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Abstract

When unpolarised light is reflected from a smooth dielectric surface, it becomes partially

polarised. This is due to the orientation of dipoles induced in the reflecting medium and

applies to both specular and diffuse reflection. This thesis aims to exploit the polarising

properties of surface reflection for computer vision applications. Most importantly, the

thesis proposes novel shape and reflectance function estimation techniques. The meth-

ods presented rely on polarisation data acquired using a standard digital camera and a

linear polariser. Fresnel theory lies at the heart of the thesis and is used to process the

polarisation data in order to estimate the surface normals of target objects.

Chapter 2 surveys the related literature in the fields of polarisation vision, shape-from-

shading, stereo techniques, and reflectance function analysis. Chapter 3 commences by

presenting the underlying physics of polarisation by reflection, starting with the Fresnel

equations. The outcome of this theory is a means to ambiguously estimate surface nor-

mals from polarisation data, given a rough estimate of the material refractive index. The

first novel technique is then presented, which is a simple single-view approach to shape

reconstruction. In this case, efficiency is given priority over accuracy. Chapter 3 ends

with a description of a device for measuring refractive indices.

Chapter 4 is concerned with image-based reflectance function estimation. Firstly, the

special case of retro-reflection is assumed. An algorithm is described that constructs a

histogram of surface zenith angles and pixel intensities. Probability density functions

are then robustly fitted to this histogram to obtain a one-dimensional “slice” of the ma-

terial BRDF. A second algorithm is then presented, which is designed for more general

illumination conditions. This uses a three-dimensional histogram that includes the sur-

face azimuth angles, in addition to the zenith angles and pixel intensities. Simulated

annealing optimisation is then used to fit surfaces to the histogram, thus estimating a

two-dimensional slice of the BRDF. Chapter 4 also contains a method for photometric

stereo, which is used by the above two-dimensional BRDF technique to fully constrain

the previously ambiguous surface normal estimates.
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The most sophisticated and accurate shape reconstruction technique is presented in

Chapter 5. The reflectance function algorithm described previously is first applied to en-

hance the surface normal estimates obtained from the raw polarisation data. This is done

for two views. An new algorithm is then described that solves the stereo correspondence

problem using the refined surface normals. To do this, a set of patches are extracted from

each view and are aligned by minimizing an energy functional based on the surface nor-

mal estimates and local topographic properties. The optimum alignment parameters for

different patch pairs then gives a matching energy. The combination of pairings that min-

imises the total matching energy for all patches relates to the correct correspondences. In

solving the correspondence problem in this way, two fields of accurate and unambiguous

surface normals are acquired which can subsequently be converted into depth.

Our techniques are most suited to smooth, non-metallic surfaces. The multi-view

method complements existing stereo algorithms since it does not require salient sur-

face features to obtain correspondence. The use of shading information is shown to

significantly improve the accuracy of the reconstructions compared to most previous

polarisation-based methods. A set of experiments, yielding reconstructed objects and

reflectance functions, are presented and compared to ground truth. The experiments in-

volve a variety of materials and object geometries. The work provides the foundation

for the development of a novel sensor that can non-intrusively recover depth information

using two cameras. Suggestions for such a device are outlined in Chapter 6.
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Chapter 1

Introduction

When people see images, they can usually predict the three-dimensional geometry of the

objects in view. On many occasions, the person will have seen the objects before. In this

case the brain is effectively performing shape recognition on the objects, before applying

a priori knowledge to estimate their shapes. However, the visual system is more advanced

than this and uses many independent cues to aid in the perception of depth. Such cues

include shading, motion parallax, texture, perspective effects, size, binocular vision, and

more [97].

Figure 1.1, shows a rendering of a hemisphere. Without any prior knowledge, most

people would immediately conclude that the object is spherical. The ability of humans

to deduce shape in this way has, for many years, been the motivation for the field of

shape-from-shading [40]. That is, the use of computer algorithms to estimate the three-

dimensional geometry of a surface from a single image. The computer vision community

reasoned that, since humans are so efficient at deducing shapes from previously unseen

shading patterns, it should be possible for computers to do the same. After all, for Figure

1.1 specifically, shading is the only source of information available.

After several decades of research, constructing images based on shading alone has

proved to be more difficult than expected, as explained in Chapter 2. This thesis aims to

complement existing efforts in the field, by incorporating an additional cue into the shape

estimation procedure: the polarisation state of reflected light.
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Figure 1.1: A rendering of a hemisphere.

1.1 Vision and Polarisation

After concluding that shading information alone is an insufficient source of shape infor-

mation in many cases, the computer vision community turned to other shape cues. One

of these was polarisation. It is not immediately obvious that polarisation provides any

useful knowledge about surface shape. This is because the human eye is insensitive to

the phenomenon. Despite this, a great deal of natural light found in everyday life is

polarised. There are several mechanisms found in Nature whereby sunlight (which is

initially unpolarised) becomes partially or completely polarised. The most ubiquitous of

these mechanisms are scattering, refraction and reflection [49].

Polarisation by scattering occurs in the atmosphere and is caused by gas molecules

and dust particles. The result is that the sky has a polarisation pattern where the light can

be as much as 70% linearly polarised when observed at an angle 90◦ to the Sun. Scattering

also occurs due to water molecules beneath the world’s seas and oceans. Polarisation by

refraction is mainly found underwater, where the transmission of the light at the air/water

interface causes significant polarisation. Finally, when light is reflected from surfaces

there is a partial polarising effect. The strength of polarisation by reflection depends upon

the reflecting material and other factors.

We now know that many creatures, including some insects, birds and marine animals,

have eyes that are sensitive to the polarisation state of light [100]. Bees and ants, for

example, use the polarisation pattern in the sky to aid navigation. Several marine creatures

use similar patterns found underwater for the same purpose [41]. Surprisingly, the first

2



Figure 1.2: Photograph of a stomatopod or mantis shrimp (Odontodactylus havanenis) [15].

people to exploit the polarisation patterns of skylight were the Vikings [49, §12]. It is

widely believed that they used calcite crystals to predict the direction of the Sun after

sunset or before sunrise. Suggestions have recently been made that the patterns could be

used in computer vision systems [68].

One of the most sophisticated polarisation-sensitive eyes in Nature is that of the mantis

shrimp. A photograph of one of these creatures is shown in Figure 1.2. The special fea-

ture of the eye of the mantis shrimp is its high sensitivity to both colour and polarisation.

There is evidence [16] that the creature, and a handful of other species, use polarisation

to isolate objects of interest within their field of view. It is also believed that some species

communicate by reflecting light only of a certain polarisation angle. The polarising prop-

erties of reflection are also used by some insects who orient themselves according to the

horizontally polarised light reflected from flat water.

Given the abundant use of polarisation in Nature, it is not surprising that people have

attempted to emulate its exploitation for industrial applications. This thesis is concerned

with the exploitation of the polarising properties of surface reflection. As explained in

subsequent chapters, the partially linearly polarised light that is reflected from surfaces

can be described by three quantities: the intensity of the light, the angle of the polarisa-

tion (the phase), and the extent to which the light is polarised (the degree of polarisation).

Refer back to Figure 1.1. This figure shows a rendered image of a surface similar what

could be obtained using a normal camera or a human eye. Essentially, it corresponds to

the intensity of light reflected from the surface. Now consider Figure 1.3, which simu-
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Figure 1.3: Simulation of (a) the angle of the polarisation of light reflected from a hemisphere
and (b) the degree of polarisation. The intensity of these images encodes the two quantities re-
spectively.

lates the angle of polarisation and the degree of polarisation using the theory described

in Chapter 3. Collectively, the three quantities clearly contain significantly more shape

information than the intensity alone. Combining information from each of the quantities

for the purpose of shape estimation forms the central aspect of this thesis.

1.2 Motivation and Contribution

As explained in the next chapter, there have been many attempts to incorporate different

cues into the shape recovery process for computer vision. One of the most powerful

means by which surface geometry can be constrained is to use more than one image of

the object. In the case of smooth surfaces, one of the best-known methods is photometric

stereo [120]. This method involves imaging the target object using several different light

source directions, and can fully constrain the surface orientation at each point. In the case

where detectable surface features are present, geometric stereo is possible [32]. Using

this method, the light source and object are fixed and two viewing directions are used to

estimate depth through triangulation.

The primary goal of this thesis is to develop a shape recovery technique that uses po-

larisation to supplement shading information. Polarisation has been suggested previously

for shape reconstruction but not in conjunction with shape-from-shading. This combina-

tion permits the accurate estimation of surface orientation, whilst avoiding the need for
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the time consuming light source repositioning necessary in photometric stereo. However,

the surface geometry can still not be fully determined in this way from a single image.

For this reason, this thesis also makes a contribution to the field geometric stereo to con-

strain the object geometry completely. Most existing geometric stereo methods encounter

difficulty when presented with featureless surfaces. In our new method, polarisation in-

formation is used to establish correspondence between two views, and can be applied to

textureless and featureless surfaces. Our method therefore addresses the above weakness

of geometric stereo.

In addition to the development of a novel method for shape reconstruction. The thesis

has several secondary contributions. The thesis tests the most basic form of polarisation

vision on a wider range of materials and surface geometries than has previously been

considered. Also, it shows how photometric stereo can be enhanced using polarisation

data (this is not used in the main reconstruction algorithm). Finally, it shows how the

reflectance properties of different materials can be estimated. Two methods with this aim

are presented, one of which provides the means of incorporating shading information into

the shape reconstruction procedure.

1.3 Thesis Overview

In Chapter 2, we present a detailed discussion of related work in the field. The most

relevant area of past research is in the subject of shape recovery using polarisation. This

is covered in Section 2.1, which also mentions a few other applications of polarisation

vision. Section 2.2 is a survey of developments in shape-from-shading and stereo (both

geometric and photometric) methods. A few additional shape reconstruction methods are

also listed. Section 2.3 is concerned with research into material reflectance properties.

Techniques to both model and estimate the properties are reviewed.

Chapter 3 commences by presenting the relevant details of the background theory

from the field of physical optics. This is presented in Section 3.1, with Fresnel theory for

the reflection of electromagnetic waves from interfaces taken as the starting point. The
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theory leads to a means to estimate the degree and angle of polarisation of light reflected

from a surface. In Section 3.2, a method for obtaining shape using polarisation from a

single view is presented. Experiments in shape reconstruction, which includes an analysis

of the accuracy of the polarisation measurements, are described in Section 3.3.

Chapter 4 is on the subject of image-based methods for estimating reflectance prop-

erties. The background theory and nomenclature for this field is given in Section 4.1. In

Section 4.2, a method is proposed that estimates the relationship between the reflected

radiance and the surface orientation for the simplified case where the light source and

camera lie in the same direction from the object. The method for enhancing photometric

stereo is presented in Section 4.3. In Section 4.4 the reflectance properties are estimated

for more general illumination conditions. Experiments with various materials are pre-

sented for each of the methods.

Chapter 5 uses the estimated reflectance properties to combine shading and polarisa-

tion information from two views, thus acquiring more accurate orientation estimates than

would otherwise be possible. Sections 5.1 to 5.3 contain details of the two-view method

for reconstruction and includes a new patch matching algorithm. A set of reconstructions

are presented in 5.4, which also shows a few images rendered using the reflected functions

estimated in Chapter 4.

Chapter 6 summarises the contributions of the thesis, highlights the strengths and

weaknesses, and suggests avenues for future research.
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Chapter 2

Literature Review

The ultimate goal of this thesis is to develop a shape recovery technique for surfaces that

are both smooth and featureless. The final outcome, presented towards the end of the

thesis, is a technique involving polarisation (Chapter 3), reflectance functions (Chapter

4) and geometric stereo (Chapter 5). The thesis also makes contributions to photometric

stereo and shape-from-shading (SFS). Broadly speaking, polarisation is used to obtain

initial (and ambiguous) surface normal estimates, and is the foundation for the thesis.

The reflectance functions and SFS enhance these estimates, while the stereo algorithms

disambiguate the estimated surface normals. Standard integration methods are then used

to recover depth.

This chapter presents a survey of the existing literature in the above fields. Since

the foundations of the entire thesis are drawn from polarisation, we commence with a

summary of related work in the field of polarisation vision. The main emphasis is on shape

recovery techniques, but several other applications are also mentioned. Section 2.2 then

describes other shape recovery techniques, principally SFS and stereo. In Section 2.3, key

contributions to the field of reflectance function modelling and estimation are discussed.

Both theoretical and practical approaches are considered. The chapter concludes with a

summary of the successes and failures of the existing methods and a statement on the

position of this thesis in the context of other research.
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2.1 Polarisation Vision

Research into the use of polarisation in computer vision has attracted a significant amount

of attention during the last twenty or so years. Most of the research relies on the fact

that when light is reflected from a surface, it undergoes a partial polarisation [35]. That

is, if the incident light is unpolarised, then the reflected light will be a superposition

of unpolarised light and completely polarised light. In general, the polarisation state

of light is represented by the Stokes vector, which contains four degrees of freedom.

These correspond to the intensity of the light, the extent to which the light is partially

polarised (later quantified by the degree of polarisation), the angle of the completely

polarised component (the phase angle) and the circular polarisation. The last component

is negligible for most situations however, so the majority research concentrates on one or

more of the other three.

As explained below, the information contained in the polarisation state of light arriving

at a detector can be processed and interpreted in many different ways. However, the large

majority of recent papers on image-based methods have two aspects in common. The

first is that the phase of the polarisation takes a central role. This is mainly because

it is easy to measure and is largely independent of the material. The second common

aspect is that the polarisation state is captured using a linear polariser and by measuring

the intensity variation for different transmission axis orientations. The transmission axis

can be varied either by manually rotating a standard polariser mounted on a digital camera

[117], or electronically using liquid crystals [116]. We now present a review of the related

literature that uses polarisation for shape recovery.

2.1.1 Shape Reconstruction

The first attempt to use polarisation analysis in computer vision dates back to Koshikawa

in 1979 [51]. Koshikawa analysed the change in polarisation state of circularly polarised

light from non-conducting (dielectric) surfaces to provide constraints on surface orienta-

tion. The the need for circularly polarised incident light is the obvious disadvantage of
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this early work. Also, the method was made complicated by the use of Mueller calculus

[6] to manipulate the full Stokes vectors.

Both of these issues were resolved when Wolff and Boult applied Fresnel theory to

polarisation vision [117]. Fresnel theory (see [35], [6] or Section 3.1) is a quantitative

description of the direct reflection of electromagnetic waves from smooth interfaces. It

can be used to predict the degree of polarisation of light reflected from surfaces at different

angles for a given polarisation state of the incident light. This directly leads to a means

to estimate the surface zenith angles (the angles between the surface normals and the

viewing direction). Furthermore, Fresnel theory predicts that the surface azimuth angles

(the angles of the projection of the surface normal onto the image plane) relate directly

to the phase angle of the reflected light. The accuracy of these angle predictions was

assessed by Saito et al. [90], using planar and hemispherical samples.

It is therefore possible to estimate surface normals from specularly (directly) reflected

light. Unfortunately it turns out that both the degrees of freedom of the surface normals

have a two way ambiguity. Wolff [114] attempts to combine the polarisation information

from two views in order to fully constrain the orientation of a plane. Miyazaki, Kagesawa

and Ikeuchi [64] also use two views to solve the ambiguities mentioned above. They show

how to recover the 3D geometry of transparent objects. This is highly desirable since most

other techniques for reconstruction, including SFS and stereo, face particular difficulties

when faced with transparent media. Miyazaki et al. [65] have also applied Fresnel theory

to infrared light in order to overcome the ambiguity in the zenith angle.

A major drawback of the methods that analyse specularly reflected light is that spec-

ularities are seldom found over entire object surfaces. For the above papers by Miyazaki,

Kagesawa and Ikeuchi and by Saito et al., the target object was placed inside a spherical

translucent “cocoon.” Several external light sources were used to illuminate the cocoon,

which diffused the light, causing specularities to occur across the entire surface.

Several researchers have consequently investigated the use of diffusely reflected light

in polarisation analysis. Diffuse reflection is a result of the scattering of light by rough

surfaces [3, 74] and/or the light being scattered internally and re-emitted after internal
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scattering [115]. For the former case, the light becomes depolarised and can cause errors

in shape analysis from polarisation. For this reason, most efforts in shape recovery us-

ing polarisation information focus on smooth surfaces (although we do consider slightly

rough surfaces in this thesis). For smooth surfaces, Fresnel theory can be applied to light

being radiated from the surface after the internal scattering mentioned above.

An early use of this was in the Wolff and Boult paper already mentioned [117]. It was

shown how polarisation analysis of diffusely reflected light is particularly useful for deter-

mining the surface orientation near the limbs of objects, where the zenith angle is usually

large. The process was also studied by Drbohlav and Šára [20], to recover the surface

normals of a sphere. This demonstrated high potential for shape estimation using diffuse

reflection, without relying on specularities. Another advantage of diffuse reflection is that

there are no ambiguities in the zenith angle estimates. The two-way ambiguity in the az-

imuth angle remains however, and the two possibilities are different to those for specular

reflection. This means that the reflection type (specular or diffuse) must be known.

One disadvantage of using diffuse reflection, compared to specular reflection, is that

the polarising effects are weaker in the former case, increasing the susceptibility to noise.

A second problem concerns the refractive index. The direct use of Fresnel theory for

either reflection type requires an estimate of the refractive index of the reflecting medium

in order to calculate the zenith angle. However, for specular reflection, the dependency is

negligible, whereas for diffuse reflection, the dependency is more noticeable. Little effort

has been made to estimate the refractive index from image data, although Tominaga and

Tanaka [106] estimate the quantity using specular highlights under varying illumination

and viewing directions.

Miyazaki et al. [67] overcome the need for the refractive index by assuming that the

histogram of zenith angles matches that of a sphere. This also partly overcomes problems

of roughness. Indeed, certain parameters describing the roughness of the surface are

estimated by their proposed algorithm. The price of these improvements is the hefty

assumption about the zenith angle histogram. Rahmann and Canterakis [85, 84] also

avoid the problem of unknown refractive indices by using only the phase information of
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the reflected light. Their method requires two views and the phase is used to establish

correspondence. In addition, both specular and diffuse reflection are considered. The

weakness here, is the discarding of large amounts of information. Also, the method is yet

to be tested on objects with complicated geometry.

Drbohlav and Šára [21, 22] have investigated the idea of improving photometric stereo

[120] methods using polarisation. In standard photometric stereo (reviewed in Section

2.2.2) object shapes are reconstructed using greyscale images of an object placed under

varying illumination positions. If only two positions are used, which are both unknown,

then the surface normals are only recovered up to a regular transformation. Drbohlav and

Šára reduce this ambiguity by using polarisation. This is at the expense of introducing the

need for linearly polarised incident light.

A major weakness of most polarisation methods is the amount of time needed to ac-

quire the data (the actual processing of the data is often highly efficient). For the method

that uses a digital camera and linear polariser, three or more images are required with

the polariser at different orientations. This limits applications to static scenes. Wolff and

others have improved matters a little by developing polarisation cameras [116]. These

devices use liquid crystals to rapidly switch the axis of the polarising filter. The disad-

vantage here is that the data have a greater susceptibility to noise. More recently, PLZT

(Polarised Lead Zirconium Titanate) [99] has been used, which can be applied to recover

all four components of the stokes vector [66].

2.1.2 Further Applications

Image-based shape recovery has been the most active area of research into polarisation

vision to date. In this section we briefly review a few other applications. Wallace et

al. [111] use polarisation to improve depth estimation from laser range scanners. Tradi-

tional techniques in the field encounter difficulty when scanning metallic surfaces due to

inter-reflections. In the Wallace et al. paper, the problems are reduced by calculating all

four Stokes parameters to differentiate direct laser reflections from inter-reflections.
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Nayar, Fang and Boult [70] note that consideration of colour shifts upon surface re-

flection, in conjunction with polarisation analysis, can be used to separate specular and

diffuse reflections. Umeyama [109] later used a different method to achieve the same goal

using only polarisation.

Shibata et al. [101] used polarisation filtering as part of a reflectance function esti-

mation technique (see Section 2.3.2). Chen and Wolff [11] use polarisation to segment

images by material type (metallic or dielectric). Schechner, Narashimhan and Nayar [94]

show how polarisation can enhance images taken through haze. Schechner and Karpel

[93] later extend this work to marine imagery.

2.2 Shape from Shading and Stereo

This section provides an overview of two of the most extensively studied methods for

shape recovery. The first method, shape-from-shading [127], attempts to estimate the ge-

ometry of a surface using variations in pixel intensities. Typically, this involves making

assumptions on the surface geometry, illumination conditions and/or reflectance proper-

ties. Many algorithms recover a field of surface normals (needle map), which is then used

to calculate the depth.

The second method, stereo [32], aims to determine the surface geometry using more

than one image. This can broadly be divided into geometric stereo and photometric stereo.

In geometric stereo, two or more camera positions are needed for a given scene and trian-

gulation is used to determine the distance to the camera. In photometric stereo, a single

viewing direction is used but several images are needed, each with different illumination

conditions. The amount of literature in both SFS and stereo is huge, so we concentrate

here on the most important contributions and those most relevant to this thesis.

2.2.1 Shape from Shading

Many early efforts to obtain surface structure from intensity images were aimed at recov-

ering relief maps of the moon [87]. This research dates back at least as far as the 1960s.
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Two Ph.D theses by Horn [38] and Krakauer [53] introduced SFS to computer vision in

the early 1970s and research has been extensive for the past few decades [127, 24].

The traditional approach to SFS is to estimate a mapping between the measured pixel

intensities and the orientation of the surface at each point. This immediately raises several

questions:

1. How can the relationship between the surface orientation and the pixel brightness

be determined?

2. Can the two degrees of freedom of a surface orientation be estimated from a single

intensity measurement?

3. Can the shape be unambiguously determined if the surface orientations are fully

constrained?

4. Is there a unique surface that is able to generate a particular image for unknown

illumination?

The answers to these questions are all negative, making SFS is a difficult and ill-posed

problem.

In answer to the first question, the majority of SFS algorithms assume that the reflect-

ing surface is Lambertian [57]. This means that the reflecting intensity is determined only

by the albedo (the ratio of reflected to incident light at normal incidence) and foreshort-

ening (proportional to the cosine of the zenith angle). Note that this implies that image

should be independent of the illumination direction(s). Worthington and Hancock [124],

developed a SFS algorithm for Lambertian surfaces where the pixel brightnesses were

treated as hard constraints on the surface normals. Worthington [123] later shows how

albedo changes can be incorporated into the technique. Prados, Camilli and Faugeras

[79] show how Lambertian SFS can be extended from orthographic projection (which

most papers assume) to the perspective case.

It has long been known however, that the Lambertian assumption is seldom acceptable

[118]. Ragheb and Hancock [81] attempt to overcome this problem by using some of the
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theoretical reflectance models discussed in Section 2.3 to “correct” images; making them

appear to be Lambertian. To avoid the difficulties with estimating a global needle map

altogether, Dupuis and Oliensis [23] developed an algorithm that calculates depth directly,

by propagating away from the brightest points on the image.

Regarding the second question, one must either use more than one view (see Section

2.2.2) or make constraints about the surface geometry to overcome the under-constrained

nature of SFS. Ikeuchi and Horn [44] enforce the constraints that (1) the reconstructed

surface must produce the same brightness as the intensity image and (2) the surface is

smooth and continuous. These constraints were later adopted by Brooks and Horn [7].

Shimishoni, Moses and Lindenbaum [102] have developed an algorithm which is spe-

cially constrained for symmetric objects. This overcomes the problem that SFS is under-

constrained and has shown promising results for face recognition.

In a seminal paper by Frankot and Chellappa [27], the smoothness constraint is ap-

plied by enforcing integrability. That is, the original set of surface gradient estimates

were mapped onto the closest set to which Schwartz’s theorem can be applied. In other

words, the second derivative of the surface found by differentiating first along one axis,

then along the other is equivalent to the result if the order of the differentiation opera-

tions is reversed. The importance of this paper is due to the fact that it also addresses the

third question above: given a field of surface orientations (normals), a global integration

method is developed to recover the depth (see also Section 3.2.2). Therefore, whatever

method was used to recover a needle map, the Frankot-Chellappa method can be applied

to convert it to depth. The method can only be applied accurately to a field of smooth

surface normals, although reasonable reconstructions can be obtained when small discon-

tinuities are present.

In more recent work, Agrawal, Chellappa and Raskar [2] propose a related global

method for recovering depth from needle maps by solving a linear system of equations.

