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Abstract

In this thesis we aim to develop a framework for graph characterization by com-

bining the methods from spectral graph theory and manifold learning theory. The

algorithms are applied to graph clustering, graph matching and object recogni-

tion.

Spectral graph theory has been widely applied in areas such as image recog-

nition, image segmentation, motion tracking, image matching and etc. The heat

kernel is an important component of spectral graph theory since it can be viewed

as describing the flow of information across the edges of the graph with time.

Our first contribution is to investigate how to extract useful and stable invari-

ants from the graph heat kernel as a means of clustering graphs. The best set

of invariants are the heat kernel trace, the zeta function and its derivative at the

origin. We also study heat content invariants. The polynomial co-efficients can

be computed from the Laplacian eigensystem. Graph clustering is performed by

applying principal components analysis to vectors constructed from the invari-

ants or simply based on the unitary features extracted from the graph heat kernel.

We experiment with the algorithms on the COIL and Oxford-Caltech databases.

We further investigate the heat kernel as a means of graph embedding. The

second contribution of the thesis is the introduction of two graph embedding

methods. The first of these uses the Euclidean distance between graph nodes. To

do this we equate the spectral and parametric forms of the heat kernel to com-
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pute an approximate Euclidean distance between nodes. We use the resulting

pattern of distances to embed the nodes of the graph on a manifold using a pro-

cedure similar to ISOMAP. The distribution of embedded points can be used to

characterize the graphs, and can be used for the purpose of graph clustering as

well. Experiments demonstrate that the algorithms can offer a useful margin of

advantages over existing alternatives.

The second graph embedding method uses the Young-Householder decom-

position of the heat kernel to map the nodes of the graphs into a vector space.

This is similar to performing kernel PCA on the heat kernel. The co-ordinates of

the nodes are determined by the eigenvalues and eigenvectors of the Laplacian

matrix, together with a time parameter which can be used to scale the mapping.

Node correspondences are located by applying a spectral alignment algorithm to

the embedded nodes. Here the third contribution of the thesis is to use the heat

kernel graph embedding to transform the graph matching problem into one of

point-set alignment problem.

The fourth contribution of the thesis is to use the correspondence matches to

construct a generative model which can be used to capture variations in graph

structure using the covariance matrix for corresponding embedded point posi-

tions. This is done by using the eigenvalues and eigenvectors of the covariance

matrix for the embedded node positions of sample of graphs. We show how to

use this model to both project individual graph into the eigenspace of the point

position covariance matrix and how to fit the model to potentially noisy graphs to

reconstruct the Laplacian matrix. We illustrate the utility of the resulting method

for shape analysis using data from the COIL and Caltech-Oxford databases.

ii



Contents

1 Introduction 1

1.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Literature Review 5

2.1 Graph Embedding and Manifold Learning . . . . . . . . . . . .5

2.2 Spectral Graph Theory in Computer Vision and Pattern Recog-

nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Heat Kernel and Spectral Geometry . . . . . . . . . . . . . . .11

2.4 Graph Clustering . . . . . . . . . . . . . . . . . . . . . . . . .13

2.5 Statistical Model for Graphs . . . . . . . . . . . . . . . . . . .16

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

3 Heat Kernel Invariants 20

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

3.2 Heat Kernel on Graphs . . . . . . . . . . . . . . . . . . . . . .22

3.3 Heat Kernel Invariants . . . . . . . . . . . . . . . . . . . . . .24

3.3.1 Heat Kernel Trace . . . . . . . . . . . . . . . . . . . .24

3.3.2 Zeta Function and Heat Kernel Trace Moments . . . . .27

3.3.3 Zeta Function and Torsion . . . . . . . . . . . . . . . .28

iii



3.3.4 Unitary Attributes with Symmetric Polynomials . . . . .29

3.3.5 Heat Content Invariants . . . . . . . . . . . . . . . . . .32

3.3.6 Principal Components Analysis . . . . . . . . . . . . .33

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . .34

3.4.1 Database Description . . . . . . . . . . . . . . . . . . .34

3.4.2 Heat Kernel Trace Experiments . . . . . . . . . . . . .36

3.4.3 Unitary Attributes from Symmetric Polynomials . . . .40

3.4.4 Heat Content Invariants Experiments . . . . . . . . . .51

3.4.5 Heat Kernel Invariants Comparison . . . . . . . . . . .51

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . .56

4 Geometric Characterization of Graphs using Kernel Embedding 58

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . .58

4.2 Parametric Distance Embedding . . . . . . . . . . . . . . . . .60

4.2.1 Euclidean Distance from Heat Kernel . . . . . . . . . .60

4.2.2 Manifold Embedding of Graphs using the Euclidean Dis-

tance . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.3 Metric Embedding using ISOMAP . . . . . . . . . . . .64

4.2.4 Multidimensional Scaling . . . . . . . . . . . . . . . .66

4.3 Heat Kernel Embedding . . . . . . . . . . . . . . . . . . . . . .67

4.3.1 Co-ordinate Embedding . . . . . . . . . . . . . . . . .67

4.4 Characterizing the Embedded Point Distribution . . . . . . . . .68

4.4.1 Statistical Moments . . . . . . . . . . . . . . . . . . . .69

4.4.2 Spectral Characterization . . . . . . . . . . . . . . . . .70

4.4.3 Sectional Curvature . . . . . . . . . . . . . . . . . . . .71

4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . .74

4.5.1 Experiments on Parametric Distance Embedding . . . .74

iv



4.5.2 Experiment on Heat Kernel Embedding based Graph Clus-

tering . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . .96

5 Generative Model for Graph Structure 98

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . .98

5.2 Graph Matching using Manifold Embedding . . . . . . . . . . .100

5.2.1 Singular Value Decomposition for Point-sets Alignment100

5.3 A Generative Model for Graph Structure . . . . . . . . . . . . .102

5.3.1 Generative Model . . . . . . . . . . . . . . . . . . . . .102

5.3.2 Graph Similarity . . . . . . . . . . . . . . . . . . . . .105

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . .107

5.4.1 Experiments on Graph Matching . . . . . . . . . . . . .107

5.4.2 Experiments on Generative Model for Graph Structure .111

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . .117

6 Conclusions and Future Work 129

6.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . .129

6.1.1 Feature Invariants from Graph Heat Kernel . . . . . . .130

6.1.2 Graph Embedding for Graph Matching and Clustering .131

6.1.3 Generative Model for Graph Structure . . . . . . . . . .132

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . .133

v



List of Figures

3.1 Four graphs used for heat kernel trace analysis. . . . . . . . . .25

3.2 Heat kernel trace as a function oft for four graphs from Figure 3.1.26

3.3 Relationship between two line segments. . . . . . . . . . . . . .37

3.4 Example images of objects from the COIL database. . . . . . .37

3.5 Eight objects with their Delaunay graphs overlaid. . . . . . . . .38

3.6 Example images from the Oxford-Caltech database. . . . . . . .39

3.7 Zeta functionζ(s) with view number(from left to right, and top

to bottom,s = 1, 2, 3 and4 respectively). . . . . . . . . . . . . 41

3.8 Zeta function clustering for the COIL database. . . . . . . . . .42

3.9 Spectral clustering for the COIL database. . . . . . . . . . . . .43

3.10 Zeta function clustering for the Oxford-Caltech database. . . . .44

3.11 Derivative of the zeta function at the origin for the COIL database.45

3.12 Derivative of the zeta function at the origin for the Oxford-Caltech

database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46

3.13 Histogram of the derivative of the zeta function at the origin for

the objects from the COIL database. . . . . . . . . . . . . . . .47

3.14 Histogram of the derivative of the zeta function at the origin for

the objects from the Oxford-Caltech database. . . . . . . . . . .48

3.15 Node number(left) and edge number(right) histograms for the

COIL database. . . . . . . . . . . . . . . . . . . . . . . . . . .48

vi



3.16 Node number(left) and edge number(right) histograms for the

Oxford-Caltech database. . . . . . . . . . . . . . . . . . . . . .49

3.17 Symmetric polynomials using spectral matrix elements for COIL(left)

and Oxford-Caltech(right) databases. . . . . . . . . . . . . . . .49

3.18 Symmetric polynomials using normalized Laplacian eigenvalues

for COIL(left) and Oxford-Caltech(right) databases. . . . . . . .50

3.19 Individual heat content invariants as a function of view number. .52

3.20 Principal component analysis results of the heat content differ-

ential co-efficients(left) and Laplacian spectrum (right). . . . . .52

3.21 Euclidean distance and standard deviation of the random graph

experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . .55

4.1 Illustration of relationship between the geodesic distance, Eu-

clidean distances and the sectional curvature. . . . . . . . . . .72

4.2 Moments as a function oft for a graph from the COIL database

for the parametric distance embedding. . . . . . . . . . . . . . .75

4.3 Individual moment(moment one, moment two, moment three

and moment four) for the eight objects from COIL database as a

function of view number. . . . . . . . . . . . . . . . . . . . . .76

4.4 Parametric distance embedding varying witht – moments char-

acterization (from left to right, top to bottom, the results obtained

whent equals0.01, 0.1, 1, 10, 100 and1000 respectively). . . . . 78

4.5 Parametric distance embedding varying witht – spectral charac-

terization (from left to right, top to bottom, the results obtained

whent equals0.01, 0.1, 1, 10, 100 and1000 respectively). . . . . 79

vii



4.6 Parametric distance embedding with moments characterization

distance matrices varying witht (from left to right, top to bottom,

the results obtained whent equals0.01, 0.1, 1, 10, 100 and1000

respectively). . . . . . . . . . . . . . . . . . . . . . . . . . . .80

4.7 Parametric distance embedding with spectral characterization dis-

tance matrices varying witht (from left to right, top to bottom,

the results obtained whent equals0.01, 0.1, 1, 10, 100 and1000

respectively). . . . . . . . . . . . . . . . . . . . . . . . . . . .81

4.8 3-D view of the histogram of the sectional curvature matrices–

parametric distance embedding. . . . . . . . . . . . . . . . . .83

4.9 Parametric distance embedding with sectional curvature cluster-

ing by varyingt (from left to right, top to bottom, the results

obtained whent equals0.01, 0.1, 1, 10, 100 and1000 respectively).84

4.10 Spectral clustering result. . . . . . . . . . . . . . . . . . . . . .85

4.11 Rand index for parametric distance embedding methods. . . . .86

4.12 Moments as a function of thet parameter for a graph from the

COIL database for the heat kernel embedding. . . . . . . . . . .88

4.13 Heat kernel embedding varying witht – moments characteriza-

tion (from left to right, top to bottom, the results obtained when

t equals0.5, 1, 5, 10, 100 and1000 respectively). . . . . . . . . . 89

4.14 Heat kernel embedding varying witht parameter – spectral char-

acterization (from left to right, top to bottom, the results obtained

whent equals0.5, 1, 5, 10, 100 and1000 respectively). . . . . . 90

4.15 Heat kernel embedding with moments characterization distance

matrices varying witht parameter (from left to right, top to bot-

tom, the results obtained whent equals0.5, 1, 5, 10, 100 and1000

respectively). . . . . . . . . . . . . . . . . . . . . . . . . . . .91

viii



4.16 Heat kernel embedding with spectral characterization distance

matrices varying witht (from left to right, top to bottom, the

results obtained whent equals0.5, 1, 5, 10, 100 and1000 respec-

tively). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.17 3-D view of the histogram of the sectional curvature matrices –

heat kernel embedding. . . . . . . . . . . . . . . . . . . . . . .93

4.18 Heat kernel embedding with sectional curvature characterization

by varyingt (from left to right, top to bottom, the results obtained

whent equals0.5, 1, 5, 10, 100 and1000 respectively). . . . . . 94

4.19 Rand index for different characterizations of the heat kernel em-

bedding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95

5.1 Aligned vector coordinates for two embedded graphs by varying

thet (from left to right, top to bottom, the results obtained when

t equals 0.5, 1, 5, 10, 100 and 1000 respectively). . . . . . . . .109

5.2 Comparison of four methods for matching with the same number

of nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111

5.3 Comparison of three matching methods of different number of

nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112

5.4 Delaunay graphs overlaid on the images. . . . . . . . . . . . . .113

5.5 Our algorithm for CMU and MOVI house sequences. . . . . . .113

5.6 Some examples of the dumbbell shape graphs. . . . . . . . . . .114

5.7 Graph eigenvector variation. . . . . . . . . . . . . . . . . . . .114

5.8 Graph eigenvector variation overlaid together. . . . . . . . . . .115

5.9 Embedded point positions and fitted covariance ellipsoids vary-

ing with t (from left to right, top to bottomt = 0.5, 1, 5, 10, 100

and1000 respectively) for the heat kernel. . . . . . . . . . . . .118

5.10 Eigenprojection of 15 images of duck sequence from COIL database.119

ix



5.11 Eigenprojection of motorcycle images from Oxford-Caltech database.120

5.12 Eigenprojection of airplane images from Oxford-Caltech database.121

5.13 Eigenprojection of dinosaur images from Oxford-Caltech database.122

5.14 Distance matrix for Mahalanobis distance between embedded

points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123

5.15 Distance matrix for the best fit parameter vectors. . . . . . . . .124

5.16 Distance matrix for Euclidean distance between embedded points.125

5.17 Graph clustering using Mahalanobis distances deduced from the

graph generative model. . . . . . . . . . . . . . . . . . . . . . .126

5.18 Frobenius norm as a function of numbers of eigenmodes. . . . .127

5.19 Spectral analysis of the Oxford-Caltech database. . . . . . . . .128

x



List of Tables

3.1 Relative deviations for six different graph characterizations. . . .56

5.1 Experiment results for MOVI house sequence images. . . . . . .112

5.2 Summary of comparison of the four matching algorithms. . . . .112

xi



Glossary of Symbols

G = (V,E) Graph
V Sets of nodes
E Sets of edges
A Adjacency matrix
D Degree matrix
I Identity matrix
L Un-normalized Laplacian matrix
L̂ Normalized Laplacian matrix
Λ Eigenvalue matrix of normalized Laplacian matrixL̂

Φ Eigenvector matrix of normalized Laplacian matrixL̂

λ Eigenvalue of normalized Laplacian matrixL̂

φ Eigenvector of normalized Laplacian matrixL̂
ht Heat kernel
t Time
Tr Matrix trace
ζ Zeta function
qm Heat content co-efficient
Sr Elementary symmetric polynomial
Pr Power-sum symmetric polynomial
RI Rand index value
→
B Feature vector
dG Geodesic distance
dE Euclidean distance
ks Sectional curvature
µpq Raw moment
W Weight matrix
X̂ Mean position
Σ Covariance matrix
CIJ Correspondence matrix

xii



Acknowledgements

I would like to express my sincere appreciation and gratitude to my supervisor,

Prof. Edwin Hancock, for his support and advice on my research during more

than three years of postgraduate work at York. I also thank my assessor, Dr.

Richard Wilson for his impartial assessment and constructive comments on my

work. Without their insightful guidance, it would not have been possible for me

to complete this thesis. My sincere thanks also go to the good friends I made in

York, with whom I shared good times and memories together. Finally, I would

like to dedicate this thesis to my family. Their help and support were invaluable

for the successful completion of my PhD.

xiii



Declaration

I declare that the work in this thesis is solely my own except where attributed

and cited to another author. Most of the material in this thesis has been previously

published by the author. For a complete list of publications, please refer to the

next page.

xiv



List of Publications

The following is a list of publications that has been produced during the course

of my research.

2006

• Xiao Bai, Edwin Hancock ”A Spectral Generative Model for Graph Struc-

ture” Syntactical and Structural Pattern Recognition(SSPR), Portugal, pages

173-181 , 2006

• Xiao Bai, Edwin Hancock ”Trace Formula Analysis of Graphs” Syntacti-

cal and Structural Pattern Recognition(SSPR), Portugal, pages 306-313 ,

2006

2005

• Xiao Bai, Edwin Hancock ”Recent Results on Heat Kernel Embedding of

Graphs” 5th Graph Based Representation on Pattern Recognition, France,

pages 373-382 , 2005

• Xiao Bai, Edwin Hancock ”Graph Clustering using Heat Content Invari-

ants” 2nd Iberian Conference on Pattern Recognition and Image Analysis,

Portugal, pages 123-130, 2005

• Xiao Bai, Edwin Hancock ”Clustering Shapes using Heat Content Invari-

ants” The International Conference on Image Processing(ICIP), 2005

xv



• Xiao Bai, Edwin Hancock ”Geometric Characterization of Graphs” 13th

International Conference on Image Analysis and Processing (ICIAP 2005),

Italy, pages 471-478, 2005

• Xiao Bai, Richard Wilson, Edwin Hancock ”Manifold Embedding of Graphs

Using the Heat Kernel” Mathematics of Surfaces 2005, pages 34-49, LNCS

3604

• Xiao Bai, Edwin Hancock ”Characterizing Graphs using the Heat Kernel”

British Machine Vision Conference, U.K., 315-324, 2005

2004

• Xiao Bai, Hang Yu and Edwin Hancock ”Graph Matching using Spectral

Embedding and Alignment” International Conference on Pattern Recogni-

tion, Cambridge, pages 398-401, 2004

• Xiao Bai, Edwin Hancock ”Heat Kernels, Manifolds and Graph Embed-

ding” Syntactical and Structural Pattern Recognition(SSPR), Portugal, pages

198-206, 2004

• Xiao Bai, Hang Yu and Edwin Hancock ”Graph Matching using Embed-

ding and Semidefinite Programming” British Machine Vision Conference,

Kingston, 2004

• Xiao Bai, Hang Yu and Edwin Hancock ”Graph Matching using Manifold

Embedding” International Conference on Image Analysis and Recogni-

tion, Portugal, pages 352-359, 2004

• Xiao Bai ”Manifold Learning and Spectral Graph Theory” Ph.D. Thesis

Proposal, Department of Computer Science, University of York, 2004

2003

xvi



• Richard Wilson, Xiao Bai and Edwin Hancock ”Graph Clustering using

Symmetric Polynomials and Locally Linear Embedding” British Machine

Vision Conference, East Anglia, 289-298, 2003

• Xiao Bai ”Spectral Graph Theory for Graph Clustering” Ph.D. first year

report, Department of Computer Science, University of York, 2003

Submitted Papers

• Xiao Bai, Richard Wilson, Edwin Hancock ”Characterizing Graphs using

the Heat Kernel” submitted to Jounral of Image and Vision Computing

• Xiao Bai, Edwin Hancock ”Isotree: Tree Clustering via Metric Embed-

ding” submitted to Journal of Neural Computing

• There are also several journal and conference papers under preparation.

xvii



Chapter 1

Introduction

1.1 The Problem

Spectral graph theory (Chung, 1997; Biggs, 1993; Cvetkovic et al., 1995) has

been widely applied to solve the problems in the field of computer vision and pat-

tern recognition. Examples include image segmentation(Shi and Malik, 1997),

routing (Atkins et al., 1998), image classification (Wilson et al., 2003) and etc.

