
Visual Tracking for
Augmented Reality

Georg Klein

King’s College

A thesis submitted for the degree of

Doctor of Philosophy

January 2006

Declaration

This dissertation is submitted to the University of Cambridge in partial

fulfilment for the degree of Doctor of Philosophy. It is an account of work

undertaken at the Department of Engineering between October 2001 and

January 2006 under the supervision of Dr T.W. Drummond. It is the result

of my own work and includes nothing which is the outcome of work done

in collaboration except where specifically indicated in the text. This disser-

tation is approximately 50,000 words in length and contains 39 figures.

Georg Klein

Acknowledgements

I thank my supervisor, Dr. Tom Drummond, and my colleagues in the Fall-

side lab for their help and friendship. I have learned a great deal from

them and hope they have enjoyed the last four years as much as I have.

I am grateful to the Gates Cambridge Trust for funding my research, and

to Joe Newman for donating the Sony Glasstron display which made my

work on Augmented Reality possible.

Finally I would like to thank my parents for their patience and continual

support.

Abstract

In Augmented Reality applications, the real environment is annotated or

enhanced with computer-generated graphics. These graphics must be ex-

actly registered to real objects in the scene and this requires AR systems to

track a user’s viewpoint. This thesis shows that visual tracking with in-

expensive cameras (such as those now often built into mobile computing

devices) can be sufficiently robust and accurate for AR applications. Visual

tracking has previously been applied to AR, however this has used artifi-

cial markers placed in the scene; this is undesirable and this thesis shows

that it is no longer necessary.

To address the demanding tracking needs of AR, two specific AR formats

are considered. Firstly, for a head-mounted display, a markerless tracker

which is robust to rapid head motions is presented. This robustness is

achieved by combining visual measurements with those of head-worn in-

ertial sensors. A novel sensor fusion approach allows not only pose pre-

diction, but also enables the tracking of video with unprecedented levels

of motion blur.

Secondly, the tablet PC is proposed as a user-friendly AR medium. For this

device, tracking combines inside-out edge tracking with outside-in track-

ing of tablet-mounted LEDs. Through the external fusion of these comple-

mentary sensors, accurate and robust tracking is achieved within a modest

computing budget. This allows further visual analysis of the occlusion

boundaries between real and virtual objects and a marked improvement

in the quality of augmentations.

Finally, this thesis shows that not only can tracking be made resilient to

motion blur, it can benefit from it. By exploiting the directional nature

of motion blur, camera rotations can be extracted from individual blurred

frames. The extreme efficiency of the proposed method makes it a viable

drop-in replacement for inertial sensors.

Contents

1 Introduction 1

1.1 An Introduction to Augmented Reality 1

1.2 The Registration Challenge . 2

1.3 Visual Tracking for Augmented Reality 3

1.4 AR with a Head-Mounted Display . 5

1.5 AR with a Tablet PC . 5

1.6 Exploiting Motion Blur . 6

1.7 Layout of this Thesis . 7

1.8 Publications . 8

2 Background 9

2.1 Markerless Visual Tracking . 10

2.1.1 Early Real-time Systems . 10

2.1.2 Visual Servoing . 14

2.1.3 Recent Advances in Visual Tracking 16

2.2 Tracking for Augmented Reality Applications 20

2.2.1 Passive Fiducial Tracking . 21

2.2.2 Active Fiducial Tracking . 25

2.2.3 Extendible Tracking . 27

2.2.4 Inertial Sensors for Robustness . 28

Contents ii

2.2.5 Combinations with Other Trackers 29

2.3 Augmented Reality Displays . 31

2.3.1 Optical and Video See-through Displays 31

2.3.2 Advances in HMDs . 33

2.3.3 HMD Calibration . 34

2.3.4 Hand-held AR . 37

2.3.5 Other AR Displays . 40

2.4 Occlusions in AR . 41

2.5 Motion Blur . 46

3 Mathematical Framework 49

3.1 Coordinate frames . 49

3.2 Motions . 50

3.3 Uncertainty in Transformations . 52

3.4 Software . 53

4 Markerless Visual Tracking 54

4.1 Introduction . 54

4.2 Tracking System Operation . 57

4.2.1 Image Acquisition . 58

4.2.2 Model Rendering and Camera Model 60

4.2.3 Image Measurement . 62

4.2.4 Pose Update . 63

4.2.5 Motion Model . 64

4.3 Inertial Sensors . 65

4.4 Sensor Fusion . 66

4.4.1 Tracking System Initialisation . 67

4.4.2 Parametric Edge Detector . 68

Contents iii

4.4.3 Gyroscope Re-calibration . 69

4.5 Results . 71

5 HMD-Based Augmented Reality 74

5.1 Introduction . 74

5.2 Head-Mounted Display . 76

5.3 A Prototype Maintenance Application . 78

5.4 Projection Model and Rendering . 79

5.5 Registration . 81

5.5.1 Registration for Optical See-through Displays 81

5.5.2 User Calibration Procedure . 82

5.5.3 Nonlinear Optimisation . 86

5.5.4 Dynamic Registration . 87

5.6 Results . 89

5.6.1 Maintenance Application . 89

5.6.2 Calibration Performance . 91

5.6.3 Dynamic Registration Error . 92

5.6.4 Ergonomic Issues . 94

6 Tablet-Based Augmented Reality 96

6.1 Introduction . 96

6.2 A Tablet-based Entertainment Application 98

6.3 Tracking Strategy . 100

6.4 Outside-in LED Tracking . 103

6.5 Inside-Out Edge Tracking . 109

6.6 Extended Kalman Filter . 110

6.6.1 An Introduction to Kalman Filtering 110

Contents iv

6.6.2 Filter State . 111

6.6.3 Prediction Step . 113

6.6.4 Correction Step . 114

6.6.5 Sensor Offset Calibration . 115

6.7 Application Implementation . 116

6.7.1 Kalman Filtering over the Network 116

6.7.2 Token detection . 117

6.8 Rendering . 118

6.9 Occlusion Refinement . 123

6.10 Results . 127

6.10.1 Real-time Performance . 127

6.10.2 Errors . 127

6.10.3 Dynamic Performance . 128

6.10.4 Occlusion Refinement . 129

6.10.5 The Tablet PC as an AR Format . 130

7 A Visual Rate Gyroscope 132

7.1 Introduction . 132

7.2 Method . 135

7.2.1 Overview . 135

7.2.2 Axis of Rotation . 136

7.2.3 Blur magnitude . 140

7.3 Results . 141

7.4 Limitations . 144

7.5 Combination with Edge Tracking . 146

7.6 Conclusions . 148

Contents v

8 Conclusion 150

8.1 Summary . 150

8.2 Contributions . 151

8.3 Future Work . 152

A Results Videos 154

B Projection Derivatives 157

B.1 Tracking Jacobian . 157

B.2 HMD Calibration Jacobian . 158

C M-Estimation 161

D Homographies 165

D.1 Estimating a Homography . 165

D.2 Estimating Pose from a Homography . 166

Bibliography 182

List of Figures

2.1 ARToolkit markers . 24

2.2 An occlusion-capable optical see-through HMD 34

2.3 Occlusion handling in AR . 44

4.1 Substantial motion blur due to 2.6 rad/s camera rotation 56

4.2 Tracking system loop . 59

4.3 Lens comparison . 60

4.4 Video edge search at a sample point . 62

4.5 Rate gyroscopes affixed to camera . 65

4.6 Long-term bias drift from three rate gyroscopes 66

4.7 Predicted motion blur vectors . 69

4.8 Pixel and edge intensities from a tracked frame 70

4.9 Motion blur enlargements . 72

5.1 Head-Mounted Display . 75

5.2 Optical layout of the HMD . 76

5.3 Image composition in the HMD . 77

5.4 User’s view vs. computer’s view . 81

5.5 Projection coordinate frames and parameters 82

5.6 Calibration seen through the display . 85

List of Figures vii

5.7 Results captured from video . 90

6.1 Maintenance application on the tablet PC 97

6.2 Tabletop game environment . 99

6.3 Back of tablet PC . 101

6.4 The game’s sensors and coordinate frames 102

6.5 Tablet-mounted LEDs . 104

6.6 Training procedure for LED matching . 105

6.7 Run-time LED matching procedure . 106

6.8 Predictor-Corrector cycle of the Kalman Filter 112

6.9 Token detection . 117

6.10 A scene from Darth Vader vs. the Space Ghosts 120

6.11 Rendering Loop using z-Buffering . 121

6.12 Occlusion error when using z-buffering 124

6.13 Occlusion refinement procedure . 125

7.1 Canny edge-extraction of an un-blurred and a blurred scene 134

7.2 Operation of the Algorithm . 137

7.3 Consensus evaluation . 139

7.4 Rotation center placement results . 142

7.5 Blur magnitude results . 143

7.6 Failure modes . 145

7.7 Pan across the AR game world . 147

1
Introduction

1.1 An Introduction to Augmented Reality

Augmented Reality (AR) is the synthesis of real and virtual imagery. In contrast to

Virtual Reality (VR) in which the user is immersed in an entirely artificial world,

augmented reality overlays extra information on real scenes: Typically computer-

generated graphics are overlaid into the user’s field-of-view to provide extra infor-

mation about their surroundings, or to provide visual guidance for the completion of

a task. In its simplest form, augmented reality could overlay simple highlights, arrows

or text labels into the user’s view - for example, arrows might guide the user around a

foreign city. More complex applications might display intricate 3D models, rendered

in such a way that they appear indistinguishable from the surrounding natural scene.

A number of potential applications for AR exist. Perhaps the most demanding is AR-

assisted surgery: In this scenario, the surgeon (using a suitable display device) can

1.2 The Registration Challenge 2

view information from x-rays or scans super-imposed on the patient, e.g. to see im-

portant blood vessels under the skin before any incision is made. This is an example of

x-ray vision which is made possible by AR: Information which is normally hidden from

view can be revealed to the user in an understandable way. This information can be

acquired from prior models (e.g. blueprints of a building, to show hidden plumbing)

or acquired live (e.g. ultrasound in medicine.)

Augmented Reality can be used to give the user senses not ordinarily available. Data

from arbitrary sensors can be presented visually in a meaningful way: For example,

in an industrial plant, the sensed temperature or flow rate in coolant pipes could be

visually represented by colour or motion, directly superimposed on a user’s view of

the plant. Besides visualising real data which is otherwise invisible, AR can be used

to preview things which do not exist, for example in architecture or design: Virtual

furniture or fittings could be re-arranged in a walk-through of a real building. Special

effects of a movie scene could be previewed live in the movie set. Numerous enter-

tainment applications are possible by inserting virtual objects or opponents into the

real environment.

1.2 The Registration Challenge

The primary technical hurdle AR must overcome is the need for robust and accurate

registration. Registration is the accurate alignment of virtual and real images without

which convincing AR is impossible: A real chessboard with virtual pieces a few cen-

timeters out of alignment is useless. Similarly, if a surgeon cannot be entirely certain

that the virtual tumor he or she sees inside the patient’s body is exactly in the right

place, the AR system will remain unused - Holloway (1995) cites a surgeon specifying

an offset of 1mm at a viewing distance of 1m when asked what the maximum accept-

able error could be. The level of rendering precision required to operate a believable

AR system far exceeds the requirements of VR systems, where the absence of the real

world means small alignment errors are not easily perceived by the user.

1.3 Visual Tracking for Augmented Reality 3

When a user remains motionless and receives pixel-perfect alignment of real and vir-

tual images, a system can be said to offer good static registration. However AR systems

should further exhibit good dynamic registration: When moving, the user should no-

tice no lag or jitter between real and virtual objects, even when undergoing rapid and

erratic motion. Registration errors of either kind produce the effect of virtual objects

‘floating’ in space and destroy the illusion that they are of the real world.

The full requirements for achieving registration differ according to the display format

employed, but a crucial component is almost invariably the continual knowledge of

the user’s viewpoint, so that virtual graphics can be rendered from this. For the tra-

ditional case in which the user wears a head-mounted display (HMD), this amounts

to tracking the 6-DOF pose of the user’s head. A variety of sensors have previously

been used to track a user’s head, from accurate mechanical encoders (which restrict

users to a small working volume) to magnetic or ultrasound sensors (which rely on

appropriate emitters placed in the environment). This thesis shows that accurate and

robust registration is possible without expensive proprietary sensors, using cheap off-

the-shelf video cameras and visual tracking.

1.3 Visual Tracking for Augmented Reality

Visual Tracking attempts to track head pose by analysing features detected in a video

stream. Typically for AR a camera is mounted to the head-mounted display, and a

computer calculates this camera’s pose in relation to known features seen in the world.

As the cost of computing power decreases and video input for PCs becomes ubiqui-

tous, visual tracking is becoming increasingly attractive as a low-cost sensor for AR

registration; further, in an increasingly large number of video see-through AR systems in

which augmentations are rendered onto a video stream (cf. Section 2.3) a video camera

is already present in the system.

Unfortunately, real-time visual tracking is not a solved problem. Extracting pose from

a video frame requires software to make correspondences between elements in the im-

1.3 Visual Tracking for Augmented Reality 4

age and known 3D locations in the world, and establishing these correspondences in

live video streams is challenging. So far, AR applications have solved this problem by

employing fiducials, or artificial markers which are placed in the scene. These markers

have geometric or color properties which make them easy to extract and identify in

a video frame, and their positions in the world are known. Approaches to fiducial

tracking are listed in Section 2.2.

Placing fiducials in the scene works very well for prototype applications in prepared

environments, but is ultimately undesirable. This is not only because of aesthetic con-

siderations: The placement and maintenance of fiducials may just not be practical

when dealing with large environments or even multiple instances of the same envi-

ronment. This thesis therefore focuses on markerless (also called feature-based) tracking

which uses only features already available in the scene. Since matching features in

real-time is difficult, markerless tracking systems typically operate under a number

of simplifying assumptions (such as the assumption of smooth camera motion and

frame-to-frame continuity) which result in a lack of robustness: Existing systems can-

not track the range and rapidity of motion which a head-mounted camera in an AR

application can undergo.

In Chapter 4 of this thesis I show how the required robustness can be achieved. A real-

time tracking system which uses a CAD model of real-world edges is partnered with

three rate gyroscopes: low-cost, low-power solid-state devices which directly measure

the camera’s rotational velocity. By equipping the visual tracking system with a very

wide-angle lens and initialising pose estimates with measurements from these inertial

sensors, gains in robustness can be achieved, but only up to a point. Soon, motion blur

caused by rapid camera rotation causes sufficient image corruption to make traditional

feature extraction fail. Chapter 4 shows how this motion blur can be predicted using

the rate gyroscopes, and how the edge detection process used by the tracking system

can accordingly be modified to detect edges even in the presence of large amounts of

blur. This tightly-coupled integration of the two sensors provides the extra robustness

needed for head-mounted operation.

1.4 AR with a Head-Mounted Display 5

1.4 AR with a Head-Mounted Display

Head pose tracking is a primary requirement for workable head-mounted AR, but it is

not the only requirement. Chapter 5 of this thesis describes the development of an AR

application based on an optically see-through HMD and shows what further steps are

required to obtain good registration. A significant challenge for AR registration in this

case is display calibration: This effectively determines the positions of the user’s eyes

relative to their head, and the projection parameters of the display hardware. Due to

the curved mirrors commonly used in head-mounted displays, registration is often

impaired by distortions in the projection of virtual graphics; I show that such distor-

tions can be estimated as part of the user calibration procedure, and modern graphics

hardware allows the correction of this distortion with very low cost. To provide ac-

ceptable dynamic registration, the delays inherent in visual tracking and graphical

rendering need to be addressed; this is done by exploiting low-latency inertial mea-

surements and motion predictions from a velocity model.

The completed HMD-based system (which re-implements a mock-up of Feiner et al

(1993)’s printer-maintenance application) works, but reveals some shortcomings both

of the tracking strategy used and of the HMD as a display device. This raises the

question of whether a HMD should still be the general-purpose AR medium of choice,

or whether better alternatives exist.

1.5 AR with a Tablet PC

Chapter 6 demonstrates that the tablet PC - a new class of device which combines a

hand-held form-factor with a pen input and substantial processing power - can be

used as a very intuitive medium for AR. Among a number of ergonomic advantages

over the HMD previously used, the tablet PC offers brighter, higher-resolution, full-

colour graphical overlays; however these increased graphical capabilities also create

a new set of registration challenges. Small latencies are no longer an issue, but very

high-accuracy overlays are required; graphics need no longer be brightly-coloured

1.6 Exploiting Motion Blur 6

wire-frame overlays, but the occlusion of real and virtual objects must now be cor-

rectly handled. Chapter 6 shows how local visual tracking on occluding edges of the

video feed can be used to improve rendering accuracy, while blending techniques can

improve the seamless integration of virtual graphics into the real world.

The potential of tablet PCs as an AR medium is demonstrated by a fast-paced enter-

tainment application. The demands this application makes on a visual tracking sys-

tem are different from those of the head-mounted system: Rapid head rotations are

no longer the dominant cause of on-screen motion; instead, rapid close-range trans-

lations and repeated occlusions by the user’s interaction with the application must

be tackled by the tracking system. Chapter 6 shows that the required performance

is achievable through a fusion of markerless inside-out tracking and fiducial-based

outside-in tracking, which uses LEDs placed on the back of the tablet PC. This ap-

proach combines the high accuracy of the previously used markerless system with the

robustness of fiducials, all without requiring the environment to be marked up with

intrusive markers.

1.6 Exploiting Motion Blur

The majority of this thesis shows how visual tracking can be used to deal with specific

requirements posed by AR applications; in Chapter 7, I instead present a technique

which is not applied to any specific application, but which may be a useful addition

to any visual tracking system used for AR.

So far, motion blur in video images has been considered an impediment to visual

tracking, a degradation which must be dealt with by special means - for example by

the integration of rate gyroscopes. Motion blur is however not completely undesir-

able, as it makes video sequences appear more natural to the human observer. Indeed,

motion blur can give humans valuable visual cues to the motions happening in indi-

vidual images; this suggests that computer tracking systems, too, should be able to

gain information from blur in images.

1.7 Layout of this Thesis 7

If the number of sensors required for an AR system can be decreased, this reduces

the system’s complexity, cost, and bulk - hence, being able to replace physical rate

gyroscopes with a visual algorithm would be advantageous. Chapter 7 shows how

motion blur can be analysed to extract a camera’s rotational velocity from individual

video frames. To be a generally applicable replacement for rate gyroscopes, this algo-

rithm should be extremely light-weight (so that no additional computing hardware is

required) and should not rely on any features of individual tracking systems, such as

edge models or fiducials. Chapter 7 shows that by imposing some sensible simplifying

assumptions, rotation can be extracted from video frames in just over 2 milliseconds

on a modern computer - less than a tenth of the computing budget available per frame.

1.7 Layout of this Thesis

The above introduction has outlined the main contributions described in the body of

this thesis: Markerless tracking is described in Chapter 4, its applications to HMD- and

tablet-based AR in Chapters 5 and 6 respectively, and the visual gyroscope algorithm

is presented in Chapter 7.

A review of previous work in the fields of visual tracking and augmented reality is

given in Chapter 2: The origins of the visual tracking system used, alternative tracking

strategies, different categories of AR displays, strategies previously used to deal with

occlusions, and existing approaches to tackle or exploit motion blur of real and virtual

objects are described.

Chapter 3 then briefly introduces the mathematical framework used throughout the

remainder of the thesis. This is based on the Euclidean group SE(3) and its Lie alge-

bra. The notation used for coordinate frames, their transformations, and motions are

explained.

Chapter 8 concludes the body of the thesis with a summary of the contributions made

and discusses issues meriting further investigation. Several appendices subsequently

1.8 Publications 8

describe some of the mathematical tools used in the thesis.

Most of the work presented in this thesis involves the analysis of live video feeds;

consequently it is difficult to convey aspects of the methods used and results achieved

using only still images. Several illustratory video files have been included on a CD-

ROM accompanying this thesis, and they are listed in Appendix A.

1.8 Publications

The majority of the work described in this thesis has been peer-reviewed and pre-

sented at conferences. This is a list of the publications derived from this work:

Klein & Drummond (2002, 2004b): Tightly Integrated Sensor Fusion for Robust Visual

Tracking. In the proceedings of the British Machine Vision Conference (BMVC), Cardiff,

2002. Also appears in Image and Vision Computing (IVC), Volume 22, Issue 10, 2004.

Winner of the BMVA best industrial paper prize.

Klein & Drummond (2003): Robust Visual Tracking for Non-Instrumented Augmen-

ted Reality. In the proceedings of the 2nd IEEE and ACM International Symposium on Mixed

and Augmented Reality (ISMAR), Tokyo, 2003.

Klein & Drummond (2004a): Sensor Fusion and Occlusion Refinement for Tablet-

based AR. In the proceedings of the 3rd IEEE and ACM International Symposium on Mixed

and Augmented Reality (ISMAR), Arlington, 2004. The system described in this paper

was also presented live to conference delegates in a demo session.

Klein & Drummond (2005): A Single-frame Visual Gyroscope. In the proceedings of

the British Machine Vision Conference (BMVC), Oxford, 2005. Winner of the BMVA best

industrial paper prize.

2
Background

This chapter describes past and present work in the fields of visual tracking and aug-

mented reality. Initially, early real-time markerless tracking systems described by the

computer vision community are reviewed, and then recent advances in markerless

tracking are presented. Few of these systems have been applied to AR, so a review of

the tracking strategies typically employed in AR systems follows. Further, this chapter

compares and contrasts different display technologies used for AR, and the calibra-

tion procedures which have been applied to head-mounted displays. Approaches to

occlusion handling in AR applications are presented. Finally, existing computer vision

approaches which exploit (or are robust to) motion blur in images are examined.

2.1 Markerless Visual Tracking 10

2.1 Markerless Visual Tracking

2.1.1 Early Real-time Systems

The RAPiD (Real-time Attitude and Position Determination) system described by Har-

ris (1992) was one of the earlier markerless model-based real-time 3D visual tracking

systems. Such early real-time systems had access to far less computing power per

frame than is available today; while one solution to this problem was the use of dedi-

cated video processing hardware, Harris developed a technique which minimised the

amount of data which needed to be extracted from the video feed. Many subsequent

visual tracking systems (including the system used in this thesis) share principles of

operation with Harris’ work; therefore, a description of the system serves as a good

introduction to marker-less visual tracking techniques.

In RAPiD, the system state contains a description of camera pose relative to a known

3D model. Pose is represented by six parameters, three representing translation and

three representing rotation. Each video frame, the pose estimate is updated: first by

a prediction according to a dynamic motion model, and then by measurements in the

video input. Measurements in the video input are made by rendering model edges

according to the latest predicted pose, and measuring the image-space difference be-

tween predicted and actual edge locations. Edge searches are local, one-dimensional,

and confined to a small region near the rendered edges: This vastly reduces the com-

putational burden of video edge-detection and enables real-time operation. The edge

searches originate from a number of control points located along rendered edges and

are in a direction perpendicular to the rendered edges. Typically 20-30 control points

are used per frame.

Having measured the distances (errors) between rendered and actual image edges,

pose is updated to minimise these errors. This is done by linearising about the cur-

rent pose estimate and differentiating each edge distance with respect to the six pose

parameters. Generally the system is over-determined, and errors cannot all be made

zero: Instead, the least-squares solution is found.

2.1 Markerless Visual Tracking 11

RAPiD demonstrated real-time tracking of models such as fighter aircraft and the ter-

rain near a landing strip. It required pre-processing of the models to determine visibil-

ity of control-points from various camera positions (this was achieved by partitioning

a view-sphere around the model.) Increases in processing power and advances in

technique have since given rise to many systems which take the basic ideas of RAPiD

to the next level.

Alternative approaches to Harris’ at the time included work by Gennery (1992) and

Lowe (1992). Where RAPiD performs one-dimensional edge detection along a few

short lines in the image, Lowe uses Marr-Hildreth edge detection on substantially

larger portions of the image using hardware acceleration for image convolution.1 The

probabilities of a fit of individual model edge segments to extracted lines are calcu-

lated according perpendicular edge distance, relative orientation and model parame-

ter covariance, and these likelihoods are used to guide a search to best match model

edges to detected lines. This match is then used to update model parameters by least

squares; if the least-squares residual error is found to be large, the match is rejected

and the search repeated until a low-residual solution is found. The computational ex-

pense of this method limited the system to operation at 3-5 Hz compared to RAPiD

which ran at 50Hz. However, the system already allowed the use of models with

internal degrees of freedom and was robust in the face of background clutter.

Gennery (1992) also uses specialised edge-detection hardware, but searches the edge-

detected image in a fashion similar to RAPiD’s: For each predicted model edge, corre-

sponding image edges are found by one-dimensional perpendicular2 searches. How-

ever, where RAPiD uses few control points per edge, Gennery places a control point

every three pixels. Furthermore, measurements are weighted according to the quality

of an edge. Background boundary edges are rated as being of high quality; internal

edges are weighted according to contrast and the angle difference between adjacent

faces.

1The algorithm and convolution hardware could handle full-frame edge detection, but the computa-
tional expense of edge-linking after convolution limits the implementation to perform edge-detection in
a limited region around the predicted edge locations.

2Gennery only searches in the vertical or horizontal direction, whichever is closer to the perpendic-
ular; RAPiD and others also search diagonally.

2.1 Markerless Visual Tracking 12

Gennery further proposes to penalise edges which deviate from the expected image

orientation, and considers finding all edges near control points instead of the nearest

edge only. Finally, the system can operate on point features instead of line features,

and has provisions for the use of multiple cameras to remove position uncertainty

along the direction of the optical axis. This is made possible by the propagation of un-

certainty estimates using a Kalman filter (Kalman, 1960) (Kalman filters and Extended

Kalman Filters (EKFs) which operate under non-linear dynamics are commonly used

in tracking, and are described in Section 6.6.)

Both Harris and Gennery make use of a Kalman filter to predict motion. In both cases,

the filter contains object pose and the first derivative (velocity.) Plant noise is modeled

in both cases by assuming that acceleration is a zero-mean white random variable, and

therefore uncertainty is added to the velocity component in the filter. Harris allows

this uncertainty to propagate to position through the filter, whereas Gennery adds

it explicitly. Lowe argues that a Kalman filter is inappropriate for dynamics as they

occur in robotics, and replaces the filtering of the computed least-squares estimate

with the inclusion of a prior stabilising weight matrix to the least-squares process (this

can give results similar to the use of a Kalman filter which does not track velocity.)

Approaches to improving RAPiD’s robustness are presented by Armstrong & Zis-

serman (1995). The authors identify a number of performance-degrading conditions

often occurring in real-life tracking situations and propose steps to reduce their im-

pact. Primarily, this is done by the identification and rejection of outliers, which is

done at two levels.

First, the model of the object to be tracked is split into a number of primitives, which

can be straight lines or conics. Control points are placed on these primitives as for

RAPiD, but their number is such that redundant measurements are taken for each

primitive. RANSAC (Fischler & Bolles, 1981) is then used to cull outlying control

point measurements. For the case of a straight line primitive, for example, a num-

ber of hypothetical lines constructed from the measurements of two randomly chosen

control points are evaluated according to how many of the other control point mea-

2.1 Markerless Visual Tracking 13

surements fall near the proposed lines. The highest-scoring line is used to eliminate

control points which do not fall near it.

After outlying control points have been rejected, outlying primitives are identified and

deleted. For each detected primitive in turn, a pose update is computed using only the

control points of all the other primitives. The primitive is compared to its projection

in this computed pose. If there is a significant difference, the primitive is classed an

outlier and rejected. After all primitives have been tested and rejected if necessary,

a pose update is computed from the remaining primitives only. The weight of each

primitive in the pose update is determined by a confidence metric, which is calculated

from the number of times a primitive has been previously deleted.

The removal of outliers is important for algorithms using least-squares optimisation.

Standard least squares attempts to minimise the sum of the squares of errors: there-

fore, the influence of each error on the solution is directly proportional to its magni-

tude. Since outliers frequently produce errors of large magnitudes and hence have a

large effect on a least-squares solution, their removal is desirable. An alternative to ex-

plicit outlier removal by case deletion or RANSAC is the use of a robust M-estimator:

the influence of large errors is reduced by replacing the least-squares norm with an

alternative function whose differential (and hence influence function) is bounded. M-

estimators are described further in Appendix C.

Drummond & Cipolla (1999) employ an M-estimator to improve the robustness of a

RAPiD-style edge tracking system. Further, RAPiD’s view-sphere approach to deter-

mining control point visibility is replaced by a real-time hidden edge removal based

on graphics acceleration hardware and a BSP-tree1 representation of the model to

be tracked; This allows the tracking of more complex structures than possible with

RAPiD. This system forms the basis for the visual tracking systems described in this

thesis and further details of its operation are given in Chapter 4.

Marchand et al (1999) use an M-estimator as part of a 2D-3D tracking system. A veloc-

1A Binary Space Partition is a common graphics technique for sorting elements of 3D scenes in depth
order according to the current viewpoint.

2.1 Markerless Visual Tracking 14

ity model such as a Kalman filter is not used; instead, motion in the image is computed

using a 2D affine motion model. Perpendicular edge searches are performed around

the object’s outline and a robust M-estimator calculates the 2D affine transformation

which best matches the newly detected edges. Subsequently, the 3D pose is refined by

searching in the pose parameter space in an attempt to place model edges over image

areas with a high intensity gradient. While the entire algorithm is computationally

reasonably expensive, the affine tracking runs at frame rate and - due to the use of the

M-estimator - is capable of handling partial occlusion and background clutter.

Robust estimators and outlier rejection are used by Simon & Berger (1998) to track a

known model consisting of three-dimensional curves. Using a motion field estimate,

snakes are fitted to image curves near the previous pose. Each visible model curve is

projected and sampled, with distances to the snake taken each sample. The samples

are combined using a robust estimator to produce an error value for the entire curve,

the differentials of which with respect to pose are known. All of the curves’ error

values are then minimised with a global robust estimator. After this step, curves with

a high residual error after the global optimisation are rejected, and the pose is refined,

this time minimising the curve errors with standard least squares. The algorithm is

not implemented in real-time, but deals well with snakes which curve around local

minima. Besides curves, line and point features are also supported.

2.1.2 Visual Servoing

An alternative formulation to the visual tracking problem has emerged from the

robotics community under the guise of visual servoing. Here a camera is typically at-

tached to a robot and vision is used in closed-loop control system to position the robot

relative to a visual target. The work of Espiau & Chaumette (1992) has served as the

foundation for subsequent applications to the task of visual tracking.

Espiau & Chaumette (1992) use visual servoing to guide a six-jointed robot to a target

position. At each time step, a Jacobian matrix relating the robot’s degrees of freedom

to the image error between current and target position is calculated, and the robot joint

2.1 Markerless Visual Tracking 15

velocities set so as to minimise the image error. Closed-form image derivatives under

camera motion are derived for many different geometric primitives, including points,

lines and spheres, and the work places emphasis on a stable control law; in terms of

vision, experimental results are limited to servoing relative to four bright white disks,

which is done at frame-rate.

This work in robotics has led to the concept of virtual visual servoing - this is essen-

tially visual tracking from a different perspective: A camera model is considered to

be attached to a virtual robot; each frame, this virtual robot is servoed in such a way

as to match the image visible in the video camera, and so camera pose is determined.

This formulation has been applied to augmented reality systems by Sundareswaran &

Behringer (1998), Behringer et al (2002), and Marchand & Chaumette (2002); the ap-

proaches differ in type of image feature employed for measurement. Sundareswaran

& Behringer (1998) use circular concentric ring fiducial markers which are placed at

known locations on a computer case to overlay the hidden innards of the case on the

camera’s video feed. These markers are unique and can be found by searching the

image; this allows the system to initialise itself from an unknown viewpoint and pre-

vents tracking failure due to correspondence errors, but incurs a computational per-

formance penalty. Behringer et al (2002) extend this approach to include edges and

corners already present in the scene - these features are described in a CAD model.

Marchand & Chaumette (2002) do not employ markers but demonstrate visual ser-

voing-based AR using a number of preexisting model features including points, lines

and (the edges of) cylinders, all of which have known 3D locations. Interestingly,

Comport et al (2005) compare the virtual visual servoing formulation with the system

of Drummond & Cipolla (1999) and conclude that the fundamentals of both systems

are very similar - although the system by Drummond & Cipolla (which forms the basis

for the tracking used in this thesis) does not fully exploit the benefits of M-Estimators

since it only performs one iteration per frame.

2.1 Markerless Visual Tracking 16

2.1.3 Recent Advances in Visual Tracking

A number of interesting developments in model-based tracking have been presented

in recent years. One such advance is the integration of point features into edge-based

trackers, which had been demonstrated by Vacchetti et al (2004) and Rosten & Drum-

mond (2005).

The tracking of feature points on objects has the advantage that such feature points

often provide a descriptor, allowing the correspondence of features from one frame to

the next to be determined. This is in contrast to edge-based tracking, where correspon-

dence is generally based on proximity to a prior estimate rather than the appearance of

an edge; this can lead to edge-based trackers ‘locking on’ to incorrect edges, resulting

in tracking failure. The disadvantage of using descriptors for interest points (which

can be as simple as small image patches) is that they are often of limited invariance

to aspect and lighting changes. To operate across these changes, many approaches

update descriptors with time; this updating can however lead to feature drift where,

after many frames, the 3D position of the feature no longer corresponds to its origi-

nal location. Edges on the other hand are invariant to pose and illumination changes

(even if their appearance may not be) and so tracking based on CAD edge models is

drift-free.

Vacchetti et al (2004) combine edge-based tracking with earlier work on tracking Har-

ris feature points. For every new frame, interest points are first found in the image

and then matched with interest points in the closest of a number of offline reference

frames; the 3D model positions of interest points in the reference frames are known, so

this gives 2D-3D correspondences for the current frame, from which a pose estimate

may be obtained. To avoid the jitter incurred by such potentially wide-baseline match-

ing, and to handle objects which are not richly textured but are bounded by strong

edges (e.g. white walls) this initial pose estimate is combined with both edge mea-

surements and feature point correspondences with the previous frame; by optimising

over the current frame’s pose, the previous frame’s pose and the 3D positions of the

matched feature points, smooth camera trajectories are obtained. (The authors further

2.1 Markerless Visual Tracking 17

describe a multi-modal estimator allowing the use of multiple hypotheses from indi-

vidual edgels, however this just corresponds to multiple iterations of standard RAPiD

with the addition of an M-estimator, using the nearest hypothesis at each iteration.)

Rosten & Drummond (2005) apply the combination of edge and point tracking to an

indoor environment. The authors argue that in such a scenario, the maintenance of

up-to-date key-frames is an unrealistic proposition which further does not account for

feature-rich environmental clutter. The offline model is restricted to edges, and corner

points extracted using the novel FAST algorithm are matched from previous to current

frame only, providing a motion estimate between the two frames which can exploit

clutter rather than being corrupted by it. Very large inter-frame motions are tolerated

by estimating the the probability of each feature match being an inlier before using Ex-

pectation Maximisation to model the data likelihood distribution; inlier probabilities

are estimated by learning (over time) a feature-vector-SSD to inlier probability map-

ping function. The Expectation Maximisation avoids the local minima associated with

direct unimodal optimisations and allows for impressive inter-frame camera motions

even in the presence of a large fraction of outliers. Following the point-based motion

prediction, edge based tracking proceeds in the standard fashion.

Besides the additional use of point features, a number of other improvements to

RAPiD-style edge tracking have been presented. Notable are the texture-based edge

detector of Shahrokni et al (2004), which improves the quality of edge detection be-

yond the simple search for an intensity disparity, and the multi-modal extensions of

Kemp & Drummond (2004, 2005), which tackle the tendency of a unimodal estimation

system to ‘get stuck’ in local minima.

Shahrokni et al (2004) propose a replacement for the intensity-based edge detection

which forms the basis for most RAPiD-style trackers. The 1D texture change-point de-

tector models pixels along an line as belonging to one of two texture classes, where the

point along the line at which the class changes being the detected edgel position. Tex-

tures are modeled as generated by either a zeroth- or a first-order Markov process and

prior knowledge of the texture models can be used beneficially, but is not required.

2.1 Markerless Visual Tracking 18

The resulting algorithm is not substantially slower than a simple intensity-based de-

tection.

Kemp & Drummond (2004) modify this texture-based edge detector so that it can

yield multiple edgel locations rather than a single maximum. Instead of then using

a unimodal estimator, edgel measurements are then combined using two stages of

RANSAC: First, RANSAC is performed on each individual model edge to find hy-

potheses for the 2-DOF motion of each edge; then, a second stage of RANSAC finds

6-DOF camera pose from three edge hypotheses. In the second stage, the sampling

of edge hypotheses is guided by a probabilistic extension to the RANSAC algorithm

which approximates the posterior distribution of edge parameters for any given model

edge. The use of multiple hypotheses makes this system markedly more robust to the

local minima which unimodal RAPiD implementations (including the ones described

in this thesis) are subject to.

The second stage of this approach samples only some of the possible combinations of

three edge hypotheses, since the total number of such combinations may be vast and

each hypothesis requires a 6×6 matrix inversion for evaluation. Kemp & Drummond

(2005) introduce a dynamic clustering algorithm which allows edges to be grouped

into a small number of clusters, where the edges in each cluster constrain fewer than

the full six pose degrees of freedom - that is, lines of the measurement Jacobian are

grouped to produce (approximately) rank-deficient groups. Each cluster might then

only require a 4-DOF or 2-DOF parameter estimation. For example, vertical lines far

away from the camera might be grouped into a cluster which is sensitive only to cam-

era yaw and roll, but not to pitch or translation. The reduced cost of searching within

each lower-dimensional cluster allows the authors to exhaustively search all the com-

binations of individual edge hypotheses rather than sampling a smaller number using

RANSAC.

Besides improvements to model-based tracking, recent years have seen the emergence

of several real-time systems capable of tracking a camera moving in a previously un-

known scene. This class of system originates from robotics, where a robot (such as a

2.1 Markerless Visual Tracking 19

Mars lander) may be expected to explore an unknown environment. In AR, the use-

fulness of a system which can map completely unknown surroundings is less clear

(if nothing is known about the environment, what useful annotations can one ex-

pect?) but such systems could well be adapted for extendible tracking, where the gaps

in knowledge of sparse pre-existing models are filled in on-line.

Davison (2003) presents a real-time monocular vision-based SLAM (Simultaneous Lo-

calisation and Mapping) implementation. This system tracks feature points using

small 2D image patches and cross-correlation; apart from four known features ini-

tialised at start-up, the 3D positions and appearances of all other features tracked are

learned on-line. The coupled uncertainties of camera pose, velocity and feature point

3D locations are stored in a large Kalman filter. Real-time performance is achieved by

restricting the expensive cross-correlation matching to the 2D ellipsoidal projections

of likely feature positions given the current filter state.

Care is taken to avoid inserting non-Gaussian uncertainties into the filter state: when

new features are detected using a roving saliency detector, they are not immediately

inserted into the scene map (where they would have an infinite covariance in the view-

ing direction) but are first tracked in 2D for a number of frames while a particle filter

is applied to the feature’s depth estimate. Only when this particle filter converges on

an approximately Gaussian depth PDF is the feature inserted into the Kalman filter.

While Davison’s system is capable of handling respectably fast camera motion, it is

based on a uni-modal filter and thus prone to unrecoverable tracking failures due

to local minima or excessive motions. Pupilli & Calway (2005) present a particle-

filter based tracking system which attempts to address these failure modes. Particle

filters, which (given a sufficient number of samples) can be used to represent a distri-

bution containing numerous modes (which need not be Gaussian) have been known

to provide extraordinary tracking robustness in low-DOF real-time systems such as

CONDENSATION (Isard & Blake, 1998). However the number of particles required

rises exponentially with the number of degrees of freedom tracked; Pupilli and Cal-

way demonstrate that by using a fast inlier/outlier count of tracked image features

to evaluate individual particles, 6-DOF camera tracking using a particle filter is now

2.2 Tracking for Augmented Reality Applications 20

achievable in real-time. The estimated environment map however is not included in

the particle filter and individual features positions are modeled as statistically inde-

pendent (no full covariance) - thus while the system is more robust than Davison’s to

rapid camera motions and occlusions, the quality of map estimation is lower.

Several of the systems described here offer tracking performance superior to the sys-

tem used for AR tracking in this thesis. However it is worth noting that this per-

formance typically requires large amounts of processing power - few of systems just

described would run at video rates on the tablet PC used in Chapter 6, let alone leave

any spare processor time for AR rendering. Further, systems which use points and

texture patches are often not operable in the presence of motion blur.

2.2 Tracking for Augmented Reality Applications

This section outlines the tracking strategies used in recent AR applications. A wide

range of non-visual tracking technologies, such as magnetic and ultrasound, have

been applied to AR as described in recent surveys by Azuma et al (2001) and Rolland

et al (2000); however, the low cost of video cameras and the increasing availability of

video capture capabilities in off-the-shelf PCs has inspired substantial research into

the use of video cameras as sensors for tracking.

Despite this, markerless visual tracking is relatively rare in augmented reality applica-

tions. Recent years have seen the emergence of a few marker-less systems proposed

for AR but most of these do not go beyond the “textured cube” or “teapot” stage: triv-

ial insertions of simple graphics into the video feed of vision researchers’ experimental

tracking systems. By contrast, it is still common for more demanding augmented re-

ality applications to make use of fiducials: easily recognisable landmarks such as con-

centric circles placed in known positions around the environment. Such fiducials may

be passive (e.g. a printed marker) or active (e.g. a light-emitting diode); both types of

fiducial have been used in AR applications.

2.2 Tracking for Augmented Reality Applications 21

2.2.1 Passive Fiducial Tracking

One of the earlier passive-fiducial systems is described by Mellor (1995). Small (1cm)

printed black rings are attached to a plastic skull to investigate registration accuracy

for medical x-ray vision. The 3D positions of the fiducials are determined off-line

using a laser range scanner. During operation, fiducial positions are extracted from

the video image; the fiducials are identical in appearance, so correspondence between

the 3D marker information and the detected 2D positions is resolved by an exhaustive

search of the combinations to find the best match. Five or more correspondences are

used to solve for the 12-DOF projection matrix, which is used to render a scanned

model onto the captured video image.

Mellor’s fiducial detection operates by searching all vertical and horizontal scan-lines

for light-dark-light-dark-light patters corresponding to the intersection of the scan-

line with the ring fiducials. Matches from adjacent scan-lines are grouped to detect

possible fiducials, which are then located using image moments. Both the fiducial

detection and correspondence searches are sped up by using information from previ-

ous frames; fiducial detection is initially performed in windows around the previous

frame’s detected positions, and if this succeeds, correspondence is propagated. Only

if enough fiducials are not found in this way is a full-frame extraction and correspon-

dence search performed.

The system achieves a 2Hz frame-rate, but this is mostly due to the slow video-capture

capability of the hardware used; the feature-extraction, correspondence and projection

matrix calculations themselves are capable of interactive frame-rates (20 Hz.) The

composited image is displayed on a CRT monitor.

Hoff et al (1996) use similar concentric circle markers for their head-mounted main-

tenance application. The user wears a head-mounted see-through display, and head

pose is determined by a head-mounted camera. The fiducials are placed on a desktop

computer case. The user is shown maintenance instructions such as arrows indicating

parts or motions overlaid on the scene.

2.2 Tracking for Augmented Reality Applications 22

Fiducials are detected by first segmenting the image into black and white regions.

Next, small regions of black and white are eliminated. Finally, the centroids of re-

maining connected single-colour regions are calculated. Where the centroid of a black

region coincides with the centroid of a white region, a fiducial is found. Match-

ing of fiducials is simplified by grouping five of the markers in a unique pattern in

which three are co-linear: thus once three co-linear fiducials have been found in the

image, the detection of the pattern and subsequent matching of the remaining fea-

tures is straightforward. Four fiducials are used to calculate camera pose using a pre-

calibrated camera model. The registration of multiple target objects is supported by

using more than one unique cluster of five fiducials.

No attempt is made to re-use information from previous frames: rather, the system

performs a localisation step every video frame. While this continual re-localisation

overcomes the limitations of local search used by other systems, it requires a video

capture board with built-in video processing functionality to process the entire im-

age at every time step. Given that the system contains no notion of velocity (this

was planned as future work) it cannot make any predictions of future camera motion;

since an optical see-through display is used (see Section 2.3) substantial dynamic reg-

istration errors could be expected. On the other hand, the state estimate cannot be

corrupted, so tracking cannot catastrophically fail.

Neumann & Cho (1996) simplify the correspondence problem by utilising full-colour

frames. Stick-on paper circles and triangles in six different colours are used to annotate

aircraft parts for assembly. Fiducials are detected by searching a heavily sub-sampled

frame for the correct colour; this is initially done around the previous frame’s position,

or across the full frame if the local search fails. RANSAC is employed to find pose from

any three correspondences. Due to sub-sampling and local search, the algorithm is

rapid, requiring 0.03 seconds to calculate pose from a 320×240 pixel frame, however a

slow digitizer slows the actual application down to 6Hz. The 3D positions of fiducials

are acquired using a digitizer probe.

Cho et al (1997) extend this work by eliminating the need for a precise prior knowl-

edge of the 3D position of all placed fiducials. A core set of initial fiducials has known

2.2 Tracking for Augmented Reality Applications 23

positions, but after this, new fiducials in the scene are detected and their pose automat-

ically determined. New fiducials are initialised along an image ray with a covariance

matrix describing the 3D uncertainty of the point’s position in space; this uncertainty

is initially set to be a sphere. With subsequent frames, the point’s position is adjusted,

and uncertainty shrunk, by slightly ad-hoc adjustments depending on the point’s cur-

rent uncertainty and new detected image positions. In contrast to later systems (in

particular, in contrast to SLAM systems) the covariance of each point is independent;

camera position uncertainty is not considered. Cho & Neumann (1998) also refine the

concept of colour-coded fiducials by developing multi-ring coloured fiducials; instead

of coloured circles, fiducials consisting of concentric coloured rings of different thick-

nesses are used, which both increases the number of unique features which can be

generated and aids feature detection.

Koller et al (1997) also use fiducials, but propagate a state estimate with a 15-DOF

Kalman filter, which contains pose, first derivatives, and second derivatives for trans-

lation: a constant angular velocity and constant linear acceleration motion model is

used. Large squares are used as fiducials. On one colour channel, these contain a bi-

nary identification encoding which is used to solve the correspondence problem for

tracking initialisation.

Tracking is performed locally around predicted fiducial positions, and the corners

of each marker are detected by searching for edges, and then calculating the posi-

tion where the edges intersect. The search range is determined by state uncertainty.

The image locations are used directly as measurements for a state EKF and include

measurement noise information. Should measurement noise for a landmark be par-

ticularly high, that landmark is flagged as unreliable; the system automatically re-

initialises itself when too many landmarks become unreliable.

Stricker et al (1998) take a slightly different approach to square fiducial detection:

fiducials are tracked by performing RAPiD-style edge searches about predicted posi-

tions. These measurements are combined directly using an M-estimator rather than

first constructing edges and intersecting these to find corners of squares: it is claimed

2.2 Tracking for Augmented Reality Applications 24

Figure 2.1: ARToolkit markers are favoured for rapid AR application development.
Samples shown here are distributed with the library.

that this extra step only reduces robustness in the face of outliers and partial occlu-

sions. The system also rejects a full 3D motion model in favour of a simple 2D model

which is faster to compute. As this system is used for AR applications, emphasis

is placed on robustness and ease-of-use, and so the system can automatically be re-

initialised when tracking fails. This is done by a blob-growing algorithm which lo-

cates all black squares in the image. Identification is again by colour bars along one

side of the square.

While many passive fiducial-based tracking implementations for AR exist, none can

match the ubiquity of ARToolkit. This popular library offers a reliable and easy-to-

use fiducial tracking system geared towards AR applications. It is based on the work

of Kato & Billinghurst (1999) and uses a heavy black square outline into which a

unique pattern is printed; sample ARToolkit markers distributed with the library are

illustrated in Figure 2.1. Fiducials are localised by image thresholding, line finding

and extracting regions bounded by four straight lines; template matching yields the

identity of such regions. Each marker, having four corners, yields a full 3D pose. Its

popularity is in no small part due to its ease-of-use: Markers can quickly be produced

on any printer and scanned in to the computer using a video camera and compre-

hensive software supplied with the toolkit. ARToolkit enabled the development of

dozens of AR applications and is seen as the tool of choice when tracking is not the

primary consideration in an AR prototype. The library is available for download as

a fully-featured library1 with an active development community. Work on improving

the system is ongoing; for example, Owen et al (2002) replace the binary image inside

the square rectangle with DCT basis functions, improving the system’s resilience to

noise and occlusion.

1http://artoolkit.sourceforge.net/

http://artoolkit.sourceforge.net/

2.2 Tracking for Augmented Reality Applications 25

Naimark & Foxlin (2002) present a circular fiducial which is not based on concentric

ring colors but rather on fifteen binary cells arranged inside the circle. Algorithms

for finding and identifying these fiducials are implemented in hardware to produce a

self-tracking camera-sensor unit; since the fiducial extraction and identification can-

not operate at full frame-rate on the hardware used, inertial sensors and prior infor-

mation from previous frames are combined in a sensor fusion filter to reduce tracking

workload. The resulting system has been developed into the Intersense VisTracker

product1.

2.2.2 Active Fiducial Tracking

Infra-red LEDs can output light across a very narrowly tuned wave-band, and if this

band is matched at the sensor with a suitable filter, ambient lighting can be virtually

eliminated. This means the only thing visible to the imaging sensor is the fiducials,

and this vastly reduces the difficulty and computational requirements for tracking.

For this reason, LEDs have long been used in commercially available tracking systems

and real tracking applications; for example, LEDs mounted to a pilot’s helmet can be

used to track head pose in aircraft and simulators. Such applications are described in

a survey by Ferrin (1991).

Tracking head-mounted LEDs with an external camera is an example of outside-in

tracking, where the imaging sensor is mounted outside the space tracked. Outside-in

tracking can be used to produce very accurate position results - especially when mul-

tiple cameras observe the tracked object - but they cannot generally provide measure-

ments of orientation as accurately as inside-out systems, where the imaging sensor is

itself head-mounted and any rotation of the user’s head causes substantial changes in

the observed image. Further, the range of an inside-out system is limited by the num-

ber of fiducials placed in the world rather than by the range of the world-mounted

sensors; even for active fiducials such as LEDs, it is generally cheaper to install more

fiducials than it is to install more cameras.

1http://www.intersense.com/products/

http://www.intersense.com/products/

2.2 Tracking for Augmented Reality Applications 26

Perhaps the best-known implementation of LED-based inside-out tracking is UNC’s

HiBall tracker which has its origins in the work of Wang et al (1990) and Ward et al

(1992). Lateral-effect photodiode detectors are worn on the user’s head: these detec-

tors yield the 2D location of a single LED illuminating the imaging surface. Compared

to standard video cameras, these detectors have the advantage of a higher resolution

(1 part in 1000 angular accuracy) and much faster operating speeds (660 µsec to lo-

cate a single LED.) Large arrays of precisely-positioned ceiling-mounted LEDs can be

controlled in software so that each sensor sees only one illuminated LED at any one

time, solving the correspondence problem faced by all LED-based systems. Welch &

Bishop (1997) replace the mathematical underpinnings of this system with the intro-

duction of the SCAAT (single constraint at-a-time) framework, which is essentially

a 12-DOF Extended Kalman Filter using under-constrained measurements: 2D mea-

surements from each detected LED are inserted directly into the filter as they arrive,

without first gathering enough measurements to produce a 6-DOF pose estimate. The

system is repackaged and optimised as the commercialised HiBall tracker as described

by Welch et al (1999); the 5-lens device weighs 300g and is capable of 2000Hz opera-

tion with sub-millimeter tracking accuracy.

A disadvantage of the HiBall system is that it does not operate as a camera; that is,

it does not provide images which could be used for a video see-through AR system,

and this is also true of any system which uses IR transmissive notch filters to iso-

late LEDs. An alternative is presented by Matsushita et al (2003) who combine a

high-speed CMOS imaging chip with an FPGA to produce the ID CAM. The device

is programmed to transmit alternating “scene” and “id” frames: each scene frame is

a standard image of the scene as would be recorded by a monochrome 192×124-pixel

camera, whereas each id frame contains the image locations and identities of active

LED markers. Markers transmit a strobing 8-bit id signal which is detected by the

ID CAM as it samples the sensor at 2kHz to generate an id frame. The system is re-

markably robust to any interfering ambient light and is intended to be embedded into

hand-held devices such as mobile telephones.

2.2 Tracking for Augmented Reality Applications 27

2.2.3 Extendible Tracking

Purely fiducial-based visual tracking systems (particularly those using a single cam-

era) are vulnerable to occlusions of fiducials, either because they may be covered by

foreground objects e.g. the user’s hand or because they may disappear from view

when the user’s head is turned. The use of natural features to extend the range and ro-

bustness of fiducial-based augmented reality systems has been proposed by Park et al

(1998) and Kanbara et al (2001). In contrast to model-based tracking (and similarly

to SLAM systems), these systems do not have prior information about the position of

these natural features in space, but attempt to estimate them during operation.

Park et al (1998) use a single camera and recover feature positions with a structure-

from-motion algorithm. Early during the system’s operation, a sufficient number of

fiducials is available to estimate camera pose: the fiducials are unique so that matching

is trivial. The 2D positions of potentially trackable natural features is tracked, and

used with a 3D filter to estimate the features’ 3D positions (a “Recursive Average of

Covariances” filter converges within circa 90 frames.) Individual features are tracked

by an iterative optical flow approach which either converges on the feature or rejects it

as un-trackable. Natural features may be either points or image regions. In the absence

of fiducials, the positions of four natural features close to the four image corners are

used to determine pose. The system presented was not capable of real-time operation.

Kanbara et al (2001) employ stereo vision instead of structure-from-motion. In the first

obtained stereo frame pair, camera pose is reconstructed from the visible fiducials,

which are found by colour matching. The frames are then split into a grid of small

search windows, and each window is searched for a suitable natural feature with an

‘interest operator.’ Stereo information is used to recover the depth of these features.

During normal tracking, fiducials are detected by colour matching and natural fea-

tures are detected by cross-correlation in the image with a template from the previous

frame. In both cases, the search is limited to a small area about the predicted image po-

sition. A velocity model is not used; instead, three rate gyroscopes measure rotation

2.2 Tracking for Augmented Reality Applications 28

between frames. Once rotation has been estimated, the fiducial furthest away from

the camera is found in the image. Its displacement from its rotation-predicted image

position is then assumed to correspond to camera translation between frames. