
DPHIL THESIS

V ISUAL ANALYSIS OF
ARTICULATED MOTION

PHILIP A. TRESADERN

October 12, 2006

ROBOTICSRESEARCHGROUP

DEPARTMENT OFENGINEERING SCIENCE

UNIVERSITY OF OXFORD

This thesis is submitted to the Department of Engineering Science,
University of Oxford, for the degree of Doctor of Philosophy. This thesis
is entirely my own work and, except where otherwise indicated, describes

my own research.



For Mum and Dad



Philip A. Tresadern Doctor of Philosophy
Exeter College October 12, 2006

V ISUAL ANALYSIS OF
ARTICULATED MOTION

Abstract

The ability of machines to recognise and interpret human action and gesture from
standard video footage has wide-ranging applications for control, analysis and security.
However, in many scenarios the use of commercial motion capture systems is undesir-
able or infeasible (e.g. intelligent surveillance). In particular, commercial systems are
restricted by their dependence on markers and the use of multiple cameras that must
be synchronized and calibrated by hand. It is the aim of this thesis to develop methods
that relax these constraints in order to bring inexpensive, off-the-shelf motion capture
several steps closer to a reality.

In doing so, we demonstrate that image projections of important anatomical land-
marks on the body (specifically, joint centre projections) can be recovered automat-
ically from image data. One approach exploits geometric methods developed in the
field of Structure From Motion (SFM), whereby point features on the surface of an
articulated body impose constraints on the hidden joint locations, even for a single
view. An alternative approach explores Machine Learning to employ context-specific
knowledge about the problem in the form of a corpus of training data. In this case,
joint locations are recovered from similar exemplars in the training set via searching,
sampling or regression.

Having recovered such points of interest in an image sequence, we demonstrate that
they can be used to synchronize and calibrate a pair of cameras, rather than employing
complex engineering solutions. We present a robust algorithm for synchronizing two
sequences, of unknown and different frame rates, to sub-frame accuracy. Following
synchronization, we recover affine structure using standard methods. The recovered
affine structure is then upgraded to a Euclidean co-ordinate frame via a novel self-
calibration procedure that is shown to be several times more efficient than existing
methods without sacrificing accuracy.

Throughout the thesis, methods are quantitatively evaluated on synthetic data for a
ground truth comparison and qualitatively demonstrated on real examples.
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Chapter 1

Introduction

The ability to interpret actions and “body language” is arguably the ability
that has enabled humans to form complex social structures and become the
dominant species on the planet. This thesis focuses on a computational solu-
tion to this problem, known as Human Motion Capture (HMC), where we wish
to recover the human body pose in each frame of an image sequence. In this
first chapter, we introduce HMC in the wider context of Machine Vision before
outlining its applications, commercial (i.e. markered) solutions and limita-
tions. We then discuss markerless systems that exist in research environments,
the problems they overcome and the problems yet to be solved.

1.1 Background

Human beings absorb much of their information regarding the real world via visual

input. This visual input is essential for day-to-day tasks such as searching for food,

detecting and avoiding hazards, and navigating within our environment. The aim of

Machine Vision is to replicate this faculty using cameras and computers, rather than

the eyes and brain, to receive and process the data, thus bestowing the same abilities

on mobile robots and intelligent computer systems of the future.

Since the mapping from the3D world to a2D image incurs significant informa-

tion loss (i.e. depth), we impose constraints, typically encoded as assumptions or rules

learned from experience, to rule out spurious or inconsistent interpretations of com-

plex scenes. Indeed, these assumptions are sufficiently strong that they may induce

1



1. INTRODUCTION

Figure 1.1: Two twins in an Ames room.

an incorrect interpretation of the scene geometry, as demonstrated by optical illusions

such as the Ames room (Figure 1.1).

This thesis focusses on constraints that apply to images of articulated objects. We

define an articulated object as any structure that ispiecewiserigid but deforms accord-

ing to a finite number of degrees of freedom. Since a rigid body has6 degrees of

freedom (corresponding to translation and orientation in3D), a collection ofN rigid

bodies will in general have6N degrees of freedom. However, articulation between

objects reduces the number of degrees of freedom such that the structure can be com-

pletely determined by< 6N parameters.

Articulated objects are of considerable interest to us since they are abundant in our

environment, ranging from furniture fittings and mechanical linkages to biological or-

ganisms, including the human body itself. It is our highly developed ability to interpret

images of such dynamic structures that have enabled humans to interact and communi-

2



1. INTRODUCTION

cate with each other, arguably resulting in our complex social structure and becoming

the dominant species on the planet.

This ability was vividly demonstrated some years ago by Johansson [59] who in-

troduced the famous “Moving Light Displays”. In these experiments, human subjects,

dressed entirely in black, walked in front of a black background such that bright lights

placed close to anatomical joints (e.g. shoulders, knees) provided the only visual stim-

ulus. Surprisingly, it was noted that ‘all [observer]s, without any hesitation, reported

seeing a walking human being’ after being exposed to just one second of footage. It

appears that our brains are so well tuned to recognizing human motion that we are able

to form a correct interpretation of even the most limited visual input.

It is the aim of this thesis to develop a similar ability for machines. Specifically,

given an image (or image sequence) of a human in motion, we would like to recover

the pose (position and orientation of the body, plus angles at joints) at every instant in

time. Sequences of poses define gestures that may then be analysed for higher level

interpretation. We refer to this process asHuman Motion Capture.

1.2 Applications

The applications of human motion capture are highly diverse but can be separated

approximately into three principal areas: control, analysis and surveillance.

1.2.1 Control

In many applications, the recovered pose is used as input tocontrol a system. A par-

ticularly prominent end-user in this category is the entertainment industry, where hu-

man motion capture is used to drive a computer generated character (avatar) in movies

(e.g. Gollum from ‘The Lord of the Rings’, Figure 1.2) and video games (e.g. Lara

3



1. INTRODUCTION

Figure 1.2: (left) An actor, wearing markers during motion capture. (right) The cap-
tured pose applied to the virtual character, Gollum.

Croft from ‘Tomb Raider’). For accurate reproduction of movement, commercial sys-

tems are employed in an off-line process (see Section 1.3).

If only approximate movement is required, simple image processing can be used

to control the system in real-time as demonstrated in systems such as the Sony i-Toy.

This device provides a novel interface for video games whereby gross movements of

the user are translated directly into actions on the screen, resulting in a more interactive

experience.

Alternatively, rather than mimicking the observed actions it may be desirable to

react tothe human motion. This is particularly the case in humanoid robotics where

a natural human-machine interface is required for the robots to become more socially

4



1. INTRODUCTION

acceptable.

1.2.2 Analysis

Motion capture systems are also commonly used as ananalysistool. In medicine,

for example, commercial systems are used to analyse motion data for biomechanical

modelling, diagnosis of pathology and post-injury rehabilitation. Until recently, the

most common medical application was in gait analysis where kinematic motion data

would be augmented with kinetic data acquired using force plates. However, motion

capture is now being employed for the analysis of upper-body movements. For ex-

ample, motion capture data of the arm during reaching and grasping is being used to

develop algorithms to trigger Functional Electrical Stimulation (FES) of the muscles

at the correct time for patients that have suffered a stroke or spinal cord injury [109].

1.2.3 Surveillance

In contrast,surveillanceapplications cannot be implemented using commercial sys-

tems since the subjects are (by definition) unaware that they are under observation and

therefore do not willingly participate in the motion capture process. In most cases,

however, the level of required accuracy is much lower than in other applications – of-

ten we need only todetectsuspicious behaviour. This is a rapidly growing application

area (especially given the current security climate) and is closely linked tobiometrics

where gait could be used for identification [89] when the subject is too far away to

make conventional measurements (e.g. iris pattern, fingerprints, speech, face recogni-

tion).

5



1. INTRODUCTION

Figure 1.3: A typical motion capture studio employing ten cameras. A minimum of
three cameras are required although for the system to be robust to tracking error and
self-occlusion of markers, many more are usually employed.

1.3 Commercial Motion Capture

There are a number of commercial motion capture systems on the market (e.g. Vi-

con [119]). In this system, infra-red cameras observe a workspace under the illumina-

tion of infra-red strobe lamps located close to the cameras. Retro-reflective markers,

attached to tight fitting clothing worn by the actor, reflect the incoming rays from the

lamps directly back to the cameras such that the markers appear as bright dots in the

image. The use of infra-red cameras (rather than the visible spectrum) ensures a high

contrast between the markers and background in the image.

Knowing the locations of these dots in the images together with the positions of the

cameras in the workspace gives the 3D position of each marker at every instant in time.

From these 3D marker locations, joint centre locations are inferred (by treating each

6



1. INTRODUCTION

limb as a rigid body) in order to compute the pose of the underlying skeleton.

1.3.1 Limitations

Figure 1.3 shows a typical motion capture studio with ten cameras. The system is

necessarily complex to overcome the various number of limitations of this approach:

• Joint centre occlusion: Since the joint centre is hidden under skin and mus-

cle, is it inferred from the relative motion of markers on thesurfaceof adjacent

body segments via a calibration procedure where the actor performs an artificial

movement. However, the markers may restrict the movement of the actor and

are easily brushed off during vigorous movement. Furthermore, the movement

of the skin over underlying tissue violates the assumption that a limb is a rigid

body, increasing uncertainty in the estimate of the joint centre location.

• Synchronization: In order to triangulate the3D positions of the markers from

their 2D projections in multiple views, it is necessary to ensure that the image

projections all correspond to the exact same instant in time (i.e. the cameras must

be synchronized). This problem is addressed by generating a clock pulse from a

common source to open all camera shutters at the same instant.

• Calibration: To triangulate the position of the markers, all cameras must be ac-

curately calibrated with respect to a global co-ordinate frame. This is achieved

via an off-line calibration process where the user waves a markered “wand” (Fig-

ure 1.4a) of accurately known geometry around the workspace. Each image in

the sequence then contains a set of points corresponding to markers that are a

known and fixed distance apart in the scene. Since the cameras are stationary, all

images captured by a given camera can then be treated as a single image. From

7
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(a) (b)

Figure 1.4: (a) Wand and (b) axes used during camera calibration.

the known geometry of the wand, the cameras are then calibrated with respect

to each other. All cameras are then calibrated to a common co-ordinate frame

using a markered structure representing the global X and Y axes (Figure 1.4b)

located at the desired origin.

• Spatial correspondence:Although, in theory, only two views are required to

triangulate3D position from2D images, it is necessary to ensure that we use

the image of thesamemarker in each view to compute its3D position. It can

be shown that the image of a marker in one view constrains the location of the

corresponding image in a second view to lie on aline (the epipolar line) such that

an infinite number of correspondences are possible. In stereo applications, this

ambiguity is typically resolved by minimizing an error metric based on the rich

image information (e.g. normalized cross-correlation). However, in the absence

of rich image information (as in this case) a third camera is required to recover a

consistent set of matched image features.

• Marker occlusion: Since markers are attached to the surface of the body, each

marker is typically visible from only half of the workspace at any one time (Fig-

8



1. INTRODUCTION

Figure 1.5: Marker occlusion. A marker on the surface of an opaque object is typically
invisible to any camera on the opposite side of the tangent plane. Therefore, in order
to reconstruct all markers at any given frame, it is necessary to use at least six cameras
that are evenly spaced around the workspace.

ure 1.5). Therefore, with cameras distributed evenly around the workspace at

least six cameras are required for robust tracking. In practice, since the human

body is highly non-convex markers are obscured more often (e.g. markers on the

torso are occluded as the arm passes in front of the body). As a result, motion

capture systems typically employ at least seven cameras and even then, complex

post-processing is usually required to fill in small periods of marker occlusion.

From these limitations, we see that markers provide the greatest strength but also

the Achilles’ Heel of commercial motion capture systems. Not only are markers cum-

bersome and unsuitable for surveillance applications but they reduce the rich data con-

tained in an image (due to colour, texture, edgesetc.) to a number of point features.

Engineering solutions to the limitations described above only add to the technical com-

plexity and cost of commercial systems.

9
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1.4 Markerless Motion Capture

We now consider systems that recover pose by employing the rich data available in

standard image sequences. In such cases, problems such as marker self-occlusion

are avoided since the entire surface of the limb is employed rather than a finite set

of points from it. Furthermore, the rich data available provides additional cues (e.g.

edges, perspective, texture variation) that may permit a solution using a single camera

such that synchronization and calibration become unnecessary. Other problems, such

as joint centre occlusion, are intrinsic to the problem and therefore present in both

markerless and markered motion capture systems.

1.4.1 Limitations

In spite of these promises, body parts can still be occluded by each other and multi-

ple cameras are still desirable to increase accuracy so these problems are not entirely

solved. We therefore focus on other problems introduced in such systems.

• High dimensionality: Since markers are no longer available, it is very diffi-

cult to track individual body parts independently whilst satisfying constraints

imposed by articulated motion. As a result, it is commonly the case that the

whole body is tracked in one go. However, due to the large number of degrees of

freedom possessed by the human body the number of possible poses increases

exponentially and tracking becomes computationally infeasible.

• Appearance variation: In markered motion capture, markers have a known

appearance (i.e. high-contrast dots) in the image. However, due to lighting, ori-

entation, clothing, buildetc., images of limbs captured using visible light cam-

eras have a highly varied appearance that must be accounted for. This may be

10
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achieved in part by discarding certain parts of the data (e.g. by using only the

silhouette) but is largely an unsolved problem at this time.

1.5 Thesis Contributions

In this thesis, we investigate articulated motion with a bias toward human motion

analysis. During the course of this investigation, we present methods that may prove

beneficial in both markered and markerless tracking of the human body.1

We begin in Chapter 2 with a review of previous work, particularly in Human Motion

Capture and Structure From Motion. Following this, we present contributions in four

areas:

• Chapter 3 describes a geometric approach to recovering joint locations from a

monocular image sequence alone. This is based upon the Structure from Motion

paradigm, incorporating articulation constraints into the “factorization” method

of Tomasi and Kanade [111].

• In contrast, Chapter 4 compares several different approaches that uses Machine

Learning to estimate the joint locations from low-level image cues using a stored

dataset of poses.

• Chapter 5 demonstrates how projected joint locations in the image are used to

synchronize image sequences of the same motion. Joint locations from corre-

sponding frames are then used to compute the pose of the subject in an affine

coordinate frame using the factorization method.

• Chapter 6 details the self-calibration of the cameras, “upgrading” the recovered

1Parts of this thesis were previously published as [114, 115, 116].
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1. INTRODUCTION

affine structure to a metric co-ordinate frame where we are able to measure joint

angles.

Chapter 7 concludes the thesis, outlines unfinished investigation and discusses the

future direction of this work. Appendix A presents an empirical comparison of a num-

ber of shape representations for markerless motion capture including the recently pro-

posed Histogram of Shape Contexts that has shown promise in this application area.

12



Chapter 2

Related work

The study of visual processes using computational methods was popularized
by the seminal text of David Marr [69], a pioneer in the field now known
as computational neuroscience. In this chapter, we present a brief review of
selected papers from the two fields most relevant to this thesis: Human Motion
Capture (HMC) and Structure From Motion (SFM).

2.1 Human Motion Capture

Due to the volume of literature regarding human motion tracking, we will not attempt

to present a comprehensive review in this section (see [40, 6, 71] for more thorough

surveys). Instead, we focus on the two seemingly opposite paradigms of model-based

(“top down”) and data-driven (“bottom up”) tracking. In particular, we note the ‘par-

adigm shift’ from model-based to data-driven approaches during the 1990s and also

how the two methodologies complement each other throughimportance sampling.

2.1.1 Tracking people from the top down

Top-down (or model-based) tracking refers to the process whereby an observation

model, specifying how measurements are generated as a function of the state (pose),

is combined (typically via Bayes’ rule) with a predictive prior model that specifies our

certainty of state before any measurements are made.

With a few exceptions (e.g. [12]), most model-based approaches to human motion

13



2. RELATED WORK

tracking are based upon the hierarchical kinematic model proposed by Marr and Nishi-

hara [70]. This3D model consists of a wireframe skeleton surrounded by volumetric

primitives such as cylinders [70, 86, 93], spheres [78], truncated cones [41, 28, 122,

29], superquadrics [38, 21, 99] or complex polygonal meshes [61]. From a hand ini-

tialization in the first frame, the pose of this model is predicted at the next time step

using a dynamical motion model. It is then reprojected in the predicted pose, compared

with observations and a “best” estimate selected as some combination of the two.

Alternatively, using a 2D model requires fewer parameters to describe pose and

does not suffer from kinematic singularities during monocular tracking [76]. However,

perspective must be accounted for explicitly [60, 76] and only 2D pose is recovered,

although by imposing constraints (e.g. anatomical joint limits) over the sequence it is

possible to rule out implausible 3D poses [32].

Following the earliest examples of human motion analysis [78, 50, 86, 41], model-

based tracking remained popular for many years since it is simple to implement, allows

the recovery of joint angles in a 3D coordinate frame, and provides a framework for

handling occlusion and self-intersection. However, there are also a number of difficult

problems associated with human motion tracking. Bregler and Malik [21] tackle the

issue of motion non-linearity using a first order approximation, employing a ‘twist’

notation to represent orientation. To address the issue of several possible solutions

from a single view, many approaches use multiple cameras [38, 28, 61].

Density propagation

This approach to tracking is also known as agenerativemodel approach and typically

employs Bayes’ rule to assimilate predictions with observations. Specifically, denoting

the state at timet by xt and the image data at timet byDt, Bayes’ rule states that:

14
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p(xt|Dt, Dt−1, . . .) =
p(Dt|xt, Dt−1, . . .)p(xt|Dt−1, . . .)

p(Dt|Dt−1, . . .)
(2.1)

∝ p(Dt|xt)

∫
p(xt, xt−1|Dt−1, . . .) dxt−1 (2.2)

= p(Dt|xt)

∫
p(xt|xt−1, Dt−1, . . .)p(xt−1|Dt−1, . . .) dxt−1 (2.3)

= p(Dt|xt)

∫
p(xt|xt−1)p(xt−1|Dt−1, . . .) dxt−1 (2.4)

where sensible independence assumptions have been made.

In this form,p(xt|Dt, Dt−1, . . .) is theposteriorprobability density that takes into

account predictions and observations. Thelikelihood, p(Dt|xt), reflects how well a

predicted state matches the current measurements via an observation model. Similarly,

theprior, p(xt|xt−1), specifies how the state is expected to evolve from one time instant

to the next via a predictive motion model. The posterior from the previous time instant,

p(xt−1|Dt−1, . . .), is therefore propagated through time via (2.4).

Multiple hypothesis tracking and the CONDENSATION algorithm

In order to combine the prediction and observations in an optimal way, many systems

employed the Kalman Filter (KF) or Extended Kalman Filter (EKF). These have the

desirable property that the posterior can be propagated analytically in a computation-

ally optimal way (see Figure 2.1),as long as the noise distribution is Gaussian(and

hence unimodal).

However, in practice the observation likelihood is seldom expressible in an analyt-

ical form as a result of the many local maxima (due to clutter, kinematic ambiguities,

self-occlusionetc.) and tracking is easily lost. Nonetheless, it is generally possible to

evaluatethe likelihood at a given value ofxt. This property was exploited by methods

that could support multiple hypotheses such that ambiguities could be resolved using
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Figure 2.1: Kalman filtering: (a) Estimated posterior at timet−1; (b) Predicted distrib-
ution at timet; (c) Diffused predictive distribution; (d) Diffused predictive distribution
with likelihood distribution shown in red. Assimilation of the predition with current
observations via the Kalman gain matrix gives the posterior at timet in preparation for
the next iteration.

future observations. Although some approaches dealt with this explicitly [25], by far

the most popular was the generic CONDENSATION algorithm of Isard and Blake [57]

(introduced earlier for radar systems by Gordon as the “particle filter” [42]).

Originally developed for contour tracking, CONDENSATION (a form of sequential

Monte Carlo sampling [33]) represents a non-parametric probability distribution with

a set of “particles”, each representing a state estimate and weighted with respect to the

likelihood. At each step, the weighted particle set (a sum of delta functions) is prop-
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Figure 2.2: Particle filtering: (a) Weighted samples representing the posterior at time
t−1; (b) Particles following propagation via the motion model; (c) Diffused particles
giving a continuous distribution from which we can sample; (d) Samples drawn from
mixture of Gaussians. The resulting particles are then weighted to give a particle set
representing the posterior at timet in preparation for the next iteration. Note that
particles are shown un-normalized for illustrative purposes only.

agated to the next time instant via the deterministic component of the state evolution

model,p(xt|xt−1). The propagated particles are then diffused with stochastic noise to

give a continuous density estimate (typically a mixture of Gaussians) that is resampled

to generate new (unweighted) predictions. These predictions are then weighted via

the likelihood,p(Dt|xt), with respect to the new observations to form a new weighted

particle set. Iteration of this process propagates the multimodal posterior through time

(see Figure 2.2).
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Deutscheret al. [31] demonstrated the advantages of CONDENSATION for human

motion by tracking an arm through singularities and discontinuities where the Kalman

filter suffered from terminal failure. However, CONDENSATION was originally de-

veloped for relatively low (∼6) dimensional state spaces whereas full body pose com-

monly lies within state spaces of high (∼30) dimension. Due to the exponential ex-

plosion in the required number of particles with increasing dimension (known as the

“curse of dimensionality”) methods were developed to concentrate particles in small

regions of high probability, reducing the total number needed for effective tracking.

