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Abstract

This thesis is concerned with producing high-level descriptions and explanations of human
activity in video from a single, static camera. The scenarios we focus on in this work are urban
surveillance and sports video where the person is in the medium scale, around 150 pixels high.
The final output is in the form of text descriptions which not only describe what is happening
but also explain the interactions which take place.

In order to achieve this goal, some significant issues pertinent to action recognition and human
behaviour estimation have been addressed. In particular, we have developed novel solutions
for estimating where an imaged person is looking even when the face image is low-resolution.
We have extended the Bayesian fusion techniques used to solve the gaze recognition problem
to activity recognition in general. By computing non-static descriptors based on instantaneous
target motion and combining them with position and velocity via an efficient non-parametric
database search, we compute distributions over spatio-temporal actions. Probabilistic distribu-
tions over behaviour are further estimated from a set of Hidden Markov Models which encode
stochastic sequences of actions. Automatic commentaries of most likely action sequences and/or
higher-level behaviour at a human-readable level can be derived by computing the Maximum
Likelihood or Maximum a Posteriori estimate at any time step, respectively. In the latter case
we use domain knowledge as a smoothing prior to refine the estimates.

Finally, we draw these components together to achieve the main objective of this thesis: causal
reasoning in video. Using an extensible, rule-based architecture we compute explanations of
observed activity. The input to this reasoning process is the information obtained at the
action/behaviour recognition stage, which represents an abstraction from the image data. The
output of best explanations of global scene activity, particularly where interesting events have
occurred, is thus achieved.
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Introduction
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Figure 1.1: Typical surveillance scenarios in the civilian domain.

At the highest level, the scientific discipline of Computer Vision is concerned with enabling a

computer to interpret the world, which is presented to it by one or more cameras, in a similar

way to humans. Low-level vision techniques are necessary, and seem to occur at some point in

the human visual process, but it is clear that the human visual system also operates at a higher

“semantic” level. This enables people to make decisions based on their knowledge of the world,

or their interpretation of it, and the evidence of their eyes.

Low-level vision, such as edge detection, does play a fundamental role in many Computer Vision

systems, allowing scenes to be segmented into components which are indeed separate in reality,

track objects and so on. But the question remains: What principles of human vision can be

modelled to enable a computer to “see”?

Knowledge is a critical factor. Humans bring to bear a life’s experience of seeing when presented

with a new scene. And so, an individual’s experience has an enormous impact on how he or

she chooses to interpret a new situation. The world is infinitely complex and our knowledge

of the world is finite so, as Kuipers points out, “The marvel is that we function quite well

in spite of never fully understanding it” [86]. The simple application of knowledge is not the

complete answer since, in the case of humans, there is the profound impact of intelligence.

Human interpretation of visual data is ultimately in terms of causal relationships which are not

found in the data alone, but are recognised by the mobilisation of prior knowledge, allied to an

intelligent understanding of how the world operates.

Surveillance, which can be defined as the act of observing a person or group, involves the

gathering of information useful to reasoning about intentions and behaviour extended over
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time. “Intelligent Surveillance” is, therefore, the process by which we confer upon a machine the

ability to produce human-level descriptions of observed activity. Provided, as Turing famously

posited, that these computer-generated descriptions are hard to distinguish from those of a

human expert, it could be claimed that Intelligent Surveillance has been achieved. Of course, it

is a point for philosophical debate whether true intelligence can ever be achieved by a computer

[113, 69].

There are, nonetheless, a number of issues which need to be addressed before Intelligent Surveil-

lance will be achieved at all, whether in appearance or reality. This thesis addresses a subset of

what we believe to be the current barriers to this goal, and considers what kind of framework

is required for a general Intelligent Surveillance system.

The goal of this thesis is to develop a set of techniques to enable automatic causal

reasoning about human activity as recorded in surveillance video.

1.1 Motivation

1.1.1 Military and civilian need

The motivation for this thesis stems primarily from a military need for better deployment of

manpower resources. This is a pressing issue for the UK Ministry of Defence (MOD), which

has, in part funded the research on which this thesis is based.

Automatic, or semi-automatic, video surveillance capability could enable Royal Air Force

(RAF) Imagery Analysts (IAs) to focus on priority tasks without losing “situational aware-

ness” i.e. without losing track of other events in the scene apart from the object on which they

have been tasked to report. Currently, IAs work in pairs to avoid this problem arising. One

IA focusses his attention solely on the target of interest while his/her partner scans the general

scene looking for other interesting activity. An automatic tool which tracks all objects and

reports on their activity at a high-level would enable this second analyst to work on another

task since situational awareness is maintained by the system. This would prevent time, money

and skilled resources being wasted and, as such, is a real driver for improved visual surveillance
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techniques.

Such a system would also have many applications in the civilian domain due to the fact that the

volume of information generated by a surveillance camera generally overloads all but the most

expert of analysts. Included among these potential applications are: automatic surveillance of

a shopping mall/homes, and Police surveillance of traffic. This high-level information can also

be used for video meta-data1 or text commentary2.

1.1.2 Vision psychology

An intriguing set of results arises from a collection of experiments performed by psychologists

in the early 1900s. These were first brought to attention in Michotte’s book, The perception

of causality [98], and in an article by Heider & Simmel, An experimental study of apparent

behaviour [67] and have provoked considerable interest in the psychology literature.

The aim of the groundbreaking experiments in the works of Michotte and Heider & Simmel is

broadly similar: to show that kinematics in simple moving displays gives rise to a perception

which is not found in the events themselves or in the retinal projections of the events. Michotte’s

experiments generally involve two moving shapes which move with respect to one another in

such a way as can be interpreted to interact. A sample of frames from a typical Michotte

experiment is shown in Figure 1.23. What Michotte, and Heider & Simmel, demonstrated is

that such phenomena are important due to the fact that, although they are perceptual, they

are “fairly fast, automatic, irresistable and highly stimulus-driven”[140]. Of particular interest

to us is the fact that Scholl demonstrated

the perception of causality is mediated by strict visual “rules”. Beyond Michotte,

. . . these rules operate not only over discrete objects, but also over perceptual groups

. . . [29].

1For populating MPEG-7, for example.
2Of the type familiar to sports fans who use the BBC website.
3See http://pantheon.yale.edu/∼bs265/demos/ for this and other video demonstrations of Michotte’s ex-

periments.



1.2 Objectives 6

Figure 1.2: Stills from the experiments of Michotte. Very simple motion gives rise to the perception of
causality. In this example, the perception that the “object” on the left causes the “object” on the right
to move is almost universal.

Perceptual causality, and its relevance to the work of this thesis, is discussed in more detail in

chapter 2. In summary, however, we are motivated by this work in vision psychology in three

important ways:

• Prior knowledge is necessary for interpreting dynamic, visual information,

• Motion, not appearance, is overwhelmingly the most important aspect of visual data for

the perception of causality in the human visual system,

• A qualitative representation of motion is appropriate for human interpretation of causal

interactions.

1.2 Objectives

“Surveillance video” is a term which appears many times in this thesis. What is it? In Figure

1.1 appear still frames which are typical of the type of footage one would consider surveillance

video. The common factor between these images, from vastly different scenes, is essentially

that the zoom level is sufficient to enable the object of interest to be clearly seen but also to

allow the context of that object to be visible. This latter point is important because the actions

of a person under surveillance can only be “suspicious” or “normal” or “interesting” within a

specific context. It quickly becomes clear that the mobilisation of prior knowledge is a critical

factor. We might, for example, detect someone standing still, but this could not be translated

into the “intelligent” description “loitering” without knowledge of what normal behaviour is

e.g. “standing still” is appropriate at a bus-stop, but far less so in an alleyway. A key factor of

this thesis is therefore how best to incorporate human knowledge into the algorithms required

for activity recognition.
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Some of the components necessary for an effective video surveillance system have provided sig-

nificant challenges for the scientific community. Tracking in video is one such problem. Simple,

even naive, algorithms can achieve much. For example, foreground segmentation and “blob”

identification can enable tracking throughout many image sequences. But the introduction

of camera motion or occlusion within the video causes significant problems and sophisticated

statistical techniques have been invented to solve what, for a grown adult, is a straightforward

task.

We recognise that the tracking problem is not simple but it is clearly not the only important

problem underpinning the search for a solution to intelligent visual surveillance. In this thesis

we do not address tracking in any novel way since there are acceptable solutions to most

tracking problems in the literature and since our major concerns are different. Therefore, we

use a colour-based tracker which robustly tracks objects in scale and image-space providing the

appearance does not alter dramatically throughout the sequence. More sophisticated trackers

are available and may be required when the scenes become significantly more challenging than

those we analyse in this thesis. The main weaknesses of the current tracking implementation

are: (a) crowd scenes are excluded since individual people are only a few pixels in height and

are often partially occluded; (b) it cannot handle significant occlusions coupled with target

ambiguity such as two people who appear similar occluding one another meaning it is difficult

to recover tracking using appearance alone.

Leaving tracking to one side then, what are the issues we identify and tackle? As we have

stated, the overall goal is that we may be able to automatically reason about human activity

in video. The key objectives become apparent when we consider what a human needs to know

to reason about human activity:

• what is the object type?

• what is it doing?

• where is it doing it?

• what are the rules governing the actors in this scene?
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• what are other agents doing?

• is there any connection between the agents’ activities?

Given that intelligent visual surveillance is concerned with conferring upon a computer the

ability to analyse video in a human-like manner, it is reasonable to assume that the computer

requires access to the same information as a human would require to make a deduction. More-

over, previous work in the area of reasoning about visual data has been limited to static scenes

with simple visual features. If this information about people can be made available to a rea-

soning process, then the techniques from AI could be utilised for the purpose of explaining

complex, dynamic scenes.

The objective of this thesis is to develop new Computer Vision tools to obtain answers in

response to the questions posed above. These tools operate on video where human activity is

the dominant feature of interest, and where the imaged person is in medium/low resolution.

Our thesis can be concisely stated as:

In order for a computer system to effectively, and automatically, reason

about human activity in surveillance video, low-level vision techniques

must first abstract the information a human would require, from the

video, to an intermediate, probabilistic and qualitative representation

based on motion.

The individual techniques we develop are outlined specifically in section 1.3 and 1.4. We first

provide a summary of the main results of this thesis.

1.3 Achievements

Throughout this thesis, we have developed new algorithms and extended existing techniques

for use in a video understanding context. Specifically, we make the following contributions:
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Figure 1.3: Gaze-direction is an important cue for intention. In chapter 3 we describe a novel method
for estimating where someone is looking when the face of the imaged person is low-resolution.

Frame 5462Frame 5381

Person jogging across road

Frame 5336
Frames Estimated activity
5330-5470 road, running

Figure 1.4: Action-recognition techniques, described in chapter 4, enable the estimation of distributions
over the training data. The ML result is a commentary of activity, as shown here for a person jogging
across the road.

• A novel method for gaze recognition in surveillance video where the face image is low-

resolution i.e. typically in the range 20 to 40 pixels high. An example of the output of

our algorithm is shown in Figure 1.3.

• A new, general Bayesian action-recognition framework. A set of hand-labelled exemplar

databases which comprise the normal behaviour model for the scene under consideration

is all we require to generate text descriptions of human action in video. Importantly,

much less training data compared to the standard methods reported in the literature is

needed. An example of this action-recognition method applied to surveillance footage is

shown in Figure 1.4.

• A new, general method for encoding higher-level expert knowledge is achieved by exploit-

ing the hierarchy of action and behaviour. Behaviour is represented as a sequence of

actions, thus enabling behaviour to be described in a way that is common to the scene,

not a specific viewpoint. This is made possible by abstracting the spatio-temporal actions
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Figure 1.5: Encoding behaviour as a sequence of actions is more efficient than learning each example
independently, as the work of chapter 5 demonstrates. In this example the same behaviour (“turning-
into-drive”) is acted out in two different ways (from the left and from the right), yet the same model
correctly classifies both.

from the image pixel data to qualitative descriptions. An example of this technique in

operation is shown in Figure 1.5.

• Explanations of interactions. By computing probabilistic distributions over gaze, spatio-

temporal action and high-level behaviour for people in a video sequence, we provide the

appropriate input to a rule-based architecture for causal reasoning. We achieve descrip-

tions of interactions which not only say, in a human-readable form, what has happened

(as a maximum a posteriori estimate) but can describe why it happened. An example of

such an explanation is shown for tennis footage in Figure 1.6.

1.4 Approach

With the exception of chapter 6 where, for reasons of expediency, the Maximum Likelihood

result has been used, we have adopted a Bayesian approach throughout this thesis which reflects

the reasoning process which we, as experienced humans, employ. It is critically important to

avoid committing to one interpretation of the activity in video because there is often incomplete

information in any single view of the scene. The ability to hold one’s view loosely in the face

of a lack of evidence is an aspect of human reasoning which is particularly noteworthy.

As we have seen in section 1.1, it is necessary to incorporate prior knowledge in a principled

way. One way to obtain prior knowledge is simply to observe a representative scene over a
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Frame 95Frame 66Frame 44 Frame 135

P2

P1

Frame Explanation
66-95 Player 1 forced to run-to-midcourt
96-135 Player 1 initiated run-to-net

Figure 1.6: Using the action/behaviour/gaze estimates enables reasoning about activity to be achieved
in chapter 6. In this example, the explanation for a player running to the net is automatically extracted
using a rule-based method. The rule-base is augmented and applied to the urban surveillance domain.

long period of time, an approach which is currently predominant in the literature. Taking this

statistical approach, if one required to learn whether cars drive on the left or the right-hand side

of the road, one could simply observe cars driving over a period of time and fit a model to the

observations. This model then encodes the knowledge in which we are interested: the expected

position of cars on a road in a certain country. However, the exemplar data must be mapped

to an accurate text description, regardless of whether it is parameterised or not, in order to be

useful for high-level reasoning. Otherwise, the best inference that can be made is that unusual

activity is that which occurs less often. This may be true in a traffic situation where the “rules

of engagement” are clearly defined and generally obeyed. But in a military scenario, such as

urban combat or border control, it is not necessarily the case that frequency of occurrence is

truly representative of normality. Therefore, it is appropriate when it is not guaranteed that

large quantities of good training data are available, to enable human mark-up of the training

data thus providing the correct normal model. Since the algorithms in this thesis have been

developed with trained Imagery Analysts as the end users, we aim to utilise the extensive prior

knowledge at their disposal4. This motivates the non-parametric recognition techniques (where

the data itself is the model) which are used in much of this work. Due to the volume of this

exemplar data, efficient search methods have been employed, which is novel in this context.
4This knowledge will, in future, be obtained by setting tasks as a result of which the IAs generate text reports.
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The most basic information we can obtain about the activity of people in image sequences, using

a video tracker, is position and velocity. This data alone is not of much use for reasoning about

the general scene unless it is translated into a higher-level concept. Our hand-labelled exemplar

databases provide this mapping between pixel data and human-readable labels. The database

for each feature contains qualitative labels such that position and velocity, for example, become

place and direction. As we discuss in more detail later in the thesis, there is much that can

be achieved with this basic, qualitative information alone but a descriptive language at only

one level of abstraction above the image data is an unnecessary and artificial limitation. We

therefore consider spatio-temporal action, using Bayesian fusion, and behavioural information,

which is represented by stochastic sequences of spatio-temporal actions.

First, however, we develop a novel method for determining in which direction a person is looking

in low-resolution video. This technique is based on skin detection and we use body-direction as

contextual information to compute distributions over potential gaze angles. Then, inspired by

recent work in human action recognition, we extract descriptions of motion such as “walking”,

“running” etc. using instantaneous motion descriptors based on optic flow. By fusing the

estimated probability distributions over all possible places and speeds with this instantaneous

target-centred action description we derive higher-level descriptions of spatio-temporal motion

e.g. “walking North on the West pavement”. Expert knowledge is then used to create behaviour

models which encode transitions between spatio-temporal actions.

We demonstrate that this action/behaviour information can be used to generate an automatic

commentary on human activity in video sequences. We further show that smoothing priors

based on expert knowledge improves this commentary. The complete description of activity

(including gaze information) is finally passed to a rule-based reasoning system which derives

explanations of interactions between agents in complex, real-world scenarios. All of these tech-

niques are demonstrated extensively on urban surveillance and sports video.
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1.5 Roadmap

While contributing towards the overall goal, each chapter in this thesis is, to some degree, self-

contained and describes a component of work which is of interest in its own right. As such the

chapters have their own summary and conclusion. To aid the reader and maintain continuity,

we review the relevant literature which has not been covered in the main literature review at

the start of each chapter.

Chapter 2 sets the scene by reviewing the strengths and weaknesses of the scientific state-of-

the-art as reported in the peer-reviewed literature. This chapter puts the contributions of this

thesis in the context of the latest work in visual surveillance.

Chapter 3 introduces the Computer Vision methods applied to the task of estimating where

someone is looking when the imaged face is low-resolution. We demonstrate the use of temporal

and contextual information for refining probabilistic estimates from static imagery.

Chapter 4 deals with recognising patterns of motion which correspond to human activity

and estimating the spatio-temporal action of one person in video. This chapter addresses the

problem of generating a probabilistic interpretation of the observed action via non-parametric

sampling from an exemplar database.

Chapter 5 demonstrates the efficacy of representing behaviour as a stochastic sequence of

actions, chiefly exploring the use of Hidden Markov Models in this context.

Chapter 6 draws the work of the previous chapters together in order to demonstrate causal

reasoning. The text descriptions of activity in terms of spatio-temporal actions, extended

behaviour and gaze-direction is used as input to a rule-based engine. Final examples are shown

in this chapter on surveillance-style video in an urban setting and on sports footage.

Chapter 7 summarises the main achievements of this work and discusses avenues of future

research based on our algorithms and results.



2

Related Work

In this chapter we provide an overview of the significant areas in relation to this thesis: vision

psychology, Bayesian methods, modelling human behaviour in video and visual surveillance.
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2.1 Vision psychology

The experiments of Michotte and Heider & Simmel are interesting and relevant to researchers

not only in psychology and psychophysics but also in computer vision more generally because

it has been demonstrated that very simple visual motions give rise to surprisingly high-level

percepts. Moreover, the vast majority of viewers construct the same interpretation. The natural

question to ask in light of these remarkable and compelling demonstrations is, is it possible to

exploit the aspect of the motion causing these powerful perceptions to interpret visual scenes

in causal terms in a computer vision system?

First, Michotte produced a series of simple moving displays which are readily interpreted as

causal relations. An example of which can be described as follows (and is seen in Figure 1.2):

Two small circles are sitting in a line, separated. The first circle A moves in a

straight line until it reaches the second circle B, at which point A stops moving and

B starts moving along the same trajectory.

In an objective sense nothing more is happening in the scene. The typical human interpretation

is however that the motion of A causes the motion of B. Psychologists draw a distinction between

the inference and the perception of causality. For our purposes, it is the fact that the phenomena

arise at all that is of interest. Moreover, it is critical that Michotte pared the experimental

stimuli down to the slightest of visual cues, namely the precise image motion, which produce

these effects. This was done to demonstrate the importance of time: the perception of causality

is reported to be much less powerful if there is a delay in both shapes moving after they appear

to touch and disappears if the temporal gap is large enough.

It is conjectured that one reason for such a dramatic effect is that certain assumptions appear

to be hard-wired into the human visual system e.g. the heuristic assumption that objects are

rigid which is in play when extracting structure from motion [155]. Scholl believes this is what

Michotte, Heider and Simmel have done for causality and animacy: used simple schematic

displays which satisfy the assumptions in the most minimal way possible [140]. In fact this
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Figure 2.1: Still from Heider and Simmel film. In the animation the coloured objects move in such a
way that not only is causality almost universally perceived but, for many viewers, emotional states are
attributed to the shapes.

seems to have been done with such success that the slightest objective change in the displays

can cause the perceptual effects to disappear completely. It has been demonstrated that the

kinematic nature is the most important aspect for the perception of causality. So in Figure 1.2

the masses of the “balls” (or other physical properties of the system) are not required to be

known in order that the causal relationship be perceived.

Michotte’s claims are strong, and, unsurprisingly, some researchers contest whether the percep-

tual effect is as immediate and irresistable as suggested. White stressed that this should not

be allowed to distract from the existence of the phenomena:

The remarkable thing . . . is that causal processing is sufficiently irresistable to occur

at all with such imperfect stimuli [165].

We might also add that it is remarkable that the “causal processing” occur so universally.

Heider and Simmel’s work justifies the second half of the claim that not only perceptual causality

but animacy can be produced by sparse visual cues. Not only is the perception of an object

being alive in terms of being able to cause actions possible, but also there arises the perception

of goals and emotional states e.g. “wanting to get to the red block” (a still from the famous

Heider and Simmel sequence are shown in Figure 2.1). The film which Heider and Simmel

created shows three geometric figures, a large square, a small square and a small circle, moving
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near a rectangle. In their report of experiments, observers attributed personalities to the

objects, such as shyness and bullying in addition to emotions, such as anger and frustration,

regardless of the instructions they were given. Later work which suggested that the results are

sensitive to context and that for the experiments to succeed the subjects must be primed with

emotional information is inconclusive [143]. In defence of the conclusions of Michotte [99], and

Heider and Simmel, further studies have shown that infants understand that inanimate objects

cannot act on one another from a distance and so must have derived an impression of animacy

from the quality of the objects’ motions [138].

Notwithstanding the intrinsic interest and fascination of this psychological research, the question

must be posed, what specifically is the relevance of this research to dynamic scene understanding

and in particular the detection of interesting or suspicious behaviour? The answer is motion

cues. Michotte suggested that simple motion cues are the foundation for social perception in

general:

In ordinary life, the specifying factors - gestures, facial expressions, speech - are

innumerable and can be differentiated by an infinity of nuances. But they are

all additional refinements compared with the key factors, which are simple kinetic

structures [18].

In other words, it seems that psychophysics and perceptual psychology have provided a wealth

of evidence illustrating how important, indispensable and fundamental motion is to humans

as they try to make sense of the world they see. Given that computer vision is, in essence,

attempting to confer on computers the power to see the world around them in terms of being

able to understand and make intelligent decisions as humans can, it is only sensible to attempt

to use those minimal cues which humans require.

A compelling result is that the kinematics, rather than the dynamics, of the scene is what

produces the perceptual effects of causality and animacy. This distinction is important as it

takes us from a quantitative position to a qualitative interpretation, where precise definitions

of mass, velocity etc. are not as important as large-scale changes in direction, relative velocity
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etc.

In addition, it has been suggested that humans employ a low-level “intuitive physics” which

correlates geometrical properties of distance and size with physical properties such as mass,

velocity and acceleration [43]. Cooper and Munger [32] believe this is done by internalised

kinematic principles. It is known that very sparse clues can provide enough information for

people to identify walking, for example even though the only visible information provided is

small dots placed on an invisible human figure. The static representation cannot be recognised

[77] but the motion of the dots allows subjects not only to identify the human walking but

also to make fine distinctions regarding gait e.g. identify walking, running, limping etc. The

conclusion is that non-rigid motion gives a sense of animacy.

2.2 Bayesian methods for data modelling

A visual process which surveys the world using a camera will generate a vast amount of data.

The task of a surveillance system is to make sense of the data, detecting patterns which can

be identified as certain modes of behaviour. Methods which model the data are useful so long

as a less complex representation of the data than the data itself is offered. The complexity of

the model is generally identified by the number of model parameters. This however introduces

a conflict since the model fit is improved monotonically with increases in complexity [128],

meaning that a model which is as complex as the data will fit perfectly. In order to achieve

a balance between these measures, a number of methods are proposed in the literature with

regard to graphical models.

Graphical models are used to compactly illustrate joint probability distributions. Bayesian

Networks (Bayes Net) have become a common tool in statistics and probability. Initially intro-

duced by Pearl [110], they can be interpreted as encoding causal relations. In fact, it is to this

very interpretation that Pearl attributes the popularity of the Bayes Net representation.

The interpretation of direct acyclic graphs [Bayes Nets] (DAG) as carriers of in-

dependence assumptions does not necessarily imply causation; in fact, it will be
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Figure 2.2: A simple Bayesian network graphically illustrates conditional independence. The topology
of this graph tells us that if the value at node (3) is known, knowing the value of node (1) provides no
more information at nodes (6),(7) or (8).

valid for any set of recursive independencies along any ordering of the variables,

not necessarily causal or chronological. However the ubiquity of DAG models in

statistical and AI applications stems (often unwittingly) primarily from their causal

interpretation - that is a system of processes, one per family, that could account for

the generation of observed data [111].

The nodes of the graph represent random variables, and, in the case of a directed graphical

model, the notions of interdependence of the variables takes into account the direction of the arcs

joining the nodes. Although directed models have a more complicated notion of independence

than undirected models, they do have several advantages. The most important is that one can

interpret an arc from A to B probabilistically. Further when the concept of time is introduced

this idea can be extended to Dynamic Bayesian Networks (DBN) where a Bayes Net is “rolled

out” in time, a popular example of which is the Hidden Markov Model (HMM).

Bayes Nets are directed graphs representing stochastic processes. When specifying the Bayes

Net, the topology is generally predefined and it is this structure of the graphical model that

captures the the relationship of the states and the possible transitions between states in a

conceptual manner. A graphical model specifies a complete joint probability distribution over
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all the variables and the conditional independence relations can be immediately identified, as

illustrated in Figure 2.2. If the graphical model parameters and structure can be learned from

the data using, for example, Expectation Maximisation (see appendix C and [60]) then the task

of fitting a model to the data can be accomplished without supervision of the learning process.