These methods use the spectrum, i.e. eigenvalues and eigenvectors, of the adja-

cency or Laplacian matrix corresponding to the graph. Several authors have also

explored the use of the Laplacian and related operators to map data to a manifold

in a low dimensional space (Roweis and Saul, 2000; Belkin and Niyogi, 2000;

Tenenbaum et al., 2000).

The Laplacian spectrum is closely related to the heat kernel of a graph. The

heat kernel is the solution of the heat equation and is formed by exponentiating

the Laplacian eigensystem over time. The heat kernel can be viewed as describ-

ing the flow of information across the edges of the graph with time. The thesis

addresses the issue of how to extract useful information from the graph heat

kernel to characterize the graph. It is strongly linked to the manifold learning

theory. We will also explore how we can map the nodes of a graph to points in
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a vector space. This is achieved by the analysis of the heat kernel. Finally we

will combine the graph embedding methods with a statistical generative model

to construct a linear deformable model which can be used to capture variations

within graph structures.

1.2 Goals

The ultimate goal of this thesis is to use ideas derived from manifold learning

theory to investigate the information contained in the graph heat kernel, and to

explore whether they can provide a stable and robust way to characterize the

graph. To this end, we focus on

• Robust graph feature extraction: A graph can be represented by the heat

kernel matrix associated with it. Graph information resides in the graph

heat kernel. We explore how to extract stable and robust invariants, which

can be used for characterizing the graphs.

• Graph embedding: Here we explore how to embed the nodes of graphs

as points to a vector space. In other words, we seek a mapping from the

node-set of the graph to point-sets in a vector space. After the embedding

we can apply the algorithms in the vector-space on graphs.

• Graph embedding for graph clustering: Once we have embedded the nodes

of a graph in a vector space, we aim to solve the graph clustering problem

by applying a simple point pattern analysis algorithm to the embedded

point-set.

• Heat kernel mapping for graph matching: We investigate whether methods

from manifold learning theory can be combined with spectral graph theory

to develop effective tools for graph structure matching. The idea is to
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embed the nodes of a graph in a high dimensional coordinate space, and to

use point pattern matching techniques to locate correspondences between

nodes.

• A generative model for graph structure: We aim to construct a statistical

model that can account for the distribution of mapped point positions for

corresponding nodes in a sample graph. We can capture variations in graph

structures using the sample covariance matrix and mean point position for

the corresponding embedded point positions.

1.3 Thesis Overview

Having described the overall goals of the thesis, we proceed to give a brief in-

troduction to the structure of the thesis. Chapter 2 reviews the literature of back-

ground on graph embedding, manifold learning methods, and spectral graph the-

ory in computer vision and pattern recognition.

In chapter 3, we illustrate how invariants from the graph heat kernel can

be used for graph characterization and used to perform graph clustering. In this

chapter we will explore several different invariants extracted from the heat kernel

and compare them on the real world image databases.

In chapter 4, two ways of graph embedding are explored. We use the em-

bedding methods to map the graph from the graph space to point-set in a vector

space. Once embedded in the vector space, we can perform graph clustering by

characterizing the embedded point-sets.

In chapter 5, we combine the methods from spectral graph theory and the

heat kernel mapping to develop method for structure based graph matching. We

also show how the node correspondences provided by the matching method can

be used to construct a statistical model. This model accounts for the distribution

3



of embedded point positions for corresponding nodes in the graph.

In the final chapter, after describing the contribution of the thesis, we will

give a brief conclusion of the advantages and shortcomings of the methods de-

scribed in the thesis and point out some promising directions for future research.
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Chapter 2

Literature Review

In this chapter, we aim to review literature relevant to the thesis. The review

ranges from spectral graph theory to manifold learning theory and their related

applications in computer vision. The organization of this chapter is as follows.

In Section 2.1, we commence by presenting a review of manifold learning

methods. Since our aim in the thesis is to develop methods for graph charac-

terization by combining spectral graph theory and manifold learning theory, we

then review the spectral graph theory and its applications in computer vision in

Section 2.2. In Section 2.3, the research on graph heat kernel and the previous

work are reviewed. We survey graph clustering in Section 2.4. Finally in Section

2.5, we review statistical models for graphs to motivate the methods presented in

Chapter 5.

2.1 Graph Embedding and Manifold Learning

One of the problems that arises in the manipulation of large amounts of graph

data is how to embed graphs in low-dimensional space so that standard machine

learning techniques can be used to perform tasks such as clustering(Luo et al.,

2003; Wilson et al., 2003). One way to realize this goal is to embed the nodes
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of a graph on a manifold and to use the geometry of the manifold as a means of

graph characterization(Hjaltason and Samet, 2003).

In the mathematics literature, there is a considerable body of work aimed at

understanding how graphs can be embedded on a manifold so as to minimize

the measure of distortion (Linial et al., 1995a). Broadly speaking there are three

ways in which the problem can be addressed. First, the graph can be interpo-

lated by a surface whose genus is determined by the number of nodes, edges and

faces of the graph. Second, the graph can be interpolated by a hyperbolic sur-

face which has the same pattern of geodesic (internode) distances as the graph

(Busemann, 1955). Third, a manifold can be constructed whose triangulation is

the simplicial complex of the graph (Ranicki, 1992). A review of methods for

efficiently computing distance via embedding is presented in the recent paper of

Hjaltason and Samet (Hjaltason and Samet, 2003).

In the pattern analysis community, there has recently been renewed interest in

the use of embedding methods motivated by graph theory. One of the best known

of these is ISOMAP (Tenenbaum et al., 2000). Here a neighborhood ball is used

to convert data points into a graph, and Dijkstra’s algorithm is used to compute

the shortest–geodesic distances between nodes. The matrix of geodesic distances

is used as input to MDS–Multidimensional Scaling(Cox and Cox, 1994). The re-

sulting algorithm has been demonstrated to locate well-formed manifolds for a

number of complex data sets. Related algorithms include locally linear embed-

ding (Roweis and Saul, 2000), which is a variant of PCA (Jollife, 1986) that

restricts the complexity of the input data using a nearest neighbor graph, and

the Laplacian eigenmap (Belkin and Niyogi, 2000) that constructs an adjacency

weight matrix for the data points and projects the data onto the principal eigen-

vectors of the associated Laplacian matrix(the degree matrix minus the weight

matrix) (Belkin and Niyogi, 2000). Recently Lafon and Coifman have proposed
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the diffusion map (Coifman and Lafon, 2004), which constructs the mapping by

raising the Laplacian eigensystem to a negative integer power. This mapping is

shown to preserve the distances between nodes under a random walk, or diffu-

sion, on the graph. These methods (Roweis and Saul, 2000; Belkin and Niyogi,

2000; Tenenbaum et al., 2000; Coifman and Lafon, 2004) share the feature of

using the spectrum of the Laplacian matrix to map data specified in terms of a

proximity matrix to a vector space and are together known as manifold learning

theory. Their collective aim is to develop variants of the classical methods of

PCA and MDS, which can be used to better capture localized variations in the

structure of the data.

However, the study of graph structures using manifold learning theory is less

advanced than the study of pattern spaces for images (Murase and Nayar, 1994)

or shapes (Klassen et al., 2004; Lee and Small, 1999; Cootes et al., 1995). Here

a well established route to construct a pattern space for the data is to use princi-

pal components analysis. This commences by encoding the image data or shape

landmarks as a fixed length long vector. The data is then projected into a low-

dimensional space by projecting the long vectors onto the leading eigenvectors

of the sample covariance matrix. This approach has been proved to be particu-

larly effective, especially for face data, and has lead to the development of more

sophisticated analysis methods capable of dealing with quite complex pattern

spaces. One thing that may hinder the study of graph structure using manifold

learning theory is that graphs are not vectorial in natural and we are unable to

use node ordering to transform the graphs into vectors. The reason is twofold.

First the nodes of a graph are not ordered or labeled, and so there is no natural

way to map the nodes to the components of a vector. Secondly, even if a nodes

ordering can be found, different graphs may contain different numbers of nodes.

We still need to deal with graph pattern vectors of different lengths.
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In an attempt to overcome problems that result from the non-vectorial nature

of graphs, Luo, Wilson and Hancock (Luo et al., 2003) have explored how ideas

from spectral graph theory (Chung, 1997; Sachs et al., 1980; Biggs, 1993) can

be used to construct pattern spaces for sets of graphs. The idea here has been

to extract features that are permutation invariants from the adjacency matrices

of the graphs under study. Pattern spaces may then be constructed from the

feature vectors using techniques such as principal components analysis, or the

more recently developed ones from manifold learning theory described above.

Related literature includes Shokoufandeh et al. (Shokoufandeh et al., 1999) who

have used topological spectra to index tree structures, and recently Wilson and

Hancock (Wilson et al., 2003) have used algebraic graph theory to construct

permutation invariant polynomials from the eigenvectors of the Laplacian matrix.

One way of viewing these methods is to construct a low-dimensional feature

space that captures the topological structure of the graphs under study.

2.2 Spectral Graph Theory in Computer Vision and

Pattern Recognition

Spectral graph theory (Chung, 1997; Sachs et al., 1980; Biggs, 1993) is a branch

of mathematics that is concerned with characterizing the structural properties

of graphs using the eigenvectors of the adjacency matrix or the closely related

Laplacian matrix (the degree matrix minus the adjacency matrix). There are

many applications of using spectral graph theory in the physics (Bell and Rowl-

inson, 1990) and chemistry (Dias, 1993) areas. The use of spectral graph theory

in computer vision and pattern recognition is a recent development. In this sub-

section we will review some problems in computer vision and pattern recognition

that have been solved using spectral graph theory.
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Pattern matching is a task of pivotal important in high-level vision since it

provides a means by which abstract pictorial descriptions can be matched to one

another. In recent years there have been many attempts to use spectral graph

theory both in graph matching and in point-set matching problems. One of the

earliest attempt was done by Umeyama (Umeyama, 1988), who developed a sin-

gular value decomposition method to find the permutation matrix between the

adjacency matrices of the two graphs to be matched. The method commences by

performing singular value decomposition on the adjacency matrices of the two

graphs separately. The permutation matrix is found by taking the outer prod-

ucts of the eigenvector matrices for the adjacency matrices of the graphs being

matched. The method can cope with both weighted and unweighted graphs, but it

can not handle graphs which have a different number of nodes. For the point-sets

matching, Scott and Longuett-Higgins (Scott and Longuett-Higgins, 1991) have

shown how to recover correspondence by maximizing the inner product of the

pairing matrix and the proximity matrix of the two point-sets. Shapiro and Brady

(Shapiro and Brady, 1992) have extended Scott and Longuett-Higgins’s idea by

computing the eigenvectors of the proximity matrices of the two point-sets being

matched. By doing so they overcome the shortcoming of Scott and Longuett-

Higgins’s method, which fails to find the correct correspondence when the ro-

tation angle between the point-sets becomes large. Both Scott and Longuett-

Higgins’, Shapiro and Brady’s methods can only match point-sets and they can

not be applied directly to graph matching problems. However, there have been

many attempts to overcome these limitations. Luo and Hancock (Luo and Han-

cock, 2001) have improved Umeyama’s method by incorporating the EM algo-

rithm. This allows Umeyama’s method to render robustness to the differences in

graph size and structural errors. However, the resulting algorithm is time con-

suming because of its iterative character. Recently, Robles-Kelly and Hancock
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(Robles-Kelly and Hancock, 2002) have proposed a new spectral graph matching

method by aligning the leading eigenvectors of the adjacency matrices of two

graphs, where the leading eigenvector corresponds to the steady-state Markov

chain. Based on Shapiro and Brady’s point-set matching algorithm, Carcassoni

and Hancock (Carcassoni and Hancock, 2003) have shown that by using the EM

algorithm, which can incorporate the structure of the point-sets, the confidence

of point correspondence can be computed by probabilities using the proximity

matrix. Kosinov and Caelli (Kosinov and Caelli, 2002) have improved Shapiro

and Brady’s method by allowing for scaling in the eigenspace.

Another application for spectral graph theory in computer vision and pattern

recognition is for image segmentation. Several authors (Shi and Malik, 1997;

Costeira and Kanade, 1995; Perona and Freeman, 1998; Sarkar and Boyer, 1996;

Scott and Longuett-Higgins, 1990) have explored how to use the eigenvectors of

the affinity matrix to solve the image segmentation problems. Their approaches

are attractive because their methods are based on simple eigendecomposition al-

gorithms whose stability is well understood. Scott and Longuett-Higgins (Scott

and Longuett-Higgins, 1990) identify point clusters by relocating the normal-

ized eigenvectors of the affinity matrix. The input for this algorithm is an affin-

ity matrix and the same size output matrix can be used to reshuffle the points

into different clusters. Costeira and Kanade (Costeira and Kanade, 1995) have

applied a variant of the method to 3D motion tracking by using the singular val-

ues of the measurement matrix to cluster points. Sarkar and Boyer (Sarkar and

Boyer, 1996) used the leading eigenvector of the affinity matrix to locate point

clusters and have applied the method to line segments grouping. The algorithm

developed by Shi and Malik (Shi and Malik, 1997) uses the second eigenvector

(Fiedler vector) of the Laplacian matrix(i.e. the degree matrix minus the affinity

matrix) as a solution to a continuous formulation of a minimum normalized cut
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problem. In this way they locate a segmentation that minimizes the affinity be-

tween groups. Perona and Freeman (Perona and Freeman, 1998) have a similar

segmentation algorithm based on thresholding the first eigenvector of the affinity

matrix. Weiss (Weiss, 1999) gives a review on these spectral based segmentation

algorithms. He showed the similarities and differences between the algorithms.

The similarity is that they all use the eigenvectors of an affinity matrix. The

differences lie in which eigenvectors are used and how to construct the affinity

matrix.

There are many other applications that make use of spectral graph theory in

computer vision and pattern recognition. One of the most important of these

is graph clustering, which we will review in detail in Section 2.4. Another in-

teresting application is routing, which can be used to simplify the graph struc-

ture. In (Atkins et al., 1998) Atkins, Bowman and Hendrikson have shown how

to use the Fiedler vector of the Laplaican matrix to sequence relational data.

Robles-Kelly and Hancock (Robles-Kelly and Hancock, 2005) have shown how

to use the first eigenvector to transform the graphs into strings and have used

the strings to match graphs and compute string edit distance. Yu and Hancock

(Yu and Hancock, 2005) have further extended the method by using semidefinite

programming to find the spectral string ordering.

2.3 Heat Kernel and Spectral Geometry

One of the most important properties of the Laplacian spectrum is its close re-

lationship with the heat equation. Recent developments in this area have estab-

lished a link between graph spectra and the geometry of the manifold on which

the embedded graph resides (Grigor’yan, 2001; Grigor’yan, 2003; Lafferty and

Lebanon, 2004; Coulhon et al., 2000; Smola and Kondor, 2004; Barlow, 1998;
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Smola et al., 1998). According to the heat equation the time derivative of the

heat kernel is determined by the graph Laplacian. The solution to the heat equa-

tion is obtained by exponentiating the Laplacian eigensystem over time. The

heat kernel hence encapsulates the way in which information flows through the

edges of the graph over time, and is closely related to the path length distribu-

tion on the graph. Moreover the heat kernel also encapsulates the distribution of

geodesic distances at the embedded manifold (Yau and Schoen, 1988). As a re-

sult the graph can be viewed as residing on a manifold whose pattern of geodesic

distances is characterized by the heat kernel. For short times the heat kernel is

determined by the local connectivity or topology of the graph as captured by the

Laplacian, while for long times the solution gauges the global geometry of the

manifold on which the graph resides.

One way to use the heat kernel is to extract invariants that can be used to

characterize the corresponding graph or the manifold. Asymptotically for a short

time, the trace of the heat kernel (Chung, 1997; Gilkey, 1984)(or the sum of the

Laplacian eigenvalues exponentiated with time) can be expanded as a rational

polynomial in time. Here the spectrum of the Laplace-Beltrami operator is used

to construct a trace function, and the co-efficients of the leading terms in the se-

ries are directly related to the geometry of the manifold. In spectral geometry, the

heat kernel trace has also been used to characterize the differential geometry of

manifolds (Yau and Schoen, 1988; Gilkey, 1984). This function can be expanded

as a polynomial series in time, and the co-efficients of the series can be related to

the Ricci curvature tensor of the manifold. For instance, the leading co-efficient

is the volume of the manifold, the second co-efficient is related to the Euler char-

acteristic, and the third co-efficient is related to the Ricci curvature. However,

the relationships between the elements of the Ricci curvature tensor and the co-

efficients are difficult to determine, and are only tabulated up to the third order
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(Gilkey, 1984). For large graphs, the Laplacian can be viewed as a discrete ap-

proximation of the Laplace-Beltrami operator and this analysis can be carried

over from manifolds to graphs (Hein et al., 2005). The zeta function(i.e. the sum

of the eigenvalues raised to a non-integer power) for the Laplacian also contains

geometric information. For instance its derivative at the origin is related to the

torsion tensor for the manifold. Colin de Verdiere has shown how to compute

geodesic invariants from the Laplacian spectrum (de Verdiere, 1998). In a recent

paper McDonald and Meyers (McDonald and Meyers, 2002) have shown that

the heat content of the heat kernel is a permutation invariant. The heat content is

the sum of the entries of the heat kernel over the nodes of the graph, which may

be expanded as a polynomial in time. It is closely related to the trace of the heat

kernel, which is also known to be an invariant. This field of study is sometimes

referred to as spectral geometry (Gilkey, 1984; Rosenberg, 2002).

As noted above, for a Riemannian manifold, the heat kernel is determined

by the pattern of geodesic distances, and can provide a means of analyzing both

the local and global differential geometry of the manifold. Spectral geometry

also has close links with K-theory and Morse theory. It has topical interest in

particle physics, since Witten (Witten et al., 1988) has demonstrated how such

theories can be used to understand the geometries of space time that underpin su-

perstrings. Recently, in the pattern analysis area Lebanon and Lafferty (Lafferty

and Lebanon, 2004) have used the heat kernel to construct statistical manifolds

that can be used for inference and learning tasks.

2.4 Graph Clustering

Graph structures have been proved important in high level-vision since they can

be used to represent structural and relational arrangements of objects in a scene.
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Structural abstractions of 2D and 3D objects have been proved to be power-

ful tools for the recognition and learning of shape classes (Shokoufandeh et al.,

1999). One of the problems that arises in the analysis of structural abstractions

of shape is graph clustering (Bunke and Shearer, 1998). Traditionally, there are

two approaches to the problem. The first of these is to maintain a class proto-

type, and to cluster by iteratively merging graphs together (Lozano and Escolano,

2003; Bunke et al., 2003; Jain and Wysotzki, 2004). The second approach, which

avoids the need to maintain a class prototype, is to apply pairwise clustering

methods to the edit distance between graphs (Sanfeliu and Fu, 1983; Tsai and

Fu, 1983; Bunke, 1997; Bunke, 1999; Torsello and Hancock, 2001). Unfortu-

nately, both of these methods involve computing correspondence between nodes,

and since this is potentially an NP-hard problem, the computational overheads

can be large.