The technique is non-iterative, avoids any error propagation and, unlike the earlier Frankot

and Chellappa method, does not depend upon a choice of basis functions. Another method

was proposed by Simchony, Chellappa and Shao [103] where integrability is enforced by
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seeking a gradient field that minimises the least square error between the original field

and the integrable one. Finally, Robles-Kelly and Hancock [88] used the changes in

surface normal directions to estimate the sectional curvature on the surface. A graph-

spectral method is then applied to locate a curvature minimising path through the field

of surface normals. By traversing this path and using the estimated surface orientation,

simple trigonometry is used to compute the height offset from a reference level.

Consider now the final question above. For a surface under particular illumination

conditions and viewed from a fixed direction, there exists a set of transformations that si-

multaneously deform the surface and move the light sources such that the surface bright-

ness remains constant from the viewer’s perspective [4]. This problem is known as the

bas-relief ambiguity. A simple example of such an ambiguity is the concave/convex ambi-

guity, where it is impossible to deduce whether an image depicts a concavity or convexity,

unless information about the illumination direction(s) is to hand. Pentland [77] and Zheng

and Chellappa [128] attempt to calculate the light source direction, but general and reli-

able algorithms to do so remain elusive.

In answering the above questions, it should be apparent that SFS is an ill-posed prob-

lem. Several researchers have therefore attempted to combine shading with other cues in

order to avoid enforcing hefty geometric constraints. White and Forsyth [113] for exam-

ple, incorporate texture information so that a field of unambiguous surface normals can

be estimated. Prados and Faugeras [80] meanwhile, use the fact that the light intensity

from the source decays as the inverse square of distance to provide an extra constraint.

2.2.2 Multi-view Methods

The principles of shape reconstruction using geometric stereo are very different to those

used for SFS. The basic idea is very simple and can be described in three steps:

1. Two (or more) images of a scene are taken.

2. An algorithm is applied to determine which pixel pairs correspond to the same point

in three dimensional space.
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3. Triangulation is applied to calculate the distance between points in the scene and

the cameras.

The difficult step is the second one and a wide range of techniques have been suggested

to solve this problem (commonly referred to as the correspondence problem). Scharstein

and Szeliski [92] and, more recently, Seitz et al. [96] have compared the performance of

some the leading methods quantitatively.

In their survey paper, Brown and Hager [8] categorise both local and global methods.

Local methods include block matching, where small region correspondences are estab-

lished; gradient based optimisation, usually involving a least squares minimisation over

small areas; and feature matching, where correspondence is acquired by measuring the

similarity between points of interest. One of the most promising recent developments in

geometric stereo is the shape-invariant feature transform (SIFT) of Lowe [60]. This is a

feature matching technique with the main advantage that the points of interest are chosen

to be invariant to both scale and rotation. The features used by the SIFT algorithm are

also only weakly affected by variations in the viewing or illumination directions.

The most studied global methods for correspondence characterised by Brown and

Hager are dynamic programming, where a path cost minimisation algorithm is applied to

the corresponding scanlines from two images; intrinsic curves, a related method that uses

a vector representation of the scanlines; and graph cut methods, which perform matching

by seeking maximum flow in graphs (a comprehensive list of references can be found in

[8]).

Most traditional geometric stereo algorithms encounter difficulty when presented with

surfaces that are both smooth and featureless. In an attempt to overcome this problem,

a few researchers have attempted to combine geometric stereo with SFS. Cryer, Tsai

and Shah [18] observe that SFS is well suited to surface estimation for local patches

but stereo performs better at recovering the general shape (depending on the amount of

texture on the surface). They therefore proposed an algorithm that obtains low frequency

information from stereo and high frequency features from SFS. Jin, Yezzi and Soatto [46]

have since used shading information from multiple views to formulate stereo vision in
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terms of region correspondence. They developed an algorithm that uses the calculus of

variations for region matching optimisation in an infinite-dimensional space.

Using a somewhat different approach, Zickler, Belhumeur and Kriegman [129] de-

scribe a stereo technique where the positions of the single light source and the camera

are interchanged for the second view. A major advantage is that the surfaces considered

may have arbitrary reflectance properties and may or may not include texture. In the case

of textureless surfaces, where the above stereo techniques face difficulty, the technique

recovers a set of surface normals. If significant texture is to hand, then the depth can be

calculated directly. The main drawback of the technique is that the camera–light source

interchange is often unpractical and limits applications.

Gold et al. [29] and Chui and Rangarajan [12] have researched the problem of two- and

three-dimensional point matching. That is, given two related sets of points in space, they

determine which points correspond between sets. The techniques developed involve esti-

mating a set of transform parameters to align the surfaces using deterministic annealing

[91] and softassign [86]. An example application of this is optical character recognition,

where points on a template character must be matched to handwriting. The technique can

also be used in stereo to match surface features. Cross and Hancock [17] represent sur-

face feature points as nodes on a graph and apply the EM algorithm to perform the stereo

matching.

All of the methods discussed so far require more than one camera position. Woodham

[120] described an alternative scheme for textureless surfaces where the camera is kept

fixed, but the light source is moved to two or more positions between successive images.

In 1980 [120], he showed how the surface normals can be calculated in this way for a

Lambertian surface and soon after [121] showed that a third image allows the albedo to

be estimated. At least four images are necessary if more complicated reflectance functions

are present and to deal with shadows and inter-reflections.

The important advantage of photometric stereo compared to geometric stereo is that,

since the camera is fixed, then pixel correspondences can be directly inferred from their

image location. The drawback is that, like Helmholtz stereopsis, the image acquisition
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procedure plays an active and time consuming role in the overall process. The images for

geometric stereo by contrast can be obtained with separate cameras in an instant. Pho-

tometric stereo faces difficulty if shadows are cast on parts of the surface, but does not

face problems of occlusion (which can severely affect geometric stereo in some circum-

stances).

Photometric stereo has attracted a steady stream of interest since its conception. As

explained recently by Wu et al. [126], the large body of literature now available is wide

ranging in the assumptions required: two views with Lambertian reflectance and known

albedo; three views with unknown albedo; four views with more complicated reflectance

properties and so on. Wu et al. describe a detailed technique using Markov random fields,

which is able to deal with complex geometries, shadows, specularities, variation in light

source attenuation and even, to an extent, transparencies. The method assumes light

source direction estimates, but these need not be precise.

Hertzmann and Seitz [37] use a very different photometric stereo technique for materi-

als with arbitrary reflectance properties. Their work involved placing a spherical reference

object in the scene made from the same material as the target object. In addition to al-

lowing for general reflectance properties, their work offers two other notable advances.

Firstly, unlike most earlier papers on photometric stereo, the technique works for arbi-

trary and unknown light source directions. Secondly, their method also proposes a means

to segment the image according to material type. The necessity for a reference object is

the obvious weakness of this approach. Similar work, by Treuille, Hertzmann and Seitz

[108], use varying camera positions.

2.2.3 Additional Shape Recovery Techniques

In this chapter, we have reviewed shape recovery techniques using polarisation, shading

and stereo in some detail. There are, in fact, many other shape recovery techniques which

are given the generic name shape-from-X. Some of these methods are closely related to

SFS. Nayar, Ikeuchi and Kanade [71] for example, consider the inter-reflection problem
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in SFS. That is, the problem that light can be reflected several times between different sur-

face points before being redirected towards the camera. They show how this phenomenon

can actually be used to aid shape recovery. Similarly, Kriegman and Belhumeur [54]

show how shadows, another common complication for shape-from-X algorithms, can be

used to obtain geometry information.

As Koenderink [50] and later Laurentini [58] noted, one of the potentially strongest

constraints on surface structure is the object’s occluding contours. Of course, a reliable

means to segment the target object from the rest of the image is required in order to incor-

porate this information. Hernández, Schmitt and Cipolla [36] have shown very accurate

shape reconstruction from occluding contours by taking a succession of images of an ob-

ject as it is rotated on a turntable. In related work, Wong and Cipolla [119], show how

shape can be estimated in a similar way with unknown camera positions. Using occluding

contours as the only shape cue limits the technique to convex surfaces.

We would finally like to mention contributions from Hwang, Clarke and Yuille [43],

who use focus information for direct depth estimation; Super and Bovik [105], who de-

vised a method for shape-from-texture; and Soatto [104], who calculates shape from mo-

tion.

2.3 Reflectance Functions

The final main section of this chapter is concerned with the reflectance properties of sur-

faces. More specifically, we shall consider methods to predict the distribution of light

reflected from a surface for given distributions of incident illumination. This relationship

is most commonly quantified using the bidirectional reflectance distribution function or

BRDF, which has been used since the 1970s [73]. In simple terms, the BRDF is a quantity

that predicts the ratio of the reflected light in a particular direction to the incident irradi-

ance in any other direction. A more precise definition is given in Chapter 4 (Equation 4.1).

The BRDF therefore has four degrees of freedom, two each for the incident illumination

direction and reflection direction.
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It is not always necessary however, to consider all four angles. For instance, if the re-

flecting surface is known to be isotropic, then only the difference between the illumination

azimuth angles is important, so there are only three degrees of freedom. Alternately, it

may be that only a one- or two-dimensional “slice” of the BRDF is required for a particu-

lar application. This is true for example, if the relationship between the radiance reflected

towards a camera is needed as a function of the surface orientation, as in Chapter 4 of this

thesis.

The BRDF is an important quantity in both graphics and vision. In graphics, it has

been used for many years for image rendering. For vision, it has been used for image

understanding to aid in surface reconstruction techniques such as photometric stereo, as

discussed earlier.

We shall now review the relevant papers in the field. The literature can be divided

into theoretical and empirical approaches. The former involves attempting to describe

the interaction of light with the surface mathematically. Methods differ in terms of the

inclusion of “real” physics and how plausible the surface structure is modelled. The

second approach measures the reflectance properties directly using specialised equipment

or by applying image processing techniques from one or more views of an object.

2.3.1 Theoretical Models

The most widely used reflectance model in computer vision is the Lambertian reflectance

model [57], which was proposed long before the birth of computer vision. The Lambertian

model was discussed in Section 2.2.1 since it has been used extensively for SFS. The

model breaks down completely in the presence of roughness or specularities. In addition

to this failure, it is not entirely accurate for shiny surfaces, even away from specularities.

Despite its shortcomings, it is still used today in some applications for its simplicity. It

can also be used to represent a simple diffuse term as part of a more complex model.

The famous Phong reflection model [78] was invented for computer graphics in the

1970s by constructing an equation based on heuristic observations. The model consists of
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additive diffuse and specular components and an extra “ambient” term. The parameters

of the model can be adjusted to fine tune the relative strengths of each component and

the broadness of specularities. Despite its simplicity and empirical foundation, the Phong

model is surprisingly versatile and provides good agreement with experiment in many

situations.

In an attempt to construct a BRDF model on more concrete physics, Wolff [115]

proposed a reflectance model based on Fresnel theory. The model predicts the effects of

internal scattering on the reflected radiance using results from radiative transfer theory.

Fresnel theory is needed to calculate the light attenuation at the medium/air interface. All

of the parameters of the model are based on well-established physical quantities and the

model agrees with experiments for the diffuse component of smooth surfaces. The model

breaks down for rougher surfaces and does not attempt to model specular reflection.

The reflectance properties of rough surfaces have been studied extensively for many

years. One of the first efforts was by Torrance and Sparrow [107] who modelled the

microscopic structure of the surface as an array of randomly oriented V-shaped grooves

(often referred to as “microfacets”). The grooves have a gaussian distribution of slopes

and are assumed to be perfect mirrors, each of which obey Fresnel theory. The Torrance-

Sparrow model was shown to accurately predict the broadening of specularities caused

by roughness. Although the original model is rather complex and unwieldy, it was later

shown by Healey and Binford [34] that some of the terms could be simplified without

significantly compromising the accuracy of the model. Cook and Torrance [14] later

modified the Torrance-Sparrow model for computer graphics by simplifying the Fresnel

term.

Oren and Nayar [75] adopt a similar approach to Torrance and Sparrow, but replace

the mirror-like microfacets with Lambertian reflectors. This model accurately accounts

for the diffuse component of rough surface reflection and complements the Wolff model

for smooth surfaces. It is also possible to combine these two methods [118], by assuming

that each microfacet follows the Wolff model. This combined model can be used for

both rough and smooth surfaces, as well as the intermediate case. The resulting equations
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however are complicated and have not been extensively studied.

Beckmann and Spizzichino [3] use a very different approach, where the surface is

modelled by a Gaussian height distribution and a Gaussian correlation function. The

model, commonly referred to as the Beckmann-Kirchhoff model, uses Kirchhoff theory

to estimate the distribution of light scattered from a rough surface. Kirchhoff theory es-

sentially provides an integral equation for the light field reflected from a single scatterer.

Beckmann and Spizzichino adapted Kirchhoff theory for rough surfaces and derived sev-

eral simplifications applicable to particular roughness conditions. Two desirable proper-

ties of the Beckmann-Kirchhoff model are its solid basis on physical optics and its realistic

description of the surface structure. Nayar, Ikeuchi and Kanade [72] present a useful com-

parison between this physical optics model and the geometric Torrance-Sparrow model.

The assumptions made by the Beckmann-Kirchhoff model mean that it is unsuitable

for wide angle scattering. Vernold and Harvey [110] made modifications to the model

based on empirical observations. This clearly meant that the highly desirable physical

foundation of the model no longer prevailed. Nevertheless, the modification has been

shown to give accurate agreement with experiments for a variety of rough surfaces. In-

deed, Ragheb and Hancock [82] have recently shown that it gives better results than the

Oren-Nayar model in some instances.

The Kirchhoff integral was also used by He et al. [33] who incorporate many physical

phenomena into a reflectance model including dependencies on wavelength, the refractive

index, polarisation and shadowing/masking. The result is a complicated BRDF involving

separate terms for specular, directional diffuse (surface reflection) and uniform diffuse

(subsurface scattering) reflection.

Hanrahan and Krueger [31] note that many surfaces consist of multiple layers and

are poorly described by the above models. Examples of such surfaces include painted

or varnished surfaces and some organic materials such as leaves and, importantly, skin.

They therefore developed a model based on linear transport theory to account for this

fact. Jensen et al. [45] also model skin (amongst other things) but in a different way. They

extend the BRDF to the bidirectional surface scattering distribution function or BSSRDF.
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This quantity adds two further degrees of freedom to the BRDF so that the incident light

reflected from a particular point not only depends on the incident light at that point, but

also on the incident light in the local vicinity of the point. This effectively accounts

for internal scattering mechanisms. Wu and Tang [125] use the BSSRDF formulation to

devise a method to separate the surface and subsurface components of diffuse reflection

from an image, in addition to the specular component.

In papers by Schlick [95] and Lafortune et al. [55], an intermediate stance is taken on

the use of physics in the proposed reflectance functions. While neither method attempts to

model the light interaction in a plausible fashion, both take care to ensure certain physical

requirements are met. These include satisfying conditions such as energy conservation

and reciprocity. Both contributions were motivated by the graphics community so special

care was taken to ensure that the resulting equations were simple and easy to manipulate.

The Schlick paper also provides realistic renderings of anisotropic surfaces.

Despite great efforts, the search for a general BRDF (or related function) capable

of modelling the wide range of materials found in everyday life remains elusive. One

should bare in mind however, that if such a model did exist, then it would probably be too

complicated and contain too many parameters to be of any practical use. It is therefore

sufficient for most applications to accept the simplifications of the models and select the

most suitable theory for the material/application being studied. There are, of course,

many materials that are poorly modelled by all existing methods. Furthermore, in some

vision applications it is not always clear what the material being viewed should be. In

these cases, the reflectance properties must be measured experimentally or estimated from

image data. We now complete our literature review with a brief survey of these methods.

2.3.2 Empirical Reflectance Function Acquisition

Most methods to experimentally recover a material BRDF aim to generate a lookup table.

Given a particular incoming light direction and the direction of the viewer, the lookup

table can then be used to predict the reflected radiance. As with the mathematical models

23



discussed above, the ultimate goal for recovering the BRDF is to estimate the quantity

covering the entire domain of all four degrees of freedom. Also in common with the

mathematical models however, it is often only necessary to consider one, two or three of

the degrees of freedom.

The most direct method to acquire a BRDF experimentally is to use a gonioreflectome-

ter. That is, a device consisting of a light source, a material sample and a photometer. The

photometer is then used to record the variation in reflected radiance as the various degrees

of freedom in the BRDF are adjusted. A recent example of such a device is presented in

a paper by Li et al. [59], who also list previous papers on gonioreflectometers.

Dana et al. [19] used similar apparatus to a traditional gonioreflectometer, but replaced

the photometer with a camera. This allowed both featureless and textured surfaces to be

imaged and then rendered by combining images from different illumination and view-

ing angles. Textured surfaces were also considered by Han and Perlin [30], who used a

kaleidoscope to simultaneously image textured samples from many different angles.

BRDF acquisition using a gonioreflectometer is a very time consuming process and

may necessitate 104 ∼ 105 independent measurements [59]. An alternative is to use a

camera and a curved sample of known shape to make recordings. Marschner et al. [61]

used two cameras as detectors (the second camera is for calibration purposes) and cylin-

drical and spherical objects as samples. In the case of a sphere, two of the degrees of

freedom are effectively varied across a single measurement (image), while a third is var-

ied between successive images. The fourth degree of freedom, which is associated with

anisotropy, is not considered. In an earlier contribution by Ward [112], an opposite tech-

nique was used. The sample was planar but a hemispherical mirror was used to allow

simultaneous analysis of two degrees of freedom. Ward also attempted to model the mea-

sured data for both isotropic and anisotropic surfaces.

Zickler et al. [130] have suggested an alternate means to reduce BRDF acquisition

times. They used relatively few images and illumination/viewing angle combinations and

fit the resulting sparse data sets to radial basis functions. Their method can be regarded

as an interpolation between separate image recordings.
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Shibata et al. [101] use the separation of reflectance types using polarisation as part

of a process to recover reflectance functions. They fit the data to the Torrance-Sparrow

reflection model to obtain all its parameters. The method is not entirely image-based

however, as it requires surface reconstruction using a range scanner to obtain the surface

orientation at densely sampled surface points.

Robles-Kelly and Hancock [89] have recently proposed a purely image-based method

for reflectance function estimation from a single view. Their idea was to determine a

mapping from a single image onto a Gauss sphere using the cumulative distribution of

intensity gradients. The technique is general in terms of reflectance properties since it

requires no model parameter fitting. Another advantage is that no calibration is needed.

The main weakness is that the method can only be applied under conditions where the

light source and viewer directions are identical.

2.4 Conclusions

It should be clear from this literature review that (1) extensive research in shape and

reflection analysis has been conducted during the last few decades, and (2) there are many

shortcomings of the current state of the art. We conclude this chapter with a summary of

the above literature, and state the position of this thesis in the context of the broad field.

One of the earliest classes of shape reconstruction methods to be conceived was SFS.

Many of these methods work best for constant-albedo Lambertian surfaces with a single

known point-source illumination. More recent work in the field has relaxed some of

these restrictions to an extent by estimating the illumination distribution or reflectance

function. Most researchers have accepted that single-view SFS is an ill-posed problem

and have devised algorithms specific to particular domains such as face reconstruction.

Photometric stereo methods are more constrained and, depending on the precise method

and number of light sources, are more general with respect to the surface reflectance

properties. The need for multiple light sources and images however, makes the method

unsuitable for many applications.
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Geometric stereo is, in many ways, opposite in its strengths compared to SFS and

photometric stereo. While the latter methods often break down in the presence of texture

or complex albedo variations, geometric stereo relies on these features to solve the cor-

respondence problem. On the other hand, geometric stereo breaks down for featureless

surfaces since there is no means to establish correspondence. Unlike SFS and photometric

stereo which typically calculate a depth map from estimated surface normals, geometric

stereo uses a more direct depth acquisition based on triangulation.

Polarisation methods have proven to be of great use in providing additional constraints

on surface normals. The azimuth angles of the normals are particularly accurately esti-

mated using polarisation data, albeit ambiguously and subject to the specular/diffuse re-

flection type. The zenith angles are accurately but ambiguously estimated for specular

reflection and crudely but unambiguously estimated for diffuse reflection. Collectively,

these constraints are strong and come at a low computational cost without the need for any

light source calibration. The main weaknesses are the need for an estimate of the material

refractive index and the gradual breakdown of the technique for rougher surfaces.

In the field of reflectance function modelling, success has been achieved from three

approaches:

1. Using physics to model the interaction of light (as an electromagnetic wave) with a

surface

2. Modelling the surface as an array of microfacets and applying geometrical optics

3. Fitting measured data to ad hoc mathematical functions.

Despite the undesirable ad hoc nature of the last of these approaches, results are simple

and relatively general. The other two approaches are more accurate but tend to be re-

stricted to certain cases (smooth, rough, layered surfaces etc.). In a completely different

approach, measured reflectance data for various materials has been stored in lookup ta-

bles. This gives best results when the time required to obtain the BRDF is not important.

Finally, a small number of techniques have been proposed to estimate BRDFs (or por-
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tions of BRDFs) from a single image. These methods are of use in supplementing other

computer vision applications such as SFS.

This thesis addresses some of the open questions raised by the above literature. Chap-

ter 3 is largely concerned with the underlying techniques used in polarisation vision. The

chapter describes a simple shape recovery method and an analysis of the results. An im-

portant novel aspect of the contribution is that the analysis is more extensive than most

previous efforts in polarisation vision and covers a wider range of materials and geome-

tries. The contribution of Chapter 4 is to advance current techniques on image-based

reflectance functions. Relatively little work has been conducted with this goal from few

(. 3) images. We show how polarisation and robust statistics can be used to estimate

portions of an arbitrary BRDF under known, but arbitrary, light source directions. Polari-

sation has not been used for the this task until now, except with the aid of a range scanner.

Finally, the contribution of Chapter 5 is to use polarisation to address a major weakness

of geometric stereo: that most existing methods face difficulty when seeking correspon-

dence for featureless surfaces. Previous efforts to address this weakness involved dynamic

programming or SFS methods.
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Chapter 3

Polarisation Vision

The aim of this chapter is to assess the practical aspects of polarisation vision and to evalu-

ate the accuracy of the technique for various materials. The main emphasis of this chapter

is on the underlying theory of polarisation and its experimental exploitation in computer

vision using minimal computation. The novel contributions of the chapter are a sim-

ple single-view shape reconstruction algorithm that uses Fresnel theory and polarisation

information, and an uncertainty analysis of the recovered surface orientation estimates.

More sophisticated novel algorithms will be developed in Chapters 4 and 5.

The physics that underpins most of the work presented in the thesis (and other research

in polarisation vision) is based on Fresnel theory [35], which predicts the reflected and

transmitted intensities of a ray of light as it impinges upon a surface. The most important

results of this theory are the Fresnel coefficients. These give the ratio of the reflected

and transmitted light intensities to the incident light intensity as functions of the angle of

incidence and the polarisation state of the light. The fact that the reflected light depends

on both these factors makes polarisation vision possible. The dependency of the reflected

light intensity on the polarisation state results in initially unpolarised light becoming par-

tially polarised by the reflection. The dependency on the angle of incidence then means

that polarisation measurements can be used to deduce constraints on the reflection angles

and, therefore, the surface orientation. The polarisation state of the reflected light can be

analysed using a standard linear polariser and a digital camera.
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There is also a third dependency on the polarisation state of the reflected light: the

refractive index of the reflecting material. We do not currently make any attempt to esti-

mate the refractive index from the acquired images, but use typical values throughout the

thesis. Nevertheless, the success of our algorithms prove that precise knowledge of the

quantity is not essential. We have included a short aside on non-image based refractive

index estimation towards the end of this chapter.

Polarisation vision has been used previously to extract information from both diffusely

reflected light and specularly reflected light. As explained previously in Section 2.1, and

later in Section 3.1.5, there are advantages and disadvantages of exploiting each. For the

bulk of this thesis, we focus on diffuse reflection, mainly because it can be found over

entire surfaces, while specular reflections cannot. In the diffuse case, an estimate of the

surface orientation can be obtained from raw polarisation data, up to a single two-way

ambiguity.

The main contributions of this chapter are presented in Sections 3.2 and 3.3 and in-

clude a series of experiments. The aim is to assess the ability to estimate surface normals

experimentally, using results from Fresnel theory. Specifically, experiments with the fol-

lowing goals were conducted:

1. Verify that the theory and the adopted data acquisition technique is adequate for

shape analysis.

2. Describe a simple shape recovery algorithm using polarisation information, which

preludes to the more sophisticated methods presented in later chapters.

