Content-Based Motion Compensation
and its application to Video Compression

Marc Servais

Submitted for the degree of
Doctor of Philosophy
from the University of Surrey

Centre for Vision, Speech and Signal Processing
School of Electronics and Physical Sciences

University of Surrey
Guildford, United Kingdom

February 2006

(© Marc Servais 2006






Summary

Content-based approaches to motion compensation offer the advantage of being
able to adapt to the spatial and temporal characteristics of a scene. Three
such motion compensation techniques are described in detail, with one of the

methods being integrated into a video codec.

The first approach operates by performing spatio-temporal segmentation of a
frame. A split and merge approach is then used to ensure that motion character-
istics are relatively homogeneous within each region. Region shape information
is coded (by approximating the boundaries with polygons) and a triangular
mesh is generated within each region. Translational and affine motion estima-
tion are then performed on each triangle within the mesh. This approach offers
an improvement in quality when compared to a regular mesh of the same size.
However, it is difficult to control the number of triangles, since this depends on
the segmentation and polygon approximation stages. As a result, this approach

is difficult to integrate into a rate-distortion framework.

The second method involves the use of variable-size blocks, rather than a trian-
gular mesh. Once again, a frame is first segmented into regions of homogeneous
motion, which are then approximated with polygons. A grid of blocks is cre-
ated in each region, with the block size inversely proportional to the motion
compensation error for that region. This ensures that regions with complex
motion are populated by smaller blocks. Following this, bi-directional transla-
tional and affine motion parameters are estimated for each block. In contrast
to the mesh-based approach, this method allows the number of blocks to be
easily controlled. Nevertheless, the number and shape of regions remains very

sensitive to the segmentation parameters used.

The third technique also uses variable size blocks, but the spatio-temporal
segmentation stage is replaced with a simpler and more robust binary block
partitioning process. If a particular block does not allow for accurate motion
compensation, then it is split into two using the horizontal or vertical line that

achieves the maximum reduction in motion compensation error. Starting with



the entire frame as one block, the splitting process is repeated until a large
enough binary tree of blocks is obtained. This method causes partitioning to
occur along motion boundaries, thus substantially reducing blocking artifacts
compared to regular block matching. In addition, small blocks are placed in re-
gions of complex motion, while large blocks cover areas of uniform motion. The
proposed technique provides significant gains in picture quality when compared

to fixed size block matching at the same total rate.

The binary partition tree method has been integrated into a hybrid video codec.
(The codec also has the option of using fixed-size blocks or H.264/AVC variable-
size blocks.) Results indicate that the binary partition tree method of motion
compensation leads to improved rate-distortion performance over the state-of-
the-art H.264/AVC variable-size block matching. This advantage is most evi-

dent at low bit-rates, and also in the case of bi-directionally predicted frames.

Keywords: motion estimation, motion compensation, video coding, video

compression, content-based, variable-size block matching, binary partition tree

e-mail: servais@ieee.org

web: http://www.ee.surrey.ac.uk/CVSSP/VMRG /hdtv/



Acknowledgements

For this I will extol you, O Lord, among the nations,

and sing praises to your name. PSALM 18:49

I would like to thank my supervisors, Dr Theo Vlachos and Dr Thomas Davies
for their guidance and encouragement throughout the project. Their extensive
and up-to-date experience in the field of video coding has been invaluable in
the process of exploring and evaluating new ideas. Many thanks to both of you

for sharing your insight and understanding!

I am also extremely grateful to Prof. Josef Kittler for the opportunity of having
been able to undertake research at the Centre for Vision, Speech and Signal
Processing. Much thanks also goes to all my friends and colleagues at CVSSP
for providing a rewarding and exciting research environment, that I have enjoyed

being a part of.

This research would not have been possible without the funding offered by
BBC Research and Development and the CVSSP. The corporation’s generous

financial support and the part-time work provided is greatly appreciated.

To my family and friends who have provided so much encouragement over the
last four years (and before) — thank you immensely! I truly appreciate your
support, friendship and prayers. In particular, thanks to Susan and Paul (for
proof-reading many of the chapters) and Nick (for help with binding the thesis
and burning the DVDs). A special word of gratitude goes to my parents for

the many ways in which they have contributed to my education over the years.

To Susan — it’s been fantastic having a wife who’s also a fellow PhD student to
share this experience with. Thank you so much for your enthusiasm, patience,
and selfless help, particularly during the last few months. I hope you’ve enjoyed
learning about video compression as much as I've enjoyed finding out about

weirs and fish!

Finally, a special word of thanks goes to Rebecca — thanks for arriving two

weeks late. .. that extra fortnight of normal sleep really helped!






Glossary

AC The varying (non-DC) component of a signal
AVC Advanced Video Coding

B (frame) Bi-directionally predicted (inter) frame

bpp Bits Per Pixel

CIF Common Intermediate Format

CPU Central Processing Unit

dB Decibels

DC The average component of a signal

DCT Discrete Cosine Transform

DFD Displaced Frame Difference

FSBM Fixed-Size Block Matching
HVS Human Visual System

I (frame) Intra frame

ISO International Organisation for Standardisation

ITU International Telecommunication Union

JPEG Joint Photographic Experts Group

JSEG An image segmentation method [16, 17] (not an acronym)
kbps kilobits per second

MPEG Motion Picture Experts Group

MSE Mean Square Error

OBMC Overlapped Block Motion Compensation
P (frame) Predicted (inter) frame

PNG Portable Network Graphics
PSNR Peak Signal to Noise Ratio
QCIF Quarter CIF

QP Quantisation Parameter
SIF Source Input Format

SSE Sum of Squared Error
VOP Video Object Plane

VSBM Variable-Size Block Matching






Contents

1 Introduction 1
1.1 Background . . .. . .. ... ... L 1
1.2 Research Aims . . . . . . . ... ... o 2
1.3 Dissertation Structure . . . . . .. .. ... L. 3
1.4 Contributions . . . . . . . ... 4
1.5 Publications . . . . . .. ... L o 6

2 Setting the Scene: The Basics of Video Coding 7
2.1 Introduction . . . . . . . . ... L 7
2.2 Displaying Digital Video . . . . . . . .. .. ... 8

2.2.1 Display Formats . . . ... ... ... ... ... ... 8
2.2.2 The Human Visual System . . . ... ... ... ..... 10
223 Colour Spaces . . . . . . . .. 12
2.2.4 Measuring Picture Quality . . . . . . ... ... ... ... 13
2.3 Entropy Coding . . . . . . . . ... 14
2.3.1 Huffman Coding . . . . . . ... ... ... ... .... 15
2.3.2  Arithmetic Coding . . . . . . ... ... ... .. ..... 15
2.4 Transform Coding . . . . . . .. ... .. . ... ... 19
2.4.1 The Discrete Cosine Transform . . . . . . ... ... ... 19
2.4.2 The Wavelet Transform . . . . . ... ... ... ..... 21
2.4.3 Matching Pursuit . . . . . ... ... 0oL 22
2.5 Block-based Motion Compensation . . . .. .. .. .. ... ... 24
2.5.1 Block Matching . . . . ... ... ... ... L. 24
2.5.2 Variable-Size Block Matching . . . . . ... ... ... .. 26

X



Contents

2.5.3 Overlapped Block Motion Compensation . . . .
2.6 Rate-Distortion Optimisation . . . . .. ... ... ..
2.7 Image and Video Compression Standards . . . .. ..
271 JPEG . ... ...
2.72 JPEG-2000 . ... .. .. .. ... ...,
2.73 H261 ... .. ... ...
2.74 MPEG-1 . ... ... ... ... ... .. ...
2.75 MPEG-2 ... ... ... ... 0.
276 H.263 .. ... ...
2.77 MPEG-4 . ... .. ... .. ... ...
278 H.264 /| MPEG-4 AVC . . . ... ... .....

3 Region Shape Coding

3.1 Imtroduction. .. . ... ... .. .. ... .. ...
3.2 Related Work . . . . .. ... oo
3.3 Coarse Polygon Approximation . . . .. ... ... ..

3.3.1 Finding the Initial Polygon Segments . . . . .

3.3.2 Coding the Segment Graph . . . . ... .. ..
3.4 Progressive Refinement . . . . . . ... ... ... ...
35 Results. . . . ... o
3.6 Conclusion . ... ... ... ... ... ...

4 Motion Compensation using a Triangular Mesh

4.1 Introduction. . . .. .. ... ... ... .
4.2 Related Work . . . . .. ... oo
4.2.1 Segmentation . . . . . ... ... ...
4.2.2 Motion Estimation . . . .. ... ... ... ..
4.2.3 Mesh Generation . . . . ... ... ... ....
4.3 Mesh Generation . . . . .. .. ... oL
4.3.1 Spatio-Temporal Segmentation . . .. ... ..
4.3.2 Polygon Approximation . . .. ... ... ...

4.3.3 Triangulation . . . .. .. .. ... ... .. ..



Contents xi

4.4

4.5
4.6

5.1
5.2
5.3

5.4
5.5
5.6
0.7

6.1
6.2

6.3
6.4
6.5

6.6
6.7
6.8

Motion Estimation . . . . .. ... ... ... oL, 68
4.4.1 'Translational Motion . . . . . . .. ... ... ... .... 68
4.4.2 Affine Motion . . . . ... ... L 70
Results. . . . . .. o 73
Conclusion . . . . . . . . . . e 79

Motion Compensation using Region-Based Block Matching 81

Introduction . . . . . . . ..o 81
Related Work . . . . . . . ..o oo 82
Region Segmentation . . . . . . ... .00 84
5.3.1 Initial Segmentation and Error Surfaces . . . . ... . .. 84
5.3.2 Region Splitting . . . . . ... ... ... ... .. ... . 85
5.3.3 Region Merging . . . . .. ... ... .. L. 86
Variable-Size Block Generation . . . . . ... ... ... ..... 87
Motion Estimation . . . . . . ... ... ... o oL, 90
Results. . . . . . . o o 93
Conclusion . . . . . . ... 97

Motion Compensation using a Binary Partition Tree of Blocks 99

Introduction . . . . . . . ..o 99
Related Work . . . . . . . .. o o 100
6.2.1 Fixed-Size Block Matching . . . .. .. ... ... .... 100
6.2.2 Variable-Size Block Matching . . . . . . ... ... .. .. 101
Motion Compensation Error Surfaces . . . . . . ... .. ... .. 104
Block Partitioning . . . . . . . ... Lo oo 105
Generating a Binary Partition Tree . . . . . . . ... .. ... .. 108
6.5.1 Growing the Tree . . . . . . . . . ... ... ... 108
6.5.2 Pruning the Tree . . . . . . . . .. ... ... 110
6.5.3 Coding the Tree . . . . . ... ... ... ... ... 112
Motion Estimation . . . . .. ... ... ... L. 117
Results. . . . . . . . . 117
Conclusion . . . . . . .. 122



xii

Contents

7 Integration into a Hybrid Video Codec

7.1 Introduction . . . . .. .. .. ... .. .. .. .. ...
7.2 An Overview of the Codec Structure . . . . . ... ...
7.2.1 Picture Types and Grouping . . ... ... ...
7.2.2 Codec Input Parameters and File Formats . . . .
7.2.3 Rate and Quality Control . . . . . ... ... ..
7.2.4 Entropy Coding . .. .. .. ... ... .....
7.3 Intra-Frame Coding . . . ... ... ... ... .....
7.4 Inter-Frame Coding . . . ... .. ... ... ......
7.4.1 Block Partitioning and Motion Estimation . . . .
7.4.2 Block Mode Selection . . .. ... ........
7.4.3 Coding Block Motion Information . .. .. ...
7.4.4 Overlapped Block Motion Compensation. . . . .
7.4.5 Residual Coding . . . ... ... .. ... ....
7.5 Results and Analysis . . . . .. .. ... ... ... ..
7.5.1 Rate-Distortion Performance . . .. .. ... ..
7.5.2 Frame-by-Frame Results . . . . . ... ... ...
7.5.3 Bit-Stream Analysis . . ... ... ... ... ..
7.5.4 Subjective Performance . . ... ... ... ...

7.6 Conclusion . . . . . . . . . s

8 Conclusion

81 Summary . . .. ...
8.2 Contributions . . . . . . . . ...
83 Future Work . . . . . . . . . ... ...

A The RGB to Y(yC, Colour Transform

B The use of Binarisation for Modelling and Coding

C The 1D Wavelet Transform

181

..... 181
..... 184
..... 185

187

189

193



Chapter 1

Introduction

Things in motion sooner catch the eye

Than what stirs not.

Troilus and Cressida

WILLIAM SHAKESPEARE

1.1 Background

Motion estimation and compensation are techniques that are used frequently
within the fields of image and video processing. Motion estimation describes
the process of determining the motion between two or more frames in an image
sequence. Motion compensation refers to the technique of predicting and recon-
structing a frame using a given reference frame and a set of motion parameters.
Although they describe two distinct processes, motion compensation can only

be performed once an estimate of motion is available.

Motion compensation is perhaps most widely used in the field of video com-
pression, since frames are often predicted from nearby frames in the sequence.
However, motion estimation and/or compensation have a variety of other impor-
tant applications, such as: spatio-temporal segmentation, scene cut detection,

frame rate conversion, de-interlacing, object tracking, etc.



2 Chapter 1. Introduction

There are several different approaches to estimating the motion present within
a scene. In general though, these operate using fixed methods that are neither
dependent on (nor adaptive to) scene content. Content-based methods attempt
to perform some analysis of a scene prior to determining how the motion es-
timation should be performed. For example, pre-processing might be used to
try and decompose a scene into its constituent moving objects, so that motion

estimation can be used to determine the motion properties of each region.

As mentioned above, motion estimation and compensation are used in video
compression. This (i.e. video compression) is the process of representing raw
video data in an efficient way by exploiting any redundancy that may be
present.! In practice, compression/coding is achieved using a video codec?,
which is an implementation of a particular video coding algorithm. Most codecs
allow some degradation in picture quality in order to achieve a greater degree

of compression.

1.2 Research Aims

The PhD research project described in this dissertation consists of two phases.
During the first stage, the aim was to investigate existing methods of content-
based motion estimation and compensation, followed by the design of alterna-
tive content-based techniques. It was envisaged that this would involve decom-
posing a scene into its constituent objects, followed by some form of object-

based motion estimation and compensation.

For the second phase of the project, the aim was to integrate any promising
content-based motion compensation methods (from the first phase) into a video
codec. This would help in determining the effectiveness of the chosen content-

based methods, by allowing them to be compared to traditional block-matching

! The term video coding is often used synonymously for video compression. It refers to the

process of representing (usually compressed) video data for storage or transmission.

2 The term codec is short for compression/decompression (or coding/decoding).



1.3. Dissertation Structure 3

approaches to motion compensation. In particular, one of the goals was to
investigate the performance of the selected content-based methods over a range

of bit-rates.

1.3 Dissertation Structure

This remainder of this dissertation is divided into seven chapters, the contents

of which are summarised below:

Chapter 2 provides an introduction to the building blocks of image and
video compression, including motion estimation and compensation. A review

of coding standards is also provided.

Chapter 3 presents a method for coding the shape of multiple regions within
an image. It describes how regions can be approximated using polygons, which
are then coded in a progressive way (i.e. starting with a coarse representation
that is gradually refined). Efficient region coding is clearly important in any
object-based video compression scheme, since there is an overhead associated

with representing the shape of each region.

Chapter 4 describes the first of three methods of content-based motion com-
pensation. Frames in a sequence are segmented into regions with similar motion
characteristics, allowing for the creation of a content-based triangular mesh.
Triangles in the mesh are then used when performing motion estimation and

compensation.

Chapter 5 proposes another region-based motion compensation technique.
Once again, frames are divided into regions with different motion characteris-
tics. Variable-size, square blocks are then generated within each region — with
small blocks in areas of complex motion and larger blocks in regions dominated

by uniform motion.



4 Chapter 1. Introduction

Chapter 6 considers a content-based motion compensation technique that
attempts to combine the block generation and segmentation processes. Starting
with one large block that spans the frame, blocks are repeatedly split in two
using the straight line that minimises the motion compensation error for the
two halves. This results in the creation of a binary tree of blocks, with leaf

nodes used for performing motion compensation.

Chapter 7 describes the design of a hybrid video codec, in which motion
compensation is performed using both fixed-size and variable-size blocks. The
codec provides a framework for comparing the Binary Partition Tree method
of block matching to existing block-based techniques. The rate distortion be-
haviour of the codec is analysed and discussed, based on the results obtained

for four test sequences.

Chapter 8 concludes the thesis by summarising the research performed and
the results obtained. In addition, the novel contributions of this work are

highlighted, and some ideas for further work are also suggested.

1.4 Contributions

The research described in this dissertation provides a number of novel contri-

butions, which are summarised below:

e Shape coding is generally applied to individual objects (as discussed in
Section 3.2), rather than a collection of regions in the form of a segmenta-
tion map. While vertex-based methods for coding segmentation maps do
exist [48, 80, 73], the progressive polygon approximation method described
in Chapter 3 is believed to be novel, in that it allows for an embedded
bit-stream to be produced. A coarser representation of a coded segmen-
tation map can then be obtained by decoding only the initial portion of

the bit-stream.



1.4. Contributions 5

e The triangular mesh-based motion compensation method described in
Chapter 4 uses a variety of existing techniques when performing segmen-
tation, triangulation and motion estimation. Thus, although none of the
components of the system are novel, it combines them in a new way into

a chain of processes.

e Most implementations of Variable-Size Block Matching (VSBM) tend to
use either a binary-tree or quad-tree approach to generating variable-size
blocks. The method of varying the block size by region, as described in
Chapter 5, is believed to be novel. This approach operates by making the
number of blocks in a region proportional to the motion compensation

error for that region.

e Much of this Binary Partition Tree VSBM technique presented in Chapter
6 is believed to be novel — in particular the method of partitioning blocks
using the (horizontal/vertical) straight line that minimises motion com-
pensation error. The way in which the partition tree structure is coded

also appears to be original.

e The hybrid video codec described in Chapter 7 employs a variety of known
components and techniques, which are combined in a novel way. Most sig-
nificantly, the codec allows for the comparison of four block-based motion
compensation techniques. These include the method of VSBM used in
the state-of-the-art H.264/AVC [39] video codec, as well as the Binary

Partition Tree VSBM approach presented in Chapter 6.

The two region-based methods (discussed in Chapters 4 and 5) demonstrate
some new ideas and show some definite promise, yet their performance was
not considered to be consistent enough for integration into a video codec. The
Binary Partition Tree VSBM method (presented in Chapter 6) was found to
provide some significant advantages over state-of-the-art H.264/AVC VSBM,

while at the same time containing a number of original ideas.



6 Chapter 1. Introduction

1.5 Publications

Some of the research conducted during the project was published in a number

of papers, which are listed below:

e M.P. Servais, T. Vlachos, and T. Davies. Bi-Directional, Affine Motion
Compensation Using a Content-Based, Non-Connected, Triangular Mesh.
In Proceedings of the IEE European Conference on Visual Media Produc-
tion (CVMP), pages 49-58, London, March 2004.

e M.P. Servais, T. Vlachos, and T. Davies. Progressive Polygon Encoding of
Segmentation Maps. In Proceedings of the IEEE International Conference
on Image Processing (ICIP), pages 1121-1124, Singapore, October 2004.

e M.P. Servais, T. Vlachos, and T. Davies. Motion Compensation using
Content-based Variable-Size Block-Matching. In Proceedings of the Pic-

ture Coding Symposium (PCS), San Francisco, December 2004.

e M.P. Servais, T. Vlachos, and T. Davies. Affine Motion Compensation
using a Content-based Mesh. IFE Proceedings on Vision, Image and

Signal Processing, volume 152, number 4, pages 415-423, August 2005.

e M.P. Servais, T. Vlachos, and T. Davies. Motion-Compensation using
Variable-Size Block-Matching with Binary Partition Trees. In Proceed-
ings of the IEEE International Conference on Image Processing (ICIP),
Genova, September 2005.

The reader is also referred to the project website, which contains MATLAB
source code (including a demonstration) and details of any additional publica-

tions. The address is: http://www.ee.surrey.ac.uk/CVSSP/VMRG/hdtv/



Chapter 2

Setting the Scene:
The Basics of Video Coding

2.1 Introduction

When pictures are represented in a digital format, they require substantial
amounts of storage. For example, a raw digital photograph of medium resolu-
tion occupies more storage space than an entire copy of the Bible.! And the

demands of video are many times greater.

Although the capabilities of networks and digital storage devices have increased
significantly in recent years, so too have the expectations of users. As a result,

the need for effective multimedia compression techniques remains undiminished.

This chapter provides a review of the main components and standards in the
field of video compression. It also introduces some concepts related to motion

estimation and compensation that are expanded upon in later chapters.

1 A 24-bit, 2 mega-pixel photo requires 6 MB of space, while the King James version of the

Bible can be represented in uncompressed text format using just over 4 MB of data [2].

7



8 Chapter 2. Setting the Scene: The Basics of Video Coding

2.2 Displaying Digital Video

2.2.1 Display Formats

Digital video is used to represent the projection of a three-dimensional (3D)
scene onto a two-dimensional (2D) plane (as shown in Figure 2.1). Both the
content of the scene and the position of the plane can vary over time, with the
latter being true in the case of a moving camera. Although the original scene
is continuous in time and space, it needs to be sampled both temporally and

spatially in order to be digitised.

Spatial sampling is performed using a 2D rectangular grid of pixels, which taken
together form a still image of the scene at a particular point in time. Temporal
sampling is then achieved using a sequence of these images (frames) at regular
time intervals, as illustrated in Figure 2.2. Certain video formats use interlacing,
in which the even and odd rows of samples in a frame are captured at slightly
different points in time. Interlacing helps to reduce flicker in displayed video,

although it can also introduce some undesirable artifacts.

Projection onto a plane

Figure 2.1: Projection of a 3D scene onto a 2D plane



2.2. Displaying Digital Video

e Spatial Sampling Points

for the first frame

NI/

Using Frames for Temporal Sampling

Figure 2.2: Spatial and temporal sampling for digital video

The closer together the samples are (in time and space), the greater the per-

ceived quality of the video is likely to be. However, increasing the number of

samples leads to a corresponding growth in the amount of information to store

or transmit. As a result, there is a wide range of video display formats avail-

able, which vary according to their intended application. Table 2.1 provides a

summary of some of the digital formats commonly in use today.

Table 2.1: Some common digital video display formats

Format Resolution Frame Rate | Frame Type
(width x height) (fps)
Quarter CIF (QCIF) 176 x 144 30 progressive
Source Input Format 352 x 240 30 progressive
(SIF) 352 x 288 25 progressive
Common Intermediate 352 x 288 30 progressive
Format (CIF)
ITU Rec. BT.601 720 x 480 30 interlaced
(Standard Definition) 720 x 576 25 interlaced
ITU Rec. BT.709 1280 x 720 24,25,30,50,60 progressive
(High Definition) 1920 x 1080 25,30 interlaced
1920 x 1080 24,25,30 progressive




10 Chapter 2. Setting the Scene: The Basics of Video Coding

2.2.2 The Human Visual System

From an observer’s point of view, it is not necessary for digital pictures to
contain detail that is not perceptible. Consequently, images need only contain
information which can be perceived by the human eye, or more precisely the
Human Visual System (HVS).2 Compression systems can take advantage of the

characteristics of the HVS by not coding data that is not naturally observable.

A. Spatial Sampling

The sensitivity of the HVS varies according to the spatial frequency of an image.
For example, Figure 2.3 varies in both contrast and spatial frequency. Although
the change in contrast in this figure is regular across all frequencies, the human

observer perceives it as variable, due to the behaviour of the HVS.

Figure 2.3: An image used to demonstrate the variation of sensitivity to contrast
at varying spatial frequencies. Contrast decreases linearly from bottom to top,

while spatial frequency increases from left to right.

2 The HVS consists of the eyes, parts of the brain and the nerve fibres connecting them.



2.2. Displaying Digital Video 11

1,000 ¢

500 |
I Luminance

200 Red-Green

—_

(=]

o
T

%]
o
T

Blue-Yellow

Contrast sensitivity
N
Q
T

=S
o
T

1 I ! oY L
0.03 0.1 0.3 1 3 10 30 100

Spatial frequency (cycles/degree)

-
-

Figure 2.4: The contrast sensitivity function for luminance and for colour dif-

ferences. Reproduced from Pennebaker and Mitchell [82].

The response of the HVS to changes in intensity is represented by the luminance
curve in Figure 2.4.3 This figure also shows the sensitivity of the eye to coloured
stimuli.* It can be seen that the HVS is much less able to discern colour
differences, and later in the chapter it is shown how this observation can be

utilised by compression systems.

B. Sample Precision

When using a digital representation of an image, the value of each sample needs
to be quantised using some finite precision. It has been shown experimentally
that the HVS can distinguish around 100 different luminance levels [28]. How-
ever, the spacing between these levels is not constant, so in practice 8 bits are

used per luminance sample.

3 This is based on measurements performed by Van Nes and Bouman [71].

* These are based on experiments by Mullen [66] using red-green and blue-yellow gratings.



12 Chapter 2. Setting the Scene: The Basics of Video Coding

C. Temporal Sampling

A video consists of a sequence of images, displayed in rapid succession, to
give an appearance of continuous motion. If the time gap between consecutive
frames is too large, the viewer will observe jerky motion. From a compression
point of view, it is important not to transmit any redundant information. Thus
the frame rate of a video should be as low as possible, without causing any

significant distortion in perceived motion.

Figure 2.5 shows the contrast sensitivity function of the HVS for a range of spa-
tial and temporal frequencies. From this graph it is evident that the sensitivity
of the HVS drops off significantly at high frame rates. In practice, most video

formats use temporal sampling rates of 24 frames per second, and above.

0.01~
0.0z} / \
8 &
&
0.05 s &
CONTRAST &
SENSITIVITY &>
0.1 2 &
A
1 &
0.2 £
&
05 &
0.5 ,5}’
1 152 34 68 121624 &

TEMPORAL FREQUENCY (Hz)

Figure 2.5: Sensitivity to contrast as a function of spatial and temporal fre-

quency. Reproduced from Netravali and Haskell [72].

2.2.3 Colour Spaces

The acquisition and display of video material is usually performed in the RGB

(red, green and blue) Colour Space. However, most coding and transmission



2.2. Displaying Digital Video 13

standards convert the data to the Y C,C, format as an intermediate step. The
Y (luma) component is a weighted sum of the R, G, and B channels, while the
two chrominance (chroma) components, Cj and C,, represent the differences

between Y and the blue and red channels, respectively.

As was shown in Figure 2.4, the HVS is less sensitive to chrominance, par-
ticularly at high spatial frequencies. Many compression systems make use of
this fact by low-pass filtering and sub-sampling the chrominance components.

Figure 2.6 illustrates two of the sub-sampling profiles commonly used.

RGB Y CbCr

COLOUR

TRANSFORM

/\

Y Cb Cr 4:2:2 Y Cb Cr 4:2:0

®- we o e o
®c -e®
®c we o e o

Figure 2.6: Chrominance Subsampling. Each square represents one pixel.

2.2.4 Measuring Picture Quality

When an image or video is compressed using a lossy technique, artifacts are
introduced into the scene. The greater the degree of compression, the more
severe the distortion is likely to be. It is therefore necessary to be able to

measure the quality of a (compressed) picture relative to the original.



14 Chapter 2. Setting the Scene: The Basics of Video Coding

Picture quality can be measured either subjectively (using a group of human
viewers) or objectively (using an appropriate mathematical formula). The prob-
lem with subjective testing is that it is generally a time-consuming and person-
intensive task, and thus often impractical. Furthermore, it can be influenced by
the viewing environment. On the other hand, objective methods are consistent
and easy to implement. However, results obtained from objective testing do

not always match the human understanding of picture quality.

The most commonly used objective method of measuring picture quality is to
calculate the Peak-Signal to Noise Ratio (PSNR) between the original and a
compressed image. For video, PSNR is measured for each frame, and then

averaged over the sequence. PSNR is quoted in decibels (dB) and defined as:

X 2
PSNR = 10 log, < ]\;”gg )

where X4, is the maximum possible intensity in the image (e.g. 255 for a

sample precision of 8 bits), and the Mean Square Error (MSE) is given by:

1 Je ln o .82
MSE = > (X(:5) =Y (.)

=1 j=1

where the number of rows and columns in the image is N and N¢ respectively.
X(i,7) is the intensity of a pixel at position (4, 7) in the original picture, while

Y (i,7) is the value of the corresponding pixel in the compressed image.

2.3 Entropy Coding

The compression of data can only be achieved when certain symbols are more
probable than others. Entropy® coding is a generic term for methods used
to compress data by assigning each symbol a code that is dependent on the
probability of that symbol. The two most common entropy coding methods are

Huffman coding and Arithmetic coding.

5 In the context of Information Theory, entropy is defined as the randomness or information

content of a system.



2.3. Entropy Coding 15

It is important to note that in order for entropy coding to be successful, the
encoder and decoder both need to use the same statistical model of the data.
Often, they (i.e. the encoder and decoder) start with some initial assumption

of statistics that is updated as more and more symbols are encountered.

2.3.1 Huffman Coding

Huffman coding [27] operates by assigning each symbol a code-word with a
length that is proportional to the negative logarithm of the symbol’s probability.

(Note that only integer-length code-words are possible.)

As an example, consider an alphabet comprising the symbols a, b, ¢ and d
(with probabilities of 25%, 12.5%, 50% and 12.5% respectively). A Huffman
coder will assign these code-words of length 2, 3, 1 and 3 bits respectively.
Thus the following binary code-words would constitute a Huffman code: a:10,
b:110, ¢:0 and d:111. These allow for unambiguous decoding and enable the
most common symbols to be represented most efficiently. (As is the case in this

example, where ¢ requires only one bit.)

2.3.2 Arithmetic Coding

The main problem with Huffman coding is that it requires code-words to be
of integer length. As a result, each symbol with a probability that is not a
negative power of two, is represented using a code-word with an approximated
length. In such a case, Huffman coding operates inefficiently and is not able to

achieve the maximum possible compression.

Arithmetic coding [92, 123] avoids this problem by effectively allowing code-
words of non-integer length. In arithmetic coding, a sequence of symbols is
represented by a real number within the range [0,1). As successive symbols
are encoded, the range becomes narrower, requiring more and more precision

to specify the low and high boundaries.



16 Chapter 2. Setting the Scene: The Basics of Video Coding

Consider an alphabet of N symbols, i.e. s1,$2,$3,...sn. Let p(i) be the prob-
ability of symbol s;, with the sum of probabilities equal to one. Also, let C(7)
represent the cumulative probability of all symbols up to and including s; in

the alphabet, so that:

SR p(k), for1<i<N
ci)y=4 """
Oa fOI’ 7=0
The current interval is represented by [Low, High), which includes all points

less than High and greater than or equal to Low. To start with, Low = 0 and

High = 1. The encoder then proceeds by adjusting the interval as follows:

Encoding Algorithm:

Low = 0.0
High =1.0
while More symbols to encode do
Input symbol s;
Range = High — Low
High = Low + Range x C(i)
Low = Low + Range x C(i — 1)
end while

Output value v € [Low, High)

The process of arithmetic coding is perhaps best explained using an example.
Table 2.2 shows a three-symbol alphabet and the associated symbol probabili-
ties, which are assumed to be known prior to encoding or decoding. Figure 2.7

provides an illustration of how the interval rescaling progresses as symbols are

Table 2.2: Probabilities for a three-symbol alphabet

’ 1 ‘ Symbol, s; | Probability, p(i) ‘ Cumulative probability, C(7) ‘ Initial interval ‘

0 - - 0 -
1 0.3 0.3 0.0, 0.3)
2 b 0.6 0.9 0.3, 0.9)
3 c 0.1 1.0 0.9, 1.0)




"A[SUIpI0dO®R SYULIYS

(ybry ‘mor7] Jo a8uel oY) OS ‘POPOOUD dIR S[OQUIAS SIOUWI PUR SIOW SY '2GDGIQq

“3oq

:soouanboas 9911} I10] UMOYs ST ssed01d Surpoous oy,

pue qqnqgoq ‘pqnqoq

-eryde [oquIAs-0017) ® 0} porjdde Surpod smewrLIe jo o[duwexs Uy :)'g 9INslg

Encode Symbol:

High:
Low:
Interval Range:

Settled Digits:

1.0 —

0.9 —

0.3 —

0.0 —

1.0
0.0
1.0
0.?

Cc
090 —— —> 0.900 —
0.84 —— 0.894 ——
0.48 —— 0.858 ——
0.30 —— 0.840 ——
0.9 0.90
0.3 0.84
0.6 0.06
0.? 0.8?

0.8940 ——

0.8904 ——

0.8688 ——

0.8580 ——

0.894
0.858
0.036
0.8?

b

0.86880 —— /
0.86772 ——

0.86124 ——

— > 0.85800 ——

0.8688
0.8580
0.0108
0.8?

0.867720 ——
— > 0.8674 bcbabc
0.867072 ——

bcbabb

—> 0.865

0.863184 ——

bcbaba

—> 0.862

0.861240 ——

0.86772
0.86124
0.00648
0.86?

Surtpoy) Adonyusy g°¢

L1



18 Chapter 2. Setting the Scene: The Basics of Video Coding

encoded. It can be seen that as High and Low converge, so their most signifi-
cant digits equal one another, and thus the corresponding output digits become
“settled.” The example also demonstrates that the least probable of the three
sequences (bcbabe) results in a longer coded message than the other two —

which is what one would expect from a compression system.

Decoding operates in a similar way to encoding. It is essential that the de-
coder use the same probability model as the encoder when determining ranges.
Probabilities can either be fixed throughout, or vary adaptively based on the
previously encoded (decoded) symbols. Given a number v in the range [0, 1),

the decoder proceeds as follows:

Decoding Algorithm:

Low = 0.0
High =1.0
Input value v € [0,1)
while More symbols to decode do
Range = High — Low
Find i for which Low + Range x C(i — 1) < v < Low + Range x C(i)
High = Low 4+ Range x C(i)
Low = Low + Range x C(i — 1)
Output symbol s;

end while

Much of the initial work on arithmetic coding involved its application to coding
symbols from a binary alphabet, such as bi-level images. More recently, bina-
risation (i.e. representing non-binary data in a binary format) has come to be
used as a relatively simple and effective way of combining context modelling

and arithmetic coding [61]. This is discussed in more detail in Appendix B.

A variant of arithmetic coding is range coding [62], which uses a large integer
range to represent a sequence of numbers, as opposed to a sub-interval within
[0,1). In addition, re-normalisation is performed after every output byte, which

marginally reduces the performance of the method, while increasing its speed.



2.4. Transform Coding 19

2.4 Transform Coding

Transform coding is an important tool in both image and video compression.
It is motivated by the idea that transforming an image to another space may
lead to a representation of the image which is easier to compress. This section
discusses three transforms that are well-suited to image coding, and considers

some of the techniques commonly used to compress the transformed data.

2.4.1 The Discrete Cosine Transform

The Discrete Cosine Transform (DCT) [87] has been used in the field of image
compression for more than three decades. It is closely related to the Fourier

transform, but produces real-valued coefficients.

The DCT can in theory be applied to a whole image, although this is computa-
tionally expensive. In practice, an image is divided into 8 x 8 blocks, and each

block is transformed separately [83]. The equation for a 2D 8 x 8 DCT is:

Suv) = 10@) Cw) Y2 3 s(a,y) cos (W) o < @?ﬁ;ﬁl)w>

=0 y=0

1 f =0
where C(w) :{ /e forw

1 forw >0

The intensity of the image at pixel position (x,y) is given by s(z,y), while
S(u,v) represents the DCT coefficient corresponding to horizontal and vertical

spatial frequencies, v and v. The inverse DCT is then calculated as:

Sy) = 5 27:0@) Xijc@) S(u, v) cos <W) ros ( W)

Figure 2.8 provides an example of an image and its equivalent representation
in the DCT domain. It is noticeable that those blocks containing areas of

high contrast or significant texture in the spatial domain contain a relatively



20 Chapter 2. Setting the Scene: The Basics of Video Coding

(a) Pixels in the Spatial Domain (b) Coefficients in the DCT Domain

Figure 2.8: An example of a DCT. The image is partitioned into 8 x 8 blocks,
which are then transformed to blocks of 8 x8 DCT coefficients. Note that in this
example, the DC (top left) coefficient in each DCT block has been set to zero
for illustrative purposes. This is because the magnitude of the DC coefficient in

a block is normally many times greater than any of the other 63 AC coefficients.

large number of high-magnitude DCT coefficients. In comparison, those blocks
with a fairly smooth spatial profile (such as the bottom row of blocks) can be

represented using only a few DCT coeflicients.

The DCT has two characteristics that are particularly advantageous for image
coding. First, it acts as a de-correlating transform when applied to typical
image data. This is useful in that it allows samples to be coded independently

of one another.

Secondly, the DCT coefficients all correspond to different spatial frequencies.
As a result, each coeficient can be quantised according to the sensitivity of the
HVS to the spatial frequency represented by that coefficient. Quantisation in
this manner results in many coefficients having values equal to or close to zero,

thus allowing substantial compression.

The DCT has been widely used in image and video coding. It is a core compo-
nent of JPEG [36] and is also used to compress intra (i.e. non-predicted) frames
in all of the major video coding standards. H.264/AVC [39] uses an efficient

4 x 4 integer approximation of the DCT for both intra and residual coding.



2.4. Transform Coding 21

2.4.2 The Wavelet Transform

The Wavelet Transform [55, 12] provides a means of describing a signal in terms
of both its spatial and frequency content. It allows signals to be represented as

a weighted sum of dilated and translated versions of a mother wavelet function.

A more detailed description of the transform is provided in Appendix C, which
also describes how the Discrete Wavelet Transform (DWT) can be applied to
a signal using a series of high-pass and low-pass filters. From an image pro-
cessing perspective, this filtering approach is perhaps the most intuitive way of

understanding the wavelet transform.

Figure 2.9 provides an example of a DWT applied to an image. To start with,
the image is filtered both horizontally and vertically using low-pass and high-
pass filters.® The output is then sub-sampled by a factor of two. This yields the

four sub-bands shown in Figure 2.9(b), which have the following characteristics:

e The LL sub-band (top left) results from horizontal and vertical low-pass

filtering, and is therefore a low-pass version of the original image.

e The HH sub-band (bottom right) results from horizontal and vertical

high-pass filtering, and thus emphasises diagonal edges.

e The HL sub-band (top right) results from horizontal high-pass and vertical

low-pass filtering. It emphasises vertical edges in the original image.

e The LH sub-band (bottom left) results from horizontal low-pass and ver-

tical high-pass filtering. It emphasises horizontal edges.

The process is then re-applied to the low-pass sub-band (as shown in Figure
2.9(c)) and repeated as many times as required. As can be seen in this example,
many detail (high-pass) coefficients have values close to zero. This allows for
good compression, particularly after quantisation. The wavelet transform is

used in the JPEG 2000 [34] standard, which is discussed later in the chapter.

6 The filter taps for a DWT depend on the particular choice of mother wavelet.



22 Chapter 2. Setting the Scene: The Basics of Video Coding

(a) Original Image (b) After first level of decomposition
- LLLL LLHL
HL
. LLLH LLHH
. ) )
(c) After second level of decomposition (d) Wavelet sub-bands

Figure 2.9: An example of a two-level, 2D wavelet transform

2.4.3 Matching Pursuit

The DCT and the DWT are commonly used in video coding to compress both
images and residual (difference) images.” Although most DCT and DWT based
coding techniques have been designed for natural images, they have been found

to perform reasonably well in the coding of residual images [90].

" Residual images arise when a frame is predicted (imperfectly) from another frame. As a

result, there is a prediction error between the original and predicted frame.



2.4. Transform Coding 23

P
Pe—
- -
- -
- -
L
R —
- —
- —

(a) A 20 x 20 Gabor dictionary (b) Basis functions at various orientations

Figure 2.10: An example of a 2D Matching Pursuit dictionary

In recent years, Matching Pursuit has gained in popularity as a method for
efficiently representing residual information. Matching Pursuit is a technique
that was first proposed by Mallat and Zhang [56]. It allows for a signal to be
approximated using a redundant dictionary of functions. The matching pursuit
algorithm does not specify a single dictionary of functions, but it is generally
recommended to use a set of basis functions that match the characteristics of
the signals to be approximated. One of the most popular dictionaries is a set

of Gabor basis functions [13], an example of which is illustrated in Figure 2.10.

Using a dictionary of basis functions at various scales and orientations (known
to both the encoder and decoder), an image (natural or residual) can then be

approximated as follows:

e Perform matching between the image and atoms derived from the dictio-
nary. (In Matching Pursuit, an atom is a basis function that has been

translated and multiplied by a weighting factor.)

e Find the atom that minimises the total image energy when it (the atom)
is subtracted from the image. Note that atoms can be translated to any

location within the image, and multiplied by an appropriate weight.



24 Chapter 2. Setting the Scene: The Basics of Video Coding

e The index of this atom’s basis function within the dictionary is coded,

along with its translation vector and weighting factor.

e The (translated and weighted) atom is subtracted from the image, and the
process is repeated. This continues until either a target number of atoms

have been coded, or the image energy reaches an acceptable threshold.

Residual images tend to have most values close to zero, with very localised
signals (such as along the edges of moving objects). This type of content is well
suited to coding using a Matching Pursuit technique, because it allows atoms
to be placed where they provide the greatest reduction in error. As a result,
Matching Pursuit performs particularly well at low bit-rates, since it requires

relatively few bits to approximate the largest error signals [68, 69, 70].

2.5 Block-based Motion Compensation

There are a number of different methods of estimating the motion between
frames in a video sequence. The most common technique involves dividing a
frame into many small blocks, and then performing motion estimation within
each block. This section discusses some aspects of block-based motion estima-

tion and compensation.

2.5.1 Block Matching

Block matching [41] is used to estimate the motion between the current frame
and a reference frame. To start with, the current frame is divided into many
small square blocks of equal size. (Blocks of size 16 x 16 are commonly used).
For each block, matching is performed as outlined below (and illustrated in

Figure 2.11):

e Let b; be a block in the current frame, Fo(x,y) the value of a pixel at
position (z,y) in the current frame and Fgr(x,y) the value of a pixel at

position (x,y) in the reference frame.



2.5. Block-based Motion Compensation 25

fffffffff S R R
| / | Block b,
,,,,,,,,, _______|BestMatch
| ééé;'réh”\'/\'/ihbbw | | |
Reference Frame Current Frame

Figure 2.11: Block matching

e Loop through all possible (pixel-accurate) motion vectors, (u,v), within
some search window. For each motion vector, calculate the resulting

distortion (after motion compensation).

e The distortion metric, Dy, (u,v), is evaluated by comparing pixels in block
b; to a translated block in the reference frame. Two such metrics are
commonly used — either the Sum of Squared Error (SSE)2,

Dy, (u,v) = > (Folz,y) — Fr(z +u,y +v))*
(z,y)ebi
or the Sum of Absolute Error (SAE)?,

Dy, (u,v) = > |Fe(x,y) — Fr(z +u,y + )]

The former metric (SSE) is slightly more accurate (since it matches the
PSNR measure of quality), although the latter method (SAE) is often

used because it is faster to compute.

e The chosen motion vector, (ug,vg) is the one that yields the minimum

distortion for block b;.

Because block matching is computationally expensive, it is generally performed

using only the luma component. In addition, much research has been done on

8 The SSE is sometimes referred to as the Sum of Squared Difference (SSD).

® The SAE is sometimes referred to as the Sum of Absolute Difference (SAD).



26 Chapter 2. Setting the Scene: The Basics of Video Coding

developing fast methods of block matching. This is typically achieved by only

searching a subset of possible motion vectors in order to find the optimal one.

The method outlined above describes how motion vectors can be calculated
to pixel accuracy. However, using motion vectors with sub-pixel accuracy can
allow for a significant reduction in matching error. In order to do this, pixel
values at non-integer positions can be estimated by using bi-linear interpolation

from the surrounding pixels.

2.5.2 Variable-Size Block Matching

In general, block matching performs reasonably well. However, if there is more
than one type of motion present in a block, then it cannot be represented
accurately using only one motion vector. Variable Size Block Matching (VSBM)
[9, 86, 111] provides a way of obtaining more accurate motion vectors in the

case where a block straddles one or more motion boundaries.

There are a number of alternative implementations of VSBM. Typically, they
operate by allowing a block with a large distortion metric (after motion com-
pensation) to be split into two or four child blocks. In some implementations,
these children can themselves be further partitioned if the motion compensa-
tion error remains unacceptably large. One example of VSBM is the advanced
prediction mode of the H.263+ [11, 38] video coding standard. This has the
option of allowing each 16 x 16 macro-block to be motion compensated using

either one 16 x 16 block or four 8 x 8 blocks.

In video coding, there is clearly a trade-off between using more blocks in order
to minimise error, and having to code the resulting additional motion vectors.

This is discussed further in the review of VSBM provided in Section 6.2.2.

2.5.3 Overlapped Block Motion Compensation

When performing motion compensation of blocks, each reconstructed block is

simply copied from the reference frame using the position specified by its motion



2.5. Block-based Motion Compensation 27

vector. (If the motion vector has a non-integer value, then the pixel values are

interpolated accordingly.)

When neighbouring blocks have different motion vectors, motion compensating
these blocks can result in discontinuities being introduced along their common
boundary. Such discontinuities may be intentional (e.g. if the block bound-
ary coincides with a motion vector boundary), however, they often introduce
distortion into a motion compensated frame. This type of blocking artifact is

common to many block-based video codecs.

De-blocking filters [53] are often combined with the motion compensation pro-
cess in order to reduce such blocking artifacts. They operate by performing
low-pass filtering perpendicular to spatial edges, in order to smooth the block
boundaries. Another approach is to use overlapping blocks when performing
motion compensation. The latter approach is described below in more detail,

together with an example.'”

Overlapped Block Motion Compensation (OBMC) [76] operates by extending
the influence of each block’s motion vector beyond the block boundary. In doing
this, it helps to provide a more gradual transition at block edges, thus reducing
blocking artifacts. A raised cosine filter is typically used to provide a weighting
factor for each block in the vicinity of its boundary. At every pixel location,

the block weights need to be normalised to sum to unity.

For a pixel that lies in the sphere of influence of n blocks, the value of the
motion compensated pixel is calculated n times (using the n blocks’ motion

vectors). The pixel is then set to the weighted sum of these n values.

Figure 2.12 demonstrates the advantage of using overlapping blocks when per-
forming motion compensation. Block boundaries are clearly present around the
eyes and mouth in Figure 2.12(b). When exactly the same set of motion vectors
are used with OBMC enabled, there is a significant reduction in distortion, as

can be seen in Figure 2.12(c). In this example (which is based on an overlap of

10 Overlapping blocks are used in the video codec that is presented in Chapter 7.



28 Chapter 2. Setting the Scene: The Basics of Video Coding

(a) Original (b) Non-overlapping blocks (¢) Overlapping blocks

Figure 2.12: Frame 13 of Foreman, motion compensated from frames 12 and

14 using 16 x 16 blocks. (Only the central part of the frame is shown.)

two pixels either side of the block boundary), the use of OBMC increases the
PSNR from 34.2 to 34.6 dB.

2.6 Rate-Distortion Optimisation

When performing lossy compression of images or video there is a trade-off be-
tween the size of the coded representation (i.e. the bit-rate or rate) and the
degradation in quality (i.e. the distortion). As the rate increases, so the distor-
tion diminishes. However, the relationship is variable and is dependent upon

the scene content as well as the compression algorithm.

At each point on a rate-distortion graph, the tangent to the curve represents
the change in distortion per additional bit. To start with, the absolute value
of this tangent is large, but it decreases in magnitude as the number of bits
increases.!'! This can be seen from the convex nature of rate-distortion plots,
such as the one in Figure 2.13. The “optimum” point on this curve depends

on the relative importance of rate and distortion, and may also be subject to

1 For example, increasing the size of a JPEG image from 200 to 300 bytes provides a greater

reduction in distortion than increasing the file size from 1200 to 1300 bytes.



2.6. Rate-Distortion Optimisation 29

* =—— (R,D) Operating Points
/( ) Op g

Distortion (D)

. Convex Hull of (R,D)
Operating Points

D,

R, R,
Rate (R)

Figure 2.13: An example of a typical rate-distortion graph. For large values
of A (such as A1) the priority is to minimise the rate. As A decreases (to Ag, for

example), it becomes more important to reduce the distortion.

other constraints such as a maximum bit-rate.

Many image and video coding algorithms use several stages in order to achieve
compression. In addition, they may operate on a number of different parts of a
scene (e.g. frames in a sequence or blocks in an image). In such a case it may
not be immediately obvious how to allocate resources (i.e. bits from the total

bit budget) among each component.

Using (DCT-based) JPEG [36] as example, one approach might be to code each
8 x 8 block using the same number of bits, or alternatively to code each block
using the same quantisation factor. The former method amounts to coding all
blocks at the same rate, while the latter method corresponds to coding blocks

at roughly the same quality.

It is not immediately obvious which of these two methods is preferable, since this
depends on the intended application. Ideally, each component (block) should
be coded in a way that allows a compromise between the opposing goals of

minimising both rate and distortion.



30 Chapter 2. Setting the Scene: The Basics of Video Coding

Rate-distortion theory [77, 106] provides a way of coding multiple (independent)
components that allows the overall performance to be optimised. The essential
concept is that each component should be coded using the same rate-distortion
trade-off slope. If this were not the case,'? it would be possible to re-allocate n
bits from one component to another in order to achieve lower overall distortion

for the same total rate.

Lagrangian Rate-Distortion Optimisation

Measuring the slope of a rate-distortion plot at a particular point can be diffi-
cult, especially if only a few points are known. A popular method of improving
rate-distortion performance is to use Lagrangian optimisation [77, 113]. For
some specified value, A\, a function (J) of both rate (R) and distortion (D) is

created:

J=D+ AR

The optimal operating point is then determined by finding the (R, D) pair that
minimises J. Clearly, this is dependent on the value of A, which effectively acts
as a relative weighting of rate and distortion. For large A, it becomes more
important to minimise the rate, while for small A\, the emphasis is on achieving
low distortion. The optimal (R, D) point for a specified A has a gradient of —\,

as shown in Figure 2.13.

Lagrangian rate-distortion optimisation helps when selecting the best of a set
of (R, D) points. However, it is still necessary to determine these points by
performing the coding process using a variety of codec parameters. This is a
computationally expensive approach, and so R and D are usually estimated by
the encoder. The estimation process can be difficult, and it often requires that
the codec be tested on a range of typical source material in order to establish

a rate-distortion model [77, 113].

12 je. if some components were not operating at the same rate-distortion slope



2.7. Image and Video Compression Standards 31

Rate-Distortion Optimisation with Inter-Dependent Components

The rate-distortion optimisation techniques described above assume that each
component is processed separately (as in the case of 8 x 8 blocks in JPEG).
In practice, though, rate-distortion optimisation methods do not apply in the

same way when there is a chain of dependencies present in a codec.

As an example, consider a video codec in which a frame is coded and then used
as a reference in order to predict the following frame. In such a scenario, it is
not optimal to code the reference and predicted frames using the same X value.
This is because each bit that is used to reduce the distortion of the reference

frame also contributes towards increasing the quality of the predicted frame.

The rate-distortion relationships between different frame types are complex,
since they depend on scene content and the type of motion present. This is
particularly so for bi-directional prediction, which is used in most video codecs.
In practice, inter-dependencies between components are either approximated or

ignored when incorporating rate-distortion optimisation into video codecs [113].

Complexity

In the majority of practical codecs, there is also a trade-off involving the com-
putational complexity of the compression method(s). This is because the best
coding techniques (in terms of rate and distortion) are often also the ones requir-
ing the most computation. Since many applications require real-time encoding
or decoding, this can be a significant constraint. Minimising computational
complexity was considered to be beyond the scope of this project. Neverthe-
less, it is an important aspect of codec design and remains an area of active

research.

2.7 Image and Video Compression Standards

During the last two decades, several standards have emerged for the coding of

digital images and video. This section provides a brief review of some of the



32

Chapter 2. Setting the Scene: The Basics of Video Coding

B Zig-zag Scanning and
Huffman Coding

HVS - based
Quantisation

Colour
Transform 8x8 DCT

10111010...

P

Figure 2.14: The (baseline) JPEG encoding process

most significant ones, and highlights advances from one standard to the next.

2.7.1 JPEG

The Joint Photographic Experts Group (JPEG) was founded in 1986, with the

task of developing a standard for the coding of grey-scale and colour images.

The JPEG [36, 83] compression standard gained widespread use, particularly

on the World Wide Web. JPEG is based on the following core components

(illustrated in Figure 2.14):

e The input (colour) image is transformed from the RGB colour space to

one where the colour components are significantly less correlated. A popu-
lar choice is the Y CyC,. colour space, with one luma and two chrominance
components. This is often followed by a sub-sampling of the two chromi-

nance components.

Regions of pixels are then grouped into 8 x 8 blocks, and the Discrete
Cosine Transform (DCT) [87] is applied to each block. Each DCT coeffi-
cient represents the information present at a particular spatial frequency

within a block.

This is followed by the quantisation of the DCT coefficients in each block.
As a result of quantisation, the coefficients are represented more coarsely,
resulting in some loss of information. However, not all coefficients are
quantised to the same degree. For example, the Human Visual System

(HVS) is less sensitive to high spatial frequencies, so the corresponding



2.7. Image and Video Compression Standards 33

coefficients are quantised more coarsely, without significantly affecting the

image quality from the point of view of a human observer.

e Following this, the quantised coeflicients in each 8 x 8 block are re-ordered
in a zig-zag fashion so that the low frequency components are listed first,
and finally the high spatial frequency coefficients. Many high frequency
coefficients are quantised to zero, resulting in long runs of zero-valued

coefficients. This is effectively exploited by the use of run-length coding.

e Finally, Entropy Coding (often in the form of Huffman Coding) is applied

to the result, to produce the JPEG representation of the image.

2.7.2 JPEG-2000

Developments in image coding continued throughout the 1990’s, and in 1997
the ISO and ITU-T initiated work on the next JPEG standard. JPEG-2000
[34, 115] utilises wavelet / sub-band coding, since the wavelet transform has

been shown to offer some significant advantages over the DCT.

As a first step, an image is broken down in to large tiles (typically 128 x 128 pix-
els) which are coded separately. This is done to reduce memory requirements.
As with its predecessor, JPEG-2000 also performs a RGB to Y C,C, transform,
but this is followed by a Discrete Wavelet Transform (DWT).

The DWT is applied to the tiles, decomposing each one into several sub-bands.
Quantisation is performed on a bit-plane level, encoding the more significant
coefficients first. In addition, parent-child dependencies between wavelet coeffi-
cients are exploited, as shown in Figure 2.15. Arithmetic coding is then applied

as a final compression step. The decoding process mirrors the encoding one.

As well as rate-distortion performance improvements over JPEG in the order
of 50%, JPEG-2000 supports two notable features: In addition to the stan-
dard lossy mode, lossless compression is also catered for, resulting in typical
compression ratios of 2:1 or 3:1. Secondly, it is also possible to define regions

of interest within an image. The encoder then allocates a greater portion of



34 Chapter 2. Setting the Scene: The Basics of Video Coding

Approximation Coefficients ———»

Parent-Child quad-tree ~——1 %

yd

Ol
[ ]

Parent-Child quad-tree =~ —— %

Figure 2.15: A three-level, sub-band decomposition of an image. An example
of the parent-child relationship in a quad-tree is also shown. Coefficients that
are insignificant (relative to some threshold) tend to have children that are also

insignificant (relative to the same threshold).

the bit-stream to these regions, resulting in them being reproduced with higher

quality, though at the expense of the remainder of the image.

2.7.3 H.261

Recommendation H.261 [7] was adopted as an international standard by the
CCITT (now ITU-T) in 1990. It was designed for use in video-conferencing
applications at bit rates which are integer multiples of 64 kbps. Progressive-scan

CIF and QCIF formats (with 4:2:0 chrominance sub-sampling) are supported.

H.261 uses the 8 x 8 DCT, and groups together sets of four luminance and
two chrominance blocks into macro-blocks. Macro-blocks may be intra-coded
(independently of the previous frame) or inter-coded (using motion compensa-
tion from the previous frame). During the motion estimation process, motion

vectors are calculated to pixel accuracy.



2.7. Image and Video Compression Standards 35

NN
X

AT

Group of Pictures (GOP)

Figure 2.16: The MPEG Group of Pictures (GOP) Structure. The arrows

indicate which frames are used to predict others.

2.7.4 MPEG-1

At around the same time, the ISO Moving Picture Experts Group (MPEG)
released its first standard, which was designed to provide video (and audio)
compression for storage and playback at rates of 1.0 to 1.5 Mbps.!3 In common
with H.261, MPEG-1 [31] uses 8 x 8 DCT blocks and a similar macro-block

structure.

However, MPEG-1 uses more advanced motion compensation techniques, in-
cluding bi-directional prediction. Three frame types are possible: Intra-coded
(I) pictures are encoded in a similar way to still images in JPEG; Inter-coded
(P) pictures are predicted using motion compensation from the preceding I or
P picture; and Bi-directionally predicted (B) pictures, which are motion com-
pensated from two reference frames (i.e. the preceding and subsequent I or
P pictures). Figure 2.16 illustrates the typical structure. Frames are arranged
into a Group of Pictures (GOP), with each GOP commencing with an I picture.

Motion vectors are calculated to half-pixel accuracy.

13 At the time, the target application was (progressive) VHS-quality video stored on a CD.



36 Chapter 2. Setting the Scene: The Basics of Video Coding

2.7.5 MPEG-2

MPEG-2 [32] was developed as the standard for digital (standard definition)
television, and it is currently in widespread use. It was designed to handle higher
resolutions than MPEG-1, as well as interlaced frames (although progressive
video is also supported). MPEG-2 borrows many techniques from MPEG-1,
with some modifications to handle interlacing. It supports bit-rates in the

range of 2 to 10 Mbps.

MPEG-2 also offers scalability through the use of enhancement layers. Tempo-
ral scalability is achieved by encoding the base layer at low temporal resolution
(i.e. low frame rate), while enhancement layer(s) provide the additional infor-
mation to decode the data at a higher frame rate. Spatial and rate (PSNR)
scalability can be achieved in a similar way. Data partitioning can also be used
so that the more critical information (such as headers and motion vectors) can

be coded separately.

The MPEG committee commenced work on a alternative standard for HDTV,
which was due to be called MPEG-3. However this was abandoned when it

became clear that MPEG-2 offered reasonable support for higher resolutions.

2.7.6 H.263

Following advances in video coding, the ITU-T released H.263 [37] as a standard
for use in video telephony in 1995. It was targeted at low bit rates (64 kbps and
under), but is suitable for higher rates as well. H.263 also offers rate, spatial

and temporal scalability in a similar way to MPEG-2.

Subsequent versions of H.263 [38] include several other features and options,
such as an advanced prediction mode. This allows each macro-block to use
either 8 x 8 or 16 x 16 blocks for motion compensation, depending on which
method provides a superior rate-distortion performance. In addition both for-

ward and backward motion estimation is possible, at half-pixel accuracy.



2.7. Image and Video Compression Standards 37

2.7.7 MPEG-4

The MPEG-4 [35, 84] standard was developed with the goal of being more than
just an incremental improvement on the previous two standards. MPEG-4
supports a wide range of bit-rates, but is mainly focused on low bit-rate video.
The first version of the standard provides a very low bit-rate video core, which

is actually very similar to baseline H.263 [90].

A fundamental concept in MPEG-4 is the idea of object-based coding. This
allows a scene to be described in terms of foreground and background objects,
which may be coded independently. However, since the standard only defines
how the decoder should operate, there is no prescribed method for the difficult
task of segmenting a scene into its constituent objects. This has resulted in a

slow uptake in the use of object-based coding for practical applications.

2.7.8 H.264 / MPEG-4 AVC

The ITU-T and ISO/IEC established a Joint Video Team to develop a new video
compression standard using a "back to basics” approach [118]. In 2003, they
proposed the H.264 standard [39, 91, 122], which has also been incorporated
into MPEG-4 under the name of Advanced Video Coding (AVC).

H.264/AVC has many similar characteristics to previous standards, but some

of the main new features are outlined below:

e Intra-frame coding is performed using 4 x 4 blocks, based on a fast integer
approximation of the DCT. Spatial prediction within frames is also used

to achieve additional de-correlation.

e Up to five reference fames may be used for motion estimation (as opposed

to the one or two frames used in previous standards).

e For each 16 x 16 macro-block, variable-size block matching (VSBM) is
used. This allows a range of different block sizes for motion compensation

— from 16 x 16 down to 4 x 4 pixels.



38 Chapter 2. Setting the Scene: The Basics of Video Coding

e Motion vectors can be specified to one-quarter pixel accuracy (or one-

eighth pixel in the case of chrominance components).

e An adaptive de-blocking filter is used within the motion compensation

loop in order to improve picture quality.

e Context-adaptive binary arithmetic coding (CABAC) is employed in order
to achieve efficient entropy coding of data using prediction within multiple

contexts. (This is discussed further in Appendix B.)

H.264/AVC has been demonstrated to provide significant rate-distortion gains
over previous standards, and it is widely accepted as the state-of-the-art in
video compression [91, 114, 121]. As a result, efficient implementations of the

standard are increasingly being used in a range of applications.



Chapter 3

Region Shape Coding

3.1 Introduction

One of the advantages of object-based video compression methods (such as
MPEG-4 [84]) is that they allow a scene to be decomposed into its constituent
parts. This is intuitively reasonable when one considers that each object within
a scene will generally have its own specific motion and texture characteristics.
Nevertheless, using an object-based approach means that there is an additional
overhead introduced, since it becomes necessary to encode the shape of each

object within a scene.

If region boundaries are represented precisely, the shape information overhead
can be substantial. However, if regions are only approximated very coarsely
(with a corresponding low overhead), then many of the advantages of object-
based coding might be lost. This is because the approximated region boundaries
would not then describe objects with homogeneous motion and texture proper-

ties.

Some material in this chapter is based on the author’s previously published work [102].

! In contrast, using a traditional block-based approach can often lead to blocking artifacts.
These arise when a block spans two or more regions with different motion properties, but

is only able to represent one type of motion.

39



40 Chapter 3. Region Shape Coding

From a coding point of view, it is thus desirable to achieve the optimal combi-
nation of shape, motion and texture information for each object. In practice,
such a joint optimisation would be computationally intensive due to the inter-

dependent nature of shape, motion and texture information [95].

Instead, this chapter describes a method for the progressive coding of shape
information for all regions in a scene. It allows for an embedded bit-stream
to be produced, so that the initial portion of the bit-stream provides a coarse

region description, while subsequent bits allow this to be further refined.

In order to encode a segmentation map (which represents the set of all regions
in a scene), the proposed method proceeds as follows: First, common boundary
segments between neighbouring regions are identified. Using these segments,
an initial polygon structure is created, which only coarsely approximates the
actual map, but which fully specifies the connectivity between neighbouring
regions. Following this, the existing segments are progressively refined until

either the desired bit-rate is reached, or an acceptable error is achieved.

3.2 Related Work

Shape compression (for individual foreground objects) has been researched ex-
tensively in recent years and two main approaches have emerged: direct bitmap
coding of the object mask, and coding of the shape boundary. The latter method
has been shown to allow a greater degree of compression [95]. Region boundary
coding is typically achieved through the use of (lossless) chain-coding [23, 20]

or (lossy) polygon/spline approximation.

In the case of lossy region boundary coding (with either polygons or splines),
the goal is to minimise both the coding cost and the distortion? caused by
approximating the boundary. Some of the main contributions to vertex-based

shape approximation are outlined below:

2 Two error metrics are commonly used: the maximum perpendicular distance between the

shape contour and the polygon approximation; and the area between the same two lines.



3.2. Related Work 41

e O’Connell [75] presents a polygon-based region approximation method.
Vertices are chosen so that the polygon they form does not deviate from
the original shape contour by more than a given distance. The selected
vertices are then coded using an octant-based representation. This incor-
porates the use of a variable dynamic range when coding the difference

between consecutive vertices in a shape’s polygon approximation.

e Le Buhan Jordan et al [51, 52| describe how region boundaries can be
coded using a progressive polygon approximation method. This allows
a coarse polygon shape to be coded first, followed by the transmission
of successive refinement layers. This can proceed until either the desired

bit-rate is reached, or the error is sufficiently small.

o Katsaggelos et al [44] provide a good review of object-based coding and
focus on five shape coding techniques considered during the development
of the MPEG-4 standard. Both intra and inter modes are considered: the
former relates to the direct coding of an object’s shape, while the latter
involves coding the shape of an object relative to its previously coded

representation in a reference frame.

Of the five methods tested, a vertex-based approach is shown to offer the
best coding efficiency in the case of lossy shape compression. However,
they explain that a macro-block, context-based shape coder was selected
as the MPEG-4 baseline method because it allows for a simpler imple-

mentation in hardware.

e Schuster et al [96, 95] discuss the importance of rate-distortion optimisa-
tion when coding an object’s boundary. With the use of Directed Acyclic
Graphs, they propose an operationally optimal shape coding algorithm
which yields a polygon/spline approximation of the original boundary.
The joint optimal coding of multiple objects within a frame is also ad-
dressed, although it is assumed that the coding of each boundary is ac-

complished independently of the others.

e Hu et al [26] present a scalable, layer-based, vertex coding method. As a



42

Chapter 3. Region Shape Coding

pre-processing stage, majority filtering and contour refinement are used
in order to impose some constraints on a region’s boundary. Starting with
a coarse approximation, more vertices are added to refine the boundary
representation as the number of layers is increased. They also describe
a vertex coding scheme that performs well — particularly in the case of

near-lossless approximation.

Kondi et al [47] propose a content-based method that considers the sur-
rounding texture information when coding an object’s shape. This is done
by using an adaptive distortion measure which is dependent on the texture
profile along each point of the object boundary. Thus, if a sharp edge is
present along a part of boundary, the region’s shape can be approximated
more precisely in this area. This leads to improved performance, both

objectively and subjectively.

Wang et al [120] introduce a new skeleton-based approach to shape coding,
which involves decomposing an object into two components: a skeleton
and a boundary distance from the skeleton. Both the skeleton and dis-
tance signals are then optimised within a rate-distortion framework. This
method is reported to offer improved performance over vertex-based shape

coding techniques.

In general, a scene may contain multiple objects. In this case, the shape and

position of objects can be described using a segmentation map, where each

region in a segmentation map has a unique label and consists of a connected

neighbourhood of pixels.

The region coding methods outlined above are for individual regions (e.g. video

objects in MPEG-4). However, a segmentation map is a collection of multiple

regions. This suggests that many of the approaches used in shape coding would

be useful in the coding of segmentation maps. Furthermore, the coding cost

can be reduced because common boundaries between neighbouring regions only

need to be coded once.



3.3. Coarse Polygon Approximation 43

Some research into the coding of segmentation maps has been reported within

the context of region-based video coding:

e Konrad et al [48] describe an object-based video codec which incorporates
a polygon approximation of each region. The cost of coding a segmenta-
tion map is shown to be roughly proportional to the number of contour
points. Chain coding is used to represent the boundaries of small regions,
while large regions are coded using a polygon approximation method that

involves coding the distance between consecutive vertices.

e Pateux et al [80, 73] propose a method for the lossy compression of seg-
mentation maps, for use in video coding. A Minimum Description Length
(MDL) minimisation approach is used when determining the vertices re-
quired to approximate the segmentation map. Note that the MDL cri-
terion takes into account the coding of not only the segmentation map,
but also the motion vectors and the resulting displaced frame difference.
The scheme performs well when the boundaries of the segmentation map

match motion discontinuities present in the scene.

The remainder of this chapter discusses the progressive polygon coding of seg-
mentation maps. It is assumed that some form of spatio-temporal segmentation
is used to generate the segmentation map, and that this segmentation process

is performed prior to encoding the map.

3.3 Coarse Polygon Approximation

3.3.1 Finding the Initial Polygon Segments

Given a segmentation map comprising a number of regions, the goal is to ap-
proximate each region with a polygon. However, a simple polygon approxima-
tion of each region in turn is likely to result in a new segmentation map in

which the the polygon-shaped regions are not correctly aligned (as illustrated



44

Chapter 3. Region Shape Coding

(a) Region 1 (b) Region 2 (¢) Common boundary

Figure 3.1: Polygon approximation applied to two neighbouring regions inde-

pendently. The polygons do not co-incide along the regions’ common boundary.

in Figure 3.1). This is because the polygons corresponding to neighbouring

regions could either overlap or leave gaps along their common boundary. This

can be avoided by the method outlined below and illustrated in Figure 3.2:

For each pair of neighbouring regions, the common region boundaries are

identified.

Each common boundary is approximated by a straight-line segment con-

necting the two common boundary endpoints.

A region can then be approximated by a polygon comprising the segments

along that region’s boundary, as depicted in Figure 3.2(b).

If a region only has two neighbours, it will just have one segment asso-
ciated with it. In this scenario, two extra segments are created. This
is done by joining the two existing endpoints with the boundary point

furthest from the first segment, as illustrated in Figure 3.2(c).

Those regions totally surrounded by another region are also treated differ-
ently, since their boundaries are circular. Such regions are approximated
by four segments according to the initial polygon approximation algo-
rithm in [1]. This involves selecting the two boundary points that are
furthest apart, plus another two points furthest from the line joining the

first pair.



3.3. Coarse Polygon Approximation 45

(a) Segmentation Map (b) Finding the Initial Segments

—

(¢) Region with 2 neighbours (d) The Segment Graph

Figure 3.2: Generating the initial segments

e It can occasionally happen that some of the initial segments intersect one
another. Should this occur, the crossing segments are refined (using the

process outlined in Section 3.4) until they no longer cross.

Taken collectively, the initial segments provide a rough approximation of region

shapes, as well as a complete representation of the adjacency between regions.

3.3.2 Coding the Segment Graph

Having determined the initial segments, the encoder’s task is to compress them
efficiently. This is achieved by first representing the segments as a graph of
connected nodes, as shown in Figure 3.2(d). Graph-based coding [73] with
relative addressing of node positions is used in combination with entropy coding

to achieve compression.



46 Chapter 3. Region Shape Coding

When encoding or decoding the graph, each family of connected segments is
processed separately. (For example, the graph in Figure 3.2(d) contains two
such families: one with 15 nodes, and the other with four nodes.) The process

for coding each set of connected segments is outlined below using pseudo-code.

Algorithm for encoding a set of connected line segments:

Stack = {};
CurrentNode = ChooseAnyStartingNode();
ListOfCodedNodes = {CurrentNode};
Encode(CurrentNode); // absolute position
while ( CurrentNode # {} ) do
if (Arrived at Image Boundary) then
CurrentNode = PopStack();
else
if CurrentNode has a neighbour ¢ ListOfCodedNodes then
Encode(HasNewNeighbour = 1);
Encode(NeighbouringNode - CurrentNode); // relative position
PushStack(NeighbouringNode);
CodedNodes = {CodedNodes, NeighbouringNode};
else
Encode(HasNewNeighbour = 0);
CurrentNode = PopStack();
end if
end if

end while

The decoding process operates in a similar way and is simply a mirror of the
encoder. Note that segments along the image boundary do not need to be coded,
since these can be determined implicitly from other segments that terminate
on the boundary. (This assumes that the width and height of the segmentation

map are known to the decoder.)