Turning our attention to the first approach, there has been some research

aimed at applying central clustering techniques to cluster graphs. However,

rather than characterizing them in a statistical manner, a structural characteriza-

tion is adopted. For instance, both Lozano and Escolano (Lozano and Escolano,

2003), and Bunke et al. (Bunke et al., 2003) summarize the data using a super-

graph. Each sample can be obtained from the supergraph using edit operations.

However, the way in which the supergraph is learned or estimated is not statisti-

cal in nature. Munger, Bunke and Jiang(Bunke et al., 1999) have recently devel-

oped a genetic algorithm for searching for the median graph. Jain and Wysotzki

adopt a geometric approach which aims to embed graphs in a high dimensional

space by means of the Schur-Hadamard inner product (Jain and Wysotzki, 2004).

Central clustering methods are then deployed to learn the class structure of the

graphs.

As far as the second approach is concerned, many authors have employed
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the concept of graph edit distance to measure the structural similarity of graphs.

The idea here is to perform elementary editing operations on a graph, such as

edge or node insertion and deletion, to make pairs of graphs isomorphic. Each

operation has an associated ”cost”, and the minimum total cost of the set of edit

operations can be used to gauge the similarity of the graphs. For example, Fu et

al (Sanfeliu and Fu, 1983; Tsai and Fu, 1983) have computed similarities using

separate edit costs for relabeling, insertion and deletion on both nodes and edges.

A search is necessary to locate the set of operations which have minimal cost.

More recently, Bunke (Bunke, 1997; Bunke, 1999) has established a relationship

between the minimum graph edit distance and the size of the maximum common

subgraph. Torsello and Hancock (Torsello and Hancock, 2001) have exploited

this relationship to cast the problem into a continuous optimization framework.

Shapiro and Haralick (Shapiro and Haralick, 1981) have exploited a similarity

measure based on the number of consistent structural relationships in pairs of

graphs. Again a search is exploited to locate the best correspondence mapping

between the nodes.

There are two main conclusions to draw from this literature on graph clus-

tering. Firstly, the calculation of graph similarity requires the solution of the

correspondence problem as a prerequisite. As mentioned before this problem is

typically NP-hard and therefore computationally expensive. Secondly, there is

no clear consensus on how to compute the similarity of graphs.

An alternative way to capture graph structure has been to use the spectrum of

the Laplacian matrix (Chung, 1997; Sachs et al., 1980; Biggs, 1993). Many au-

thors have used the spectral graph theory to characterize the similarity between

graphs for pairwise clustering and extract feature vectors from graphs to which

centred clustering techniques can be applied. Horaud and Sossa (Horaud and

Sossa, 1995) have applied the spectral graph theory to image database indexing
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by comparing the co-efficients of the polynomials of the Laplacian matrix of the

weighted graph extracted from the image. This representation was used for in-

dexing a large database of line drawings. In related work, Sengupta and Boyer

(Sengupta and Boyer, 1998) have proposed a spectral method for line-pattern

graph database partitioning. Shokoufandeh, Dickinson and Siddiqi (Shokoufan-

deh et al., 1999) have used topological spectra to index tree structures. Luo,

Wilson and Hancock (Luo et al., 2003) have used the spectrum of the adjacency

matrix to construct feature vectors for graph characterization, and Wilson and

Hancock (Wilson et al., 2003) have extended this earlier work by using the al-

gebraic graph theory to construct permutation invariant polynomials from the

eigenvectors of the Laplacian matrix. One way of viewing these methods is to

construct a low-dimensional feature space that captures the topological structure

of the graphs under study.

2.5 Statistical Model for Graphs

In this section we will describe a number of attempts aimed at developing prob-

abilistic models for variations in graph structure. Some of the earliest work was

that of Wong, Constant and You (Wong et al., 1990), who capture the varia-

tion in graph structure using a low order probability distribution. By introducing

an entropy measure and using an appropriate threshold, clusters of attributed

graphs can be synthesized. The probability distributions of the random graphs

can be used to characterize the statistical variations of the contextual and struc-

tural characteristics of each cluster. Bagdanov and Worring (Bagdanov and Wor-

ring, 2003) have overcome some of the computational difficulties associated with

this method by using continuous Gaussian distributions to model the densities of

the elements in a random graph. Since the pattern graph plays an important
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role in structure pattern recognition (Pavlidis, 1977; Miclet, 1986), there are po-

tentially many applications for statistical models of graph structure. Examples

include character recognition (Kim and Kim, 2001; Wong et al., 1990), occluded

face recognition (Alquezar et al., 1998), and recently document classification

(Cesarini et al., 1999; Doermann et al., 1997).

For point patterns, Cootes and Graham (Cootes et al., 1995) introduced point

distribution models, which can be used to capture the variation within a set of

shapes. Each shape is described by a long vector that contains the coordinates of

the landmarks. A sample of shapes represented in this way is characterized using

the mean and the covariance for the long vectors. The modes of the variation for

this point distribution model are computed by performing PCA on the sample

covariance matrix. However, this method can only capture the variation within

point-sets extracted from the images. It can not be directly applied to capture the

variations within graphs.

When it comes to problems of graph matching Hancock and Kittler (Hancock

and Kittler, 1990) have developed a probabilistic relaxation method for image la-

beling using a Bayesian framework to construct a support function for different

object arrangements. Christmas, Kittler and Petrou(Christmas et al., 1995) ex-

tended this work by making it more applicable to general attributed relational

graph matching problems. Wilson and Hancock (Wilson and Hancock, 1997)

have developed a Bayesian framework for discrete relaxation while modeling

the probabilistic distribution for matching errors using an exponential function

of Hamming distance. These methods can be used to transform the graph match-

ing problem into the statistical optimization problems. Optimization may then

be achieved using genetic algorithm, iterative search or mean field annealing.

There is also a considerable body of related literature in the graphical models

community concerned with learning the structure of Bayesian networks from
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data (Heckerman et al., 1995).

2.6 Conclusion

Based on the review of the related literature, we may draw several conclusions.

First, although the heat kernel is an important component of spectral graph the-

ory, it has not been thoroughly investigated or applied for the purposes of solving

problems from computer vision and pattern recognition. In this thesis, we will

investigate the feasibility of extracting useful information from the graph heat

kernel as a means of graph characterization. We will demonstrate that the result-

ing methods outperform traditional spectral methods for graph clustering.

Second, currently manifold learning theory (Roweis and Saul, 2000; Tenen-

baum et al., 2000; Belkin and Niyogi, 2000)etc. is restricted to dimensional

data reduction. Using a distance function deduced from the heat kernel anal-

ysis, ISOMAP (Tenenbaum et al., 2000) can be used for the purpose of graph

embedding. We map the nodes of a graph to point-sets in a vector space. The

distribution of the embedded node position can be used for graph characteriza-

tion.

The third point from the literature review is that graph embedding can be

combined with a point-set distribution model (Cootes et al., 1995) to construct a

generative model for graph structure. Here we introduce the heat kernel embed-

ding. The nodes of the graph are mapped to high dimensional vectors in a new

manifold. We solve the node correspondence between two graphs by performing

alignment on the node position vectors in the mapped space. For a set of graphs,

the heat kernel mapping and alignment are performed to compute the sample

mean and covariance matrix for the embedded node vector position. Variations

within the graph sample are computed from the eigendecomposition on the co-
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variance matrix.
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Chapter 3

Heat Kernel Invariants

3.1 Introduction

Graph clustering is an important issue in computer vision and pattern recogni-

tion, since graphs can be used for the high-level abstraction of scene and object

structure. The idea of graph clustering is to divide graphs into different groups

based on the structural properties of the sample of graphs. Although graph struc-

tures have been proved useful in both the low-level and high-level vision, they

are computationally cumbersome because of the need to establish reliable cor-

respondence between nodes. Standard graph clustering methods (Lozano and

Escolano, 2003; Bunke et al., 2003; Jain and Wysotzki, 2004; Sanfeliu and Fu,

1983; Tsai and Fu, 1983; Bunke, 1997; Bunke, 1999; Torsello and Hancock,

2001) need to solve the correspondence problems between nodes first. Again

this is a potentially NP-hard problem and the computational overheads can be

large. Recently spectral graph theory has been applied to graph clustering (Ho-

raud and Sossa, 1995; Shokoufandeh et al., 1999; Sengupta and Boyer, 1998).

Luo, Wilson and Hancock (Luo et al., 2003; Wilson et al., 2003) have proposed

permutation invariant spectral features for graph clustering. These methods for

graph clustering do not need to solve the nodes correspondence problems, but
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they are restricted to using only part of information from the spectrum of the

Laplacian matrix.

The heat kernel plays an important role in spectral graph theory. The heat ker-

nel matrix of the graph encapsulates the way in which information flows through

the edges of the graph over time. However, the research into the heat kernel is

at an early stage. It has not been applied widely in computer vision and pattern

recognition until recently. The aim in this chapter is to investigate whether we

can extract useful and stable permutation invariants from the heat kernel as a

means of graph clustering.

The outline of this chapter is as follows. We will first explore whether the

trace of the heat kernel (Yau and Schoen, 1988; Chung and Yau, 1997) can be

used for the purpose of characterizing graphs. The trace of the heat kernel is

found by summing a series of terms, each of which is the result of exponenti-

ating a Laplacian eigenvalue with time. As a result the heat kernel trace is a

function whose parameters are the Laplacian eigenvalues and whose argument

is time. Our aim is to explore whether the shape of this function can be used

to characterize the corresponding graph. Our idea is to measure the shape of

the heat kernel trace by taking moments with respect to time. Using the Mellin

transform it is straightforward to show that the moment generating function is re-

lated to the zeta function of the graph, which is a series found by exponentiating

and summing the reciprocals of the non-zero eigenvalues of the Laplacian. We

construct a feature vector whose components are the values of the zeta function

with integer argument.

Moreover, the derivative of the zeta function at the origin is related to the

product of the non-zero Laplacian eigenvalues. We will also explore the use of

the derivative of the zeta function as a means of characterizing graph structure

for the purposes of clustering.
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We then turn to the heat content, i.e. the sum of the elements of the heat

kernel. The heat content can be expanded as a polynomial over time, and the co-

efficients of the polynomial are known to be permutation invariants. We demon-

strate how the polynomial co-efficients can be computed from the Laplacian

eigensystem. Graph clustering is performed by applying principal components

analysis to vectors constructed from the polynomial co-efficients.

For our experiments we use publically available datasets, namely the COIL

and Oxford-Caltech databases. We show how the manifold learning theory and

spectral methods can be combined to solve the image classification problem.

3.2 Heat Kernel on Graphs

To commence, suppose that the graph under study is denoted byG = (V,E)

whereV is the set of nodes andE ⊆ V × V is the set of edges. Since we wish

to adopt a graph spectral approach we introduce the adjacency matrixA for the

graph where the elements are

A(u, v) =





1 if u, v ∈ E

0 otherwise
(3.1)

We also construct the diagonal degree matrixD, whose elements are given by

D(u, u) =
∑

v∈V A(u, v). From the degree matrix and the adjacency matrix we

construct the Laplacian matrixL = D − A, i.e. the degree matrix minus the

adjacency matrix,

L(u, v) =





dv if u = v

−1 if u and v are adjacent

0 otherwise

(3.2)
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dv is D matrix’sD(v, v) value. The normalized Laplacian is given by

L̂(u, v) =





1 if u = v and dv 6= 0

− 1√
dudv

if u and v are adjacent

0 otherwise

(3.3)

and can be written aŝL = D− 1
2 LD− 1

2 . The spectral decomposition of the nor-

malized Laplacian matrix iŝL = ΦΛΦT , whereΛ = diag(λ1, λ2, ..., λ|V |)(λ1 <

λ2 < ... < λ|V |)is the diagonal matrix with the ordered eigenvalues as ele-

ments andΦ = (φ1|φ2|....|φ|V |) is the matrix with the ordered eigenvectors as

columns. SincêL is symmetric and positive semi-definite, the eigenvalues of the

normalized Laplacian are all non-negative. The number of zero eigenvalues is

the number of isolated cliques in the graph. For a connected graph, there is only

one eigenvalue which equals zero. The eigenvector associated with the smallest

non-zero eigenvector is referred to as the Fiedler-vector (Chung, 1997).

We are interested in the heat equation associated with the Laplacian, and this

is given by.
∂ht

∂t
= −L̂ht (3.4)

whereht is the heat kernel andt is time. The ”heat kernel” is the fundamental

solution of the heat equation. It can be viewed as describing the flow of informa-

tion across the edges of the graph with time. The rate of flow is determined by

the Laplacian of the graph. The solution to the heat equation is

ht = e−tL̂ (3.5)

From (Chung, 1997) we can proceed to compute the heat kernel on a graph by
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exponentiating the Laplacian eigenspectrum, i.e.

ht =

|V |∑
i=1

exp[−λit]φiφ
T
i = Φ exp[−Λt]ΦT (3.6)

The heat kernel is a|V | × |V | size matrix, and for the nodesu andv of the graph

G the resulting element is

ht(u, v) =

|V |∑
i=1

exp[−λit]φi(u)φi(v) (3.7)

When t tends to zero, thenht ' I − L̂t, i.e. the kernel depends on the local

connectivity structure or topology of the graph. If, on the other hand,t is large,

thenht ' exp[−λ2t]φ2φ
T
2 , whereλ2 is the smallest non-zero eigenvalue and

φ2 is the associated eigenvector, i.e. the Fiedler vector. Hence, the large time

behavior is governed by the global structure of the graph.

3.3 Heat Kernel Invariants

In this section we will describe a set of invariants that can be computed from

the heat kernel matrix of the graph. These include the heat kernel trace, the zeta

function, heat content invariants, and the derivative of zeta function at origin.

3.3.1 Heat Kernel Trace

The trace of the heat kernel is

Z(t) = Tr[ht] =

|V |∑
i=1

exp[−λit] (3.8)

and it is the sum of the diagonal elements of the heat kernel matrix of the graph,

where theλi is the eigenvalue of the normalized Laplacian matrix.
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To provide an illustration of the potential utility of the trace formula, in Fig-

ure 3.1 we show four small graphs with rather different topologies. Figure 3.2

shows the trace of the heat kernel as a function oft for the different graphs. From

the plot it is clear that the curves have a distinct shape and could form the basis of

a useful representation to distinguish graphs. For instance, the more “dumbbell”

shaped the graph the more strongly peaked the trace of the heat kernel at the ori-

gin. This is due to the fact that the spectral gap, i.e. the size ofλ2, determines the

rate of decay of the trace with time, and this in turn is a measure of the degree of

separation of the graph into strongly connected subgraphs or “clusters”, and this

is again due to the fact that for a connected graph,λ1 = 0

Z(t) = 1 + exp[−λ2t] + exp[−λ3t] + ... + exp[−λN t]

.

Figure 3.1: Four graphs used for heat kernel trace analysis.
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Figure 3.2: Heat kernel trace as a function oft for four graphs from Figure 3.1.
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3.3.2 Zeta Function and Heat Kernel Trace Moments

The aim in this section is to use the shape of the heat kernel trace function as a

means of characterizing graph structure. Our characterization is found by taking

moments of trace function over time. Here we introduce the zeta function, which

has a strong relation with the heat kernel trace.

To commence our development, we consider the zeta function associated

with the Laplacian eigenvalues. The zeta function is defined by

ζ(s) =
∑

λi 6=0

λ−s
i (3.9)

In other words, it is the result of exponentiating and summing the reciprocal of

the non-zero Laplacian eigenvalues.

To establish the link between the zeta function and the trace of the heat kernel

we make use of the Mellin transform. The Mellin Transform of the functionf(t)

is

w(s) =

∫ ∞

0

ts−1f(t)dt (3.10)

From the Mellin Transform

λ−s
i =

1

Γ(s)

∫ ∞

0

ts−1f(t)dt (3.11)

and

f(t) = exp(−λit) (3.12)

In the equation aboveΓ(s) is the gamma function and

Γ(s) =

∫ ∞

0

ts−1 exp[−t]dt (3.13)
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Hence, we can write the zeta function as a moment generating function

ζ(s) =
1

Γ(s)

∫ ∞

0

ts−1
∑

λi 6=0

exp[−λit]dt (3.14)

The sum of exponentials inside the integral is clearly linked to the trace of the

heat kernel. To show this we make use of the fact that

Tr[ht] = C +
∑

λi 6=0

exp[−λit] (3.15)

whereC is the multiplicity of the zero eigenvalue of the Laplacian, or the number

of connected components of the graph. Substituting this result back into the

Mellin transform, we have

ζ(s) =
1

Γ(s)

∫ ∞

0

ts−1

{
Tr[ht]− C

}
dt (3.16)

As a result the zeta function is related to the moments of the heat-kernel trace. It

is hence a way of characterizing the shape of the heat kernel trace.

3.3.3 Zeta Function and Torsion

The zeta function is also linked to the determinant of the Laplacian. To show

this, we re-write the zeta function in terms of the natural exponential with the

result

ζ(s) =
∑

λi 6=0

λ−s
i =

∑

λi 6=0

exp[−s ln λi] (3.17)

The derivative of the zeta function is given by

ζ ′(s) =
∑

λi 6=0

{− ln λi} exp[−s ln λi] (3.18)
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At the origin the derivative takes on the value

ζ ′(0) =
∑

λi 6=0

{− ln λi} = ln

{∏

λi 6=0

(
1

λi

)

}
(3.19)

According to Rosenberg (Rosenberg, 2002) the derivative at the zeta function at

the origin is linked to the torsionT , and

ζ ′(0) = − ln Det[T ] (3.20)

In our experiments, we will use the value ofζ ′(0) as a graph characteristic, and

explore whether it can be used to distinguish different graphs.

3.3.4 Unitary Attributes with Symmetric Polynomials

Because of the zeta function, the derivative of zeta function at the origin can pro-

vide important features for graph characterization. In this section we illustrate

its relationship with the symmetric polynomial method (Wilson et al., 2003) in-

troduced by Wilson and Hancock.

In their recent paper Wilson, Hancock and Luo (Wilson et al., 2003) have re-

ported a family of invariants that can be computed by applying symmetric poly-

nomials to the elements from the graph spectral matrix. The spectral matrix is

obtained by performing eigendecomposition on the Laplacian matrixL of the

graph,L =
∑n

i=1 liuiu
T
i , whereli is theith eigenvalueui is the corresponding

eigenvector of the symmetric LaplacianL. The spectral matrixC is defined as

C = (
√

l1u1,
√

l2u2, ...,
√

lnun)T (3.21)

It can also be written asC =
√

ΛLΦL, whereΛL andΦL are the eigen matrices

of the Laplacian matrix corresponding to the eigenvalues and eigenvectors.
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We turn our attention to the symmetric polynomials. A symmetric polyno-

mial onn variablesv1, v2, ...vn is a function that is unchanged by any permutation

of its variables. In other words, the symmetric polynomials satisfy

f(y1, y2, ..., yn) = f(v1, v2, ..., vn) (3.22)

whereyi = vπ(i) andπ is an arbitrary permutation of the indices1, 2, ..., n.

There are two sets of common symmetric polynomials, the elementary sym-

metric polynomials and power-sum symmetric polynomials. For a set of vari-

ables{v1, v2 . . . vn} the elementary symmetric polynomials are defined as

S1(v1, . . . vn) =
n∑

i=1

vi

S2(v1, . . . vn) =
n∑

i=1

n∑
j=i+1

vivj

...

Sr(v1, . . . vn) =
∑

i1<i2<···<ir

vi1vi2 . . . vir

...

Sn(v1, . . . vn) =
n∏

i=1

vi

The output for then set input variable{v1, v2 . . . vn} is S1, S2, ..., Sn.

The power-sum symmetric polynomial functions, which are defined as below,

P1(v1, . . . vn) =
n∑

i=1

vi

P2(v1, . . . vn) =
n∑

i=1

v2
i

...

Pr(v1, . . . vn) =
n∑

i=1

vr
i
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...

Pn(v1, . . . vn) =
n∑

i=1

vn
i

also form a basis set over the set of symmetric polynomials. Any polynomial

function which is invariant to permutation of the variable indices(vi, v2, ..., vn)

can be expressed in terms of one of these sets of polynomials. The two sets of

polynomials are related to one another by the Newton-Girard formula:

Sr =
(−1)r+1

r

r∑

k=1

(−1)k+rPkSr−k (3.23)

where we have used the shorthandSr for Sr(v1, ....., vn) andPr for Pr(v1, ..., vn).

As a consequence, the elementary symmetric polynomialsSr can be efficiently

computed using the power-sum symmetric polynomials. (Wilson et al., 2003)

Wilson, Luo and Hancock proposed to use the elements of the spectral matrix
√

ΛLΦL as input for the symmetric polynomial to compute the invariants for

graph characterization.

There are of course alternative invariants that can be computed from the spec-

trum of the Laplacian. The most obvious of these is the sum of eigenvalues or

the trace of the normalized Laplacian eigenvalue matrix of the graph.

S1(λ1, λ2, ..., λn) =
n∑

i=1

λi (3.24)

Then if we use the eigenvalues of the normalized Laplacian matrix as input for

the symmetric polynomialSr, the first symmetric polynomial is also the trace

of the normalized Laplacian and the last, which isS1(λ1, λ2, ..., λn) =
∏n

i=1 λi,

is related to the derivative of the zeta function at the origin. Moreover, (Wilson

et al., 2003) Wilson, Hancock and Luo found it necessary to perform logarithmic
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squashing of the polynomials to bring them into a convenient dynamic range.

This property arises naturally through the analysis of the zeta function 3.17.

In our experiments, we will use the symmetric polynomial to construct uni-

tary attributes for graph characterization. The input for the symmetric polyno-

mial are the columns of the spectral matrix and the eigenvalues of the normalized

Laplacian matrix.

3.3.5 Heat Content Invariants

In this chapter, we continue considering the heat kernel trace and have explored

several techniques for graph characterization based upon it. However, the trace

of the heat kernel has limited use for characterizing graphs, since for each value

of time it provides only a single scalar attribute. Hence, it must either be sampled

with time or a fixed time value has to be selected. In a recent paper McDonald

and Meyers (McDonald and Meyers, 2002) have described a set of differential

invariants that can be derived from the heat content of the heat kernel. The heat

content is the sum of the entries of the heat kernel over the nodes of the graph

and is given by

Q(t) =
∑
u∈V

∑
v∈V

ht(u, v) =
∑
u∈V

∑
v∈V

|V |∑

k=1

exp[−λkt]φk(u)φk(v) (3.25)

McDonald and Meyers (McDonald and Meyers, 2002) have shown that the heat

content can be expanded as a polynomial in time, i.e.

Q(t) =
∞∑

m=0

qmtm (3.26)
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Using the MacLaurin Seriesexp[−λkt] can be expanded as

exp[−λkt] = 1 + (−λk)t +
(−λk)

2t2

2!
+ ... +

(−λk)
mtm

m!
+ ... =

∞∑
m=0

(−λk)
mtm

m!

Substituting the MacLaurin expansion with equation 3.25, we have

Q(t) =
∑
u∈V

∑
v∈V

|V |∑

k=1

exp[−λkt]φk(u)φk(v) =
∞∑

m=0

∑
u∈V

∑
v∈V

|V |∑

k=1

φk(u)φk(v)
(−λk)

mtm

m!

As a result the co-efficientsqm appearing in the polynomial expansion ofQ(t)

are given by

qm =

|V |∑

k=1

{
(
∑
u∈V

φk(u))2

}
(−λk)

m

m!
(3.27)

The qm can be treated as a set of invariants which can be used for graph

characterization since the co-efficient values are a set of unique values for each

graph. In this part, we will explore the use of the polynomial co-efficients for

the purpose of graph clustering. To do this we construct a feature vector
→
B=

(q1, q2, ..., qk)
T from thek leading co-efficients of the heat content polynomial to

compare our method with a standard spectral representation. We also compare

the use of the vector of leading Laplacian eigenvalues
→
B= (l1, l2, ..., lk)

T as a

feature vector.

3.3.6 Principal Components Analysis

After constructing the feature vector
→
B, our next aim is to construct a pattern-

space for a set of graphs with pattern vectors
→
Bk, k = 1, ..., M . There are a

number of ways in which the graph pattern vectors can be analyzed. Here, for

the sake of simplicity, we use principal components analysis (PCA). We com-

mence by constructing the matrixS = [
→
B1 |

→
B2 |...|

→
Bk |...|

→
BM ] with the graph

feature vectors as columns. Next, we compute the covariance matrix for the ele-
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ments of the feature vectors by taking the matrix product
∑

= ŜŜT , whereŜ is

computed by substracting the mean of the feature vectors from each column of

the matrixS. We extract the principal components directions by performing the

eigendecomposition
∑

=
∑M

i=1 li
→
u i
→
u

T

i on the covariance matrix
∑

, where the

li are the eigenvalues and the
→
u i are the eigenvectors. We use the firsts leading

eigenvectors (3 in practice for visualization purposes) to represent the graphs ex-

tracted from the images. The co-ordinate system of the eigenspace is spanned by

the s orthogonal vectors
→
U= (

→
u1,

→
u2, ...,

→
us). The individual graphs represented

by the vectorsBk, k = 1, 2, ..., M can be projected onto this eigenspace using

the formula
→
Bk=

→
U

T →
Bk. Hence each graphGk is represented by ans-component

vector
→
Bk in the eigenspace.

3.4 Experiments

In this section we will apply our methods on the COIL and Oxford-Caltech

databases and explain whether these invariants can be used for graph character-

ization. In the first part of this section we will describe the databases and show

how to extract graph representations from the images. Second, we will show the

results obtained for the databases using the heat kernel trace, symmetric polyno-

mials and heat content invariants.

3.4.1 Database Description

In this and the next chapter we will use two databases, which are widely used in

the object recognition literature. It might, therefore, be worthwhile to describe

these databases.

The first one is the COIL database (Nene et al., 1996). We choose several

objects from the database. For each object there are 72 images taken from the
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equalized rotated position, 5 degrees per image. Figure 3.4 shows eight sample

objects from the COIL database. For the purpose of demonstrating our method

on graph clustering, we need to extract the graph representation from the image

of the database. For the COIL database, we first extract the feature points using

the method of Harris and Stephens (Harris and Stephens, 1994). The feature

points or corners can be located by first computing the locally averaged moment

matrix using the image gradient. The eigenvalues of the moment matrix can

be used to compute a corner ”‘strength”’. The locations of maximum values

of the strength indicate the corner positions. We treat these feature points as

nodes of a graph. The edge relations are computed by computing the Voronoi

tessellations of the feature points, and constructing the region adjacency graph of

the Voronoi regions. This process is called Delaunay triangulation. In Figure 3.5,

superimposed on the images are the detected feature points and their associated

Delaunay graphs. The extracted Delaunay graphs from the images are undirected

and unweighted graphs.

The second dataset is the Oxford-Caltech database (Fergus et al., 2003).

Compared with the COIL database the Oxford-Caltech is more realistic and com-

plex. The database contains different images of each object or images of the

same object from different viewpoints. A sample view is shown in Figure 3.6.

For the images in this database we extract relational graphs as belows. First, for

each image we use the Canny edge detector(Canny, 1986) to locate edges. From

the detected edges we extract the line segments using contour polygonalization.

We treat each line segment as a node in the relational graph. The edge weights

for each pair of nodes are computed using the relative distance and relative an-

gles attributes between the line segments using the method of Huet and Hancock

(Huet and Hancock, 1999). In Figure 3.3 the relative distancedgap between two

line segmentsei andej is computed by considering the distance of the straight
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line joining the nearest end points of the two segments. The relative angleθ is

found by computing the angle between the connecting straight line at the two end

points of the two line segments. The weightw(ei, ej) between two line segments

ei andej is given by

w(ei, ej) = EProximity(ei, ej)× EContinuity(ei, ej)

whereEProximity(ei, ej) represents the significance of proximity between two

line segments andEContinuity(ei, ej) represents the continuity relationship be-

tween two line segments. HereEProximity(ei, ej) is defined as

EProximity(ei, ej) = 1−min(1,
dgap

min(li, lj)
)

whereli is the length of the line segmentei anddgap is the minimum distance

between the end points of two line segments. The quantityEContinuity(ei, ej) is

defined as

EContinuity(ei, ej) = min(
li + lj

li + lj + dgap

, cos2(θ))

The weighted links between the line segments aim to capture regular Gestalt

inspired relationships of proximity and continuity (Sarkar and Boyer, 1993). The

graphs obtained in this way are undirected.

3.4.2 Heat Kernel Trace Experiments

We have experimented with the two characterizations of the heat kernel trace.

The first of these are the values of the zeta function with integer argument. As

shown above the zeta function is related to the moments of the heat kernel trace,

and is a measure of its shape. The second characterization is the slope of the zeta

function at the origin.
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Figure 3.3: Relationship between two line segments.

obj12__0.png obj17__0.png obj18__0.png obj20__0.png

obj1__0.png obj13__0.png obj15__0.png obj16__0.png

Figure 3.4: Example images of objects from the COIL database.
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Figure 3.5: Eight objects with their Delaunay graphs overlaid.

We commence by illustrating the behavior of the zeta function for the images

of objects from the COIL database. In this experiment we will choose 8 objects

from the COIL database. From left-to-right and top-to-bottom in Figure 3.7 we

show the values ofζ(1), ζ(2), ζ(3) andζ(4) as a function of view number for the

eight objects. The different curves in the four plots correspond to the different

objects. The main feature to note is that the curves for the different objects are

well separated, and that the individual values of the zeta function do not vary

significantly with view number. For small integer input, i.e.s = 1, s = 2,

the fluctuations in the outputs in Figure 3.7 are generally small. However, the

fluctuation is large whens = 4. This is because whens becomes large the small

eigenvalues will play a dominant role in theζ function.

In Figure 3.8 we show the result of performing principal components anal-

ysis on a feature vectorB = (ζ(1), ζ(2)....., ζ(N))T which has as its compo-

nents the zeta function evaluated at the integers1 to N . In order for the com-

putation to be convenient and the experiments to be synchronized, we choose

N = 6 to construct the feature vector for each graph. In the following experi-

ments in this Chapter, for different graph characterizations we will construct the
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0013.jpg 0027.jpg 0051.jpg 0062.jpg 0126.jpg

0001.jpg 0002.jpg 0003.jpg 0004.jpg 0005.jpg

viff.000.ppm viff.003.ppm viff.006.ppm viff.009.ppm viff.012.ppm

Figure 3.6: Example images from the Oxford-Caltech database.

feature vector, which has a length of six, for each graph. Here we project the

graphs onto the eigenspace spanned by the first three eigenvectors of the fea-

ture vector covariance matrix as explained in section 3.3.6. The different objects

are denoted by points of a different color. The different objects are well sep-

arated in the eigenspace. For comparison in Figure 3.9 we show the result of

repeating this analysis on a vector of leading eigenvalues of the Laplacian matrix

B = (l1, l2...., l6)
T . In the eigenspace, the objects overlap, and the clustering is

poorer.

In Figure 3.10 we repeat the analysis of the zeta function for the objects from

the Caltech-Oxford database. For the graphs extracted from the Oxford-Caltech

database we use the six leading zeta function values to construct the feature vec-

tor. We then perform PCA to project the graphs onto a three dimensional space.

Again, good clusters are obtained. The graphs for the three objects are well

separated.

We now turn our attention to the derivative of the zeta function at the origin.

In Figures 3.12 and 3.11 we show the curvesζ ′(0) as a function of view number
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for the Caltech-Oxford and COIL databases respectively. The curves are well

separated for the different objects, and the fluctuations are relatively small. In

fact in the case of the COIL data the derivative of the zeta function separates

the objects better than the individual zeta function values. Figures 3.13 and 3.14

show histograms ofζ ′(0) for the different objects. These are well separated and

do not overlap.

To show how the use ofζ ′(0) compares with the use of alternative unary

graph features, in Figure 3.15 and 3.16 we show the node and edge frequencies

for the COIL and Oxford-Caltech databases. The left plot in each figure is the

histogram of the number of nodes for each graph and the right plot is the his-

togram of the number of edges for each graph. The different objects in these

histograms overlap more than in theζ ′(0) histograms for the databases. As a

result theζ ′(0) appears to be a powerful unary feature for graph clustering.

3.4.3 Unitary Attributes from Symmetric Polynomials

We have compared the slope of the zeta function at the origin, i.e.ζ ′(0), with

the symmetric polynomials as unary features for discriminating graphs. The data

used for this experiment are again the COIL and Oxford-Caltech databases.

We will first use the symmetric polynomial with the normalized Laplacian

eigenvalues as input arguments to compute the unitary attributes. When the sym-

metric polynomial takes as its arguments the normalized Laplacian eigenvalues,

then the lowest order polynomial is the sum of the eigenvalues, i.e. the trace

of the normalized Laplacian, and the highest order polynomial is the product of

non-zero normalized Laplacian eigenvalues. Hence,

S|V |(λ1, λ2, ....., λ|V |) = exp[(ζ ′(0))−1]
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Figure 3.7: Zeta functionζ(s) with view number(from left to right, and top to
bottom,s = 1, 2, 3 and4 respectively).
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Figure 3.8: Zeta function clustering for the COIL database.
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Figure 3.9: Spectral clustering for the COIL database.
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Figure 3.10: Zeta function clustering for the Oxford-Caltech database.
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Figure 3.11: Derivative of the zeta function at the origin for the COIL database.
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Figure 3.12: Derivative of the zeta function at the origin for the Oxford-Caltech
database.
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Figure 3.13: Histogram of the derivative of the zeta function at the origin for the
objects from the COIL database.
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Figure 3.14: Histogram of the derivative of the zeta function at the origin for the
objects from the Oxford-Caltech database.
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Figure 3.15: Node number(left) and edge number(right) histograms for the COIL
database.
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Figure 3.16: Node number(left) and edge number(right) histograms for the
Oxford-Caltech database.
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Figure 3.17: Symmetric polynomials using spectral matrix elements for
COIL(left) and Oxford-Caltech(right) databases.
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Figure 3.18: Symmetric polynomials using normalized Laplacian eigenvalues
for COIL(left) and Oxford-Caltech(right) databases.

where|V | is the number of nodes in the graph.

In Figure 3.17 we plot the mean values from the symmetric polynomials over

the set of object views as a function of their order. Here the arguments of the

polynomials are the column elements of the spectral matrix
√

ΛLΦL. The differ-

ent curves in the plot are for different objects. We choose 9 different symmet-

ric polynomials for experiment. These are the first three symmetric polynomials

S1, S2, S3, the middle three symmetric polynomialsSfix(N
2

)−1, Sfix(N
2

), Sfix(N
2

)+1

and last three symmetric polynomialsSN−2, SN−1, SN , whereN is the number

of node in the graph. The error bars show the standard deviation over the differ-

ent sets of views of the same object. The left-hand plot is for the COIL database

and the right-hand plot is for the Oxford-Caltech database. Figure 3.18 repeats

the analysis using the normalized Laplacian spectrum as the arguments of the

polynomials.

From Figures 3.18 and 3.17 it is clear that the first three and last three sym-

metric polynomials computed using the normalized Laplacian eigenvalues and
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spectral matrix elements as inputs can be used for object separation. We also get

a better separation of objects when using the polynomials from the normalized

Laplacian spectrum rather than the elements of the spectral matrix.

3.4.4 Heat Content Invariants Experiments

We now turn our attention to the invariants computed from the heat content char-

acterization described in section 3.3.5. This time we will use the eight objects in

Figure 3.4 for testing.

In Figure 3.19 we plot the four leading heat content invariants co-efficients

q1, q2, q3 andq4 separately as a function of the view number for the eight objects

selected from the COIL database. The co-efficients are relatively stable with

viewpoint. In the left-hand panel of Figure 3.20 we show the result of performing

PCA on the vectors of six leading polynomial co-efficients. For comparison,

the right-hand panel in Figure 3.20 shows the corresponding result when we

apply PCA to the vector of leading eigenvalues of the Laplacian matrix as we

have described in section 3.4.2. The main qualitative feature is that the different

views of the eight objects overlap more than when the heat content polynomial

co-efficients are used.

3.4.5 Heat Kernel Invariants Comparison

To investigate the behavior of these methods i.e. heat kernel trace, heat content

invariant, in a more quantitative way, we have computed the Rand index (Rand,

1971) for the different methods. The Rand index is defined as

RI =
C

C + W
(3.28)
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Figure 3.19: Individual heat content invariants as a function of view number.
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Figure 3.20: Principal component analysis results of the heat content differential
co-efficients(left) and Laplacian spectrum (right).
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whereC is the number of agreements andW is the number of disagreements in

cluster assignment. If two objects are in the same cluster in both the ground truth

clustering and the clustering from our experiment, this counts as an agreement. If

two objects are in the same cluster in the ground truth clustering but in different

clustering from our experiment, this counts as a disagreement. The index is

hence the fraction of views of a particular class that are closer to an object of

the same class than to one of another class. The Rand index takes a value in the

interval [0, 1], where1 corresponds to a perfect clustering.

Since we have already known the ground truth clustering before the exper-

iments, finding out the clustering results from the low-dimensional embedded

coordinates can use the original ground truth clustering results. In this part and

the rest of the thesis, we use the K-nearest algorithm. The idea is for each em-

bedded coordinate we search its K nearest neighbors. We then check the ground

truth cluster numbers of these K neighbors to see if over half of these neighbors

belong to the same category as its ground truth one. In our experiment we set K

to 5. For example, a graph where in the ground truth it belongs to the first object

class. In the embedded coordinate space, we check its five nearest neighbors. If

three or more of its neighbors also belong to the first object class in their ground

truth clustering, then we say it is an agreement. Otherwise it is a disagreement.