3. Assess the limitations of the above algorithm and polarisation vision in general.

4. Evaluate the accuracy of polarisation vision for various materials.

5. Make estimates of the refractive indices of the materials considered.

Chapters 4 and 5 enhance the shape recovery technique using two views and by incorpo-

rating shading information.
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The remainder of this chapter is organised as follows. We start by presenting an

overview of Fresnel theory and show how this leads to measurable quantities that can be

utilised in computer vision. The relevant relationships between these quantities and the

orientation of the reflecting surface are then derived. The basic experimental arrangement

is described, which is used for most of this thesis. Details of the single-view recon-

struction technique is presented in Section 3.2. Section 3.3 presents the details of the

experiments listed above.

3.1 Fresnel Theory and Polarisation Vision

The main purpose of this section is to present the relevant equations from Fresnel theory

and show how they can be used in polarisation vision. Before moving on to the mathemat-

ical description, it is worth considering the mechanics of an interaction between light and

a reflecting medium qualitatively. The description we give [35] is not entirely complete

as it is classical in nature. However, this thesis concentrates specifically on the highly

abundant dielectric surfaces found in everyday life (the majority of non-metals) and the

resulting equations are sufficient for our needs.

Consider an electromagnetic wave impinging a smooth surface, as in Figure 3.1. A

fraction of the energy of this wave penetrates the surface and is refracted in the process.

The electric field of the wave inside the medium causes the electrons of the reflecting

medium near the surface to vibrate, forming dipoles. These dipoles are aligned with

the electric field of the refracted electromagnetic wave. The vibrating electrons then re-

radiate, generating the reflected ray. It turns out that the net reflection is only in a single

direction due to destructive wave interference in all other directions. The strength of the

reflection depends upon the components of the electron oscillations that are orthogonal to

the reflected ray.

The incident light can always be resolved into components parallel to, and perpen-

dicular to, the plane of incidence (the plane that contains the incident, transmitted and

reflected rays). Consider the component of the electric field that is polarised parallel to
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Figure 3.1: Reflection of an electromagnetic wave, with electric field directions and relative
amplitudes indicated. Within the medium, the electrons vibrate parallel to the electric field.

the plane of incidence. The induced dipoles are not generally orthogonal to the reflected

ray, as Figure 3.1 illustrates. This results in some attenuation due to foreshortening. How-

ever, for the component polarised perpendicular to the plane of incidence, the dipoles are

always orthogonal to the reflected ray so the attenuation is not present. We can conclude

therefore, that the amount of light reflected will generally be different for each of the two

orthogonal components.

As a consequence of this, if the incident light is unpolarised, then the reflected light

will be partially polarised, i.e. will consist of a superposition of an unpolarised component

and a completely polarised component. In fact, it is possible to arrange the incident light

such that the electron oscillations due to the wave component parallel to the plane of

incidence is exactly parallel to the reflected ray. In this case, the parallel component of

the reflected ray vanishes. The light is thus completely polarised perpendicular to the

plane of incidence. The angle of incidence corresponding to this phenomenon is known

as the Brewster angle.

As Figure 3.1 suggests, the difference in attenuation between the two orthogonal com-

ponents of the light depends upon the angle of incidence. We now introduce the equations

that can predict the relative attenuations for purely specular reflection. Later, we show

how this description can be extended, by considering internal scattering, to account for

the partial polarisation of diffusely reflected light.
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3.1.1 Fresnel Coefficients

The Fresnel equations give the ratios of the reflected wave amplitude to the incident wave

amplitude for incident light components that are polarised perpendicular to, or parallel to,

the plane of incidence [35, 6]. For each component, the ratios depend upon the angle of

incidence and the refractive index of the reflecting medium.

For the geometry of Figure 3.1, where E0i⊥ and E0r⊥ are the amplitudes of the in-

cident and the reflected waves respectively, the amplitude reflection coefficient for the

component of the light polarised perpendicular to the plane of incidence, r⊥, at a bound-

ary between two media, is given by

r⊥ (ni, nt, µi, µt, θi) ≡ E0r⊥
E0i⊥

=

ni

µi
cos θi − nt

µt
cos θt

ni

µi
cos θi + nt

µt
cos θt

(3.1)

The quantities ni and nt are the refractive indices of the first and second media, µi and µt

are the magnetic probabilities of the two media, and the angles θi and θt for the incident

and transmitted light are defined in Figure 3.1.

Equation 3.1 is derived by applying the condition at the interface that the tangential

components of the electric and magnetic fields are continuous. This is achieved using the

plane wave solution [35, §2.7] to the famous wave equation. A similar equation can be

derived for the component of light that is polarised parallel to the plane of incidence:

r‖ (ni, nt, µi, µt, θi) ≡
E0r‖
E0i‖

=

nt

µt
cos θi − ni

µi
cos θt

ni

µi
cos θt + nt

µt
cos θi

(3.2)

In computer vision however, we are not usually interested in ferromagnetic materials

so µi = µt = µ0, the permeability of free space. Therefore, Equations 3.1 and 3.2 reduce

to

r⊥ (ni, nt, θi) ≡ E0r⊥
E0i⊥

=
ni cos θi − nt cos θt

ni cos θi + nt cos θt

(3.3)

r‖ (ni, nt, θi) ≡
E0r‖
E0i‖

=
nt cos θi − ni cos θt

nt cos θi + ni cos θt

(3.4)
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Figure 3.2: Reflection and transmission coefficients for a typical dielectric (n = 1.5).

The angle θt can be obtained from the well-known Snell’s Law:

ni sin θi = nt sin θt (3.5)

If the reflecting medium is placed in air, then ni ≈ 1.

Generally, it is not the amplitude of the wave that is measured by the detector, but

the intensity, which is proportional to the square of the amplitude. With this in mind, it

is possible to show that the intensity coefficients, which relate the reflected power to the

incident power, are R⊥ = r2
⊥ and R‖ = r2

‖.

Figure 3.2 shows the Fresnel intensity coefficients for a typical dielectric as a function

of the angle of the incidence, θi. Both the reflection and the transmission coefficients

are shown, where the latter refers to the ratios of transmitted to incident powers and are

simply

T⊥ = 1−R⊥

T‖ = 1−R‖
(3.6)

The point where R‖ = 0 corresponds to the Brewster angle and is typically about 60◦.

Figure 3.2 confirms what was implied by the electron vibration argument above, that the

fraction of reflected light polarised perpendicular to the plane of incidence is greater than

that polarised parallel to it.
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3.1.2 The Polarisation Image

We now consider how the above theory can be used in computer vision. In physics ter-

minology, the reflected light intensity is commonly referred to as the radiance, Lr. It is

defined as the power per unit area per unit solid angle. Our image capture system is to

measure this quantity using a standard digital camera. Consider the radiance, Lr, reflected

from a surface point and arriving at the camera. If the target object subtends a small angle

with respect to the optical axis of the camera, then the irradiance on the sensing element

in the camera (CCD chip) is [26, §4.2]

LCCD =
π

4

(
DL

DΠ

)2

Lr ∝ Lr (∝ I) (3.7)

where DL is the lens diameter, DΠ is the distance between the lens and the image plane,

and I is the measured pixel brightness. For the proportionality relation to I , we are as-

suming that the camera response function is linear. In fact, this is not quite true and it may

be possible to improve future work by taking this into account. For this thesis however we

assume linearity, as in most previous work. Equation 3.7 shows that processing greylevel

intensities provides a good representation of the physical quantity of radiance, up to an

unknown calibration constant.

For all our measurements, a polariser was placed in front of a camera and rotated to

different angles. Let θpol be the polariser angle relative to an arbitrary reference direction

(vertical). The measured pixel brightness varies with the polariser angle according to the

transmitted radiance sinusoid:

I (θpol, φ) =
Imax + Imin

2
+

Imax − Imin

2
cos (2θpol − 2φ) (3.8)

Here, Imin and Imax are the minimum and maximum observed pixel brightnesses as the

polariser is rotated and φ is the phase angle, or the angle of the linearly polarised com-

ponent of the reflected light. The maximum pixel brightness is therefore observed when

the polariser is aligned with the angle of polarisation, i.e. I (θpol = φ) = Imax, and the
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minimum is observed when the polariser is rotated by a further 90◦ in either direction, i.e.

I (θpol = φ± 90◦) = Imin. Figure 3.3 illustrates this relationship.

The degree of polarisation or partial polarisation, which is frequently used in polari-

sation vision, is defined to be

ρ =
Imax − Imin

Imax + Imin

(3.9)

This quantity will be used extensively throughout the thesis for the calculations of the

zenith angles.

We are now in a position to introduce the polarisation image, which is used by all

the methods developed for this thesis. This is a three component image that encodes the

full set of polarisation data for a given object or scene. The first component is simply the

intensity image, i.e. the standard greyscale image that would be obtained using a normal

camera without a polariser.

The second component of the polarisation image is the phase image (defined as φ in

Equation 3.8). The phase is the angle of the linearly polarised component of the reflected

light, or equivalently, the angle of the polariser that permits maximum transmission, as in

Figure 3.3. Note that polarisers cannot distinguish between two angles separated by 180◦,

so the range the phase is [0, 180◦).

The final component of the polarisation image is the degree of polarisation image,

as determined by Equation 3.9. The phase and degree of polarisation components of the
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Figure 3.4: Experimental set-up. The sine wave of greater amplitude illustrates the component of
the electromagnetic wave in the direction of polarisation, i.e. is at an angle φ to the vertical. The
other sine wave is the component 90◦ to this. The axes on the left define co-ordinate system.

polarisation image are usually found by taking images with the polariser at three or more

angles and fitting the resulting pixel brightnesses to Equation 3.8.

Figure 3.4 is a schematic of the polarisation image acquisition system. The co-

ordinate system is defined to the left of the figure and is used for the remainder of the

thesis. We assume that the projection is orthographic. The light source angles are shown

and are defined relative to the vertical x-axis (which may be regarded as the illumination

azimuth) and the camera direction (the illumination zenith). For this chapter, our experi-

ments were conducted with the light source placed beside the camera, so that θL ≈ 0. The

rotatable table is not used in this chapter, but will be referred to in Chapter 5. Although

Figure 3.4 shows the two components of the reflected light to be in phase, this is not gen-

erally true. However, since only the radiance is needed for shape recovery this does not

complicate matters.

3.1.3 Shape from Specular Polarisation

Following the dichromatic reflectance model [98], the reflected light is a superposition of

specular and diffuse components. Specularities result from direct surface reflections while

diffuse reflection can be due to subsurface scattering or the diffusion of light by rough

surfaces [118]. Both reflection types can be used in polarisation vision. The purpose of

this section is to show how to estimate the two degrees of freedom that define surface
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orientation at each point using specular reflection. The degrees are freedom are the zenith

and azimuth angles of the surface normals. The surface zenith, θ, is defined as the angle

between the surface normal and the viewing direction. The surface azimuth, α is defined

as the angle of the projection of the normal onto the image plane relative to the x-axis.

Figure 3.5 illustrates some of the angles and normal vectors used in the thesis. Two

unit vectors are shown since polarisation data only allows for an ambiguous estimate, as

explained below. We shall see that, if the reflection is specular, then polarisation analysis

yields two candidates for the azimuth angle, α(s)
1 and α(s)

2 , where α(s)
2 = α(s)

1 + 180◦. In the

case of diffuse reflection, there are also two candidates, α(d)
1 and α(d)

2 , which are shifted by

90◦ from those for the specular case. Since we will be concentrating on diffuse reflection

only after this section, we will also be referring to the azimuth angle candidates for diffuse

reflection simply by α1 and α2.

As Figure 3.2 shows, the reflected light is attenuated to a greater extent if it is po-

larised parallel to the plane of incidence. This means that the polariser allows greatest

transmission when oriented at an angle 90◦ from the azimuth angle of the surface, α. We

therefore have two azimuth angle candidates, which are simply given by

α(s)
1 = φ− 90◦ α(s)

2 = φ + 90◦ (3.10)

Possible methods for dealing with this ambiguity include initially directing the surface

normal estimates away from the object at the occluding boundary [67], and propagating

into the object (see Section 3.2), tracing level curves [83] or using several views [64]

(see also Chapter 5). If the light source and viewing directions are different, then the

consistent viewpoint constraint [22] can be used to recover information from specularities

or photometric stereo methods can be applied (Section 4.3).

The surface zenith angle can be computed by considering the degree of polarisation

(Equation 3.9). Assume that the incident light is unpolarised with radiance Li. The com-

ponents parallel to, and perpendicular to, the plane of incidence are then both Li/2. The
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Figure 3.5: Definition of angles and the two possible surface normals. γ is used in Chapter 5.
px1 and py1 can be calculated using Equation 3.16 with α = α1. For px2 and py2 , then α = α2 is
used.

magnitude of the reflected radiance is then

Lr =

(
R⊥(n, θi) + R‖(n, θi)

)
Li

2
(3.11)

The minimum and maximum radiances transmitted through the polariser are

Lmin ∝
R‖(n, θi) Li

2
Lmax ∝ R⊥(n, θi) Li

2
(3.12)

respectively. We use proportionality instead of equality here, to account for absorption by

imperfect polarisers. However, since the radiance only varies by a small amount for all

polariser angles, the two proportionality constants are almost exactly equal.

Eliminating Li from Equations 3.11 and 3.12 and writing in terms of pixel bright-

nesses, we have

Imin =
R‖(n, θi)

R⊥(n, θi) + R‖(n, θi)
Ir Imax =

R⊥(n, θi)

R⊥(n, θi) + R‖(n, θi)
Ir (3.13)
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Figure 3.6: Degree of polarisation for (a) specular and (b) diffuse reflection for two different
refractive indices. Many opaque dielectrics have refractive indices between these two values.

where Ir ∝ Lr is the magnitude of the specularity in the image. Note that the proportion-

ality constants in Equation 3.12, have been absorbed into Ir.

Substituting Equation 3.13 into Equation 3.9 gives the degree of specular polarisation1

in terms of the Fresnel coefficients:

ρs (n, θ) =
R⊥(n, θi)−R‖(n, θi)

R⊥(n, θi) + R‖(n, θi)
(3.14)

Using Equation 3.14 with Equations 3.3 and 3.4 gives ρs in terms of the refractive index,

n, and the zenith angle, θ:

ρs (n, θ) =
2 sin2 θ cos θ

√
n2 − sin2 θ

n2 − sin2 θ − n2 sin2 θ + 2 sin4 θ
(3.15)

This equation has two real solutions for θ, which are shown in Figure 3.6a. The presence

of two solutions means that there is a second ambiguity that must be solved, in addition

to the azimuth angle problem. This is not our concern however, since we shall see that

there is no zenith angle ambiguity for diffuse reflection. Note that at the Brewster angle

for specular reflection ρs = 1 since the light is totally polarised. In practice ρs will be a

little less than 1 due to a small, but finite, diffuse component of reflection.

The refractive index is not generally known, but for most dielectrics falls between 1.4

1We shall refer to polarisation caused by specular reflection as “specular polarisation,” and that caused
by diffuse reflection as “diffuse polarisation.” ρs and ρd refer to the expected degrees of polarisation for
purely specular and purely diffuse reflection respectively. ρ refers to the measured value.
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and 1.6 and the dependence of ρs on n is weak. Thus, with a known value or estimate of

n, and with ρs measured using Equation 3.9, the zenith angle, θ, can be determined up to

the ambiguity. The components of the surface normal vectors can then be obtained using




px

py

pz


 =




cos α sin θ

sin α sin θ

cos θ


 (3.16)

where α takes values of either α(s)
1 or α(s)

2 (see Figure 3.3).

3.1.4 Shape from Diffuse Polarisation

Diffuse polarisation is a result of the following process [117, 118]. A portion of the

incident light penetrates the surface and is refracted and partially polarised in the process,

as predicted by the Fresnel equations. Due to the random nature of internal scattering

however, the light becomes depolarised. Considered another way, the electron dipole

orientations are randomised. Some of the light is then refracted back into the air and is,

once again, refracted and partially polarised.

When light approaches the surface-air interface from within the medium after scatter-

ing, as shown in Figure 3.7, a similar process to that discussed earlier takes place. The

Fresnel equations can be applied, but with ni and nt in Equations 3.3 and 3.4 interchanged.

If the internal angle of incidence is above a critical angle (arcsin 1/n), then total internal

reflection occurs. Otherwise, Snell’s Law (Equation 3.5) can be used to find the angle of

emittance for any given angle of internal incidence. The Fresnel transmission coefficients

can then be calculated for a given emittance angle. Figure 3.8 shows the result of this

calculation for a typical dielectric with an additional factor of 1/n introduced due to a

difference in wave impedance [13, §2.3]. This additional factor cancels in the next step so

is not important. It should be pointed out that diffuse reflection also results from multiple

scattering from microfacets, to which this theory clearly cannot be applied, although this

extra contribution is negligible for smooth surfaces.

The azimuth angle of the normal can then be determined using the same method as
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Figure 3.7: Formation of specular and diffuse reflections.
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Figure 3.8: Fresnel transmission coefficients for the diffuse reflection in Figure 3.7 (n = 1.5).
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that used for specular reflection, except that a phase shift of 90◦ is necessary. The need

for a phase shift is illustrated by Figure 3.8, which shows that light polarised parallel to

the plane of incidence has the highest transmission coefficient and so greater intensity

is observed with a polariser at that orientation. This is in contrast to specular reflection

(Figure 3.2). The azimuth angle candidates are therefore

α(d)
1 = φ α(d)

2 = φ + 180◦ (3.17)

Using a similar approach to that used for specular reflection, we can write expressions

for the maximum and minimum pixel brightness due to diffuse reflection in terms of

Fresnel transmission coefficients:

Imin =
T⊥(1/n, θ′i)

T⊥(1/n, θ′i) + T‖(1/n, θ′i)
Ir Imax =

T‖(1/n, θ′i)
T⊥(1/n, θ′i) + T‖(1/n, θ′i)

Ir (3.18)

where the angles are defined in Figure 3.7 and 1/n is used in place of n, since light is

being transmitted from the dense medium into air. Substituting into Equation 3.9, the

degree of diffuse polarisation is then

ρd =
T‖ (1/n, θ′i)− T⊥ (1/n, θ′i)
T‖ (1/n, θ′i) + T⊥ (1/n, θ′i)

(3.19)

=
R⊥(1/n, θ′i)−R‖(1/n, θ′i)

2−R⊥(1/n, θ′i)−R‖(1/n, θ′i)
(3.20)

Snell’s Law (Equation 3.5) can be used to interchange between the internal angle of

incidence, θ′i, and the more useful angle of emittance, θ′t. When the surface is viewed

from this angle of emittance, then θ′t is equivalent to the zenith angle, θ. The relevant

Fresnel equations (3.3 and 3.4) can be substituted into Equation 3.20 to obtain ρd in terms

of the refractive index and the surface zenith angle. The resulting equation for the degree

of diffuse polarisation is:

ρd =
(n− 1/n)2 sin2 θ

2 + 2n2 − (n + 1/n)2 sin2 θ + 4 cos θ
√

n2 − sin2 θ
(3.21)
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The dependence of the diffuse polarisation ρd on the zenith angle θ is shown in Figure

3.6b. The surface normals can then be calculated using Equation 3.16, where α is either

α(d)
1 = φ or α(d)

2 = φ± 180◦ (Figure 3.3).

We therefore have a means to estimate the zenith angle and (ambiguously) the azimuth

angle for diffuse reflection using a polarisation image and Fresnel theory. Before describ-

ing our experimental methods and results in detail, where we concentrate exclusively on

diffuse reflection, we summarise the key differences in the polarising properties of the

two reflection types.

3.1.5 Discussion

There are several advantages with the exploitation of diffuse reflection compared to spec-

ular reflection. Firstly, diffuse reflection occurs over the entire object surface. Secondly,

the relationship between the degree of polarisation and the zenith angle is one-to-one for

diffuse reflection but one-to-two for specular reflection. Finally, if we assume that the

scattered light becomes completely depolarised after surface penetration, then the polari-

sation state of incident light can be arbitrary for diffuse reflection, but must be unpolarised

for specular reflection.

The main difficulties with using diffuse reflection are as follows. Firstly, the data is

generally noisier for diffuse reflection due to the weaker polarizing effects, as Figure 3.6

shows. Secondly, the dependence upon the refractive index is stronger for diffuse reflec-

tion. Finally, inter-reflections between points are mainly specular and cause erroneous

orientation estimates if the theory for diffuse reflection is applied.

Both diffuse and specular reflections are affected by roughness. At the microscopic

scale, a rough surface can be regarded as a set of microfacets (Section 2.3.1) with ran-

dom orientation. Due to external scattering between these facets (and after subsurface

scattering followed by re-emission), light impinging on a single element of the camera

CCD chip effectively has a distribution of polarisation angles. The degree of polarisation

is therefore observed to be reduced, resulting in an underestimate of the zenith angle. The
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azimuth angle estimate remains accurate provided that the mean facet orientation matches

the local mean surface orientation, i.e. so long as the surface is isotropic.

3.2 A Method for Single View Surface Reconstruction

This section describes a basic method for shape estimation using polarisation information

from diffuse reflection. We also discuss some of the practical matters regarding polarisa-

tion image acquisition. The method will then be used to reconstruct a selection of objects

in Section 3.3. The algorithm is computationally efficient and easy to implement. Al-

though it is unsuitable for precision applications and objects with complicated geometry,

results in this chapter show good reconstructions for simple surfaces. The limitations of

the technique are discussed afterwards, and are the motivations for subsequent chapters

where more accurate reconstruction techniques are developed.

3.2.1 Method Overview

The method can be summarised as follows:

1. Acquire greyscale images of the target object using the arrangement shown in Fig-

ure 3.4 with three or more polariser orientations. Only a single view is required for

this chapter.

2. Fit the pixel brightnesses at each point to the transmitted radiance sinusoid (Equa-

tion 3.8) to obtain the phase and the degree of polarisation images.

3. Calculate the ambiguous surface normal estimates using Equations 3.16, 3.17 and

3.21.

4. Disambiguate the azimuth angles.

5. Recover surface height from the estimated normals.

The raw greyscale images can be taken with the polariser rotated to just three differ-

ent orientations, θpol = 0◦, 45◦ and 90◦, to give intensities I0, I45 and I90 respectively.
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We then employ the following equations [116] (as used by the liquid crystal polarisation

cameras mentioned in Section 2.1.1), to determine the intensity I , phase φ, and degree of

polarisation ρ, at each pixel:

I = I0 + I90 (3.22)

φ =





1
2
arctan

(
I0+I90−2I45

I90−I0

)
if I90 < I0 < I45

" +180◦ if I90 < I0 and I45 < I0

" +90◦ otherwise

(3.23)

ρ =
I90 − I0

(I90 + I0) cos 2φ
(3.24)

All results presented in this thesis use these equations to estimate the phase and the

degree of polarisation unless otherwise stated. We have we also applied the Levenberg-

Marquardt non-linear curve fitting algorithm to recover the polarisation image compo-

nents from images taken with the polariser oriented at 10◦ intervals. This was obviously

more time consuming but less affected by noise. To reach a compromise between these

options, our results are based on the average of four frames for each I0, I45 and I90 image.

A single source of illumination was used for this chapter. This was placed beside

the camera, although there is nothing in the theory to suggest that this must be the case.

Indeed, in Chapter 4 we show results for different light source directions. The walls of

the room and the table on which the objects lay were black so there were negligible inter-

reflections from the environment. The camera used was a Nikon D70 digital SLR with a

fixed aperture of f5.6, and exposure of 0.25s.

The degree of polarisation is converted to zenith angle by numerically solving Equa-

tion 3.21. It is assumed throughout this thesis that the refractive index of the reflecting

medium is 1.4 except in the uncertainty analysis (Section 3.3.3). Next, Equation 3.16 was

used to calculate the Cartesian components of the surface normal vectors, at this stage

assuming that the azimuth angle α = α(d)
1 (see Figure 3.3).
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The simple disambiguation routine used in this chapter works as follows. First, the

pixels of the image are sorted according to the zenith angle with the greatest angles listed

first. We know that the vectors at the occluding contours must be pointing away from

the body of the object, so we rotate the azimuth vectors by 180◦ to α(d)
2 where necessary

in order to meet this requirement. For now, the occluding contour is simply taken as the

curve in the image where the intensity drops to greylevel 20 or lower (since the laboratory

walls were matte black). The occluding contour is not used in the techniques developed

in later chapters. Next, using the sorted pixels, the algorithm propagates into the object,

and rotates the azimuth angles by 180◦ where this provides better alignment with the

local mean normal direction. This simple approach faces difficultly far from object limbs,

due to insoluble convex/concave ambiguities. Nevertheless, a reasonable first estimate of

object shape is possible, since the method is reliable at object limbs. Also, the method is

computationally efficient.

