
Spectral Methods for Computer

Vision Problems

Huaijun Qiu

Submitted for the degree of Philosophy Doctor

Department of Computer Science

October 15, 2006

Abstract

Graph spectral methods are concerned with using the eigenvalues and eigen-

vectors of the adjacency or Laplacian matrices to characterise graph structure.

Applications in computer vision include object recognition, image segmentation

and data analysis. Although widely used, most graph spectral algorithms are rel-

atively simple. Most of the current applications are limited to use only one or

just a few eigenvalues and eigenvectors of the affinity matrix. Although elegant

and concise many valuable properties are also neglected. Inthis thesis, we focus

on exploring more complex uses of the Laplacian spectrum.

Our starting point is the Fiedler vector, i.e. the second smallest eigenvector

of the Laplacian matrix. Although it has been intensively applied in graph bipar-

tition and image segmentation, its usage is still quite simple and restricted. We

aim to further extend its utility to decompose graphs into non-overlapping parti-

tions. By doing so, we will be able to cast inexact graph matching problem into

the matching of these subunits and the whole matching process can be realized in

a hierarchical framework. Further, the pattern of partitions can be stabilised by

incorporating a diffusion process to smooth away the effects of structural errors.

The matching criteria is given by two comparable methods: one is dictionary-

padding based discrete relaxation and the other one is an edit distance measure.

To test our method, we have applied it to both synthetic and real-world images

and the results show that it is robust under severe structural corruption and vari-

i

ation.

Our second contribution in this thesis is to develop spectral methods which

are capable of utilising the full Laplacian eigenspectrum effectively. We turn to

the commute time (the expected time a random walk takes from nodeu to node

v and return). A theoretical analysis of the commute time demonstrates how it

can be used for embedding and clustering.

The first application of commute time is to apply it as an energy dissipation

measure on nodes of the graph. To simulate a diffusion process, we introduce an

extra node as heat source. Then a graph can be divided into several concentric

layers based on the heat distribution and graph matching is realized by matching

these layers with commute times as attributes on the nodes.

The second application of commute time relies on the robustness of the com-

mute time matrix to structural noise. Commute time is a more robust graph

representation than the adjacency matrix. As a result, the minimum spanning

tree for the commute time of the graph is more stable under structural variation

and can be used as a stable structure for inexact graph matching.

Our third application of commute time exploits its groupingproperties. We

propose an image segmentation method based on the recursivebipartition of the

smallest eigenvector of the commute time matrix.

Finally, a commute time preserving embedding is used to solve the multi-

body motion tracking problem. We extend the traditionalfactorisation method

of Costeira and Kanade (Costeira and Kanade, 1997; Costeiraand Kanade, 1995)

by embedding the shape interaction matrix into a subspace. Object points in this

space are easily separated by a k-means algorithm.

ii

Contents

1 Introduction 1

1.1 The Problem . 1

1.2 Goals . 2

1.3 Thesis Overview . 3

2 Literature Review 5

2.1 Graph Spectrum . 5

2.2 Computer Vision and Pattern Recognition Problems and The Spec-

tral Solutions . 10

2.2.1 Graph Matching . 10

2.2.2 Graph Seriation and Simplification 13

2.2.3 Embedding and Clustering 15

2.2.4 Motion Tracking . 19

2.3 Motivation and Contributions 20

3 Graph Matching and Simplification using Spectral Partitions 23

3.1 Laplacian Matrix . 24

3.2 Graph Partition . 26

3.3 Partition Stabilisation . 29

3.3.1 Heat Kernel . 29

3.3.2 Path Length Distribution 31

iii

3.3.3 Proximity Weights . 32

3.3.4 Properties of the Proximity Matrix 33

3.4 Matching . 35

3.4.1 Matching Probabilities 36

3.4.2 Discrete Relaxation . 37

3.4.3 Edit Distance . 38

3.5 Hierarchical Simplification . 40

3.5.1 Partition Arrangements 40

3.5.2 Clustering . 41

3.6 Experiments . 42

3.6.1 Sensitivity Study . 42

3.6.2 Real-Word Data . 48

3.6.3 Partition Structure Stabilization 52

3.6.4 Graph clustering . 57

3.7 Conclusions . 61

4 Commute Time 64

4.1 Spectral Affinity . 65

4.1.1 Green’s Function . 65

4.1.2 Commute Time . 67

4.2 Commute Time Embedding . 68

4.2.1 Basics . 69

4.2.2 The Commute Time Embedding and Kernel PCA 70

4.2.3 The Commute Time Embedding and the Laplacian Eigen-

map . 70

4.2.4 The Commute Time and the Diffusion Map 72

4.2.5 Some Embedding Examples 74

4.2.6 Robustness of the Commute Time Embedding 74

iv

4.3 Commute Time Properties for Grouping 76

4.3.1 Commute Time Properties 77

4.3.2 Comparison with the Normalised Cut 77

4.3.3 Why Commute Time Clustering is Successful 78

4.4 Conclusions . 80

5 Commute Time Applications 81

5.1 Multilayer Graph Representation and Matching 82

5.1.1 Graph Derivation and Representation 83

5.1.2 Score Function and Matching Process 84

5.1.3 Experiments . 86

5.2 Minimum Spanning Tree Representation and Matching 92

5.2.1 Robust Graph Representation by Trees 95

5.2.2 Tree Edit Distance and Inexact Tree Matching 100

5.2.3 Experiments . 100

5.3 Comparison of the Two Simplified Graph Representations .. . 106

5.4 Commute Time for Grouping 108

5.4.1 Grouping Steps . 108

5.4.2 Experiments . 111

5.5 Multi-body Motion Tracking 120

5.5.1 Factorisation Method Review 121

5.5.2 Commute Time Applied to the Multi-body Motion Track-

ing Problem . 124

5.5.3 Experiments . 125

5.6 Conclusions . 132

6 Conclusions and Future Work 133

6.1 Contributions . 133

v

6.1.1 Inexact Graph Matching 133

6.1.2 Simplified Graph Representations 135

6.1.3 Embedding and Clustering 136

6.2 Future Work . 138

vi

List of Figures

3.1 Super-cliques. 27

3.2 Delaunay graph of a set of points. 28

3.3 Graph Partition. 29

3.4 Distribution ofP l based on the path stepl. 34

3.5 Similarity matrices. 35

3.6 Dictionary padding with two dummy nodes. 38

3.7 Edit distance andedit pathfor two strings 39

3.8 Synthetic graphs and their partitions. 44

3.9 A sequence of synthetic graphs showing the effect of controlled

node deletion on the stability of the super-clique. 45

3.10 Sensitivity study for graphs of different size. 46

3.11 Sensitivity comparison for original graph with 40 nodes. 47

3.12 An example in inexact graph matching. 48

3.13 Delaunay graphs with their partitions from real-worlddata. . . . 50

3.14 Graph partition on Delaunay triangulations. 51

3.15 Comparison of results. 52

3.16 Correspondences between the first and the third images.. 53

3.17 Correspondences between the first and the fifth images. 53

3.18 Correspondences between the first and the seventh images. . . . 54

3.19 Correspondences between the first and the tenth images.. . . . 54

vii

3.20 Partition and matching analysis. 57

3.21 Examples of the partitions. 58

3.22 Example images from the CMU, MOVI and chalet sequences

and their corresponding graphs. 59

3.23 Pairwise spectral graph distance; (left) original graph, (right) re-

duced graph. 60

3.24 Scatter plot for the original graph and reduced graph pairwise

distance. 60

3.25 Graph edit distance; (left) original graph, (right) reduced graph . 61

3.26 Scatter plots for the original graph and reduced graph edit distance 62

3.27 MDS for the original graph (left) edit distance, (right)spectral

feature vector . 62

3.28 MDS for the reduced graph (left) edit distance, (right)spectral

feature vector . 63

4.1 Four sets of data points in their original space. Here in each set,

points belonging to the same cluster are coded with the same color. 75

4.2 The corresponding four sets of data points in the commutetime

embedded space. Color pattern is the same as Figure 4.1.76

5.1 The staircase distribution and a multilayer graph. 84

5.2 3D score visualisation and the scatter plot. 85

5.3 Synthetic graphs and their layered representations. 87

5.4 Comparison of multilayer graph matching method with partition

matching method on synthetic data. 89

5.5 Real-world house images with their multi-layer graph represen-

tations. 90

viii

5.6 Comparison of three graph matching methods on two real-world

image sets. 91

5.7 CMU house sequence. 93

5.8 Matched samples. 94

5.9 Delaunay graph example. 97

5.10 K nearest neighbour graph example. 98

5.11 Minimum spanning tree with varying t. 99

5.12 Three sequences of model houses with their spanning tree repre-

sentation. 102

5.13 Stability comparison of spanning trees. 103

5.14 House images, their graphs and extracted trees. 104

5.15 Comparison of results. 105

5.16 Random edge deletion. 107

5.17 Graph corruption matching results.108

5.18 Comparison of the two methods on graph matching. 109

5.19 An example of multi-layer graph of a 5 nearest neighbourgraph. 109

5.20 An example of a multi-layer graph with edge corruption.. . . . 110

5.21 Data clustering by commute time cut 112

5.22 Data clustering by normalised cut 112

5.23 Method comparison for synthetic image with increasingGaus-

sian noise. 114

5.24 Examples of segmentation results with different link-weight dis-

tortion. 115

5.25 Method comparison for synthetic images with differentlink-weight

distortion. 116

5.26 Real world segmentation examples. 117

5.27 Detailed segmentation process in comparison. 118

ix

5.28 Detailed segmentation process in comparison. 119

5.29 A multi-body motion separation example using Costeiraand Kanade’s

method. 123

5.30 Multi-body motion separation re-casted as a commute time clus-

tering problem. 125

5.31 Synthetic image sequence. 126

5.32 Method comparison. 127

5.33 Synthetic data. 128

5.34 Real-world video sequences and successfully tracked feature points.130

5.35 Feature point trajectories. 131

5.36 Sequence E embedded by commute time in a subspace.131

x

List of Tables

3.1 Correspondence results for the three methods. 49

5.1 Correspondence allocation results and comparison withthe meth-

ods. 91

5.2 Separation accuracy for the sequences in Fig. 5.34. 130

xi

Glossary of Symbols

Γ Graph
A Adjacency matrix
T Degree matrix
∆ Laplace operator
L Un-normalisedLaplacian matrix
L NormalisedLaplacian matrix
Λ Eigenvalue matrix ofun-normalisedLaplacian matrixL
Φ Eigenvector matrix ofun-normalisedLaplacian matrixL
Λ′ Eigenvalue matrix ofnormalisedLaplacian matrixL
Φ′ Eigenvector matrix ofnormalisedLaplacian matrixL
Ht Heat kernel
G Green’s function
G normalisedGreen’s function
O Hitting time
CT Commute time
Dt Diffusion distance
Q Shape index matrix
W Motion co-ordinates matrix
M Motion matrix
S Shape matrix
r Rank
P Transition probability matrix
Θ Co-ordinates matrix in the emededed space
C Covariance matrix
Nu Neighbour nodes set of nodeu
K Kernel
ǫ Objective function
P Normalisedadjacency matrix
l Path length of random walk on the graph
Wp Path-weighted matrix
T Edit transformation

xii

Acknowledgement

I would like to express my deep and sincere gratitude to my supervisor Professor

Edwin R. Hancock for his support and advises throughout my PhD. Without

his insightful guidance, it would not have been possible forme to complete this

thesis.

I would also like to thank my assessor Dr Richard C. Wilson forhis excellent

suggestions and encouragement.

My former colleagues Dr A. Torsello, Dr A. Al-Shaher, Mr N. Nasios, Mr A.

Doshi et al. supported me in my research work. I want to thank them for all their

help, support, interest and valuable hints.

Finally and especially, I would like to give my special thanks to my parents

for their love and support.

xiii

Declaration

I declare that the work in this thesis is solely my own except where attributed

and cited to another author. Most of the material in this thesis has been previously

published by the author. For a complete list of publications, please refer to the

next page.

xiv

List of Publications

The following is a list of publications that has been produced during the course

of my research.

2006

• Huaijun Qiu and Edwin R. Hancock, ”Graph Matching and Clustering us-

ing Spectral Partitions”, Pattern Recognition, Vol. 39, part 1, pages 22-34,

2006.

• Huaijun Qiu and Edwin R. Hancock, ”Robust Multi-body MotionTracking

using Commute Time Clustering”,9th European Conference on Computer

Vision (ECCV 2006), to appear.

2005

• Huaijun Qiu and Edwin R. Hancock, ”Image Segmentation usingCom-

mute Times”,16th British Machine Vision Conference (BMVC 2005),

UK, pages 929-938, 2005.

• Huaijun Qiu and Edwin R. Hancock, ”Commute Times, Discrete Green’s

Functions and graph Matching”,13th International Conference on Image

Analysis and Processing (ICIAP 2005), Italy, 2005.

• Fan, Zhang, Huaijun Qiu and Edwin R. Hancock, ”Evolving Spanning

Trees Using the Heat Equation”,11th International Conference on Com-

xv

puter Analysis of Images and Patterns (CAIP 2005), France, pages 272-

279, 2005.

• Huaijun Qiu and Edwin R. Hancock, ”Commute Times for Graph Spec-

tral Clustering”,11th International Conference on Computer Analysis of

Images and Patterns (CAIP 2005), France, pages 128-136, 2005.

• Huaijun Qiu and Edwin R. Hancock, ”A Robust Graph Partition Method

from the Path-weighted Adjacency Matrix”, Graph Based Representations

in Pattern Recognition (GBRPR 2005), France, pages 362-372, 2005.

2004

• Huaijun Qiu and Edwin R. Hancock, ”Grey Scale Skeletonisation with

Curvature Sensitive Noise Damping”, Syntactical and Structural Pattern

Recognition (SSPR 2004), Portugal, pages 461-469, 2004.

• Huaijun Qiu and Edwin R. Hancock, ”Grey Scale Image Skeletonisation

from Noise-Damped Vector Potential”,17th International Conference on

Pattern Recognition (ICPR 2004), UK, pages 839-842, 2004.

• Huaijun Qiu and Edwin R. Hancock, ”Spectral Simplification of Graphs”,

8th European Conference on Computer Vision (ECCV 2004), Prague, pages

114-126, 2004.

2003

• Huaijun Qiu and Edwin R. Hancock, ”Graph Partition for Matching”,

Graph Based Representations in Pattern Recognition (GBRPR2003), UK,

pages 178-189, 2003.

Submitted Papers

xvi

• Huaijun Qiu and Edwin R. Hancock, ”Robust Graph Representation from

the Heat Kernel Path-weight Distribution”, Submitted to Pattern Recogni-

tion.

• Huaijun Qiu and Edwin R. Hancock, ”Spectral Graph Matching and Sim-

plification Method”, Submitted to Pattern Recognition.

• Huaijun Qiu and Edwin R. Hancock, ”Image Segmentation and Multi-

body Motion Tracking from Commute Times”, Submitted to IEEETrans-

actions on Pattern Analysis and Machine Intelligence.

xvii

Chapter 1

Introduction

1.1 The Problem

This thesis is concerned with using graph spectral methods to solve problems

from computer vision. Although graph spectral methods havebeen successfully

applied to many computer vision problems, including graph matching, graph

embedding and clustering, the principle behind the technique is still relatively

under-developed and many questions remain unanswered.

Graph spectral methods are concerned with using the eigenvalues and the

corresponding eigenvectors of the data proximity matrix for partitioning, em-

bedding and clustering. Most of the existing methods focus on using only one

or a few of the eigenvectors. For example, random-walk basedgraph matching

methods (Robles-Kelly and Hancock, 2005a; Caelli and Kosinov, 2004) use the

largest eigenvector of the adjacency matrix to convert a graph into a string. In

data clustering and image segmentation, a well known technique (Shi and Malik,

2000) is to use an eigenvector as a cluster indicator. The components of the lead-

ing eigenvector can be used to recursively bipartition the nodes of the graph into

clusters. Furthermore, most of the existing data embeddingmethods such as the

principle component analysis(PCA) (Hotelling, 1933) and multi-dimension scal-

1

ing(MDS) (Kruskal and Wish, 1978) use just a few eigenvectors of the affinity

matrix to embed data into a low dimensional subspace.

Although elegant to use, these methods suffer from unstableeigenvectors and

are vulnerable to noise. Even small disturbances in graph structure will result in

a considerable variation in the graph spectrum. This creates a significant obstacle

for matching graphs with different structure or different size. Furthermore, by

using only one or a few eigenvectors, much useful information contained in the

remainder of the spectrum is also discarded.

One way to overcome these problems is to use the whole Laplacian eigen-

spectrum. As pointed out in (Alpert and Yao, 1995), utilising more eigenvectors

always gives better clustering results. Also in (Wilson et al., 2005), a graph rep-

resentation based on the full adjacency eigenspectrum gives far richer structural

information. Motivated by the need to improve existing spectral methods, our

aim in this thesis is to develop more sophisticated methods using the full Lapla-

cian spectrum.

1.2 Goals

The overall goal of this thesis is to develop more sophisticated graph spectral

methods, and to apply them to a variety of applications from compute vision.

The applications considered are as follows:

• Robust graph representation: Simpler graph representations need to be

constructed based on spectral analysis of the graph for the purposes of

efficient graph matching and clustering.

• Inexact graph matching: With stable graph representationsin hand, we

shall develop reliable graph matching methods which are robust to struc-

tural corruption and noise.

2

• Embedding and clustering: A spectral embedding algorithm for the pur-

pose of clustering is developed that improves data coherence.

• Multi-body motion tracking: We aim to overcome the effects of noise and

outliers, which render the classical factorisation methodimpractical, by

casting the motion tracking problem into a spectral clustering framework.

1.3 Thesis Overview

At the beginning of this chapter, we have discussed the difficulties spectral meth-

ods have confronted when they are applied to computer visionproblems. Besides

spectral methods, there have been many alternative methodsfor solving these

problems in the computer vision literature and we will briefly review them in

Chapter 2.

Based on a spectral partition of a graph, Chapter 3 presents agraph match-

ing method which simplifies the inexact graph matching problem by matching

the non-overlapping partitions. The new graph representations constructed from

these subgraphs are stable under structural corruptions and have been used for

category based clustering.

In Chapter 4, we focus on the theory of our clustering method and solve

data clustering problems by enhancing data coherence. We will show how the

method is based in spectral graph theory and why it is superior to the normalised

cut. Closely related to this, an embedding method for data-clustering is also

presented and its advantages over other embedding methods are explained.

Chapter 5 is concerned with the real world application of thetheory devel-

oped in Chapter 4. In this chapter, we make four contributions. The first of

these is to develop a graph matching method based on a simulation of a dif-

fusion process on a graph. The graph is decomposed into several concentric

3

layers using the commute time and graph matching is performed in a layer to

layer scheme. Secondly, taking account of the robustness ofthe commute time

to structural error and noise, we propose a graph simplification method based

on minimum spanning trees. Thirdly, as an application in spectral clustering,

an image segmentation method is developed by performing bipartition using the

smallest eigenvector of the commute time matrix. Finally, to solve the noise

contaminated multi-body motion tracking problem, we embedthe shape interac-

tion matrix into a commute time preserving subspace and group objects using a

simple k-means method.

Chapter 6 gives conclusions and focuses on the successes andshortcomings

of the thesis. We also discuss directions for future research.

4

Chapter 2

Literature Review

The overall aim of the thesis is to apply spectral methods to solve computer

vision problems. In this chapter, we will review the relevant literature. First,

spectral graph theory is introduced. We then focus in detailon the computer

vision problems studied. These include graph matching, graph simplification

and seriation, graph embedding and clustering, image segmentation and motion

tracking. Finally, the graph spectral algorithms for solving these problems are

reviewed.

2.1 Graph Spectrum

Graph spectral methods aim to utilise the eigenvalues and eigenvectors of the

Laplacian matrix to characterise graph structure.

The earliest literature on algebraic graph theory can be traced back to that of

Collatz and Sinogowitz (Collatz and Sinogowitz, 1957). This work focused on

the cospectrality of graphs as well as the fundamental inequalities for bounding

the eigenvalues. Since then, a large body of literature has emerged aimed at

exploiting the relationship between the spectral and structural properties of a

graph. This literature is well documented in several surveys including Biggs

5

(Biggs, 1974), Cvetković, Doob and Sachs (Doob et al., 1995), Chung (Chung,

1997) and Mohar (Mohar, 1997).

One of the most important matrices in spectral graph theory is the adjacency

matrix. By representing graphs in terms of their adjacency matrices, we open up

the possibility of using tools from linear algebra to study the properties of graphs.

For example, the trace of the adjacency matrix is equal to twice the number of

loops on the graph. The number of walks with lengthl joining two vertices is

the lth power of the adjacency matrix. The number of edges and triangles in a

graph corresponds to different coefficients in the characteristic polynomial of the

adjacency matrix.

The graph spectrumrefers to the set of eigenvalues of the adjacency or Lapla-

cian matrix of a graph (Biggs, 1974). The spectrum is useful because it can be

computed quickly and it conveys many important properties of a graph. For

example, the component number, chromatic number, diameter, circuit number

and the clique number (Dulmage and Mendensol, 1967), (Collatz and Maas,

1987), (Marcus and Minc, 1964), (Cvetkovic’ and Rowlinson,1990), (Doob

et al., 1988) are all given by the spectrum. Furthermore, theisomorphism of

two graphs can also be determined by their spectra. If the eigenvalues of the

adjacency matrices of the two graphs are not equal, then the graphs will not be

isomorphic (although the converse does not apply due to co-spectrality). The

two most important components in the graph spectrum are the largest and the

second largest eigenvalues of the adjacency matrix together with the correspond-

ing eigenvectors. The largest eigenvalue is also called theindexof the graph

and it is useful for estimating the connectivity of the graph. The second largest

eigenvalue on the other hand is closely related to the properties of rapidly mixing

Markov chains. For example, it can be used for estimating theconvergence rate

of a Markov chain on a graph (Desai and Rao, 1993), (Sinclair,1991), (Diaconis

6

and Stroock, 1991).

Although the adjacency matrix and its spectrum have been studied for un-

derstanding the structure of graphs, their properties are mostly understood for

specific graphs (such as regular graphs, symmetric graphs, random graphs and

line graphs). In order to bring spectral methods to a more general family of

graphs, many researchers seek answers from the link betweenspectral graph

theory and differential geometry (Fiedler, 1993),(Chung,1997). This resulted in

the study of the Laplacian matrix (degree matrix minus adjacency matrix) as well

as its eigenspectrum (Chung, 1997), (Merris and Grone, 1994), (Grone, 1991),

(Merris, 1994), (Merris, 1995) , (Mohar, 1991), (Mohar, 1992).

The Laplacian matrix is a discrete analogy of the Laplacian operator on a

Riemannian manifold (Chavel, 1984). It is important in the study of energy

minimisation (Chung, 1997) and network communication (Kirchhoff, 1847). In

a useful review, Mohar (Mohar, 1997) has summarised some important applica-

tions of the Laplacian eigenvalues. These include the max-cut problem, semidef-

inite programming and steady state random walks on Markov chains. Among

the eigenvalues of the Laplacian matrix, the second smallest eigenvalue plays a

special role. This is due to its connection with graph invariants, including con-

nectivity (Merris and Grone, 1987), (Fiedler, 1989), (Merris and Grone, 1990),

the isoperimetric number (minimal possible ratio between the size of edges con-

necting a pair of subgraphs and the smallest volume of them),the maximum cut

(a bipartition of graph so that the sum of the weights of the edges going from one

subset to the other is maximised) and the independent number(the size of a max-

imum independent set), etc. In this thesis, we are interested in the connectivity

information supplied by this eigenvalue together with its corresponding eigen-

vector, namely the Fiedler vector. The Fiedler vector (Fiedler, 1973),(Fiedler,

1975) has been extensively used for the purpose of image segmentation (Shi

7

and Malik, 2000), data clustering (Weiss, 1999) and graph labelling (Diaz et al.,

2000), (Juvan and Mohar, 1992).

Another important concept that we are concerned with in thisthesis is the

random walk on the graph. Particularly, we are interested inrandom walks on

undirected graphs, which can be viewed as time-reversible Markov chains (Al-

dous and Fill, 2003). Many properties of random walks (or Markov chains),

such as the hitting time, the commute time and the cover time are determined

by the graph spectrum. For a pair of nodesu andv, the hitting time is defined

as the expected number of steps before nodev is visited, commencing from

nodeu. In other words, the commute time is the expected time for therandom

walk to travel from nodeu to nodev and then return. The cover time is the

expected number of steps to reach each node on the graph. For agood review,

see Lovász’s survey (Lovász, 1996) and Chung’s book (Chung, 1997). Recently,

random walks (Sood et al., 2005) have found widespread use ininformation re-

trieval and structural pattern analysis. For instance, therandom walk is the basis

of the Page-Rank algorithm which is used by the Googlebot search engine (Brin

and Page, 1998). In computer vision, random walks have been used for im-

age segmentation (Meilă and Shi, 2000) and clustering (Saerens et al., 2004).

More recently both Gori, Maggini and Sarti (Gori et al., 2004) and Robles-Kelly

and Hancock (Robles-Kelly and Hancock, 2005b; Robles-Kelly and Hancock,

2005a) have used random walks to sort the nodes of graphs intoa string order

for the purpose of graph-matching. Most of these methods usea simple approx-

imate characterisation of the random walk based either on the leading eigenvec-

tor of the transition probability matrix or, equivalently,the Fiedler vector of the

Laplacian matrix (Lovász, 1996).

A lazy random walk is a random walk with a probability of, or remaining,

static. The behaviour of a lazy random walk on a graph is linked to the infor-

8

mation flowing (with time) across the edges connecting the nodes. This process

can be characterised using the heat equation (Kondor and Lafferty, 2002). The

solution of the heat equation, or heat kernel, can be found byexponentiating

the Laplacian eigensystem over time (Chung, 1997). The heatkernel, or diffu-

sion kernel, contains a considerable amount of informationconcerning the dis-

tribution of paths on a graph (Chung and Yau, 1997). As mentioned by Chung

(Chung, 1997), the definition for the heat kernel on graphs isanalogous to the

heat kernel on Riemannian manifolds (Yau and Schoen, 1988),This field of study

is sometimes referred as spectral geometry (Auscher et al.,2003), (Grigor’yan,

2000), (Lafferty and Lebanon, 2005). It has been applied to solve graph em-

bedding and clustering problems (Chung and Yau, 1999), (Baiand Hancock,

2004). One of the most valuable properties of the heat kernelfor charactering

graphs is the presence of the time variablet. An alternative, but closely related,

characterisation of the graph is the discrete Green’s function, which captures

the distribution of sources in the heat flow process. The Green’s function is the

pseudo-inverse of the Laplacian (Chung and Yau, 2000). As a result, it shares

the same spectrum with the Laplacian matrix, except that theeigenvalues are

reciprocated. It turns out that the Green’s function can be used in conjunction

with diffusion-like problems on graphs (such as electric potential distribution

and random walks). Some examples of the Green’s function on regular graphs

can be found in Ellis’s review (Ellis, 2002). Not surprisingly, there is a direct

link between commute times and the Green’s function (Chung and Yau, 2000).

9

2.2 Computer Vision and Pattern Recognition Prob-

lems and The Spectral Solutions

In this section, we review several problems in the computer vision and pattern

recognition field, and show how spectral methods can be applied to solve these

problems.

2.2.1 Graph Matching

The pioneering work done by Barrow and Burstall (Barrow and Popplestone,

1971) and by Fischler and Enschlager (Fischler and Elschlager, 1973) in the

1970’s shows how to realize the recognition of abstract pictorial descriptions

by matching graph structures. Since then, graph matching has been a sustained

research activity. In this section, we review the literature on graph matching.

Since one of the perennial difficulties associated with the effective match-

ing of relational descriptions is the need to accommodate inexactness caused

by inevitable noise and clutter, early work concentrated onmeasuring relational

similarities. To overcome this problem graph matching can be posed as max-

imising a measure of relational similarity or minimising asa distance function.

For instance, Shapiro and Haralick (Shapiro and Haralick, 1985) showed how to

realize inexact graph matching by counting the consistent subgraphs. Later on,

Fu and his co-workers (Eschera and Fu, 1986), (Sanfeliu and Fu, 1983) showed

how string edit distance could be extended to relational structures. Here edit dis-

tances are computed using separate costs for relabelling, insertion and removal

of nodes. This idea was further extended by Bunke and his co-workers (Bunke,

1999), (Messmer and Bunke, 1998). They showed that the edit distance is related

to the size of the maximum common subgraph.

Most of the work above adopted a heuristic or goal directed approach to

10

measure graph similarity. A more principled approach is to adopt a probabilis-

tic framework. For instance, Wong and You (Wong and You, 1985) have de-

fined an entropy measure for structural graph matching; Christmas, Kittler and

Petrou (Christmas et al., 1995) developed an evidence combining method. They

use probability distribution functions to model the pairwise attribute relations

and cast the graph matching problem into a Bayesian framework. Wilson and

Hancock (Wilson and Hancock, 1997) have shown how to construct a mixture

model over a dictionary of structure-preserving mappings between two graphs.

An alternative to the exhaustive compilation of dictionaries is the edit distance

method of Myers, Wilson and Hancock (Myers et al., 2000) which showed that

the Levenshtein distance can be used to model the probability distribution for

structural errors. Luo and Hancock (Luo and Hancock, 2001) have posed the

structural matching problem as maximum likelihood estimation and solved this

problem using the apparatus of the EM algorithm.

Continuous and discrete optimisation methods can also be used for struc-

tural graph matching. The methods used include genetic search (Cross et al.,

1997), (Myers and Hancock, 1997), simulated annealing (Williams et al., 1999),

tabu search (Williams et al., 1999) and hybrid method (Magyar et al., 2000).

Cross, Wilson and Hancock (Cross et al., 1997) have cast the genetic search into

a Bayesian framework using the global consistency measure.Rather than per-

forming random crossover they realized the process at the level of subgraphs.

Furthermore, they employed a hill-climbing process to locate the nearest local

optimum. Another difficulty of applying genetic search is the setting of parame-

ters. This problem was intensively discussed by Myers and Hancock when they

applied the method to the graph labelling problem (Myers andHancock, 1997).

Recently, there has been increased interest in the use of spectral graph the-

ory for characterising the global structural properties ofgraphs. There are sev-

11

eral examples of the application of spectral matching methods for grouping and

matching in the computer vision literature. For instance, Umeyama has shown

how graphs of the same size can be matched by performing singular value de-

composition on adjacency matrices (Umeyama, 1988). The permutation matrix

that brings the nodes of the graphs into correspondence is found by taking the

outer product of the matrices of left eigenvectors for the two graphs. In related

work, Shapiro and Brady (Shapiro and Brady, 1992) have shownhow to locate

feature correspondence using the eigenvectors of a point-proximity weight ma-

trix. However, these two methods fail when the graphs being matched contain

different numbers of nodes. A number of works have shown thatthis problem

can be overcame by using the apparatus of the EM algorithm (Luo and Han-

cock, 2001; Wilson and Hancock, 1997). Shokoufandeh, Dickinson, Siddiqi and

Zucker (Shokoufandeh et al., 1999) have shown that graphs can be efficiently

retrieved using an indexing mechanism that maps the topological structure of

shock-trees to a low-dimensional vector space. Here the topological structure

is encoded by exploiting the interleaving property of the eigenvalues. Based

on the spectral analysis of point-sets, Carcassoni and Hancock (Carcassoni and

Hancock, 2000), (Carcassoni and Hancock, 2003) have shown that the modal

structure of point-sets can be embedded within an EM framework and the prob-

abilities of point correspondence can be computed using a proximity matrix. To

overcome difficulties in node correspondence for differentsized graphs, Wilson,

Luo and Hancock (Wilson et al., 2005), (Luo et al., 2004) haveproposed con-

struction of permutation invariant polynomials and have characterised graphs

using the coefficients of these polynomials. They have shownhow to embed

vectors of permutation invariants into a low-dimensional space. Bai, Yu and

Hancock (Bai et al., 2004a), (Bai et al., 2004b) have gone onestep further and

realized graph matching by recovering the correspondence of nodes embedded

12

in the low-dimensional space. They commence by using Isomapto embed the

nodes of a graph into a metric space and align the points in this space using a

variant of the Scott and Longuet-Higgins algorithm (Scott and Longuet-Higgins,

1990).

2.2.2 Graph Seriation and Simplification

An alternative of using graph-spectra for the purpose of graph matching is to

use eigenvector methods to extract a simplified structure from a graph. This

simplified structure is more easily matched than the original graph. Although in-

exact graph-matching is a problem of potentially exponential complexity, error-

tolerant graph matching can be simplified using decomposition methods (as demon-

strated by Messmer and Bunke (Messmer and Bunke, 1998)). This reduces the

problem to one of subgraph indexing.

The earliest work on graph seriation and simplification can be traced back to

the graph layout problem (Harper, 1964), (Harper, 1966). Graph layout problems

are concerned with re-arranging the input graph so that an objective function is

optimised. A large number of applications can be posed as graph layout prob-

lems. These include optimisation of networks for parallel computer architec-

tures, VLSI circuit design, information retrieval, numerical analysis, computa-

tional biology and scheduling. One of the simplest (and the area of our interest)

is the minimum linear arrangement problem. This is also referred as optimal

linear ordering, minimum-1-sum or graph seriation. The problem involves plac-

ing the nodes of a graph in a serial order which is suitable forthe purposes of

visualisation (Diaz et al., 2000), job scheduling (Adolphson, 1977) and graph

drawing (Shahrokhi et al., 2001). The MinLA problem is NP-complete (Garey

et al., 1976) but optimal solutions can be obtained for trees(Chung, 1988) and

some special graphs (Muradyan and Piliposyan, 1980). In order to obtain feasi-

13

ble solutions for the MinLA problem for general graphs, several approximation

methods have been proposed. These include metric techniques (Rao and Richa,

1998), simulated annealing (Petit, 2000) and spectral methods (Juvan and Mo-

har, 1992), (Atkins et al., 1998). Juvan and Mohar’s (Juvan and Mohar, 1992)

spectral sequencing (also known as the path method) first computes the Fiedler

vector of the Laplacian matrix of the input graph and then orders the result by

ranking the components. The lower bound is determined by thesecond smallest

eigenvalue, which is the eigenvalue corresponding to the Fiedler vector.

An extension of the MinLA problem is the consecutive ones problem. This

involves finding the serial ordering of nodes, which maximally preserves edge

connectivity. This is a complex problem, and to simplify it,approximate solu-

tion methods have been employed. These involve casting the problem in an op-

timisation setting. Hence techniques such as simulated annealing and mean field

annealing have been applied to the problem. However, recently, a graph-spectral

solution to the problem has been found. Atkins, Boman and Hendrikson (Atkins

et al., 1998) have shown how to use the Fiedler eigenvector ofthe Laplacian

matrix to sequence relational data. The method has been successfully applied to

the consecutive ones problem and a number of DNA sequencing tasks. There

is an obvious parallel between this method and steady state random walks on

graphs, which can be located using the leading eigenvector of the Markov chain

transition probability matrix. However, in the case of a random walk the path

is not guaranteed to encourage edge connectivity. The spectral seriation method

of Robles-Kelly and Hancock (Robles-Kelly and Hancock, 2005a), on the other

hand, does impose edge connectivity constraints on the recovered path. They

have shown how to use eigenvector methods to reduce graphs tostrings, and

have then applied string matching methods to the resulting structures. In related

work, Yu and Hancock (Yu and Hancock, 2005a; Yu and Hancock, 2005b) have

14

shown how to cast the graph seriation problem into a matrix setting so that it can

be solved using semi-definite programming(SDP). SDP is a technique related to

spectral graph theory since it also relies on matrix representation.

2.2.3 Embedding and Clustering

The low dimensional representation of high dimensional data and clustering is

an important topic in pattern recognition. The fundamentalproblem of dimen-

sionality reduction is how to embed the data in a compact space for the purposes

of analysis and visualisation. Although a variety of methods exist, they share the

same principle of using one or more eigenvectors of an affinity matrix or similar-

ity matrix for the embedding. For example, principle component analysis (PCA)

(Hotelling, 1933) and kernel principle component analysis(KPCA) (Scholkopf

et al., 1998; Aizerman et al., 1964) use the leading eigenvectors of the covari-

ance matrix to determine the projection directions with maximal variance. Linear

discriminant analysis (LDA) (Fisher, 1936) and KDA (kernelversion of LDA)

search for the directions that are maximally discriminating. Although different

from PCA and KPCA, the solution of LDA and KDA is obtained using the eigen-

vectors of the projection matrix. This is the ratio of the trace of the between-class

scatter matrix and within-class scatter matrix. Multi-dimensional scaling (MDS)

(Kruskal and Wish, 1978) uses the eigenvectors of a pairwisedistance matrix

to find an embedding that minimises the distance of the data. As an extension,

isometric feature mapping (Isomap) (Tenenbaum et al., 2000) employs MDS to

preserve the geodesic distances of the data pairs located inthe manifold. Locally

linear embedding (LLE) (Roweis and Saul, 2000) maps the input data to a lower

dimensional space in a manner that preserves the local neighbourhood. It uses

a matrix containing the correlations of the data in barycentric coordinates. The

coordinates in the lower dimensional space are the corresponding components

15

of the smallest eigenvectors of this matrix. The Laplacian eigenmap (Belkin and

Niyogi, 2003; Belkin and Niyogi, 2001), and its linear version, locality preserv-

ing projection (LPP), (He and Niyogi, 2003), use the Fiedlervector of a Lapla-

cian matrix to preserve the similarities of the neighbouring points. Finally, the

recently developed diffusion map (Lafon and Lee, 2005; Coifman et al., 2005)

also uses the eigenvalue-scaled eigenvectors of the transition matrix as coordi-

nates of the embedded points as a simulation of a heat diffusion process. The

embedded structure may be varied by varying a time parametert.

The eigenspectrum of an affinity matrix plays an important role in dimen-

sionality reduction methods. This is because by ranking theeigenvectors with

respect to the magnitude of the corresponding eigenvalues,the significance of

the correlations within the data are accordingly evaluated. The orthogonality of

the eigenvectors also offers a natural bases for the embedded data. It is impor-

tant to note that the dimensionality reduction methods discussed above are con-

cerned with recovering the lower dimensional structure of the data, rather than a

way of pre-grouping. Here we refer pre-grouping as a processperformed before

clustering. It is aimed at reorganising data in a way that makes clustering eas-

ier. Although some of the methods can be used as a pre-grouping process, such

as the Laplacian eigenmap and KPCA, their utility is restricted. For example,

the Laplacian eigenmap embeds similar data so that it is close in the embedded

space. On the other hand, KPCA maintains the maximum variance of the em-

bedded data in the vector space in such a way that it can be separated using a

kernel function.

Clustering is the un-supervised classification of patternsbased on their sim-

ilarities (Jain et al., 1999). As clustering plays such a central role in pattern

analysis, a large number of alternative approaches to the problem have been

developed over the last four decades. The two main approaches are statistical

16

method and graph-theoretic methods. Details of both will bepresented in the

next two paragraphs.

Parametric models assume that patterns are drawn from a mixture of several

distributions, such as the Gaussian, and the goal is to estimate the parameters of

the distribution. This approach encompasses the maximum likelihood estima-

tion (MLE) (Dempster et al., 1977), expectation maximisation algorithm (EM)

(Zhang et al., 2003) and K-means (MacQueen, 1967). MLE estimates the pa-

rameters of a mixture by maximising the logarithmic function of the underly-

ing probability distribution of a given data set. EM is an iterative optimisation

method to estimate some unknown parameters defined in the model. K-means

aims to cluster data intok partitions by minimising the total intra-cluster vari-

ance. Nonparametric techniques such as histogram based estimation (Silverman,

1986), kernel density estimation (Elgammal et al., 2003) and mean shift (Co-

maniciu, 2003) are also employed for density based clustering. The basic idea

is to view the clusters as regions of the pattern space in which the patterns are

dense, separated by regions of low pattern density. Then theclusters can be

identified by searching for regions of high density. Histogram based estimation

divides the pattern space into a number of non-overlapping regions based on the

constructed histograms. Mean shift (Comaniciu and Meer, 2002) is a recursive

kernel density estimation method that shifts each data point to the average of data

points in its neighbourhood.

Graph-theoretic methods define clusters in terms of a weighted data prox-

imity matrix. The earliest method is based on searching for structures in the

similarity graph such as the minimal spanning tree (MST) (Zahn, 1971). Using

the idea of the maximal cliques of a graph, Pavan and Pelillo (Pavan and Pelillo,

2003a; Pavan and Pelillo, 2003b) improve the similarity measure by introducing

the concept of a dominant set. The resulting utility measureis optimised using a

17

relaxation scheme. The earliest spectral clustering method is that of Donath and

Hoffman (Donath and Hoffman, 1972). They suggested to use the eigenvectors

of an adjacency matrix to find partitions. Later, Fiedler (Fiedler, 1973) proposed

splitting the partitions by using the second smallest eigenvector of the Laplacian

matrix. Since then, the spectral clustering method has proved to be successful

and has been the focus of much research. Scott and Longuet-Higgins (Scott

and Longuet-Higgins, 1990) have developed a method for refining the block-

structure of the affinity matrix by relocating its eigenvectors. At the level of im-

age segmentation, several authors have used algorithms based on the eigenmodes

of an affinity matrix to iteratively segment image data. For instance, Sarkar and

Boyer (Sarkar and Boyer, 1996) have a method which uses the leading eigen-

vector of the affinity matrix, and this locates clusters thatmaximise the average

association. This method is applied to locate line-segmentgroupings. Perona

and Freeman (Perona and Freeman, 1998) have a similar methodwhich uses the

second largest eigenvector of the affinity matrix. The method of Shi and Malik

(Shi and Malik, 2000), on the other hand, uses the normalisedcut which balances

the cut and the association. Clusters are located by performing a recursive bisec-

tion using the eigenvector associated with the second smallest eigenvalue of the

Laplacian, i.e. the Fiedler vector. Focusing more on the issue of post-processing,

Weiss (Weiss, 1999) has shown how this, and other closely related methods, can

be improved using a normalised affinity matrix. Shi and Meil˘a (Meil̆a and Shi,

2000) have analysed the convergence properties of the method using Markov

chains. Ng et al’s (Ng et al., 2001) method first embeds the graph into a space

and then clusters the embedded points using a K-means algorithm. There are

good reviews of spectral clustering methods in the literature. Spielman and Teng

(Spielman and Teng, 1996) investigated why spectral partitioning works on pla-

nar graphs and meshes. Kannan et al (Kannan et al., 2000) haveproposed a

18

new bi-criteria measure for assessing the quality of a spectral clustering. They

argued that a good clustering method should be able to maximise intra-cluster

association and minimise inter-cluster edge linkage simultaneously. Alpert and

Yao (Alpert and Yao, 1995) analyse the number of eigenvectors that should be

used in spectral clustering and suggest that it is best to useas many eigenvectors

as possible. Finally, a further unifying view regarding spectral embedding and

clustering is given by Brand and Huang (Brand and Huang, 2003). In their work,

they have used the angles between the eigenvectors to explain the functionality

of the spectral clustering methods.

2.2.4 Motion Tracking

Multi-body motion tracking is a challenging problem which arises in shape from

motion, video coding, surveillance and the analysis of movement. One of the

classic techniques is thefactorisation methodof Costeira and Kanade (Costeira

and Kanade, 1997; Costeira and Kanade, 1995). The basic ideaunderpinning

this method is to use singular value decomposition (SVD) to factorise the feature

trajectory matrix into a motion matrix and a shape matrix. The shape interaction

matrix is found by taking the outer product of the right eigenvector matrix, and

can be used to identify any independently moving objects present. Gear (Gear,

1998) has developed a related method based on the reduced rowechelon form of

the matrix where object separation is achieved using probabilistic analysis on a

bipartite graph. Both methods work well in the ideal case when there is no noise

(i.e. feature-point jitter) and outliers are not present, however, real-world image

sequences usually are contaminated by noise. There have been several attempts

to overcome this problem. For instance, Ichimura (Ichimura, 1999) has improved

thefactorisation methodby using a discriminant criterion to threshold-out noise

and outliers.

19

Rather than working with a matrix derived from the data, someresearchers

place the emphasis on the original data. Kanatani (Kanatani, 2001; Sugaya and

Kanatani, 2004; Sugaya and Kanatani, 2003) developed a subspace separation

method by incorporating dimension correction and model selection. Wu et al

(Wu et al., 2001) argue that the subspaces associated with the different objects

are not only distinct, but also orthogonal. Hence they employ an orthogonal sub-

space decomposition method to separate objects. This idea is further extended

by Fang et al who use independent subspace (Fan et al., 2004b)and multiple

subspace inference analysis (Fan et al., 2004a). In addition to attempting to im-

prove the behaviour of the factorisation method under noise, there has been a

considerable effort to overcome problems such as degeneracy, uncertainty and

missing data (Gruber and Weiss, 2004; Zelnik-Manor and Irani, 2003; Anandan

and Irani, 2002).

The factorisation method is closely akin to graph-spectralmethods used in

clustering, since it uses the eigenvector methods to determine the class-affinity

of sets of points. In fact, Weiss (Weiss, 1999) has presenteda unifying view of

spectral clustering methods, and this includes the factorisation method. There

has been some dedicated effort devoted to solving the objectseparation problem

using spectral clustering methods. Park et al (Park et al., 2004) have applied a

multi-way min-max cut clustering method to the shape interaction matrix. Here

the shape-interaction matrix is used as a cluster indicatormatrix and noise com-

pensation is effected using a combination of spectral clustering and subspace

separation methods.

20

2.3 Motivation and Contributions

In the previous section, we have reviewed not only the related literature on

spectral graph theory, but also methods developed based on these theories for

solving various computer vision problems. In particular, we have observed how

the Fielder vector has been employed for solving graph bipartition and seriation

problems. Although there has been some effort aimed at extending its utility to

graph matching, the results have not been optimal due to the methods instability

and the loss of information it causes. Focusing on these two obstacles, in this

thesis, we are interested in developing new methods by usingthe properties of

the Fiedler vector for robust graph matching.

More specifically, our aim is to develop an inexact graph matching method

based on the robust decomposition of a graph into partitions. Here we use the

Fiedler vector to find a non-overlapping partitions of a graph. These partitions

are subgraphs comprised of a centre node together with its immediate neigh-

bours. In order to improve the robustness of the partitions to structural cor-

ruption and noise, we incorporate a diffusion process on thegraph to smooth

away the effects of errors. The implementation is carried out by using the heat-

kernel to construct a path-weighted matrix, which is more robust to noise than

the original adjacency matrix and can be used for regulatinggraphs. With the

partitions in hand, we will be able to realize graph matchingby comparing their

sub-structures. The matching process is cast into a hierarchical framework by

first locating the correspondence between partitions and then individual corre-

spondences between nodes are obtained by comparing the partitions in detail.

To test if the partitions we obtained can be used for graph simplification,

we use them for category-based clustering. First, we decompose the original

graph into non-overlapping partitions. Then we construct asimpler graph rep-

resentation whose nodes are the centre nodes of the partitions and the edges are

21

constructed according to the adjacency relations between the partitions. Finally,

we take random images from different groups and examine whether clusterings

provided by the simplified graph representations can deliver the correct grouping

result.

Our observation is that the affinity of nodes conveyed by commute time is

large for pairs of nodes residing in a cluster, and small for those falling outside

the cluster. The commute time can lead to a finer measure of cluster cohesion

than the simple use of edge-weight which underpins algorithms such as the nor-

malised cut (Shi and Malik, 2000). Furthermore, it has been shown (Weiss,

1999) that the reason certain methods succeed in solving thegrouping problem

is because they lead to an affinity matrix with a strong block structure. In fact,

this block structure can be further amplified by the commute times (Fischer and

Poland, 2005). Hence, commute time maybe used for solving clustering prob-

lems.

In Chapter 4 of this thesis we will first review the spectral basic of the com-

mute time and then in Chapter 5, we will present its applications. We will show

how commute time is related to the heat kernel and how it can becomputed us-

ing the full Laplacian eigenspectrum. A link between the commute time and the

Green’s function shows that the commute time is a metric. To extend this dis-

tance measure one step further, a commute time preserved embedding method

has been proposed and its relation to alternative embeddingmethods is also ex-

amined. As we have already observed, commute time can be applied to solve

clustering problems. To further understand its properties, a comparison with the

normalised cut (Shi and Malik, 2000) will be carried out.

22

Chapter 3

Graph Matching and Simplification

using Spectral Partitions

The aims in this chapter are twofold. First, we consider whether the partitions

delivered by the Fiedler vector can be used to simplify the graph-matching prob-

lem. Secondly, we investigate whether the information conveyed by the heat

kernel can be used for stabilising the spectral partitioning of graphs. We seek a

more global graph representation for the purpose of graph matching, graph sim-

plification and graph clustering than can be achieved using the adjacency matrix

alone.

For our first goal, we focus on two problems. The first of these is to use the

Fiedler vector to decompose graphs by partitioning them into super-cliques. Our

aim is to explore whether the partitions are stable under structural error, and in

particular whether they can be used for the purposes of graph-matching.white

The second problem studied is whether the partitions can be used to simplify the

graphs in a hierarchical manner. Here we construct a graph inwhich the nodes

are the partitions and the edges indicate whether the partitions are connected by

edges in the original graph. This spectral construction canbe applied recursively

23

to provide a hierarchy of simplified graphs. We show that the simplified graphs

can be used for efficient and reliable clustering.

To achieve the second goal, we use the heat-kernel to construct a path-weighted

adjacency matrix to represent the graph structure. The weighting process aims to

smooth away the effects of structural error due to node or edge deletions. We ex-

plore whether this representation can be used to characterise the graph globally

and whether it is stable under structural error. In particular, we explore its use in

conjunction with our graph partition method proposed earlier for the problem of

graph matching.

3.1 Laplacian Matrix

We denote a weighted graph byΓ = (V,E) whereV is the set of nodes and

E ⊆ V ×V is the set of edges. LetΩ be the weighted adjacency matrix satisfying

Ω(u, v) =











w(u, v) if (u, v) ∈ E

0 otherwise

Further letT (Γ) = diag(dv; v ∈ V) be the diagonal weighted degree matrix with

Tu =
∑|V |

v=1 w(u, v). Theun-normalisedweighted Laplacian matrix is given by

L = T − Ω, and has elements

LΓ(u, v) =























∑

(u,k)∈E w(u, k) if u = v

−w(u, v) if u 6= v and(u, v) ∈ E

0 otherwise

(3.1)

24

Thenormalizedweighted Laplacian matrix is defined to beL = T−1/2LT−1/2,

and has elements

LΓ(u, v) =























1 if u = v

−w(u,v)√
dudv

if u 6= v and(u, v) ∈ E

0 otherwise

(3.2)

ThenormalizedLaplacianL can also be viewed as a harmonic operator that acts

on the functionf : V (Γ) 7→ ℜ with the result thatLf(x) =
∑

x′ Lx,x′f(x′). The

spectral decomposition of theun-normalisedLaplacian matrix is

L = ΦΛΦT =

|V |
∑

i=1

λiφiφ
T
i

whereΛ = diag(λ1, λ2, ..., λ|V |) is the diagonal matrix with the ordered eigen-

values as elements andΦ = (φ1|φ2|....|φ|V |) is the matrix with the ordered eigen-

vectors as columns. The corresponding eigen-decomposition of thenormalized

Laplacian matrix isL = Φ′Λ′Φ′T with Λ′ andΦ′ be the eigenvalue matrix and

eigenvector matrix respectively.

The Laplacian matrix has a number of important properties. It is symmet-

ric and positive semidefinite. The eigenvector~e = (1, 1, . . . , 1)T corresponds to

the trivial zero eigenvalue. If the graph is connected then all other eigenval-

ues are positive and the smallest eigenvalue is a simple (i.e. un-repeated) one,

which means that the number of connected components of the graph is equal

to the multiplicity of the smallest eigenvalue. If we arrange all the eigenvalues

from the smallest to the largest i.e.0 = λ1 ≤ λ2 . . . ≤ λn, the most important

are the largest eigenvalueλmax and the second smallest eigenvalueλ2, whose

corresponding eigenvector is referred to as theFiedler Vector(Fiedler, 1975).

25

3.2 Graph Partition

The aim in this section is to use the Fiedler vector to partition graphs into non-

overlapping super-cliques and to use the super-cliques generated by this decom-

position for the purposes of graph-matching and graph-simplification.

Fiedler vector has the property of grouping similar nodes ofa graph and has

been used in applications such as graph seriation (Robles-Kelly and Hancock,

2005a) and image segmentation (Shi and Malik, 2000). Given agraphΓ(V,E),

the components of its Fiedler vector indicate a permutationπ of the nodes. If the

weighted adjacency matrix hasΩ(u, v) > Ω(u, k) andΩ(v, k) > Ω(u, k), the

permutation satisfiesπ(u) < π(v) < π(k).

The super-clique of the nodeu consists of its center node, together with

its immediate neighbours connected by edges in the graph, i.e., N̂u = {u} ∪

{v; (u, v) ∈ E}. Here, centre nodes of the super-cliques are not shared but the

exterior nodes can appear in more than one unit as illustrated in Figure 3.1. Fig-

ure 3.1 shows a graph with its three super-cliques highlighted. Centre nodes are

marked with red color and shared exterior nodes are marked with blue. Hence,

each super-clique consists of acenter nodeand immediate neighboursof the

center node, i.e.Nu = N̂u \ {u}.

The problem addressed here is how to partition the graph intoa set of non-

overlapping super-cliques using the node order defined by the Fiedler vector.

Our idea is to assign to each node a measure of significance as the centre of a

super-clique. We then traverse the path defined by the Fielder vector selecting

the centre-nodes on the basis of this measure.

We commence by assigning weights to the nodes on the basis of the rank-

order of their component in the Fiedler vector. LetΥ =< v1, v2, v3,, v|V | >

be the rank-order of the nodes as defined by the Fiedler vectorso that the per-

mutation satisfies the conditionπ(v1) < π(v2) < π(v3) < < π(v|V |) and the

26

Figure 3.1: Super-cliques.

components of the Fiedler vector follow the conditionxv1
> xv2

> .. > xv|V |
.

We assign weights to the nodes based on their rank order in thepermutation. The

weight assigned to the nodeu ∈ V iswu = Rank(u). With this weighted graph

in hand, we can gauge the significance of each node using the following score

function:

Fu = α (deg(u) + |Nu ∩ B|) +
β

wu

(3.3)

whereB is the set of nodes on the perimeter of the graph, andα andβ are heuris-

tically set thresholds (we setα = 0.015 andβ = 5.0 in our experiments). The

first term depends on the degree of the node and its proximity to the perimeter.

Hence, it will sort nodes according to their distance from the perimeter. This will

allow us to partition nodes from the outer layer first and thenwork inwards. The

second term ensures that the first ranked nodes in the Fieldervector are visited

first.

We use the score function to locate the non-overlapping super-cliques of the

graphΓ. We traverse this list until we find a nodek1 which is neither in the

27

100 150 200 250 300 350 400 450 500
50

100

150

200

250

300

350

400

450

12

71

203

8281
75 85

6

42

164

240

24
3886

88
150 50 43

1821
9

34

130

81 28
115

129

32

70

112
95

188

72

5049 46
5765

113
16

30273027

2128 41

190 49
30

10
152417

52
89

95

173

118

17

36
35

142

38
78

134
98

16
66
54

84 5978

69

112

88 23

131

175

1 2

34

5 6

78

9
10 11

12

13
14

15

1617
18

19

20 21

22

23
24

25

26
27

28

29

30

Figure 3.2: Delaunay graph of a set of points.

perimeter, i.e.k1 /∈ B nor whose score is exceeded by those of its neighbours,

i.e. Fk1
= arg maxu∈k1∪Nk1

Fu. When this condition is satisfied, then the node

k1 together with its neighboursNk1
represent the first super-clique. The set of

nodesN̂k1
= k1∪Nk1

are appended to a list̂L that tracks the set of nodes assigned

to the super-cliques. This process is repeated for all the nodes which have not yet

been assigned to a super-clique i.e.R = Υ− L̂. The procedure terminates when

all the nodes of the graph have been assigned to non-overlapping super-clique.

An example performed on Figure 3.2 is shown at Figure 3.3. Theoriginal graph

in Figure 3.2 contains 30 nodes and 78 edges. In Figure 3.3 theedges are labelled

to indicate the partition to which they belong.

28

1

4

8

30

82
3 1

29

6

3

8

12

21

1
3

27

2
1

4
9 3

26
43

28

1

5

11

24

2 6

25

5

12

22
6

1

6
2

7

17 4

5
3

23

1
3

7
6

19

2

34 2
18 4

20

43 1

1 6
5

11

115
2

214 4
16

6

1

5

12

5

7

10
4

1
3

2

5
1

6

2
3

1

4
1

6

5
2

6
5

4

13

1

3

27
1

8

1
3

5

4

9

Number of nodes: 30

Number of edges: 79

Figure 3.3: Graph Partition.

3.3 Partition Stabilisation

Unfortunately, the process of partitioning can prove unstable when the graph

undergoes changes in node or edge structure. To overcome this problem, in the

next section we demonstrate how the heat-kernel can be used to stabilise the

partition structure.

3.3.1 Heat Kernel

Kernel-based methods have been widely used for pattern recognition and have

lead to the development of a number of methods including support vector ma-

chines (Cristianini and Shawe-Taylor, 2000) and kernel PCA(Scholkopf et al.,

1998). Heat kernel, which is found by solving the diffusion equation for the

29

discrete structure in-hand is one of the most important Kernel-based methods.

Heat kernel is also an important analytical tool for physicsand has been used in

many other areas including spectral graph theory (Chung, 1997). Recent work

by Smola and Kondor (Smola and Kondor, 2003) has shown how kernels can be

used to smooth or regularise graphs. A number of alternatives has been suggested

and compared, and these include the heat kernel.

We are interested in the heat equation associated with thenormalisedLapla-

cian, i.e.
∂Ht

∂t
= −LHt

whereHt is the heat kernel andt is time. The heat kernel can hence be viewed as

describing the flow of information across the edges of the graph with time. The

rate of flow is determined by thenormalizedLaplacian. The solution is found by

exponentiating the Laplacian eigenspectrum i.e.

Ht = Φ′ exp[−tΛ′]Φ′T

whereΛ′ andΦ′ are the eigenvalue and eigenvector matrices ofL respectively.

The heat kernel is a|V | × |V | matrix, and for the nodesu andv of the graphΓ

the resulting component is

Ht(u, v) =

|V |
∑

i=1

exp[−λ′it]φ′
i(u)φ

′
i(v) (3.4)

Whent tends to zero, thenHt ≈ I − Lt, i.e. the kernel depends on the local

connectivity structure or topology of the graph. If, on the other hand,t is large,

thenHt ≈ exp[−tλ′2]φ′
2φ

′T
2 , whereλ′2 is the smallest non-zero eigenvalue andφ′

2

is the Fiedler vector. Hence, the large time behaviour is governed by the global

structure of the graph.

30

3.3.2 Path Length Distribution

Consider thenormalisedadjacency matrixP = T− 1

2 ΩT− 1

2 = I − L, where

I is the identity matrix. The heat kernel can be rewritten asHt = e−t(I−P).

We can perform a McLaurin expansion on the heat-kernel to re-express it as a

polynomial int. The result of this expansion is

Ht = e−t(I−P)

= e−t

(

I + tP +
(tP)2

2!
+

(tP)3

3!
+ · · ·

)

= e−t

∞
∑

l=0

P l t
l

l!

We can find a simplified expression for the matrixP l using the eigen-decomposition

of thenormalisedLaplacian. The result is

P l = (I − L)l = Φ′(I − Λ′)lΦ′T (3.5)

and as a result the element

P l(u, v) =

|V |
∑

i=0

(1 − λ′i)
lφ′

i(u)φ
′
i(v) (3.6)

If, on the other hand, we consider the element-wise definition ofP

P(u, v) =























1 if u = v

w(u,v)√
dudv

if u 6= v and(u, v) ∈ E

0 otherwise

(3.7)

Exponent of matrixP supplies a connectivity measure between each pair of

nodes. For example,P2(u, v) measures the sum of weights of all paths with

length two connecting nodeu and v. To show this, let us assume there are

31

two nodesm andn connecting bothu and v, i.e. (u,m) ∈ E, (m, v) ∈ E

and (u, n) ∈ E, (n, v) ∈ E. The computation ofP2(u, v) can be realized by

P2(u, v) = P(u,m)P(m, v) + P(u, n)P(n, v) =
∑

s2=m,n P(u, s2)P(s2, v). If

we represent the sequence ofu, s2, v by u0, u1, u2 and usei for indexing, we

haveP2(u, v) =
∑

s2=m,n

∏

i=0,1 P(ui, ui+1) =
∑

s2=m,n

∏

i=0,1
w(ui,ui+1)√

dui
dui+1

. In a

general case when the path length equalsl ,we have that

P l(u, v) =
∑

sl

∏

i

w(ui, ui+1)
√

dui
dui+1

(3.8)

Here,P l is interpreted as the sum of weights of all walks of lengthl joining nodes

u andv. A walk Sl is a sequence of verticesu0, · · · , ul such thatui = ui+1 or

(ui, ui+1) ∈ E. By definingP(u, u) = 1, we create a self-loop for each node on

the walk. So the walk can pause on any node for a number of stepsbefore the

next move. This gives us better behaved distribution ofP l over the path length

l. Here the definition ofP(u, u) = 1 is important because it allows self-loops in

the adjacency matrix. To this end, we aim to exploit the fact that the matrixP l

contains information concerning the inter-node distance distribution to construct

a measure that can be used to partition graphs.

3.3.3 Proximity Weights

Our idea is to use the distribution of distances to compute the average path-

length between pairs of nodes in the graph. For the nodesu andv the average

path-length is given by

d̂(u, v) =

∑

l lP l(u, v)
∑

l P l(u, v)
(3.9)

This average distance measure can be used to compute a Gaussian weighted node

proximity matrix. For the nodesu andv the proximity weight is given bypath-

32

weighted matrix.

Ωp(u, v) = exp

[

− d̂2(u, v)

2σ2(u, v)

]

(3.10)

where

σ2(u, v) =

∑

l(l − d̂(u, v))2P l(u, v)
∑

l P l(u, v)
(3.11)

is the variance of the path-length distribution for nodesu andv.

3.3.4 Properties of the Proximity Matrix

The proximity matrixΩp defined in the previous section has some interesting

properties that distinguish it from the raw adjacency matrix. Here we focus on

some of these in detail.

Firstly, although the adjacency matrix may contain a significant number of

zero off-diagonal entries, provided that the graph under study is connected, then

the path-length proximity matrix will not have zero off-diagonal entries since a

path of finite length can always be located between a pair of nodes. The conse-

quence of this is that the path-length proximity matrix willbe less likely to be

singular or to have a zero determinant.

Second, nodes which have similar locations with respect to the boundary

of the graph will have similar path-weight values. Here graphs are restrict to

planar ones so graph boundary indicates the set of nodes and edges located on

graph’s perimeter. Since the path-length proximity matrixis constructed using

node distance, the nodes on the boundary will have differentvalues to those near

the centre of the graph. This means that the measure could be useful for the

purposes of assigning node affinity in the problem of graph-matching.

As an illustration of the points mentioned above, for the Delaunay graph

shown in Figure 3.2, Figure 3.4(a) and Figure 3.4(b) showP l(u, v) as a function

of l for the nodes labelled 1 and 17. The different curves are obtained whenv

33

runs over the remaining nodes of the graph, and are labelled with node number.

From the figure we can see thatP l(u, u) always takes on the largest value, ir-

respective ofl, since it counts the number of loops of lengthl to nodeu. The

remaining curves are ordered in descending order accordingto whether nodes

are first, second or third etc. neighbours. The most distant nodes are associated

with the smallest values ofP l(u, v). Another important property is that the nodes

in the interior of the graph always have larger values ofP l(u, v) than those on or

near the boundary.

(a) Path length distribution of node01 (b) Path length distribution of node17

Figure 3.4: Distribution ofP l based on the path stepl.

Finally, we note that when compared to the binary adjacency matrix, the

path-weighted proximity matrix is more robust to changes ingraph structure. To

illustrate this point consider the deletion of an edge. In the case of the adjacency

matrix, two symmetrically placed elements flip from one to zero. Hence, all

memory of the edge is lost. However, in the case of the path-weighted proximity

matrix the mean distance between the nodes is increased. Ouraim is to use

this path-weighted proximity matrixΩp to represent graphs rather than using the

binary adjacency matrixΩ. Graphs represented byΩp should be more robust to

structural error and noise.

For the graph shown above, in Figure 3.4, the four panels in Figure 3.5 show

34

the adjacency matrix, the matrix of path weighted distancesd̂(u, v), the path

length varianceσ(u, v) and the path weighted proximity matrixΩp(u, v). The

entries in the adjacency matrix correspond to maxima in the weight matrix.

5 10 15 20 25 30

5

10

15

20

25

30

(a) Adjacency matrix

5 10 15 20 25 30

5

10

15

20

25

30

(b) Distance matrix̂d

5 10 15 20 25 30

5

10

15

20

25

30

(c) Sigma matrixσ

5 10 15 20 25 30

5

10

15

20

25

30

(d) Path-weighted matrixΩp

Figure 3.5: Similarity matrices.

3.4 Matching

Our aim here is to match the graphs using the non-overlappingsuper-cliques

delivered by the Fiedler vector. With these super-cliques in hand, our partition

matching is realized by two consecutive steps. Given two graphs to be matched,

the first step is to look for the correspondences between super-cliques. We try

35

each possible pair of super-cliques in an exhaustive way anddetermine the cor-

respondences by maximum a posteriori (MAP). Then the next step is to find the

mappings of each pair of nodes in the matched super-cliques.To perform the

matching we use both the discrete relaxation method from Wilson and Hancock

(Wilson and Hancock, 1997) and the edit-distance method of Myers, Wilson and

Hancock (Myers et al., 2000). In this section for completeness, we review the el-

ements of their methods and explain how they are extended to our graph partition

matching frame work.

3.4.1 Matching Probabilities

Given a data graphΓD = (VD, ED) to be matched onto a model graphΓM =

(VM , EM), we first compute their super-cliques using the partition method pre-

sented in Section 3.2.

Let the obtained super-cliques beSD = (N̂D
1 , N̂

D
2 , · · · , N̂D

u , · · · , N̂D
m) and

SM = (N̂M
1 , N̂M

2 , · · · , N̂M
v , · · · , N̂M

n) for graphΓD andΓM respectively. Here,

m andn are the total number of super-cliques in each of the graphs. The state of

correspondence match can be represented by the functionf : VD 7→ VM ∪ {ǫ}

from the node-set of the data graph onto the node-set of the model graph, where

the node-set of the model graph is augmented by adding a NULL label, ǫ, to

allow for unmatchable nodes in the data graph.

Our objective function for the match is the matching probabilities for the set

of super-cliques of the graphs and given by

MD,M(f) =
∑

N̂D
u ∈SD

∑

N̂M
v ∈SM

P (N̂D
u , N̂

M
v) (3.12)

Here,P (N̂D
u , N̂

M
v) denotes the matching probability of a pair of super-cliques

N̂D
u andN̂M

v under the matching functionf . The idea is to find the correspon-

36

dence between each pair of nodes by optimising Equ. 3.12 in a super-clique to

super-clique way.

3.4.2 Discrete Relaxation

If we take the matching functionf as a memoryless error process, super-clique

matching probabilityP (N̂D
u , N̂

M
v) in Equ. 3.12 can then be factorized into the

matching probability of nodes in each pair of the super-cliques

P (N̂D
u , N̂

M
v) =

∏

i∈N̂D
u ,j∈N̂M

v

P (f (i) |j) (3.13)

Furthermore, node matching probabilityP (f(i)|j) can be given as a function

of the node error matching probabilityPe by

P (f (i) |j) =











(1 − Pe) if (f (i) , j) is a correct correspondence

Pe otherwise
(3.14)

Here, in Fig. 3.6, we show an example of matching two un-equalsized super-

cliques using discrete relaxation. The super-clique on theleft with a degree of

three is to be matched onto the super-clique on the right witha degree of five.

In order to preceed node matching, we have to pad the less degree super-clique

with some dummy nodes. The total number of added dummy nodes is equal to

the difference in their degrees. Moreover, all possible ways of paddings have to

be considered. In Fig. 3.6, we show six sample patterns of dictionary paddings

in the middle of the figure and the dummy nodes are marked with symbol d in

red color.

37

Figure 3.6: Dictionary padding with two dummy nodes.

3.4.3 Edit Distance

Dictionary padding is an explicit way of characterising thestructural differences

in the super-cliques but it is also computationally un-efficient. This is due to

the increasing number of padding patterns we have to consider when the degree

difference in two super-cliques grows large. In this section, we will introduce

an efficient alternative to measure the structural differences in the super-cliques,

the Levenshtein or string edit distance (Levenshtein, 1966; Wagner and Fischer,

1974; Myers et al., 2000).

Let X andY be two strings of symbols drawn from an alphabetΣ. We

wish to convertX to Y via an ordered sequence of operations such that the cost

associated with the sequence is minimal. The original string to string correction

algorithm definedelementary edit operations, (a, b) 6= (ǫ, ǫ) wherea andb are

symbols from the two strings or the NULL symbol,ǫ. Thus, changing symbolx

to y is denoted by(x, y), insertingy is denoted(ǫ, y), and deletingx is denoted

38

(x, ǫ). A sequence of such operations which transformsX into Y is known as

an edit transformationand denotedT =< δ1, ..., δ|T | >. Elementary costs are

assigned by an elementary weighting functionγ : Σ ∪ {ǫ} × Σ ∪ {ǫ} 7→ ℜ; the

cost of an edit transformation,C(T), is the sum of its elementary costs. The edit

distance betweenX andY is defined as

d(X, Y) = min{C(T)|T transformsX to Y } (3.15)

Figure 3.7: Edit distance andedit pathfor two strings

In (Marzal and Vidal, 1995), Marzal and Vidal introduced thenotion of an

edit pathwhich is a sequence of ordered pairs of positions inX andY such

that the path monotonically traverses the edit matrix ofx andy from (0, 0) to

(|X| , |Y |). An example ofedit pathbetween stringX andY is shown in Fig. 3.7.

From the figure, it is clear that their edit distance is3, as listed in the right-bottom

corner of the edit matrix. The correspondingedit path is shown in red color.

Essentially, the transition from one point in the path to thenext is equivalent

to an elementary edit operation:(a, b) → (a + 1, b) corresponds to deletion of

the symbol inX at positiona. Similarly, (a, b) → (a, b+ 1) corresponds to

insertion of the symbol at positionb in Y . The transition(a, b) → (a+ 1, b+ 1)

corresponds to a change fromX (a) to Y (b). Thus, the cost of an edit path can

be determined by summing the elementary weights of the edit operations implied

39

by the path.

As a result, we can replaceX andY byND
u andNM

v , which are the neigh-

bour nodes of two super-cliqueŝND
u andN̂M

v to be matched. The node matching

probabilityP (f(i)|j) in Equ. 3.13 can then be computed using the correspond-

ing edit operations

P (f (i) |j) =











(1 − Pe) if (f (i) , j) is an identity

Pe otherwise
(3.16)

3.5 Hierarchical Simplification

The super-cliques extracted using the Fiedler vector may also be used to perform

hierarchical graph simplification.

3.5.1 Partition Arrangements

Our simplification process proceeds as follows. We create a new graph in which

each super-cliquêNu = {u} ∪ {v; (u, v) ∈ E} is represented by a node. In

practice this is done by eliminating those nodes, which are not the center nodes

of the super-cliquesNu = N̂u \ {u}. In other words, we select the center node

of each super-clique to be the node-set for the next level representation. The

node set is given bŷV =
{

N̂1 \N1, N̂2 \N2, . . . , N̂n \Nn

}

. Our next step is

to construct the edge-set for the simplified graph. We construct an edge between

two nodes if there is a common edge contained within their associated super-

cliques. The condition for the nodesu ∈ V̂ andv ∈ V̂ to form an edge in the

simplified grapĥΓ = (V̂ , Ê) is (u, v) ∈ Ê ⇒ |N̂u ∩ N̂v| ≥ 2.

40

3.5.2 Clustering

To provide an illustration of the usefulness of the simplifications provided by the

Fiedler vector, we focus on the problem of graph clustering.The aim here is to

investigate whether the simplified graphs preserve the pattern space distribution

of the original graphs. There are a number of ways in which we could undertake

this study. However, in order to keep with the overall philosophy of this chapter,

here we use a simple graph-spectral method by Wilson et al. (Wilson et al.,

2005).

Suppose that we aim to cluster the set of M graphs{Γ1, ...Γk,ΓM}. We

commence by performing the spectral decompositionLk = ΦkΛkΦ
T
k on the

Laplacian matrixLk for the graph indexedk, whereΛk = diag(λ1
k, λ

2
k, ...) is the

diagonal matrix of eigenvalues andΦk is a matrix with eigenvectors as columns.

For the graphΓk, we construct a vectorBk = (λ1
k, λ

2
k, . . . , λ

m
k)

T from the leading

m eigenvalues. We can visualise the distribution of graphs byperforming mul-

tidimensional scaling (MDS) on the matrix of distancesdk1,k2 between graphs.

This distribution can be computed using either the edit distance technique used

in the previous section wheredk1,k2 = − ln d(k1, k2) or by using the spectral

features wheredk1,k2 = (Bk1 − Bk2)
T (Bk1 −Bk2).

Multidimensional scaling (MDS) is a procedure which allowsdata specified

in terms of a matrix of pairwise distances to be embedded in a Euclidean space.

Here we intend to use the method to embed the graphs extractedfrom different

viewpoints in a low-dimensional space. The pairwise distancesdk1,k2
are used as

the elements of anN ×N dissimilarity matrixR, whose elements are defined as

follows

Rk1,k2
=











dk1,k2
if k1 6= k2

0 if k1 = k2

(3.17)

Here, we use the classical multidimensional scaling methodto embed the

41

graphs in a Euclidean space using the matrix of pairwise dissimilaritiesR. The

first step of MDS is to calculate a matrixR whose element with rowr and

columnc is given byRrc = −1
2
[d2

rc−d̂2
r.−d̂2

.c+d̂
2
..],whered̂r. = 1

N

∑N
c=1 drc is the

average dissimilarity value over therth row, d̂.c is the dissimilarity average value

over thecth column andd̂.. = 1
N2

∑N
r=1

∑N
c=1 dr,c is the average dissimilarity

value over all rows and columns of the dissimilarity matrixR.

We subject the matrixR to an eigenvector analysis to obtain a matrix of

embedding coordinatesZ. If the rank ofR is k, k ≤ N , then we will havek non-

zero eigenvalues. We arrange thesek non-zero eigenvalues in descending order,

i.e. l1 ≥ l2 ≥ · · · ≥ lk > 0. The corresponding ordered eigenvectors are denoted

by ~υi whereli is theith eigenvalue. The embedding coordinate system for the

graphs isZ = [
√
l1~υ1,

√
l2~υ2, . . . ,

√
ls~υs], For the graph indexedj, the embedded

vector of coordinates is a row of matrixZ, soZj = (Zj,1, Zj,2, ..., Zj,s)
T .

3.6 Experiments

The aims in this section are threefold. First, we perform a sensitivity study to il-

lustrate that the super-cliques delivered by the Fiedler vector are stable for com-

puting edit distance. Second, we show that the graph partition scheme leads to

accurate matches on real world data. Third, we aim to illustrate that the simpli-

fication procedure results in a stable distribution of graphs in pattern-space.

3.6.1 Sensitivity Study

The aim in this part of the experiments is to measure the sensitivity of our new

partition-based matching method to structural error. The synthetic graphs we

used here are the Delaunay triangulations of randomly generated point-sets with

various sizes. In Figure 3.8, we show three synthetic graphson the left column

42

and their corresponding partitions on the right column. Graphs on the first, sec-

ond and third row have20, 40 and60 nodes respectively. The effects of structural

errors are simulated by randomly deleting nodes and re-triangulating the remain-

ing nodes. An example is illustrated in Figure 3.9, which shows the sequence

with one node deleted at a time for the graph with40 nodes. Coded in differ-

ent colours are the different super-cliques which result from the partitioning of

nodes. These remain relatively stable as the nodes are deleted.

To asset the stability of graph partitions on different sizeof graphs, we have

matched the three sets of corrupted graphs to their originalones. We used the

edit distance matching method presented in Section 3.4.3 and averaged the re-

sults with50 trials for each graph set. Figure 3.10 shows the fraction of correct

correspondences as a function of the fraction of nodes deleted. From the figure

it is clear that graph with node size40 gives the best result. This is because the

number of partitions in this set of graphs is quite moderate.As a result, it didn’t

turn out to have matching errors in the partition level, i.e.miss-matching of par-

titions. However larger graphs such as the one with60 nodes in this experiment

do have this problem and it can be seen in the figure that even when there is no

structural corruption, successful partition matching only achieves90%. Another

interesting thing to notice is that larger graphs (60 nodes) outperformed the mid-

dle size ones (40 nodes) when they are under severe corruption. This is because

larger graphs still have a considerable amount of nodes leftto form the super-

cliques in that condition. This also explains why small sizegraphs (20 nodes)

performed badly.

For the best performing graphs, i.e. the graphs with original size of40, we

also compare the results with four alternative algorithms.These are the original

discrete relaxation method of Wilson and Hancock (Wilson and Hancock, 1997)

which is applied to overlapping super-cliques, the quadratic assignment method

43

Original Graph Graph Partitions

1

2

3

4

5

67

8

9

10

11

12

13

14

15

16

17

18

19

20

1

2

3

4

5

67

8

9

10

11

12

13

14

15

16

17

18

19

20

Number of nodes: 20

1

2

3

4

5

67

8

9

10

11

12

13

14

15

16

17

18

19

20

Number of nodes: 20
Number of edges: 51

1
23

4

5

6

7

8

910

11

12

13

1415

16

17

1819

20

21

22

23
24

25

26

27

28
29

30

31

32

33

34

35

36

37

38

39

40

Number of nodes:
40

Number of edges:
108

65
1

2

4

39
1

13

3334

14

34
7

3
11

1
31

8
221

38

8

2

628
2

12

820

6

8

530

4
3

8
40

11436

2

5

11

37

9

11

35

10

3

422

6

4

45 28 212

6
2

6
2

12

1 1

5

4

7

7

4
625

6

3532

13

2

5
10

26

4

1
18

2233

2
10

29
4

8
27

4
51

4

5
1

14

4

223

1 2

4

5

4
16

3

3

1
10

8

24

2
2

6
419

4

5
21 1

2
17

1

5

7

16

2

2
13 4

15

4

2

7 2

11

9

Number of nodes:
40

Number of edges:
108

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27
28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27
28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60
Number of nodes: 60

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27
28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60
Number of nodes: 60
Number of edges: 167

Figure 3.8: Synthetic graphs and their partitions.

44

65
1

2

4

39
1

13

3334

14

34
7

3
11

1
31

8
221

38

8

2

628
2

12

820

6

8

530

4
3

8
40

11436

2

5

11

37

9

11

35

10

3

422

6

4

45 28 212

6
2

6
2

12

1 1

5

4

7

7

4
625

6

3532

13

2

5
10

26

4

1
18

2233

2
10

29
4

8
27

4
51

4

5
1

14

4

223

1 2

4

5

4
16

3

3

1
10

8

24

2
2

6
419

4

5
21 1

2
17

1

5

7

16

2

2
13 4

15

4

2

7 2

11

9

Number of nodes:
40

Number of edges:
108

21
1

3

6

36
1

13

3442

14

35
6

2
10

1
31

5
214

37

8

3

629
2

12

821

6

9

432

1
6

11
39

10
38

3

5

7

6
33

4

6

30

10

5

523

7

4

56 39 212

5
1

7
3

13

1 1

4

4

10

1
928

114

2

6
10

26

4

1
18

2233

2
8

27
3

6
25

4
51

4

5
2

14

3

222

1 2

3

5

4
16

2

3

1
10

8

24

1
2

7
419

3

4
20 1

2
17

1

5

8

16

3

1
12 4

15

4

1

7 3

11

8

Number of nodes:
39

Number of edges:
105

136
4
212

5

36
2

14

353
12

33
1
9

2
30

8

3

729
1

13

921

5

10

432

1
4

10
38

9
37

3

6

8

7
34

5

7

31

10

6

422

6

4

45 28 212

6
2

6
2

12

1 1

5

4

10

1
928

113

2

6
10

26

4

1
18

2233

2
8

27
2

6
25

4
51

4

5
1

14

4

323

1 2

4

5

4
16

3

3

1
10

8

24

1
2

6
419

3

4
20 1

2
17

1

5

7

16

2

2
13 4

15

4

2

7 2

11

9

Number of nodes:
38

Number of edges:
102

134
5
212

6

35
2

13

341
11

32
3
10

1
31

7

2

528
2

13

821

6

7

330

1
4

10
37

936

4 7

6
33

3

4

29

10
4

4

23

6

5

45 28 212

6
1

7
3

13

1 1

5

4

124

1

6
10

26

8

5

1
19

2233

3
9

27
2

6
24

4
51

4

4
2

14

4

222

1 2

4

5

4
16

2

3

1
10

9

25

2
1

6
318

3

4
20 1

2
17

1

5

7

16

3

1
12 4

15

4

2

7 2

11

9

Number of nodes:
37

Number of edges:
99

346
5
211

2

34
1

13

312
12

30
4
10

1
28

6

5

424
2

11

618

6

9

229

1
3

9
36

835

1 8

6
33

7

6

32

8

7

520

5

5

34 17 212

3

6
2

12

1 1

5

4

223

1

4
9

25

2233

4

12

8
27

1
4

23

4
51

5

4
2

15

3

122

1 3

4

5

4
26

3

2

1
10

10

26

2
2

6
519

4

5
21 1

3
17

2

5

7

16

1

2
13 3

14

3

1

8 2

11

9

Number of nodes:
36

Number of edges:
96

211
4
326

7

33
1

10

352
9

34
4
7

3
32

3

1

728
4

14

25

2

8

529

1
3

6
30

731

1 4

3
27

3

4

26

10

3

621

768

4

5
2

11114 2 3

3

5

134

1

5
9

23

2133

4

9

7
24

1
3

20

1
51

6

2
3

15

2

119

4 5

6

2

3
16

3

2

1
9

8

22

1
1

5
417

2

4
18 2

3
16

1

4

6

14

1

2
12 3

13

3

1

7 2

10

8

Number of nodes:
35

Number of edges:
93

211

24
5

6

32
1

9

34
2

8

33

2
6

3

31

4

1

829

4

14

25

2
3

6
30

7

4
28

1
5

3

27

4

3

26

10

3

6
21

76 8

4

5

2

11
1 14 2 3

3

5

2 23

1

4

8

22

21
3

3

4

9

7
24

1

3

20

1
5

1

6

2

3
15

2

119

4 5

6

2

3

16

3

2

1
9

9

23

1
1

5

417

2

4

18 2

3
16

1

4

6

14

1

2

12 3

13

3

1

7
2

10

8

Number of nodes:

34

Number of edges:

90

12

153

4

32
3

11

33
4
8

3

30

4

1

726
3

12

22

4
2

7
31

8

327

1 6

5
29

5

3

28

9

5

519

657

4

4
1

10114 2 3

3

5

123

2

5
8

23

2133

3

10

7
24

1
4

21

1
51

5

3
2

14

3

220

4 5

6

2

3
16

3

2

2
9

10

25

1
1

5
417

2

3
18 1

3
16

2

4

7

15

1

1
12 2

13

4

1

7 3

11

8

Number of nodes:
33

Number of edges:
87

Figure 3.9: A sequence of synthetic graphs showing the effect of controlled node
deletion on the stability of the super-clique.

45

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70

P
o
s
i
t
i
v
e

c
o
r
r
e
s
p
o
n
d
e
n
c
e

r
a
t
e

Percentage of clutter

Graph with 20 nodes
Graph with 40 nodes
Graph with 60 nodes

Figure 3.10: Sensitivity study for graphs of different size.

46

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70

P
o
s
i
t
i
v
e

c
o
r
r
e
s
p
o
n
d
e
n
c
e

r
a
t
e

Percentage of clutter

Graph partition with Discrete relaxation
Graph partition with Edit distance

Non-quadratic assignment
Discrete relaxation

Quadratic
SVD

Figure 3.11: Sensitivity comparison for original graph with 40 nodes.

of Gold and Rangarajan (Gold and Rangarajan, 1996), the non-quadratic gradu-

ated assignment method of Finch, Wilson and Hancock (Finch et al., 1998), and,

the singular value decomposition method of Luo and Hancock (Luo and Han-

cock, 2001). In Figure 3.11 we show the fraction of correct correspondences as

a function of the fraction of nodes deleted.

From this comparison it is clear that our method is robust to structural error.

However, it does not perform as well as the original Wilson and Hancock method.

One reason for this is that the super-cliques delivered by our partitioning method

do become unstable under significant corruption.

When used in conjunction with the edit-distance method, thepartitions lead

to better results than when used with the dictionary-based discrete relaxation

method. This is important since the former method is more computationally effi-

47

Figure 3.12: An example in inexact graph matching.

cient than the latter, since the overheads associated with dictionary construction

can grow exponentially if dummy nodes need to be inserted.

An example of the set of matches used in this experiment is shown in Fig-

ure 3.12. Here the different colours in the two graphs again encode the super-

cliques. The thin black lines between the two graphs show thecorrespondence

matches. Here the results were obtained using edit-distance method described

earlier. The graphs are of very different size. The set of roughly parallel lines

correspond to the correct correspondences, and the remaining lines are the cor-

respondence errors.

3.6.2 Real-Word Data

The real-world data used here is comprised of two house sequences. One of them

is taken from the CMU model-house sequence and the other is from the MOVI

48

Table 3.1: Correspondence results for the three methods.

Method House index 0 1 2 3 4 5 6 7 8 9
Corners 30 32 32 30 30 32 30 30 30 31

EM Correct - 29 26 24 17 13 11 5 3 0
False - 0 2 3 8 11 12 15 19 24

Missed - 1 2 3 5 6 7 10 8 6
Discrete Correct - 26 23 18 16 15 15 11 14 9

Relaxation False - 4 6 9 12 14 13 17 16 20
Missed - 0 1 3 2 1 2 2 0 1

Edit Correct - 26 24 20 19 17 14 11 13 11
Distance False - 3 5 8 11 12 16 15 17 19

Missed - 1 1 2 0 1 0 4 0 0

model-house sequence. Those two sequences are made up of a series of images

which have been captured from different viewpoints. In order to convert the

images into abstract graphs for matching, we extract point features using corner

detector by Luo, Cross and Hancock (Luo et al., 1998; Luo et al., 1999). Our

graphs are the Delaunay triangulations of the corner-features. Two examples

from both sequences are shown in Figure 3.13. First row of thefigure shows

the original images and the second row shows their corresponding partitions. To

illustrate the structural variation of the Delaunay graphsw.r.t. the view point

change, we show the CMU house sequence overlayed by their Delaunay graphs

in Figure 3.14. The super-cliques obtained by graph partition are also shown and

coded in different colors.

We have matched the first image to each of the subsequent images in CMU

sequence by using discrete relaxation and edit distance. The results of those

two methods are compared with those obtained using the method of Luo and

Hancock (Luo and Hancock, 2001) in Table 3.1. This table contains the number

of detected corners to be matched, the number of correct correspondence, the

number of missed corners and the number of miss-matched corners.

Figure 3.15 shows us the correct correspondence rate as a function of view

49

CMU MOVI

1

4

8

30

82
3 1

29

6

3

8

12

21

1
3

27

2
1

4
9 3

26
43

28

1

5

11

24

2 6

25

5

12

22
6

1

6
2

7

17 4

5
3

23

1
3

7
6

19

2

34 2
18 4

20

43 1

1 6
5

11

115
2

214 4
16

6

1

5

12

5

7

10
4

1
3

2

5
1

6

2
3

1

4
1

6

5
2

6
5

4

13

1

3

27
1

8

1
3

5

4

9

Number of nodes: 30

Number of edges: 79

261815
73

4

15

21

85

8

185

34

59
3

1310
67

28

13
8

70
6

103
72
4

3
78 7

7

82

1316

8

16

341
354

5

19
57

13

24
6

62

14

1910

6
75

8

4

5

33

4 3 7 2

8
21

20

25

8

4

8

11

89

1

9

29

10

428

418

6

238
14

6442
9

1056

5

4

32

19

1

16

1265

9 16

10

327

10 736

4

3

8
4

97

7
346

15
5

13115
66

12

8
193

10 7

11

581

6

5

12100

103
71

52
10

53
7
5
248
6555

6

11
14

106

796

1

13

43

11
13
9261
250

4
8

7

4105

2
12

1174

9

83

5
101

31152

6

492

10

13 8476
6

10
486

149

5

495
563

13

13

10
217

10

14

258

321
3

1

4

2

1

4

5

1113

12
8168

6 1115

5

76112

5
5
1109

2

4 3
117

8

6
1104

10

1134
80

6

7
6
2

96

14

16

45
344

6

4
190

9

15
4

30

9

13
460

1

2

119

1
740

8
5

69

8
25

13

39

4

3

6

2

118

76
13

77

4
2

114

3

1121

17
47

73

6
110

1
4103

1
7

84

5

83
1028

9
1

107

3
594

8

19

483

8

4
91 12

9

99

1
4

1
1

3
2
4

2
33

8 5

1
7

38

23

19

64

8
1

4

4

124

11
315
14

127

19

26

1 16
5

9

8
116

22

6

312

3
5
1

17

125

42

8

21

8

87

45149

1

110

2
6
3

8

128

8

26
1

19

3
156

21

12

4
9

3
7

11
10
58

14
2722

34

10645
8
4
731

85
116

52

21

5
5
2
2

183
123

313

4

4
31130

3
1
2134

28

16
9

6
79

11
16

135

4

4 220

3
4
18

126

1

11

131

6
16

1
46133

10224

12

5
132

1714

22
51

7
2129

14

5
111122

7
39

22

120

3

13

108

4
127

12334
1522

12123

36

37

16
13

111

7 3
95

15

1088

25

73

98

Number of nodes: 134

Number of edges: 390

Figure 3.13: Delaunay graphs with their partitions from real-world data.

difference for the two methods based on the data in Table 3.1.It also shows

the result of edit distance based partition matching methodon MOVI house se-

quence. From the results, it is clear that our new method degrades gradually and

out performs the Luo and Hancock’s EM method when the difference in viewing

angle is large. As we have seen in the previous subsection, our method did not

perform well for larger size graphs (MOVI house sequence in this case). Again,

this is due to the miss-matching of the partitions. When graph grows, the num-

ber of its partitions increases as well. The result of it is tohave many similar

50

Figure 3.14: Graph partition on Delaunay triangulations.

51

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9

C
o
r
r
e
c
t

c
o
r
r
e
s
p
o
n
d
e
n
c
e

r
a
t
e
(
%
)

Relative position deviation

BinLuo’s GM for CMU houses
Graph Partition with Discrete Relaxation for CMU houses

Graph Partition with Edit Distance for CMU houses
Graph Partition with Edit Distance for MOVI houses

Figure 3.15: Comparison of results.

partitions, which downgrade the matching accuracy significantly. To illustrate

the matching correspondence, Figures 3.16 to 3.19 show the results of each pair

of graph matching for CMU houses. There are clearly significant structural dif-

ferences in the graphs including rotation, scaling and perspective distortion. But

even in the worst case, our method has a correct correspondence rate of36%.

3.6.3 Partition Structure Stabilization

Our aim in this section is to explore how the path-weighted proximity matrix

can be used for the purposes of graph partition, and to determine whether it can

render the process more robust to structural error.

There are two aspects to our study. We commence by investigating the differ-

ence in the partitions obtained with the adjacency matrix and the path-weighted

proximity matrix. Second, we perform a sensitivity study tocompare the robust-

ness of the partitions under node and edge deletions.

52

Figure 3.16: Correspondences between the first and the thirdimages.

Figure 3.17: Correspondences between the first and the fifth images.

53

Figure 3.18: Correspondences between the first and the seventh images.

Figure 3.19: Correspondences between the first and the tenthimages.

54

To test the performance of our new graph representation on the real-world

images, the graphs furnished here are the same as the previous section.

Partition and Matching Consistency Analysis

Since our graphs represent a series with similar structures, they should share

a similar partition arrangements. This is important since if we are to use the

partitions for graph-matching, then they must be stable. The more similar two

partitions, the better the matching result will be. Our aim here is to check which

matrix-representation preserves the partition consistency better. We use the par-

tition of the first graph as the model pattern and compare withthe partitions of

the remaining graphs in the sequence.

In Figure 3.20(a) we show the fraction of edges that remain inthe same par-

tition as a function of the difference in view number. The green curve shows the

result obtained using the path-weighted proximity matrix,while the red curve

shows the result obtained with the adjacency matrix. For large difference in view

number, i.e. when the structural differences are greatest,then the path weighted

proximity matrix seems to be more stable than the adjacency matrix.

In Figure 3.20(b) we show the fraction of correct matches as afunction of

difference in view number. The blue curve, which representsthe path-weighted

proximity matrix, outperforms the green one from the adjacency matrix and the

red one which is the result of the EM graph matching method described (Luo

and Hancock, 2001).

Partition and Matching Stability Analysis

In this subsection we aim to measure the sensitivity of our graph partition method

to structural error, and compare the results obtained with the path-weighted prox-

imity and the adjacency matrix.

55

The effects of structural error are simulated by randomly deleting nodes or

edges from the graphs under study. Figure 3.20(c) shows fraction of nodes that

remain in the same partition as the graph shown in Figure 3.3 is subjected to

increasing corruption. The graph corruption rate is definedto be the number

of deleted edges divided by the total number of original edges. As the level of

corruption is increased, then the path-weighted proximitymatrix outperforms

the adjacency matrix in terms of partition stability. This means that the path-

weighted proximity matrix better preserves the partition structure and is more

stable under structural error. This stability property hasknock-on effects for

the performance of the graph-matching method. In Figure 3.20(d) we show the

performance of the matching process as the fraction of corruption is increased.

Here the red curve is the result of the original discrete relaxation scheme, the

blue curve is that obtained when we apply spectral partitioning to the adjacency

matrix, and the blue curve the result when we apply spectral partitioning to the

path-weighted adjacency matrix. For large levels of corruption, the results ob-

tained using the path-weighted adjacency matrix outperform those obtained us-

ing the alternative methods.

Finally, we provide some examples to illustrate the stability of the partitions

obtained. In the left-hand column, we show the partitions obtained using the ad-

jacency matrix while the right-hand column shows the partitions from the path-

weighted adjacency matrix. The differently coloured edgesof the graph indicate

the different partitions obtained by the two methods. In thetop row of Fig-

ure 3.21 we show the partitions of the graph shown in Figure 3.2, and here the

result obtained by the path-weighted adjacency matrix is closer to the original

than that delivered by the adjacency matrix. The remaining rows in Figure 3.21

show the effect of graph-corruption on the partitions. Rows2 and 3 show the

effect of different levels of edge corruption, and Row 4 the effect of node cor-

56

ruption. In all case the path-weighted adjacency matrix is more stable than the

adjacency matrix.

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9

C
o
r
r
e
c
t

P
a
r
t
i
t
i
o
n

r
a
t
e
(
%
)

Graph Number

Adjacency Matrix
Path-weighted Matrix

(a) Partition Consistency Analysis

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9

C
o
r
r
e
c
t

m
a
t
c
h
i
n
g

r
a
t
e
(
%
)

Relative position deviation

BinLuo’s Graph Matching
Graph Partition with Adjacency Matrix

Graph Partition with Path-weighted Matrix

(b) Matching Consistency Analysis

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45 50

C
o
r
r
e
c
t

P
a
r
t
i
t
i
o
n

r
a
t
e
(
%
)

Graph Corruption(%)

Adjacency Matrix
Path-weighted Matrix

(c) Partition Stability Analysis

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45 50

P
o
s
i
t
i
v
e

c
o
r
r
e
s
p
o
n
d
e
n
c
e

r
a
t
e

Percentage of clutter

Discrete Relaxation
Graph Partition with Adjacency Matrix

Graph Partition with Path-weighted Matrix

(d) Matching Stability Analysis

Figure 3.20: Partition and matching analysis.

3.6.4 Graph clustering

We have collected sequences of views for three toy houses. For each object the

image sequences are obtained under slowly varying changes in viewer direction.

From each image in each view sequence, we extract corner features. We use the

extracted corner points to construct Delaunay graphs. In our experiments we use

three different sequences. Each sequence contains images with equally spaced

viewing directions. In Figure 3.22 we show examples of the raw image data and

the associated graphs for the three toy houses, which we refer to as CMU/VASC,

57

Adjacency Matrix Path-weighted Matrix

Consistency
Examples

1 2

3
45

6

789
10 11

12

1314

15

161718

19

20

21
22

23

24 25

26

27

28 29

30

Number of nodes:

30

Number of edges:

78

1 2

3
45

6

789
10 11

12

1314

15

161718

19

20

21
22

23

24 25

26

27

28 29

30

Number of nodes:

30

Number of edges:

78

Stability
Examples Edge
Corruption 25%

1 2

34

5 6

78

9
10 11

12

13
14

15

1617
18

19

20 21

22

23
24

25

26
27

28

29

30

Number of nodes:
30

Number of edges:
59

1 2

34

5 6

78

9
10 11

12

13
14

15

1617
18

19

20 21

22

23
24

25

26
27

28

29

30

Number of nodes:
30

Number of edges:
59

Edge Corruption
38%

1 2

34

5 6

78

9
10 11

12

13
14

15

1617
18

19

20 21

22

23
24

25

26
27

28

29

30

Number of nodes:
30

Number of edges:
49

1 2

34

5 6

78

9
10 11

12

13
14

15

1617
18

19

20 21

22

23
24

25

26
27

28

29

30

Number of nodes:
30

Number of edges:
49

Node Corruption
17%

1

23

4 5

67

8
9 10

11

12

13

14
15

16

17

18

19
20

21

22
23

24

25

Number of nodes:
25

Number of edges:
58

1

23

4 5

67

8
9 10

11

12

13

14
15

16

17

18

19
20

21

22
23

24

25

Number of nodes:
25

Number of edges:
58

Figure 3.21: Examples of the partitions.

MOVI and Swiss Chalet. CMU and MOVI house sequences are obtained from

CMU database1 and INRIA database2 respectively. The Chalet house sequence

was captured at York.

1http://vasc.ri.cmu.edu//idb/html/motion/house/
2http://www.irisa.fr/texmex/baseimages/

58

50 100 150 200 250 300 350 400
100

150

200

250

300

350

400

450

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400
50

100

150

200

250

300

350

400

450

Figure 3.22: Example images from the CMU, MOVI and chalet sequences and
their corresponding graphs.

In Figure 3.23 the two panels show the distancesd(k1, k2) = (Bk1
−Bk2

)T (Bk1
−

Bk2
) between the vectors of eigenvalues for the graphs indexedk1 andk2. The

left panel is for the original graph and the right panel is forthe simplified graph.

It is clear that the simplification process has preserved much of the structure in

the distance plot. For instance, the three sequences are clearly visible as blocks

in the panels. Figure 3.24 shows a scatter plot of the distance between the sim-

plified graphs (y-axis) as a function of the distance betweenthe original graphs.

Although there is considerable dispersion, there is an underlying linear trend.

Figures 3.25 and 3.26 repeat the distance matrices and the scatter plot using

edit distance rather than the L2 norm for the spectral feature vectors. Again, there

is a clear block structure. However, the dispersion in the scatter plot is greater.

To take this study one step further, in Figures 3.27 and 3.28 we show the result

of performing MDS on the distances for both the edit distanceand the spectral

feature vector. Here the images from which the graphs are extracted are shown

as thumbnails embedded in the space spanned by the leading eigenvectors of the

MDS analysis. In both cases the views of the different housesfall into distinct

59

Figure 3.23: Pairwise spectral graph distance; (left) original graph, (right) re-
duced graph.

Figure 3.24: Scatter plot for the original graph and reducedgraph pairwise dis-
tance.

60

Figure 3.25: Graph edit distance; (left) original graph, (right) reduced graph

regions of the plot. Moreover, the hierarchical simplification of the graphs does

not destroy the cluster structure.

3.7 Conclusions

In this chapter, we have used the Fiedler vector of the Laplacian matrix to parti-

tion the nodes of a graph into super-cliques for the purposesof matching. This

allows us to decompose the problem of matching the graphs into that of match-

ing structural subunits, the super-cliques. We investigate the matching of the

structural subunits using a edit distance method. The partitioning method is suf-

ficiently stable under structural error that accuracy of match is not sacrificed.

Our motivation in undertaking this study is to use the partitions to develop a

hierarchical matching method. The aim is to construct a graph that represents

the arrangement of the partitions. By first matching the partition arrangement

graphs, we provide constraints on the matching of the individual partitions.

Focusing the aim of developing a more robust graph representation, we have

shown how ideas from the spectral theory of the heat kernel can be used to con-

struct a path-weighted proximity matrix. We show how the heat-kernel can be

61

Figure 3.26: Scatter plots for the original graph and reduced graph edit distance

Figure 3.27: MDS for the original graph (left) edit distance, (right)spectral fea-
ture vector

62

Figure 3.28: MDS for the reduced graph (left) edit distance,(right)spectral fea-
ture vector

used to compute the path weight distribution on the graph. The distribution is

used to compute the mean and variance of the path length between pairs of nodes.

Our path weighted proximity matrix is computed by exponentiating the squared

mean-distance. We have studied the properties of the path weighted proximity

matrix. This study shows that it gives us more stable representation of graph-

structure under structural error.

63

Chapter 4

Commute Time

Commute time is a concept first introduced to study random walks in the graph

(Desai and Rao, 1993; Aldous and Fill, 2003). The quantity measures the time

taken for random walk from one node to another and back again.Commute time

has a close relationship with spectral graph theory (Chung and Yau, 2000). We

first show how commute time is related to other important concepts in spectral

graph theory and how it can be computed in a spectral manner. Then we focus on

the commute time preserving embedding, which embeds a graphinto a subspace

where the Euclidean distance between a pair of points is equal to the commute

time value of the corresponding nodes in the original graph.Commute time

embedding is also akin to some other classic embedding methods such as PCA,

the Laplacian map and the diffusion map. We will show that ourcommute time

embedding is related to these methods. Finally, based on an analysis of the

clustering properties of commute time, we will show how it can be effectively

applied to the clustering problem and why it could be superior to thenormalised

cut.

64

4.1 Spectral Affinity

In this section, we review the theory underpinning the computation of commute

time. We commence by showing what is the Green’s function andhow it is re-

lated to the heat kernel and how it can be computed from the Laplacian spectrum.

Then, we will show that the commute time is a metric that is obtained from the

Green’s function.

4.1.1 Green’s Function

Now consider the discrete Laplace operator∆ = T−1/2LT 1/2. The Green’s

function is the left inverse operator of the Laplace operator ∆, defined by

G∆(u, v) = I(u, v) − dv

vol

Wherevol =
∑

v∈V dv is the volume of the graph andI is the|V | × |V | identity

matrix. A physical interpretation of the Green’s function is the temperature at a

node in the graph due to a unit heat source applied to the external node. While

the external node is connected by edges with the nodes on the boundary of the

graph. The Green’s function of the graph is related to the heat kernelHt and has

element given by

G(u, v) =

∫ ∞

0

d1/2
u (Ht(u, v) − φ′

1(u)φ
′
1(v)) d

−1/2
v dt (4.1)

whereφ′
1 is the eigenvector associated with the zero eigenvalue, i.eλ′1 = 0 of the

normalizedLaplacian matrix and which has k-th element isφ′
1(k) =

√

dk/vol.

Furthermore, thenormalizedGreen’s functionG = T−1/2GT 1/2 is given in terms

65

of the normalised Laplacian spectrum (see (Chung and Yau, 2000) page 6) as

G(u, v) =

|V |
∑

i=2

1

λ′i
φ′

i(u)φ
′
i(v) (4.2)

whereλ′ andφ′ are the eigenvalue and eigenvectors of thenormalizedLaplacian

L. The corresponding Green’s function of theun-normalizedLaplacianḠ is

given by

Ḡ(u, v) =

|V |
∑

i=2

1

λi
φi(u)φi(v)

whereλi andφi are the eigenvalue and eigenvectors of theun-normalizedLapla-

cianL.

ThenormalizedGreen’s function is hence the pseudo-inverse of thenormal-

ized LaplacianL. Moreover, it is straightforward to show thatGL = LG =

I − φ′
1φ

′T
1 , and as a result(LG)(u, v) = δ(u, v) −

√
dudv

vol
. From (4.2), the eigen-

values ofL andG have the same sign andL is positive semidefinite, and soG is

also positive semidefinite. SinceG is also symmetric (see (Chung and Yau, 2000)

page 4), it follows thatG is a kernel. The same applies to theun-normalized

Green’s functionḠ.

The relationship betweenG, Ḡ and G can be obtained if we consider an

induced subgraphΓS of the original graphΓ. If ΓS is connected,∆, L andL are

nonsingular (see (Chung, 1997)) and we haveG∆ = ḠL = GL = I. From the

fact that∆ = T−1/2LT 1/2 andL = T−1/2LT−1/2, then∆ = T−1L. As a result

we haveGT−1L = ḠL and as a consequencēG = GT−1. Making use of the

fact thatG = T−1/2GT 1/2, we then obtain

Ḡ = T−1/2GT−1/2 (4.3)

66

4.1.2 Commute Time

We note that thehitting timeO(u, v) of a random walk on a graph is defined as

the expected number of steps before nodev is visited, commencing from node

u. Thecommute timeCT (u, v), on the other hand, is the expected time for the

random walk to travel from nodeu to reach nodev and then return. As a result

CT (u, v) = O(u, v)+O(v, u). The hitting timeO(u, v) is given by (Chung and

Yau, 2000)

O(u, v) =
vol

dv

G(v, v) − vol

du

G(u, v)

whereG is the Green’s function given in equation 4.1. So, the commute time is

given by

CT (u, v) = O(u, v) +O(v, u)

=
vol

du

G(u, u) +
vol

dv

G(v, v) − vol

du

G(u, v) − vol

dv

G(v, u)
(4.4)

or usingun-normalisedGreen’s function, as

CT (u, v) = vol
(

Ḡ(u, u) + Ḡ(v, v) − 2Ḡ(u, v)
)

(4.5)

As a consequence of Equation 4.4 the commute time is a metric on the graph.

The reason for this is that if we take the elements ofG as inner products defined

in a Euclidean space,CT will become the norm satisfying:‖xu − xv‖2 =<

xu − xv, xu − xv >=< xu, xu > + < xv, xv > − < xu, xv > − < xv, xu >.

Substituting the spectral expression for the Green’s function into the defi-

nition of the commute time, it is straightforward to show that in terms of the

eigenvectors of thenormalisedLaplacian

CT (u, v) = vol

|V |
∑

i=2

1

λ′i

(

φ′
i(u)√
du

− φ′
i(v)√
dv

)2

(4.6)

67

On the other hand, performing an eigen-decomposition on both sides of Eq.

(4.3):

ΦΛ−1ΦT = T−1/2Φ′Λ′−1Φ′TT−1/2

= (T−1/2Φ′)Λ′−1(T−1/2Φ′)T

(4.7)

It follows thatΛ−1 = Λ′−1 andΦ = T−1/2Φ′. Substituting these relationships

between the eigensystems into Eq. (4.6), the commute time can be expressed in

terms of the eigen-system of theun-normalizedLaplacian.

CT (u, v) = vol

|V |
∑

i=2

1

λi
(φi(u) − φi(v))

2 (4.8)

4.2 Commute Time Embedding

Commute time embedding is a mapping from the data space into aHilbert sub-

space that keeps the original commute time value. It has someproperties similar

to alternative embedding methods such as PCA, the Laplacianeigenmap and the

diffusion map. In this section, we will first introduce the principles of commute

time embedding and then we will compare it to alternative embedding methods.

Some embedding examples are illustrated and the robustnessof embedding is

also discussed.

68

4.2.1 Basics

Equation 4.6, can be re-written in the following form which makes the relation-

ship between the commute time and the Euclidean distance more explicit

CT (u, v) =

|V |
∑

i=2

(
√

vol

λ′idu
φ′

i(u) −
√

vol

λ′idv
φ′

i(v)

)2

(4.9)

Given two pointsxu andxv in aRn space, their squared Euclidean distance can

be computed as
∑n

i=1 (xu(i) − xv(i))
2, wherexu(i) is the cor-ordinate ofxu on

thei-th axis. As a result, from Equation 4.9,
√

vol
λ′

i
du
φ′

i(u) can be taken as thei-th

co-ordinate of nodeu in the commute time embedded subspace. Therefore, the

embedding of the nodes of the graph into a vector space that preserves commute

time has the co-ordinate matrix

Θ =
√
volΛ′−1/2Φ′TT−1/2 (4.10)

The columns of the matrix are vectors of embedding co-ordinates for the nodes of

the graph. The termT−1/2 arises from the normalisation of the Laplacian. If the

commute time is computed from the un-normalised Laplacian,the corresponding

matrix of embedding co-ordinates is

Θ =
√
volΛ−1/2ΦT (4.11)

The embedding is nonlinear in the eigenvalues of the Laplacian. This dis-

tinguishes it from principle components analysis (PCA) andlocality preserv-

ing projection (LPP) (He and Niyogi, 2003) which are both linear. As we will

demonstrate in the next section, the commute time embeddingis just kernel PCA

(Scholkopf et al., 1998) on the Green’s function. Moreover,it can be viewed as

Laplacian eigenmap since it minimises the same objective function.

69

4.2.2 The Commute Time Embedding and Kernel PCA

Let us consider the un-normalised case above. Since the Green’s function Ḡ

is the pseudo-inverse of the Laplacian, it discards the zeroeigenvalue and the

corresponding eigenvector~e of the Laplacian. The columns of the eigenvector

matrix are orthogonal, which means that the eigenvector matrix Φ of Ḡ satisfies

ΦT~e = ~0. Hence,
√
volΛ−1/2ΦT~e = ~0, and this means that the data is centred.

As a result, the covariance matrix for the centred data is

Cf = ΘΘT = volΛ−1/2ΦT ΦΛ−1/2 = volΛ−1 = volΛḠ (4.12)

whereΛḠ is the eigenvalue matrix ofun-normalisedGreen’s function with de-

creasingly ordered eigenvalues. The kernel or Gram matrix is given by the inner

product of the co-ordinates matrix with itself

K = ΘTΘ = volΦΛ−1/2Λ−1/2ΦT = volΦΛ−1ΦT = volḠ (4.13)

which is just the Green’s function multiplied by a constant.Hence, we can view

the embedding as performing kernel PCA on the Green’s function for the Lapla-

cian. Actually,K being a kernel is inevitable since we have defined the commute

time as an equivalent distance measure to Euclidean distance in Equation 4.9.

4.2.3 The Commute Time Embedding and the Laplacian Eigen-

map

In the Laplacian eigenmap (Belkin and Niyogi, 2003; Belkin and Niyogi, 2001)

the aim is to embed a set of points with co-ordinate matrixX̄ = (x̄1|x̄2|...|x̄n)

from aRn space into a lower dimensional subspaceRm with the co-ordinate

matrix Z = (z1|z2|...|zm). The original data-points have a proximity weight

70

matrix Ω with elementsΩ(u, v) = exp[−||x̄u − x̄v||2]. The aim is to find the

embedding that minimises the objective function

ǫ =
∑

u,v

‖zu − zv‖2 Ω(u, v) = tr(ZTLZ) (4.14)

whereΩ is the edge weight matrix of the original dataX̄.

To remove the arbitrary scaling factor and to avoid the embedding undergoing

dimensionality collapse, the constraintZTTZ = I is applied. The embedding

problem becomes

Z = arg min
Z∗T TZ∗=I

tr(Z∗TLZ∗) (4.15)

The solution is given by the lowest eigenvectors of the generalised eigen-problem

LZ = Λ′TZ (4.16)

and the value of the objective function corresponding to thesolution isǫ∗ =

tr(Λ′).

As we will show later on in Equation 4.21, the objective function minimized

by the normalized cut can also be given by

ǫ′ =

∑

u,v ‖zu − zv‖2 Ω(u, v)
∑

u z2
udu

= tr(
ZTLZ
ZTTZ

) (4.17)

Here we argue that although the objective function that the commute time em-

bedding optimises is still unknown, we can achieve the same minimized score

ǫ∗ as the Laplacian eigenmap using Equ. 4.17. To show this, letZ = ΘT =

71

(
√
volΛ′−1/2Φ′TT−1/2)T , then we have

ǫ′ = tr(

√
volΛ′−1/2Φ′TT−1/2LT−1/2Φ′Λ′−1/2

√
vol√

volΛ′−1/2Φ′TT−1/2TT−1/2Φ′Λ′−1/2
√
vol

)

= tr(
Λ′−1/2Φ′TLΦ′Λ′−1/2

Λ′−1/2Φ′T Φ′Λ′−1/2
)

= tr(
Λ′−1/2Λ′Λ′−1/2

Λ′−1
)

= tr(Λ′) = ǫ∗

(4.18)

Hence, the commute time embedding not only aims to maintain proximity rela-

tionships by minimising
∑

u,v ‖zu − zv‖2 Ωuv, but it also aims to assign large

co-ordinate values to nodes (or points) with large degree (i.e. it maximises
∑

u z2
udu). Nodes with large degree are the most significant in a graph since

they have the largest number of connecting edges. In the commute time embed-

ding, these nodes are furthest away from the origin and are hence unlikely to be

close to one-another.

4.2.4 The Commute Time and the Diffusion Map

Finally, it is interesting to note the relationship with thediffusion map embed-

ding of Coifmanet al (Coifman et al., 2005). The method commences from the

random walk on a graph which has transition probability matrix P = T−1Ω,

whereΩ is the adjacency matrix. AlthoughP is not symmetric, it does have a

right eigenvector matrixΨ, which satisfies the equation

PΨ = ΛP Ψ (4.19)

72

SinceP = T−1Ω = T−1(T − L) = I − T−1L. As a result

(I − T−1L)Ψ = ΛPΨ

T−1LΨ = (I − ΛP)Ψ

LΨ = (I − ΛP)TΨ

(4.20)

which is identical to Equation (4.16) ifZ = Ψ andΛ′ = I−qΛP . The embedding

co-ordinate matrix for the diffusion map isΘD = ΛtΨT , wheret is real. For

the embedding, the diffusion distance between a pair of nodes isD2
t (u, v) =

∑m
i=1(λP)2t

i (ψi(u) − ψi(v))
2. Clearly if we taket = −1/2 the diffusion map

is equivalent to the commute time embedding. Moreover, the diffusion time is

equal to the commute time.

The diffusion map is designed to give a distance function that reflects the

connectivity of the original graph or point-set. The distance should be small if a

pair of points are connected by many short paths, and this is also the behaviour

of the commute time. The advantage of the diffusion map or distance is that it

has a free parametert, and this may be varied to alter the properties of the map.

The disadvantage is that whent is small, the diffusion distance is ill-posed. The

reason for this is that the original definition of the diffusion distance for a random

walk can be given by

D2
t (u, v) = ‖pt(u, ·) − pt(v, ·)‖2

As a result, the distance between a pair of nodes depends on the transition prob-

ability between the nodes under consideration and all of theremaining nodes in

the graph. Hence ift is small, then the random walk will not have propagated

significantly, and the distance will depend only on very local information. There

are also problems whent is large. When this is the case the random walk con-

73

verges to its stationary state withP t = T/vol (a diagonal matrix), and this gives

zero diffusion distance for all pairs of distinct nodes. So,it is a critical to control

t carefully in order to obtain useful embedding.

4.2.5 Some Embedding Examples

Figure 4.1 shows four synthetic examples of point-configurations. These points

are located in the original Euclidean space and color coded to indicate which

cluster they belong to. We then computed the proximity weight matrix Ω by

exponentiating the Euclidean distance between points. Their corresponding em-

beddings in the commute time embedded space is shown in Figure 4.2. Here the

co-ordinates in the commute time embedded space is computedby Equ. 4.10

and we take the first three columns as axes.

The main features to note are as follows. First, the embeddedpoints cor-

responding to the same point-clusters are cohesive, being scattered around ap-

proximately straight lines in the subspace. Second, the clusters corresponding

to different objects give rise to straight lines that are nearly orthogonal. The or-

thogonality is due to the strong block-diagonal structure of the affinity matrix

(the commute time matrix in this case) and a full explanationcan be found in

Ng’s paper (Ng et al., 2001).

4.2.6 Robustness of the Commute Time Embedding

From Equation (4.11) we can see that the co-ordinates of the commute time

embedding depend on the eigenvalues and eigenvectors of theLaplacian matrix.

Hence, the stability of the embedding depends on the stability of the eigenvalue

and eigenvector matrices. According to Weyl’s theorem, thevariation of the

eigenvalues of a perturbed matrix is bounded by the maximum and the minimum

eigenvalues of the perturbing matrix. However, the eigenvectors are less stable

74

A B

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

C D

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.1: Four sets of data points in their original space.Here in each set,
points belonging to the same cluster are coded with the same color.

under perturbation. Despite this anticipated problem, thecommute time matrix

is likely to be relatively stable under perturbations in graph structure. According

to Rayleigh’s Principle in the theory of electrical networks, commute time can

neither be increased by adding an edge or a node, nor decreased by deleting

a single edge or a node. In fact, the impact of deleting or adding an edge or

a node to the commute time between a pair of nodes is negligible if they are

well connected. Particularly, in the application of motiontracking, this property

75

A B

−0.02

0

0.02

0.04

0.06

0.08

0.1

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

−0.2

−0.1

0

0.1

0.2

−2 0 2 4 6 8 10 12

x 10
5−2

0

2

4

6

8

x 10
5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

C D

Figure 4.2: The corresponding four sets of data points in thecommute time
embedded space. Color pattern is the same as Figure 4.1.

reduces the impact of outliers, since once embedded, outliers will be excluded

from the object point-clusters.

4.3 Commute Time Properties for Grouping

In this section, we will compare commute time embedding withthe normalised

cut.

76

4.3.1 Commute Time Properties

Commute time has the following properties:

• The points embedded in the subspace are allocated along its principle axes;

• The close or similar points are embedded close to each other;

• Large degree points are allocated far from the origin;

• The original commute time distance is preserved. This meansthat the Eu-

clidean distance in the embedded subspace preserves the properties from

the original commute time distance. This means a pair of nodes will be

close in the embedded subspace if they are connected and satisfy the fol-

lowing:

– They are close together, i.e. the length of the path between them is

small;

– The paths connecting them have a small sum of weights;

– They are connected by many paths;

4.3.2 Comparison with the Normalised Cut

Here we argue that the normalised cut is the separation of theaxis projection of

the points in commute time embedded subspace.

From the previous section on commute time embedding, we makea num-

ber of observations. First, we observe the objective function(Equation 4.17)

minimised is exactly that minimised by the normalised cut in(Shi and Malik,

2000)(see page 9(10)). To show this let~θ be anN = |V | dimensional binary in-

dicator vector, which determines to which component of the bi-partition a node

belongs. The minimum value obtained by the normalized cut (Shi and Malik,

77

2000) is

~θ1 = arg min
~θT T1=0

~θT (T − Ω)~θ

~θT T~θ
(4.21)

From Equation 4.17 it is clear that the both methods achieve the same minimisa-

tion and use the same eigenvectors as solutions. The only difference is that the

eigenvectors used in the commute time embedding are scaled by the reciprocal

of the corresponding non-zero eigenvalues. In the bipartition case, this does not

make any difference since scaling will not change the distribution of the eigen-

vector components. However, in the multi-partition case, the scaling differenti-

ates the importance of different eigenvectors. From Equation 4.8, it is clear that

the eigenvector corresponding to the smallest non-zero eigenvalue contributes

the greatest amount to the sum. Moreover, it is this eigenvector or Fiedler vector

that is used in the normalised cut to bipartition the graphs recursively.

Turning our attention to the commute time embedding, here the scaled eigen-

vectors are used as the projection axes for the data. As a result, if we project the

data into the commute time embedding subspace, the normalised cut bipartition

can be realized by simply dividing the projected data into two along the axis

spanned by the Fiedler vector. Further partitions can be realized by projecting

and dividing along the axes corresponding to the different scaled eigenvectors.