Note that despite the inclusion of “Bayesian” in Bayes Net, this does not commit the user to

the Bayesian methods for learning which will be outlined here. Rather it indicates that Bayes’

rule is used for probabilistic inference. Bayes’ rule essentially provides a mathematical rule for

how one should change one’s beliefs in the light of new evidence. The probability that event R

was caused by e is given by:

P (R|e) =
P (e|R)P (R)

P (e)
(2.1)

The posterior is P (R|e), the conditional likelihood is P (e|R), the prior is P (R) and the evidence

is P (e).

Roberts et al. argue in [128] that a Bayesian approach may be regarded as estimating the un-

certainty of the model as a whole, given the data, and also estimating the uncertainty in the

parameters. The uncertainty of the model decreases with the number of parameters, while the

uncertainty in the parameters increases as more parameters are estimated. Therefore Bayesian

modelling involves finding a balance between the two measures. The results of Bayesian mod-

elling are compared with other popular model selection criteria including Minimum Description

Length (MDL), Minimum Message Length (MML), Evidence Density, Partition Coefficient and

the evidence is that model selection based on information theory i.e. MDL, MML and Bayesian

methods in general outperform more heuristic methods [128].

2.2.1 Bayesian Networks

The example Bayesian Network in Figure 2.3 is trivially simple but illustrates in a straightfor-

ward way how Bayes Nets compactly represent conditional probability relations. The probabil-
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A

P VM

Figure 2.3: This is an even simpler example of a Bayesian network but it is useful for demonstrating the
utility for representing mathematical relations compactly, as shown in the text.

ity p(A) can be computed as the marginal probability at the node A:

p(A) =
∑
P

∑
V

∑
M

p(A,P, V,M) (2.2)

(Note that the choice of A,P,V,M as variable relates to action, position, velocity and motion,

respectively which are described fully later in this thesis.) We can express the joint distribution

of the Bayes Net in terms of the conditional relationship between the variables using the chain

rule of probability

p(A,P, V,M) = p(A)p(P |A)p(V |A,P )p(M |A,P, V ) (2.3)

which can be simplified using the conditional independence of the leaf nodes to

p(A,P, V,M) = p(A)p(P |A)p(V |A)p(M |A) (2.4)

Now, given the values that are specified in the conditional probability table for node A it is

possible to compute the marginal distribution p(A) since, for any given data D, (composed of
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t=1 t=2 t=3 t=T

XjXi

Yi

P(Yi|Xi) = B(i,j)

P(Xj|Xi) = A(i,j)

Figure 2.4: A Hidden Markov Model is a specific example of a Dynamic Bayesian Network and is
completely defined by a set if transition probabilities, observation probabilities and (initial) state priors.
The hidden variables are shown as circles and the observations as boxes. The states (X) transition
probabilities are defined by A, the observation probabilities by B.

Figure 2.5: A Coupled HMM is just one of a number of variants on the standard HMM shown in Figure
2.4. The hidden states are coupled in state-space and the inference therefore includes a joint distribution
over hidden states (see [123]).

P, V,M) using Bayes rule:

p(A|D) =
p(D|A)p(A)

p(D)
(2.5)

The priors on the possible values of A and D are predefined (or taken to be uniform) and

the conditional probabilities are specified in the Conditional Probability Table (CPT) for this

Bayesian Network.
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2.2.2 The Hidden Markov Model

The Hidden Markov Model is an example of a Dynamic Bayesian Network (DBN). A DBN has

the properties of a static Bayes Net of the type shown in Figures 2.2 and 2.3 but the time slices

are typically shown chronologically left-to-right, as shown in Figure 2.4. The topology shown in

Figure 2.4 is the most basic, standard HMM. HMMs have topology tailored to specific problems

e.g. Coupled HMMs, as shown in Figure 2.5 [123]. The Markov assumption is that the future

is conditioned only on the present, meaning there is no “memory” in the state sequences, as

shown in Figure 2.4.

An HMM is a stochastic state-space model analogous to a Kalman Filter which can change

state and is defined by the following parameters (collectively Θ):

Π = (πi) (2.6)

A = (aij) (2.7)

B = (bij) (2.8)

where Π is the initial state probabilities, A is the (hidden) state transition probabilities and B

is the observation (of the hidden state) probabilities. These matrices typically are static i.e. the

values do not change over time, which is one of the most unrealistic properties of the Markov

model, in practice. They can take discrete or continuous (e.g. Gaussian or multi-variate Gaus-

sian) distributions. A limitation of the HMM is the assumption that successive observations

are independent and therefore the probability of a sequence of observations p(O1, O2, . . . , OT )

can be written as a product of individual observations:

p(O1, O2, . . . , OT ) =
T∏

t=1

p(Ot) (2.9)
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Notwithstanding these limitations, the HMM has found practical application in a wide number

of areas, particularly speech recognition [120], mainly due to the discovery of efficient algorithms

for the calculations associated with the HMM model, which are discussed below.

A Hidden Markov Model has three main uses:

• Evaluation

• Decoding

• Learning

Evaluation The behaviour of an animal, for example, differs according to the season. We may

have a set of HMMs which encode the expected behaviour for each season, summer, winter etc.

Given an observation sequence of the animal behaviour O = O1, O2, . . . , OT and a model e.g.

summer, Θ = (A,B,Π) the probability of the observation sequence given the model is computed

using the forwards algorithm [6, 7] (which is derived in appendix D). In speech recognition, for

example, this problem occurs when someone speaks since an observation sequence is generated.

A bank of word models is predefined and the most-likely model is selected to explain the

observations, in this case the spoken words.

Decoding This problem can be stated as that of finding the most probable sequence of hid-

den states given some model and a set of observations i.e. given O = O1, O2, . . . , OT and

Θ = (A,B, π) how do we choose a corresponding state sequence Q = q1, q2, . . . , qT which is

optimal? The hidden states are often of interest because they represent something not observ-

able (although there is no guarantee that the hidden states have any physical meaning). For

example, it may be that only the animal behaviour (perhaps remotely) can be observed. From

the observations weather state - the hidden state - perhaps temperature, can be inferred. The

Viterbi algorithm is used to determine the most probable state sequence given a sequence of

observations and a HMM (see appendix D).

Learning How do we adjust the model parameters Θ = (A,B,Π) to maximise p(O|Θ)? This is

the most difficult problem. The forward-backward algorithm is useful when the matrices A and
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B are not directly measurable1. Expectation Maximisation can be used but is only effective

when a good initial estimate of the model parameters can be provided.

2.2.3 Learning graphical models

A standard method used to learn the parameters of a graphical model is Expectation Maximisa-

tion (EM) (used later in this thesis and outlined in appendix C). When applied to a dataset for

the purposes of training, EM returns an estimate of a single optimal value for the parameters

within a fixed graph structure. The limitations of EM include a tendency to over-fit the data

and a preference for complex models. The latter arises because more complex models have

an increased number of parameters and so provide a better “explanation” of the data. But

EM cannot optimise model structure [3, 107]. Roberts et al. [128] offer a solution (in principle)

which is not subject to these limitations. For each model, the posterior probability of the model

given the data is calculated. Predictions for the training data are then computed by averaging

the predictions of all the individual models, thus avoiding over-fitting. Complex models are

classified as more unlikely by being given a low posterior probability and therefore the choice

of structures can be considered optimal.

Even for basic models, the computational effort often results in the Bayesian method becoming

intractable [11]. Approximation methods include Markov Chain Monte Carlo (MCMC) and

large sample methods.

Recently an additional method has been introduced: Variational Bayes [3]. This framework

facilitates analytical calculations of posterior distributions over the hidden variables, parame-

ters and structure. Moreover, they are computed via an iterative algorithm closely related to

Expectation Maximisation (EM). One perceived advantage is that the MDL criterion emerges

as a limiting case. Variational Bayes has been shown to outperform MDL for 1-dimensional

Gaussian mixture models [112]
1Although we do not define this algorithm explicitly but it can readily be inferred from the forwards and

Viterbi algorithms.
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2.3 Detection and interpretation of human activities in video

Figure 2.6: Traffic behaviour prediction in the work of Brand and Kettnaker (from [22]). Right, predicted
spatial positions of the car are shown as ellipses.

There is a wealth of literature on the variety of problems associated with the detection of

human behaviour in video. Researchers have tackled issues such as tracking in clutter [157],

face recognition, expression analysis [45] and human motion capture [61]. While recognising

the importance of this work and the basis it has provided for subsequent robust interpretation

of detected activity in video, in this section we explicitly consider only prior work which has

focussed on the learning and modelling of human behaviour since that is what is directly relevant

to the topic of the thesis.

It is worth noting that, while we have explicitly ignored person detection to automatically

initiate a tracking process, this problem has been the focus of a number of recent innovations in

the literature. In particular Viola et al. have extended their static object detection technique to

achieve robust detection of pedestrians in video where people are around 100 pixels high [158].

Illustrative results from their work are shown in Figure 2.7.

Cutler and Davis pushed the detection problem to a remarkable limit by tackling the problem

of detecting people from Unmanned Air Vehicle footage. The resolution of a person is very low

(see Figure 2.8), but using the periodic motion of the walk, detection is possible, as shown in

[36].

As highlighted by Oliver et al. [107] there has, over the last decade or so, been an increasing

interest in the problem of analysing human behaviour in video [16, 25, 47]. Currently a system

developed for such a task would generally be composed of two major components:



2.3 Detection and interpretation of human activities in video 27

Figure 2.7: Viola et al. demonstrated robust detection of pedestrians in surveillance video [158]. This
can be used as an initialisation to a tracker. We explicitly use a semi-automatic process, however.

Figure 2.8: From Cutler and Davis [36]. Detection of people can be achieved in very low resolution
video.
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Figure 2.9: From Boiman and Irani [17]. Unusual activity is highlighted in this sequence (red patches,
bottom row), by searching for pieces which resemble patches in the input frame in the training database.
In this example, the training data is footage of someone walking backwards and forwards in the same
scene from the same camera viewpoint.

1. low-level detection or segmentation of moving objects,

2. higher-level interpretation of tracks to classify the behaviours taking place in the scene.

A particular application which has been identified as an area on which little research effort

has been expended is that of human behaviours which extend in time [108]. This task neces-

sitates a combination of computer vision and artificial intelligence. Computer vision because

accurate, robust detection and tracking of objects is required; artificial intelligence because

knowledge representation and mobilisation are needed to interpret perceived actions and po-

tentially dangerous behaviours (due to the reliance on prior models of behaviour in humans).

These components are required, of course, to be integrated in some fashion. Notwithstanding

this clear need, a limitation of the currently reported machine learning approaches based on

example or data driven methods is that for rare or abnormal actions there is generally less

abundant data for training, as one would expect.

A piece of work which spans a number of technical areas with which this thesis is concerned

has been reported by Boiman and Irani [17]. The work addresses the problem of detecting

“irregularities” in video, where “irregular” is defined solely by the context in which the video

takes place. Essentially, if parts of the video (defined as the “query”), that is patches within

frames extended in time, can be composed from other patches within the sequence (defined as

the “database”) then the patch is considered normal. Otherwise the patch is highlighted as an

irregularity, as shown in Figure 2.9.

Boiman and Irani use a probabilistic graphical model for inferring the likelihood of observed

activity given the video patch database. Although they claim to be using “no prior knowledge”,
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Figure 2.10: From Boiman and Irani [17]. In this example, there is no prior knowledge about what
is normal behaviour, and no corresponding database of video patches representing normal behaviour.
The activity highlighted in red is detected as abnormal by comparing patches within the video itself,
searching for support. Patches with the least support are said to be “irrregular”.

in reality it can be argued that, for sensibly detecting irregularity, the training data must

implicitly be a model of normality, otherwise the predicted “suspicious” behaviour may not

be suspicious at all, merely infrequent. The spatio-temporal patches which are size 7×7×4

are computed over a pyramid of spatial and temporal scales. One important issue which is

discussed by Boiman and Iran is the time it takes to search this database. The search is posed

as an inference problem, but, by progressive elimination, the complexity is, at worst, ∼ O(N),

where N is the number of patches in the database, quoted as N = 100, 000.

The final, and perhaps most interesting results, show, as initially claimed, the detection of

irregularity in video with no prior information and no database. This example is shown in

Figure 2.10. However, in a surveillance context, which seems to be the application the authors

have in mind, it is not clear that this approach could yield robust anomaly detection due to the

wide variety of appearances the same, innocuous, activity can take. The fact that the activity

on which this method is demonstrated is so very structured (i.e. people waving hands in the

air) may limit the range of domains in which the work can be applied.

2.3.1 Parametric methods

Successful examples of using a Bayesian [87] method are available in current literature [107, 22].

In particular, potential problems such as learning novel behaviours from as few as one example

have been addressed using a Bayesian method incorporating graphical models [24] such as

Hidden Markov Models (HMM)[120]. A large number of papers detail research using HMMs

for post-visual processing and event classification. In most cases each HMM is trained on a

number of examples of a given event and novel events are classified using likelihood ratios - a
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standard Bayesian maximum a posteriori (MAP) approach. The topology of the HMM, based

on a graphical model, is a crucial factor and is the subject of intense research outside of the

standard vision literature [21].

The applications in these recent papers include areas of specific interest as far as detection of

suspicious behaviour is concerned, specifically analysis of human interactions over long and short

time scales and traffic monitoring. Despite differences in the details of constructing the topology

of the relative learning models in terms of the HMM, it has been adequately demonstrated that

classification and analysis is possible by means of unsupervised learning [22].

To highlight one example, Stauffer and Grimson aimed to:

develop a visual monitoring system that passively observes moving objects in a site

and learns patterns of activity from those observations [148].

As expected, the tracking of objects through video sequences is a vital component of this

system and it is accepted that a tracking system for use in surveillance should be robust. In

other words, the successful track initialisation (identification of when and where in image space

to begin a new track) and track maintainence (the ability to identify the tracked object from

the previous frame in the current frame) does not depend on clever placement of cameras or

choosing carefully the illumination conditions. So for research with successful outcomes in the

area of surveillance it is assumed tracking is enabled, robustly dealing with changes in scene

illumination in particular.

In fact, many systems have been created to aid urban surveillance, most based on the notion

of trajectories alone. For example Grimson et al. [63] report an entirely automated system

for visual surveillance and monitoring of an urban site using agent trajectories. The same is

true in the work of Buxton (who has been prominent in the use of Bayesian networks for visual

surveillance) [26], Morellas et al. [101] and Makris [92]. Johnson and Hogg’s work [78] is another

example where trajectory information is only considered.

Galata et al. [52] address more specifically the problem of learning behavioural patterns. The
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authors draw an important distinction between their work and prior work in the field by stating

that the use of Variable Length Markov Models (VLMM) allows the structure of underlying

training data to be automatically inferred. This is an important point as the work of Brand

and Kettnaker [22] requires one model to cover the entire behaviour space and that in turn is

in contrast to most of the previous techniques which have been discussed which have separate,

predefined models. To illustrate the main idea behind the VLMM, assume there is a string of

tokens, s, used as a memory to predict the next token, t′ according to an estimate P̂ (t′|s) of the

true probability P (t′|s). If the probability P̂ (t′|ts) that predicts the next token is significantly

better then the the longer memory ts is a better predictor than s. From [52], there is a measure

to determine how much additional information is gathered using the longer memory:

∆H(ts, s) = P̂ (ts)
∑
t′

P̂ (t′|ts)log P̂ (t′|ts)
P̂ (t′|s)

(2.10)

Vector Quantisation (VQ) is also used by Galata to produce a set of feature vectors corre-

sponding to prototypical interactions. The prototypical interactions are then used to train the

VLMM. The VLMM is essentially a symbolic predictive model, effectively meaning that the

underlying continuous variables used in, say, the work of Brand on HMMs [22] are abstracted

to discrete space hence becoming analogous to the finite relations in a qualitative spatial rep-

resentation. This arguably produces a more understandable model since its components are

higher level abstractions. The system built on this high-level semantic interpretation can be

used to recognise typical interactive behaviour within the traffic domain and identify abnormal

behaviour. In addition it is hypothesised that there are generative and predictive possibilities

which would probably involve the learning of typical paths.

Brand’s introduction of an “entropic” prior [20] which has the effect of producing a much sparser

transition matrix for HMMs learned from training data has achieved some interesting results

when applied to detection of human activity, in particular to a traffic intersection and people

in an office. Minimisation of entropy has the effect of maximising the amount of evidence

supporting each parameter while minimising uncertainty in the expected sufficient statistics

between the model and the data.
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There have been a number of efforts to extend and improve the standard HMM. Ghahramani

and Jordan. [59] developed the factorial HMM for independent processes, Saul and Jordan

[137] developed the linked HMM to model contemporaneous symmetrical processes and Jordan

et al. [79] developed HMM decision trees. Notably Brand introduced Coupled HMMs which

aim to model causally linked time series by coupling in state space, not in the outputs [19].

This has been shown to provide marked improvements over other HMM variants where there

is a degree of causal interaction between datasets, for example, hand signs.

Cuzzolin et al. address the unsupervised case [157] again using HMMs. However the additional

problem which they focus on is that of detecting actions in clutter. Given that instantiations

of a particular action may not be know beforehand it is difficult to construct a model which

recognises such behaviour. The models which are inferred in [157] may not necessarily be

anatomically correct in the case of gait analysis, for example, but are designed to be able to

identify a new instance of that action in a new scene. The essence of the approach (since this

goal is not attained) is that a model of an isolated “action” can be detected in the model of a

more complex action such as an action in clutter.

Related to Markov Modelling, Town [153] learns a Bayesian Network using the K2 algorithm

from an “ontology”. Ontology is defined by Gruber in [64]:2

In the context of knowledge sharing, I use the term ontology to mean a specification

of a conceptualization. That is, an ontology is a description (like a formal specifi-

cation of a program) of the concepts and relationships that can exist for an agent

or a community of agents.

One way of interpreting this is to view the ontology as the set of descriptions allowed for a

given agent i.e. the descriptive language for a particular scenario.

The ontology which Town obtains in his work comes directly from hand-labelled portions of

video involving human behaviour describing the context of an individual in the video, their

situations, their role and attributes. Town shows good classification results for the sequence
2See also http://www-ksl.stanford.edu/kst/what-is-an-ontology.html
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from which the ontology was derived but there is no attempt to generalise behaviour beyond

this.

2.3.2 Non-parametric methods

The general trend has been towards parameterised modelling of complex and large training

data sets for human activity recognition, as we have seen above. There are, however, other

approaches. Most notable has been the introduction of non-parametric methods where the data

itself is the model. Efros et al. [44] showed that using the instantaneous optic flow, splitting the

flow-field into four non-negative channels and blurring localised target actions could be matched

between people even though they vary in size, shape and appearance. The matching in Efros’

work is done by picking the nearest (in a Euclidean sense) match in the exemplar set for an

newly computed set of “motion channels”. The method has been demonstrated primarily on

sports footage where the background is almost entirely free from clutter.

In the case of Stauffer and Grimson’s work on visual surveillance [148] the claim is that over

ten million objects have been tracked. From this data the aim is to:

1. obtain statistical descriptions of “normal” activity patterns,

2. detect unusual events,

3. detect unusual interactions between objects.

The interpretation of the motion tracks is performed using a classification based on the Vector

Quantisation (VQ) method. VQ maps k-dimensional vectors into a finite set of vectors. Each

of these new vectors is called a codeword and the set of codewords from a given set of training

vectors is the codebook. A codeword resides in its own nearest-neighbour region and so a

codeword can be chosen to represent an input vector according to the region in which the

vector is placed. These codewords are referred to as prototypes in [148].

There are a number of algorithms for the development of codebooks of prototypes (see e.g. [58]).

Stauffer and Grimson use a popular algorithm which is initialised by selecting a number of
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prototypes and setting them randomly. The Euclidean distance is used as a measure to cluster

the input vectors around the prototypes. A new set of protoypes is calculated by obtaining the

average of each cluster. The last two steps are repeated until the prototypes do not change

or the change is negligible. Each observation in a sequence is treated independently and so

the probability of a given class is the product of the probabilities of that class producing each

observation. Prior to classification, a codebook has been generated by the method described.

The codebook can then be used as a lookup table to label new values according to the labels

of nearby prototypes.

A co-occurrence matrix is then calculated which operates in a different fashion to the HMM

(which detects patterns in sequences) by taking one or more observations of an object and

classifying each observation into a set of classes by converting the input, be it a silhouette, an

image etc., to codebook labels so that the similar objects can be placed into the same class

according to the nearest prototype. The result is that the system can classify without seeing

an entire sequence. Probability distributions are created from which classification of sequences

can take place. Since each observation is treated as independent, the probability of a particular

class is the product of that class producing each of the observations in the sequence.

While admitting that the scenes used to test the system are chosen to be well-suited to the

task, the work represents a novel, probabilistic method for tracking but the classification is

not as successful as the tracker. It should be noted that it is believed the classification would

achieve better results by learning context cycles such as traffic light cycles which is an interesting

potential use of human prior knowledge in guiding the training data to be used.

Zhong et al. [169] demonstrated detecting unusual activity by classifying motion and colour

histograms into prototypes and using the distance from the clusters as a measure of novelty.

Non-parametric techniques for recognising the action centred on a person have become more

prominent recently. In particular, the methods of Efros et al. [44] (which we discuss in more

detail in chapter 4) and that of Blank et al. [14] both attempt to reliably detect actions such

as walking and running regardless of where that action takes place. In fact some form of

background suppression is required in both of these methods. Blank et al. view actions as
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Figure 2.11: The method of Blank et al. represents person-centred activity as space-time shapes and
uses non-parametric matching of features such as the local saliency (shown right with regions of high
saliency encoded in red, low saliency in blue). These are computed and searched non-parametrically.
Pictures are from [14].

“space-time shapes”, as shown in Figure 2.11 and devise a set of features based on the solution

to the Poisson equation on space-time shapes. These include space-time saliency, orientations

(which are local features) and weighted moments (global features). The exemplar features

vectors are then searched for the nearest-neighbour for every input action. Classification rates

are impressive and the error-rate is quoted as 6.38%. The test data on which these results

are generated are from sanitised video sequences and, while there is some discussion of the

fact that silhouettes are not perfect, it remains to be seen how this method performs in very

low-resolution situations or where the background is significantly cluttered.

2.4 Visual surveillance

Any consideration of visual surveillance could encompass an enormous variety of aspects in-

cluding sensors, photogrammetry etc. However it is approached here in the context of learning,

detection and explanation of human-initiated behaviours, which is the area of most relevance

to this work.

It has been said by Picard:

Successful biases must happen at both the low and high levels, and depend on both

the data and the goals [117].

The preceding review of action and behaviour recognition, from an Artificial Intelligence stand-

point, corresponds to “low-level” analysis in that it deals with data arising directly from the

sensors. In the computer vision literature, unsurprisingly, the majority of the work falls into
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this category. The “high-level” is concerned with interpretation of the observed activity and,

while this is a theme more readily found in the AI literature, there is a distinct lack of examples

where researchers have attempted to join the low and the high level.

In surveillance, it is typically expected that the physical area being monitored will, to a greater

or lesser degree, be known. This is not to say that each and every type of behaviour which a

human could classify as unusual or suspicious can be determined in advance. In fact to attempt

such a task could be considered an intractable problem unless the environment in question has

a highly constrained rule set governing the actions of the objects in the scene.

In automatic surveillance the goal is to determine which type of action is being observed at a

given time and make an informed judgement about the the behaviour. Is it a threat? What

is happening? However, human behaviour is complex and the potential interactions between

humans in even the most common real-life environment, such as an urban street, increases the

complexity dramatically. Learning all possible examples of interactions in these scenes is not

feasible, especially using current techniques such as HMMs which require many examples of

each interaction. Therefore we propose to approach the problem not as one of classification by

exhaustively large datasets but as one of classification with the aid of important prior knowledge

about the scene.

There has been much reported in the recent literature about methods for training recognition

systems using large training data sets (see, for example, [158]). This approach is beneficial in the

case where not much is known about the class of object that one wishes to detect. In this work we

know we want to detect behaviour which deviates from “normal” and classify behaviour which

does not. Humans can do this very effectively; for example, Imagery Analysts in the military

domain have no trouble detecting troop or vehicle formations from very sparse doppler-shift

radar returns mainly due to the enormous range of prior knowledge at their disposal.

Nairac and Tarassenko are proponents of the idea that learning normality alone is all that is

required for the detection of abnormality [103, 152, 102]. Their work has shown that, using

a number of different similarity measures, it is possible to reliably detect unusual behaviour,

for example behaviour which can lead to crucial failure of an aircraft engine, using neural
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Figure 2.12: The work of Johnson and Hogg on learning patterns of motion in a pedestrian scene (left),
a large amount of trajectory training data is used (centre) to compute a number of prototypical motions
(right). These figures are from [78].

networks. This method of novelty detection on the basis of a representation of normality learnt

exclusively from normal examples has been applied to a number of areas ranging from medical

image analysis to engineering component monitoring.

The work of Johnson and Hogg in [78] is a clear attempt to introduce the concept of action

and behaviour into classification systems resulting from computer vision methods. Moreover

the idea that object shape is significant is addressed in Johnson and Hogg’s work but shape

and trajectory information is not maintained independently.

An example in which human-level descriptions of video have been derived is that of Gerber,

Nagel and Schreiber [56] where a traffic scene is analysed and traffic queues reported using

textual descriptions (see Figure 2.14. (In fact, traffic scene analysis is a predominant theme in

high-level behaviour analysis see e.g. Towards Robust Automatic Traffic Scene Analysis [85].)

The work of Gerber et al. is based on a vision subsystem to provide tracks of cars in the

scene, a model of the traffic lanes which is generated by hand and a rule-based system (using

Fuzzy Metric-Temporal Horn Logic) which searches for an interpretation of the “facts” observed

using the cameras. The resulting output gives information regarding how many cars were in

the queue, when the queue formed and so on.