3.2.2 Frankot and Chellappa Method

The final step in processing was to the recover the surface depth from the normal esti-

mates. This was performed using the well known Frankot-Chellappa surface integration

algorithm [27], which is used at several points in this thesis. Here, we present a brief

description of the method.

The method works by projecting the gradient field (which can be based on the surface

normal estimates) onto the nearest integrable solution. That is, the following condition

about the surface height, h (x, y), is enforced:

∂2h (x, y)

∂x∂y
=

∂2h (x, y)

∂y∂x
(3.25)

Enforcing this constraint globally has two effects. Firstly, it means that the reconstructed

surface is independent of the integration path taken through the field of surface normals.

Secondly, it smooths the surface normals, since it enforces continuous spatial derivatives.

The integrable (target) surface is represented by the sum of a series of basis functions.

46



Effectively, the surface is composed of a sum of Fourier components, each with a unique

coefficient:

h (x, y) =
∑
i,j

χi,jΨi,j (x, y) (3.26)

where i and j are discrete point indices, the basis functions are denoted by Ψ and their

respective coefficients are χ. The first partial derivatives of the integrable height are

expressed similarly for each of the x and y directions of differentiation. As the surface is

integrable, the set of coefficients for each differentiation direction are identical.

The same Fourier representation is used for the original non-integrable surface deriva-

tives. However, this time the coefficients are different for each derivative direction. The

Frankot-Chellappa algorithm calculates the integrable surface by minimising the distance

between the coefficients, χ, for the integrable and non-integrable surfaces. The final sur-

face estimate is then obtained using an inverse Fourier transform on the resulting basis

function components.

3.3 Experiments

This section describes a set of experiments conducted with the aim of illustrating both

the possibilities and the limitations of shape recovery using the method described above.

Firstly, we present the results of applying the technique to a variety of objects with com-

plex geometries. Secondly, a discussion of some of the difficulties with shape recovery

using the method is given. We then focus on cylindrical objects, with the aim to assess

the accuracy of the measurements for various materials. Finally, we describe a technique

and some experiments to measure refractive indices.

3.3.1 Shape Recovery

The first experiments conducted for this thesis are summarised in Figure 3.9. The aim

here was simply to verify the theory described in Section 3.1. Using the arrangement

shown in Figure 3.4, a sequence of images of a porcelain cylinder were acquired, with 36
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Figure 3.9: Measured intensities (and sine fits) as a function of polariser angle for points on a
smooth porcelain cylinder where the zenith angle, θ = 15◦ (top curve), 30◦, 45◦, 60◦ and 75◦.

equally spaced polariser angles, θpol, between 0 and 180◦. The transmitted radiance sinu-

soid (Equation 3.8) was then fitted to measured pixel brightnesses using the Levenberg-

Marquardt algorithm.

Since the surface is a smooth cylinder, some of the complications described later such

as inter-reflections and roughness, are not present. The recovered zenith and azimuth

angles are shown in Table 3.1. Not surprisingly, given the lack of intensity variations

associated with small zenith angles, the first phase estimate was inaccurate. Note however,

that the effect of the azimuth angle error on the overall surface normal error is small in

such cases. The other estimates are all within a few degrees of the ground truth.

Having demonstrated the possibility of surface orientation estimation, the method de-

scribed in Section 3.2 was implemented and tested on various objects, as shown in Figure

3.10. The top row shows the raw greyscale images of the objects studied. The first three

objects are made from smooth shiny porcelain and the fourth object is made from slightly

rough yellow plastic. The second row shows the phase angle of the reflected light. The
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Table 3.1: Measured zenith and azimuth angles of points on a porcelain cylinder

Ground truth θ Measured θ Ground truth α Measured α
15 13.4 90 38.9
30 27.1 90 79.4
45 46.6 90 93.9
60 64.0 90 89.6
75 78.4 90 90.2

phase has been accurately recovered for all objects including the rougher plastic duck. The

measured degree of polarisation is shown in the third row. The effects of the roughness of

the plastic duck are more noticeable here: the degree of polarisation appears slightly lower

at the object limbs, compared to the smoother porcelain objects. The recovered fields of

surface normals, or needle maps, are shown in the bottom row. Figure 3.11 shows the

result of applying the needle map integration algorithm to the field of surface normals. It

is clear that the basic shapes have been recovered, but with the shortcomings discussed

below.

3.3.2 Limitations

There are three main limitations of the technique and are described in this section. The

first of these is that the 180◦ ambiguity in azimuth angles is not comprehensively solved.

Close examination of Figs. 3.10 and 3.11 reveal that not all areas of the surfaces have been

correctly disambiguated. This is particularly problematic far from the occluding contours

and for objects with complex geometry. A more complete disambiguation process is

described in Chapter 5 and involves two views.

The second limitation of the technique is due to the difficulties encountered when

reconstructing rough surfaces, as described in Section 3.1.5. The reconstruction of the

slightly rough plastic duck in Figure 3.10d, is encouraging since the phase angle still

provides a good estimate of the surface azimuth angle (Figure 3.10p). The depth estimate,

shown in Figure 3.11d, is not too bad but the zenith angles were underestimated resulting

in the reconstruction being too flat.

The third limitation of the method is that caused by specularities. This includes both
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Figure 3.10: Greyscale images of a smooth porcelain (a) vase, (b) urn and (c) bear model and
(d) a slightly rough plastic duck. The images are approximately 350 pixels in height. (e-h) Phase
images. (i-l) Degree of polarisation images, where dark areas have highest values. (m-p) Estimated
surface normals (reduced resolution).
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Figure 3.11: Recovered depth maps of the porcelain vase, urn and bear model and the plastic
duck.

direct reflections from a light source and inter-reflections between different points on the

object. In the case of direct specularities, we should ideally apply the theory for specular

reflection to recover the surface orientation (i.e. use α = α(s)
1 or α(s)

2 and calculate θ from

Equation 3.15). Of course, isolating specularities from the rest of the image is not a trivial

task [109]. In many situations however, including those described in this thesis, there are

only a small number of light sources and each source subtends only a small angle from the

object. In such situations, direct specularities are small and have little effect on results.

For many of the experiments described here, a single light source is used which lies in

the same direction from the object as the camera. In this case, the specularities cause

saturation for all polariser angles. This means that Imin = Imax, and so the estimated

zenith angle is zero, as desired.

For inter-reflections (or direct specularities from weak sources), there are compet-

ing diffuse and specular components that may or may not cause large errors in surface

orientation estimates, depending on the relative strengths of each component. We demon-

strate the detrimental effects of inter-reflections here, but postpone a detailed analysis

until Chapter 4, where we also describe a method to minimise their effects. Figure 3.12
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a

Inter-reflection

b

Figure 3.12: Close-up images of the handle of the porcelain urn shown in Figure 3.10b using (a)
a vertical polariser (θpol = 0) and (b) a horizontal polariser (θpol = 90◦).

a b

Figure 3.13: (a) phase image and (b) degree of polarisation image of the handle of the porcelain
urn. The degree of polarisation image has been rescaled here to aid the figure’s clarity.

shows two close-ups of the handle of the porcelain urn from Figure 3.10b. The images

were taken using θpol = 0 and 90◦. In (a), the inter-reflection of the handle can be seen

on the body of the urn since the specularly reflected light is polarised vertically and so is

transmitted through the polariser. When the polariser is rotated by 90◦, the inter-reflected

light is absorbed by the polariser. The consequences of this can be seen in Figure 3.13,

where there is a phase discrepancy of 90◦ in the azimuth angle. The degree of polarisation

also differs from surrounding areas.
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3.3.3 Evaluation of Accuracy

To assess the accuracy of the method, a set of vertically oriented cylinders of various ma-

terials were used. The geometry of a cylinder is convenient for three reasons. First, the

structure is simple enough for shape recovery to be performed exactly from a single im-

age2. Second, the analysis can easily be performed for all possible zenith angles. Thirdly,

noise can be reduced by taking the average image intensity for each column of pixels.

Due to this final point, and the fact that no inter-reflections are present with cylinders, this

analysis therefore represents the best case scenario for the method.

Fitting the measured intensities to Equation 3.8 as before, we obtained a set of graphs

showing the measured and theoretical zenith angles against position across the cylinder

for different materials. For this experiment, eighteen different polariser angles were used.

Since the azimuth angle of the cylinder is constant, we can also assess how the accuracy

of azimuth angle estimates vary with zenith angle, if at all. A sample of these results

for porcelain, blank photographic paper, photographic paper coated with cling film and

normal paper are shown in Figure 3.14. Here the solid lines show the measurements

and the broken lines show the ground truth. The photographic paper is much smoother

than normal paper as it is coated to produce glossy photographs. The normal paper on the

other hand is matte and much rougher. Several other material samples were also analysed,

including different paper types, plastics, wax, terracotta and paper coated with ink. The

first point to note about the figures is that, even for normal paper, which at the fine scale

is very rough, the azimuth angles have been recovered to a very high degree of accuracy.

However, more noise is associated with the rougher surfaces.

There was more variation in the accuracy of the zenith angle estimates. For Figure

3.14, the refractive index used was simply the value that produced greatest similarity

between theory and experiment for the material in question. The shiny white porcelain

object (the same type of porcelain can be seen in Figs. 3.10a-c) produced excellent agree-

ment with theory down to very small zenith angles.

2This is simply done by manually isolating the cylinder from the background and calculating semicircles
that arch from one side of the object to the other.
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Figure 3.14: Plots of measured zenith and azimuth angles (solid lines) across the surfaces of
cylinders of different materials. The exact values are indicated by the broken lines.
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The remaining graphs in Figure 3.14 demonstrate the complications that can cause

the measured zenith angles to deviate from the expected values. The result for blank

white photographic paper, for example, is very accurate for large zenith angles but an

increasing discrepancy is present as the zenith angle approaches zero. When the paper is

coated in cling film, the discrepancy is less marked. Clearly, this suggests that there is a

process occurring that is not accounted for by the theory and may be due to microfacet

inter-reflections or imperfect depolarisation of incident light upon surface penetration. In

any case, it should be noted that the greylevels differ only by a few greylevels as the

polariser is rotated for regions of small zenith angles, meaning that results are generally

unreliable for such areas. The results for paper, which is a rough matte surface, also show

the phenomenon of finite polarisation at low zenith angles, as well as the depolarising

effects of roughness nearer to the limbs.

For comparison, Figure 3.15 shows the zenith angle prediction using the Lambertian

reflectance model. This model has been used previously for many SFS algorithms since

the conception of the field by Horn [38]. For retro-reflection, the Lambertian model

predicts that the intensity is simply given by

I ∝ cos θ (3.27)

where the constant of proportionality is the albedo. For Figure 3.15, the albedo was se-

lected manually to give best agreement with the measured data. Clearly, polarisation

analysis gave much better results for porcelain, but worse for paper (a classic example of

a Lambertian surface). Note however, that polarisation gave a good estimate (albeit am-

biguous) of the azimuth angle in both cases, while there is no obvious means to calculate

the azimuth using SFS [123].

A final accuracy experiment involved dyeing the cylinder of photographic paper with

different colours of ink, as shown in Figure 3.16. The recovered zenith angles are shown

in Figure 3.17. It is obvious from the graphs where the transitions between colours occur.

It appears that darker inks cause greatest variation, suggesting that good shape recovery
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Figure 3.15: Estimation of zenith angles using the Lambertian reflectance model (solid line)
compared to ground truth.

Figure 3.16: Dyed photographic paper wrapped around a cylinder used to test shape recovery for
surfaces with different coloured coatings.
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Figure 3.17: Measured (solid line) and exact (broken line) zenith angles across the surface of the
dyed photographic paper in Figure 3.16. There are two solid lines, corresponding to the left and
right hand sides of the cylinder.

would be possible only if inks of similar albedo were present in an image. This figure

assumes that the refractive index is 1.4 for all of the inks — an assumption that is proved

invalid in the next section.

3.3.4 Refractive Index Measurements

This short section has been included in the thesis to provide a link between the experi-

ments and the theory. We describe a simple method to estimate the refractive index using

a laser and photometer. Estimates for different materials are compared to the values used
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in Section 3.3.3.

In order to measure the refractive indices, the device shown in Figure 3.18 was con-

structed. The device works by placing a sample of the material under study on a table

that can be rotated by small angles (measured to within 1◦ if the accuracy of the refrac-

tive index is to be within 0.1 of the true value). Laser light is then directed at a plane,

vertical surface of the sample, which reflects the light through a polariser with horizontal

transmission axis onto a white screen.

The spot of light on the screen is then observed as the sample is rotated about a vertical

axis. The vertically polarised component of the reflected light is absorbed by the polariser,

so the spot brightness varies as R‖ in Figure 3.2. At the Brewster angle, θB, we know that

R‖ = 0 and so the spot disappears. A simple relation between this angle and the refractive

index can be found by applying Snell’s Law (Equation 3.5) to the case where θi+θr = 90◦,

to give:

n = tan θB (3.28)

The refractive index can therefore be estimated directly from the Brewster angle. For

smooth surfaces, the angle where the spot of light disappears is easy to measure accu-

rately, giving an uncertainty in refractive index measurements of only 4%. This increases

for rougher surfaces, since the laser light gets diffused by the reflecting surface. Con-

ducting the experiment in a dark room meant that the disappearance of the spot could

be detected by the naked eye, although a photometer can increase accuracy. It should

be noted that the refractive index should not be measured using infra-red or any other

non-visible light since it is a function of wavelength (we assume that the dependence on

wavelength is negligible within the range of visible light). Note also that for coated sur-

faces, it is possible that a reflection from the underlying substrate affects the measured

refractive index. We assume that this effect is negligible for these measurements.

Table 3.2 gives a comparison between the measured refractive indices and the values

that produced the best agreement with the experiments in Section 3.3.3. Measurements

taken from the refractometer are denoted by nref, while nexp refers to the values that gave
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Figure 3.18: Photograph and schematic of the refractometer. As the sample is rotated, the inten-
sity of the spot of light on the screen changes according to Equation 3.4. The refractive index can
be found by orienting the sample such that the spot disappears.

Table 3.2: Measured refractive indices
Material nref nexp Difference
Photographic paper 1.30 1.30 0.00
Photographic paper in cling film 1.54 1.70 -0.16
Photographic paper in thicker clear film 1.54 1.70 -0.16
Smooth white porcelain 1.28 1.30 -0.02
Smooth white plastic 1.28 1.28 0.00
Slightly rough orange plastic 1.54 1.25 0.29
Slightly rough wax 1.48 1.23 0.25
Cello tape 1.43 1.30 0.13
Grey ink 1.35 1.35 0.00
Blue ink 1.37 1.45 -0.08
Yellow ink 1.30 1.32 -0.02
Red ink 1.37 1.40 -0.03
Green ink 1.40 1.45 -0.05
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best agreement with the experimental curves, such as those in Figure 3.14. Some of the

roughest materials dispersed the laser light too much to allow reliable measurements to

be made, and so are not included. Results for all the smooth, opaque materials, and all but

one of the inks fell within experimental error. As one might expect, given the discussion

in the previous section, rougher materials, translucent materials and materials coated in

transparent media caused greater differences between the two values.

3.4 Conclusions

This chapter has accomplished the following:

1. It has presented Fresnel theory and its extensions to polarisation vision.

2. Described a polarisation image acquisition system.

3. Demonstrated that polarisation information can be used to accurately, but ambigu-

ously, estimate surface azimuth angles for both smooth and slightly rough surfaces.

4. Shown that the zenith angles can also be calculated, but less accurately and are

affected by roughness and inter-reflections.

5. Described a simple shape recovery algorithm based on polarisation data from a

single view.

6. Conducted experiments to show the accuracy of surface normal estimates in the

best case scenario (i.e. little noise, no inter-reflections and known refractive index).

7. Conducted an experiment to measure refractive indices of various materials.

The first two of these points are essentially standard, but form the theoretical and

experimental foundations of the thesis. The third point is important, since many shape

recovery algorithms are unable to accurately and reliably estimate azimuth angles. It also

shows that polarisation vision is not restricted to perfectly smooth objects. Obviously,
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the ambiguity in the azimuth angles present difficulties for shape recovery and the dis-

ambiguation routine described in this chapter was rather simplistic. We shall return to

this issue in Section 4.3 and Chapter 5. Point 4 shows that, for smooth surfaces, rea-

sonable zenith angle estimates can be made from the polarisation data. However, the

complications caused by inter-reflections and roughness illustrate that there is scope for

improvement. In Chapter 4, we address this issue by refining the zenith angle estimates

using shading information. Point 5 shows that reasonable shape reconstruction is possible

using a simple and efficient algorithm for certain cases. Point 6 shows the extent to which

roughness affects the normal estimates in the absence of inter-reflections. Finally, point

7 offers an interesting link between the theory and experiments, but was not included to

improve shape recovery techniques.
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Chapter 4

Reflectance Analysis

This chapter presents an analysis of the reflectance characteristics of a variety of materi-

als. The aim is to recover material reflectance functions for known illumination conditions

with the aid of polarisation data. The recovered reflectance functions can be regarded as

“slices” of the full BRDFs corresponding to the given lighting. They are to be repre-

sented numerically by relationships between the surface zenith and azimuth angles and

the measured image intensities.

Two methods for reflectance function estimation are presented in this chapter. The

first is concerned with the special case where the light source and camera directions are

identical, i.e. the case of retro-reflection. In this situation, the attainable slice of the BRDF

is a one-dimensional function of the zenith angle since the reflected intensity in the di-

rection of the camera is independent of the azimuth angle. This allows a simpler, more

accurate and more efficient BRDF estimation procedure than in the more general case.

Our proposed algorithm uses robust statistics to fit a curve to the measured polarisation

and intensity data.

The second method assumes known but arbitrary light source positions and seeks a

two-dimensional BRDF that minimises an energy functional using simulated annealing.

This method also makes use of photometric stereo, which is used to disambiguate the

azimuth angle estimates. Both methods utilise the histogram of surface orientations (es-

timated from the polarisation image) and pixel intensities, which forms our data set for
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curve/surface fitting.

In addition to estimating BRDFs from greyscale images, we have conducted a few

experiments with colour. In this case, three BRDFs are recovered from the raw images,

one for each of the red, green and blue colour channels. These independent reflectance

functions are then combined allowing to render colour images.

The organisation of this chapter is as follows. In the first section, we formally de-

fine the BRDF and explain how the physical quantities involved relate to the discrete,

dimensionless pixel greylevels associated with an image. The section also introduces the

results of a physics-based BRDF model derived by Wolff that we later compare to our

estimated BRDFs. In Section 4.2, the method for co-incident viewing and illumination is

presented, along with a set of experiments for various materials. Section 4.3 describes a

multiple image technique to disambiguate azimuth angle estimates using three different

light source directions. Finally, Section 4.4 describes the algorithm to recover BRDF data

with non-coincident viewing and illumination. Again, results are presented to support the

method.

4.1 Reflectance Function Theory for Computer Vision

The BRDF, f (θi, αi, θr, αr), of particular a material is the ratio of the reflected radiance,

Lr(θr, αr), to the incident irradiance, Li(θi, αi), for given illumination and viewing direc-

tions. It is measured per unit solid angle per unit foreshortened area and is given by

f (θi, θr, αi, αr) =
Lr(θr, αr)

Li(θi, αi) cos θi dω
(4.1)

where θi and αi denote the zenith and azimuth angles of the incident light and θr and

αr refer to the zenith and azimuth angles of reflected light respectively [26]. The light

source for Equation 4.1 is assumed to subtend a differential solid angle dω (integration

can be used for extended light source distributions). As indicated by Equation 3.7, the

measured intensity is approximately proportional to the incoming radiance. We do not,
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therefore, calibrate the light source but work with quantities that are proportional to the

true radiance.

We will not be using the reflectance function directly, but the radiance function,

Lr (θi, θr, αi, αr), instead. The radiance function incorporates the cos θ term in Equa-

tion 4.1, so that Lr (θ) ∝ f (θ) cos θ. For the remainder of this chapter, we therefore

concentrate on the estimation of the radiance function. It is straightforward to calculate

the reflectance function up to an unknown constant with the radiance function to hand.

Throughout this thesis, all surfaces are assumed to exhibit isotropic reflectance prop-

erties. As a result, the BRDF is independent to rotations about the surface normal and the

number of degrees of freedom reduces to three, i.e. f (θi, αi, θr, αr) → f (θi, θr, αi − αr).

For the special case of retro-reflection, the number of degrees of freedom reduces to one.

This is because the two zenith angles in Equation 4.1 are equal (θi = θr = θ), and the radi-

ance reflected in the viewer direction is independent of azimuth angle. For retro-refection,

the reflected radiance can therefore be written as

Lr(θ) = f (θ) Li(θ) cos θ dω (4.2)

Section 4.2 focusses on this specific case. In effect, the method presented estimates a

unidirectional reflectance distribution function. Since the measured pixel intensities are

independent of the azimuth angles under retro-reflection conditions, the azimuth angle

ambiguity does not complicate the reflectance function estimation process.

The incident radiance, Li(θ), is not generally known since we work with an uncal-

ibrated light source. Consequently, we simply estimate the reflected radiance up to an

unknown constant. However, this constant is unimportant for many graphics and vision

applications such as surface rendering or shape estimation, since we only require the re-

lationship between the surface normal directions and the pixel brightness, I .

Our approach to BRDF recovery is image-based, since the estimation is derived nu-

merically from the image data alone. In contrast, many attempts have been made previ-

ously to fit mathematical functions to the observed intensities, with or without reference
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to physical considerations. A brief survey of these methods was provided in Section 2.3.

Many of the results in this chapter are compared to the physics-based model developed

by Wolff [115]. The model is based on Fresnel theory, which was presented in Section

3.1, where light penetrates a surface and is internally scattered. Subsurface refraction is

modelled using a Fresnel attenuation factor. Wolff uses a scattering theory, which was

originally derived for radiative transfer, to model the distribution of scattered light within

a medium. Multiple internal reflections are permitted by the theory, as in the reflected ray

in Figure 3.7. The principle result of the Wolff model is the following BRDF prediction:

f (θi, θr, n) = % (1−F (θi, n))
(
1−F

(
arcsin

(
sin θr

n

)
, 1

n

))
(4.3)

where % is the total diffuse albedo and F (θi, n) is the Fresnel function given by

F (θi, n) = 1
2

sin2(θi−θt)

sin2(θi+θt)

(
1 + cos2(θi+θt)

cos2(θi−θt)

)
(4.4)

where n = (sin θi) / (sin θt) (Snell’s law).

In the case of retro-reflection, the two Fresnel terms in Equation 4.3 are equal. Intro-

ducing a cos θ factor to account for foreshortening effects, we can therefore write

I (θ, n) ∝ cos θ (1− F (θ, n))2 (4.5)

For the next section, Equation 4.5 is sufficient for our comparisons with the model. For

Section 4.4, when more general illumination conditions are used, we must revert back to

using Equation 4.3.

Equation 4.5 is monotonic in θ. This coincides with intuition, since one would expect

the intensity to continuously decease as the line of sight approaches the grazing angle

of the surface. Not surprisingly, the Lambertian model (Equation 3.27) also predicts

this, as do our experiments presented later in this chapter. It is worth noting however,

that this is not always the case. Research into light scattering from rough surfaces [74,

§4.3] has shown that multiple scattering at the surface can destroy the monotonicity in
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certain rare cases. The effect is particularly marked for extremely rough surfaces when

the roughness correlation length is comparable to the dimensions to the wavelength of

the incident light. Some success has been achieved at quantitatively accounting for such

effects but the models are not yet comprehensive.

In their experiments, Dana et al. [19] measured BRDF data for a wide range of mate-

rials. A few of which were shown to exhibit non-monotonic relationships. For example,

the individual strands of a velvet surface can reflect light very strongly if the orientation

of the strands and the direction of the incident light are perpendicular. This results in

a brightening effect near occluding contours. Since this thesis is only concerned with

smooth and slightly rough surfaces however, we shall make assumptions on the mono-

tonicity of the BRDFs to aid our algorithms (details of the constraints that we apply are

given in subsequent sections).

4.2 One-dimensional Reflectance Function Estimation

This section presents the method for estimating a one-dimensional slice of the BRDF

for the case of retro-reflection. The technique makes use of the 2D histogram of zenith

angles and intensities, i.e. the observed distribution of the greyscale values with the zenith

angles. The aim is to robustly fit a curve to this histogram, which accurately represents the

material reflectance function. The fitting is achieved in two steps. First, an initial estimate

is acquired by tracing the peak frequency curve on the histogram. The estimate is then

refined by fitting probability density functions to the histogram and forming the BRDF

curve from those. At the end of the section, we present results for a series of objects and

materials.

4.2.1 Statistical Analysis

The histogram of zenith angles and intensities, which is the essential ingredient for our

method, is defined formally as follows. From the polarisation data, we have a set of

Cartesian pairs, D = {(θd, Id) ; d = 1, 2...|D|}, where θd is the zenith angle estimated
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Figure 4.1: (a) Histogram of intensities and zenith angle estimates for the porcelain bear. (b)
Scaled histogram.

from Equation 3.21 and Id is the measured pixel greyscale value at the pixel indexed d.

The histogram contents for bin (a, b) are given by HCa,b = |BCa,b|, where BCa,b ⊆ D is

the set Cartesian pairs falling into the relevant bin. This subset is given by

BCa,b =





(θd, Id) ;
θd ∈

[
θ

(bin)

a − 90◦
2kmax

, θ
(bin)

a + 90◦
2kmax

)
∧

Id ∈
[
I

(bin)

b − 255
2kmax

, I
(bin)

b + 255
2kmax

)





(4.6)

where
{

θ
(bin)

a ; a = 1...kmax

}
and

{
I

(bin)

b ; b = 1...kmax

}
are kmax equally spaced bins ranging

from 0 to 90◦ and 0 to 255 respectively and kmax is the number of bins. For this chapter,

we use kmax = 100. Figure 4.1a shows the histogram {HCa,b} for the porcelain bear model

shown in Figure 3.10c.

Figure 4.2a shows a “footprint” of the histogram. Since the light source and camera

directions are approximately identical, one would expect the intensity to decrease mono-

tonically with the zenith angle. Indeed, the general structure of the histogram confirms

this. Note however, that the main curve in the histogram is broad and that a significant

number of pixels fall into bins far away from this curve. Figure 4.2 highlights image

regions corresponding to three different parts of the histogram. Unlike the pixels falling

into box 1, the pixels in boxes 2 and 3 do not follow the general trend.

The main reason for the wide spread of the data in Figure 4.2 (in addition to noise)
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Figure 4.2: (a) Footprint of the histogram in Figure 4.1a. Bins of higher frequency are shown as
dark patches (logarithmic scale). The exact reflectance curve is also shown. The greyscale images
highlight pixels falling into (b) box 1, (c) box 2 and (d) box 3.

is that inter-reflections are taking place. An inter-reflection occurs where light from a

source is specularly reflected from one point on the object to another, and then toward the

camera. This process therefore satisfies the conditions for specular reflection, although a

diffuse component will generally be present also. It can occur at the small scale between

the corrugations that constitute roughness, or macroscopically between different regions

of the surface or the environment.

The exact effect of an inter-reflection depends upon its strength. If it is weak, then the

diffuse component still dominates. The degree of polarisation, and hence the zenith angle

estimate, will be reduced since the angle of polarisation of specularly reflected light is

perpendicular to that of diffuse reflection (see Chapter 3). This process can be seen in box

2 of Figure 4.2. Here, a small specular component is present due to reflections from the

table on which the object rests. For strong inter-reflections, the specular component dom-

inates, as in box 3. Since the polarizing properties of specular reflection are greater than

that for diffuse reflection, we have a situation where the degree of polarisation exceeds

that which would be expected for purely diffuse reflection.

Notice that, apart from the cases were the strong inter-reflection limit is met (as in
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box 3), the degree of polarisation is equal to, or less than, the expected value for a given

zenith angle. This is substantiated by the fact that the exact curve (measured using an

object of the same material but known shape) approximately follows the outer envelope

of the histogram.

4.2.2 Proposed Method

The radiance function, Lr (θ), is to be approximated in terms of a set of discretely sampled

Cartesian pairs L̂r = {(θk, Ik) ; k = 1, 2...kmax}. Next we describe a means to acquire an

initial estimate of L̂r, before presenting a method for refining the results.

Initial Estimate

Figure 4.2 suggests that we need to calculate a curve that follows the outer envelope of

the histogram. However, we obtain an initial estimate of the reflectance function curve

derived from the crest of the histogram. One difficulty here is that there are too few

data points in some parts of the histogram to obtain a reliable estimate. We overcome

this problem by dividing the data into histogram bins of equal frequency, instead of us-

ing the uniformly spaced bins mentioned previously. Our algorithm accomplishes this

task by sorting the pixels in D according to intensity and selecting the intensity of every

(|D|/kmax)
th pixel as a bin edge. For all pixels falling into a given intensity bin, we apply

a similar process to obtain zenith angle bin boundaries.

The frequency for each bin, HC, is then divided by its area to give a scaled frequency

HC ′ at the centre points of each bin. Two-dimensional linear interpolation is then used

between the bin centres to calculate a value at each point on an evenly spaced kmax × kmax

grid to form a resampled and rescaled version of the histogram,
{
HC ′

a,b

}
, as shown in

Figure 4.1b.

Although, the resultant “histogram” has no direct physical interpretation, it makes it

easier to robustly trace the peak frequency curve. The curve is first calculated in polar
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Figure 4.3: (a) Broken curve: initial BRDF estimate. Solid straight line: IB(θ). Broken straight
lines: IL(θ) and IU (θ). (b) Histogram of the length {Dd} for all pixels bounded by IL(θ) and
IU (θ). (c) Histogram after removal of pixels that do not obey Equation 4.13.

co-ordinates1 with the origin at (θ = 0, I = 0). For kmax equally spaced polar co-ordinate

angles between 0 and 90◦, the scaled frequency, HC ′, is plotted against the distance from

the origin. The distance where HC ′ reaches its maximum is then taken as a data point

on the initial BRDF estimate. These distances are then smoothed before reverting back

to Cartesian space. An example of an initial BRDF estimate is shown in Figure 4.3a.

The initial estimate is often quite reasonable by itself and takes less than two seconds to

calculate for a 512 × 512 image using MATLAB on a 2.8GHz computer (which is used

for all computations mentioned in this thesis).

Final Estimate

Figure 4.4 illustrates the geometry used to calculate the final BRDF estimate. For each

pair of consecutive points on the initial estimate, (θk, Ik) and (θk+1, Ik+1), we calculate

a point on the refined BRDF estimate that falls on the straight line IB(θ, k). This is the

perpendicular bisector of the second straight line I⊥(θ, k), which connects the pair of

1It may be useful to think of the Cartesian co-ordinate space that contains the histogram and the dis-
cretely sampled points of the BRDF in terms of normalised co-ordinates of bin lengths, i.e. I ← Ikmax/255
and θ ← θkmax/90◦ for the kmax × kmax histogram.
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Figure 4.4: Definitions used in the calculation of the reflectance curve. The bold curve is the
initial estimate.

points on the initial estimate. The gradient m(k) is simply given by

m(k) =
θk − θk+1

Ik+1 − Ik

(4.7)

The two straight lines parallel to IB(θ, k) that pass through (θk, Ik) and (θk+1, Ik+1)

are also calculated. Call these IU(θ, k) and IL(θ, k) respectively. These lines define the

region of the histogram that we use to estimate the point on the final BRDF curve related

to point k on the initial estimate. The broken lines in Figure 4.3 show IU(θ, k) and IL(θ, k)

for a particular k in a real-world example. For each k, we therefore extract data points

{(θd, Id)} that satisfy

IL (θd, k) < Id < IU (θd, k)

θL (Id, k) < θd < θU (Id, k)
(4.8)

where θL(I, k) = θk+1 + (I − Ik+1) /m(k) and θU(I, k) = θk + (I − Ik) /m(k) are the

inverse functions of IL and IU respectively.
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We are interested in the distribution of distances {Dd(k)} between the location of the

data points d and the line I⊥(θ, k) (see Figure 4.4). The distance Dd(k) is given by:

Dd(k) =
(Id − Ik) m(k) + θd − θk√

m(k)2 + 1
(4.9)

Negative values of Dd(k) indicate that the point is to the left of the intersection between

IB(θ, k) and I⊥(θ, k).

The broken straight lines in Figure 4.3a indicate the region of the histogram where

Equation 4.8 is obeyed for a particular k. Figure 4.3b shows a histogram of {Dd(k)}
for the points falling into this region. To maintain the robustness of the algorithm, we

would like to fit a probability distribution function (PDF) to the data. The most obvious

choice of PDF would be a Gaussian. However, the histogram can be distorted due to

inter-reflections and roughness, meaning that it is asymmetric. We therefore fit {Dd(k)}
to a Weibull distribution [52] instead, which takes the form of a skewed Gaussian. The

Weibull PDF is given by

g (t|ψ, ζ, ν) =





ζ
ψ

(
t−ν
ψ

)ζ−1

exp

(
−

(
t−ν
ψ

)ζ
)

t ≥ ν

0 t < ν

(4.10)

where ψ is a scale parameter, ζ is a shape parameter and ν is a location parameter.

In Figure 4.3b, the distances, {Dd(k)}, bounded by Equation 4.8 for a particular k,

have been fitted to a Weibull PDF using a standard maximum likelihood approach. Clearly

this is inadequate since there is an inter-reflection taking place that is resulting in a dif-

ferent distribution for some of the points (box 2 in Figure 4.2). However, since there are

generally relatively few points in the inter-reflection we can discard data that falls under

the tails of the PDF and calculate a new set of parameters. We iterate this until conver-

gence (typically only three or four iterations are necessary). The histogram in Figure

4.3c shows the result. Note that we have used the same number of bins as for the first

histogram, but over a smaller range.

In order to determine which points to discard, the algorithm first calculates the mean,
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µ, and standard deviation, σ, of the PDF, which are given by

µ = ψΓ (1 + 1/ζ) (4.11)

σ = ψ

√
Γ (1 + 2/ζ)− Γ (1 + 1/ζ)2 (4.12)

where Γ(x) =

∫ ∞

0

e−ξξx−1dξ is the gamma function. We then discard points that do

not fall within two standard deviations of the mean. That is, the algorithm recalculates

the PDF parameters using only points that satisfy

µ− 2σ < Dd(k) < µ + 2σ (4.13)

After the Weibull parameters have converged, we set

D(fin)
k = µ + 2σ (4.14)

to represent the outer envelope of the histogram, which is shown in Figure 4.4. D(fin)
k is

generally positive since the BRDF is expected to lie on the outer envelope of the his-

togram. D(fin)
k can easily be converted to a Cartesian pair (θ(fin)

k , I (fin)
k ), which we then accept

as a point on the reflectance curve.

Applying the above procedure for each point on the initial estimate is sufficient to

arrive at a good estimate of the reflectance function. There are nevertheless, several steps

that we used to increase the robustness of the algorithm further:

Additional Steps

1. If there are too few pixels that satisfy Equation 4.8 for a points k and k + 1 on

the initial estimate, then use points k and k + kn. The choice of kn should be the

minimum value such that a sufficient number (e.g. 1% of the total number of pixels)

of points satisfy the condition.

2. Apply Gaussian smoothing to {D(fin)
k } before calculating {(θ(fin)

k , I (fin)
k )}.
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3. Apply the extra constraint [118] that lim
θ→90◦

f (θ) = 0

The algorithm is summarised in Pseudocode 1.

Pseudocode 1 One-dimensional BRDF estimation.
Initial Estimate

Calculate the 2D histogram of intensities and zenith angles {HC}
Scale the histogram to obtain {HC ′}
for [kmax equally spaced polar angles] do

Extract the 1D slice of {HC ′} for the given polar angle
Set the peak of the 1D slice to be a point on the initial estimate, (θk, Ik)

Smooth the points on initial estimate, {(θk, Ik)}
Final Estimate

for [kmax points on BRDF estimate] do
Calculate the lines IB(θ), I⊥(θ), IL(θ) and IU(θ) (Figure 4.4)
Extract points k in relevant region of histogram (Equation 4.8)
if [insufficient number of points in region] then

Apply additional step 1
Calculate distances {Dd(k)}
Calculate 1D histogram of {Dd(k)}
while [Weibull parameters not converged] do

Calculate maximum likelihood Weibull parameters
Discard outliers (Equation 4.13)

Calculate D(fin)
k (Equation 4.14)

Smooth distances {D(fin)
k }

Convert {D(fin)
k } to Cartesian pairs {(θ(fin)

k , I (fin)
k )}

4.2.3 Experiments

The estimated reflectance functions for several porcelain objects are shown in Figure 4.5.

Each curve took a total of approximately five seconds to compute. Clearly, the curves

follow the general trend of the exact curve and are approximately the same as each other.

Importantly, this shows that the inter-reflections have been discounted from the BRDF.

The algorithm appears to be most reliable at intermediate zenith angles. For the largest

zenith angles, less data tends to be available, although additional step 1 above improves

matters. Arbitrarily setting the final PDF condition Equation 4.14 to µ + σ would give

results that more closely match the ground truth.

Figure 4.6 shows the histogram footprint of a partially painted porcelain cat model,

which is used to investigate how areas of different albedo affect the algorithm perfor-
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Figure 4.5: Estimated reflectance functions for the four porcelain objects shown and the model
bear, compared to the exact (thick) curve and the Wolff model prediction (broken curve).

mance. The figure shows that pixels of the painted areas of the porcelain cat model fall

well within the envelope of the histogram. This meant that the algorithm recovered the

radiance function of the porcelain, while the smaller painted areas were disregarded by

the robust fitting method. The estimated reflectance function is shown in Figure 4.7. Note

however, that the algorithm does not always recover the radiance function of the most

prevalent colour/material. For example, suppose that most of the cat model was red but

that some areas were white. In this case, the results would be strongly affected by both

red and white areas.

In Figure 4.7, we have applied the algorithm to an apple and an orange. Again, the

results seem reasonable but the larger specular lobe [118] present with these rougher sur-

faces has reduced the accuracy at small zenith angles to a greater extent than that for the

smoother porcelain objects in Figure 4.5. Note however, that the direct specular reflec-

tions, which cover a significant part of the orange’s pitted surface, have been discarded by

the algorithm. This gives us an approximation of the diffuse component of the BRDF, as

desired.
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Figure 4.6: Histogram of a partly painted porcelain cat model. The areas falling into the box are
shown in black with the rest of the image brightened for clarity.

4.3 Polarisation-based Photometric Stereo

We would like to extend the work from the previous section on retro-reflection to cover

more general illumination conditions. The obvious limitation of the method above is

the assumption that the BRDF is independent of the azimuth angle and is hence a one-

dimensional function of the zenith angle. Clearly, this is only true for the considered case

of retro-reflection. To extend the technique to more general light source directions, we

need to obtain two-dimensional BRDFs since the reflected intensity becomes a function

of both the zenith and the azimuth angles. The direct extension of the previous approach

is to fit a surface to the three-dimensional histogram that incorporates azimuth angle bins,

in addition to the zenith angle and intensity bins.

For the previous method, the confinement of the technique to retro-reflection resulted

in the following two simplifications:

1. The 180◦ ambiguity in azimuth angle did not need to be resolved for the reflectance

function estimation.

2. The portion of the BRDF that we were estimating was a monotonic one-dimensional

function of zenith angle.
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Figure 4.7: Histograms and estimated reflectance functions of the cat model, an apple and an
orange.

76



Consider now the case where the light source and camera directions are not identical.

The two points above are no longer valid and the task of reflectance analysis becomes

significantly more involved. In this section, we discuss a method to overcome the first

of these two issues using several light sources. The simple and efficient algorithm de-

veloped for this task is local and uses the variation in pixel intensities for changing light

sources. This allows for the determination of the correct choice of azimuth angle, giving

us an unambiguous set of Cartesian triples, D = {θd, αd, Id}. In Section 4.4, the three-

dimensional histogram is constructed from D. Simulated annealing is then used to fit the

two-dimensional BRDF to this histogram, thus addressing the latter point above.

4.3.1 Disambiguation by Photometric Stereo

Our principle aim here is to obtain a field of unambiguous surface normals using several

different illumination directions. We obtain three separate polarisation images, each with

a different light source position. This provides three phase angle (ambiguous azimuth an-

gle) estimates and three zenith angle estimates for each pixel, in addition to the measured

intensities.

The first task is to select the most reliable phase and degree of polarisation for each

pixel. This is done by comparing the measured intensities at each pixel. For any particular

pixel, the phase and degree of polarisation were used that correspond to the light source

which gave the greatest intensity for that pixel. We make an exception to this rule where

the maximum intensity is saturated (which we define as an intensity greater than grey

level 250). In this case we use the highest intensity that is not saturated.

We use the experimental arrangement shown in Figure 4.8 for both the above angle

selection process and for the disambiguation described below. Assume for now that the

angles subtended by the camera and light sources from the object are equal (θL) and that

the distances between the object and the light sources are also equal (DL). The distance

to the camera is unimportant.

Figure 4.9 shows the object and light sources from the point of view of the camera.
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Figure 4.8: Geometry used for disambiguation by photometric stereo.

Figure 4.9: View of a spherical target object from the camera viewpoint. Azimuth angles are
disambiguated differently depending on whether the phase angle is less than 45◦ (regions A and
A’), between 45◦ and 135◦ (regions B and B’) or greater than 135◦ (regions C and C’).

78



In this case, the object is a perfect sphere. Let the intensity at pixel k observed under

light source 1 be I (1)
k . Similarly, under light sources 2 and 3, the intensities are I (2)

k and

I (3)
k respectively. Considering the geometry of the photometric stereo rig, we can see that

for pixels falling into the region labelled A, we would expect I (2)
k > I (3)

k > I (1)
k . In region

A’, which has the same phase angles as region A, we would expect I (1)
k > I (3)

k > I (2)
k . We

therefore, have a simple means of disambiguating azimuth angles in these regions:

if φk < 45◦ then αk =





φk if I (2)
k > I (1)

k

φk + 180◦ otherwise
(4.15)

We use these specific inequalities (as opposed to I (2)
k > I (3)

k or I (3)
k > I (1)

k ) since we expect

the difference in intensity to be greatest between I (2)
k and I (1)

k for regions A and A’.

Similar arguments can be used for the remaining regions of the sphere in Figure 4.9.

In region B we expect I (3)
k > I (2)

k > I (1)
k . Therefore, we have the condition:

if 45◦ ≤ φk < 135◦ then αk =





φk if I (3)
k > I (1)

k

φk + 180◦ otherwise
(4.16)

Finally, in region C, I (3)
k > I (1)

k > I (2)
k . Which gives us our final condition:

if 135◦ ≤ φk then αk =





φk if I (3)
k > I (2)

k

φk + 180◦ otherwise
(4.17)

Figure 4.10 shows results of azimuth angle disambiguation using the above process

for porcelain objects. For this experiment, θL = 45◦ was used. Note that using too large a

value for θL would result in problems due to cast shadows. In Figure 4.10a, each pixel is

shaded according to which light source resulted in greatest pixel intensity. Figure 4.10b

shows the disambiguated azimuth angles. The angles have clearly been disambiguated

successfully for most regions. Only for small zenith angles, where the intensity has least

variation with light source, are there any artifacts that reveal the light source distribution.

Figure 4.11 shows the disambiguated azimuth angles for a slightly rough plastic duck,
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a b

Figure 4.10: (a) The light grey areas of these figures show regions where greatest intensity was
observed using light source 1. Dark grey areas correspond to source 2 and black areas relate to
source 3. (b) Disambiguated azimuth angles.

Figure 4.11: Azimuth angles disambiguated using the photometric stereo method for a slightly
rough plastic duck, an apple and an orange.

an apple and an orange. The main effect of the added roughness is that the method is

slightly more prone to error at small zenith angles. Note that, in terms of computation time

(as opposed to practical flexibility or the number of views needed), this disambiguation

method is by far the most efficient presented in this thesis.

4.3.2 Practical Considerations

The remainder of this section discusses the experimental arrangement needed for the tech-

nique. In particular, we consider how accurate the angles, θL and αL, and distances to the

light source, DL, need to be for the method to work. The simple answer is that the values

must only be approximately correct. Note that Miyazaki et al. [67] attempt to estimate

the light source directions using specularities, a technique that could potentially be used

to improve this technique.
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The first point to note is that the technique is possible with only two light sources.

These could be placed, for example, where sources 1 and 3 lie in Figure 4.8. The weakness

of this arrangement is that for areas where α ≈ 0 or 180◦, the intensity from the light

sources are almost equal and so the technique would be critically dependent on an accurate

set-up. With three light sources, the technique is robust to both inaccurate positioning of

light sources and to noise, as explained below. It is therefore unnecessary to include more

than three light source positions.

In our non-retro-reflection experiments, we used a lightweight 30W filament lamp

(∼1cm diameter) with a condenser lens attached to focus the light onto the object. For the

results presented here (Figures 4.10 and 4.11), we chose θL = 45◦ and DL = 1.5m. For

the light source azimuth angles, we used α(1)
L = 270◦, α(2)

L = 0 and α(3)
L = 90◦, as shown in

Figure 4.9. We also found that using θL = 60◦ gave similar results. Although a more even

distribution of the light sources is possible (i.e. separating the azimuth angles of the light

sources by 120◦ instead of 90◦), it is not always practical to place light sources below the

object. For this reason, we distribute the light sources as fully as possible, while keeping

each one above, or level with, the object.

So far we have assumed that the light source angles, αL and θL, and the distances,

DL, are fixed and known. In fact, these is room for uncertainty in these values, as we now

show. It is impossible to exactly calculate the effects of source positioning errors because

they depend upon the BRDF of the material under study. However, we can approximate

the effects theoretically by assuming that the BRDF follows the Wolff diffuse reflectance

model. Consider the cases where two of the light sources are fixed at the correct positions

and an error is introduced to each of the three parameters (αL, θL and DL) of the third

light source in turn.

First, consider the angle αL. If any of the light sources shown in Figure 4.9 are ro-

tated about the sphere centre by any angle up to 90◦, then Equations 4.15 to 4.17 remain

valid. The technique is therefore highly robust to errors in αL. Of course, if the error is

exceptionally large, then the success of the disambiguation will be more dependent on the

accuracy of θL and DL.
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Next, we examine the criticality of the distances DL. We stress again that the effects

of inaccurate light source distances depend upon the material BRDF, so we only consider

the effects at the boundaries of region A in Figure 4.9 to act as a guide. Whether or not the

method is successful for a given error in DL depends partly on the surface zenith angle.

If Ls is the radiant light intensity leaving a point source, then the light intensity in-

cident on the surface point (irradiance) is proportional to Ls/D
2
L [35]. The Wolff model

(Equation 4.3) predicts that

Lr (θi, θr, n,DL) ∝ cos θi

DL
2 (1−F (θi, n))

(
1−F

(
arcsin

(
sin θr

n

)
, 1

n

))
(4.18)

A similar expression applies to each light source, with the same constant of proportional-

ity. In order for the required condition at the boundaries of region A to be met (I (2) > I (1))

we know that L(2)
r > L(1)

r . Substituting Lr from Equation 4.18 for each light source and

rearranging, we get

D(1)
L

D(2)
L

>

√
cos θ(1)

i

cos θ(2)
i

1− F (θ(1)
i , n)

1− F (θ(2)
i , n)

(4.19)

At the left and right boundaries to this region, the unit surface normal vectors for a

given zenith angle, θ, are

n(left) =




sin θ

0

cos θ


 n(right) =




sin θ/
√

2

sin θ/
√

2

cos θ


 (4.20)

If the source is not too close to the surface, we can state that the unit vectors from any

surface point towards light sources 1 and 2, respectively, are

n(1)
L =




0

− sin θL

cos θL


 n(2)

L =




sin θL

0

cos θL


 (4.21)

The angles between these vectors and the normal vectors at the region boundaries (given
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by Equation 4.20) are

θ(1,left)
i = arccos (cos θ cos θL) (4.22)

θ(2,left)
i = arccos (cos θ cos θL + sin θ sin θL) (4.23)

θ(1,right)
i = arccos

(
cos θ cos θL − sin θ sin θL√

2

)
(4.24)

θ(2,right)
i = arccos

(
cos θ cos θL +

sin θ sin θL√
2

)
(4.25)

We can now substitute these equations into Equation 4.19 to obtain a condition for

the ratio D(1)
L /D(2)

L at the left boundary (Equations 4.22 and 4.23) and the right bound-

ary (Equations 4.24 and 4.25). The method would successfully disambiguate an azimuth

angle on the boundary provided that the condition is met. Figure 4.12 illustrates the dif-

ferent combinations of surface zenith angles and illumination directions that allow correct

disambiguation for two different values of D(1)
L /D(2)

L .

Remembering that disambiguation is most important for large zenith angles (since the

angular separation between the two possible surface normals is greatest in such cases),

it would be reasonable to state the following qualitative result: For θL = 45◦, as in Fig-

ure 4.10, the method gives good overall results provided that the distance between light

sources does not vary by more than 10% and reasonable results at 20%.

Finally, consider the required accuracy of the angles, θL, along the left hand border

of region A. This border is more critical than the borders of region A’, so gives a good

overall picture. In the Wolff model, the incidence and exitance terms in the radiance

function are separable. Since the exitance term is the same for both light sources 1 and 2

for a given point on the boundary, we use the fact that I (2) > I (1) (Equation 4.15) to write

the inequality

cos θ(2)
i (1− F (θ(2)

i , n)) > cos θ(1)
i (1− F (θ(1)

i , n)) (4.26)

Each side of this inequality decreases monotonically with θi. For this to hold therefore,

we can easily derive the condition that θ(2)
i < θ(1)

i . We can re-write this in terms of surface
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Figure 4.12: Combinations of surface zenith angles, θ, and light source angles, θL, that are
recovered correctly for D(1)

L /D(2)
L = 0.8 (area above the top curve) and 0.9 (above the bottom

curve). The solid curves relate to the left boundary, while the broken curves are for the right.

zenith angles and light source zenith angles using Equations 4.22 and 4.23:

cos θ(1)
L > cos θ(2)

L + tan θ sin θ(2)
L (4.27)

Manipulating this inequality numerically, the graph in Figure 4.13 is obtained. The figure

shows the combinations of zenith angles, θ, and illumination angles, θL, that allow correct

disambiguation for different uncertainties in θ(2)
L . A qualitative interpretation of Figure

4.13 is that, for most applications, an accuracy of about 15◦ is required.

In conclusion to this section, we make the following general points. The photometric

stereo method discussed in this section provides a simple yet reliable method for azimuth

angle disambiguation. It can be justifiably argued that, along with several other photomet-

ric stereo methods, the setup is highly specialised and potentially unwieldy. However, the

above calculations show that the positions and angles in the rig do not need to be precise

for the method to work well.
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Figure 4.13: Minimum zenith angles at the left boundary of region A in Figure 4.9 that are
disambiguable allowing for 30◦ error in θ(2)

L (top curve) and 15◦ error (bottom curve).

4.4 Two-dimensional Reflectance Function Estimation

In this section, we extend the retro-reflectance function estimation technique, described

in Section 4.2, to more general illumination directions. Using the photometric stereo

method described in Section 4.3, we have a set of Cartesian triplesD = {(θd, αd, Id) ; d =

1, 2...|D|}. Our aim is to fit a two dimensional BRDF, f (θ, α), to this data in order

quantify the dependence of the image intensity on the surface zenith and azimuth angles.

Technically, we are actually fitting a radiance function, Lr (θ, α), to the data as before,

which differs from the BRDF by a factor of cos θ and a multiplicative constant. In doing

so, we acquire a representation of a slice of the BRDF in the form of a discretely sampled

radiance function, L̂r =
{

(θk, αk, Ik) ; k = 1, 2, ...|L̂r|
}

.

In our proposed method, we extend the 2D zenith-intensity histogram to the 3D zenith-

azimuth-intensity histogram. We then fit a surface, representing the radiance function, to

the histogram data using simulated annealing. The technique of simulated annealing [91]

is a stochastic optimisation scheme. It attempts to minimise an energy functional by re-

peatedly forming trial solutions by making random changes to the current estimate. Each

trial solution has an associated energy and can be accepted or rejected as the new current

estimate according to a probability. This probability depends on the energy difference

between the current estimate and the new trial solution.

Our proposed reflectance function estimation algorithm fits the surface by minimising
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an energy functional consisting of two terms. The first term is directly related to the

histogram. The second is a form of elastic energy, which is based on the local curvature

of the fitted surface and ensures a smooth BRDF. Due to the sparseness of data in the 3D

histogram, compared to the 2D case, we do not attempt to find the outer envelope here

since this may compromise robustness.

Simulated annealing is well suited to this task because, with sufficient care and at-

tention to details such as the form of the energy functional and the cooling schedule, the

algorithm should return a globally optimum solution. Also, as will become clear shortly,

the energy functional used can be primarily based on a directly interpretable quantity

(namely, the histogram frequencies). The downsides to simulated annealing are that in-

consistent results are obtained for certain applications and convergence is often slow. The

latter point however, may be addressed in future work using mean field annealing [76].

Before presenting the details of our method, we provide a brief overview of simulated

annealing algorithms in general [91]. In Section 4.4.2, the three-dimensional histogram

is formally defined, and it is shown how this leads to an energy field, which is to contain

the fitted surface. Section 4.4.3 explains how the surface is to be represented within the

energy space and how it is stochastically perturbed to form new trial states. The elastic

energy is introduced in Section 4.4.4, which also describes how the total energy of a

particular solution is calculated. Pseudocode for the algorithm is provided at the end of

these sections. Finally, a set of experiments are described in Section 4.4.5 and fine tuning

issues are discussed in Section 4.4.6.

4.4.1 A General Simulated Annealing Algorithm

Simulated annealing was originally inspired by the ability of molecules within a metal

to tend towards their ground state as the sample is gradually cooled (annealed) from a

high temperature towards a frozen state at a low temperature. In this original model

[62] a thermodynamic system at a certain initial temperature in an arbitrary microstate

is perturbed. In other words, a small change is made to the energy state of one or more
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molecules. This perturbation may result in a net increase or a net decrease in the total

energy of the system. If the perturbation results in an energy decrease then the system

moves into the new state. If the energy is increased by the perturbation, then the new state

is accepted with a certain probability, which reduces with temperature. This process is

repeated as the temperature is reduced, resulting in the system tending towards a global

minimum energy state.

This scheme was generalised to combinatorial problems in 1980s by Kirkpatrick et

al. [48] and Černý [10]. The technique can be stated generally as follows. Given a con-

figuration space, a system state2, f , and an objective function, ε (f), simulated annealing

finds the optimum state fopt that minimises ε (f). That is, the algorithm searches for

fopt = argmin
f

ε(f). By analogy to the thermodynamic model, the current solution to

the optimisation, f , relates to the current microstate of the sample, while the objective

function, ε, takes the place of the system’s internal energy.

Let the current state of the system be f and the so-called “neighbour state” (i.e. the

state after the perturbation) be f ′. The form of the perturbation depends upon the nature

of the problem. The probability of accepting this new state is then given by the Boltzmann

probability:

q
B

=





1 ∆ε ≤ 0

exp (−∆ε/T ) ∆ε > 0
(4.28)

where ∆ε = ε (f ′)− ε (f). Alternative acceptance probabilities have also been suggested

that are more appropriate for certain specific problems [91].

The reason for the success of simulated annealing is the fact that the energy of the

system is allowed to increase on certain occasions. This prevents the system from becom-

ing pinned to local minima. As the temperature is reduced, the probability of transition

into higher energy states decreases, so that the system eventually settles. In fact, Aarts

and Korst [1] were able to show that, if the temperature is reduced logarithmically and

sufficiently slowly, then simulated annealing is guaranteed to find the global minimum.

2We adopt the symbol “f” since, for our case, the state is to represent a radiance function, which is
intimately related to the BRDF.
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Unfortunately, the amount of time needed for simulated annealing is often impractical

and a compromise between accuracy and efficiency must be made. Indeed, the choice of

the initial temperature and the cooling schedule can be of critical importance. Usually, the

temperature is reduced by a fixed factor after each trial state, or after a fixed number of

trials. If the factor is too small however (quenching), then the system may only converge

to a local minimum. If it is too high on the other hand, then convergence will obviously

take unacceptably long. The next few sections describe how the various ingredients of the

simulated annealing algorithm are adapted to our needs in BRDF estimation.

4.4.2 Energy Field for Reflectance Function Calculation

The technique must fit a surface, representing a 2D slice of the BRDF, to 3D histogram

data. The raw data for the histogram comes from the Cartesian triples, D, acquired from

the photometric stereo method discussed in Section 4.3. Simulated annealing is used by

repeatedly perturbing the surface inside an “energy field” derived from the histogram.

Clearly, regions of the histogram with high frequencies should have an associated low

energy. We now detail the simple steps necessary to acquire this energy for each bin of

the histogram.

It is possible to increase the data density in the histogram by noting that for isotropic

surfaces

f (θ, αL −∆α) = f (θ, αL + ∆α) (4.29)

where ∆α ∈ [0, 180◦) is the absolute difference between the light source azimuth angle

and the surface azimuth angle. Figure 4.14 clarifies the definition of ∆α. We are es-

sentially, exploiting the assumed isotropic nature of the surface reflection to increase the

robustness of the surface fitting. With this in mind, we replace our α values in D with the

reduced azimuth angles given by

∆α = min (|α− αL|, 360◦ − |α− αL|) (4.30)
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Figure 4.14: A light source illuminating a point. The observed intensity if the azimuth angle of
the surface normal is αa, should be the same as if the angle is αb. Therefore, the angle ∆α is
sufficient to calculate the BRDF. Angles α′a and α′b illustrate another example.

Another advantage of this step is that ∆α can be calculated at each pixel from all three

views used in the photometric stereo stage of the technique and used to form the his-

togram. The density of the data in the histogram therefore increases sixfold. A twofold

increase is due to the application of Equation 4.30, which reduces azimuth data from

the interval [0, 360◦) to [0, 180◦). A further threefold increase is due to the use of three

polarisation images.

Using a similar formulation to that used in Section 4.2, the histogram contents are

given by HCa,b,c = |BCa,b,c|, where

BCa,b,c =





(θd, ∆αd, Id) ;

θd ∈
[
θ

(bin)

a − 90◦
2kmax

, θ
(bin)

a + 90◦
2kmax

)
∧

∆αd ∈
[
∆α

(bin)

b − 180◦
2kmax

, ∆α
(bin)

b + 180◦
2kmax

)
∧

Id ∈
[
I

(bin)

c − 255
2kmax

, I
(bin)

c + 255
2kmax

)





(4.31)

where {θ(bin)
a ; a = 1, 2, ...kmax}, {∆α(bin)

b ; b = 1, 2, ...kmax} and {I (bin)
c ; c = 1, 2, ...kmax} are the

equally spaced bin centres for zenith angles, reduced azimuth angles and intensities re-

spectively. Since there are more bins in the 3D histogram than the 2D case for a given

kmax, we use kmax = 32 for this section (recall that kmax = 100 was used in Section 4.2).

This avoids having too many sparsely populated bins, and is another measure to maximise

the robustness of the surface fitting. Figure 4.15a shows several slices of this histogram

for the porcelain vase from Figure 3.10a. We use normalised units of bin lengths from
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Figure 4.15: (a) A selection of slices of the 3D histogram of the porcelain vase using αL = 0
and θL = 45◦ (logarithmic scale). (b) Similar slices of the energy field (linear scale, with energies
below -150 not shown for reasons of clarity).

this point on. That is, θ ← θkmax/90◦, ∆α ← ∆αkmax/180◦ and I ← Ikmax/255.

We wish to convert the histogram into an energy field using as simple a means as

possible in order to preserve a direct a relation between the histogram frequency and the

energy. The following equation is used for this task:

ε = −HC ∗ Ξ−HC (4.32)

where Ξ is a three-dimensional Gaussian kernel and ∗ denotes the convolution operation.

The histogram contents, HC, are negated because higher frequencies should be associ-

ated with lower energies. This means that the maximum allowed value at a point in the
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discrete energy field is zero. Taking the reciprocal is another option, but this blurs the

direct relationship between energy and the histogram. The Gaussian convolution is used

to smooth the data. We use a high Gaussian standard deviation (≈ 5 bin lengths) so that

a large portion of the energy field is non-zero. This will ultimately aid the simulated

annealing algorithm in its search for a global minimum. Finally, the original histogram

frequencies are subtracted from this smoothed version. This ensures that the energy field

corresponding to non-zero histogram contents have significantly lower energy than sur-

rounding areas. Figure 4.15b shows an example of the energy field generated in this way.

4.4.3 Initial State and Move Class

To fit a surface to the energy field described above using simulated annealing, we require

an initial state for the surface and a means to perturb the surface (a move class). It was

found that, for the completed algorithm, there was virtually no dependance on the initial

estimate. We therefore simply used a plane as the initial state. In the normalised co-

ordinates, the plane has corners at (θ, ∆α, I) = (0, 0, kmax), (kmax, 0, 0), (0, kmax, kmax) and

(kmax, kmax, 0). The plane is sampled at kmax equally spaced points for a given ∆α and at

kmax equally spaced values of ∆α, as shown in Figure 4.16a. This means that the number

of points in the initial state is k2
max = 322 = 1024. This number is fixed throughout the

annealing process.

Each perturbation is performed as follows. Let the Cartesian position of the discretely

sampled points be f̂ = {(θk, ∆αk, Ik) , k = 1, 2, ...k2
max} in the current state and f̂ ′ =

{(θ′k, ∆α′k, I
′
k) , k = 1, 2, ...k2

max} in the perturbed state. To select the state f̂ ′ given f̂ , we

wish to disturb the surface such that a random point is chosen as the epicentre of the

perturbation. Surrounding points are then disturbed by an amount that decreases with

the distance to the epicentre. The index of the random point is an integer chosen from

a uniform distribution in the interval [1, k2
max]. An example of a perturbation is shown in

Figure 4.16b.

We choose the perturbation is to be Gaussian-like. That is, the point chosen as the
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Figure 4.16: (a) Using a plane as the initial state. (b) State after a perturbation.

epicentre, (θepi, ∆αepi, Iepi), moves the greatest distance, Υepi, and surrounding points move

by an amount that decays as a Gaussian. Consider the motion of the epicentral point. To

preserve the stochastic nature required for simulated annealing, we let the magnitude of

the perturbation, Υepi, also be chosen from a Gaussian distribution. We restrict the motion

of any point, k, (at the epicentre or otherwise) to be along the straight line that connects

the points (θk, ∆αk, Ik) and (0, ∆αk, 0). In other words, points on the surface can only

move directly towards the θ = I = 0 line or directly away from it. This ensures that

points remain evenly spread across the surface.

The Gaussian PDF used to select Υepi has zero mean. When Υepi < 0, the perturbation

is towards the θ = I = 0 line, while Υepi > 0 indicates the opposite. The standard

deviation is chosen such that a sufficient number of large moves are possible to avoid

convergence to a local minimum. Using any value between kmax/20 and kmax/10 seemed

reasonable for all our experiments. If the epicentral point moves a distance Υepi, then

the other points move by a distance that reduces as the Gaussian of the distance to the

epicentre, which is given by

Υk = Υepi exp

(
−(θepi − θk)

2 + (∆αepi −∆αk)
2 + (Iepi − Ik)

2

2σ2
area

)
(4.33)

where σarea is the Gaussian standard deviation (which is given the symbol σarea because the
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Figure 4.17: Comparison of our current perturbation method (where distances, Υ are taken di-
rectly from the underlying Gaussian) and the more randomised proposed method (where this gaus-
sian is rescaled at discrete intervals).

area of the surface that is perturbed depends on it). We found that using σarea = kmax/10

seemed to give best results. Using too small a value for σarea sometimes results in a rough

final surface. Although the exact values of these Gaussian standard deviations are not

exactly critical, there is unfortunately some dependence on the results. However, we were

able to use the same values for each experiment without loss of quality.

Note that, for a particular perturbation in our method, once the epicentre and magni-

tude have been randomly chosen, the perturbation is deterministic. Ideally, the perturba-

tions should be as random as possible so all states are accessible. A better method would

therefore use the Gaussian deterministic method in Equation 4.33 only as a basis for the

perturbation. The distances Υk would then be rescaled by random amounts at discretely

sampled points on an underlying Gaussian. Figure 4.17 gives an example of such a re-

sampled non-deterministic Gaussian perturbation for a single slice of the initial state. We

have not implemented the non-deterministic version to date however, since we feel that

the advantages do not justify the extra computational expense.

4.4.4 Energy of State

We now have the configuration space and move class required for simulated annealing.

The next ingredient is a means to calculate the energy of a particular state, ε(f̂). As stated
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above, the energy functional that we use has two terms: the “bin contents energy,” εbc(f̂),

derived from the histogram, and the “elastic energy,” εel(f̂), used to maintain a smooth

surface. The former of these can be taken directly from the energy field discussed above:

each point of the current state f̂k has a bin contents energy taken as the energy associated

with the histogram cell in which f̂k is located. The sum of these energies for all points

in the state is the total bin contents energy. Using this as the total energy state, without

the introduction of the elastic term, we found that some areas of the fitted surfaces are

invariably and unrealistically irregular. This did not prove too severe for areas of the

histogram with high frequencies, but was much more problematic where data were more

sparse.

In general, the elastic energy of a surface (or manifold) quantifies its bending energy

and is based on curvature. Larger curvatures result in higher elastic energies, thus pro-

moting smooth solutions to the problem being solved. The mathematics of elastic energy

minimisation, or elastica [9], was originally developed and solved by Euler in 1744 [25].

The problem that he posed was to find plane curves, C, that minimise the integral

εel (C) =

∫

C

(
aκ2

1 + b
)
ds (4.34)

where a and b are constants, κ1 is the curvature and ds is the differential unit of length.

Horn [39] and Mumford [69] studied the mathematics of such curves for computer appli-

cations. One popular related application to computer vision was due to Kaas, Witkin and

Terzopoulos [47], who add an additional “external” force term from an intensity image to

generate “snakes”. These snakes can be used to reconstruct edges that are partly occluded

or broken.

The extension of Equation 4.34 to a surface, S, embedded in R3 is [42]

εel (S) =

∫

S

(
aκ2 + b

)
dA (4.35)

where κ is the mean curvature and dA is the differential unit of surface area. The second
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term in this integral results in a multiple of the area. We experimented with different

values of b for our work but found that there was negligible overall impact. We therefore

set a = 1 and b = 0, so our elastic energy becomes

εel (S) =

∫

S

κ2dA (4.36)

To calculate the integral in Equation 4.36, a method is needed to approximate the mean

curvature at any surface point. Denote the location of point f̂k by fk, a vector from the

origin of the energy field. Given the discrete nature of our problem, the curvature, κk, at

point k, is assumed to be constant over the area, Ak, of the barycell that contains the point.

A barycell, as shown in Figure 4.18, is defined as to connect the midpoints of the “bonds”

between fk with its eight neighbours and the barycentres (centres of mass) of the triangles

formed by these neighbours. Consider the point at location fk = (θk, ∆αk, Ik)
T . Let the

point be bonded to eight neighbours, {fl(k); l ∈ Nei(k)}. The neighbours, Nei(k), of a

particular point, k, are fixed throughout the annealing process, and are defined as the eight

closest points at the initial state. Fixing the bonds in this manner means that it is unlikely

for any two points that are initially close together, to drift far apart at low temperatures.

It can be shown [63] that the mean curvature vector, Kk, of a surface at point k can be

calculated by

Kk =
1

2A(tot)
k

∑

l∈Nei(k)

(
cot ϑ−kl + cot ϑ+

kl

)
(fk − fl) (4.37)

where A(tot)
k is the barycell area for point k and the angles ϑ−kl and ϑ+

kl are defined in Figure

4.18. The mean curvature is then simply

κk =
|Kk|

2
(4.38)

Equation 4.37 assumes that the mean curvature vector is constant over a cell area.

Meyer et al. [63] use the Voronoi cell for this purpose as it perfectly tessellates over a

triangulated mesh. To make the algorithm more efficient however, we use the barycentric

cell area as an approximation to this, as in Figure 4.18.
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Figure 4.18: Example of a barycell (large shaded area) surrounding point fk. The eight neigh-
bouring points are {fl}, which are here bonded to fk by dark broken lines (the light broken lines
are used to bond other points). The barycentres, B−

kl and B+
kl, chevron area, Akl and angles, ϑ−kl

and ϑ+
kl, associated with point fl are indicated.

The barycentric cell area is calculated as follows. For point fk, we have the set of

neighbours, {fl}. The barycell can be divided into a set of chevron shapes for each l, one

of which is highlighted in Figure 4.18. If the area of each chevron is Akl, then the total

cell area is clearly A(tot)
k =

∑

l∈Nei(k)

Akl.

The location of the barycentres of the triangles associated with point k are

B+
kl =

fk + fl + f+
l

3
B−

kl =
fk + fl + f−l

3
(4.39)

where f+
l refers to the neighbouring point that appears next in a clockwise direction and

f−l is in the anti-clockwise direction around fk. Using the vector product, we can write

A(tot)
k =

1

4

∑

l∈Nei(k)

(∣∣(fl − fk)×
(
B−

kl − fk
)∣∣ +

∣∣(fl − fk)×
(
B+

kl − fl
)∣∣) (4.40)

Collectively, Equations 4.37 to 4.40 allow for the calculation of a set of mean curva-

tures for each point in f̂ . The elastic energy of a state is then found using Equation 4.36

where the differential area is the barycell.
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For the total energy of a state, we use

ε(f̂) = εbc(f̂)
(
εel(f̂) + 1

)
(4.41)

This form is adopted since εel has a minimum allowed value of zero, which corresponds

to a plane. The elastic term can therefore be regarded as a multiplier that has no effect for

the simplest surface (the plane) but increases with roughness.

The main ingredients of the simulated annealing algorithm are now in place. The

configuration space consists of a 2-manifold in anR3 energy field formed from the zenith-

azimuth-intensity histogram. The initial state is unimportant so is simply taken as a plane.

The move class is a random Gaussian perturbation. Finally, the energy of a state ε(f̂), is

calculated using Equation 4.41.

One final point to note is that when the algorithm calculates ∆ε = ε(f̂ ′) − ε(f̂)

using Equation 4.41 the total energy of state for the entire surface need not be calculated.

Instead, the algorithm calculates the energy of the area of the trial surface within a distance

of 2σarea to the epicentre of the perturbation. The energy of the corresponding region of

the current surface is then subtracted from this energy.

Pseudocode

The algorithm described in this section is summarised by Pseudocode 2. The main equa-

tions needed are referred to where necessary. The function “rand” generates a random

number between 0 and 1. Please note that a few of the lines have not yet been discussed,

but appear later in Section 4.4.6.

4.4.5 Experiments

This section presents results from the various stages of the algorithm for the porcelain

vase and bear using the illumination configuration shown in Figure 4.8. Some rendered

images are then shown using the estimated BRDFs for various materials. In fact, an

implementation of the above algorithm directly gave poor results, so it was necessary to
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Pseudocode 2 Two-dimensional BRDF estimation.
Use photometric stereo to acquire D = {(θd, αd, Id)} (Section 4.3)
Replace α with ∆α (Equation 4.30)
Calculate histogram (Equation 4.31) and energy field (Equation 4.32)
Generate initial state (Figure 4.16a)
while [solution not converged] do

Perturb surface to obtain trial state (Equation 4.33)
Calculate energy difference, ∆ε, between states (Equation 4.41)
Calculate transition probability, q

B
(Equation 4.28)

if [rand < q
B

] then
Accept trial state
Apply shadow constraint (Equation 4.43)

Reduce temperature
Apply smoothness constraint (Equations 4.44 and 4.45)

make a few light assumptions about the BRDF. For example, we enforce the constraint

that the BRDF is zero where the angle between the surface normal and the light source

direction is greater than 90◦ (i.e. in shadow). To avoid confusing the reader, we discuss

these matters after the results.

First consider Figure 4.19, which depicts a surface generated after several perturba-

tions at high temperature. Points on the surface decorated with circles are those in areas

with high mean curvature. Larger circles correspond to larger curvatures and, hence,

higher elastic energies.

Figure 4.20 shows the state, f̂ , of the surface, at various temperatures during the

annealing process when applied to the porcelain vase. The large indentation to the upper-

right of the initial state is due to the shadow boundary constraint, which will be explained

in Section 4.4.6. The temperature, T , was reduced by a factor of 0.999 after each trial

state and the surface is shown for each order of magnitude of T . The algorithm took

approximately three minutes to run.

The pie charts in Figure 4.20 show the distribution of transition probabilities between

each decrement in the order of magnitude of temperature. In this case, the pie charts indi-

cate a well-initialised execution, since initially about half of the transitions are accepted

with unit probability, and the remainder probabilities given by the Boltzmann distribu-

tion. As the temperature is lowered and the surface begins to converge, the proportions
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Figure 4.19: A rough arbitrary surface with the mean curvature indicated by the dot size at each
point. Values were calculated using Equations 4.37 to 4.40.

change until, eventually, most of the probabilities are approximately zero. In fact, we

used this as a convergence criterion: when the fraction of transition probabilities equal to

zero (< 0.01) exceeds 75% as the temperature drops by an order of magnitude, then the

surface has converged.

