in situations where the camera is available

for offline calibration this provides a reliable calibration technique with little or no user

intervention required. The plumbline method is based on straightening the curved im-

194



CHAPTER 9. CONCLUSION 195

ages of lines which are truly straight in the real world. An elegant linear factorization

solution is presented, though optimization is required to make this a stable calibration

technique in the presence of realistic image noise. The sheer volume of data provided

by line fitting makes this a precise calibration method in practice. The multiple view

calibration method also requires nonlinear optimization to provide stable camera para-

meters in the presence of image noise. Both the plumbline and multiple view calibration

methods yield very accurate camera parameters through an optimization process that

is simple and robust enough for general application. Reducing the number of model

parameters constrains the optimization so that a stable solution can be found reliably.

The Rational Function model accurately represents the distortion present in real

world lenses, and provides a simplified and scalable family of calibration procedures.

Both fisheye and standard lenses calibrated using the RF model were compared with

calibrations by existing methods. The RF model can be fit linearly in a single step,

without the need to first estimate the aspect ratio and distortion centre; the residual

errors are on the same order as the best lens-specific model available. The perfor-

mance of our proposed method matched the lens-specific field of view model, yet the

proposed method can be calibrated linearly. The plumbline calibration method is ro-

bust both to changes in initialization values and to image noise. Comparison with

the MATLAB Camera Calibration Toolbox revealed that its model does not represent

the distortion near the image periphery as accurately as the rational function model

does. The RF model is also calibrated from a single image rather than the 14 used

by the Toolbox. The plumbline method was found to be slightly more precise than

the planar grid method calibration. The reduced parametrization incurs a slight loss

of accuracy over the full rational function model, but not enough to discourage its use

for most applications. The multiple view method for calibrating the rational function

model demonstrates that it is possible to perform auto-calibration of fisheye camera

parameters from point correspondences in real images. Nonlinear optimization using a

reduced parametrization achieves stable convergence and provides an explicit definition

of the model parameters. Image rectification results and a scene reconstruction from

distorted input images demonstrate that these techniques are applicable to real world

scenarios. This work has been cited in (Chen and Ip 2006, Kannala and Brandt 2006, Li

et al. 2005, Rosten and Cox 2006, Steele and Jaynes 2006), with significant extensions

put forward by Barreto and Daniilidis (2006).
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9.2 Camera calibration and localization

Given a set of known world positions and their corresponding image locations, camera

localization computes the pose of the camera when the image was recorded. This

is best considered as a nonlinear optimization problem: by computing the analytic

derivatives of the reprojection function it is possible to perform nonlinear pose and

focal length optimization in real time. The camera path computed on individual frames

is comparable in accuracy to the path obtained through offline bundle adjustment over

the entire sequence. Our optical initialization technique for surveying the positions of

calibration reference points simplifies this difficult 3D measurement problem. It also

demonstrates how a precisely calibrated consumer grade camera can become a powerful

yet inexpensive measurement instrument.

Camera localization results were compared with independent absolute measure-

ments of the camera position. A normal lens corrected using the rational function

model produced camera locations for each individual frame that are accurate to 0.15

mm RMS and 0.47 mm maximum. The results for a fisheye lens were 0.23 mm RMS

and 0.54 mm maximum. This indicates that sub millimeter position accuracy is possi-

ble for single frame camera localization using nonlinear optimization with appropriate

lens distortion correction. Moreover, these results are comparable to those obtained

through bundle adjustment on the entire sequence; single frame methods suitable for

realtime applications need not suffer in accuracy for lack of bundle adjustment.

9.3 Reliable fiducial detection

We then presented a fiducial detection scheme that uses example based learning to

handle lighting variation, scale changes and motion blur. Engineering a fiducial detector

by assembling image operations produces a narrowly focused algorithm that is difficult

to adopt to new scene challenges. By contrast, our exemplar based method is retrained

simply by including relevant image samples. The power of machine learning techniques

benefits even the most basic of computer vision tasks, especially when high reliability

is included in the design constraints. Evaluation on a varied collection of image video

sequences demonstrated that the learnt detector returns fewer false positives than an

engineered one, while simultaneously identifying fiducials over a wider operating range.

Adding image processing steps such as normalization to the learnt detector actually

decreases the performance. This work has been cited by (Gao and Vasconcelos 2004,

Fiala 2005, Klein and Drummond 2005, Lepetit and Fua 2005, Yang et al. 2005, Kaján

et al. 2006).



CHAPTER 9. CONCLUSION 197

9.4 Application areas

Although the previous chapter dealt only with a photometric stereo application, the

techniques described in this thesis have many potential application areas. One of these

is camera localization for indoor virtual reality. This is achieved by placement of

known markers within a room. A significant challenge to such marker based optical

positioning systems is how to deal with varying lighting and viewpoint conditions,

challenges that can be overcome through the use of the fiducial detection techniques

from Chapter 7. Another application would be in the area of position measurement

in an outdoor context. Combining a camera with a Global Positioning System (GPS)

receiver yields a synergy due to the complementary error distributions of the two sensor

modalities. Here the optimization techniques from Chapters 6 would be augmented with

occasional position fixes from the GPS receiver.

9.5 Summary

An inexpensive camera can be used to make accurate measurements. All of the images

recorded for this thesis were shot using either a consumer video camera or a digital

stills camera. We have demonstrated sub-millimeter camera localization even with a

fisheye adapter fitted to a video camera. The combination of robust feature detection

and precise camera calibration have many potential application areas. We focused

on just one: a simple method for capturing texture models by recording real-world

surfaces. Our photometric stereo application uses controlled lighting to illuminate an

object from several viewpoints and then inverts the illumination equations to recover

the object’s shape. Careful engineering of all aspects of the processing pipeline yields

very high resolution surface geometry. Precise camera localization permits simple,

standard equipment to produce high resolution models of 3D geometry and reflectance.

No research topic is ever totally concluded; advancement will continue in camera

calibration. This work has shown that with accurate modelling, careful fitting and

reliable input data it is possible to obtain very accurate measurements from ordinary

cameras.

9.6 Further extensions

This thesis has provided some new theory in the area of distortion correction, answered

some questions in camera localization precision, and provided a different view of ro-

bust fiducial detection. As with most research project, though, it has also prompted

additional questions and problems.
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Perhaps the most interesting avenue for future work on these topics is the fac-

torization algorithm for linear distortion model calibration. Noise in measured image

point positions causes the methods described in this thesis to break down. The root of

this problem may lie in the imposition of the rank constraint on the solution matrix;

the truncation method discards too much useful information. A method for imposing

the rank constraint that does not involve such a drastic truncation may resolve this

difficulty.

Chapter 7 reported fiducial localization accuracy of 1
20th of a pixel. This is a mea-

surement for a single camera under indoor lighting conditions. Further study is required

to explore the relationship between feature localization accuracy and feature detection

invariance. I expect that an increase in invariance to differing scene conditions would

be accompanied by a decrease in localization precision.

The fiducial detection methods could be improved by incorporating faster classifi-

cation algorithms. The nearest neighbour classifier used in this work includes dataset

reduction to remove redundant training data. The speed and generality of the classi-

fier is strongly influenced by the type of reduction that is imposed. A technique such

as Locality Sensitive Hashing may provide comparable (or faster) classification speed,

without the sensitivity observed with condensed nearest neighbour. Further study may

also be warranted on the effects of using training data transformations to expand the

range of the available data. I found in §7.3.3 that varying the training data provided

greater detection rate increases than performing the same transformations on the test

video.

Given the practical focus of this work, another logical extension would be to prepare

a general purpose camera calibration and distortion package similar to the Matlab

Camera Calibration Toolbox. Although that suite works well, the need for multiple

calibration images and a rather limited distortion algorithm no longer represents the

state of the art. The techniques that I have presented in this thesis represent the theory

required to implement a robust calibration package that could also solve for distortion

from a single image.
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Pinhole Camera Calibration
Methods

This appendix outlines two well-known techniques for recovering the extrinsic parame-

ters of a camera from point correspondences. They are included here as a reference for

calibrating pinhole cameras.

A.1 Extrinsics from Coplanar Data

The method of Simon et al. (2000) can be used to compute the rotation and translation

for a camera if point correspondences to planar calibration data are available.