We repeat this process for all graphs used in the experiments and compute the

Rand Index value according to the equation 3.28.

In the first experiment we use the Rand index to compare five different char-

acterizations for graph clustering. We use the COIL database, which contains

eight different objects and more than five hundred graphs, so it is more com-

plex than the Oxford-Caltech database. The five different methods are the zeta

function ζ, symmetric polynomial computed using Laplacian eigenvalues and

the spectral matrix elements as inputs, heat content invariantsqm, and traditional
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spectral clustering. Since the derivative of the zeta function at the origin is a

unary feature and the five characterizations above are not, we will not compare

them with this. In Figure 3.8, the Rand index for zetaζ function characteri-

zation clustering is0.92. For the symmetric polynomial clustering we use the

first and last three symmetric polynomial valuesS1, S2, S3, SN−2, SN−1, SN as

feature vector for graph clustering. The Rand index value for the symmetric

polynomial using Laplacian eigenvalues as inputs is0.90 and the Rand index

value for the symmetric polynomial using spectral matrix elements as inputs is

0.88. In Figure 3.20, the Rand index for the heat content co-efficients clustering

is 0.96 while for the Laplacian eigenvalues it is0.78. This experiment shows that

the best clustering result is from the heat content co-efficient characterization.

In the second experiment we evaluate the stability of the different graph

characterizations. We now use six different methods for graph characterization.

These are the five methods used above, together with the derivative of the zeta

function at the origin. We generate a random graph (Zhu, 2006) with thirty five

vertices and one hundred and twenty eight edges. We compute the Euclidean

distance between the coordinate vector from the principal component analysis

(PCA) projection of the graph feature vector and its modified variant obtained

by deleting between 3 and 27 edges from the random graph. The edge to be

deleted is chosen at random. For each deletion, we perform 30 trails in order to

obtain an average distance and a standard deviation.

In Figure 3.21, the x-axis in each plot is the deleted edge number, while the

y-axis is the mean Euclidean distance between the original random graph and the

modified variant graph together with the standard deviation. These plots show

that the five characterizations we proposed in this chapter give a relationship

between the Euclidean distance and deleted edge number much close to a linear

one, while the tradition spectral seems marginally less linear. In Table 3.1, we
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Figure 3.21: Euclidean distance and standard deviation of the random graph
experiments.
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Graph characterization method 9 edge deletion 15 edge deletion 21 edge deletion 27 edge deletion

Derivative of zeta function at origin 0.0644 0.0607 0.0545 0.0527
Heat content co-efficient 0.0677 0.0650 0.0621 0.0592

Zeta function 0.0847 0.0830 0.0801 0.0758
Symmetric polynomial with Laplacian eigenvalues 0.1103 0.0978 0.0947 0.0911

Symmetric polynomial with spectral matrix 0.1221 0.1165 0.1132 0.1025
Traditional Laplacian eigen spectrum 0.1627 0.1608 0.1544 0.1503

Table 3.1: Relative deviations for six different graph characterizations.

show the relative deviation value, which is the standard deviation divided by the

mean, for the six graph characterizations. The value gives an indication of the

stability of the different graph characterization methods. From the result, it is

clear that the invariants computed from the graph heat kernel can be used as

stable ways for graph characterization. The five different graph characterizations

proposed in this chapter outperformed the traditional spectral method in terms of

both accuracy and stability. The derivative of the zeta function can be used as a

unary feature for graph characterization.

3.5 Conclusion

In this chapter we have used several invariants computed from the heat kernel to

characterize the graphs. First we have explored the use of the zeta function as

a means of characterizing the shape of the heat kernel trace. Using the Mellin

transform, we have shown that the zeta function is linked to the moment generat-

ing function of the heat kernel trace. We have also shown that the derivative of the

zeta function at the origin is related to the determinant of the Laplacian matrix.

Both characterizations work well on the COIL and Caltech-Oxford databases.

Encouragingly, the derivative of the zeta function at the origin seems to be a

unary feature that can be used to measure graph similarity.

The slope of the zeta function at the origin is related to the product of the
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non-zero Laplacian eigenvalues, and is hence an invariant to the permutation

of the node order of the graph. We have further investigated alternative unary

permutation invariants by using the symmetric polynomial.

Finally we have explored how the use of heat content can lead to a series of

invariants that can be used as an important feature to characterize the graphs. We

have shown the effectiveness of this method on the real world images.

57



Chapter 4

Geometric Characterization of

Graphs using Kernel Embedding

4.1 Introduction

In the previous chapter we have shown that we can extract useful and stable

invariants from the heat kernel to characterize the graphs. In this chapter we will

further explore the geometry of the graphs which resides on a manifold. To do

so we need to develop a way to embed the nodes of graphs to points in a vector

space on a manifold. In other words, we are seeking a mapping from the node-set

of the graph to point-set in a vector space. In this chapter we will introduce two

methods for graph embedding. Both of them depend on the analysis of the heat

kernel of the graph.

One way is to use the ISOMAP (Tenenbaum et al., 2000) algorithm and

multi-dimensional scaling to locate a low-distortion embedding of the Euclidean

distance. We call this process parametric distance embedding. This is a tech-

nique that allows data specified in terms of relative distances rather than ordinal

values to be embedded in a low-dimensional space in a way that minimizes the
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distortion(or stress) of the distance pattern. To apply this technique to graphs we

require a method of assigning a distance measure to the graph edges. Our dis-

tance function is furnished by an analysis of the heat kernel. When the manifold

on which the nodes of the graph reside is locally Euclidean, then the heat kernel

may be approximated by a Gaussian function of the geodesic distance between

nodes. By equating the spectral and Gaussian forms of the kernel, we can esti-

mate the Euclidean distances between the nodes of the graph under study. The

geodesic distance (i.e the shortest distance on the manifold) is given by the floor

of the path-length distribution, and this may be computed from the Laplacian

spectrum. The manifold may be approximately reconstructed by using multi-

dimensional scaling to locate a low-distortion embedding of the Euclidean dis-

tances.

Another way to embed the node-set of the graph to point-set in a vector space

is to perform Young-Householder decomposition (Young and Householder, 1938)

on the graph heat kernel. Without computing any distances we only use values

contained in the heat kernel as the weights between nodes in the graph. Young-

Householder eigendecomposition is then performed on the matrix to map the

node of the graph to a high dimensional vector. We call this process heat kernel

embedding.

Once embedded in the vector space by using these two methods, we can

perform a number of graph manipulation tasks by applying simple point pattern

analysis algorithms to the mapped node positions, since the node distributions

reflect the geometry information contained in the graph. Here we focus on the

problem of graph clustering. Our approach is to extract feature vectors to charac-

terize the point distributions that result from embedding the nodes of the graphs.

We introduce two ways to characterize the embedded point vectors. The first

method is to use statistical moments. The second method is to use a spectral
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characterization. Then each graph has an associated feature vector that charac-

terizes how its nodes are distributed in the embedded space. Sets of graphs can

be projected into a pattern space by performing principal components analysis

(PCA) on the feature vectors.

We will introduce a third way, the sectional curvature, to characterize the

graphs geometries based on the Euclidean distances deduced from the two em-

bedding methods. The difference between the geodesic and Euclidean distances

can be used to compute the sectional curvatures associated with the edges of the

graph. The sectional curvature can also be used for graph characterization. To

characterize the manifold on which the graph resides, we use the normalized his-

togram of sectional curvatures. By performing principal component analysis on

long vectors representing the histogram bin-contents, we can construct a pattern

space for sets of graphs.

4.2 Parametric Distance Embedding

In this section we introduce the first graph embedding method, which we refer

to as parametric distance embedding. We begin with the Euclidean distance

deduced by equating the spectral and Gaussian forms of the heat kernel. From

the Euclidean distance we can construct a distance matrix for each graph. Isomap

(Tenenbaum et al., 2000) is performed on the distance matrix to embed the nodes

of graphs to points in a vector space.

4.2.1 Euclidean Distance from Heat Kernel

In the previous chapter, we gave the definitions on the adjacency matrix, Lapla-

cian matrix and normalized Laplacian matrix of a graph. We also gave the solu-

tion of the heat kernel on the graph. It is interesting to note that the heat kernel is
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also related to the path length distribution on the graph. To show this, consider

the matrixP = I − L̂, whereI is the identity matrix. The heat kernel can be

rewritten asht = e−t(I−P ). We can perform the MacLaurin expansion on the

heat kernel to re-express it as a polynomial int. The result of this expansion is

ht = e−t(I + tP +
(tP )2

2!
+

(tP )3

3!
+ ...) = e−t

∞∑

k=0

P k tk

k!
(4.1)

For a connected graph, the matrixP has elements

P (u, v) =





0 if u = v

1√
dudv

if u 6= v and (u, v) ∈ E

0 otherwise

(4.2)

As a result, we have that

P k(u, v) =
∑
Sk

k∏
i=1

1√
dui

dui+1

(4.3)

where the walkSk is a sequence of verticesu0, ..., uk of length k such that

(ui, ui+1) ∈ E. Hence,P k(u, v) is the sum of weights of all walks of length

k joining nodesu andv. In terms of this quantity, the elements of the heat kernel

are given by

ht(u, v) = exp[−t]

|V |2∑

k=0

P k(u, v)
tk

k!
(4.4)

We can find a spectral expression for the matrixP k using the eigendecom-

position of the normalized Laplacian. WritingP k = (I − L̂)k it follows that

P k = Φ(I − Λ)kΦT . The element associated with the nodesu andv is

P k(u, v) =

|V |∑
i=1

(1− λi)
kφi(u)φi(v) (4.5)
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The geodesic distance between nodes, i.e. the length of the walk on the

graph with the smallest number of connecting edges, can be found by search-

ing for the smallest value ofk for which P k(u, v) is non zero, i.e.dG(u, v) =

floorkPk(u, v)

Here we are interested in using the heat kernel to compute an approximate

Euclidean distance between nodes. This is the shortest distance between nodes

in the vector space in which the manifold resides. On a Riemannian manifold the

heat kernel can be approximated by the so-called paramatrix (Yau and Schoen,

1988; Grigor’yan, 2003)

ht(u, v) = [4πt]−
n
2 exp[− 1

4t
d2

G(u, v)] (4.6)

wheredG(u, v) is the geodesic distance between the nodesu andv on the mani-

fold, n is the dimensionality of the space. In our experiment, we choosen = 3,

since we have finally embedded the graph in a three dimensional space. We may

equate the heat kernel definition on the manifold and on the graph. Hence, to

approximate the Euclidean distance between the embedded nodes we can equate

the spectral and Gaussian forms for the kernel

ht(u, v) =

|V |∑
i=1

exp(−λit)φi(u)φi(v) = [4πt]−
n
2 exp[− 1

4t
d2

G(u, v)] (4.7)

We can approximate the Euclidean distancedE

d2
E
∼= d2

G = −4t ln{(4πt)
n
2

|V |∑
i=1

exp[−λit]φi(u)φi(v)} (4.8)
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4.2.2 Manifold Embedding of Graphs using the Euclidean Dis-

tance

In the previous section we have shown how to deduce the Euclidean distance

from the heat kernel. This leads us to the spectral form for the distance matrix

d2
E = −4t ln{(4πt)

n
2

|V |∑
i=1

exp(−λit)φi(u)φi(v)} = − ln[(4πt)2ntΦ exp[−4Λt2]ΦT ]

(4.9)

Hence, the distance matrix is just the negative logarithm of a matrix found

by applying a transformation to the eigenvalue spectrum. Such a procedure has

been suggested by Smola and Kondor (Smola and Kondor, 2004) as a means of

regularizing graphs. However, the function suggested above is more complex

than the alternatives explored for regularization.

It is interesting to consider the behavior of the distance function for small and

large values oft. As t tends to zero, thend2
E also tends to zero. For small values

of t we can write

d2
E(u, v) ' −4t

{
n

2
ln 4πt+ln[1−L̂(u, v)t]

}
' 4L̂(u, v)t2−2nt ln 4πt (4.10)

In other words, the distance is proportional tot and governed by the correspond-

ing element of the normalized Laplacian matrix. For larget, and as noted before,

the behavior is dominated by the smallest non-zero eigenvalue of the Laplacian.

If λm is the smallest non-zero eigenvalue ofL̂ andφm is the corresponding eigen-

vector, or Fiedler vector, then

d2
E(u, v) ' −4t

{
n

2
ln 4πt− λmt + ln φm(u)φm(v)

}
(4.11)
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Hence, the larget behavior of the distance function is again proportional tot and

is governed by the eigenvalueλm.

4.2.3 Metric Embedding using ISOMAP

The problem of embedding a finite metric space into a Euclidean space, or other

normed spaces, that approximately preserve the metric is one that has received

considerable attention in recent years (Hjaltason and Samet, 2003). A number of

ways have been proposed for measuring the quality of an embedding procedure.

A review of the methods is presented by Hjaltason and Samet (Hjaltason and

Samet, 2003). Thedistortion has been widely accepted as a measure of the

quality of the embedding. For a finite metric space(X, d) andc ≥ 1, there is

an embeddingϕ of X into Y where for every two pointsx1, x2 ∈ X satisfy the

condition

c1d(x1, x2) ≥ ‖ϕ(x1)− ϕ(x2)‖ ≥ 1

c2

d(x1, x2) (4.12)

Such an embedding is said to be havedistortion≤ c, wherec is the lowest value

for all c1 andc2 (Linial et al., 1995b). Recently low-distortion embedding has

provided powerful tools for designing efficient pattern analysis algorithms. This

is because they enable us to reduce problems defined over difficult metrics to

problems over much simpler ones.

The starting point for most metric embedding methods is Bourgain’s (Bour-

gain, 1985) Lemma:

Any finite metric(X, d) can be embedded intolp2 with p < ∞
with distortionO(log|X|).

We denote<n equipped withlq norm by lnq . The Euclidean norm isl2. The

lq norm is defined as||(x1, ..., xn)||q = (
∑ |xi|q)1/q. The original bound onp
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proved by Bourgain was exponential withn and too large to be of practical use.

We seek to introduce an embedding with a much lower distortion.

We first define a suitable metric for the graphs. For a given graphG = (V, E),

V represents the nodes in the graph andE represents the edge relations between

the nodes. Suppose thatd is a metric on the graphG. The metric must satisfy the

condition that for any three verticesu, v andw ∈ V , if d(u, v) = d(w, v) ≥ 0,

thend(u, u) = 0 andd(u, v) ≤ d(u, w)+d(w, v). There are many ways to define

metric distances on a graph. In this thesis, we use the Euclidean distance deduced

from the heat kernel as a measure of distance between the nodes of the graph.

We construct a distance matrix for the graph. The graph embedding process is

performed on this distance matrix.

Our goal is to find a low-distortion or distortion free embedding from the

graph metric space into a normed space. Here we use Isomap (Tenenbaum et al.,

2000) as a way to solve the low-distortion graph embedding problem. The idea

behind Isomap is to apply classical MDS (Cox and Cox, 1994) to map data points

from their high-dimensional input space to low-dimensional coordinates of a

nonlinear manifold. Although the method was originally devised for dimension-

ality reduction, we can use it here for the low-distortion graph embedding prob-

lem. Viewed as an isometric feature mapping, Isomap is a mappingf : X → Y

from the observation spaceX to a Euclidean feature spaceY that preserves as

closely as possible the intrinsic metric structure of the observations, i.e. the dis-

tances between observations as measured along geodesic(shortest) paths ofX

(Tenenbaum et al., 2000). The distortion in this embedding is nearly1. The idea

underpinning Isomap is to apply the MDS on the shortest distance matrix com-

puted from the input data. The novel contribution here is hence to apply MDS to

the pairwise Euclidean distance matrix deduced from the heat kernel analysis.

For graphs, the embedding procedure is straightforward. We first construct
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the Euclidean distance matrixS for each graph. Each elementdE(u, v) in S is

the Euclidean distance between the pair of nodesu andv of the graph. We embed

each graph in a coordinate space by performing MDS on the matrixS.

4.2.4 Multidimensional Scaling

The pairwise Euclidean distances between nodesdE(u, v) are used as the ele-

ments of an|V | × |V | dissimilarity matrixS, whose elements are defined as

follows

S(u, v) =





dE(u, v) if u 6= v

0 if u = v
(4.13)

The first step of MDS is to calculate a matrixT whose element with rowr and

columnc is given byT (r, c) = −1
2
[dT (r, c)2 − d̂T (r, .)2 − d̂T (., c)2 + d̂T (., .)2],

where d̂T (r, .) = 1
|V |

∑|V |
c=1 dT (r, c) is the average dissimilarity value over the

rth row, d̂T (., c) is the dissimilarly defined average value over thecth column

andd̂T (., .) = 1
|V |2

∑|V |
r=1

∑|V |
c=1 dT (r, c) is the average dissimilarity value over all

rows and columns of the dissimilarity matrixT .

We subject the matrixT to an eigenvector analysis to obtain a matrix of

embedding co-ordinatesY . If the rank ofT is k, k ≤ |V |, then we will havek

non-zero eigenvalues. We arrange thesek non-zero eigenvalues in descending

order, i.e.l1 ≥ l2 ≥ · · · ≥ lk > 0. The corresponding ordered eigenvectors are

denoted by~ui whereli is theith eigenvalue. The embedding co-ordinate system

for the graphs obtained from different views isY = [~f1, ~f2, . . . , ~fs], where~fi =
√

li~ui are the scaled eigenvectors. For the graph node indexedi, the embedded

vector of co-ordinates is~yi = (Yi,1, Yi,2, ..., Yi,s)
T .
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4.3 Heat Kernel Embedding

In this section we will introduce the second graph embedding method, which is

heat kernel embedding. We use the heat kernel to map nodes of the graph to

points in the vector space. In other words, we perform Young-Householder de-

composition on the graph heat kernel. We provide an analysis which shows how

the eigenvalues and eigenvectors of the covariance matrix for the point distribu-

tion resulting from the kernel mapping can be used for graph characterization.

4.3.1 Co-ordinate Embedding

To commence, suppose that the graph under study is denoted byG = (V,E)

whereV is the set of edges andE ∈ V × V is the set of nodes. From the

adjacency matrixA of the graph we can compute the corresponding Laplacian

matrix L and normalized Laplacian matrix̂L. As we have noted above the heat

kernel on the graph isht = Φ exp[−Λt]ΦT , whereΛ andΦ are the eigenvalue

and eigenvector matrices of the normalized LaplacianL̂.

We use the heat kernel to map the nodes of the graph into a vector space.

Let Y be the|V | × |V | matrix with the vectors of co-ordinates as columns. The

vector of co-ordinates for the node indexu is hence theuth column ofY . The co-

ordinate matrix is found by performing the Young-Householder decomposition

ht = Y T Y on the heat-kernel. Sinceht = Φ exp[−Λt]ΦT , Y = exp[−1
2
Λt]ΦT .