A simple monotonicity constraint (explained in Section 4.4.6 below) was then applied

to the recovered radiance functions for the vase and bear to give the final estimate of the

radiance function. Figure 4.21 shows some spheres that were rendered using the radiance

functions calculated from the aforementioned objects at both θL = 45◦ and θL = 60◦. All

rendered images have the light source placed at αL = 0. The images look realistic for the

top half of the sphere (i.e. where ∆α ≤ 90◦), but tend to break down close to the shadow

boundary. Extra constraints on the form of the BRDF are perhaps needed to address this

issue. For comparison, Figure 4.22 shows spheres rendered under the same illumination

conditions using the Wolff model.

Figure 4.23 shows a comparison of the intensities predicted by the estimated radiance

functions, the Wolff model and ground truth (measured using a cylinder). The total diffuse
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Figure 4.20: Annealing progression from an initial state at T = 10 (top) to a final state at
T = 0.001 (bottom). Points not connected by lines are at locations with zero bin contents energy.
The pie charts show the proportions of transition probabilities that are 1, (approximately) 0 and
intermediate values for all transitions between each temperature shown. The overall proportions
are shown in the top-right chart.
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a b c d

Figure 4.21: Top row: Spheres rendered using the BRDFs estimated from (a) the vase with
θL = 45◦, (b) the vase with θL = 60◦, (c) the bear model with θL = 45◦, and (d) the bear model
with θL = 60◦. The white lines indicate the calculated shadow boundary. Bottom row: same
rendered spheres with black lines indicating intensity grey levels of 50, 90, 130, 170 and 210.

a b

Figure 4.22: Spheres rendered using the Wolff model with (a) θL = 45◦ and (b) θL = 60◦, as in
Figure 4.21.

albedo, %, used in the Wolff model (Equation 4.3) was selected to give best agreement with

the exact curves. The figure shows some good results and others that are reasonable, but

less impressive. Combining data from both objects is a possibility to improve accuracy

further.

The final experiments for this chapter involved using the 2D reflectance function es-

timation algorithm for colour images. This was done by applying the algorithm indepen-

dently to each of the red, green and blue colour channels. One problem encountered with

the independent estimations for each colour channel was that the colour balance present in

the raw images did not always match that in the recovered BRDFs. A simple method we

adopted to counter this issue was to linearly rescale the colour components of the BRDFs.
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Figure 4.23: (a) Intensities as a function of the distance from sphere centre in the vertical direction
(in relation to Figure 4.21) using θL = 45◦ for estimated and theoretical radiance functions. (b)
Same information for the horizontal direction. (c and d) Same graphs with θL = 60◦.
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a b c d

Figure 4.24: (a) Greyscale image of the slightly rough plastic duck. (b) Sphere rendered using the
recovered BRDF. (c) Corresponding colour image and (d) sphere rendered using the three-colour
BRDF.

a b c

d e f

Figure 4.25: Raw images of the plastic duck in the (a) red channel, (b) green channel, and (c)
blue channel. (d-f) rendered spheres for each channel.

This was done in such a way that the total colour ratios in the BRDFs matched the ratios

in the raw image.

We have estimated the colour BRDFs of a few materials the under conditions where

θL = 45◦. Figure 4.24 shows the estimated BRDF of the plastic duck. Both the greyscale

and colour versions of a rendered sphere are shown. For reference, Figure 4.25 shows the

individual colour channels of the raw and rendered images. Both rendered images look

realistic and appear to be made of the same material as the object. Since the object is

slightly translucent, a small part of object at the base is visible where it would otherwise

have been in shadow.
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a b c d

Figure 4.26: Greyscale and colour images of an apple and spheres rendered using the estimated
BRDF.

a b c d

Figure 4.27: Greyscale and colour images of an orange and spheres rendered using the estimated
BRDF.

Figures 4.26 and 4.27 show results for an apple and an orange. On these occasions

the texture and roughness have caused greater problems for the algorithm and the results

are less impressive. In particular, the rendered intensities tend to be too high, especially

for regions of the apple with large ∆α. Also, the colour balance is still incorrect for a few

small regions. Nevertheless, the results certainly show promise, and it is hoped that future

work will yield more consistent results.

The intensities of cross-sections of the rendered spheres for each colour channel are

plotted in Figure 4.28. The greyscale intensities are also shown. Note that some of the

intensities are saturated for individual colour channels (which is also true for the raw

images). This affects the mean (greyscale) intensity and therefore the original zenith angle

estimates, although not necessarily critically. The graphs for the plastic duck are largely

as one would expect, and show a broadened specularity where the blue component rapidly

saturates. The other graphs are more complex than expected and may benefit from more

sophisticated smoothing techniques. The figure also shows the intensities predicted by the

Lambertian model. The greyscale BRDF predicted using our method closely matches this
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model for the horizontal cross-sections. This is not the case for the vertical cross-sections,

which is not surprising considering the direction of illumination.

4.4.6 Fine Tuning

This section concludes with the discussion of a few minor points. These include extra

constraints on the BRDF and the choice of parameters for the cooling schedule.

Shadow Boundary Constraint

It is possible to provide an extra constraint on the BRDF by consideration of the shadow

boundary. Under the distant light source assumption, the unit vector in the direction of

the light source, at any point, is

nL =




cos αL sin θL

sin αL sin θL

cos θL


 (4.42)

Taking the scalar product of this and the normal vector, and noting that in shadowed areas

the angle between these two vectors exceeds 90◦, we arrive at the following condition:

cot θ + tan θL cos (∆α− αL) ≥ 0 (4.43)

If this condition is not met, then that part of the surface must be in shadow.

The condition in Equation 4.43 is applied by detecting points in the current radiance

function estimate that do not satisfy this condition and mapping them onto the nearest

point in the energy field where the condition is satisfied. Given that the shadow boundary

itself corresponds to the equality in Equation 4.43, we also force points in the current

radiance function estimate at I = 0 to satisfy the equality. This process may be clarified

by reference to Figure 4.20: the initial state is not entirely planar as points not satisfying

the shadow constraint have been mapped onto allowed areas. Also, note that points at

I = 0 are now constant through time as the equality version of Equation 4.43 is always

enforced for these points.
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Figure 4.28: Intensities of the rendered spheres of the duck (top row), the apple (middle row) and
the orange (bottom row). The left-hand column relates to vertical cross-sections of the spheres
while the right-hand column is for horizontal cross-sections. The thin lines refer to the red, green
and blue colour channel intensities. The thick lines relate to the greyscale (mean) intensities. The
broken lines are for Lambertian reflectance.
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Figure 4.29: Portion of the BRDF corresponding to 31◦ ≤ θ < 32◦ and θL = 45◦, showing how
non-monotonicities are removed and how a small amount of smoothing is applied.

Monotonicity Constraint

One can intuitively state that most BRDFs are monotonic in ∆α for a given zenith angle.

That is, the following inequality can be enforced:

∂f(θ, ∆α)

∂(∆α)
≤ 0 ∀∆α, θ (4.44)

This is used as a final constraint, which is appended to the end of the algorithm. It turned

out that the simulated annealing algorithm returned BRDFs that largely satisfy this con-

dition anyway, so we enforce the constraint using as simple a method as possible. The

following transformation was applied to achieve this task:

I
(θ)
i ← max

{
I

(θ)
j ; j = i, i + 1, ...imax

}
(4.45)

where
{

I
(θ)
i ; i = 1, 2, ...imax

}
is the set of points on the BRDF with zenith angle θ (actu-

ally within a small range of θ). The indices i in
{

I
(θ)
i

}
run such that ∆αi+1 > ∆αi ∀ i.

Figure 4.29 shows and example of this process. The algorithm also smooths the data by

applying moving averages to the set
{

I
(θ)
i

}
. This removes any sudden gradient variations.
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Another possible constraint to ensure sensible BRDF estimation, but which we do not

currently apply, is that:

∂f(θ, ∆α)

∂(∆α)

∣∣∣∣
∆α=0, 180◦

= 0 ∀ θ (4.46)

This can be understood by regarding the azimuth interval in Figure 4.29 as the decreasing

half of a periodic function, which can be extended indefinitely. The extension of the figure

beyond 180◦ shows part of the increasing half of the period, which is formed by taking a

mirror image of the first half. A similar extension is possible for negative azimuth angles.

Temperature Control

There are three aspects of temperature control that must be considered in simulated an-

nealing algorithms: the initial temperature, the cooling schedule and the convergence

criterion. The convergence rules were given in Section 4.4.5. To guarantee convergence

to the global minimum, the initial temperature must be set high and the cooling coefficient

(the factor by which the temperature is reduced after each trial) should be very low. All

our results were obtained using an initial temperature of 10 and a cooling factor of 0.999.

In future work, the initial temperature could be set using a few random perturbations

to estimate a small number of ∆ε values. These values could then be used with Equation

4.28, allowing to set an initial temperature that would give an even distribution of prob-

abilities. Fortunately, the inclusion of an elastic energy already helps to prevent areas of

the BRDF surface from converging to local minima. This means that the choice of the ini-

tial temperature is less critical here, than in some other simulated annealing applications.

The choice of the cooling factor however, is more difficult. Its selection should ideally

be determined by the specific application. If efficiency is important, then a lower value

should be adopted compared to when this is not the case.
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4.5 Conclusions

This chapter has accomplished the following:

1. It has presented the background theory and nomenclature about reflectance func-

tions and the main results of the Wolff reflectance model.

2. Described a method to estimate one-dimensional BRDFs using zenith-intensity his-

tograms and robust PDF fitting.

3. Described a technique to disambiguate azimuth angles using three light source di-

rections.

4. Described a method to estimate two-dimensional BRDFs using zenith-azimuth-

intensity histograms, simulated annealing and elastica.

5. Tested the above techniques on a range of objects and materials in both greyscale

and colour.

The algorithm for 1D BRDF estimation is more reliable than the 2D version. This is

due to the greater density of points in the histogram and the fewer degrees of freedom

in the reflectance function. It is, of course, less general and complete than the 2D ver-

sion. Results show that the 1D technique is reliable for all the materials used without the

need for strong assumptions on the properties of the BRDF. The 2D case required several

simplifying assumptions in order for the method to work well. Furthermore, the method

shows some breakdown for the rougher, textured objects. Overall however, results are

promising and allowed for good image rendering for porcelain and plastic. Using more

light source directions would provide more data for the histograms and hence more robust

BRDF estimates. The 1D algorithm is highly efficient, requiring only a few seconds of

computation time. The 2D version requires a few minutes and depends on the choice of

cooling parameters.

Finally, the photometric stereo technique is necessary to disambiguate the azimuth

angles ready for the 2D BRDF algorithm. It can also be regarded as an alternative to the

109



geometric stereo method, which is to be described in the next chapter. The method is

more efficient than the geometric method, and often more accurate. However, the lighting

configuration used in photometric stereo is not always practical and many applications

require multi-view correspondence. Hence, our main motivation for Chapter 5.
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Chapter 5

Multi-View Reconstruction

In this Chapter, we describe our method for shape estimation from two views. The goal is

to establish and use dense stereo correspondence to resolve the azimuth angle ambiguities

present in the surface normal estimates from a single view. The first step is to extract

surface patches from the polarisation images. These patches are then aligned using an

optimisation scheme to obtain correspondence indicators. The error criterion used for

this task is similar to those developed by Cross and Hancock using the EM algorithm [17]

and Chui and Rangarajan using softassign [12].

The input to the algorithm is the set of ambiguous azimuth angles estimated from the

phase images, together with the zenith angles from the estimated radiance function and

the raw intensity images. We use the set-up shown in Figure 3.4 with polarisation images

taken from two views. For the second view, the turn-table is rotated by θrot about the x-

axis (see Figure 3.4 for the co-ordinate axis convention). For this chapter, we use a known

value of θrot = 20◦. Note that both views give retro-reflection. This means that the 1D

reflectance function algorithm from Section 4.2 is sufficient to estimate the zenith angles.

Consideration of alternative illumination conditions is reserved for future work.

The set of surface patches are obtained by segmenting the two polarisation images

into regions1 according to the estimated surface normals. The segmentation is performed

using a bi-threshold technique, where normals falling into an angular interval are selected

1We refer to each unconnected 2D image segment as a “region”, and use the term “patch” to refer to the
3D data (i.e. the surface normals that can be used to estimate surface geometry) for each of these segments.
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from each image. The angular interval is shifted by θrot between images to account for the

object rotation. Details of this procedure can be found in Section 5.1.

The correspondence problem is then reduced to matching patches from the two views.

The solution is to align patch pairs for which a potential correspondence exists. We adopt

a dual-step matching procedure in which both correspondence indicators and alignment

parameters are sought. The cost function uses the correspondence indicators to gate con-

tributions to a sum-of-squares alignment error for corresponding points. The alignment

error measures the difference in surface normal components and a scale invariant measure

of surface topography (the shape-index). The matching cost is calculated for all poten-

tially corresponding patch pairs and the combination that gives the lowest total cost is

taken as the set of patch correspondences. The derivation of the cost function that we

adopt is given in Section 5.2.

Further details of the matching algorithm are provided in Section 5.3. It is first shown

how the correspondences lead to unambiguous azimuth angle estimates. After this pro-

cess, some areas of the images remain without detected correspondence. Monotonic in-

terpolation is then used to estimate correspondences for such areas. Finally, the Frankot-

Chellappa surface integration method is applied to recover a depth map from the field of

unambiguous surface normals. This method was summarised earlier, in Section 3.2.2.

In the remainder of this section, we furnish details of the steps described above. The

algorithm is described fully in Sections 5.1 to 5.3. Section 5.4 presents a series of exper-

iments to reconstruct surfaces, and to render images under novel illumination conditions

and using different reflectance functions.

Figure 5.1 shows a schematic of the overall algorithm structure and should be referred

to throughout the chapter. The top part of the figure refers to the acquisition of the polar-

isation images from two views to obtain a set of intensities, degrees of polarisation and

phase angles for each view. The reflectance function estimation described in the previous

chapter is then applied to obtain a set of zenith angle estimates. The remainder of the

figure refers to the processes discussed in this chapter.
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Figure 5.1: Flow diagram of the proposed shape recovery method. The stages of the algorithm in
the large box are shown in more detail in Figure 5.2.
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5.1 Segmentation

The purpose of this stage of the algorithm is to segment the two images into regions that

are suitable for establishing correspondence. The segmentation is performed according to

the angle defined by:

γ = arctan (sin α tan θ) (5.1)

This is the angle between the viewing direction and the projection of the surface normal

onto the horizontal plane (see Figure 3.5). If the correct azimuth angle is greater than

180◦, then γ is negative, i.e. the surface normal vector points to the left from the viewer’s

perspective. However, we do not know the sign of γ at this point and so can only calculate

the modulus of the angle from the estimated phase, i.e.

|γ| = arctan (sin φ tan θ) (5.2)

The zenith angle, θ, is determined by the radiance function (Equation 4.2), which

is estimated using the technique presented in Section 4.2. Let the minimum angle for

reliable |γ| estimates be γlim. Empirically, we found that this limit was approximately

20◦ for perfectly smooth objects. For rougher surfaces, a reasonable reconstruction was

possible using this value, but results were better when γlim = 30◦ was used. We know that

for regions where γ < 0 for both images, then where the pixels in the right-hand image

(view 2 in Figure 3.4) satisfy the condition

γlim + θrot < | γ| ≤ 90◦ (5.3)

then the corresponding pixels in the left-hand image (view 1) must satisfy the condition

γlim < | γ| ≤ 90◦ − θrot (5.4)

Conversely, where γ > 0, then for regions of the right-hand image that satisfy the condi-

tion in Equation 5.4, then pixels in the corresponding left-hand image regions must satisfy
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Figure 5.2: Flow diagram of the segmentation and correspondence part of the algorithm, using a
synthetic sphere as an example. This figure corresponds to the large box in Figure 5.1.

the condition in Equation 5.3.

Our region segmentation algorithm makes two image passes for each view. On the

first pass, the right-hand image is thresholded using the angle condition in Equation 5.3,

while the left-hand image is thresholded using the condition in Equation 5.4. On the

second pass, the angle conditions are interchanged between the left and right hand views.

This two pass thresholding gives two sets of regions per view. Figure 5.2 illustrates the

possible correspondence combinations between the region sets. In this way we impose

angle interval constraints on the allowable region correspondences. Figure 5.3 shows a

real-world example of the result of the segmentation process.
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a b c d

Figure 5.3: Segmentation of a real world image of a porcelain bear model. In (a) and (d), high-
lighted regions obey Equation 5.3, while in (b) and (c) they obey Equation 5.4.

Figure 5.4: Patch reconstructions of the leftmost regions of Figure 5.3a and b.

5.2 Cost Functions

As already mentioned, the algorithm seeks patch correspondences so as to minimise a cost

(or energy) function. In this section we first describe a rudimentary cost function based

purely on local patch reconstructions. We then introduce a more complex cost function

based directly on the estimated surface normals and the scale invariant topographic quan-

tity known as the shape index.

5.2.1 A Rudimentary Cost Function

This cost function is based on the similarity between local patch reconstructions obtained

by applying the Frankot and Chellappa method to recover surface depth, h, from needle

maps [27]. Figure 5.4 shows patch reconstructions from two of the larger regions from

Figure 5.3a and b, using γ < 0.

Consider the alignment of two patches, U and V , defined by: U = {ua; a = 1, 2...|U|}
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and V = {vb; b = 1, 2...|V|}, where ua = (x(u)
a , y(u)

a , z(u)
a )T and vb = (x(v)

b , y(v)
b , z(v)

b )
T . The

alignment is performed by applying a transformation function J to patch U to obtain the

set of transformed positions: J (U) = Û = {ûa}, where ûa = (x̂(u)
a , ŷ(u)

a , ẑ(u)
a )T .

For our case where the target object has undergone a known rotation about the vertical

(x) axis, the transformation contains a y-translation of ∆y, a z-translation of ∆z and a

rotation about the x-axis of θrot. For our particular transformation therefore, x̂(u)
a = x(u)

a ∀a ∈
{1, 2...|U|}. We represent the transformation parameters as

Θ = (∆y, ∆z, θrot)
T (5.5)

where θrot is known. Our task then, becomes that of estimating the vector of parameter

values Θ for each potentially corresponding patch pair that minimise an energy func-

tional.

The rudimentary energy functional for aligning patches U and V is

εUV
(
Θ

)
=

∑|U|
a=1

∑|V|
b=1 mab

(
Θ

) |vb − ûa

(
Θ

) |2
∑|U|

a=1

∑|V|
b=1 mab

(
Θ

) (5.6)

where
{
mab

(
Θ

)}
are the elements of the correspondence indicator matrix M

(
Θ

)
, de-

fined below. This is a modified version of the least squares alignment parameter esti-

mation problem. The correspondence indicators exclude the contributions to the squared

alignment error from non-matching points. Similar cost functions are obtained by Cross

and Hancock [17] and Gold et al. [29]. In this paper, the elements of the correspondence

indicator matrix are assigned as follows

mab

(
Θ

)
=





1 if





a = argmin
a′∈A(b)

|ŷ(u)
a′
(
Θ

)− y(v)
b | or

b = argmin
b′∈B(a)

|ŷ(u)
a

(
Θ

)− y(v)
b′ |

0 otherwise

(5.7)

where A (b) = {a ∈ 1, 2...|U| | x(u)
a = x(v)

b }, is the set of labels for points in U that lie in
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Figure 5.5: Illustration of how matrices M
(
Θ

)
and M ′(Θ)

are constructed. The points shown
are from a horizontal cross section of two patches. All broken lines correspond to elements of
M

(
Θ

)
set to unity. For M ′(Θ)

only the dark broken lines correspond such elements. The ele-
ments of M

(
Θ

)
are shown to the right. For the reduced correspondence matrix, all elements are

zero except for those highlighted.

the same horizontal plane as point vb. Similarly, B (a) = {b ∈ 1, 2...|V| | x(v)
b = x(u)

a } are

the labels for points in V in the same plane as point ua. In other words, mab

(
Θ

)
= 1 if

vb is the closest point in V to ûa

(
Θ

)
in the y-direction within the same horizontal cross-

section. Similarly, mab

(
Θ

)
= 1 also, if ûa

(
Θ

)
is the closest point in Û(

Θ
)

to vb. The

construction of the matrix, M
(
Θ

)
, is illustrated in Figure 5.5. Note that Equation 5.7

does not include a term with the difference in z-position. This is because in the final

algorithm, the energy functional is given in terms of the surface normals, so the height

reconstruction (difference in z-position) is not needed to establish correspondence.

The matrix M
(
Θ

)
is hence defined in a similar fashion to the correspondence ma-

trix used by Chui and Rangarajan [12]. Note that Chui and Rangarajan assume that the

correspondence is one-to-one, meaning that each row and each column of the final corre-

spondence matrix has exactly one element set to unity. We do not enforce this constraint

here.

Using the correspondence indicator matrix defined by Equation 5.7 means that any

points in non-overlapping areas of the patches are inappropriately included in the energy

calculation. We therefore use a reduced correspondence matrix, M ′(Θ)
, with elements
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m′
ab, which is defined by

mab
′ (Θ)

=





mab

(
Θ

)
if





min
a′∈A(b)

{
ŷ(u)

a′
(
Θ

)}
< y(v)

b < max
a′∈A(b)

{
ŷ(u)

a′
(
Θ

)}
and

min
b′∈B(a)

{y(v)
b′ } < ŷ(u)

a

(
Θ

)
< max

b′∈B(a)
{y(v)

b′ }

0 otherwise
(5.8)

This reduced correspondence indicator matrix therefore discards points in the patches

where there is no overlap, as shown in Figure 5.5.

Note that this method is an alternative to the iterated closest point (ICP) algorithm

[5]. We do not use ICP because that method would restrict our cost function to be based

on the location of points in 3D space. Use of Equation 5.6 specifically, has no advantage

over ICP in this respect. However, we would ideally like to base our cost primarily on the

surface normals rather than patch reconstructions, as this avoids error propagation.

5.2.2 An Improved Cost Function

We aim here to refine the cost function to include surface normal information instead of

the reconstructed height. However, if only the surface normals are used, then we encounter

a problem: it is possible that two surface points on different patches could have identical

surface normal directions but very different local shapes. We therefore introduce the shape

index into the energy functional to account for local surface topography.

The shape index, s, is a view-invariant quantity that describes the local topography of

a surface, and falls in the interval [−1, +1]. Where s = −1, the local surface shape is a

concave spherical cup, where s = 0 a saddle point is found and where s = +1 the surface

takes the form of a spherical dome. Between these values the surface takes intermediate

topographic forms. The shape index is undefined for planar surfaces.

The starting point for the derivation of the shape index is the Hessian matrix, defined

by:

H =




∂2h/∂x2 ∂2h/∂x∂y

∂2h/∂x∂y ∂2h/∂y2


 =




∂p′x/∂x ∂p′x/∂y

∂p′y/∂x ∂p′y/∂y


 (5.9)
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where h (x, y) is the surface height. p′x and p′y are the gradients of the surface and are

related to the Cartesian components of the unit surface normal in Equation 3.16 by p′x =

−px/pz and p′y = −py/pz.

The Hessian matrix can be calculated from the normals estimated using polarisation

data and the radiance function. Since we are performing a differentiation, the estimate of

H is not entirely robust to noise. However, since the Hessian will not form the main part

of our cost function (the normals themselves do), this problem is not severe.

Using Equation 5.9 directly leads to a view biased estimate of the Hessian, due to a

foreshortening effect. We therefore introduce the viewpoint compensated Hessian derived

by Woodham [122]:

C =
1√

(1 + px
2 + py

2)3




p2
y + 1 −pxpy

−pxpy p2
x + 1


 H (5.10)

The eigenvalues of this matrix are

λmax = −1

2
(c11 + c22 − S) (5.11)

λmin = −1

2
(c11 + c22 + S) (5.12)

where S =
√

(c11 − c22)
2 + 4 (c21c12) and cij denotes elements of C. λmax and λmin

are the principle curvature directions at the surface point and are the sole variables in the

definition of the shape index:

s =
2

π
arctan

(
λmax + λmin

λmax − λmin

)
(5.13)

In our energy functional, we motivate the use of the difference in shape index between

surface points as follows. Consider two surface points with identical normal directions

with one lying on a spherical dome (s = +1) and the other on a spherical cup (s = −1).