3.4. Progressive Refinement 47

3.4 Progressive Refinement

Once the initial segments have been specified, a more accurate representation
of the original segmentation map can be obtained, by refining each of the seg-
ments in turn. As illustrated in Figure 3.3, the progressive refinement algorithm

proceeds as follows:

REGION 1

Figure 3.3: Refining a segment (between the points P, and P)

e Consider the contour from P, to P, and the straight-line segment between

the same two points.

e For each point P; along the contour, calculate the perpendicular distance,

d(FP;), between P; and the line segment from P, to Pj.

e For some given threshold, d;,,q,: if there exists a point P, for which d(P;) >
dmaz, then the segment needs to be split. If there is no such point, then

the segment is considered sufficient.



48 Chapter 3. Region Shape Coding

e If splitting is required then:

Encode SPLIT = true.

Find the point along the contour that has the greatest perpendicular

distance from the straight line segment P, P,. Call this point P,.

— Encode the position of point P,.

— Discard segment P, P, and replace it with two new straight-line seg-
ments: P, P, and P, P,.

e Otherwise (if no splitting required): Encode SPLIT = false.

e Proceed to the next segment.

The above process is applied to all segments for a large initial value of dp,qz
(e.g. max(Npg, N¢), where N and N¢ are the number of rows and columns in
the segmentation map). Once all segments have been checked, d,,q, is halved
and the process is repeated. This continues until either a small enough value

of d,nqe is reached, or the target number of bits is attained.

When performing entropy coding of the SPLIT flag, the following rules of thumb

were found to provide a reasonable guide to actual statistics:

e For large dyqp: Probability(SPLIT = true) ~ ——

~ .
dmaz

e When d,,4; is halved, the number of segments likely to split will double.

Furthermore, when coding the position of the new node, P,, the following

properties were found to be useful:

e Clearly d(P,) > dpas- Note that if this were not the case, the segment

would not need to be split.

e In the vast majority of cases d(P,) < 2d;q.. This is because for d(P,) >
2d,pqz the segment would (almost always) have been split in the previous

iteration.



3.5. Results 49

e In general, P, is more likely to occur close to the midpoint of the line

between P, and P,, than far beyond either of the two endpoints.

Thus in the vast majority (roughly 95 %) of cases, P, falls into one of the two
regions shaded grey in Figure 3.3. The above properties allow for the position of

P, to be encoded efficiently, using entropy coding of the following three values:

e Side: It is necessary to specify whether P, lies on the left or the right of
the straight line from P, to P,. (In Figure 3.3 it lies on the left.)

e Perpendicular distance: h is equivalent to d(P,,) — dmaz-

e Parallel distance: [ is the component parallel to P, P, and is measured

from the midpoint of the line P,P,.

The algorithm outlined above allows for progressive refinement of the segmen-
tation map in such a way that an embedded bit-stream is produced. Thus
a decoder can decode the bit-stream until the desired level of refinement is

achieved (i.e. a small enough value of d;qz).

3.5 Results

The proposed algorithm was tested on five segmentation maps with between 10
and 50 regions each. The rate-distortion curves for two of these segmentation
maps are plotted in Figure 3.4, and are representative of the full set of five.
The two segmentation presented here were derived from the Lena and Goldhill

images.3

It can be seen that the cost of encoding the coarse segmentation maps is ap-
proximately 0.2 bits per contour point (bpcp). After this, the distortion falls off
rapidly as the bit-rate is increased. (The total number of contour points does

not include those along the image boundary, since these are trivial to encode.)

3 A MATLAB demonstration can be downloaded from [99]. This includes the segmentation

maps used in testing, as well as source code for the decoding of segmentation maps.



50 Chapter 3. Region Shape Coding

12

T T T T T
—©— Segmentation Map of Goldhill (27 regions, 7886 contour points)
—=— Segmentation Map of Lena (30 regions, 7597 contour points)

10

Error: Percentage of incorrectly labelled pixels
[0)]
T

O Il Il Il Il
[0} 0.2 0.4 0.6 0.8 1 1.2 1.4

Bits Per Contour Point

Figure 3.4: Rate-distortion curves for progressive polygon encoding of two seg-

mentation maps

No standard segmentation maps exist, so a direct comparison between different
methods is difficult. However, the observed results compare favourably with
the values of 0.65 bpcp (for dyee = 4) and 0.5 bpep (for dpe: = 8) obtained
in [75]. Lossy compression rates of 0.4 to 0.6 bpcp are reported in [80], though

the corresponding approximation error is not quoted.

Figures 3.5 and 3.6 demonstrate the operation of the proposed polygon shape
coding technique for segmentation maps derived from the 512 x 512 Goldhill
and Lena images. In each case the original segmentation map is shown together
with the initial coarse polygon approximation, as well as reconstructions for

Admaz = 16 and dee = 4.

In both examples, the initial coarse approximation produces a segmentation
map which at first glance bears little resemblance to the original. When de-
coding with the maximum distance d,,q; set to 16, the reconstruction process
produces segmentation maps that are significantly more accurate, although the

regions still have an artificial, “angular” appearance. Using a value of dyqr = 4



3.5. Results 51

(a) Original Segmentation Map (b) Initial coarse polygon approximation, us-

ing 162 bytes; Labelling error: 17.0%.

(c¢) Polygon approximation for dmee = 16 us- (d) Polygon approximation for dmaee = 4, us-

ing 235 bytes; Labelling error: 7.1%. ing 499 bytes; Labelling error: 2.4%.

Figure 3.5: An example of progressive polygon approximation using a 27-region

segmentation map derived from the 512 x 512 “Goldhill” image.



52 Chapter 3. Region Shape Coding

(a) Original Segmentation Map (b) Initial coarse polygon approximation, us-

ing 176 bytes; Labelling error: 13.3%.

(c¢) Polygon approximation for dmee = 16 us- (d) Polygon approximation for dmaee = 4, us-

ing 227 bytes; Labelling error: 6.1%. ing 416 bytes; Labelling error: 2.2%.

Figure 3.6: An example of progressive polygon approximation using a 30-region

segmentation map derived from the 512 x 512 “Lena” image.



3.6. Conclusion 53

yields regions with more realistic contours and a much smaller region labelling

errors.

In general, a polygon representation of a segmentation map can provide sig-
nificant savings in rate, while introducing only a relatively small distortion.
For example, a lossless PNG* compression of Figure 3.5(a) requires 6072 bytes,
while the approximation in Figure 3.5(d) requires only 499 bytes. Similarly,
6078 bytes are needed for lossless PNG coding of Figure 3.6(a), though the

representation in Figure 3.6(d) requires just 416 bytes.

3.6 Conclusion

The results reported in this chapter demonstrate that efficient lossy coding of
segmentation maps is possible at rates in the order of 0.5 bits per contour
point. The proposed method first encodes a set of initial segments in order to
represent each region coarsely as a polygon. This is followed by the progressive

refinement of these segments, until the desired accuracy or bit-rate is reached.

The progressive coding of segmentation maps offers advantages for object-based
video coding, since it allows shape coding to be drawn within a rate-distortion
framework in a video codec. Ideally, the segmentation process itself needs to

be similarly controllable to allow for a variable number of regions.

Another option worth further investigation is allowing d;,.. to be weighted ac-
cording to the similarity between neighbouring regions [47]. Thus if two regions
have widely differing spatial and/or temporal characteristics, dpq, should be
reduced along their common boundary in order to allow for a more precise

approximation of that boundary.

The next two chapters discuss region-based motion compensation methods
which make use of the proposed technique for polygon shape coding. As will

be shown, it is particularly advantageous when region/polygon boundaries cor-

* Portable Network Graphics (PNG) image format for lossless bitmap compression [33].



54 Chapter 3. Region Shape Coding

respond to motion boundaries, since this allows regions with different motion

characteristics to be coded separately.



Chapter 4

Motion Compensation using a

Triangular Mesh

4.1 Introduction

Block-based methods have traditionally been used to perform motion estimation
and compensation. They offer the advantage of being fast, easy to implement

and fairly effective over a wide range of video sequences.

Nevertheless, regular block-based approaches suffer from two drawbacks. First,
the size and shape of blocks is fixed, and consequently independent of the scene
content. Thus a block covering two regions with different motion will not be able
to accurately model the motion within both regions simultaneously.! Secondly,
block-matching is typically used to estimate only translational motion, and in
this case it cannot accurately model more complex types of motion such as

rotation and zooming.

Triangular and quadrilateral meshes have been proposed as a means of address-

ing these limitations. They allow for atomic motion compensation units (i.e.

Some material in this chapter is based on the author’s previously published work [100, 103].

! Variable-size block matching addresses this problem to a limited degree by allowing a range

of block sizes (e.g. from 16 x 16 down to 4 x 4 in the H.264/AVC video coding standard).

95



56 Chapter 4. Motion Compensation using a Triangular Mesh

blocks or triangles) to vary in size and shape according to scene content, and

are often used in combination with complex motion models.

This chapter describes how a content-based, triangular mesh can be generated,
and then used for affine motion compensation. Spatio-temporal segmentation
is performed using the current frame and a reference frame. Once a segmen-
tation map has been obtained for the current frame, regions in the frame are
approximated with polygons. A triangular mesh is then created within each
polygon-shaped region, resulting in the frame being fully covered by triangles.
Finally, translation and affine motion parameters are estimated for each trian-

gle.

4.2 Related Work

4.2.1 Segmentation

Image and video segmentation is a complex field and remains an active area of
research. The purpose of segmentation is to partition a scene into its constituent
objects. Ideally, an object will have homogeneous motion, texture and colour
characteristics, however, this is seldom true in practice. (For example, is the
windscreen of a car part of the car or the background?) Another problem is the
degree to which segmentation should be performed. (For example, are a nose

and a mouth distinct objects, or are they both part of a “face” object?)

Spatial segmentation is applied to 2D-images and generally operates by sepa-
rating an image into regions that are homogeneous in terms of texture and/or
colour. Spatio-temporal (3D) segmentation operates on a sequence of images

and uses motion information as well.

Providing a detailed review of segmentation methods is beyond the scope of
this dissertation. However, the role of segmentation in the mesh generation
process is important, since poor segmentation will lead to an ineffective mesh

design. Therefore, some pointers to recent work on (and reviews of) segmen-



4.2. Related Work 57

tation methods are provided. This includes a brief overview of the spatial

segmentation technique used in the mesh design process.

e Salembier and Marques [94] provide a good review of spatio-temporal seg-
mentation methods. They discuss two classes of segmentation techniques:
transition-based methods and homogeneity-based approaches. The for-
mer involves determining the transition or edge areas in an image/video.
The latter operates by grouping together homogeneous elements into re-
gions. Following this review of segmentation methods and tools, they go
on to propose the use of a partition tree for representing regions within
images. It is demonstrated how partition trees can be pruned according
to the level of detail required for a particular application. (For example,
a branch of a tree corresponding to a head, torso and four limbs can be

pruned until there is one region representing the whole body.)

e Some more recent spatio-temporal segmentation methods include those of
Patras et al [81] (who propose a watershed-based segmentation method
in which regions are merged if they exhibit similar motion properties);
Shamim and Robinson [105] (who use a top-down approach to identify
and classify regions with different motion characteristics within a frame);
Izquierdo and Ghanbari [40] (who describe an advanced segmentation
system that combines the outputs from six segmentation methods); and
Mezaris et al [64] (who adopt a Bayesian approach to the tracking of

objects, and perform region merging using long-term motion trajectories).

e Deng and Manjunath [16] describe JSEG, a method for the robust seg-
mentation of colour-texture regions in images and video. JSEG operates
by first quantising colours in the scene into a number of classes within the
CIE LUV [14] colour space. (Quantisation is performed more coarsely in
textured areas.) The quantised colours are then segmented spatially by
attempting to maximise the class homogeneity within each region, across
a range of scales. When operating on video, a region tracking scheme

is incorporated into the process so as to achieve consistent results across



58 Chapter 4. Motion Compensation using a Triangular Mesh

several frames. JSEG demonstrates good segmentation performance on a
variety of images, and a software implementation of the method is avail-

able for downloading [17].

4.2.2 Motion Estimation

There are many different ways of estimating motion within a sequence. This
section focuses on two aspects of motion estimation that are used later in the
chapter: optical low and model-based motion. Optical flow plays a role in
the segmentation stage, when it is used to determine the motion properties of
regions in a scene. Model-based motion is considered from the point of view of

representing more complex motion than simply translation.

Optical Flow

Knowing the motion vectors at each pixel position within a frame allows one to
determine the motion properties of any region in the frame. This is useful for

refining segmentation boundaries originally based on spatial information only.

When objects move in reality, their motion can be represented with 3D motion
vectors. A dense motion vector field is simply a mapping of these motion vectors
onto the 2D image plane, with one motion vector for each pixel in the image.
In contrast, optical flow is defined as a 2D velocity field that represents how
pixels in a frame can be mapped in order to reconstruct another frame in the
sequence. In general, the optical flow is not unique, since it may be possible
to map a pixel in two or more different ways - particularly in areas with little
texture. Nevertheless, optical flow and dense motion fields are usually very

similar for a pair of images, and the terms are often used interchangeably.

The gradient constraint equation [25] is defined as

oI oI ol
71790 _|_

where I(x,y,t) is the intensity of a pixel at point (z,y) and time ¢, and v, and

vy are the horizontal and vertical components of the optical flow. Note that



4.2. Related Work 59

this equation has two unknowns (i.e. v, and vy). Thus in order to solve it, an

additional constraint is necessary.

e Horn and Schunk [25] assume that changes in the scene are only due to
motion and not because of any variation in brightness. They add a global

smoothness term in order to constrain the estimated velocity field.

e Lucas and Kanade [54] introduce a local smoothness constraint using a
least squares fit within a small spatial neighbourhood. If the neighbour-
hood is too small, it may not constrain the problem sufficiently. However,
if it is too large, there may be multiple motions present within the neigh-

bourhood.

e Black and Anandan [4] describe how the single motion assumption as well
as the constant brightness condition are not always valid. They discuss
how these assumptions can be relaxed in order to develop a more robust
estimation process. This robustness is achieved by detecting and rejecting
outliers that occur when assuming that the constant brightness and sin-
gle motion conditions apply. A software implementation of their robust

method for determining optical flow is available for downloading [3].

Model-based Motion

The vast majority of motion estimation methods in use today operate by de-
termining the translational motion of regions (usually blocks) within a frame,
relative to one or more reference frame(s). Dufaux and Moscheni [19] and Stiller
and Konrad [109] provide good reviews of motion estimation techniques, and
list a variety of motion models in addition to the two-parameter translation

model.

The most commonly used higher order motion models are probably the affine
and projective ones. The six-parameter affine model allows for translation,

zooming, rotation and shearing to be represented. In addition to these, the



60 Chapter 4. Motion Compensation using a Triangular Mesh

eight-parameter projective model helps to convey depth and perspective by

allowing a plane to be mapped to any other plane.

Higher order models enable the motion of regions (usually blocks or semantic
objects) to be represented much more accurately. However, there are two rea-
sons why the use of such models has been fairly limited. First, estimating six
or eight parameters requires significantly more computation than finding the
best translational match using a 2D search. Secondly, from a rate-distortion
point of view, the advantage provided by the use of a complex motion model
(in terms of reduction in distortion) needs to outweigh the cost of coding the

extra motion parameters.

4.2.3 Mesh Generation

Once some initial pre-processing and/or segmentation has been performed, a 2D
mesh can be overlaid on a frame. This allows the mesh to be constructed around
objects in the scene. Content-based motion compensation is then possible,
generally allowing for superior visual quality compared to motion compensation
using either fixed-size blocks or a regular mesh. Many different mesh design
strategies have been proposed, and a brief review of selected methods is provided

below:

e Nieweglowski et al [74] and Nakaya and Harashima [67] propose the use of
triangular and quadrilateral 2D meshes as an alternative to block-based
systems in order to allow for affine motion compensation. As each node
within a mesh moves, so it causes the triangles of which it is a vertex to

warp. This warping effect allows for more complex motion to be modelled.

e In a regular mesh, nodes are placed at fixed intervals throughout the
image. However, Dudon et al [18] show that it is advantageous (and
intuitively plausible) to position the nodes along object boundaries, or

even to have a separate mesh for each foreground object.



4.2. Related Work 61

e The use of meshes for object-based video has been encouraged by the de-
velopment of the MPEG-4 standard [84], in which Video Object Planes
are used to represent arbitrarily shaped regions within a scene [116]. One
disadvantage of using an object-based mesh is that the boundary of each
object needs to be specified, resulting in a significant overhead. In prac-
tice, regions are often approximated using polygons/splines, or from re-

gion boundaries in preceding frames.

e Bradshaw and Kingsbury [6, 5] consider the fact that when using a fully-
connected mesh for motion compensation, neither occlusion nor uncover-
ing can be accurately modelled. Their proposed solution involves causing
the mesh to rip or tear along occlusion boundaries, and allowing overlap-

ping of the mesh along these tears.

e Altunbasak and Tekalp [1] present another solution to the problems caused
by occlusion and uncovering. They propose first identifying the back-
ground to be covered within a frame, and allowing no nodes to be placed
there. In addition, a model failure region is detected and the mesh is
refined inside this region. This method was demonstrated to perform well

for “head and shoulder” type sequences.

e Van Beek et al [117] discuss the design, tracking and coding of 2D meshes
for use in video compression. In particular, they focus on a hierarchical
approach. During the mesh design phase, a fine-to-coarse combination of
Delaunay meshes is generated, allowing for a mesh to be created for each
object with a varying density of nodes and triangles. When tracking a
mesh from one frame to the next, a coarse-to-fine strategy is adopted for
determining the motion vectors. The shape and motion information is
coded in such a way as to allow for the progressive transmission of this
information. Celasun and Tekalp [8] extend this hierarchical approach by
optimising the mesh design process. They also allow the mesh structure

to be updated when occlusion is detected.

e Most of the approaches outlined above employ motion compensation of



62 Chapter 4. Motion Compensation using a Triangular Mesh

the current frame from one previously encoded reference frame. This
is similar to an MPEG P-frame (with the obvious exception that mesh-
based motion compensation is used). Eren and Tekalp [21] describe the
design of a mesh for video objects that allows for bi-directional motion
compensation. In a similar way to MPEG B-frames, this method uses

two reference frames - one in the past and one in the future.

Delaunay Triangulation

Many mesh design methods employ Delaunay triangulation [15]. This process
can be applied to a set of points in order to create a mesh of triangles that uses
this set of points as the triangle vertices. Delaunay triangulation operates in
such a way that no vertex lies inside the circumcircle? of any triangle in the
mesh. Shewchuck [107, 108] provides a software implementation of 2D Delaunay
triangulation. In addition to being applied to a set of points, Shewchuck’s
implementation allows for the triangulation of a planar straight line graph.3
This allows for Delaunay triangulation to be applied to a polygon, resulting in

the creation of a triangular mesh within such a polygon.

4.3 Mesh Generation

4.3.1 Spatio-Temporal Segmentation

General-purpose spatio-temporal segmentation methods divide a scene into re-
gions that differ in both motion and spatial characteristics (e.g. colour, texture
and intensity). However, from the point of view of motion compensation for
video coding applications, it is not necessary to segment a group of objects that
are moving similarly (and thus have the same motion properties). Consequently,

regions only need to be segmented if they have different motion characteristics.

2 The circumcircle of a triangle is the circle that passes through all three of its vertices

3 A planar straight line graph is a collection of straight-line segments (with vertices as

endpoints) whose presence in the mesh is enforced.



4.3. Mesh Generation 63

Segmentation based on motion information only was found to provide unsatis-
factory results, because motion at object boundaries is often difficult to mea-
sure precisely due to occlusion. It was therefore decided to use two established
schemes to obtain reasonable segmentation results across a range of different
sequences: JSEG [16, 17] is used to achieve spatial segmentation, and Black
and Anandan’s software [4, 3] is used to estimate the dense optical flow be-
tween two images. The motivation behind this is that spatial segmentation can
be used to determine object boundaries quite precisely, and in addition optical

flow provides the data for determining regions’ motion characteristics.

Given a current frame and a reference frame, the segmentation process then
proceeds as follows (with Figure 4.1 illustrating the process for frame 13 of the

Foreman sequence):

e Perform spatial segmentation of the current frame using JSEG. Figure
4.1(b) shows the regions obtained after spatially segmenting frame 13 of

Foreman.

e Estimate the dense motion-vector field, relative to a reference frame (frame
11 in the example). This yields a motion vector at each pixel position.
Figures 4.1(c) and 4.1(d) provide a representation of the horizontal and

vertical components of the dense motion vector field.

e Split stage: Find all regions with a high motion vector variance and re-
segment them spatially using JSEG. For a region r of size A(r), the motion

vector variance is calculated as

amv<r>—A§T) S (-T2t - Tg)?)  (42)

(z,y) €7

where {(vs,vy)} are individual motion vectors and (v, z,Ury) is the mean
motion vector for region R;. Regions with o,,, > T} are selected for
splitting, where 77 is some threshold. The process is repeated until all
regions have a sufficiently low motion vector variance. Figure 4.1(e) shows
the result after regions have been further segmented during the splitting

stage.



64 Chapter 4. Motion Compensation using a Triangular Mesh

?IEMENS %

(a) Frame 13 of the Foreman sequence (b) After JSEG spatial segmentation

(c) A representation of the horizontal motion- (d) A representation of the vertical motion-
vector field (frame 13 relative to frame 11); vector field (frame 13 relative to frame 11);

black: left, white: right black: down, white: up

(e) After region splitting (f) After region merging

Figure 4.1: Spatio-temporal segmentation using region splitting and merging.



4.3. Mesh Generation 65

e Merge stage: If two neighbouring regions (r; and r;) have similar mean
motion vectors and their joint variance remains low, then merge the two

regions. Thus if:

(UT’iax - UTj,év)2 + (vTi,y - UTj,y)Q <713 (4'3)
for some threshold 75, and

Tmo (15 U 1) < maz (Omy (1), ome(75)) (4.4)

then regions r; and r; are considered to have similar motion characteristics
and can consequently be merged. The process is repeated until there
are no regions left that satisfy the above merging criteria. Figure 4.1(f)
illustrates the result of merging neighbouring regions with similar motion

properties.

The sensitivity of the spatio-temporal segmentation stage clearly depends on the
thresholds 77 and T5. Various values were tested during the design stage, and

reasonable values were determined empirically to be 0.8 and 2.0 respectively.

The end result of this spatio-temporal segmentation process is a segmentation
map that defines regions in the current frame. If the process works as designed,
then each region will represent an area of homogeneous motion, and no pair of

neighbouring regions will have identical (or very similar) motion characteristics.

4.3.2 Polygon Approximation

Once the current frame has been segmented into regions, it is necessary to
represent the shape of each region. Since the ultimate intention is to perform
motion compensation for the purpose of video compression, it is important that

the shape information should be coded efficiently.

This is done using progressive polygon approximation as described in Chapter
3. Note that this requires the user to specify the value of d;,q., Which is the
maximum distance by which an approximated (polygon) boundary may differ

from the original boundary.



66 Chapter 4. Motion Compensation using a Triangular Mesh

Using this value of dj,q,, progressive polygon approximation is applied to the
segmentation map obtained during the spatio-temporal segmentation stage.
Figure 4.2(a) provides an example using the segmentation map shown in Figure

4.1(f), for dpmas = 4,

4.3.3 Triangulation

Following the approximation of each region with a polygon, the next step is
to create a triangular mesh within each polygon. This is done by applying
Shewchuck’s implementation [107] of Delaunay triangulation to each polygon,
and specifying that each polygon vertex should be a triangle vertex within the

mesh.

During the mesh generation process, the polygon boundaries are specified as
segments within a planar straight line graph, and (where possible) triangles are
created with all angles larger than 20°. This minimum angle rule-of-thumb
helps to ensure that triangles are not too long and thin, which in turn enables

more reliable motion estimation.

In addition, the number of interior nodes that can be added to a polygon during
the triangulation process is limited to a maximum of four. This rule-of-thumb
restriction on the number of interior nodes prevents a large number of very
small triangles being created within each polygon. (Having too many triangles
would allow more accurate motion compensation, but at the expense of coding

their motion parameters.)

For a given frame (and reference frame), the number and shape of triangles
in the mesh is dependent on the values of 717, T5 and d,,q,. Controlling these
parameters in a reasonable way proved to be difficult across different sequences,
so 11 and T, were assigned fixed values, as described in Section 4.3.1. Thus for
a particular segmentation map, the number and shape of triangles is dependent
on Az AS dpqq increases, the number of vertices in the polygon-approximated
regions decreases, resulting in a corresponding decrease in the number of trian-

gles in the mesh.



AR ¥

|
.

= Z

=



68 Chapter 4. Motion Compensation using a Triangular Mesh

Figure 4.2(b) illustrates the results once triangulation has been applied to all

the polygon-approximated regions in Figure 4.2(a).

4.4 Motion Estimation

When estimating the motion of a triangle or its vertices, it is possible to use the
dense motion field that was obtained as part of the segmentation process (see
Section 4.3.1). However, this motion field was found to be generally unreliable
near motion boundaries, and since many triangle vertices are located along
such boundaries, this approach was considered unsatisfactory. In addition, for
frames motion compensated from two reference frames, another motion vector

field would need to be determined relative to the second reference frame.

It was therefore decided to use a two-stage “triangle-matching approach” for
estimating motion. In the first stage, the translational motion of each triangle
is estimated in a similar way to traditional block matching. Following this,
the affine motion parameters are estimated for each triangle. The process is

outlined below in more detail.

4.4.1 Translational Motion

The motion parameters for each triangle within the current frame are estimated
independently of those for other triangles. This is possible because the mesh is
non-connected, so that each triangle is motion compensated independently of

its neighbours. The translation vector is determined as follows:

e Consider all the points within a given triangle in the current frame, such

as the one depicted in Figure 4.3(a).

e For each possible translation, match these points to the corresponding set
of translated points within the reference frame. Note that the translation

is restricted to some specified search radius, as illustrated in Figure 4.3(b).



4.4. Motion Estimation

69

- ’ o T ’
.7 ’ Pt ’
P / P 1
- ) -7 .. )
AR ’ e 1
. 2 . 1
~
. / S 7
N ’ ~ . !
~ > r.
1 o
\\ 1 ‘\ R
S g T S
N, S
(Ut’ Vt)
(a) (b)

U3.V3)

(a) The position of a triangle in the current frame.

(b) The dotted lines show the position of a triangle in the reference frame that is a

translated version of the triangle in (a).

Note that the initial matching is performed

using translation only. The translation search region is shown in grey and the resultant

motion vector, (ug,v:), is also depicted.

(¢) The solid lines show the position of the triangle in the reference frame that is a

translated and warped version of the triangle in (a). In this case, the initial matching

has been performed using translation, and further refined with affine warping. The

areas shaded grey show the search range for each vertex when estimating the affine

motion. The three corresponding motion vectors for each vertex are also represented.

Figure 4.3: Translation and Affine Motion Estimation



70 Chapter 4. Motion Compensation using a Triangular Mesh

e Matching is performed by calculating the sum of squared error (SSE)
between the (colour or grey-scale) intensities of the points in the current
frame and the intensities of the translated points in the reference frame.
Alternatively, the sum of absolute error (SAE) or some other appropriate

metric may be used.

e The shift which results in the smallest SSE is chosen as the translation

vector, (ug,vy), for the triangle under consideration.

e Two reference frames are used - one before and one after the current frame.
The one which gives rise to a smaller translational motion compensation
error is selected as the sole reference frame for the affine motion estimation

stage.

e Note that translation vectors are calculated to integer pixel accuracy.
Sub-pixel accuracy can be achieved during the affine motion estimation
stage. (Alternatively, if no affine parameters are to be computed, trans-
lational motion can be calculated to sub-pixel accuracy using bi-linear

interpolation of pixel intensities.)

4.4.2 Affine Motion

Following the estimation of translational motion, each (translated) triangle in
the reference frame is warped slightly to see if an even better match to the
original triangle in the current frame can be obtained.* This warping is per-
formed using the six-parameter affine model, as illustrated in Figure 4.3(c) and

outlined below:

e Each of the three vertices of the (translated) triangle in the reference

frame is moved within a small search area, while keeping the position of

4 Note that it is possible to use the dense motion vector field to directly estimate a triangle’s
affine motion. However, this was found to produce inferior results to the matching approach
described in this section. (This is because dense motion vector fields are often unreliable

near motion boundaries.)



4.4. Motion Estimation 71

the other two vertices fixed.

e This results in a warped triangle, which is matched to the original in the
current frame. Once again, matching is achieved by minimising the SSE

for points inside the triangle (after affine motion compensation).

e For each of the three triangle vertices in the current frame, {(z,y}) : i €
{1,2,3}}, the corresponding vertices in the reference frame, {(x;,y;)} are

related according to the equation:

Ut g
+ + (4.5)
(0 V;
where (ug, v¢) is the (optimal) translation motion vector calculated dur-
ing the previous stage, and {(u;,v;) : @ € {1,2,3}} are the additional

displacements of the three triangle vertices in the reference frame.

e During the affine motion estimation stage, (u;, v;) is varied within a small
search range for each of the three nodes. Note that consequently {(z;,y;)}
is known for each such variation. This is because {(z},y})} and (u, v;)
are constant for each triangle, the latter having been determined during

the translation estimation stage.

e In general, for a pixel (z/,y') in a triangle in the current frame, the cor-

responding point (z,y) in the reference frame is given by the affine trans-

form:
x/
T a; a2 ag -+ ug
= Yy’ (4.6)
Yy as a5 ag+ vt
where {ai,...,as} are the six affine motion parameters. These can be

determined by considering Equation 4.6 in the case of the three triangle

vertices. This yields the system of equations:



72 Chapter 4. Motion Compensation using a Triangular Mesh

[ 1 | [ y yp 1 0 0 0 17 ai |
Y1 0 0 0 27 9| 1 as
x xh ¥y 1 0 0 0 as +u
2| _ 2 Yo 3 t (4.7)
Yo 0 0 0 zf vy 1 aq
x3 zh ys 1 0 0 0 as
| Y3 | | 0 0 0 z3 y3 1| | ag+v; |
——
X B a

/

for which the positions of the vertices {(«},y.)} and {(x;, y;)} are known.

Solving for a yields:

a=B!x (4.8)

Motion compensation of any point in the current triangle can then be performed

by substituting the affine motion parameters from a into Equation 4.6.

The above affine motion estimation process does not search the entire subspace
of affine parameters. This is because each triangle vertex is moved individually
within its search region (while the other two vertices are fixed). A full search
involves moving the three vertices simultaneously across the range of possible
positions (within the search radius). However, such a full search can be com-
putationally expensive if a large affine search radius is used. In contrast, the
sub-optimal search (i.e. moving one vertex at a time) is significantly faster, and
was generally found to produce a good estimate of affine motion. A somewhat
more robust sub-optimal affine motion estimation approach involves moving
vertices one, two and three of the triangle, followed by a second perturbation

of vertex one.

When applying motion compensation to a pixel position (which has integer
coordinates), the resulting coordinates in the reference frame are (in general)
non-integer real numbers. In this case, bi-linear interpolation (from the four
neighbouring pixels) is used to estimate the intensity at the desired point in the

reference frame. The use of bi-linear interpolation also enables affine motion



4.5. Results 73

estimation to be performed with sub-pixel accuracy, by allowing non-integer val-
ues for the motion vectors of the three triangle vertices, {(u;,v;) : ¢ € {1,2,3}}

in Equation 4.5.

The affine motion of a particular triangle is described in terms of six parameters.
These can either be the {a,...,as} from Equation 4.6, or the motion vectors
of the three vertices, namely the {(u;,v;) : i € {1,2,3}} from Equation 4.5.
In a practical coding system it is often easier to use the latter, since the three

motion vectors can be specified (or quantised) with equal precision.

Finally, it should be noted that the matrix B! in Equation 4.8 needs to be
calculated only once for each triangle during the motion estimation stage. This
is because the only variables B contains are the coordinates of the triangle in

the current frame, which do not vary.

4.5 Results

The performance of mesh-based motion compensation was evaluated for seven®

test sequences, using both regular and content-based meshes. This section
presents results for the Stefan (CIF) and Football (SIF) sequences, both of
which contain significant amounts of motion and texture information. (Note
that the results shown here are representative of those obtained for the full set

of seven sequences.)
Figures 4.4(a) and 4.5(a) provide results for 31 frames from the Stefan and
Football sequences respectively. Each compensated frame (fn) has been motion

compensated from two original frames ([,,—2 and I,,19) preceding and subse-

quent to it in time.® Tests were performed using a content-based mesh, a regular

5 Namely Flower Garden, Football, Foreman, Stefan, Crowd, Edinburgh and Tennis. The first
four are standard test sequences, while the latter three are proprietary BBC sequences.

5 The distance between the current frame and the two reference frames was chosen as two
frame intervals in either direction. This allows for a reasonable amount of motion between

a frame and its two reference frames.



74 Chapter 4. Motion Compensation using a Triangular Mesh

34

33

32

31

w
o

K

PSNR, dB

29

28

27 —
-O- Content-Based Triangular Mesh, Affine Motion
—#— Regular Triangular Mesh, Affine Motion
8- Regular Blocks, Translational Motion
26 1 1 I I I
25 30 35 40 45 50 55

Frame Number

(a) Luma PSNR values of the motion compensated prediction error. Each (compensated) frame,
fn has been motion compensated from the original frames I,,_2 and I,,4+2. A translation search
radius of +31 pixels and an affine search radius of + 1 pixel were used, both with half-pixel

accuracy. Polygon approximation was applied to regions using dmaz = 4.

400

300

200

100

O 1 1 1 1 1
25 30 35 40 45 50 55

Frame Number

Number of Triangles per Frame

(b) The number of content-based triangles per frame. (For each frame, the number of regular

triangles and blocks was set to be similar to the number of content-based triangles.)

Figure 4.4: Motion compensation of frames 25 to 55 of Stefan



4.5. Results 75

27

26.5

26

25.57~

PSNR, dB

N
(4]

24.5%

24

-O- Content-Based Triangular Mesh, Affine Motion
—*— Regular Triangular Mesh, Affine Motion
8- Regular Blocks, Translational Motion
| |

235 I I I
25 30 35 40 45 50 55

Frame Number

(a) Luma PSNR values of the motion compensated prediction error. Each (compensated) frame,
fn has been motion compensated from the original frames I,,_2 and I,,4+2. A translation search
radius of +63 pixels and an affine search radius of + 3 pixel were used, both with half-pixel

accuracy. Polygon approximation was applied to regions using dmaz = 4.

600

500

400

300 1 1 1
25 30 35 40 45 50 55

Frame Number

Number of Triangles per Frame

(b) The number of content-based triangles per frame. (For each frame, the number of regular

triangles and blocks was set to be similar to the number of content-based triangles.)

Figure 4.5: Motion compensation of frames 25 to 55 of Football



76 Chapter 4. Motion Compensation using a Triangular Mesh

mesh with a similar number of triangles, and traditional block-matching.”

For both of the sequences, it is evident that more accurate motion compen-
sation can be achieved using a content-based mesh, as opposed to a regular
one with a similar number of triangles. In addition, a further gain is possible
through the use of affine motion (compared to purely translational motion).
The resulting improvement in quality depends largely on the type of motion
present (e.g. translation, zoom, rotation) as well as on the accuracy of the

object segmentation.

In the case of Stefan, the average improvement offered by affine motion compen-
sation over purely translational block-matching is 0.4 dB. (Note that this is for
an affine search radius of just £1 pixel at each triangle vertex.) An additional
increase of more than 1.4 dB was obtained through the use of a content-based
mesh (with affine motion compensation). This substantial gain is due to the
tennis player in the foreground being motion compensated separately from the

background region when using a content-based mesh.

The use of regular triangles (or blocks) results in erroneous motion vectors for
those triangles (blocks) spanning both the foreground and background. Fig-
ure 4.6 illustrates this point for frame 51 of the sequence. In Figure 4.6(c),
regular triangular shaped artifacts are particularly visible around the player’s
head. These are very similar to traditional blocking artifacts which occur when
blocks straddle motion boundaries. This is less evident in Figure 4.6(d), where
the content-based structure of the mesh has helped to preserve the player-

background boundary.

In the Football sequence, the advantage offered by affine motion compensation
is more noticeable. A regular triangular mesh (with affine motion) provides an

average gain of more than 0.8 dB over translational block-matching. This can

7 Note that for each frame, the content-based mesh was created first, and following this a
regular mesh with a similar number of triangles was generated. The number of triangles
was also used to determine the (approximate) number of blocks used in block-matching.

Motion vectors were calculated to half-pixel accuracy.



4.5. Results 7

(c) Frame 51 motion compensated (from (d) Frame 51 motion compensated (from
frames 49 and 53) using a regular triangular frames 49 and 53) using the content-based tri-
mesh with 308 triangles. PSNRy = 30.67 dB angular mesh in (b). PSNRy = 33.31 dB

Figure 4.6: Affine motion compensation of frame 51 of Stefan, using a regular

and a content-based mesh.

be ascribed to the camera zoom and object rotation present in the scene, which
can be modelled more accurately using an affine transform. An additional mean

improvement of over 0.6 dB is achieved when using a content-based mesh.

A subjective improvement in quality is also evident in Figure 4.7. When using
a regular triangular mesh, triangle-shaped artifacts are clearly visible, as shown
in the bottom left quarter of Figure 4.7(c). It is evident from Figure 4.7(b) that
the content-based approach results in triangles being clustered more densely in
regions of complex motion, with larger triangles spanning the background. This

allows for more accurate motion compensation, as illustrated in Figure 4.7(d).



78 Chapter 4. Motion Compensation using a Triangular Mesh

}Yfﬂ
o —+——]

N

e
s
R/

A\

0
E;ﬁ‘

|

N

N

N
(e

I éf’\‘k

(¢) Frame 34 motion compensated (from (d) Frame 34 motion compensated (from
frames 32 and 36) using a regular triangular frames 32 and 36) using the content-based tri-
mesh with 494 triangles. PSNRy = 25.47 dB angular mesh in (b). PSNRy = 26.30 dB

Figure 4.7: Affine motion compensation of frame 34 of Football, using a regular

and a content-based mesh.

The use of a content-based mesh as well as an affine model allows for more accu-
rate modelling of motion than regular block matching. However, these methods
do result in an increased overhead. In a practical video coding system, the mesh
design process proposed in this chapter would require the polygon boundaries
to be transmitted to the decoder.® Likewise, specifying the affine motion pa-
rameters for each triangle can be costly. Thus for a fairer comparison, the

rate-distortion behaviour of the various methods would need to be considered.

8 For example, the average cost of encoding the shape information for the 31 frames of Stefan
in Figure 4.4 is fairly low at 0.012 bpp (or 8.2 bits per triangle); In the case of the 31 frames
of Football in Figure 4.5, the average cost of approximating the segmentation map is more

substantial at 0.053 bpp (or 9.1 bits per triangle)



4.6. Conclusion 79

One problem with the proposed mesh-based approach is the triangle genera-
tion process within each polygon-shaped region. As described in Section 4.3.3,
Delaunay triangulation is used to create triangles within each polygon. Thus
the number of triangles within a polygon depends only on the shape of that
polygon. This means that the number of triangles in a mesh can only be con-
trolled by varying d,,q. (or thresholds T and T, although these were set to
fixed values, as described in Section 4.3.2). Two examples of the difficulty in
controlling the number of triangles are shown in Figures 4.4(b) and 4.5(b). In
the case of the Stefan sequence particularly, the number of triangles per frame
varies substantially - between 42 and 378. (Note that each frame was obtained

using polygon approximation with d,.; = 4.)

4.6 Conclusion

Regular triangles (or blocks) can often cover an area occupied by two or more
objects moving relative to one another. In this case, it is not possible to rep-
resent different types of motion accurately with just one set of (translation or
affine) parameters. The method for designing a content-based mesh proposed
in this chapter attempts to prevent this problem by positioning triangles in such
a way that they do not cross motion boundaries. Such a mesh typically has
many small triangles in regions of significant motion, with much larger triangles

covering regions of little or no motion.

The use of a non-connected mesh enables the motion parameters for each tri-
angle to be calculated independently of other triangles, and thus allows for
easy comparison with a regular mesh or a block-based approach. However, one
idea worth consideration is using a connected mesh within each polygon-shaped
region. This may lead to improved subjective quality by ensuring continuous
motion within each object, while reducing the cost of encoding the motion pa-
rameters. Additional gains are also likely if a mesh is allowed to evolve from
one frame to the next (instead of being coded separately for each frame). This
should allow a significant reduction in the number of bits required to encode a

mesh’s structure across a group of frames.



80 Chapter 4. Motion Compensation using a Triangular Mesh

The results reported above demonstrate that the use of a content-based trian-
gular mesh for affine motion compensation provides some advantages over tra-
ditional block-based methods. When using the same number of triangles/blocks
per frame, the resulting improvement in image quality was demonstrated both
objectively and subjectively for two test sequences with significant amounts of
motion. However, it is important to consider the overhead involved in coding
the shape information. Thus if the proposed mesh-based motion compensation
method is to be considered for use in a video codec, its performance against
regular block matching should be measured at the same overall rate - taking

both shape and motion information into account.

One problem with the mesh-based motion compensation approach presented in
this chapter is that it is difficult to control the number of triangles in the mesh.
The number of triangles depends on the number and shape of regions in the
segmentation map, as well as the polygon approximation parameter, d;,q,. The
number and shape of regions are in turn dependent upon the scene content as
well as the parameters 77 and T (which were set to fixed values). Allowing
some variation in these two thresholds would enable greater scalability and
control over the segmentation process, although their precise effect would need
to be further investigated for a variety of different sequences. Using the d,,q.
parameter for direct control of the number of triangles in the mesh is fairly
crude, as was shown to be the case for the Stefan sequence (Figure 4.4(b)).
The problem with a large variation in the number of triangles per frame is that
there is a corresponding effect on the number of motion parameters to be coded.
From a rate-distortion point of view, the density of triangles within a region
should be proportional to the complexity of motion within the region, rather

than being dependent on the object’s shape.

The next chapter discusses a motion compensation method which attempts to
address this issue. Rather than making the number of triangles dependent on
an object’s shape, a block-based scheme is used in which the number of blocks

within a region is proportional to the motion compensation error for that region.



Chapter 5

Motion Compensation using

Region-Based Block Matching

5.1 Introduction

Block matching methods for motion estimation are fast, easy-to-implement, and
provide reasonable results across a wide range of sequences. They also have
the advantage of combining well with block-based techniques for the coding of

residuals, such as the Discrete Cosine Transform.

In general though, block boundaries do not coincide with motion boundaries,
which means that a block may contain regions corresponding to more than one
type of motion. This makes compensating for motion in such a block a difficult
task. Another characteristic of traditional fixed-size block matching (FSBM) is
that the block size is constant. However, it seems more intuitive to allow larger
blocks in regions of uniform motion, and smaller blocks where there is more

complex motion.

Variable-size block matching (VSBM) allows large blocks in areas of complex

motion to be split into smaller blocks (quad-tree partitioning is normally used).

Some material in this chapter is based on the author’s previously published work [101].

81



82 Chapter 5. Motion Compensation using Region-Based Block Matching

This chapter describes a region-based approach to block matching, in which the

size of blocks varies from one region to the next.

A frame is first segmented into regions of approximately homogeneous motion
(relative to one or two reference frames). Following this, a rectangular grid of
blocks is generated within each region, with the size of the blocks in a region
being inversely proportional to the mean square error (after motion compen-
sation). Finally, motion estimation is performed in order to determine the

translational and affine motion parameters for each block.

5.2 Related Work

In recent years, VSBM has gained in popularity over FSBM, and as a result
of its superior rate-distortion performance, it has been incorporated into the
H.264/AVC video coding standard. The use of variable-size blocks allows for
greater adaptivity to local scene content. In a similar way, region-based methods
enable objects in a scene to be coded independently of one another. This section

provides a brief review of region-based block matching methods.!

e The MPEG-4 video coding standard [35] populates each Video Object
Plane (VOP) with a regular grid of 16 x 16 macro-blocks. (When using
the advanced prediction mode matching is performed using four 8 x 8
blocks per macro-block.) FSBM is used to determine the motion vector(s)
for each block. Blocks along the boundary of a VOP usually contain
some pixels outside the region. In this case, matching is performed using
only those pixels inside the object mask. (Note that object segmentation
and coding of any shape information is performed prior to the motion

estimation stage.)

e Martin et al [63, 79] consider the use of variable-size blocks when estimat-
ing the motion within a region. They show that a quad-tree implemen-

tation of VSBM can lead to improved motion compensation, particularly

L A more general summary of FSBM and VSBM methods is provided in Section 6.2.



5.2. Related Work 83

around the edges of objects. However, they also describe how VSBM pro-
vides little gain for certain objects undergoing complex motion.? They
therefore propose a modified version which allows each set of four sibling
nodes in a quad-tree to be merged in 14 possible ways (rather than being
limited to just the one possible four-to-one merge in VSBM). This modi-
fied merging process enables the creation of non-square regions, which in
turn helps to reduce the number of motion vectors required for motion

compensation.

e Zhang et al [124, 125] describe how a quad-tree structure can be used
to partition a frame into regions with different motion characteristics.
Starting with the smallest possible blocks in the quad-tree, sibling blocks
are merged in a way that optimises the rate-distortion performance. In
addition to the standard four-to-one merging of four sibling blocks, an
additional ten possible merging patterns are possible. A coding tech-
nique is used whereby regions with the same motion vector are combined,
thus reducing the number of motion vectors to be coded. The proposed
Region-Wise Motion Compensation (RWMC) method also incorporates
the coding of motion vectors using temporal prediction from previously
coded frames. Results demonstrate that RWMC out-performs VSBM on
a variety of sequences.> RWMC achieves most of its gains by merging
large background areas that can be motion compensated with a common

motion vector.

2 When a region undergoes complex motion, it is likely that small blocks will be used through-
out the region. Consequently, a significant number of bits are then spent coding the quad-
tree. This negates much of the advantage of VSBM, which is most effective when the

optimal block size varies across the region/frame.

3 This advantage is perhaps exaggerated by the fact that the implementation of VSBM used

in testing does not use predictive coding of motion vectors.



84 Chapter 5. Motion Compensation using Region-Based Block Matching

5.3 Region Segmentation

From a motion compensation (and video coding) perspective, it is more ad-
vantageous to split regions along motion boundaries than spatial ones, since a
scene can then be partitioned into regions of homogeneous motion. However,
motion boundaries are often difficult to determine precisely, so spatial segmen-
tation can be used to provide a good starting point, particularly since spatial

and motion boundaries often coincide.

5.3.1 Initial Segmentation and Error Surfaces

An initial spatial segmentation is obtained using JSEG [16, 17]. This segmen-
tation process is performed on a single frame and does not take any motion
information into account. In order to consider the motion characteristics of
each region, an error surface E,. (u,v) is calculated. This is defined as the sum
squared error (SSE) when region number r is motion compensated by trans-
lating the corresponding region in reference frame number f a distance (u,v)
within a search window. Note that the translation is performed at integer pixel

accuracy.

Equation 5.1 shows the formula for calculating the SSE between the current
frame, I, and a reference frame, I, for all points (z,y) in the region.
E.f(uo)= > [y —Ifz+uy+o)] (5.1)
(z,y) € Region,.
For each region, the translational motion vector can be determined by finding
the pair (u,v) that minimises E, ¢(u,v). Note that if two reference frames are
used (e.g. one past and one future), then two error surfaces per region need to

be calculated. Figure 5.1 shows a frame segmented into three regions, and the

error surfaces for each region.

In the previous chapter, the method adopted for estimating the motion char-
acteristics of each region was to calculate the optical flow for the current frame

(relative to a reference frame). Using the optical flow, it was then possible to



5.3. Region Segmentation 85

N

Erz EACAY) Er2 1(uV)

z

Region 2

Figure 5.1: An example of a frame segmented into three regions. For each

region, two translation error surfaces are shown. E,. 7, (u,v) represents the error
surfaces calculated relative to the preceding reference frame, while E, r, (u,v)
shows the error surfaces corresponding to the subsequent reference frame. Areas

of low error are shaded in blue, while higher errors are coloured red.

determine the mean and variance of motion within each region. In contrast, the
error-surface approach outlined above reveals how well a region in the current
frame matches translated versions of that region in the reference frame(s). One
advantage of the latter method is that in addition to providing the optimal
(pixel-accurate, translational) motion vector for each region, it also yields a
measure (i.e. the SSE) of how effective this motion vector is in minimising the

displaced frame difference (DFD) for a region.

5.3.2 Region Splitting

The error surface(s) calculated for each can be used to determine if the region
should be segmented further. For a region r, the minimum SSE, Epn(r), is
defined as the smallest value of E, y(u,v) across the range of possible trans-
lations and reference frames. Assuming two reference frames, f4 and fz, the

minimum SSE is calculated as

Erin(r) = min {min(E, t,), min(E, t,)} (5.2)



86 Chapter 5. Motion Compensation using Region-Based Block Matching

If a region corresponds to an area of homogeneous (translational) motion, then
its minimum SSE will be relatively low. Using this principle, the next stage
in the segmentation process is as follows: Segment the region with the largest
value of E,;n(r) further, and repeat the process until either all regions have
an acceptable minimum SSE, or a maximum number of regions is reached. It
was found experimentally that a reasonable threshold value for E,,;,(r) varied
significantly from one sequence to next. As a simple rule-of-thumb, it was

therefore decided to perform region splitting a total of 50 times.*

It should be noted that large regions are more likely to have a large SSE value,
since this metric is based on the total (and not the mean) square error. As a
result, some very large regions may end up being segmented even if their motion
is relatively uniform.’> The reason that the SSE rather than the MSE is used
as a criterion for splitting regions, is that using the latter measure can lead to

small regions with complex motion being over-segmented.

Several methods were considered for splitting already-segmented regions: For
example, it is possible to use the motion-compensation error as a guide to
determining motion discontinuities. However, it was generally found to be as

effective to use JSEG to further split a region.

5.3.3 Region Merging

Following this splitting process, regions are considered for merging by compar-
ing their joint motion compensation error. Two neighbouring regions (r; and

rj) are assumed to have similar motion (and can thus be merged) if:

3 fo such that min(E,, ;) < min(E,, f)

and min(E., 5,) < min(E. ) Vref frames f (5.3)

4 Tt was found empirically that partitioning more than 50 times was unnecessary, since these
extra regions would almost always be re-joined during the merging stage.

5 However, as is explained in the next section, regions with similar motion characteristics

can be re-merged.



5.4. Variable-Size Block Generation 87

and

min(En,fo + ETj,fo) = min(Enwfo) + min(ETj,fo) (5.4)

In order to satisfy Equation 5.3, the same reference frame (fy) must result in
the minimum motion compensation error for both of the neighbouring regions.%
Equation 5.4 requires that the additional error resulting from merging these
two regions must be zero. Together, these two equations imply that the (pixel-

accurate) translational motion vectors of the joint region and the two individual

regions will be identical.

It is worth noting that the SSE of two merged regions is equal to the sum of
their two individual SSE’s, in other words E.. ) r = Ey, r+E; ¢. This allows
for a new error surface to be calculated in a simple and fast way from those of

its constituent regions (as is the case on the left hand side of Equation 5.4).

The process of merging regions helps to ensure that there are no unnecessary
boundaries between areas with similar motion characteristics. This decreases
the number of regions in the segmentation map and consequently reduces the

cost of coding the region boundary information.

5.4 Variable-Size Block Generation

After splitting and merging, the segmented regions are approximated by poly-
gons in order to allow the shape information to be encoded efficiently. The
progressive polygon coding method described in Chapter 3 is used to achieve
this. Figure 5.2(a) shows an example of regions approximated by polygons for a
frame from the Foreman sequence. There is a tradeoff between the accuracy of
the polygon approximation and the overhead required to encode the shape infor-
mation. A value of d,,., = 8 was found to provide a reasonable compromise for
the (CIF resolution) sequences tested. This allows the polygon-approximated
boundary of a region to vary by a distance of up to eight pixels from the actual

boundary.

6 If only one reference frame is available, then the fo in Equation 5.3 is this reference frame.



88 Chapter 5. Motion Compensation using Region-Based Block Matching

//

el

,AV
/J'I'AI!

L~

T

7-'

TR0 [ ]
O R EnmmuNy
e e

4

RN l
==E‘.!'-!.k= 1

o T |

b) A grid of blocks is generated within each region

Figure 5.2: Generation of region-based variable-size blocks



5.4. Variable-Size Block Generation 89

Within each region, a square grid of blocks is generated. It seems reasonable
that the size of blocks in different regions should vary according to the type
of motion within each region. In this way, regions with fairly complex motion
can be populated by relatively small blocks, while large blocks can span regions
of more or less uniform motion. This process allows the allocation of more
resources (i.e. motion vectors) to those parts of the picture where they are

most needed.

Using the above principle, the number of blocks in a region is chosen to be
proportional to the minimum SSE, E,,;,(r), for that region. This ensures that
regions with a relatively large mean square error (after translational motion
compensation of the regions) are populated by smaller blocks, as illustrated in
Figure 5.2(b). The size of blocks within a region, r, is set to Sg(r) x Sg(r),

where Sp(r) is given by:

Ng

AW S (5.5)
1

Sp(r) = Np Epin(r)

where A(r) is the size of region r, Ni the number of regions in the frame, and

Np the target number of blocks for the frame.

Upper and lower limits are placed on Sg(r). A maximum block size of 64 x 64
is permitted, so as to restrict large-scale blocking artifacts. In addition, a
minimum block size of 4 x 4 is allowed, in order to prevent spurious matching
and to limit the relatively high motion-vector overhead associated with small

blocks.

As can be seen in Figure 5.2(b), there are many blocks which lie along the
boundary of a region, and as a result are non-square. Some of these non-square
blocks can be very small in size (relative to other blocks in their region). Thus,
in order to limit the number of small non-square blocks, some’ of these blocks

on the edge of a region are merged with a neighbouring block in the same region.

" In region 7, edge blocks that have an area less than £Sp(r) x Sp(r) are combined with a

neighbouring block in the same region.



90 Chapter 5. Motion Compensation using Region-Based Block Matching

In addition to coding the segmentation map, the size of blocks in each region
needs to be transmitted to the decoder. This can be done very efficiently, since

it requires less than six bits per region to encode the value of Sg(r).

5.5 Motion Estimation

Motion estimation is performed in two stages for each block. First, a translation
motion vector is estimated using traditional block matching,® as illustrated in
Figure 5.3(a). This is followed by estimating the six affine motion parameters
for each block. The advantage of affine motion compensation is that it allows

rotation, zooming and shearing to be represented as well [97].

In order to estimate the affine motion of a block, an equilateral triangle is posi-
tioned around the centroid of the block in the current frame (and the centroid
of the translated block in the reference frame). The distance from the centroid
to each of the three vertices is Sg(r), where Sp(r) x Sg(r) is the area of blocks
in that region. An affine search is performed using a similar method to that
described in Section 4.4.2, except that matching is applied to the block as a
whole (and not just the triangular area at its centre). The procedure for affine

motion estimation is illustrated in Figure 5.3 and outlined below:

e For each of the three triangle vertices in the current frame, {(z},y}) : i €
{1,2,3}}, the corresponding vertices in the reference frame, {(x;,y;)} are

related according to the equation:

=| 7|+ | (5.6)

Yi Y; Ut ()
where (ug,v;) is the (optimal) translation motion vector calculated dur-
ing the previous stage, and {(u;,v;) : @ € {1,2,3}} are the additional

displacements of the three triangle vertices in the reference frame.

8 The translation motion vector for the region containing a block provides a good starting

point when estimating the motion of that block.



5.5. Motion Estimation 91

(uy,vy)

(ug,vy)

(U3xV3)

()

(b)

(a) The green (shaded) area shows a block within the current frame. The blue
(unshaded) square represents the position of the best matching block in the reference
frame, assuming translational motion only.

(b) For each block, affine motion is estimated by positioning an equilateral triangle
around the centroid of the block. Each vertex is then perturbed within a small search
area (shaded grey) in order to find the affine motion parameters which result in the
smallest error.

(c) The red (thick) block shows the position of the best matching block found in the
reference frame, determined using affine motion estimation. The three affine motion

vectors are also indicated.

Figure 5.3: Translation and Affine Motion Estimation



92 Chapter 5. Motion Compensation using Region-Based Block Matching

e During the affine motion estimation stage, (u;, v;) is varied within a small
search range for each of the three triangle nodes. Note that consequently
{(xi,y:)} is known for each such variation. This is because {(z},y})}
and (u,v;) are constant for each triangle (block), the latter having been

determined during the translation estimation stage.

e In general, for a pixel (z/,y') in a block in the current frame, the corre-

sponding point (z,y) in the reference frame is given by the affine trans-

form:
l,/
x ar as as -+ ug
= y' (5.7)
Yy as as Qg+ vt
where {ai,...,a6} are the six affine motion parameters. These can be

determined by considering Equation 5.7 in the case of the three triangle

vertices. This yields the system of equations:

x1 vy 1.0 0 0 a
Y1 0 0 0 27 9| 1 as
x xh ¥y 1 0 0 0 as +u
2 _ 2 Yo 3 t (5. 8)
Yo 0 0 0 zf vy 1 aq
x3 zh ys 1 0 0 0 as
| Y3 | | 0 0 0 23 y3 1] | ag+v; |
——
X B a

for which the positions of the vertices {(x;,y;)} and {(«%,y.)} are known.

Solving for a yields:

a=B"!x (5.9)

In the case of a full search, each of the triangle vertices should be warped
simultaneously. However this is computationally expensive. A faster, sub-
optimal approach (which still provides good results) is to perturb each vertex
in turn, while keeping the other two fixed. As in the case of mesh-based affine

motion estimation, it was found that a good compromise can be achieved by



5.6. Results 93

warping each of the three vertices in turn, followed by a final refinement of the

first vertex.

For each block, the translation motion estimation stage yields a motion vector
pair plus a flag indicating which reference frame results in a smaller error. The
affine motion estimation stage provides an additional three motion vector pairs
- one per triangle vertex. In general, the translation search radius is much larger

than the affine search radius.

5.6 Results

The performance of the proposed region-based VSBM method was tested on
seven? test sequences, using both regular and content-based blocks. This sec-
tion presents results for the Stefan (CIF) and Foreman (CIF) sequences, both
of which contain significant motion. (Note that the results shown here are

representative of those obtained for the full set of seven sequences.)

Regular and variable-size blocks were used, and both translation and affine
motion compensation were performed. For both of the sequences, each (com-
pensated) frame, fn, was motion compensated from the original frames I, o
and I,1o. A translation search radius of £31 pixels, and an affine search radius
of 3 pixels were used, both with half-pixel accuracy. The number of blocks per
frame (Np in Equation 5.5) was chosen as 396, which is equivalent to 16 x 16

blocks.

Figure 5.4(a) presents the results obtained from 40 frames of the Stefan se-
quence. It can be seen that the use of content-based blocks offers a mean
improvement in quality of more than 1.3 dB, when compared to regular block
matching with the same number of blocks. Using affine motion compensation

for each block provides an additional average gain of almost 1 dB.

9 Namely Flower Garden, Football, Foreman, Stefan, Crowd, Edinburgh and Tennis. The first

four are standard test sequences, while the latter three are proprietary BBC sequences.



94 Chapter 5. Motion Compensation using Region-Based Block Matching

Luminance PSNR [dB]

28 -
—O— Content—Based Blocks, Affine Motion
—#— Content—Based Blocks, Translational Motion
€ Regular Blocks, Translational Motion

27 I I I T T T T

40 45 50 55 60 65 70 75 80
Frame Number
(a) Motion compensation of frames 40 to 80 of Stefan (CIF resolution)
40

Luminance PSNR [dB]

/
33% b = Piul = -
\ O
/
H
32 —O— Content—-Based Blocks, Affine Motion Il
—#— Content-Based Blocks, Translational Motion
- Regular Blocks, Translational Motion
31 I I I T T T T
10 15 20 25 30 35 40 45 50

Frame Number

(b) Motion compensation of frames 10 to 50 of Foreman (CIF resolution)

Figure 5.4: Mesh generation using polygon approximation and triangulation



5.6. Results 95

(a) Original frame. (b) Translational motion compensation using

regular blocks; PSNRy = 30.46 dB

(c¢) Translational motion compensation using (d) Affine motion compensation using
variable-size content-based blocks; PSNRy = variable-size content-based blocks; PSNRy =
33.22 dB 33.93 dB

Figure 5.5: Frame 52 of the (CIF-resolution) Stefan sequence, motion compen-

sated from frames 50 and 54 (using 396 blocks).

Similar results were obtained for the 40 frames of the Foreman sequence pre-
sented in figure 5.4(b). The graph shows that the use of region-based variable-
size blocks provides an average increase of 1 dB (and affine motion an additional

1.2 dB) over fixed-size translational block matching.

As a guide to subjective performance, a frame from Stefan is shown in Figure
5.5 after having been motion compensated. Traditional blocking artifacts are
clearly visible in Figure 5.5(b), particularly around the player’s legs, as well

as along the right-hand edge of the frame. When using region-based VSBM,



96 Chapter 5. Motion Compensation using Region-Based Block Matching

(a) Original frame. (b) Translational motion compensation using

regular blocks; PSNRy = 35.35 dB

‘ e

(c¢) Translational motion compensation using (d) Affine motion compensation using

variable-size content-based blocks; PSNRy = wvariable-size content-based blocks; PSNRy =
35.87 dB 37.30 dB
Figure 5.6: Frame 41 of the (CIF-resolution) Foreman sequence, motion com-

pensated from frames 39 and 43 (using 396 blocks).

the boundary between the player and the background is preserved much more
accurately, though there is some distortion present on the left of the player’s
head (see Figure 5.5(c)). The additional use of affine motion compensation

helps to reduce this error somewhat, as can be seen in Figure 5.5(d).

Motion compensation results for a frame from Foreman are shown in Figure
5.6. The artifacts due to regular (fixed size) block matching are clearly evident
around the mouth in Figure 5.6(b). Blocking artifacts are much less noticeable

in Figure 5.6(c), which shows the results when region-based variable-size blocks



5.7. Conclusion 97

are used. Upon closer examination, distortion is still visible at block boundaries,
though on a much smaller scale. It can be seen (in Figure 5.6(d)) that the use
of affine motion compensation results in a smoother reconstruction since actual
motion can be represented more accurately. The slight discolouration around
the bottom of the lower lip in 5.6(c) and 5.6(d) is probably due the fact that

only the luma component was used when performing block matching.

From a video coding point of view, there is clearly an overhead associated with
encoding the polygon shape and block size information. Likewise, there is a
cost of specifying the affine motion parameters. For the forty frames of Stefan
and Foreman, the overhead of coding the region shape was on average 0.019
and 0.020 bits per pixel, respectively. (This shape information was coded using

the progressive polygon approximation method described in Chapter 3.)

5.7 Conclusion

The results presented in this chapter demonstrate the improvement in quality
offered by the use of region-based variable-size blocks (over regular blocks)
and affine motion (as opposed to purely translational motion) when performing

motion compensation.

Region-based variable-size blocks offer two advantages: First, blocks do not
straddle motion boundaries, since they are confined to regions of (approxi-
mately) homogeneous motion. This reduces blocking artifacts by allowing for
more accurate motion compensation. Secondly, block size is varied from one
region to another so that regions with complex motion tend to have smaller
blocks. In this way, resources (motion vectors) are allocated to different regions
according to their need, which helps to reduce the overall motion compensa-
tion error. In addition, the use of affine parameters allows for a more realistic
modelling of motion. Nevertheless, it is important to consider the overhead in-
volved in coding the region shape or the additional affine parameters. For a fair
comparison, one should compare the performance of the region-based method

to regular block matching at the same overall bit-rate.



98 Chapter 5. Motion Compensation using Region-Based Block Matching

In contrast to the mesh-based approach presented in Chapter 4, the region-
based method described in this chapter enables the number of blocks (and
motion vectors) per frame to be controlled precisely. This is a significant ad-
vantage when trying to achieve a rate-distortion optimisation of the motion

compensation process (for a given segmentation map).

Despite this improvement, the spatio-temporal segmentation process allows lit-
tle control over the number and shape of regions. This can be a problem
when considering the use of region-based variable-size block matching in a rate-
distortion optimised video codec. When used for video coding, region-based
block matching needs to be incorporated within an optimal rate-distortion
framework, to ensure that cost of specifying region shape and block size is

offset by an improvement in quality.

If a segmentation map contains only a few regions, then it will not require many
bits to code this information, but it is unlikely to provide much of an advantage
over regular block matching. Conversely, if a frame is over-segmented, then it
will enable good localisation of motion, but at the expense of spending a large

number of bits on coding the segmentation map.

The next chapter considers an approach to overcoming this problem by com-
bining the segmentation and block generation processes. By coupling these two
stages, it becomes easier to incorporate rate-distortion optimisation into the

process.



Chapter 6

Motion Compensation using a

Binary Partition Tree of Blocks

6.1 Introduction

Motion compensation techniques are an important part of almost all video
codecs since they provide an effective way of exploiting the temporal redundancy

between frames in an image sequence.

Traditionally, Fixed-Size Block Matching (FSBM) has been used to determine
the motion of each block in the current frame relative to the reference frame(s).
In recent years, Variable-Size Block Matching (VSBM) has gained in popularity,
since it enables the size and shape of blocks to adapt (to a limited degree) to
scene content. Most VSBM implementations generate either a binary-tree or
a quad-tree of blocks, with smaller blocks predominating in areas of complex

motion.

This chapter describes a VSBM approach which allows the binary splitting of
blocks. However, blocks are not necessarily split into two equal halves. Instead,
blocks are split along the horizontal or vertical line that achieves the maximum

reduction in motion compensation error. This allows for partitioning a scene

Some material in this chapter is based on the author’s previously published work [104].

99



100 Chapter 6. Motion Compensation using a Binary Partition Tree of Blocks

along motion boundaries, which enables effective motion compensation using
relatively few blocks. As a result, significant gains in rate-distortion perfor-

mance are possible.

6.2 Related Work

6.2.1 Fixed-Size Block Matching

Block matching using fixed-size blocks has been arguably the most popular
motion estimation technique for more than two decades. It is an important
component in several video coding standards, including MPEG-1 and MPEG-

2, in which 16 x 16 macro-blocks are commonly used.!

e Jain and Jain [41] were the first to propose the use of blocks for motion
estimation. Their method involves dividing a frame into a grid of (nor-
mally square) blocks. For a range of possible motion vectors (within some
search radius), a block’s best match is found by matching the pixels in
the block with the corresponding translated pixels in a reference frame.
The metric used when determining the best match is typically either the

sum of absolute error (SAE) or the sum of squared error (SSE).

e Ever since block matching was first proposed, there has been a substan-
tial research effort into speeding up the search process when performing
motion estimation. Another popular focus of research is estimating and
compensating for motion at sub-pirel accuracy. For more information on
these topics, the reader is referred to review papers on motion estimation

[19, 109].

e Seferidis and Ghanbari [97] discuss the use of generalised block matching.

They allow blocks to undergo a projective transform in order to model

! Note that block matching is usually performed using the 16 x 16 luma component of each

macro-block.



6.2. Related Work 101

complex motion. As a result, matching is improved, although the infor-
mation overhead increases due to the additional motion parameters. (A
total of four motion vectors are required per block.) Despite the addi-
tional overhead, generalised block matching has been shown to provide
superior rate-distortion performance when compared to standard transla-
tional block matching. However, there is an increased computational cost

due to the process of searching for the additional motion parameters.

e Ribas-Corbera and Neuhoff [89] investigate the impact of block size on
the effectiveness of block matching. Small blocks provide the advantage
of allowing complex motion to be represented. However, this leads to an
increase in the number of motion vectors - and consequently the motion
vector bit-rate. This in turn reduces the number of bits available for
coding the displaced frame difference (assuming a fixed bit budget). The
optimal block size is shown to be dependent on several factors, in partic-
ular: motion vector precision, texture, inter-frame noise, and the type of

motion present in the scene.

6.2.2 Variable-Size Block Matching

The use of VSBM allows for the size of blocks to adapt to scene content within
small areas of an image. A variety of implementations of VSBM are possible,

and several selected methods are outlined briefly below.

e Puri et al [86] describe a simple VSBM technique. Motion compensation
is initially performed using a grid of 8 x 8 blocks. Those blocks that are
deemed to have a poor match in the reference frame are partitioned into
four 4 x 4 blocks, for which matching is performed. Even with only two

possible block sizes, this method demonstrates advantages over FSBM.

e Chan et al [9] propose another top-down approach to VSBM. If a block’s
motion compensation error is large, then it split (horizontally or ver-

tically) into two new rectangular blocks. These blocks are partitioned



102 Chapter 6. Motion Compensation using a Binary Partition Tree of Blocks

further if their motion compensation error remains high, and the process
is repeated. This results in a binary tree of blocks, with smaller blocks
being present in areas of complex motion. The leaf blocks of the binary
tree are pruned in cases where splitting does not achieve any reduction
in motion compensation error. This VSBM technique demonstrates sig-
nificant gains over traditional block matching, at the price of increased

encoder complexity.

e Sullivan and Baker [111, 112] describe how VSBM can be incorporated
into a rate-distortion framework. Using a quad-tree block partitioning
approach, they consider the reduction in error achieved by splitting a
block, and also take into account the additional cost of coding the motion

vector information for the new blocks.

e Seferidis and Ghanbari [98] extend generalised block matching to variable-
size blocks. Using a quad-tree that allows block sizes from 32 x 32 down
to 8 x 8, they demonstrate that the use of an eight-parameter projective
motion model provides an improvement in rate-distortion performance.
This gain was found to be most noticeable in the case of small blocks

subject to complex (non-translational) motion.

e Kim and Lee [45, 46] discuss a hierarchical approach to VSBM. At each
level of the quad-tree hierarchy, a block’s motion vector is only coded
if it differs significantly from that of its parent block. This hierarchical
method allows for decisions on the coding of block motion vectors to be

based on optimising rate-distortion performance.

e Zhang et al [126] describe the use of quad-tree VSBM in combination
with a motion boundary segmentation method. The segmentation can be
applied to each (variable size) block. It allows for each block to be split
in two using a straight line of any orientation and position. Each half
of the block can then be assigned its own motion vector. Using such a
segmentation approach allows for motion boundaries to be approximated

with straight lines, thus helping to ensure that each block represents an



6.2. Related Work 103

area of homogeneous motion. In terms of rate-distortion performance,
the proposed method is superior to FSBM, but slightly inferior to regular
VSBM. However, Zhang et al report that in terms of subjective picture
quality, their method is superior to standard VSBM, when compared at

the same rate.

e Chang et al [10] propose a variant of VSBM. Instead of allowing a block to
be split into four equal-size child blocks (as in a quad-tree), all 14 possible
combinations of these four blocks are possible. As a result, the partition
tree can also comprise rectangular and L-shaped regions. This leads to
a slightly increased overhead, since the type of partition at each node in
the tree must be coded. However, because of the increased versatility
of region shape, fewer motion vectors are required at each level in the
partition tree. The proposed dynamic-shaped block matching method is
demonstrated to provide superior rate-distortion performance to FSBM
and both top-down and bottom-up implementations of VSBM, for “head

and shoulder” type sequences.

e Rhee et al [88] consider two approaches to quad-tree VSBM. In particular,
they focus on minimising the motion compensated prediction error for a
given number of blocks (rather than for a given rate constraint). The first
method (which is computationally expensive) uses dynamic programming
in order to achieve the optimal quad-tree partitioning for the target num-
ber of blocks. The second technique determines a number of candidate
motion vectors for each of the (fixed-size) smallest possible blocks. A
bottom-up merging process is then used to repeatedly merge sets of four
blocks that share a common parent and at least one common candidate
motion vector. This approach is computationally much more efficient
than the first (optimal) method, and suffers from only a relatively small

loss in quality.

As demonstrated by the above methods, VSBM offers superior motion compen-

sation performance over FSBM at the same overall rate, though at the price



104 Chapter 6. Motion Compensation using a Binary Partition Tree of Blocks

of greater complexity. As discussed in Section 2.7, the advantages offered by
VSBM resulted in it being incorporated into a number of video coding stan-
dards. The H.263 and MPEG-4 coding standards were the first to allow variable
size blocks (16 x 16 or 8 x 8). In addition, H.264/AVC provides several different

macro-block partitioning modes, ranging from 16 x 16 to 4 x 4 blocks.

6.3 Motion Compensation Error Surfaces

In traditional block matching, the goal is to minimise the error between a block
in the current frame and a displaced block in the reference frame. The distortion
is usually measured in terms of either the sum of absolute error (SAE) or the
sum of squared error (SSE). In effect, motion estimation amounts to finding
the location of the minimum value on the error surface. Because they will
prove useful later (in Sections 6.4 and 6.5), the process of generating motion

compensation error surfaces is discussed below in more detail.

For each block, an error surface Ep s(u,v) is calculated, i.e. the SSE when
block number b is motion compensated by translating the corresponding block
in reference frame number f a distance (u,v). For all points (z,y) in block b,
the SSE between the current frame, I, and a reference frame, Iy, is calculated

according to the equation:

Ep f(u,v) = > @y - (@ +u,y + )] (6.1)

(z,y) € Block b
For a given block, the translational motion vector (measured to pixel accuracy)
can be found by determining the vector (u,v) that minimises Ep f(u,v). If
required, sub-pixel motion can be estimated — either by performing matching
(using interpolated pixel values at non-integer positions) or by interpolating the

location of the minimum value on the error surface.

In general, it is possible to use multiple reference frames for block matching.
For each block, it is necessary to calculate one error surface per reference frame.

Figure 6.1 shows the position of a block in the current frame, as well as two



6.4. Block Partitioning 105

Past Ref. Frame fa Current Frame Future Ref. Frame f;

Search Area \ / Block b \ / Search Area

Figure 6.1: Generating motion compensation error surfaces using block match-

ing (relative to the two reference frames)

typical error surfaces obtained when performing matching using two reference
frames. In the remainder of the discussion in this chapter, it is assumed (for
simplification purposes) that two reference frames are available, however the

approach can easily be generalised to allow more reference frames.

6.4 Block Partitioning

When a block contains regions with different motion characteristics, it is difficult
to represent the motion accurately using just one motion vector. It is therefore
desirable to partition the block into child blocks in such a way that the child
blocks contain regions of homogeneous motion. Nevertheless, deciding on how
(and where) to split a block can be a very complex process, since searching
the space of all possible partitions would be computationally expensive. It was
therefore decided to adopt a simple approach to block partitioning, as discussed

below.



106 Chapter 6. Motion Compensation using a Binary Partition Tree of Blocks

Binary partitioning is used, which allows for a block to be split into two chil-
dren. This is not a significant constraint, since these children can themselves
be divided into two at a later stage. In order to simplify the partitioning pro-
cess, straight horizontal or vertical lines are used to divide a block into two.
While other forms of splitting (e.g. using diagonal or curved lines) may some-
times be more appropriate (in terms of fitting motion boundaries), the use of
straight lines for block partitioning makes the process manageable. (If there
are fewer options available for splitting, the range of options can be searched
more quickly and also coded more efficiently.) One further simplification is to
only allow partitioning of the larger dimension of a block. Thus if a block has
width > height, it is split by a vertical line, otherwise it is partitioned using a

horizontal line.

Given the above constraints on permissible block partitions, the goal is to select
the partition which allows for the maximum reduction in motion compensation
error. The process for determining the optimal partition for a block of height h
pixels and width w pixels is outlined below and accompanied by an illustration

in Figure 6.2.

e Divide the block into long thin (non-overlapping) strips that are one pixel
thick. If w > h then there are w strips of size 1 x h orientated vertically,
and if h > w then there are h strips of size w x 1 orientated horizontally.

Let N = maz(w, h) be the number of strips.

e For each strip, s;, calculate its two error surfaces as shown in Section
6.3: Eg, 7, (u,v) and Eg, ¢, (u,v), where f4 and fz are the two reference

frames.

e Consider a partition between strips s, and s, that divides the block into
two sets of strips. Then the fist half comprises the set C1(n) = {s1, ..., sn},

and the second half consists of the set of strips Ca(n) = {sp+1,..., SN}

e Error surfaces can then be calculated for each of the two halves by simply



6.4. Block Partitioning 107

Cy(n)

h . Cy(n)

E,(n)
E,(N)

Figure 6.2: Partitioning blocks using error minimisation

adding the error surfaces of their constituent strips:

Ecy(n),f(u,v) = ZEsi,f(U,U) and

Si:1

N
Ec,(n).f(u,v) = Z Eq, ;(u,v) (6.2)
s;i=n-+1

e Then the total minimum SSE for the block when partitioning it between

strips s, and s,41 is given by:

Ey(n) = min{min(Ec’l(”)va)’min(ECl(”)va)}+

min {min(Ecz(")va)’ min(ECQ(n)va)} (6.3)

The optimal partition point is given by n/, the value of n that minimises E,(n)
(with 1 < n < N). If E,(n) is constant for all n, then n’ is assigned a value
of [N/2|. In the worst case scenario, E,(n’) will equal the original minimum
SSE of the block (in which case the block is simply split down the middle).

However, if the motion in the block is non-uniform, E,(n’) will typically have



108 Chapter 6. Motion Compensation using a Binary Partition Tree of Blocks

a value less than the original minimum SSE. This means that splitting the
block into two child blocks Cj(n’) and Ca(n') will generally yield a reduction

in motion compensation error.

6.5 Generating a Binary Partition Tree

The previous section described the process for splitting individual blocks based
on minimising motion compensation error. This can be applied iteratively to
an entire image in order to generate a block structure that allows for effective

motion compensation using relatively few blocks.

Block partitions are represented using a binary partition tree, that indicates
which blocks are split and the location of these partitions within each block.
The strategy used is a split and merge one, where more blocks are split than
required, followed by subsequent re-merging of certain blocks. The process for
growing, pruning and coding the binary partition tree is described below in

more detail.

6.5.1 Growing the Tree

To generate a binary partition tree, start with one block that is the size of the
frame. This block is the root of the binary tree, and initially it is also its only
entry. The process of growing the tree by repeatedly partitioning blocks then

operates as follows:
e Find the block in the tree which has the largest minimum SSE - i.e. the
block with the maximum value of
Erin(b;) = min{min(Ey, 7,), min(Ey, ¢,)} (6.4)
where b; is the block index.

e Partition this block using the method described in Section 6.4 to create
two new blocks. These two blocks are added to the tree as children of the

partitioned block.



6.5. Generating a Binary Partition Tree 109

PSNR: 31.4 dB

PSNR: 32.2 dB

PSNR: 32.7 dB

@

PSNR: 33.6 dB

Figure 6.3: An example of the growth of a Binary Partition Tree for frame 50
of Mother & Daughter. The blocks are overlaid on the original image at each

stage. The corresponding binary tree structure and the DFD are also shown.



110 Chapter 6. Motion Compensation using a Binary Partition Tree of Blocks

e The previous steps are repeated while the number of leaf nodes in the tree
(i.e. blocks without children) is less than 1.25Np, where Np is the target

number of blocks.

Figure 6.3 provides an example of the block partitioning and tree growing pro-
cedure for frame 50 of Mother € Daughter (relative to reference frames 48 and
52). Starting with one block spanning the entire frame, each row shows one
stage in the partitioning process. The example illustrates the first four bi-
nary partitioning steps, resulting in the creation of a tree with five leaf nodes

(blocks).

The first column in Figure 6.3 illustrates the leaf blocks in the tree overlaid on
the original image, with each block assigned a unique label. The growth of the
binary tree is represented in the second column, with leaf blocks depicted as
circled nodes. The third column shows the Displaced Frame Difference (DFD)
after motion compensation using the relevant block structure. At each stage,
the corresponding (pixel-accurate) luma PSNR is also given. As can be seen,
the partitions generally correspond to motion boundaries. For example, the
first partition provides a rough separation of the mother’s head (which is mov-
ing) from the stationary picture background on the left. Likewise, the second
partition divides the mother’s head from her neck and upper body (which move

much less than the head).

When using just one motion vector to motion compensate the entire frame, a
PSNR of 31.4 dB is obtained. Splitting the frame into two blocks (each with
their own motion vector) achieves a gain of 0.8 dB, while subsequent partitioning

leads to slightly smaller (but still significant) improvements in quality.

6.5.2 Pruning the Tree

Recall that when growing the binary tree, the (leaf) block chosen for partition-
ing at each stage is the one with the largest minimum SSE (i.e. the maximum

value of Fy,in(b;)). However, this top-down approach does not necessarily yield



6.5. Generating a Binary Partition Tree 111

the best choice of block for further splitting. It may be that splitting some

other block in the tree yields a greater reduction in error.

As a result, it was decided to incorporate a bottom-up block merging process
when generating the binary tree. This requires that more than the target num-
ber (Np) of blocks be generated. As described above, 1.25Np blocks are cre-
ated. This enables a more optimal bottom-up approach to be used for pruning

the excess blocks.

The advantage of bottom-up pruning is that one can consider all pairs of leaf
child blocks in the tree, and re-merge the pair whose splitting provided the

smallest error reduction. The process is outlined below in more detail.

e Consider a pair of child blocks (b., and b,), both of which are leaf nodes
and share a common parent, b,. The increase in error that results from
pruning these two siblings (i.e. performing motion compensation using

the parent block instead of the two child blocks) is given by:
EP'rune(bcly bcz) = Emm(bp) - Emin(bq) - Emzn(bcz)

e Calculate Epyu,. for each pair of children that are also both leaf nodes.
Merge the pair which yields the smallest value of Eppyne. The two leaf
nodes are thus pruned from the partition tree, and their parent becomes

a leaf node.

e The previous step is repeated until the number of leaf nodes in the tree
equals Ng. The end result is a frame consisting of these Ng variable-sized

blocks.

An example of binary tree pruning is illustrated in Figure 6.4 for frame 50 of
Mother € Daughter (motion compensated relative to reference frames 48 and
52). The first and second rows show the use of a binary partition tree grown
to 40 and 50 blocks (leaf nodes) respectively. The use of these ten additional
blocks results in a gain of 0.7 dB in luma PSNR. When the 50-block tree is



112 Chapter 6. Motion Compensation using a Binary Partition Tree of Blocks

pruned to 40 nodes, it yields the binary partition tree depicted in the bottom
row of the figure. The advantage of using pruning is clearly visible: The pruned
40-block tree results in an increase in quality of 0.5 dB over the un-pruned

40-block tree.

The pruning method described above increases the number of blocks by 25%
during the tree growing stage. This was found empirically to provide a suffi-
ciently large pool of blocks from which to prune those partitions that provide
little advantage. Increasing this percentage may lead to slightly improved per-
formance, but would also increase the computation involved in both growing

and pruning the tree.

6.5.3 Coding the Tree

Coding the binary partition tree is fairly straightforward, and comprises two
components. The first is the shape of the tree, where each node has two possi-
bilities: either it is a leaf (in which case it has no children), or it is not a leaf
(in which case it has exactly two children). For a tree with Np leaf blocks,
2Np — 1 bits are required to code this information. The second component that
is required relates to where blocks with children are to be partitioned. (Coding
a block partition requires specifying the position of the horizontal or vertical

line that divides the block in two.)

The algorithms for the encoding and decoding of a binary partition tree are
presented below, using pseudo-code. Note that the leaf blocks are the ones that

are ultimately used for motion compensation.

Algorithm for Encoding a Binary Partition Tree:

CurrentNode = RootNode; // i.e. entire frame
NodeList = {}; // empty list to start with
while CurrentNode # {} do
if CurrentNode.HasChildren() then
Encode(1);

Encode(CurrentNode.SplitPosition); // where current block is split



6.5. Generating a Binary Partition Tree

113

]
P
%i
A

(a) 40 blocks

e
b
B
&
.a-

(c) 50 blocks

l&mﬂ—

(e) 40 blocks (pruned from 50)

(b) DFD for (a); Luma PSNR: 37.5 dB

(d) DFD for (c); Luma PSNR: 38.2 dB

(f) DFD for (e); Luma PSNR: 38.0 dB

Figure 6.4: An example of pruning a Binary Partition Tree for frame 50 of

Mother & Daughter. The column on the left shows the blocks overlaid on the

original image. The column on the right illustrates the corresponding DFD

after motion compensation (from frames 48 and 52).



114 Chapter 6. Motion Compensation using a Binary Partition Tree of Blocks

NodeList.Append(CurrentNode.ChildNodel); // add child block 1 to list
NodeList. Append(CurrentNode.ChildNode2); // add child block 2 to list
else
Encode(0);
end if
CurrentNode = NodeList.ExtractFirstNode(); // extract first block

end while

Algorithm for Decoding a Binary Partition Tree:

CurrentNode = RootNode; // i.e. entire frame
NodeList = {}; // empty list to start with
LeafNodeList = {}; // empty list to start with
while CurrentNode # {} do
HasChildren = DecodeBit();
if (HasChildren = 1) then
CurrentNode.SplitPosition = DecodePartition(); // where block is split
CurrentNode.CreateChildren(); // create child blocks (based on split)
NodeList.Append(CurrentNode.ChildNodel); // add child block 1 to list
NodeList. Append(CurrentNode.ChildNode2); // add child block 2 to list
else
LeafNodeList. Append(CurrentNode); // add block to list of leaf blocks
end if
CurrentNode = NodeList.ExtractFirstNode(); // extract first block

end while

The above algorithms provide a good general description of the binary tree
coding process, however they do not describe the details of coding each block’s
partition location. (Recall that blocks are partitioned using a straight line that
splits their longer dimension.) This information is encoded using arithmetic
coding, with a probability model that assumes that splitting a block near the

middle is more likely than towards the edges.

For a block with a longer dimension of length [, a (modified) Laplacian distri-



6.5. Generating a Binary Partition Tree 115

bution is used to model the split position. Let p(n) represent the probability of
a partition between positions n and n + 1. Thus valid values for n are integers
in the range 1 < n < [. The Laplacian distribution is centred at the midpoint

of the line (i.e. at n = [{/2]) and is given by the equation:

: ()
p(n) =+ ({q [logy (1 — N =72/ — 1/% + /5(“)> (6.5)
where ((n) = 0 n# 12
logs (a1) 0 = 112
-1
and « has a value such that Z P(i)=1
i=1

The parameter, g, is used to quantise the probability distribution, thus enabling
it to be represented as a histogram.? The effect of the term 3(n) is to increase
the probability of partitioning a block down its centre. (Recall that a block is
split down its centre when none of the possible partitions results in a reduction

in motion compensation error.)

Figure 6.5 provides examples of probability distributions for splitting blocks
of three different sizes. The associated entropy values are also shown. These
indicate the number of bits required to encode the position of a split. As can
clearly be seen, the most probable position (and the least costly to code) is
at the centre, while splitting becomes less likely (and more expensive to code)

towards the edges each the block.

2 The arithmetic coder used for entropy coding requires a histogram of integer values, rather
than a (real-valued) probability distribution. The use of the quantisation parameter, g,
enables a one-to-one relationship between the Laplacian distribution in Equation 6.5 and
its corresponding histogram. Note that g is limited to a minimum value of 1log,(l — 1).
A fixed value of ¢ = 20 was used, since it introduces limited quantisation noise in the

distribution.



116 Chapter 6. Motion Compensation using a Binary Partition Tree of Blocks

0.03

Probability ot split, p(n)

20 40 60 80 100 120
Split Position, n

(a) Probability distribution for [ = 128

0.1

0.08¢

o
o
>

o
o
=

Probability of split, p(n)

0.02

0 4 8 12 16 20 24 28 32
Split Position, n

(c) Probability distribution for [ = 32

0.35

0.3f

0.25¢

0.2

0.15f

0.1

Probability of split, p(n)

0.05¢

1 2 3 4 5 6 7
Split Position, n

(e) Probability distribution for [ =8

Entropy [bits]
~

0 20 40 60 80 100 120
Split Position, n

(b) Entropy for [ = 128

Entropy [bits]
(4]

0 4 8 12 16 20 24 28 32
Split Position, n

(d) Entropy for [ = 32

Entropy [bits]

1'50 4 5 6 7 8

1 2 3
Split Position, n

(f) Entropy for [ =8

Figure 6.5: An example of some typical (modified) Laplacian probability distri-

butions used for modelling where a block of length [ is likely to be partitioned.

The associated entropy is also shown. (The entropy graphs indicate the number

of bits required to specify the location of a partition.)



6.6. Motion Estimation 117

6.6 Motion Estimation

Motion estimation plays a critical part in the block partitioning stage, since it
is used when calculating the error surfaces for each block. Because each block’s
error surfaces are known, its motion vector (and choice of reference frame) can
easily be determined by finding the location of the minimum error for that block.
This provides the block’s motion vector to pixel accuracy. In order to refine
the accuracy to a sub-pixel level, a search is performed in the neighbourhood of
the (pixel-accurate) motion vector. Bi-linear interpolation is used to estimate

pixel values at sub-pixel locations.

Motion vectors and reference frame selection information are then coded for
each block as follows: First, (leaf) blocks are sorted in raster scan order ac-
cording to the position of their top left corners. This allows for a fixed ordering
of blocks, which is reproducible when decoding. For each block, the motion
vector is entropy coded - relative to the motion vectors of those neighbouring
blocks already coded. Similarly, the reference frame used for each block is also
predicted from those of neighbouring blocks. Note that arithmetic coding is

used for entropy coding both the motion and reference frame information.3

6.7 Results

The performance of the proposed variable-size block matching approach was
tested on nine* test sequences, using both regular and content-based blocks.
This section presents results for the Foreman (CIF) and Stefan (CIF) sequences,
both of which contain significant motion. (Note that the results shown here are

representative of those obtained for the full set of nine sequences.)

3 More details on the coding of motion information are provided in Section 7.4.3
4 Namely City, Flower Garden, Football, Foreman, Mobile & Calendar, Stefan, Crowd, Ed-
inburgh and Tennis. The first six are standard test sequences, while the latter three are

proprietary BBC sequences.



118 Chapter 6. Motion Compensation using a Binary Partition Tree of Blocks

40t
39r
38r
) 37r
o, 361
X 35-
Z
g 34r SRS
8 33k
c 321
©
£ 31r
% 30r
— o9l o Foreman: Variable—-Size Blocks
ogl 7 —— Foreman: Regular Blocks
d}j - © - Stefan: Variable-Size Blocks
277 - & - Stefan: Regular Blocks
26 i i L L L L i
0 50 100 150 200 250 300 350

Rate [kbps]

Figure 6.6: Rate-Distortion plots for Foreman and Stefan. Results have been
averaged over frames 10 to 40 for both sequences. The points plotted show the
results when setting the target number of blocks to: {50, 99, 198, 396, 594,
792} (regular blocks) and {50, 99, 198, 396, 594} (variable-size).

The performance of the proposed variable-size block matching approach was
tested on frames 10 to 40 of both Foreman and Stefan. Given a target number
of blocks, each frame (I]) was motion compensated from two original frames
(It—2 and I;19), a distance of two frames away in time (before and after). For
each frame, the tree structure was encoded, along with the reference frame

selection information and the motion vectors (at quarter-pixel accuracy).

For comparative purposes, the same tests were performed using square, fixed-
size blocks. In this case, only the motion information was encoded, since the
block structure is regular for a given number of blocks. In order to test at
a variety of different rates, the number of blocks per frame, Np, was varied.
When using both regular and variable-size blocks, Np was chosen from the

values: 50, 99, 198, 396 and 594. In addition, 792 regular-size blocks were used.



6.7. Results 119

The rate-distortion performance of the two methods is illustrated for both se-
quences in figure Figure 6.6. It can be seen that the proposed method provides
substantial gains in quality of between 1.5 and 3.0 dB over regular block match-

5

ing at the same bit-rate.” This is despite the overhead required to represent

the structure of the partition tree.

Figure 6.7 shows frame 32 of Foreman, motion compensated from original
frames 30 and 34 in the sequence. When using 396 regular blocks, there are
some blocking artifacts present, particularly at the corner of the man’s mouth
and around his chin (see Figures 6.7 (c) and (e)). This type of distortion occurs
when blocks straddle motion boundaries, and are thus unable to compensate

for multiple motion.

The use of a binary partition tree allows blocks to vary in size and shape, based
on scene content. Using 198 variable-size blocks requires roughly the same
bit-rate as twice as many regular blocks, although blocking artifacts are much
less evident. For the content-based method, there is some distortion visible
around the man’s chin (see Figures 6.7 (d) and (f)). However, this can in part
be ascribed to the use of only the luma component when performing block

matching.%

Figure 6.8 shows frame 13 of Stefan, motion compensated from original frames
11 and 15 in the sequence. When using 396 regular blocks, there are significant
blocking artifacts present, particularly along the top and right edges of the frame
(see Figures 6.8 (c) and (e)). This is due to the blocks along the perimeter
struggling to represent two types of motion. In all images in the sequence,
there are thin black strips along the top and right borders. These are effectively
regions of zero motion. However, the picture background is subject to a zooming
and panning camera motion (as well as movement of people in the crowd).

Consequently, blocks covering one of the black strips and the picture background

5 The bit-rate is given in kilobits per second (kbps) for CIF-resolution frames at 30 fps.
% Matching using the luma component only can sometimes result in an incorrect motion
vector. This is because the the luma components of two blocks can be similar, while their

chroma components may differ substantially.



120 Chapter 6. Motion Compensation using a Binary Partition Tree of Blocks

SIEMENS
il

e

|

(c¢) After motion compensation using the (d) After motion compensation using the
blocks in (a). Total rate: 103 kbps blocks in (b). Total rate: 109 kbps

(e) DFD for (c); Luma PSNR: 34.6 dB (f) DFD for (d); Luma PSNR: 38.5 dB

Figure 6.7: Frame 32 of Foreman motion compensated from original frames 30

and 34. (4-pel motion vector accuracy.)



6.7. Results 121

.ii
._ﬁ

o
ﬁlﬁlﬂ'ﬂiﬁ“
F¥

i i

(c) After motion compensation using the (d) After motion compensation using the

blocks in (a). Total rate: 154 kbps blocks in (b). Total rate: 119 kbps

(e) DFD for (c); Luma PSNR: 27.33 dB (f) DFD for (d); Luma PSNR: 31.3 dB

Figure 6.8: Frame 13 of Stefan motion compensated from original frames 11

and 15. (3-pel motion vector accuracy.)



122 Chapter 6. Motion Compensation using a Binary Partition Tree of Blocks

are unable to represent both the moving background and the stationary black

border.

The proposed binary partition tree is well suited to handling this problem, since
it partitions the black perimeter area from the picture background (see Figure
6.8 (b)). Asaresult the error in the DFD is significantly reduced, although there
is still some distortion present around the player’s upper body, and particularly
the head of his racquet (see Figures 6.8 (d) and (f)). Note that both regular
and variable-size blocks fail to track the motion of the tennis ball on the left of
the picture. This is probably because of the ball’s fast motion, which results in

it lying outside the motion vector search areas in the two reference frames.

6.8 Conclusion

The binary partitioning method proposed in this chapter provides an effective
compromise between region-based and block-based methods of motion com-
pensation. It does this by incorporating the segmentation process into the
block-generation stage, although the approach is made manageable by allowing

only straight-line rectangular partitioning.

To start with, a top-down block splitting technique is used in order to select
which blocks should be split. This is followed by a bottom-up merging process
that helps to remove those partitions that provide the least advantage. The
process of selecting where a block is split is based on minimising the motion
compensation error (subject to the constraints of straight-line partitioning). As
was demonstrated, this method results in partitioning along motion boundaries,
as well as the creation of small blocks in regions of complex motion, with larger

blocks spanning background areas.

There is a significant overhead associated with coding a binary partition tree.
However, it was shown that the technique requires relatively few blocks (com-
pared to regular block matching) in order to provide reasonably good quality

motion compensation. Consequently, fewer bits are required to encode the mo-



6.8. Conclusion 123

tion vector information.

The next chapter goes on to discuss how the proposed binary partition tree
approach to block matching can be incorporated into a video codec. It also
provides a comparison with the H.264/AVC implementation of variable-size

block matching.



124 Chapter 6. Motion Compensation using a Binary Partition Tree of Blocks




Chapter 7

Integration into a Hybrid
Video Codec

7.1 Introduction

Most video coding methods rely heavily on motion compensation to help reduce
the temporal redundancy between frames. The three preceding chapters dis-
cussed content-based methods of motion estimation and compensation. As was
shown in the Chapter 6, a Binary Partition Tree approach to block-based motion

compensation allows for significant advantages over regular block matching.

This chapter describes the design of a hybrid video codec that allows the user
to select one of four block-based motion compensation methods. Two of these
methods are fixed-size block matching (using either 8 x 8 or 16 x 16 blocks). The
third choice available is the H.264/AVC implementation of variable-size block
matching (VSBM). The fourth option allows for the use of Binary Partition

Tree VSBM, based on the technique outlined in the previous chapter.

Each of the components of the video codec is described in some detail. The
primary purpose of the codec is not to try and out-perform all other coding
methods (although this is certainly desirable). Rather, the focus is on provid-

ing a common framework with which to compare the four block-based motion

125



126 Chapter 7. Integration into a Hybrid Video Codec

estimation and compensation techniques highlighted above.

With some effort, it would be possible to integrate the proposed Binary Parti-
tion Tree VSBM method into a codec such as H.264/AVC. However, H.264/AVC
has already been optimised for its own VSBM approach, and would thus bias
rate-distortion performance in favour of this method of motion compensation.!

Consequently, it was decided to develop a “neutral” video codec, combining

many state-of-the-art components.

7.2 An Overview of the Codec Structure

The design of a video codec can be fairly complex. This section provides an
overview of several building blocks used in the proposed system. Having es-
tablished the foundations, the next two sections focus in more detail on both
inter and intra frame coding. Block diagrams showing the structure of the
encoder and decoder are provided in Figures 7.1 and 7.2. They show the re-
lationship between the various codec components that are discussed in more

detail throughout the remainder of this chapter.

7.2.1 Picture Types and Grouping

In common with standards such as MPEG-1 and MPEG-2, the proposed video
codec uses three frame types. Intra (I) frames are coded directly using trans-
form coding techniques, without reference to any other frames. Predicted (P)
frames are motion compensated from the preceding reference frame. (Both
I and P frames can act as reference frames.) Bi-directionally predicted (B)
frames are motion compensated from two frames — the immediately preceding
and subsequent reference frames. This is shown graphically in Figure 7.3(a),

where the arrows indicate the relationships between the three frame types.

! For example, the de-blocking filters used in H.264/AVC are designed for a specific range
of block sizes and shapes. As a result, they are unlikely to perform as well on blocks of

arbitrary size and shape.



7.2. An Overview of the Codec Structure 127
ORDER OF EVENTS:
Current Intra Frames: 11, 12, I3
Frame
~ Inter Frames: PB1, PB2, PB3, PB4, PB5, (P6), (P7)
11
if | frame
- Encode Intra Frame
s\ (H.264/AVC)
. 12
if P or B frame
Decode Intra Frame
(H.264/AVC) g
53
[
(=]
PB5 g
O Encode Residual _‘2
+ _ (Matching Pursuits) g
[
=
if P frame
Decode Residual
(Matching Pursuits)
g
if P frame + Q
(53
[
+ o
Q
£
g
€
PB4 é
7ﬁ ’ £
Reconstruct Frame Reference
(OBMC) ‘ Frames
@ ® ©
PB3 (a) Intra/ Inter Block Mode Flags
(b) Intra Block YCbCr DC Values
Select Mode ‘ i
(c) Inter Block Motion Vectors and
(Inter or Intra) .
S choice of Reference Frame _
S
8
Motion Vectors 8
and Ref. Frame ©
=
PB2 °
Estimate Motion 2
1/4 pixel accuracy) S

PB1

Block Structure

Determine

Figure 7.1: Block diagram of the Encoder




128 Chapter 7. Integration into a Hybrid Video Codec

Encoded | Frame Decode Intra Frame

(H.264/AVC)

if | frame &
T Current
Encoded Residual Decode Residual . Frame
h ) if P or B frame o
(Matching Pursuits)

Block Structure

Reconstruct Frame S
(OBMC) if | or P frame

Motion Information:
Intra/Inter Block Mode Flags;
Intra Block YCbCr DC Values;

Inter Block Motion Vectors & ’
Reference

Frames

choice of Reference Frame ’

Figure 7.2: Block diagram of the Decoder

Figure 7.3(a) also shows how an image sequence is arranged into sets of 15
frames, known as a Group of Pictures (GOP). As mentioned above, B frames
are predicted from future (and past) reference frames. Using a future reference
frame is made possible by coding the frames in a different order to that in which
they are displayed. This coding order (shown in Figure 7.3(b)) introduces
a small delay into the system and also requires a limited amount of frame
buffering, however the use of both past and future reference frames (for B
pictures) allows for more effective motion compensation. At the decoder, frames

are simply rearranged into their original display order.

7.2.2 Codec Input Parameters and File Formats

The encoder accepts input files in Y C,C,. 4:2:0 input format, with each sample
represented using 8-bit precision. There is one file per frame, with the filename

indicating the index of the frame within the sequence. The standard sequences



7.2. An Overview of the Codec Structure 129

555

Group of Pictures (GOP)

(a) Display order (with arrows indicating the direction of frame prediction).

b) Coding order

Figure 7.3: The frame structure of a Group of Pictures (GOP)

used in testing were obtained in this raw, one-file-per-frame format. The de-
coder produces an output video with the same specifications, except that frames
are concatenated together into one file. The use of a single file allows for the

sequence to be played back using an off-the-shelf Y CyC,. 4:2:0 video player.

Each frame comprises one luma and two (half-resolution) chroma components.
The number of frames (Np) for encoding and decoding is required to be such
that Np = 3n+ 1, for n a non-negative integer. This ensures that the sequence
always ends with either an I or a P frame. Terminating on a B frame is not

possible, since such a frame would have no future reference frame.

The encoder requires the following input parameters from the user:

e The name of the Yy C,. video file to be compressed;

e The number of rows and columns of the luma component (Both of these

are required to be integer multiples of 16 and less than 4096);



130 Chapter 7. Integration into a Hybrid Video Codec

e The indices of the frames in the sequence at which to start and stop
coding (Recall that the number of frames to be coded should be one plus

an integer multiple of three.);

e The search radius used during motion estimation (This should have a

value less than 256.);

e The choice of block partitioning method (Four options are available, namely:
regular 16x 16 blocks, regular 8x8 blocks, H.264/AVC variable size blocks,

and the Binary Partition Tree block structure.); and

e A quantisation parameter, QP, used in the coding of I frames, and indi-
rectly affecting all other frames. (This allows for control over the quality

and bit-rate of the compressed sequence.)

The encoder produces a compressed output file, which is used as the input to
the decoder. This coded file consists of arithmetic-coded data, preceded by
a seven-byte header. The header stores the video format specifications (such
as resolution) and other options required by the decoder (such as the block

partition choice and the value of QP).

The decoder only requires one user-specified input, and that is the name of the
compressed file to be decoded. All other necessary information can be obtained

from the seven-byte header.

7.2.3 Rate and Quality Control

The components of the codec use Lagrangian optimisation in order to ensure
that all parts of the system operate at the same trade-off gradient between rate
and distortion. This is done by supplying a value of A to each of the building

blocks of the system.

As a result of the motion compensation process there are inter-dependencies
between I, P and B frames. For example, motion compensated prediction is

applied to an I-frame in order to generate the next P-frame. Thus, the quality



7.2. An Overview of the Codec Structure 131

of an I-frame determines (in part) the quality of the next P-frame. Because
of these inter-dependencies, it was decided to use different values of A for each
frame type (i.e. Ap and Ap). These A values are controlled using a simple

picture quality heuristic that is described below.

When coding intra (I) frames, the proposed codec uses the user-specified quan-
tisation parameter (QP) in order to code the frame with H.264/AVC’s intra-
coding method. This allows some control over the quality of the coded image.
It was decided to use this QP value as a means of controlling the quality of all
frames in the sequence. This method of controlling the encoder based on quality

(as opposed to bit-rate) operates according to the following two assumptions:

e The target luma PSNR of a P-frame is 0.7 dB less that the PSNR of its

preceding I-frame; and

e The target luma PSNR of a B-frame is 0.3 dB less than the PSNR of its

closest P-frame.

These assumptions are based on general observations of picture quality for a
variety of traditional hybrid codecs. They were suggested as a simple way of
regulating quality (and thus bit-rate) in a reasonable manner [119]. For P and
B frames, A is varied in such a way as to try and maintain the PSNR differences

mentioned above.

A. Initialising Lambda

When encoding each sequence, Ap and Ap need to be initialised. For Ap, this
is done by using the first and fourth frames in the sequence as I and P frames
respectively. Starting from a value of Ap = 100, the P frame is encoded, and
the resulting quality checked. Depending on how much this differs from the

target PSNR, A\p is updated accordingly.? The process is repeated a maximum

2 Note that at each stage, Ap and Ap are scaled by at most £35%. This prevents very rapid

changes in A, and was found to make the process more robust.



132 Chapter 7. Integration into a Hybrid Video Codec

of ten times, or until a Ap that yields an the target PSNR is found.? The steps

are outlined below using pseudo-code:

Algorithm for Initialising Ap:

I' = EncodelntraFrame(I, QP); // encode I frame

Ap = 100; // initial estimate

counter = 0;

repeat
P’ = EncodelnterFrame(P, I, A\p); // encode P frame
APSNR = PSNR(P, P') — (PSNR(I,I') — 0.70); // difference in quality
Ap = max{min{l + APSNR|APSNR/|, 1.35},0.65}Ap; // update Ap
counter = counter + 1;

until (JAPSNR — 0.70dB| < 0.25) or (counter > 10)

In order to initialise Ap, a similar approach is adopted. The third frame in the
sequence is used as a B frame — predicted from both the I (first) and the P
(fourth) frames. Using a target PSNR of 0.3 dB less than that of the P-frame
(with a tolerance window of +0.1 dB), the process seeks to find an appropriate

value for Ag, as outlined below:

Algorithm for Initialising Ap:

Ap = 2\p; // initial estimate

counter = 0;

repeat
B’ = EncodelnterFrame(B, I', P', Ap); // encode B frame
APSNR = PSNR(B, B’) - (PSNR(P, P’) - 0.30); // difference in quality
Ap = max{min{l + APSNR|APSNR/|, 1.35},0.65}Ap; // update Ap
counter = counter + 1;

until (JAPSNR — 0.30dB| < 0.10) and (counter > 10)

During the X initialisation stage, frames are repeatedly encoded while the esti-

mates of Ap and A\p are updated. One of the most computationally expensive

3 The target PSNR for the P-frame is 0.70 dB less than that of the I-frame, with a tolerance
window of +0.25 dB.



7.2. An Overview of the Codec Structure 133

parts of the coding process is the block partitioning and motion estimation
stage. This is particularly true in the case of H.264/AVC VSBM as well as
the Binary Partition Tree block matching method. It was therefore decided to
replace these two partitioning methods with 16 x 16 regular block matching,

but only during the X\ initialisation phase.