Similar attempts for scenes with more direct human activity, i.e. where the person can be

seen, have been less promininent. Mann et al. [93] did, however, report on progress towards

recognising and explaining interactions between people (dynamic) and objects (static). This

is an extension of the work by Ikeuchi and Suehiro [73] and Siskind [147] to consider both
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Figure 2.13: The traffic analysis of Gerber et al. produces text descriptions of traffic queues and uses
high-level markup of the scene. On the left is the objects being tracked. On the right the traffic lanes
have been identified by hand. These pictures are from [56].

kinematic and dynamic properties in time-varying scenes containing rigid objects. Given a

fairly rich descriptive language the authors demonstrate a number of feasible interpretations of

the activity “lifting a Coke can” can be achieved and these are ordered in preference showing

there is knowledge of uncertainty in the system.

Kingston University have expended considerable effort in creating solutions for a deployable,

wide-area visual surveillance system and have addressed a variety of issues including themes such

as colour constancy [122] and learning semantic models [91] in addition to the more common

problems associated with surveillance e.g. tracking. Notable work includes the investigation of

how to track through blind regions i.e. areas between camera views which cannot be seen in

any view [12]. Statistics for camera handover with a Kalman Filter tracking in 3D are 87.3%

overall but for blind regions with a temporal gap of 2 seconds the success rate drops to 30%.

The method developed by Black et al. in [12] is based on an agent-based tracker which manages

multiple hypotheses for entry and exit points between cameras and the authors report a rate of

90% success in the handover of tracks between multiple cameras with significant blind regions

[51].

Xiang and Gong have addressed an important issue which is central to this thesis: how to

effectively recognise action in a surveillance context when there is a sparsity of example data

[166] and what rôle the high-level labelling of trajectories plays in this situation and in the

general case [167]. The motivation given by Xiang and Gong for the preference for unlabelled

classification is: (1) “Manual labelling is laborious”, (2) “Manual labelling . . . could be incon-

sistent or error prone”, and (3) “. . . training using labelled data does not necessarily help a
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model with identifying novel instances of atypical behaviour patterns . . . ”. In [166] the authors

consider a particularly limited set of data and it is not clear from these preliminary results that

the labelling of tracks results in manifestly worse activity classification (when the classes are

simply “normal” or “abnormal”) because the novel classification method reported has greater

“insight” into the notion of normality and abnormality. The main drawback of Xiang and

Gong’s work is that the authors do not address the most obvious criticism which is that the

labelling the authors use for the training data could be innacurate. Referring to (2) above,

this is an expectation the authors seem to have and, therefore, new examples do not classify

well due to the subtle variations in position and speed which are observed. This latter point

strongly suggests that further work is required to clarify the interesting question of whether

manual labelling is an aid to human-activity classification, especially since trajectory data alone

was used as the feature vector. This criticism is further corroborated by the fact that, in the

only reported work addressing explicitly the issue of manual labelling, a single, very simple,

scenario was used in the analysis.

From an Artificial Intelligence standpoint the AI Lab at MIT has developed an entirely auto-

mated system for visual surveillance and monitoring of an urban site. This work, mentioned

above, [63] incorporates automatic tracking using an adaptive background model and classifies

activity and objects using a co-occurrence measure based on the trajectories. While this is an

interesting example of engineering computer vision solutions it does not attempt to explain be-

haviour. More recently there have been moves towards explanation of behaviour in video with

attempts to describe and query video at the action and not the feature level [84]. This work

involves combining research on Question Answering and Natural Language Understanding [83]

with Computer Vision. The system presented uses surveillance video as an example and can

answer questions at the level of, “Did any cars leave the garage?”.

Highly complex scenarios, specifically interaction in crowds, are currently being investigated.

Notably the global behaviour of the crowd, as opposed to the individuals that comprise the

crowd, is the focus of this work [1, 2] i.e. optic-flow of the group is used rather than single-

person tracks. The immaturity of this area is demonstrated by the fact that the initial research is



2.4 Visual surveillance 40

Figure 2.14: Andrade and Fisher use synthetic data to generate anomalies among crowds of people. Top
left : the person agents are programmed to adhere to a certain trajectory and avoid other agents; Top
right : The optic flow field is computed for the normal crowd behaviour shown in the top left figure;
Bottom left : A blockage is introduced and the crowd behaviour is generated such that the agents avoid
the obstacle and crush one another; Bottom right : The mean time taken for each agent to leave the
scene is observed to increase for the scenario where a blockage is introduced. Figures are from [1].

focused on modelling crowd behaviour using a person software agent model of social interaction.

Andrade and Fisher [1, 2] generate hypothetical anomalies within the ’crowd of agents’ (such

as when a person falls to the ground or when a crush is in evidence at e.g. a barrier) which

could then be used (it is suggested) for training purposes or validation of a computer system.

The work of Dee and Hogg [39] is particularly interesting to the aims of this thesis. They

develop a novel method for detecting “inexplicable” behaviour which is based upon a model of

how humans navigate a scene towards a “goal”. See Figure 2.15 for examples of potential goals

within an urban scenario. There is no statistical representation of normal activity in Dee and

Hogg’s work. The model of human activity takes as its input the headings of agents within

the scene and a labelled scene map. From the headings and the obstacles obtained from the

scene map, area visibility is derived. A Markov chain is predefined which enables a score to

be computed which penalises certain transitions which an agent can make. The goal with the

lowest predicted score is taken as the most likely explanation for the behaviour of the agent at

any time step. These scores are compared to how unusual a human finds the activity and a
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(a) (b) (c)

Figure 2.15: The algorithm of Dee and Hogg for detecting unusual activity relies on high-level markup
of the scene (from [39]). (a) The view of the scene from a static camera, (b) the exits, (c) the obstacles.

correlation between the human interpretation and that of the system is demonstrated.

As far as human-intervention in this goal-directed system is concerned, Dee and Hogg demon-

strate that scene exits can be automatically recovered directly from the statistics of the tracks

over a long period of time. The obstacles, however, are hand-defined, however, as must station-

ary objects such as parked cars, as shown in Figure 2.15.

One weakness of this work is the assumption that general body-direction is the prime indicator

of visibility. This is particularly significant given that the model is attempting to achieve goal -

directed analysis. That is, explicitly, intention is being modelled. In many situations, including

those examples shown in Dee and Hogg’s work, this assumption is fair. We can easily think of

instances where gaze-direction is a better cue to intention than body-direction alone, however.

In summary this work is a very interesting example of successfully exploiting human prior

knowledge about how people ought to behave in specific urban locations. It is not clear, though,

to what extent this approach is scalable, due to the simplistic assumptions required to infer

where the goal is located. That is, there may be reasons other than obstacles which prevent a

person moving directly towards a goal. For example, another agent in the scene may be behaving

in a dangerous manner and should therefore be avoided. In such an example, knowledge of other

agents and higher-level goal representation would be required.
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2.5 Conclusion

The dominant theme in computer vision in the technical approaches to the recognition of human

activity in video sequences is to learn parameterised models from training datasets representing

normality. The training data is often nothing more complex than trajectories i.e. position and

velocity. The modelling methods are typically Bayesian with Hidden Markov Models being a

recurring theme in the published literature. Sophisticated techniques have been implemented to

solve the problem of incorporating 3D views from multiple cameras, for example, and complex

statistical techniques for tracking.

Although there is evidence of a degree of supervision in the learning processes in the literature,

where it occurs it tends to take the form of supervising what is learned as opposed to how it

is learned. Humans use a combination of prior knowledge and learning when analysing visual

information but there is little evidence, beyond the application of Bayes’ Rule which clearly

accounts for evidence and prior beliefs, of a serious attempt to develop surveillance algorithms

that can fully utilise expert knowledge.

The AI community has focussed on this issue but, as Rigolli and Brady point out [124], the

development of the ontology for reasoning about the human-motivated activity is often divorced

from the information which can actually be obtained from the sensors.

And so there exists a gap which requires to be filled if “intelligent surveillance” - the analysis

of dynamic human activity in real-world scenarios which achieves human-level recognition and

can reason about the activity - is to become a reality. We propose on the basis of the scientific

state-of-the-art that the following issues need to be considered:

1. How to incorporate high-level expert knowledge in a vision-based system.

2. When training data is sparse, learning methods become increasingly unreliable. In many

scenarios, especially in the military domain, there is a lack of exemplars of action types.

What methods are appropriate in this case?

3. Looking beyond trajectories, what other information can be extracted from surveillance
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video which would expand the capabilities of a system for recognising human behaviour?



3

Gaze estimation in video

In this chapter we describe a new method for estimating where a person is looking in images

where the head of a person is low-resolution, typically 20 pixels high. The lowest-level of our

method is a feature vector which is based on skin detection. This feature is used to estimate the

pose of the head, which is discretised into 8 orientations relative to the camera. A fast sampling

method returns a distribution over head pose relative to a camera centred frame. The overall

body pose relative to the camera frame is approximated using the velocity of the body, obtained

via colour-based tracking in the image sequence. We show that, by combining direction and head

pose information, gaze direction is determined more robustly than using each feature alone. We

demonstrate this technique on surveillance and sports footage.

The results of this chapter have been published in the Proceedings of The European Computer

Vision Conference (ECCV), Graz, Austria, 2006 [132] and “Human Activity Recognition and

Modelling” at the British Machine Vision Conference (BMVC), Oxford, 2005 [130].
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3.1 Introduction

In applications where human activity is under observation, be that CCTV surveillance or sports

footage, for example, knowledge about where a person is looking (i.e. their gaze) provides

observers with important clues which enable accurate explanation of the scene activity. It is

possible, for example, for a human readily to distinguish between two people walking side-by-

side but who are not “together” and those who are acting as a pair. Such a distinction is

possible when there is regular eye-contact or head-turning in the direction of the other person.

In soccer or rugby, for example, head position is often a guide to where the ball will be passed

next i.e. it is an indicator of intention1 which is essential for causal reasoning. In this chapter

we present a new method for automatically inferring gaze direction in images where any one

person represents only a small proportion of the frame, where the head ranges from 20 to 40

pixels high.

The first component of our system is a descriptor based on skin colour. This descriptor is

extracted for each head in a large training database and labelled with one of 8 distinct head

poses. This labelled database can be queried to find either a nearest-neighbour match for a

previously unseen descriptor or, as we discuss later, is non-parametrically sampled to provide

an approximation to a distribution over possible head poses.

Recognising that general body direction plays an important rôle in determining where a person

can look due to anatomical limitations, we combine direction and head pose using Bayes’ rule

to obtain the joint distribution over head pose and direction, resulting in 64 possible gazes,

since head pose and direction are discretised into 8 sectors each as shown in Figure 3.1.

The chapter is organised as follows. First, we highlight relevant work in this, and associated,

area(s). We then describe how head-pose is estimated in section 3.3. In section 3.4 we pro-

vide motivation for a Bayesian fusion method by showing intermediate results where the best

head-pose match is chosen and, by contrast, where direction alone is used. Section 3.4 also

discusses how we fuse the relevant information we have at our disposal robustly to compute a
1In all but the most highly-skilled teams, where awareness of a team-mate’s position appears to be intuitive,

a player at least glances in the direction of the intended pass.
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distribution over possible gazes, rejecting non-physical gazes and reliably detecting potentially

significant interactions. Throughout the chapter we test and evaluate on a number of datasets

and additionally summarise comprehensive results in section 3.5. We conclude and discuss

potential future work in section 3.6.

3.2 Review of relevant literature

Determining the instantaneous focus of a person’s attention in surveillance images is a chal-

lenging problem that seems to have received no attention until now. In fact this problem was

first addressed by us very recently [130, 132].

Everingham and Zisserman [46] did, interestingly, develop a technique for overlaying 3D head

models on faces, with a resolution in the range 15 to 200 pixels high as a means to identifying

people in broadcast video sequences. This could have potentially been extended to determine

where the person is looking but the crucial drawback with Everingham and Zisserman’s work in

relation to surveillance video is the fact that they search for faces of a specific character whose

appearance is known a priori and for whom a 3D face model has been constructed in advance.

This would clearly be impossible in a surveillance application where nothing is known about

the appearance of the person under observation before they appear in the video.

Closely related in technical approach to the work of this chapter is that of Efros et al. [44]

for recognition of human action at a distance. That work showed how to distinguish between

human activities such as walking or running by comparing gross properties of motion using

a descriptor derived from frame-to-frame optic-flow and performing an exhaustive search over

extensive exemplar data. Head pose is not discussed in [44] but the use of a descriptor invariant

to lighting and clothing is of direct relevance to head pose estimation and has inspired aspects

of our algorithm.

Dee and Hogg [39] developed a system for detecting unusual activity which involves inferring

which regions of the scene are visible to an agent within the scene. A Markov Chain with

penalties associated with non-hidden state transitions is used to return a score for observed
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trajectories. The state transition penalties essentially encode how directly a person made

his/her way towards predefined goals, typically scene exits. In their work, gaze inference is vital,

but gaze is inferred from trajectory information alone which can lead to significant interactions

being overlooked, as we show later in this chapter, because the assumption that the head is

always aligned with body-direction is not robust.

In contrast, there has been considerable effort to extract gaze direction from relatively high-

resolution faces, motivated by the drive toward ever better Human/Computer Interfaces. The

technical aspects of this work have often focused on detecting the eyeball primarily. Matsumoto

and Zelinsky [94] compute 3-D head pose from 2-D features and stereo tracking. Perez et

al. [115] focus exclusively on the tracking of the eye and determination of its observed radius and

orientation for gaze recognition. Kaminski et al. [80] have achieved a very similar goal but using

a single image while retaining a face and eye model. Gee and Cipolla’s [54] gaze determination

method based on the 3D geometric relationship between facial features was applied to paintings

to determine where the subject is looking. Related work has tackled expression recognition using

information measures. Shinohara and Otsu demonstrated that Fisher Weights can be used to

recognise “smiling” in images. Osadchy et al. use a neural network to detect faces and estimate

pose similtaneously [106]. It must be noted that, even for the higher-resolution images expected

in an HCI-type application, non-frontal face detection is still unreliable.

While this approach is most useful in HCI where the head dominates the image and the eye

orientation is the only cue to intention, it is too fine-grained for surveillance video where we

must usually be content to assume that the gaze direction is aligned with the head-pose i.e. one

cannot track the eyes. In typical images of interest in our application area (low/medium

resolution), locating significant features such as the eyes, irises, corners of the mouth, etc as

used in much of the work above is often infeasible. Furthermore, though standard head/face-

detection techniques [159] work well in medium reolution images, they are much less reliable

for detecting, say, the back of a head, which still conveys significant gaze information. Methods

such as “AdaBoost” have been applied to non-frontal face-detection i.e. profiles [100, 139]

but the 360o head-pose detection problem has not been solved with these techniques. Indeed
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performance is not robust for face-detection when the pose of the face can vary significantly.

The “Eigenface” [154] or “Fisherface” [9] methods require that the input images are registered

with fairly high precision which is impossible to achieve across pose variations. View-based

approaches have taken the approach of representing the face using a separate model for each

of a limited set of poses [114, 34]. 3D model approaches have used standardised face databases

[135, 15] and there is little reported work on less constrained views such as those found in TV

or surveillance footage.

The lowest level of our approach is based on skin detection. Because of significant interest

in detecting and tracking people in images and video, skin detection has naturally received

much attention in the Computer Vision community [27, 72, 76]. However skin detection alone

is error-prone when the skin region is very small as a proportion of the image. That said,

contextual cues such as direction can help to disambiguate gaze using even a very coarse head-

pose estimation. By combining this information in a principled i.e. probabilistic, Bayesian

fashion, gaze estimation at a distance becomes a distinct possibility as we demonstrate later in

the chapter.

The aim is to determine which pixels in an image correspond to skin and non-skin. Perhaps the

most straightforward method is to construct a look-up table by deciding in advance in which

regions of a given colour-space skin colour is found. This method was used by Chai and Ngan

[27]. This technique is unreliable in medium-scale images, however. Hidai et al. [72] defined an

ideal skin colour using an average of exemplar face images from which they defined skin and

non-skin pixels via non-parametric matching. Parameterised techniques usually involve multi-

variate Gaussians, the parameters of which are learned using the Expectation-Maximisation

algorithm (see e.g. [76]).
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Head−pose Descriptor

Input Foreground Skin Pixels Non−skin Pixels

1/4 right

back

1/4 left

side RL side LR

3/4 right

face
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Figure 3.1: The figure on the left shows the images which result from the mean-shift image patch
tracker (col. 1 ) (with an additional step to stabilise the descriptor by centring the head in the window),
subsequent background subtraction (col. 2 ), the weight image which represents the probability that each
pixel in the head is skin (col. 3 ) and non-skin (col. 4 ) (non-skin is significant as it captures proportion
without the need for scaling). The concatenation of skin and non-skin weight vectors is our feature
vector which we use to determine eight distinct head poses which are shown and labelled on the right.
Varying lighting conditions are accounted for by representing the same head-pose under light from
different directions in the training set. The same points on the “compass” are used as our discretisation
of direction i.e. N, NE, E, etc.

3.3 Head pose detection

3.3.1 Head pose feature vector

Although people differ in colour and length of hair and some people may be wearing hats, beards

etc. it is reasonable to assume that the amount of skin that can be seen, the position of the skin

pixels within the frame and the proportion of skin to non-skin pixels is a relatively invariant, if

coarse, cue for a person’s gaze direction in a static image. We obtain this descriptor in a robust

and automatic fashion as follows. First, a mean-shift tracker [31] is automatically initialised on

the head by using naive background subtraction to locate people and subsequently modelling

the person as distinct “blocks”, the head and torso. Second, we centre the head within the

tracker window at each time step which stabilises the descriptor ensuring consistent position

within the frame for similar descriptors. That is, the head images are scaled to the same size

and, since the mean-shift tracker tracks in scale-space we have a stable, invariant, descriptor.
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Segmented targets Heads located

Centering head in target window

Figure 3.2: Automatic location of the head is achieved by segmenting the target using background
subtraction (top-left) and morphological operations with a kernel biased towards the scale of the target
to identify objects. The head is taken as the top 1/7th of the entire body (top-right). The head is
automatically centred in the bounding box at each time step to stabilise the tracking and provide an
invariant descriptor for head pose, as shown in the second row.

Third, there is no specific region of colour-space which represents skin across all sequences

and therefore it is necessary to define a skin histogram for each scenario by hand-selecting a

region of one frame in the current sequence to compute a normalised skin-colour histogram in

RGB-space. (It has been demonstrated that there is no difference in the performance of skin

detectors based on colour-regions when RGB or YCbCr, HSV etc. colour-spaces are used [116].)

We then compute the weights for every pixel in the stabilised head images which the tracker

automatically produces to indicate how likely it is that it was drawn from this predefined skin

histogram2. Using the knowledge of the background we segment the foreground out of the

tracked images. Every pixel in the segmented head image is drawn from a specific RGB bin

and so is assigned the relevant weight which can be interpreted as a probability that the pixel

is drawn from the skin model histograms.

Some meanshift implementations suggest a histogram discretised into 20 bins for each dimension

of colour space. So if a 3-D histogram is computed with axes along the R, G and B dimensions

of the colour-space then the histogram is an 8000-element volume. The actual skin-colour

occupies a very small region of this volume. A significant amount of computational effort is

therefore expended computing this large histogram for each step of the tracker since the weights

are computed at each frame.
2This will be recognised as a similar approximation to the Battacharyya coefficient as implemented in the

meanshift algorithm [31].
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compute p(skin)

selected skin region

weight image

Skin model histogram

entire image

Head image histogram

Figure 3.3: The R,G and B histograms of the skin model occupy a small amount of the colour-space.
The face region from which the histograms are computed is shown as the region inside the ellipse
superimposed on the face (left).
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We split the RGB space into three independent histograms, compute the likelihood that each

pixels R, G and B value was drawn from that histogram and multiply together to obtain a

likelihood that each pixel was drawn from the overall (RGB) skin histogram. For every bin i

(typically we use 10 bins) in the predefined, hand-selected skin-colour histograms qR, qG and

qB the histograms of the tracked image pR, pG and pB a weight, wi, is computed:

wi =
√
qR,i

pR,i
·
√
qG,i

pG,i
·
√
qB,i

pB,i
(3.1)

Every foreground pixel in the tracked frame falls into one of the bins according to its RGB value

and the normalised weight associated with that pixel is assigned to compute the overall weight

image, as shown in Figure 3.1. The non-skin pixels are assigned a weight that the pixel is not

drawn from the skin histogram. This non-skin descriptor is necessary because it encodes the

“proportion” of the head which is skin, which is essential as people vary in size and scale. Each

descriptor is scaled to a standard 20× 20 pixel window to achieve robust comparison when the

head sizes vary. Finally, in order to provide temporal context to our descriptor of head-pose

we concatenate individual descriptors from 5 consecutive frames of tracker data for a particular

example and this defines our instantaneous descriptor of head-pose.

3.3.2 Training data

Algorithm 1 To obtain head-pose training data
1: Track head in a video sequence
2: Centre head within tracker window at each frame
3: Define skin histogram for sequence (by hand, if necessary)
4: Segment the foreground in every image
5: For every pixel belonging to the foreground compute p(skin) and p(non-skin)
6: Concatenate 5 frames of each feature vector per frame

We assume that we can distinguish head pose to a resolution of 45o. It is unlikely that the

coarse target images would be amenable to detecting head orientations at a higher degree of

accuracy in any case. This means discretising the 360o orientation-space into 8 distinct views as

shown in Figure 3.1. The training data we select is from a surveillance-style camera position and

around 100 examples of each view are selected from across a number of different sequences and
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3/4 Right
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Figure 3.4: Example training data from each of the 8 discretised views shown in Figure 3.1. Note that
the data, both for the training database and the input sequences used to test the method, is used as it
exists, with no pre-processing. So, in particular, as seen in some examples here, interlacing effects may
be apparent. In practise, this poses no evident difficulties for our algorithm.

under different lighting conditions i. e. light from left, right and above. This is because, as can

be seen in Figure 3.1 there is a tendency for the skin pixels to be identified to track saturated

pixels, whether by the user in the histogram selection stage or at the pixel weight computation.

It was not found that using an intensity-invariant colour-space solved this problem. The head

was automatically tracked as described above and the example sequence labelled accordingly.

The weight image for 5 consecutive frames are then computed and this feature vector stored in

our exemplar set. The same example set is used in all the experiments reported e.g. there are

no footballers in the training dataset used to compute the gaze estimates presented in Figure

3.18. It is necessary, therefore, that the training data be from a comprehensive set of lighting

conditions due to varying directions and strength of illumination.

3.3.3 Matching head poses

The descriptors for each head pose are (20 × 20 × 5 =)2000 element vectors. With 8 possible

orientations and 100 examples of each orientation searching this dataset rapidly becomes an
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issue.

Beis and Lowe reported a variant on the k-d tree algorithm [8] and Nene et al [105] proposed an

algorithm which uses a Euclidean distance measure but is efficient for dimensions greater than

15, where most algorithms are impractical. Matching has also been performed using wavelet

coefficients [4, 75] and various pyramid representations [38, 66, 164].

McNames provided an overview of a number of common algorithms’ performance which demon-

strated that a Principal Components Tree search outperforms the other well-known methods

[97].

Therefore, we elect to structure the database using a binary-tree in which each node in the tree

divides the set of exemplars below the node into roughly equal halves. Such a structure can

be searched in roughly log n time to give an approximate nearest-neighbour result. We do this

for two reasons: first, even for a modest database of 800 examples such as ours it is faster by

a factor of 10; second, we wish to frame the problem of gaze detection in a probabilistic way

and Sidenbladh [144] showed how to formulate a binary tree search in a pseudo-probabilistic

manner. This search is based on the sign of the Principal Components of the data, as we

illustrate in Figure 3.5. This technique was later applied to probabilistic analysis of human

activity in [131]. We provide some detail on this method in the following section.

3.3.4 Database creation and search

In [144] a large database of high-dimensional points is structured as a binary tree via principal

component analysis of the data set. The children of each node at level i in the tree are divided

into two sets: those whose ith component (relative to the PCA basis) is larger and those whose

value is smaller than the mean. In Sidenbladh’s application each data point comprised the

concatenated joint angles over several frames of human motion capture data. The method,

however, applies equally well to our application of image feature data and the pseudo-random

search algorithm is identical to that derived in [144].

If Ψ̄ is a length dm vector representing the median of all the sequences of head-pose descriptors
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Figure 3.5: This figure illustrates how we sample from the databases to produce a distribution over the
exemplar data given some input descriptor. In this case, the descriptor is the probability of skin/non-skin
pixels in the face image shown at the top-left. The PCA decomposition of the descriptor (concatenated
over 5 frames to provide some temporal context) is used to decide how to traverse the binary tree,
branching depending on the sign once the median has been subtracted (to balance the tree). At each
branching of the tree a randomness factor is computed (based on a Gaussian) which results in the leaf
nodes of the tree being explored. The leaf nodes are indices into the database which, in turn, point
to specific frames in a sequence. We show here illustrative the matches generated for 10 samples with
associated probabilities.

(the skin/non-skin feature vectors) i.e.

Ψ̄ =
1
n

n∑
i=1

Ψi (3.2)

and

Â = [Ψ̂i, . . . , Ψ̂n] (3.3)

is a dm × n matrix containing all the sequences with the median of the entire set of training
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descriptors subtracted, by applying Singular Value Decomposition we write

Â = UΣV T (3.4)

where the dm× n matrix U contains the principal components of Â and Σ is diagonal matrix

containing the standard deviation σl accounted for by the principal components l = 1, . . . , n.

Any sequence in the database can be approximated by

Ψmatch = Ψ̄ + Ucmatch (3.5)

Where cmatch is the sampled nearest-neighbour match from one traversal of the binary tree.

Significantly, the first b = log2(n) (where n is the number of time intervals in the training data)

components are selected.

