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Abstract

Graph spectral methods are concerned with using the eiymsvand eigen-
vectors of the adjacency or Laplacian matrices to charaetgraph structure.
Applications in computer vision include object recognitioimage segmentation
and data analysis. Although widely used, most graph sgedtrarithms are rel-
atively simple. Most of the current applications are lirdite use only one or
just a few eigenvalues and eigenvectors of the affinity matkithough elegant
and concise many valuable properties are also neglectehislthesis, we focus
on exploring more complex uses of the Laplacian spectrum.

Our starting point is the Fiedler vector, i.e. the secondllastaeigenvector
of the Laplacian matrix. Although it has been intensivelplggd in graph bipar-
tition and image segmentation, its usage is still quite #namd restricted. We
aim to further extend its utility to decompose graphs into-oeerlapping parti-
tions. By doing so, we will be able to cast inexact graph matgproblem into
the matching of these subunits and the whole matching psaaesbe realized in
a hierarchical framework. Further, the pattern of panmisican be stabilised by
incorporating a diffusion process to smooth away the effetstructural errors.
The matching criteria is given by two comparable methods isrdictionary-
padding based discrete relaxation and the other one is adistéince measure.
To test our method, we have applied it to both synthetic antwerld images

and the results show that it is robust under severe struaonaption and vari-



ation.

Our second contribution in this thesis is to develop spéotethods which
are capable of utilising the full Laplacian eigenspectrdfaatively. We turn to
the commute time (the expected time a random walk takes fimshe m to node
v and return). A theoretical analysis of the commute time destrates how it
can be used for embedding and clustering.

The first application of commute time is to apply it as an epeligsipation
measure on nodes of the graph. To simulate a diffusion pspeesintroduce an
extra node as heat source. Then a graph can be divided irgcaseoncentric
layers based on the heat distribution and graph matchireglzed by matching
these layers with commute times as attributes on the nodes.

The second application of commute time relies on the rolesstof the com-
mute time matrix to structural noise. Commute time is a mataust graph
representation than the adjacency matrix. As a result, tilémam spanning
tree for the commute time of the graph is more stable undectstral variation
and can be used as a stable structure for inexact graph metchi

Our third application of commute time exploits its grouppr@perties. We
propose an image segmentation method based on the redbifsrgtion of the
smallest eigenvector of the commute time matrix.

Finally, a commute time preserving embedding is used toestile multi-
body motion tracking problem. We extend the traditiofzadtorisation method
of Costeira and Kanade (Costeira and Kanade, 1997; Coatairf{anade, 1995)
by embedding the shape interaction matrix into a subspdggcQpoints in this

space are easily separated by a k-means algorithm.
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Chapter 1

Introduction

1.1 The Problem

This thesis is concerned with using graph spectral methodslive problems
from computer vision. Although graph spectral methods Hmeen successfully
applied to many computer vision problems, including grapdtaiing, graph
embedding and clustering, the principle behind the teckig still relatively
under-developed and many questions remain unanswered.

Graph spectral methods are concerned with using the eiygmsvand the
corresponding eigenvectors of the data proximity matrixdartitioning, em-
bedding and clustering. Most of the existing methods foqusiging only one
or a few of the eigenvectors. For example, random-walk bgsaph matching
methods (Robles-Kelly and Hancock, 2005a; Caelli and Kmngiga004) use the
largest eigenvector of the adjacency matrix to convert atgrato a string. In
data clustering and image segmentation, a well known tgci@(Shi and Malik,
2000) is to use an eigenvector as a cluster indicator. Th@ooents of the lead-
ing eigenvector can be used to recursively bipartition thees of the graph into
clusters. Furthermore, most of the existing data embeddettpods such as the

principle component analysis(PCA) (Hotelling, 1933) andtirdimension scal-

1



ing(MDS) (Kruskal and Wish, 1978) use just a few eigenvetdrthe affinity
matrix to embed data into a low dimensional subspace.

Although elegant to use, these methods suffer from unseadpbavectors and
are vulnerable to noise. Even small disturbances in graphtste will result in
a considerable variation in the graph spectrum. This csesasggnificant obstacle
for matching graphs with different structure or differeiges Furthermore, by
using only one or a few eigenvectors, much useful infornmationtained in the
remainder of the spectrum is also discarded.

One way to overcome these problems is to use the whole Laplatgen-
spectrum. As pointed out in (Alpert and Yao, 1995), utilgsmore eigenvectors
always gives better clustering results. Also in (Wilsonlet2005), a graph rep-
resentation based on the full adjacency eigenspectrums taveicher structural
information. Motivated by the need to improve existing spgomethods, our
aim in this thesis is to develop more sophisticated methsaguhe full Lapla-

cian spectrum.

1.2 Goals

The overall goal of this thesis is to develop more sophistat@raph spectral
methods, and to apply them to a variety of applications framgute vision.

The applications considered are as follows:

e Robust graph representation: Simpler graph represengatieed to be
constructed based on spectral analysis of the graph for uh@opes of

efficient graph matching and clustering.

e Inexact graph matching: With stable graph representatioisand, we
shall develop reliable graph matching methods which aresoto struc-

tural corruption and noise.



e Embedding and clustering: A spectral embedding algoritantlie pur-

pose of clustering is developed that improves data coherenc

e Multi-body motion tracking: We aim to overcome the effectsioise and
outliers, which render the classical factorisation methogdractical, by

casting the motion tracking problem into a spectral clusteframework.

1.3 Thesis Overview

At the beginning of this chapter, we have discussed the diffées spectral meth-
ods have confronted when they are applied to computer visislems. Besides
spectral methods, there have been many alternative metbpdslving these
problems in the computer vision literature and we will bgigview them in
Chapter 2.

Based on a spectral partition of a graph, Chapter 3 presayrzph match-
ing method which simplifies the inexact graph matching pFobby matching
the non-overlapping partitions. The new graph represemstonstructed from
these subgraphs are stable under structural corruptiahtare been used for
category based clustering.

In Chapter 4, we focus on the theory of our clustering methodl $olve
data clustering problems by enhancing data coherence. Wshaeiv how the
method is based in spectral graph theory and why it is supteribe normalised
cut. Closely related to this, an embedding method for dhtstering is also
presented and its advantages over other embedding metteoespained.

Chapter 5 is concerned with the real world application ofttieory devel-
oped in Chapter 4. In this chapter, we make four contribgtiomhe first of
these is to develop a graph matching method based on a siomutdta dif-

fusion process on a graph. The graph is decomposed intoas@@mrcentric



layers using the commute time and graph matching is peridrime layer to
layer scheme. Secondly, taking account of the robustneggeafommute time
to structural error and noise, we propose a graph simpidicanethod based
on minimum spanning trees. Thirdly, as an application incgpé clustering,
an image segmentation method is developed by performiragtitipn using the
smallest eigenvector of the commute time matrix. Finallysolve the noise
contaminated multi-body motion tracking problem, we emthedshape interac-
tion matrix into a commute time preserving subspace andpodyects using a
simple k-means method.

Chapter 6 gives conclusions and focuses on the successsb@mcbmings

of the thesis. We also discuss directions for future researc



Chapter 2

Literature Review

The overall aim of the thesis is to apply spectral methodsoteescomputer
vision problems. In this chapter, we will review the relewviterature. First,
spectral graph theory is introduced. We then focus in detaithe computer
vision problems studied. These include graph matchingplgsamplification
and seriation, graph embedding and clustering, image sagtien and motion
tracking. Finally, the graph spectral algorithms for sotyihese problems are

reviewed.

2.1 Graph Spectrum

Graph spectral methods aim to utilise the eigenvalues ayeheectors of the
Laplacian matrix to characterise graph structure.

The earliest literature on algebraic graph theory can leetrdack to that of
Collatz and Sinogowitz (Collatz and Sinogowitz, 1957). Siiiork focused on
the cospectrality of graphs as well as the fundamental ialéegs for bounding
the eigenvalues. Since then, a large body of literature heerged aimed at
exploiting the relationship between the spectral and sirat properties of a

graph. This literature is well documented in several sw\viegluding Biggs



(Biggs, 1974), Cvetkovic, Doob and Sachs (Doob et al., 1.98Bung (Chung,
1997) and Mohar (Mohar, 1997).

One of the most important matrices in spectral graph theotlye adjacency
matrix. By representing graphs in terms of their adjacenajrices, we open up
the possibility of using tools from linear algebra to stullg properties of graphs.
For example, the trace of the adjacency matrix is equal toetthie number of
loops on the graph. The number of walks with lengibining two vertices is
the Ith power of the adjacency matrix. The number of edges anddies in a
graph corresponds to different coefficients in the charetie polynomial of the
adjacency matrix.

The graph spectrumefers to the set of eigenvalues of the adjacency or Lapla-
cian matrix of a graph (Biggs, 1974). The spectrum is usedghlse it can be
computed quickly and it conveys many important propertiea graph. For
example, the component number, chromatic number, diap@teuit number
and the cliqgue number (Dulmage and Mendensol, 1967), (2o#lad Maas,
1987), (Marcus and Minc, 1964), (Cvetkovic’ and Rowlinsd®90), (Doob
et al., 1988) are all given by the spectrum. Furthermore,dbmorphism of
two graphs can also be determined by their spectra. If thenegjues of the
adjacency matrices of the two graphs are not equal, thenrthg will not be
isomorphic (although the converse does not apply due tgeotslity). The
two most important components in the graph spectrum areatigedt and the
second largest eigenvalues of the adjacency matrix togeitiethe correspond-
ing eigenvectors. The largest eigenvalue is also callednithex of the graph
and it is useful for estimating the connectivity of the grapihe second largest
eigenvalue on the other hand is closely related to the ptiegeaf rapidly mixing
Markov chains. For example, it can be used for estimatingtimeergence rate

of a Markov chain on a graph (Desai and Rao, 1993), (Sindl@B}1), (Diaconis



and Stroock, 1991).

Although the adjacency matrix and its spectrum have beeatiestifor un-
derstanding the structure of graphs, their properties arstlgnunderstood for
specific graphs (such as regular graphs, symmetric grapghdpm graphs and
line graphs). In order to bring spectral methods to a moreeiggriamily of
graphs, many researchers seek answers from the link betspeatral graph
theory and differential geometry (Fiedler, 1993),(Chut@07). This resulted in
the study of the Laplacian matrix (degree matrix minus agtjag matrix) as well
as its eigenspectrum (Chung, 1997), (Merris and Grone, )19&4one, 1991),
(Merris, 1994), (Merris, 1995) , (Mohar, 1991), (Mohar, 299

The Laplacian matrix is a discrete analogy of the Laplaciperator on a
Riemannian manifold (Chavel, 1984). It is important in thedy of energy
minimisation (Chung, 1997) and network communication ¢Khroff, 1847). In
a useful review, Mohar (Mohar, 1997) has summarised someritaupt applica-
tions of the Laplacian eigenvalues. These include the noaproblem, semidef-
inite programming and steady state random walks on Markamnsh Among
the eigenvalues of the Laplacian matrix, the second smaligenvalue plays a
special role. This is due to its connection with graph irsats, including con-
nectivity (Merris and Grone, 1987), (Fiedler, 1989), (Memnd Grone, 1990),
the isoperimetric number (minimal possible ratio betwdensize of edges con-
necting a pair of subgraphs and the smallest volume of thigra)naximum cut
(a bipartition of graph so that the sum of the weights of thgesdyoing from one
subset to the other is maximised) and the independent nufthieesize of a max-
imum independent set), etc. In this thesis, we are intettd@atthe connectivity
information supplied by this eigenvalue together with itssresponding eigen-
vector, namely the Fiedler vector. The Fiedler vector (leedl973),(Fiedler,

1975) has been extensively used for the purpose of imageesggtion (Shi



and Malik, 2000), data clustering (Weiss, 1999) and graphlleng (Diaz et al.,
2000), (Juvan and Mohar, 1992).

Another important concept that we are concerned with in tthésis is the
random walk on the graph. Particularly, we are interestegmiom walks on
undirected graphs, which can be viewed as time-reversilagk®d¥ chains (Al-
dous and Fill, 2003). Many properties of random walks (or kéarchains),
such as the hitting time, the commute time and the cover tireelatermined
by the graph spectrum. For a pair of nodeandv, the hitting time is defined
as the expected number of steps before node visited, commencing from
nodew. In other words, the commute time is the expected time foranelom
walk to travel from node: to nodev and then return. The cover time is the
expected number of steps to reach each node on the graph.géodaeview,
see Lovasz’s survey (Lovasz, 1996) and Chung’s book (Gh1@97). Recently,
random walks (Sood et al., 2005) have found widespread uséormation re-
trieval and structural pattern analysis. For instancerahdom walk is the basis
of the Page-Rank algorithm which is used by the Googlebatheangine (Brin
and Page, 1998). In computer vision, random walks have bsed for im-
age segmentation (Mailand Shi, 2000) and clustering (Saerens et al., 2004).
More recently both Gori, Maggini and Sarti (Gori et al., 2Dp@ad Robles-Kelly
and Hancock (Robles-Kelly and Hancock, 2005b; RoblesyKatld Hancock,
2005a) have used random walks to sort the nodes of graphs istiing order
for the purpose of graph-matching. Most of these methodsissmple approx-
imate characterisation of the random walk based either @tetding eigenvec-
tor of the transition probability matrix or, equivalenttire Fiedler vector of the
Laplacian matrix (Lovasz, 1996).

A lazy random walk is a random walk with a probability of, ontaining,

static. The behaviour of a lazy random walk on a graph is tinicethe infor-



mation flowing (with time) across the edges connecting tlieeso This process
can be characterised using the heat equation (Kondor ariertyaf2002). The
solution of the heat equation, or heat kernel, can be foundxppnentiating
the Laplacian eigensystem over time (Chung, 1997). Thekezael, or diffu-
sion kernel, contains a considerable amount of informatmmcerning the dis-
tribution of paths on a graph (Chung and Yau, 1997). As maetidoy Chung
(Chung, 1997), the definition for the heat kernel on graplenaogous to the
heat kernel on Riemannian manifolds (Yau and Schoen, 198&) field of study
is sometimes referred as spectral geometry (Auscher é2Gf13), (Grigor'yan,
2000), (Lafferty and Lebanon, 2005). It has been appliedoteesgraph em-
bedding and clustering problems (Chung and Yau, 1999), &di Hancock,
2004). One of the most valuable properties of the heat kdonetharactering
graphs is the presence of the time variabl&n alternative, but closely related,
characterisation of the graph is the discrete Green’s fomcivhich captures
the distribution of sources in the heat flow process. The @sdanction is the
pseudo-inverse of the Laplacian (Chung and Yau, 2000). Assalt; it shares
the same spectrum with the Laplacian matrix, except thattpenvalues are
reciprocated. It turns out that the Green’s function can sedun conjunction
with diffusion-like problems on graphs (such as electriteptial distribution
and random walks). Some examples of the Green’s functioregular graphs
can be found in Ellis’s review (Ellis, 2002). Not surprisipgthere is a direct

link between commute times and the Green'’s function (ChumayYau, 2000).



2.2 Computer Vision and Pattern Recognition Prob-
lems and The Spectral Solutions

In this section, we review several problems in the compuitgdon and pattern
recognition field, and show how spectral methods can be egppdi solve these

problems.

2.2.1 Graph Matching

The pioneering work done by Barrow and Burstall (Barrow amggtestone,
1971) and by Fischler and Enschlager (Fischler and Elsehld®73) in the
1970’s shows how to realize the recognition of abstractopiat descriptions
by matching graph structures. Since then, graph matchiadpéan a sustained
research activity. In this section, we review the literatan graph matching.

Since one of the perennial difficulties associated with tiecéve match-
ing of relational descriptions is the need to accommodat&aatness caused
by inevitable noise and clutter, early work concentratednaasuring relational
similarities. To overcome this problem graph matching carpbsed as max-
imising a measure of relational similarity or minimisingaslistance function.
For instance, Shapiro and Haralick (Shapiro and Harali®@B5) showed how to
realize inexact graph matching by counting the consist@égisaphs. Later on,
Fu and his co-workers (Eschera and Fu, 1986), (Sanfeliu and983) showed
how string edit distance could be extended to relationatttires. Here edit dis-
tances are computed using separate costs for relabeltisgition and removal
of nodes. This idea was further extended by Bunke and hisarkexs (Bunke,
1999), (Messmer and Bunke, 1998). They showed that the isthinte is related
to the size of the maximum common subgraph.

Most of the work above adopted a heuristic or goal directgot@gch to
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measure graph similarity. A more principled approach isdopd a probabilis-
tic framework. For instance, Wong and You (Wong and You, }98%e de-
fined an entropy measure for structural graph matching;s@hes, Kittler and
Petrou (Christmas et al., 1995) developed an evidence congnethod. They
use probability distribution functions to model the paswiattribute relations
and cast the graph matching problem into a Bayesian frankewafilson and
Hancock (Wilson and Hancock, 1997) have shown how to cocis&rumixture
model over a dictionary of structure-preserving mappingsveen two graphs.
An alternative to the exhaustive compilation of dictioearis the edit distance
method of Myers, Wilson and Hancock (Myers et al., 2000) Wwishowed that
the Levenshtein distance can be used to model the prolyatbiditribution for
structural errors. Luo and Hancock (Luo and Hancock, 20@{etposed the
structural matching problem as maximum likelihood estioratind solved this
problem using the apparatus of the EM algorithm.

Continuous and discrete optimisation methods can also éé s struc-
tural graph matching. The methods used include geneticlsd@ross et al.,
1997), (Myers and Hancock, 1997), simulated annealingli@aitis et al., 1999),
tabu search (Williams et al., 1999) and hybrid method (Magptaal., 2000).
Cross, Wilson and Hancock (Cross et al., 1997) have casethetig search into
a Bayesian framework using the global consistency meadragher than per-
forming random crossover they realized the process at tred & subgraphs.
Furthermore, they employed a hill-climbing process to tedae nearest local
optimum. Another difficulty of applying genetic search is getting of parame-
ters. This problem was intensively discussed by Myers anttbiek when they
applied the method to the graph labelling problem (Myerstdadcock, 1997).

Recently, there has been increased interest in the use cfalpgraph the-

ory for characterising the global structural propertieg&phs. There are sev-
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eral examples of the application of spectral matching nagtor grouping and
matching in the computer vision literature. For instanceedyama has shown
how graphs of the same size can be matched by performinglamealue de-
composition on adjacency matrices (Umeyama, 1988). Thaytation matrix
that brings the nodes of the graphs into correspondenceaiiglfby taking the
outer product of the matrices of left eigenvectors for the gwaphs. In related
work, Shapiro and Brady (Shapiro and Brady, 1992) have shawnto locate
feature correspondence using the eigenvectors of a pomirmity weight ma-
trix. However, these two methods fail when the graphs beiagched contain
different numbers of nodes. A number of works have showntthiatproblem
can be overcame by using the apparatus of the EM algorithro dnd Han-
cock, 2001; Wilson and Hancock, 1997). Shokoufandeh, bsxm, Siddigi and
Zucker (Shokoufandeh et al., 1999) have shown that graphbeaefficiently
retrieved using an indexing mechanism that maps the topmabgtructure of
shock-trees to a low-dimensional vector space. Here thaldgjral structure
is encoded by exploiting the interleaving property of thgeevalues. Based
on the spectral analysis of point-sets, Carcassoni anddd&arn€arcassoni and
Hancock, 2000), (Carcassoni and Hancock, 2003) have shoatrtite modal
structure of point-sets can be embedded within an EM frameand the prob-
abilities of point correspondence can be computed usin@érmity matrix. To
overcome difficulties in node correspondence for diffestmd graphs, Wilson,
Luo and Hancock (Wilson et al., 2005), (Luo et al., 2004) hareposed con-
struction of permutation invariant polynomials and havarelterised graphs
using the coefficients of these polynomials. They have shioom to embed
vectors of permutation invariants into a low-dimensionaee. Bai, Yu and
Hancock (Bai et al., 2004a), (Bai et al., 2004b) have gonesbee further and

realized graph matching by recovering the correspondehnedes embedded
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in the low-dimensional space. They commence by using Isamambed the
nodes of a graph into a metric space and align the points snsipace using a
variant of the Scott and Longuet-Higgins algorithm (Scotl &onguet-Higgins,
1990).

2.2.2 Graph Seriation and Simplification

An alternative of using graph-spectra for the purpose oplgnaatching is to
use eigenvector methods to extract a simplified structue fa graph. This
simplified structure is more easily matched than the origirgph. Although in-
exact graph-matching is a problem of potentially exporacomplexity, error-
tolerant graph matching can be simplified using decompositiethods (as demon-
strated by Messmer and Bunke (Messmer and Bunke, 1998)3.rétiuces the
problem to one of subgraph indexing.

The earliest work on graph seriation and simplification catraced back to
the graph layout problem (Harper, 1964), (Harper, 1966apGiayout problems
are concerned with re-arranging the input graph so that gectde function is
optimised. A large number of applications can be posed gshdegout prob-
lems. These include optimisation of networks for parall@inputer architec-
tures, VLSI circuit design, information retrieval, nuneai analysis, computa-
tional biology and scheduling. One of the simplest (and tiea af our interest)
is the minimum linear arrangement problem. This is alsorreteas optimal
linear ordering, minimum-1-sum or graph seriation. Thebpgm involves plac-
ing the nodes of a graph in a serial order which is suitablaHerpurposes of
visualisation (Diaz et al., 2000), job scheduling (Adolphs1977) and graph
drawing (Shahrokhi et al., 2001). The MinLA problem is NRwquete (Garey
et al., 1976) but optimal solutions can be obtained for t(€#aring, 1988) and

some special graphs (Muradyan and Piliposyan, 1980). leracdobtain feasi-
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ble solutions for the MinLA problem for general graphs, savapproximation
methods have been proposed. These include metric teclsnjgae and Richa,
1998), simulated annealing (Petit, 2000) and spectral odgstiiJuvan and Mo-
har, 1992), (Atkins et al., 1998). Juvan and Mohar’s (Juvach lohar, 1992)
spectral sequencing (also known as the path method) firspotas the Fiedler
vector of the Laplacian matrix of the input graph and theressdhe result by
ranking the components. The lower bound is determined bgebend smallest
eigenvalue, which is the eigenvalue corresponding to tadl€&i vector.

An extension of the MinLA problem is the consecutive onesfm. This
involves finding the serial ordering of nodes, which maxignareserves edge
connectivity. This is a complex problem, and to simplifyagproximate solu-
tion methods have been employed. These involve castingrtfidgm in an op-
timisation setting. Hence technigues such as simulateeadimg and mean field
annealing have been applied to the problem. However, rigcargraph-spectral
solution to the problem has been found. Atkins, Boman andidHkson (Atkins
et al., 1998) have shown how to use the Fiedler eigenvecttiheot.aplacian
matrix to sequence relational data. The method has beepssfatly applied to
the consecutive ones problem and a number of DNA sequenagkg.t There
is an obvious parallel between this method and steady statbom walks on
graphs, which can be located using the leading eigenvettbedMarkov chain
transition probability matrix. However, in the case of adam walk the path
is not guaranteed to encourage edge connectivity. Thergpsetiation method
of Robles-Kelly and Hancock (Robles-Kelly and Hancock, 280 on the other
hand, does impose edge connectivity constraints on theveesd path. They
have shown how to use eigenvector methods to reduce grapdtsrtgs, and
have then applied string matching methods to the resultmgtsires. In related

work, Yu and Hancock (Yu and Hancock, 2005a; Yu and Hanco@@58) have

14



shown how to cast the graph seriation problem into a matthngeso that it can
be solved using semi-definite programming(SDP). SDP istanigae related to

spectral graph theory since it also relies on matrix repriagen.

2.2.3 Embedding and Clustering

The low dimensional representation of high dimensionah @atd clustering is
an important topic in pattern recognition. The fundameptablem of dimen-
sionality reduction is how to embed the data in a compactesfradhe purposes
of analysis and visualisation. Although a variety of metheslist, they share the
same principle of using one or more eigenvectors of an affindtrix or similar-
ity matrix for the embedding. For example, principle comgainanalysis (PCA)
(Hotelling, 1933) and kernel principle component analyKBCA) (Scholkopf
et al., 1998; Aizerman et al., 1964) use the leading eigeaveof the covari-
ance matrix to determine the projection directions with mmat variance. Linear
discriminant analysis (LDA) (Fisher, 1936) and KDA (kermwelrsion of LDA)
search for the directions that are maximally discrimingtiAdlthough different
from PCA and KPCA, the solution of LDA and KDA is obtained ugthe eigen-
vectors of the projection matrix. This is the ratio of thew@f the between-class
scatter matrix and within-class scatter matrix. Multi-émsional scaling (MDS)
(Kruskal and Wish, 1978) uses the eigenvectors of a pairdistance matrix
to find an embedding that minimises the distance of the dasaarAextension,
isometric feature mapping (Isomap) (Tenenbaum et al., P@0ploys MDS to
preserve the geodesic distances of the data pairs locatieel inanifold. Locally
linear embedding (LLE) (Roweis and Saul, 2000) maps thetidata to a lower
dimensional space in a manner that preserves the localbmighood. It uses
a matrix containing the correlations of the data in barygembordinates. The

coordinates in the lower dimensional space are the cormespg components
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of the smallest eigenvectors of this matrix. The Laplacige®map (Belkin and
Niyogi, 2003; Belkin and Niyogi, 2001), and its linear vensj locality preserv-
ing projection (LPP), (He and Niyogi, 2003), use the Fiediertor of a Lapla-
cian matrix to preserve the similarities of the neighbognooints. Finally, the
recently developed diffusion map (Lafon and Lee, 2005; @aii et al., 2005)
also uses the eigenvalue-scaled eigenvectors of thetioamsiatrix as coordi-
nates of the embedded points as a simulation of a heat diffysiocess. The
embedded structure may be varied by varying a time parameter

The eigenspectrum of an affinity matrix plays an importate o dimen-
sionality reduction methods. This is because by rankingetgenvectors with
respect to the magnitude of the corresponding eigenvatbessignificance of
the correlations within the data are accordingly evalualéd orthogonality of
the eigenvectors also offers a natural bases for the embetida. It is impor-
tant to note that the dimensionality reduction methodsutised above are con-
cerned with recovering the lower dimensional structurdefdata, rather than a
way of pre-grouping. Here we refer pre-grouping as a propeg®rmed before
clustering. It is aimed at reorganising data in a way thatesattustering eas-
ier. Although some of the methods can be used as a pre-g@ppatess, such
as the Laplacian eigenmap and KPCA, their utility is restdc For example,
the Laplacian eigenmap embeds similar data so that it i® ¢fothe embedded
space. On the other hand, KPCA maintains the maximum vagiahthe em-
bedded data in the vector space in such a way that it can beasegaising a
kernel function.

Clustering is the un-supervised classification of pattéased on their sim-
ilarities (Jain et al., 1999). As clustering plays such atre@mole in pattern
analysis, a large number of alternative approaches to thlelgm have been

developed over the last four decades. The two main appreaaigestatistical
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method and graph-theoretic methods. Details of both wilplesented in the
next two paragraphs.

Parametric models assume that patterns are drawn from aneixt several
distributions, such as the Gaussian, and the goal is to &stithe parameters of
the distribution. This approach encompasses the maximketinood estima-
tion (MLE) (Dempster et al., 1977), expectation maximisatalgorithm (EM)
(Zhang et al., 2003) and K-means (MacQueen, 1967). MLE estisnthe pa-
rameters of a mixture by maximising the logarithmic funotiaf the underly-
ing probability distribution of a given data set. EM is arraigve optimisation
method to estimate some unknown parameters defined in thelmidemeans
aims to cluster data inté partitions by minimising the total intra-cluster vari-
ance. Nonparametric techniques such as histogram basedtsh (Silverman,
1986), kernel density estimation (Elgammal et al., 2003) arean shift (Co-
maniciu, 2003) are also employed for density based clugierThe basic idea
is to view the clusters as regions of the pattern space intwthie patterns are
dense, separated by regions of low pattern density. Thewltisters can be
identified by searching for regions of high density. Hisargrbased estimation
divides the pattern space into a number of non-overlapm@gopns based on the
constructed histograms. Mean shift (Comaniciu and Medd2P& a recursive
kernel density estimation method that shifts each data pwmthe average of data
points in its neighbourhood.

Graph-theoretic methods define clusters in terms of a weeytata prox-
imity matrix. The earliest method is based on searching firctures in the
similarity graph such as the minimal spanning tree (MSTh{zal971). Using
the idea of the maximal cliques of a graph, Pavan and Pellbordn and Pelillo,
2003a; Pavan and Pelillo, 2003b) improve the similarity soee by introducing

the concept of a dominant set. The resulting utility meagioptimised using a
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relaxation scheme. The earliest spectral clustering ndeththat of Donath and
Hoffman (Donath and Hoffman, 1972). They suggested to useitenvectors
of an adjacency matrix to find partitions. Later, Fiedleetfer, 1973) proposed
splitting the partitions by using the second smallest eigetor of the Laplacian
matrix. Since then, the spectral clustering method haseatde be successful
and has been the focus of much research. Scott and Longggirldi(Scott
and Longuet-Higgins, 1990) have developed a method foringfithe block-
structure of the affinity matrix by relocating its eigenvast At the level of im-
age segmentation, several authors have used algorithed bashe eigenmodes
of an affinity matrix to iteratively segment image data. Festance, Sarkar and
Boyer (Sarkar and Boyer, 1996) have a method which uses #uknig eigen-
vector of the affinity matrix, and this locates clusters tmaiximise the average
association. This method is applied to locate line-segrgemipings. Perona
and Freeman (Perona and Freeman, 1998) have a similar methcduses the
second largest eigenvector of the affinity matrix. The metbioShi and Malik
(Shi and Malik, 2000), on the other hand, uses the normatisedhich balances
the cut and the association. Clusters are located by perigrarecursive bisec-
tion using the eigenvector associated with the second sataigenvalue of the
Laplacian, i.e. the Fiedler vector. Focusing more on thesigd post-processing,
Weiss (Weiss, 1999) has shown how this, and other closaye@imethods, can
be improved using a normalised affinity matrix. Shi and Mé¢NMeila and Shi,
2000) have analysed the convergence properties of the ohetsing Markov
chains. Ng et al's (Ng et al., 2001) method first embeds thphgnato a space
and then clusters the embedded points using a K-meanstaigoriThere are
good reviews of spectral clustering methods in the litemt8pielman and Teng
(Spielman and Teng, 1996) investigated why spectral pariitg works on pla-

nar graphs and meshes. Kannan et al (Kannan et al., 2000)phepesed a
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new bi-criteria measure for assessing the quality of a splediustering. They
argued that a good clustering method should be able to msgimtra-cluster
association and minimise inter-cluster edge linkage dsmelously. Alpert and
Yao (Alpert and Yao, 1995) analyse the number of eigenvedtmat should be
used in spectral clustering and suggest that it is best tasisgany eigenvectors
as possible. Finally, a further unifying view regarding cjpgl embedding and
clustering is given by Brand and Huang (Brand and Huang, 2003heir work,
they have used the angles between the eigenvectors to rexipafunctionality

of the spectral clustering methods.

2.2.4 Motion Tracking

Multi-body motion tracking is a challenging problem whiaisas in shape from
motion, video coding, surveillance and the analysis of moset. One of the
classic techniques is tHactorisation methoaf Costeira and Kanade (Costeira
and Kanade, 1997; Costeira and Kanade, 1995). The basiaimspinning
this method is to use singular value decomposition (SVDatbdrise the feature
trajectory matrix into a motion matrix and a shape matrixe Shape interaction
matrix is found by taking the outer product of the right eigestor matrix, and
can be used to identify any independently moving objectseure Gear (Gear,
1998) has developed a related method based on the reduceghelon form of
the matrix where object separation is achieved using pibs@banalysis on a
bipartite graph. Both methods work well in the ideal caseniiere is no noise
(i.e. feature-point jitter) and outliers are not preseotyéver, real-world image
sequences usually are contaminated by noise. There hanesbeeral attempts
to overcome this problem. For instance, Ichimura (Ichimug99) has improved
thefactorisation methodby using a discriminant criterion to threshold-out noise

and outliers.
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Rather than working with a matrix derived from the data, soesearchers
place the emphasis on the original data. Kanatani (Kana20il; Sugaya and
Kanatani, 2004; Sugaya and Kanatani, 2003) developed gacbseparation
method by incorporating dimension correction and modedcdein. Wu et al
(Wu et al., 2001) argue that the subspaces associated \wittlifferent objects
are not only distinct, but also orthogonal. Hence they emploorthogonal sub-
space decomposition method to separate objects. Thissdeeher extended
by Fang et al who use independent subspace (Fan et al., 288dknultiple
subspace inference analysis (Fan et al., 2004a). In adddiattempting to im-
prove the behaviour of the factorisation method under ndlssre has been a
considerable effort to overcome problems such as degenamacertainty and
missing data (Gruber and Weiss, 2004; Zelnik-Manor and,|2003; Anandan
and Irani, 2002).

The factorisation method is closely akin to graph-spectrathods used in
clustering, since it uses the eigenvector methods to deterthe class-affinity
of sets of points. In fact, Weiss (Weiss, 1999) has presemtauifying view of
spectral clustering methods, and this includes the faatan method. There
has been some dedicated effort devoted to solving the cdggetration problem
using spectral clustering methods. Park et al (Park et @4phave applied a
multi-way min-max cut clustering method to the shape irdéoa matrix. Here
the shape-interaction matrix is used as a cluster indicasdrix and noise com-
pensation is effected using a combination of spectral etugy and subspace

separation methods.
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2.3 Motivation and Contributions

In the previous section, we have reviewed not only the rélditerature on
spectral graph theory, but also methods developed baselese theories for
solving various computer vision problems. In particulag lnave observed how
the Fielder vector has been employed for solving graph bifmar and seriation
problems. Although there has been some effort aimed at éixtgrits utility to
graph matching, the results have not been optimal due to #tleads instability
and the loss of information it causes. Focusing on these tvgtacles, in this
thesis, we are interested in developing new methods by ukagroperties of
the Fiedler vector for robust graph matching.

More specifically, our aim is to develop an inexact graph mats method
based on the robust decomposition of a graph into partitibtese we use the
Fiedler vector to find a non-overlapping partitions of a graphese partitions
are subgraphs comprised of a centre node together with iteettrate neigh-
bours. In order to improve the robustness of the partitiansttuctural cor-
ruption and noise, we incorporate a diffusion process ongtgh to smooth
away the effects of errors. The implementation is carriethbguwsing the heat-
kernel to construct a path-weighted matrix, which is moteust to noise than
the original adjacency matrix and can be used for regulagnaghs. With the
partitions in hand, we will be able to realize graph matchiggomparing their
sub-structures. The matching process is cast into a hrecatdramework by
first locating the correspondence between partitions aed thdividual corre-
spondences between nodes are obtained by comparing thieparin detail.

To test if the partitions we obtained can be used for grapipidication,
we use them for category-based clustering. First, we deosethe original
graph into non-overlapping partitions. Then we construsingler graph rep-

resentation whose nodes are the centre nodes of the pastéral the edges are
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constructed according to the adjacency relations betwesepdrtitions. Finally,
we take random images from different groups and examineheheiusterings
provided by the simplified graph representations can detihecorrect grouping
result.

Our observation is that the affinity of nodes conveyed by comentime is
large for pairs of nodes residing in a cluster, and smallliose falling outside
the cluster. The commute time can lead to a finer measure sffeclaohesion
than the simple use of edge-weight which underpins algosteuch as the nor-
malised cut (Shi and Malik, 2000). Furthermore, it has bdeows (Weiss,
1999) that the reason certain methods succeed in solvingrtuping problem
is because they lead to an affinity matrix with a strong bldckcture. In fact,
this block structure can be further amplified by the commumes$ (Fischer and
Poland, 2005). Hence, commute time maybe used for solvingaring prob-
lems.

In Chapter 4 of this thesis we will first review the spectradibaf the com-
mute time and then in Chapter 5, we will present its appliceti We will show
how commute time is related to the heat kernel and how it catobguted us-
ing the full Laplacian eigenspectrum. A link between the omute time and the
Green'’s function shows that the commute time is a metric. Xteral this dis-
tance measure one step further, a commute time preserveeddimy method
has been proposed and its relation to alternative embedaiétigods is also ex-
amined. As we have already observed, commute time can bedgplsolve
clustering problems. To further understand its properaeomparison with the

normalised cut (Shi and Malik, 2000) will be carried out.
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Chapter 3

Graph Matching and Simplification

using Spectral Partitions

The aims in this chapter are twofold. First, we consider Whethe partitions
delivered by the Fiedler vector can be used to simplify tlewbrmatching prob-
lem. Secondly, we investigate whether the information eged by the heat
kernel can be used for stabilising the spectral partitigmhgraphs. We seek a
more global graph representation for the purpose of gragbhhmay, graph sim-
plification and graph clustering than can be achieved usiagtjacency matrix
alone.

For our first goal, we focus on two problems. The first of thes® iuse the
Fiedler vector to decompose graphs by partitioning themsnper-cliques. Our
aim is to explore whether the partitions are stable undecstral error, and in
particular whether they can be used for the purposes of gregtbhing.white
The second problem studied is whether the partitions carsée to simplify the
graphs in a hierarchical manner. Here we construct a graplinich the nodes
are the partitions and the edges indicate whether theipadiare connected by

edges in the original graph. This spectral constructionbeaapplied recursively
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to provide a hierarchy of simplified graphs. We show that thepsfied graphs
can be used for efficient and reliable clustering.

To achieve the second goal, we use the heat-kernel to cohatpath-weighted
adjacency matrix to represent the graph structure. Thehtiagprocess aims to
smooth away the effects of structural error due to node oe eétetions. We ex-
plore whether this representation can be used to charsetén® graph globally
and whether it is stable under structural error. In paréicue explore its use in
conjunction with our graph partition method proposed eaftr the problem of

graph matching.

3.1 Laplacian Matrix

We denote a weighted graph by= (V| F') whereV is the set of nodes and
E C V xVisthe set of edges. Létbe the weighted adjacency matrix satisfying
w(u,v) if (u,v) € FE
S L CORLICD
0 otherwise
Further letl'(I") = diag(d,; v € V') be the diagonal weighted degree matrix with
T, = Z'UVZ'I w(u,v). Theun-normalisedveighted Laplacian matrix is given by

L =T —Q, and has elements

Z(“,R)GE U)(u’ k) |f u =7
Lr(u,v) =9 —w(u,v) if u# vand(u,v) € E (3.1)

0 otherwise
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The normalizedweighted Laplacian matrix is defined to Be= 7-'/2LT-1/2,

and has elements

1 if u="uv
Lr(u,v) = —i’}% if u#vand(u,v) € E (3.2)
0 otherwise

Thenormalized_aplaciant can also be viewed as a harmonic operator that acts
on the functionf : V(I') — R with the resultthal f(z) = >__, £, »»f(«'). The
spectral decomposition of then-normalised_aplacian matrix is

V]
L=oA0" =) Nioio!
=1

whereA = diag(Ai, Ao, ..., \jy|) is the diagonal matrix with the ordered eigen-
values as elements add= (¢1|¢,|....|¢v|) is the matrix with the ordered eigen-
vectors as columns. The corresponding eigen-decomposifithenormalized
Laplacian matrix isC = ®'A’®'" with A’ and®’ be the eigenvalue matrix and
eigenvector matrix respectively.

The Laplacian matrix has a number of important propertiess symmet-
ric and positive semidefinite. The eigenveciot (1,1,...,1)T corresponds to
the trivial zero eigenvalue. If the graph is connected thitother eigenval-
ues are positive and the smallest eigenvalue is a simpleynaepeated) one,
which means that the number of connected components of dghds equal
to the multiplicity of the smallest eigenvalue. If we arrengl the eigenvalues
from the smallest to the largest i.6.= A\; < X\5... < ), the most important
are the largest eigenvalug,,, and the second smallest eigenvalye whose

corresponding eigenvector is referred to asHieeller Vector(Fiedler, 1975).
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3.2 Graph Partition

The aim in this section is to use the Fiedler vector to partiiraphs into non-
overlapping super-cliques and to use the super-cliquesrgtd by this decom-
position for the purposes of graph-matching and graph-iicgtion.

Fiedler vector has the property of grouping similar nodea gfaph and has
been used in applications such as graph seriation (Rold#g-&nd Hancock,
2005a) and image segmentation (Shi and Malik, 2000). GivgraghI'(V, ),
the components of its Fiedler vector indicate a permutatiohthe nodes. If the
weighted adjacency matrix h&¥w,v) > Q(u, k) andQ(v, k) > Q(u, k), the
permutation satisfies(u) < w(v) < 7 (k).

The super-clique of the node consists of its center node, together with
its immediate neighbours connected by edges in the graphNi, = {u} U
{v; (u,v) € E'}. Here, centre nodes of the super-cliques are not sharedhdut t
exterior nodes can appear in more than one unit as illustratéigure 3.1. Fig-
ure 3.1 shows a graph with its three super-cliques highddgih€Centre nodes are
marked with red color and shared exterior nodes are markétdbiie. Hence,
each super-clique consists ofcanter nodeand immediate neighboursf the
center node, i.eN, = N, \ {u}.

The problem addressed here is how to partition the graphairstet of non-
overlapping super-cliques using the node order defined éytadler vector.
Our idea is to assign to each node a measure of significandes azntre of a
super-cliqgue. We then traverse the path defined by the Figktdor selecting
the centre-nodes on the basis of this measure.

We commence by assigning weights to the nodes on the badie oank-
order of their component in the Fiedler vector. Det=< vy, vy, v3, ..., vy >
be the rank-order of the nodes as defined by the Fiedler veottrat the per-

mutation satisfies the conditior{v,) < 7w(vy) < m(v3) < ..... < m(vy)) and the
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Figure 3.1: Super-cligues.

components of the Fiedler vector follow the conditiof > z,, > .. > Ly, -
We assign weights to the nodes based on their rank order petineutation. The
weight assigned to the nodec V' is w, = Rank(u). With this weighted graph
in hand, we can gauge the significance of each node using llbeifogy score
function:

Fu = a(deg(u)+ |N, N B|) + wﬁ (3.3)

whereB is the set of nodes on the perimeter of the graph,aaddg are heuris-
tically set thresholds (we set = 0.015 and = 5.0 in our experiments). The
first term depends on the degree of the node and its proximitiye perimeter.
Hence, it will sort nodes according to their distance fromplerimeter. This will
allow us to partition nodes from the outer layer first and tvenk inwards. The
second term ensures that the first ranked nodes in the Fisddeor are visited
first.

We use the score function to locate the non-overlappingrstijgpies of the

graphI’. We traverse this list until we find a nodg which is neither in the

27



450

400

350

300

250

200

150

100

50 1 1 1 1 1 1 1
100 150 200 250 300 350 400 450 500

Figure 3.2: Delaunay graph of a set of points.

perimeter, i.e.k; ¢ B nor whose score is exceeded by those of its neighbours,
i.e. Fy, = arg MaXyek, UNy, F.. When this condition is satisfied, then the node
k, together with its neighbourd’,, represent the first super-cligue. The set of
nodesN,f1 = k1UN}, are appended to a ligtthat tracks the set of nodes assigned
to the super-cliques. This process is repeated for all tdeswwhich have not yet
been assigned to a super-clique i= T — L. The procedure terminates when
all the nodes of the graph have been assigned to non-ovartappper-clique.

An example performed on Figure 3.2 is shown at Figure 3.3.0rlggnal graph

in Figure 3.2 contains 30 nodes and 78 edges. In Figure 3&3iines are labelled

to indicate the partition to which they belong.
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Number of nodes: 30

Number of edges: 79

Figure 3.3: Graph Partition.
3.3 Partition Stabilisation

Unfortunately, the process of partitioning can prove uoistavhen the graph
undergoes changes in node or edge structure. To overcosertilem, in the
next section we demonstrate how the heat-kernel can be osst@lilise the

partition structure.

3.3.1 Heat Kernel

Kernel-based methods have been widely used for patterrgmnéem and have
lead to the development of a number of methods including aty@ctor ma-
chines (Cristianini and Shawe-Taylor, 2000) and kernel RS¢holkopf et al.,
1998). Heat kernel, which is found by solving the diffusiajquation for the
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discrete structure in-hand is one of the most important &ebased methods.
Heat kernel is also an important analytical tool for physind has been used in
many other areas including spectral graph theory (Chung7)19Recent work
by Smola and Kondor (Smola and Kondor, 2003) has shown homelsecan be
used to smooth or regularise graphs. A number of alterrsligs been suggested
and compared, and these include the heat kernel.

We are interested in the heat equation associated withdimaalisedLapla-
cian, i.e.

OH,

o - LM

whereH; is the heat kernel ands time. The heat kernel can hence be viewed as
describing the flow of information across the edges of thelyksith time. The
rate of flow is determined by theormalized_aplacian. The solution is found by

exponentiating the Laplacian eigenspectrum i.e.
H, = ' exp[—tN]®7

where A’ and®’ are the eigenvalue and eigenvector matriceg oéspectively.
The heat kernel is 87| x |V| matrix, and for the nodes andv of the graphl’
the resulting component is

V]

Hi(u, v) = Z exp[—Ajt] ¢} (u) 9 (v) (3.4)

Whent tends to zero, thetl; ~ I — Lt, i.e. the kernel depends on the local
connectivity structure or topology of the graph. If, on thbeey hand; is large,
thenH, ~ exp[—t\,]ph¢4, where), is the smallest non-zero eigenvalue and
is the Fiedler vector. Hence, the large time behaviour isegoed by the global

structure of the graph.
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3.3.2 Path Length Distribution

Consider thenormalisedadjacency matrixP = T-:QT": = I — L, where
I is the identity matrix. The heat kernel can be rewritterfgs= e~ *(-7),
We can perform a McLaurin expansion on the heat-kernel express it as a

polynomial int. The result of this expansion is

Ht _ e—t([—'P)

= e <I+t7>+ Uidls + Uil +)

2! 3!

o0

tl
_ —t§ l
- lOPﬁ

We can find a simplified expression for the maffixusing the eigen-decomposition

of thenormalisedLaplacian. The result is
Pl=(I-L)=dU-AN)d7T (3.5)

and as a result the element
\4
Phlu,v) =) (1= M) ¢l (w)g(v) (3.6)

=0

If, on the other hand, we consider the element-wise defmigP

1 if u=vo
P(u,v) = 4 4ol if u #vand(u,v) € B (3.7)
0 otherwise

Exponent of matrixP supplies a connectivity measure between each pair of
nodes. For example??(u,v) measures the sum of weights of all paths with

length two connecting node andv. To show this, let us assume there are
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two nodesm andn connecting both: andwv, i.e. (u,m) € E,(m,v) € E
and(u,n) € E,(n,v) € E. The computation of?(u,v) can be realized by
P2(u,v) = P(u, m)P(m,v) + P(u,n)P(n,v) = 3, _,. . Plu, 52)P(s2,v). If

we represent the sequencewfs,, v by ug, ui, us and usei for indexing, we

haveP?(u, v) = Y., Tlicos Pti tist) = X Tlicos Sl Ina

1+1

general case when the path length equalge have that

WUz, Ui
Pl(u,v) = Z H 7<duidui) (3.8)
Here, P! is interpreted as the sum of weights of all walks of lengtining nodes

u andv. A walk S; is a sequence of vertices, - - - ,u; such that; = wu;,, or
(ui,uir1) € E. By definingP(u, u) = 1, we create a self-loop for each node on
the walk. So the walk can pause on any node for a number of bfpse the
next move. This gives us better behaved distributio®obver the path length
[. Here the definition oP(u, u) = 1 is important because it allows self-loops in
the adjacency matrix. To this end, we aim to exploit the fhat the matrixP"
contains information concerning the inter-node distansgitution to construct

a measure that can be used to partition graphs.

3.3.3 Proximity Weights

Our idea is to use the distribution of distances to computeatverage path-
length between pairs of nodes in the graph. For the nodmsdv the average
path-length is given by

d(u,v) = 2 [P (u, v) (3.9)

> Pl(u,v)
This average distance measure can be used to compute a&awusgihted node

proximity matrix. For the nodeg andwv the proximity weight is given byath-
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weighted matrix

B d2(u,v)
Q,(u,v) = exp [—m] (3.10)
where A
0_2(u7 U) _ Zl(l B d(uv U))Qpl(uv U) (311)

Zl Pl(uv U)

is the variance of the path-length distribution for nodesnhdwv.

3.3.4 Properties of the Proximity Matrix

The proximity matrix(2, defined in the previous section has some interesting
properties that distinguish it from the raw adjacency matkere we focus on
some of these in detail.

Firstly, although the adjacency matrix may contain a sigaift number of
zero off-diagonal entries, provided that the graph undedhysis connected, then
the path-length proximity matrix will not have zero off-d@nal entries since a
path of finite length can always be located between a pair désoThe conse-
guence of this is that the path-length proximity matrix vioé less likely to be
singular or to have a zero determinant.

Second, nodes which have similar locations with respechéoboundary
of the graph will have similar path-weight values. Here tpsapre restrict to
planar ones so graph boundary indicates the set of nodesdged écated on
graph’s perimeter. Since the path-length proximity maigixonstructed using
node distance, the nodes on the boundary will have differ@oes to those near
the centre of the graph. This means that the measure coulddjal dor the
purposes of assigning node affinity in the problem of grattemmng.

As an illustration of the points mentioned above, for thedbeky graph
shown in Figure 3.2, Figure 3.4(a) and Figure 3.4(b) s, v) as a function

of [ for the nodes labelled 1 and 17. The different curves areimddavheny
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runs over the remaining nodes of the graph, and are labelladwde number.
From the figure we can see that(u, «) always takes on the largest value, ir-
respective of, since it counts the number of loops of lengtto nodeu. The
remaining curves are ordered in descending order accotdimghether nodes
are first, second or third etc. neighbours. The most distatiés are associated
with the smallest values @ (u, v). Another important property is that the nodes
in the interior of the graph always have larger value®f:, v) than those on or

near the boundary.

P AT

(a) Path length distribution of node01 (b) Path length distribution of node17

Figure 3.4: Distribution of?! based on the path stép

Finally, we note that when compared to the binary adjacenairir) the
path-weighted proximity matrix is more robust to changegraph structure. To
illustrate this point consider the deletion of an edge. Bdhase of the adjacency
matrix, two symmetrically placed elements flip from one toozeHence, all
memory of the edge is lost. However, in the case of the paighted proximity
matrix the mean distance between the nodes is increased.ai@uis to use
this path-weighted proximity matri®,, to represent graphs rather than using the
binary adjacency matri®. Graphs represented Iy, should be more robust to
structural error and noise.

For the graph shown above, in Figure 3.4, the four panelsgargi3.5 show
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the adjacency matrix, the matrix of path weighted distanf;(asv), the path
length variancer(u, v) and the path weighted proximity matriX,(u, v). The

entries in the adjacency matrix correspond to maxima in thigt matrix.

(c) Sigma matrixs (d) Path-weighted matri,,

Figure 3.5: Similarity matrices.

3.4 Matching

Our aim here is to match the graphs using the non-overlapgipgr-cliques
delivered by the Fiedler vector. With these super-cliquelsand, our partition
matching is realized by two consecutive steps. Given twplggdo be matched,

the first step is to look for the correspondences betweenrsligees. We try
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each possible pair of super-cliques in an exhaustive waydatetmine the cor-
respondences by maximum a posteriori (MAP). Then the negtistto find the
mappings of each pair of nodes in the matched super-cligegerform the
matching we use both the discrete relaxation method frosaibnd Hancock
(Wilson and Hancock, 1997) and the edit-distance methodyars] Wilson and
Hancock (Myers et al., 2000). In this section for complessneve review the el-
ements of their methods and explain how they are extended graph partition

matching frame work.

3.4.1 Matching Probabilities

Given a data graph, = (Vp, Ep) to be matched onto a model grapl, =
(Var, Ear), we first compute their super-cliques using the partitiothroe pre-
sented in Section 3.2.

Let the obtained super-cliques ¢ = (N?, NP, ... NP ... NP)and
Sy = (NM NM ... NM ... NM)forgraphl', andT'), respectively. Here,
m andn are the total number of super-cliques in each of the graphe state of
correspondence match can be represented by the funttidry, — Vi, U {e}
from the node-set of the data graph onto the node-set of thieihgoaph, where
the node-set of the model graph is augmented by adding a Ndhel ¢, to
allow for unmatchable nodes in the data graph.

Our objective function for the match is the matching probaés for the set

of super-cliques of the graphs and given by

Mpu(f)= > Y  P{NP N (3.12)

NDESD N]VIES]\{
Here,P(NuD,Ngw) denotes the matching probability of a pair of super-cliques

Nf andeVf under the matching functiofi. The idea is to find the correspon-
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dence between each pair of nodes by optimising Equ. 3.12 uparslique to

super-clique way.

3.4.2 Discrete Relaxation

If we take the matching functioli as a memoryless error process, super-clique
matching probability?(N°, NM) in Equ. 3.12 can then be factorized into the

matching probability of nodes in each pair of the supereei

P(N2 Ny =[] PUG) (3.13)

ieND jeNM
Furthermore, node matching probabili®y f (i)|j) can be given as a function

of the node error matching probabilify, by

P 1) = (1—-P,) if (f(:),7)Iis acorrect correspondence (3.14)
P, otherwise
Here, in Fig. 3.6, we show an example of matching two un-egjuall super-
cliques using discrete relaxation. The super-clique ordftevith a degree of
three is to be matched onto the super-clique on the right avidlegree of five.
In order to preceed node matching, we have to pad the less@sgper-clique
with some dummy nodes. The total number of added dummy nedagual to
the difference in their degrees. Moreover, all possiblesaafypaddings have to
be considered. In Fig. 3.6, we show six sample patterns @ibdiery paddings
in the middle of the figure and the dummy nodes are marked witibsl d in

red color.
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Figure 3.6: Dictionary padding with two dummy nodes.

3.4.3 Edit Distance

Dictionary padding is an explicit way of characterising steictural differences
in the super-cliques but it is also computationally un-effic. This is due to
the increasing number of padding patterns we have to cansigen the degree
difference in two super-cliques grows large. In this settiwe will introduce
an efficient alternative to measure the structural diffeesnn the super-cliques,
the Levenshtein or string edit distance (Levenshtein, 19@&&ner and Fischer,
1974; Myers et al., 2000).

Let X andY be two strings of symbols drawn from an alphabet We
wish to convertX to Y via an ordered sequence of operations such that the cost
associated with the sequence is minimal. The originalgtarstring correction
algorithm definecelementary edit operationsa, b) # (e, ¢) wherea andb are
symbols from the two strings or the NULL symbel, Thus, changing symbaf

to y is denoted byz, y), insertingy is denotede, ), and deleting: is denoted

38



(z,€). A sequence of such operations which transforxngto Y is known as
an edit transformatiorand denoted” =< ¢,, ..., 6j7; >. Elementary costs are
assigned by an elementary weighting function® U {¢} x ¥ U {e} — R; the
cost of an edit transformation;(7), is the sum of its elementary costs. The edit

distance betweeX andY is defined as

d(X,Y) =min{C(7)|7 transformsX to Y’} (3.15)

A& =(7.6), (8,8), (9.e), (6.7), (5,5),

Y 3 4 (3:3), (1.1), 22), (44)
6 123345678
8 212345678
7 222345678  d=178+r9e)+r(67)=3
5 4333334567
R

4 P= (1,1),(22), (23), (3.4). (45), (56),
2 666665434 67, 08, (5.9
4 777776543

Figure 3.7: Edit distance aredlit pathfor two strings

In (Marzal and Vidal, 1995), Marzal and Vidal introduced tha&ion of an
edit pathwhich is a sequence of ordered pairs of positions{irand Y such
that the path monotonically traverses the edit matrix @ndy from (0,0) to
(IX[, Y]). An example okdit pathbetween strind( andY” is shown in Fig. 3.7.
From the figure, it is clear that their edit distancg,isas listed in the right-bottom
corner of the edit matrix. The correspondiadit pathis shown in red color.
Essentially, the transition from one point in the path to tlext is equivalent
to an elementary edit operatiofu,b) — (a + 1,b) corresponds to deletion of
the symbol inX at positiona. Similarly, (a,b) — (a,b+ 1) corresponds to
insertion of the symbol at positidnin Y. The transition(a,b) — (a + 1,0+ 1)
corresponds to a change frakh(a) to Y (b). Thus, the cost of an edit path can

be determined by summing the elementary weights of the pditations implied
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by the path.

As a result, we can replacg andY by N? and NM, which are the neigh-
bour nodes of two super-cliquésf’ andNi” to be matched. The node matching
probability P(f(¢)|7) in Equ. 3.13 can then be computed using the correspond-

ing edit operations

P ) = (1—="P.) if (f(i),7)Iis an identity (3.16)
P. otherwise

3.5 Hierarchical Simplification

The super-cliques extracted using the Fiedler vector mayla used to perform

hierarchical graph simplification.

3.5.1 Partition Arrangements

Our simplification process proceeds as follows. We crea@naagraph in which
each super-cliquéV, = {u} U {v; (u,v) € E} is represented by a node. In
practice this is done by eliminating those nodes, which atdhe center nodes
of the super-clique®’, = N, \ {u}. In other words, we select the center node
of each super-clique to be the node-set for the next leveksemtation. The
node set is given by = {Kﬁ \ N1, Ny \ N, ..., N, \ Nn}. Our next step is
to construct the edge-set for the simplified graph. We canstin edge between
two nodes if there is a common edge contained within theio@ated super-
cliques. The condition for the nodesc V andv € V to form an edge in the

simplified graph’ = (V, E) is (u,v) € E = [N, N N,| > 2.
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3.5.2 Clustering

To provide an illustration of the usefulness of the simpdifions provided by the
Fiedler vector, we focus on the problem of graph clusterifige aim here is to
investigate whether the simplified graphs preserve thegasipace distribution
of the original graphs. There are a number of ways in which exdccundertake
this study. However, in order to keep with the overall pholplsy of this chapter,
here we use a simple graph-spectral method by Wilson et allsgWet al.,
2005).

Suppose that we aim to cluster the set of M graphs ...I';,....Iy/}. We
commence by performing the spectral decompositign= ®,A;®! on the
Laplacian matrix, for the graph indexedl, whereA; = diag(\}, A2, ...) is the
diagonal matrix of eigenvalues adq is a matrix with eigenvectors as columns.
For the graph’,, we construct a vectdB, = (AL, A%, ..., A?)T from the leading
m eigenvalues. We can visualise the distribution of graphpdsyorming mul-
tidimensional scaling (MDS) on the matrix of distanegs ., between graphs.
This distribution can be computed using either the editagist technique used
in the previous section wher&, ,» = —Ind(k1,k2) or by using the spectral
features wheréy v = (B — Bia)” (Bi — Bia)-

Multidimensional scaling (MDS) is a procedure which allogeta specified
in terms of a matrix of pairwise distances to be embedded incdidean space.
Here we intend to use the method to embed the graphs extriaotadlifferent
viewpoints in a low-dimensional space. The pairwise distat;, ;, are used as
the elements of aiV x N dissimilarity matrixR, whose elements are defined as

follows

dp o if ki £
Rugm=14 17 Kz (3.17)

0 if by = ko

Here, we use the classical multidimensional scaling metboeimbed the
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graphs in a Euclidean space using the matrix of pairwisendisgities R. The
first step of MDS is to calculate a matriX whose element with row and
columncis given byR,. = —1[d?,—d? —d%+d?], whered, = L 3"V d,.isthe
average dissimilarity value over th& row, d .. is the dissimilarity average value
over thect" column andd. = ﬁ Zi\f:l Zivzl d,. is the average dissimilarity
value over all rows and columns of the dissimilarity matRix

We subject the matrifR to an eigenvector analysis to obtain a matrix of
embedding coordinatés If the rank ofR isk, k < N, then we will have: non-
zero eigenvalues. We arrange théseon-zero eigenvalues in descending order,
i.e.ly > 1, > --- > 1, > 0. The corresponding ordered eigenvectors are denoted
by U; wherel; is theith eigenvalue. The embedding coordinate system for the
graphs iZ = [V1,01, VIz2Us, . . ., \/I,U,), For the graph indexef] the embedded
)T

vector of coordinates is a row of matrk S0Z; = (Z;1,Z;z2, ..., Zjs

3.6 Experiments

The aims in this section are threefold. First, we performresgwity study to il-
lustrate that the super-cliques delivered by the Fiedletoreare stable for com-
puting edit distance. Second, we show that the graph mart#theme leads to
accurate matches on real world data. Third, we aim to ilstthat the simpli-

fication procedure results in a stable distribution of geajplpattern-space.

3.6.1 Sensitivity Study

The aim in this part of the experiments is to measure the ®ahsof our new
partition-based matching method to structural error. Tymhsetic graphs we
used here are the Delaunay triangulations of randomly géeepoint-sets with

various sizes. In Figure 3.8, we show three synthetic graplthe left column

42



and their corresponding partitions on the right column.pBgaon the first, sec-
ond and third row have0, 40 and60 nodes respectively. The effects of structural
errors are simulated by randomly deleting nodes and regukating the remain-
ing nodes. An example is illustrated in Figure 3.9, whichvefithe sequence
with one node deleted at a time for the graph withnodes. Coded in differ-
ent colours are the different super-cliques which resolnfthe partitioning of
nodes. These remain relatively stable as the nodes aredelet

To asset the stability of graph partitions on different sfgraphs, we have
matched the three sets of corrupted graphs to their origines. We used the
edit distance matching method presented in Section 3.4d3aeeraged the re-
sults with50 trials for each graph set. Figure 3.10 shows the fractioroofect
correspondences as a function of the fraction of nodesetklétrom the figure
it is clear that graph with node siz® gives the best result. This is because the
number of partitions in this set of graphs is quite moderaAtea result, it didn’t
turn out to have matching errors in the partition level, mess-matching of par-
titions. However larger graphs such as the one witimodes in this experiment
do have this problem and it can be seen in the figure that even Wiere is no
structural corruption, successful partition matchingyadhieve90%. Another
interesting thing to notice is that larger graph8 fodes) outperformed the mid-
dle size ones4() nodes) when they are under severe corruption. This is becaus
larger graphs still have a considerable amount of nodegddtirm the super-
cliques in that condition. This also explains why small sizaphs 20 nodes)
performed badly.

For the best performing graphs, i.e. the graphs with origiee of 40, we
also compare the results with four alternative algorithfiitsese are the original
discrete relaxation method of Wilson and Hancock (Wilsoth lancock, 1997)

which is applied to overlapping super-cliques, the quadessignment method
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Figure 3.8: Synthetic graphs and their partitions.




Figure 3.9: A sequence of synthetic graphs showing thetesfesontrolled node
deletion on the stability of the super-clique.
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Figure 3.11: Sensitivity comparison for original graphtw4O nodes.

of Gold and Rangarajan (Gold and Rangarajan, 1996), thegnadratic gradu-
ated assignment method of Finch, Wilson and Hancock (Fibah,e1998), and,
the singular value decomposition method of Luo and Hancbadk @nd Han-
cock, 2001). In Figure 3.11 we show the fraction of correctegpondences as
a function of the fraction of nodes deleted.

From this comparison it is clear that our method is robustriactural error.
However, it does not perform as well as the original Wilsod Blancock method.
One reason for this is that the super-cliques delivered byaritioning method
do become unstable under significant corruption.

When used in conjunction with the edit-distance method ptréitions lead
to better results than when used with the dictionary-basscrete relaxation

method. This is important since the former method is moremdationally effi-
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Figure 3.12: An example in inexact graph matching.

cient than the latter, since the overheads associated wiibrthry construction
can grow exponentially if dummy nodes need to be inserted.

An example of the set of matches used in this experiment igishio Fig-
ure 3.12. Here the different colours in the two graphs agacoée the super-
cliques. The thin black lines between the two graphs shovetineespondence
matches. Here the results were obtained using edit-distarethod described
earlier. The graphs are of very different size. The set ofhbyparallel lines
correspond to the correct correspondences, and the remgdines are the cor-

respondence errors.

3.6.2 Real-Word Data

The real-world data used here is comprised of two house seqaeOne of them

is taken from the CMU model-house sequence and the othewris thhe MOVI
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Table 3.1: Correspondence results for the three methods.

Method | Houseindex 0 | 1 | 2 |3 | 4|5 |6 | 7|89
Corners | 30|32|132|30|30({32|30]30|30]|31

EM Correct -129(26(241713|11| 5| 3|0
False -1 01 2|3|81]11|12|15]19|24

Missed -1112|3|5|6|7|10, 8|6

Discrete Correct - 126(23|18|16|15|15|11(14]| 9
Relaxation False -4 ,6|91(12114(13 17|16 20

Missed -1]0}|1}3|2|1(2|2|0|1
Edit Correct - 126124120119 |17(14 11|13 |11
Distance False -13|5|8]1112(16|15|17|19

Missed -/1}1}2]0}1;0(4|0/|0O0

model-house sequence. Those two sequences are made upiebakanages
which have been captured from different viewpoints. In orideconvert the
images into abstract graphs for matching, we extract pestiufes using corner
detector by Luo, Cross and Hancock (Luo et al., 1998; Luo.etl8P9). Our
graphs are the Delaunay triangulations of the corner-featuTwo examples
from both sequences are shown in Figure 3.13. First row ofithwe shows
the original images and the second row shows their correipgmartitions. To
illustrate the structural variation of the Delaunay graphst. the view point
change, we show the CMU house sequence overlayed by theiubs} graphs
in Figure 3.14. The super-cliques obtained by graph pantére also shown and
coded in different colors.

We have matched the first image to each of the subsequent snra@U
sequence by using discrete relaxation and edit distance. r@sults of those
two methods are compared with those obtained using the mhethbuo and
Hancock (Luo and Hancock, 2001) in Table 3.1. This tableaostthe number
of detected corners to be matched, the number of correctsmondence, the
number of missed corners and the number of miss-matchedrsorn

Figure 3.15 shows us the correct correspondence rate astofunf view
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MOVI

Number of nodes: 134

Number of edges: 390

Figure 3.13: Delaunay graphs with their partitions from-earld data.

difference for the two methods based on the data in Table B.&lso shows
the result of edit distance based partition matching metroMOVI house se-
guence. From the results, it is clear that our new methodediegrgradually and
out performs the Luo and Hancock’s EM method when the diffeegn viewing

angle is large. As we have seen in the previous subsectionmetiod did not
perform well for larger size graphs (MOVI house sequencéismdase). Again,
this is due to the miss-matching of the partitions. When lyrgqows, the num-

ber of its partitions increases as well. The result of it ih&we many similar
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Figure 3.14: Graph partition on Delaunay triangulations.
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Figure 3.15: Comparison of results.

partitions, which downgrade the matching accuracy siganifily. To illustrate
the matching correspondence, Figures 3.16 to 3.19 shovetiudts of each pair
of graph matching for CMU houses. There are clearly sigmfistructural dif-
ferences in the graphs including rotation, scaling andgestéve distortion. But

even in the worst case, our method has a correct correspcadaie 0f36%.

3.6.3 Partition Structure Stabilization

Our aim in this section is to explore how the path-weighteakpnity matrix
can be used for the purposes of graph partition, and to detenvhether it can
render the process more robust to structural error.

There are two aspects to our study. We commence by invastighe differ-
ence in the partitions obtained with the adjacency matrickthe path-weighted
proximity matrix. Second, we perform a sensitivity studygtmpare the robust-

ness of the partitions under node and edge deletions.
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Figure 3.16: Correspondences between the first and theithégles.

Figure 3.17: Correspondences between the first and therfitiges.
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Figure 3.18: Correspondences between the first and thetbaveages.

Figure 3.19: Correspondences between the first and theiteates.
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To test the performance of our new graph representation @meih-world

images, the graphs furnished here are the same as the eecton.

Partition and Matching Consistency Analysis

Since our graphs represent a series with similar structdiney should share
a similar partition arrangements. This is important sirfcee@ are to use the
partitions for graph-matching, then they must be stablee fMlore similar two
partitions, the better the matching result will be. Our aienehis to check which
matrix-representation preserves the partition consigteetter. We use the par-
tition of the first graph as the model pattern and compare thighpartitions of
the remaining graphs in the sequence.

In Figure 3.20(a) we show the fraction of edges that remathersame par-
tition as a function of the difference in view number. Theagreurve shows the
result obtained using the path-weighted proximity matwijle the red curve
shows the result obtained with the adjacency matrix. Fgeldifference in view
number, i.e. when the structural differences are gredtes, the path weighted
proximity matrix seems to be more stable than the adjaceratyixn

In Figure 3.20(b) we show the fraction of correct matches asmation of
difference in view number. The blue curve, which represdrggpath-weighted
proximity matrix, outperforms the green one from the adj@yematrix and the
red one which is the result of the EM graph matching methodris=d (Luo
and Hancock, 2001).

Partition and Matching Stability Analysis

In this subsection we aim to measure the sensitivity of caplypartition method
to structural error, and compare the results obtained Wwélpath-weighted prox-

imity and the adjacency matrix.
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The effects of structural error are simulated by randomlgtiteg nodes or
edges from the graphs under study. Figure 3.20(c) showsdnaaf nodes that
remain in the same partition as the graph shown in Figures3sibjected to
increasing corruption. The graph corruption rate is defiteetle the number
of deleted edges divided by the total number of original eddgs the level of
corruption is increased, then the path-weighted proximigtrix outperforms
the adjacency matrix in terms of partition stability. Thigams that the path-
weighted proximity matrix better preserves the partititmucture and is more
stable under structural error. This stability property kasck-on effects for
the performance of the graph-matching method. In Figuré(8)2ve show the
performance of the matching process as the fraction of ptow is increased.
Here the red curve is the result of the original discretexagian scheme, the
blue curve is that obtained when we apply spectral pariitgto the adjacency
matrix, and the blue curve the result when we apply specaditipning to the
path-weighted adjacency matrix. For large levels of caramp the results ob-
tained using the path-weighted adjacency matrix outperfilvose obtained us-
ing the alternative methods.

Finally, we provide some examples to illustrate the stgbdf the partitions
obtained. In the left-hand column, we show the partitionsioied using the ad-
jacency matrix while the right-hand column shows the parig from the path-
weighted adjacency matrix. The differently coloured edgfebe graph indicate
the different partitions obtained by the two methods. In tibye row of Fig-
ure 3.21 we show the partitions of the graph shown in Figu2e énd here the
result obtained by the path-weighted adjacency matrixasesi to the original
than that delivered by the adjacency matrix. The remainimgsrin Figure 3.21
show the effect of graph-corruption on the partitions. R@wand 3 show the

effect of different levels of edge corruption, and Row 4 tlffea of node cor-
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ruption. In all case the path-weighted adjacency matrix asenstable than the

adjacency matrix.
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Figure 3.20: Partition and matching analysis.

3.6.4 Graph clustering

We have collected sequences of views for three toy housesdeéh object the

image sequences are obtained under slowly varying changeswer direction.

From each image in each view sequence, we extract cornerdésat\Ve use the

extracted corner points to construct Delaunay graphs. iexjperiments we use

three different sequences. Each sequence contains imatlpesqually spaced

viewing directions. In Figure 3.22 we show examples of theiraage data and

the associated graphs for the three toy houses, which wetoeds CMU/VASC,
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Adjacency Matrix Path-weighted Matrix

Consistency
Examples

Stability
Examples Edge
Corruption 25%

Edge Corruption
38%

Node Corruption
17%

Figure 3.21: Examples of the partitions.

MOVI and Swiss Chalet. CMU and MOVI house sequences are roddarom
CMU databasé and INRIA databasérespectively. The Chalet house sequence

was captured at York.

http://vasc.ri.cmu.edu//idb/html/motion/house/
2http:/iwww.irisa.fritexmex/baseimages/
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Figure 3.22: Example images from the CMU, MOVI and chaleuseges and
their corresponding graphs.

In Figure 3.23 the two panels show the distantiés, k») = (Bi,—Bx, )T (B, —
By, ) between the vectors of eigenvalues for the graphs indéxethd%,. The
left panel is for the original graph and the right panel istfeg simplified graph.
It is clear that the simplification process has preservedmudfi¢che structure in
the distance plot. For instance, the three sequences amyokesible as blocks
in the panels. Figure 3.24 shows a scatter plot of the disthetween the sim-
plified graphs (y-axis) as a function of the distance betwiberoriginal graphs.
Although there is considerable dispersion, there is annlyidg linear trend.

Figures 3.25 and 3.26 repeat the distance matrices anddtersglot using
edit distance rather than the L2 norm for the spectral featectors. Again, there
is a clear block structure. However, the dispersion in tlatec plot is greater.
To take this study one step further, in Figures 3.27 and 328how the result
of performing MDS on the distances for both the edit disteemoe the spectral
feature vector. Here the images from which the graphs araaet] are shown
as thumbnails embedded in the space spanned by the leaganyectors of the

MDS analysis. In both cases the views of the different hotelémto distinct
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Figure 3.23: Pairwise spectral graph distance; (left)inabgraph, (right) re-
duced graph.

Figure 3.24: Scatter plot for the original graph and redugpegbh pairwise dis-
tance.
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Figure 3.25: Graph edit distance; (left) original grapiglt) reduced graph

regions of the plot. Moreover, the hierarchical simplifioatof the graphs does

not destroy the cluster structure.

3.7 Conclusions

In this chapter, we have used the Fiedler vector of the Lagolamatrix to parti-
tion the nodes of a graph into super-cliques for the purpotesatching. This
allows us to decompose the problem of matching the grapbghat of match-
ing structural subunits, the super-cliqgues. We investigdhe matching of the
structural subunits using a edit distance method. Thetjmeritng method is suf-
ficiently stable under structural error that accuracy ofahas not sacrificed.
Our motivation in undertaking this study is to use the parti to develop a
hierarchical matching method. The aim is to construct alytapt represents
the arrangement of the partitions. By first matching theipant arrangement
graphs, we provide constraints on the matching of the idd&i partitions.
Focusing the aim of developing a more robust graph reprasent we have
shown how ideas from the spectral theory of the heat kermebeaused to con-

struct a path-weighted proximity matrix. We show how thetHesnel can be
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Figure 3.26: Scatter plots for the original graph and redwgraph edit distance

) B g

Figure 3.27: MDS for the original graph (left) edit distan@gght)spectral fea-
ture vector
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Figure 3.28: MDS for the reduced graph (left) edit distarfaght)spectral fea-
ture vector

used to compute the path weight distribution on the grapte dibtribution is
used to compute the mean and variance of the path length &xefvedrs of nodes.
Our path weighted proximity matrix is computed by exporetimg the squared
mean-distance. We have studied the properties of the pathtee proximity
matrix. This study shows that it gives us more stable reptesen of graph-

structure under structural error.
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Chapter 4

Commute Time

Commute time is a concept first introduced to study randonksval the graph
(Desai and Rao, 1993; Aldous and Fill, 2003). The quantitpsnees the time
taken for random walk from one node to another and back aGa@immute time
has a close relationship with spectral graph theory (ChumigYau, 2000). We
first show how commute time is related to other important epte in spectral
graph theory and how it can be computed in a spectral manhen Wwe focus on
the commute time preserving embedding, which embeds a gnéph subspace
where the Euclidean distance between a pair of points isl égulae commute
time value of the corresponding nodes in the original graglommute time
embedding is also akin to some other classic embedding mietwch as PCA,
the Laplacian map and the diffusion map. We will show that@ammute time
embedding is related to these methods. Finally, based omalysis of the
clustering properties of commute time, we will show how ihdze effectively
applied to the clustering problem and why it could be supeddhenormalised

cut
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4.1 Spectral Affinity

In this section, we review the theory underpinning the comajon of commute
time. We commence by showing what is the Green’s functionhawdit is re-

lated to the heat kernel and how it can be computed from thiatem spectrum.
Then, we will show that the commute time is a metric that isaotg#d from the

Green’s function.

4.1.1 Green’s Function

Now consider the discrete Laplace operator= T-Y/2£T'/2, The Green’s

function is the left inverse operator of the Laplace operatpdefined by

dy

vol

GA(u,v) = I(u,v) —

Wherevol =), d, is the volume of the graph anfdis the|V| x |V| identity
matrix. A physical interpretation of the Green'’s functiartie temperature at a
node in the graph due to a unit heat source applied to thenatteode. While
the external node is connected by edges with the nodes orothredbary of the
graph. The Green'’s function of the graph is related to the kexael, and has

element given by

Gy = [P () - IS P (@)

where¢] is the eigenvector associated with the zero eigenvalug) e 0 of the
normalizedLaplacian matrix and which has k-th elementigk) = /d/vol.

Furthermore, theormalizedGreen’s functiorg = T-/2GT"/? is given in terms
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of the normalised Laplacian spectrum (see (Chung and Y&lf))3tage 6) as

Glu.0) =Y L i(u)l(v) 4.2)

where)\ and¢’ are the eigenvalue and eigenvectors ofrthemalized_aplacian
L. The corresponding Green’s function of tha-normalizedLaplacianG is

given by

Gluv) = Aiiasi(u)asz—(v)

where); andg; are the eigenvalue and eigenvectors oftthenormalized_apla-
cianL.

ThenormalizedGreen'’s function is hence the pseudo-inverse ofibrenal-
ized Laplacian£. Moreover, it is straightforward to show th@i = £G =
I —¢h¢'T, and as a resultCq)(u, v) = d(u,v) — % From (4.2), the eigen-
values ofZ andG have the same sign amtlis positive semidefinite, and $bis
also positive semidefinite. Sin¢as also symmetric (see (Chung and Yau, 2000)
page 4), it follows thatj is a kernel. The same applies to the-normalized
Green’s functiord.

The relationship betwee@, G and G can be obtained if we consider an
induced subgraphy of the original graphi. If I's is connected), L and. are
nonsingular (see (Chung, 1997)) and we h&e = GL = GL = I. From the
fact thatA = T—Y2LTY2 andL = T-Y2LT~'/2 thenA = T~'L. As a result
we haveGT~'L = GL and as a consequenceé= GT~'. Making use of the

fact thatG = T-/2GT"2, we then obtain

G=T1"1%gT"'/? (4.3)
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4.1.2 Commute Time

We note that thditting timeO(u, v) of a random walk on a graph is defined as
the expected number of steps before nods visited, commencing from node
u. Thecommute time’'T'(u, v), on the other hand, is the expected time for the
random walk to travel from node to reach node and then return. As a result
CT(u,v) = O(u,v)+ O(v,u). The hitting timeO(u, v) is given by (Chung and
Yau, 2000)

vol vol

O(u,v) = d—vG(v,v) — d—uG(u,v)

whereG is the Green’s function given in equation 4.1. So, the conentinte is

given by

CT(u,v) = O(u,v) + O(v,u)

=)+ P - Lo - Do
=7 U, U 4 v,V d. U,V 4 v, U
or usingun-normalisedGreen’s function, as

CT(u,v) = vol (G(u,u) + G(v,v) — 2G(u, v)) (4.5)

As a consequence of Equation 4.4 the commute time is a mettlweograph.
The reason for this is that if we take the element&ats inner products defined
in a Euclidean space;'T will become the norm satisfyingf|z, — z,||* =<
Ty — Ly Loy — Ly D= Ly, Loy >+ < Ty, Ty > — < Ty, Ty > — < Ty, Ty >

Substituting the spectral expression for the Green’s fandnto the defi-
nition of the commute time, it is straightforward to showttiraterms of the

eigenvectors of theormalisedLaplacian

Vi ' o) 2
CT(u,v) = UOZZ;)\% (in/LdU) - %) (4.6)
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On the other hand, performing an eigen-decomposition oh bmtes of Eq.

(4.3):

@A—l@T — T_1/2®/A/_1¢/TT_1/2
4.7)
_ (T_I/Q(b/)A,_l(T_l/2(I>/)T
It follows thatA~' = A’~!' and® = T~/29’. Substituting these relationships
between the eigensystems into Eq. (4.6), the commute timbea&xpressed in
terms of the eigen-system of the-normalized_aplacian.

Vi

CT(u,0) = vol Y +-(61(u) = 6x()? *8)

4.2 Commute Time Embedding

Commute time embedding is a mapping from the data space iditbart sub-

space that keeps the original commute time value. It has gooperties similar
to alternative embedding methods such as PCA, the Laplagg@mmap and the
diffusion map. In this section, we will first introduce thermiples of commute
time embedding and then we will compare it to alternative etialing methods.
Some embedding examples are illustrated and the robusbthessbedding is

also discussed.
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4.2.1 Basics

Equation 4.6, can be re-written in the following form whiclakes the relation-

ship between the commute time and the Euclidean distance expficit

4 2
T () =Y (, Y ¢;<v>> @.9)
i=2 v L

Given two points, andx, in a R" space, their squared Euclidean distance can

be computed a8 ", (z,(i) — z,(i))*, wherez, (i) is the cor-ordinate of, on

thei-th axis. As a result, from Equation 4.9/ ¢/(u) can be taken as theth
co-ordinate of node in the commute time embedded subspace. Therefore, the
embedding of the nodes of the graph into a vector space tes¢pes commute

time has the co-ordinate matrix

O = Vol N2 TT~1/2 (4.10)

The columns of the matrix are vectors of embedding co-otdsi®r the nodes of
the graph. The terrii—'/2 arises from the normalisation of the Laplacian. If the
commute time is computed from the un-normalised Lapladrencorresponding

matrix of embedding co-ordinates is

O = Vol A~V/2pT (4.11)

The embedding is nonlinear in the eigenvalues of the LamtaciThis dis-
tinguishes it from principle components analysis (PCA) évahlity preserv-
ing projection (LPP) (He and Niyogi, 2003) which are botrelin As we will
demonstrate in the next section, the commute time embedsljagt kernel PCA
(Scholkopf et al., 1998) on the Green'’s function. Moreoiteran be viewed as

Laplacian eigenmap since it minimises the same objectietion.
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4.2.2 The Commute Time Embedding and Kernel PCA

Let us consider the un-normalised case above. Since thenGremction G

is the pseudo-inverse of the Laplacian, it discards the eayenvalue and the
corresponding eigenvectetrof the Laplacian. The columns of the eigenvector
matrix are orthogonal, which means that the eigenvectorix@tof ¢ satisfies
dT¢ = 0. Hence,v/vol A~1/207¢ = (), and this means that the data is centred.

As a result, the covariance matrix for the centred data is

Cr = 00T = ol ATV2OTOA? = ol A™! = volAg (4.12)

whereA is the eigenvalue matrix afn-normalisedGreen’s function with de-
creasingly ordered eigenvalues. The kernel or Gram matgwien by the inner

product of the co-ordinates matrix with itself

K =070 = vol®dA™V2A129T = pol®d AT = volG (4.13)

which is just the Green’s function multiplied by a constai¢nce, we can view
the embedding as performing kernel PCA on the Green'’s fandtr the Lapla-
cian. Actually,K being a kernel is inevitable since we have defined the commute

time as an equivalent distance measure to Euclidean destaritguation 4.9.

4.2.3 The Commute Time Embedding and the Laplacian Eigen-

map

In the Laplacian eigenmap (Belkin and Niyogi, 2003; BelkimdaNiyogi, 2001)
the aim is to embed a set of points with co-ordinate maXrix= (X|Xs]|...|X,,)
from a R™ space into a lower dimensional subspdt® with the co-ordinate

matrix Z = (z;]zy|...|z,,). The original data-points have a proximity weight
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matrix Q with elements)(u,v) = exp[—||X, — %,||*]. The aim is to find the

embedding that minimises the objective function

e=> |1z —z|*Qu,v) = tr(Z"LZ) (4.14)
where( is the edge weight matrix of the original data
To remove the arbitrary scaling factor and to avoid the erdlepundergoing
dimensionality collapse, the constraitt 7Z = I is applied. The embedding
problem becomes

Z=arg min tr(Z*7LZ*) (4.15)
2*TT7*=I

The solution is given by the lowest eigenvectors of the gaissd eigen-problem
LZ =NTZ (4.16)

and the value of the objective function corresponding togblaition ise* =
tr(A).
As we will show later on in Equation 4.21, the objective fuaotminimized

by the normalized cut can also be given by

o e lze = 2P Q(u, v) 7717

g g t _
‘ S 24, "7

) (4.17)

Here we argue that although the objective function that tmeraute time em-
bedding optimises is still unknown, we can achieve the saimémnmized score

¢* as the Laplacian eigenmap using Equ. 4.17. To show thig let ©7 =
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(VvolN'=129TT=1/2)T "'then we have

\/MA/—1/2(I)/TT—l/ZLT—l/Z(I)/A/—l/Z\/m
\/MA"1/2<I>’TT‘1/2TT‘1/2<I>’A"1/2* /vol
A’_1/2<I>’T£<I>’A’_1/2

A-129T P N/—-1/2 (4.18)
AN12 AN N-1/2

- t’f‘( G

e =tr(

)

= tr(

=tr(A') =¢

Hence, the commute time embedding not only aims to maintaiximity rela-
tionships by minimising) ., , |z, — z,|I” Qu0, but it also aims to assign large
co-ordinate values to nodes (or points) with large degree (it maximises
3., Z22d,). Nodes with large degree are the most significant in a graptes
they have the largest number of connecting edges. In the coettime embed-
ding, these nodes are furthest away from the origin and areehenlikely to be

close to one-another.

4.2.4 The Commute Time and the Diffusion Map

Finally, it is interesting to note the relationship with tdigfusion map embed-
ding of Coifmanet al (Coifman et al., 2005). The method commences from the
random walk on a graph which has transition probability maft = 7-'Q,
where() is the adjacency matrix. AlthougR is not symmetric, it does have a

right eigenvector matrix, which satisfies the equation

PV = ApT (4.19)
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SinceP=T"'Q=T"YT-L)=1-T"'L. Asaresult

(I —-T'L)V = Ap¥
TILY = (I — Ap)¥ (4.20)

LU = (I — Ap)T

which is identical to Equation (4.16)# = ¥ andA’ = [ —qAp. The embedding
co-ordinate matrix for the diffusion map 8, = A'¥T, wheret is real. For
the embedding, the diffusion distance between a pair of NEO? (u,v) =
S (Ap) 2 (¥i(u) — ¢(v))?. Clearly if we taket = —1/2 the diffusion map
is equivalent to the commute time embedding. Moreover, tfiesibn time is
equal to the commute time.

The diffusion map is designed to give a distance function taflects the
connectivity of the original graph or point-set. The distarshould be small if a
pair of points are connected by many short paths, and thisaste behaviour
of the commute time. The advantage of the diffusion map dadce is that it
has a free parameterand this may be varied to alter the properties of the map.
The disadvantage is that whers small, the diffusion distance is ill-posed. The
reason for this is that the original definition of the diffoisidistance for a random

walk can be given by

D} (u,v) = ||pi(u,-) = pe(v, )|

As a result, the distance between a pair of nodes depende dratisition prob-
ability between the nodes under consideration and all of¢h®aining nodes in
the graph. Hence if is small, then the random walk will not have propagated
significantly, and the distance will depend only on very logBrmation. There

are also problems whenis large. When this is the case the random walk con-
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verges to its stationary state with = 7'/vol (a diagonal matrix), and this gives
zero diffusion distance for all pairs of distinct nodes. B a critical to control

t carefully in order to obtain useful embedding.

4.2.5 Some Embedding Examples

Figure 4.1 shows four synthetic examples of point-confiions. These points
are located in the original Euclidean space and color codeddicate which
cluster they belong to. We then computed the proximity werghtrix Q2 by
exponentiating the Euclidean distance between pointsr tbeesponding em-
beddings in the commute time embedded space is shown ine<gRr Here the
co-ordinates in the commute time embedded space is compytédju. 4.10
and we take the first three columns as axes.

The main features to note are as follows. First, the embegdeds cor-
responding to the same point-clusters are cohesive, beattesed around ap-
proximately straight lines in the subspace. Second, th&talsl corresponding
to different objects give rise to straight lines that arertyearthogonal. The or-
thogonality is due to the strong block-diagonal structuréhe affinity matrix
(the commute time matrix in this case) and a full explanatan be found in

Ng's paper (Ng et al., 2001).

4.2.6 Robustness of the Commute Time Embedding

From Equation (4.11) we can see that the co-ordinates of aharwte time
embedding depend on the eigenvalues and eigenvectors lotiecian matrix.
Hence, the stability of the embedding depends on the dtabflihe eigenvalue
and eigenvector matrices. According to Weyl's theorem, taeation of the
eigenvalues of a perturbed matrix is bounded by the maxirmadhritee minimum

eigenvalues of the perturbing matrix. However, the eigetors are less stable
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Figure 4.1: Four sets of data points in their original spadere in each set,
points belonging to the same cluster are coded with the safoe c

under perturbation. Despite this anticipated problemctiramute time matrix
is likely to be relatively stable under perturbations ingiratructure. According
to Rayleigh’s Principle in the theory of electrical netwsyikcommute time can
neither be increased by adding an edge or a node, nor dedrbgsgeleting
a single edge or a node. In fact, the impact of deleting orrafldn edge or
a node to the commute time between a pair of nodes is negigilthey are

well connected. Particularly, in the application of mottoscking, this property
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Figure 4.2: The corresponding four sets of data points incttramute time
embedded space. Color pattern is the same as Figure 4.1.

reduces the impact of outliers, since once embedded, mutli¢l be excluded

from the object point-clusters.

4.3 Commute Time Properties for Grouping

In this section, we will compare commute time embedding whtnormalised

cut.
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4.3.1 Commute Time Properties

Commute time has the following properties:

The points embedded in the subspace are allocated alorrqitgate axes;

The close or similar points are embedded close to each other;

Large degree points are allocated far from the origin;

The original commute time distance is preserved. This mtéwaighe Eu-
clidean distance in the embedded subspace preserves theres from
the original commute time distance. This means a pair of sed# be
close in the embedded subspace if they are connected asty shé fol-

lowing:

— They are close together, i.e. the length of the path betwsem is

small;
— The paths connecting them have a small sum of weights;

— They are connected by many paths;

4.3.2 Comparison with the Normalised Cut

Here we argue that the normalised cut is the separation @Xiseorojection of
the points in commute time embedded subspace.

From the previous section on commute time embedding, we raakem-
ber of observations. First, we observe the objective fon¢Equation 4.17)
minimised is exactly that minimised by the normalised cu(Shi and Malik,
2000)(see page 9(10)). To show thisddie anN = |V | dimensional binary in-
dicator vector, which determines to which component of tigdstition a node

belongs. The minimum value obtained by the normalized chi §8d Malik,
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2000) is

. (T —Q)f
f, = arg min ——————
o7T1=0  OTTH

(4.21)
From Equation 4.17 it is clear that the both methods achisysame minimisa-
tion and use the same eigenvectors as solutions. The omtyatite is that the
eigenvectors used in the commute time embedding are scaldgkeciprocal
of the corresponding non-zero eigenvalues. In the bipamtitase, this does not
make any difference since scaling will not change the diistion of the eigen-
vector components. However, in the multi-partition cake,gcaling differenti-
ates the importance of different eigenvectors. From Equati8, it is clear that
the eigenvector corresponding to the smallest non-zereneaue contributes
the greatest amount to the sum. Moreover, it is this eigeavec Fiedler vector
that is used in the normalised cut to bipartition the grajglesirsively.

Turning our attention to the commute time embedding, hexstialed eigen-
vectors are used as the projection axes for the data. As & iéswe project the
data into the commute time embedding subspace, the noedalig bipartition
can be realized by simply dividing the projected data into &long the axis

spanned by the Fiedler vector. Further partitions can biezeshby projecting

and dividing along the axes corresponding to the differeales eigenvectors.

4.3.3 Why Commute Time Clustering is Successful

The normalised cutmethod (Shi and Malik, 2000) seeks the bi-partition that
simultaneously maximises intra-cluster association aimdmises inter-cluster
edge linkage. However, this problem is NP-hard and only axesl approxima-
tion can be found, and this is given by the Fiedler vector. Assalt, the more
discrete the distribution of the components in Fiedler @edhe closer the re-
laxed solution to the exact one. In a bipartition, if the camgnts in the Fiedler

vector take on only two distinct values, the Fiedler vectdrvecome the exact
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solution and two partitions are well separated. Meihd Shi (Meik and Shi,
2000) extend the bipartition normalised cut to the multitifans case. and they
called this nearly discrete eigenvector pair-wise constanrning our attention
to the commute time, from Equation 4.8, it is clear that itla## eigenvectors are
pair-wise constant, the points belonging to the same c¢luslidhave a zero com-
mute time and those belonging to different clusters willdhavarge value. This
further proves that commute time can be taken as a measuataotdhesion.