This means that the two non-regular block matching approaches are initialised
with slightly inaccurate A values. However, the consequences of this were found
to be negligible, since A\p and Ap are updated frequently when the codec op-
erates on subsequent frames in the sequence (using the user-specified motion

compensation method).

B. Updating Lambda

The initial A values provide some control over the relative quality of I, P and
B frames in the sequence. Because the scene characteristics change over time,
it necessary to update Ap and Ap throughout the sequence, so as to maintain

the target quality relationships between frames.

The updating of A\p and Ap occurs after the coding of each P-frame. If the
three most recent frames are By, By and P, and the previous intra frame is
(with coded versions Bf, Bj, P" and I'), then the process of updating A is as

follows:

Algorithm for Updating Ap and Ap:
APSNR = $(PSNR(By, B}) + PSNR(By, B})) — (PSNR(P, P’) — 0.30);
a = maz{min{l + APSNR|APSNR/, 1.35},0.65}; // for updating Ap
APSNR = PSNR(P, P') — (PSNR(I, I') — 0.70);
v = maz{min{l + APSNR|APSNR|,1.35},0.65}; // for updating Ap
Ap =7 Ap;
AB = a7 Ap;

This helps to maintain the quality of P and B frames close to their respective

targets of 0.7 and 1.0 dB less than the PSNR of the previous I-frame. Note that



134 Chapter 7. Integration into a Hybrid Video Codec

as in the initialisation phase, A is restricted to vary by at most 35% at each
update. Preventing very large changes in A\ helps to ensure that the picture
quality does not vary suddenly from one frame to the next. (However, once
initialised, large changes in A seldom occur, unless there is a sudden change

such as a scene cut.)

7.2.4 Entropy Coding

The proposed hybrid video codec uses a Range Coder [62] to achieve entropy
coding. This is an integer-based implementation of arithmetic coding. It is
virtually identical to an arithmetic coder, but instead of requiring a probability
model when coding, it uses an (integer-valued) histogram. This allows for faster

operation, with virtually no loss in coding performance.*

With a range coder, binary arithmetic coding is also possible using a two-
bin histogram. This is particularly useful when binarising a value (such as
a motion vector component) prior to encoding it. Most components of the
proposed hybrid video coding system use the range coder for compressing data.
They supply it with a histogram (probability model) that is also used by the

corresponding component at the decoder.

7.3 Intra-Frame Coding

Intra coding is used to code frames without reference to any other frames.
As explained earlier, the proposed hybrid video codec uses an intra frame at
the start of each 15-frame GOP. The main advantages of using regular intra
frames are allowing the decoder frequent access points in the bit-stream, and

also helping to prevent the propagation of errors.

The primary focus of the research described in this dissertation is content-based

motion estimation. It was therefore decided to use an off-the-shelf method of

* A general-purpose MATLAB Range Coder can be downloaded from [99].



7.4. Inter-Frame Coding 135

image coding to achieve compression of intra frames. Both JPEG-2000 [34, 115]
and H.264/AVC Intra [39, 43] were considered for incorporation into the codec.
The latter was chosen because of its slightly superior performance at low and
medium spatial resolutions (such as the CIF-format sequences used in testing)

[60)].

When performing intra coding, the video codec simply codes the image using
H.264/AVC (version JM 9.5), and appends the compressed output bytes to the
bit-stream. Note that the user-specified QP value is used when performing this

operation.

7.4 Inter-Frame Coding

In general, inter frames can be coded much more efficiently than intra frames,
since they are predicted from reference frames, rather than having to be coded
from scratch. This section describes how blocks are generated (using one of
four block partitioning approaches), and how these blocks are used for motion
compensation. The coding of the resulting Displaced Frame Difference (DFD)

is also discussed.

7.4.1 Block Partitioning and Motion Estimation

The proposed video codec was designed with the intention of allowing four
block partitioning methods. (These are: fixed-size 16 x 16 blocks, fixed-size
8 x 8 blocks, the H.264/AVC method of VSBM, and the Binary Partition Tree
approach to VSBM.) The remainder of the codec is intended to operate in a

constant way — independently of the partitioning choice specified by the user.

A. Using Fixed-Size Blocks

Two of the block partitioning options available to the user are fixed-size 8 x 8

and 16 x 16 blocks. These two cases result in the creation of a regular grid



136 Chapter 7. Integration into a Hybrid Video Codec

(a) 396 16 x 16 blocks (b) 1584 8 x 8 blocks

Figure 7.4: An example of using fixed-size blocks for a frame of size 352 x 288

of square blocks that span each inter frame. Recall that the number of rows
and columns in the input video are required to be integer multiples of 16. As
a result of this constraint, there are always a whole number of 8 x 8 or 16 x 16
blocks present in each frame. Figure 7.4 provides an example of two grids of
fixed-size blocks, overlaid on a frame of the CIF-resolution Mother € Daughter

sequence.

Pixel-accurate motion estimation is performed using full-search block match-
ing, relative to the reference frame(s). In the case of B-frames (which have two
reference frames), the reference frame which yields the smaller motion com-
pensation error for a particular block is chosen as the reference frame for that
block. Following this, each motion vector is refined to sub-pixel accuracy, as is

described later in this section.

B. Using H.264/AVC Variable-Size Blocks

As described in Section 2.7.8, one of the significant features of H.264/AVC is
its use of VSBM. This allows the size and shape of blocks to adapt (in a limited
way) to the characteristics of a scene. Each 16 x 16 macro-block is partitioned

in one of the following four ways (as illustrated in Figure 7.5):

e no further partitioning;



7.4. Inter-Frame Coding 137

16

16

8 8
16 16
8 8
16 16 8 8 8 8
4 4
8 8
4
8 8 4 4 4 4

Figure 7.5: H.264/AVC block splitting modes

e divide into two equal rectangular halves using a horizontal partition;

e divide into two equal rectangular halves using a vertical partition; and

e divide into four equal square quarters.

If the four-block partitioning mode is chosen, then each of these blocks is consid-
ered in turn for further splitting using the same method outlined above. Thus
if a macro-block is split into four blocks, which are themselves all partitioned

into four blocks, one ends up with 16 4 x 4 blocks in the macro-block.

At each stage, the decision on which type of partition to choose is based on
optimising the rate-distortion performance. Thus splitting a block into four
children may lead to a reduction in distortion (i.e. motion compensation error),
but it is also likely to result in an increase in rate due to there being four motion
vectors to code (instead of just one). Choosing between one or four blocks in

this scenario depends on the relative importance of rate and distortion.



138 Chapter 7. Integration into a Hybrid Video Codec

In the proposed video codec, Lagrangian rate-distortion optimisation is used
to help solve this problem. For each macro-block, the encoder considers the
four top-level partitioning methods (none, horizontal, vertical, and four-way

splitting).

In each of these four cases, the resulting rate (R) and distortion (D) are cal-
culated. The rate comprises the cost of coding the following: the block par-
titioning mode, the choice of reference frame (in the case of B-frames), and
the motion vectors (to quarter-pixel accuracy).® Distortion is measured using
the sum of squared error (SSE) after motion estimation at quarter-pixel accu-
racy. Using the current frame’s value of A, it is then possible to find the best
of the four partition options by determining which yields the smallest value of

J =D+ AR.

If the four-way splitting mode out-performs the other three choices, further
splitting of the resulting four blocks needs to be considered. This is done by
re-applying the process outlined in the previous paragraph to each of the four
8 x 8 blocks. Using Lagrangian optimisation, the best partition is then found

for each of these four blocks.

The end result is the optimal splitting of each macro-block, subject to the
constraints of the H.264/AVC partitioning method. Figure 7.6 provides an
example of H.264/AVC block partitioning. The stationary background areas
are dominated by un-partitioned blocks, while smaller blocks populate regions
of more complex motion, particularly along the edges and textured areas of

moving objects.

Motion estimation is a critical part of the block splitting process and is per-
formed in parallel with it. For each block (or potential block), the (sub-pixel)
motion estimation process provides a motion vector and the associated motion
compensation error. These are used directly when determining the rate and

distortion properties of a block.

5 Motion vectors and reference frame information are coded predictively, based on previously-

coded neighbouring blocks. For further details, refer to Section 7.4.3.



7.4. Inter-Frame Coding 139

= [ [T ] |
dil* "l

R D S |

[ I.' b L
JUIN

=y | n
HER- 0o LTS

Figure 7.6: An example of H.264/AVC block partitioning applied to frame 50

LTIRN b =)

of Mother € Daughter. Using Ag = 20, and motion compensating from frames

48 and 52 yields a block structure with 764 blocks.

Coding the H.264/AVC Block Partition Structure:

The ways in which the partition choice, reference frame selection, and motion
information are coded have some bearing on the macro-block partitioning pro-
cess, since they influence the bit-rate (and thus the value of J). The coding of
motion vectors and reference frame information is addressed later in the chapter
(see Section 7.4.3), but the modelling and coding of the partition information

are discussed here in more detail.

Macro-block partition information is modelled using two four-bin histograms.
The first histogram represents the probability of partitioning a 16 x 16 macro-
block using each of the four possible partitioning methods. Similarly, the second
histogram is used to indicate the probability of splitting an 8 x 8 sub-block,

using the four permissible block division methods. In both histograms, the four



140 Chapter 7. Integration into a Hybrid Video Codec

Partition Selection Count
Partition Selection Count

16x16 Two 16x8 Two 8x16 Four 8x8 8x8 Two 8x4 Two 4x8 Four 4x4

(a) First-level (16 x 16) partitioning (b) Second-level (8 x 8) partitioning

Figure 7.7: Histograms of block partition choices for the block structure shown

in Figure 7.6. At each stage, four H.264/AVC splitting options are possible.

bins represent: no splitting, horizontal partitioning, vertical partitioning, and

four-way splitting.”

To start with, all splitting options are assigned equal probability, but the model
is updated as more and more macro-blocks are processed. This allows for both
the encoder and decoder to adapt to statistics in the same way. Entropy coding
the partition information using this two-histogram model allows for the variable-

size block structure to be coded efficiently.

As an example, the two histograms in Figure 7.7 demonstrate the distribution
of probabilities for the block partition structure shown in Figure 7.6. Note that
the sum of all bins in the second histogram is four times the value of the fourth
bin in the first histogram. The total cost of encoding the partition information

in this case is 968 bits, which is equivalent to just 1.27 bits per block.

C. Using a Binary Partition Tree

The use of a Binary Partition Tree approach to variable size block matching

was discussed in detail in Chapter 6. Starting with one block that covers the

5 Note that the second histogram is only necessary when the first level of partitioning cor-

responds to four-way splitting.



7.4. Inter-Frame Coding 141

entire frame, this method operates by repeatedly splitting blocks in a way that
maximises the reduction in error (subject to the constraints of straight-line

partitioning).

Recall that binary tree partitioning requires the user to specify the target num-
ber of blocks. An extra 25% of blocks are created when growing the binary
tree, and those partitions that provide the least gain are then pruned from the

tree.

However, when used in a video codec, it should not be left up to the user to
select a target number of blocks for each frame. Also, it is not necessarily
optimal for the codec to use a fixed number of blocks across all frames. Rather,
the system itself should choose a reasonable (and hopefully optimal) number of

blocks with which to perform motion compensation.

It was therefore decided to adopt the following approach when growing and

pruning the Binary Partition Tree for each frame:

e Grow the tree to a fixed number of blocks, Np. This number is a func-
tion of the picture size and the frame type (P or B). It is given by the
equation Ny = aNgN¢ /256, where Nr and N¢ are the number of rows
and columns respectively, and « has a value of 2 for P-frames and 1 for

B-frames.”

e The Binary Partition Tree is then pruned several times, each time result-
ing in a different number of blocks. At each stage, the encoder simulates
the remainder of the encoding and decoding process for that frame, in or-
der to determine the resulting rate and distortion. Thus if n is the number
of blocks after pruning, the encoder calculates J(n) = D(n)+ AR(n) for a
range of different n, in order to find the value of n that yields the smallest

J(n).

7 Thus for B-frames, the number of blocks is equal to those in fixed-size 16 x 16 block frames,
while for P-frames the number is twice as many. Note that this is only true during the

initial phase, since some of these blocks are subsequently pruned from the tree.



142 Chapter 7. Integration into a Hybrid Video Codec

5.8

521 7

J(n) =D(n) + A R(n)

o O
Do " .

T

4.6

50 100 150 200 250 300 350 400

Number of Blocks after Pruning (n)

Figure 7.8: An example of determining the optimal number of blocks when
using the Binary Partition Tree method of motion compensation. The values
of n tested during the first, second and third phases are represented as squares,
circles and diamonds, respectively. The red dot shows ng, the optimal number
of blocks. The results shown here are for frame 50 of the Mother & Daughter

sequence, motion compensated from frames 48 and 52, and using A = 20.

e A total of twelve different values of n are tested. During the first phase,
the encoder determines J(n) for eight of these values of n. It does this by
pruning the tree from the original Ny leaf nodes down to Ny, %Nb, ng,

e %Nb and %Nb leaf nodes (i.e. blocks). Figure 7.8 provides an example
of the process for a tree pruned from 396 blocks. The points marked with
blue squares represent the eight values of n tested in the first phase. Of

these points, the smallest value of J(n) is obtained when n = 198.

e The second phase then proceeds as follows: Using the best value of n from

the first phase (call this np), the encoder tests two values of n on either



7.4. Inter-Frame Coding 143

side of nq1. The two values tested are n; — %Nb and nq + %Nb.g Of the
ten points tested thus far, the one yielding the minimum value of J(n) is
labelled as ns. Continuing with the example in Figure 7.8, one can see
that the two points tested during the second phase (represented with blue

circles) yield a value of ny = 222.

e The third and final phase continues in a similar way. The encoder tests
two values of n on either side of ny. The two values tested are ng — %Nb
and ng+ 3—12Nb.9 Of the twelve points tested, the one yielding the minimum
value of J(n) is labelled as ng. Completing the example in Figure 7.8,
one can see that the two points tested during the third phase (represented
with blue diamonds) provide no further reduction in J(n). Therefore, in

this example, ng = ny = 222.

Having obtained a value of n3 blocks that minimises J(n) over the twelve points
tested, the tree is then pruned from N, down to ng leaf nodes (blocks), and the
structure is encoded in the bit-stream. The resulting ng blocks are then used

to motion compensate the current frame.

D. Block Sorting

Once the blocks for a frame have been generated, it is necessary to sort them.
This serves two purposes. First, it allows the encoder and decoder to process
blocks in the same order, which is essential if the codec is to function correctly.
Secondly, blocks tend to have similar characteristics (such as motion vectors)
to nearby blocks. Thus, it is advantageous to predict the properties of blocks
from those of their previously-coded neighbours. This can help to significantly

reduce the bit-rate.

The approach adopted by the proposed video codec is to sort blocks spatially in

raster-scan order, based on the location of their top-left corner. This provides

8 Note that If n; = N, then only the lesser of the two values is tested.

9 Note that If no = N, then only the lesser of the two values is tested.



144 Chapter 7. Integration into a Hybrid Video Codec

a simple and fast way of sorting blocks, and one that works for each of the four
block generation methods used by the codec. As part of the sorting process,
each block is assigned a set of references to those of its (spatial) neighbours

that precede it in the sorted list.

E. Sub-Pixel Motion Estimation

When using fixed-size blocks, the shape and size of blocks is independent of the
motion estimation process. However, for the two methods using variable-size
blocks, the motion estimation process is an integral part of determining the

structure of blocks in the frame.

The Binary Partition Tree method performs block splitting based on pixel-
accurate motion vectors only. Therefore, motion estimation to sub-pixel accu-

racy is not required during this stage.

However, in the case of H.264/AVC VSBM, quarter-pixel-accurate motion vec-
tors (and their corresponding motion compensation error) are used when de-
termining how to partition a block. It was found that using only pixel-accurate
motion vectors at this stage resulted in a less effective rate-distortion optimi-

sation process.

With all four of the methods used,'® motion vectors are eventually estimated
to quarter-pixel accuracy. (For methods other than H.264/AVC VSBM, this
happens after the block generation phase.) In the case of B-frames, the choice of
reference frame is performed after pixel-accurate motion estimation. Quarter-
pixel-accurate motion estimation is then carried out relative to the selected

reference frame only.

For both P and B frames, full-search block matching is used when estimating a
block’s motion vector to pixel accuracy. Motion estimation is then performed

to quarter-pixel accuracy by searching within the immediate neighbourhood

10 Fixed-size 16 x 16 blocks, fixed-size 8 x 8 blocks, the H.264/AVC method of VSBM, and
the Binary Partition Tree approach to VSBM.



7.4. Inter-Frame Coding 145

of the pixel-accurate motion vector.!! During this process, the encoder stores
the SSE values for the best pixel, half-pixel and quarter-pixel accurate motion
vectors. These are used at a later stage to optimise (in a rate-distortion sense)

the coding of the sub-pixel motion vector information.

7.4.2 Block Mode Selection

Some areas in a scene can be difficult to motion compensate. This can be
for several reasons, two of the most common being occlusion and changes in
illumination. If a block covers an area affected in this way then the motion
estimation process will yield a poor motion vector with a very high motion

compensation error.

The proposed video codec therefore allows the option of intra blocks, which
are not motion compensated from a reference frame, but instead are coded
directly. The information conveyed in an intra block is fairly crude. Only the
DC (average) values of the luma and two chroma components are coded, and
no texture information is conveyed. Any significant texture is left to be coded

as part of the residual image.

The mode of each block is indicated by an intra/inter flag, which is determined

by the encoder using Lagrangian rate-distortion optimisation:

e In the case of an inter block, the distortion is measured using the motion
compensation error (more specifically, the SSE). The rate is determined
by the cost of coding the following: the inter flag, the choice of reference

frame (for B-pictures), and the motion vector.

e For an intra block, the distortion is measured as the energy of its AC
component (i.e. the SSE between the block and its DC value). The rate
comprises the cost of coding the intra flag plus the 24 bits required to

represent the luma and chroma DC values.'?

1! Bi-linear interpolation is used to estimate pixel values at non-integer positions.

2 The luma and chroma DC values are each represented using eight bits (at integer precision).



146 Chapter 7. Integration into a Hybrid Video Codec

B1|B2 B1|B2
B3 B3
B4 BO B4 BO
B1: Mode = Inter | ;. B1: Mode = Intra
B2: Mode = Inter ! ! B2: Mode = Inter
B3: Mode = Inter B3: Mode = Inter
B4: Mode = Inter B4: Mode = Intra
(a) With no intra neighbours, block B0 is (b) With two intra neighbours, block B0 is

assumed to have a !/32 chance of being intra. assumed to have a 50% chance of being intra.

Figure 7.9: Two examples of predicting the (intra or inter) mode of a block,

B0, based on the modes of its previously-coded neighbours (B1 to B4).

Because there is a high degree of redundancy between neighbouring frames,
there are generally very few intra blocks per frame. This difference in proba-
bility between intra and inter modes is modelled when entropy-coding the type

of block.

If a block has no previously-coded intra neighbours, then the probability of it
being intra is assumed to be 1/32. However, if it has n neighbouring intra blocks
(with n > 0), then the chance of it also being intra is estimated at ;.%. Note
that this model assumes that intra blocks are more likely to be clustered within
the same regions, which was generally found to be the case. Figure 7.9 provides

examples for each of the two scenarios.

The use of intra blocks allows the video codec to handle another potential
problem with block matching. As with most other codecs, the one proposed
in this chapter performs motion estimation using only the luma component
of each frame. This allows for faster computation than considering all three

components, however it can result in erroneous matching.'3

3 For example, two areas may match closely in luma characteristics, but have significantly
different chroma components. In this case, motion estimation would return a good match

(low error), though this would clearly not be the case for a human observer.



7.4. Inter-Frame Coding 147

One way around this problem is to consider the SSE contributions of all three
colour components when determining the mode of a block. By adding the
chroma SSE into the rate-distortion calculations,'* blocks with low luma error
but high chroma distortion are more likely to be flagged as intra blocks. This
approach requires minimal extra computational cost, while helping to remove

some of the artifacts caused by luma-only matching.

7.4.3 Coding Block Motion Information

With most codecs, the coding of motion vectors typically consumes a large
portion of the bit-stream for P and (especially) B frames. The proposed video
codec operates by trying to predict three aspects of motion information for
each block: the choice of reference frame (for B-pictures); the (pixel-accurate)
motion vector; and the sub-pixel refinement of the motion vector. The process

is described in detail below, and accompanied by two examples in Figure 7.10.

e For a given inter block, find its previously-coded neighbouring inter blocks
(i.e. ignore any neighbouring intra blocks). The two examples in Figure
7.10 assume that B0 is the current block, and its previously-coded neigh-
bouring inter blocks are labelled B1 to B4.

e In the case of B frames, the choice of reference frame needs to be coded.
The model for this is based on all previously coded inter blocks in the
frame (and not just neighbouring ones). Let the two reference frames
be referred to as A and Z. Furthermore, assume that the number of
previously-coded blocks having used the two reference frames is N, and
N, respectively. Then the model assumes that the probability of the
current block using frame A as its reference is (Na+1)/(N,+N.+2). Similarly,
the probability of frame Z being the reference frame is assumed to be

(N241)/(Na+N-42).

4 Note that because the chroma components are half the (horizontal and vertical) resolu-
tion of the luma component, they effectively each have a weighting of 1/4 of the luma

contribution.



148 Chapter 7. Integration into a Hybrid Video Codec
B1 B2 B1|B2
B3 B3

B4 BO B4 BO

B1: MV (+2, +7), Ref. A | ' B1:MV (-1, +2), Ref. A |

B2: MV (+1, +8), Ref. A | . B2: MV (+6, -8), Ref. Z |
B3: MV (+2, +7), Ref. A B3: MV (-1, +2), Ref. A
B4: MV (+2, +7), Ref. A B4: MV (-3, +4), Ref. A
BO: MV (+2, +6), Ref. A BO: MV (-4, +5), Ref. A

Candidate Motion Vectors: Candidate Motion Vectors:

(+2, +7), Ref. A [x 3] (-1, +2), Ref. A [x 2]

(+1, +8), Ref. A [x 1] (=3, +4), Ref. A [x 2]

(a) Using one reference frame (A) (b) Using two reference frames (A and Z)

Figure 7.10: Two examples of predicting the motion properties of a block, B0,

based on the characteristics of its previously-coded neighbours (B1 to B4).

e The next step is to determine a list of candidate motion vectors that

are used to predict the motion vector of the current block. Candidate
motion vectors are derived from the motion vectors of previously-coded
neighbouring blocks. For blocks with the same reference frame as the
current block, their motion vector is added to the list of candidate motion

vectors.

Figure 7.10(a) provides an example for a P-frame, in which all blocks use
the same reference frame (A). In this case, three of block B0’s neighbours
(B1, B3 and B4) use the same motion vector, (4+2,+7). This is added to
to the candidate list, and its count is set to 3. Block B2 contributes one

other motion vector, (+1,438), to the list, and its count value is set to 1.

The process is similar, but slightly more complicated in the case of B-
frames. Once again, blocks with the same reference frame as the current
block have their motion vector added to the list of candidate motion

vectors. Neighbouring blocks using a different reference frame to the



7.4. Inter-Frame Coding 149

current block can still be used to predict its motion vector if a constant
velocity assumption is made. These neighbouring blocks have their motion
vectors reversed and scaled before being added to the candidate motion
vector list. The reversal is because the two reference frames lie on either
side of the current frame (i.e. one in the past and one in the future).
The scaling is because the reference frames are not necessarily an equal

distance on either side of the current frame.

This is perhaps best illustrated using the example in Figure 7.10(b). There
are two reference frames (A and Z) and the current block, B0, uses frame A
as its reference. Consequently, all motion vectors added to the candidate
list need to be expressed relative to reference frame A. In this example,
two of block B0’s neighbours (Bl and B3) use the same motion vector,
(—1,42). This is added to to the candidate list, and its count is set to 2.
Block B4’s motion vector, (—3,+4), is also added to the list, but with a

count of one.

The remaining neighbouring block, B2, uses reference frame Z. As de-
scribed above, its motion vector, (46, —8), therefore needs to be reversed
and scaled. For this example, it is assumed that reference frame A occurs
one frame before the current frame, while reference frame Z is positioned
two frames after the current frame. Thus, in order to express the motion
vector relative to reference frame A, it needs to be multiplied by —1/2.
This yields the normalised motion vector (—3,+4), which is already an
entry in the candidate motion vector list. The count value of this entry

in the list is thus incremented by one.

e Once the list of candidate motion vectors has been calculated,' it can
be used to code the motion vector of the current block. The encoder
performs this step by finding the candidate motion vector that is closest

to the current block’s motion vector. It then codes the index of the chosen

15 Note that the process of calculating the list of candidates is identical at both the encoder

and decoder.



150

Chapter 7. Integration into a Hybrid Video Codec

candidate and the difference between it and the current block’s motion
vector. (The horizontal and vertical difference components are binarised

and encoded using binary arithmetic coding.)

The process of coding the index of the chosen candidate motion vector
is based on the count values of each entry in the list. Thus, the more
frequently-occurring candidates are assigned a higher probability and can
consequently be coded more efficiently. If there is only one candidate
motion vector present, its index does not need to be coded. Also, if there
are no candidate motion vectors for a particular block, the coder uses a

dummy vector of (0,0).

Returning to the example in Figure 7.10(a), it is evident that the closest
candidate vector to block B0’s motion vector of (+2,46) is (42, +7).
This is the first candidate vector in the list, and so an index of 1 is
coded. (Note that this entry has a probability of 75%.) The horizontal
and vertical components of the motion vector difference, (0, —1), are then

coded using binarisation and arithmetic coding.

For the example in Figure 7.10(b), it can be seen that the closest candidate
vector to block B0’s motion vector of (—4,+5) is (—3,+4). This is the
second candidate vector in the list, and so an index of 2 is coded. (Note
that this entry has a probability of 50%.) The horizontal and vertical
components of the motion vector difference, (—1,41), are then coded

using binarisation and arithmetic coding.

The final step is the coding of each motion vector to sub-pixel accuracy.
Recall that during the motion estimation stage, SSE values are retained
for the best pixel, half-pixel and quarter-pixel accurate motion vectors of
each block. Using Lagrangian rate-distortion optimisation, a block is only
coded to sub-pixel accuracy if the reduction in SSE is significant enough
to warrant it. If not, the encoder forces the sub-pixel component of the

motion vector to zero prior to coding.



7.4. Inter-Frame Coding 151

7.4.4 Overlapped Block Motion Compensation

The goal of the motion estimation process is to choose the optimal motion
vector for each block. However, as described in Section 2.5.3, it is possible to
improve the reconstruction quality of a motion compensated picture by allowing

blocks to overlap.

Overlapped Block Motion Compensation (OBMC) helps to significantly reduce
blocking artifacts that occur along the edges of blocks (and which are common in
many block based codecs). No extra processing is required during the motion
estimation stage, and no additional information needs to be encoded in the
bit-stream. Instead, OBMC is performed by the decoder during the motion

compensation stage (and in the encoder’s reconstruction loop).

Block 1 Block 2

1.0

0.5}

Block Weighting Factor

0.0

Figure 7.11: An example of two overlapping blocks used for OBMC. The red
and blue circles represent pixels in two blocks, and the two curves below show

the raised-cosine weighting factors for each block.

The video codec described in this chapter uses OBMC with an overlap of two
pixels on either side of each block boundary. A raised-cosine mask in each

overlap zone determines the weighting factors of each block. At each point in



152 Chapter 7. Integration into a Hybrid Video Codec

the image, the weights are normalised so that they sum to unity. Figure 7.11

provides an example of two blocks that overlap along their common boundary.

The codec allows intra blocks to overlap into neighbouring inter and intra
blocks. In this case, the (weighted) DC components of an intra block con-
tribute to the values of surrounding pixels. Similarly, inter blocks are allowed

to overlap into neighbouring intra blocks.

7.4.5 Residual Coding

The process of motion compensation produces a reconstructed frame that is
similar to the original. However, it is still likely to contain a number of signif-
icant artifacts that are not accurately modelled by block-based prediction or

intra coding.

Transform coding is typically used to code the Displaced Frame Difference
(DFD), which is the residual image after motion compensation. Most codecs
tend to code residuals using the same transform employed for the coding of
intra frames. However, the video codec proposed in this chapter uses a method
based on Matching Pursuit to code the residual. (An overview of Matching

Pursuit is provided in Section 2.4.3.)

This decision was made for two reasons. First, the software implementation of
H.264/AVC does not accept 9-bit difference images for intra coding. Secondly,
the Matching Pursuit technique has been reported to be a highly effective way
of coding difference frames [68]. It was therefore decided to use an off-the-shelf
Matching Pursuit coder. The MATLAB code of Jost et al’s Tree-Based Pursuit

algorithm [42, 78] was downloaded and integrated into the video codec.

Matching-Pursuit performs quite slowly on large or even medium sized images.
Therefore the codec first breaks down each difference frame into a number of
tiles, before coding each tile using Matching Pursuit. A residual image of size
N¢ x Npg is split into tiles of size (2[6_1°g2(NCﬂ) Ng X (2[6_1°g2(NR)1) Npg prior

to being coded. This limits the height and width of tiles to less than 128 pixels.



7.5. Results and Analysis 153

Note that the coding of each tile is performed using the current frame’s A value.
This ensures that tiles are coded at the same rate-distortion tradeoff point. The
chroma components of each residual frame are also split into tiles, and coded

using Matching Pursuit.

The X\ parameter also helps to control the number of atoms used to approxi-
mate each tile.'® In order to reduce computation, tiles in P and B frames are
restricted to using a maximum of 100 and 50 atoms respectively. Note that
tests were performed at low bit-rates (using a high value of QP), so that more

atoms were found to be unnecessary.

7.5 Results and Analysis

The video codec proposed in this chapter was implemented in MATLAB, with
certain functions written in C to help speed up the encoding process. (Source
code, and a MATLAB demo are available on the project web-site [99].) The
codec was tested on standard video sequences in order to compare the rate-

distortion performances of the four different block matching methods.

Nine sequences'’

were used in testing. This section presents results for the
Foreman, City, Mobile € Calendar and Stefan sequences (which are represen-
tative of the results obtained for the full set of nine sequences). These four
sequences all depict scenes with fairly complex motion, and the latter three
also contain significant spatial detail. The Foreman and City sequences have a
spatial resolution of 352 x 288 (CIF), while the resolution of Mobile & Calendar
and Stefan is 352 x 240 (SIF). All four sequences play at a frame rate of 30 fps

and use Y CpC, 4:2:0 chroma sub-sampling.

For each sequence, encoding and decoding were performed using all four block

16 An atom is a Matching Pursuit basis function together with its position and weighting.

7 Namely City, Flower Garden, Football, Foreman, Mobile & Calendar, Stefan, Crowd, Ed-
inburgh and Tennis. The first six are standard test sequences, while the latter three are

proprietary BBC sequences.



154 Chapter 7. Integration into a Hybrid Video Codec

generation methods, at a variety of quantisation (QP) settings.'® Note that
all of the sequences referred to in this chapter (as well as the uncompressed

originals) are included on the accompanying DVD (Appendix D).

7.5.1 Rate-Distortion Performance

Rate-distortion results were obtained by averaging over the first 100 frames of
each sequence, and are plotted in Figures 7.12 to 7.15. It can be seen that in
each case the Binary Partition Tree VSBM method out-performs H.264/AVC
VSBM, which in turn is superior to the two FSBM methods. However, the
amount of gain varies from sequence to sequence and is also dependent on bit-

rate.

Regular 8 x 8 block matching performs poorly overall, particularly at low bit-
rates. This is because of the substantial overhead associated with coding the
motion vectors of many small blocks. Fixed-size 16x16 block matching uses only
a quarter of the number of blocks. Thus, although the motion compensation is
more crude, there are more bits left over to either refine the motion vectors to

sub-pixel accuracy, or to spend coding the residual.

The one exception to the superior performance of 16 x 16 over 8 x 8 block
matching is in the coding of the Stefan sequence at higher bit-rates (see Figure
7.15). This is partly due to the presence of non-translational motion in highly-
textured background areas. Another factor is the effect of the thin black lines
along the top and right borders of the picture. As discussed in Chapter 6,
16 x 16 blocks are unable to resolve the motion in this area, leading to significant
distortion. However, the use of smaller blocks allows for motion to be modelled
more accurately, thus reducing the error along these frame boundary areas by

a substantial amount.

The H.264/AVC implementation of VSBM out-performs both FSBM methods

18 The following quantisation parameter (QP) settings were used for each of the sequences:
Foreman: 28, 30, 32, 34, 36; Stefan: 36, 37, 38, 39, 40; City: 30, 31, 32, 34, 36; and
Mobile & Calendar: 38, 39, 40, 41, 42.



Results and Analysis 155

37

36.51

36

355

3451

34t

Luma PSNR [dB]

335F

331

—H8— Binary Partition Tree VSBM
—e— H.264/AVC VSMB

32.5r —6— Fixed Size 16 x 16

—<— Fixed Size 8 x 8

32 1 1 1 1 1 1 1 1 J
100 200 300 400 500 600 700 800 900 1000
Rate [kbps]

Figure 7.12: Rate-Distortion results for the first 100 frames of Foreman

34r
335
33
325

32

Luma PSNR [dB]

31

305

—H8— Binary Partition Tree VSBM
—e— H.264/AVC VSMB

—6— Fixed Size 16 x 16

—<— Fixed Size 8 x 8

295 1 1 1 1 1 1 1 1 J
100 200 300 400 500 600 700 800 900 1000
Rate [kbps]

30

Figure 7.13: Rate-Distortion results for the first 100 frames of City



156 Chapter 7. Integration into a Hybrid Video Codec
26.5-
261
25.5F
o L
L 2
o
zZ
n 245F
a
©
£
3 oar
235¢
—H8— Binary Partition Tree VSBM
23} —e— H.264/AVC VSMB
—©— Fixed Size 16 x 16
—<— Fixed Size 8 x 8
225 1 1 1 1 1 1 1 J
200 300 400 500 600 700 800 900 1000

Rate [kbps]

Figure 7.14: Rate-Distortion results for 100 frames of Mobile € Calendar

30

29.51

29

2851

Luma PSNR [dB]
®

265

1

—H8— Binary Partition Tree VSBM
—e— H.264/AVC VSMB

—6— Fixed Size 16 x 16

—<— Fixed Size 8 x 8

1 1 1 1 1 1 1 1

26
200

300

J
400 500 600 700 800 900 1000 1100 1200

Rate [kbps]

Figure 7.15: Rate-Distortion results for the first 100 frames of Stefan



7.5. Results and Analysis 157

for all values of QP. For all four sequences, the gain over 16 x 16 FSBM is more
pronounced at high bit-rates than at lower ones. This can be understood as
follows: When operating at low rates, H.264/AVC VSBM has few bits available
to spend on specifying block partitions and the resulting additional motion
vectors. Consequently, many block are not split and as a result the performance
is closer to that of FSBM. However, at higher rates, the encoder is able to
spend more bits on improving the motion compensation performance in areas

of complex motion — something which FSBM is unable to do.

The Binary Partition Tree approach to VSBM in turn out-performs H.264/AVC
VSBM across all sequences, for all the values of QP which were tested. Its
advantage is most noticeable at low bit-rates, which is when relatively few blocks
are used for motion compensation. This seems reasonable when one considers
that the initial partitions in the tree tend to provide the largest reductions in
error. Also, H.264/AVC does not have the option of using any blocks larger
than 16 x 16, which could potentially be a disadvantage at low bit-rates.