(If n ≈ 50000 and b = 16 this accounts for 89% of the variance in the training data i.e.

∑b
l=1 σ

2
l∑n

l=1 σ
2
l

≥ 0.89.) (3.6)

These components are then organised into a binary tree the nodes of which are split on the

basis of the sign of the components once the median value has been subtracted:

ci = [ci,1, . . . , ci,b] (3.7)

The search of the tree is randomised by the inclusion of a random perturbation of the traversal

of the tree drawn from a Gaussian distribution. That is, it is decided which branch of the tree

to choose, at each level l for the Principal Component coefficient at that node ct,l and the input

coefficients at that level, ci,l , based on the probabilities:

pright = p(ct,l ≥ 0|ci,l) =
1√
2πσl

∫ ct,l

z=−∞
exp

− z2

2σ2
l dz (3.8)
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(a) (b)

Figure 3.6: We show here how the database has been constructed for the person-centred action (blurry
optical flow) feature set. Each image represents one level of the binary tree with the indices into frames
on the y-axis and the node on the x-axis. The shaded blocks represent the occupancy of that frame at
that node, depending on how the tree has been split (blue = 0, red = 1). Green represents zero meaning
no exemplar coefficients reside at that node. The nodes shown are (a) depth 3 and (b) depth 6. This
demonstrates the tree is fairly evenly split, which is important for traversal when searching.

pleft = 1− pright (3.9)

At the leaf nodes a linear search takes place if there is more than one match. The probability

of these matches is computed on the basis of how “close” the match in the database is to the

input i.e.

p(match|input) ∝ exp−(
|match− input|

σ
)2 (3.10)

This search method is used for two reasons: it is more efficient and the ability to return multiple

neighbours represents a distribution over possible actions i.e. a likelihood. The search time is

improved by a factor of 20 and, since we sample many times, the search provides a set of

particles which represents a distribution over the exemplar feature vectors into frames of the

previously seen examples.

We achieve recognition rates of 80% (the correct example is chosen as the ML model 8/10

queries) using this pseudo-probabilistic method based on Principal Components with 10 sam-

ples. For comparison, we show the statistics for a linear search of the complete feature set and

for a linear search on the PCA components derived from the features in the table in Figure 3.9.
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Figure 3.7: (Top) the best-matching frames for each of 10 samples of the database are shown here. From
the head-pose labels a distribution over best-matching head-poses is computed and the ML head-pose
is selected, which is shown here (bottom) superimposed on the original frame.

Database queriesInput

Figure 3.8: The distribution over head-poses resulting from the 10 best results for a linear search of the
database for this input frame is shown here. The linear search, even on the PCA coefficients is slightly
more robust in terms of finding the best matching example (see Figure 3.9). But for databases of the
scale of that used here it is considerably slower. We show in Figure 3.9 that it is 20× slower for 10
samples of our head-pose feature database.

Search type Detection
rate (%)

Search time
per sample
(secs)

Nearest-neighbour (full data) 83.2 0.461
Nearest-neighbour (PC coeffs) 81.9 0.426
Sampling (per sample) 77.9 0.023

Figure 3.9: Comparison of detection rate for three types of head-pose matching search. As expected
full comparison of the input descriptor (first row) gives best results with comparison using the Principal
Components giving similar results. The sampling method described in the text returns a distribution
over possible matches and the figures quoted are for the frequency of ML match corresponding to a true
match and when a match is found in the distribution but not necessarily the ML match. While detection
rate is inferior the probabilistic information can be exploited and the search is considerably faster

.
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Figure 3.10: Detecting head pose in different scenes using the same exemplar set.

An illustrative example of the distribution over the database given an input head image in this

is shown in Figure 3.7. Results of sampling from this database for a number of different scenes

are shown in Figure 3.10.

3.3.5 Rectification to the ground-plane

Gaze inference is only of use if we can conclude from the estimation of gaze what it is that

a person can see or, even better, what he/she is looking at. The human visual system has a

field-of-view (FOV) of 105o [119]. Picking an arbitrary visual range therefore allows the 2D

visual field to be drawn on the images. Note that there is no occlusion reasoning in the system

so this is an idealised indication of what can be seen. What can truly be seen by the person

is in the world and not the image plane. Therefore we must invest some effort to correct for

various perspective effects.

Computing a planar homography

The homography computation allows the image to be “ortho-rectified”. That is, to warp the

original image in such a way that the view is as though the image was capture by a camera whose
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Figure 3.11: The rectification of an image to the ground plane is achieved by computing the projective
transform between point correspondences. The control points shown (left) are on a plane which has been
warped by perspective effects in the imaging process. By computing the inverse transform it is possible
to undo the effect of perspective (right).

image plane is parallel to the ground-plane. This is done by computing the planar projective

transformation which is a linear transformation on homogeneous 3-vectors represented by a

non-singular 3× 3 matrix. For details see [65].

The easiest way to compute the projective transform required to rectify an image is to select,

in the image, a set of points corresponding to a planar section of the world. Image coordinates

and world coordinates are selected as shown in Figure 3.11.

It is important to note that the rectification achieved in this way does not require any knowledge

of the camera’s parameters or the pose of the plane. We show the effect of this on a full frame

in Figure 3.11. However we do not want to compute the entire frame’s projection, just the

gaze so that we can determine what can really be seen in the world by the person. This is

demonstrated in Figure 3.13.

Correcting gaze angles under perspective imaging

In order to display where the person is looking in the images angles are assigned to the discretised

head-poses shown in Figure 3.1 according to the “compass” e.g. N : 0o etc. However, when

the field-of-view is superimposed on the image (and, more importantly, when visibility of other
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objects in the scene is determined using this field-of-view) it is important to correct for the fact

that the camera is not fronto-parallel to the scene as for the acquisition of training data.

The angles are then corrected for the projection of the camera at each time step depending on

the location of the person on the ground-plane in the image.

c

v

p

image

Hc

Hp

Camera centre

ground−plane

theta

Figure 3.12: When assigning angles to the matched discretised head-poses one must compensate for the
camera projection since “North” (see Figure 3.1) does not in general correspond to vertical in the image
plane.

In order to choose the correct frame of reference we do not perform full camera calibration

but compute the projective transform (H : image→ground-plane) by hand-selecting 4 points

in the image as described above and shown in Figure 3.12. The vertical vanishing point, (v), is

computed from the manual selection in the image of 2 lines which are known to be normal to

the ground plane and parallel in the world. (See [65] §8.6 for details on how this relates to the

“footprint” of the camera on the reference ground-plane). The angle θ between the projection

of the optic-rays through the camera centre, Hv, and the image centre, Hc, and the point at

the feet of the tracked person, Hp, is the angle which adjusts vertical in the image to “North”

in our ground plane reference frame i.e.

θ = cos−1[(Hc×Hv).(Hv ×Hp)] (3.11)
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(a) (b) (c)

Figure 3.13: Progression of improvements for visualising the gaze estimate: (a) No projection of the gaze
onto the ground-plane and no compensation of the gaze angle (relative to the camera-centred frame)
is used to generate this image, (b) In this image, gaze is projected onto ground-plane but perspective
alterations in the assigned angle are not computed, (c) Gaze angle is computed using the projection
from camera-frame to world-frame to create the final estimate of what the person can see.

3.4 Gaze estimation

3.4.1 Bayesian fusion of head-pose and direction

The naive assumption that direction of motion information is a good guide to what a person

can see has been used in Figure 3.15. However, it is clear the crucial interaction between the

two people is missed. To address this issue we compute the joint posterior distribution over

direction of motion and head pose. The priors on these are initially uniform for direction of

motion, reflecting the fact that for these purposes there is no preference for any particular

direction in the scene, and for head pose a centred, weighted function that models a strong

preference for looking forwards rather than sideways. The prior on gaze is defined using a table

which lists expected (i.e. physically possible) gazes and unexpected (i.e. non-physical) gazes.

We define g as the measurement of head-pose, d is the measurement of body motion direction,

G is the true gaze direction and B is the true body direction, with all quantities referred to the

ground centre. We compute the joint probability of true body pose and true gaze:

P (B,G|d, g) ∝ P (d, g|B,G)P (B,G) (3.12)

Now given that the measurement of direction d is independent of both true and measured gaze
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Distribution over gazes

direction = "S"
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"back" "face" "3/4−L"
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Figure 3.14: Fusing head-pose and direction estimates improves gaze estimation. Here, the ML match
for head pose would be incorrectly chosen as “back” (top-right). The body-direction is identified as “S”
(top-left). Since it is not possible to turn the head through 180o relative to the body the resultant gaze
from the direct combination of “back” and “S” has a low (predefined) prior. It is rejected as the most
likely at the fusion stage only because of the anatomical constraints which are encoded in the priors.
The MAP gaze is identified as “Face” which is a very good approximation to the true gaze.
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G, g once true body B pose is known,

P (d|B,G, g) = P (d|B) (3.13)

Similarly the measurement of gaze g is independent of true body pose B given true gaze G, i.e.

P (g|B,G) = p(g|G) (3.14)

Then we have

P (B,G|d, g) ∝ P (g|G)P (d|B)P (G|B)P (B) (3.15)

We assume that the measurement errors in gaze and direction are unbiased and normally

distributed around the respective true values

P (g|G) = N (G, σ2
G), P (d|B) = N (B, σ2

B) (3.16)

(actually, since these are discrete variables we use a discrete approximation).

The joint prior, P (B,G) is factored as above into

P (B,G) = P (G|B)P (B) (3.17)

where the first term encodes our knowledge that people tend to look straight ahead (so the

distribution P (G|B) is peaked around B, while P (B) is taken to be uniform, encoding our

belief that all directions of body pose are equally likely, although this is easily changed: for

example in tennis one player is expected to be predominantly facing the camera).

While for single frame estimation this formulation fuses our measurements with prior beliefs,

when analysing video data we can further impose smoothness constraints to encode temporal
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coherence: the joint prior at time t is in this case taken to be

P (Gt, Bt|Gt−1, Bt−1) = P (Gt|Bt, Bt−1, Gt−1)P (Bt|Bt−1) (3.18)

where we have used an assumption that the current direction is independent of previous

gaze3, and current gaze depends only on current pose and previous gaze. The former term,

P (Gt|Bt, Bt−1, Gt−1), strikes a balance between between our belief that people tend to look

where they are going, and temporal consistency of gaze via a mixture i.e.

Gt ∼ αN (Gt−1, σ
2
G) + (1− α)N (Bt, σ

2
B) (3.19)

Now we compute the joint distribution for all 64 possible gazes resulting from possible com-

binations of 8 head poses and 8 directions. This posterior distribution allows us to maintain

probabilistic estimates without committing to a defined gaze which will be advantageous for

further reasoning about overall scene behaviour. Immediately though we can see that gazes

which we consider very unlikely given our prior knowledge of human biomechanics (since the

head cannot turn beyond 90o relative to the torso [109]) can be rejected in addition to the

obvious benefit that the quality of lower-level match can be incorporated in a mathematically

sound way. An illustrative example is shown in Figure 3.14.

3.5 Results

We have tested this method on various datasets (see Figures 3.15, 3.16, 3.17, 3.18 and 3.19).

These experiments can be categorised as follows:

• Detecting interactions that would be missed without knowledge of gaze independent of

body direction (Figures 3.15 and 3.16).
3Although we do recognise that this may in fact be a poor assumption in some cases since people may change

their motion or pose in response to observing something interesting while gazing around
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Body−direction only

Head−pose only

Body−direction and Head−pose combined

Angle errorHead angles

Figure 3.15: In this video there is an interaction between two people. The fact that they look at each
other is the prime indicator that they are “together”. On the first row we estimate gaze from body
direction alone. On the second row gaze is estimated using head-pose alone, which gives an improved
result, as far as detecting the interaction is concerned, but this is still prone to some errors. We see that
(third row) fusing the head-pose and body-direction estimates gives a significantly improved result when
it is the interaction that is required to be identified. That is, the “head angles” graph clearly shows two
main head-turning events, the first short, the second longer. The angle-error is computed by comparing
the estimated head-angles to hand-labelled ground-truth.
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Figure 3.16: Two people meeting could potentially be identified by each person being in the other’s gaze
(in addition to other cues such as proximity), as we show in this example.

Frame 101

Frame 4 Frame 23

Frame 163

Figure 3.17: Second surveillance sequence. The same training data set as used to obtain the results
above is used to infer head pose in this video without temporal smoothing. The ground truth has been
produced by a human user drawing the line-of-sight on the images, quantised to 1o. The mean error is
5.64o, the median 0.5o. Note that this is low due to the correct gaze falling very near a quantised value
and is not necessarily representative of the general case.
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Figure 3.18: This example demonstrates the method in soccer footage. The skin histogram is defined
only at the start of this sequence to compensate for lighting changes, but the exemplar database remains
the same as that constructed initially and used on all the sequences i.e. it contains no examples from
this sequence.

• Standard surveillance sequences which are used for evaluation (Figures 3.17 and 3.19).

• Sport (Figure 3.18), e.g. soccer, tennis.

• Failure modes (Figure 3.20).

3.5.1 Detecting interactions

The first dataset provided us with the exemplar data for use on all the test videos shown in this

chapter. In the first example in Figure 3.15 we show significant improvement over using head-

pose or direction alone to compute gaze. The crucial interaction which conveys the information

that the people in the scene are together is the frequent turning of the head to look at each

other. We reliably detect this interaction as can be seen from the images and the estimated

head angle relative to vertical.

3.5.2 Surveillance sequences

The second example is similar but in completely different scenes from the training data. The

skin histogram is recomputed for this video but the training data remains the same as for all

the examples shown here. Once more the interaction implied by the head turning to look at his
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Figure 3.19: This figure shows the method tested on a standard sequence (see
http://groups.inf.ed.ac.uk/vision/CAVIAR/). The errors are exacerbated by our discretisation of
gaze (accurate to 45o) compared to the non-discretised ground truth (computed to 10o from a
hand-drawn estimate of line-of-sight which we take to be the best-estimate a human can make from
low-resolution images) and tend to be isolated (the median error is 5.5o). In most circumstances it is
more important that the significant head-turnings are identified, which they are here, as evidenced by
the expanded frames.
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head skin non−skin
MAP gaze

Body sequence (direction = "E")

Figure 3.20: We show an example here where our method can fail. The mean body direction of the player
(in the frames prior to the frame for which we estimate the gaze) is East, since he is moving backwards
as his head rotates. The ML match is clearly not correct because the neck has been detected and there
is no representation of gaze where the neck is visible in the training dataset. Fusing the direction and
head-pose estimate results in the MAP gaze “side-LR”, as expected, but incorrect. The reasons for
failure are clear: body direction is not a good guide to gaze in this case and there is an unusual input
which results in an incorrect match. Therefore, the predefined weights on gaze-direction given certain
head-poses cause a better estimate of gaze to be rejected, in this case. Note that by adjusting the prior
weights this condition can be relaxed.

companions is detected. The ground truth used to produce the graph in Figure 3.17 is obtained

by drawing a line in the image corresponding to the best estimate an expert can make. The

angle is computed to the nearest 10o since it is unlikely an estimate at this scale can be more

accurate.

The method is also tested on a standard vision sequence which has hand-annotated ground-

truth data (which can be found at http://groups.inf.ed.ac.uk/vision/CAVIAR/). The

results and comparison to ground-truth is shown in Figure 3.19.

3.5.3 Sports footage

We demonstrate the method on sports video in Figure 3.18 . It is shown in Figure 3.16 how

useful this technique can be in a causal-reasoning context where we identify two people looking

at one another prior to meeting.
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3.5.4 Failure modes

In Figure 3.20 we show a combination of conditions unfavourable to estimating gaze accurately

using the method we have described in this chapter. Specifically these are:

• Unmodelled skin. This is where skin not relating to the face region has been detected

and the resulting head-pose estimate is therefore inaccurate.

• Unusual body direction. This can compound the error introduced by the unmodelled

skin. For example a person walking backwards while looking forwards is unusual.

Note that there are other scenarios where the assumptions we have made in our formulation

could lead to imperfect gaze-direction estimation. For example, where someone is walking and

looking consistently in a direction perpendicular to the direction of travel, which may occur in

sport. In that case, we would propose that other contextual information such as silhouette may

be useful (and indeed the Bayesian approach is naturally extensible) to aid disambiguation.

3.6 Conclusion

In this chapter we have demonstrated that descriptors, readily computed from medium-scale

video, can be used robustly to estimate head pose. In order to speed up non-parametric match-

ing into an exemplar database and to maintain probabilistic estimates throughout we employed

a fast pseudo-probabilistic binary search based on Principal Components. To resolve ambiguity,

improve matching and reject known implausible gaze estimates we used an application of Bayes’

Rule to fuse priors on direction-of-motion and head-pose, evidence from our exemplar-matching

algorithm and priors on gaze (which we specified in advance). We demonstrated on a number

of different datasets that this gives acceptable gaze estimation for people being tracked at a

distance.
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3.6.1 Further work on this topic

The Bayesian fusion method we have used in this work could be readily extended to include other

contextual data. We used body direction in this work but information such as the silhouette may

be potentially useful in providing body-pose context for gaze direction inference, conditional

on reliable silhouette segmentation in surveillance footage being demonstrated. Moreover, the

descriptor for head-pose could be extended to include information from multiple cameras.

3.6.2 Comments

One source of error is the video tracker which can produce inconsistency in the positions of the

skin pixels in the target frame. Matches are, to some degree, dependent on the location of the

skin pixels in the centre of the frame and tracking inconsistency can cause discrepancies to arise.

This needs to be investigated. Additionally a uniform skin-colour histogram would improve our

method by preventing the re-initialisation of skin colour for different lighting conditions.

We commented at the start of the chapter that skin detection across different lighting conditions

and faces is not a solved problem. In practise, we re-initialised the skin-colour histogram for

new videos since the descriptor we chose was based explicitly on skin pixels and their relation

to the size of the head and the non-skin pixels. In theory, it is possible that the descriptor

not be based on skin per se but on homogeneous regions which can be identified as skin or

non-skin. So if a 60o view of a head is available it is clear, even at a low-resolution, that regions

of pixels lying in a range of colours correlate with face/non-face regions of the head. It does not

matter what exact range of colours are provided to represent the face and non-face histograms

provided they are suitably distinct. Therefore a descriptor could be defined not on the basis of

a universal skin histogram (or even one local to that video) but on the basis of distinct colour

regions.

The novel method described here would be most useful in a causal reasoning context where

knowledge of where a person is looking can help solve interesting questions such as, “Is person

A following person B?” or determine that person C looked right because a moving object
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entered his field-of-view. This is a topic we address in chapter 6 when lower-level techniques

have been further developed in the chapters which immediately follow.



4

Action recognition

In this chapter we develop a system for recognising human action and for deriving commen-

taries on activity by giving these actions spatial context. Actions are described by a feature

vector comprising both trajectory information (position and velocity), and a set of local motion

descriptors which represent person-centred motion (walking etc.). Action recognition is achieved

via probabilistic search of image feature databases representing previously seen actions. Human

actions are represented using a hierarchy of abstraction: from actions centred on the person,

to actions with spatio-temporal context, to action sequences. While the upper levels all use

Bayes networks and belief propagation, the lowest level uses non-parametric sampling from a

previously learned database of actions. The combined method represents a general framework

for human activity recognition. We demonstrate the results on broadcast tennis sequences and

urban surveillance footage for automated video annotation.

The work described in this chapter was published in the proceedings of the International Confer-

ence on Computer Vision, Beijing, 2005 [131] and has been submitted to the journal Computer

Vision and Image Understanding [133].



4.1 Introduction 75

4.1 Introduction

A system capable of inferring the behaviour of humans would have many applications from visual

surveillance in the military and civilian domains to automatic sports commentary. In particular,

a method for classifying an instantaneous human action, or even better, determining a behaviour

that may comprise several actions in sequence, would inevitably be a core building block of such

a system. In this paper we present progress towards such a system by demonstrating how a non-

parametric learning and classification technique for actions, can be combined with an effective,

parametric representation of action sequences, which we use to describe behaviours.

The lowest level of our system, for recognising actions (e.g. walking versus running, versus

standing) is based on the technique described by Efros et al. [44] who showed how action

recognition can be structured as a search over a comprehensive training database. Though

their work was effective for matching frames in video sequences according to similar gross

properties of inter-frame motion, the instantaneous action descriptors used are only effective if

the training set is very large indeed. In many applications, including our own, there is a need to

achieve similar recognition rates but with a much smaller training set. To this end we show how

an extension to their “blurry motion channel” descriptor can effectively disambiguate between

types of action even though the intra-sequence description of each frame of different actions are

very similar.

Efros et al. deliberately used position independent descriptors, and made no attempt to reason

at a higher level about the actions. We are explicitly interested in higher-level reasoning about

action context. In particular, the spatial context (where an action happened) and the temporal

context (when it happened, and more interestingly, where it occurred in a sequence of actions)

are vital for higher level reasoning and thus we take steps to represent both. For example an

action “standing still” may be interpreted as normal behaviour in one spatial context (at a bus

stop e.g.), while it may be considered to be the higher-level behaviour “loitering” if it occurs in

an alleyway. To this end, we consider position and velocity information as additional features;

these too are compared against a training database to elicit (respectively) qualitative position
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and direction labels. In an urban surveillance scenario these qualitative descriptors might

be, for example, nearside-pavement, on the road, far-side pavement for position, left-to-right,

away, towards (etc.) for direction. The results of the three database searches are then fused

using a Bayes net to provide a distribution over possible spatio-temporal actions (an example

of a spatio-temporal action might be walking, left-to-right, near-side pavement). Taking the

maximum likelihood (ML) spatio-temporal action at each instant in a sequence enables the

system to construct a commentary of the (estimated) observed activity.

4.2 Chapter structure

Note that much of the literature relevant to this chapter has been reviewed in the main literature

review presented in chapter 2. The remainder of this chapter is structured as follows. We begin

with a more detailed description of each of the stages of our algorithm. Section 4.3 deals

with the low-level non-parametric action recognition stage, and describes in particular how we

have implemented an efficient probabilistic search of an exemplar training database in order to

sample from the action (and qualitative position and direction) distribution(s). Section 4.3.4

describes the Bayes Networks that fuse the low-level data. Smoothing of the action sequences

and inference of high-level behaviour is the subject of chapter 5). Section 4.4 gives experimental

results and we conclude in section 4.5.

Throughout the chapter we use sequences from urban surveillance scenarios or sports footage.

In our examples we assume the urban data represents one of a small set of actions such as walk-

ing, running, standing, dithering and a reasonable range of qualitative positions i.e. nearside-

pavement, road, driveway, farside-pavement and directions e.g. left-to-right, across etc. This

set of sequences is used to test the action matching and spatio-temporal action recognition

steps. A richer set of actions is found in tennis. Using our method we show that an intermedi-

ate representation of action can provide an automatic commentary. (This commentary can be

improved by smoothing the action sequences using an HMM which encodes expert knowledge

about shot transitions e.g. that a serve starts a point and that a non-shot, such as running,

follows a shot, as we show later in chapter 5).



4.2 Chapter structure 77

Sampling from independent exemplar databases
Spatio−temporal action estimation

HMMs encode "agent" knowledge
MAP action sequence gives video commentary

Temporal context added to features (concatenation over 5 frames)

Tracking produces trajectories and target images
Optical flow motion−descriptors computed

Bayesian fusion of distributions from feature databases

Bank of HMMS for global behaviour recognition

Commentary

Mean−shift tracker

local target window

A

input sequence

database
position

database
sampling sampling

velocity

concatenateconcatenate
trajectory data
(5 frames) (5 frames)

velocity data

low−level local
action

descriptors

distributions over
position, velocity
and simple−actions

model−based knowledge
HMM smoothing via

Behaviour HMMs

position velocity

spatio−temporal actions

simple−action
database
sampling

detection

Anomaly

Figure 4.1: This schematic diagram illustrates the relationship between image features, actions, action
sequences and the high-level parameterisation of behaviour which are described in chapters 4 and 5.
Databases of the position, velocity and motion-descriptor features are prepared in advance and are
hand-labelled with qualitative descriptions of place, direction and action. Distributions over each of
these features are computed via non-parametric sampling of the databases. These distributions are
combined using a Bayes Net which produces a distribution over spatio-temporal actions. This provides a
text commentary of observed activity. Sequences of actions are also encoded as HMMs allowing higher-
level descriptions of overall activity to be inferred. These HMMs are encoded using the spatio-temporal
actions and not directly from image data.
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Figure 4.2: Fixating on a target using a colour-based tracker. The extracted target image is shown in
the expanded images along various points of the target centroid trajectory, showing tracking successfully
in scale and image-space.

4.3 Action recognition

The main component of our instantaneous action recognition method is action recognition via

non-parametric matching of trajectory data and instantaneous motion descriptors, fused via a

Bayes net.

4.3.1 Target description

Using a mean shift tracking algorithm [31] (described in detail in appendix A), we extract the

following information for each target for each frame: position, velocity and a window around

the target (see Figure 4.1). In addition to the target’s place and speed we are also interested in

classifying the action of the person we have tracked e.g. walking or running. An effective method

to do this was suggested by Efros et al [44]. In that work, a local motion descriptor based on

coarse optic flow is extracted from a stabilised target window. (This pre-processing step was
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performed in chapter 3, see Figure 3.2.) This local motion descriptor is compared against a

dataset of previously seen local motion descriptors that have been hand-labelled with their

corresponding actions. The nearest-neighbour match provides an action label for the current

data. The optic flow between consecutive frames of a sequence is computed1. The optic flow

vector-field F is split into two scalar fields which are the horizontal and vertical components of

the optic flow field, Fx and Fy. These are then half-wave rectified into positive channels F−
x ,

F+
x , F−

y and F+
y such that:

Fx = F+
x − F−

x (4.1)

Fy = F+
y − F−

y (4.2)

Each of the channels is blurred with a Gaussian kernel and normalised, producing the four

motion descriptors for every frame of the sequence F̂ b+x , F̂ b−x , F̂ b+y and F̂ b−y .