The relationship between the world coordinates and the image points is given by

u
v
1

 ' P


x
y
z
1

 . (A.1)

Here we are using ' to denote equivalence up to a scale factor. By aligning the world

coordinate system with the target plane the z coordinate becomes zero. The projection

matrix P can be factored into the internal calibration K and a rotation and translation

between the camera coordinates and the world coordinate system

u
v
1

 ' K[ R | t ]


x
y
0
1

 . (A.2)

The rotation matrix consists of three columns, but since the z value in the world

coordinates is always zero this can be reduced tou
v
1

 ' K[ r1 r2 t ]

x
y
1

 (A.3)
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where ri denotes a column of the rotation matrix. The homography equation that

relates the world coordinates to the image coordinates (A.1) is of the same form as

(A.3). It is now just a problem of decomposing the homography into the intrinsic

calibration matrix K, rotation R and translation t. Since K is considered to be known,

it can be factored out of the homography and the remaining columns equated with the

columns of the modified homography H′.

H′ = HK−1 (A.4)

[h′1 h′2 h′3 ] = [ r1 r2 t ] (A.5)

The first two columns should be of unit length, but may not be due to noise in the image

acquisition process. To correct this, the average length is computed as
√
‖h′1‖ · ‖h′2‖

and then the entire matrix is divided through by this amount. The columns of the

rotation matrix must also be orthogonal, so they are rotated according to

r′1 =
c
‖c‖

+
d
‖d‖

(A.6)

r′2 =
c
‖c‖

− d
‖d‖

(A.7)

where c = r1 + r2, d = r1×r2 and × denotes the vector cross-product. The third

column of the rotation matrix is given by

r′3 =
r′1×r′2
‖r′1×r′2‖

, (A.8)

so the full rotation and translation are

[ R | t ] = [ r′1 r′2 r′3 | t ]. (A.9)

A.2 Extrinsics from General Point Data

Recall from §2.4.3 that the DLT computes the transformation H that relates two sets

of points:

x′ = Hx (A.10)

The projection of world points X into images points x can be expressed as

x = π (PX) (A.11)

where the 3×4 matrix P can be computed via the DLT. It is then necessary to decompose

P to separate the internal and external camera parameters

P = K [ R | t ] . (A.12)
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The camera extrinsics are shown in Figure 6.1. The calibration and rotation matrices

are obtained as described in §4.1 of (Hartley and Zisserman 2003)§4.1. This ensures

that K is upper triangular and that R is a valid rotation matrix. The camera centre

C (expressed in the world coordinate system) is related to the coordinate origin t (i.e.

the origin of the world coordinate frame expressed in the camera coordinate system)

by

t = −RC (A.13)

where

C = π (nullspace(P)) . (A.14)

We have now decomposed the camera projection matrix obtained by the DLT into its

component intrinsic and extrinsic camera parameters. The reader is referred to (Hartley

and Zisserman 2003) for a more detailed description of this technique.
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Rotations

How about sending me a fourth gimbal for Christmas? – Command Module

Pilot Mike Collins, Apollo 11 Lunar Mission

A rotation is a linear transformation that preserves the length of vectors and the

orientation of space. A rotation group is the set of all rotations within Euclidean space,

R3. This is referred to as the special orthogonal group SO(3). These can be expressed

as a 3× 3 orthogonal matrix R for which det(R) = 1.

Throughout this thesis rotations are represented by such matrices, however it is

often beneficial to represent a rotation by fewer parameters than are required for a

rotation matrix. This is particularly true when a rotation is one of the variables in-

cluded in a nonlinear optimization. The optimization must enforce the orthogonality

constraints as it varies the rotation matrix; this is most easily accomplished by selecting

a minimal parametrization so that the constraint is automatic. The downside of the

three-parameter minimal representations is that they are not free from singularities.

The key is to select a representation that places the singularities in a region that we

can be sure the optimization will avoid.

Euler angles (yaw, pitch and roll) are one common 3 element rotation representation

where each element represents an angle about one of the coordinate axes. Euler angles

suffer from “gimbal lock” where two of the three gimbals (angular rotations) align the

coordinates to cancel out one of the rotation references. In practice, this occurs when

the vector being rotated approaches one of the coordinate axes; the rotation about that

axis becomes undefined. This singularity at the origin is problematic for optimization.

B.1 Quaternions

Both Rodrigues (1840) and Hamilton (1844) took the alternative approach of treating

a rotation as an angle φ about some axis n in 3D. This representation is easily parame-
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terized using quaternions, four dimensional vectors originally developed by Hamilton.

A quaternion can be written as

q = q1 + qx̂ı + qy ̂ + qzk̂ (B.1)

or as a couple of a real number and a vector of components

q = [q, Q], Q = (qx, qy, qz). (B.2)

Rotations are best parameterized using the half-angle formula proposed by Rodrigues

R(φ,n) = [cos
φ

2
, sin

φ

2
n] (B.3)

as it is more general and produces less confusion in the interpretation (Altmann 1989)

than Hamilton’s full-angle parametrization. A vector v can be rotated through the

angle φ about the axis n by

v′ = n>vn + cos φ(v − n>vn) + sin φ(n× v). (B.4)

The Rodrigues parametrization behaves correctly near the origin, unlike the Euler

angles which are undefined for β = 0, π. This can cause problems when the Euler

construction is used for optimization, as the movement towards a solution becomes

extremely slow as the current estimate passes near the origin. Two other advantages

of the Rodrigues parametrization are that it uniquely determines the rotation pole

(Euler angles do not), and can keep track of 2π rotations introduced while multiplying

rotations. The main challenge in working with the Rodrigues parametrization is that

there is a singularity at φ = π. To avoid this while working with nonlinear optimiza-

tions, treat the initial estimate of the rotation as a static component, and optimize only

the change in rotation from this starting point. Provided that the initial estimate is

reasonable, the optimization should not be hindered by the singularity.

The multiplication rule for combining rotations is defined in closed form:

R(α; l)R(γ;m) = R(φ;n) (B.5)

where φ = αγ − l ·m and n = αm + γl + l ×m. Equations for converting between

quaternion rotations and rotation matrices are readily available in geometry texts.

The reader interested in rotation groups and the various parametrizations is referred

to Altmann (1986) (which also contains the aforementioned equations).



Appendix C

Computing A from G

The strategy for computing A is to extract its (3D) orthogonal complement from the

4D nullspace of G. Note that as F is rank 2, it has a right nullvector, which we shall

call e. The nullspace of G is the set of X for which

A′>FAX = 0 (C.1)

and because A′ has full rank, this is also the set of X for which

FAX = 0 (C.2)

writing N = null(G), a 6 × 4 matrix, we have that all such X are of the form Nu for

u ∈ R4, so

FANu = 0 ∀u ∈ R4 (C.3)

so ANu ∝ e ∀u, i.e. all columns of AN are multiples of e, so

AN = ev> (C.4)

for some v ∈ R4, and so

A = ev>N> + MN⊥ (C.5)

where N⊥ = null(N>)> and M is an arbitrary 6×2 matrix. Choosing e = −null((N⊥)[1:6,4:6])

and M = null(e>) means A is now a function only of v. The 4×1 vector v is found by non-

linear optimization of the following residuals on the original points (where A∗ = A(v)):

∑[
(A∗χ′

k)
>A∗GA∗>A∗χk

]2
. (C.6)
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Kilpelä, E.: 1980, Compensation of systematic errors of image and model coordinates,
International Archives of Photogrammetry XXIII(B9), 407–427.

Kim, J. S., Kim, H. W. and Kweon, I. S.: 2005, Geometric and algebraic constraints
of projected concentric circles and their applications to camera calibration, IEEE
Transactions on Pattern Analysis and Machine Intelligence 27(5), 637–642.

Klein, G. and Drummond, T.: 2002, Tightly integrated sensor fusion for robust visual
tracking, Proceedings of the British Machine Vision Conference, Vol. 2, pp. 787–
796.

Klein, G. and Drummond, T.: 2005, A single-frame visual gyroscope, Proceedings of
the 16th British Machine Vision Conference, Oxford, Vol. 2, pp. 529–538.
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