The difference in shape index is then +2 which increases the matching cost. Based on

this observation we propose the following form, which incorporates both the shape indices
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and the surface normals:

εUV
(
Θ

)
=

∑|U|
a=1

∑|V|
b=1 m′

ab

(
Θ

)
Pab

(
Θ

)
∆s2

ab∑|U|
a=1

∑|V|
b=1 m′

ab

(
Θ

) (5.14)

where Pab

(
Θ

)
=

(
pxb

− p̂xa

(
Θ

))2
+

(
pyb

− p̂ya

(
Θ

))2
+

(
pzb
− p̂za

(
Θ

))2
and ∆sab =

sb−sa. The “hat” notation is used to represent quantities having undergone transformation

J , as before. Note that the shape index does not depend on the transformation parameters

since it is rotation invariant.

Matrix M ′(Θ)
is calculated in the same way as before, using the patch reconstructions

from the Frankot-Chellappa method to determine nearest neighbours in the y-direction.

Note that this reconstruction is effectively used only as a means to account for foreshort-

ening (i.e. so that patch U can be rotated by θrot).

5.3 Final Algorithm

The optimum alignment parameters for patches U and V are given by

ΘUV = argmin
Θ

εUV
(
Θ

)
(5.15)

For each pair of corresponding patches, W and W ′ say, the correspondence matrix is

then taken as M
(
ΘWW′

)
. The matching cost εUV

(
ΘUV

)
is calculated for all potential

matches. The algorithm sorts the list of costs into ascending order (i.e. the most confident

match first) and confirms the matches sequentially, but rejects any that do not satisfy the

following consistency constraint:

If a point at y-position y(u)
a corresponds to a point at y(v)

b , then two other corre-

sponding points at y(u)
a′ and y(v)

b′ must satisfy:

sgn (y(u)
a′ − y(u)

a ) = sgn (y(v)
b′ − y(v)

b ) (5.16)

121



Due to occlusion, not all patches have a correspondence at all and so we ideally require

a cost threshold. Any matches with a cost above the threshold would then be discarded.

At present however, we are yet to develop an adaptive means of setting this threshold and

intend to consider this issue in future work.

The algorithm was first tested using Equation 5.14 as the energy functional. One prob-

lem encountered when using this form is that an area of a patch may be occluded in one

view but not in the other. Another issue is that, even though Equation 5.14 only needs

the Frankot-Chellappa method as a convenient way to account for foreshortening, it still

introduces a distortion in the patch shape and, therefore, a non-optimal correspondence

matrix. We reduce the impact of these problems by replacing Equation 5.14 with the fol-

lowing functional, which takes the median energy of the separate costs for each horizontal

cross-section of the patches:

εUV
(
Θ

)
=

1

K
(
Θ

) median
x∈`

(∑|U|
a=1

∑|V|
b=1 m′′

ab

(
Θ, x

)
Pab

(
Θ

)
∆s2

ab∑|U|
a=1

∑|V|
b=1 m′′

ab

(
Θ, x

)
)

(5.17)

where ` = {xu}
⋂{xv} is the set of unique x-positions covered by both patches and

m′′
ab

(
Θ, x

)
=





m′
ab

(
Θ

)
if x(u)

a = x(v)
b = x

0 otherwise
(5.18)

We have also introduced the quantity K
(
Θ

)
, which rewards patch overlap:

K
(
Θ

)
=

∑|U|
a=1

∑|V|
b=1 m′

ab

(
Θ

)
∑|U|

a=1

∑|V|
b=1 mab

(
Θ

) (5.19)

It is not necessary for the algorithm to calculate the cost for every conceivable pair

of patches. This is because we know that the two pixels in any given correspondence

pair lie on the same horizontal scanline for our particular experimental arrangement. In-

stead, it only calculates the cost of patch pairs where there is some overlap in the vertical

co-ordinates (i.e. ` 6= Ø). For such pairs, εUV
(
Θ

)
is minimised using the Nelder-Mead

method [56].
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Figure 5.6: (a) Azimuth angles of disambiguated regions of the bear model. (b) Final estimates
of the azimuth angles for the entire object.

We have also experimented with introducing an affine skew parameter into the vector

Θ. This is to further reduce the impact of patch distortions arising from the local recon-

struction process. The skew is particularly useful for long and thin patches such as those

in Figure 5.4 since imperfect surface normal estimates have a greater detrimental effect in

such cases. It is straightforward to add additional parameters to the transformation vector,

Θ, using our method to increase the generality of the technique.

After the patch matching is complete, we can disambiguate the azimuth angles for the

regions where correspondence was established. We do this using the knowledge that the

patches reconstructed using γ > 0 have α < 180◦ (i.e. α = α1 in Figure 3.5) and patches

where γ < 0 have α > 180◦ (α = α2). Figure 5.6a shows these unambiguous regions

for the bear model. We still have two estimates of these unambiguous surface normals,

one from each view. Our final value is taken from the view where the zenith angle was

greatest, since the raw polarisation data would have contained less noise for this estimate.

5.3.1 Correspondence for Remaining Areas

Large areas of the images remain without correspondence, and therefore ambiguous, after

the above matching procedure. To assign a value for the azimuth angle for these areas,

we use piecewise cubic Hermite interpolating polynomials (PCHIP) [28]. This form of

interpolation is similar to the spline technique in that a continuous curve is generated that

passes exactly through the data points. The difference is that spline maintains continu-
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Figure 5.7: Example of using PCHIP to establish dense correspondence. The “+” markers indi-
cate corresponding points on a particular scanline obtained from patch matching (not all are shown
for reasons of clarity). The curve is the PCHIP interpolation.

ous first and second derivatives, while PCHIP allows discontinuities in the latter. The

advantage of this from our point of view is that PCHIP ensures that a monotonic curve is

generated, thus ensuring that the point correspondences satisfy the condition in Equation

5.16.

The algorithm effectively plots the y-positions of corresponding points from each

view against each other and applies PCHIP to interpolate between correspondences. This

method only provides relatively crude correspondence for areas not in the vicinity of the

regions disambiguated previously. This is one reason for us currently relying on integra-

tion methods to recover depth instead of triangulation. However, it is sufficient as a means

of selecting the most reliable azimuth angle (α1 or α2) for most image pixels. Figure 5.7

shows an example of using PCHIP for this task.

We do not use the results of PCHIP for areas of the image where |γ| < θrot. Instead,

we propagate from surrounding areas and align surface normals to the mean of local 3×3

windows. This is advantageous since these areas are the most susceptible to noise due to

lower degrees of polarisation. Figure 5.6b shows the unambiguous azimuth angles for the

full image for each view of the bear model.

To demonstrate the effects of disambiguation errors, and to further motivate our choice

of the Frankot-Chellappa algorithm for shape reconstruction from surface normals, con-
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Figure 5.8: Illustration of the effects of an incorrect disambiguation on recovered height. (a)
Image of py for a synthetic sphere with a disambiguation error simulated. (b) Magnitude of the
error in the recovered height expressed as a percentage of the sphere radius.

sider Figure 5.8. For this figure, a synthetic sphere was created and the surface normals

were calculated at each point. For a slice of the sphere, the signs of the px and py values

were reversed to simulate the effects of a correspondence error. The surface normals were

then integrated using the Frankot-Chellappa method to obtain a depth map. The differ-

ence between the original sphere and the recovered depth is shown in the figure and is

clearly relatively small, given the magnitude of the error introduced. Had triangulation

been used with such an error, then the reconstruction would be more severely deformed.

5.4 Results

This section presents the experimental results of the technique described above. The

reconstruction algorithm has been applied to a range of objects and the strengths and

weaknesses are clearly demonstrated by the results. Several ground truth comparisons

are also shown. Finally, the section presents a few synthetic images of the reconstructed

surfaces, rendered using the reflectance functions estimated in Chapter 4.

5.4.1 Surface Reconstructions

Figure 5.9 shows the recovered depth maps of some of the objects used in Chapters 3

and 4. A good reconstruction is clearly obtained for each of the six cases. There are

two poorly recovered object areas. Firstly, the paws of the bear model do not protrude

as they should, due to inter-reflections. Although using the estimated radiance function
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Figure 5.9: Recovered 3D geometry of some of the objects in Figures 3.10, 4.5 and 4.7. The
texture on the cat model has been mapped back onto the surface.

helped to accurately recover the zenith angles here, the azimuth angles were incorrect

for these areas. Secondly, the handle of the basket does not arch from one side of the

object to the other, as Figure 5.10 shows. This is a result of the needle map integration

method that we used and is the type of error that may be reduced if triangulation methods

were incorporated into the final stage of the algorithm. Results for three other objects of

different materials are shown in Figure 5.11. Here, the original RGB images have been

used to reapply the texture onto the reconstruction.

Figure 5.12a shows a Lambertian rendering of the porcelain vase using ground truth

height data. The ground truth was calculated using the volume of revolution of the object

contour. In Figure 5.12b, three ground truth cross sections are compared to the recovered

height. The comparison proves that the method works very well for the simplest case,

namely that of a smooth object with basic geometry.

The difference image between the ground truth and the recovered height is shown

in Figure 5.13a. Note that any symmetries in the true object geometry are not always
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Figure 5.10: Different view of the porcelain basket from Figure 5.9, showing an error in the
reconstruction of the handle.

Figure 5.11: Recovered shapes of objects of different materials with the original textures mapped
onto the surface. The original images can be found in Figures 3.10 and 4.7.
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Figure 5.12: (a) Lambertian rendering of the porcelain vase using ground truth data. (b) Three
ground truth cross-sections of the vase (solid lines) compared to the recovered height (broken
lines). The distances indicated are such that one unit is equal to one pixel length.
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Figure 5.13: Difference between the recovered height and ground truth when (a) the radiance
function is used to refine the zenith angles and (b) when the radiance function is not used. The
scales to the right of the images indicate the absolute height error and are in the units of pixel
lengths. Note that the scale is different for each image.

preserved in the error. This is a result of small environmental inter-reflections and is

possibly accentuated by imperfect polariser calibration. For comparison, Figure 5.13b

shows the difference image when the raw zenith angle estimates were used (i.e. those

calculated directly from Equation 3.21 without estimating the radiance function). The

root-mean-square height errors were eight units when the radiance function was used and

eighteen units when it was not used. Note that the depth of the vase is 150 units. The

effect of using the radiance function was therefore to reduce the average error of the

reconstructed height from 12% to 5%.

Figure 5.14 shows a comparison of the ground truth profiles of the porcelain urn and

the orange. The urn profile shows that, although the general shape is recovered, the height
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a b

Figure 5.14: Ground truth profiles of (a) the porcelain urn and (b) the orange (solid lines). The
broken lines show estimates of the profile. The bottom curve in (b) was estimated without using
the radiance function.

variations are less pronounced than they should be for objects with complicated geometry.

The method performed better for the orange. Figure 5.14b also shows the profile estimate

of the orange without using the radiance function. Here, the radiance function was clearly

essential for accurate shape estimation.

5.4.2 Image Rendering

With the shape reconstructions and radiance functions both to hand, it is possible to render

images of the objects under novel illumination directions. This was done for Figure 5.15

for two of the porcelain objects. The reflectance functions used were those obtained using

the 2D reflectance function estimation algorithm described in Section 4.4. The same

radiance functions were used to render the spheres in Figure 4.21c and d.

The rendering process was simply a case of assigning an intensity to each pixel of the

image based on the estimates of the surface orientations and the radiance function. For

each point, the radiance function was interpolated to the surface normal angles estimated

for that point. A ray tracer was used to determine which areas of the object should be in

shadow. These areas were then set to zero intensity. The images look realistic apart from

a few blemishes in the reconstructions.

In Figure 5.16, more images have been rendered, but this time using radiance functions

of different materials. Figure 5.16a shows an orange rendered as though it were made of

porcelain. Figure 5.16b shows a porcelain vase rendered using the three-channel radiance

function of the plastic duck.
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Figure 5.15: Using the reconstructions and estimated radiance functions to render images of
porcelain objects under different illumination directions. (a) θL = 45◦, αL = 315◦. (b) θL = 60◦,
αL = 45◦.

a

b

Figure 5.16: Rendering the reconstructed objects using different material reflectance functions
and illumination directions. (a) Orange rendered as porcelain, θL = 60◦, αL = 0◦. (b) Porcelain
vase rendered as plastic, θL = 45◦, αL = 270◦.
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5.5 Conclusions

This chapter has accomplished the following:

1. It has shown how a pair of polarisation images can be segmented to reduce the

stereo correspondence problem to a patch matching problem.

2. Described potential cost functions suitable for the matching process.

3. Described an algorithm to perform the matching.

4. Described a means to establish dense correspondence from the set of matched

patches.

5. Conducted a series of shape reconstruction experiments to demonstrate the suc-

cesses and limitations of the technique.

6. Compared experimental results to ground truth profiles.

7. Used the reconstructions together with the reflectance functions calculated in Chap-

ter 4 for image rendering.

The first four points collectively form the stereo reconstruction algorithm, which is

summarised by Figure 5.1. The next two points are the main experimental results for

our method and are clearly superior to those from the basic method discussed in Section

3.2 (compare, for example, Figure 3.11 to Figure 5.9). The final point shows how the

appearance of the reconstructed objects can be predicted after changes to the illumination

conditions.

The development of the 3D reconstruction algorithm was the main goal of the thesis.

Use of the 1D reflectance function estimation algorithm described in Section 4.2 to en-

hance zenith angle estimates is optional, but greatly improves results at low computational

expense. Perhaps the main weakness of the technique is the special experimental arrange-

ment that is currently required. In future work we hope to acquire the two polarisation

images simultaneously using two cameras and fixed object and light source positions.
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This is likely to involve use of the 2D reflectance function estimation algorithm described

in Section 4.4 to enhance surface normal estimates under the more general illumination

conditions that would be present. More details of plans for future work will be described

in Chapter 6.
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Chapter 6

Conclusion and Outlook

This conclusion commences with a summary of the contributions of Chapters 3 to 5. This

will be followed by a discussion of the strengths and weaknesses of the computer vision

techniques presented. Finally, directions for future work will be discussed.

6.1 Summary of Contributions

This thesis has advanced shape and reflectance analysis techniques in the field of com-

puter vision, by use of polarisation information and Fresnel theory. The most significant

contributions are twofold. First, was the new idea of using shading information to comple-

ment the polarisation data. This was achieved by the development of the BRDF estimation

algorithms. These algorithms used the histograms of surface orientations and pixel inten-

sities to find an optimum reflectance curve/surface. The second of the main contributions

was the idea that polarisation vision can be used with several viewpoints. A novel patch

matching algorithm was developed for this purpose, which minimised an energy function

based on surface normal estimates and local topography.

Figure 6.1 shows a flow diagram to demonstrate the development of the main shape

recovery algorithm in the thesis. We shall consider this algorithm first, and summarise

the other contributions afterwards. The left-hand column of the figure formed the starting

point for our method and was taken from existing theory. This foundation consisted of the
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Figure 6.1: Development of the main shape recovery technique in the thesis.

long-established Fresnel theory and a simple method for estimating the degree and angle

of polarisation from image data.

6.1.1 Development of the Shape Recovery Technique

The novel contributions of this thesis mostly involved processing polarisation images.

Due to its robust nature, ease of implementation, and computational efficiency, we chose

to rely on the Frankot-Chellappa method for converting needle maps into depth. The novel

shape estimation techniques can therefore be regarded as methods for surface normal

estimation from polarisation images. In developing the main technique, we also devised

new reflectance function estimation and stereo correspondence methods.

As shown in Figure 6.1, the raw polarisation images provide only crude estimates

of the normals. This is due to factors such as heavy camera noise, inter-reflections and

roughness. In addition, the azimuth angles have a two way ambiguity. Chapter 3 showed

the extent to which shapes could be estimated using minimal data processing and a single

view. The result was a highly efficient method that did not attempt to refine the crude

zenith angle estimates and relied on occluding boundaries for disambiguation. Although

the technique was unable to recover details and was strongly affected by roughness, the

method recovered the general shapes reasonably well and may be useful in future work if

efficiency is an important factor.

An important novel concept used in the thesis is that shading information can be com-
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bined with polarisation to enhance the surface normal estimates. Chapter 4 used this

idea to aid the development of an image-based reflectance function estimation algorithm,

which was later used to improve shape recovery. To date, we have only applied the one-

dimensional reflectance function estimation to shape recovery. We showed how con-

sideration of the intensity-zenith histogram could be processed to deduce a 1D slice of

the BRDF. This allowed for more accurate zenith angle estimates because the problems

caused by inter-reflections, roughness and noise were significantly reduced. As Figure

6.1 shows, the incorporation of shading information led to accurate, but still ambiguous

estimates of the surface normals.

Chapter 5 showed how two polarisation images can be used to obtain a set of patch

correspondences between views. A novel patch alignment and matching algorithm was

developed for this task. This involved minimising an energy functional based on surface

normals (estimated from polarisation data and refined using the BRDF) and curvature.

The multi-view reconstruction allowed for complete disambiguation and, therefore, an

accurate field of surface normals. The results in Chapter 5 showed accurate shape re-

constructions for a variety of object geometries and materials and are superior to many

existing shape recovery techniques.

6.1.2 Further Contributions

The other novel contributions of the thesis are as follows. Chapter 3 contained a de-

tailed analysis of the accuracy of raw polarisation measurements for various materials

and describes a simple device for estimating refractive indices. In Chapter 4, the BRDF

estimation technique was extended to two dimensions using the zenith-azimuth-intensity

histogram. The BRDF was extracted from the histogram using simulated annealing and

elastica. This technique was important because it removed the strong restrictions on the

illumination conditions that were necessary for the 1D version. Chapter 4 also presents

a photometric stereo method for azimuth angle disambiguation. Finally, Chapters 4 and

5 both demonstrate the use of the estimated reflectance functions for image rendering.
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In the latter case, the reflectance functions were used in conjunction with the estimated

shapes to render the objects under different illumination conditions and as if they were

made from different materials.

6.2 Strengths and Weaknesses of the Thesis

Consider the main method presented in this thesis, illustrated by Figure 6.1. The most

important advantage over the majority of previous stereo algorithms is that featureless

surfaces can be used to establish correspondence. This means that the method comple-

ments many existing feature matching techniques.

In this thesis, we have focussed entirely on single object reconstruction. An advantage

of the technique is that it should be possible to extend it to scenes with several objects.

Indeed, it is hoped that the multi-view algorithm would be able to match whole objects

between views, in addition to matching individual patches. The formulation used for the

matching algorithm makes it easy to extend the method to more general transformations.

This is simply done by adding extra parameters to the transformation vector (Equation

5.5).

Using shading information to enhance the surface normal estimates is another impor-

tant strength of the thesis. This avoids the need for hefty geometric assumptions about

the target object (unlike the work of Miyazaki et al. [67], for example), whilst making

full use of each component of the polarisation image (unlike Rahmann and Canterakis

[85, 84]). Despite this, the normal estimates are still less accurate than those possible in

the presence of purely specular reflection. As mentioned in Section 3.1.5 however, the

specular case presents its own difficulties.

Processing histograms to estimate reflectance functions, as described in Chapter 4,

is a novel way to determine the relationship between the observed radiance and the sur-

face orientation. Very few image-based methods have been proposed in the literature to

estimate BRDFs. The advantage of image-based methods is that they are non-intrusive

and do not require specialised equipment. Our 1D BRDF algorithm also has the strength
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of being highly computationally efficient, although this is not currently true for the 2D

case. This latter weakness however, will hopefully be overcome in future work using

the deterministic mean field annealing [76]. The photometric stereo method described in

Chapter 4 is reliable, simple to implement algorithmically, highly efficient, and robust to

inaccurate light source positioning. It does however, suffer from the common weakness

of photometric stereo methods that it is not always practical to position the light sources

as required.

One weakness of most polarisation vision techniques, including those presented in

this thesis, is the extra time needed to acquire images using the rotating polariser. This

restricts the techniques to stationary objects and scenes. As mentioned in Section 2.1.1,

polarisation cameras partially overcome this weakness, at the expense of higher noise

levels. It is hoped, but not yet tested, that the reflectance estimation algorithm would

be robust to this extra noise. If so, then our technique could be applied to slow moving

objects.

The depolarising effects of surface roughness is another common weakness for po-

larisation methods in general. The probability density function fitting for the reflectance

function estimation helped to minimise effects here but certainly did not eradicate the

problem entirely. Likewise, the dependence on the refractive index is another limitation.

Perhaps a more sophisticated use of shading information would be needed to overcome

these weaknesses simultaneously. The degree of polarisation would then only be used as

an indicator of the relative size of the zenith angles for a particular object in the image.

This would mean that the precise relationship between the degree of polarisation and the

zenith angle would not be needed (i.e. Equation 3.21 would become obsolete). In addi-

tion, this would eliminate the need for the refractive index and mean that the only effect

of roughness would be the introduction of more noise.

The final weaknesses relate to the special lighting configuration used for the stereo

algorithms and the fact that direct specular reflections are not considered. We believe that

these issues can be largely overcome using the techniques presented in this thesis. Specifi-

cally, it is thought that rather than rotating the object under fixed illumination and viewing,
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several cameras could be used simultaneously with a fixed object and light source. The

2D BRDF estimation algorithm could then be applied to refine zenith angle estimates.

Since the specularities would not occur at the same surface points in the images, the spec-

ularity issue would be resolved. The method would also be less restricted by the special

configuration needed by our current technique.

6.3 Outlook

In addressing some of the current weaknesses in the ways suggested above, it is thought

that the generality of the technique can be extended. This can be done without the need

for major new ideas or principles. One of the most important suggestions made in the

previous section was to consider specular reflection more carefully. It may prove useful to

separate specular and diffuse reflections from the images [109] and recover the shape from

each component separately. Specularities also provide strong clues to the illumination

distribution [67]. A major goal for future work would be to estimate the light source

direction(s) from several views. This should allow for a more complete (3D) BRDF to be

estimated, which could include specular spikes. If this algorithm is successful, then the

technique may prove valid under non-controlled illumination conditions, or even outdoor

scenes.

A further means to increase the generality of the technique, is to incorporate texture

cues. The current method breaks down in the presence of significant texture. Use of single

view shape-from-texture techniques [105] is one possibility. However, we believe that a

form of feature matching (probably SIFT [60]) would be more useful. The main reason

is that by matching features between images, we are better able to incorporate the extra

information from the various viewpoints.

This brings us to the next point. Matching features between views provides a means

to calculate depth directly using triangulation. Assuming that an algorithm is reliable in

establishing correspondence, then triangulation is more accurate than needle map integra-

tion. The correspondence method described in Chapter 5 proved to be reliable for regions
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of large zenith angles and resulted in a good overall disambiguation of azimuth angles.

For these regions therefore, the use of triangulation, instead of integration, is likely to

result in a more accurate reconstruction. It is not yet clear however, whether a direct tran-

sition from integration to triangulation would be adequate for surface regions with small

zenith angles. Perhaps triangulation should be used where surface features are detected

using SIFT and for high confidence patch correspondences only. The gaps could then by

filled in using integration methods. If such a combined triangulation/integration method

were to be developed, it would not only be of use for polarisation methods, but also to

combine feature matching with shape-from-shading and other methods.

The focus of this thesis was primarily on the development of novel software for com-

puter vision. We end the thesis with a brief consideration of the hardware necessary to

implement a complete and fully operational sensor. The sensor would use the techniques

presented in this thesis for non-intrusive object detection and reconstruction.

Our proposal consists of two polarisation cameras, one of which may be mounted

with a flash gun to provide the source of illumination. If the flash is used, then the 1D

reflectance function estimation algorithm would be used to refine normal estimates for

that camera and the 2D version for the other camera. If the flash is not used, then the 2D

version must be used for both views. In this thesis, we relied on photometric stereo as part

of the 2D algorithm (for disambiguation). There should however, be enough information

to rely on geometric stereo for disambiguation instead.

The two cameras would communicate with each other to trigger simultaneous polar-

isation image acquisition. They would also communicate with a computer to provide

information on their relative positions and orientations. This is so that θrot and any other

required transformation parameters for Equation 5.5 are known (not all the parameters,

of course, need to be known, as they can be estimated by the algorithm). The multi-view

method can then be used as described in Chapter 5 to establish stereo correspondence

from the refined normal estimates from each view. Finally, integration and/or triangula-

tion can be used to estimate the depth.

A more ambitious goal would be to allow the system to learn. Polarisation cameras
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are able to acquire images rapidly, at above five frames per second [116, 66]. This would

allow the relative positions of the cameras and object(s) to change. As more views become

available, larger and more accurate portions of the BRDF could then be determined. The

system would then rapidly improve the accuracy of its depth estimates with time as it

learnt more about the material reflectance properties from different viewpoints. It may

also be able to manage several materials within a scene by using the different BRDFs to

segment the images. One certainty emerging from this thesis is that polarisation offers a

great deal of information for vision systems and yields many possibilities for the future.
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