A version of normalised cross-correlation is further employed such that, if the four motion-

channels for frame i of a sequence A are defined to be ai
1, a

i
2, a

i
3 and ai

4 (similarly for frame j

of the sequence B), then the similarity between motion descriptors centred at frames i and j is

given by:

S(i, j) =
∑
t∈T

4∑
c=1

∑
x,y∈I

ai+t
c (x, y)bj+t

c (x, y) (4.3)

and, when the matrix A1 is defined as the concatenation of all a1 vectors (similarly for the other

channels, and for sequence B), the frame-to-frame similarity matrix between the two sequences

is:

S = AT
1B1 +AT

2B2 +AT
3B3 +AT

4B4 (4.4)
1Optic flow is ideal for this purpose because it is photometrically invariant and invariant to clothing or

appearance [89]. Invariance is essential as we are seeking a general description of the incremental motion of a
person to match the action between different “actors”.
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T is defined in the original work of Efros et al. as “the temporal extent of the descriptor”.

Although equation 4.3 implies that, by varying T , temporal context can be achieved, in practice,

T is defined when the descriptor is computed, initially.

For frame-to-frame optic flow, therefore T = 1, or at most T = 2. It is not clear that, unless

encoded in the descriptor itself, that Efros et al. intended this term to allow for temporal context

in the descriptor, as this is not discussed in the original work [44].

Further, Efros et al. recognise that if the sequences A and B are similar but occur at different

rates the similarity matrix will have strong responses along the off-diagonal elements and so S

is convolved with a kernel which is a weighted-sum of near-diagonal lines:

K(i, j) =
∑
r∈R

w(r)χ(i, rj) (4.5)

where R is a range of rates.

4.3.2 Optic flow computation

Optic flow is a measure of image-velocity. In estimating optic flow the aim is to compute

an approximation to the 2-D motion-field which is a projection of the 3-D velocities of surface

points onto the image plane [156, 70]. There exist a number of methods for estimating the optic

flow field. Barron et al. have reported on a comprehensive study of the most common methods

in each of these categories [5]. While they do not conclude that one method is consistently

superior than all others, it is apparent from the experiments performed that the Lucas and

Kanade technique [89] is among the best for the quantitive experiments performed by Barron

et al. [5]. The average error across synthetic and real sequences was reported as 1.06o. Therefore,

we employ the Lucas-Kanade algorithm (derived in appendix E) for computing optic flow for

the following reasons:

1. Efros et al. used the Lucas-Kanade algorithm in “Recognising action at a distance” [44]

and to construct a fair analysis of the performance of their method in our application
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optic−flowinput frames channels

(a) (b) (c)

Figure 4.3: The optic flow is a measure of how pixel information is translated in an image between
successive frames (i.e. 2-D image velocity). (a) In this example, the pair of input images are shown on
the left. (b) The flow vectors are shown for the raw optic flow superimposed on one frame. (c) The
Gaussian blurred optic flow in the x and y direction is further split into the four (blurred) non-negative
channels described in the text. Combined, these channels comprise the descriptor of instantaneous action
defined by Efros in [44] and used as the basis for the action-recognition stage in this work.

domains this aspect must remain unchanged,

2. It gives the best performance i.e. the angular error is proved to be the smallest of all

common optic flow measures,

The results of the Lucas-Kanade method (the algorithm is derived in appendix E) applied to

images of a person walking are shown in Figure 4.3.

The action-recognition method based on the Efros et al. optic flow descriptors (which are shown

in Figure 4.3) works well only if the newly-observed sequence for which one wishes to find a

best match is represented in the example set.

For every example sequence in the exemplar set (which can be regarded as a “database”), the

best match can be found at any time step by using the similarity matrices of equation 4.4 as

a lookup table. These matrices are shown in Figure 4.4 for a new sequence compared to four

exemplar sequences.

If we consider a standard “surveillance” scenario, it is clear that there are typical patterns of

motion. At a traffic intersection, for example, people and vehicles do not move entirely freely.



4.3 Action recognition 82

walk−awaywalk−LR walk−RL walk−towards

ne
w

 s
eq

example seq

Matches in example data

New sequence

Matching between different people

Figure 4.4: The action-recognition technique of Efros et al. is demonstrated here. Our example database
comprises 4 sequences and the frame-to-frame similarity matrices are shown for each of these models
given the new input sequence (shown in middle row). Note that for the best-matching sequence there
is evidence of periodic structure in the similarity matrix (left “walk-LR”). The best matching frame in
the database at each new input frame is chosen from the similarity matrices. The input frames are at
the top and, directly below, the best matching frame is shown. (Note that the background clearly shows
these are different frames from separate sequences. For completeness, in the third row we show matching
is effective despite the fact that the appearance of each person is quite different.
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Matches in example database

New Sequence

Figure 4.5: A slight variation of normal activity is introduced in the new sequence (top row). Despite
this being only subtly different from the normal activity modelled (non-parametrically) in the database,
mismatches very quickly occur.

The pavements and roads dictate the trajectories of people in the world. A limited set of

camera views is often available, which, taken with the constraint of the people in the scene,

limits the appearance of people in the video considerably. This is a crucial point because, by

definition, the majority of people act in a “normal” fashion. When subtle variations of this

activity appear, there is a danger that the activity will be mis-labelled because that variation

has not been captured in the training data. We show an example of this problem in Figure 4.5.

To obtain the experimental results shown in Figures 4.4 and 4.5 we captured four exemplar

sequences from surveillance data which represent the typical motion in the scene, as decided

by an expert user. By matching the same person at different times we minimise errors due to

variations in size and shape (although the method can deal with these variations, as we see

in Figures 4.6 and 4.7). The database is small, comprised of 200 frames of data from four

motions. These are labelled by the user as “walking, left-to-right”, “walking, right-to-left”,

“walking, away-from-camera” and “walking, towards-camera” and have corresponding short

titles (used in the figures) walk-LR, walk-RL, walk-away and walk-towards.

The sensitivity of the Efros et al. technique to the lack of comprehensive data is revealed by the

fact that significant mismatches occur for even subtle variations in motion. For example, Figure

4.5 shows that a “wandering” motion cannot be reliably correlated with “walking, left-to-right”

despite this being the most obvious choice (to human eyes) whereas Figure 4.6 shows that the

motion reverses.
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An issue not addressed by Efros et al. is that of cluttered environments. The examples provided

in [44] are mainly in the sports domain. This assumption does not translate to urban environ-

ments where frequently a person’s limbs are obscured by immovable static objects (e.g. lam-

posts, trees) and by non-static objects (e.g. people, cars). As we have seen, this is likely to

cause considerable problems for choosing the best-matching model even if the exemplar data

were comprehensive.

A motivating factor for the approach we take, based on this technique, is the need to be able

to model how close a particular match is to what has been seen before. This is particularly

important given the fact that (a) training data will not necessarily be as complete as desired,

(b) objects in the world cause obscuration or even occlusion. In order to solve this we propose a

probabilistic solution to the instantaneous action recognition problem. Before that is introduced

we describe the benefits of adding temporal context to the motion descriptor.

4.3.3 The significance of temporal context in the descriptor

In our experiments we have found that if the database contains only a small number of examples

of a certain action the risk of the nearest-neighbour being incorrect is greatly increased. In order

to add temporal context and mitigate against this type of confusion, we create a richer feature

descriptor by concatenating the coarse motion descriptors from a number of consecutive frames,

typically 5, to form a motion feature vector at each frame. An example showing the benefits

of this enhancement is shown in Figure 4.6. Efros et al deliberately discarded all positional

information. In contrast we have argued in section 1 that such information is important in

placing an action in its spatial context. To that end we also create additional databases of

previously seen trajectories (position and velocity). In each case the feature vector is the

concatenation of a few (typically five) frames worth of position (respectively velocity) data, and

the database examplars are labelled with qualitative position (respectively, qualitative direction)

labels. The databases of position, velocity and local motion are maintained independently, and

the set of “normal” actions is the set of combinations of the qualitative labels attached to the

exemplars in the feature databases. Matches from the position, velocity and motion-descriptor
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databases are fused using a Bayes net described in Section 2.3. Prior to that, we discuss the

database organisation and search techniques. This is not trivial for two reasons (i) the volume

of data from the blurry motion descriptors presents a challenge for efficient search: there are

30000 entries in a single local motion feature vector for a 30 × 50 pixel target; (ii) for more

effective data fusion (and necessarily for appropriate use of a Bayes net) we do not simply want

a nearest-neighbour (i.e. maximum likelihood) match, but rather a distribution over possible

matches.

Using the efficient sampling technique which we described in chapter 3 the search time is

improved by a factor of 20 and, since we sample many times, the search provides a set of particles

which represents a distribution over matches of position, velocity and motion-descriptor into

frames of the previously seen examples. An example of such a distribution is shown in Figure

4.7. The database was created using 60 minutes of automatically tracked (but hand-labelled)

data, and was tested using novel sequences of similar actions.

4.3.4 Action likelihood computation

Complex motions are composed of primitives. We define a “simple-action” as a target-centred

action such as walking. This can be estimated by sampling from the motion-descriptor database

alone. By fusing the likelihoods of the matches from the position, velocity and motion-descriptor

exemplars we compute the probability of a spatio-temporal action such as walking-left-to-right-

on-nearside-pavement. We use a Bayes Net to effect this information fusion: if the spatio-

temporal action is denoted a, x is the qualitative position, v is the qualitative direction, and m

is the simple-action, then assuming conditional independence yields

p(a, x, v,m) = p(a)p(x|a)p(v|a)p(m|a) (4.6)

The distributions p(xmatch|xinput), p(vmatch|vinput) and p(mmatch|minput) are estimated by sam-

pling from the databases. We compute the marginal distribution p(a) since, for any given data
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Without temporal context With temporal context
(T=5)(T=1)

Figure 4.6: Matching optic flow based motion descriptors without large volumes of representative data
(i.e. a comprehensive data set representing the many nuances of particular actions) can result in incorrect
matches, as shown here (left). In these examples walking in one direction has been confused with
walking in the opposite. Instantaneously (i.e. over 2 frames) the movement of arms and legs is significant
whereas the body direction is not. We concatenate the motion-descriptor data from 5 consecutive frames
which provides temporal context and results in the Maximum Likelihood matching exemplar being less
ambiguous (left column). The increase in data available for matching reduces the ambiguity which
arises when the exemplar data may not be comprehensive, as in a surveillance scenario where people are
predominantly viewed from a limited set of angles. The motion does not reverse in this case.
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Distribution over motion models

Input frame ML match

Best matching frame per sample

walk−LR

walk−RL

walk−away

Figure 4.7: We illustrate the optic flow based action-recognition technique incorporated into a pseudo-
probabilistic sampling from the exemplar database. The input frame (top left) is shown beside the ML
frame from 10 samples of the motion-descriptor database. The more complete information is provided
by the sampled distribution of matches from the database. These are shown top right : the distribution
over model-types in the exemplar set, and, bottom row : the matching frames for each sample of the
database.

Figure 4.8: This second scene (left) has a considerably richer set of actions. The example set is comprised
of 27 different types of spatio-temporal activity with a range of person-centred actions from walking (in
a variety of directions relative to the camera) to running and standing still, loitering etc. We show here
a new example of the action walking matched into the exemplar database by taking the ML match from
all samples at each frame. The input is on the top row, with the nearest matching exemplar frame
directly beneath.

Sequence Total (frames) Example database
(frames)

Test sequences (frames)

Urban street 5455 665 2361
Junction surveillance 76040 4491 18445
Tennis 90000 494 3132

Figure 4.9: The data volume for each of the videos used in the analysis of our technique described in
this chapter.
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walk−nearside−pavement

correct

distribution over all actions

input frame

correct

run−nearside−pavement

database matches

incorrect

Figure 4.10: Velocity and motion-type are as important as position for action-recognition. Here the
ML motion-type is (incorrectly) classified as walking. When the resulting distributions from each of the
inputs (i.e. position, velocity and motion-type) are fused the ML estimate is now (correctly) running-on-
nearside-pavement. The action probability distribution is shown here when velocity is excluded (white
bars, red text) and included (black bars, green text).

d (here x, v and m),

p(d|a) =
p(a|d)p(d)
p(a)

(4.7)

p(a|d) is specified in the conditional probability table for the node a, p(d) is defined from the

frequency of occurrence of data d in the training set and choosing p(a) to be uniform is suitable

in most cases. Figures 4.11 and 4.10 illustrates this process for two different applications.

Figure 4.10 highlights the significance of each input for successful action classification.

4.4 Automatic text commentaries of activity

One application of these techniques is the automatic generation of text commentary on observed

activity. At each frame the distribution over all possible spatio-temporal actions is computed

using the evidence from the position, velocity and simple-action recognition method described

above. For a commentary the Maximum Likelihood action is chosen and the test description
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motion−type

matches in database

velocity

position

input frame

baseline−forehand

spatio−temporal action distribution

Figure 4.11: There are 33 possible shots resulting from combinations of positions and shot-types in our
exemplar set. The closest ML matches in the databases for this frame are shown next to the still image
in the order position, velocity and shot-type. The distribution over all shots is shown in the graph. The
most likely shot is computed to be baseline-forehand which is correct.
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of that spatio-temporal action is used to describe the person’s activity at that instant. The

validity or the accuracy of the description is dependent on (a) the descriptive language used

to label the exemplar sequences in the databases of position, velocity and simple-action, (b)

whether that action has been seen before.

The former dependence, (a) above, requires the expert user to ensure that the language used to

described the scene is accurate. Errors in this regard would be a failing of the training phase,

not the general approach (i.e. the “expert” is not as expert as believed).

The latter dependence, (b) above, is mitigated by the fact that each activity has a likelihood

of occurrence and, as expected, even though the best match happened to be a certain spatio-

temporal action, if that is, in fact a poor match overall (as interpreted by the user) then the

likelihood reflects that.

4.4.1 Commentary of video from an urban location

For a real scene with a relatively small exemplar set (due to the fact that there is a limited

set of typical activities) we demonstrate achieving a useful basic text commentary from the

distribution of spatio-temporal actions in figure 4.12.

In Figure 4.13 an example of abnormal activity is captured. Because it is abnormal it is

not represented in the exemplar databases of position or simple-action (although the velocity

with the label running may be present). The resulting commentary therefore has a much

lower likelihood of occurrence than the normal example of Figure 4.12. This likelihood can be

interpreted as a measure of belief of the best-matching activity.

The second video is from a much more complex urban environment, one which is a real surveil-

lance scenario. This elevation of the camera is typical of the placement of road monitoring

systems (as anyone familiar with major roads in the U.K. can verify). In fact, as can be seen in

Figure 4.17 this camera is viewing a traffic junction. This gives rise to a richer set of activity

than the previous scene. It is also considerably more challenging in that objects are now in the

medium to far field such as those shown in the first two frames of Figure 4.17.
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Frame Activity Likelihood
1 - 70 Walking on far-side pavement 0.86
71 - 225 Walking on road 0.94
226 - 450 Walking on near-side pavement 0.94

Figure 4.12: An accurate commentary is obtained for this urban street scene where the person moving
in from the top-right of the images (in orange) is under observation. The descriptions of activity are
achieved using the labelling from the exemplar database.

Frame Activity Likelihood
1 - 75 Walking on near-side pavement 0.34

Figure 4.13: Neither the position nor the simple-action of the person in this (abnormal) sequence is well-
represented by the predefined exemplar data, therefore the probability of the ML activity is significantly
lower than that of Figure 4.12.



4.4 Automatic text commentaries of activity 92

Initial foreground segmentation is performed by using a static background frame. This proce-

dure is applied to each frame in the sequence and a sample of the effect of this process is shown

in Figure 4.15.

Scene markup

The distinct regions in this scene are shown in Figure 4.14, with the labels attached to regions,

possible activities and directions within this scene.

Some of the exemplar data is plotted in Figure 4.16. A professional surveillance officer has

detailed knowledge of the area under observation at his disposal, and this knowledge is reflected

in his reporting of the target behaviour. Therefore in Figure 4.16 the labels given to the

pedestrian training examples we have shown here reflect, for example, that the road which runs

vertical in the frames is known to run North-South. Moreover when the labels applied to the

regions in which drivers are active, we see that the street names are applied2. The labels, as

decided by the human user, are shown in the legend of the figure.

Automatic labelling of activity

By using our instantaneous action recognition technique we can derive text “explanations” of

the observed activity of individuals using the exemplar data. We show the types of explanations

achieved in Figure 4.17 above a representative frame where that action is found.

We further show how more complex activity can be recognised and described. In Figure 4.18

the example would correctly be described as “walking across the road at the traffic lights”.

Our automatic description is more exact, however, describing the location of the crossing and

the exact location of the pavement (“NE-pavement”) according to the labels provided by the

user/trainer.

An additional example is that of “jogging across the road”, shown in Figure 4.19.
2The expert in this case was an Oxford student!
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Regions Person actions Directions
Northbound Lane (3) Walking North
Right Turn Lane (4) Running South
Southbound Lane (6) Stopped East
Parks Road Westbound (7) West
Parks Road Eastbound (8) Stopped
South-East pavement (9)
South-West pavement (1)
North-East pavement (10)
North-West pavement (2)
North pedestrian crossing (5)

Figure 4.14: The scene is divided into regions and labelled by an expert analyst. The labelled regions,
activities and directions for this scene are detailed in this table.

4.4.2 Commentary of tennis matches

We apply the technique to tennis video in order to classify each players’ shots and produce an

automatic text commentary. Following the tracking of players in video of 4 different profes-

sional tennis matches, we manually segmented the sequences into exemplars of standard tennis

shots and created independent databases of the position, velocity and simple-action motion

descriptors. The shots we extract exemplars for are labelled with the following qualitative de-

scriptions: forehand, backhand, forehand-volley, backhand-volley, serve, smash. In addition we

provide examples of non-shots labelled running, walking and waiting-for-serve. Shot example

databases are created for each player i.e. facing the camera (farside court) and facing away from
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Figure 4.15: (Left) Background subtraction on one entire frame and (right) the foreground segmentation
of a person extracted from a similar background-subtracted image.

Figure 4.16: (Left) A subset of the trajectories in the exemplar data representative of expected activity
in this urban scene are shown here. (Right) The labels corresponding to each example are shown in the
legend.

"SE−pavement, walking"

3

"NE−pavement, walking" "N−ped−crossing, walking"

Figure 4.17: Instantaneous actions recognised in this scene.
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Frame 646Frame 468Frame 437Frame 380

Person crossing the road at traffic lights

Frames Estimated activity
380-427 NE-pavement, walking
428-486 N-ped-crossing, walking
487-511 N-ped-crossing, stopped
512-632 N-ped-crossing, walking
633-670 NW-pavement, walking

Figure 4.18: The text commentary for a person crossing the road at a set of traffic lights. From frames
487 to 511 the traffic lights obscure the person (tracking continues because feet are visible) and the
motion-type is incorrectly estimated.

Frame 5462Frame 5381

Person jogging across road

Frame 5336
Frames Estimated activity
5330-5470 road, running

Figure 4.19: In this example the priors are critical to the choice of the correct spatio-temporal action.
Running is not represented as often in the example database. Therefore if the priors for each simple-
action are computed on the basis of frequency then the ML spatio-temporal action for this sequence is
road, walking. If however, the priors are uniform the ML result is as shown here. Note that in either
case the correct activity is still represented in the distribution over spatio-temporal actions.
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Figure 4.20: Shot matching in tennis sequences.

the camera (nearside) which significantly reduces ambiguity in the choice of simple-action (a

backhand by a player facing one direction is, motion-wise, very similar to a forehand from the

other viewpoint). Taken with the labelled position examples baseline, midcourt, backcourt and

net, we have 33 possible actions for each player. Testing is performed using previously unseen

footage from a 5th match involving two previously unused players. Figure 4.11 shows an ex-

ample of the spatio-temporal action selection performed by the first two levels of our system.

Note that although the figure shows the maximum likelihood estimate, the system does retain

a distribution over possible spatio-temporal actions.

Individual shots are matched using the action-recognition method, as shown in Figure 4.20. An

entire tennis play “commentary” is generated in Figure 4.21.

Overall detection rates for all of the sequences are shown in Figure 4.22.

4.5 Conclusion

In this chapter a method for action recognition is reported. The particular features we have

chosen to use to construct a feature-level description are easy to obtain and photometrically

invariant, but one is certainly not limited to these features. The inclusion of a description of

local motion raised three issues:
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160

128

key frames in tennis play

37

195

Player 1

Player 2

Frame Estimated shot Likelihood Ground truth
32 P2: Baseline forehand 0.41 Serve
39 P1: Walking at baseline 0.54 Walking at baseline
51 P1: Running at baseline 0.60 Running at midcourt
76 P2: Walking at baseline 0.36 Walking at baseline
99 P2: Walking at midcourt 0.45 Walking at midcourt
132 P2: Backcourt forehand 0.66 Backcourt forehand
148 P1: Forehand at net 0.34 attempted forehand

Figure 4.21: A text commentary for selected frames of this tennis play. Where the estimated shot
deviates from the ground truth it is marked in italics.

Sequence % detection, ML
model correct

% detection, true
model in distribu-
tion

Urban street 96.7 100.0
Junction surveillance 74.0 89.5
Tennis 59.4 88.8

Figure 4.22: The detection rates for the three video sequences used in this chapter.
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1. Searching a large database effectively,

2. Ensuring temporal consistency of model choice when the example data is sparse,

3. Combining independent descriptions of action in a principled way to describe action and

behaviour.

In this chapter we have combined disparate ideas from the literature for each of these problems

in a novel way and the results demonstrated the efficacy of these solutions.

We showed that by creating a framework for the propagation of uncertain information in a

principled fashion coupled with a method for incorporating expert domain knowledge it is

possible to classify human action non-parametrically and deal with ambiguity. Though we

have demonstrated the system with application to video annotation, we could equally apply

the techniques to abnormality detection. Video annotation and/or novelty detection are simply

means to a grander goal of developing a system which can explain what is being observed, not

simply detect what has been previously observed.

In summary, the work presented in this chapter has made the following contributions:

• Recent results in data-driven human action recognition [44] have been extended. We

have explicitly shown that a concatenated local motion descriptor gives more effective

discrimination in smaller datasets by improving temporal context,

• By representing position and velocity, in addition to local motion, spatial context is given

which is important for higher level reasoning,

• Inspired by Sidenbladh’s [144] method for generating a set of particles representing a

distribution over trajectories, we structure the search over actions using a PCA decom-

position of the database. This yields an efficient search which is O(logN) compared with

O(N), which for our application means 20x faster than for nearest-neighbour) and addi-

tionally by including a stochastic element to the search we can easily obtain a likelihood

distribution over possible actions,
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• The use of a Bayes net for fusion of non-parametric database search results for action

recognition

• Human level descriptions are achieved by abstracting the actions as a precursor.

Chapter 5 addresses the smoothing of action sequences using the basic rules of the scene in

order to produce a more robust text commentary of observed activity. We also consider higher

level reasoning about scene context by representation of behaviours as action sequences, with

representation and recognition of behaviour achieved via HMMs.



5

Behaviour recognition

In this chapter we develop a system for human behaviour recognition in video sequences. Human

behaviour is modelled as a stochastic sequence of actions. We provide justification for our novel

approach by comparing it with motion modelling techniques such as Kalman Filtering. HMMs

which encode the rules of the scene are used to smooth sequences of spatio-temporal actions. The

inputs to the HMM are actions rather than raw image data such as pixel coordinates. High-

level behaviour recognition is achieved by computing the likelihood that a set of (additional)

predefined HMM explains the current action sequence. Thus, human actions and behaviour are

represented by a hierarchy of abstraction: from person-centred actions, to actions with spatio-

temporal context, to action sequences and finally general behaviours. We demonstrate the results

on broadcast tennis sequences and urban surveillance footage for automated video annotation.

The work described in this chapter was published in the proceedings of the International Confer-

ence on Computer Vision, Beijing, 2005 [131], the proceedings of Imaging for Crime Detection

2006 [134] and has been submitted to the journal Computer Vision and Image Understanding

[133].
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5.1 Can Kalman Filters model high-level behaviour?

From video of an urban street, three Kalman Filter motion models are learned using EM (see

appendix C) from tracked object data. These activities are selected from tracked image data

which correspond to the following behaviour and labelled by hand as (a) “walking on the

pavement”, (b) “crossing the road”, (c) “turning left into the driveway”. Examples of the

training data used to learn these activity models are shown in Figure 5.1.

(a) (b) (c)

Figure 5.1: Input data: the image coordinates from these tracked sequences were used to train three
models which we specify as normal for this particular scene. (a) “walking along pavement” , (b) “crossing
road” , (c) “turning into drive”.

The filtered state estimates and the forward predictions, based on the learned model for each

of the sample motions, are shown in Figure 5.2.

The initial settings relating to the standard Kalman Filter equations provided in appendix B

section B.1.3 are as follows:

F =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1



Q =


0.1 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1


H =

(
1 0 0 0
0 1 0 0

)
R =

(
1 0
0 1

)

(5.1)
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Figure 5.2: Learned motion models, estimated states and predictions for the 3 exemplar models.

F is the process matrix relating the (internal) state at t to the state at t+ 1, Q is the process

noise covariance, H is the measurement matrix relating the state to the measurement and R is

the measurement noise covariance.

The state, x, contains position and velocity; the measurement, z, measures position only:

x =
(
x y dx dy

)T

z =
(
x y

)T
(5.2)

The initial values are given by dx = 1, dy = 0, [x, y] = z1.

5.1.1 Model selection

The input example in Figure 5.3 is of a person turning sharply back in the direction from

which he/she came. From the results shown in Figure 5.3, it would appear that each of the

models would track reasonably well until the physical turning-point at which point the person

turns sharply. When the motion changes, the models predict differently. It is expected they

all would recover, some more quickly than others. Figure 5.3 illustrates the crucial difficulty
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Stills from sequence “Turning back”

Estimated positions with various learned Kalman Filter models

(a) (b) (c)

Figure 5.3: This Figure explains why the Kalman Filter approach is not appropriate. (a) The exemplar
model “walking along the pavement” is propagated forward in the first figure. The response is quite slow
by comparison to the swiftness of the turn. The track suggests we may have reached the minimum of
the error and the innovation would increasingly recover beyond the final frame in the sequence. (b) The
second exemplar model, “crossing the road” (centre) is clearly more effective i.e. the errors are smaller.
(c) The third plot (right) shows the model “turning into drive” which is most significant because it
tracks effectively (certainly with the least error of all in the bank of models).

with the Kalman Filter for parameterising high-level concepts. The discriminative power of the

exemplar models is weak when we are interested in model-selection and spatial information.

To test model selection using the Kalman Filter parameterisation we chose another sequence

which is unusual (Figure 5.4), compared to the exemplar data, and a sequence which represents

normal activity but with some ambiguity (Figure 5.5). The best-fitting model is chosen on the

basis of the log likelihood output of the Kalman Filter using a particular model at every time

step i.e. a ML estimate (the model order is identical). The log likelihood is not a sum over all

the previous data, rather the likelihood score at the last data point1.

When new tracker data arrives, a set of Kalman filters, one for each of the models in the training

set, is used to determine the most likely model at that time step.

The log-likelihood of a model explaining the data is calculated using all the data at the given
1Although giving the tracker some “memory” by summing the likelihoods over all time steps may be useful

for model selection with regard to the entire sequence and not simply an individual time step.
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time step (e.g. top left graph in Figures 5.4 and 5.5). The likelihood of one update step is

Λ = N (e; 0, S) (5.3)

where S is the covariance of the innovation (e) denoted by:

S = HVH ′ +R (5.4)

with:

V = var(xt|y1:t). (5.5)

Now the total log-likelihood is calculated as the sum at each time step as
∑T

k=1 log Λk. This

value is plotted in the top-right graphs in Figure 5.4 and 5.5. This value, therefore, contains a

memory of all time steps up to that point. The cumulative log-likelihood will always decrease

since the log-likelihood at any time-step is negative but it nevertheless provides an indication

of how likely it is that the model in question produced the entire dataset.

The innovation of the Kalman Filter can be viewed as a measure of the tracking error i.e. the

difference between prediction and observation. This is plotted in the bottom-left graph of Figure

5.4 and 5.5. This is the most useful graph to study because the innovation will increase if the

data is not explained well by the model. It is expected however that the tracking error will

reach some minimum value and then recover. The graphs in Figure 5.4 and 5.5, and of the log-

likelihood of the ML model in the exemplar set producing the data for each frame (top-right)

and the log-likelihood for every model in the exemplar set (bottom-right) indicates how well the

prediction is performing at each time step.

Model selection in the case of a novel activity

One definition of “novelty” in the context of video is that which is not represented by the

“normal” training data. A novel example, in the context of the data which is the subject of this
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Figure 5.4: Model selection in the presence of a novel input: (clockwise from top-left) 1. The plot of log-
likelihood given all the data available at each time step is a good indication of how well the data fits the
model overall; 2. For the chosen model (one with the highest likelihood at that time step) the likelihood
is plotted. There is a clear anomaly at around frame 7; 3. The log-likelihood at each time would be
expected to be correlated to the plot of tracking error at each stage (bottom-left); 4. (bottom-right) The
log-likelihood at each stage for each independent model is shown.

set of experiments, corresponds to the activity “running across the road” (Figure 5.4). When

this input is encountered, the “crossing the road” exemplar model has the highest likelihood of

explaining the data after frame 10 as is shown in Figure 5.4. Despite the similarity of the label

“crossing the road” to the observed action, they are actually quite different. (The “crossing the

road” action in the exemplar set is shown in Figure 5.1 and can be contrasted with Figure 5.4.)

Moreover, it is where the activity occurs that makes this example “interesting”. However, model

selection of this type does not allow us to effectively discriminate between models which are

incorrect spatially or incorrect due to the incremental motion (e.g. constant velocity vs. constant

turn).
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Model selection in the presence of ambiguity

Figure 5.5: Model selection in the presence of ambiguity. There is a low likelihood even for the models
from the bank which, to an expert, are most appropriate for tracking this data. Moreover despite the
likelihood values improving (i.e. the innovation decreasing) in the model “turning into drive” it is clear
this is not the correct description of the activity. The total log-likelihood reflects this mismatch.

The input in Figure 5.5 is similar to the exemplar model “walking on the pavement”, shown in

Figure 5.1, in terms of spatial position, but quite different in that the velocity is staggered and

erratic. This behaviour would have the human description “dithering” or perhaps “wandering”.

A human would have no trouble spotting this as somewhat abnormal, if not suspicious. In Figure

5.5, the plot of log-likelihood of the data fitting each model (bottom-right graph) shows there

is ambiguity about which model is appropriate at certain points in time. As can also be seen

in Figure 5.5, no model is appropriate for the entire length of the sequence but there are places

where one model is a better explanation of the data than the others, particularly after frame

70, which corresponds to turning into the drive, which is a right turn.

This result suggests that more complex actions may be identified by sequences of motion models
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which are simpler than those which represent complex behaviour. That is, tracking at one level

of abstraction higher than the image data but not at the level of extended behaviour comprised

of multiple actions. For example a left turn could comprise a constant velocity model followed

by a constant turn model, which essentially requires that the model allows for changes in state.

5.1.2 Lessons

Without wishing to over-state the importance of this experiment, it does highlight an interesting

point which must be considered when using state-space models, and provides some additional

motivation for the approach we take in this chapter.

The Kalman Filter does not capture the distinctions required for labelling video such that

reasoning about scene activity could be achieved. The point of interest in the analysis of the

trajectory is where the likelihood of the data being described by the model decreases rapidly.

This point is most clearly reflected, in this case, by the innovation of a Kalman Filter. The

essential difficulty is that the error recovers as the motion estimate improves over time, as we

showed in Figure 5.3. The resultant ambiguity in model selection - do we choose the model

performing best at a given time step, or overall? - means that it is not possible to reliably

differentiate between a normal and an unusual activity, even in this simple case where the

activities are quite different.

The exemplar behaviours for which we learned model parameters are composed of sequences

of simpler actions. But the Kalman Filter has one state, the value of which varies over time,

according to a predefined distribution. The HMM, by contrast, allows state changes but requires

large quantities of good quality training data for each atomic action, i.e. data where the state

transitions we want to learn are well-represented, as we have discussed in the literature review

of chapter 2.

Therefore, we propose a new technique for incorporating higher-level knowledge about behaviour

is required, which we now introduce.
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5.2 Behaviour as a sequence of actions

The action-recognition work of chapter 4 abstracted image-level information into a discrete

distribution of intermediate-level actions with high-level labels, of the type an expert analyst

would be expected to provide. Taking the ML action from this distribution over all possible

actions at each frame, this constitutes a ML text-commentary on video. This is of interest in

its own right, and has a number of applications.

We now go one step further. By utilising the knowledge of the “rules” of a scene and encoding

those rules as a HMM, where the inputs to the HMM (indeed the hidden states) are indices into

specific spatio-temporal actions with the associated likelihood. This has three immediate ben-

efits. First, the prior knowledge of a human analyst can be quickly and correctly incorporated

into a probabilistic reasoning system. Second, there is no need for large quantities of training

data to provide us with the models of behaviour. Third, even if global behaviour is inaccurately

estimated using this technique, the intermediate (spatio-temporal action) level, still provides a

good description of activity, as we have seen in chapter 4.

5.2.1 Behaviour parameterisation

In a scene that is well-understood, for example, an urban environment which features traffic

and pedestrians, the global behaviour “crossing the road” would be an activity one may wish

to detect. It is clear that, given the indices of the spatio-temporal action, one could write down

the expected action sequence which would constitute this behaviour. A parse of such behaviour

is shown in Figure 5.6. This action sequence can therefore be encoded in a Markov Chain

by writing down the expected transition matrix. The states of such a transition matrix have

the advantage of being direct representations of the (indices) into spatio-temporal actions plus

likelihoods.

It is clearly a straightforward matter to specify the HMM parameters for a specific behaviour

when the parse of that behaviour, in terms of the spatio-temporal actions, is known. HMMs

for a set of normal behaviours in this scene can be defined. In total then, for this scene, we
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Parse of behaviour into spatio-temporal actions
Frame Action
1-25 Walk-farside-pavement
26-195 Walk-road
196-350 Walk-nearside-pavement

Figure 5.6: The graph at the bottom-left shows the likelihood of the ML spatio-temporal action at each
frame for the tracked person (top row), change-points are shown in red. Beside this the ML model
sequence is plotted, representing an automatic parse of the global activity (crossing-the-road) into its
constituent actions.
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defined the following behaviour HMMS:

1. Walking-along-nearside-pavement. The parse of this behaviour is a continuous se-

quence of the spatio-temporal action, walk-on-nearside-pavement.

2. Turn-into-drive. The parse of this behaviour is the sequence: walk-nearside-pavement

→ walk-in-drive.

3. Cross-road. This is composed of the following action sequence: walk-farside-pavement

→ walk-on-road → walk-nearside-pavement.

The inputs to the HMM are two-vectors containing the index into the spatio-temporal action,

and an associated probability of that action. The observation probabilities are discrete and the

output of each state is the index into a spatio-temporal action (with associated likelihood). So,

for example, for the behaviour “Cross-road”, above the parameters of the behaviour HMM are

specified as follows:

Π =


1
0
0
0



A =


1 0 0.4 0
0 0.6 0 1
0 0.4 0.6 0
0 0 0 1



B =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



Y =


1
2
3
4



(5.6)

Where Π is the matrix of priors, A is the state transition matrix, B is the observation matrix,

and Y is the outputs from each state. The states in this example correspond to:

1. Walk on the near-side pavement,
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2. Walk on the far-side pavement,

3. Walk on the road,

4. Walk in the driveway.

In the above example, the interpretation of the state transition matrix, A is:

• When walking on the near-side pavement (state 1), the person will stay on the near-side

pavement,

• When walking on the far-side pavement, the person will most likely to stay walking on

the far-side pavement (state 2), but a transition to the road (state 3) is allowed,

• When walking on the road, the person will most likely stay walking on the road (state 3),

but can move to the action walking on the nearside pavement (state 1)

• When the person is walking in the drive (state 4), no transitions are allowed as this action

is not expected to occur.

Similarly, behaviour HMMs are specified for the other behaviours, “Walking-along-nearside-

pavement” (which is quite trivial, being a continuous sequence of walking-on-pavement actions)

and “Turn-into-drive”.

The advantages of using HMMs are clear. First, they allow us to maintain the probabilistic

analysis we have achieved through the action-recognition techniques (even though we use the

ML spatio-temporal action). Second, there is a well-understood set of tools for DBNs and

HMMs in particular, as discussed in chapter 2. Third, they naturally encode rules, which are

vitally important for the automatic recognition of human behaviour extended over time.

The ML sequence of actions and their likelihoods over a number of time steps is used to find the

most likely behaviour by computing the likelihoods of each of the predefined normal-behaviour

HMMs explaining the current action sequence. Since more complex models generally explain

data better we use a likelihood ratio to compare competing behaviour models. The likelihood
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Figure 5.7: The first row of images shows the key frames of an input action, automatically estimated for
the tracked person. The corresponding likelihood ratio of the most likely model with the other behaviour
models in the bank of models is shown in the second row (left). In this case, the behaviour is correctly
classified as cross-road. The final graph shows the likelihood of the behaviour model HMMs over the
entire sequence (right).

ratio for comparing two hypotheses H and H ′ with probabilities p(H) and p(H ′), respectively,

is computed as:

LR = 2(log(p(H))− log(p(H ′))) (5.7)

which has a chi-squared distribution parameterised by the difference in the model order. If LR

is greater than the 95% confidence value of the chi-squared distribution for δ = |O(H)−O(H ′)|,

the result is statistically significant2.

An example of high-level classification of a new input activity is shown in Figure 5.7.
2If the result is not statistically significant then the natural interpretation is that there exists some other,

unknown model which better explains the data.
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5.2.2 Novelty detection

We propose that there is no need to model unusual activity when normal activity is known,

as we show in Figure 5.8. In this case, a set of trajectories are automatically collected and

those which correspond to normal behaviour are labelled accordingly. When the latest activity

is observed, by comparing the Euclidean distance between the observed trajectory data and

the normal exemplar data it becomes clear when an abnormality is being observed, provided

the anomaly is significantly different from normal. Using the same principle, the behaviour

models we have specified correspond to only normal, or expected behaviour for this urban

scene. By setting a lower-bound on the log-likelihood that a given HMM explains the current

action-sequence it is therefore possible to detect anomalous behaviour, as we show in Figure

5.9. Note that, using the Kalman Filter parameters, we were also able to detect an abnormality

(as shown in Figure 5.5). However, using the behaviour HMMs we now know where the activity

takes place and can infer what rules have been infringed. This means it may now be possible

to reason about why the behaviour is unusual.

5.2.3 The encoding of general scene rules

An advantage of this method is that it is considerably more general than learning examples

of global behaviour direct from trajectory data. This is because the action-recognition stage,

through computation of the distribution over the raw training data, abstracts us from the

training data itself, allowing the behaviour HMM to be a general representation of scene rules

at a high-level. This is illustrated in Figure 5.10 where two examples of the same behaviour

are enacted. They are both classified correctly, as anyone with knowledge of this scene would

confirm, but the low-level data itself is very different, as can be seen from the trajectories in

the image plane. If one learned models directly from the trajectory data not only would consid-

erably more training data be required but two HMMs would have to be learned (constituting

a significant increase in training data in itself), as opposed to one general HMM, which can be

readily specified, with our approach.
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Figure 5.8: Detecting abnormality by modelling only normal activity. Here, a simple sum of squared
distances metric of the input to the training data (coordinates) is computed for a normal input (bottom-
left) and an anomaly (bottom-right).
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Figure 5.9: This is an unusual action which shows how novelty detection is possible using our method.
Near the start of the sequence (top-left), the behaviour is correctly identified as walking-on-nearside-
pavement (top-right). As the activity evolves, it becomes apparent that the behaviour is somewhat
unusual and this is quite clearly reflected in the likelihood of the normal behaviour models explaining
that sequence (bottom right). The likelihood scores become so low that the only explanation is that
there is another, abnormal model which explains the data.
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Figure 5.10: The generality of the behaviour recognition method is demonstrated in this example. Here,
we show the detection of the behaviour exhibited when someone is observed to walk down the pavement
and turn into the driveway of the house. The top-left example is parsed into its action sequence and
a HMM is specified from this model sequence. The likelihood of each behaviour HMM is shown beside
the sequence. The HMM associated with the turning-into-drive behaviour is used to classify the same
behaviour but performed in different ways, as shown on the bottom row.
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5.3 Improving tennis commentary using known player-types

Serve-volley player Baseliner player

Service Waiting at baseline

Waiting at backcourt Backcourt forehand

Backcourt backhand Running at backcourt

Walking at baseline Backcourt shot

Midcourt Backhand Walking at backcourt

Running at net Baseline smash

Net volley Running at backcourt

Running at net Baseline backhand

Net volley Waiting at baseline

Running at net Backcourt smash

Net volley [END POINT]

Figure 5.11: A simulated play between a baseliner player and a serve-and-volley player (left) using the
respective HMM tennis player “agents” is shown in the table. The top picture shows the commentary
(left) with generated positions of the baseline player superimposed on a court.

As detailed in chapter 4, spatio-temporal action sequences are computed for each player in

a tennis match. This action sequence is used as the basis for deciding what type of global

behaviour is occurring for each player. The behaviour types, which we specify in advance by

encoding the expected transitions in a HMM, are baseline-rally and serve-and-volley.

A text commentary is obtained from the first two levels of our system by simply selecting the

ML action at each instant. This however neglects that in many scenarios domain knowledge

can be used to improve these estimates. For example, a service shot could easily be confused
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non−shot
{

shot

non−shot
{

shot

non−shot
{

shot

non−shot
{

shot
net

midcourt

baseline

backcourt

Serve−and−volley

non−shot
{

shot

non−shot
{

shot

non−shot
{

shot

non−shot
{

shot
net

midcourt

baseline

backcourt

Baseliner

Figure 5.12: The basic rules which dictate likely transitions between court positions for the serve-and-
volley (left) and the baseliner (right) player are shown here. The serve-volley HMM encodes a preference
for playing at the net, while the baseliner prefers to stay at the baseline, but will stay at the net if forced
there by the opponent.

with a baseline-smash if it were not known that a service only occurs at the start of a point.

Since the series of expected shot types is well-established we smooth the shot commentary using

a HMM which encodes some specific rules. These rules are:

• A service starts a point,

• The player who is not serving waits at the baseline,

• A shot exists for a typical number of frames,

• position on the court must go through physically possible transitions (e.g. midcourt is en

route to the net from the baseline),

• A serve-and-volley player tries to move to the net and there is only a small probability of

returning to baseline when he/she has advanced,

• The baseliner player prefers to return to baseline if forced to midcourt but if at net will

prefer to stay in the advanced position,

• Each player is expected to make regular transitions between shots (e.g. service) and non-

shots (e.g. running).

The position rules are encoded in the HMM state-transition matrices which are shown in Figure

5.12, as is the transition between shots and non-shots at these positions. The observation
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Smoothed

service

walk−at−net

net−backhand

Unsmoothed

baseline−forehand

walk−at−net

run−at−netrun−at−net

net−backhand

Figure 5.13: Smoothing the shot sequence which arises from the spatio-temporal action-recognition phase
(see Figure 4.1) provides consistency across the shot choice and allows important expert knowledge to
refine the shot selection. In this example here the player is known to be serving and HMM for a
serving player is used to smooth the shot sequence. The improvements can be seen by comparing the
unsmoothed (left) and smoothed (right) sequences in particular the serve is no longer omitted and the
shot to non-shot transition is observed.

probabilities are uniform distributions over shot-types, except in the case of a serve-volley

player where, initially, the positioning at the baseline indicates a service is the current shot.

Therefore, given a smoothed, MAP position estimate using the HMMs, and a choice of shot

or non-shot, smoothed spatio-temporal actions can be generated. A simulated tennis play,

generated using these rules, is shown in Figure 5.11.

Results of shot-matching and the resulting ML commentary are shown in Figure 5.13. As can

be seen from the smoothed shot sequence in the graphs of Figure 5.13, the improvement can

only come from: (a) the smoothed positions; (b) the supervision of shot vs. non-shot by dividing

the indices into the spatio-temporal actions into shot/non-shot groups. The best estimate of

each shot or non-shot action arising from the action-recognition stage is still required, except

in where the first shot is constrained to be a service.

Analysing data from 4 tennis matches, and using these known player types, we find this expert

knowledge yields a considerable improvement as the results in the table in Figure 5.14 indicate.
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ML action (% correct) MAP smoothing (% correct)
59.4 88.8

Figure 5.14: The effect of smoothing the ML sequence using an HMM which encodes expert knowledge
about tennis matches.

5.4 Conclusion

In this chapter we have demonstrated that behaviour can be modelled as a stochastic sequence

of actions. This observation has allowed us efficiently to encode expert knowledge about the

scene in a HMM by writing down the expected state transitions and associated probabilities.

The HMM representation of behaviour subsequently enables classification of normal activity in

a probabilistic and principled fashion. By modelling only normal activity, abnormalities can

be detected by the fact that none of the set of normal models explains the observed action

sequence well.

The use of known rules to generate smoothing HMMs for more complex situations, specifically

tennis matches, significantly improves the results of the ML action-recognition phase. The

complexity of the expert knowledge encoded in the tennis player-type HMMs could be extended

to include specific shots as opposed to only positions that we have used here.



6

Causal reasoning

In this chapter we draw the results of the preceding chapters together to achieve the goal of

this thesis: causal reasoning about human activity in video. In particular, we discuss an agent

representation for modelling individual human behaviour observed in surveillance video. The

activity estimates obtained from the work of chapters 3, 4 and 5 are used as the information

available to the sensors of the agent. Further, to demonstrate the utility of these intermediate

descriptions of activity we show how a set of rules, articulated at a human-readable level, achieve

causal reasoning about the activity of multiple agents. By specifying a reasoning process which

is initiated by certain events, a general technique for causal reasoning in video is demonstrated.

We show results in two scenarios: tennis and urban surveillance. Although, in this chapter we

predominantly describe a reasoning process which is Maximum Likelihood, we discuss, with an

initial example, how this could be extended in future work to fully Bayesian reasoning.

The work of this chapter has been published in the proceedings of Imaging for Crime Detection

and Prevention 2006 [134].
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6.1 Introduction

In a multi-agent environment, an agent’s actions can be modelled as a consequence of what they

sense and what they reason about other agents. As we highlighted in chapter 2, in the work

of Dee and Hogg [39] a model of human behaviour is proposed based on the assumption that

people move through an urban scene directly towards predefined goals. Then, by comparing how

“interesting” the model says the observed behaviour is to how worthy of further investigation

a human analyst believes the behaviour to be, the model is verified. Dee and Hogg’s work

principally relies on inferring what an agent can sense through the projection of rays, based

on the centroid trajectory of an agent, and the subsequent use of the goal-directed model of

behaviour to predict how the agent is expected to act.

Our goal is, similarly, to confer upon the system the ability to “explain” what is observed and

to recognise when the observed behaviour is not explicable. In this work, the reasoning can

be performed on the basis of: (i) what is seen i.e. what actions and behaviours are estimated

on the basis of the training data; (ii) what beliefs, desires and intentions it is assumed our

person-agents have. The latter is normally predefined using an expert’s prior knowledge and,

clearly, this must vary depending on the context.

We now have a richer set of estimates about a human agent’s activity in video, including

gaze-direction (as opposed to simply overall heading inferred from body-direction which is the

estimate Dee and Hogg obtain), spatio-temporal actions and behaviours extended over time.

The low-level vision tools we have developed, therefore, provide many whats, i.e. a set of facts

about an agent, from which we require to derive one or more why’s i.e. an explanation of an

agent’s behaviour.

Before turning to our solution to this problem, we review the scientific state-of-the-art in the

area of reasoning about activity in video.
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6.2 Review of relevant literature

6.2.1 Causal reasoning

Making sense of a scene can be thought of as:

Assessing its potential for action, whether instigated by the agent or set in motion

by forces already present in the world [18].

In other words, a causal interpretation is most easily and most commonly judged by the motion

effects that take place, as we have seen in section 2.1.

There is a history in scene understanding research of analysing static scenes. In the work of

Cooper et al. [33], for example, the causal explanation of a static scene is found in the answer

to the question, Why doesn’t this object fall down? MugShot [33] which can successfully pick up

cups filled with hot fluid, is one example of a system which successfully analyses a certain kind

of scene in which causal relationships can be learned. This is an example of an explanation-

mediated vision system which is well suited to a variety of kinds of perceptual and concept

learning and has two important aspects for learning: expectations and explanations. The

former, if they fail, are opportunities to learn; the latter provides the context and material for

learning. This shows the essential limitations of such a quantitative system: where knowledge

runs out the system cannot make sense of the scene and a rule or fix has to be implemented to

prevent repeated failure. It is inevitable that certain types of scene will be understood while

others will confound the system to the point that it cannot learn.

This concept of explanation-mediated vision differs from the model-based approach also found

in the literature [86, 162]. A model is a small, finite description of an infinitely complex reality

and is constructed for the purpose of answering a particular question. So, for example, if the

question concerns the trajectory of a projectile, the model may describe the object in terms of

mass and velocity but possibly ignore air resistance effects if the projectile is only travelling

a short distance. The process of using models to reason about scenes is characterised by two

major sub-problems, both of which must be solved [86]:
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Figure 6.1: From Brand and Cooper [18]. This simple scene is unchallenging as far as extracting image
features is concerned. Brand and Cooper demonstrated causal analysis of a series of static images. When
the current best explanation fails, more rules are added until a satisfactory automatic “understanding”
of the structure (i.e. why the blocks are maintained in static equilibrium) is achieved. Note that the
dots shown superimposed on the image are not extracted features but points of visual attention.

1. Selection of the appropriate model or combination of models to answer a given question,

2. Simulation of the model to gain some facts about the world.

The principles of qualitative physics can be extended to encompass motion by priming a system

with sufficient elementary causal rules. This is essentially the contribution made in this chapter.

However, the literature to be found in the area of qualitative reasoning predominantly deals with

analysis of objects in their static state and the predicted motion, or lack of, must therefore be

explained in terms of static properties [18]. It should also be noted that the systems Brand and

Cooper created were, in addition to understanding static, as opposed to the dynamic scenes we

are interested in, well-suited to simple visual analysis. That is, the features required to reason

are simple to extract, being centroids and edges of blocks pictured against a clean background,

as shown in Figure 6.1.

There is some divergence in thought about how best to represent the knowledge required to

develop a reasoning system. By extension from our own experiences, it seems most likely that

humans use a combination of model-like simplifications and explanation-mediated learning.

Therefore, the approach of learning about a system and then, by extension to many and varied



6.2 Review of relevant literature 125

systems, learning about the world, is one which is naturally appealing. The central question,

however, is: Is it best to model the situation using prior knowledge or should the system be

enabled to gather its own knowledge, learning as it goes? Given that this thesis has, so far,

argued in favour of the approach of utilising any prior knowledge at our disposal, particularly

in the training phase, we continue in this vein now that we consider higher-level reasoning1.

The most interesting point to arise from the literature is that one major shortfall in the re-

ported work in this area is the lack of robust computer vision methods for obtaining low-level

information about the agent. This is a criticism Rigolli who, with Brady, developed a traffic

surveillance commentator, identifies [125, 126]. Addressing the issue of obtaining descriptions

of agent behaviour is one area with which this thesis has been concerned. We now turn, in this

chapter, to demonstrating the efficacy of our previous results by showing how the modelling

of human activity is considerably simplified by having an intermediate representation of an

individual’s behaviour arising directly from the video data.

Let us first consider some specific architectures which are common in the literature for repre-

senting and reasoning about this information.

6.2.2 Agents

According to Russell and Norvig, an agent is:

Anything that can be viewed as perceiving its environment through sensors and

acting upon that environment through effectors [136].

An agent therefore has a series of inputs and a set of actions that can be performed. Conse-

quently, it can be constructed as a software function. When these agents are combined, complex

behaviour can emerge which models real-world human behaviour. The work of Andrade and

Fisher is a particularly interesting example of this in a surveillance context [1].
1That is not to say, that the question of knowledge representation is not an interesting topic for research in

its own right, simply that it is beyond the scope of this particular piece of work to discuss.
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The complexity of an agent is determined by the kind of environment in which it is found.

Russell and Norvig [136] define the following environment properties for an agent:

• Accessible vs. inaccessible: Can the agent get complete, up-to-date information about

the environment? If so, the environment is defined as accessible.

• Deterministic vs. non-deterministic: An agent is deterministic if the next state is

completely defined by the current state.

• Episodic vs. non-episodic: Can the agent’s experience be divided up into unrelated

chunks? If it can, it is episodic.

• Static vs. dynamic: In a dynamic environment processes other than the agent itself are

in operation.

• Discrete vs. continuous: A discrete environment has a fixed number of actions that

the agent can perform.

There are many types of agent defined in the Artificial Intelligence literature. The most appeal-

ing, especially from the point of view of encoding prior knowledge, is the Belief-Desire-Intention

(BDI) agent (originally developed by Bratman [23]). This agent has a set of beliefs about its

environment. “Desires” are computed on the basis of its goals which, subsequently, dictate its

behaviour. Beliefs are theoretical, desires are potential influencers of action and intentions are

practical. Since the person agent cannot influence the world, a model of the agent in video

must be based on encoding intentions. This type of agent is believed to model decision-making

process humans use in every day life [55]. One way to incorporate this kind of agent within

a reasoning process is to use a cost function which is dynamically updated on the basis of

environment information [124] i.e. to penalise certain types of activity.

Note that the world is only partially observable for an agent. For example, a vehicle driver

cannot see some cars due to limitations of view or certain weather conditions. Other drivers’

intentions are invisible to him and he has only a stochastic model of the results of own actions.
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In order to make decisions, sensor data and a joint probability over sensor data and all possible

states of the world is required.

6.2.3 Rule-based reasoning

In Fuzzy Expert Systems, Siler and Buckley observe:

As an expert in your domain, you have probably not found it necessary to formalize

your thinking processes, except when trying to explain to a junior person how you

reached some conclusion. But the computer requires defining your thinking in some

formal way. Various formalisms have been tried. The one which has shown the

greatest flexibility and similarity to human thought processes is the rule, although

other formalisms have been used, mostly in very special cases. The formalism used

by expert production systems is a set of rules of the type:

IF ( certain specified patterns occur in the data ) THEN ( take the appropriate

actions, including modifying old data or asserting new data ) [146].

Reasoning about courses of action naturally follow from the cost function idea for one agent

i.e. the best course of action is followed on the basis of the least costly result. However, agents’

behaviour can be reasoned about in a straightforward way using rules which is a more intuitive

way to formalise the human reasoning process. Moreover, these rules can be quickly identified

and written down by an expert. The following are identified as the positive and negative aspects

of taking a rule-based approach [124]:

Pros:

• It is easy to update the system’s knowledge by adding new rules without changing the

reasoning engine,

• It is easy to transfer between applications by specifying a new set of rules,

• One may embed a large component of domain-specific knowledge,
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• Knowledge is contained within an identifiable part of the system,

• An explicit representation of the decision-making steps means that the inference sequence

can be explained to the user,

• The computation is data-driven i.e. new data drives the action selection process, thus

appearing intelligent.

Cons:

• The complexity of the system can become quite high even for simple actions,

• It is not easy to reason under uncertainty as “hard” decisions are being made.

The conclusion we draw from this brief study of the literature is that a rule-based system

does provide many benefits in the short term. But for a real surveillance system, where the

complexity of the rules which govern the scene is higher than we have so far considered, a more

flexible approach could be taken. Ideally, one would like to use a fully probabilistic method,

such as a Bayes Net.

6.3 The general reasoning process

We noted above that the analysis of visually simple, static scenes by Brand and Cooper was

achieved by augmenting a rule-base with expert information until satisfactory explanations of

the static equilibrium is achieved. This system depended, principally, on:

(a) Detection of the distinct objects as input into a reasoning process,

(b) A set of causal rules (e.g. knowledge of what a counterbalance is and why that may prevent

the blocks toppling, as shown in Figure 6.1).

Inspired by their work, we observe that, using the low-level vision techniques we have developed,

it is now possible to obtain the qualitative descriptions necessary. This information extraction is
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Facts Events Rules

Explanations

Reasoning engine

input

output

Figure 6.2: This schematic describes the basic reasoning process we employ in this chapter. For each
different scenario, the reasoning engine is initiated when certain pre-specified events occur. The set of
facts is searched for support for explanations generated using the rules, which are also pre-specified.

analagous to the detection of distinct objects, in the static case. With suitable expert knowledge

of a dynamic scene, it is possible to extend the approach of Brand and Cooper to surveillance

video and, indeed, human activity explanation in general.

Therefore, the general process we use for causal reasoning on the basis of such information is to

specify a set of events which, when they are observed, trigger a search through the predefined

rules and current facts list for the best explanation of the current activity. The events and the

rules are interchangeable between scenarios. The reasoning engine is specified directly below in

Algorithm 2 and in Figure 6.2.

Note that, while in this case, we do specify the events which require explanation, this is not

always necessary. It would be possible to require that “unusual” events initiate the reasoning

engine, where unusual is defined in relation to a threshold on the likelihood of the observed

activity. Given that unusual activity could take any form, reasoning about it would require a

more sophisticated (and much larger) system than that which we develop here, however. Hence

we specify the events to be explained.
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Algorithm 2 Reasoning process
1: load events-list
2: load rules
3: check facts for event in events-list
4: for all frames in sequence do
5: update facts list
6: if event occurs then
7: derive hypotheses from the rule-set
8: for all hypotheses do
9: search known facts for hypothesis support

10: end for
11: end if
12: end for

6.4 Analysis of tennis play

6.4.1 Types of tennis players

Tennis is the first application on which we demonstrate causal reasoning. Tennis is a game with

laws which bound the playing of the game. These laws can be used to encode a set of rules for

causal reasoning. For example, a point must start with the shot known as a service which has

a specific, well-defined form. This is one type of rule which could be encoded in a reasoning

system.

Other types of rules are more high-level and relate to the way in which a player executes a

game-plan. This typically involves a compromise between defending against the opponent’s

strengths and playing to one’s own strengths. For example, a player may be a dedicated serve-

and-volleyer. If this is indeed his/her preferred style of play then it will be observed that they

attempt to manipulate the play in such a way as to enable them to play at the net.

How would one observe a player executing a serve-and-volley game plan? One example may

comprise a player forcing the opponent to play a shot which takes long enough to return to

provide enough time him/her to run to the net. A lob would be such a shot, and, more

commonly, so would a regular forehand deep and wide to the baseline forcing the opponent to

play a weaker shot at a limited angle. An experienced tennis viewer, player or a coach would

have no trouble identifying a causal link in this chain of events. It could, in reality, be summed

up by a commentator saying something like, “Henman forced Coria to retreat which allowed
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him to charge to the net and play the winner”. This is clearly an expert’s summary of the point

but contains all the evidence of a causal reasoning process. This is exactly the kind of process

we demonstrate the ability to model.

6.4.2 Causal reasoning in tennis matches

Trigger event Corresponding rule

transition to net Move-to-Net
transition to baseline/backcourt Move-to-baseline/backcourt

Figure 6.3: The predefined events and rules for reasoning about tennis matches. The rule corresponding
to each event is initiated by the reasoning engine when an event is detected.

Causality is very clear in a sport such as tennis. That is, a player’s actions are directly influenced

by his opponent’s actions and vice versa. Consider the most elementary causal relation in a

tennis match: a player runs to the right-hand side of the court because his opponent played a

shot to that region. This may seem elementary, but it is the essential element in constructing

a convincing explanation of the events in a match.

The actions of a player can also be dictated by expert, higher-level knowledge. For example,

if a player is injured, the opponent can exploit his resultant lack of mobility by playing shots

which make the player run extensively around the court. To begin with, however, we start at

the more basic level and pose a question that requires an answer based on causal relations:

Why did the player run to the net?

There are two basic causal explanations which answer this question:

(a) The opponent forced him to the net,

(b) The player himself engineered the opportunity.

Formal rules which allow us to differentiate between the two explanations are therefore:
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Frame 95Frame 66Frame 44 Frame 135

P2

P1

Frame Explanation
66-95 Player 1 forced to run-to-midcourt
96-135 Player 1 initiated run-to-net

Figure 6.4: In this play, the player at the top of the image runs to the midcourt due to a shot played
short by his opponent. He then decides to run to the net of his own accord. The automatic explanation
is generated by a reasoning engine based on rules. The player with the ball in his court is circled at each
frame.

(a) IF the ball is played short by the opponent, THEN the player ran to the net because the

opponent forced him to,

(b) IF the ball is played by the player and, during the non-shot period, he runs to the net,

THEN the player engineered the opportunity to run to the net.

6.4.3 Generating causal explanations using rules

The input to the reasoning process is a set of qualitative facts, drawn from the action/behaviour/gaze

estimates. Here, we take the ML likelihood result at every time step, although we consider in

section 6.6.1 how to extend the reasoning process to be fully Bayesian. For every scenario,

be that tennis or urban surveillance, the information available to the engine and the rules the

engine uses will be different. In this tennis case-study, the facts contain qualitative text de-

scriptions which are obtained automatically from the action and behaviour recognition stages

of our system. These are as follows:

• Player 1 qualitative position,

• Player 2 qualitative position,
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Frame 418Frame 270

Frame 210Frame 191Frame 89

Frame 493

Player 1

Player 2

Frame Explanation
89 Player 2 forced to retreat to backcourt
191 Player 1 forced to advance to baseline
210 Player 1 forced to advance to midcourt
270 Player 2 forced to retreat to backcourt
418 Player 1 forced to retreat to backcourt
493 Player 1 forced to advance to midcourt

Figure 6.5: Causal explanation of significant events during a point in a tennis match. The player with
the ball is circled at each frame.
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• Which player is currently playing a shot (derived from the proximity of the ball to each

player).

These facts are analysed per frame and the reasoning process is initiated when certain data are

observed corresponding to certain events e.g. a transition to the net. So, the corresponding rule

“move-to-net”, is initiated when a transition from qualitative positions, baseline to midcourt

to net is observed. This rule is described at a high-level in software in terms of the qualitative

information which is generated by the lower-level video analysis tools. An example is shown in

Figure 6.4. This particular rule formally encodes the expert knowledge that a player can either

respond to the opposition’s shot or take initiative and move during the period when the ball is

in the opponent’s court.

Using the input facts, the rule can be encoded very efficiently as:

Algorithm 3 Tennis move-to-net rule
1: input facts
2: scenario = move to net;
3: player = facts.player
4: transitionTime = facts.transitionTime
5: if facts.currentPlayer(transition time) 6= player then
6: explanation = [“Player initiates” scenario “at time” transitionTime]
7: else
8: explanation is [“Player forced to” scenario “at time” transitionTime]
9: end if

10: return explanation

An example of the reasoning process operating in response to the detected event is shown in

Figure 6.4. In this example, it can be observed that the automatically generated description of

this event contains causal information: the explanation is that Player 1 initiated (i.e. caused)

the advance to the net, not that he was forced to by Player 2.

By extending the knowledge of the system to recognise general transitions between qualitative

positions, the set of possible explanations is augmented to enable the system to generate ex-

planations about transitions on the court in general. This is done by augmenting the event

and rule-set to include expert knowledge about other transitions e.g. baseline to backcourt etc.

A complete description of all such events for a second example is shown in Figure 6.5. This
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demonstrates a high-level causal explanation of that particular tennis point and is a considerable

extension of the commentaries we generated in previous chapters.

6.5 Rule-based agent behaviour analysis in an urban surveil-
lance context

It will be observed that the tennis example we have discussed above did not make full use of

either spatio-temporal actions, behaviour or gaze-direction information. In fact, the causality

in tennis is so well-bounded that much can be achieved using positional information alone,

especially when expert knowledge, with reference to player-types, is allied to the rules of the

game. The clear nature of the causal relations enabled a straightforward encoding of rules to

be used in a reasoning engine. What if we include all the information at our disposal using

the tools this thesis has developed? How general is the rule-based approach in that case? To

answer this question, we now apply the techniques to human interactions in an urban setting.

This scenario has the advantage that gaze-direction is significant. Spatio-temporal action and

overall individual behaviour must also be included to make sense of interactions within the

scene.

As in the tennis examples, where the tennis player had partial knowledge of his opponent, we

make the following assumptions about the person in an urban setting in order to formulate a

person “agent”:

• The agent has knowledge of his own state which includes action, behaviour, and gaze-

direction,

• The agent can see other agents at a distance if they fall within the visual field (see Figure

6.6),

• The agent can sense anything within a specified range which is shorter than the visual

field and reflects ability to, for example, hear someone walking behind,

• Interactions are possible within certain proximity, e.g. meeting.
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Figure 6.6: The visual field of an agent is represented by the arcs highlighted in the image. See chapter
3 for details on how this region is estimated automatically.

In this model, an agent can only sense local information about another agent: spatio-temporal

action and gaze direction. An agent does not know about other agents’ goals or longer-term

behaviour. Although the vision process which provides the input to the reasoning engine has

knowledge of all activity in the scene as a whole, the agent, and thus the reasoning engine, is

deliberately provided limited information. There is thus a set of facts associated with each agent,

representing its entire knowledge. These facts are updated continuously and made available to

the reasoning engine, but there is no “all-seeing” reasoning process taking place.

At each time step the following set of facts is updated:

1. The action, behaviour and gaze-direction of each agent;

2. The relative proximity agents (measured by the absolute Euclidean distance between the

estimated centre of each agent);

3. The visibility of each agent to one another i.e. can Person 1 see Person 2?;

4. The relative directional headings between agents;

5. The directional headings of agents, individually.
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Trigger events Rules list

Move to road Potential meeting
Move to pavement Meeting
Move to drive Ignoring
Stopped Avoiding

Together
Proximity

Figure 6.7: The predefined events and rules for reasoning about interactions in an urban context. In this
case, the reasoning is more complex than tennis, and so the rules are not directly initiated but various
conditions must be met to fire rules. This is discussed in more detail in the text.

6.5.1 Detecting and classifying interactions between two agents using rules

People meeting with one another is a common occurrence in an urban scene. In fact, recognis-

ing groups of people versus independent individuals and, in particular, detecting cooperating

individuals, is a core element of the human interpretation of urban scenes. Police surveillance

officers, for example, may be interested in an exchange of illegal substances at a meeting of two

individuals under observation.

There are many cues humans use to distinguish between people meeting or people ignoring one

another. One such cue, discussed in chapter 3, is that people who are together will generally

acknowledge each others presence by looking at one another periodically and at regular intervals.

Other, more obvious cues include proximity. Here, we demonstrate using the same reasoning

engine as was used for the tennis example to detect and classify such interactions. Therefore,

by defining precisely what is required for the event “meeting” to take place we can distinguish

between people passing one another and people meeting together. The set of trigger events and

rules which can be initiated is shown in Figure 6.7.

Initially, the proximity of the individuals is analysed as shown in Algorithm 4, below.

First, a “potential-meeting” is identified when agents are within a predefined proximity for a

predefined period of time (typically 100 frames) and also within one another’s field of view.

The rule for meeting is that the intermediate state potential-meeting must be the current

explanation of the interaction. Additionally, the agents must be performing the same spatio-

temporal action e.g. they are both walking-on-the-pavement :
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Algorithm 4 proximity rule
1: load facts
2: proximityThreshold = 100
3: timeThreshold = 100
4: for all frames do
5: distance = (P1 position) - (P2 position)
6: if distance ≤ proximityThreshold then
7: if p1action = p2action & P1 visible & P2 visible then
8: together = 1
9: increment = increment + 1

10: end if
11: end if
12: if increment ≥ timeThresh then
13: situation = “together”
14: else
15: situation = “not together”
16: end if
17: update facts
18: end for

By contrast, an “ignore” rule is initiated when the conditions for meeting are not met but when

a “potential-meeting” has previously occurred. If none of these agent states are identified, there

is no interaction defined.

These rules can be encoded as shown in Algorithm 5.

Figures 6.8 and 6.9 show these rules in operation in the urban surveillance context. Algorithm

5 explicitly defines the rule for the scenario “meeting”.

6.5.2 Rule-based causal reasoning

In the examples of Figure 6.8 and 6.9 there are events consisting of two independent agents

interacting. The reasons for these events occurring are not apparent directly from the video.

That is, the person in Figure 6.8 who crossed the road in order to meet his friend may have

done so because it was pre-arranged or because he happened, by coincidence, to see him. It is

not possible to distinguish between these postulated, hypothetical reasons from the data alone.

This is still true even if the scene rules are completely known, as it requires detailed knowledge of

the intention, goals and history of a specific individual, which is not reliably available, certainly

not in a general surveillance application where the individuals under observation are generally
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Frame 135 Frame 197

Frame 304 Frame 247

Figure 6.8: (Clockwise from top-left) The Meeting rule is initiated in this case.
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Frame 30 Frame 95

Frame 115Frame 175

Figure 6.9: (Clockwise from top-left) The Ignore rule is initiated after the Potential-meeting rule.
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Algorithm 5 meeting rule
1: load facts
2: meetingThresh = 50
3: j=lastFrameIndex
4: for i = 1 to j do
5: if situation(i) = situation(i-1) then
6: if situation(i) = “together” then
7: togetherInc = togetherInc + 1
8: else
9: togetherInc = 0

10: end if
11: end if
12: if togetherInc ≥ meetingThresh then
13: scenario = “meeting”
14: else if togetherInc < meetingThresh & togetherInc > 0 then
15: scenario = “potential meeting”
16: else
17: scenario = “not meeting”
18: end if
19: update facts
20: end for

unknown.

A lower-level of causality is still in operation. In fact, that can be inferred in the sentence

above. It was stated that the person, “. . . crossed the road in order to meet . . . ”. This type

of causality is amenable to analysis using the information we currently can obtain about both

the scene and the agents. For example, the question could reasonably be posed: “Why did the

person walk onto the road?”. The causal explanation, at this lower-level, would be that he did

so in order to meet his acquaintance.

In the particular urban scene of Figures 6.8 and 6.9, there are a number of events which can

occur which could be explained in terms of causal relations. The examples we have shown

suggest that transitions in qualitative action are of interest and can, subsequently, generate

interesting activity. The overall reasoning process is therefore identical to that used in the

tennis example, with a different set of events and rules.

At each frame of the input footage, as the activity is estimated directly from the video, tran-

sitions between actions are searched for, triggering an “event” which requires to be explained.
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An example of the reasoning process for the event "move−to−road"
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Figure 6.10: A schematic diagram of the reasoning process initiated when the event ”move-to-road” is
detected.

The facts are then analysed searching for support for particular hypotheses which could explain

the event sequence. Therefore, in the example of Figure 6.8, the transition between qualitative

actions walking-on-farside-pavement and walking-on-road generates an event “move-to-road”.

This event essentially poses the question, “Why is the agent now walking on the road?”. A

graphical illustration of the overall reasoning process for answering this question is shown in

Figure 6.10.

Hypotheses to explain this particular scenario are defined, using human knowledge of this

environment, as:

1. IF the event “move-to-road” is followed by event “move-to-pavement” AND the current

location is not the same as the location triggering the first event (i.e. the road is crossed)

AND, subsequently, a meeting takes place THEN the explanation is that, “the agent

crossed the road to meet the other agent”,

2. IF a crossing of the road is observed NOT followed by an interaction THEN the explana-

tion is that the agent crossed the road,

3. IF a “move-to-road” event is triggered AND subsequently a “move-to-pavement” event

but back to the same pavement THEN no explanation is provided UNLESS another agent
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was in the near vicinity THEN the explanation is that it was necessary to avoid collision.

The pseudo-code for this scenario is shown in Algorithm 6.

Algorithm 6 move-to-road rule
1: load facts
2: if event=“meeting” then
3: for j = 1 to lastFrame do
4: if scenario = “meeting” then
5: currentAction = facts.positionLabel(j)
6: explanation = “Person” event “to meet on” currentAction
7: end if
8: end for
9: for j = 1 to lastFrame do

10: if scenario = “ignore” then
11: currentAction = facts.positionLabel(j)
12: explanation = “Person” event “to avoid other Person on” currentAction
13: end if
14: end for
15: end if

Similarly, we generate hypotheses for explaining events such as “stopping”, “move-to-pavement”

and “move-to-driveway”.

It can be seen, from the rules itemised above for the particular event “move-to-road”, that

these rules are: (a) general to all such urban scenes, and (b) easily augmented. For example,

in the case of the 3rd rule, it is conceivable that this behaviour could be observed when a car

is passing and an agent accidentally steps out before looking to see the car. Clearly, if we were

tracking cars in addition to people, and trying to explain their role in the scene too, extending

the rule set is simple to deal with this new hypothesis.

The best explanations of the observed activity are generated using the reasoning engine. In

Figures 6.11 and 6.12 the output for two different situations which is automatically generated

by our system, is shown. These results represent true causal reasoning about interesting human

activity in video.
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Frame 218Frame 35

Frame Event explanation
35 Person 2 move-to-road to Meet on nearside-pavement
218 Person 2 move-to-pavement to Get-off-road

Figure 6.11: In this example, Person 2 is under observation. Two significant events are observed. The
first (left) is leaving the pavement to walk on the road. The second (right), leaving the road to walk
on the opposite pavement. By searching the action/behaviour/gaze data for an explanation for these
events the causal explanations below the figures are automatically generated from known rules of this
scene. Note that the estimated gaze-directions for this sequence can be seen in Figure 3.16.
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Frame 138Frame 60

Frame Event explanation
60 Person 1 move-to-road to Avoid Person 2 on nearside-pavement
138 Person 1 move-to-pavement to Get-off-road

Figure 6.12: In this example, the event where Person 1 steps on to the pavement requires explanation.
The best explanation is that the person avoids the other.
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6.6 Conclusion

6.6.1 Future work

We noted above that it would be desirable to use all of the probabilistic information available to

reason about the activity. In the work described in this chapter, we have used ML descriptions

arising from the action-recognition stages of our system. As a step towards a fully Bayesian

causal reasoning method, we can begin by modelling two types of tennis player using extended

HMM state transitions, compared to those of section 5.12. An HMM could easily take distribu-

tions over action (e.g. multi-variate Gaussian) as input/output. Expert knowledge about two

player-types is summarised below.

The Serve-and-volley player:

• Desire: move to net after his own first shot,

• Intention: limit opponent’s options and force weaker shot.

The Baseliner player:

• Desire: stay at baseline,

• Intention: open up court by forcing opponent wide or short.

Using these basic definitions, we can define a state transition matrix for each player. The states

include the player’s own position and the position of the opponent. These are shown in Figure

6.13. Note that for the type of reasoning we are modelling, the position of the ball is required

(which is hand-tracked for the experiments which follow). For instance, the player runs to

where the ball has been played, regardless of the shot type, reacting to the opponent’s shots.

However, a more sophisticated reasoning engine may simulate the predictions of a player based

on the agent’s belief that the opponent is about to play a certain shot.

The transition matrices shown in Figure 6.13 have been written down by hand. They repre-

sent the first level of causal reasoning. Take, for example, the baseliner player model (Figure
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Figure 6.13: The state transitions for the smoothing HMMs for two types of tennis agent, Baseliner
(left) and Serve-and-Volleyer (right). Each state in the transition matric represents the known position
of the agent and the observed position of the opponent e.g. baseline / net is the state when the agent
is at the baseline but the opponent is at the net. Thus, decisions which are dependent on the opponent
can be encoded. For example, the Serve-and-Volleyer transition matrix (right) encodes the belief that if
the opponent is observed to be at the net, the player (despite having a preference for playing at the net
himself) will be most likely to stay at the backcourt/baseline.

6.13, left). The transition matrix encodes the preference to remain at the baseline/backcourt

regardless of the opponent’s position. But if the baseliner finds himself at the net, the tran-

sition matrix tells us that he prefers to stay there. By creating states which represent the

position of both the player under observation and the opponent, the transition matrix encodes

the probability of positional changes conditioned on where the opponent is observed to be at

that time.

Results of modelling players according to these types are shown in Figures 6.14 and 6.15. One

can see that the likelihood of the HMM explaining the observations could provide an indication

as to: (a) whether the model is correct i.e. the player really is of the type supposed or, more

interestingly, (b) which player is dominating the point, assuming the models are correct.

6.6.2 Comments

The work of this chapter has exploited the results of the previous chapters to demonstrate that

efficient, rule-based, causal reasoning can be implemented when, (a) expert knowledge of the

rules which govern human activity within the scene is available, and (b) the information required
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Frame 12 Frame 136 Frame 223

Frame 251 Frame 302 Frame 473

Figure 6.14: The most likely (joint position) state for each player is computed for the raw shot sequence
which is smoothed using the Baseliner HMM of Figure 6.13, which is correct, judging by the play
seen here. For selected frames, the ML (Viterbi) state is shown in this figure. The state labels are
superimposed beside each player and the key is: B=Backcourt, Bl=baseline, M=midcourt, N=net.

Frame 144Frame 105 Frame 220

Figure 6.15: In contrast to the results of Figure 6.14, when the smoothing model is incorrectly chosen,
the state estimate errors can be clearly seen. In this example player 1 (top in each image) is modelled
as a Serve-volleyer, for which there is little evidence in this play.
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to reason at a higher-level can be extracted directly from video i.e. qualitative descriptions of

activity.

We demonstrated the use of rules to automatically generate causal descriptions of activity in

two scenarios: tennis and urban surveillance. By requiring, in both scenarios, that it is certain

predefined events which require explanation, we automatically searched the known rule set and

generated causal explanations of human activity in video, when those events occurred.

The generality of the technique is highlighted by the fact that the same reasoning engine is used

for completely different scenarios with only the set of rules and trigger events being interchanged

for each application.

The main drawback is that hard decisions about activity are made. Moreover, the inputs to

the reasoning process are the ML estimates of each action/behaviour/gaze estimate, not the

actual probability distributions. This latter point strongly suggests that further work can be

done to fully exploit the probabilistic estimates, such as using a full Bayes Net for inference

on causal relations. Indeed the work of Pearl on Causality could be particularly useful in this

context [111].

One particular limitation of not having a fully probabilistic representation is that prediction is

not truly possible. This is because, without the likelihoods associated to current observations,

distinguishing between the quality of evidence for competing hypotheses is not possible in any

meaningful way. This is a clear line of future work, as we have begun to show for a tennis

scenario in section 6.6.1 of this chapter.



7

Conclusion

This thesis ends with a brief recapitulation of the topics we have discussed and a list of the

novel contributions of this work. We conclude with a discussion on future research directions

to utilise and extend the results of this work.
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7.1 Summary of the thesis

This goal of this thesis was to, Develop a set of techniques to enable automatic causal reasoning

about human activity as recorded in surveillance video.

We began by posing the question, “What information does an expert require to reason about

human activity?” Looking at the prior work in the published literature it was apparent at an

early stage that many of the current techniques which would naturally be used to generate the

required low-level estimates of human activity are not appropriate for the resolution of the data

in surveillance video.

So, in chapter 3 we developed a novel technique for estimating head-pose in images where

the head images are low-resolution. This estimate was refined by contextual information in a

Bayesian fashion to produce distributions over potential gaze directions.

Gaze direction is an important cue to the intention of a person, but not the only piece of

significant information required to reason about, or report on, their activity. Using a similar

approach, defining a descriptor which is readily computed from low-resolution video and in-

terpreting in a probabilistic fashion, we developed a technique for general analysis of human

activity in video. Our approach was motivated by the fact that, in genuine surveillance op-

erations, the analysts have strong domain knowledge. As such, we used training data which

had been hand-annotated, and generated probabilistic samples over the training data for new

examples in chapter 4. The independent features were combined, using Bayesian probability

theory, to generate estimates over all spatio-temporal activities in the training data for the new

example.

In chapter 5, recognising that the behaviour of a person over time is composed of a chain of

spatio-temporal actions, we encoded scene “rules” as a set of state transitions in a Markov Chain

where the states are indices into actions with their respective likelihoods. This enabled faster

generation of higher-level behaviour analysis tools without discarding the benefits of compact

models. These behaviour HMMs are also general to the scene itself, not a specific viewpoint of

the scene.
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Having achieved the extraction of low-level, probabilistic information about human activity,

we demonstrated in chapter 6 that this information can be used to reason, causally, about

interactions between people and generate realistic, high-level explanations of overall activity.

This is, to the best of our knowledge, the first demonstration of causal reasoning about human

activity in surveillance video which operates directly from the video stream, with minimal

manual intervention.

Thus, we verified our thesis, which is: In order for a computer system to effectively, and

automatically, reason about human activity in surveillance video, low-level vision techniques

must first abstract the information a human would require, from the video, to an intermediate,

probabilistic and qualitative representation based on motion.

7.2 Contributions

Human activity recognition is very much at the fore-front of current Computer Vision research.

Surprisingly few papers in the published literature address the problem of generating descrip-

tions of human motion in video using only the behaviour and not the appearance of the person.

This is despite the overwhelming evidence from vision psychology that motion is the primary

cue necessary for interpreting causality in visual data. Moreover, considerations of true op-

erational conditions and how to effectively utilise the expertise of the “man-in-the-loop” have

been all too rare in the development of low-level techniques for human activity recognition.

This thesis has contributed to each of these important areas. We list the contributions as they

appear:

• Robust estimation of gaze-direction from low-resolution faces. We developed a

new technique for estimating gaze-direction in surveillance-style video footage, in contrast

to the well-studied problem of estimating gaze in high-resolution (HCI) video. Our method

combined a head-pose descriptor based on skin detection with body-direction and was

demonstrated primarily on footage from the surveillance domain including standard vision

sequences. This work was published in [130, 132]
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• Application of action-recognition at a distance techniques for use in a surveil-

lance system and automatic sports commentator. We extended an existing tech-

nique for recognising person-centred activity at the medium/low resolution, to generate

probabilistic distributions of action using the novel application of a fast database sam-

pling method. Additional distributions of position and velocity features, fused with the

person-centred action distribution, using a Bayes Net, generated distributions over spatio-

temporal actions. The ML spatio-temporal action estimate at each time step represents

a robust commentary on sports or surveillance video. This work was published in [131],

and is currently in press [133].

• The development of a general framework for exploiting expert prior knowl-

edge. Recognising that behaviour can be composed of sequences of action, we developed

a new framework for behaviour recognition. This technique used stochastic models which

encode the rules for action sequences corresponding to behaviours extended in time. These

models have as their input/output the ML spatio-temporal action index and associated

likelihood and are therefore general to the scene. This framework allows expert knowl-

edge, where available, to be rapidly incorporated while retaining the benefit of compact

stochastic models. This work was published in [131, 134], and is currently in press [133].

• Causal reasoning about human activity directly from video. The robust ex-

traction of action, behaviour and gaze information enabled us to demonstrate causal

reasoning about human activity directly from surveillance and sports video. This is the

first demonstration such a reasoning process. Previous attempts from the AI community

suffered from a lack of robust Computer Vision techniques, whereas vision literature has

generally focussed on low-level information. This work was published in [134].

This thesis has demonstrated automatic causal reasoning about human activity in video, and

this research field is wide open, both in terms of the basic research required to make intelligent

surveillance a reality, and in the huge variety of applications which require robust visual surveil-

lance methods. The work we have presented has pointed, we believe, in the correct direction for

vision researchers who are seeking to develop visual surveillance systems. There are a number
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of interesting problems which we would suggest require consideration when augmenting or using

our results. We now discuss some of these, briefly, in conclusion.

7.3 Future research directions

7.3.1 Defining surveillance ontologies

The set of descriptions which were specified in each of the application domains on which we

demonstrated our methods, were defined by a person with detailed, but not professional, knowl-

edge of the scene. In the future, due to the nature of the funding for this work, we expect that

the results of this thesis will be be exploited to achieve semi-automatic reporting of surveillance

footage for Royal Air Force imagery analysts. These analysts are trained to use a well-structured

and clearly-defined language when describing what has been observed and filing reports on the

activity they have been tasked to survey.

A researcher’s “ontology” (such as has been employed in this work) for describing human

activity will not, generally, seem realistic to a true expert in the domain. In the military or

law-enforcement context the researcher’s descriptive language may well be misunderstood. This

could create significant problems within the chain-of-command leading to operational failure.

Therefore, it is critical that researchers seeking to develop systems involve the user in this phase

of development to avoid ambiguity at all costs.

Moreover, an interesting research topic will be to explore the possibility of defining a robust

surveillance ontology for general use in urban environments.

7.3.2 Extracting further low-level information from video

The development of a genuine ontology will directly influence the information which is required

to be extracted from video. For example, it may be that the height of an individual is required

to be known. In which case, multiple-camera methods could be implemented to extract 3-D

information from the scene, which, when allied to some knowledge of metrics within the scene

(e.g. the height of a lamppost) this information can be obtained. This is an example where
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known techniques can be exploited to augment the agent’s knowledge about a scene.

However, it is also very likely that new computer vision methods will need to be developed to

obtain information. For example, an area we have not considered in this thesis is night-time

surveillance. How far the methods demonstrated in this thesis apply to night-vision or infra-red

imagery is not yet clear. This is one area which, when studied, could yield new and interesting

vision algorithms and techniques.

7.3.3 A fully probabilistic reasoning system

The most obvious future direction arising from this work is the incorporation, and extension, of

these results into a fully probabilistic reasoning framework. It will reasonably be asked why we

spent considerable effort maintaining probabilities throughout only to discard this information

when it was, arguably, most useful. For reasons of expediency we used the ML estimates from

probability distributions on a number of occasions, most significantly when developing a causal

reasoning system.

We strongly suggest that the research and implementation of a full Bayesian Network, which

can be interpreted as defining the causal relations between variables, would be the most natural

extension and application of the novel techniques which have been generated in this thesis. This

would be very much in keeping with the approach we have taken throughout and would yield

the considerable benefit of providing a fully probabilistic interpretation of human activity to a

user, leaving the final decision-making to the analyst.

7.3.4 The role of learning in reasoning systems

We noted in chapter 6 that causal reasoning failure can be an opportunity to learn. This is

an area which would benefit from investigation. In particular, we have specified a set of rules

which, in certain constrained scenarios will enable the system to arrive at a sensible conclusion.

What happens when no satisfactory conclusion is reached? Methods for providing the system

with the required knowledge at this failure point could be investigated.
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Colour-based tracking in video



A.1 Mean-shift tracking in video 157

A.1 Mean-shift tracking in video

Figure A.1: Automatic initiation of targets (left-to-right) 1. Background image, 2. Foreground image,
3. Segmented object blobs, 4. Initiated targets for mean-shift tracking.

By tracking an object we achieve repeated measurement of the location of a moving target

throughout the frames of a video. Tracking can be challenging due to the fact that the target

may change in shape or appearance as the target orientation varies in relation to the camera.

Additionally, there may be some small per-frame camera motion e.g. camera-shake due to wind

or smooth panning by the operator to centre a moving target. Using colour alone to define

the target provides invariance to shape changes so long as the appearance of the true target

remains sufficiently different from background clutter.

The target of interest can be initiated by hand or by using background subtraction, as shown

in Figure A.1, and the target model (histogram) thus defined. The mean-shift algorithm uses

the Battacharyya coefficient as the similarity measure between two distributions which are

discretised into u bins: p(y) at the current image window centred at y and q, the target model

histogram. This is given by:

ρ(p, q) =
∑

u

√
puqu (A.1)

which is maximised using an efficient iterative algorithm introduced by Comaniciu in [31]. Each

pixel, x, in a window (centred on the current target location y0) is assigned a weight:

wx =
∑

u

δ[I(x)− n]
√
qu/pu(y0) (A.2)



A.1 Mean-shift tracking in video 158

The new estimate of the target position is computed as:

y1 =
∑

x xwxk(x, y)∑
xwxk(x, y)

(A.3)

where k is a kernel which weights pixels close to the centre of the current window higher than

those at the edge, in our case we use a Gaussian kernel (the Epanechnikov kernel - which is

an approximation to the Gaussian - is also suggested). The iteration stops when |y1 − y0| < ε,

where ε is a predefined threshold, typically 1 pixel.

Search in scale-space is interleaved between each step of the gradient-descent in position (de-

scribed above) i.e. a set of Gaussian kernels are defined with:

{σs = σ0 ∗ bs,−n ≤ s ≤ n} (A.4)

where b > 1 is the base of the logarithmic scale and n defines range of the search in scale around

the current scale σ0. We choose b = 1.1 and n = 2 as in [30]. The effect of tracking in scale, as

well as image space, is shown in Figure A.2.

While the mean-shift algorithm as described here offers a degree of robustness to changes in

target appearance (as shown in Figure A.3) it will, as with all simple vision-based tracking

algorithms, fail where the target is completely occluded. In order to provide robustness to

occlusion we implement the improvement of Bibby and Reid [10]. In their work, when the Bat-

tacharyya coefficient drops below a certain value, the search window is expanded by computing

the Battacharyya coefficient for a grid of windows around the current location and, provided

the target has not disappeared altogether or moved outwith even this wider search region, the

location can be recovered. An example of the utility of this method in a surveillance context is

shown below in Figure A.4.
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Without scaling

With scaling

Figure A.2: By tracking in scale-space as well as position the tracking is more robust as this example
shows. Also it is preferable that as much of the background be eliminated from the target as possible
when the target-centred image will be used for further processing.

Stills from sequence

Target 1

Target 2

Figure A.3: In this sequence two people meet and partially occlude one another. It is shown that
the target tracking algorithm employed here (without additional occlusion reasoning) has a degree of
robustness to partial occlusion.
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Without occlusion recovery

With occlusion recovery

Figure A.4: (First row) The standard mean-shift algorithm fails when the target is completely occluded
because the search window does not extend to the point where the target reappears. The position
update has no better estimate than the current location since the true model has disappeared and, in
general, all of the local background represents an equally dissimilar colour histogram compared to the
target histogram. (Second row) By expanding the search window when the histogram similarity measure
(the Battacharyya coefficient) falls below a specified threshold it is possible to recover the true target
location.
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Bayesian estimation: the Kalman Filter
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B.1 General Bayesian estimation

In tracking we want to recursively estimate the state sequence of a target at a given time based

on the set of available measurements. The state sequence at time k we write as xk, given by

xk = fk(xk−1,vk−1) (B.1)

which is a function of the previous state and a noise process. The set of measurements is

denoted z1:k = {zi, i = 1, . . . , k} where

zk = hk(xk,nk) (B.2)

is a function of the previous state and some noise process.

B.1.1 Prediction step

If the distribution p(xk−1|z1:k−1) is available at time k−1 then the system model in B.1 is used

to find the prior distribution for the next time step k by:

p(xk|z1:k−1) =
∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (B.3)

Since the system model describes a first-order Markov process, the above equation has been

simplified by the fact that p(xk|xk−1, z1:k−1) = p(xk|xk−1).

B.1.2 Update step

At time step k a measurement zk is available, which is used to update the prior by Bayes’ rule:

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(B.4)

which, to define these terms, says:

posterior =
(prior)(likelihood)

evidence
(B.5)
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B.1.3 Kalman Filter

With the Kalman Filter it is assumed that at each and every time step the posterior distribution

is Gaussian. As a result it can be parameterised by a mean and covariance. It can be shown

that if p(xk−1|z1:k−1) is Gaussian then p(xk|z k) is also Gaussian if the following assumptions

are true [68]:

• the system and measurement noise, vk−1 and nk, are drawn from Gaussian distributions

with known parameters,

• the system and measurement models are known and are linear functions of state and

noise.

That means we can write B.1 and B.2 as

xk = Fkxk−1 + vk−1 (B.6)

zk = Hkxk + nk (B.7)

These are linear functions, and the covariance of vk−1 and nk are defined as the covariance

matrices Qk−1 and Rk

The Kalman Filter algorithm (which is derived using B.3 and B.4) can be written as a recursive

relationship:

p(xk−1|z1:k−1) = N (xk−1;mk−1|k−1, Pk−1|k−1) (B.8)

p(xk|z1:k−1) = N (xk;mk|k−1, Pk|k−1) (B.9)

p(xk|z1:k) = N (xk;mk|k, Pk|k) (B.10)
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where N (x;m,P ) is a Gaussian distribution with argument x, mean m and covariance P , and

mk|k−1 = Fkmk−1|k−1 (B.11)

Pk|k−1 = Qk−1 + FkPk−1|k−1F
T
k (B.12)

mk|k = mk|k−1 +Kk(zk −Hkmk|k−1) (B.13)

Pk|k = Pk|k−1 −KkHkPk|k−1 (B.14)

The covariance of the innovation term zk −Hkmk|k−1 is

Sk = HkPk|k−1H
T
k +Rk (B.15)

and the Kalman Gain is defined by

Kk = Pk|k−1H
k
TS

−1
K (B.16)

The likelihood function of the model at time step k is calculated from a Gaussian distribution

with a mean of zero, the covariance equal to the covariance of the innovation and the innovation

as the argument. Hence the likelihood of the model is the sum of the likelihood function at

each time step over all time steps.

This filter is optimal if the assumptions made at the start are true. This implies that no

filter can do better than a Kalman filter in a linear, Gaussian situation. For problems which

are clearly not linear and Gaussian approximations are necessary and form the basis of the

Extended Kalman Filter, Unscented Kalman Filter and Particle Filters.
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C.1 Learning state-space models

A Kalman filter is clearly a state-space model and hence the structure is known a priori.

However, given a complete set of data, we would still require to learn the other parameters

of the model as well as the hidden variables. If there is only one unknown it is possible to

calculate the Maximum Likelihood directly by finding the probabilities of the unknown given

the conditional variables and summing at each stage.

In this case the parameters and the hidden states are estimated by holding one fixed, maximising

the likelihood with respect to the other and vice-versa. This is the basis of the Expectation-

Maximisation (EM) algorithm.

Using any distribution Q over the hidden states, a lower bound on the likelihood L can be

obtained [60]:

log
∑

x

P (z, x|θ) = log
∑

x

Q(x)P (z, x|θ)
Q(x)

≥
∑

x

Q(x) log
P (x, z|θ)
Q(x)

=
∑

x

Q(x) logP (x, z|θ)−
∑

x

Q(x) logQ(x)

= F (Q, θ)

(C.1)

(This equation is for a single observation z, hence the lack of subscripts.)

So EM alternates between maximising F with respect to Q and θ while holding the other fixed.

It is initialised with some guess at the parameters.

C.1.1 E-step

The hidden variables are updated by

Qk+1 ← arg max
Q

F (Q, θk) (C.2)

The maximum in the E-step results when Qk+1(x) = P (x|y, θk).
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C.1.2 M-step

θk+1 ← arg max
θ

∑
x

P (x|y, θk) logP (x, y|θ) (C.3)

The maximum of the M-step is calculated by maximising
∑

xQ(x) logP (x, z|θ).

C.2 Using EM to learn state-space models

Since we have a first order Markov process, the log probability of the hidden states and obser-

vations for linear-Gaussian state-space models can be written as

logP (x1:T , z1:T ) = logP (x1) +
T∑

k=1

logP (zk|xk) +
T∑

k=2

logP (xk|xk−1) (C.4)

Each of these probability densities is Gaussian, and so the overall expression is a sum of quadrat-

ics. So, given that zk = hk(xk,nk),

logP (zk|xk) = −0.5(zk −Hxk)TR−1(zk −Hxk)− 0.5|R|+ C (C.5)

where R is the covariance of the measurement model noise, |R| is the determinant of R and C

is a constant. If all the random variables were observed, the ML parameters could be solved by

maximising the above equation. But the states are hidden so we use the expected values when

we don’t have access to the true values. The expected value of some variable f(x) with respect

to the posterior distribution of x is given by

〈f(x)〉 =
∫

x
f(x)P (x|z, θ)dx (C.6)

By taking derivatives to get a set of linear equations, the M-step for the measurement matrix

is

H ← (
∑

k

zk〈xk〉T )(
∑

k

〈xkxT
k 〉)−1 (C.7)
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Similar steps are taken for all other parameters F,Q,R. The terms 〈xk〉,〈xkxT
k 〉 and 〈xk〉,〈xkxT

k−1〉

are computed using Kalman Smoothing, which solves the problem of estimating the state at

a given time step of a linear-Gaussian state-space model given the model parameters and a

sequence of observations.
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D.1 The Forwards Algorithm

The Forwards algorithm allows us to calculate the probability of the observation sequence

O = O1, O2, . . . , OT given a model Θ = (A,B,Π), i.e. P (O|Θ). This can be done most straight-

forwardly by computing the probability of every state sequence. If the state sequence is

Q = q1, q2, . . . , qT (D.1)

the probability of the observation sequence, O, is (assuming statistical independence of the

observations)

P (O|Q,Θ) =
T∏

t=1

P (Ot|qt,Θ) (D.2)

P (O|Q,Θ) = bq1(O1)bq2(O2) . . . bqT (OT ) (D.3)

The probability of this state sequence can be written as

P (Q|Θ) = πq1aq1q2aq2q3 . . . aqT−1qT (D.4)

Now the joint probability of O and Q is

P (O,Q|Θ) = P (O|Q,Θ)P (Q,Θ) (D.5)

The probability of O is found by marginalising i.e. summing over all possible state sequences q

P (O|Θ) =
∑

q1,q2,...,qT

πq1bq1(O1)aq1q2bq2(O2) . . . aqT−1qT bq1(OT ) (D.6)

This calculation is interpreted as follows. At time t = 1 we are in state q1 with probability πq1
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and generate observation O1. At t = 2, the transition is made to q2 with probability aq1q2 and

observation O2 with probability bq2(O2). Which continues until the last transition.

This calculation is order 2TNT since at every t = 1, 2, . . . , T there are N possible states which

can be reaches (NT possible state sequences) and for each state sequence there are 2T calcula-

tions required. This is therefore computationally unfeasible since for N = 5 and T = 100 there

are 1072 computations.

A more efficient procedure exists. If we define the forward variable as

αt(i) = P (O1, O2, . . . , Ot, qt = Si|Θ) (D.7)

which is the probability of the partial observation sequence, O1, O2, . . . , Ot until time t given

the model Θ.

It is possible to solve for αt(i) inductively

Initialisation

α1(i) = πibi(O1) (D.8)

Induction

αt+1(j) = [
N∑

i=1

αt(i)aij ]bj(Ot+1), (D.9)

Termination

P (O|Θ) =
N∑

i=1

αT (i) (D.10)

The calculation requires order N2T calculations (i.e. N(N+1)T (T −1)+N multiplications and

N(N − 1)(T − 1) additions) so for N = 5, T = 100 we need around 3000 calculations compared

to 1072 for the exhaustive case.

D.2 The Viterbi Algorithm

The optimal state sequence associated with a set of observations is defined as the states qt which

are individually most likely, which is the optimality criterion which maximises the expected
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number of correct individual states. To implement a solution to this we define two variables.

The first is the backwards variable:

βt(i) = P (Ot+1, Ot+2, . . . , OT |qt = Si,Θ) (D.11)

The second is the probability of being in state Si at time t given the observation sequence, O,

and the model, Θ, which can be expressed in terms of the forward and backward variables.

γt(i) =
αt(i)βt(i)
P (O|Θ)

=
αt(i)βt(i)∑N
i=1 αt(i)βt(i)

(D.12)

since αt(i) accounts for the partial observation sequence O1, O2, . . . , Ot and state Si at t, while

βt(i) accounts for the remainder of the observation sequence Ot+1, Ot+2, . . . , OT given state Si

at t. The normalisation factor P (O|Θ) =
∑N

i=1 αt(i)βt(i) makes γt(i) a true probability such

that

N∑
i=1

γt(i) = 1 (D.13)

using γt(i) we can solve for the individually most likely state qt at time t

qt = arg max
1≤i≤N

[γt(i)] (D.14)

This equation maximise the individually most likely state at any instant. But there can be

problems with the state sequence. If, for example, the HMM has transitions which have aij = 0

for some i, j i.e. state transitions with zero probability the “optimal” (using this optimality

measure) state sequence may not even be valid.

The optimality criterion can therefore be modified to to find the single best path through the

state trellis. This is the Viterbi algorithm.

The highest probability along a path, at time t which accounts for the first t observations and
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ends in state Si is

δt(i) = [ max
q1,q2,...

, qt−1]P (q1, q2, . . . , qt = i, Oi, O2|Θ) (D.15)

By induction we have

δt+1(j) = [max
i
δt(i)aij ]bj(Ot+1) (D.16)

In order to find the state sequence we need to track the argument δt(i). This is done via an

array ψt(j). The algorithm can be stated as follows:

Initialisation

δt(i) = πibi(O1) (D.17)

ψ1(i) = 0 (D.18)

Recursion

δt(j) = max
1≤i≤N

[δt−1(i)aij ]bj(Ot) (D.19)

ψj = arg max
1≤i≤N

[δt−1(i)aij ] (D.20)

Termination

p∗ = max
1≤i≤N

[δT (i)] (D.21)

q∗T = arg max
1≤i≤N

[δT (i) (D.22)

Best state tracking

q∗t = ψt+1(q∗t+1), t = T − 1, T − 2, . . . , 1 (D.23)
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The Lucas-Kanade algorithm [89, 90] is a weighted least-squares fit of local first-order con-

straints to a constant model for velocity v in each small neighbourhood Ω by minimising

∑
x∈Ω

W2(x)[∇I(I, t) · v + It(x, t)]2 (E.1)

where W (x) is a window function which assigns higher weights to the centre of the neighbour-

hood. The solution to this is

ATW 2Av = ATW 2b (E.2)

where, for n points xi ∈ Ω at time t,

A = [∇I(x1), . . . ,∇I(xn)]T

W = diag[W (x1), . . . ,W (xn)]

b = −[It(x1), . . . , It(xn]T

(E.3)

The solution to E.2 is

v = [ATW 2A]−1ATW 2b (E.4)

This is solved in closed form when ATW 2A is non-singular, since it is a 2× 2 matrix:

ATW 2A =
[ ∑

W 2(x)I2
x(x)

∑
W 2(xIx)(x)Iy(x)∑

W 2(xIx)(x)Iy(x)
∑
W 2(x)I2

y (x)

]
(E.5)

(All sums are over the points in the neighbourhood Ω.)
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