An approach specific to kinematic trees known aspartitioned sampling[68] (or

state space decomposition[38]) exploited the conditional independence of different

branches of the tree by working from the root (i.e. torso) outwards, thus constraining

the locations of the leaves independently. In practice, however, it proved very difficult

to localize the human torso independently of the limbs. An implicit form of partitioning

was later demonstrated using the ‘crossover’ operator from genetic algorithms [30].

Sidenbladhet al. [93] used a learned walking model to enforce a strong dynamic

prior and capture correlations between pose parameters. Deutscheret al. [29] im-

plementedannealingin order to smooth the likelihood function and introduce sharp

maxima gradually, thus avoiding premature “trapping” of particles. Other approaches

used deterministic optimization techniques to recover distinct modes in the cost surface

such that it could be represented in a parametric form [25, 99].

In particular, Sminchisescu and Triggs [99] introducedcovariance-scaled sampling

whereby samples are diffused in the directions of highest covariance to deal with

kinematic singularities. To explore local maxima close to the current estimate, they

employed sampling and optimization methods developed for computational chem-
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istry [100, 101]. They later investigated local maxima far from the current estimate due

to monocular ambiguities (“kinematic flips”) that could be determined from straight-

forward geometry [102]. These studies of the cost surface clearly demonstrated how

abundant local maxima are in monocular body tracking.

Despite these developments, however, accurate model-based tracking of general hu-

man motion remained elusive. Furthermore, hand initialization is required and design-

ing a smooth observation model takes considerable effort. As a result, model-based

tracking for human motion capture suffered a decline in favour of more data-driven

approaches as described in Section 2.1.2.

Observation (likelihood) and motion (prior) models

We digress for a moment to discuss the observation (likelihood) and predictive motion

(prior) distributions. Their product gives the posterior distribution representing our

‘best’ estimate of the state based on what we see (observations) and what we expected

to see (prior). Effectively, the motion prior imposes smoothness on the state over time,

maintaining a delicate balance between “truth” and “beauty”.1

With respect to the observation model, various image features are available (see

Figure 2.3) such as the occluding contour (silhouette) [28, 29], optic flow [21, 60,

122, 93, 99] and edges, as derived from rapid changes in intensity [29, 122, 38, 99] or

texture [90]. Having projected the model into the image, observations are compared

with what we expected. To define more clearly “what we expect to see”, Sidenbladh

and Black learn spatial statistics of edges and ridges in images of humans [95], rather

than assume a known distribution. Note that it is common to combine different visual

cues to overcome characteristic failings of particular features such as edges (sparse but

1A rather bohemian exposition provided by Dr. Andrew Fitzgibbon.
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(a) (b) (c)

Figure 2.3: (a) Example frame from a starjumps sequence; (b) Occluding contour
(silhouette); (c) Distance transform of the masked edge map.

well localized) and optic flow (dense but ill-defined in regions of uniform texture and

prone to drift).

The predictive motion model,p(xt|xt−1) simply tells us, given a pose at timet−1,

what we expect it to be at timet and with what certainty. The most common model

for general motion is the constant velocity model whereby the velocity at timet−1

is used to predict the pose at timet. This common model is easily incorporated into

the Kalman filter, EKF and particle filter for human body tracking [60, 61, 29, 99,

122, 93] although higher order models (e.g. constant acceleration [38]) have also been

employed.

Although the constant velocity/position/acceleration model is simple to implement,

it is seldom accurate enough to allow tracking over long sequences. One way to address

this problem is to use more specialized (possibly non-linear) motion models learned

from training data. As an extreme example, Rohr [86] reduces the state space to a

single dimension representing the phase of a walk cycle. Sidenbladhet al. [93] com-

pute a statistical model (via Principal Component Analysis) of various walk cycles to
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account for variation in gait, whilst maintaining a low dimensional (5D) state space.

Alternatively, the predicted pose can be obtained from stored pose sequences by simple

database look-up [51] or probabilistic sampling [94]. One problem with such specific

approaches is that they rarely generalize well to novel motions.

Another alternative is to use several motion models and switch between them de-

pending on the current estimated action [124, 79, 3]. Since each model has different

parameters, they are more specialized and can predict the future pose with greater ac-

curacy. However, the task of determining the most appropriate model is not trivial and

is often implemented by a Hidden Markov Model (HMM), with transitions between

models learned from training data.

Finally, the predictive model may incorporate hard constraints to rule out unlikely

poses. The most common of these are anatomical joint limits (usually enforced as

limits on Euler angles [29, 99]) but may also be learned from training data in order

to model dependencies between degrees of freedom [49]. Further constraints can be

enforced to prevent the self-intersection of limbs [99].

2.1.2 Tracking people from the bottom up

Whereas model-based tracking approaches fit a parametric model to observations using

a likelihood function, data-driven methods attempt to recover pose parameters directly

from the observations. Methods that estimatep(xt|Dt, Dt−1, . . .) directly from training

data, also known asdiscriminativemodel approaches, vary much more than model-

based tracking and are often more applicable to monocular tracking.

Early approaches [65, 46, 131] heuristically assigned sections of the occluding con-

tour to various body parts before estimating joint locations and pose. Later methods

used shape context matching [73], geometric hashing [105] and optic flow [36] of the

21



2. RELATED WORK

input image to find its nearest neighbour in a large database of stored examples. The

stored joint locations were then transferred by warping the corresponding examplar

to the presented input. Due to the exponentially high number of examples required

for general motion, efficient searching methods have also been developed for nearest

neighbour retrieval [91, 43].

Another popular approach is to detect parts independently and assemble them into

a human body. Early approaches classified coloured “blobs” as head, hands, legsetc.

to interpret gross movements [19, 125]. More recently, body parts located with primi-

tive classifiers (e.g. “ribbon” detectors) have been assembled using dynamic program-

ming [37], sampling [54] and spatiotemporal constraint propagation [83]. Two-stage

methods have also been employed where body parts are detected with one classifier and

assembled with another, such as a Support Vector Machine (SVM), in a “combination

of classifiers” framework [72, 87].

For the multi-view 3D case, similar methods have recently been applied by Sigal

et al. [96] using Belief Propagation (BP) to assemble body parts in time and space.

Graumanet al. [45] use a mixture of probabilistic principal component analysers to

learn the joint manifold of observations and pose parameters such that projection of

the input silhouettes onto the manifold recovers the estimated 3D pose. With multi-

ple cameras, volumetric methods such as voxel occupancy [103] and visual hull re-

construction [26, 44] are also possible. However, the number of cameras required to

accurately recover structure (and pose) is high.

Other approaches ignore the fact that they are tracking a kinematic model and di-

rectly model a functional relationship2 between inputs (observations) and outputs (pose

2Strictly speaking, the relationship is a many-to-manymappingrather than a function
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parameters) using a corpus of training data. Once the mapping has been learned, the

training data can be discarded for efficient on-line processing. Brand [16] uses en-

tropy minimization to learn the most parsimonious explanation of a silhouette sequence

while Agarwal and Triggs [2] use a Relevance Vector Machine (RVM) to obtain 3D

pose directly from a single silhouette. Rosales and Sclaroff [88] cluster examples

in pose space and learn a different function for each cluster using neural networks.

Their “Specialized Mappings Architecture” (SMA) recovers a different solution for

each cluster to accommodate the ambiguities inherent in monocular pose recovery, al-

beit in a less principled manner than the more recent “mixtures of regressors” [4, 98].

2.1.3 Importance sampling

So far we have discussed two seemingly opposite paradigms – model-based tracking

and data-driven approaches – each with their own strengths and weaknesses. In par-

ticular, model-based tracking requires hand initialization and does not take the most

recent measurements into account untilafter future state estimates have been pre-

dicted. The effect of this latter point is that we risk wasting particles in regions of

low probability density if we have a poor motion model. However, it is more diffi-

cult to incorporate prior knowledge (e.g. motion models, kinematic constraints) into

data-driven approaches.

Importance samplingcombines the strengths of both paradigms and is easily in-

corporated into the particle filter framework [58]. It is employed when the posterior

(that can be evaluated at a given point but not sampled from) can be approximated by

a proposal distribution, q(xt|Dt), that is cheap to compute from the most recent ob-

servations andcan be both evaluated point-wise and sampled. Rather than sampling

from the prior, samples are drawn from the proposal distribution and multiplied by a
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reweighting factor,w, where:

w =
p(xt|Dt−1, Dt−2, . . .)

q(xt|Dt)
(2.5)

such that the samples are correctly weighted with respect to the motion model before

reweighting again with respect to the likelihood. However, these samples are now con-

centrated in regions of highposterior(rather than prior) probability mass and should

therefore be more robust to ‘unpredictable’ motions that are incorrectly modelled by

the dynamical motion model. Note that, ifq(xt|Dt) = p(xt|Dt−1, Dt−2, . . .) then all

weights are equal, resulting in the standard particle filter.

Since the proposal distribution is generated from current observations, it is used

both for initialization and guided sampling such that particles are selected based on the

most recentobservations and then takes into account the predicted state using the mo-

tion model. In the original hand-tracking application [58], skin-colour detection was

used to generate a proposal distribution before evaluating the more computationally

expensive likelihood, resulting in a significant speed-up during execution.

Importance sampling was later applied to single-frame human pose estimation in [64,

106] by locating image positions of the head and hands using a face detector [121] and

skin colour classification, respectively. From this, they were able to produce 2D pro-

posal distributions for the image locations of intermediate joints. An initial hypotheses

was drawn from these distributions and inverse kinematics applied to give a plausible

3D pose. The space of 3D poses could then be explored using Markov Chain Monte

Carlo (MCMC) sampling techniques [64] to give plausible estimates of human pose

that were then compared with measurements using an observation model.
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2.2 Structure From Motion

This thesis also draws strongly upon the field of Structure From Motion (SFM), fol-

lowing early studies by Ullman [117] to investigate human perception of3D objects.

Ullman demonstrated that the relative motion between 2D point features in an image

gives the perception of a three dimensional object, as exemplified using features from

the surfaces of two co-axial cylinders rotating in different directions.

2.2.1 Rank constraints and the Factorization Method

Although Structure from Motion was an active research field in the 1980s and early

1990s, approaches typically employed perspective cameras [67] (possibly undergoing

a known motion [15]) and recovered structure or motion from optical flow [1, 10] or

minimal ‘n-point’ solutions [53].

In contrast, other approaches [53, 62] employed affine projection models. This cul-

minated in the ground-breaking paper of Tomasi and Kanade [111], resulting in a par-

adigm shift within the field. Specifically, they noted that under anaffinecamera model

(a sensible approximation in many cases) the projection of features that are moving

with respect to the camera islinear. As a result, all features and all frames can be

considered simultaneously by defining a matrix of feature tracks (trajectories):

W =

x1
1 · · · x1

N
...

...
xV

1 · · · xV
N

 =

R1 t1
...

...
RV tV

[
X1 · · · XN

1 · · · 1

]
= P(2V×4)X(4×N) (2.6)

wherexv
n is the2×1 position vector of featuren in view v, Rv is the first two rows

of the vth camera orientation matrix,tv = 1
N

∑
n xv

n is the projected centroid of

the features in framev andXn is the3×1 position vector of featuren with respect
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to the objects local co-ordinate frame. This critical observation demonstrated that

rank(W) ≤ 4 such thatW can be factorized intoP andX using the Singular Value

Decomposition (SVD) to retain only the data associated with the four largest singular

values. Normalizing the data with respect to the centroid results in therank(W̃) ≤ 3

system:

W̃ =

 x1
1−t1 · · · x1

N−t1
...

...
xV

1 −tV · · · xV
N−tV

 =

R1
...

RV

 [
X1 · · · XN

]
= P(2V×3)X(3×N) (2.7)

where the structure’s centroid is now located at the global origin.

Since these two factors can be interpreted as structure and motion in an affine co-

ordinate frame, it is necessary to “upgrade” them to a Euclidean co-ordinate frame

before meaningful lengths and angles can be recovered. This can be seen by the fact

that post-multiplication (pre-multiplication) of the motion (structure) by a matrixB

(B−1) leaves the resultingW unaltered (known as agauge freedom):

PX = PBB−1X. (2.8)

It can be shown that the3 × 3 calibrating transformation,B, can be expressed in

upper-triangular form:

B =

a b c
d e

1

 (2.9)

whose lower-right element is fixed at unity to avoid any depth-scale ambiguity.

The value ofB is computed by making sensible assumptions (e.g. zero skew, unit

aspect ratio) about the camera to impose constraints on the rows ofPB. Specifically,
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everyRvB block corresponding to a given frame should be close to the first two rows

of a scaled rotation matrix [82]. DefiningRv as:

Rv =

[
iT

jT

]
, (2.10)

the constraints of unit aspect ratio and zero skew are expressed algebraically as:

iTBBT i− jTBBT j = 0, (2.11)

iTBBT j = 0. (2.12)

These constraints are linear in the elements of the matrixΩ = BBT , that is re-

covered by linear least squares. Cholesky decomposition ofΩ should then give the

required value ofB as required.

2.2.2 Extensions to the Factorization Method

The Factorization Method’s simplicity and robustness to noise (it recovers the Maxi-

mum Likelihood solution in the presence of isotropic Gaussian noise [84]) has ensured

that it remains popular to this day. Extensions to the method incorporated new cam-

era models [80], used multiple bodies [27], recast the batch process as a sequential

update [74], and generalized for other measurements such as lines and planes [75].

Further developments used the spatial statistics of the image features to account for

non-isotropic noise [75, 56] while similar principles were also shown to hold for opti-

cal flow estimation [55].

Statistical shape models were later developed to deal with deformable objects, treat-

ing the structure at each instant as a sample drawn from a Gaussian distribution in
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shape space [20, 113, 17, 18]. In this way, non-rigid shapes such as faces can be

captured and reconstructed.

In the context of human pose estimation, the factorization method has seen little

use due to the lack of salient features on the human body. One approach uses joint

locations in a pair of sequences and the factorization method applied independently at

each time instant [66]. With only two views at each time instant, projection constraints

alone are insufficient to recover metric structure and motion so prior knowledge of the

structure (in this case, the human body) is employed to further constrain the solution.

This calibration method is discussed in greater detail in Chapter 6.

In related work [107, 11] the affine camera assumption is employed in single view

pose reconstruction (although factorization is not used). In these cases, it is assumed

that theratiosof body segments are known in order to place a lower bound on the scale

factor in the projection.

To begin the thesis, we return to the multibody factorization case with particular

focus on articulated objects.
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Chapter 3

Recovering 3D Joint Locations I :
Structure From Motion

In this chapter, we present a method for recovering centres and axes of rotation
between a pair of objects that are articulated. The method is an extension of
the popular Factorization method for Structure From Motion and therefore
is applicable to sequences of unknown structure from a single camera. In
particular, we show that articulated objects have dependent motions such that
their motion subspaces have a known intersection that results in a tighter
lower bound onrank(W). We consider pairs of objects coupled by prismatic,
universal and hinge joints, focussing on the latter two since they are present in
the human body. Furthermore, we discuss the self-calibration of articulated
objects and present results for synthetic and real sequences.

3.1 Introduction

In this chapter we develop Tomasi and Kanade’s Factorization Method [111], originally

applied to static scenes, for dynamic scenes containing a pair of objects moving relative

to each other in a constrained way. In this case, we say that their motions aredependent.

In contrast, objects that move relative to each other in an unconstrained way are said

to haveindependentmotions.1

As in the original formulation, we assume that perspective effects are small and

employ an affine projection model. Under this assumption, we recover structure and

motion directly using the Singular Value Decomposition (SVD) of a matrix,W, of

1Portions of this chapter were published in [116]
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image features over the sequence. Specifically, with affine projection it was shown

thatrank(W) ≤ 4 for a static scene. Intuitively,rank(W) ≤ 4k with k objects in the

scene. However, we demonstrate that if the objects’ motions aredependentthen the

reduced degrees of freedom result in a tighter upper bound such thatrank(W) < 4k.

In particular, we investigate exactly how dependent motions impose this tighter

bound and how underlying parameters of the system can be recovered from image

measurements. We investigate three cases of interest:

• Universal joint : Two objects coupled by a two or three degree of freedom joint

such that there is a singlecentre of rotation(CoR).

• Hinge joint : Two objects coupled by a one degree of freedom joint such that

there is anaxis of rotation(AoR). The system state at any time is parameterized

by the angle of rotation about this axis of one object with respect to the other.

• Prismatic joint : Two objects coupled by a one degree of freedom “slide” such

that there is anaxis of translation. The system state at any time is parameterized

by the displacement along this axis from a reference point.

Of these three cases, we investigate universal joints and hinges more closely since

they are found in the human body whereas prismatic joints are included for complete-

ness. These cases of interest are selected from a large number of potential dependen-

cies as discussed in Section 3.2.

3.1.1 Related work

Costeira and Kanade [27] extended The Factorization Method for dynamic scenes as a

motion segmentation algorithm. However, the method assumed that the motions were
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independent. It was later shown that when the relative motion of the objects isdepen-

dent, the motion subspaces have a non-trivial intersection [128]. As a result, algorithms

assuming that the motion subspaces are orthogonal suffered terminal failure.

In other work, factorization was used to recover structure and motion of deformable

objects represented as a linear combination of “basis shapes” [17, 20, 113]. This is

a reasonable assumption forsmall changes in shape (e.g. muscular deformation) al-

though more pronounced deformations (e.g. large articulations at a joint) violate this

assumption.

Aside from human motion tracking (see Section 2.1) and model-based tracking sys-

tems [34], articulated objects have been largely neglected in the tracking literature. At

the time of this research taking place, the only directly related work was that of Sinclair

et al. [97] who recovered articulated structure and motion using perspective cameras.

However, they assumed that articulation was about a hinge and that the axis of rotation

was approximately vertical in the image. Furthermore, non-linear minimization was

used to find points on the axis and they assumed that some planar structure was visible.

In contrast, we exploit an affine projection model since the two objects are cou-

pled such that their relative depth is small compared to their distance from the camera.

As a result, our method is much simpler since (for the most part) we use computa-

tionally cheap linear methods rather than expensive search and iterative optimization

techniques. Furthermore, we do not assume to know how the objects are coupled, nor

do we require the axis of rotation to be visible in the image, nor any structure (visible or

otherwise) to be planar. In fact, we show that the nature of the dependency between the

objects is readily available from the image information itself. Although we use a fixed

camera in this work, this is not a requirement and the method is equally applicable to
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a camera moving within the scene.

We note that Yan and Pollefeys [126] published an almost identical method devel-

oped independently of this work. As a result, our works can be considered comple-

mentary since we verify each other’s (repeatable) results. However, we also consider

calibration of the cameras and how this process is affected by the additional constraints

that should be imposed.

We also note that this method is in contrast to other methods that deal with articu-

lated structure [66, 107, 115] where only one point (typically a joint centre) per seg-

ment is included in the data. In such cases, there is no redundancy to be exploited in

the point feature data (since four points per segment are required to define a coordinate

frame in3D) and rank constraints over the whole sequence do not apply.

3.1.2 Contributions

The contributions of this chapter can be summarised as follows:

• We demonstrate that dependent motions impose stronger rank constraints on a

matrix of image features. Furthermore, we show that the nature of the depen-

dency can be recovered from the measurements themselves in order to select

appropriate constraints for future operations.

• We impose the selected constraintsduringfactorization and self-calibration (rather

than as a post-processing step) in order to recover metric structure and motion

that is consistent with the underlying scene. We also show that under some cir-

cumstances, self-calibration becomes anon-linearproblem that requires more

complex computation.

32



3. RECOVERING3D JOINT LOCATIONS I : STRUCTUREFROM MOTION

• We present results on both real and synthetic data for a qualitative and quantita-

tive analysis. Our results show that, despite its simplicity, the method is accurate

and captures the scene structure correctly.

3.2 Multibody Factorization

Relative motion between two objects can be dependent in either translation or rotation

(or both), as summarized in Table 3.1.

DOFrot

0 1 2/3

DOFtrans

0 Same object Hinge joint Universal joint
1 Linear track Cylinder on a plane Sphere in tube?
2 Draftsman’s board Computer mouse Ball on a plane
3 Cartesian robot SCARA end effector Independent objects

Table 3.1: Possible motion dependencies between two objects.

For two bodies moving independently, the ‘motion space’ scales accordingly such

that rank(W) = 8. However, when the motions aredependentthere is a further

decrease inrank(W) that we use both to detect articulated motion and to estimate the

parameters of the joint. For the remainder of this chapter, quantities associated with

the second object are primed (e.g. R′, t′, etc).

3.2.1 Universal joint: DOFrot = 2, 3

When two objects are coupled by a universal2 joint, the bodies cannot translate with

respect to each other but their relative orientation is unconstrained. Universal joints

are commonly found in the form of ball-and-socket joints (e.g. on a camera tripod,

shoulders, hips).