Hence, the co-ordinate vector for the node indexedu is

yu = (exp[−1

2
λ1t]φ1(u), exp[−1

2
λ2t]φ2(u), ..., exp[−1

2
λ|V |t]φ|V |(|V |))T

(4.14)

The kernel mappingM : V → R|V|, embeds each node on the graph in a

vector spaceR|V|. The heat kernelht = Y T Y can also be viewed as a Gram
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matrix, i.e. its elements are scalar products of the embedding co-ordinates. Con-

sequently, the kernel mapping of the nodes of the graph is an isometry. The

squared Euclidean distance between nodesu andv is given by

dE(u, v)2 = (yu − yv)
T (yu − yv) =

|V |∑
i=1

exp[−λit](φi(u)− φi(v))2 (4.15)

The mean co-ordinate vector for the heat kernel embedding is

ŷ =
1

|V | exp[−1

2
Λt]ΦT e (4.16)

wheree = (1, 1, ..., 1)T is the all ones vector of length|V |. The matrix of centred

co-ordinates is

YC = exp[−1

2
Λt]ΦT (I − 1

|V |ee
T ) = exp[−1

2
Λt]ΦT MT (4.17)

whereMT = (I − 1
|V |ee

T ). The covariance matrix is

∑
= exp[−1

2
Λt]ΦT MT MΦ exp[−1

2
Λt] (4.18)

4.4 Characterizing the Embedded Point Distribu-

tion

Once the nodes of a graph have been embedded, we can attempt to characterize

the structure of the graph by summarizing the distribution of points associated

with the nodes. Here we explore the three different ways, the statistical moments,

the graph spectral characterization and the sectional curvature, associated with

the edge of the graphs.
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4.4.1 Statistical Moments

We use spatial moments to characterize the embedded point sets. Moment in-

variants are properties of connected regions in binary images that are invariant

to translation, rotation and scale. They are useful because they define a simply

calculated set of region properties that can be used for shape classification and

part recognition. ForN × 2 size point-setsX the general moment is defined to

be

µpq =

|N |∑
i=1

|N |∑
j=1

(Xi,1 − X̂1)
p(Xj,2 − X̂2)

q (4.19)

whereX̂k = 1
|N |

∑|N |
i=1 Xi,k, andX̂1 andX̂2 are the co-ordinates of the region’s

center of gravity. From the raw momentµpq, we compute the four affine invari-

ants suggested by Flusser and Suk (Flusser and Suk, 1993):

I1 =
µ20µ02 − µ2

11

µ4
00

(4.20)

I2 =
µ2

30µ
2
03 − 6µ30µ21µ12µ03 + 4µ30µ

3
12 + 4µ3

21µ03 − 3µ2
21µ

2
12

µ10
00

(4.21)

I3 =
µ20(µ21µ03 − µ2

12)− µ11(µ30µ03 − µ21µ12) + µ02(µ30µ12 − µ2
21)

µ7
00

(4.22)
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I4 = (µ3
20µ

2
03 − 6µ2

20µ11µ12µ03 − 6µ2
20µ02µ21µ03 + 9µ2

20µ02µ
2
12 (4.23)

+12µ20µ
2
11µ21µ03 + 6µ20µ11µ02µ30µ03 − 18µ20µ11µ02µ21µ12

−8µ3
11µ30µ03 − 6µ20µ

2
02µ30µ12 + 9µ20µ

2
02µ

2
21

+12µ2
11µ02µ30µ12 − 6µ11µ

2
02µ30µ21 + µ3

02µ
2
30)/µ

11
00

The invariantsI1, I2, I3, I4 are composed only from central moments up to the

third order. Zero order momentµ00 is the area of objectG. Second order mo-

ments express the distribution of ”matter” around the center of gravity. Third

order moments express the basic properties of symmetry of objectG (Flusser

and Suk, 1993).

Thus to compute the statistical moments characterization, we use the two

leading elements in the embedded vector for each graph node as the point coor-

dinate to represent the node. Then for the graph node indexedi, the embedded

vector of coordinate is chosen as~xi = (Xi,1, Xi,2)
T . The graph is embedded to

a point set of size|V | × 2, where|V | is the number of nodes. We first com-

pute the general momentµpq then from these general moments we compute the

four moment invariants as shown above. The four moment invariants are used to

compute the graph feature vector~B = (I1, I2, I3, I4)
T .

4.4.2 Spectral Characterization

One very simple way to characterize the embedded point-set is to study the prop-

erties of the covariance matrix of the point-set generated by the embedding meth-

ods. To construct the covariance matrix, we commence by computing the mean

coordinate vector. The components of the mean co-ordinate vector are found by

averaging the elements in the rows ofY . The mean co-ordinate vector is given
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by

ŷ =
1

|V |Y e (4.24)

wheree = (1, 1, ..., 1)T is the all ones vector of length|V |. Subtracting the mean

from the embedded co-ordinates, the matrix of centred co-ordinates is

YC = Y − 1

|V |Y eeT (4.25)

whereMT = (I − 1
|V |ee

T ) is the data centering matrix. The covariance matrix is

∑
= YCY T

C (4.26)

The spectral decomposition of the covariance matrix is
∑

=
∑n

i=1 li~ui~u
T
i , where

li is theith eigenvalue and~ui is the corresponding eigenvector of the covariance

matrix. Our spectral characterization of the graph is based on the vector ofN

leading covariance eigenvalues~B = (l1, ...., lN)T . We can perform pattern anal-

ysis on sets of graphs by applying clustering or dimensionality reduction tech-

niques such as principal component analysis (PCA) to the~B vectors.

4.4.3 Sectional Curvature

In the previous sections we have introduced the Euclidean distance and geodesic

distance deduced from the two embedding methods. From the Euclidean dis-

tance and geodesic distance we can compute the sectional curvature on the edges

of the graph. In this section we will explore an attractive way of characterizing

graphs, using sectional curvature associated with the edge for the purposes of

characterizing and clustering graphs. To do this, we can make numerical estima-

tion of the sectional curvature for the edges connected between pairs of nodes.
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The sectional curvature is determined by the degree to which the geodesic bends

away from the Euclidean chord. Hence for a geodesic on the manifold, the sec-

tional curvature can be estimated easily if the Euclidean and geodesic distances

are known. Suppose that the geodesic can be locally approximated by a circle.

Let the geodesic distance between the pair of pointsu andv bedG(u, v) and the

corresponding Euclidean distance bedE(u, v). Further let the radius of curvature

of the approximating circle bers(u, v) and suppose that the tangent vector to the

manifold undergoes a change in direction ofθu,v as we move along a connecting

circle between the two points. We show an illustration of the above in Figure

4.1. In terms of the angleθu,v, the geodesic distance, i.e. the distance traversed

Figure 4.1: Illustration of relationship between the geodesic distance, Euclidean
distances and the sectional curvature.
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along the circular arc, isdG(u, v) = rs(u, v)θu,v, and as a result we find that

θu,v = dG(u, v)/rs(u, v). The Euclidean distance, on the other hand, is given

by dE(u, v) = rs(u, v) sin θu,v, and can be approximated using the MacLaurin

series

dE(u, v) = rs(u, v){θu,v − 1

6
θ3

u,v + ...} (4.27)

Substituting forθu,v obtained from the geodesic distance, we have

dE(u, v) = dG(u, v)− dG(u, v)3

6r2
s(u, v)

(4.28)

Solving the above equation for the radius of curvature, the sectional curvature of

the geodesic connecting the nodesu andv is approximately

ks(u, v) =
1

rs(u, v)
=

√
6(dG(u, v)− dE(u, v))

1
2

dG(u, v)
3
2

(4.29)

Since for an edge of the graph, we find thatdG(u, v) = 1, the squared sec-

tional curvature associated with an embedded edge isk2
s(u, v) = 6(1−dE(u, v)).

As a result we can construct the squared sectional curvature matrix.

k2
s = 6{A + ln[(4πt)2ntΦ exp[−4Λt2]ΦT ]} (4.30)

To characterize the geometry of the graph embedding we construct a his-

togram of sectional curvatures. The sectional curvatures are assigned toM

bins and the normalized contents of thejth bin is denoted byh(j). The fea-

ture vector for the graph is constructed from the normalized bin-contents and

B = (h(1), h(2), .....h(N))T . Our aim is to explore the structure of a set of

graphs with pattern vectorsBk, k = 1, ..., M extracted using sectional curvature

histograms.
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4.5 Experiments

In this section of the chapter, we provide some experimental evaluation of the

graph embedding methods for graph clustering. We will compare the parametric

distance embedding and the heat kernel embedding. We will use both the mo-

ments method and the spectral method to characterize the embedded point-sets

from the two embedding methods. We will also demonstrate that the sectional

curvature deduced from the Euclidean distance and the geodesic distance from

the graph heat kernel can be used as a method of characterizing graphs.

4.5.1 Experiments on Parametric Distance Embedding

In this subsection we show results from the parametric distance embedding. We

applied our method to images from the COIL database for image clustering. Fig-

ure 3.4 shows some example images. In this experiment, we first use two ways

to characterize the embedded point-sets from the graphs. The first of these is

the moments characterization and the second is the spectral characterization of

the covariance matrix of the embedded point-sets. We commence by investigat-

ing the behavior of the moments extracted from the embedded points. By doing

so we need to keep the embedded coordinate sets to be|V | × 2 size point-sets,

where|V | is the graph node number. For each nodeu we represent the embed-

ded coordinate vector, i.e. as~xi = (Xi,1, Xi,2)
T , the first two elements from the

coordinate vector for the corresponding node. We then continue by construct-

ing the feature vector(I1, I2, I3, I4) and apply the PCA on the feature vectors.

In Figure 4.2 we plot the four moments as a function of the time parametert.

For this experiment, we have used the duck graph in the top left in Figure 3.4

for our experiment graph. The main effect to note here is that as the time pa-

rameter increases then the four moments become indistinguishable. In Figure
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4.3 we plot the four moments separately as a function of the view number for

the images of the eight objects studied in the COIL database. From the top-left,

and clockwise, the sequence shows the first, second, third and fourth moments

respectively. The individual moments appear relatively stable with view number

whent equals0.01. It is clear that although the individual moments could not be

used to distinguish the objects, when combined they are sufficient to do so.

1 2 3 4 5 6 7 8
2.5

3

3.5

4

4.5

Time
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e
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e

Moment One
Moment Two
Moment Three
Moment Four

Figure 4.2: Moments as a function oft for a graph from the COIL database for
the parametric distance embedding.

Based on the study of the moments, it appears that they may provide the ba-

sis for a stable clustering of the graphs. We have therefore performed principal

component analysis on vectors whose components are the different moments.
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Figure 4.3: Individual moment(moment one, moment two, moment three and
moment four) for the eight objects from COIL database as a function of view
number.
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The data has been projected onto the space spanned by the leading three eigen-

vectors for the moment vectors. We then investigate the effect of varying the

time parametert. In Figure 4.4 we show the effect on the graph embeddings

when we varyt from 0.01 to 1000. From left-to-right and top-to-bottom, we

show the clustering results obtained whent equals0.01,0.1, 1, 10, 100 and1000.

In the figures the different views of the same object are displayed as differently

colored symbols. In Figures 4.6 we show corresponding plots for the pairwise

distances for the embedded graph nodes. In Figures 4.5 we show the spectral

characterization for the embedded point-sets by choosing~B = (l1, l2, ..., l6)
T ,

which are eigenvalues of the covariance matrix of the embedded point-set. We

repeat the clustering results obtained whent equals0.01, 0.1, 1, 10, 100 and

1000 and Figure 4.7 are the corresponding plots for the pairwise distances fig-

ures. The main feature to note from these plots is that by choosing the propert

values, the method can be used for the purposes of graph clustering. As the value

of t increases, then so the clusters corresponding to the different objects become

overlapped.

We will continue to show how to use the sectional curvature with the para-

metric distance embedding to cluster images from the COIL database 3.4. In

Figure 4.8 we show example histograms for the twenty views for the eight ob-

jects in the COIL database. Here the histograms are stacked behind each other,

and are ordered by increasing view number. There are a number of conclusions

that can be drawn from the histograms. First, the histograms for the same object

are relatively stable with view number. Second, the histograms for the different

objects have different shapes. The plots shown were obtained witht = 0.01. The

results of applying PCA to the vectors of histogram bin contents are shown in
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Figure 4.4: Parametric distance embedding varying witht – moments charac-
terization (from left to right, top to bottom, the results obtained whent equals
0.01, 0.1, 1, 10, 100 and1000 respectively).

78



−4

−2

0

2

4

−0.4

−0.2

0

0.2

0.4

−0.5

0

0.5

 

First eigenvector

Second eigenvector
 

T
h

ir
d

 e
ig

e
n

v
e

c
to

r
object1
object2
object3
object4
object5
object6
object7
object8

−2

−1

0

1

2

3

−0.4

−0.2

0

0.2

0.4

−0.5

0

0.5

 

First eigenvectorSecond eigenvector 

T
h

ir
d

 e
ig

e
n

v
e

c
to

r

object1
object2
object3
object4
object5
object6
object7
object8

−2

−1

0

1

2

3

−0.4

−0.2

0

0.2

0.4
−0.5

0

0.5

 

First eigenvectorSecond eigenvector 

T
h

ir
d

 e
ig

e
n

v
e

c
to

r

object1
object2
object3
object4
object5
object6
object7
object8

−2

−1

0

1

2

−0.4
−0.3

−0.2
−0.1

0
0.1

0.2
0.3

−0.5

0

0.5

 

First eigenvectorSecond eigenvector 

T
h

ir
d

 e
ig

e
n

v
e

c
to

r

object1
object2
object3
object4
object5
object6
object7
object8

−1

−0.5

0

0.5

1

1.5

−0.4

−0.2

0

0.2

0.4
−0.2

0

0.2

 

First eigenvectorSecond eigenvector 

T
h

ir
d

 e
ig

e
n

v
e

c
to

r

object1
object2
object3
object4
object5
object6
object7
object8

−1

−0.5

0

0.5

1

1.5

−0.2

−0.1

0

0.1

0.2

0.3
−0.2

0

0.2

 

First eigenvector
Second eigenvector 

T
h

ir
d

 e
ig

e
n

v
e

c
to

r

object1
object2
object3
object4
object5
object6
object7
object8

Figure 4.5: Parametric distance embedding varying witht – spectral charac-
terization (from left to right, top to bottom, the results obtained whent equals
0.01, 0.1, 1, 10, 100 and1000 respectively).
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Figure 4.6: Parametric distance embedding with moments characterization dis-
tance matrices varying witht (from left to right, top to bottom, the results ob-
tained whent equals0.01, 0.1, 1, 10, 100 and1000 respectively).
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Figure 4.7: Parametric distance embedding with spectral characterization dis-
tance matrices varying witht (from left to right, top to bottom, the results ob-
tained whent equals0.01, 0.1, 1, 10, 100 and1000 respectively).
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the right hand panel of Figure 4.9 for different values oft. We obtain reasonably

well defined clusters of objects.

For comparison, Figure 4.10 shows the corresponding result when spectral

clustering is used. The main qualitative feature is that the different views of the

eight objects overlap more than when the parametric distance embedding method

is used with a low value oft.

To investigate the behavior of the two methods in a more quantitative way,

we have plotted the Rand index (Rand, 1971) for the different objects. The solid

curve in Figure 4.11 shows the Rand index as a function oft. The performance of

the method drops off oncet exceeds10. The performance of the spectral method

is significantly poorer, which is0.78, than that for the heat kernel method for

small values oft.

4.5.2 Experiment on Heat Kernel Embedding based Graph

Clustering

In this section we will apply our heat kernel embedding method to images from

the COIL database. We use the moments method described above to character-

ize the heat kernel embedding. The embedded coordinate vector for each node

of the graph has two components. As a result the nodeu has coordinate vec-

tor ~xu = (exp[−1
2
λ1t]φ1(u), exp[−1

2
λ2]φ2(u))T , which is from the leading two

columns of the coordinate matrixY . In Figure 4.12 we repeat the experiment

for the four moments as a function of the time parametert for the heat kernel

embedding. For this experiment, we use the same graph as we have used for

the parametric distance embedding experiment in Figure 4.2. The main effect to

note here is that for small values oft the moments can provide a useful graph

characterization. In Figure 4.13, we show the moments characterization for the

embedded coordinates. We repeat the clustering results obtained in Figure 4.13
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Figure 4.8: 3-D view of the histogram of the sectional curvature matrices–
parametric distance embedding.
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Figure 4.9: Parametric distance embedding with sectional curvature clustering
by varyingt (from left to right, top to bottom, the results obtained whent equals
0.01, 0.1, 1, 10, 100 and1000 respectively).
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Figure 4.10: Spectral clustering result.
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Figure 4.11: Rand index for parametric distance embedding methods.
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whent equals0.5,1, 5, 10, 100 and1000. The different colors in the plot distin-

guish the different objects. The object clusters evolve in an interesting way ast

increases. Initially, they are very compact but elongated, and distinct. At large

values oft they are more dispersed and overlapping.

We can also construct the feature vector by taking the eigenvalues of the

covariance matrix of the embedded point-set. Then we perform PCA on the

feature vectors. In Figure 4.14 we show the clustering result where the parameter

t varies from0.5 to 1000. In Figures 4.16 and 4.15 we show the corresponding

plots for the pairwise distances for the embedded graph nodes with heat kernel

eigenvalues and the moments characterization respectively. We continue to show

the clustering result by using sectional curvature with heat kernel embedding for

graph clustering. In Figure 4.17, we repeat the histograms from twenty views for

the eight objects in the COIL database. Figure 4.18 shows the result of applying

PCA to the vectors of histogram bin contents.

Compared with the traditional spectral clustering method in Figure 4.10, the

heat kernel embedding method gives a better result when proper values oft are

chosen. We have plotted the Rand index for the different characterization heat

kernel embedding. The results of the comparison are shown in Figure 4.19. The

curve in the plot shows the Rand index as a function oft. For low values oft the

performance is more than 95%. When the spectrum of the normalized Laplacian

eigenvalues is used then the Rand index is 0.78, which is considerably lower than

the result obtained with the heat kernel embedding method.
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Figure 4.12: Moments as a function of thet parameter for a graph from the COIL
database for the heat kernel embedding.
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Figure 4.13: Heat kernel embedding varying witht – moments characteri-
zation (from left to right, top to bottom, the results obtained whent equals
0.5, 1, 5, 10, 100 and1000 respectively).

89



−0.01

0

0.01

0.02

−0.01

−0.005

0

0.005

0.01

−5

0

5

x 10
−3

 

First eigenvector
Second eigenvector 

T
h

ir
d

 e
ig

e
n

v
e

c
to

r
object1
object2
object3
object4
object5
object6
object7
object8

−4

−2

0

2

4

6

x 10
−3

−2

−1

0

1

2

x 10
−3

−1

0

1

x 10
−3

 

First eigenvector
Second eigenvector 

T
h

ir
d

 e
ig

e
n

v
e

c
to

r

object1
object2
object3
object4
object5
object6
object7
object8

−1

−0.5

0

0.5

1

1.5

2

x 10
−3

−5

0

5

x 10
−4

−2

0

2

x 10
−4

 

First eigenvector
Second eigenvector 

T
h

ir
d

 e
ig

e
n

v
e

c
to

r

object1
object2
object3
object4
object5
object6
object7
object8

−2

0

2

4

6

x 10
−4

−1.5
−1

−0.5
0

0.5
1

x 10
−4

−2

0

2

x 10
−4

 

First eigenvector
Second eigenvector 

T
h

ir
d

 e
ig

e
n

v
e

c
to

r

object1
object2
object3
object4
object5
object6
object7
object8

−5

0

5

10

15

x 10
−5

−4

−2

0

2

4

x 10
−5

−2

0

2

x 10
−5

 

First eigenvectorSecond eigenvector 

T
h

ir
d

 e
ig

e
n

v
e

c
to

r

object1
object2
object3
object4
object5
object6
object7
object8

−2

−1

0

1

2

3

4

x 10
−5

−1

−0.5

0

0.5

1

x 10
−5

−5

0

5

x 10
−6

 

First eigenvectorSecond eigenvector 

T
h

ir
d

 e
ig

e
n

v
e

c
to

r

object1
object2
object3
object4
object5
object6
object7
object8

Figure 4.14: Heat kernel embedding varying witht parameter – spectral charac-
terization (from left to right, top to bottom, the results obtained whent equals
0.5, 1, 5, 10, 100 and1000 respectively).
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Figure 4.15: Heat kernel embedding with moments characterization distance ma-
trices varying witht parameter (from left to right, top to bottom, the results ob-
tained whent equals0.5, 1, 5, 10, 100 and1000 respectively).
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Figure 4.16: Heat kernel embedding with spectral characterization distance ma-
trices varying witht (from left to right, top to bottom, the results obtained when
t equals0.5, 1, 5, 10, 100 and1000 respectively).
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Figure 4.17: 3-D view of the histogram of the sectional curvature matrices – heat
kernel embedding.
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Figure 4.18: Heat kernel embedding with sectional curvature characterization by
varying t (from left to right, top to bottom, the results obtained whent equals
0.5, 1, 5, 10, 100 and1000 respectively).
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Figure 4.19: Rand index for different characterizations of the heat kernel embed-
ding.
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4.6 Conclusion

In this chapter we have introduced two ways for graph embedding and related

algorithms for graph characterization using the embeddings. In the first section

we have explored how the use of heat kernels can lead to a measure of Euclidean

distance that can be used for the purpose of embedding graphs in low dimen-

sional Euclidean spaces. The distance measure is found by equating the spectral

and Gaussian forms of the heat kernel. We show how MDS can be used for

embedding the distance by satisfying low distortion requirements.

In the second section we have shown a second method for graph embedding,

which we refer to as the heat kernel embedding. We have explored how the

use of the heat kernel can lead to a useful characterization of the structure of a

graph. Our method is based on preforming Young-Householder decomposition

on the heat kernel. This allows graph nodes to be mapped to points in a high

dimensional space.

After the graph embedding process, we can pose the problem of clustering as

that of characterizing the embedded point-set distribution. We have introduced

three ways for the point-sets characterization. These are moments character-

ization, spectral characterization and sectional curvature characterization. For

the last of these methods the sectional curvature associated with the edge of the

graph is computed by using the difference between the Euclidean and geodesic

distances deduced from the heat kernel analysis.

In the experimental section, results are provided for the two heat kernel

based graph embedding methods and the three different characterization meth-

ods for graph clustering. The database used in this section is the COIL database.

From the experiment results, both the parametric distance and heat kernel em-

bedding can provide relatively good results for graph clustering. By choosing

propert values the Rand index value for graph clustering by using graph embed-
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ding methods can reach0.95, which is much higher than the traditional spectral

method. In both embedding methods the Rand index value for spectral charac-

terization is higher than the moments characterization. This is due to the fact

that the moments characterization only takes the two leading elements in the

embedded vector for each graph node.
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Chapter 5

Generative Model for Graph

Structure

5.1 Introduction

In this chapter we extend the heat kernel embedding method by using a point dis-

tribution model to construct a generative model for variance in graph structure.

The outline for this chapter is as follows.

In the first part we will investigate whether methods from spectral graph the-

ory can be combined with the heat kernel embedding to develop effective tools

for graph structure matching. In the previous chapter we showed that the heat

kernel embedding can be used for graph clustering. The embedded point posi-

tion vectors for the nodes of a graph contain geometry information that can be

used for graph characterization. Our first aim is to explore whether the spectral

point pattern matching techniques can be used to find correspondence between

embedded nodes. We proceed as follows. For the two graphs to be matched, we

construct the heat kernel matrix. Then we perform heat kernel embedding on the

heat kernel matrices. We map two graphs to two vector sets. Once embedded
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in the vector space, nodes of the graphs are matched by using point alignment

methods. To do this we develop a variant of the Scott and Longuett-Higgins

(Scott and Longuett-Higgins, 1991) algorithm. Our method overcomes the prob-

lems of structural differences in the graphs. Our experimental part compares the

method with some alternatives described in the literature (Umeyama, 1988; Scott

and Longuett-Higgins, 1990; Shapiro and Brady, 1992).

Once we have solved the matching correspondence problem, we draw on

ideas from linear deformable models to construct a simple and explicit genera-

tive model for graph structure. One of the problems that limits the use of the

structural clustering methods (Lozano and Escolano, 2003; Bunke et al., 2003;

Bunke, 1999; Bunke and Vento, 1999) is that they suffer from exponential com-

plexity and are therefore not easily sampled from. To overcome the problem of

exponential complexity we turn to the shape analysis literature, where principal

components analysis has proved to be a powerful way of capturing the variations

in sets of landmark points for 2D and 3D objects (Cootes et al., 1995).

Our second contribution is to use the heat kernel embedding to construct a

generative model for graph structure. Using the heat kernel embedding described

in section 4.3, we map the nodes of a graph to point position vectors. Our aim is

to construct a statistical model that can account for the distribution of embedded

point positions for corresponding nodes in a sample of graphs. A reference graph

is selected, and the correspondences between the nodes of each sample graph

and the reference graph are established using the spectral alignment method. We

capture variations in graph structure using the covariance matrix of the corre-

sponding embedded point positions. We construct a point distribution model for

the embedded node positions using the eigenvalues and eigenvectors of the co-

variance matrix. We show how to use this model to project individual graphs into

the eigenspace of the point position covariance matrix and how to fit the model
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to potentially noisy graphs to reconstruct the Laplacian matrix. We illustrate the

utility of the resulting method for shape analysis. Here we perform experiments

on the Caltech-Oxford and COIL databases, and illustrate how the model can be

used both to construct pattern spaces for sets of graphs and to cluster graphs.

5.2 Graph Matching using Manifold Embedding

In the previous chapter we described heat kernel embedding, which can be used

to embed the nodes of a graph into a high dimensional vector space. In this

section we will show how the heat kernel embedding method combined with

the spectral point-set alignment can be used for structure based graph matching.

For two graphsGI andGJ , we construct the heat kernel matriceshI andhJ

separately based on the definition:

ht(u, v) =

|V |∑
i=1

exp[−λit]φi(u)φi(v) (5.1)

We then perform the Young-Householder decomposition on the two kernel ma-

trices, i.e. hI = Y T
I YI andhJ = Y T

J YJ , to give two embedded co-ordinate

matricesYI andYJ with the vectors of co-ordinates as columns. We present a

spectral method to align the two co-ordinates matricesYI andYJ for the purpose

of structure matching.

5.2.1 Singular Value Decomposition for Point-sets Alignment

After we have theYI andYJ from the embedding process, we follow a method

similar to that of Scott and Longuett-Higgins for point set matching. We first

transform the vectors in the co-ordinates matrices to the same size. Suppose that

YI andYJ arem × m andn × n size respectively, we choose themax(m,n)
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which is the max number inm andn as the extended vector length. For the co-

ordinate matrix whose vector length is smaller thanmax(m,n) we just extend

the length of the vector by adding the0 elements to the end. The algorithm uses

the distances between two graph nodes to compute an affinity matrix. Letyi
I

be theith column vector of the co-ordinate matrixYI , i.e. the co-ordinates of

the nodei ∈ VI . For the nodei of the sample graphGI and the nodej of the

reference graphGJ the affinity matrix element is

RI,J(i, j) = exp[− 1

σ2
(yi

I − yj
J)T (yi

I − yj
J)]

whereσ is a scaling parameter. In the paper (Scott and Longuett-Higgins, 1990),

they treatσ as an appropriate unit of distance and set to be10, so here we choose

σ equal to10.

If RI,J is a positive definite|VI | × |VJ | matrix, then the|VI | × |VJ | orthog-

onal matrixR∗
I,J that maximizes the quantityTr[RI,J(R∗

I,J)T ] may be found by

performing singular value decomposition. To do this we perform the matrix fac-

torizationRI,J = V ∆UT , whereV is a |VI | × |VI | orthogonal matrix,U is a

|VJ | × |VJ | orthogonal matrix and∆ is a |VI | × |VJ | matrix whose off-diagonal

elements∆i,j = 0 if i 6= j and whose “diagonal” elements∆i,i are non-zero.

Suppose thatE is the matrix obtained from∆ by making the diagonal elements

∆i,i unity. The matrixR∗
I,J which maximizesTr[RI,J(R∗

I,J)T ] isR∗
I,J = V EUT .

The elementR∗
I,J(i, j) indicates the strength of association between the node

i ∈ VI in the graphGI and the nodej ∈ VJ in the reference graph. The rows

of R∗
I,J , index the nodes in the graphGI , and the columns index the nodes of

the reference graphGJ . If R∗
I,J(i, j) is both the largest element in rowi and the

largest element in columnj then we regard these nodes as being in one to one

correspondence with one another. We record the state of correspondence using

the matrixCI,J . If the pair of nodes(i, j) satisfies the row and column corre-
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spondence condition, then we setCI,J(i, j) = 1, otherwiseCI,J(i, j) = 0 The

CI,J(i, j) = 0 is am× n size matrix.

5.3 A Generative Model for Graph Structure

We perform heat kernel embedding on the graph heat kernel to map the graph

nodes in a high dimensional space. In this section we continue to construct

a linear deformable model to characterize the graph structure. This is done by

constructing the mean and covariance matrix for the corresponding mapped point

positions. In the experiment part we will show the results on tracking and clus-

tering by using the linear deformable model.

5.3.1 Generative Model

Our aim is to construct a generative model that can be used to represent the sta-

tistical variations in a sample of graphs. Let the sample beT = {G1, G2, ..., GT}
where thekth graphGk = (Vk, Ek) has node setVk and edge setEk. The result

of performing heat kernel embedding of the nodes of thekth graph is a matrix of

co-ordinatesYk.

Our aim is to construct a generative model that can be used to describe the

distribution of embedded node co-ordinates for the sample of graphs. Since the

graphs contain different numbers of nodes, we may extend the mapped vector

to the same size by adding0 to the end of the smaller size vector as we have

described in the previous section.

To construct the generative model, we require correspondences between the

nodes of each sample graph and the nodes of a reference structure. Here we take

the reference graph to be the graph in the samples with the largest number of

nodes. If there are more than one graph which have the largest number of nodes
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in the graph set, we can simply randomly choose one as the reference graph. This

graph has indexk∗ = arg maxGk∈T |Vk|. To locate the correspondences between

the nodes of each sample graphGk and those of the reference graphG∗
k, we use

the matching algorithm we described above. We first transform the vectors in

the co-ordinates matrices to the same size. Then we perform the SVD point-set

spectral alignment algorithm to locate the correspondence matrixCk,k∗.

Embedded Point Distribution Model

Once we have correspondences to hand, we then can construct the generative

model for the set of graphs. We first to align the graph co-ordinates matrices

to the same size. For graphGk which has an × n size co-ordinates matrix

Yk, we first extend the co-ordinates size tom by adding zeros at the end of the

co-ordinates matrix as we have done at the matching step5.2. Then we have

a extended co-ordinates matrixY e
k which is m × n size. The second step is

to compute a aligned co-ordinate matrixỸk = Y e
k Ck,k∗, where the aligned co-

ordinates matrix̃Yk is m×m size. We then can convert the co-ordinates matrix

to form a long vector. We do this by staking the columns of the co-ordinates

matrix to form a long vector. The long vector is represented as

Ŷk = (Ỹk(1, 1), Ỹk(1, 2), ..., Ỹk(m,m))T

We model variations in the positions of the stacked vectors using a point distri-

bution model. The process is similiar to the Pricipal Component Analysis(PCA)

procedure 3.3.6. We commence by computing the mean vector positions. The

matrix of mean position co-ordinates is given by

X̂ =
1

T

∑

k∈T

Ŷk
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, whereX̂ is am×m length long vector, and the covariance matrix for the point

positions is

Σ =
1

T

∑

k∈T

(Ŷk − X̂)(Ŷk − X̂)T

To construct the point distribution model, we perform the eigendecomposition

Σ = ΨΓΨT

whereΓ = diag(γ1, γ2, ...., γK) is the diagonal matrix of ordered eigenvectors

andΨ = (ψ1|.....|ψK) is the matrix with the correspondingly ordered eigenvec-

tors as columns.

We deform the mean embedded vector positions in the directions of the lead-

ing eigenvectors of the point position covariance matrixΣ. Let Ψ̃ be the result of

truncating the matrixΨ afterS columns and letb be a parameter vector of length

S. The deformed point-set position is given by

X̃ = X̂ + Ψ̃b

An observed configuration of graphGw with embedded co-ordinates matrix

Yw may be fitted to the model. To do this we first align the co-ordinates matrixYw

to getỸm with the model graph co-ordinates matrix. Then we stack the aligned

co-ordinates matrix to a long vector̂Yw. The best fit parameters are estimated

using the least squares procedure

b∗ = arg min
b

(Ŷw − X̂ − Ψ̃b)T (Ŷw − X̂ − Ψ̃b)

The best-fit parameter vector is solved by

b∗ = Ψ̃T (Ŷw − X̂)
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and the reconstructed set of embedded point positions is

Ŷ ∗
w = X̂ + Ψ̃Ψ̃T (Ŷw − X̂)

From the reconstructed point positions we can recover the Laplacian matrix

for the corresponding graph. We first packŶ ∗
w back tom ×m size co-ordinate

matrix Ỹ ∗
w . Then the extended co-ordinates matrix can be achieved byY ∗e

w =

Ỹ ∗
wCT

w,k∗ . We can then get the origin co-ordinates matrixY ∗
w by truncating the

end rows of the matrixY ∗e
w . The heat kernel for the reconstructed embedded

graph is

h∗t = (Y ∗
w)T Y ∗

w = exp[−L̂∗t]

and the Laplacian is hence

L̂∗ = −1

t
ln

{
(Y ∗

w)T (Y ∗
w)

}

From the reconstructed Laplacian we can compute the corresponding adjacency

matrix

A∗ = D −D
1
2 L̂∗D

1
2 (5.2)

5.3.2 Graph Similarity

With the generative model to hand, we can use it to measure graph similarity.

We adopt two different approaches to the problem. The first involves computing

the Mahalonobis distance between embedded vector positions. The second is

based on the Euclidean distance between the fitted parameters of the linear point

distribution model.
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Mahalanobis Distance

The generative model can be used to match and assess the similarity of graphs.

The aim here is to construct a model that can capture the local variance of the

embedded vector positions that are in correspondence with a given reference

graph node. For the node indexedj ∈ Vk∗ of the reference graph the mean

position vector of the corresponding nodes is

xj =
1

|T |
∑

k∈T

Ỹk
j

(5.3)

and the matrix of mean point positions is

X = (x1|x2|....|x|Vk∗ |)

The covariance matrix for the positions of nodes of the embedded graphs that are

in correspondence with the reference graph nodej is

Σj =
1

|T |
∑

k∈T

(Ỹk
j − xj)T (Ỹk

j − xj) (5.4)

The Mahalanobis distance between the aligned embedded position of the node

i ∈ Vk from graphGk, which is in correspondence with the nodej ∈ Vk∗ from

the reference graph is

d2
M(j) = (Ỹk

j − xj)T Σ−1
j (Ỹk

j − xj)

The distance between two graphsGk andGk∗ can be defined as

d2
M(Gk, Gk∗) =

∑
j∈Vk∗

d2
M(j)
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Graph Similarity in the Eigenspace

The similarity of a pair of graphs can also be measured using the difference in

their best-fit parameter vector. Since the parameter vector is just the projection of

the corresponding graph into the eigenspace of the model, the difference between

parameter vectors is related to the distance between graphs in the eigenspace.

Suppose that the graphsGk1 andGk2 have best fit parameter vectorsb∗k1
andb∗k2

respectively. The Euclidean distance between the parameter vectors is

d2(k1, k2) = (b∗k1
− b∗k2

)T (b∗k1
− b∗k2

)

In terms of the embedded node co-ordinates

d2(k1, k2) = (Ŷ ∗
k1
− Ŷ ∗

k2
)T Ψ̃Ψ̃T (Ŷ ∗

k1
− Ŷ ∗

k2
)

5.4 Experiments

In this section, we first provide some experimental evaluation of the new graph-

matching method. With the matching results we continue to construct the gener-

ative model for graphs which can capture the variation within a set of graphs. In

the second part of this section, we demonstrate the effectiveness of the model by

experiments from both the synthetic data and real world data.

5.4.1 Experiments on Graph Matching

In this section we will show how structural graph matching can be solved by

using heat kernel embedding and spectral alignment. To commence we investi-

gate the matching results obtained by changing thet parameter. We choose two

graphs from the COIL database. We denote the two graphs byGI andGJ . We
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map them to the vector spaceYI andYJ and compute the correspondence matrix

CIJ based on the algorithm described above. We then show the matching re-

sult by projecting theYI andỸJ to the same coordinate space. For visualization

purposes we need to truncate theYI andỸJ to two dimensional vectors. So we

take the first two columns of the matrices and project them to two dimensional

space. In the plots of Figure 5.1 the red points represent the node fromGI while

the blue ones represent the aligned nodes from graphGJ . From left-to-right and

top-to-bottom thet parameter takes on the value of0.5, 1, 5, 10, 100, 1000. The

conclusion is that if we choose a good value of thet parameter we can obtain

good correspondence matching results.

So we take thet value as0.5 in the rest of the experiments in this part. We

now embark on a delicate analysis of the graph matching algorithm. We com-

pare our method with some alternative methods by using synthetic data. Second,

we evaluate our method on real world data. We commence with some synthetic

data experiments. The aim is to evaluate how the new method works under con-

trolled structural corruption and to compare it with some alternative methods.

These alternatives are Shapiro and Brady (Shapiro and Brady, 1992) and Scott

and Longuett-Higgins’ (Scott and Longuett-Higgins, 1991) feature set matching

methods. These two methods use coordinate information for the feature points,

and do not incorporate the graph structure information. We also investigated

Umeyama’s (Umeyama, 1988) method. In our method we are concerned with

matching the Delaunay triangulation of corner features. Beside the coordinates

of the feature points the Delaunay graph will incorporate important structural

information.

Our first experiment is based on synthetic data. We use a seed point-set that

contains 30 nodes. We construct the Delaunay graph of the Voronoi tessella-

tion of these nodes. We have kept the number of points fixed and have added
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Figure 5.1: Aligned vector coordinates for two embedded graphs by varying the
t (from left to right, top to bottom, the results obtained whent equals 0.5, 1, 5,
10, 100 and 1000 respectively).

median Gaussian errors to the nodes positions. The parameter of the noise pro-

cess is the standard deviation of the positional jitter. When the nodes positions

change we reconstruct the Delaunay graph based on the new point-set position.

In Figure 5.2, we show the fraction of correct correspondences as a function
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of the noise standard deviation for our method, Shapiro and Brady’s (Shapiro

and Brady, 1992) method, Umeyama’s method and Scott and Longuett-Higgins’

method (Scott and Longuett-Higgins, 1991). To take this study one step further

in Figure 5.3, we investigate the effect of structural noise. Here we have added a

controlled fraction of additional nodes at random positions and have recomputed

the Delaunay triangulations. We plot the fraction of correct correspondences as a

function of the fraction of added nodes. The plot compares the result of applying

our method to the data, the results obtained using Scott and Longuett-Higgins’

method and Shapiro and Brady’s method. Since Umeyama’s algorithm can not

handle graphs of different size, we have not used it this time. The main feature to

note is that our method outperforms the two alternatives. This means our method

can solve the structure matching problem when the graphs are of different size.

To take this study one step further, we perform some real-world data exper-

iments. We apply our matching method to two image sequences (MOVI and

Desk). There are rotation, scaling, and perspective distortion present. Example

images from these sequences are shown in Fig 5.4 and correspond to different

camera viewing directions. The detected feature points and their Delaunay trian-

gulations are overlaid on the images. The first four images are from the MOVI

sequence and each contains about 140 nodes. The second four images are from

the Desk sequence and each contains about 400 nodes.

In Fig 5.5, we test our method on some pairs of images. In Table 5.1 we

summarize the matching results for the MOVI house images. Here we list the

number of nodes in the Delaunay graphs, the number of correct correspondences,

the number of correspondence errors, and the number of points without corre-

spondence. We also selected a pair of images which contain the same number of

corner points (image 1 and image 4 from MOVI sequence 140 nodes). Although

the number of corners is the same, there are differences in both the identities
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Figure 5.2: Comparison of four methods for matching with the same number of
nodes.

of the detected points and their structural arrangement. We compared these im-

age matching results by using our algorithm, Umeyama’s algorithm, Scott and

Longuett-Higgins’ algorithm and Shapiro and Brady’s method. The results are

summarized in Table 5.2. From these results, it is clear that our new method

outperforms the alternatives.

5.4.2 Experiments on Generative Model for Graph Structure

In this section we show how to construct the generative model with the matching

results solved by the algorithm described above. The experiments are based on
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Figure 5.3: Comparison of three matching methods of different number of nodes.

Images Points Correct False No

correspondence correspondence correspondence

house1 140 - - -

house2 134 112 8 14

house3 130 109 6 15

house5 140 110 8 22

Table 5.1: Experiment results for MOVI house sequence images.

Methods Correct False No

correspondence correspondence correspondence

Our Method 110 8 22

Umeyama 84 30 26

Scott and Longuett-Higgins 97 17 26

Shapiro and Brady 83 17 40

Table 5.2: Summary of comparison of the four matching algorithms.
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Figure 5.4: Delaunay graphs overlaid on the images.

0 100 200 300 400 500 600

0

50

100

150

200

0 100 200 300 400 500 600

0

50

100

150

200

0 100 200 300 400 500 600

0

50

100

150

200

100 200 300 400 500 600 700 800 900
0

50

100

150

200

250

300

350

400

450

500

100 200 300 400 500 600 700 800 900
0

50

100

150

200

250

300

350

400

450

500

100 200 300 400 500 600 700 800 900
0

50

100

150

200

250

300

350

400

450

500

Figure 5.5: Our algorithm for CMU and MOVI house sequences.

synthetic data and real world data.

Synthetic Data

We commence our experimental study with an example based on synthetic data.

We use the set of dumbbell shaped graphs in Figure 5.6 to construct the genera-

tive model. Here the number of nodes is fixed but the edge structure varies. We

construct the covariance matrixΣ and mean shapêX for the embedded nodes.

The rows in Figures 5.7 show the variation modes along the three eigenvector di-

rections corresponding to the largest three eigenvalues of the covariance matrix

Σ. The different panels in the rows are obtained by varying the relevant com-

ponent of the parameter vectorbi from
√−3 to

√
3. There are clear differences
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Figure 5.6: Some examples of the dumbbell shape graphs.
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Figure 5.7: Graph eigenvector variation.

in the structures captured by the different eigenmodes. In Figure 5.8 we plot the

panels in each row in Figure 5.7 in one plot. This illustrates how the parameter

vector can be used to control the reconstructed point positions.

Real-world Data

In this section we provide some experimental evaluation of our generative model

on real-world data. We use two data sets for the evaluation. The first of these is

the COIL database Figure 3.4. The second is the Caltech-Oxford database Figure

3.6.

In Figure 5.9 we show the result of projecting the nodes into the space
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Figure 5.8: Graph eigenvector variation overlaid together.

spanned by the leading two eigenvectors of the heat kernel. The different panels

in the figure are for different values oft. From left-to-right and top-to-bottom

the values oft are0.5, 1, 5, 10, 100 and1000. For this experiment we have taken

15 images from the duck sequence of the COIL database. Each blue point in the

embedding corresponds to a single node of one of the 15 sample graphs. Super-

imposed on the node-positions as red points are the locations of the mean node

positions. Around each mean node position we have drawn an ellipse. The major

and minor axes of the ellipse are in the principal directions of the eigenvectors of

the node position covariance matrix and the lengths of the semi-major axes are

the corresponding eigenvalues. There are a number of features to note from this

figure. First, for small values oft they form relatively compact clusters. Second,

there is a significant variation in the size and directions of the ellipses. The com-

pactness of the clusters supports the feasibility of our embedding approach and

the variation in the ellipses underpins the need for a relatively complex statistical

model to describe the distribution of embedded point positions. As the value of

t increases the overlap of the ellipses also increases.

To investigate the role of the number of eigenmodes in the reconstruction

of the graph structure we have examined the value of the Frobenius normF =

||A−A∗|| between the original graph adjacency matrixA and the reconstructed

adjacency matrixA∗ computed by fitting the generative model. In Figure 5.18
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we show the value ofF as a function of the number of eigenmodes used. In

this experiment we choose a graph from the duck sequence which contains 35

nodes. The different curves in the plot are for different values oft. The best

reconstructions are obtained with small values oft and an increasing number of

eigenmodes.

In Figures 5.10, 5.11, 5.12 and 5.13 we show the result of projecting the em-

bedded node vectors for the graphs extracted from the COIL and Oxford-Caltech

database onto the eigenvectors of the embedded node position covariance matrix

Σ. Here we chooset = 0.5 and we use six leading eigenmodes of the covariance

matrix of the embedded point position. In Figure 5.10 we use the duck sequence

from the COIL database and we have placed a thumbnail image at the location

specified by the first three components of the parameter vectorb. The line con-

necting the thumbnails corresponds to the sequence order of the original images.

In Figures 5.11, 5.12 and 5.13 we show the projections of the images from the

Oxford-Caltech dataset. The main feature to note from Figures 5.10 and 5.13 is

that neighboring images in the sequence are close together in the eigenspace.

We have also experimented with the generative model as a means of clus-

tering graphs. We have selected 60 images of 3 different objects in the Oxford-

Caltech database, and have used these to construct the generative model. Using

the model we compute graph similarity using the methods outlined in the previ-

ous part. In Figure 5.14 we show the matrix of Mahalanobis distances between

graphs, in Figure 5.15 the distance matrix between the best fit parameter vec-

tors and in Figure 5.16 the Euclidean distances between embedded points. The

main feature to note from these distance matrices is that the Mahalanobis dis-

tance between embedded points is less noisy than the alternative two distance

measures. Based on this observation, in Figure 5.17 we show the result of per-

forming multidimensional scaling (MDS) on the Mahalanobis distances between

116



the set of graphs. The different objects are shown in different colors and are well

separated. For comparison, Figure 5.19 shows the result of projecting the graphs

onto the eigenspace spanned by the leading three eigenvectors of the point posi-

tion covariance matrix. This also gives good clusters.

5.5 Conclusion

In this chapter we have used the heat kernel embedding of graphs to construct a

generative model for graph structure. The embedding allows nodes of the graphs

under study to be mapped as points in a vector space. In the first section we

have introduced the heat kernel embedding based graph matching. After we

have mapped the nodes of the graph to the vectors we can perform a variant of

Scott and Longuett-Higgins’ spectral point-sets alignment algorithm to compute

the correspondence matrix between the embedded point position vectors. By

doing so we have overcome the limitation of the structural differences in the

graphs. We have experimented with matching algorithms on both synthetic and

real world image datasets. A comparison with other methods is provided. From

the experimental results, it is clear that our method is better than the alternatives

both in accuracy and stability to noise.

With the correspondence results between graphs we continue to construct the

generative model for the graph structure. The idea underpinning the generative

model is to construct a point distribution model for the embedded point position

vectors. The mean and covariance matrix of the aligned embedded point posi-

tion vectors are used to capture the intrinsic variation within the correspondence

graphs. The method proves to be effective for capturing structure variations be-

tween graphs and also for clustering graphs.
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Figure 5.9: Embedded point positions and fitted covariance ellipsoids varying
with t (from left to right, top to bottomt = 0.5, 1, 5, 10, 100 and1000 respec-
tively) for the heat kernel.
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Figure 5.10: Eigenprojection of 15 images of duck sequence from COIL
database.
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Figure 5.11: Eigenprojection of motorcycle images from Oxford-Caltech
database.
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Figure 5.12: Eigenprojection of airplane images from Oxford-Caltech database.
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Figure 5.13: Eigenprojection of dinosaur images from Oxford-Caltech database.

122



20 40 60 80 100 120

20

40

60

80

100

120

Figure 5.14: Distance matrix for Mahalanobis distance between embedded
points.
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Figure 5.15: Distance matrix for the best fit parameter vectors.
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Figure 5.16: Distance matrix for Euclidean distance between embedded points.
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Figure 5.17: Graph clustering using Mahalanobis distances deduced from the
graph generative model.
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Figure 5.18: Frobenius norm as a function of numbers of eigenmodes.

127



−6

−4

−2

0

2

4

−0.4

−0.2

0

0.2

0.4
−0.5

0

0.5

First eigenvectorSecond eigenvector

T
h

ir
d

 e
ig

e
n

v
e

c
to

r

Airplane
Motor
Dinasour

Figure 5.19: Spectral analysis of the Oxford-Caltech database.
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Chapter 6

Conclusions and Future Work

In this chapter we first summarize the main contribution of the thesis. This in-

cludes the novel ideas on feature extraction, graph embedding, the graph struc-

ture generative model and their related applications in real world problems. Sec-

ondly we draw some of the limitations and possible extensions of the work.

6.1 Contribution

The theoretical and practical contributions of the thesis are as follows:

• Stable and robust features were extracted from the graph heat kernel for the

purposes of graph characterization. We proved experimentally that these

methods can be used to solve the image classification problems effectively.

(Chapter 3)

• Graph embedding methods were introduced. We map the graph from the

graph space to the manifold whose metric is characterized by the heat ker-

nel. We explored two graph embedding methods based on the heat ker-

nel analysis. Graph characterization problems can be solved by analyzing

the embedded point position vectors. The applications for the method are
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graph matching and clustering. (Chapter 4 and Chapter 5)

• We combined the heat kernel embedding with the linear deformable model

to construct the generative model for graph structure. Variation within

graphs can be captured by using the mean and covariance matrix of the

embedded point position vectors. The experimental results show the ef-

fectiveness of the method in capturing the variation within a set of moving

image sequences. The method can also be applied on image clustering.

(Chapter 5)

6.1.1 Feature Invariants from Graph Heat Kernel

The first contribution of this thesis is to extract robust and stable features from

graph heat kernels to characterize graphs. Spectral graph characterization has

been widely applied in computer vision for matching(Umeyama, 1988), cluster-

ing(Wilson et al., 2003), segmentation(Shi and Malik, 1997) and etc. The heat

kernel is closely related with the Laplacian spectrum of the graph. Our starting

point is to explore whether we can extract useful and stable invariants from the

heat kernel of the graph to characterize the graph.

Our first investigation comes from the heat kernel trace, which is the sum of

the diagonal elements of the heat kernel matrix of the graph. Mathematically, it is

a function whose parameter is the Laplacian eigenvalues and whose argument is

time. The shape of this function can be used to characterize the graph. We then

turned our attention to the zeta function. By using the Mellin transformation,

the zeta function can be proved to have a close relation with the heat kernel

trace. It is related to the moments of the heat kernel trace. We may compute a

set of invariants from the zeta function by inputing different integer arguments.

With these invariants at hand, we can proceed to construct a feature vector which

can be used for graph clustering. We also showed the relationship between the
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symmetric polynomial and the derivative of the zeta function at origin. Both of

them can be used as invariants for graph characterization.

Finally in Chapter 3, we turned our attention to the heat content invariants.

McDonald and Meyers (McDonald and Meyers, 2002) have shown that a set of

differential invariants can be derived from the heat content of the heat kernel.

Our investigation shows the feasibility of the heat content invariants as a way of

characterizing graphs. We demonstrated experimentally the effectiveness of our

methods. Real world examples were provided to show that these features can be

used for graph clustering and image classification. A comparison with the stan-

dard spectral graph clustering algorithm (Luo et al., 2003; Sengupta and Boyer,

1998) shows our method outperforms the alternatives in terms of correctness for

clustering.

In our opinion, the work described in Chapter 3 has two advantages. Firstly

we explored the feature invariants from the graph heat kernel, which plays an

essential role in spectral graph theory. Secondly, the features extracted from the

graph heat kernel can provide more stable and robust characterization for graphs.

6.1.2 Graph Embedding for Graph Matching and Clustering

In Chapter 4 we took the graph heat kernel investigation a step further and ex-

plored the geometries of the graphs which reside on a manifold. The second

contribution of this thesis is to explore graph embedding methods which can be

used to transform the graphs to point-sets in vector space by analyzing the heat

kernel matrix of the graph. An important feature for graph embedding is that

we can perform a number of graph manipulation tasks by applying simple point

pattern analysis algorithms to the embedded point position vectors.

We proposed two heat kernel based graph embedding methods. For the first

method, we commenced by assigning a distance measure to the graph edges. The
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distance measure is furnished by the analysis of the heat kernel. We used the

Isomap method (Tenenbaum et al., 2000) to find a low-distortion embedding to

map the nodes of the graph to a low-dimensional vector space. We refer to this

method as the parametric distance embedding. The second method is the heat

kernel embedding, performed by applying heat kernel mapping to the graph heat

kernel matrix. The embedded point position vector was found by performing the

Young-Household decomposition on the heat kernel matrix of the graph.

Once the graphs were embedded to point-sets in vector space, we performed

a number of point pattern analysis algorithms. In Chapter 4 we used statistical

moments, spectral features from the covariance matrix and sectional curvature to

characterize the point-sets. We use vector features to perform graph clustering.

Experiments showed that the best performance was obtained by using heat kernel

embedding with a spectral characterization, where the image classification rate

can reach 98%.

6.1.3 Generative Model for Graph Structure

In Chapter 5 we combined the heat kernel embedding with the spectral point-

sets alignment algorithm, to develop a method to match the correspondence

between the embedded point position vectors. By doing so we develop a new

graph matching algorithm which can be used to match graphs that contain struc-

tural differences. A comparison with standard algorithms (Scott and Longuett-

Higgins, 1991; Shapiro and Brady, 1992; Umeyama, 1988) shows our algorithm

outperforms the alternatives in terms of both the accuracy and robustness to noise

and corruption. The linear deformable model (Cootes et al., 1995) was combined

with the heat kernel embedding to construct a generative model for graphs to

capture structural variation within a set of graphs. After the heat kernel embed-

ding, we performed correspondence matching. With the matching results, we
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computed the mean and covariance matrix of the point position, which capture

the variation information within the set of graphs. A graph is represented by

a parameter vector, which can be used to reconstruct the adjacency and Lapla-

cian matrix of the graph. Experiments showed the effectiveness of the model for

tracking the variation within a sequence of moving images and clustering.

6.2 Future Work

There are a number of shortcomings in this thesis which can be amended with

further work and further explored. In Chapter 3, we have explored a number of

invariants which can be used for graph characterization. However, some exten-

sions of the current work still exist. These include the use of features which have

a direct geometrical meaning such as the Euler characteristic, the torsion of the

mean and the Gaussian curvatures of the manifold.

In Chapter 4, there are clearly a number of ways in which the work reported

can be extended. First it would be interesting to cast the graph clustering pro-

cess into a mixture model which can be used for hierarchal clustering. Second, a

possibility exists to explore the use of sectional curvature as a means of directly

embedding the nodes of the graphs on a manifold. One of the possibilities that

exists here is the variant of MDS reported by Lindman and Caelli (Lindman and

Caelli, 1978). A third line of investigation would be to use the Euclidean dis-

tances or sectional curvature associated with the edges as attributes for the pur-

poses of graph matching. Finally, it would be interesting to investigate whether

the distances and curvatures could be used to aid the process of visualizing or

drawing graphs.

In Chapter 5, our future plans revolve around the use of a mixture model to

describe the positions of the embedded nodes, and to assess uncertainty in the
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computation of correspondence. We also plan to apply the matching algorithm

to trees and try to solve the correspondence problem for trees.

For the experimental evaluation in all Chapters, both the COIL and Oxford-

Caltech databases contain just a single object and have very little background

structure. It would therefore be interesting to apply our methods to images con-

taining complex objects and backgrounds. By doing so, we plan to incorporate

a statistical framework. Image recognition or clustering becomes a hierarchical

process. A mixture model is used at each level to produce a probability that an

object exists in the image. The second experimental shortcoming is the methods

we have used to extract the graph representation from images. Currently, we

have used Delaunay triangulations and relational graphs. However, the graphs

extracted from the images can not exactly represent the actual structure of the

original object. This has limited the application of our methods. This is due

to the fact that both methods are based on the low-level vision algorithms. To

solve this problem we plan to use image representation ideas from the high-level

vision (Hall et al., 2002).
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