Tables 7.1 and 7.2 provide the minimum and maximum gains of the Binary
Partition Tree approach to block matching over its rival methods, for each of
the four sequences.'® It can be seen that the most significant advantage over
H.264/AVC VSBM was found to be an increase of 1.0 dB in quality (at the
same rate), or alternatively a 24% reduction in bit-rate (for the same average

PSNR).

Table 7.1: Improvement in PSNR provided by Binary Partition Tree VSBM

Sequence relative to H.264/AVC VSBM | relative to FSBM

Foreman

0.11 dB to 1.00 dB

0.76 dB to 1.35 dB

City

0.23 dB to 0.58 dB

0.52 dB to 0.80 dB

Mobile & Calendar

0.13 dB to 0.23 dB

0.27 dB to 0.31 dB

Stefan

0.11 dB to 0.42 dB

0.93 dB to 1.03 dB

19 based on the results plotted in Figures 7.12 to 7.15




158 Chapter 7. Integration into a Hybrid Video Codec

Table 7.2: Reduction in bit-rate provided by Binary Partition Tree VSBM

Sequence relative to H.264/AVC VSBM | relative to FSBM
Foreman 3.4% to 24.4% 21.3% to 31.4%
City 5.9% to 19.2% 14.9% to 24.9%
Mobile & Calendar 3.8% to 9.2% 7.6% to 12.4%
Stefan 3.5% to 12.6% 18.1% to 27.9%

7.5.2 Frame-by-Frame Results

The rate-distortion results in Figures 7.12 to 7.15 are based on the average
performance over 100 frames. It can also be revealing to examine the rate and
distortion behaviour of individual frames. Figures 7.16 to 7.19 show the bit-rate

and quality (PSNR) of each frame, using the two VSBM methods.?°

The most noticeable characteristic of the bit-rate graphs is that the I, P and B
frames fall into three distinct bands: I frames require the largest number of bits
since they are coded independently of any other pictures; P frames need fewer
bits since they are predicted from previous reference pictures; and B frames
are bi-directionally predicted and thus require still fewer bits. In addition, the
encoder operates by coding P and B frames with a target PSNR of 0.7 and 1.0

dB less than that of the previous I frame.

The frame-by-frame results allow for a comparison of H.264/AVC VSBM (plot-
ted in blue) and Binary Partition Tree VSBM (displayed in red). Both methods
demonstrate a very similar PSNR performance, which is not surprising when
one considers that the encoder uses the same value of QP (and the same quality

control mechanism) for both motion compensation techniques.

For the same average quality, Binary Partition Tree VSBM generally requires
fewer bits to code inter frames than H.264/AVC VSBM. For example, when

coding Foreman with QP set to 34 (as shown in Figure 7.16), the average cost of

20 For each sequence, the frame-by-frame results are only shown for one selected value of QP.



7.5. Results and Analysis 159

Bit—Rate [kbps]

Luma PSNR [dB]

12001
©
1000+ & ® o o
O
<
| © H.264/AVC: |
800 O H.264/AVC: P
x H.264/AVC: B
Bin. Tree: | 0
O Bin. Tree: P
600+ + Bin. Tree: B a o
8
O
. o
5 0 O o
400* oo 5 @)
00, 8 0 g8 © o0 = o)
80O g © B o g g oo g o g
@) ¢) @)
200 - A
KX 000 4 XXXXXXX><><><><><><><><><><><><%&ijiixxxxx&xxiiﬁ%Jr T
R R T T . o Ty ++
O 1 1 1 1 J
0 20 40 60 80 100
Frame Number
35r
— H.264/AVC VSBM
—— Binary Partition Tree VSBM
345
34+
33.5¢ | / | I w
1
AW / \ <
\ 1y A
33} J\ | '/ i
325
32 1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Frame Number

Figure 7.16: Frame-by-frame results for Foreman (QP = 34)



160 Chapter 7. Integration into a Hybrid Video Codec

18001
]
&
16001 ®
© ® o
1400 ¢
O H.264/AVC: |
1200 | © H.264/AVC: P
—_ x H.264/AVC: B
g Bin. Tree: |
Qo O Bin. Tree: P
X, 1000 | B:n. Tree: B
[¢]
IS
T 800
5 0o 0 O
600 o ° © o
oo O m] O o o
o © o ©o ° 5 B g8 RS "
400 8 o_ e ° o 8 ®o0o0
00 8 o0
e}
2007 % o X x
0 XS x X K s s, o B wxx x5 x 9 -~
#L S +Xii‘x*++z++++j:+i++++ﬁ &++++ﬁﬁﬁ Ty ++>+i+++++><i§
O 1 1 1 1
0 20 40 60 80 100
Frame Number
33r
— H.264/AVC VSBM
—— Binary Partition Tree VSBM
325
32r |
— A
D 315 / J \’ / j
14 ‘ AN
5 31 | f ) /\ \
L \J
o ‘ ‘ ~ N \ ‘V/ | Y / \
© v |
E | V / J
3 30.5F
301
29.5F
29 1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Frame Number

Figure 7.17: Frame-by-frame results for City (QP = 34)



7.5. Results and Analysis 161
2000
&
L @
1800 o N o
1600+
O H.264/AVC: |
14001 | © H.264/AVC: P
X  H.264/AVC: B
i - Bin. Tree: |
o 1200 | O Bin. Tree: P
§ + Bin. Tree: B
o) L
= 1000
0
5 800+
600+~ O oo 5 CD) m
o8 o o o o 8Ba 0000 gooO ogo
o © o8 05 8 o o O &
400 ° = g © o ©
o o)
200*)( XXX % xgggﬁ*x ,gﬁﬂekj)gx ++g>%%%§*ﬁ¥¥ﬁ *i&j’iﬁg#
s b R RO R o K g B ¥
O 1 1 1 1 J
0 20 40 60 80 100
Frame Number
25-
—— H.264/AVC VSBM
—— Binary Partition Tree VSBM
24.8+
24,6+
24.4+
o'
S, 24.2F
x
P I
n 24r
o
“, /
: 2 A ]
- L[l t
23.6F Al |
U v \
23.41 N
I
23.2+ \
23 1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 a0 100

Frame Number

Figure 7.18: Frame-by-frame results for Mobile & Calendar (QP = 41)



162 Chapter 7. Integration into a Hybrid Video Codec
15001 o .
&
¢ o
&
&
& H.264/AVC: | o
O H.264/AVC: P o o
x H.264/AVC: B
1000r| - Bin. Tree: | 9
kY O Bin. Tree: P
o + Bin. Tree: B O
ie)
=3 o
9
o]
i .
5 O o © . = o o 8
5001 O @) B8 5 R O g O 8 o ] 0
g 8 o o o ©
o O 0o O
o to © ok x XA+
x X o x x o X
xiii+++++¥+i X+3ﬁo>< Xxxx X s, s, 3 % X+jx>3\<><+ +4 *
+Xfr Koy i Jr><><><><>3<><+Zii:#rhﬁr e
X +
+ i++++ R AT
O 1 1 1 1 J
0 20 40 60 80 100
Frame Number
29r
— H.264/AVC VSBM
—— Binary Partition Tree VSBM
28.5F
_ 28
m
S,
x
pzd
w0 27.5r
o
< A
E “ | |
S
3 / /
27 [ / J | J
\ | |
‘ / \ [\ | .‘
26.5f Y /) ’ I V]
/ v \
\
26 1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Frame Number

Figure 7.19: Frame-by-frame results for Stefan (QP = 39)



7.5. Results and Analysis 163

Table 7.3: The reduction in average bit-rate when using Binary Partition Tree

VSBM, relative to H.264/AVC VSBM. Sequences compared at the same quality.

Sequence P frames | B frames
Foreman (QP = 34) 9% 40%
City (QP = 34) 9% 34%
Mobile & Calendar (QP = 41) 8% 10%
Stefan (QP = 39) 9% 20%

coding a B frame using H.264/AVC VSBM is 137 kbps, while a Binary Partition
Tree approach requires just 83 kbps.2! This amounts to a 40% reduction in the
B picture bit-rate. For the same example, the average reduction in bit-rate for
P frames is 9%. The other three sequences also demonstrate savings in bit-rate
for P and especially B frames. The results for inter frames are summarised in

Table 7.3.

7.5.3 Bit-Stream Analysis

In order to further investigate the savings in bit-rate provided by Binary Par-
tition Tree VSBM, it is instructive to compare the bit-stream characteristics
when using the four different block-based motion compensation methods. Fig-
ures 7.20 to 7.23 describe the compressed data according to its three main

components, which are:

e the information required to represent the block structure for each inter
frame (Note that for the two FSBM methods, the block structure is im-

plicit and thus does not need to be coded.);

e the motion information for each block (The includes a block’s motion

vector, choice of reference frame, and mode decision, i.e. the intra/inter

21 Note that the mean PSNR for B frames using the two block matching methods is 33.29 dB
for H.264/AVC VSBM and 33.22 dB for Binary Partition Tree VSBM (Foreman, QP = 34).



164 Chapter 7. Integration into a Hybrid Video Codec

flag for each block. All of these values are coded predictively relative to

neighbouring blocks. );

e an approximation of the residual after motion compensation. (Recall
that the Matching Pursuit technique is used to represent and code the

residual.)

The bar graphs presented in Figures 7.20 to 7.23 provide a break-down of the
bit-stream into these three components (block structure, motion, and residual).
They provide results for three different QP settings, for both P and B frames.
Each bar graph also shows the average number of blocks per frame generated
when performing motion compensation. (Clearly, the number of blocks only
varies in the case of VSBM.) The characteristics of each of the four block-

matching methods are discussed below in more detail:

e 8 x 8 FSBM (shown in black) uses relatively small blocks, and thus re-
quires many of them to span the frame. As a result, a large number of
motion vectors need to be coded. Although this helps to achieve accurate
prediction, it leaves few bits for coding the residual. As the results show,
the majority of the bit-stream is generally allocated to the motion com-
ponent. This trend is particularly noticeable in case of B pictures, when

the residual component is often very small.

e 16 x 16 FSBM (displayed in green) uses only a quarter as many blocks.
Consequently, the proportion of motion information in the bit-stream is
significantly reduced. This leaves more bits to code the residual, and as
a result, the coded residual generally dominates the bit-stream. (It is
worth noting that the use of 16 x 16 blocks can lead to more significant
motion compensation artifacts, thus creating a DFD that needs more bits

to encode.)

e The H.264/AVC implementation of VSBM (shown in blue) provides some-

thing of a compromise between the above two methods. By partitioning



7.5. Results and Analysis 165

16 x 16 blocks only where it is advantageous to do so, it enables trading-off
the bit-rate allocation between motion and residual information. As the
results show, fewer blocks are generated for B frames than for P frames.
This can be understood by considering that bi-directional prediction al-

lows for more accurate motion compensation of a block.

Clearly, there is a cost of coding the partition information for each macro-
block. However, as can be seen, this a very small component of the bit-
stream when compared to the motion and residual information. Even for
the low bit-rate examples shown, the block structure information consti-

tutes less than around 7% of the bit-stream.

e The Binary Partition Tree approach to VSBM (shown in red) performs
optimal block partitioning, and then prunes the partition tree to retain
those blocks that contribute the most towards minimising error. As can
be seen from the results, this method generates significantly fewer blocks
than the other three methods. As a result, the motion component of the

bit-stream is noticeably reduced, particularly in the case of B frames.

The cost of representing the block structure using a Binary Partition Tree
can be two or three times that associated with the H.264/AVC method.
For B frames at very low bit-rates, this translates to around 20% of the
bit-stream, which is quite substantial. However, as can be seen from the
results, this extra cost is more than compensated for by the savings that

arise when coding the motion information.

7.5.4 Subjective Performance

PSNR provides an objective measure of image fidelity. However, it does not
always correlate well with the picture quality perceived by a human observer.
This section therefore provides some sample frames in order to demonstrate
the performance of the video codec described in this chapter. (Note that the

results presented in this section only show the central portion of each frame.



166 Chapter 7. Integration into a Hybrid Video Codec
800 ‘ ‘ 800 ‘ ‘
Il Bin. Tree VSBM (306) Il Bin. Tree VSBM (165)
I H.264 VSBM (989) I H.264 VSBM (535)
[ 16x16 FSBM (396) [ 16x16 FSBM (396)
600 I 8x8 FSBM (1584) 600/ I 8x8 FSBM (1584)

Bit—Rate [kbps]
S
o
o

200¢

glock Shape Motion

Residual

Bit—Rate [kbps]
S
o
o

Total

(a) P-frames for QP = 32

2007

8Iock Shape Motion

(b) B-frames for QP = 32

800 w w 800 w w
Il Bin. Tree VSBM (253) Il Bin. Tree VSBM (118)
Bl H.264 VSBM (786) Bl H.264 VSBM (465)
[ 16x16 FSBM (396) [N 16x16 FSBM (396)
600/ I 8x8 FSBM (1584) 600 I 8x8 FSBM (1584)

Bit—Rate [kbps]
S
o
o

200¢

glock Shape Motion

Residual

Bit—Rate [kbps]
S
o
o

Total

(c) P-frames for QP = 34

2007

8I0ck Shape Motion

(d) B-frames for QP = 34

800 w w 800 w w
Il Bin. Tree VSBM (228) Il Bin. Tree VSBM (78)
I H.264 VSBM (645) Bl H.264 VSBM (421)
I 16x16 FSBM (396) I 16x16 FSBM (396)
00| Il 8x8 FSBM (1584) 600!/ Il 8x8 FSBM (1584)

Bit—Rate [kbps]
S
o
o

200r

Bit—Rate [kbps]
S
o
o

2007

Residual

Residual

Total

Residual

Total 8Iock Shape Motion

Residual

glock Shape Motion

(e) P-frames for QP = 36 (f) B-frames for QP = 36

Figure 7.20: Analysis of the Bit-Stream components for Foreman



7.5. Results and Analysis 167

1000—===— : 1000—=— :
Il Bin. Tree VSBM (386) Il Bin. Tree VSBM (207)
B H.264 VSBM (1292) Bl H.264 VSBM (712)
800! I 16x16 FSBM (396) goo! I 16x16 FSBM (396)
B 5x8 FSBM (1584) I 5x8 FSBM (1584)
g g
£ 600 £ 600
) )
© @
X 400t T 400/
] )
200¢ 2007
glock Shape Motion  Residual Total glock Shape Motion  Residual Total
(a) P-frames for QP = 32 (b) B-frames for QP = 32
1000—=— : 1000—— :
Il Bin. Tree VSBM (336) Il Bin. Tree VSBM (147)
I H.264 VSBM (996) Il H.264 VSBM (536)
800!/ M 16x16 FSBM (396) ] goo/| I 16x16 FSBM (396)
B 5x8 FSBM (1584) I 5x8 FSBM (1584)
g g
£ 600 £ 600
Q Q
IS IS
X 400t T 400/
n i)
200¢ 2007
glock Shape Motion  Residual Total glock Shape Motion  Residual Total
(c¢) P-frames for QP = 34 (d) B-frames for QP = 34
1000—===— : 1000—=— :
Il Bin. Tree VSBM (259) Il Bin. Tree VSBM (79)
Bl H.264 VSBM (758) Il H.264 VSBM (450)
gooH I 16x16 FSBM (396) f goo/ I 16x16 FSBM (396)
B 5x8 FSBM (1584) I 5x8 FSBM (1584)
g g
£ 600 £ 600
Q Q
IS IS
X 400t T 400
n o
200¢ 2007
glock Shape Motion  Residual Total glock Shape Motion  Residual Total
(e) P-frames for QP = 36 (f) B-frames for QP = 36

Figure 7.21: Analysis of the Bit-Stream components for City



Chapter 7. Integration into a Hybrid Video Codec

Il Bin. Tree VSBM (230)
800/ I H.264 VSBM (964)
I 16x16 FSBM (330)
I 5x8 FSBM (1320)

I Bin. Tree VSBM (160)

800/ I H.264 VSBM (678)

[ 16x16 FSBM (330)
I 8x8 FSBM (1320)

2 600} 2600}
o) o)
4 =,
oA g
%“‘ 400¢ $ 400t
& &

200 200}

glock Shape Motion  Residual Total glockShape Motion  Residual Total

(a) P-frames for QP = 40 (b) B-frames for QP = 40

B Bin. Tree VSBM (196) B Bin. Tree VSBM (L48)
800/ I H.264 VSBM (817) ] 800|| I H.264 VSBM (565)
[ 16x16 FSBM (330) [ 16x16 FSBM (330)
Bl 58x8 FSBM (1320) Bl 8x8 FSBM (1320)
& 600 2 600F
io] o]
= =
2 g
© L © L
Q|: 400 CF 400
o ]
2007 200¢
glock Shape Motion  Residual Total 8Iock Shape Motion  Residual Total
(c¢) P-frames for QP = 41 (d) B-frames for QP = 41
B Bin. Tree VSBM (177) B Bin. Tree VSBM (126)
8001 Il H.264 VSBM (713) 1 800|| I H.264 VSBM (476)
[ 16x16 FSBM (330) [ 16x16 FSBM (330)
I 88 FSBM (1320) I 58 FSBM (1320)
2 600r 2 6001
ieo] ie]
= =
2 g
© L © L
Q|: 400 CF 400
o ]
2007 200¢

glock Shape Motion  Residual Total 8IockShape Motion  Residual Total

(e) P-frames for QP = 42 (f) B-frames for QP = 42

Figure 7.22: Analysis of the Bit-Stream components for Mobile & Calendar



7.5. Results and Analysis 169

Il Bin. Tree VSBM (161)
800/{ I H.264 VSBM (689)
I 16x16 FSBM (330)
I 518 FSBM (1320)

Il Bin. Tree VSBM (260)
800/ I H.264 VSBM (1118)
[ 16x16 FSBM (330)
I 5x8 FSBM (1320)

2 600} 2600}
o) o)
4 =,
oA g
%“‘ 400¢ 'C.IU 400t
& &

200 200}

glock Shape Motion  Residual Total glockShape Motion  Residual Total

(a) P-frames for QP = 38 (b) B-frames for QP = 38

I Bin. Tree VSBM (244) I Bin. Tree VSBM (148)

8001 I H.264 VSBM (1008) 1 800f Il H.264 VSBM (617)
I 16x16 FSBM (330) I 16x16 FSBM (330)
Il 58x8 FSBM (1320) Il 5x8 FSBM (1320)
9 600t @ 600t
o) o)
X, X,
o o
LF‘“ 400t glg 400t
: 5
200 200t

glock Shape Motion  Residual Total 8IockShape Motion  Residual Total

(¢) P-frames for QP = 39 (d) B-frames for QP = 39

I Bin. Tree VSBM (217) I Bin. Tree VSBM (131)

800 I H.264 VSBM (896) 1 800 I H.264 VSBM (538)

I 16x16 FSBM (330)
I 8x8 FSBM (1320)

I 16x16 FSBM (330)
I 8x8 FSBM (1320)

2 600} 2 600}
o) o)
X, X,
9 9
LF‘“ 400t glg 400t
& &

200t 200

glock Shape Motion  Residual Total BlockShape Motion  Residual Total

(e) P-frames for QP = 40 (f) B-frames for QP = 40

Figure 7.23: Analysis of the Bit-Stream components for Stefan



170 Chapter 7. Integration into a Hybrid Video Codec

This allows for the picture detail to be observed more clearly.) For a complete

set of results, the reader is referred to the accompanying DVD (Appendix D).

Comparison of Binary Partition Tree VSBM and H.264/AVC VSBM

Figure 7.24 shows the eighth (B) frame of each 15-frame GOP for the Foreman
sequence. The first row of pictures are from the original sequence. The frames
in the second row are from a version coded using H.264/AVC VSBM (with
QP = 36), producing a sequence coded at 210 kbps. The third row shows
frames coded using Binary Partition Tree VSBM (with QP = 34), yielding a
bit-rate of 214 kbps. This allows for these two motion compensation methods

to be compared at (almost) the same bit-rate.

The fourth row depicts the difference between the first and second rows (i.e.
the motion compensation error associated with H.264/AVC VSBM), while the
fifth row shows the difference between the first and third rows (i.e. the mo-
tion compensation error associated with Binary Partition Tree VSBM). Both

compressed sequences exhibit significant coding artifacts:

e In both sequences, a significant lack of texture is noticeable. This is
primarily due to the large quantisation parameter (QP) used for intra
coding. However, this loss of detail is generally unavoidable at such a low
bit-rate. A high value of QP also causes the colours to appear somewhat

“washed out.”

e Some minor block edge artifacts are noticeable. For example, frame 83 in
row 2 (on the right?? cheek) and frame 68 in row 3 (on the chin). This type
of distortion arises because blocks are motion compensated independently
of one another, which can introduce discontinuities in the motion vector
field. The absence of major block boundary artifacts shows that OBMC

has been largely successful.

22 right from the viewer’s perspective



7.5. Results and Analysis 171

e There are some instances of chroma mis-matching. For example, frame
68 in row 2 (on left side of the chin and on the bottom right of the
neck) and frame 8 in row 3 (on the neck/cheek area). This type of noise
occurs because matching is performed using the luma component only,
and is generally more likely for smaller blocks. These errors suggest that
the intra/inter block mode decision could possibly be improved, since
it may have been better for these blocks to have been flagged as intra
blocks. Alternatively, the encoder could perform motion estimation using

the chroma components as well.

Overall, the sequence in the second row (using H.264/AVC VSBM) shows more
noticeable distortion than the one in the third row (using Binary Partition Tree
VSBM). This can perhaps be most easily observed by examining the detail in
the ears and mouth across the sequence. In addition, the difference images

provide a guide as to where the most significant errors are located.

Comparison of Binary Partition Tree VSBM and 16 x 16 FSBM

Figure 7.25 shows the seventh (P) frame of each 15-frame GOP for the Stefan
sequence. The first row of pictures are from the original sequence. The frames in
the second row are from a version coded using 16 x 16 FSBM (with QP = 38),
producing an average bit-rate of 584 kbps. The third row shows frames coded
using Binary Partition Tree VSBM (with QP = 37), yielding a bit-rate of 579
kbps. This allows for these two motion compensation methods to be compared
at similar bit-rates. Rows four and five show the difference frames corresponding

to the two respective motion compensation methods.

There is a significant amount of motion present in this sequence. The foreground
motion is fast and involves a non-rigid object (i.e. the tennis player) that is
not easy to motion compensate from one frame to the next. The background
motion is due to the panning and zooming camera, and can be observed by
noting the degree to which the advertising text moves. In addition, there is the

motion of people within the highly-textured crowd.



172 Chapter 7. Integration into a Hybrid Video Codec

(a) Frame 8 ) Frame 23 ) Frame 38

Figure 7.24: Foreman frames (detail)



7.5. Results and Analysis 173

) Frame 53 ) Frame 68 ) Frame 83

Figure 7.24: Foreman frames (detail)



174 Chapter 7. Integration into a Hybrid Video Codec

(a) Frame 7 (b) Frame 22 (¢) Frame 37

Figure 7.25: Stefan frames (detail)



7.5. Results and Analysis 175

(d) Frame 52 (e) Frame 67 (f) Frame 82

Figure 7.25: Stefan frames (detail)



176 Chapter 7. Integration into a Hybrid Video Codec

Both compressed sequences suffer from easily noticeable distortion. However, a
close examination reveals that detail tends to be less well preserved when using
FSBM (second and fourth rows) than Binary Partition Tree VSBM (third and
fifth rows). For example, it is interesting to compare the tennis racquet in frame

7, the player’s face in frames 37, 67 and 82, and the line judge in frame 52.

Some of the distortion is less noticeable when the sequence is played back at
30 fps. This is due to the varying sensitivity of the human visual system. In
addition, spatial masking®® causes some artifacts to be less noticeable than

might be expected.

The Effect of Varying Quantisation

The quantisation parameter (QP) directly influences the quality of each intra
frame. This is then used to control the quality of inter frames in the remainder
of each GOP. Figures 7.26 and 7.27 demonstrate the effect of varying QP on
the quality of a single frame in the Mobile € Calendar and City sequences,

respectively.

As QP increases, there is a gradual loss in texture, and edges become more
and more blurred. The loss of fine detail is particularly evident in the calendar
text, which is also subject to a loss of chroma information. The view of the
city also suffers from a loss in detail that is most noticeable among the smaller

background objects.

Another artifact in the City sequence is caused by a combination of compres-
sion and spatio-temporal aliasing. This occurs as a result of the motion of
high-spatial-frequency components (such as those buildings with many small
windows). This type of distortion is not visible when looking at individual
frames, but only when viewing the sequence being played back in real-time. As

a result, there appears to be some flicker among many of the building windows.

23 Spatial masking describes the phenomenon that occurs when the visibility of a pattern
appears to be influenced by its immediate neighbourhood. Thus Gaussian noise is generally

less perceptible in textured areas or near edges, than in relatively flat regions of an image.



7.5. Results and Analysis 177

213 e N
B0 N2

(e) Binary Partition Tree (QP = 41) (f) Binary Partition Tree (QP = 42)

Figure 7.26: Frame 80 of Mobile & Calendar (detail)



178 Chapter 7. Integration into a Hybrid Video Codec

(e) Binary Partition Tree (QP = 34) (f) Binary Partition Tree (QP = 36)

Figure 7.27: Frame 20 of City (detail)



7.6. Conclusion 179

Spatio-temporal aliasing is present to a limited degree in the original sequence,
but it is more noticeable in the compressed versions. This is because the coding
process introduces some distortion on the facades of these buildings that does
not move in a consistent way from one frame to the next. These types of
artifacts could potentially be reduced using spatio-temporal filtering and post-

processing.

7.6 Conclusion

This chapter described the design and analysis of a hybrid video codec that
allows the user to choose one of four block-based motion estimation and com-
pensation methods. Based on a 15-frame IBBPBBP. .. structure, the codec uses
H.264/AVC for intra coding and then performs either fixed-size or variable-size
block matching (FSBM or VSBM) to code inter frames.

When using VSBM, the block structure needs to be coded. The structure
is determined by the encoder using either the H.264/AVC approach to block
splitting, or the Binary Partition Tree method described in Chapter 6. For
each block, the intra or inter mode choice needs to be coded, after having been

determined by the encoder.

Intra blocks are represented using the mean values of their luma and chroma
components. For each inter block, its motion vector is coded predictively, along
with the choice of reference frame (in the case of B pictures). Finally, the pre-
diction error of each inter frame is approximated and coded using the Matching

Pursuit technique.

Throughout the encoding process, Lagrangian rate-distortion optimisation is
employed to ensure that each component of the encoder operates using the
same rate-distortion trade-off relationship. This Lagrangian A parameter is
used to maintain a roughly constant picture quality across frames in a GOP.
During the motion compensation stage, overlapping blocks are employed to help

reduce blocking artifacts that are common to many block based codecs.



180 Chapter 7. Integration into a Hybrid Video Codec

The proposed codec was tested on a number standard test sequences in order
to compare the performance of the four block matching methods. In general,
16 x 16 blocks were found to provide superior results to 8 x 8 ones, particularly at
low bit-rates. The H.264/AVC implementation of VSBM was in turn shown to
out-perform both FSBM methods, by allowing macro-blocks to be split where

it is advantageous to do so.

Further gains of up to 1 dB were observed when using Binary Partition Tree
VSBM. The largest improvement was found to be at very low bit-rates, where
this equates to a reduction in bit-rate of up to 24%. It was shown that the
Binary Partition Tree method requires fewer blocks than the other three tech-
niques. Consequently, fewer motion vectors need to be coded, resulting in a

significantly lower bit-rate — particularly in the case of B frames.



Chapter 8

Conclusion

The research reported in this dissertation focused on three methods of content-
based motion estimation and compensation. The most promising of these meth-
ods was then integrated into a hybrid video codec in order to allow for it to be
compared to existing techniques. This chapter concludes this thesis by review-
ing the preceding chapters, discussing the novel contributions of this work, and

suggesting ideas for further research.

8.1 Summary

The need for the compression of digital video remains undiminished despite
substantial increases in bandwidth and storage capabilities over the past few
years. Standards have evolved significantly during the last decade, but the
basic principles of video coding remain the same. Most codecs combine two
fundamental techniques: transform coding (used to compress both original and
residual frames) and motion-based prediction. The research described in this
dissertation has focused on the latter — in particular the use of content-based

methods of motion estimation and compensation.

When using an object-based approach, it is necessary to specify the shape and

position of each object within a scene. From a compression point of view,

181



182 Chapter 8. Conclusion

this should be done as efficiently as possible, while still allowing a reasonable
quality representation. A method was proposed whereby regions in a scene can
be represented using a collection of polygons. Since a scene generally consists
of several objects, it seems reasonable to use an approach in which the common
boundaries can be represented efficiently, rather than having to code the shape

of each object independently of its neighbours.

The first of the three content-based methods of motion compensation uses a
triangular mesh. The mesh is designed by first performing spatial segmenta-
tion of the current frame, as well as dense motion estimation (relative to a
reference frame). The motion field is then used to refine the segmentation by
splitting regions with different types of motion, and merging areas with similar
motion characteristics. The resulting segmentation map is approximated using
the polygon-based approach described above, and a triangular mesh is then
generated within each polygon. This method was shown to perform fairly well,
however it proved difficult to control the number of triangles generated for each

frame.

The second content-based motion compensation technique begins by using a
similar spatial segmentation method. The optimal translational motion vector
is then estimated for each region, and the resulting motion compensated error
is noted. Following this, the area with the largest error is split, and the splitting
process is repeated a number of times (each time for the region with the greatest
error). Neighbouring regions with the same motion vector are then merged. The
resulting set of regions are approximated with polygons, using the technique
outlined above. Each (polygon-shaped) region is then populated with a grid of
square blocks, with the number of blocks in a region being proportional to its
motion compensation error. This results in small blocks being present in regions
of complex motion, while allowing larger blocks to span the background areas.
This approach has the advantage of enabling precise control over the number
of blocks in each frame, which allows it to be more robust than the mesh-based
method. However, its performance remains sensitive to the parameters used

during the segmentation stage.



8.1. Summary 183

The third content-based motion compensation method attempts to combine the
segmentation and block generation phases. It does this by starting off with one
rectangular block that spans the entire frame. This block is then split into two
(using a straight horizontal or vertical line) in a way that achieves the maximum
reduction in motion compensation error. The process is applied repeatedly to
the block with the largest motion compensation error, thus creating a binary
tree of blocks. More blocks are generated than are required, but sibling blocks
that provide the smallest gain by having been partitioned are re-merged into one
block. A method for coding the binary partition information in an efficient way
was also developed. This Binary Partition Tree VSBM technique was shown to
provide a substantial improvement in quality over 16 x 16 FSBM performed at

the same bit-rate.

It was decided to integrate the Binary Partition Tree method of motion estima-
tion and compensation into a hybrid video codec. With a 15-frame IBBPBBP. ..
structure, the codec uses the H.264/AVC method of intra coding. The user can
select one of four block structures for motion estimation and compensation:
8 x 8 FSBM, 16 x 16 FSBM, H.264/AVC VSBM and Binary Partition Tree
VSBM. Following motion compensation (using overlapping blocks), the resid-
ual is coded using a Matching Pursuit method. At each stage, the encoder uses
Lagrangian optimisation in order to improve the rate-distortion performance,
and a simple algorithm is employed to control the picture quality among each

of the three (I, P and B) frame types.

Tests were performed on standard test sequences, using each of the four block-
based motion compensation methods. Rate-distortion results (presented in Sec-
tion 7.5) demonstrate the superior performance of Binary Partition Tree VSBM
over the other techniques. In comparison to the state-of-the-art H.264/AVC
VSBM method, Binary Partition Tree VSBM was found to reduce the total
bit-rate by up to 24% (for the same picture quality). It was shown that the
latter method allows for accurate motion compensation to be performed using
relatively few blocks, particularly in the case of bi-directionally predicted (B)

frames.



184 Chapter 8. Conclusion

8.2 Contributions

The research described in this dissertation provides a number of novel contri-

butions, which are listed below:

e As discussed in Section 3.2 shape coding is generally applied to individual
objects, rather than a collection of regions in the form of a segmentation
map. Vertex-based methods for coding segmentation maps do exist [48,
80, 73], however the progressive polygon approximation method described
in Chapter 3 is believed to be novel, in that it allows for an embedded bit-
stream to be produced. A coarser representation of a coded segmentation
map can then be obtained by decoding only the initial portion of the

bit-stream.

e The triangular mesh-based motion compensation method described in
Chapter 4 uses a variety of existing techniques when performing segmen-
tation, triangulation and motion estimation. Thus, although none of the
components of the system are novel, it combines them in a new way into

a chain of processes.

e Most implementations of VSBM tend to use either a binary-tree or quad-
tree approach to generating variable-size blocks. The method of varying
the block size by region, as described in Chapter 5, is believed to be
novel. This approach operates by making the number of blocks in a region

proportional to the motion compensation error for that region.

e Chapter 6 provides a detailed description of Binary Partition Tree VSBM.
Much of this technique is believed to be original, in particular the method
of partitioning blocks using the (horizontal/vertical) straight line that
minimises motion compensation error. The way in which the partition

tree structure is coded also appears to be novel.

The two region-based methods (discussed in Chapters 4 and 5) demonstrate

some new ideas and show some definite promise, yet their performance was



8.3. Future Work 185

not considered to be consistent enough for integration into a video codec. The
Binary Partition Tree VSBM method was found to provide some significant
advantages over state-of-the-art H.264/AVC VSBM, while at the same time

containing a number of original ideas.

8.3 Future Work

The progressive polygon approximation technique (described in Chapter 3) per-
forms reasonably well as a stand-alone method for coding segmentation maps.
However, when being used within a region-based video codec, it could be ad-
vantageous to also consider the content of the scene being segmented. Instead
of using a fixed distance-based measure of distortion (dyqz), it might be advan-
tageous to allow large values of d,,q, along boundaries with similar spatial and
temporal characteristics. Conversely, dp,q, could be reduced along boundary
segments separating regions with very different spatial or motion characteris-
tics. This would allow major edges to be approximated more precisely, while

allowing coarser boundaries in other areas.

One of the major drawbacks of the mesh-based motion compensation method
(described in Chapter 4) is that the number and shape of triangles within each
(polygon-approximated) region is only dependent on the region’s polygon shape.
The mesh design process would need to be improved to make the number of
triangles controllable, while still ensuring that they do not straddle motion

boundaries.

In both of the region-based motion compensation approaches (described in
Chapters 4 and 5), the segmentation process is performed using a fixed set of
parameters. These values were found to work reasonably well on the material
used in testing, however this represents only a small sample of video material.
Ideally, it should be possible to tune the segmentation-related parameters in
order to control the sensitivity of the process and thus the number of regions
that are created. This would also allow performance to be improved through

the use of rate-distortion optimisation.



186 Chapter 8. Conclusion

A number of aspects of the Binary Partition Tree VSBM method (described in
Chapter 6) could be improved. It may be advantageous to remove the restriction
that blocks may only be split along their major dimension. In addition, the

process of coding the partition tree could potentially be improved upon.

The main drawback of Binary Partition Tree VSBM is perhaps the computa-
tional cost involved with growing the tree. In particular, the process of finding
the optimal partition for each block can be time consuming. This is especially
true for large blocks, although one solution might be to use a frequency-domain
method (such as phase correlation [49]) when performing motion estimation of
larger blocks. In addition, a simple gradient-based search method might prove

useful when searching for a block’s optimal partition point.

All three of the proposed content-based motion compensation methods deter-
mine a new mesh-based or block-based structure for each frame, independently
of the structures used from other frames. It is likely that some advantage could
be achieved by using the motion compensation structures from previous frames.
Thus, instead of generating a new mesh (or block structure) from scratch for
each frame, it could evolve from one frame to the next. Such a strategy may

allow for faster mesh/block generation and also more efficient coding.

The codec proposed in Chapter 7 lacks many of the features provided by
H.264/AVC (e.g. multiple reference frames, more advanced rate and quality
control, etc.). One possibility for further work would be to introduce some of
these features into the codec. Another option worth further investigation is
the possibility of incorporating Binary Partition Tree VSBM into a H.264/AVC

framework.



Appendix A

The RGB to Y(C,C) Colour

Transform

When transforming a pixel with red (R), green (G) and blue (B) values to
luma and chroma components, two transforms are commonly used. One is for
standard-definition pictures, while the other applies to high-definition images.
As described in Section 2.2.3, the RGB to Y C,C, transform is often useful for

compressing images and video.

As an aside, it is worth noting the distinction between luminance and luma.
Luminance is a measure of the brightness of a colour signal and is a weighted
sum of linear RGB components. Luma refers to the Y component of the trans-
formed colour signal, and is a weighted sum of (non-linear) gamma-corrected?
RGB components [85]. Sometimes, luminance and luma are labelled as Y and
Y’ respectively. However, in this dissertation, Y is used to refer to the luma

component.

! Gamma-correction is a non-linear process applied to pixel values prior to coding and trans-

mission, in order to correct for the non-linear nature of most displays.

187



188 Appendix A. The RGB to Y Cy,C, Colour Transform

Transform for Standard Definition Pictures (Rec. 601):

Assuming that gamma-corrected RGB data lies in the range 0 to 255, recom-

mendation ITU-R BT.601 [29] defines the appropriate colour transform as:

Y +0.257 40.504 +0.098 R 16
Cy | = | —0.148 —-0.291 +0.439 G |+ 128
Cyr +0.439 —-0.368 —0.071 B 128

with an inverse transform:

R +1.164 +1.596 0 Y — 16
G | =| +1.164 —-0.813 —0.391 C, —128
B +1.164 0 +2.018 Cp — 128

Note that the above pair of transforms applies to all of the test sequences

referred to in this dissertation.

Transform for High Definition Pictures (Rec. 709):

Assuming that gamma-corrected RGB data lies in the range 0 to 255, recom-

mendation ITU-R BT.709 [30] defines the appropriate colour transform as:

Y +0.183 +40.614 +0.062 R 16
Cy | = | —0.101 —-0.338 +0.439 G |+ 128
Cyr +0.439 —-0.399 —0.040 B 128

with an inverse transform:

R +1.164 +1.793 0 Y — 16
G | =| +1.164 —0.534 —-0.213 C, —128
B +1.164 0 +2.115 Cp — 128



Appendix B

The use of Binarisation for

Modelling and Coding

Much of the initial work on arithmetic coding involved its application to coding
symbols from a binary alphabet, such as bi-level images [50]. In this case arith-
metic coding offers potentially substantial advantages over Huffman coding [27],
since the latter method produces at least one bit per symbol, while arithmetic
coding can achieve a fractional number of bits per symbol. This allows for a
good degree of compression if symbol probabilities are skewed (i.e. not close to

50/50).

Restricting the source alphabet to a binary one allows for the encoder and de-
coder to be simplified and optimised for speed. However, the overall throughput
(measured in terms of information per CPU clock cycle) is not necessarily high,
since each symbol in a binary alphabet only contains an average of one bit of

information [65, 93].

There have been several applications of using binary arithmetic coders to code
multi-symbol alphabets. This can easily be done by representing an alphabet
of N symbols with a binary tree consisting of N leaves. Note that if arithmetic
coding is used, there is no compression loss that results from representing data

in a binary fashion (as opposed to using a multi-symbol format) [93, 61].

189



190 Appendix B. The use of Binarisation for Modelling and Coding

Recently, binarisation has come to be used as a relatively simple and effective
way of combining context modelling and arithmetic coding. Context-based
Adaptive Binary Arithmetic Coding (CABAC) [59, 57, 58, 61] consists of three
stages: binarisation, context modelling and binary arithmetic coding. The
binarised values are arranged into bins, and different contexts are maintained
for each bin (or various groups of bins). This allows for accurate modelling
of probabilities and a good way of handling the zero-frequency problem. As a
result of its good performance, CABAC has been incorporated into the H.264
video coding standard [61].

CABAC supports four binarisation methods based on the following code trees:
unary, truncated unary, kth order Exp-Golomb, and fized length codes. These
are described in more detail in [61], but an example of unary binarisation is

provided below in order to illustrate its operation:

An Example of Unary Binarisation and Context Modelling

For this example, assume that (block) motion vector differences are to be en-
coded, and that these have a magnitude ranging from 0 to 32. To simplify
matters, only consider the magnitude of the horizontal component of the mo-
tion vector differences, [MVD,|. Each value is then binarised using a unary
code. This is done by transforming a value n to its binary representation of n

zeros followed by a one, as illustrated in Table B.1.

Binarisation allows for context modelling to be applied to each bin (bit position).
The choice of how many contexts to use is left up to the codec designer, but
the first few bins are usually assigned their own individual contexts. In fact,
the first bin is often supported with multiple contexts, depending on the values

of previously coded neighbours.

In the current example, there are three possible contexts (A, B and C) for
the first bin of [MVD,|. The context that is chosen depends on the values
of IMVD,| in those blocks neighbouring the current block. With reference to



191

Table B.1: Binarisation using a unary code

’ Value of [IMVD,| ‘ Binary representation (Unary code)
0 1
1 0 1
2 0O 0 1
3 0 0 0 1
4 0 0 O 1
5 0O 0 0 0 0 1
30 000000 0O 0O O0 O0 O 1
31 0O 0o 0o 00 0 0 0 0 O 0 0 1
32 0 0 oo 0000 OO0 O 0o 0 1
Bin number: 1 2 3 4 5 6 7 8 9 10 11 ... 31 32 33

Figure B.1, let the neighbourhood prediction error metric for the current block,

ez, be calculated as e, = [MVD,(by)|+|MVD,(bg)|+|MVD,(b,)|+|MVD,(bs)|.

When e, is small, it is more likely that [MVD,| will also be small. For this
reason, multiple contexts are used for the first bin (which effectively indicates

whether [MVD,| is zero or not).

Each context model is used to represent the probability of a bit in that context
being zero or one. As shown in Table B.2, three context models are used for
the first bin, one context model each for bins two to four, and two contexts
for the high-order bins. (Note that the eight context models used here are not

optimal but are merely used as an example. However, most implementations of

Block bp Block bq Block q

Block l% Current
Block

Figure B.1: The current block and its previously encoded (decoded) neighbours



192 Appendix B. The use of Binarisation for Modelling and Coding

Table B.2: Context Models used for each of the Binarisation Bins

Bin number | Context Model

Model A (if e, < 3)

1 Model B (if 3 < e, < 20)
Model C (if e, > 20)

2 Model D

3 Model E

4 Model F

5 to 10 Model G

11 to 32 Model H

CABAC follow a roughly similar approach.)

With the introduction of CABAC, it has been shown that binarisation can com-
bine well with adaptive arithmetic coding when relatively few context models
are used. Unary code binarisation is particularly suited to modelling Laplacian
probability density functions, and these distributions are very common in image
and video compression systems. In summary, the main advantages of CABAC

are:

e Context modelling can be performed at a sub-symbol level, due to values

being decomposed into a binary representation.

e Relatively few context models are necessary, which alleviates the problem
of context dilution. (Context dilution arises when there are a large number
of contexts with insufficient data available to suggest accurate models for

all contexts.)

e Similarly, the zero-frequency problem is alleviated because binary alpha-
bets are unlikely to contain novel symbols. Furthermore, if there are
relatively few contexts, each context model can adapt fairly quickly to

changing statistics.



Appendix C

The 1D Wavelet Transform

1

Consider a one-dimensional signal f(t) which varies with time." It can be

represented as a sum of basis functions:

f(t) = Z ¢iW;(?)

where {W;(t)} are the basis functions and {¢;} are the coefficients with which
each basis function is weighted. In Fourier Analysis the basis functions used
are sines and cosines, in which case the ¢; correspond to the Fourier coefficients

of the signal.

It is interesting to note that f(t) directly conveys information about the sig-
nal’s behaviour in time, but not in frequency. On the other hand, the frequency
domain representation describes the function in terms of its constituent frequen-

cies, but gives no indication of the time domain behaviour of the function.

In signal compression it is often desirable to have information about the fre-
quency of a signal over a specific region or time interval [24]. This is particularly
relevant for many natural signals with regions of high correlation such as images

or video sequences. Wavelets are basis function which can be used to achieve

L Alternatively, one could consider a signal which varies in space, f (z) say.

193



194 Appendix C. The 1D Wavelet Transform

i-1, j

i-1, ]

1] r
+1,) *G, ¢2 l]

Figure C.1: The Discrete Wavelet Transform (DWT) implemented with con-
volution and down-sampling. Down-sampling is achieved by discarding every

alternate value. (Notation: ¢ indicates the sub-band; j is a coefficient index.)

such a function decomposition, since they are localised in both time (or space)

and frequency.

Multi-resolution Analysis was developed by Mallat [55] for the construction of
dyadic wavelets. Various methods exist for implementing the wavelet transform.
The two most common are perhaps the lifting scheme [22] and the filter bank

implementation [110], which is described below.

A wavelet decomposition may be achieved by filtering with appropriately de-
signed high pass and low pass filters. Figure C.1 illustrates how the Discrete
Wavelet Transform (DWT) is performed. First the signal is convolved with
the low pass (Hp) and high pass (Gp) filters, and then down-sampled by a fac-
tor of two. This results in sets of approzimation coefficients (c; ;) and detail

coefficients (d; ;) respectively.

The approximation coefficients are a representation of the original signal at
a coarser resolution. The detail coefficients represent the information lost by
approximating the signal at the coarser sub-band. The process is applied re-
cursively to the approximation coefficients in each sub-band, for the desired

number of decomposition levels.



195

TP *H,

1] l2 *G, l2 *H,

. C.+1.
) I+1,
I ¢2 *G, J

Figure C.2: The Inverse Wavelet Transform implemented with up-sampling and
convolution. (Up-sampling is achieved by inserting zeros between each pair of

coefficients.)

The inverse wavelet transform is simply the reverse of the procedure outlined
above. Figure C.2 illustrates the process. Note that in both the forward and
inverse transforms, either periodic or symmetric extension of the signal is usu-
ally performed prior to convolution, with the latter being more appropriate for

compression purposes.



196 Appendix C. The 1D Wavelet Transform




Bibliography

1]

Y. Altunbasak and A.M. Tekalp. Occlusion-Adaptive, Content-Based
Mesh Design and Forward Tracking. [EEE Trans. Image Proc., 6(9),
September 1997.

R. Arnold and T.C. Bell. A Corpus for the Evaluation of Lossless Com-
pression Algorithms. In Designs, Codes and Cryptography, pages 201-210,

1997. http://corpus.canterbury.ac.nz.

M.J. Black and P. Anandan. Robust Dense Optical Flow: Source Code,

1996. http://www.cs.brown.edu/people/black/ignc.html.

M.J. Black and P. Anandan. The robust estimation of multiple motions:
parametric and piecewise-smooth flow fields. Computer Vision and Image

Understanding, 63(1), 1996.

D.B. Bradshaw. Motion FEstimation and Compensation of Video Se-
quences using Affine Transforms. PhD thesis, Cambridge University, De-
cember 1998.

D.B. Bradshaw and N.G. Kingsbury. A Combined Affine and Transla-
tional Motion Compensation Scheme using Triangular Tessellations. In
Proceedings of the International Conference on Acoustics, Speech, and

Signal Processing (ICASSP), volume 2, pages 2645-2648, April 1997.

CCITT. Video Codec for Audiovisual services at p x 64 kbit/s, CCITT
Recommendation H.261, 1990.

197



198

Bibliography

8]

[10]

[14]

[15]

[16]

I. Celasun and A.M. Tekalp. Optimal 2-D Hierarchical Content-Based
Mesh Design and Update for Object-Based Video. IEEE Transactions
on Circuits and Systems for Video Technology, 10(7):1135-1153, October
2000.

M. Chan, Y. Yu, and A. Constantinides. Variable Size Block Match-
ing Motion Compensation with Applications to Video Coding. IEE Pro-
ceedings on Communication, Speech and Vision, 137(4):205-212, August
1990.

C-C. Chang, L-L. Chen, and T-S. Chen. An Improvement of Bottom-Up
Variable-Sized Block Matching Technique for Video Compression. IEEE
Transactions on Consumer Electronics, 44(4):1234-1242, November 1998.

G. Cote, B. Erol, M. Gallant, and F. Kossentini. H.2634: Video Coding
at Low Bit Rates. IEEE Transactions on Circuits and Systems for Video
Technology, 8(7):848-866, November 1998.

I. Daubechies. Ten Lectures on Wawvelets. CBMS-NSF Reg. Conf. Series
in Applied Math. STAM, 1992.

J.G. Daugman. Uncertainty Relations for Resolution in Space, Spatial
Frequency, and Orientation Optimized by Two-Dimensional Visual Cor-
tical Filters. Journal of the Optical Society of America, 2(7):1160-1169,
July 1985.

Commission Internationale de L’Eclairge (CIE). Official Recommenda-
tions on Uniform Color Spaces, Color-Difference Equations, and Metric
Color Terms, 1976. CIE Publication No. 15, Supplement Number 2 (E-
1.3.1).

B.N. Delaunay. Sur la Sphere Vide. Izvestia Akademia Nauk SSSR, VII
Seria, Otdelenie Matematicheskii i Estestvennyka Nauk, 7:793-800, 1934.

Y. Deng and B.S. Manjunath. Unsupervised Segmentation of Color-



Bibliography 199

[20]

[21]

23]

[24]

Texture Regions in Images and Video. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 23(8):800-810, August 2001.

Y. Deng and B.S. Manjunath. JSEG: Segmentation of Color-Texture
Regions in Images and Video, 2004. http://vision.ece.ucsb.edu/

segmentation/jseg/.

M. Dudon, O. Avaro, and C. Roux. Triangular active mesh for motion es-
timation. Signal Processing: Image Communication, 10(1-3):21-41, July
1997.

F. Dufaux and F. Moscheni. Motion Estimation Techniques for Digi-
tal TV: A Review and a New Contribution. Proceedings of the IEFE,
83(6):858-876, June 1995.

M. Eden and M. Kocher. On the Performance of a Contour Coding
Algorithm in the Context of Image Coding. Part I: Contour Segment
Coding. Signal Processing, 8:381-386, July 1985.

P.E. Eren and A.M. Tekalp. Bi-Directional 2-D Mesh Representation for
Video Object Rendering, Editing and Superresolution in the Presence
of Occlusion. Signal Processing: Image Communication, 18(5):313-336,
May 2003.

G. Fernandez, S. Periaswamy, and W. Sweldens. LIFTPACK: A software
package for wavelet transforms using lifting. In M. Unser, A. Aldroubi,
and A. F. Laine, editors, Wavelet Applications in Signal and Image Pro-
cessing IV, pages 396-408. Proc. SPIE 2825, 1996.

H. Freeman. On the Encoding of Arbitrary Geometric Configurations.
IRE Transactions on FElectronic Computers, EC-10(2):260-268, June
1961.

M. L. Hilton, B.D. Jawerth, and A. Sengupta. Compressing Still and
Moving Images with Wavelets. Multimedia Systems, 2(5):218-227, 1994.



200

Bibliography

[25]

[26]

[27]

28]

[31]

B.K.P. Horn and B.G. Schunck. Determining Optical Flow. Artificial
Intelligence, 17:185-203, August 1981.

M. Hu, S. Worrall, A.H. Sadka, and A.M. Kondoz. A Scalable Vertex-
based Shape Intra-coding Scheme for Video Objects. In Proceedings of
the IEEE International Conference on Acoustics, Speech, and Signal Pro-
cessing, pages 273-276, May 2004.

D.A. Huffman. A Method for the Construction of Minimum-Redundancy
Codes. Proceedings of the IRE, 40(9):1098-1101, September 1952.

R.W.G. Hunt. The Reproduction of Colour in Photography, Printing and

Television. Fountain Press, 1987.

International Telecommunications Union. Encoding Parameters of Digital

Television for Studios, 1992. Recommendation ITU-R BT.709-3.

International Telecommunications Union. Parameter Values for the
HDTV Standards for Production and International Programme Ex-

change, February 1998. Recommendation I'TU-R BT.709-3.

ISO/TEC. MPEG-1: Information Technology - Coding of Moving Pictures
and Associated Audio for Digital Storage Media at up to about 1.5 Mbit /s
- Video, Geneva, 1993.

ISO/IEC JTC1 and ITU-T. MPEG-2/H.262: Generic Coding of Moving
Pictures and Associated Audio Information - Part 2: Video, November

1994.

ISO/IEC JTC1/SC24 and World Wide Web Consortium (W3C). Portable
Network Graphics (PNG): Functional Specification (Second Edition),
Document ISO/IEC 15948:2003(E), November 2003. http://www.w3.
org/TR/PNG/.

ISO/IEC JTC1/SC29/WG1. JPEG 2000 Image Coding System-—
ISO/TEC 15444-1:2000, December 2000. http://www. jpeg.org/public/
fcd15444-2. pdf.



Bibliography 201

[35]

[36]

[40]

[41]

ISO/IEC JTC1/SC29/WG11. MPEG-4 Video Verification Model: Ver-
sion 18.0, WG11 Document N3908, Pisa, January 2001. http://www.

chiariglione.org/mpeg/working_documents.htm#MPEG-4.

ISO/IEC JTC1/SC2/WG10. Information Technology — Coded Repre-
sentation of Picture and Audio Information — Digital Compression and

Coding of Continuous-Tone Still Images (JPEG standard), 1993.

ITU-T. Video Coding for Low Bit-rate Communication, I'TU-T Recom-
mendation H.263, March 1996.

ITU-T. Video Coding for Low Bit-rate Communication, I'TU-T Recom-
mendation H.263, version 2 (H.263+), January 1998.

ITU-T and ISO/IEC JTCI1. Advanced Video Coding for Generic Audio-
visual Services, ITU-T Recommendation H.264 ISO/IEC 14496-10 AVC,
2003.

E. Izquierdo and M. Ghanbari. Key Components for an Advanced
Segmentation System. IEEE Transactions on Multimedia, 3(1):97-113,
March 2002.

J.R. Jain and A.K. Jain. Displacement Measurement and its Application
to Interframe Image Coding. IEEE Trans. on Comm., COM-29(12):1799,
December 1981.

P. Jost, P. Vandergheynst, and P. Frossard. Tree-Based Pursuit: Algo-
rithm and Properties. Technical Report 2005-13, EPFL, May 2005.

K. Suehring. H.264/AVC Reference Software, 2005. http://iphome.
hhi.de/suehring/tml/.

A K. Katsaggelos, L.P. Kondi, F.W. Meier, J. Ostermann, and G.M.
Schuster. MPEG-4 and Rate-Distortion-Based Shape-Coding Techniques.

Proceedings of the IEEE, special issue on Multimedia Signal Processing,
86(6):1126-1154, June 1998.



202

Bibliography

[45]

[46]

[48]

[49]

[53]

[54]

J.W. Kim and S.U. Lee. Hierarchical Variable Block Size Motion Estima-
tion for Motion Sequence Coding. Optical Engineering, 33(8):2553-2561,
August 1994.

J.W. Kim and S.U. Lee. Video Coding with R-D Constrained Hierar-
chical Variable Block Size (VBS) Motion Estimation. Journal of Visual

Communication and Image Representation, 9(3):243-254, 1998.

L.P. Kondi, G. Melnikov, and A.K. Katsaggelos. Joint Optimal Object
Shape Estimation and Encoding. IEEE Trans. Circuits Syst. Video Tech.,
14(4), April 2004.

J. Konrad, A-R. Mansouri, E. Dubois, V-N. Dang, and J-B. Chartier. On
Motion Modelling and Estimation for Very Low Bit Rate Video Coding.
In Proc. VCIP, pages 262273, 1995.

C. Kuglin and D. Hines. The Phase Correlation Image Alignment Method.
In Proceedings of the IEEE International Conference on Cybernetics and

Society, pages 163-165, 1975.

G.G. Langdon and J.J. Rissanen. Compression of Black-White Images
with Arithmetic Coding. IEEFE Transactions on Communications, COM-
29(6):858-867, June 1981.

C. Le Buhan Jordan and T. Ebrahimi. Progressive Polygon Encoding of
Shape Contours. In Proc. IPA, pages 17-21, 1997.

C. Le Buhan Jordan, T. Ebrahimi, and M. Kunt. Progressive Content-
Based Shape Compression for Retrieval of Binary Images. Computer

Vision and Image Understanding, 71(2):198-212, August 1998.

P. List, A. Joch, J. Lainema, G. Bjontegaard, and M. Karczewicz. Adap-
tive Deblocking Filter. IEEE Transactions on Circuits and Systems for
Video Technology, 13(7):614-619, July 2003.

B.D. Lucas and T. Kanade. An Iterative Image Registration Technique



Bibliography 203

[57]

[58]

[63]

with an Application to Stereo Vision. In Proceedings of the DARPA Image
Understanding Workshop, pages 121-130, April 1981.

S. Mallat. Multiresolution approximations and wavelet orthornormal
bases in L2(R). Transactions of the American Mathematics Society,

315(1):69-87, September 1989.

S. Mallat and Z. Zhang. Matching Pursuit with Time-Frequency Dic-
tionaries. IFEE Transactions on Signal Processing, 41(12):3397-3415,
December 1993.

D. Marpe, G. Blattermann, G. Heising, and T. Wiegand. Further Results
for CABAC Entropy Coding Scheme. Technical report, Video Coding
Experts Group (VCEG), March 2001.

D. Marpe, G. Blattermann, G. Heising, and T. Wiegand. Video Compres-
sion using Context-based Adaptive Arithmetic Coding. In Proceedings of

the International Conference on Image Processing, October 2001.

D. Marpe, G. Blattermann, and T. Wiegand. Adaptive Codes for H.26L.
Technical report, Video Coding Experts Group (VCEG), January 2001.

D. Marpe, V. George, H.L.. Cycon, and K.U. Barthel. Performance Eval-
uation of Motion-JPEG2000 in Comparison with H.264/AVC Operated
in Intra Coding Mode. In Proc. SPIE, pages 129-139, February 2004.

D. Marpe, H. Schwarz, and T. Wiegand. Context-Based Adaptive Bi-
nary Arithmetic Coding in the H.264/AVC Video Compression Stan-
dard. IEEFE Transactions on Circuits and Systems for Video Technology,
13(7):620-636, July 2003.

G.N.N. Martin. Range Encoding: An Algorithm for Removing Redun-
dancy from a Digitised Message. In Proceedings of the Video and Data
Recording Conference, July 1979.

G.R. Martin, M.K. Steliaros, and R.A. Packwood. Efficient Motion Es-

timation and Coding for Arbitrary-Shaped Video Objects. Journal of



204

Bibliography

[65]

[66]

[68]

Visual Communication and Image Representation, 12(1):66-83, March
2001.

V. Mezaris, I. Kompatsiaris, and M.G. Strintzis. Video Object Segmenta-
tion using Bayes-Based Temporal Tracking and Trajectory-Based Megion
Merging. IEEFE Transactions on Clircuits and Systems for Video Technol-
ogy, 14(6):782-795, June 2004.

A. Moffat, N. Sharman, I.H. Witten, and T.C. Bell. An Empirical Evalu-
ation of Coding Methods for Multi-Symbol Alphabets. In Proceedings of
the Data Compression Conference, pages 108-117, March 1993.

K.T. Mullen. The Contrast Sensitivity of Human Colour Vision to
Red-Green and Blue-Yellow Chromatic Gratings. Journal of Physiology,
359:381-400, 1985.

Y. Nakaya and H. Harashima. Motion Compensation based on Spatial
Transforms. IEEE Transactions on Circuits and Systems for Video Tech-

nology, 4(3):339-356, June 1994.

R. Neff and A. Zakhor. Very Low Bit-Rate Video Coding Based on Match-
ing Pursuits. IEEFE Transactions on Circuits and Systems for Video Tech-
nology, 7(1):158-171, February 1997.

R. Neff and A. Zakhor. Matching Pursuit Video Coding - Part I: Dic-
tionary Approximation. IEEFE Transactions on Circuits and Systems for

Video Technology, 12(1):13-26, January 2002.

R. Neff and A. Zakhor. Matching Pursuit Video Coding - Part II: Oper-
ational Models for Rate and Distortion. IEEE Transactions on Circuits

and Systems for Video Technology, 12(1):27-39, January 2002.

F.I. Van Nes and M.A. Bouman. Spatial Modulation Transfer in the
Human Eye. Journal of the Optical Society of America, 57(3):401-406,
March 1967.



Bibliography 205

[72]

[73]

[74]

A.N. Netravali and B.G. Haskell. Digital Pictures: Representation, Com-

pression and Standards, page 280. Plenum Press, 1995.

H. Nicolas, S. Pateux, and D. Le Guen. Minimum Description Length Cri-
terion and Segmentation Map Coding for Region-Based Video Compres-
sion. IEEE Trans. Circuits Syst. Video Tech., 11(2):184-198, February
2001.

J. Nieweglowski, T. Campbell, and P. Haavisto. A Novel Video Cod-
ing Scheme based on Temporal Prediction using Digital Image Warp-
ing. IEEE Transactions on Consumer Electronics, 39(3):141-150, August
1993.

K.J. O’Connell. Object-Adaptive Vertex-Based Shape Coding Method.
IEEE Transactions on Circuits and Systems for Video Technology,
7(1):251-255, February 1997.

M. T. Orchard and G. J. Sullivan. Overlapped Block Motion Compensa-
tion: An Estimation-Theoretic Approach. IEEE Transactions on Image
Processing, 3(5):693-699, September 1994.

A. Ortega and K. Ramchandran. Rate-Distortion Methods for Image
and Video Compression. IEEFE Signal Processing Magazine, 15:23-50,
November 1998.

P. Jost. TREE BASED PURSUIT 1.0, 2004. http://1ts2www.epfl.ch/

~jost/downloads/TBP1.0/index.html.

P.A. Packwood, M.K. Steliaros, and G.R. Martin. Variable Size Block
Matching Motion Compensation for Object-based Video Coding. In Proc.
IPA, pages 5660, July 1997.

S. Pateux and C. Labit. Codage efficace de carte de segmentation pour la
compression oriente rgions de squences d’images. Technical report, IRISA

publication 1073, Jan. 1997.



206

Bibliography

[81]

[82]

[83]

[84]

[87]

[38]

[89]

[90]

I. Patras, E.A. Hendriks, and R.L. Langendijk. Video Segmentation by
MAP Labeling of Watershed Segments. IEEFE Transactions on Pattern
Analysis and Machine Intelligence, 23(3):326-332, March 2001.

W.B. Pennebaker and J.L. Mitchell. JPEG Still Image Data Compression
Standard, page 24. Van Nostrand Reinhold, 1993.

W.B. Pennebaker and J.L. Mitchell. JPEG: Still Image Data Compression
Standard. Von Nostrand Reinhold, New York, 1993.

F. Pereira, editor. Signal Processing: Image Communication, volume 15.
European Association for Signal Processing (EURASIP), January 2000.
Tutorial Issue on the MPEG-4 Standard.

Charles A. Poynton. A Technical Introduction to Digital Video. John
Wiley & Sons, Inc., New York, NY, USA, 1996.

A. Puri, H-M. Hang, and D.L. Schilling. Interframe Coding with Vari-
able Block-size Motion Compensation. In Proceedings of the IEEE Global
Telecommunications Conference (GLOBECOM), pages 85-90, November
1987.

K. Rao and P. Yip. Discrete Cosine Transform: Algorithms, Advantages,
Applications. Academic Press, 1990.

I. Rhee, G.R. Martin, S. Muthukrishnan, and R.A. Packwood. Quadtree-
Structured Variable-Size Block-Matching Motion Estimation with Mini-
mal Error. IEEE Transactions on Circuits and Systems for Video Tech-
nology, 10(1):42-50, Feb. 2000.

J. Ribas-Corbera and D.L. Neuhoff. On the Optimal Block Size for Block-
based, Motion-Compensated Video Coders. In Proc. VCIP, volume 3024,
pages 1132-1143, February 1997.

L.E.G. Richardson. Video Codec Design: Developing Image and Video
Compresson Systems. John Wiley and Sons Ltd., 2002.



Bibliography 207

[91]

[95]

[96]

[99]

100]

L.LE.G. Richardson. H.264 and MPEG-4 Video Compression. John Wiley
and Sons Ltd., 2003.

J. Rissanen and G.G. Langdon. Arithmetic Coding. IBM Journal of
Research and Development, 23(2):149-162, 1979.

A. Said. Introduction to Arithmetic Coding - Theory and Practice. Tech-
nical report, HP Laboratories, April 2004.

P. Salembier and F. Marques. Region-Based Representations of Image and
Video: Segmentation Tools for Multimedia Services. IEEE Transactions
on Circuits and Systems for Video Technology, 9(8):1147-1169, December
1999.

G. Schuster, G. Melnikov, and A. Katsaggelos. Operationally Optimal
Vertex-Based Shape Coding. IEEE Signal Processing Magazine, 15(6):91—
108, November 1998.

G. M. Schuster and A. K. Katsaggelos. An Optimal Polygonal Boundary
Encoding Scheme in the Rate Distortion Sense. IEEFE Transactions on

Image Processing, 7(1):13-26, January 1998.

V. Seferidis and M. Ghanbari. General approach to Block-Matching Mo-
tion Estimation. Optical Engineering, 32(7):1464-1474, July 1993.

V. Seferidis and M. Ghanbari. Generalised Block-Matching Motion Esti-
mation using Quad-Tree Structured Spatial Decomposition. IEE Proceed-
ings on Vision, Image and Signal Processing, 141(6):446-452, December
1994.

M. Servais. Video Coding Project Web Page, 2005. http://www.ee.
surrey.ac.uk/CVSSP/VMRG/hdtv/.

M.P. Servais, T. Vlachos, and T. Davies. Bi-Directional, Affine Motion
Compensation Using a Content-Based, Non-Connected, Triangular Mesh.
In Proceedings of the 1st IEE European Conference on Visual Media Pro-
duction (CVMP), pages 49-58, March 2004.



208

Bibliography

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

M.P. Servais, T. Vlachos, and T. Davies. Motion Compensation using
Content-based Variable-Size Block-Matching. In Proceedings of the 24th
Picture Coding Symposium (PCS), December 2004.

M.P. Servais, T. Vlachos, and T. Davies. Progressive Polygon Encoding of
Segmentation Maps. In Proceedings of the IEEE International Conference
on Image Processing, pages 1121-1124, October 2004.

M.P. Servais, T. Vlachos, and T. Davies. Affine Motion Compensation
using a Content-based Mesh. [FE Proceedings on Vision, Image and

Signal Processing, 152(4):415-423, August 2005.

M.P. Servais, T. Vlachos, and T. Davies. Motion-Compensation using
Variable-Size Block-Matching with Binary Partition Trees. In Proceedings
of the IEEE International Conference on Image Processing, September

2005.

A. Shamim and J.A. Robinson. Object-Based Video Coding by Global-to-
Local Motion Segmentation. IEEE Transactions on Circuits and Systems

for Video Technology, 12(12):1106-1116, December 2002.

C.E. Shannon. A Mathematical Theory of Communication. Bell System
Technical Journal, 27:379-423 and 623-656, July and October 1948.

J.R. Shewchuk. Triangle: Engineering a 2D Quality Mesh Generator and
Delaunay Triangulator. In M.C. Lin and D. Manocha, editors, Applied
Computational Geometry: Towards Geometric Engineering, volume 1148
of Lecture Notes in Computer Science, pages 203-222. Springer-Verlag,
1996. From the First ACM Workshop on Applied Computational Geom-

etry.

J.R. Shewchuk. Triangle: A Two-Dimensional Quality Mesh Generator
and Delaunay Triangulator, 2005. http://www-2.cs.cmu.edu/ quake/

triangle.html.



Bibliography 209

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

C. Stiller and J. Konrad. Estimating Motion in Image Sequences. IEEE
Signal Processing Magazine, 16:70-91, July 1999.

G. Strang and T.Q. Nguyen. Wavelets and Filter Banks. Wellesley-
Cambridge Press, 1996.

G.J. Sullivan and R.L. Baker. Rate-Distortion Optimized Motion
Compensation for Video Compression using Fixed or Variable Size
Blocks. In Proceedings of the IEEE Global Telecommunications Confer-
ence (GLOBECOM), pages 85-90, November 1991.

G.J. Sullivan and R.L. Baker. Efficient Quadtree Coding of Images and
Video. IEEFE Transactions on Image Processing, 3(3):327-331, May 1994.

G.J. Sullivan and T. Wiegand. Rate-Distortion Optimization for Video
Compression. I[IEEE Signal Processing Magazine, 15:74-90, November
1998.

G.J. Sullivan and T. Wiegand. Video Compression — From Concepts to
the H.264/AVC Standard. Proceedings of the IEEE, 93(1):18-31, January
2005.

D.S. Taubman and M.W. Marcellin. JPEG 2000: Image Compression
Fundamentals, Standards and Practice. Kluwer Academic Publishers,

Boston, 2002.

A M. Tekalp, P. Van Beek, C. Toklu, and B. Gunsel. Two-
Dimensional Mesh-Based Visual-Object Representation for Interactive
Synthetic/Natural Digital Video. Proceedings of the IEEE, 86(6):1029—
1051, June 1998.

P. Van Beek, A.M. Tekalp, N. Zhuang, I. Celasun, and M. Xia. Hierar-
chical 2-D Mesh Representation, Tracking, and Compression for Object-
Based Video. IEEE Transactions on Circuits and Systems for Video Tech-
nology, 7(2):353-369, March 1999.



210

Bibliography

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

UB Video. Emerging H.26L. Standard - White Paper. Technical report,
UBVideo Inc., Vancouver, BC, Canada, February 2002.

T. Vlachos and T. Davies. Personal Communication, January 2005.

H. Wang, G.M. Schuster, A.K. Katsaggelos, and T.N. Pappas. An
Efficient Rate-Distortion Optimal Shape Coding Approach Utilizing a
Skeleton-Based Decomposition. IEEE Transactions on Image Processing,

12(10):1181-1193, October 2003.

T. Wiegand, H. Schwarz, A. Joch, F. Kossentini, and G.J. Sullivan.
Rate-Constrained Coder Control and Comparison of Video Coding Stan-
dards. IEEFE Transactions on Circuits and Systems for Video Technology,
13(7):688-703, July 2003.

T. Wiegand, G.J. Sullivan, G. Bjontegaard, and A. Luthra. Overview of
the H.264/AVC Video Coding Standard. IEEE Transactions on Circuits
and Systems for Video Technology, 13(7):560-576, July 2003.

I.H. Witten, R.M. Neal, and J.G. Cleary. Arithmetic Coding for Data
Compression. Communications of the ACM, 30(6):520-540, June 1987.

J. Zhang, M.O. Ahmad, and M.N.S. Swamy. A New Variable Size Block
Motion Compensation. In Proceedings of the IEEE Conference on Image
Processing (ICIP), pages 164-167, October 1997.

J. Zhang, M.O. Ahmad, and M.N.S. Swamy. Quadtree Structured Region-
Wise Motion Compensation for Video Compression. IEEE Transactions
on Circuits and Systems for Video Technology, 9(5):808-822, August
1999.

K. Zhang, M. Bober, and J. Kittler. Variable Block Size Video Cod-
ing with Motion Prediction and Motion Segmentation. In Proceedings
of the SPIE Conference on Digital Video Compression: Algorithms and

Technologies, volume 2419, pages 62—70, February 1995.