2In this definition, we include joints with two degrees of freedom as well as those with three.

33



3. RECOVERING3D JOINT LOCATIONS I : STRUCTUREFROM MOTION

d
d’

t’
t

Figure 3.1: Schematic of a universal joint.

The universal joint is illustrated schematically in Figure 3.1, wheret andt′ represent

the centroids of the objects. The position of the CoR in the co-ordinate frame of each

object is denoted byd = [u, v, w]T and−d′ = [u′, v′, w′]T , respectively. For accurate

structure and motion recovery, the location of the CoR must be consistent (in a global

sense) in the co-ordinate frames of the two objects such that:

t + Rd = t′ −R′d′. (3.1)

Alternatively, we can say thatt′ is completely determined onced andd′ are known

since:

t′ = t + Rd + R′d′. (3.2)

Rearranging (3.1) or (3.2) gives:

Rd + R′d′ − (t′ − t) = 0, (3.3)

showing that[dT ,d′T ,−1]T lies in the right (column) nullspace of[R,R′, t′ − t]. Not

only does this show thatrank(W) ≤ 7 but also thatd andd′ can be recovered once

R, R′, t andt′ are known. Sincet andt′ are the 2D centroids of the two point clouds,

they are simply the row means of the matrix of feature tracks for the first and second
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object, respectively. Following [111] we translate each object to the origin, giving the

‘normalized’rank = 6 system:

W̃ =
[
R R′] [

S
S′

]
. (3.4)

This is effectively “full rank” since the rotations are independent and have been

decoupled from the translations (where the dependency resides). From (3.4), we can

recoverR andR′ by factorization using the SVD. In practice, however, taking the

SVD of W̃ recovers a full structure matrix,[V,V′], rather than the block diagonal

form seen in (3.4). We therefore separate the objects by premultiplying[V,V′] with a

matrix,AU :

AU [V,V′] =

[
NL(V′)
NL(V)

]
[V,V′] (3.5)

=

[
NL(V′)V NL(V′)V′

NL(V)V NL(V)V′

]
(3.6)

=

[
NL(V′)V 0

0 NL(V)V′

]
(3.7)

whereNL(·) is an operator that returns the left (row) nullspace of its matrix argument.

Finally, we transform the recovered motion matrix,[U,U′], accordingly:[U,U′]A−1
U →

[R,R′]. Having recoveredR, R′, t andt′ we can now computed andd′. The repro-

jected joint centre is then simplyt + Rd (or t′ −R′d′).

Although in this case we could recoverR andR′ by factorization of each object

independently, here we use a method that deals with both objects simultaneously for

consistency with the hinge case where independent factorization is not so straightfor-

ward.
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t

d
d’

t’

Figure 3.2: Schematic of a hinge joint.

3.2.2 Hinge joint: DOFrot = 1

We now investigate two bodies coupled by a hinge joint. As with the universal joint,

translation is not permitted between the two objects. However, unlike the universal

joint a hinge permits rotation about an axis that is fixed in the co-ordinate frame of

each object (see Figure 3.2). Like the universal joint, hinges are also found in the

human body (e.g. knees, elbows) and are also common in man-made environments

(e.g. doors, wheels).

In this case,all points on the rotation axis satisfy both motions such that the sub-

spaces have a 2D intersection andrank(W) ≤ 6. Aligning the rotation axis with the

x-axis by chosing an appropriate global co-ordinate frame, we denote the motion ma-

trices byR = [c1, c2, c3] andR′ = [c1, c
′
2, c

′
3] to give the ‘normalized’ system:

W̃ = [c1 c2 c3 c′2 c′3]


X1 · · ·Xn1 X ′

1 · · ·X ′
n2

Y1 · · ·Yn1

Z1 · · ·Zn1

Y ′
1 · · ·Y ′

n2

Z ′1 · · ·Z ′n2

 . (3.8)

Due to the dependency in rotation, factorizing the objects independently requires

constraints to be appliedafter factorization and is not straightforward. In contrast,

using the form in (3.8) ensures that both objects have the samex-axis and respect the
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“common axis” constraint such that rotations arenot independent. To zero out entries

of the recovered[V,V′] we premultiply with a matrix,AH :

AH =

 1 0 0 0 0
NL(V′)
NL(V)

 (3.9)

and transform[U,U′] accordingly.

Note that the ‘joint centre’ may lie anywhere on the axis of rotation, provided that

u+ u′ = k wherek is the distance between object centroids parallel to the rotation

axis. As a result, we can show that[u+ u′, v, w, v′w′,−1]T lies in the nullspace of

[c1, c2, c3, c
′
2, c

′
3, t

′ − t] and can be recovered with ease. The reprojected axis of rota-

tion is then given by the line:

l(α) = t + [c1, c2, c3][α, v, w]T (3.10)

whereα is any real number.

3.2.3 Prismatic joint: DOFrot = 0

Since we are less concerned with prismatic joints (they are of little relevance to hu-

man motion tracking), we only provide a brief note about their factorization. In fact,

normalization of the sets of feature tracks effectively removes any relative translation

between the two objects such that they become indistinguishable from a single, nor-

malized object. As a result,rank(W̃) ≤ 3, detection of a prismatic joint is relatively

straightforward and the two objects can be recovered simultaneously using the original

Factorization method.
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3.3 Multibody calibration

Although we have shown how to recoveraffinestructure and motion that is consistent

with the underlying scene structure, we are primarily interested in recovering mean-

ingful distances and angles. This requires the ‘upgrading’ to a Euclidean co-ordinate

frame via self-calibration (see 2.2.1). In this section, we investigate how constraints

imposed by articulated structures affect the self-calibration process and how we may

exploit this fact to recover metric structure and motion that is consistent with the un-

derlying scene.

3.3.1 Universal joint

For two objects coupled by a universal joint, a gauge freedom exists since:

W̃ =
[
R R′] · (BB−1) ·

[
S

S′

]
(3.11)

where the calibrating matrix,B, takes the form of a6× 6 upper triangular matrix:

B =


a b c

d e
f

a′ b′ c′

d′ e′

1

 . (3.12)

The upper-right3 × 3 block must be zero in order to prevent mixing ofR with R′

(or S with S′). Includingf in the parameters to be determined allows us to constrain

the scaling induced by the projectionsR andR′ to be equal at any given time. This

is a sensible restriction since the two bodies are attached to each other and therefore

at approximately the same depth with respect to the camera at all times (such that any

scaling induced by perspective affects both objects equally).

38



3. RECOVERING3D JOINT LOCATIONS I : STRUCTUREFROM MOTION

In contrast, two objects that are independent may have different depths with respect

to the camera at different times (e.g. when one moves towards the camera and the other

away from it). In such cases, the scaling over time that is induced by perspective cannot

be assumed to be equal for bothR andR′. As a result, unless projection is known to be

truly orthographic,f must be constrained to unity and the method becomes equivalent

to calibrating both objects independently.

As in the single object case, the constraints are linear in the elements ofBB−1 such

that a solution forB can be found using the SVD followed by Cholesky decomposition.

3.3.2 Hinge joint

For two objects joined by a hinge, the gauge freedom can be expressed as:

W̃ = [c1 c2 c3 c′2 c′3] · (BB−1) ·


X1 · · ·Xn1 X ′

1 · · ·X ′
n2

Y1 · · ·Yn1

Z1 · · ·Zn1

Y ′
1 · · ·Y ′

n2

Z ′1 · · ·Z ′n2

 (3.13)

where the motions share a common axis such thatB takes the form:

B =


a b c b′ c′

d e
f

d′ e′

1

 . (3.14)

In contrast to the single object and universal joint cases, it can be shown that the

constraints are no longer linear in the elements ofBB−1. Therefore, as a first ap-

proximation, we perform self-calibration on the motion matrix[c1, c2, c3, c1, c
′
2, c

′
3]

using a calibration matrix of the form given in (3.12). We then rescale the upper-left

3 × 3 submatrix such thata = a′. and rearrange the elements to give the form shown

in (3.14). Since this is only an approximate calibration, we use this as an initial value
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in a non-linear optimization to compute a locally optimal solution.

3.3.3 Prismatic joint

Since the rotation matrices are equal for both objects, the single-body calibration

method is applicable in this case.

3.4 Estimating system parameters

We now briefly outline how the system parameters of interest (i.e. lengths and angles)

are recovered from the structure and motion that we have computed.

3.4.1 Lengths

Recovering lengths is particularly simple in this framework. For a universal joint,

premultiplying[dT ,d′T ]T by the6×6 calibration matrix,B−1 gives the equivalent link

vectors in a Euclidean space. Similarly for a hinge joint, premultiplying[α, v, w, v′w′]T

by the corresponding5×5 calibration matrix gives the location of a point (parameter-

ized byα) on the axis in Euclidean space. Note, however, that the definition of ‘link

length’ for a hinge joint is somewhat arbitrary.

3.4.2 Angles

For two bodies joined at a hinge, we choose thex-axis as the axis of rotation such that

(with a slight abuse of notation) at a given frame,f :

[
c′2 c′3

]
2×2

=
[
c2 c3

]
2×2

[
cos θ(f) − sin θ(f)
sin θ(f) cos θ(f)

]
. (3.15)

QR decomposition of[c2 c3]
−1[c′2 c′3] then gives a rotation matrix from which the

angle at the joint,θ(f), can be recovered.
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3.5 Robust segmentation

Before multibody factorization can proceed, it is first necessary to segment the objects

in order to group feature tracks according to the object that generated them. However,

many existing methods are prone to failure in the presence of dependent motions [27]

and gross outliers [120]. We therefore implement a RanSaC strategy for motion seg-

mentation and outlier rejection [112].

Since four points in general position are sufficient to define an object’s motion, we

use samples of four tracks to find consensus among the rest. We employ a greedy

algorithm that assigns the largest number of points with the same motion to the first

object. We then remove all of these features and repeat for the second. All remaining

feature tracks are discarded since the factorization method uses the SVD (a linear least

squares operation) and gross outliers severely degrade performance.

Having segmented the motions, we group the columns ofW accordingly and project

each object’s features onto its closestrank = 4 matrix to reduce noise. We are then in

a position to compute the SVD again – this time on the combined matrix ofbothsets

of tracks – in order to estimate the parameters of the coupling between them.

3.6 Results

We begin by presenting results for a synthetic sequence of a kinematic chain consisting

of three boxes with nine uniformly spaced features on each face (Figure 3.3). Zero-

mean Gaussian noise ofσn ≈ 3 pixels (typical noise levels were measured asσn ≈ 1

pixel for real sequences of a similar image size) was then added for a quantitative

analysis of the error induced in the recovered joint angle and segment lengths.
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Figure 3.3: Schematic of the ‘boxes’ sequence displaying three boxes coupled by hinge
joints at the edges. Red points indicate features used as inputs to the algorithm.
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Figure 3.4: (a) Recovered joint angle, over50 trials, for noise level of standard devia-
tionσn = 3 pixels. Note the large increase in error close to frame143 where the axes of
rotation are approximately parallel to the image plane. (b) Distribution of link length
error with added Gaussian noise of increasing standard deviation,σn pixels, over50
trials.

3.6.1 Joint angle recovery with respect to noise

Figure 3.4a illustrates the distribution of error in the joint angle at this noise level

where we see that error is typically small, increasing dramatically around frame143.

At this point, the axes of rotation in the object are approximately parallel to the image

plane such that both[c2 c3] and[c′2 c′3] are close to singular and the angle derived from

[c2 c3]
−1[c′2 c′3] is poorly estimated.
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3.6.2 Link length recovery with respect to noise

Using the same sequence, we applied a modified version of the method for longer

kinematic chains with parallel axes of rotation to recover the length of the middle

link (defined as the distance between the two recovered axes). Since affine projection

means that structure and motion can only be recovered up to a global scale, we assume

orthographic projection to compare the recovered length with its ground truth value of

134.2 units.

Figure 3.4b shows the error distribution (over 100 trials) for varying levels of image

noise. We see that average recovered length is close to the correct value, although the

variance of the estimate increases with the level of noise added.
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Figure 3.5: (top) Frames from ‘head’ sequence with reprojected features and joint
centre. (bottom) Recovered 3D structure and joint centre.

3.7 Real examples

3.7.1 Universal joint

Figure 3.5 shows frames from the ‘Head’ sequence where a model head was coupled

to a box by a ball and socket joint. Both the box and the head were rotated about the

joint centre to recover structure and motion. By inspection, we see that the reprojected

CoR lies within a few pixels of its true location. Visual examination of the recovered

3D structure suggests that the location of the CoR is indeed accurate.
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Figure 3.6: (top) Frames from the ‘hinge’ sequence with tracked features and recovered
rotation axis. (bottom) Recovered 3D structure and axis of rotation.

3.7.2 Hinge joint

Similarly, Figure 3.6 shows frames from the ‘Hinge’ sequence where two boxes were

coupled by a hinge joint. Inspection of the recovered 3D structure shows that the

recovered axis lies close to the intersection of the two planes. However, we stress that

neither do we use edge information nor do we compute homographies between planes

in the scene for our method.

We also demonstrate the recovery of the joint angle for the ‘hinge’ sequence, com-

puting the angle independently for two synchronized views of the same motion and

comparing the values recovered from each view (Figure 3.7). We see that there is a er-

ror in angle of up to10◦ as a result of poorly constrained self-calibration due to limited

motion of the base object. This can also be observed as a slight skew in the faces of

45



3. RECOVERING3D JOINT LOCATIONS I : STRUCTUREFROM MOTION

0 5 10 15 20 25 30
−10

0

10

20

30

40

50

60

70

80

90

Time (s)

θ 
(d

eg
re

es
)

−30 −20 −10 0 10 20 30
0

20

40

60

80

100

120

140

Offset (s)

C
ro

ss
 C

or
re

la
tio

n

(a) (b)

Figure 3.7: (a) Recovered joint trajectories for two sequences showing a good correla-
tion. (b) Cross correlation between recovered trajectories.

Table 3.2: Comparison of singular values for different motions
σ × 103

Dependency σ6 σ7 σ8 σ6/σ7 σ7/σ8

None 4.9 4.4 3.0 1.11 1.46
Universal joint 6.1 4.4 0.7 1.39 6.28
Hinge 4.5 0.4 0.3 11.25 1.33

the boxes in the recovered structure (Figure 3.6).

As an aside, we note that the signals in Figure 3.7a could potentially be used to syn-

chronize two image sequences of the same motion by inspecting the cross correlation

of the two signals (Figure 3.7b). However, specific synchronization methods exist that

may be more appropriate [22, 114, 123].

3.7.3 Detecting dependent motions

Since articulated motion results in a drop inrank(W), the singular values indicate the

nature of any dependency. We used real image sequences of two bodies undergoing

(i) independent motion, (ii) articulated motion at a universal joint and (iii) articulated

motion at a hinge to composeW and recover its singular values. Table 3.2 showsσ6,

σ7 andσ8 (scaled such that
∑
σ = 1) and their ratios where we see that the type of
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articulation can be readily observed as a sharp drop in “effective rank”.

3.8 Summary

This chapter has developed the Factorization method [111] for dynamic scenes con-

taining two objects whose motions aredependentdue to a mechanical coupling such

as a hinge. We have shown that in such cases, the rank constraints on the normal-

ized matrix of feature tracks has a tighter lower bound than in the unconstrained case

such that specific cases of articulated motion can be detected. Furthermore, we have

demonstrated how to recover system parameters such as segment lengths and joint

angles using simple linear methods. A quantitative analysis of algorithm performance

was presented using synthetic data and the method was also demonstrated on a number

of real examples.

3.8.1 Future work

Comparison with Statistical Shape Models

A popular approach towards recovering non-rigid structure from motion has been the

use of statistical shape models (SSMs) that describe structure by its mean value plus

deviation along some ‘modes of deformation’. This has been successfully demon-

strated on faces and tennis shoes where the deformation is small. However, in the

case of articulated bodies, where deformations are typically large, the SSM approach

is expected to break down. It would be interesting to compare the SSM approach with

our proposed method to determine at what level of deformation one approach becomes

more suitable than the other.
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Longer kinematic chains

Although we demonstrate this method for two links, it is equally applicable to longer

kinematic chains since each additional link increasesrank(W) by 4−m wherem=1

for a universal joint andm=2 for a hinge. However, although the rank constraints

extend easily, the recovery of system parameters and self-calibration are not straight-

forward. This is especially the case for systems where the axes are not parallel or,

worse still, where they are not orthogonal. Although each pair of segments in the

chain can be treated individually, this would not satisfy all constraints at the same time

and is a sub-optimal solution.

Closed chain kinematics

Although closed chains are less common in real-life, it would be interesting to examine

how the constraints imposed by pairs of bodies could be applied. An example of closed

chain kinematics was previously studied, although in a slightly different context, by

Taylor [107] for affine reconstruction from a single view.
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Chapter 4

Recovering 3D Joint Locations II :
Machine Learning

In contrast to the previous chapter, we now consider a number of Machine
Learning approaches to recover joint locations in an image sequence based
on a corpus of training data. In doing so, we exploit our prior knowledge of
structure (i.e. the human body) to generate exemplars of observations. Given a
novel observation, we infer joint centre locations by searching, sampling from
or regressing over the stored exemplars. Putative estimates of the joint centre
locations are then refined over the sequence by employing a particle filter to
exploit the available rich image data and impose smoothness constraints.

4.1 Introduction

In Chapter 3, we demonstrated a geometric method of recovering centres and axes of

rotation for objects with an unknown structure. However, in the case of human mo-

tion tracking we can exploit the fact that the structure of the human body is known to

generate a database of synthetic observations (e.g. silhouettes generated using graph-

ical software such as Poser [35]) with their corresponding3D poses. Given a novel

observation, we may then search for nearest neighbours in the training data (using an

observation-based error metric) and use their corresponding stored poses as putative

estimates of the query pose.

More precisely, our goal is to estimate or sample from the distribution,p(xt|zt),
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over pose,xt, given some observations,zt, generated from the original image data,Dt.

Due to the articulated nature of the human body, it can be shown that a given silhouette

may result from one of several different underlying poses due to ‘kinematic flips’ [102]

that occur by reversing the relative depth between two joint centres. This exponential

number of ‘flips’ results in a highly multimodalp(xt|zt).

Many solutions can be eliminated via joint limit constraints, enforced implicitly

by including only valid poses in the training data. An alternative approach (used in

this work) is to track only the2D projections of the joint locations, thus reducing the

state space since all possible3D ‘flips’ project to the same solution in2D image space.

However, some ambiguity is unavoidable for a single view and cannot be resolved. For

example, consider standing behind someone looking in a mirror: the reflection shows

a laterally inverted image facing in the opposite direction yet the occluding contours

are seen to be identical for both the person and their reflection.

In the case of human motiontracking, temporal constraints may also be enforced

to ensure that the recovered motion is smooth. This is typically implemented using

tools such as the Kalman Filter or Particle Filter. Furthermore, enforcing priors over

the pose at a given instant in time, based on pose at previous instants, provides an

additional mechanism for resolving ambiguity and a likelihood function allows initial

estimates to be refined using rich image data. However, such trackers still require

hand-initialization to resolve ambiguity at the first frame.

In this work each state vector,x, consisted of the2D joint centre projections in the

image. For synthetic data, these were computed from the original3D pose parameters

and a kinematic model whereas for real data the joint centre projections were labelled

manually. Each observation,z, was represented by a100D feature vector containing
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Discrete Cosine Transform (DCT) coefficients of a128 × 128 silhouette generated

using a volumetric model (for synthetic data) or background subtraction (for real data).

DCT coefficients were selected as an appropriate representation since they offer an

excellent compromise between accuracy and efficiency. This selection is justified in the

more thorough investigation presented in Appendix A. All silhouettes were normalized

before computing feature vectors in order to provide some invariance to translation and

scaling.

4.1.1 Related Work

As discussed in Section 2.1.1, traditional top-down (model-based) approaches to hu-

man body tracking fit a kinematic model of the body to a sequence of image observa-

tions. The state at the current instant is predicted using state estimates at the previous

instant and a dynamical motion model. Predicted states are then weighted based on

agreement with current observations via a likelihood model.

In contrast, bottom-up methods driven by training data, rather than a predictive dy-

namical model, have become highly popular in recent years (see Section 2.1.2). Train-

ing data commonly consist of synthetic images of a 3D human model generated using

graphics software (e.g. Poser) and their corresponding state (pose). The data may then

be searched to findk nearest neighbours (based on an image-based distance metric),

thus recoveringk state estimates. The search may be made efficient using coarse-to-

fine searching [8], tree structures [39, 104] or hashing [43, 91].

Due to the heavy demands on storage and computation that are imposed by search-

ing a database, alternative approaches directly model the mapping between image

observations and pose using Machine Learning techniques such as Artificial Neural

Networks [88], Relevance Vector Machines [5], Probabilistic PCA [45] and Hidden
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Markov Models [16]. Once the mapping has been learned, the training data can be

discarded to reduce storage requirements and increase efficiency. However, extra mea-

sures are required to recover a multimodal p.d.f. over pose, such as employing mixture

models [98, 4].

It is notable that current data-driven methods for monocular tracking typically dis-

card most of the image information, often computing a silhouette that is reduced further

to a relatively low-dimensional feature vector from which pose is estimated. However,

almost no published work exploits the fact that rich image information remains avail-

able to refine putative estimates or resolve ambiguities via a likelihood function.

4.1.2 Contributions

In this chapter, we combine the strengths of data-driven and top-down tracking by

incorporating single-frame pose estimation techniques into a particle filtering frame-

work. Specifically, we generate particles from a “hybrid” prior distribution over pose

using both training data and a predictive motion model.

• Sections 4.2 and 4.3 outline a number of proposed methods for single-frame

pose estimation: linear search, tree searching/sampling, linear/kernel regression,

Relevance Vector Machines and Neural Networks. These methods are compared

in terms of accuracy and efficiency on a synthetic ‘exercise’ sequence in Sec-

tion 4.5 for training datasets of increasing size to investigate each method’s abil-

ity to scale.

• The integration of pose estimation methods with top-down filtering is detailed in

Section 4.4. Using a hybrid prior that exploits the most up-to-date observations

and predictions based on previous estimates results in a tracker that is robust to
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periods of occlusion and unpredictable motions. Furthermore, the particle filter

provides a principled way of refining estimates based on silhouettes alone by

exploiting the additional image data that is available (e.g. edges, colour, texture)

via a likelihood function. We note that many data-driven methods [5, 98, 43]

discard this valuable information rather than take advantage of it.

4.2 Searching and Sampling

We begin by outlining searching and sampling techniques to recover estimates of pose

from the database. Such approaches have the advantage that recovered samples are

constrained to be valid configurations. However, this also limits the resolution of re-

covered pose since the output is defined only for a number of discrete values (the

training exemplars) such that the transition between recovered poses may appear dis-

continuous. The error induced by such discretization may be reduced by interpolation

between recovered exemplars although care must be taken to ensure that the resulting

configuration is valid (e.g. by interpolating jointanglerather than position).

4.2.1 Linear Search

The simplest method of exemplar-based pose estimation is simply to search the data-

base linearly for the exact nearest neighbour of the query feature vector. Alternatively,

by searching for thek nearest neighbours, we recover multiple solutions reflecting

pose ambiguity in monocular tracking. It can be shown that this method is highly

inefficient, scaling asO(N) in both storage and computation, since every exemplar

feature vector must be stored with its corresponding state and a distance computation

must be performed for every exemplar in the dataset. For the purposes of the following

comparison, however, this method serves as a simple baseline.
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Figure 4.1: Silhouettes sampled uniformly from the tree structure. Note how the vari-
ation in the samples decreases from the root to the leaves. The leaf corresponding to a
query example can be computed rapidly and only that leaf (or nearby leaves) searched
or sampled to generate possible matches. Discarding a large proportion of the tree in
this manner greatly increases efficiency.

4.2.2 Tree Search

Since a linear search of the database is highly inefficient, various methods have been

developed to reduce the number of distance computations required. An obvious ap-

proach is to construct a tree, partitioning the input space into a number of ‘leaves’

(Figure 4.1). Given a novel feature vector, only those exemplars that fall into the same

leaf as the query are searched while the rest are ignored. As a result, searching becomes

considerably more efficient in terms of run-time processing, scaling asO(logN). In

terms of storage requirements, however, tree searching still requires all feature vectors

to be stored and scales asO(N) although it does offer the possibility of storing each

leaf of the tree at a different location in secondary storage, transferring data to primary

storage only as required.

A common problem with tree searching arises when a query vector falls close to a

boundary since the correct nearest neighbour may be in an adjacent leaf and therefore

will not be recovered. Furthermore, in high dimensions the exponential explosion in

the number of leaves results in many leaves empty. We address this second problem by
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descending the tree until the number of exemplars below that node falls below some

threshold (we use100 exemplars).

4.2.3 Tree Sampling

An alternative approach assumes that all exemplars below a given depth in the tree

are sufficiently similar that they can simply be sampled rather than searched. This

eliminates the need to storeany feature vectors since they can be discarded once the

tree has been constructed. In theory, by discretizing pose space in an appropriate way,

storage requirements may be reduced to fewer than 50 bytes/exemplar such that the

entire database could easily be held in main memory for million of exemplars, rather

than thousands.

In practice, the tree must be traversed to a greater depth than in searching if the

assumption of sufficient similarity is to be accurate. We therefore continue to descend

the tree for as long as all leaves below the current node are non-empty. This typically

results in sampling from a small selection of similar examples.

4.3 Regression

We now look at regression approaches that differ from searching and sampling by

assuming a continuous relationship between inputs (observations) and outputs (pose):

x = f(z) (4.1)

such that recovered poses are no longer restricted to the training exemplars alone.

4.3.1 Linear Regression

In linear regression, it is assumed thatf(z) is a linear function such that:
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x = Az. (4.2)

The matrixA is estimated by definingX = [x1, . . . ,xN ] andZ = [z1, . . . , zN ] such

that:

AZ = X (4.3)

AZZT = XZT (4.4)

A = XZT (ZZT )−1. (4.5)

In practice,ridge regressionis often employed in order to impose a regularization

penalty that avoids overfitting and improves generalization:

A = XZT (ZZT + λI)−1. (4.6)

In terms of computation, ‘training’ of this system requires the inversion of thedz×dz

matrixZZT +λI wheredz is the dimensionality of the feature space. OnceA has been

computed, the training feature vectors are no longer required and can be discarded.

As a result, linear regression is efficient in both storage and run-time computation,

consisting of a simple matrix multiplication to recover the state for a novel query.

However, the assumption of a linear relationship between the input feature vector and

corresponding state is seldom accurate, typically resulting in large errors.

Sparse RVM Regression

A recent extension to linear regression was provided by the principle of automatic

relevance determination, popularized as the Relevance Vector Machine [110] and em-
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ployed in [5]. This modification sparsifiesA by applying independent priors over its

columns. Specifically, (4.6) is modified such that:

A = XZT (ZZT + diag(λ))−1 (4.7)

whereλ = [λ1, . . . , λdz ] is the vector of regularizing coefficients. Since columns with

smaller norms contribute less to the output state vector, they are deemed less ‘relevant’.

Increasing the damping to these columns by makingλi inversely proportional to the

norm of columni drives them towards zero. Meanwhile, an opposing ‘force’ is applied

by the data to provide a compromise between sparsity and accuracy. When a column

norm falls below a specified threshold, the column is ‘irrelevant’ and is therefore re-

moved fromA. Similarly, the corresponding rows of the feature vector are removed,

thus implementing a form of feature selection.

Although this method is more computationally expensive in the training (due to

multiple iterations of the least-squares operation), it saves on run-time computation

since fewer features (and hence fewer multiplications) are utilized. However, since

A is of a fixed size and is typically small, the computational benefits of linear RVM

regression are limited although experimental results suggest that sparsifyingA has

other advantages such as improving robustness to noise (see Figure 4.3).

4.3.2 Kernel Regression

An alternative approach that does not assume a linear relationship between inputs and

outputs is that of kernel regression. The feature vector is ‘lifted’ toN -dimensional

space prior to linear regression taking place such that:

x = Ak(z) (4.8)
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where:

k(z) =

K(z, z1)
...

K(z, zN)

 (4.9)

andK(z, zi) is a kernel function reflecting similarity between the given feature vector,

z and an exemplar,zi. A common choice is the radially symmetric gaussian kernel:

K(z, zi) =
1√

(2π)d|Σ|
exp

{
−1

2
(z− zi)

T Σ−1(z− zi)

}
. (4.10)

whereΣ is estimated from the covariance of the data1. By collecting the kernelized

feature vectors into a matrix:

K =

K(z1, z1) . . . K(zN , z1)
...

...
...

K(z1, zN) . . . K(zN , zN)

 , (4.11)

training proceeds in the same way as linear regression such that:

A = XKT (KKT )−1. (4.12)

Kernel regression typically demonstrates improved performance over linear regres-

sion, particularly when the relationship between input and output is non-linear, since

it effectively interpolates between exemplars in the training set.

However, there are considerable drawbacks as a result of the increase in feature

vector dimension fromdz toN since estimatingA now requires the computation and

inversion of anN×N matrix. For largeN , this rapidly becomes intractable since the

computation ofK has complexityO(N2) whilst its inversion requiresO(N3) compu-

tation. Furthermore, the storage of this matrix increases asO(N2) such that15000

1Σ need not be the actual covariance matrix of the data
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exemplars would require1.8Gb of storage at double precision. These constraints im-

pose severe limits to the number of exemplars that can be employed in any practical

system.

Sparse RVM Regression

There is a corresponding RVM version of the kernel regressor that eliminates ‘irrele-

vant’ columns of the matrixA, thus eliminating irrelevantexemplars(rather than im-

agefeatures) such that the training dataset is pruned for efficiency. However, the first

iteration of this method still requires the inversion of anN×N matrix at high compu-

tational cost. Methods have been proposed to address this issue [118] by introducing

exemplars sequentially.

For the purposes of this study, however, we employ a simple “one in, one out” strat-

egy whereby we initialize withn exemplars at random and begin iterating. Whenever

an exemplar is eliminated, we replace it with one of the remaining exemplars and con-

tinue until all exemplars have been presented to the algorithm. Empirically, this has

proved to be a viable alternative to ‘batch’ RVM regression. A sensible value ofn is

selected heuristically, typically on the order ofn = 1000.

4.3.3 Neural Networks

An alternative regression method is that of the Artifical Neural Network [14]. In this

model, the non-linear relationhip between inputs and outputs is defined by the network

structure and parameters (i.e. layer weights and biases). Parameters are optimized

using non-linear minimization techniques (e.g. gradient descent, conjugate gradients)

using derivatives obtained via backpropagation for efficiency. A common structure, as

employed in this work, has two layers of weights with a linear transfer function at the
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outputs and a tangential sigmoid transfer function at the hidden layer. As a result, the

mapping from observations can be written as:

x = W2 · tansig(W1z + b1) + b2 (4.13)

where

tansig(a) =
2

1 + exp(−2a)
− 1. (4.14)

In this work, we implement the network using the Neural Network Toolbox for

Matlab although alternatives are available (e.g. NetLab).

4.3.4 Mixture Models

Since all of the regression methods described so far are one-to-one, they cannot model

the one-to-many relationship that exists between silhouette and pose. In order to

address this problem, mixture models can be employed such that several regressors

trained on a particular region of feature space output the different possible solutions.

This also avoids the problem of averaging that commonly occurs in methods such as

kernel regression whereby a query with two neighbours, close together in feature space

but far apart in pose space, is assigned the average pose that corresponds to neither of

the exemplars.

However, mixture models typically require clustering of the data in pose space be-

fore training the regressors – a difficult task in itself for many exemplars in high-

dimensional space. Since we do not attempt a comprehensive comparison of regression

techniques in this chapter, mixture models are not pursued any further in this study.
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4.4 Particle Filtering

4.4.1 Hybrid prior

In order to impose smoothness over asequenceof poses and exploit additional im-

age information (e.g. edges), we incorporate a discriminative method into a particle

filtering framework [57]. This is achieved by defining ahybrid prior that draws sam-

ples from both a predictive distribution,p(xt|Dt−1), and the data-driven distribution,

p(xt|zt), that uses coarse but up-to-date observations. We combine the two distribu-

tions via a simple weighting:

p(xt) = (1− α)p(xt|Dt−1) + αp(xt|zt). (4.15)

This formulation allows a simple (e.g. constant velocity) motion model to handle

small periods of observation error while the data-driven samples provide robustness to

motions that are not predicted by the motion model.

We note thatα need not be fixed throughout the sequence. For example, at the

beginning of the sequence,α = 1 ensures that the predictive model is not employed

(since no previous estimates are available from which to predict). Conversely, if the

current observations are well outside of the training set (e.g. during moments of heavy

occlusion or frame drop-out),α = 0 ensures that predictions only are propagated since

the discriminative model is likely to be unreliable.

4.4.2 Likelihood

Through the use of a likelihood model, we ‘close the loop’ with the available rich im-

age information (e.g. internal edges, colour, texture) – a valuable source of information

that is largely neglected in other silhouette-based methods [5, 98, 88]. For the purposes
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of this chapter, we employ the silhouette and a masked edge map (see Figure 2.3).

Since we track only the2D projections of the joint centres, an estimate is required

for the scale of the body such that a volumetric model can be projected in the correct

proportion. Therefore, we assume that one of the limbs lies in a plane parallel to the

image plane [107] to determine the projected widths of the limbs. These predicted ob-

servations are then compared with the silhouette generated by background subtraction

and the edge map derived from Canny edge detection on the original image to weight

each estimatei.e. to evaluatep(Dt|xt). Note that this crude likelihood model would

benefit from more discriminative features (e.g. colour, texture, optic flow) to reduce

the effective spread (posterior covariance) of particles drawn fromp(xt). However, we

defer this for future work.

4.5 Results

We begin by presenting results on synthetic sequences for the data-driven pose estima-

tion, comparing the described methods. A method is then selected and integrated into

a particle filtering framework to serve as the proposal distribution,p(xt|zt).

4.5.1 Data-Driven Pose Estimation

We begin by comparing the various methods outlined in Sections 4.2 and 4.3 using

synthetic training sets of∼1000, ∼5000 and∼15000 exemplars. These datasets were

selected to evaluate each method’s scalability as most have been demonstrated on rel-

atively small datasets of only two or three thousand exemplars.

A 291-frame synthetic sequence of an exercise routine (Figure 4.2) was generated

from the same motion capture database and used as the test sequence. This sequence

was not included in the training data although it was generally well represented by
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Figure 4.2: Synthetic ‘exercise’ sequence used to evaluate joint centre recovery meth-
ods. Each silhouette is annotated with the corresponding2D projections of joint centres
in the image, computed from the3D pose parameters.

other exemplars in the database.

We evaluated each method in terms of accuracy with respect to known ground truth

values. Specifically, we computed the mean RMS error between2D joint centre pro-

jections for every frame of the291-frame sequence. This was repeated for each method

applied to all three training data sets, and the results are shown in Table 4.1. We also

recorded the time for each method to execute, both in terms of off-line training and

run-time execution, as shown in Table 4.2.

We make a number of observations from these results:

• In general, searching methods are most accurate since they are constrained to

return exemplars from the training set. In contrast, sampling neglects distance in

feature space and regression methods have greater freedom to deviate from the

training examples as well as interpolate.
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1K 5K 15K
Linear Search 2.840 3.198 3.236
Tree Search 2.885 3.364 4.686
Tree Sampling 6.849 7.933 8.329
Linear Regression 4.479 7.839 9.433
Linear RVM 6.273 9.274 10.78
Kernel Regression 2.132 3.480 −
Kernel RVM 3.220 6.599 8.657
Neural Network 3.448 6.596 7.057

Table 4.1: Accuracy of various methods for single-frame pose estimation using training
sets of increasing size. Values given are the mean RMS error between projected joint
locations over the synthetic exercise sequence.

Off-line Run-time
1K 5K 15K 1K 5K 15K

Linear Search 0.000 0.000 0.000 2.217 13.11 39.29
Tree Search 0.023 0.244 0.745 0.721 2.058 5.777
Tree Sampling 0.027 0.245 0.730 0.332 1.483 5.352
Linear Regression 0.043 0.113 0.299 0.019 0.019 0.015
Linear RVM 0.071 0.127 0.326 0.016 0.016 0.019
Kernel Regression 0.875 1012 − 2.389 21.49 −
Kernel RVM 1.342 25.00 93.90 0.310 0.713 1.640
Neural Network 33.27 131.3 584.7 2.201 2.204 2.198

Table 4.2: Times to compute for various methods of single-frame pose estimation using
training sets of increasing size. Times are indicated in seconds.

• Non-linear regression is accurate for small datasets but degrades in performance

as datasets increase in size. Linear regression is generally poor in comparison to

other methods.

• Searching and sampling are inefficient when compared with most regression ap-

proaches (with the exception of kernel regression). Sampling can be made more

efficient by sampling from only those exemplars assigned to the same leaf as the

query although this does not guarantee that any matches exist.

• Dense kernel regression cannot handle datasets of more than a few thousand.
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• Non-linear regression methods are more efficient at run-time, albeit at the ex-

pense of high computational cost during off-line training (for only∼5000 ex-

emplars, kernel regression required almost17 minutes to compute the regression

matrix,A).

With respect to the RVM regression methods, a trade-off is made between sparse-

ness (and hence efficiency) and accuracy via a design parameter. For the purposes of

these experiments, the linear RVM was designed to retain∼25% of the input features

whereas the kernel RVM retained78, 284 and528 relevant examples from the1K, 5K

and15K datasets, respectively.

Finally, the100D vector of DCT coefficients corresponding to a real silhouette from

the starjumps sequence was computed. From this seed, Gaussian noise of standard

deviation equal to10% that of the training set was added to generate100 noisy feature

vectors. Each method was then applied to these feature vectors, effectively sampling

from the distributionp(x|z) for an uncertainz. The recovered2D joint centre projec-

tions are shown in Figure 4.3.

From these samples, we can see some additional properties of the methods:

• Linear search is largely unaffected by an increase in the size of the training

dataset. Tree searching also appears to be relatively robust, although baseline

accuracy is lower than other methods for small datasets.

• Linear RVM regression appears to be considerably more robust to noise than

standard linear regression.

• The effects on non-linear regression methods of increasing the training set size

is visible as averaging takes place over exemplars that are close in feature space
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Figure 4.3: Samples drawn using (from left) linear search, tree search, tree sampling,
linear regression, linear RVM, kernel regression, kernel RVM, neural network for
(from top) 1K, 5K and 15K exemplars (note that kernel regression was not possible
for the15K dataset).

but distant in pose space.

4.5.2 Particle filtering

Finally, we track the exercise sequence by incorporating the tree searching method into

the hybrid prior for stability. Figure 4.4 shows the results of the tracking using a weak

predictive motion model (constant velocity of the3D joint locations, learned from the

dynamics of the training set)

4.6 Real Examples

We now present results on a number of real sequences, using background subtraction

and morphological operators to extract the silhouette. Such operations are typically

restricted to environments with controlled lighting and static backgrounds. Departure

from such an environment results in corruption of the silhouette due to dynamic back-

grounds, shadows and highlights. Such corruption is likely to degrade performance

66



4. RECOVERING3D JOINT LOCATIONS II : M ACHINE LEARNING

Figure 4.4: (top) Original exercise sequence (frames5, 15, . . .); (centre) Sequence
tracked using a weak predictive motion model (tracking was lost after23 frames);
(bottom) Sequence tracked using both predictive motion model and exemplars (whole
sequence tracked).

of the Machine Learning algorithms implicitly by corrupting the feature vector that is

presented to the algorithm and is therefore dependent on the choice of shape descriptor.

However, to maintain the flow of the thesis this issue is investigated in in Appendix A.

4.6.1 Starjumps sequence

We applied the particle filtering algorithm to a real157-frame sequence of the author

performing starjumps in an environment with a static background (Figure 4.5). As a

result, the silhouette was generated via background subtraction followed by morpho-

logical operators to remove spurious regions.

From Figure 4.5 it is evident how easily tracking is lost when using a weak pre-

dictive model. Although this may be improved by tracking in3D using joint angles

as a state vector such that projected joint locations are more constrained, this intro-

duces problems with kinematic ‘flips’ [102]. In contrast, the estimates generated by

the hybrid prior are tightly constrained around the correct solution.

67



4. RECOVERING3D JOINT LOCATIONS II : M ACHINE LEARNING

Figure 4.5: (top) Original starjumps sequence (frames5, 15, . . .); (centre) Sequence
tracked using a weak predictive motion model (tracking was lost after100 frames);
(bottom) Sequence tracked using both predictive motion model and exemplars (whole
sequence tracked).

4.6.2 Squats sequence

Finally, we apply the method to a284-frame squatting sequence resulting in similar

tracking success (Figure 4.6). However, observe that in some frames the squatting

stance is slightly different between the image and the pose estimate (especially the

arms) as a result of a bias towards the training data.

4.7 Summary

This chapter has presented a comparison of several discriminative methods for estimat-

ing pose from a query silhouette and a large training corpus of synthetic exemplars. In

particular, we compared several state-of-the-art methods using training datasets of in-

creasing size to assess their scalability. Our results demonstrate that some methods,

although accurate, are impractical for large datasets. In particular, regression meth-

ods are observed to degrade more rapidly than searching approaches as the dataset
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Figure 4.6: (top) Original squats sequence (frames5, 15, . . .); (centre) Sequence
tracked using a weak predictive motion model (tracking was lost after87 frames);
(bottom) Sequence tracked using both predictive motion model and exemplars (whole
sequence tracked).

increases in size.

We also demonstrated that discriminative methods can be incorporated into a par-

ticle filtering framework in order to impose some smoothness over the sequence and

exploit the available rich image data. Using a weak predictive model (as is common for

highly varied training data), tracking is shown to fail after only a few tens of frames.

In contrast, the closed-loop tracking provided by resampling from the proposal distri-

bution at each frame ensures that tracking is maintained and recovery from tracking

failure is possible.

4.7.1 Future work

Mixture models

As noted in Section 4.3, mixture models provide a way of generating alternative so-

lutions for a given silhouette. Furthermore, they can modify the regression model as

a function of the silhouette such that more complex mappings can be learned. This is
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essential for large datasets since, as demonstrated by our results, a single regression

function is rarely adequate to model such complex mappings.

Advanced tree searching and sampling

The results suggest that searching and sampling approaches scale well with respect to

the training data. It may be constructive to pursue these methods further to improve

efficiency further without sacrificing significant levels of accuracy.
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Chapter 5

Video Synchronization

This chapter addresses the problem of automatically synchronizing two se-
quences using projected joint centres. We define a metric that assigns a low
cost to frames that are structurally consistent and a high cost to those that are
not. The metric is derived for homography, perspective and affine projection
models. In the affine case, we see that the familiar rank constraints follow
naturally from this general metric. Having estimated corresponding frames,
we present an algorithm that estimates the alignment parameters tosub-frame
accuracy even for sequences ofdifferentframe rates. The performance of the
algorithm is evaluated using synthetic sequences and demonstrated on several
real examples.

5.1 Introduction

So far, we have discussed how to recover the locations of joints in articulated struc-

tures from image sequences, using both geometric (Chapter 3) and Machine Learning

(Chapter 4) methods. In the following two chapters, we discuss how they are used to

recover the pose of the subject at each instant in time from a pair of sequences.1

Two sequences must first be aligned in time (i.e. synchronized) since the3D posi-

tion of scene features can only be triangulated from stereo images that were captured

at the same time. Commercial motion capture systems (e.g. Vicon) do this using hard-

ware – a costly and technically complex engineering solution. In contrast, we show

that recovered joint locations can be used to align the sequences in time if we know

1Portions of this chapter were published in [114, 115]
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Figure 5.1: Timelines depicting a wide baseline stereo sequence with synchronization
of the cameras indicated by the arrow. This shows an example where no corresponding
frame exists in the second sequence due to the sub-frame offset of the cameras.

corresponding points between the sequences.

The spatial correspondence problem is solved in commercial systems using syn-

chronized, calibrated cameras with markers – again, a complex engineering solution.

In our case, we track the human body and therefore have an intuitive labelling of the

joint locations such that correspondence between the sequences is provided.

Consider the case where we are presented with two sequences captured from un-

synchronized cameras, possibly with different frame rates (Figure 5.1). Given a frame

in the left-hand sequence (the darker frame), we recover the corresponding instant in

the right-hand sequence, indicated by the arrow (in this case, exactly halfway between

frames).

We see that a frame may not physically exist at the corresponding instant due to the

cameras being unsynchronized. If framesf andf ′ (from sequences1 and2, respec-

tively) correspond to the same instant in time then they are related linearly by:

f ′ = αf + δf (5.1)

whereα is the ratio of the frame rates andδf is the offset between the 0th frame in
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each sequence. In all cases we seek to recoverδf to sub-frame accuracy and in some

cases we also seek to recoverα. In the case of non-rigid motions, we pose this search

for temporal alignment as a search for consistent structure between the two sequences.

5.1.1 Related work

Our synchronization method is inspired by the work of Wolf and Zomet [123] who

used rank constraints of a matrix of image measurements, as introduced by Tomasi

and Kanade [111], to define its ‘energy’ above an expected rank bound. This energy is

minimized when structure is most consistent (i.e. at corresponding frames), such that

synchronization is recovered to the nearest single frame. We develop this method to

recover synchronization tosub-frameaccuracy for sequences ofunknown and differing

frame rates.

The spatiotemporal alignment of image sequences has also been notably studied

by Caspi and Irani [22, 23, 24]. In earlier work, they use optical flow to recover the

synchronization under the assumption that temporally corresponding frames are re-

lated by a homography [22] or that the cameras have approximately coincident centres

of projection [23]. However, our work is more closely related to their feature-based

methods for recovering synchronization [24] where they consider wide baseline stereo

with temporal correspondence only. Forming putative matches between featuretracks

and utilizing a voting scheme (RanSaC), they compute both the temporal and spatial

relationship (the fundamental matrix) between the sequences, iteratively optimizing

over spatiotemporal transformation parameters using the geometric distance between

points and their associated epipolar lines in the manner suggested by Reid and Zisser-

man [85].

Pooley et al [81] also use a perspective projection model but assume that a sufficient
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number of matched background features are visible in each frame pair to compute the

epipolar geometry of the two cameras. Potential frame correspondences are identified

using the same error metric as [24, 85] for each frame pair (using known spatial corre-

spondences) and synchronization parameters are estimated using the Hough transform.

Zhou and Tao [132] assume that features exhibit a linear trajectory over small pe-

riods of time. The epipolar geometry of the cameras is then used to transfer features

from one view to the other for two consecutive frames and the cross ratio of the four

points used to estimate the temporal offset (the frame rates of the cameras are assumed

to be approximately equal). Having computed the offset, stereo algorithms are applied

for depth recovery of the scene at each frame. However, the authors note that the fea-

ture locations must be estimated to sub-pixel accuracy, suggesting their algorithm is

highly sensitive to noise.

5.1.2 Contributions

This chapter presents work that advances the state-of-the-art in two ways:

• Rank constraints are developed for the homography and perspective projection

model, using analgebraic rather than geometric distance measure. Moreover,

we demonstrate that in the affine case this general solution reduces to the linear

formulation presented by Tomasi and Kanade [111].

• The rank constraints are employed in an algorithm that recovers sychronization

of sequences ofdifferent frame ratesto sub-frameaccuracy. This is evaluated on

synthetic sequences and demonstrated on real examples.
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5.2 Generalized rank constraints

The basic idea underpinning our approach is simply stated – if the motion being ob-

served is non-rigid, a metric that measures the rigidity of the scene using both cameras

will assign a low cost to frames that are temporally aligned and a high cost to those that

are not. We investigate such a metric for pairs of frames related by a homography, the

fundamental matrix and the affine fundamental matrix. For further details on multiple

view geometry, we direct the reader to [48].

5.2.1 Homography model

The case of recovering synchronization for sequences related by a homography was

notably studied by Caspi and Irani using optical flow methods [22, 23]. In contrast, we

consider the case where two cameras observepoint features moving independently in

a plane. Under this model, corresponding homogeneous image features,x andx′, are

related by a homography,H:

H =

h1 h2 h3

h4 h5 h6

h7 h8 1

 (5.2)

such that:

Hx = x′ (5.3)

⇒ [x′×]Hx = [x′×]x′ = 0 (5.4)

where[x′×] is the matrix form of the cross product such that[x′×]y = x× y.

The constraints imposed by all points define a linear system such that under ideal

conditions:
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MHh = 0 (5.5)

whereMH is a2N×9 matrix of constraints defined by the image feature locations and

h = (h1, ..., h8, 1)T is the vector of elements ofH. It can be shown that, for a givenH

(or h), the sum of squaredalgebraicdistances,dalg(·, ·), between featuresx′i measured

in a frame from sequence2 and those transferred,Hxi, from a frame in sequence1 are

related toMH by:

∑
i

dalg(x
′
i,Hxi)

2 = ‖MHh‖2. (5.6)

Therefore, linear least squares methods can be employed to minimizedalg for a given

pair of frames. ForN ≤ 4 points, anyh in the right nullspace ofMH satisfies (5.5)

exactly. ForN > 4 points,dalg is minimized by settingh to the right singular vector

corresponding to the ninth singular value,σ9, of MH and rescaling appropriately. In

this case, it can be shown that:

∑
i

dalg(x
′
i,Hxi)

2 = σ2
9. (5.7)

This suggests a ‘rank constraint’ framework for synchronizing sequences whereby

a small value ofσ2
9 indicates the correct alignment of a pair of frames.

5.2.2 Perspective model

In the perspective projection case, studied by Caspiet al. [24] for feature-based meth-

ods with a geometric distance measure, we again propose using thealgebraicdistance

measure in a rank-constraint framework as a computationally cheap alternative. Cor-
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responding homogeneous image features,x andx′, are related by the perspective fun-

damental matrix,F:

F =

f1 f2 f3

f4 f5 f6

f7 f8 1

 (5.8)

such that:

xTFx′ = 0. (5.9)

Similar to the homography case, point correspondences define a linear system such

that:

MF f = 0 (5.10)

whereMF is aN×9 matrix of constraints defined by the image feature locations and

f = (f1, ..., f8, 1)T is the vector of elements ofF. It can also be shown that, for a given

F (or f ), the sum of squaredalgebraicdistances,dalg(·, ·), between featuresx′i from a

frame in sequence2 and their epipolar lines,Fxi, as computed from the corresponding

features in sequence1 are related toMF by:

∑
i

dalg(x
′
i,Fxi)

2 = ‖MF f‖2. (5.11)

Again, linear least squares methods can be employed to minimizedalg for a given

pair of frames. ForN ≤ 8 points, anyf in the right nullspace ofMF satisfies (5.10)

exactly. ForN > 8 points,dalg is minimized by settingf to the right singular vector

corresponding to the ninth singular value,σ9, of MF and rescaling appropriately (the

familiar ‘eight point algorithm’ [47]).
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Similarly, it can be shown that:

∑
i

dalg(x
′
i,Fxi)

2 = σ2
9, (5.12)

again suggesting that a rank constraint framework may be applicable albeit at a cost of

requiring twice as many points as the homography model.

5.2.3 Affine model

We now turn to the simpler case of affine projection, a commonly used projection

model in human motion analysis applications since the human body has limited depth

and perspective effects are typically small. In the affine case, the fundamental matrix

takes the simpler form:

FA =

 0 0 a1

0 0 a2

a3 a4 1

 (5.13)

and again:

MAa = 0 (5.14)

wherea = (a1, ..., a4, 1)T . However, in this case theN × 5 constraint matrix,MA,

takes the particularly simple form:

MA =

x1 y1 x′1 y′1 1
...

...
...

...
...

xN yN x′N y′N 1

 (5.15)

where(xn, yn)T and (x′n, y
′
n)T denote thenth feature in the first and second view,

respectively. As in the other projection models, linear least squares are employed such

thatN = 4 provides an exact solution whereas forN > 4 points, settinga equal to the
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right singular vector corresponding toσ5 minimizes the algebraic distance between the

point sets.

However, it can be shown thatnormalizingMA with respect to its row mean gives

a new matrix,̃MA with a tighter lower bound onrank(M̃A). Such normalization can

be interpreted as a translation of the points such that their centroid lies at the origin of

the image. Under these conditions:

M̃Aã =

x1−x̄ y1−ȳ x′1−x̄′ y′1−ȳ′
...

...
...

...
xN−x̄ yN−ȳ x′N−x̄′ y′N−ȳ′



a1

a2

a3

a4

 = 0 (5.16)

such thatrank(M̃A) ≤ 3.

5.2.4 Factorization approach

In proposing the Factorization method [111], Tomasi and Kanade arrived at the same

conclusion by different reasoning. For two affine views, their observation shows that

the normalized4×N ‘measurement matrix’ of image coordinates,W, can be written

as a product:

W =


x1−x̄ · · · xN−x̄
y1−ȳ · · · yN−ȳ
x′1−x̄′ · · · x′N−x̄′
y′1−ȳ′ · · · y′N−ȳ′

 =

[
P1

P2

] [
X1 · · · XN

]
= PX (5.17)

wherePi is the2×3 projection matrix of theith view andXn is the3×1 vector of

inhomogeneous3D coordinates of thenth feature. Specifically, (5.17) shows that the

rank ofW is bounded above by3 since it is a product of the4×3 projection matrix

P and3×N structure matrix,X. Note that for the two view caseW = M̃T
A, thus

confirming the rank constraints derived in the previous section.

However, in contrast to using the affine fundamental matrix, the factorization method
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naturally extends to any number of views. Tomasi and Kanade exploited this fact to

propose the factorization ofW into affine motion and structure using the Singular

Value Decomposition (SVD), thus recovering allPi andXn up to an affine transfor-

mation. Reid and Murray [84] later demonstrated that the Factorization method recov-

ers the ‘optimal’ structure and motion in terms of minimizing reprojection error and

can therefore be interpreted as a Maximum Likelihood estimate, assuming isotropic

Gaussian noise.

It can also be shown that the sum of squaredgeometricreprojection error,E, fol-

lowing factorization is directly related to the singular values of the rankr matrix,W,

by:

E = ‖W −PX‖2F =
r∑

i=4

σ2
i (5.18)

where‖ · ‖F denotes the Frobenius norm. In the two view case, this reduces toE =

σ2
4 = dalg which agrees with the known property that geometric and algebraic distances

are identical for the affine projection model.

5.3 Rank-based synchronization

Intuitively this measure would seem to be an appropriate metric for determining syn-

chrony since when the frames are temporally aligned, the image correspondences are

consistent with an underlying interpretation of three-dimensional structure (the pose

of the person at that instant) and reprojection error is small. However, when the se-

quences are not aligned the images are ofdifferentpoints in space and therefore not

subject to any rank constraint.

Using the results derived so far, we propose two cost functions in order to recover

80



5. VIDEO SYNCHRONIZATION

f

f′

50 100 150 200

50

100

150

200

250

300

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
20

22

24

26

28

30

32

34

36

38

40

α
δ 

f

(a) (b)

Figure 5.2: (a) The cost surfaceC1(f, f
′) for the real running example, shown in

plan view and normalized such that values range from 0 (dark) to 1 (light). Note the
visible ‘channel’ close to the principal diagonal where the true correspondence lies.
(b) Contour plot ofC2(α, δf), also indicating the solution recovered via non-linear
optimization. From the elliptic shape of the basin of attraction, we see that errors inα
may be compensated by a complementary error inδf .

the synchronization between two sequences. The first match cost,C1(f, f
′), reflects

the residual reprojection error resulting from the pairing of two frames,f andf ′:

C1(f, f
′) =

r∑
i=4

σ2
i = σ2

4 (5.19)

whereσ4 is the fourth singular value ofW(f, f ′), defined as:

W(f, f ′) =

[
xf

1 · · · xf
N

xf ′

1 · · · xf ′

N

]
(5.20)

andxf
n andxf ′

n are the normalized image co-ordinates of thenth feature in framef and

f ′ of sequences1 and2, respectively. Pairs of frames with a low value ofC1(f, f
′) are

a good match whereas those with a high value ofC1(f, f
′) are structurally inconsistent.

This is apparent in Figure 5.2a showing a plan view of the cost function,C1(f, f
′).

Having defined a match cost between frames from two different sequences, we then
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Figure 5.3: (a) Plot ofC1(37, f ′) for the running sequence. Note that in addition to the
correct minimum (frame 67, in this case) another minimum is evident (frame 118) due
to periodic motion (also noted by [123]). (b)C1(37, f

′) evaluated using interpolated
feature locations in the interval [65,69]. The computed minimum is observed close to
the correct minimum (f ′ = 67).

define a cost function for the synchronization parameters,α andδf . The most intuitive

is simply the sum of reprojection errors over the entire sequence such that:

C2(α, δf) =
∑

f

C1(f, αf+δf). (5.21)

This defines a cost surface (shown in Figure 5.2b) upon which we find a local min-

imum via non-linear optimization based on a sensible initial estimate, as described in

the following section.

5.4 Method

For every frame,f , in sequence1 we compute the match cost for every potentially

corresponding frame,f ′, in sequence2. Figure 5.3a showsC1(37, f
′), a ‘slice’ through

the cost function at frame37 of sequence 1. In this example, we see that multiple

minima are present due to periodic motion in the action being performed (a running

motion in this case).
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Figure 5.4: (a) Local minima corresponding to potential frame correspondences, re-
covered using non-minimum suppression and thresholding of the cost surface shown
in Figure 5.2a. Note the high number of good matches along the diagonal where the
true correspondence lies. (b) 3D surface of the accumulator array with a visible peak
at (α, δf) = (1, 32.76).

Exhaustively computingC1(f, f
′) for all pairings off andf ′ generates a coarse 2D

cost surface as shown in Figure 5.2a. Although this requiresF×F ′ evaluations ofC1

for sequences ofF andF ′ frames, the method is relatively efficient due to the simple

form of the cost function.

FromC1, we select putative frame correspondences (Figure 5.4a) via thresholding

and non-minimum suppression acrossf andf ′. These potential frame correspondences

cast votes in a Hough accumulator [9], a popular tool for line detection, from which

it is straightforward to extract peaks corresponding to potential synchronization para-

meters. Since we expect there to be multiple peaks in ambiguous cases, we retain all

peaks with a score greater than 90% of the maximum.

Since the recovered correspondences are between whole frames, the Hough trans-

form returns estimates of potential alignment whose resolution is limited by the bin

size. Moreover, ifα is known to be unity then the accuracy ofδf is theoretically
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limited to the nearest whole frame. We therefore optimize the cost functionC2(α, δf)

directly in order to recoverα andδf tosub-frameaccuracy. Since this requires the eval-

uation ofC1(f, f
′) for real (i.e. non-integer) values off ′, we use linear interpolation

to determine approximate feature locations between frames (see Figure 5.3b). Linear

interpolation was found to reduce reprojection errors compared with single frame ac-

curacy although higher order interpolations (e.g. quadratic, cubic) may yield superior

estimates.

Using the interpolated feature locations, we evaluateC2(α, δf) for each of the se-

lected(α, δf) pairs. Using the pair with the smallest error as an initial estimate, we

then employ standard optimization methods (the Nelder-Mead Simplex algorithm, im-

plemented asfminsearch in Matlab) to recover a locally optimal solution. Fig-

ure 5.2b illustrates the cost surfaceC2(α, δf) together with the recovered minimum.

We note that the amount of estimated overlap between the sequences may vary with

α andδf such that not all frames in view1 have a corresponding frame in view2.

Since this introduces first order discontinuities in the cost surface we assume complete

overlap between the sequences, deferring the design of a more robust cost function for

future work.

This process can be seen as a hierarchical search for the globally optimal solution,

using computationally cheap methods (the Hough transform) to reject a high number

of poor estimates early on so that relatively expensive processes, such as computing

the costC2(α, δf), are performed for only a small number of hypotheses.
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Figure 5.5: Synthetic ’monkey’ sequence as seen from two wide baseline viewpoints.
The red circles indicate point features used as inputs to the synchronization algorithm.

5.5 Results

5.5.1 Monkey sequence

We demonstrate the algorithm on a synthetic sequence pair of a human impersonating

a monkey (Figure 5.5). The views, synchronized by design, each contain480 frames

of 14 points features located at anatomical landmarks on the body (shoulders, elbows,

wrists, hips, knees, ankles, midriff and head) imaged under perspective projection.

We then deleted50 frames from the beginning and end of the first view to give a

sequence pair with synchronization parametersδf = 50 andα = 1. Unless specified,

only the offset is recovered such thatα could be fixed at unity, making the problem a

one-dimensional search.

Performance over varying temporal offset

To demonstrate the accuracy of the algorithm for sub-frame offsets, unsynchronized

sequences were synthesized by taking interleaved frames from the available synchro-

nized sequences to generate pairs of sequences offset by5, 5.1, . . . , 5.9 frames. Fig-

ure 5.6a compares the recovered offsets with ground truth where it can be seen that the
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Figure 5.6: (a) Recovered values for simulated offsets of5, 5.1, . . . , 5.9 frames. We
see the recovered offset is typically accurate to within hundredths of a frame. (b)
Recovered offsets over50 trials at each level of added zero-mean Gaussian noise of
standard deviation,σn.

recovered offsets are typically accurate to within a few hundredths of a frame despite:

(i) the assumption of linear motion between frames degrades for the low frame rates

at which we are operating; (ii) lowering the effective frame rate reduces the number of

frames available for estimation of the synchronization parameters.

Sensitivity to noise

The original image feature locations were perturbed by zero mean Gaussian noise of

increasing standard deviation,σn pixels, for50 tests at each level of noise. The scatter

plot in Figure 5.6b shows the recovered offsets as a function of the level of noise. In-

terestingly, we see a tendency for the algorithm to recover offsets halfway between

frames. This may indicate a preference to average out noise between consecutive

frames.

86



5. VIDEO SYNCHRONIZATION

Recovery of bothα and δf

In the previous experiments,α was fixed at unity such that onlyδf was the only re-

maining parameter to be recovered. Under these constraints, the algorithm recovers

an offset ofδf = 50.07 frames – an excellent match for the ground truth offset of50

frames. Withα allowed to vary, the algorithm accurately recovered synchronization

parameters ofα = 1.0001 andδf = 50.05. This suggests that small errors in offset

may be compensated by a corresponding change inα. However, we remind the reader

that the experiments were conducted on noiseless data such that the only error is as a

result of perspective effects. In Section 5.6.3, we demonstrate the synchronization of

sequences of different frame rates using NTSC and PAL cameras.

Reprojection errors

We now demonstrate how recovering sub-frame accurate synchrony reduces the error

between the measured feature locations and computed feature locations. To quantify

reprojection errors, we used odd frames from the first view and even frames from the

other, resulting in parametersα = 1 andδf = 25.5. With α constrained at unity, the

Hough transform recovered an initial estimate ofδf = 26. This was refined further

using interpolation to an estimate ofδf = 25.53.

For each frame, we computed four sets of feature locations for the second camera:

features taken directly from the nearest frame of sub-sampled data (‘Nearest’); interpo-

lated features using recovered synchronization parameters (‘Recovered’); interpolated

features using known synchronization parameters (‘Known’); features taken directly

from original image data (‘Original’). Since these feature locations are typically of

full rank (i.e. not subject to the rank constraint), we also compute a reduced-rank ver-
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Full rank Reduced rank
Nearest 9.6204 9.6878
Recovered 1.7728 2.9072
Known 1.6334 2.8266
Original 0 2.2990

Table 5.1: Reprojection errors demonstrating a considerable reduction using sub-frame
accurate alignment.

sion that satisfies the rank constraints by projecting onto the appropriate subspace.

For each set of computed features at every frame,West, we then compute the sum of

squared reprojection errors with respect to the original image data,W:

Eest = ‖W −West‖2F (5.22)

Table 5.1 shows the meanEest over all frames, showing that sub-frame accuracy

offers a considerable reduction in reprojection error compared with using the nearest

frame.

We note that the benefit of interpolating feature locations is dependent on the speed

of the motion with respect to the camera frame rate. For a slow movement (or high

frame rate), the motion between consecutive frames is small such that there will be little

benefit in interpolation and the nearest frame will suffice. However, for fast movements

(or low frame rates) the motion between frames is higher such that interpolation is

beneficial, although in such cases motion blur may introduce additional uncertainty in

the projected joint locations.

One application where interpolating feature locations is particularly beneficial arises

for sequences of different frame rates. In this case, generating synchronized sequences

from uninterpolated data results in the nearest frame results in frames being skipped

(in the slower sequence) or duplicated (in the faster sequence). For example, when
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synchronizing PAL and NTSC sequences (25Hz and30Hz, respectively) using the

nearest frame duplicates every fifth frame of the PAL sequence in order to maintain

temporal consistency, resulting in ‘jerky’ motion of the feature locations. In contrast,

interpolating feature locations smoothes out these discontinuities resulting in a more

agreeable motion.
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Figure 5.7: Running sequence as seen from two wide baseline viewpoints.

5.6 Real examples

5.6.1 Running sequence

We continue with a real running sequence (Figure 5.7) captured using two calibrated

cameras, hardware-synchronized at60Hz, for a quantitative ground truth compari-

son of recovered synchronization parameters. The sequences were then offset by30

frames, giving ground truth values ofα = 1 andδf = 30. The locations of13 joints

(shoulders, elbows, wrists, hips, knees, ankles and midriff) were hand-labelled in each

frame of the sequences.

With α constrained at its known value of1, an offset ofδf = 29.96 was recovered

by the algorithm, compared with its true valueδf = 30. Allowing α to vary recovered

values ofα = 1.0002 andδf = 29.94. Plots related to this sequence are shown in

Figures 5.2, 5.3 and 5.4.

5.6.2 Handstand sequence

The algorithm relies upon the motion of the subject being non-rigid, otherwiseall

frames are consistent throughout the sequence and the method is not valid. Rigid

motion of the body may manifest itself for certain actions where the body assumes an
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Figure 5.8: Handstand sequence as seen from two wide baseline viewpoints.
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Figure 5.9: (a) Recovered correspondences for the handstand sequence and (b) the cor-
responding Hough accumulator. Compared with Figure 5.4, we see no single dominant
peak and considerable support for outlying alignment estimates.

approximately fixed pose for extended periods of time. We show this to be the case

for a handstand sequence of180 frames (Figure 5.8), also captured using synchronized

cameras and manually offset by30 frames.

Figure 5.9a shows the putative frame correspondences recovered by the algorithm

where the underlying linear relationship is apparent only for a short period during the

middle of the sequence (when the legs undergo a ‘scissors’ motion). We also observe

blocks of corresponding frames suggesting that structure was consistent for extended
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Figure 5.10: Contour plot ofC2(α, δf) for the handstand sequence. It can be seen that
the cost surface is relatively flat compared with Figure 5.2b for the running sequence.
Furthermore, the minimum of the cost surface appears to be some distance from the
true value (α = 1, δf = 30)

intervals of time (i.e. rigid). Figure 5.9b shows the corresponding Hough accumulator

where we observe a cluster of peaks around the correct parameters and many outlying

peaks corresponding to spurious estimates.

Despite this, after evaluatingC2(α, δf) for selected peaks, initial estimates ofα = 1

andδf = 29.22 were selected. However, blind refinement of the parameters using

non-linear optimization led to a divergence of the estimate from the correct solution,

instead converging toα = 0.8671 andδf = 36.29.

Figure 5.10 shows the cost surface,C(α, δf), where the local minimum is located

some distance from the correct solution. The cost surface is relatively flat, compared

with Figure 5.2b for the running sequence of identical synchronization parameters,

due to the areas of low cost at the extremes of the sequence where the body was almost

rigid. As a result, an increase of the cost due to variation inα is compensated by

varyingδf .
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Figure 5.11: Juggling sequence as seen from two wide baseline viewpoints.

5.6.3 Juggling sequence

For our final sequence using the affine camera model, we demonstrate the method

on a juggling sequence (Figure 5.11) captured using two wide baseline cameras that

were neither synchronized nor calibrated. In particular, one sequence was captured

using an NTSC digital camera and consisted of150 colour frames at30Hz with a

resolution of320×240 pixels. The other sequence, captured with a PAL analogue

camera, contained250 greyscale frames at25Hz with a resolution of720×576 pixels.

Corresponding feature locations on the upper body, head and juggling balls were again

marked manually.

Figure 5.12a shows the recovered frame correspondences where we observe several

distinct parallel bands due to the periodicity of the juggling motion. These are observed

as multiple peaks in the Hough accumulator shown in Figure 5.12b. From the known

frame rates, we computedα = 25/30 ≈ 0.833 and estimated thatδf ≈ 115 by

inspection. The recovered values ofα = 0.8371 andδf = 113.60 are close agreement

with these estimates.
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Figure 5.12: (a) Recovered correspondences for the juggling sequences and (b) the
corresponding Hough accumulator. Note the presence of multiple peaks in the accu-
mulator array due to the periodicity of the juggling motion.

5.6.4 ‘Pins’ sequence

To finish, we briefly demonstrate the homography model approach using a sequence

pair of point features moving independently in a plane, captured using two cameras at

approximately12.5Hz and8Hz. The sequences, shown in Figure 5.13, capture map

pins moving on a flat surface under the influence of a desk fan. A crude feature tracker

was then implemented to recover feature tracks automatically. Although many tracks

were corrupted by noise and tracking error, thirteen clean tracks were matched by hand.

The recovered frame correspondences and corresponding Hough accumulator are

shown in Figure 5.14 where it can be seen that there are very few spurious minima. The

cluster of minima in the lower left corner of Figure 5.14a correspond to the beginning

of the sequence, where the pins were static, such that structure was inherently ‘con-

sistent’. The true synchronization parameter values were estimated, from the known

frame rates and by inspection, asα ≈ 0.64 andδf ≈ 16. These values correspond

closely to the recovered values ofα = 0.6118 and δf = 13.50, demonstrating the
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Figure 5.13: Pins sequence as seen from two wide baseline viewpoints.

effectiveness of the method.

There are several explanations for the high performance on this sequence. Firstly,

we note that the uncertainty is much smaller for the pins since they are surface features

and can be tracked with high accuracy, in contrast to human joint locations that are hid-

den beneath muscle tissue. Secondly, the pins were known to move in a plane such that

our assumption of corresponding frames being related by a homography was correct,

unlike the affine case where perspective effects introduced error into the system. Fi-

nally, each point feature provides two constraints for cameras related by a homography

compared with one constraint each for affine and perspective projection models.

5.7 Summary

This chapter has presented a method of synchronizing two sequences from the pro-

jected locations of anatomical landmarks on the human body. Error metrics to indicate

synchrony were derived for the homography, perspective and affine camera models.

Furthermore, it was shown that the rank constraints employed by Tomasi and Kanade

in the Factorization method form a natural extension of those derived from the affine

fundamental matrix. These error metrics were used to synchronize sequences of un-
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Figure 5.14: (a) Recovered frame correspondences and (b) corresponding Hough ac-
cumulator with dominant peak. Note that the correspondences and resulting Hough
accumulator are considerably more ‘clean’ than in other cases.

known and different frame rates, as demonstrated on synthetic and real sequences.

5.7.1 Future work

Synchronizing multiple sequences

Since the Factorization method extends rank constraints to more than two views, it

is straightforward to extend the synchronization to multiple sequences. Due to the

(albeit linear) increase in dimensionality of the parameter space, it would be sensible

to synchronize all other sequences idependently with respect to a reference sequence in

order to recover an initial estimate of synchronization parameters. This estimate could

then be refined via non-linear optimization as in the two view case.

Multiple hypotheses

Most robust human trackers output multiple hypotheses (or a p.d.f. over pose) rather

than a single point estimate at each frame. Therefore, any synchronization algorithm

should accommodate this feature. A possible solution is to compute thedistributionof
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error at each frame and assign a score according to the sharpness of the peak at zero.

Using line and plane features

The Factorization algorithm has been extended to exploit other image features such

as lines and planes [75]. Such features may be exploited to improve the estimation

of synchronization parameters. However, more than two views are required to exploit

line features due to the limited constraints they provide and planar structure is rare in

human motion sequences.
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Chapter 6

Self-Calibrated Stereo from Human
Motion

In this chapter, we develop a method for the self-calibration of human mo-
tion observed by two cameras. Since only two views are available of the
(time-varying) structure at each instant, constraints on the projection matrices
alone are insufficient. We therefore impose symmetry and piecewise-rigidity
constraints on the known structure (the human body) to recover the calibra-
tion of the two cameras. In particular, we present a novel parameterization of
the system that admits a closed form initialization for optimization of the cost
surface. Due to the three-fold reduction in the number of parameters, opti-
mization is better behaved and considerably more efficient without sacrificing
accuracy. We then perform bundle adjustment over the free parameters to re-
cover the maximum likelihood solution for structure and motion. The method
is demonstrated on motion captured data (for quantitative analysis) and real
examples.

6.1 Introduction

So far, we have recovered joint locations of an articulated structure in an image se-

quence (Chapters 3 and 4) and shown that joint locations can be used to align a stereo

sequence pair in time (Chapter 5). At this time, we are able to recover the ‘skeleton’ of

the subject by factorization but in an affine co-ordinate frame. However, since lengths

and joint angles can only be measured in a Euclidean co-ordinate frame, we must cal-

ibrate the cameras accordingly.1 In this way, structure and motion are ‘upgraded’ to a

1Portions of this chapter were published in [115]
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(a) (b)

Figure 6.1: Schematic of self-calibration: (a) Affine structure; (b) Euclidean structure.
Note that in the Euclidean frame, the body is in the correct proportion in contrast to
that in the affine frame.

Euclidean co-ordinate frame, as shown schematically in Figure 6.1.

The standard approach to self-calibration is to apply constraints to the projection

matrices, such as fixed lens parameters or the slightly weaker requirement that the

imaging system has zero skew and/or unit aspect ratio. However, such methods rely

on there being multiple cameras (or a single moving camera providing multiple views)

so that the system is overconstrained. Such constraints were proposed by Tomasi and

Kanade [111] for orthographic projection (where at least three views are required) and

later generalized to all parallel projection models by Quan [82].

In this chapter, we use binocular sequences of human motion to recover instanta-

neous affine structure and motion by factorizing independently at each time instant.

Although we have many more than three images in each sequence, structure differs at

each time instant and self-calibration is underconstrained using constraints on the pro-

jection matrices alone. Furthermore, simple engineering solutions (e.g. using a third

view) are not always applicable, such as when reconstructing from sporting or surveil-

lance footage.
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6.1.1 Related work

To address this problem, we exploit the fact that additionalstructural constraints are

available in human motion analysis. Taylor [107] showed that knowing theratios of

lengths was sufficient to recover scene structure (up to some depth ambiguities) for a

single image although our work is more directly inspired by the method of Liebowitz

and Carlsson [66] who enforce the symmetry and piecewise rigidity of the human

body. They recover affine structure up to a rectifying transformation at each frame

and optimize over the free parameters underweakmotion and structural constraints.

Although projection and symmetry constraints alone are sufficient for self-calibration

at each instant, rigidity constraints (that apply at different instants) account for scale

changes, due to perspective, over time.

6.1.2 Contributions

Our method employs the same principles as [66] but overcomes a number of practical

difficulties. Specifically:

• We propose a reduced parameterization of the system that implicitly enforces

the required conditions for self-calibration. We show that our parameterization

is considerably more efficient and better behaved during optimization, for which

we are guaranteed an intuitive initialization in closed form.

• Having recovered an initial estimate, we refine this further by applying a bundle

adjustment over all parameters that correctly minimizes a geometric reprojection

error in the image, thus recovering the maximum likelihood solution.
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6.2 Self-Calibration

We begin by reviewing the camera calibration, described in Section 2.2.1, in greater

detail. Given two sequences of image features, we can recover structure and motion by

factorization [111] independently at each time instant,i. With some abuse of notation,

we definePi as the4×3 normalized (with respect to translation) projection matrix at

time i andXi as the structure matrix at timei. It can be shown that, at each instanti,

structure is known only up to an unknown affine transformation,Gi:

Wi = PiXi = PiG
−1
i GiXi (6.1)

where eachGi is an invertible, homogeneous3×3 matrix that can be factorized by QR-

decomposition (Gi → QiBi) into a 3D rotation,Qi, and an upper-triangular matrix,

Bi. SinceQi effects a change of Euclidean coordinate frameafter calibration it can

be discarded without loss of generality. Consequently, as eachBi has six independent,

non-zero elements a sequence ofF frames has6F − 1 degrees of freedom, up to a

global scale factor.

We defineΩi = BT
i Bi such thatBi is recovered fromΩi by Cholesky factorization

if and only if Ωi is positive definite. Eigen-decomposition ofΩi = ViDiV
T
i such

that Bi = D
1/2
i VT

i explains the action ofBi geometrically as a rotation into a new

coordinate frame, followed by an anisotropic scaling.

6.2.1 Motion constraints

To recover the required set of allBi that transforms each affine reconstruction into

Euclidean space, constraints are applied to all projection matrices,Pi, in a form of

self-calibration [111, 82]. Specifically, for a givenB the axes,iT andjT , of an affine
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projection matrix transform toiTB−1 andjTB−1 where the skew,rskw, and difference

in length,rasp, are given by:

rskw = iTB−1B−T j

= iTΩ−1j (6.2)

rasp = iTB−1B−T i− jTB−1B−T j

= iTΩ−1i− jTΩ−1j. (6.3)

Under most circumstances, it is sensible to impose constraints that the vectorsiTB−1

andjTB−1 be orthogonal and have unit aspect ratio (i.e. rskw = rasp = 0). As a result,

at a given instant,i, three or more views of the subject provide at least six linear

constraints onB−1
i B−T

i = Ω−1
i and a linear least squares solution forΩ−1

i minimizes

rskw andrasp. However, for only two views there are insufficient constraints onΩ−1
i

and an infinite number of solutions exist.

6.2.2 Structural constraints

It has been shown [66, 107] that using knowledge of the human body imposes further

constraints on reconconstructions. Figure 6.2 shows the foursymmetryconstraints

(solid arrows) between the arms and legs and ninerigidity constraints (dashed ar-

rows) on the left/right upper arm, forearm, thigh and foreleg, and hips, as suggested by

Liebowitz and Carlsson [66].

More formally, two 3D vectors,Xi,p andXi,q, representingdifferent links in the

sameaffine reconstruction,i, transform toBiXi,p and BiXi,q in Euclidean space.

Likewise, the vectorsXi,p andXj,p representing thesamelink in differentaffine re-

constructions,i andj, constrain bothΩi andΩj. The residual errors,rsym andrrig,
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Figure 6.2: Symmetry (solid) and rigidity (dashed) constraints between a pair of re-
constructions.

are given by:

rsym = XT
i,pB

T
i BiXi,p −XT

i,qB
T
i BiXi,q

= XT
i,pΩiXi,p −XT

i,qΩiXi,q (6.4)

rrig = XT
i,pB

T
i BiXi,p −XT

j,pB
T
j BjXj,p

= XT
i,pΩiXi,p −XT

j,pΩjXj,p. (6.5)

Since rigidity constraints apply between pairs of reconstructions there is a combina-

torial number of them, not all independent (e.g. Xi,p = Xj,p andXi,p = Xk,p imply

Xj,p = Xk,p). Although they may be applied between consecutive instants ({0, 1},

{1, 2} etc.) as in [66], this allows the scale to drift over the sequence so we apply them

with respect to thesamereconstruction ({0, 1}, {0, 2} etc.).

6.3 Baseline method

We begin by presenting the ‘baseline’ method proposed by Liebowitz and Carlsson [66].

It is against this method that we base our comparisons in Section 6.7.
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6.3.1 Recovery of local structure

To recover the rectifying transformations (and hence Euclidean structure and motion),

all residuals must be minimized. However, this cannot be achieved using linear meth-

ods since motion and structure constrainΩ−1 and Ω, respectively. Liebowitz and

Carlsson optimize directly over the6F − 1 elements of allBi (up to scale) using the

cost function:

C = wcam · ccam + cstr (6.6)

where

ccam =
∑

r2
skw +

∑
r2
asp (6.7)

cstr =
∑

r2
sym +

∑
r2
rig (6.8)

andwcam weights the costs according to the relative confidence in the motion and

structural constraints. Having recovered allBi, they compute Euclidean structure and

motion at each frame:̃Xi ← BiXi andP̃i ← PiB
−1
i , respectively. We refer to this

aslocal since the choice of coordinate frame is arbitrary at each time instant and rigid

transformations between frames are not recovered.

6.3.2 Recovery of global structure

From the enforcement of rigidity over the sequence, any scaling due to perspective over

time can be recovered from the computed projection matrices. Therefore, perspective

effects over time can be removed by rescaling the image measurements as if viewed

orthographically. AllF normalized images ofN features can then be treated as a

single image ofFN features in a static scene with a common co-ordinate frame. To
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normalize the data, each Euclidean projection matrixP̃i is decomposed into its internal

and external parameters:

P̃i =

[
Ki,1 0
0 Ki,2

][
P̂i,1

P̂i,2

]
(6.9)

whereP̂i,n is an orthographic projection matrix (i.e. îT ĵ = 0 and îT î = ĵT ĵ = 1) and

Ki,n is the corresponding affine calibration matrix of the form:

K =

[
s β
0 κs

]
(6.10)

wheres is the scale,κ is the aspect ratio andβ the skew (subscripts are omitted for

clarity). The image measurements are normalized to the same size using the scale

factors,s, and a singleΩ is recovered for the entire sequence, yieldingglobalstructure

where rotation and relative translation of the body between frames is also recovered.

This global structure is then approximated by an articulated body of median segment

lengths.

6.4 Proposed method

Although theoretically sound, the method presented in [66] has a number of practical

limitations: it is inefficient since optimization is performed over6F − 1 variables; it

has no intuitive initialization since linear solutions forΩi are seldom positive definite

such that theBi cannot be recovered by Cholesky decomposition; there is considerable

ambiguity when implementing the method since eachBi can be parameterized in sev-

eral different ways (our experience suggests this can significantly affect performance);

the value ofwcam must be chosen empirically.
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6.4.1 Minimal parameterization

To address these shortcomings, we propose an improved method that exploits a mini-

mal parameterization ofΩi based upon reasonable assumptions regarding camera cal-

ibration. Specifically, westrictly enforce motion constraints, resulting in reconstruc-

tions that are constrained to lie in a Euclidean coordinate frame. This has an unam-

biguous implementation, reduces computational complexity and provides an intuitive

starting point for non-linear optimization.

By strictly enforcing motion constraints, we eliminate four degrees of freedom in

Ω−1
i . The four motion constraints defined by (6.2) and (6.3) yield a linear system

with a two dimensional null-space that is spanned by two possible values forΩ−1
i

(denoted byΩ−1
i,1 and Ω−1

i,2 ). Any linear combination ofΩ−1
i,1 and Ω−1

i,2 satisfies all

motion constraintsexactly. We parameterize all suchΩ−1
i using polar coordinates:

Ω−1
i (r, θ) = r(cos(θ) ·Ω−1

i,1 + sin(θ) ·Ω−1
i,2 ) (6.11)

= r cos(θ)(Ω−1
i,1 + tan(θ) ·Ω−1

i,2 ) (6.12)

such that for any givenθ, the eigenvalues ofΩ−1
i are equal up to scale for all positive

r. Using this parameterization, only2F − 1 parameters are required to describe the

calibration of the entire sequence (in contrast to the6F − 1 non-zero elements ofBi

employed in the original method [66]). However, additional measures are required in

order to enforce the constraint thatΩ−1
i be positive-definite.

6.4.2 Optimization

In an early version of this method, we proposed a simple solution to this problem.

From the polar parameterization ofΩ−1
i , it can be shown that|Ω−1

i | is expressible in
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closed form as a cubic polynomial intan(θ) for any givenr. As a result, we can

compute the six values ofθ for which |Ω−1
i | = 0 as eigenvalues pass through zero.

The range[0, 2π) is therefore divided into six intervals, only one of which corresponds

to a positive-definiteΩ−1
i for all positiver. This interval,(θmin, θmax), is recovered by

evaluating the eigenvalues ofΩ−1
i at the midpoints of the six intervals. The midpoint

of (θmin, θmax) then provides a simple initial value forθ, whilst r is initialized to unity.

Further investigation of the problem reveals thatrsym is also expressible as a poly-

nomial intan(θ). As a result, we minimizersym in closed form for every time instant

in the sequence to provide an improved initial value ofθ. However, preliminary inves-

tigations suggest there is no closed form solution for the complete system.

We then minimizecstr only (ccam = 0 by design such thatwcam is no longer re-

quired) over allr > 0 andθ ∈ (θmin, θmax) such that the resultingΩ−1
i are guaranteed

to be positive definite and allB can be recovered by Cholesky factorization. Note that

sinceΩ−1
i is singular atθmin andθmax the cost at these values increases to infinity. As

a result, the minimization is effectively ‘self-constraining’ and unconstrained methods

are successfully employed in all but a few cases.

6.5 Bundle adjustment

Having recovered local and global structure using the minimal parameterization, we

approximate the recovered structure with an articulated model of median segment

lengths and estimated pose, as in [66]. However, we then optimize these parame-

ters further using a final bundle adjustment (Levenberg-Marquardt, implemented as

lsqnonlin in Matlab). At this point we no longer enforce symmetry constraints

since they are the most uncertain of our assumptions.
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Minimization of the geometric reprojection error is achieved by optimizing over the

v views of i frames for all camera parameters – image scales{si,v}, camera rotations

{Rv} and translations,{tv} – and structural parameters – segment lengths,L, and pose

parameters,{φφφi}. We retain the assumption that the cameras have unit aspect ratio and

zero skew.

Defining εεε as the vector of reprojection errors over all measurements, we seek to

minimize the sum of squared reprojection errors,εεεTεεε, over all frames:

εεεTεεε =
∑

v

∑
i

∑
n

‖si,vRvXi,n(L,φφφi) + tv − xi,v,n‖2F (6.13)

whereXi,n(L,φφφi) is the 3D location of thenth feature in theith frame given the link

lengths,L, and pose parameters,φφφi andxi,v,n is the corresponding image measurement.

This minimization is achieved by iteratively solving:

∆p = −(JTJ + λI)−1JTεεεp (6.14)

for ∆p wherep is the vector of all parameters andJ is the Jacobian (matrix of deriva-

tives) of all measurements with respect to the parameters.λ is a regularization parame-

ter to ensure that the step size remains within the trust region where the linearization,

upon which Levenberg-Marquardt is based, remains valid. Since scale and pose para-

meters are frame dependent,J is sparse and minimization is computationally efficient.

The end result is an articulated model of fixed link lengths, fitted to the anthropomor-

phic dimensions of the subject (up to scale) and capturing the pose at every frame such

thatall constraints are strictly enforced.
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6.6 Practicalities

There are three sources of error in the presented method: incorrect spatial correspon-

dence; incorrect joint labelling; gross outliers as a result of tracking failure. Since

Chapter 4 outlines several methods for automatically recovering joint locations in an

image (complete with labelling and spatial correspondence), we do not discuss these

matters further here.

There remains, however, a question of robustness to tracking failure resulting in

gross outliers in joint locations. We note, however that simple measures can be taken

to eliminate many gross outliers using random sampling methods [112] to estimate the

(affine or projective) fundamental matrix. In the case of affine projection, it has been

shown that computationally cheap subspace-based methods can be employed to verify

spatial matching [128].

We take a different approach based on full perspective projection: the cameras in

our application are fixed, and therefore all image pairs in an entire sequence must

share the same epipolar geometry. Although at each time instant it is possible to use an

affine approximation (since a person’s relief is typically much smaller than the viewing

distance), over the entire sequence motion towards and away from a camera induces

perspective effects that we can use to our advantage. Each putative feature match

in an entire sequence constrains the epipolar geometry and we use this large feature

set to estimate the fundamental matrix robustly using RanSaC. The results from these

experiments are given in Section 6.7.1.
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Figure 6.3: Synthetic ’running’ sequence as seen from two wide baseline viewpoints.
The red circles indicate point features used as inputs to the synchronization algorithm.

6.7 Results

We now present results using synthetic data to demonstrate the benefits of the proposed

method over the original implementation [66].

6.7.1 Running sequence

Two views of a short running motion (consisting of30 frames) were synthesized using

motion capture data from a commercial system (Figure 6.3). An articulated model of

known segment lengths was imaged under perspective projection and the projected im-

age features used to recover affine structure by factorization. Metric structure and mo-

tion was then recovered using four methods: (i) rectification using a local implemen-

tation of Liebowitz and Carlsson’s method (‘L&C’); minimal parameter rectification

with (ii) no bundle adjustment (‘Minimal’); (iii) affine bundle adjustment (‘A.B.A.’);

(iv) perspective bundle adjustment (‘P.B.A.’, a ‘gold standard’ for comparison). This

particular sequence was selected since the translation of the subject induced scaling

over time due to perspective.

Figure 6.4a shows the recovered scales as a results of perspective – the subject runs
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Figure 6.4: (a) Recovered scaling as a result of perspective effects. (b) Recovered
trajectories of the knees during running sequence. The expected periodicity and phase
difference is clearly evident.

toward one camera and away from the other. The recovered angles at the knees are

shown in Figure 6.4b where the periodicity and phase difference of the running motion

is clearly observable.

Comparison of algorithm efficiency

Table 6.1 compares the described methods using noiseless data, based upon (i) number

of iterations required for convergence, (ii) time taken (using a 2.4GHz Pentium 4 desk-

top computer) for convergence, (iii) total time taken (including fixed overhead costs)

and (iv) final RMS reprojection error. We show separate measurements for the recov-

ery of local structure (A), recovery of global structure (B) and bundle adjustment (C).

Minimal parameterization clearly outperforms the previously proposed method [66]

in efficiency with little penalty in accuracy while bundle adjustment increases accu-

racy further, although at some additional computational cost. As expected, perspective

bundle adjustment converges to an (almost) exact solution with noiseless data. In the

remaining experiments, we show how the accuracy of the method degrades with added

zero-mean Gaussian noise of standard deviationσn.
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L&C Minimal A.B.A. P.B.A.

A
# iterations 16 10 10 10
Time (sec) 2.08 0.68 0.62 0.62

B
# iterations 382 6 6 6
Time (sec) 2.84 0.058 0.053 0.053

C
# iterations - - 12 108
Time (sec) - - 16.25 163.67

Total time (sec) 6.96 2.81 23.00 233.4
RMS error (pixels) 1.41 1.44 0.785 2.9×10−4

Table 6.1: Performance comparison of four methods where it is clear that the minimal
parameterization heavily outperforms the original parameterization. Bundle adjust-
ment reduces the errors further at some computational cost.

σ (pixels) L&C Minimal A.B.A. P.B.A.

ψ

0 0.101 0.102 0.076 1.79×10−5

1 0.094 0.095 0.077 0.003
2 0.071 0.076 0.076 0.004
4 0.055 0.045 0.071 0.010

ωerr

0 0.087 0.086 0.048 3.3×10−5

1 0.138 0.134 0.034 0.013
2 0.317 0.285 0.038 0.006
4 0.394 0.470 1.8×10−4 0.045

Table 6.2: Recoveredψ (rad) andωerr (rad) with increasing image noise.

Recovery of camera parameters

To compare the recovered rotation between the cameras we recover external parame-

ters from the computed projection matrices. Using the axis-angle notation, a rotation is

represented by a unit vector,a, parallel to the axis of rotation and the angle of rotation,

ω, about this axis. We denote ground truth values byagt andωgt, respectively, quan-

tifying error using the angle between the vectorsa andagt, ψ = cos−1(aT
gta), and the

difference in angle of rotation,ωerr = |ωgt − ω|. Table 6.2 shows increased accuracy

of the methods following bundle adjustment plus some degradation with image noise.
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σ (pixels) L&C Minimal A.B.A. P.B.A.
0 0.871 0.905 0.724 0.001
1 3.541 3.576 1.428 1.078
2 7.830 6.195 2.561 2.415
4 10.10 10.60 8.666 8.256

Table 6.3: Mean percentage error in recovered limb lengths with increasing image
noise.

Recovery of segment lengths

To compare segment lengths, we recover metric3D structure over the entire sequence

and compute the median length for each body segment. These median values are then

normalized such that the hips have unit length before comparing them with ground

truth values. Table 6.3 shows mean percentage errors in recovered body segment length

using the four methods for a single test. We see a sharp increase in error with image

noise since even a small amount of noise may result in a largepercentageerror in pro-

jected length for frames where the limb is almost normal to the image plane. Since our

minimal parameterization strictly enforces motion constraints we might expect a de-

terioration in the recovered structure (which ‘absorbs’ all of the measurement errors).

However, our results suggest that this effect is very slight.

Recovery of joint trajectories

We now show how image noise affects RMS error in joint angle, using the elbow and

knee joints that are invariant to global coordinate frame. Table 6.4 shows error increase

sharply since even a small error in projected length is interpreted as a large error in joint

angle. The converse problem is encountered in model-based tracking where rotations

out of the image plane are almost unobservable since they result in small image motion.
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σ (pixels) L&C Minimal A.B.A. P.B.A.
0 0.0521 0.0511 0.0328 3.8×10−5

1 0.1276 0.1263 0.0716 0.0597
2 0.2851 0.2776 0.1712 0.1644
4 0.3390 0.3435 0.3255 0.3220

Table 6.4: Mean RMS error in joint angle (rad) over the knee and elbow joints.

Sensitivity to gross outliers

Finally, we investigate the sensitivity of the algorithm to gross outliers as a result of

tracking error. Such errors have two deleterious effects: (i) increased RMS projection

errors and consequent increased errors in recovered structure; (ii) more seriously, they

often result in failure of the algorithm to converge to a sensible solution. We show that

such problems are significantly reduced using robust matching techniques.

Using a different synthetic sequence of38 frames, we added Gaussian noise (σ = 2

pixels) and performed self-calibration (‘No outliers’). We then deliberately corrupted

approximately10% of the correspondences (selected randomly) with Gaussian noise

of standard deviation40 pixels to simulate gross error and performed self-calibration

three more times: (i) after removing all known outliers (‘Known’); (ii) after removing

outliers detected using robust matching (‘RanSaC’); (iii) after removing none of the

outliers (‘Naive’). Since this experiment concerns only the early stages of the algo-

rithm, no bundle adjustment was used.

Table 6.5 shows the convergence frequency over 100 tests, and the RMS reprojection

and structure errors averaged over the tests that did converge (only points labelled as

inliers were used to compute these values). Methods ‘Naive’ and ‘Known’ respectively

show that performance is poor with outliers present but improves dramatically when

they are all removed. The ‘RanSaC’ method shows that robust matching methods [112]

provide some defence against such outliers. In particular the percentage of trials that
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Convergence Reproj. error Limb error
Method RMS (pixels) Mean (%) Max. (%)

No outliers 100% 1.78 2.52 6.31
Known 100% 1.81 2.71 6.55
RanSaC 81% 2.23 4.36 9.56
Naive 31% 7.30 5.11 12.10

Table 6.5: Convergence frequency, RMS reprojection error and limb lengths error with
outliers

converge is dramatically increased, as well as an expected decrease in structural error.

However, one weakness of binocular outlier rejection schemes is that only those out-

liers lying far from their estimated epipolar line are detected. Large noise components

parallel to the epipolar line remain undetected and continue to influence the recov-

ered structure and motion adversely. Further mitigation against these effects could be

obtained using, for example, smooth motion priors to detect remaining outliers.

6.8 Real examples

6.8.1 Running sequence

Applying the algorithm to the ‘running’ sequence (Figure 5.7), the affine reconstruc-

tions were calibrated using the minimal parameterization in37 iterations, taking ap-

proximately4.3 seconds. In contrast, Liebowitz’s method took38 seconds to compute

local structure and did not converge on global structure within104 iterations. Affine

bundle adjustment was then applied to the recovered structure reducing RMS reprojec-

tion error from5.44 pixels to2.76 pixels. For comparison, perspective bundle adjust-

ment reduced RMS reprojection error to2.24 pixels.

Figure 6.5a shows the recovered scaling of the body as a result of perspective whilst

Figure 6.5b shows the joint angle trajectories of the knees over150 frames of the

running sequence. The anticipated periodicity and phase difference in the running
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Figure 6.5: (a) Recovered scaling as a result of perspective effects. (b) Recovered
trajectories of the knees during running sequence. The expected periodicity and phase
difference is clearly evident.

Limb Left Right
Upper arm 1.223 1.249
Lower arm 1.004 1.071
Upper leg 1.619 1.679
Lower leg 1.693 1.709

Table 6.6: Recovered body segment lengths (relative to the hips) for the running se-
quence. The recovered limbs are approximately symmetric and in proportion.

motion is clearly evident. Table 6.6 shows the recovered body segment lengths (again,

normalized such that the hips have unit length). It can be seen that the recovered body

model is in proportion and approximately symmetric, despite the fact we impose no

constraints on the symmetry of the body during bundle adjustment.

6.8.2 Handstand sequence

For the ‘handstand’ sequence (Figure 5.8), our method converged in109 iterations,

taking only9.5 seconds, with an RMS reprojection error of6.79 pixels. Affine bundle

adjustment reduced RMS reprojection error to3.92 pixels, compared with3.41 pixels

following perspective bundle adjustment. In contrast, Liebowitz’s method required

6951 iterations, taking101 seconds, with an RMS reprojection error of7.56 pixels.
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Figure 6.6: (a) Recovered scaling as a result of perspective effects. (b) Recovered tra-
jectories of the knees during handstand sequence shoing now periodicity or particular
phase difference.

Figure 6.7: Euclidean reconstruction of a handstand sequence

Figure 6.6a shows the recovered scales due to perspective and Figure 6.6b shows

the joint angle trajectories of the knees. In this case, there is no periodicity or phase

change since the motion is not cyclic. Again, we see that the recovered kinematic

structure (Table 6.7) is in proportion and approximately symmetric.

6.8.3 Juggling sequence

For the juggling sequence (Figure 5.11), the minimal parameterization converged in19

iterations, taking approximately0.8 seconds, with an RMS reprojection error of4.13

pixels. In contrast, Liebowitz’s method required1425 iterations, taking20.2 seconds,
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Limb Left Right
Upper arm 1.076 1.105
Lower arm 0.856 0.968
Upper leg 1.645 1.719
Lower leg 1.458 1.584

Table 6.7: Recovered body segment lengths (relative to the hips) for the handstand
sequence. The recovered limbs are approximately symmetric and in proportion.

Limb Left Right
Upper arm 1.000 1.032
Lower arm 0.984 0.982

Table 6.8: Recovered limb lengths (relative to the left upper arm) for the juggling
sequence. The recovered limbs are approximately symmetric and in proportion.

albeit with a better RMS reprojection error of3.78 pixels. Affine bundle adjustment

reduced RMS reprojection error further to2.13 pixels, compared with2.15 pixels fol-

lowing perspective bundle adjustment.

Again, Figure 6.8a shows the scales due to perspective effect that are small in this

case since the subject does not move towards or away from the camera. This lack of

change in depth would explain why perspective bundle adjustment performed no better

than the affine bundle adjustment for this sequence. Figure 6.8b shows the recovered

joint trajectories of the elbows during the motion where the periodicity of the motion

is clearly apparent in addition to the phase difference. Table 6.8 shows the recov-

ered body segment lengths where we see that the symmetry has been recovered and

the segments are in proportion, despite the reduced number of structural constraints

(the lengths are normalized with respect to the upper left arm). Figure 6.9 shows the

reconstructed upper body in a Euclidean co-ordinate frame.
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Figure 6.8: (a) Recovered scales where we see little change since the subject was not
moving with respect to the camera. (b) Recovered trajectories of the elbows during
juggling where the out of phase periodic motion is clearly observable.

Figure 6.9: Euclidean reconstructions from juggling sequence

6.9 Summary

In this chapter, we have presented a self-calibration method for the underconstrained

case where only two views are available of the motion. We extended current meth-

ods [66] that exploit the structure of the human body by proposing a minimal para-

meterization of the solution space. This resulted in a computationally efficient algo-

rithm with an intuitive initialization that resolves implementation ambiguity. Bundle

adjustment then recovered the maximum likelihood solution by minimizing a geomet-

ric reprojection error. We demonstrated the method on synthetic and real sequences

of human motion, showing accurate recovery of joint angles and camera parameters.

We also presented an analysis of sensitivity to outliers, showing that robust matching
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greatly improves performance.

6.9.1 Future work

Closed-form solution

The existence of a closed-form solution for the symmetry cost offers hope for a similar

solution for the entire system. Preliminary investigations suggest this may not be the

case although further work is required in this exciting direction.

Sequential implementation

Since the method uses all affine reconstructions simultaneously, it is strictly a batch

process. An obvious extension would be to develop a sequential process that converges

to the maximum likelihood solution as more frames are added.

Regularization

The sharp increase in joint angle error with noise suggests that integration with a mo-

tion model would also be beneficial during the bundle adjustment to impose smooth-

ness priors. This would also aid in the detection of gross outliers where the error

vector is parallel to the epipolar line and undetectable by robust matching techniques

(e.g. RanSaC).
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Chapter 7

Conclusion

This thesis has presented a study of articulated motions, as viewed through the lens

of a camera. We conclude by summarizing the main contributions of the thesis and

reviewing directions for future research.

7.1 Contributions

The key contributions of the thesis can be summarized as follows:

• An extension of the Factorization algorithm [111] was presented in Chapter 3 for

articulated objects. It was shown that for a pair of objects coupled by a universal

joint or hinge, the rank of the resulting matrix of feature tracks is decremented by

1 or 2, respectively. The presented method exploits this fact to detect articulated

motion from feature tracks and recover the parameters of the system such as

centres/axes of rotation and joint angles.

• An empirical comparison of several methods for estimating joint centre projec-

tions in an image of a human using a training corpus of synthetic data was un-

dertaken in Chapter 4. It was shown that some popular methods for this task do

not scale well for large training datasets, placing intractable demands on com-
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putation and memory storage. A simple tree searching algorithm was integrated

with a particle filter to track human motion from a single view.

• A novel method of synchronizing video sequences of human motion using pro-

jected joint centres was presented. The algorithm was based on the Factorization

method, although a general framework was presented for different camera mod-

els. Synchronization parameters were recovered for sequences of unknown and

different frame rates using interpolation of feature locations. The method was

demonstrated to be robust to noise and accurate to within fractions of a frame.

• A self-calibration method for a pair of cameras observing human motion was

presented. Developing an existing method [66], the algorithm proposed a re-

duced parameterization of the solution space resulting in well-behaved and effi-

cient optimization with an intuitive initialization in closed form. Bundle adjust-

ment was then applied to reduce a geometric reprojection error for the recovery

of a maximum likelihood solution.

7.2 Future work

Of the various directions for further research we have outlined in this thesis, we con-

sider the following to be most important and interesting:

• In order for articulated structure from motion to be employed in a human motion

analysis context, it must be extended to handle longer kinematic chains featuring

a mixture of joint types. A unified framework that can detect and process all

types of dependency is also highly desirable.

• The comparison of Machine Learning methods provided in Chapter 4 did not in-

122



7. CONCLUSION

clude mixture models nor attempt a thorough review of current techniques. This

is a rapidly expanding area in the human motion tracking community that should

be investigated more rigorously. In particular, the synergy between discrimina-

tive and generative methods was touched upon but has yet to be exploited to its

full potential.

• Searching, sampling and regression methods based on the occluding contour (sil-

houette) of the subject currently rely on an accurate segmentation of the subject

from the background. In this work, this was achieved via background subtrac-

tion. An interesting line of inquiry may investigate whether a training corpus

could be employed for ‘intelligent’ segmentation of the subject from the back-

ground for improved tracking.

• Since self-calibration using symmetry constraints only can be shown to have a

closed-form solution, such constraints may be incorporated into the synchro-

nization framework. This would effectively impose priors on a pair of frames

such that cost is not only dictated by reprojection error (derived indirectly from

rank constraints) but also by the maximum possible symmetry of the recovered

structure. Initial results in this line of inquiry have already shown promise.

• A closed form solution for self-calibration is highly desirable since indepen-

dence from non-linear optimization methods would result in more robust and

efficient algorithms. In particular, it remains to be established whether the solu-

tion space is convex (within parameter bounds) such that an iterative algorithm

not based on gradient descent could be implemented to find the solution in an

efficient manner.
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Appendix A

An Empirical Comparison of Shape
Descriptors

In this appendix, we present a brief comparison of a number of shape repre-
sentations for searching a database of training examples. We discuss poten-
tial candidates for the task, justifying the selected representations included in
the comparison. In particular, we include the recently proposed Histogram
of Shape Contexts and demonstrate that it provides little, if any, benefit over
alternative methods despite the considerable increase in computational cost
that is required.

A.1 Introduction

Due to the rapid increase in affordable secondary storage over the last few years, it is

becoming increasingly important to develop systems that retrieve data based oncontent

rather than annotating the data by hand. This has led to the growth of interest in shape

matching and retrieval algorithms. Application areas for such Content Based Image

Retrieval (CBIR) include searching the Web (e.g. Google Images) and more specific

fields such as the enforcement of trademarks.

In such applications, it is typically infeasible to use the raw, high-dimensional image

to describe the data. Instead, features are computed that retain the most informative

data in the image. This dimensionality reduction provides three major benefits:
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• Lower storage requirementssince each image is represented by a compact

feature vector.

• Increased efficiencysince the training data can be processed more rapidly.

• Reduced sensitivityto noise since the features should capture the most infor-

mative shape characteristics whilst ignoring irrelevant details (e.g. noise).

In this appendix, we investigate several selected shape representations that reduce

the dimensionality of training images for the purpose of shape retrieval in applications

such as human pose estimation (see Chapter 4).

A.1.1 Related Work

Due to the nature of the dataset used in this investigation (binary silhouettes of128×128

pixels), certain shape representations are inappropriate for this task. Descriptors based

on the topology of the occluding contour [63] are unsuitable since they may change

dramatically with small changes in underlying pose (e.g. as the subject places their

hands on their hips, ‘holes’ are created that modify the topology). Furthermore, repre-

sentations based on curvature [129] typically require a continuous (or sufficiently high

resolution) contour that is rarely available in this application. Similar arguments rule

out Fourier decompositions [130] and shock graphs/median axis representations [92].

The remaining candidates can be divided into two classes:global and local de-

scriptors. Global representations use every pixel to compute every feature such that

a localized corruption of the input image (e.g. occlusion, shadow) induces an error in

every feature. Such representations include moments [108, 77, 127], Lipschitz embed-

dings [8] and Principal Component Analysis (PCA) of the image. In contrast, local

representations use only a subset of the image to compute each feature such that only
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certain features are affected by a localized error in the input image. Such represen-

tations include the recently proposed Histogram of Shape Contexts (HoSC) that has

successfully been employed in human pose estimation [5]. Each of these representa-

tions is described in detail in Section A.3.

A.1.2 Contributions

This chapter presents a comparison of several selected shape representations for the ap-

plication of human pose estimation. In particular, the comparison includes the recently

proposed Histogram of Shape Contexts (HoSC) [5] that has demonstrated seemingly

successful results in the application of human pose estimation. However, to date no

comparison has been undertaken between the HoSC and other shape representations.

This comparison suggests that any benefit gained from the HoSC representation is

small and does not justify the considerable increase in computation required.

A.2 Method

We begin by discussing the dataset used for the evaluation, which shape representations

were evaluated, and how.

A.2.1 Dataset generation

We generated a training set ofN = 10000 binary silhouettes of128×128 pixels, as

shown in Figure A.1, of a human body model using motion capture data (available

at the time of printing fromhttp://mocap.cs.cmu.edu ). An additional250

silhouettes were generated to test the retrieval performance of the shape descriptors.

The training set included silhouettes from several different motions observed from4

camera locations equally spaced from0◦ to 90◦ in azimuth. For the purposes of this
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Figure A.1: Example silhouettes from the synthetic dataset.

comparison, every image was explicitly normalized by translating and scaling each sil-

houette such that it lay within the central90% of the image. Furthermore, we assumed

that the subject was upright in the image to avoid any need for rotation invariance –

any exceptions to this rule (e.g. handstands, cartwheels) are explicitly modelled in the

dataset.

Although silhouettes are generally restricted to scenes with a static camera and

known background, and useful image data (e.g. internal edges) are discarded, they

are readily obtained from image data by background subtraction and are relatively in-

variant to clothing and lighting, making them a popular choice for such applications.

A.2.2 Evaluation method

Most content-based image retrieval tasks requireclassificationof the query input such

that stored examples of the same class are returned. As such, recovered exemplars are

classed as positive or negative such that evaluation tools such as the Receiver Oper-

ating Characteristic (ROC) curve and Precision-Recall curve may be used to compare
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retrieval accuracy between different shape descriptors.

In the context of human pose estimation, however, exemplars cannot be classified

into ‘positives’ and ‘negatives’ since the underlying space is continuous. Therefore, in

the context of the task (recovering examplars of similar underlying pose) we use the

sum of squared errors between corresponding joint centreprojections1 in the image to

compute the distance,d(xi, xq) in pose space between each training example,xi, and

the query,xq.

Given a query silhouette, we rank the training data in order of similarity to the query

as quantified by the chosen shape descriptor, denoting the index of the closest training

example byr(1) and the furthest byr(N). We then generate a curve,f(k):

f(k) =

∑k
j=1 d(xr(j), xq)

k
, (A.1)

indicating the mean distance to the query of thek highest ranking training examples

for k = 1 . . . N . For a qualitative evaluation of the performance of two shape repre-

sentations, we compare the normalized curvesk/N againstf(k)/f(N). An example

is shown in Figure A.2.

Effectively, this can be seen as a measure of correlation between distance in state

space and distance in feature space – a high correlation (desirable) produces low curves

whereas low correlation produces high curves. In addition, we also indicate the ex-

pected curve for a random ranking of the training data (i.e. unity) and the curve for the

best possible ranking.

1Using projected joint centres rather than their full3D position avoids many (though not all) prob-
lems associated with ‘kinematic flip’ ambiguities [102] where very different poses give rise to very
similar projected joint centres.
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Figure A.2: Example graph ofk/N againstf(k)/f(N). For comparison, the dashed
line at unity indicates the average curve produced by random ordering whilst the dash-
dot curve indicates the best possible ranking where distance in image space correlates
perfectly with distance in pose space.

A.3 Shape representation

We now describe each representation and perform a number of experiments to deter-

mine the sensitivity of performance with respect to parameter values for each descrip-

tor. For each descriptor, we aim to represent the original image by a100D feature

vector.

A.3.1 Linear transformations

We begin with linear transformations of the input image, namely geometric moments,

orthogonal moments and PCA. Each feature,Mpq, is computed by convolving the en-

tire image with a filter,fpq, of equal size such that:
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Mpq =
∑

x

∑
y

I(x, y)fpq(x, y). (A.2)

Therefore, each feature is equal to the projection of the input image onto the basis

‘vector’ fpq(x, y). In PCA, thefpq(x, y) are the “eigenimages” corresponding to the

directions of maximum variance. Moments, however, can be factored further such that:

fpq(x, y) = fp(x)fq(y) (A.3)

and

Mpq(x, y) = fp(x)I(x, y)fq(y). (A.4)

For an image of sizeP×Q, the moments employed in this study take the following

functional forms:

• Geometric moments:fp(x) = xp

• Krawtchouk moments: fp(x) =
∑∞

k=0
(−p)k(−x)k

(−P )k
· 2k

k!

• Tchebishef moments:fp(x) = (1− P )p

∑∞
k=0

(−p)k(−x)k(1+p)k

(1)k(1−P )k
· 1

k!

• Discrete Cosine Transform:fp(x) =
√

1+min(p,1)
2P

cos(2x+pπ
2P

)

where

(a)k = a(a+ 1)(a+ 2) . . . (a+ k − 1) (A.5)

is the Pockhammer symbol.
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(a) (b)

(c) (d)

Figure A.3: Filter bank equivalents of moment generating functions up to order 5: (a)
Geometric, (b) Tchebishef, (c) Krawtchouk and (d) DCT.

The latter three moments are known asorthogonal momentsdue to the following

property:

∫
fp(x)fq(x)dx =

{
1 if p = q

0 if p 6= q
(A.6)

that results in low correlation between the coefficients such that fewer are required to

describe the image within a given error bound.
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Importantly, the orthogonal moments can be considered as a rotation of the vector-

ized image such that the Euclidean distance between feature vectors is equal to the

sum of squared error between the original images. Orthogonal moments can also be

considered as a generic basis set for the low dimensional approximation of images,

as opposed to PCA that is data-dependent, computing the optimal basis for a given

set of images. Figure A.3 shows the filter bank equivalent of the moment generating

functions described.

Geometric moments have a mechanical interpretation in that each ‘on’ pixel repre-

sents a small mass in the image such that the moments correspond to total mass, centre

of gravity, moments of inertiaetc. However, since the geometric moments are not or-

thogonal, they do not represent a rotation of the vectorized image such that no intuitive

distance metric exists between feature vectors.

Filter type

In the first test (Figure A.4a), we compared the different choices of transforms. We

see that the geometric moments perform very poorly – a not unexpected result since as

the order increases the moment function becomes dominated by points at the boundary

of the image that typically contain little useful information (see Figure A.3). Further-

more, simple distance metrics such as the Euclidean distance (used in this example) are

inappropriate for moments with a high dynamic range such as the geometric moments.

In contrast, Tchebishef moments and the Discrete Cosine Transform perform well

in this test. These filter banks are qualitatively similar, representing an approximate fre-

quency decomposition of the image. However, like the geometric moments, Tchebishef

moments are weighted more heavily at the boundary of the image which may explain

their inferior performance when compared with the DCT. Krawtchouk moments per-
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Figure A.4: Linear transform comparison. (a) Choice of moment; (b) Selection of
features; (c); Distance measure; (d) Number of PCA coefficients used.

form only slightly less well, probably due to their limited spatial support over the

image.

Feature selection

In the second experiment (Figure A.4b), we investigate several heuristics for feature

selection using the DCT filter bank. Since there are as many features as pixels in

the image, we must select a subset of the computed features in order to reduce the

dimensionality of the feature vector. In general, feature selection is a highly complex

task that is beyond scope of this thesis. For the purposes of these experiments, we select

features based on heuristics such as maximum order (max(m,n)), order (m+n), RMS

value and variance. We see that variance is a poor indicator of feature ‘information’.
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Distance metric

In the third experiment (Figure A.4c), we compare different distance metrics for rank-

ing the database in order of similarity to the query in feature space. Although the Ma-

halinobis distance outperforms the other distance metrics, the improvement is small

at additional computational cost. We also note that Euclidean distance is the most

intuitive metric to use since the distance between feature vectors approaches the true

Euclidean distance between the original images as the number of features increases.

However, there is little penalty in accuracy when using the Manhattan (L1) distance

between feature vectors – a somewhat cheaper alternative.

Number of features

For the final investigation (Figure A.4d), we compared performance for varying num-

bers of principal components used to compute the feature vector. The graph suggests

that there is little improvement above64 features – well within the100D limit we have

imposed. We note that PCA is a computationally expensive method for feature ex-

traction. In fact, only an approximation can be computed in this case since the full

evaluation requires the inversion of a16384×16384 matrix that is an infeasible task

on current hardware. In contrast, the DCT is efficient to compute without sacrificing

accuracy, as can be seen by inspection of the graphs in Figure A.4a and Figure A.4d.

A.3.2 Hu moments

Alternative descriptors for shape matching and retrieval include the Hu moments [52],

popular due to their invariance to translation, scale and rotation. However, since they

are based on the geometric moments they too lack an intuitive interpretation and dis-

tance metric. Furthermore, only seven moments are typically defined making them
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Figure A.5: Hu moments. Note that only seven moments are typically available, re-
sulting in inferior performance compared with the other selected descriptors.

difficult to compare with richer descriptors. Although we have eliminated the need for

invariance, we include the Hu moments for completeness.

Distance metric

It is clear from Figure A.5 that the performance of the Hu moments suffers badly due to

the limited number of features that are available (only seven in this case). Furthermore,

due to the high dynamic range of the Hu moments, Euclidean distance is a poor dis-

tance metric to use. Instead, the more computationally complex Mahalanobis distance

is required for adequate performance.

A.3.3 Lipschitz embeddings

The final global representation we include is that of the Lipschitz embedding, describ-

ing an image by its distance from a number of ‘pivot’ examples as demonstrated for

hand tracking [8]. Intuitively, images that are close together in image space have sim-

ilar distances to the pivot examples and therefore will have similar feature vectors.

However, it is again difficult to identify an intuitive distance metric between two fea-

ture vectors.
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Figure A.6: Lipschitz embeddings. (a) Number of pivot exemplars; (b) Distance met-
ric; (c) Initialization.

Number of pivot exemplars

In the first experiment (Figure A.6a), we investigate the effect of increasing the number

of pivot examplesi.e. the dimensionality of the feature space. As with other descrip-

tors, increasing the number of features improves performance up to a point with little

improvement above100.

Distance metric

In contrast to other descriptors, Figure A.6b shows that Mahalanobis distance and the

Max-Norm provide the best performance, offering a noticeable improvement over the

Euclidean and Manhattan norms. Why this should be the case is unclear and may merit

further investigation.

Initialization

In a separate experiment (Figure A.6c), selecting100 different sets of100 pivot ex-

amples and comparing the resulting curves suggested that performance is largely in-

sensitive to initialization. Intuitively, some selections will perform better than others.

For example, pivots from the same region of space will result in highly correlated (and
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hence redundant) features leading to poor performance. Conversely, careful selection

of pivots may improve performance beyond that shown here (although by how much is

hard to say). Again, however, we note that such feature selection is beyond the scope of

this work and has been tackled using Machine Learning methods such as Boosting [7].

A.3.4 Histogram of Shape Contexts

We now examine alocal descriptor – the Histogram of Shape Contexts (HoSC) sug-

gested by Agarwal and Triggs [5]. In this descriptor, every point along the contour

of the image is assigned a Shape Context vector [13] representing the distribution of

other contour points in a local neighbourhood. A number of Shape Contexts are se-

lected at random from the whole set and used as initial centres in a clustering scheme.

Having clustered the training Shape Context vectors, the updated centres are used as a

vector quantization ‘codebook’ in order to assign every contour point on a silhouette

to a cluster. The histogram over cluster assignments then forms the feature vector for a

given silhouette. As a result of the complexity, this representation has a high number of

parameters and is more expensive to compute, particularly during off-line clustering.

This approach is considered to be local since, if corruption of the silhouette is local-

ized to a relatively small region of the silhouette, most of the remaining contour points

will (in theory) vote into the same bins of the histogram such that the change in the

feature vector is localized to only a few features. It is this property of ‘locality’ that is

cited as a beneficial attribute of this shape representation. However, this justification

of the HoSC can be questioned for a number of reasons:

• In most cases the corruption of the silhouette results in an increase or decrease in

the total number of contour points (e.g. due to shadows or occlusion) such that
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Figure A.7: Escher’s ‘Angels and Demons’. Since both the angel and the demon are
composed of exactly the same contour segments, they have similar feature vectors
using the Histogram of Shape Contexts. The feature vectors become identical as the
spatial extent of the Shape Context decreases toward zero.

upon normalizing the histogrameverybin is affected and locality is lost.

• Typical distance metrics (e.g. Euclidean, Manhattan, Mahalanobis distances) do

not distinguish between a large change in a few bins of the histogram and a

small change in every bin. As a result, it is unclear that the property of locality

provides any real benefit when using such metrics.

• For every contour point the distribution of othercontour pointsis computed. As

a result, no explicit distinction is made between the interior and exterior of the

silhouette, thus discarding yet more information. As an example, consider the

‘angel’ and ‘demon’ of the Esher tesselation shown in Figure A.7. In the limit

as the spatial extent of the shape context vector approaches zero, the two shapes

are indistinguishable as they are composed of the same contour segments. The

method may be modified to take this matter into account albeit at additional

computational expense.
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Figure A.8: Histogram of Shape Contexts. (a) Number of codebook vectors; (b) Spatial
extent of Shape Context; (c) Number of angular bins of Shape Context; (d) Initializa-
tion; (e) Number of bins ‘softly’ voted into for histogram computation; (f) Distance
metric.

Number of codebook vectors

As with the other descriptors, we evaluate how the number of features (codebook vec-

tors in this case) affects performance (Figure A.8a). Similarly, it can be seen that above

around64 features there is little further improvement. However, using fewer codebook

vectors provides other benefits such as reducing computational expense.

Shape Context spatial support

The Shape Context vector takes three parameters: spatial extent (i.e. radius); radial

bins; angular bins. We define the spatial extent of the Shape Context by a multiple

of the mean distance between all points on the contour. We see in Figure A.8b that
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performance is largely invariant to this value although too small a value does degrade

performance ask increases. Performance is also shown to improve with the number

of angular bins (Figure A.8c) although above8 bins the benefit is small. A similar

experiment (unshown) suggests that the number of radial bins does not adversely affect

performance.

Initialization

We examine the effect of selecting different Shape Context vectors from the training

set to serve as centres during clustering. As with Lipschitz embeddings, Figure A.8d

shows that performance is largely unaffected by the initialization. This is likely due

to the large number of Shape Context vectors available such that the cluster centres

converge to approximately the same values each time.

‘Soft’ voting

In [5], it is suggested that a ‘soft’ voting scheme be employed to avoid quantization

effects. We examine the effect of this mechanism by voting into an increasing number

of bins. Figure A.8e shows that there is merit in soft voting although benefits are

diminished for more than4 bins.

Distance metric

Finally, we examine performance under different distance metrics. Although there

exist intuitive distance measures for histograms (e.g. Bhattacharyya distance, cross en-

tropy), Figure A.8f shows that other metrics such as Manhattan and Euclidean distance

work equally well. This may be as a result of the soft voting, as suggested in [5].
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Figure A.9: Four test datasets: (a) clean silhouettes; (b) with added noise; (c) with
lower quarter removed; (d) real silhouettes manifesting some segmentation error.

A.4 Final comparison

Having performed extensive tests to select parameter values for the various presented

methods, we now undertake a comparison of performance for three of the four selected

methods: Discrete Cosine Transform coefficients; Lipschitz embeddings; Histogram of

Shape Contexts.

In order to compare the methods, curves were generated for four test datasets: per-

fect, clean silhouettes; noisy silhouttes; silhouettes with occlusion; real silhouettes.

Each dataset is described in more detail below and examples are shown in Figure A.9.

A.4.1 Clean data

We begin by comparing the three methods for clean data (Figure A.9a) taken directly

from the synthetic dataset. Figure A.10a shows that the Histogram of Shape Contexts

method exhibits slightly better performance than DCT coefficients for small values of

k, although for higher values ofk the situation is reversed. Lipschitz embeddings are

less successful in this test.
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A.4.2 Noisy data

To create the noisy dataset, we corrupted the clean test silhouettes with gaussian noise

along the occluded contour (Figure A.9b). Such corruption typically results from com-

pression artefacts and segmentation errors at the boundaries. From Figure A.10b, we

see that DCT coefficients outperform both other methods on average. This can be ex-

plained by the fact that lower order DCT coefficients, as used in this case, encode only

the lower frequencies within the image and thus suppress noise.

A.4.3 Occluded data

In order to simulate occluded data, we removed the bottom quarter of each test sil-

houette and renormalized, as if the subject had been obscured from approximately the

knee down (Figure A.9c). Although this is a relatively crude approach, it presents each

method with data that is somewhat different from the training data and may occur in

real life. Figure A.10c shows that the Histogram of Shape Contexts again performs

well for smallk but is outperformed for higherk by the DCT. Lipschitz embeddings

perform poorly, hovering around the performance of a random ranking.

A.4.4 Real data

For the final experiment, we use real silhouettes from the starjumps sequence (Fig-

ure A.9d), obtained via background subtraction and with projected joint centres la-

belled by hand. Due to the limited number of test images, the curves in Figure A.10d

are slightly noisier but suggest that DCT coefficients significantly outperform both

Histogram of Shape Contexts and Lipschitz embeddings. On average, in fact, HoSC

and Lipschitz perform worse than random for this dataset.

This is a surprising and interesting result, particularly since this is arguably the most
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important test set of the four. There is a question of whether the normalization proce-

dure employed in these experiments could favour one method over another. However,

the test silhouettes show little corruption that would have a significant effect on this

process. A closer inspection of the output data may provide fruitful insights into the

reasons behind the poor performance of the HoSC with respect to DCT coefficients.

A.5 Summary

This appendix has presented a rudimentary comparison of selected shape representa-

tions for the specific task of human pose estimation from a corpus of training data. For

each selected representation, performance was evaluated with respect to parameters

before a final comparison was undertaken on synthetic and real datasets.

The results of the comparison suggest that the recently proposed Histogram of Shape

Contexts [5] has little or no benefit over more ‘primitive’ shape representations, despite

its complexity. Furthermore, the complexity of the descriptor makes it highly ineffi-

cient in terms of computation. Comparable results were achieved using coefficients of

the Discrete Cosine Transform (DCT) to generate the required feature vector.

This comparison was performed principally as justification for the use of the DCT

coefficients in Chapter 4 and is not intended as a comprehensive review.

A.5.1 Future work

Future research could investigate other shape representations although many are ruled

out by the nature of the dataset. However, the principal line of inquiry should be

focussed on the surprisingly poor performance of HoSC descriptor for real data. This

was an unexpected result and should be investigated further to gain a deeper insight

into the relationship between the data and the descriptor.
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Figure A.10: Results for (a) clean data; (b) noisy data; (c) occluded data; (d) real data.
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