4.3.3 Why Commute Time Clustering is Successful

The normalised cutmethod (Shi and Malik, 2000) seeks the bi-partition that

simultaneously maximises intra-cluster association and minimises inter-cluster

edge linkage. However, this problem is NP-hard and only a relaxed approxima-

tion can be found, and this is given by the Fiedler vector. As aresult, the more

discrete the distribution of the components in Fiedler vector, the closer the re-

laxed solution to the exact one. In a bipartition, if the components in the Fiedler

vector take on only two distinct values, the Fiedler vector will become the exact

78

solution and two partitions are well separated. Meilă and Shi (Meil̆a and Shi,

2000) extend the bipartition normalised cut to the multi-partitions case. and they

called this nearly discrete eigenvector pair-wise constant. Turning our attention

to the commute time, from Equation 4.8, it is clear that if allthe eigenvectors are

pair-wise constant, the points belonging to the same cluster will have a zero com-

mute time and those belonging to different clusters will have a large value. This

further proves that commute time can be taken as a measure of data cohesion.

The only way to obtain pair-wise constant eigenvectors is tohave a block

diagonal affinity matrix. This has been discussed extensively in the literature

(Meilă and Shi, 2000; Ng et al., 2001; Weiss, 1999). Ng et al (Ng et al., 2001)

use tools from matrix perturbation theory to analyse spectral clustering methods.

The ”ideal” case in their model is to have a pure block diagonal affinity matrix.

Weiss (Weiss, 1999) has shown the data must be normalised in order to obtain a

more block-diagonal affinity matrix, if the original matrixhas no constant blocks.

If this is not the case methods such as Perona and Freeman’s algorithm (Perona

and Freeman, 1998), Shi and Malik’s normalised cut method (Shi and Malik,

2000) and Scott and Longuet-Higgins algorithm (Scott and Longuet-Higgins,

1990) will not succeed. Hence, what determines the quality of the clustering is

not a better cut- criteria, but an improved block structure in the affinity matrix.

The block structure can be enhanced by the commute time as shown by Fischer

and Poland (Fischer and Poland, 2005). Here, a new affinity measure based on

graph conductivity is introduced so as to quantify cluster memberships. This

graph conductivity measure is equivalent to the commute time.

Since commute time can amplify the block structure of an affinity matrix that

have a better pair-wise constant eigenvectors and hence give better clustering

performance.

79

4.4 Conclusions

The focus of this chapter is commute time. We commenced by reviewing some of

the properties of commute time and its relationship with theLaplacian spectrum.

This analysis relied on the discrete Green’s function of thegraph. Two of the

most important properties are that the Green’s function is akernel and that the

commute time is a metric.

With the mathematical definitions of commute time to hand, wehave anal-

ysed the properties of the commute time embedding. This allows us to under-

stand the links between the commute time embedding and alternative embedding

methods such as Kernel PCA, The Laplacian eigenmap and the diffusion map.

An interesting feature of the commute time embedding is thatit maintains the

maximum variance of data and at the same time groups data together. Further-

more, the commute time matrix gives us a more block-like affinity matrix and

a finer data cohesion measure. A comparison with thenormalised cutmethod

sheds light on its properties which are used for data clustering.

80

Chapter 5

Commute Time Applications

In the previous chapter we have summarised the properties ofcommute time and

explored its relationship with the Laplacian spectrum. There are four proper-

ties of the commute time that are important to us. First, as a time measurement

for a random walk, the commute time is closely related to the heat equation or

heat kernel. This allows us to use commute time to simulate the heat diffusion

process on graphs. Secondly, commute time is also a distancemetric that mea-

sures the connectivity of pairs of nodes. Its robustness to structural corruption

means that it could provide a very reliable graph representation. Thirdly, based

on the analysis of its grouping properties and comparing it with the normalised

cut, commute time offers finer data cohesion. This means thatit can be applied

to data clustering problems. Finally, since commute time embedding possesses

the properties of preserving the maximum data variance and proximity, it is suit-

able for applications requiring simultaneous dimensionality reduction and data

separation.

These four properties of commute time allow us to develop four correspond-

ing methods that can be used in computer vision. The first of these is a graph

simplification method, based on a simulation of the heat diffusion process on a

graph. We use them to develop two ways of representation of graphs for match-

81

ing. The first of these is based on concentric layers of its graph. The second is

based on the commute time minimum spanning tree. Comparing our results with

those from the normalised cut, we explore the use of commute time for the image

segmentation problem. Finally, we have applied our commutetime embedding

method to the multi-body motion tracking problem. This is realized by embed-

ding the matrix containing object shape information into a lower dimensional

space and clustering using a K-means algorithm.

The remainder of this chapter is organised as follows: In Section 5.1, we

present our graph matching method based on the decomposition of graphs into

concentric layers. In Section 5.2, we discuss the problem ofgenerating stable

spanning trees of graphs and elaborate on our robust tree representation using

commute times. Section 5.3 compares the previous two graph matching meth-

ods on both Delaunay and K-NN graphs. In Section 5.4, we show how to use

the eigenvector of the commute time matrix to recursively bipartition graphs and

provide a comparison withthe normalised cutmethod. In Section 5.5, we cast the

multi-body objects tracking problem into our commute time embedding frame-

work and show how objects can be separated using a simple K-means method.

Finally, we provide our conclusions in Section 5.6.

5.1 Multilayer Graph Representation and Match-

ing

The first graph simplification method is based on the concentric layers that result

from repeatedly peeling away the boundary of the graph. Here, graph is restricted

to planar ones. Our motivation in adopting this representation is that the pattern

of concentric layers is less likely to be disturbed by structural noise than the

random walk, which can be diverted. To address this problem using the apparatus

82

of the heat equation, we augment the graph with an auxiliary node. This node is

connected to each of the boundary nodes by an edge, and acts asa heat source.

Concentric layers are characterised using the commute timefrom the auxiliary

node. We match graphs by separately matching the concentriclayers.

5.1.1 Graph Derivation and Representation

We commence by constructing an augmented graph from the original graph

Γ(V,E,Ω) by adding an auxiliary external node. We refer to this new graph

as theaffixation graph. It is constructed by connecting the additional node to

each of the nodes on the boundary (or perimeter) of the original graph. Our aim

in constructing this affixation graph is to simulate heat flowfrom the external

node, which acts like an external heat source. We assign the labelτ to the auxil-

iary node, and theaffixation graphA(V
′
, E

′
) can be defined byV

′
= V ∪ {τ}

andE
′
= E ∪ {(τ, u), ∀u ∈ Boundary(Γ)}.

By analysing the heat-flow from the auxiliary node on the affixation graph,

we can generate a multilayer representation of the originalgraph. The idea is

to characterise the structure of the graph using the patternof heat-flow from the

source node. To embark on this study, let us reconsider the probability of the

random walkP l with a certain path lengthl, introduced in the last chapter. We

can make an estimate of the heat flow on the graph by taking the average value

of P l according to the path lengthl:

d̂(u, v) =

∑

l lP l(u, v)
∑

l P l(u, v)
.

We take the external nodeτ to be the heat source and consider all the random

walks starting from the the affixation nodeτ . The average path distancêd(τ, v)

for all v in V follows a staircase distribution, which we can use to classify nodes

83

0 5 10 15 20 25 30 35
3.6

3.8

4

4.2

4.4

4.6

4.8

5
Average
path
distance

Node index

Auxiliary external node

First layer nodes

Second layer nodes

Third layer nodes

Last layer nodes

(a) Staircase distribution of the average path
distance.

1 2

34

5 6

78

9
10 11

12

13
14

15

1617
18

19

20 21

22

23
24

25

26
27

28

29

30

Number of nodes:
30

(b) An example of a multilayer graph.

Figure 5.1: The staircase distribution and a multilayer graph.

into different layers.

Figure 5.1(a) illustrates this staircase property. The nodes with the same av-

erage distance correspond to the same layer of the graph. Thecorresponding

multilayer graph representation is shown in Figure 5.1(b),where the nodes con-

nected by edges of the same colour belong to the same layer.

5.1.2 Score Function and Matching Process

Our matching process is based on the layers extracted above.To do this, we

match the nodes in each layer in one graph to the nodes of the corresponding

layer in a second graph. To do this we need a score-function todistinguish the

different nodes in the same layer. Unfortunately, the average path distance can

not be used for this purpose, since it is too coarsely quantised and can not be

used to differentiate between the nodes in the same layer of agraph. We seek a

score function which is related to the heat kernel, and hencethe heat-flow from

the external source node, but gives more salient values for each individual node.

84

(a) 3D visualisation of the scores on the
nodes.

20 40 60 80 100 120 140 160
3.5

4

4.5

5

Average
path
distance

Commute time

(b) Scatter plot of the commute time and the
average path distance.

Figure 5.2: 3D score visualisation and the scatter plot.

Here we define the score functionSu for nodeu asSu = CT (τ, u) which

is the commute time between nodeu and the external source nodeτ . Fig-

ure 5.2(a) shows a visualisation of the score functions for the Delaunay graph

in Figure 5.1(b). The score function is visualised as the height on the edges of

the concentric layers of the graph. The scores for the nodes on the same layer

are salient enough to distinguish them. In Figure 5.2(b) we show a scatter plot of

commute timesCT (u, v) versus the average path length distanced̂(u, v). From

this plot it is clear that the commute time varies more smoothly and has a longer

range than the average path distance.

Since we have divided the graph into several separate layers, our graph match-

ing step can proceed on a layer-by-layer basis. To perform the matching process

we peel layers of nodes from the boundary inwards. Each layeris a cycle graph

where each node is connected to its two adjacent nodes only. In the case when a

node has only one neighbour in the layer, the edge between them is duplicated to

form a cycle. We match the nodes in the corresponding layers of different graphs

85

by performing a cyclic permutation of the nodes. The cyclic permutation per-

mits possible null-insertions to accommodate missing or extraneous nodes. The

cyclic permutation minimises the sum-of-differences in commute times between

nodes in the graphs being matched. IfCk denotes the set of nodes in thekth layer

of the graph, then the permutationρ minimises the cost function

E(ρ) =
∑

k∈V

∑

l∈CM

k

∑

m∈CD

k

(Sl − Sρ(m))
2

5.1.3 Experiments

In this section, we carry out experiments based on our proposed multi-layer

graph matching method. Firstly, we test on synthetic graphswith various sizes

and then we compare our method with alternatives on the real-world data. Re-

sults show that our method is stable under structural corruption and outperform

others with a considerable margin.

5.1.3.1 Synthetic Data

Our synthetic data is the same as the ones we have been using for partition match-

ing in Chapter 3 Section 3.6.1. They are comprised of three randomly generated

graphs with original nodes size20, 40 and60 respectively. In Figure 5.3, we

show the original graphs together with their correspondingmulti-layer represen-

tations. Here, different layers in each graph are coded withdifferent colors for

illustration.

To test the stability of our multi-layer representation, wecorrupt the origi-

nal graphs with structural error and match the corrupted graphs with the original

ones. As in the previous experiments at Chapter 3, the effects of structural errors

are simulated by randomly deleting nodes and re-triangulating the remaining

nodes. Here we match each corrupted graph with its original one using their

86

Original Graph Layer Graphs

1

2

3

4

5

67

8

9

10

11

12

13

14

15

16

17

18

19

20

1

2

3

4

5

67

8

9

10

11

12

13

14

15

16

17

18

19

20

Number of nodes: 20

1

2

3

4

5

67

8

9

10

11

12

13

14

15
16

17

18

19

20

1
23

4

5

6

7

8

910

11

12

13

1415

16

17

1819

20

21

22

23
24

25

26

27

28
29

30

31

32

33

34

35

36

37

38

39

40

Number of nodes:
40

Number of edges:
108

1
23

4

5

6

7

8

910

11

12

13

1415

16

17

1819

20

21

22

23
24

25

26

27

28
29

30

31

32

33

34

35

36

37

38

39

40

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27
28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27
28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60
Number of nodes: 60

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27
28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Figure 5.3: Synthetic graphs and their layered representations.

87

multi-layer representations. The matching result is compared with the ones from

partition matching method and shown in Figure 5.4. Here the performance is

based on an average of50 trials for each graph set. From the figure, it is interest-

ing to see that larger graphs (60 nodes in this case) give more stable performance

than the middle size ones (40 nodes) and small ones (20 nodes). This is different

from partition matching method. In their case, middle-sizegraphs give the best

performance since large graphs do have the problem of findingthe correct cor-

respondencs of partitions. However, in multi-layer representation, this problem

is eased by matching the corresponding layers. Moreover, each layer is a cycle

graph and the matching of these cyle graphs are realitively simple and stable. As

we can see from the figure, when there is no structural error (percentage of clutter

equals zero), all three groups of synthetic graphs achieved100% accurate. Fi-

nally, it is worthful to point out that multi-layer graph matching does worse than

the partition method when there is severe structural corruption. This is because

under that condition, graphs are corrupted so badly that graph layers are cut into

pieces and unable to form stable structures.

5.1.3.2 Real-World Data

The data used in our study is furnished by a sequence of views of a model-house

taken from different camera viewing directions. Similar toSection 3.6.2 in Chap-

ter 3, we take two such sequences for our real-world data test. One of them is

from CMU database (referred as CMU) and the other is from INRIA (referred as

MOVI). Examples from each sequence together with their corresponding multi-

layer representations are shown in Figure 5.5. In this figure, we have the original

images on the top and their multi-layer graphs on the bottom.Different col-

ors illustrate different layers. CMU house has31 nodes and the corresponding

multi-layer graph has four layers. MOVI house is larger. It has140 nodes and as

88

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70

P
o
s
i
t
i
v
e

c
o
r
r
e
s
p
o
n
d
e
n
c
e

r
a
t
e

Percentage of clutter

Partition graph with 20 nodes
Partition graph with 40 nodes
Partition graph with 60 nodes

Multilayer graph with 20 nodes
Multilayer graph with 40 nodes
Multilayer graph with 60 nodes

Figure 5.4: Comparison of multilayer graph matching methodwith partition
matching method on synthetic data.

a result, it has five layers. In order to illustrate the variations of the house images

as well as their multi-layer graph structure, we show the complete CMU house

sequence overlayed by their multi-layer graph representations in Figure 5.7.

We have matched the first image to each of the subsequent images in the

CMU sequence by using the multilayer matching method outlined earlier in this

chapter. The results are compared with those obtained usingthe method of Luo

and Hancock (Luo and Hancock, 2001) and the partition matching method of

Qiu and Hancock (Chapter 3) in Table 5.1. This table containsthe number of de-

tected corners to be matched, the number of correct correspondences, the num-

ber of missed corners and the number of miss-matched corners. We have also

compared the multilayer matching method with our partitionmatching method

89

CMU MOVI

1 2

34
5 6

78

9
10 11 12

13
14

15

1617
18

19

20 21
22

23
24

25

26
27

28
29

30

1

23
4
56
7

89
10
11

12

13

14

151617

18

19

20212223

2425

26

27

28

29

30

31

32

33

34

35

36

37

38394041

42
43

44

45

46

47

48

49
50

5152

53

5455

56

57

58

59
60

61

62

63
64

65

66

67

68

69
70

71

72

73

7475

76

77
78

79

8081

82

8384

85

86

87

88

8990
9192

93

94

95

96
979899

100

101

102

103

104

105

106

107

108

109

110
111

112

113

114

115

116

117

118

119
120

121

122

123

124

125

126

127
128

129

130

131132

133

134

135

136

137
138

139

140

Figure 5.5: Real-world house images with their multi-layergraph representa-
tions.

on the MOVI sequence. To illustrate the results, Figure 5.6 shows the correct

correspondence rate as a function of the difference in view number.

From the results, it is clear that our new method outperformsboth Luo and

Hancock’s EM method and the partition matching method for large differences

in viewing angles for the CMU house sequence. The performance of multilayer

matching method on MOVI house sequence is also much better than the partition

method. This is because multilayer graph matching method does not have the

90

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9

C
o
r
r
e
c
t

c
o
r
r
e
s
p
o
n
d
e
n
c
e

r
a
t
e
(
%
)

Relative position deviation

BinLuo’s EM for CMU houses
Graph Partition with Edit Distance for CMU houses

Graph Partition with Edit Distance for MOVI houses
Multilayer matching for CMU houses

Multilayer matching for MOVI houses

Figure 5.6: Comparison of three graph matching methods on two real-world
image sets.

Method House index 0 1 2 3 4 5 6 7 8 9
Corners 30 32 32 30 30 32 30 30 30 31

EM Correct - 29 26 24 17 13 11 5 3 0
False - 0 2 3 8 11 12 15 19 24

Missed - 1 2 3 5 6 7 10 8 6
Partition Correct - 26 24 20 19 17 14 11 13 11
matching False - 3 5 8 11 12 16 15 17 19

Missed - 1 1 2 0 1 0 4 0 0
Multilayer Correct - 27 27 27 27 26 27 27 27 27
matching False - 3 3 2 2 3 2 2 2 2

Missed - 0 0 1 1 1 1 1 1 1

Table 5.1: Correspondence allocation results and comparison with the methods.

problem of finding the correct corresponding layers. Nodes on the layers can be

easily matched afterwards. While the partition matching method has problems

of locating the correct correspondences between partitions when graphs become

larger. This is important since MOVI houses are much larger than CMU ones

91

and as a result, multilayer graph matching method could be considered one of

the best to handle with large graph matching problems.

Figure 5.8 shows the results for some CMU example image pairs. There are

clearly significant structural differences in the images from which the graphs are

extracted including rotation, scaling and perspective distortion. Even in the worst

case, our method has a correct correspondence rate of86.7%.

5.2 Minimum Spanning Tree Representation and

Matching

The second graph simplification method uses the minimum spanning tree asso-

ciated with the heat kernel as a way of characterising the graph. However, there

is a difficulty with directly using the heat kernel, since thetime parameter of

the kernel must be set. As we will show later in this section, the spanning trees

evolve in a rather interesting way with time. For small time,they are rooted near

the centre of the graph, and the branches connect to terminalnodes that are on

the boundary of the graph. As time increases, the tree becomes string like, and

winds itself from the centre of the graph to the perimeter. Asit does so, the

number of terminal nodes decreases, i.e. the large time treehas the appearance

of a string to which a small number of short branches or ligatures are attached.

Hence, a choice must be made in setting the time parameter.

One way to overcome this problem is to use statistical properties of the ran-

dom walk. Hence, in this section we use the minimum spanning tree associated

with the minimum commute time as a way of characterising the structure of a

graph. We construct an auxiliary fully connected graph in which the weights

are the commute times between pairs of nodes in the original graph. We then

use Prim’s method to locate the spanning tree that minimisesthe sum of weights.

92

Figure 5.7: CMU house sequence.

93

12

34
5 6

78

9
10 11 12

13
14

15
1617

18
19

20 21
22

23
24

25

26
27

28
29

30

Number of nodes:
30

12

34
5 6

78

9 10 11
12

13
14

15
1617

18
19

20 21
22

23
24

25

26
27

28

29

30

31

32

Number of nodes:
32

(a) 1st image to 2rd image.

12

34
5 6

78

9
10 11 12

13
14

15
1617

18
19

20 21
22

23
24

25

26
27

28
29

30

Number of nodes:
30

12

34
5 6

78

9 10 11
12

13
14

15
1617

18
19

20 21
22

23
24

25

26
27

28

29

30

31

32

Number of nodes:
32

12

34
5 6

78

9
10 11 12

13
14

15
1617

18
19

20 21
22

23
24

25

26
27

28
29

30

Number of nodes:
30

12

34
5 6

78

9
10 11

12

1314

15
161718

19

20
21
22

23
24

25

26 27

28 29

30

Number of nodes:
30

(b) 1st image to 5th image.

12

34
5 6

78

9
10 11 12

13
14

15
1617

18
19

20 21
22

23
24

25

26
27

28
29

30

Number of nodes:
30

12

345
6
789

10 11

12

1314

15
161718

19

20
21
22

23
24 25

26
27

28 29

30

Number of nodes:
30

(c) 1st image to 7th image.

12

34
5 6

78

9
10 11 12

13
14

15
1617

18
19

20 21
22

23
24

25

26
27

28
29

30

Number of nodes:
30

1 2

34
5

6
78

9 10 11

12
1314

15
161718

19
20

21
22

23
24

25

26

2728 29
3031

Number of nodes:
31

(d) 1st image to 10th image.

Figure 5.8: Matched samples.

94

The spanning tree is rooted at the node of minimum weight in the auxiliary graph,

and this is located near the centre of the original graph.

5.2.1 Robust Graph Representation by Trees

Our aim here is to re-cast the inexact graph matching problemas an inexact tree

matching problem. The main obstacle here is to locate a tree that is stable to

structural variations in the original graph. One way to do this is to extract a

minimum spanning trees from the graphs under study. However, unless care is

taken, then the structure of the extracted spanning trees will vary in an erratic

manner with slight changes in the structure of the original graph. This makes

reliable matching impossible. By reducing the graph into a tree, although we

obtain a simpler data structure, we also loose information.Hence, we need a

means of extracting a stable tree-like graph representation but at the same time

preserving as much information from the original graph as possible. Here we

argue that commute time provides a solution to this problem.

Given a weighted graphΓ, we generate the commute time matrixCT by

computing the commute time between each pair of nodes. From the commute

time matrix we construct a complete or fully connected graphΓ′. The weights

of the edges in this graph are the commute-times. In another word, the weight

matrixΩ of the new graphΓ′ satisfies:ΩΓ′(u, v) = CT (u, v). Our representation

is based on the minimum spanning tree of the fully connected graph Γ′ with

commute times as weights. The node weights on the spanning tree are found by

summing the edge weights. The weight on the nodeu is

Ω(u) =
∑

v∈V

CT (u, v)

The root node of the tree is that having the smallest node-weight and the mini-

95

mum spanning tree is generated by the Prim’s method (Prim, 1957) starting from

the root node.

Since commute time is a metric on the original graph and it captures global

information rather than the local information, it is likelyto be relatively stable to

structural modifications. For example, if there is node deletion or edge deletion,

then since wherever possible the random walk moves to connect two nodes, the

effect of that corruption is small. The stability of the commute time matrix en-

sures that the weight distribution on the derived fully connected graph is stable.

Hence, the minimum spanning tree can also be anticipated to be stable.

Edges of the spanning tree correspond to the path of the most probable ran-

dom walk. The weights on the nodes of the spanning tree preserve structural

information from the original graph. The nodes on the boundary of a graph to-

gether with those of small degree are relatively inaccessible to the random walk.

The reason for this is that they have a larger average commutetime than the re-

maining nodes. By contrast, the nodes in the interior of the graph and the nodes

with large degree are more accessible, and hence have a smaller average com-

mute time. The most frequently visited nodes in the tree is that with the smallest

average commute-time, and this is the root node. This node isusually located

near the the centre of a graph and has a large degree.

Two examples are shown in Figure 5.9 and Figure 5.10. In thesetwo figures,

we have shown two types of graphs. The first of these is the Delaunay and the

second is the K-nearest neighbour graph. We have also shown the commute time

matrices for the two graphs, the generated complete or fullyconnected graph

and the minimum spanning tree. The main features to note fromthe plots are as

follows. First, the spanning trees are rather different in structure. Second, there

is a more defined block structure in the commute time matrix for the K-nearest

neighbour graph.

96

100 200 300 400 500
0

100

200

300

400

500

12
34

5 678
9 10 11 12

1314

15
16171819

20 2122
2324

25

26 27

28
29

30

31

32

Number of nodes:32

5 10 15 20 25 30

5

10

15

20

25

30

100 200 300 400 500
0

100

200

300

400

500

12
34

5 678
9 10 11 12

1314

15
16171819

20 2122
2324

25

26 27

28
29

30

31

32

Number of nodes:32

100 200 300 400 500
0

100

200

300

400

500

12
34

5 678
9 10 11 12

1314

15
16171819

20 2122
2324

25

26 27

28
29

30

31

32

Number of nodes:32

Original Delaunay graph Commute time matrix

Derivated complete graph Minimum spanning tree

Figure 5.9: Delaunay graph example.

To illustrate the problems associated with using the heat-kernel to locate the

spanning tree, consider the continuous time random walk on the graph. Let~pt be

the vector whose elementpt(u) is the probability of visiting nodeu of the graph

under the random walk. The probability vector evolves underthe equation

∂~pt

∂t
= −L~pt

97

100 200 300 400 500
0

100

200

300

400

500

12
34

5 678
9 10 11 12

1314

15
16171819

20 2122
2324

25

26 27

28
29

30

31

32

Number of nodes:32

5 10 15 20 25 30

5

10

15

20

25

30

100 200 300 400 500
0

100

200

300

400

500

12
34

5 678
9 10 11 12

1314

15
16171819

20 2122
2324

25

26 27

28
29

30

31

32

Number of nodes:32

100 200 300 400 500
0

100

200

300

400

500

12
34

5 678
9 10 11 12

1314

15
16171819

20 2122
2324

25

26 27

28
29

30

31

32

Number of nodes:32

Original K nearest graph with k=5 Commute time matrix

Derivated complete graph Minimum spanning tree

Figure 5.10: K nearest neighbour graph example.

which has the solution

~pt = exp[−Lt]~p0

As a result~pt = Ht~p0. Consequently the heat kernel determines the random

walk. Hence, if we use the heat kernel as the edge weight function of the

graph then we can explore how the spanning trees associated with the heat kernel

evolve with time.

98

In Figure 5.11 for one of the graphs used in our experiments, we illustrate

the evolution of the spanning tree with time. The first image in the sequence

shows the input graph, and the remaining images show the recovered spanning

trees as time elapses. Initially, the tree is rooted near thecentre of the graph

with terminal nodes on the boundary. The recovered tree has many branches

and is very “bushy”. As time evolves, the pattern changes. The tree becomes

rather string-like and wraps itself around the boundary, with branches extending

it to the centre of the original graph. Hence, the structuresare unstable and not

suitable for matching.

 1 2

 3 4
 5 6

 7 8

 9 10 11
 12

 13
 14

 15

 16 17
 18

 19

 20 21

 22

 23
 24

 25

 26
 27

 28

 29

 30

 31

 32

t=1

1 2

34
5 6

78

9 10 11
12

13
14

15

1617
18

19

20 21

22

23
24

25

26
27

28

29

30

31

32

t=2

1 2

34
5 6

78

9 10 11
12

13
14

15

1617
18

19

20 21

22

23
24

25

26
27

28

29

30

31

32

t=3

1 2

34
5 6

78

9 10 11
12

13
14

15

1617
18

19

20 21

22

23
24

25

26
27

28

29

30

31

32

t=4

1 2

34
5 6

78

9 10 11
12

13
14

15

1617
18

19

20 21

22

23
24

25

26
27

28

29

30

31

32

t=5

1 2

34
5 6

78

9 10 11
12

13
14

15

1617
18

19

20 21

22

23
24

25

26
27

28

29

30

31

32

t=6

1 2

34
5 6

78

9 10 11
12

13
14

15

1617
18

19

20 21

22

23
24

25

26
27

28

29

30

31

32

t=7

1 2

34
5 6

78

9 10 11
12

13
14

15

1617
18

19

20 21

22

23
24

25

26
27

28

29

30

31

32

t=8

1 2

34
5 6

78

9 10 11
12

13
14

15

1617
18

19

20 21

22

23
24

25

26
27

28

29

30

31

32

t=9

1 2

34
5 6

78

9 10 11
12

13
14

15

1617
18

19

20 21

22

23
24

25

26
27

28

29

30

31

32

t=10

1 2

34
5 6

78

9 10 11
12

13
14

15

1617
18

19

20 21

22

23
24

25

26
27

28

29

30

31

32

t=11

1 2

34
5 6

78

9 10 11
12

13
14

15

1617
18

19

20 21

22

23
24

25

26
27

28

29

30

31

32

Figure 5.11: Minimum spanning tree with varying t.

99

5.2.2 Tree Edit Distance and Inexact Tree Matching

With stable minimum spanning trees to hand, then the next step is to match them.

Here we use Torsello and Hancock’s (Torsello and Hancock, 2001) divide and

conquer tree matching method. The method provides a means ofcomputing the

tree edit distance, and locates the matches that minimise the distance using relax-

ation labelling. To compute the tree edit distance, the algorithm exploits the fact

that any tree obtained with a sequence of node deletion operations is a subtree of

the transitive closure of the original tree. As a result the inexact tree matching

problem can be cast as that of locating the maximum common subtree by search-

ing for maximal cliques of the directed association graph. The method poses the

matching problem as a max clique problem, and uses the relaxation labelling

method of Pelillo (Pelillo et al., 1999; Pelillo, 1999) to obtain a solution.

The steps of the divide and conquer method are as follows:

1. Given two treesτ andτ ′, calculate their transitive closureTCτ andTCτ ′.

2. Construct the directed association graph (DAG) ofTCτ andTCτ ′.

3. The inexact tree matching problem can be solved by finding the common

consistent subtree of the two DAGs.

4. The problem of locating the maximum common subtree can be trans-

formed into that of locating a max-weighted clique. This canbe effected

using a number of classical methods, including relaxation labelling (Torsello

and Hancock, 2001) or quadratic programming (Pelillo et al., 1999).

5.2.3 Experiments

The aim in this section is to illustrate the utility of our spanning tree representa-

tion for graph matching. We investigate the robustness of the method under local

structural change as well as random edge corruption.

100

5.2.3.1 Spanning Tree Robustness

In this section, we aim to compare the stability of the spanning trees delivered by

our commute time method with those obtained directly using the Prim’s method

(Prim, 1957).

The data used here is furnished by the sequences of views of model-houses.

The images in the sequence are taken from different camera directions. In order

to convert the images into abstract graphs for matching, we extract point features

using a corner detector and construct the nearest neighbourgraph of the points.

In Figure 5.12, we show three groups of houses with an increasing com-

plexity in terms of the number of points detected and the image structure. Five

examples are shown in each group in a column order. In each group, the top

row shows the original images overlaid with their 5 nearest neighbour graph, the

second row the spanning trees obtained from Prim’s method and the third row

the spanning trees obtained using our commute time method. It is clear from

the first group of images in the figure that our method deliversmore stable span-

ning trees. As the view point changes, there is little changein the spanning tree

structure. In the second group, the total number of feature points has been ap-

proximately doubled and the structure of the extracted 5-nearest neighbour graph

is more variable. Our commute time method still delivers very stable spanning

trees. Compared with the second row in this group, our spanning trees do not

result in erroneous disconnections or connections of the branches and maintain

a consistent tree shape. The third group is the most complex one with approxi-

mately three times the number of nodes as the first group. Although the trees are

quite complex, they are still stable and the local structureare well preserved.

A quantitative study on stability of spanning trees for these three sets of im-

ages is shown in Figure 5.12. Here we match the spanning tree of each image

in the sequence to the first one using Torsello and Hancock’s (Torsello and Han-

101

1th 3th 5th 7th 9th

100 150 200 250 300 350 400 450 500
50

100

150

200

250

300

350

400

450

1 2

34

5 6

78

9
10 11

12

13
14

15

1617
18

19

20 21

22

23
24

25

26
27

28

29

30

Number of nodes:
30

100 150 200 250 300 350 400 450 500
50

100

150

200

250

300

350

400

450

1 2

3
4

5 6
78

9
10 11

12

13
14

15
1617

18
19

20
21
22

23
24

25

26 27

28

29

30

31

32

Number of nodes:
32

100 150 200 250 300 350 400 450
50

100

150

200

250

300

350

400

450

1 2

3
4

5
6

78

9
10 11

12

13 14

15

1617
18

19

20
21
22

23
24

25

26
27

28 29

30

Number of nodes:
30

50 100 150 200 250 300 350 400 450
100

150

200

250

300

350

400

450

1 2

3
45

6

78
9

10 11

12

1314

15

1617 18
19

20

21

22

23

24
25

26
27

28 29

30

Number of nodes:

30 50 100 150 200 250 300 350 400
100

150

200

250

300

350

400

450

1 2

345

6

78
9

10 11

12

1314

15

1617 18

19

20

21

22

23

24 25

26

27

28
29

30

Number of nodes:

30

100 150 200 250 300 350 400 450 500
50

100

150

200

250

300

350

400

450

1 2

34

5 6

78

9
10 11

12

13
14

15

1617
18

19

20 21

22

23
24

25

26
27

28

29

30

Number of nodes:
30

100 150 200 250 300 350 400 450 500
50

100

150

200

250

300

350

400

450

1 2

3
4

5 6
78

9
10 11

12

13
14

15
1617

18
19

20
21
22

23
24

25

26 27

28

29

30

31

32

Number of nodes:
32

100 150 200 250 300 350 400 450
50

100

150

200

250

300

350

400

450

1 2

3
4

5
6

78

9
10 11

12

13 14

15

1617
18

19

20
21
22

23
24

25

26
27

28 29

30

Number of nodes:
30

50 100 150 200 250 300 350 400 450
100

150

200

250

300

350

400

450

1 2

3
45

6

78
9

10 11

12

1314

15

1617 18
19

20

21

22

23

24
25

26
27

28 29

30

Number of nodes:

30 50 100 150 200 250 300 350 400
100

150

200

250

300

350

400

450

1 2

345

6

78
9

10 11

12

1314

15

1617 18

19

20

21

22

23

24 25

26

27

28
29

30

Number of nodes:

30

50 100 150 200 250 300 350 400
50

100

150

200

250

300

350

400

450

12
3 4

56

7

8 9

10
11

121314

15

16
17

1819

20

21

22

23

24

25

26

27
282930

31

32

33

34

35

36

37

38

39
40

41

42

43

44
45

46

47

48

49

50

51

52

53

54

55

5657

Number of nodes:
57

50 100 150 200 250 300 350 400
50

100

150

200

250

300

350

400

450

1
2 3

4

5

6

7

8

9
1011

12
13

14

15
1617

18

1920

21
2223

24

252627
2829

30

31

32

33

34

35

36

37

38

39

4041

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

6869
70

71

72

73

74

75

76 77

78

Number of nodes:
78

50 100 150 200 250 300 350 400
50

100

150

200

250

300

350

400

450

500

1
2 3

4

5 6

7

8910

11
12

13

14
1516

17

18

19

20

21

22

23

24

25

2627
28

29

30

31

32

33

3435

36

37

38

39

40

41

42

43

44
45

46

47

48

49

50

51

52

53

54

55
56

57

58

59

60

6162

63

64

65

66

67

68

69

70

71

72

7374
75

76

77

78

79

80

81

82

83

8485

86

87

88

89

90

Number of nodes:
90

50 100 150 200 250 300 350 400
50

100

150

200

250

300

350

400

450

1
23

45

67

8

9

10

11

12

13

14

1516

17

18

1920

21

22

23

24

25
2627

28

29

30

31

32

333435

36

37

38

39

40

41

42

43

44

45

46

47

4849

50

51

52

53

54

55

56

57

585960

61

62

63

64

65

66

67

68

69
70

71
72

7374

75

76

77

78

79

80
8182

83

84

85

86

87

88

8990

91
92

93

94

95

96

97

98

99

100

101

102103

104

105

106

107108

109

110

111

112

113

Number of nodes:
113

50 100 150 200 250 300 350 400
50

100

150

200

250

300

350

400

450

1
2

3

45

67

89

10

11
12

13

14
15

16

17
18

19

20
2122

23

24

252627

28

29

30

31

32

33

34

35

36

3738

39

40

414243 44

4546

47

48
4950

51
5253
54

55

56

57

58

59

60
61

62

63 64

65

66

67

Number of nodes:
67

50 100 150 200 250 300 350 400
50

100

150

200

250

300

350

400

450

12
3 4

56

7

8 9

10
11

121314

15

16
17

1819

20

21

22

23

24

25

26

27
282930

31

32

33

34

35

36

37

38

39
40

41

42

43

44
45

46

47

48

49

50

51

52

53

54

55

5657

Number of nodes:
57

50 100 150 200 250 300 350 400
50

100

150

200

250

300

350

400

450

1
2 3

4

5

6

7

8

9
1011

12
13

14

15
1617

18

1920

21
2223

24

252627
2829

30

31

32

33

34

35

36

37

38

39

4041

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

6869
70

71

72

73

74

75

76 77

78

Number of nodes:
78

50 100 150 200 250 300 350 400
50

100

150

200

250

300

350

400

450

500

1
2 3

4

5 6

7

8910

11
12

13

14
1516

17

18

19

20

21

22

23

24

25

2627
28

29

30

31

32

33

3435

36

37

38

39

40

41

42

43

44
45

46

47

48

49

50

51

52

53

54

55
56

57

58

59

60

6162

63

64

65

66

67

68

69

70

71

72

7374
75

76

77

78

79

80

81

82

83

8485

86

87

88

89

90

Number of nodes:
90

50 100 150 200 250 300 350 400
50

100

150

200

250

300

350

400

450

1
23

45

67

8

9

10

11

12

13

14

1516

17

18

1920

21

22

23

24

25
2627

28

29

30

31

32

333435

36

37

38

39

40

41

42

43

44

45

46

47

4849

50

51

52

53

54

55

56

57

585960

61

62

63

64

65

66

67

68

69
70

71
72

7374

75

76

77

78

79

80
8182

83

84

85

86

87

88

8990

91
92

93

94

95

96

97

98

99

100

101

102103

104

105

106

107108

109

110

111

112

113

Number of nodes:
113

50 100 150 200 250 300 350 400
50

100

150

200

250

300

350

400

450

1
2

3

45

67

89

10

11
12

13

14
15

16

17
18

19

20
2122

23

24

252627

28

29

30

31

32

33

34

35

36

3738

39

40

414243 44

4546

47

48
4950

51
5253
54

55

56

57

58

59

60
61

62

63 64

65

66

67

Number of nodes:
67

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500

1

23
4
56
7

89
10
11
12

13

14

15

16 17

181920

21

22

23

24

25

26

27

28

29

30

31

3233
34

35

36

37
38

39

40

41

42

43

44

45

46
47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73
74

75

76
77

78

79

80
81

828384
85

86

87

88
89

90

91

92

93

94

9596

97

98

99

100

101102

103104

105

106107

108

109
110

111

112

113

114

115

116

117

118

119

120

121
122

123

124

125

126
127

128

129

130

131

132

133

134

Number of nodes:
134 0 50 100 150 200 250 300 350 400 450 500

0

50

100

150

200

250

300

350

400

450

500

1 2

34
5
67
8

910
11
12

13

14

15

16

17

18

19

20

21

22

2324
25

26

27

28

29

30

31

32

33

34

3536
37

38

39
40

41

42

43

44

45

46

4748

49

50

515253

54

5556

57
58

59

60

61
62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80
81

82

83
8485

86

87

88

89

90

91

92
93

94

959697
98

99

100

101

102

103

104

105

106

107

108109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128
129
130

131

132

133

134

135

136

Number of nodes:
136

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500

1

23
4
56
7

89
10

11
12
13

14

15

1617

18

19
20
21

22

23

24

25

26
27

28

29

30

31

3233

34

35

36
37

38

39

40

41

42

43

44

4546
47
48

49

50

51

52

53

54
55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

7677

78

79

80

81

82

83

84

85

86

87

88

89
90
91

92

9394

95

96

97

98

99

100

101

102

103
104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125126

127
128
129

130

131

Number of nodes:
131 0 50 100 150 200 250 300 350 400 450 500

0

50

100

150

200

250

300

350

400

450

1

2

3
4
5
67

8

9

101112
13

1415
16

17

18

19

20

21

22

23

24

25
26
27

28

29

30

31

32

33

34

35

3637

38

3940

41

42

43

44

45

46

47

48

49

50

51

52
53

54

55

56

57

58

59

60

61

62

63

64

65

66

67
6869

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84
85

86

87

88

89

9091

92

93

94

95
96

97

98

99

100

101102

103

104105

106

107
108

109

110

111

112

113
114

115

116

117

118

119

120

121

122

123

124

125

126

127128

129

130

131

132

133

134

135136

137

138

139

Number of nodes:
139 0 50 100 150 200 250 300 350 400 450 500

0

50

100

150

200

250

300

350

400

450

1

23
4

5
6

7

8

910

11

12

1314

15

1617

18

19

2021

22

2324
2526

27

28

29

30

31

32

33
3435

36

37

38

39
40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58
59

60

61

62

6364

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

8586

87

88

89

90

91

92

93

94

9596
97

9899

100

101

102
103

104

105
106

107

108

109

110

111

112

113

114

115

116

117

118
119
120
121122
123
124

125

126

127

128

129

130

131
132

133

134

135

136

Number of nodes:
136

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500

1

23
4
56
7

89
10
11
12

13

14

15

16 17

181920

21

22

23

24

25

26

27

28

29

30

31

3233
34

35

36

37
38

39

40

41

42

43

44

45

46
47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73
74

75

76
77

78

79

80
81

828384
85

86

87

88
89

90

91

92

93

94

9596

97

98

99

100

101102

103104

105

106107

108

109
110

111

112

113

114

115

116

117

118

119

120

121
122

123

124

125

126
127

128

129

130

131

132

133

134

Number of nodes:
134 0 50 100 150 200 250 300 350 400 450 500

0

50

100

150

200

250

300

350

400

450

500

1 2

34
5
67
8

910
11
12

13

14

15

16

17

18

19

20

21

22

2324
25

26

27

28

29

30

31

32

33

34

3536
37

38

39
40

41

42

43

44

45

46

4748

49

50

515253

54

5556

57
58

59

60

61
62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80
81

82

83
8485

86

87

88

89

90

91

92
93

94

959697
98

99

100

101

102

103

104

105

106

107

108109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128
129
130

131

132

133

134

135

136

Number of nodes:
136

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500

1

23
4
56
7

89
10

11
12
13

14

15

1617

18

19
20
21

22

23

24

25

26
27

28

29

30

31

3233

34

35

36
37

38

39

40

41

42

43

44

4546
47
48

49

50

51

52

53

54
55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

7677

78

79

80

81

82

83

84

85

86

87

88

89
90
91

92

9394

95

96

97

98

99

100

101

102

103
104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125126

127
128
129

130

131

Number of nodes:
131 0 50 100 150 200 250 300 350 400 450 500

0

50

100

150

200

250

300

350

400

450

1

2

3
4
5
67

8

9

101112
13

1415
16

17

18

19

20

21

22

23

24

25
26
27

28

29

30

31

32

33

34

35

3637

38

3940

41

42

43

44

45

46

47

48

49

50

51

52
53

54

55

56

57

58

59

60

61

62

63

64

65

66

67
6869

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84
85

86

87

88

89

9091

92

93

94

95
96

97

98

99

100

101102

103

104105

106

107
108

109

110

111

112

113
114

115

116

117

118

119

120

121

122

123

124

125

126

127128

129

130

131

132

133

134

135136

137

138

139

Number of nodes:
139 0 50 100 150 200 250 300 350 400 450 500

0

50

100

150

200

250

300

350

400

450

1

23
4

5
6

7

8

910

11

12

1314

15

1617

18

19

2021

22

2324
2526

27

28

29

30

31

32

33
3435

36

37

38

39
40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58
59

60

61

62

6364

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

8586

87

88

89

90

91

92

93

94

9596
97

9899

100

101

102
103

104

105
106

107

108

109

110

111

112

113

114

115

116

117

118
119
120
121122
123
124

125

126

127

128

129

130

131
132

133

134

135

136

Number of nodes:
136

Figure 5.12: Three sequences of model houses with their spanning tree represen-
tation.

102

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9

C
o
r
r
e
c
t

c
o
r
r
e
s
p
o
n
d
e
n
c
e

r
a
t
e
(
%
)

Relative position deviation

Prim’s spanning trees on CMU data
CT spanning trees on CMU data

Prim’s spanning trees on chalet data
CT spanning trees on chalet data

Prim’s spanning trees on MOVI data
CT spanning trees on MOVI data

Figure 5.13: Stability comparison of spanning trees.

cock, 2001) tree matching method. It is clear that our methoddelivers better

matching performance. It is also interesting to note that the spanning trees from

MOVI data are more stable than chalet ones although the size of the former is

much larger. This is due to the significant variations in nearest neighbour graph

structure in chalet sequence. Some examples can been clearly seen in the forth

row of Figure 5.12.

5.2.3.2 Inexact Graph Matching with Local Structure Variance

The data used here is the same as the previous section. However, here we study

Delaunay graphs in addition to the K-nearest neighbour graph (with varying k).

In Figure 5.14, we show five examples from the sequence of 30 views of

the house. The top row shows the original image, the second row the Delau-

nay graphs, the third row the minimum spanning trees obtained from the Delau-

nay graph commute times, the fourth row the 5 nearest neighbour graphs, and

103

G01 G03 G05 G07 G09

100 150 200 250 300 350 400 450 500
50

100

150

200

250

300

350

400

450

1 2

34
5 6

78

9 10 11
12

13
14

15

1617
18

19

20 21

22

23

24

25

26
27

28

29

30

31

32

Number of nodes:
32

100 150 200 250 300 350 400 450 500
50

100

150

200

250

300

350

400

450

1 2

3
4

5 6
78

9
10 11

12

13
14

15
1617

18
19

20
21
22

23
24

25

26 27

28

29

30

31

32

Number of nodes:
32

100 150 200 250 300 350 400 450
50

100

150

200

250

300

350

400

450

1 2

3
4

5
6

78

9
10 11

12

13 14

15

1617
18

19

20
21
22

23
24

25

26
27

28 29

30

Number of nodes:
30

50 100 150 200 250 300 350 400 450
100

150

200

250

300

350

400

450

1 2

3
45

6

78
9

10 11

12

1314

15

1617 18
19

20

21

22

23

24
25

26
27

28 29

30

Number of nodes:

30 50 100 150 200 250 300 350 400
100

150

200

250

300

350

400

450

1 2

345

6

78
9

10 11

12

1314

15

1617 18

19

20

21

22

23

24 25

26

27

28
29

30

Number of nodes:

30

100 150 200 250 300 350 400 450 500
50

100

150

200

250

300

350

400

450

1 2

34
5 6

78

9 10 11
12

13
14

15

1617
18

19

20 21

22

23

24

25

26
27

28

29

30

31

32

Number of nodes:
32

100 150 200 250 300 350 400 450 500
50

100

150

200

250

300

350

400

450

1 2

3
4

5 6
78

9
10 11

12

13
14

15
1617

18
19

20
21
22

23
24

25

26 27

28

29

30

31

32

Number of nodes:
32

100 150 200 250 300 350 400 450
50

100

150

200

250

300

350

400

450

1 2

3
4

5
6

78

9
10 11

12

13 14

15

1617
18

19

20
21
22

23
24

25

26
27

28 29

30

Number of nodes:
30

50 100 150 200 250 300 350 400 450
100

150

200

250

300

350

400

450

1 2

3
45

6

78
9

10 11

12

1314

15

1617 18
19

20

21

22

23

24
25

26
27

28 29

30

Number of nodes:

30 50 100 150 200 250 300 350 400
100

150

200

250

300

350

400

450

1 2

345

6

78
9

10 11

12

1314

15

1617 18

19

20

21

22

23

24 25

26

27

28
29

30

Number of nodes:

30

100 150 200 250 300 350 400 450 500
50

100

150

200

250

300

350

400

450

1 2

34
5 6

78

9 10 11
12

13
14

15

1617
18

19

20 21

22

23

24

25

26
27

28

29

30

31

32

Number of nodes:
32

100 150 200 250 300 350 400 450 500
50

100

150

200

250

300

350

400

450

1 2

3
4

5 6
78

9
10 11

12

13
14

15
1617

18
19

20
21
22

23
24

25

26 27

28

29

30

31

32

Number of nodes:
32

100 150 200 250 300 350 400 450
50

100

150

200

250

300

350

400

450

1 2

3
4

5
6

78

9
10 11

12

13 14

15

1617
18

19

20
21
22

23
24

25

26
27

28 29

30

Number of nodes:
30

50 100 150 200 250 300 350 400 450
100

150

200

250

300

350

400

450

1 2

3
45

6

78
9

10 11

12

1314

15

1617 18
19

20

21

22

23

24
25

26
27

28 29

30

Number of nodes:

30 50 100 150 200 250 300 350 400
100

150

200

250

300

350

400

450

1 2

345

6

78
9

10 11

12

1314

15

1617 18

19

20

21

22

23

24 25

26

27

28
29

30

Number of nodes:

30

100 150 200 250 300 350 400 450 500
50

100

150

200

250

300

350

400

450

1 2

34
5 6

78

9 10 11
12

13
14

15

1617
18

19

20 21

22

23

24

25

26
27

28

29

30

31

32

Number of nodes:
32

100 150 200 250 300 350 400 450 500
50

100

150

200

250

300

350

400

450

1 2

3
4

5 6
78

9
10 11

12

13
14

15
1617

18
19

20
21
22

23
24

25

26 27

28

29

30

31

32

Number of nodes:
32

100 150 200 250 300 350 400 450
50

100

150

200

250

300

350

400

450

1 2

3
4

5
6

78

9
10 11

12

13 14

15

1617
18

19

20
21
22

23
24

25

26
27

28 29

30

Number of nodes:
30

50 100 150 200 250 300 350 400 450
100

150

200

250

300

350

400

450

1 2

3
45

6

78
9

10 11

12

1314

15

1617 18
19

20

21

22

23

24
25

26
27

28 29

30

Number of nodes:

30 50 100 150 200 250 300 350 400
100

150

200

250

300

350

400

450

1 2

345

6

78
9

10 11

12

1314

15

1617 18

19

20

21

22

23

24 25

26

27

28
29

30

Number of nodes:

30

Figure 5.14: House images, their graphs and extracted trees.

the fifth row the minimum spanning tree obtained from the K-nearest neighbour

graph commute times. From the figure it is clear that althoughthe structure of

the graphs varies, the spanning trees are quite stable underthese changes. This

demonstrates that the minimum spanning tree delivered by the commute time can

be used as a simple but stable graph representation. It is also interesting to note

that the K-nearest neighbour graph gives more stable trees than the Delaunay

graph.

Next we aim to investigate whether the spanning trees can be used for the

purposes of graph-matching. We have matched the first image in the sequence

104

to each of the subsequent images using the divide and conquertree matching

method (Torsello and Hancock, 2001). The results are compared with those ob-

tained using the method of Luo and Hancock (Luo and Hancock, 2001) and the

partition matching method of Qiu and Hancock (Chapter 3). Figure 5.15 shows

us the correct correspondence rate as a function of the difference in view number.

From the results, it is clear that our new method outperformsboth Luo and Han-

cock’s EM method and, Qiu and Hancock’s partition matching method for large

differences in viewing angles. It also demonstrates that the K-nearest neighbour

graph outperforms the Delaunay graph in delivering stable structure. There are

clearly significant geometric distortions present in the images including effects

due to rotation and perspectivity, and these give rise to significant structural dif-

ferences in the resulting graphs. Even in the worst case, ourmethod based on the

K-nearest neighbour graph has a correct correspondence rate of80%.

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9

C
o
r
r
e
c
t

c
o
r
r
e
s
p
o
n
d
e
n
c
e

r
a
t
e
(
%
)

View difference

EM
Graph Partition with Edit Distance

Commute time spanning tree Delaunay
Commute time spanning tree K-nn

Figure 5.15: Comparison of results.

105

5.2.3.3 Inexact Graph Matching with Random Edge Corruption

We now focus on testing the stability of the spanning trees under controlled ran-

dom noise. To do this we delete a controlled fraction of edgesfrom the initial

graphs (either Delaunay or K-nearest neighbour) randomly.In Figure 5.16 we

show the effect of this deletion process for the graphs shownearlier. The number

at the top of each column is the percentage of edges deleted. The first and the

third rows of the figure show the Delaunay graph and the 5-nearest neighbour

graph after edge deletion. The second and fourth rows show the corresponding

spanning trees. From the figure it is clear that the tree structure is stable under

edge corruption, and again the K-neatest graph outperformsthe Delaunay graph.

We have matched the edge-corrupted trees to the original trees, and have

computed the fraction of correct correspondences. The results are shown in Fig-

ure 5.17. The fraction of correct correspondences decreases in a linear fashion

with edge corruption. The different curves in the plot are for the Delaunay graph

and the K-nearest neighbour graph. The K-nearest neighbourgraph outperforms

the Delaunay graph by a margin of about 10% at 50% edge corruption.

5.3 Comparison of the Two Simplified Graph Rep-

resentations

We now explore the relative merits of the two graph simplification methods pre-

sented in this chapter. Figure 5.18 shows the fraction of correct matches for the

images in the CMU house data-set. The curves in the plot are taken from Figures

5.6 and 5.15 . Additionally, as a pink line we show the result of using the multi-

layer simplification method on the 5 nearest neighbour graphs. From the figure it

is clear that the multi-layer simplification method delivers the best performance

when used with Delaunay graphs (blue line). For the Delaunaygraph, the multi-

106

0% 12% 24% 36% 48%

100 150 200 250 300 350 400 450 500
50

100

150

200

250

300

350

400

450

1 2

34
5 6

78

9 10 11
12

13
14

15

1617
18

19

20 21

22

23

24

25

26
27

28

29

30

31

32

Number of nodes:
32

100 150 200 250 300 350 400 450 500
50

100

150

200

250

300

350

400

450

1 2

34
5 6

78

9 10 11
12

13
14

15

1617
18

19

20 21

22

23

24

25

26
27

28

29

30

31

32

Number of nodes:
32

100 150 200 250 300 350 400 450 500
50

100

150

200

250

300

350

400

450

1 2

34
5 6

78

9 10 11
12

13
14

15

1617
18

19

20 21

22

23

24

25

26
27

28

29

30

31

32

Number of nodes:
32

100 150 200 250 300 350 400 450 500
50

100

150

200

250

300

350

400

450

1 2

34
5 6

78

9 10 11
12

13
14

15

1617
18

19

20 21

22

23

24

25

26
27

28

29

30

31

32

Number of nodes:
32

100 150 200 250 300 350 400 450 500
50

100

150

200

250

300

350

400

450

1 2

34
5 6

78

9 10 11
12

13
14

15

1617
18

19

20 21

22

23

24

25

26
27

28

29

30

31

32

Number of nodes:
32

100 150 200 250 300 350 400 450 500
50

100

150

200

250

300

350

400

450

1 2

34
5 6

78

9 10 11
12

13
14

15

1617
18

19

20 21

22

23

24

25

26
27

28

29

30

31

32

Number of nodes:
32

100 150 200 250 300 350 400 450 500
50

100

150

200

250

300

350

400

450

1 2

34
5 6

78

9 10 11
12

13
14

15

1617
18

19

20 21

22

23

24

25

26
27

28

29

30

31

32

Number of nodes:
32

100 150 200 250 300 350 400 450 500
50

100

150

200

250

300

350

400

450

1 2

34
5 6

78

9 10 11
12

13
14

15

1617
18

19

20 21

22

23

24

25

26
27

28

29

30

31

32

Number of nodes:
32

100 150 200 250 300 350 400 450 500
50

100

150

200

250

300

350

400

450

1 2

34
5 6

78

9 10 11
12

13
14

15

1617
18

19

20 21

22

23

24

25

26
27

28

29

30

31

32

Number of nodes:
32

100 150 200 250 300 350 400 450 500
50

100

150

200

250

300

350

400

450

1 2

34
5 6

78

9 10 11
12

13
14

15

1617
18

19

20 21

22

23

24

25

26
27

28

29

30

31

32

Number of nodes:
32

100 150 200 250 300 350 400 450 500
50

100

150

200

250

300

350

400

450

1 2

34
5 6

78

9 10 11
12

13
14

15

1617
18

19

20 21

22

23

24

25

26
27

28

29

30

31

32

Number of nodes:
32

100 150 200 250 300 350 400 450 500
50

100

150

200

250

300

350

400

450

1 2

34
5 6

78

9 10 11
12

13
14

15

1617
18

19

20 21

22

23

24

25

26
27

28

29

30

31

32

Number of nodes:
32

100 150 200 250 300 350 400 450 500
50

100

150

200

250

300

350

400

450

1 2

34
5 6

78

9 10 11
12

13
14

15

1617
18

19

20 21

22

23

24

25

26
27

28

29

30

31

32

Number of nodes:
32

100 150 200 250 300 350 400 450 500
50

100

150

200

250

300

350

400

450

1 2

34
5 6

78

9 10 11
12

13
14

15

1617
18

19

20 21

22

23

24

25

26
27

28

29

30

31

32

Number of nodes:
32

100 150 200 250 300 350 400 450 500
50

100

150

200

250

300

350

400

450

1 2

34
5 6

78

9 10 11
12

13
14

15

1617
18

19

20 21

22

23

24

25

26
27

28

29

30

31

32

Number of nodes:
32

100 150 200 250 300 350 400 450 500
50

100

150

200

250

300

350

400

450

1 2

34
5 6

78

9 10 11
12

13
14

15

1617
18

19

20 21

22

23

24

25

26
27

28

29

30

31

32

Number of nodes:
32

100 150 200 250 300 350 400 450 500
50

100

150

200

250

300

350

400

450

1 2

34
5 6

78

9 10 11
12

13
14

15

1617
18

19

20 21

22

23

24

25

26
27

28

29

30

31

32

Number of nodes:
32

100 150 200 250 300 350 400 450 500
50

100

150

200

250

300

350

400

450

1 2

34
5 6

78

9 10 11
12

13
14

15

1617
18

19

20 21

22

23

24

25

26
27

28

29

30

31

32

Number of nodes:
32

100 150 200 250 300 350 400 450 500
50

100

150

200

250

300

350

400

450

1 2

34
5 6

78

9 10 11
12

13
14

15

1617
18

19

20 21

22

23

24

25

26
27

28

29

30

31

32

Number of nodes:
32

100 150 200 250 300 350 400 450 500
50

100

150

200

250

300

350

400

450

1 2

34
5 6

78

9 10 11
12

13
14

15

1617
18

19

20 21

22

23

24

25

26
27

28

29

30

31

32

Number of nodes:
32

Figure 5.16: Random edge deletion.

layer representation is stable under graph variation and the composition of each

layer is not modified significantly (see Figure 5.6 for an illustration). However,

when this is applied to the 5-nearest neighbour graph, it does not perform well.

The reason for this is that the K-nearest neighbour graph does not lend itself to a

layer decomposition. Figure5.19 illustrates the problems. In this example, note

how the nodes of the inner green layer are compressed together.

The spanning tree representation gives the best performance when applied

to the 5-nearest neighbour graphs and the worst performancefor the Delaunay

graphs. The reason is that the tree representations for the 5-nearest neighbour

graphs are more stable than those for the Delaunay graphs under variations in

graph structure (for a comparison see Figure 5.14).

Overall the stability of the spanning tree representation is better than that

107

 0

 20

 40

 60

 80

 100

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

C
o
r
r
e
c
t

c
o
r
r
e
s
p
o
n
d
e
n
c
e

r
a
t
e
(
%
)

Edge Corruption(%)

Delaunay graph spanning tree
K-nn spanning tree

Figure 5.17: Graph corruption matching results.

for the multi-layer representation. The reason for this is that the structure of

layers can be adversely affected by edge corruption. of the edges. An example

is shown in Figure 5.20 with12.6% of edges randomly pruned. In this example,

the connectivity of the layer graph displayed in light blue is destroyed.

5.4 Commute Time for Grouping

In this section, first, we illustrate the grouping steps based on the commute times.

Then we experiment it with synthetic and real-world data andcompare the results

with those from the normalised cut.

5.4.1 Grouping Steps

The idea of our segmentation algorithm is to use the spectrumof the commute

time matrix for the purposes of grouping. In the normalised cut method, the

108

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9

C
o
r
r
e
c
t

c
o
r
r
e
s
p
o
n
d
e
n
c
e

r
a
t
e
(
%
)

Relative position deviation

Commute time spanning tree for Delaunay graphs
Commute time spanning tree for 5-nearest neighbour graphs

Multilayer graph matching for Delaunay graphs
Multilayer graph matching for 5-nearest neighbour graphs

Figure 5.18: Comparison of the two methods on graph matching.

100 150 200 250 300 350 400 450 500
50

100

150

200

250

300

350

400

450

1 2

34

5 6

78

9
10 11

12

13
14

15

1617
18

19

20 21

22

23
24

25

26
27

28

29

30

Number of nodes:
30

Figure 5.19: An example of multi-layer graph of a 5 nearest neighbour graph.

109

100 150 200 250 300 350 400 450 500
50

100

150

200

250

300

350

400

450

1 2

34

5 6

78

9
10 11

12

13
14

15

1617
18

19

20 21

22

23
24

25

26
27

28

29

30

Number of nodes:
30

Figure 5.20: An example of a multi-layer graph with edge corruption.

eigenvector corresponding to the second smallest eigenvalue of the Laplacian

matrix is utilised to bipartition data. The method exploitsthe relatively uni-

form distribution of the components in the smallest eigenvector. Hence, here

we use the eigenvector associated with the smallest eigenvalue of the commute

time matrix since it is this eigenvector that contains the most significant partition

information.

Our commute time algorithm consists of the following steps:

1. Given an image, or a point set, set up a weighted graphΓ = (V,E) where

each pixel, or point, is taken as a node and each pair of nodes is connected

by an edge. The weight on the edge is assigned according to thesimilarity

between the two node as follows

a) for a point-set, the weight between nodesu and v is set to be

Ω(u, v) = exp(−d(u, v)/σx), whered(u, v) is the Euclidean distance be-

110

tween two points andσx controls the scale of the spatial proximity of the

points.

b) for an image, the weight is:

Ω(u, v) = exp

(−‖Fu − Fv‖2

σI

)

∗











exp
(

−‖Xu−Xv‖2

σX

)

if ‖Xu − Xv‖2 < r

0 otherwise

(5.1)

whereFu is either the intensity value at pixelu for a brightness image or

the vector of RGB value for a colour image.

2. From the weight matrixΩ we compute the LaplacianL = T − Ω.

3. Then we compute thenormalisedGreen’s function using Equation 4.2 and

the eigen-spectrum of thenormalisedLaplacianL.

4. From Equation 4.5, we compute the commute time matrixCT whose el-

ements are the commute times between each pair of nodes in thegraph

Γ.

5. Use the eigenvector corresponding to the smallest eigenvalue of the com-

mute time matrix to bipartition the weighted graph:

CT (u, v) = vol
∑|V |

i=2
1
λ′

i

(

φ′
i
(u)√
du

− φ′
i
(v)√
dv

)2

.

6. Decide if the current partition should be sub-divided, and recursively repar-

tition the component parts if necessary.

5.4.2 Experiments

In this section, we will illustrate some experimental results both on synthetic and

real-world images on clustering and image segmentation.

111

Commute Times

20 40 60 80100120

20

40

60

80

100

120

0 100 200
−0.2

−0.1

0

0.1

0.2
Smallest Eigenvector

−50 0 50

−20

−10

0

10

20

Clustered Data

20 40 60 80

20

40

60

80

0 50 100
−0.1

0

0.1

0.2

0.3

−20 0 20

−20

−10

0

10

20

20 40

10

20

30

40
0 20 40

−0.2

−0.1

0

0.1

0.2

35 40 45

−10

0

10

20

Figure 5.21: Data clustering by commute time cut

D−1/2(D−W)D−1/2

20 40 60 80100120

20

40

60

80

100

120

0 100 200
−0.2

−0.1

0

0.1

0.2
Fiedler vector

−50 0 50

−20

−10

0

10

20

Clustered Data

20 40 60 80

20

40

60

80

0 50 100
−0.4

−0.2

0

0.2

0.4

−20 0 20

−20

−10

0

10

20

20 40

10

20

30

40
0 20 40

−0.4

−0.2

0

0.2

0.4

35 40 45

−10

0

10

20

Figure 5.22: Data clustering by normalised cut

112

5.4.2.1 Point-set Clustering Examples

In Figure 5.21 and 5.22 we compare the results for point-set clustering using

commute-times and the normalised cut. Here we setσ = 1.5. The sub-figures in

both figures are organised as follows. The left-hand column shows the point-sets,

the middle column the affinity matrices and the right-most column the compo-

nents of the smallest eigenvector. The first row shows the first bipartition on the

original data. From this bipartition, we obtain two separate clusters and using

each of them, we perform a second bipartition. The second bipartition results

are shown in the second and third rows of Figure 5.21 and 5.22.From the fig-

ures it is clear that both methods succeeded in grouping the data. However, the

commute time method outperforms the normalised cut since its affinity matrix is

more block like and the distribution of the smallest eigenvector components are

more stable. Moreover, its jumps, corresponding to the different clusters in the

data, are larger. Since the eigenvector is taken as an indicator for the member-

ship of the cluster, the more differentiated the distribution of the components of

this eigenvector, the closer of the relaxed solution towards the desired discrete

solution. This point is well illustrated in the third columnof Figure 5.21 com-

pared to the one in Figure 5.22. From the figures, it is clear the distribution of

the eigenvector delivered by our commute time matrix is nearly discrete. This is

due to the strong block structure of the commute time matrix as illustrated in the

middle of Figure 5.21 compared to the normalised affinity matrix in Figure 5.22.

5.4.2.2 Image Segmentation

We have compared our new method with that of Shi and Malik (Shiand Ma-

lik, 2000) on synthetic images subject to additive Gaussiannoise. On the left-

hand side of Figure 5.23, we show the results of using these two methods for

segmenting a synthetic image composed of 3 rectangular regions with additive

113

Image Ncut CT

 0

 20

 40

 60

 80

 100

 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

C
o
r
r
e
c
t

s
e
g
m
e
n
t
a
t
i
o
n

r
a
t
e
(
%
)

Gaussian noise

Normalized Cut
Commute Time

Figure 5.23: Method comparison for synthetic image with increasing Gaussian
noise.

(zero mean and standard derivation increasing evenly from 0.04 to 0.20) random

Gaussian noise. On the right hand side of Figure 5.23 we show the fraction of

pixels correctly assigned as a function of the noise standard derivation. At the

highest noise levels our method outperforms the Shi and Malik method by about

10%.

In Figure 5.24, we show some examples of our segmentation results and

compare them with those obtained using the normalised cut. The aim here is to

investigate the effect of adding and deleting link-weightsat random. The first

column shows the original image, the second column the original affinity matrix

and the third colum the affinity matrix after link noise has been added. The

first three rows show the effect of random link deletion, and the second three

rows the result of link addition. The fourth and fifth columnsrespectively show

the results obtained using the normalised cut and the commute time. For these

images, Figure 5.25 shows the fraction of correctly assigned pixels as a function

of the fraction of links added or deleted. In the figure the redcurve shows the

114

Original Affinity After Normalised Commute
image matrix distortion cut time

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100
10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100
10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100
10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

0.5

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

0.3

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

0.2

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Figure 5.24: Examples of segmentation results with different link-weight distor-
tion.

effect of link addition on the commute time method, the greencurve the effect of

link addition on the normalised cut, the blue curve the effect of link deletion on

the commute time method and, finally, the pink curve the effect of link deletion

on the normalised cut. The main features to note from the plotare as follows.

First, the commute time method is more robust to both link deletion and insertion

than the normalised cut. The second feature is that link deletion has a less marked

effect on the performance than link insertion. Thirdly, spurious link insertion has

a smaller effect on the commute time than the normalised cut.

In Figure 5.26, we show eight real world images (from the Berkeley image

115

 60

 65

 70

 75

 80

 85

 90

 95

 100

 5 10 15 20 25 30 35 40 45 50

C
o
r
r
e
c
t
l
y

a
s
s
i
g
n
e
d

p
i
x
e
l
s

r
a
t
e
(
%
)

Fraction of links (%)

Commute time with link addition
Normalized cut with link addition
Commute time with link deletion
Normalized cut with link deletion

Figure 5.25: Method comparison for synthetic images with different link-weight
distortion.

database) with the corresponding segmentation results. The images are scaled to

be 50x50 in size and the parameters used for producing the results arer = 5,

σI = 0.02 andσX = 0.2. In each set of the images, the left-most one shows

the original image. The middle and right-hand panels show the results from two

successive bipartitions.

For four of the real images, we compare our method with the normalised cut

in Figures 5.27 and 5.28. The first column of each sub-figure shows the first,

second and third bipartitions of the images. The second column shows the his-

togram of the components of the smallest eigenvector, and the right-hand column

shows the distribution of the eigenvector components. The blue and red lines in

the right-hand column respectively correspond to zero and the eigenvector com-

ponent threshold.

Comparing the segmentation results in the first column, it isclear that com-

116

Figure 5.26: Real world segmentation examples.

117

Segmented Image

20 40

10

20

30

40

50
−0.5 0 0.5
0

1000

2000

3000
Eigen Histogram

0 2000 4000
−0.3

−0.2

−0.1

0

0.1
Smallest Eigenvector

−0.05 0 0.05
0

200

400

600

800

0 1000 2000
−0.05

0

0.05

20 40

10

20

30

40

50

−0.2 0 0.2
0

100

200

300

400

0 500 1000
−0.1

0

0.1

0.2

0.3

20 40

10

20

30

40

50

(a) Commute time for 50x50 image withr = 8

σX = 0.5 σI = 0.1

Segmented Image

20 40

20

40

60
−0.2 0 0.2
0

1000

2000

3000
Eigen Histogram

0 2000 4000
−0.2

−0.1

0

0.1

0.2
Smallest Eigenvector

−0.2 0 0.2
0

500

1000

1500

2000

0 2000 4000
−0.2

−0.1

0

0.1

0.2

20 40

20

40

60

−0.5 0 0.5
0

100

200

300

0 200 400
−0.1

0

0.1

0.2

0.3

20 40

20

40

60

(b) Commute time for 60x40 image withr = 5

σX = 0.2 σI = 0.02

Segmented Image

20 40

10

20

30

40

50
−0.05 0 0.05

0

100

200

300

400
Eigen Histogram

0 2000 4000
−0.04

−0.02

0

0.02

0.04
Fiedler vector

−1 0 1
0

500

1000

1500

2000

0 1000 2000
−1

−0.5

0

0.5

20 40

10

20

30

40

50

−0.2 0 0.2
0

500

1000

0 500 1000
−0.15

−0.1

−0.05

0

0.05

20 40

10

20

30

40

50

(c) Normalised cut for 50x50 image withr = 5

σX = 2 σI = 0.05

Segmented Image

20 40

20

40

60
−0.5 0 0.5
0

500

1000

1500

2000
Eigen Histogram

0 2000 4000
−0.4

−0.2

0

0.2

0.4
Fiedler vector

−0.5 0 0.5
0

500

1000

0 1000 2000
−0.2

−0.1

0

0.1

0.2

20 40

20

40

60

−1 0 1
0

200

400

600

800

0 500 1000
−0.5

0

0.5

1

20 40

20

40

60

(d) Normalised cut for 60x40 image withr = 5

σX = 0.05 σI = 0.01

Figure 5.27: Detailed segmentation process in comparison.

118

Segmented Image

20 40 60

10

20

30

40

50

−0.05 0 0.05
0

500

1000

1500

2000
Eigen Histogram

0 2000 4000
−0.02

0

0.02

0.04
Smallest Eigenvector

−1 0 1
0

500

1000

1500

0 1000 2000
−0.5

0

0.5

1

20 40 60

10

20

30

40

50

−0.2 0 0.2
0

500

1000

1500

2000

0 2000 4000
−0.1

0

0.1

0.2

0.3

20 40 60

10

20

30

40

50

(a) Commute time for 60x58 image withr = 5

σX = 0.1 σI = 0.03

Segmented Image

20 40

10

20

30

40
−0.5 0 0.5
0

500

1000

1500

2000
Eigen Histogram

0 1000 2000
−0.1

0

0.1

0.2

0.3
Smallest Eigenvector

−0.5 0 0.5
0

50

100

150

200

0 100 200
−0.6

−0.4

−0.2

0

0.2

20 40

10

20

30

40

−0.05 0 0.05
0

500

1000

1500

0 1000 2000
−0.05

0

0.05

20 40

10

20

30

40

(b) Commute time for 50x40 image withr = 10

σX = 0.1 σI = 0.03

Segmented Image

20 40 60

10

20

30

40

50

−0.05 0 0.05
0

500

1000

1500

2000
Eigen Histogram

0 2000 4000
−0.02

0

0.02

0.04
Fiedler vector

−0.5 0 0.5
0

500

1000

1500

0 1000 2000
−0.3

−0.2

−0.1

0

0.1

20 40 60

10

20

30

40

50

−0.1 0 0.1
0

500

1000

1500

2000

0 2000 4000
−0.1

−0.05

0

0.05

0.1

20 40 60

10

20

30

40

50

(c) Normalised cut for 60x58 image withr = 5

σX = 0.1 σI = 0.03

Segmented Image

20 40

10

20

30

40
−0.1 0 0.1
0

200

400

600
Eigen Histogram

0 1000 2000
−0.05

0

0.05

0.1

0.15
Fiedler vector

−1 0 1
0

200

400

600

800

0 500 1000
−0.5

0

0.5

20 40

10

20

30

40

−0.2 0 0.2
0

500

1000

0 1000 2000
−0.2

−0.1

0

0.1

0.2

20 40

10

20

30

40

(d) Normalised cut for 50x40 image withr = 5

σX = 5 σI = 0.02

Figure 5.28: Detailed segmentation process in comparison.

119

mute time outperforms the normalised cut in both maintaining region integrity

and continuity. For instance in the case of the baseball player, the background

trademark and the limbs of the players are well segmented. Inthe case of the

bird, the thin tree branch is detected. For the astronaut theboundary between

space and the earth is detected. Finally, for the hand, the finger nails and ring

are correctly segmented by the commute time method. Anotherimportant fea-

ture is that, once again, the eigenvector distribution is more stable and discrimi-

nates more strongly between clusters. This is illustrated in the second and third

columns of Figure 5.27 and 5.28 where the distribution of eigenvector com-

ponents in the histograms are better separated for the commute time method.

Hence, the corresponding cluster indicators give better separation.

5.5 Multi-body Motion Tracking

The aim in this section is to explore whether an embedding based on commute

time can be used to solve the problem of computing the shape-interaction matrix

in a robust manner. The idea is motivated by the intuition that since the eigen-

vectors associated with the different objects span different subspaces, they can

be embedded using a spectral method and separated using a simple clustering

method. We use the shape-interaction matrixQ as a data-proximity weight ma-

trix, and compute the associated Laplacian matrix (the degree matrix minus the

weight matrix). The aim is to embed feature points in a space that preserves

commute time. The embedding co-ordinate matrix is found thepremultiplying

the transpose of the Laplacian eigenvector matrix by the inverse square-root of

the eigenvalue matrix. Under the embedding nodes which havesmall commute

time are close, and those which have a large commute time are distant. This

allows us to separate the objects in the embedded subspace byapplying simple

120

K-means clustering.

5.5.1 Factorisation Method Review

Suppose there areN objects moving independently in a scene and the movement

is acquired by an affine camera asF frames. In each frame,P feature points are

tracked and the coordinate of theith point in thef th frame is given by(xf
i , y

f
i).

LetX andY denote twoF ×P matrices constructed from the image coordinates

of all the points across all of the frames:

X =



















x1
1 x1

2 · · · x1
P

x2
1 x2

2 · · · x2
P

...
...

. ..
...

xF
1 xF

2 · · · xF
P



















Y =



















y1
1 y1

2 · · · y1
P

y2
1 y2

2 · · · y2
P

...
...

. . .
...

yF
1 yF

2 · · · yF
P



















Each row in the two matrices above corresponds to a single frame and each col-

umn corresponds to a single point. The two coordinate matrices can be stacked

to form the matrix

W =

[

X

Y

]

2F×P

TheW matrix can be factorised into a motion matrixM and a shape matrix

S thus,W2F×P = M2F×r × Sr×P wherer is the rank ofW (r = 4 in the case

of W without noise and outliers). In order to solve the factorisation problem,

matrixW can be decomposed by SVD:

W = UΣRT

If the features from the same object are grouped together, thenU , Σ andR

121

will have a block-diagonal structure.

W = [U1 · · ·UN]













Σ1

. . .

ΣN

























RT
1

. . .

RT
N













and the shape matrix for objectk can be approximated bySk = B−1ΣkR
T
k where

B is an invertible matrix that can be found fromM .

In a real multi-body tracking problem, the coordinates of the different objects

are potentially permuted into a random order. As a result it is impossible to

correctly recover the shape matrixSk without knowledge of the correspondence

order. Since the eigenvector matrixR is related to the shape matrix, the shape

interaction matrix was introduced by Costeira and Kanade (Costeira and Kanade,

1997; Costeira and Kanade, 1995) to solve the multi-body separation problem.

The shape interaction matrix is

Q = RRT =



















ST
1 Σ−1

1 S1 0 · · · 0

0 ST
2 Σ−1

2 S2 · · · 0

...
...

. . . 0

0 0 · · · ST
NΣ−1

N SN



















(5.2)

From Equation 5.2, the shape interaction matrixQ has the convenient prop-

erties thatQuv = 0, if points u,v belong to different objects andQuv 6= 0, if

pointsu,v belong to the same object. The matrixQ is also invariant to both the

object motion and the selection of the object coordinate systems. This leads to a

simple scheme for separating multi-object motions by permuting the elements of

Q so that it acquires a block diagonal structure. In Costeira and Kanade’s method

(Costeira and Kanade, 1997; Costeira and Kanade, 1995) a greedy algorithm is

used to permute theQ matrix into block diagonal form. An illustration is shown

122

in Figure 5.29(a,b,c,d). This method works well only for theideal case where

there is no noise and outliers are not present. In Figures 5.29(e) and 5.29(f) we

respectively show the effect of adding Gaussian noise to theQ matrix in 5.29(b)

and the resulting permuted matrix. In the noisy case, the block structure is badly

corrupted and object separation is almost impossible.

(a) Original pic-
ture with trails of
the moving fea-
ture points.

0

10

20

30

40

50

60

0

10

20

30

40

50

60

0

0.1

0.2

0.3

0.4

(b) Original Q matrix un-
sorted.

0

10

20

30

40

50

60

0

10

20

30

40

50

60

0

0.1

0.2

0.3

0.4

(c) SortedQ by Costeira
and Kanade’s method.

(d) Object sepa-
ration result.

0

10

20

30

40

50

60

0

10

20

30

40

50

60

0

0.1

0.2

0.3

0.4

(e) Q matrix with Gaus-
sian noiseσ = 0.8.

0

10

20

30

40

50

60

0

10

20

30

40

50

60

0

0.1

0.2

0.3

0.4

(f) SortedQ with noise.

Figure 5.29: A multi-body motion separation example using Costeira and
Kanade’s method.

123

5.5.2 Commute Time Applied to the Multi-body Motion Track-

ing Problem

Having discussed some of the properties of the commute time embedding, in this

section we will show how it may be used for multi-body motion analysis. As we

have already seen, the shape interaction matrixQ introduced in the factorisation

method is invariably contaminated by noise and this limits its effectiveness. Our

aim is to use commute time as a shape separation measure. Specifically, we use

the commute time to refine the block structure of theQ matrix and group the

feature points into objects.

Object Separation Steps:

The algorithm we propose for this purpose has the following steps:

1. Use the shape interaction matrixQ as the weighted adjacency matrixΩ

and construct the corresponding graphΓ.

2. Compute the Laplacian matrix of graphΓ usingL = T −Q.

3. Find the eigenvalue matrixΛ and eigenvector matrixΦ of L usingL =

ΦΛΦT .

4. Compute the commute time matrixCT usingΛ andΦ from Equation 4.8.

5. Embed the commute time into a subspace ofRn using Equation 4.10 or

4.11.

6. Cluster the data points in the subspace using the K-means algorithm (Mac-

Queen, 1967).

To illustrate the effectiveness of this method, we return tothe example used

in previous section. First, in the ideal case, theQ matrix will have a zero value

for the feature points belonging to different objects. As a result the graphΓ,

124

0
10

20
30

40
50

60

0

10

20

30

40

50

60

0

100

200

300

(a) Sorted commute time matrix.

4.7453
4.7453

4.7453
4.7453

4.7453
4.7453

4.7453
4.7453

x 10
7

−0.4

−0.2

0

0.2

0.4

−0.5

0

0.5

(b) Clustered points in the commute time
subspace for two objects.

Figure 5.30: Multi-body motion separation re-casted as a commute time cluster-
ing problem.

constructed fromQ, will have disjoint subgraphs corresponding to the nodes

belonging to different objects. The partitions give rise toinfinite commute times,

and are hence unreachable by the random walk. Moreover, whenwe add noise (Q

with zero mean, standard derivation 0.8 Gaussian noise) andapply the clustering

steps listed above we still recover a good set of objects (seeFigure 5.29(d)).

This is illustrated in Figure 5.30. Here, sub-figure (a) shows the commute time

matrix of graphΓ and sub-figure (b) shows the embedding in a 3D subspace. It

is clear that the commute time matrix gives a good block-diagonal structure and

the points are well clustered in the embedding space even when significant noise

is present.

5.5.3 Experiments

In this section we conduct experiments with the commute timemethod on both

synthetic data and real-world motion tracking problems. Toinvestigate the ro-

125

bustness of the method, we add Gaussian noise to the data setsand compare the

results with some classical methods.

5.5.3.1 Synthetic Data

Figure 5.31: Synthetic image sequence.

Figure 5.31 shows a sequence of five consecutive synthetic images with 20

background points(green dots) and 20 foreground points(red dots) moving inde-

pendently. We have added Gaussian noise of zero mean and standard deviation

σ to the coordinates of these 29 points, and then cluster them into two groups.

We have compared our method with Costeira and Kanade’s greedy algorithm

(Costeira and Kanade, 1997; Costeira and Kanade, 1995), Ichimura’s discrim-

ination criterion method (Ichimura, 1999) and Kenichi’s subspace separation

method (Kanatani, 2001). In Figure 5.32 we plot the average misclassification

ratio as a function ofσ for different algorithms. The results are based on the aver-

ages of 50 trials for each method. From the figure, it is clear that our method per-

forms significantly better than the greedy method (Costeiraand Kanade, 1997)

and the discrimination criterion method (Ichimura, 1999).It also has a margin

of advantage over the subspace separation method (Kanatani, 2001).

For an example with a Gaussian noise withσ = 0.5, the commute time ma-

trix and the embedded subspace are shown in Figure 5.33(a) and 5.33(b) respec-

tively. It is clear that even in this heavily noise contaminated case, the commute

time matrix still maintains a good block-diagonal structure. Moreover, under the

126

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.2 0.4 0.6 0.8 1

M
i
s
c
l
a
s
s
i
f
i
c
a
t
i
o
n

r
a
t
i
o
(
%
)

standard deviation

Greedy Algorithm
Discrimination criterion

Subspace separation
Commute time separation

Figure 5.32: Method comparison.

embedding the points are easily separated.

5.5.3.2 Real-world Motion Tracking

In this section we experiment with the commute time method onreal-world

multi-body motion tracking problems. Figure 5.34 shows fivereal-world video

sequences with the successfully tracked feature points using the commute time

method.

The first three rows are for the data used by Sugaya and Kanatani in (Sug-

aya and Kanatani, 2004; Sugaya and Kanatani, 2003). Here there is one moving

object and a moving camera. A successful tracking method will separate the

moving object from the moving background. The forth and fifthrows in Figure

5.34 are two video sequences captured using a Fuji-Film 2.0Mcamera(320×240

pixels). For each of sequence, we detected feature points using the KLT (Shi and

Tomasi, 1994), and tracked the feature points using the commute time method.

127

0

5

10

15

20

25

30

0

5

10

15

20

25

30

0

200

400

600

(a) Sorted commute time matrix.

−0.4
−0.2

0
0.2

0.4
0.6

0.8
1

−0.6

−0.4

−0.2

0

0.2

0.4 −1

−0.5 0

0.5 1

(b) Embedded subspace.

Figure 5.33: Synthetic data.

Due to the continuous loss of the feature points in the successive frames by the

KLT algorithm, we use only ten frames each from the sequenceswith 117 and

116 feature points respectively. Compared to the data from Sugaya and Kanatani

(Sugaya and Kanatani, 2004; Sugaya and Kanatani, 2003), we increase the num-

ber of detected moving objects from one to two, which makes the separation

more difficult.

In the case of the forth row of Figure 5.34, our method not onlyseparates the

ducks correctly from the moving background, but it also separates the moving

ducks from each other. The fifth row of Figure 5.34 is the most difficult one with

two independently moving hands and a moving background. it also separates the

wall from the floor correctly.

In Figure 5.35 we show the trajectories for the tracked points in each of the

video sequences. Here the outliers are successfully removed. The different se-

quences offer tasks of increasing difficulty. The easiest sequence is the one la-

belledA, where background has a uniform and almost linear relative movement,

128

and the foreground car follows a curved trajectory. There isa similar pattern in

the sequence labelledB, but here the background movement is more significant.

In sequenceC, there is both camera pan and abrupt object movement. Sequence

D has camera pan and three independently moving objects. Finally, in sequence

E there is background jitter (due to camera shake) and two objects exhibiting in-

dependent overall movements and together with articulations. Even in the worst

case, our method successfully separates the background as two different clusters

as shown in Figure 5.36. The colours of the points in the embedded subspace is

the same as the one shown in the fifth column of Figure 5.34.

For the same sequences, we compared our results with Costeira and Kanade’s

greedy algorithm (Costeira and Kanade, 1997), Ichimura’s discrimination crite-

rion method (Ichimura, 1999), Kanatani’s subspace separation method (Kanatani,

2001) and Sugaya and Kanatani’s multi-stage learning method (Sugaya and Kanatani,

2004). The comparison is shown in Table 5.2.

Table 5.2 lists the accuracies of the different methods using the ratio of num-

ber of correctly classified points to the total number of points. The ratio is av-

eraged over 50 trails for each method. From the table, it is clear that the greedy

algorithm (Costeira and Kanade, 1997) gives the worst results. This is because

the greedy algorithm simply sorts according to the magnitude of elements of the

Q matrix, and this matrix is susceptible to noise. The discrimination criterion

method (Ichimura, 1999) and the subspace separation method(Kanatani, 2001)

perform better due to their robustness to the noise. The discrimination criterion

method effectively rejects noise and outliers by selectingthe most reliable fea-

tures. The subspace separation method removes outliers by fitting a subspace

only to consistent trajectories.

The multi-stage learning method (Sugaya and Kanatani, 2004) delivers sig-

nificantly better results due to its adaptive capabilities,but failed on our data.

129

A B C D E

Costeira-Kanade 60.3 71.3 58.8 45.5 30.0
Ichimura 92.6 80.1 68.3 55.4 47.2

Subspace Separation 59.3 99.5 98.9 80.6 67.2
Multi-stage Learning 100.0 100.0 100.0 93.7 81.5

Commute Time Separation 100.0 100.0 100.0 100.0 100.0

Table 5.2: Separation accuracy for the sequences in Fig. 5.34.

The failures are most pronounced when there are several moving objects and an

inconsistent moving background. Our method gives the best performance and

achieves100% accuracy. In our method, motion jitter or noise disturbancewill

be correctly recognised and suppressed by the embedding process. Outliers, on

the other hand, are automatically rejected in the clustering step by the K-means

algorithm.

A:

B:

C:

D:

E:

Figure 5.34: Real-world video sequences and successfully tracked feature points.

130

A B C

D E

Figure 5.35: Feature point trajectories.

−0.4
−0.3

−0.2
−0.1

0
0.1

0.2
0.3

−0.2

−0.1

0

0.1

0.2

0.3

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

Figure 5.36: Sequence E embedded by commute time in a subspace.

131

5.6 Conclusions

The work presented in this chapter has focused on the application of commute

times. To this end, we have shown how to use the commute time todevelop

two graph simplification algorithms. The first of these is a graph simplification

method that uses the commute time to an auxiliary node. We show how the

representation that results from this simplification can beused for the purposes

of matching. The second simplification method uses the commute time to extract

spanning trees from graphs. Experimentally, we show that our tree representation

is not only stable, but also preserves sufficient node information to be useful for

the purposes of graph matching.

We have shown how commute time can be used for clustering and segmen-

tation, and have compared to the Shi and Malik’s method (Shi and Malik, 2000).

Finally, we described how the multi-body motion tracking problem can be cast

into a graph spectral setting using a commute time embeddingmethod together

with K-means clustering. To test its performance, We have compared our embed-

ding method with a number of alternative tracking algorithms on both synthetic

and real world data. Here it offers a convincing margin of improvement for

noise-contaminated multi-body motion tracking.

132

Chapter 6

Conclusions and Future Work

The overall goal of this thesis was to exploit the propertiesof spectral graph

theory for the purpose of solving a number of computer visionproblems includ-

ing object recognition, embedding, clustering and motion tracking. To this end,

we have a) developed an inexact graph matching method based on the spectral

decomposition of the graphs, b) described three distinct simplified graph repre-

sentations and c) developed an effective embedding and clustering method for

image segmentation and motion tracking.

6.1 Contributions

6.1.1 Inexact Graph Matching

Inexact graph matching has proved to be an intractable task in the computer

vision literature. When spectral graph matching methods are used, then only

graphs of the same size (Umeyama, 1988) can be matched. To overcome this

problem, some approaches have been made but with high computational cost

(Luo and Hancock, 2001). Here we solved the problem using a hierarchical

matching method which is suitable for parallel computation.

133

Our starting point was to use the graph seriation method to decompose the

graph into non-overlapping subgraphs (partitions). The pattern of partitions is

similar for graphs with similar structure. The graph matching process can be

realized by matching these partitions. We first found the correspondence of the

partitions and then matched the elements in each pair of partitions separately.

This gave us a two level matching framework and the potentialto develop parallel

graph matching technique. The advantage of this hierarchical matching scheme

is its efficiency and ability to deal with graphs of differentsizes. However, it has

the disadvantages that there is a dependency of the node correspondences on the

partition correspondences. Hence, incorrect partition correspondences can cause

the node error to be amplified significantly.

The matching process was realized using a similarity based matching scheme

and a probability based dictionary padding method. Similarity was measured us-

ing the string edit distance, where the strings were formed from the nodes of the

partitions. Although this method is both effective and efficient, it relies on dis-

mantling local graph structure, and in order to locate the node correspondences

of each pair of nodes we need to employ back-tracking. A second and alternative

matching method was to supplement two supercliques so that they are of same

degree. To do this, we have padded the smaller one with a certain number of

dummy nodes. This process did not destroy the superclique structure. However,

its complexity increases exponentially with the number of dummy nodes that

need to be inserted. To demonstrate their differences, we have compared these

two methods together with four alternative methods. The alternatives are discrete

relaxation (Wilson and Hancock, 1997), EM (Luo and Hancock,2001), quadratic

assignment (Gold and Rangarajan, 1996) and non-quadratic graduated assign-

ment (Finch et al., 1998). Results suggested that the similarity based matching

scheme outperformed the alternatives in terms of the correct matching of corre-

134

spondences.