The only way to obtain pair-wise constant eigenvectors ikawee a block
diagonal affinity matrix. This has been discussed extehsivethe literature
(Meila and Shi, 2000; Ng et al., 2001; Weiss, 1999). Ng et al (Ng ekal1)
use tools from matrix perturbation theory to analyse spéctustering methods.
The "ideal” case in their model is to have a pure block diagaffanity matrix.
Weiss (Weiss, 1999) has shown the data must be normaliseden t obtain a
more block-diagonal affinity matrix, if the original mattimas no constant blocks.
If this is not the case methods such as Perona and Freemgoiitlain (Perona
and Freeman, 1998), Shi and Malik's normalised cut methdd 48d Malik,
2000) and Scott and Longuet-Higgins algorithm (Scott anddLet-Higgins,
1990) will not succeed. Hence, what determines the qualitiie@clustering is
not a better cut- criteria, but an improved block structur¢hie affinity matrix.
The block structure can be enhanced by the commute time asmdhoFischer
and Poland (Fischer and Poland, 2005). Here, a new affinipsare based on
graph conductivity is introduced so as to quantify clustemrberships. This
graph conductivity measure is equivalent to the commute.tim

Since commute time can amplify the block structure of an iaffmatrix that
have a better pair-wise constant eigenvectors and heneebgiter clustering

performance.
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4.4 Conclusions

The focus of this chapter is commute time. We commenced bgwavg some of
the properties of commute time and its relationship withlthplacian spectrum.
This analysis relied on the discrete Green’s function ofgregph. Two of the
most important properties are that the Green’s functionksrael and that the
commute time is a metric.

With the mathematical definitions of commute time to hand,haee anal-
ysed the properties of the commute time embedding. Thisvallgs to under-
stand the links between the commute time embedding andatiee embedding
methods such as Kernel PCA, The Laplacian eigenmap and ffasidh map.
An interesting feature of the commute time embedding is ithaiaintains the
maximum variance of data and at the same time groups dattheygé-urther-
more, the commute time matrix gives us a more block-like éffimatrix and
a finer data cohesion measure. A comparison withnibrenalised cutmethod

sheds light on its properties which are used for data clusgter
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Chapter 5

Commute Time Applications

In the previous chapter we have summarised the propertsohute time and
explored its relationship with the Laplacian spectrum. réhare four proper-
ties of the commute time that are important to us. First, asia measurement
for a random walk, the commute time is closely related to tbat equation or
heat kernel. This allows us to use commute time to simulaéetat diffusion
process on graphs. Secondly, commute time is also a distaete& that mea-
sures the connectivity of pairs of nodes. Its robustnessrttsiral corruption
means that it could provide a very reliable graph representaThirdly, based
on the analysis of its grouping properties and comparingth tihe normalised
cut, commute time offers finer data cohesion. This meanstthah be applied
to data clustering problems. Finally, since commute timbeahing possesses
the properties of preserving the maximum data variance emdmity, it is suit-
able for applications requiring simultaneous dimensibpatduction and data
separation.

These four properties of commute time allow us to develop éourespond-
ing methods that can be used in computer vision. The firstegdahs a graph
simplification method, based on a simulation of the heatditfn process on a

graph. We use them to develop two ways of representationapihgrfor match-
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ing. The first of these is based on concentric layers of itplgrdhe second is
based on the commute time minimum spanning tree. Compaunigesults with

those from the normalised cut, we explore the use of comrmatefor the image
segmentation problem. Finally, we have applied our comrtiote embedding
method to the multi-body motion tracking problem. This ialised by embed-
ding the matrix containing object shape information intcoweér dimensional
space and clustering using a K-means algorithm.

The remainder of this chapter is organised as follows: Ini&ed.1, we
present our graph matching method based on the decommositgraphs into
concentric layers. In Section 5.2, we discuss the problegeokrating stable
spanning trees of graphs and elaborate on our robust treesespation using
commute times. Section 5.3 compares the previous two gratbhing meth-
ods on both Delaunay and K-NN graphs. In Section 5.4, we showtb use
the eigenvector of the commute time matrix to recursivebatition graphs and
provide a comparison witthe normalised cumnethod. In Section 5.5, we cast the
multi-body objects tracking problem into our commute tinmebedding frame-
work and show how objects can be separated using a simpledtsnmaethod.

Finally, we provide our conclusions in Section 5.6.

5.1 Multilayer Graph Representation and Match-
ing

The first graph simplification method is based on the con=liatyers that result

from repeatedly peeling away the boundary of the graph. Heaph is restricted

to planar ones. Our motivation in adopting this represerias that the pattern

of concentric layers is less likely to be disturbed by suait noise than the

random walk, which can be diverted. To address this probknguhe apparatus
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of the heat equation, we augment the graph with an auxiliadenThis node is
connected to each of the boundary nodes by an edge, and actseas source.
Concentric layers are characterised using the commuteftonethe auxiliary

node. We match graphs by separately matching the concéayears.

5.1.1 Graph Derivation and Representation

We commence by constructing an augmented graph from thénakigraph
['(V, E,Q) by adding an auxiliary external node. We refer to this newphra
as theaffixation graph It is constructed by connecting the additional node to
each of the nodes on the boundary (or perimeter) of the @igiraph. Our aim
in constructing this affixation graph is to simulate heat fioem the external
node, which acts like an external heat source. We assigmaligdr to the auxil-
iary node, and theffixation graphA(V', E') can be defined by’ = V U {7}
andE’ = E U {(7,u),Vu € Boundary(T')}.

By analysing the heat-flow from the auxiliary node on the ation graph,
we can generate a multilayer representation of the origirbh. The idea is
to characterise the structure of the graph using the patfdmeat-flow from the
source node. To embark on this study, let us reconsider thigapility of the
random walkP! with a certain path length introduced in the last chapter. We
can make an estimate of the heat flow on the graph by takingvtrage value

of P! according to the path length

CZ(U,U) > P u,w)

22 PH(u,v)

We take the external nodeto be the heat source and consider all the random
walks starting from the the affixation node The average path distandér, v)

for all v in V follows a staircase distribution, which we can use to cfassdes
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Figure 5.1: The staircase distribution and a multilayepbra

into different layers.

Figure 5.1(a) illustrates this staircase property. Theesaslith the same av-
erage distance correspond to the same layer of the graph.carhesponding
multilayer graph representation is shown in Figure 5. :{lhere the nodes con-

nected by edges of the same colour belong to the same layer.

5.1.2 Score Function and Matching Process

Our matching process is based on the layers extracted ablaveo this, we
match the nodes in each layer in one graph to the nodes of thesponding
layer in a second graph. To do this we need a score-functidistmguish the
different nodes in the same layer. Unfortunately, the ayezath distance can
not be used for this purpose, since it is too coarsely quathigd can not be
used to differentiate between the nodes in the same layegEh. We seek a
score function which is related to the heat kernel, and hémeé&eat-flow from

the external source node, but gives more salient valuesafdr mdividual node.
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Figure 5.2: 3D score visualisation and the scatter plot.

Here we define the score functichy for nodeu as.S, = CT(r,u) which
is the commute time between nodeand the external source node Fig-
ure 5.2(a) shows a visualisation of the score functionsHer@elaunay graph
in Figure 5.1(b). The score function is visualised as thgleon the edges of
the concentric layers of the graph. The scores for the noddéeeosame layer
are salient enough to distinguish them. In Figure 5.2(b) heevsa scatter plot of
commute time<'T'(u, v) versus the average path length distasi@e v). From
this plot it is clear that the commute time varies more smigahd has a longer
range than the average path distance.

Since we have divided the graph into several separate lay@rgraph match-
ing step can proceed on a layer-by-layer basis. To perfoenmiitiching process
we peel layers of nodes from the boundary inwards. Each iayecycle graph
where each node is connected to its two adjacent nodes ortlyelcase when a
node has only one neighbour in the layer, the edge betweanighduplicated to

form a cycle. We match the nodes in the corresponding layeti$ferent graphs
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by performing a cyclic permutation of the nodes. The cyckerputation per-
mits possible null-insertions to accommodate missing tia@eous nodes. The
cyclic permutation minimises the sum-of-differences imooute times between
nodes in the graphs being matchedCjfdenotes the set of nodes in thi layer

of the graph, then the permutatiomiminimises the cost function

EP)=D_> > (Si=Spm)’

keViecM mecP
5.1.3 Experiments

In this section, we carry out experiments based on our pexposulti-layer
graph matching method. Firstly, we test on synthetic gragpitts various sizes
and then we compare our method with alternatives on thewedl data. Re-
sults show that our method is stable under structural cboiand outperform

others with a considerable margin.

5.1.3.1 Synthetic Data

Our synthetic data is the same as the ones we have been uspagtibon match-
ing in Chapter 3 Section 3.6.1. They are comprised of thredawmnly generated
graphs with original nodes siz¥#), 40 and 60 respectively. In Figure 5.3, we
show the original graphs together with their correspondmudti-layer represen-
tations. Here, different layers in each graph are coded eftarent colors for
illustration.

To test the stability of our multi-layer representation, earupt the origi-
nal graphs with structural error and match the corruptegiggavith the original
ones. As in the previous experiments at Chapter 3, the sfééatructural errors
are simulated by randomly deleting nodes and re-trianggjahe remaining

nodes. Here we match each corrupted graph with its original wsing their
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multi-layer representations. The matching result is camgbavith the ones from
partition matching method and shown in Figure 5.4. Here #rdopmance is
based on an average f trials for each graph set. From the figure, it is interest-
ing to see that larger graph&)(nodes in this case) give more stable performance
than the middle size one$((nodes) and small oneg((nodes). This is different
from partition matching method. In their case, middle-graphs give the best
performance since large graphs do have the problem of fintiegorrect cor-
respondencs of partitions. However, in multi-layer repreation, this problem

is eased by matching the corresponding layers. Moreoveh, leger is a cycle
graph and the matching of these cyle graphs are realitivelglse and stable. As
we can see from the figure, when there is no structural erevcémtage of clutter
equals zero), all three groups of synthetic graphs achievew accurate. Fi-
nally, it is worthful to point out that multi-layer graph neaing does worse than
the partition method when there is severe structural ctionpThis is because
under that condition, graphs are corrupted so badly thatgeyers are cut into

pieces and unable to form stable structures.

5.1.3.2 Real-World Data

The data used in our study is furnished by a sequence of vieasnodel-house
taken from different camera viewing directions. SimilaBection 3.6.2 in Chap-
ter 3, we take two such sequences for our real-world data @s¢ of them is
from CMU database (referred as CMU) and the other is from INRéferred as
MOVI). Examples from each sequence together with theirasgronding multi-
layer representations are shown in Figure 5.5. In this figueehave the original
images on the top and their multi-layer graphs on the bott@ifferent col-
ors illustrate different layers. CMU house h@lsnodes and the corresponding

multi-layer graph has four layers. MOVI house is larger.dsh0 nodes and as
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Figure 5.4: Comparison of multilayer graph matching methoth partition
matching method on synthetic data.

aresult, it has five layers. In order to illustrate the vaoiag of the house images
as well as their multi-layer graph structure, we show the glete CMU house
sequence overlayed by their multi-layer graph representatn Figure 5.7.

We have matched the first image to each of the subsequent sniagke
CMU sequence by using the multilayer matching method cedli@arlier in this
chapter. The results are compared with those obtained tisgngethod of Luo
and Hancock (Luo and Hancock, 2001) and the partition mag¢chiethod of
Qiu and Hancock (Chapter 3) in Table 5.1. This table contidiesiumber of de-
tected corners to be matched, the number of correct comespaes, the num-
ber of missed corners and the number of miss-matched coriégshave also

compared the multilayer matching method with our partitieatching method
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Figure 5.5: Real-world house images with their multi-lageaph representa-
tions.

on the MOVI sequence. To illustrate the results, Figure B@\s the correct
correspondence rate as a function of the difference in viewler.

From the results, it is clear that our new method outperfdooth Luo and
Hancock’s EM method and the partition matching method fogdalifferences
in viewing angles for the CMU house sequence. The performahmultilayer
matching method on MOVI house sequence is also much be#tetiie partition

method. This is because multilayer graph matching methes dot have the
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Figure 5.6: Comparison of three graph matching methods anréal-world
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Method |Houseindex O | 1 |2 | 3 |4 | 5| 6|7 |89
Corners | 30|132|132|30|30(32|3030|30]|31
EM Correct - 129261241713 |11| 5| 3|0
False -1 0] 2]3|8]11[12(15|19|24
Missed -1112]3|5|6|7|10] 8|6
Partition Correct - 1260241201917 |14|11|13|11
matching False - 13|58 |1112|16|15|17| 19
Missed -/171}2|0}1|]0,4]0]|0O0
Multilayer Correct - | 27| 27| 27| 27| 26| 27| 27 | 27 | 27
matching False -13(1312|23(2|2|2)|2
Missed -|{o0jo0}j1}1}1(11|1|1

Table 5.1: Correspondence allocation results and congrewigth the methods.

problem of finding the correct corresponding layers. Nodethe layers can be
easily matched afterwards. While the partition matchinghoe has problems
of locating the correct correspondences between paritidren graphs become

larger. This is important since MOVI houses are much largantCMU ones

91



and as a result, multilayer graph matching method could Insidered one of
the best to handle with large graph matching problems.

Figure 5.8 shows the results for some CMU example image.pHirsre are
clearly significant structural differences in the imagesrfrwhich the graphs are
extracted including rotation, scaling and perspectiviadi®n. Even in the worst

case, our method has a correct correspondence rate7t.

5.2 Minimum Spanning Tree Representation and
Matching

The second graph simplification method uses the minimumrspgrree asso-
ciated with the heat kernel as a way of characterising thelhgrelowever, there
is a difficulty with directly using the heat kernel, since ttme parameter of
the kernel must be set. As we will show later in this sectibe,2panning trees
evolve in a rather interesting way with time. For small tirtiey are rooted near
the centre of the graph, and the branches connect to termiigs that are on
the boundary of the graph. As time increases, the tree bexstring like, and
winds itself from the centre of the graph to the perimeter. itAdoes so, the
number of terminal nodes decreases, i.e. the large timénae¢he appearance
of a string to which a small number of short branches or ligegtare attached.
Hence, a choice must be made in setting the time parameter.

One way to overcome this problem is to use statistical ptagseof the ran-
dom walk. Hence, in this section we use the minimum spanmewdssociated
with the minimum commute time as a way of characterising thecture of a
graph. We construct an auxiliary fully connected graph inchithe weights
are the commute times between pairs of nodes in the orighaghg We then

use Prim’s method to locate the spanning tree that minintieesum of weights.
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Figure 5.7: CMU house sequence.
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(d) 1st image to 10th image.
Figure 5.8: Matched samples.
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The spanning tree is rooted at the node of minimum weightaratxiliary graph,

and this is located near the centre of the original graph.

5.2.1 Robust Graph Representation by Trees

Our aim here is to re-cast the inexact graph matching probkean inexact tree
matching problem. The main obstacle here is to locate a hateid stable to
structural variations in the original graph. One way to dis iB to extract a

minimum spanning trees from the graphs under study. Howewgss care is
taken, then the structure of the extracted spanning treléyavy in an erratic

manner with slight changes in the structure of the origimap. This makes
reliable matching impossible. By reducing the graph intoe®,t although we
obtain a simpler data structure, we also loose informatidence, we need a
means of extracting a stable tree-like graph representatib at the same time
preserving as much information from the original graph assfme. Here we
argue that commute time provides a solution to this problem.

Given a weighted graph, we generate the commute time matéi%’ by
computing the commute time between each pair of nodes. Hnensammute
time matrix we construct a complete or fully connected grphThe weights
of the edges in this graph are the commute-times. In anotbed,vthe weight
matrix €2 of the new graph” satisfiesQr (u, v) = CT'(u, v). Our representation
is based on the minimum spanning tree of the fully connectagtgl” with
commute times as weights. The node weights on the spanmiegte found by

summing the edge weights. The weight on the node

Qu) = Z CT(u,v)

veV

The root node of the tree is that having the smallest nodetweind the mini-
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mum spanning tree is generated by the Prim’s method (PriB¥)1€9arting from
the root node.

Since commute time is a metric on the original graph and itwag global
information rather than the local information, it is likety be relatively stable to
structural modifications. For example, if there is node tileheor edge deletion,
then since wherever possible the random walk moves to cothmemodes, the
effect of that corruption is small. The stability of the conma time matrix en-
sures that the weight distribution on the derived fully cected graph is stable.
Hence, the minimum spanning tree can also be anticipatee stelble.

Edges of the spanning tree correspond to the path of the maisalple ran-
dom walk. The weights on the nodes of the spanning tree pestructural
information from the original graph. The nodes on the boupadé a graph to-
gether with those of small degree are relatively inaccéssitthe random walk.
The reason for this is that they have a larger average comtimuethan the re-
maining nodes. By contrast, the nodes in the interior of tlaply and the nodes
with large degree are more accessible, and hence have a&salage com-
mute time. The most frequently visited nodes in the treeaswhth the smallest
average commute-time, and this is the root node. This nodsually located
near the the centre of a graph and has a large degree.

Two examples are shown in Figure 5.9 and Figure 5.10. In ttveségures,
we have shown two types of graphs. The first of these is theubalaand the
second is the K-nearest neighbour graph. We have also sih@aommute time
matrices for the two graphs, the generated complete or @dhnected graph
and the minimum spanning tree. The main features to note fin@plots are as
follows. First, the spanning trees are rather differentincure. Second, there
is a more defined block structure in the commute time matnixHe K-nearest

neighbour graph.
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Figure 5.9: Delaunay graph example.

To illustrate the problems associated with using the heaté to locate the
spanning tree, consider the continuous time random walkegtaph. Lep; be
the vector whose elemept(u) is the probability of visiting node of the graph
under the random walk. The probability vector evolves uniderequation

Opi _

at - _‘Cpt
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Original K nearest graph with k=5 Commute time matrix
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Figure 5.10: K nearest neighbour graph example.

which has the solution

Pr = exp[—Lt]py

As a resultp; = H;pp. Consequently the heat kernel determines the random
walk. Hence, if we use the heat kernel as the edge weightiamcif the
graph then we can explore how the spanning trees associdtethesheat kernel

evolve with time.
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In Figure 5.11 for one of the graphs used in our experimengsillustrate
the evolution of the spanning tree with time. The first imagehie sequence
shows the input graph, and the remaining images show theessab spanning
trees as time elapses. |Initially, the tree is rooted neac#mtre of the graph
with terminal nodes on the boundary. The recovered tree tes/raranches
and is very “bushy”. As time evolves, the pattern changese ffée becomes
rather string-like and wraps itself around the boundarthwranches extending
it to the centre of the original graph. Hence, the structaresunstable and not

suitable for matching.

Figure 5.11: Minimum spanning tree with varying t.
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5.2.2 Tree Edit Distance and Inexact Tree Matching

With stable minimum spanning trees to hand, then the neptiste match them.
Here we use Torsello and Hancock’s (Torsello and Hancoc] p@ivide and
conquer tree matching method. The method provides a meamsmduting the
tree edit distance, and locates the matches that minimesdiskance using relax-
ation labelling. To compute the tree edit distance, therétlym exploits the fact
that any tree obtained with a sequence of node deletion tiguesas a subtree of
the transitive closure of the original tree. As a result thexact tree matching
problem can be cast as that of locating the maximum commanesuby search-
ing for maximal cliques of the directed association grapte method poses the
matching problem as a max clique problem, and uses the tadaxabelling
method of Pelillo (Pelillo et al., 1999; Pelillo, 1999) totam a solution.

The steps of the divide and conquer method are as follows:

1. Given two trees and7’, calculate their transitive closufeC . and7'C' ..
2. Construct the directed association graph (DAG) 6f. and7'C.,..

3. The inexact tree matching problem can be solved by findieagcobmmon

consistent subtree of the two DAGS.

4. The problem of locating the maximum common subtree canrdrest
formed into that of locating a max-weighted clique. This taneffected
using a number of classical methods, including relaxaabelling (Torsello

and Hancock, 2001) or quadratic programming (Pelillo et1#199).

5.2.3 Experiments

The aim in this section is to illustrate the utility of our spéng tree representa-
tion for graph matching. We investigate the robustnessefibthod under local

structural change as well as random edge corruption.
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5.2.3.1 Spanning Tree Robustness

In this section, we aim to compare the stability of the spagtiees delivered by
our commute time method with those obtained directly usnegRrim’s method
(Prim, 1957).

The data used here is furnished by the sequences of viewsda#glrhouses.
The images in the sequence are taken from different camezetions. In order
to convert the images into abstract graphs for matching xtva& point features
using a corner detector and construct the nearest neigigibapin of the points.

In Figure 5.12, we show three groups of houses with an incrgasom-
plexity in terms of the number of points detected and the enstgucture. Five
examples are shown in each group in a column order. In eaalpgtbe top
row shows the original images overlaid with their 5 neareggimbour graph, the
second row the spanning trees obtained from Prim’s methddfranthird row
the spanning trees obtained using our commute time methad.clear from
the first group of images in the figure that our method deliveose stable span-
ning trees. As the view point changes, there is little chandke spanning tree
structure. In the second group, the total number of featanetp has been ap-
proximately doubled and the structure of the extracteddrast neighbour graph
is more variable. Our commute time method still delivers)aable spanning
trees. Compared with the second row in this group, our spgninees do not
result in erroneous disconnections or connections of thadbres and maintain
a consistent tree shape. The third group is the most complexvith approxi-
mately three times the number of nodes as the first groupoAdh the trees are
guite complex, they are still stable and the local structweawell preserved.

A quantitative study on stability of spanning trees for théwee sets of im-
ages is shown in Figure 5.12. Here we match the spanning treach image

in the sequence to the first one using Torsello and Hancotkiséllo and Han-
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1th 3th 5th 7th 9th

Figure 5.12: Three sequences of model houses with theingpgtree represen-
tation.
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Figure 5.13: Stability comparison of spanning trees.

cock, 2001) tree matching method. It is clear that our metthelivers better
matching performance. It is also interesting to note thatsihanning trees from
MOVI data are more stable than chalet ones although the $iteedormer is

much larger. This is due to the significant variations in esaneighbour graph
structure in chalet sequence. Some examples can beerydear in the forth

row of Figure 5.12.

5.2.3.2 Inexact Graph Matching with Local Structure Variance

The data used here is the same as the previous section. HpWwerewe study
Delaunay graphs in addition to the K-nearest neighbourtgajth varying k).
In Figure 5.14, we show five examples from the sequence of 8@svof
the house. The top row shows the original image, the secondfire Delau-
nay graphs, the third row the minimum spanning trees obdfiroen the Delau-

nay graph commute times, the fourth row the 5 nearest neighipaphs, and
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Figure 5.14: House images, their graphs and extracted trees

the fifth row the minimum spanning tree obtained from the l&nest neighbour
graph commute times. From the figure it is clear that althahghstructure of
the graphs varies, the spanning trees are quite stable thes changes. This
demonstrates that the minimum spanning tree delivereddoydimmute time can
be used as a simple but stable graph representation. loisragesting to note
that the K-nearest neighbour graph gives more stable thegsthe Delaunay
graph.

Next we aim to investigate whether the spanning trees carsée for the

purposes of graph-matching. We have matched the first inmageisequence
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to each of the subsequent images using the divide and cotng@ematching
method (Torsello and Hancock, 2001). The results are cozdpaith those ob-
tained using the method of Luo and Hancock (Luo and Hancd@B] Pand the
partition matching method of Qiu and Hancock (Chapter 3yuFe 5.15 shows
us the correct correspondence rate as a function of theetite in view number.
From the results, it is clear that our new method outperfdsoth Luo and Han-
cock’s EM method and, Qiu and Hancock’s partition matchireghnod for large
differences in viewing angles. It also demonstrates thaktmearest neighbour
graph outperforms the Delaunay graph in delivering staoleetire. There are
clearly significant geometric distortions present in thag®s including effects
due to rotation and perspectivity, and these give rise toifsdgnt structural dif-
ferences in the resulting graphs. Even in the worst casenethiod based on the

K-nearest neighbour graph has a correct corresponderecefii%.
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Figure 5.15: Comparison of results.
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5.2.3.3 Inexact Graph Matching with Random Edge Corruption

We now focus on testing the stability of the spanning treeteunontrolled ran-
dom noise. To do this we delete a controlled fraction of edgas the initial
graphs (either Delaunay or K-nearest neighbour) randoilysigure 5.16 we
show the effect of this deletion process for the graphs steaster. The number
at the top of each column is the percentage of edges deleteslfirSt and the
third rows of the figure show the Delaunay graph and the Seastareighbour
graph after edge deletion. The second and fourth rows shewdiresponding
spanning trees. From the figure it is clear that the tree tstregs stable under
edge corruption, and again the K-neatest graph outperftirelBelaunay graph.
We have matched the edge-corrupted trees to the origires,ti@nd have
computed the fraction of correct correspondences. Thédtseme shown in Fig-
ure 5.17. The fraction of correct correspondences decsaaselinear fashion
with edge corruption. The different curves in the plot anetfie Delaunay graph
and the K-nearest neighbour graph. The K-nearest neiglgvaph outperforms

the Delaunay graph by a margin of about 10% at 50% edge cayrupt

5.3 Comparison of the Two Simplified Graph Rep-
resentations

We now explore the relative merits of the two graph simpltfamamethods pre-
sented in this chapter. Figure 5.18 shows the fraction aecbmatches for the
images in the CMU house data-set. The curves in the plot kea faom Figures
5.6 and 5.15 . Additionally, as a pink line we show the restilising the multi-
layer simplification method on the 5 nearest neighbour ggaptom the figure it
is clear that the multi-layer simplification method deliwéne best performance

when used with Delaunay graphs (blue line). For the Delagmagh, the multi-
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Figure 5.16: Random edge deletion.

layer representation is stable under graph variation am@¢dmposition of each
layer is not modified significantly (see Figure 5.6 for ansthation). However,
when this is applied to the 5-nearest neighbour graph, it do¢ perform well.
The reason for this is that the K-nearest neighbour graphk dotlend itself to a
layer decomposition. Figure5.19 illustrates the problemghis example, note
how the nodes of the inner green layer are compressed tagethe

The spanning tree representation gives the best perfoenahen applied
to the 5-nearest neighbour graphs and the worst perfornfantke Delaunay
graphs. The reason is that the tree representations for-tlear®st neighbour
graphs are more stable than those for the Delaunay graples vadations in
graph structure (for a comparison see Figure 5.14).

Overall the stability of the spanning tree representat®batter than that
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Figure 5.17: Graph corruption matching results.

for the multi-layer representation. The reason for thishat the structure of
layers can be adversely affected by edge corruption. ofdigese An example
is shown in Figure 5.20 with2.6% of edges randomly pruned. In this example,

the connectivity of the layer graph displayed in light blaelestroyed.

5.4 Commute Time for Grouping

In this section, first, we illustrate the grouping steps damethe commute times.
Then we experiment it with synthetic and real-world data@mdpare the results

with those from the normalised cut.

5.4.1 Grouping Steps

The idea of our segmentation algorithm is to use the spectrfutime commute

time matrix for the purposes of grouping. In the normalisatl method, the
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Figure 5.19: An example of multi-layer graph of a 5 nearegmaour graph.
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Figure 5.20: An example of a multi-layer graph with edge gption.

eigenvector corresponding to the second smallest eigeenail the Laplacian
matrix is utilised to bipartition data. The method expldite relatively uni-
form distribution of the components in the smallest eigetme Hence, here
we use the eigenvector associated with the smallest eilygneathe commute
time matrix since it is this eigenvector that contains thesnstgnificant partition
information.

Our commute time algorithm consists of the following steps:

1. Given an image, or a point set, set up a weighted graph(V, £') where
each pixel, or point, is taken as a node and each pair of nedesnected
by an edge. The weight on the edge is assigned according sintiilarity

between the two node as follows

a) for a point-set, the weight between nodesnd v is set to be

Q(u,v) = exp(—d(u,v)/o,), whered(u, v) is the Euclidean distance be-
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tween two points and, controls the scale of the spatial proximity of the

points.

b) for an image, the weight is:

IFuoFil), o (FXL) it ¢, = Xoll, < v

or

Qu,v) = exp <
0 otherwise

(5.2)
whereF, is either the intensity value at pixelfor a brightness image or

the vector of RGB value for a colour image.
2. From the weight matrix2 we compute the Laplaciah =T — Q.

3. Then we compute theormalisedGreen’s function using Equation 4.2 and

the eigen-spectrum of thermalisedLaplacian..

4. From Equation 4.5, we compute the commute time matfixwhose el-
ements are the commute times between each pair of nodes grapk

I.

5. Use the eigenvector corresponding to the smallest edgeof the com-
mute time matrix to bipartition the weighted graph:

2
1% ¢i(w) _ S
CT (u,v) = vol Y17, 5 <¢§—) - \/Ez—)) '

6. Decide if the current partition should be sub-divided| egcursively repar-

tition the component parts if necessary.

5.4.2 Experiments

In this section, we will illustrate some experimental résbloth on synthetic and

real-world images on clustering and image segmentation.
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Figure 5.22: Data clustering by normalised cut
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5.4.2.1 Point-set Clustering Examples

In Figure 5.21 and 5.22 we compare the results for pointdsstering using
commute-times and the normalised cut. Here werset1.5. The sub-figures in
both figures are organised as follows. The left-hand columoms the point-sets,
the middle column the affinity matrices and the right-mostiom the compo-
nents of the smallest eigenvector. The first row shows thielfiipgrtition on the
original data. From this bipartition, we obtain two separelusters and using
each of them, we perform a second bipartition. The seconartitipn results
are shown in the second and third rows of Figure 5.21 and 3=&#n the fig-
ures it is clear that both methods succeeded in groupingatee ¢However, the
commute time method outperforms the normalised cut siscfihity matrix is
more block like and the distribution of the smallest eigeteecomponents are
more stable. Moreover, its jumps, corresponding to thesbfit clusters in the
data, are larger. Since the eigenvector is taken as an todica the member-
ship of the cluster, the more differentiated the distribatof the components of
this eigenvector, the closer of the relaxed solution towdh# desired discrete
solution. This point is well illustrated in the third colunah Figure 5.21 com-
pared to the one in Figure 5.22. From the figures, it is cleardibtribution of
the eigenvector delivered by our commute time matrix is lyediscrete. This is
due to the strong block structure of the commute time matiastrated in the

middle of Figure 5.21 compared to the normalised affinityriman Figure 5.22.

5.4.2.2 Image Segmentation

We have compared our new method with that of Shi and Malik ¢t Ma-
lik, 2000) on synthetic images subject to additive Gaussigise. On the left-
hand side of Figure 5.23, we show the results of using theeemethods for

segmenting a synthetic image composed of 3 rectangulasiregvith additive
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Figure 5.23: Method comparison for synthetic image withréasing Gaussian
noise.

(zero mean and standard derivation increasing evenly fr@h @ 0.20) random
Gaussian noise. On the right hand side of Figure 5.23 we shevraction of
pixels correctly assigned as a function of the noise stahdarivation. At the
highest noise levels our method outperforms the Shi andkiviadithod by about
10%.

In Figure 5.24, we show some examples of our segmentatiantsesnd
compare them with those obtained using the normalised dé.alm here is to
investigate the effect of adding and deleting link-weightsandom. The first
column shows the original image, the second column theraigiffinity matrix
and the third colum the affinity matrix after link noise hasebeadded. The
first three rows show the effect of random link deletion, amel $econd three
rows the result of link addition. The fourth and fifth colurmespectively show
the results obtained using the normalised cut and the comtimaé. For these
images, Figure 5.25 shows the fraction of correctly assigneels as a function

of the fraction of links added or deleted. In the figure the cadse shows the
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Original Affinity After Normalised Commute
image matrix distortion cut time

Figure 5.24: Examples of segmentation results with difieli@k-weight distor-
tion.

effect of link addition on the commute time method, the greerve the effect of
link addition on the normalised cut, the blue curve the e¢ftédink deletion on
the commute time method and, finally, the pink curve the effétink deletion
on the normalised cut. The main features to note from theaioias follows.
First, the commute time method is more robust to both linktieh and insertion
than the normalised cut. The second feature is that linkidelaas a less marked
effect on the performance than link insertion. Thirdly, spus link insertion has
a smaller effect on the commute time than the normalised cut.

In Figure 5.26, we show eight real world images (from the B&k image
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Figure 5.25: Method comparison for synthetic images witfedgnt link-weight
distortion.

database) with the corresponding segmentation resulsimges are scaled to
be 50x50 in size and the parameters used for producing thédseser = 5,

or = 0.02 andox = 0.2. In each set of the images, the left-most one shows
the original image. The middle and right-hand panels sh@wdlsults from two
successive bipartitions.

For four of the real images, we compare our method with thenatised cut
in Figures 5.27 and 5.28. The first column of each sub-figuosvstihe first,
second and third bipartitions of the images. The secondmolshows the his-
togram of the components of the smallest eigenvector, andght-hand column
shows the distribution of the eigenvector components. The &nd red lines in
the right-hand column respectively correspond to zero haeigenvector com-
ponent threshold.

Comparing the segmentation results in the first column,atear that com-
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Figure 5.26: Real world segmentation examples.
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Figure 5.27: Detailed segmentation process in comparison.
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Figure 5.28: Detailed segmentation process in comparison.
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mute time outperforms the normalised cut in both maintgnmegion integrity
and continuity. For instance in the case of the baseballegpldaie background
trademark and the limbs of the players are well segmentedhdrtase of the
bird, the thin tree branch is detected. For the astronaubtivmdary between
space and the earth is detected. Finally, for the hand, tgerfimails and ring
are correctly segmented by the commute time method. Anathgortant fea-
ture is that, once again, the eigenvector distribution isenstable and discrimi-
nates more strongly between clusters. This is illustratetié second and third
columns of Figure 5.27 and 5.28 where the distribution okmigctor com-
ponents in the histograms are better separated for the ctemiime method.

Hence, the corresponding cluster indicators give betigarsdion.

5.5 Multi-body Motion Tracking

The aim in this section is to explore whether an embeddingdas commute
time can be used to solve the problem of computing the shapeaction matrix
in a robust manner. The idea is motivated by the intuition #ivace the eigen-
vectors associated with the different objects span diftesetbspaces, they can
be embedded using a spectral method and separated usingla slostering
method. We use the shape-interaction maf}ias a data-proximity weight ma-
trix, and compute the associated Laplacian matrix (theeegratrix minus the
weight matrix). The aim is to embed feature points in a spheg preserves
commute time. The embedding co-ordinate matrix is foundptieenultiplying
the transpose of the Laplacian eigenvector matrix by therse/square-root of
the eigenvalue matrix. Under the embedding nodes which &l commute
time are close, and those which have a large commute timeistantd This

allows us to separate the objects in the embedded subspagplyyng simple
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K-means clustering.

5.5.1 Factorisation Method Review

Suppose there ar€ objects moving independently in a scene and the movement
is acquired by an affine camera BEdrames. In each framd; feature points are
tracked and the coordinate of tit@ point in thefth frame is given byz/, /).

Let X andY denote twaF' x P matrices constructed from the image coordinates

of all the points across all of the frames:

1 1 1 1 1 1
Ty Ty Tp Y1 Y Yp
2 2 2
Ty T Tp i Y Yp
X = Y =
F _F F F _F F
| Y1 L2 Tp Y1 Y2 o YUp |

Each row in the two matrices above corresponds to a singtesfi@nd each col-
umn corresponds to a single point. The two coordinate nestrian be stacked
to form the matrix

<[
Y 2FxP

The W matrix can be factorised into a motion matfix and a shape matrix
S thus,Woryp = Mopy, X S.xp Wherer is the rank ofili (r = 4 in the case
of W without noise and outliers). In order to solve the factdrsaproblem,

matrix W can be decomposed by SVD:
W =UXR"

If the features from the same object are grouped togethem,(fh > and R
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will have a block-diagonal structure.

I RT
W =1[U;-- Uy]

Sn RT,

and the shape matrix for objegctan be approximated by, = B~1Y, R where
B is an invertible matrix that can be found frad.

In a real multi-body tracking problem, the coordinates efdifferent objects
are potentially permuted into a random order. As a resul itripossible to
correctly recover the shape matx without knowledge of the correspondence
order. Since the eigenvector matriXis related to the shape matrix, the shape
interaction matrix was introduced by Costeira and Kanads{€ra and Kanade,
1997, Costeira and Kanade, 1995) to solve the multi-bodgrsgjon problem.

The shape interaction matrix is

STyrts, 0 0
0 STy 1S 0
Q= RR" = S (5-2)
0
0 0 STV Sn

From Equation 5.2, the shape interaction mafpikas the convenient prop-
erties thatQ,,, = 0, if points u,v belong to different objects an@,, # 0, if
pointsu,v belong to the same object. The maté)xis also invariant to both the
object motion and the selection of the object coordinatéesys. This leads to a
simple scheme for separating multi-object motions by peimyuhe elements of
@ so that it acquires a block diagonal structure. In Costeithkanade’s method
(Costeira and Kanade, 1997; Costeira and Kanade, 1995gdygedgorithm is

used to permute th@ matrix into block diagonal form. An illustration is shown
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in Figure 5.29(a,b,c,d). This method works well only for tleal case where
there is no noise and outliers are not present. In Figuréey&).2and 5.29(f) we
respectively show the effect of adding Gaussian noise tG)thtrix in 5.29(b)

and the resulting permuted matrix. In the noisy case, thekidtructure is badly

corrupted and object separation is almost impossible.

(a) Original pic- (b) Original @ matrix un- (c) Sorted@ by Costeira
ture with trails of sorted. and Kanade’s method.
the moving fea-

ture points.

(d) Object sepa- (e) Q@ matrix with Gaus- (f) Sorted@ with noise.
ration result. sian noiser = 0.8.

Figure 5.29: A multi-body motion separation example usingst€ira and
Kanade’s method.
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5.5.2 Commute Time Applied to the Multi-body Motion Track-
ing Problem

Having discussed some of the properties of the commute tinfeedding, in this
section we will show how it may be used for multi-body motioralysis. As we
have already seen, the shape interaction mgtrimtroduced in the factorisation
method is invariably contaminated by noise and this limg®ffectiveness. Our
aim is to use commute time as a shape separation measuréficaigcwe use
the commute time to refine the block structure of €henatrix and group the
feature points into objects.
Object Separation Steps:

The algorithm we propose for this purpose has the followtegs

1. Use the shape interaction matrixas the weighted adjacency matfix

and construct the corresponding grdph
2. Compute the Laplacian matrix of graphusingL =T — Q.

3. Find the eigenvalue matriXx and eigenvector matrig of L usingL =

PADT.
4. Compute the commute time matd¥” usingA and® from Equation 4.8.

5. Embed the commute time into a subspacebfusing Equation 4.10 or

4.11.

6. Cluster the data points in the subspace using the K-mégmstam (Mac-
Queen, 1967).

To illustrate the effectiveness of this method, we returthiexample used
in previous section. First, in the ideal case, thenatrix will have a zero value

for the feature points belonging to different objects. Asault the grapi’,
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(a) Sorted commute time matrix. (b) Clustered points in the commute time
subspace for two objects.

Figure 5.30: Multi-body motion separation re-casted asmamate time cluster-
ing problem.

constructed from), will have disjoint subgraphs corresponding to the nodes
belonging to different objects. The partitions give ris@iinite commute times,
and are hence unreachable by the random walk. Moreover, waand noise®

with zero mean, standard derivation 0.8 Gaussian noisedjaplgt the clustering
steps listed above we still recover a good set of objects Fegpare 5.29(d)).
This is illustrated in Figure 5.30. Here, sub-figure (a) skdlae commute time
matrix of graphl’ and sub-figure (b) shows the embedding in a 3D subspace. It
is clear that the commute time matrix gives a good block-aladj structure and

the points are well clustered in the embedding space even sigaificant noise

is present.

5.5.3 Experiments

In this section we conduct experiments with the commute time¢hod on both

synthetic data and real-world motion tracking problems.ink@stigate the ro-
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bustness of the method, we add Gaussian noise to the daengatempare the

results with some classical methods.

5.5.3.1 Synthetic Data

Figure 5.31: Synthetic image sequence.

Figure 5.31 shows a sequence of five consecutive synthetigeamwith 20
background points(green dots) and 20 foreground poimts{o¢és) moving inde-
pendently. We have added Gaussian noise of zero mean amthstateviation
o to the coordinates of these 29 points, and then cluster themwo groups.

We have compared our method with Costeira and Kanade’s gedgdrithm
(Costeira and Kanade, 1997; Costeira and Kanade, 1995muca's discrim-
ination criterion method (Ichimura, 1999) and Kenichi'dospace separation
method (Kanatani, 2001). In Figure 5.32 we plot the averaggelassification
ratio as a function of for different algorithms. The results are based on the aver-
ages of 50 trials for each method. From the figure, it is clearéur method per-
forms significantly better than the greedy method (Costid Kanade, 1997)
and the discrimination criterion method (Ichimura, 199®)also has a margin
of advantage over the subspace separation method (Kan2@éxii).

For an example with a Gaussian noise with- 0.5, the commute time ma-
trix and the embedded subspace are shown in Figure 5.33{&).38(b) respec-
tively. It is clear that even in this heavily noise contant@thcase, the commute

time matrix still maintains a good block-diagonal struetuxoreover, under the
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Figure 5.32: Method comparison.

embedding the points are easily separated.

5.5.3.2 Real-world Motion Tracking

In this section we experiment with the commute time methodeai-world
multi-body motion tracking problems. Figure 5.34 shows fial-world video
sequences with the successfully tracked feature pointgyibe commute time
method.

The first three rows are for the data used by Sugaya and Kanaté®ug-
aya and Kanatani, 2004; Sugaya and Kanatani, 2003). Hereighene moving
object and a moving camera. A successful tracking methodseparate the
moving object from the moving background. The forth and fifitvs in Figure
5.34 are two video sequences captured using a Fuji-Film 2&kera(328 240
pixels). For each of sequence, we detected feature poimg thhee KLT (Shi and

Tomasi, 1994), and tracked the feature points using the admtime method.
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(b) Embedded subspace.

(a) Sorted commute time matrix.

Figure 5.33: Synthetic data.

Due to the continuous loss of the feature points in the ssoeeframes by the
KLT algorithm, we use only ten frames each from the sequenitts117 and
116 feature points respectively. Compared to the data frogaya and Kanatani
(Sugaya and Kanatani, 2004; Sugaya and Kanatani, 2003jonesise the num-
ber of detected moving objects from one to two, which makesstparation
more difficult.

In the case of the forth row of Figure 5.34, our method not celyarates the
ducks correctly from the moving background, but it also safes the moving
ducks from each other. The fifth row of Figure 5.34 is the md$tdIt one with
two independently moving hands and a moving backgroundsatseparates the
wall from the floor correctly.

In Figure 5.35 we show the trajectories for the tracked aimteach of the
video sequences. Here the outliers are successfully reindvge different se-
guences offer tasks of increasing difficulty. The easiegtisace is the one la-

belledA, where background has a uniform and almost linear relativeament,
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and the foreground car follows a curved trajectory. Thewesgmilar pattern in
the sequence labelldl but here the background movement is more significant.
In sequenc€, there is both camera pan and abrupt object movement. Seguen
D has camera pan and three independently moving objectdlyf-inssequence

E there is background jitter (due to camera shake) and twatsgxhibiting in-
dependent overall movements and together with articulati&ven in the worst
case, our method successfully separates the backgrouwd ddfierent clusters

as shown in Figure 5.36. The colours of the points in the emd@dubspace is
the same as the one shown in the fifth column of Figure 5.34.

For the same sequences, we compared our results with GosteiiKanade’s
greedy algorithm (Costeira and Kanade, 1997), Ichimurasranination crite-
rion method (Ichimura, 1999), Kanatani’s subspace separatethod (Kanatani,
2001) and Sugaya and Kanatani’s multi-stage learning ndgtBiegaya and Kanatani,
2004). The comparison is shown in Table 5.2.

Table 5.2 lists the accuracies of the different methodsgusia ratio of num-
ber of correctly classified points to the total number of p&ifThe ratio is av-
eraged over 50 trails for each method. From the table, iardhat the greedy
algorithm (Costeira and Kanade, 1997) gives the worst testihis is because
the greedy algorithm simply sorts according to the mageitofcelements of the
@ matrix, and this matrix is susceptible to noise. The disgration criterion
method (Ichimura, 1999) and the subspace separation métlaodtani, 2001)
perform better due to their robustness to the noise. Theiais@tion criterion
method effectively rejects noise and outliers by selectirgmost reliable fea-
tures. The subspace separation method removes outliertibyg & subspace
only to consistent trajectories.

The multi-stage learning method (Sugaya and Kanatani, )2@&dvers sig-

nificantly better results due to its adaptive capabilitizs, failed on our data.
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| LAl BJ]C|D]E ]
Costeira-Kanade 60.3 | 71.3 | 58.8 | 45.5 | 30.0
Ichimura 926 | 80.1 | 68.3 | 554 | 47.2
Subspace Separation 59.3 | 99.5| 989 | 80.6 | 67.2
Multi-stage Learning 100.0| 100.0| 100.0| 93.7 | 81.5
Commute Time Separation|| 100.0{ 100.0| 100.0| 100.0| 100.0

Table 5.2: Separation accuracy for the sequences in Fig. 5.3

The failures are most pronounced when there are severahgobjects and an
inconsistent moving background. Our method gives the bexdbpnance and
achievesl00% accuracy. In our method, motion jitter or noise disturbande

be correctly recognised and suppressed by the embeddinggzoOutliers, on
the other hand, are automatically rejected in the clusjestap by the K-means

algorithm.

Figure 5.34: Real-world video sequences and successfatlig¢d feature points.
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Figure 5.35: Feature point trajectories.

v
{ L ]
l'.
ol
d
0.2
ey
0.1+ A B =, "
I .
1.'.-".". '
04
-0.14 .
} |
-0.24 e

-0.3

-04 03

Figure 5.36: Sequence E embedded by commute time in a sidspac
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5.6 Conclusions

The work presented in this chapter has focused on the apphcaf commute
times. To this end, we have shown how to use the commute tinadewelop
two graph simplification algorithms. The first of these is apjr simplification
method that uses the commute time to an auxiliary node. W $twov the
representation that results from this simplification carubed for the purposes
of matching. The second simplification method uses the camtimae to extract
spanning trees from graphs. Experimentally, we show tharee representation
is not only stable, but also preserves sufficient node inébion to be useful for
the purposes of graph matching.

We have shown how commute time can be used for clustering egrden-
tation, and have compared to the Shi and Malik’s method (&thiMalik, 2000).
Finally, we described how the multi-body motion trackinglplem can be cast
into a graph spectral setting using a commute time embeddethod together
with K-means clustering. To test its performance, We havepared our embed-
ding method with a number of alternative tracking algorighom both synthetic
and real world data. Here it offers a convincing margin of iaygment for

noise-contaminated multi-body motion tracking.
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Chapter 6

Conclusions and Future Work

The overall goal of this thesis was to exploit the propertiéspectral graph
theory for the purpose of solving a number of computer vigimblems includ-
ing object recognition, embedding, clustering and motracking. To this end,
we have a) developed an inexact graph matching method bast spectral
decomposition of the graphs, b) described three distineplsied graph repre-
sentations and c) developed an effective embedding antedhug method for

image segmentation and motion tracking.

6.1 Contributions

6.1.1 Inexact Graph Matching

Inexact graph matching has proved to be an intractable taskei computer
vision literature. When spectral graph matching methodsused, then only
graphs of the same size (Umeyama, 1988) can be matched. Tooowe this
problem, some approaches have been made but with high catigmatl cost
(Luo and Hancock, 2001). Here we solved the problem usingeeatahical

matching method which is suitable for parallel computation
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Our starting point was to use the graph seriation method ¢tordpose the
graph into non-overlapping subgraphs (partitions). Thigepa of partitions is
similar for graphs with similar structure. The graph matchprocess can be
realized by matching these partitions. We first found theesgprondence of the
partitions and then matched the elements in each pair otipag separately.
This gave us atwo level matching framework and the potetatidévelop parallel
graph matching technique. The advantage of this hieraatmatching scheme
is its efficiency and ability to deal with graphs of differestes. However, it has
the disadvantages that there is a dependency of the nodspondences on the
partition correspondences. Hence, incorrect partitiorespondences can cause
the node error to be amplified significantly.

The matching process was realized using a similarity basgdhmg scheme
and a probability based dictionary padding method. Siityiaras measured us-
ing the string edit distance, where the strings were formeh the nodes of the
partitions. Although this method is both effective and eéint, it relies on dis-
mantling local graph structure, and in order to locate th@entorrespondences
of each pair of nodes we need to employ back-tracking. A stead alternative
matching method was to supplement two supercliques sotibgitare of same
degree. To do this, we have padded the smaller one with aircemanber of
dummy nodes. This process did not destroy the supercliquetste. However,
its complexity increases exponentially with the number oindhy nodes that
need to be inserted. To demonstrate their differences, we ¢t@mpared these
two methods together with four alternative methods. Theraditives are discrete
relaxation (Wilson and Hancock, 1997), EM (Luo and Hanc@€i1), quadratic
assignment (Gold and Rangarajan, 1996) and non-quadraiiltigted assign-
ment (Finch et al., 1998). Results suggested that the sitgilzased matching

scheme outperformed the alternatives in terms of the domatching of corre-
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spondences.

Furthermore, with the partitions in hand, we constructedvpkfied graph
representation based on the local partition neighbourhdtis new represen-
tation preserves the structural information of the origgraph and can be used

for graph clustering.

6.1.2 Simplified Graph Representations

Our contribution here was to draw on ideas from the heat siiffuprocess on a
graph to develop a graph simplification method. This repred®mn was based
on extracting concentric layers from the graph. We realibesl simplification
by supplementing the original graph with an auxiliary no@leis node was con-
nected by edges to the nodes on the graph boundary. Then,nsgwded the
layer graphs using the distribution of heat diffusion. Tjmiscess was governed
by the heat equation and the solution was given by the heaekefhe simpli-
fied graph representation is a series of concentric layatscm be matched by
cyclic permutation. Although commute time was not involvedconstructing
the new graph representation, it played an important rolessgigning scores to
it. The score of each node was derived from the commute tintleet@uxiliary
node. Nodes from different layers possess distinct comitnuies due to their
difference in distance from the auxiliary node. Variancgiaph structure does
not disturb the pattern of commute time. As a result, the catertimes on the
nodes of the same layer can be used as an attribute for thegasrpf matching.
We have tested our method on real-world images and the segeit promising.
This method outperformed the alternatives by atait in the worst case. Our
method delivers a more stable graph representation themmative graph simpli-
fication methods such as the random walk (Robles-Kelly anacbiek, 2005a).

This is because the pattern of concentric layers is lesbyltkebe disturbed by
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structural noise. Our method is analogous to level set nastBethian, 1996)
which evolve by front propagation rather than by heat diins

Our second approach to graph simplification was based ord#zethat the
commute time matrix delivers a more stable representatian the adjacency
matrix. The main obstacle of recasting the inexact graptchiag problem as
an inexact tree matching problem is the stability of the teggesentation ex-
tracted from a graph. To overcome this problem, we constduan auxiliary
fully connected graph in which the weights were the commumeds between
pairs of nodes in the original graph. Tree representaticgre wbtained by lo-
cating the minimum spanning trees on these complete grafthexamine the
performance of our method, we have tested the matching methdelaunay
graphs as well as on K-nearest neighbour(KNN) graphs. Tpergr perfor-
mance of the method on the KNN graphs is probably due to theeddistribu-
tion of the edges around the central part of the graphs. Tdukgpes are preserved
as the branches of the spanning tree. The success in prgdustable spanning
tree from the auxiliary graph allowed us to further investegthe commute time
matrix as a graph representation. The information suppyeithe commute time
matrix is richer than the normal adjacency matrix. If we tike adjacency ma-
trix as a "hard” representation, indicating only the coniwty of each pair of
nodes, the commute time matrix is a "soft-link” represdntatgiving a means

of node.

6.1.3 Embedding and Clustering

The properties of the commute time preserving embedding werdied and a
comparison with alternative embedding methods was predefitvo of the most
important properties of the commute time embedding areititeserves the

maximal variance of data and that it maintains data proyindihis embedding
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scheme was successfully applied to the multi-body motianking problem.
The aim here is to control the effect of noise in the factdigsemethod. We in-
terpreted the shape-interaction matrix as an affinity makrom the associated
Laplacian matrix we computed the corresponding commute tmatrix. \We
used the commute time embedding to project the feature pwitd a subspace.
The classification of different objects was achieved by yppla K-means clus-
tering on the embedded feature points. Outliers and noise suppressed by the
clustering method. A set of experiments carried out on stittand real video
sequences showed that our method performed quite well enagr significant
noise contamination.

The application of the commute time to image segmentatic pvasented
in Chapter 5. Here, commute time provides a fine cluster ¢coh@seasure that
gives an enhanced block diagonal structure of the simylaniatrix. Compar-
ing our method with the normalised cut, we have developeddasi grouping
algorithm based on recursive bipartition using the eigetoreof the commute
time matrix. Experiments have been carried out on both gfitttimages and
real-world pictures. Our method outperformed the norredlisut in both main-
taining region integrity and continuity. The importanceoof method is that we
have taken a different approach towards clustering. Rdlttzar seeking a bet-
ter cutting criteria, we here focused on exploiting and @@y the cohesion
relationships in the data. This greatly simplifies the dtisg task.

In this thesis, spectral graph theory has been intensivelyied and new
methods have been developed facilitating more sophistica¢ of the Lapla-
cian eigenspectrum. Distinct from the existing methods approaches are con-
cerned with using more eigenvectors of the affinity matrikisienables us to use
richer information from the original graph and develop maieust and efficient

algorithms. At the same time, it inspires the directions takenmore approaches
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towards solving various computer vision problems usingspeémethods.

6.2 Future Work

The methods proposed in this thesis exhibit several shoiteygs that need fur-
ther research. Moreover, some of the topics addressed beuéktended and
investigated further.

For instance, in Chapter 3, we have restricted our metho@ab @hly with
Delaunay graphs. Since the partition is based on supeediiis not applicable
to non-planar graphs with crossed edges (such as the K haargsbour graph).
This restriction needs to be overcome. One possible saoligido consider al-
ternative feasible sub-structures embedded in the graghasimaximal cliques
or dominant sets (Pavan and Pelillo, 2003a). Based on thescwh relation-
ship between nodes, the dominant set has been succesgiuliigdato the image
segmentation problem. Hence, further investigation oplynaartition matching
could yield some interesting results.

A second issue concerning our matching method is the sizbeofjtaphs.
Since our method is based on hierarchical matching, theacgwf matching in
the early steps is critical. This is increasingly difficudt graphs become larger
since the number of partitions increases.

Despite its effectiveness and efficiency, the multi-lay@pd representation
is vulnerable to structural corruption caused by edge amtk mteletion. This
sometimes disturbs the connectivity of the layer graphse ®ay of recover-
ing from this problem could be to cast the matching process anmaximum
likelihood estimation framework.

Another possible avenue of investigation is to further gtpdtential appli-

cations of the proximity matrix. So far,we have used it omydgtabilising parti-
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tions, hence it could be useful for segmentation and clungter

Graph matching by comparing spanning trees suffers frorblenes due to
the unstable structure of the tree representation andnaon loss. Although
our tree representation is relatively stable for large saghere is clearly room
for improvement in the accuracy of branch location. Anottogic that merits
further investigation is to study the relationship betweantree representation
and the original graph.

Our factorisation method suppresses the effect of outiiatsnoise. How-
ever, it does not deal with degeneracy, dependency andngidsaita. Although
these problems are difficult to handle, our framework codcektended to deal
with them. For instance, the EM algorithm (Gruber and We2§§)4) has been
employed in the factorisation method to deal with uncetyaamd missing data.
Furthermore, covariance-weighted factorisation (Ananaad Irani, 2002) and
a refined shape interaction matrix has also been used (Zelaitor and Irani,
2003). All these methods perform reasonably well and caitydaesincorporated

into our clustering framework.
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