Furthermore, with the partitions in hand, we constructed a simplified graph

representation based on the local partition neighbourhood. This new represen-

tation preserves the structural information of the original graph and can be used

for graph clustering.

6.1.2 Simplified Graph Representations

Our contribution here was to draw on ideas from the heat diffusion process on a

graph to develop a graph simplification method. This representation was based

on extracting concentric layers from the graph. We realizedthis simplification

by supplementing the original graph with an auxiliary node.This node was con-

nected by edges to the nodes on the graph boundary. Then, we constructed the

layer graphs using the distribution of heat diffusion. Thisprocess was governed

by the heat equation and the solution was given by the heat kernel. The simpli-

fied graph representation is a series of concentric layers that can be matched by

cyclic permutation. Although commute time was not involvedin constructing

the new graph representation, it played an important role inassigning scores to

it. The score of each node was derived from the commute time tothe auxiliary

node. Nodes from different layers possess distinct commutetimes due to their

difference in distance from the auxiliary node. Variance ingraph structure does

not disturb the pattern of commute time. As a result, the commute times on the

nodes of the same layer can be used as an attribute for the purposes of matching.

We have tested our method on real-world images and the results were promising.

This method outperformed the alternatives by about25% in the worst case. Our

method delivers a more stable graph representation than alternative graph simpli-

fication methods such as the random walk (Robles-Kelly and Hancock, 2005a).

This is because the pattern of concentric layers is less likely to be disturbed by

135

structural noise. Our method is analogous to level set methods (Sethian, 1996)

which evolve by front propagation rather than by heat diffusion.

Our second approach to graph simplification was based on the idea that the

commute time matrix delivers a more stable representation than the adjacency

matrix. The main obstacle of recasting the inexact graph matching problem as

an inexact tree matching problem is the stability of the treerepresentation ex-

tracted from a graph. To overcome this problem, we constructed an auxiliary

fully connected graph in which the weights were the commute times between

pairs of nodes in the original graph. Tree representations were obtained by lo-

cating the minimum spanning trees on these complete graphs.To examine the

performance of our method, we have tested the matching method on Delaunay

graphs as well as on K-nearest neighbour(KNN) graphs. The superior perfor-

mance of the method on the KNN graphs is probably due to the dense distribu-

tion of the edges around the central part of the graphs. Theseedges are preserved

as the branches of the spanning tree. The success in producing a stable spanning

tree from the auxiliary graph allowed us to further investigate the commute time

matrix as a graph representation. The information suppliedby the commute time

matrix is richer than the normal adjacency matrix. If we takethe adjacency ma-

trix as a ”hard” representation, indicating only the connectivity of each pair of

nodes, the commute time matrix is a ”soft-link” representation, giving a means

of node.

6.1.3 Embedding and Clustering

The properties of the commute time preserving embedding were studied and a

comparison with alternative embedding methods was presented. Two of the most

important properties of the commute time embedding are thatit preserves the

maximal variance of data and that it maintains data proximity. This embedding

136

scheme was successfully applied to the multi-body motion tracking problem.

The aim here is to control the effect of noise in the factorisation method. We in-

terpreted the shape-interaction matrix as an affinity matrix. From the associated

Laplacian matrix we computed the corresponding commute time matrix. We

used the commute time embedding to project the feature points into a subspace.

The classification of different objects was achieved by applying a K-means clus-

tering on the embedded feature points. Outliers and noise were suppressed by the

clustering method. A set of experiments carried out on synthetic and real video

sequences showed that our method performed quite well even under significant

noise contamination.

The application of the commute time to image segmentation was presented

in Chapter 5. Here, commute time provides a fine cluster cohesion measure that

gives an enhanced block diagonal structure of the similarity matrix. Compar-

ing our method with the normalised cut, we have developed a similar grouping

algorithm based on recursive bipartition using the eigenvector of the commute

time matrix. Experiments have been carried out on both synthetic images and

real-world pictures. Our method outperformed the normalised cut in both main-

taining region integrity and continuity. The importance ofour method is that we

have taken a different approach towards clustering. Ratherthan seeking a bet-

ter cutting criteria, we here focused on exploiting and enhancing the cohesion

relationships in the data. This greatly simplifies the clustering task.

In this thesis, spectral graph theory has been intensively studied and new

methods have been developed facilitating more sophisticate use of the Lapla-

cian eigenspectrum. Distinct from the existing methods, our approaches are con-

cerned with using more eigenvectors of the affinity matrix. This enables us to use

richer information from the original graph and develop morerobust and efficient

algorithms. At the same time, it inspires the directions to make more approaches

137

towards solving various computer vision problems using spectral methods.

6.2 Future Work

The methods proposed in this thesis exhibit several shortcomings that need fur-

ther research. Moreover, some of the topics addressed couldbe extended and

investigated further.

For instance, in Chapter 3, we have restricted our method to deal only with

Delaunay graphs. Since the partition is based on supercliques it is not applicable

to non-planar graphs with crossed edges (such as the K nearest neighbour graph).

This restriction needs to be overcome. One possible solution is to consider al-

ternative feasible sub-structures embedded in the graph such as maximal cliques

or dominant sets (Pavan and Pelillo, 2003a). Based on the cohesion relation-

ship between nodes, the dominant set has been successfully applied to the image

segmentation problem. Hence, further investigation of graph partition matching

could yield some interesting results.

A second issue concerning our matching method is the size of the graphs.

Since our method is based on hierarchical matching, the accuracy of matching in

the early steps is critical. This is increasingly difficult as graphs become larger

since the number of partitions increases.

Despite its effectiveness and efficiency, the multi-layer graph representation

is vulnerable to structural corruption caused by edge and node deletion. This

sometimes disturbs the connectivity of the layer graphs. One way of recover-

ing from this problem could be to cast the matching process into a maximum

likelihood estimation framework.

Another possible avenue of investigation is to further study potential appli-

cations of the proximity matrix. So far,we have used it only for stabilising parti-

138

tions, hence it could be useful for segmentation and clustering.

Graph matching by comparing spanning trees suffers from problems due to

the unstable structure of the tree representation and information loss. Although

our tree representation is relatively stable for large graphs, there is clearly room

for improvement in the accuracy of branch location. Anothertopic that merits

further investigation is to study the relationship betweenour tree representation

and the original graph.

Our factorisation method suppresses the effect of outliersand noise. How-

ever, it does not deal with degeneracy, dependency and missing data. Although

these problems are difficult to handle, our framework could be extended to deal

with them. For instance, the EM algorithm (Gruber and Weiss,2004) has been

employed in the factorisation method to deal with uncertainty and missing data.

Furthermore, covariance-weighted factorisation (Anandan and Irani, 2002) and

a refined shape interaction matrix has also been used (Zelnik-Manor and Irani,

2003). All these methods perform reasonably well and can easily be incorporated

into our clustering framework.

139

Bibliography

Adolphson, D. (1977). Single machine job sequencing with precedence con-

straints.J. SIAM Comput., 6:40–54.

Aizerman, M., Braverman, E., and Rozonoer, L. (1964). Theoretical foundations

of the potential function method in pattern recognition learning.Automation

and Remote Control, 25:821–837.

Aldous, D. and Fill, J. (2003).Reversible Markov Chain and Random Walks on

Graphs. Draft.

Alpert, C. and Yao, S. (1995). Spectral partitioning: The more eigenvectors, the

better. InACM/IEEE Design Automation Conference.

Anandan, P. and Irani, M. (2002). Factorization with uncertainty. International

Journal of Computer Vision, 49(2-3):101–116.

Atkins, J. E., Boman, E. G., and Hendrickson, B. (1998). A spectral algorithm for

seriation and the consecutive ones problem.SIAM Journal on Computing.

Auscher, P., Coulhon, T., and Grigor’yan, A. (2003). Heat kernels, random

walks, and analysis on manifolds and graphs.AMS, Contemporary Mathe-

matics, 338.

Bai, X. and Hancock, E. R. (2004). Heat kernels, manifolds and graph embed-

ding. InSSPR, pages 198–206.

140

Bai, X., Yu, H., and Hancock, E. R. (2004a). Graph matching using manifold

embedding. InICIAR, pages 352–359.

Bai, X., Yu, H., and Hancock, E. R. (2004b). Graph matching using spectral

embedding and alignment. InICPR, pages 398–401.

Barrow, H. G. and Popplestone, R. J. (1971). Relational descriptions in picture

processing.Machine Intelligence, 6:377–396.

Belkin, M. and Niyogi, P. (2001). Laplacian eigenmaps and spectral techniques

for embedding and clustering. InAdvances in Neural Information Process-

ing Systems, pages 585–591.

Belkin, M. and Niyogi, P. (2003). Laplacian eigenmaps for dimensionality re-

duction and data representation.Neural Computation, 15(6):1373–1396.

Biggs, N. L. (1974). Algebraic Graph Theory. Cambridge University Press,

Cambridge, Books.

Brand, M. and Huang, K. (2003). A unifying theorem for spectral embedding

and clustering. InNinth International Workshop on Artificial Intelligence

and Statistics.

Brin, S. and Page, L. (1998). The anatomy of a large-scale hypertextual Web

search engine.Computer Networks and ISDN Systems, 30(1–7):107–117.

Bunke, H. (1999). Error correcting graph matching: On the influence of the

underlying cost function.IEEE Trans. Pattern Analysis and Machine Intel-

ligence, 21(9):917 – 922.

Caelli, T. and Kosinov, S. (2004). An eigenspace projectionclustering method

for inexact graph matching. IEEE Trans. Pattern Anal. Mach. Intell.,

26(4):515–519.

141

Carcassoni, M. and Hancock, E. R. (2000). Point pattern matching with robust

spectral correspondence. InCVPR, pages 1649–1655.

Carcassoni, M. and Hancock, E. R. (2003). Spectral correspondence for point

pattern matching.Pattern Recognition, 36(1):193–204.

Chavel, I. (1984).Eigenvalues in Riemannian Geometry. Academic Press, New

York.

Christmas, W. J., Kittler, J., and Petrou, M. (1995). Structural matching in com-

puter vision using probabilistic relaxation.IEEE Trans. Pattern Anal. Ma-

chine Intell, 17(8):749–764.

Chung, F. R. K. (1988). Labelings of graphs.Academic Press, San Diego, pages

151–168.

Chung, F. R. K. (1997).Spectral Graph Theory. CBMS series 92. American

Mathmatical Society Ed.

Chung, F. R. K. and Yau, S. T. (1997). A combinatorial trace formula. Tsing

Hua lectures on geometry and analysis, pages 107–116.

Chung, F. R. K. and Yau, S. T. (1999). Coverings, heat kernelsand spanning

trees.The Electronic Journal of Combinatorics, 6.

Chung, F. R. K. and Yau, S. T. (2000). Discrete green’s functions. InJ. Combin.

Theory Ser., pages 191–214.

Coifman, R. R., Lafon, S., Lee, A. B., Maggioni, M., Nadler, B., Warner, F.,

and Zucker, S. W. (2005). Geometric diffusions as a tool for harmonic

analysis and structure definition of data: Diffusion maps.National Academy

of Sciences, 102(21):7426–7431.

142

Collatz, L. and Maas, C. (1987). On early papers on the eigenvalues of graphs.

Hamburger Beitrage zur angewandten Mathematik, Reihe A, Preprint 6.

Collatz, L. and Sinogowitz, U. (1957). Spektren endlicher grafen. Abh. Math.

Sem. Univ. Hamburg, 21:63–77.

Comaniciu, D. (2003). An algorithm for data-driven bandwidth selection.IEEE

Trans. Pattern Anal. Mach. Intell., 25(2):281–2886.

Comaniciu, D. and Meer, P. (2002). Mean shift: A robust approach toward

feature space analysis.IEEE Trans. Pattern Anal. Mach. Intell., 24(5):603–

619.

Costeira, J. and Kanade, T. (1995). A multi-body factorization method for mo-

tion analysis. InICCV, pages 1071–1076.

Costeira, J. and Kanade, T. (1997). A multibody factorization method for inde-

pendently moving objects.IJCV, 29(3):159 – 179.

Cristianini, N. and Shawe-Taylor, J. (2000).An Introduction to Support Vector

Machines and Other Kernel-based Learning Methods. Cambridge Univer-

sity Press.

Cross, A. D. J., Wilson, R. C., and Hancock, E. R. (1997). Inexact graph match-

ing using genetic search.Pattern Recognition, 30(6):953–70.

Cvetkovic’, D. and Rowlinson, P. (1990). The largest eigenvalue of a graph – a

survey.Linear and Multilinear Algebra, 28:3–33.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood

from incomplete data via the em algorithm.Journal of the Royal Statistical

Society B, 39(1):1–38.

143

Desai, M. and Rao, V. (1993). On the convergence of reversible markov-chains.

SIAM J. Matrix Analysis and Appl., 4:950–966.

Diaconis, P. and Stroock, D. (1991). Geometric bounds for eigenvalues of

markov chains.Ann. Appl. Probab., 1:36–61.

Diaz, J., Petit, J., and Serna, M. (2000). A survey on graph layout problems.

Technical report LSI-00-61-R, Universitat Polit‘ecnica de Catalunya.

Donath, W. E. and Hoffman, A. J. (1972). Algorithms for partitioning of graphs

and computer logic based on eigenvectors of connection matrices. IBM

Technical Disclosure Bulletin, 15:938–944.

Doob, M., Gutman, I., Cvetkovic’, D., and Torgasev, A. (1988). Recent results

in the theory of graph spectra. North Holland, Amsterdam, Journals.

Doob, M., Sachs, H., and Cvetkovic’, D. (1995).Spectra of graphs - Theory and

applications. Johann Ambrosius Barth Verlag, Heidelberg-Leipzig (1995),

the thirst revised and enlarged edition, Books.

Dulmage, A. L. and Mendensol, N. S. (1967). Graphs and matrices. Graph

Theory and Theoretical Physics, pages 167–227.

Elgammal, A. M., Duraiswami, R., and Davis, L. S. (2003). Efficient ker-

nel density estimation using the fast gauss transform with applications to

color modeling and tracking.IEEE Trans. Pattern Anal. Mach. Intell.,

25(11):1499–1504.

Ellis, R. B. (2002). Discrete green’s function for productsof regular graphs. In

AMS national conference special session on graph theory.

144

Eschera, M. A. and Fu, K.-S. (1986). An image understanding system using at-

tributed symbolic representation and inexact graph matching. Transactions

on Pattern Analysis and Machine Intelligence, 18(5).

Fan, Z., Zhou, J., and Wu, Y. (2004a). Inference of multiple subspaces from

high-dimensional data and application to multibody grouping. In CVPR,

pages 661–666.

Fan, Z., Zhou, J., and Wu, Y. (2004b). Multibody motion segmentation based on

simulated annealing. InCVPR, pages 776–781.

Fiedler, M. (1973). Algebraic connectivity of graphs.Czech. Math. Journal,

23:298–305.

Fiedler, M. (1975). A property of eigenvectors of non-negative symmetric matri-

ces and its application to graph theory.Czechoslovak Mathematics Journal,

25:619–633.

Fiedler, M. (1989). Laplacian of graphs and algebraic connectivity. Combina-

torics and Graph Theory, Banach Centre Publ. PWN Polish Scientific Publ.

, Warshaw, 25:57–70.

Fiedler, M. (1993). A geometric approach to the laplacian matrix of a graph.

Combinatorial and Graph-Theoretical Problems in Linear Algebra, pages

73–98.

Finch, A. M., Wilson, R. C., and Hancock, E. R. (1998). An energy func-

tion and continuous edit process for graph matching.Neural Computation,

10(7):1873–1894.

Fischer, I. and Poland, J. (2005). Amplifying the block matrix structure for

spectral clustering. InIDSIA.

145

Fischler, M. and Elschlager, R. (1973). The representationand matching of

pictorical structures.IEEE Transactions on Computers, 26:67–92.

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems.

Annals of Eugenics, 7:179–188.

Garey, M. R., Johnson, D. S., and Stockmeyer, L. (1976). Somesimplified np-

complete graph problems.Theoretical Computer Science, 1:237–267.

Gear, C. W. (1998). Multibody grouping from motion images.IJCV, 29(2):130–

150.

Gold, S. and Rangarajan, A. (1996). A graduated assignment algorithm for

graph matching.IEEE Trans. on Pattern Analysis and Machine Intelligence,

18(4):377–388.

Gori, M., Maggini, M., and Sarti, L. (2004). Graph matching using random

walks. InICPR04, pages III: 394–397.

Grigor’yan, A. (2000). Heat kernels on manifolds, graphs and fractals. InEuro-

pean Congress of Mathematics, pages 393–406.

Grone, R. (1991). On the geometry and laplacian of a graph.Linear Algebra

and Appl., 150:167–178.

Gruber, A. and Weiss, Y. (2004). Multibody factorization with uncertainty and

missing data using the em algorithm. InCVPR, pages 707–714.

Harper, L. H. (1964). Optimal assignmentsof numbers to vertices. J. SIAM,

12(1):131–135.

Harper, L. H. (1966). Optimal numberings and isoperimetricproblems on

graphs.J. Combinatorial Theory, 1(3):385–393.

146

He, X. and Niyogi, P. (2003). Locality preserving projections. InNIPS, pages

585–591.

Hotelling, H. (1933). Analysis of complex statistical variables in principal com-

ponents.J. Educational Psychology, 24:417–441,498–520.

Ichimura, N. (1999). Motion segmentation based on factorization method and

discriminant criterion. InICCV, pages 600–605.

Jain, A. K., Murty, M. N., and Flynn, P. J. (1999). Data clustering: a review.

ACM Computing Surveys, 31(3):264–323.

Juvan, M. and Mohar, B. (1992). Optimal linear labelings andeigenvalues of

graphs.Disc. Appl. Math, 36:153–168.

Kanatani, K. (2001). Motion segmentation by subspace separation and model

selection. InICCV, pages 301–306.

Kannan, R., Vempala, S., and Vetta, A. (2000). On clusterings: Good, bad, and

spectral. InProceedings of the 41st Annual Symposium on the Foundation

of Computer Science, pages 367–380.

Kirchhoff, G. (1847). ber die auflsung der gleichungen, auf welche man bei der

untersuchung der linearen verteilung galvanischer strme gefhrt wird. Ann.

Phys. Chem., 72:497–508.

Kondor, R. and Lafferty, J. (2002). Diffusion kernels on graphs and other discrete

structures.19th Intl. Conf. on Machine Learning (ICML) [ICM02].

Kruskal, J. B. and Wish, M. (1978).Multidimensional scaling. Sage Publica-

tions,Beverly Hills.

Lafferty, J. and Lebanon, G. (2005). Diffusion kernels on statistical manifolds.

Journal of Machine Learning Research, 6:129–163.

147

Lafon, S. and Lee, A. B. (2005). Diffusion maps: a unified framework for di-

mension reduction, data partitioning and graph subsampling. submitted to

PAMI.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions insertions

and reversals.Soviet Physics-Doklandy, 10(8):707–710.

Lovász, L. (1996). Random walks on graphs: A survey.Combinatorics, Paul

Erds is eighty, 2:353–397.

Luo, B., Cross, A. D., and Hancock, E. R. (1998). Corner detection via topo-

graphic analysis of vector potential.Proceedings of the 9 th British Machine

Vision Conference.

Luo, B., Cross, A. D., and Hancock, E. R. (1999). Corner detection via

topographic analysis of vector potential.Pattern Recognition Letters,

20(6):635–650.

Luo, B. and Hancock, E. R. (2001). Structural graph matchingusing the em

algorithm and singular value decomposition.IEEE PAMI, 23(10):1120–

1136.

Luo, B., Wilson, R. C., and Hancock, E. R. (2004). Graph pattern spaces from

laplacian spectral polynomials. InICIAR, pages 327–334.

MacQueen, J. B. (1967). Some methods for classification and analysis of mul-

tivariate observations. InProceedings of the fifth Berkeley symposium on

mathematical statistics and probability, pages 281–297.

Magyar, G., Johnsson, M., and Nevalainen, O. (2000). An adaptive hybrid ge-

netic algorithm for the three-matching problem.IEEE Transactions on Evo-

lutionary Computation, 4(2):135–146.

148

Marcus, M. and Minc, H. (1964).A Survey of Matrix Theory and Matrix In-

equalities. Allyn and Bacon, Inc.

Marzal, A. and Vidal, E. (1995). Computation of normalized edit distance and

applications.IEEE Trans. Systems, Man, and Cybernetics, 25:202–206.

Meilă, M. and Shi, J. (2000). A random walks view of spectral segmentation. In

NIPS, pages 873–879.

Merris, R. (1994). Laplacian matrices of graphs: a survey.Linear Algebra Appl.,

197-198:143–176.

Merris, R. (1995). A survey of graph laplacians.Linear Algebra Appl., 39:19–31.

Merris, R. and Grone, R. (1987). Algebraic connectivity of trees.Czechoslovak

Math. J., 37(112):660–670.

Merris, R. and Grone, R. (1990). Ordering trees by algebraicconnectivity.

Graphs Combin., 6(3):229–237.

Merris, R. and Grone, R. (1994). The laplacian spectrum of a graph ii. SIAM J.

Discrete Math., 7:221–229.

Messmer, B. T. and Bunke, H. (1998). A new algorithm for error-tolerant sub-

graph isomorphism detection.IEEE PAMI, 20:493–504.

Mohar, B. (1991). The laplacian spectrum of graphs, graph theory, combina-

torics, and applications.John Wiley, New York., pages 871–898.

Mohar, B. (1992). Laplace eigenvalues of graphs - a survey.Discrete Math.,

109:171–183.

Mohar, B. (1997). Some applications of laplace eigenvaluesof graphs.Graph

Symmetry: Algebraic Methods and Applications, 497 NATO ASI Series

C:227–275.

149

Muradyan, D. O. and Piliposyan, T. E. (1980). Minimal numberings of vertices

of a rectangular lattice.Akad. Nauk. Armjan. SRR, 1(70):21–27.

Myers, R. and Hancock, E. R. (1997). Genetic algorithm parameter sets for line

labelling. Pattern Recognition Letters, 18(13):1363–1371.

Myers, R., Wilson, R. C., and Hancock, E. R. (2000). Bayesiangraph edit dis-

tance. IEEE Transactions on Pattern Analysis and Machine Intelligence,

22(6):628–635.

Ng, A., Jordan, M., and Weiss, Y. (2001). On spectral clustering: Analysis and

an algorithm. InNIPS.

Park, J., Zha, H., and Kasturi, R. (2004). Spectral clustering for robust motion

segmentation. InECCV, pages 390–401.

Pavan, M. and Pelillo, M. (2003a). Dominant sets and hierarchical clustering. In

ICCV, pages 362–369.

Pavan, M. and Pelillo, M. (2003b). A new graph-theoretic approach to clustering

and segmentation. InCVPR03, pages I: 145–152.

Pelillo, M. (1999). Replicator equations, maximal cliques, and graph isomor-

phism.Neural Computation, 11:1933–1955.

Pelillo, M., Siddiqi, K., and Zucker, S. W. (1999). Attributed tree matching and

maximum weight cliques. InICIAP’99-10th Int. Conf. on Image Analysis

and Processing, pages 1154–1159. IEEE Computer Society Press.

Perona, P. and Freeman, W. T. (1998). A factorization approach to grouping. In

ECCV, pages 655–670.

150

Petit, J. (2000). Combining spectral sequencing and parallel simulated anneal-

ing for the minla problem. Technical Report LSI-01-13-R, Departament de

Llenguatges i Sistemes Informtics, Universitat Politcnica de Catalunya.

Prim, R. C. (1957). Shortest connection networks and some generalisations.The

Bell System Technical Journal, 36:1389–1401.

Rao, S. and Richa, A. W. (1998). New approximation techniques for some order-

ing problems. In9th ACM-SIAM symposium on discrete algorithms, pages

211–218.

Robles-Kelly, A. and Hancock, E. R. (2005a). Graph edit distance from spectral

seriation.IEEE TPAMI, 27:365–378.

Robles-Kelly, A. and Hancock, E. R. (2005b). String edit distance, random walks

and graph matching.IJPRAI, 18:315–327.

Roweis, S. and Saul, L. (2000). Nonlinear dimensionality reduction by locally

linear embedding.Science, 290(5500):2323–2326.

Saerens, M., Fouss, F., Yen, L., and Dupont, P. (2004). The principal components

analysis of a graph, and its relationships to spectral clustering. InECML,

volume 3201, pages 371–383.

Sanfeliu, A. and Fu, K. (1983). A distance measure between attributed relational

graphs for pattern recognition.IEEE Transactions on Systems, Man and

Cybernetics, 13:353–362.

Sarkar, S. and Boyer, K. L. (1996). Quantitative measures ofchange based on

feature organization: Eigenvalues and eigenvectors. InCVPR, page 478.

Scholkopf, B., Smola, A., and Muller, K. (1998). Nonlinear component analysis

as a kernel eigenvalue problem.Neural Computation, 10:1299–1319.

151

Scott, G. and Longuet-Higgins, H. (1990). Feature groupingby relicalisation of

eigenvectors of the proximity matrix. InBMVC., pages 103–108.

Sethian, J. A. (1996).Level Set Methods. Cambridge University Press, Cam-

bridge, Books.

Shahrokhi, F., Sýkora, O., Székely, L. A., and Vrto, I. (2001). On bipartite

drawings and linear arrangement problem.J. SIAM Comput., 30(6):1773–

1789.

Shapiro, L. and Brady, J. (1992). Feature-based correspondence: an eigenvector

approach.Image and Vision Computing, 10(2):283–288.

Shapiro, L. G. and Haralick, R. M. (1985). A metric for comparing relational

descriptions.PAMI, 7(1):90–94.

Shi, J. and Malik, J. (2000). Normalized cuts and image segmentation. IEEE

PAMI, 22(8):888–905.

Shi, J. and Tomasi, C. (1994). Good features to track. InCVPR, pages 593–600.

Shokoufandeh, A., Dickinson, S. J., Siddiqi, K., and Zucker, S. W. (1999). In-

dexing using a spectral encoding of topological structure.In Proc. of the

IEEE Conf. on Computer Vision and Pattern Recognition, pages 491–497.

Silverman, B. W. (1986).Density Estimation for Statistics and Data Analysis.

Chapman and Hall, London.

Sinclair, A. (1991). Improved bounds for mixing rates of markov chains and

multicommodity flow.LFCS Report Series, ECS-LFCS-91-178, University

of Edinburgh.

152

Smola, A. and Kondor, R. (2003). Kernels and regularizationon graphs. In

In Learning Theory and Kernel Machines, Berlin - Heidelberg, Germany,

2003. Springer Verlag.

Sood, V., Redner, S., and ben Avraham, D. (2005). First-passage properties of

the erdoscrenyi random graph.J. Phys. A: Math. Gen., pages 109–123.

Spielman, D. A. and Teng, S. (1996). Spectral partitioning works: Planar graphs

and finite element meshes. InIEEE Symposium on Foundations of Com-

puter Science, pages 96–105.

Sugaya, Y. and Kanatani, K. (2003). Outlier removal for motion tracking by

subspace separation.IEICE Trans. INF and SYST, E86-D(6):1095–1102.

Sugaya, Y. and Kanatani, K. (2004). Multi-stage unsupervised learning for multi-

body motion segmentation.IEICE Trans. INF and SYST, E87-D(7):1935–

1942.

Tenenbaum, J. B., de Silva, V., and Langford, J. C. (2000). A global

geometric framework for nonlinear dimensionality reduction. Science,

290(5500):2319–2323.

Torsello, A. and Hancock, E. R. (2001). Computing approximate tree edit dis-

tance using relaxation labelling.3rd IAPR-TC15 Workshop on Graph-based

Representations in Pattern Recognition, pages 125–136.

Umeyama, S. (1988). An eigendecomposition approach to weighted graph

matching problems.IEEE PAMI, 10:695–703.

Wagner, R. A. and Fischer, M. (1974). The string-to-string correction problem.

J. ACM, 21(1):168–173.

153

Weiss, Y. (1999). Segmentatoin using eigenvectors: a unifying view. In ICCV.,

pages 975–982.

Williams, M., Wilson, R., and Hancock, E. R. (1999). Deterministic search for

relational graph matching.Pattern Recognition, 32(7):1255–1271.

Wilson, R. C. and Hancock, E. R. (1997). Structural matchingby discrete re-

laxation.IEEE Transactions on Pattern Analysis and Machine Intelligence,

19(6):634–648.

Wilson, R. C., Luo, B., and Hancock, E. R. (2005). Pattern vectors from alge-

braic graph theory.IEEE PAMI, 27:1112–1124.

Wong, A. and You, M. (1985). Entropy and distance of random graphs with

application to structrual pattern recognition.IEEE Transactions on Pattern

Analysis and Machine Intelligence, 7:509–609.

Wu, Y., Zhang, Z., Huang, T. S., and Lin, J. Y. (2001). Multibody grouping via

orthogonal subspace decomposition. InCVPR, pages 252–257.

Yau, S. T. and Schoen, R. M. (1988).Differential geometry. Science publication.

Yu, H. and Hancock, E. R. (2005a). Eigenspaces from seriatedgraphs. InCAIP,

pages 179–187.

Yu, H. and Hancock, E. R. (2005b). Graph seriation using semi-definite pro-

gramming. InGbRPR, pages 63–71.

Zahn, C. T. (1971). Graph-theoretical methods for detecting and describing

gestalt clusters.IEEE Transactions on Computers, 20:68–86.

Zelnik-Manor, L. and Irani, M. (2003). Degeneracies, dependencies and their

implications in multi-body and multi-sequence factorizations. In CVPR,

pages 287–293.

154

Zhang, Z. H., Chen, C. B., Sun, J., and Chan, K. L. (2003). Em algorithms

for gaussian mixtures with split-and-merge operation.Pattern Recognition,

36(9):1973–1983.

155

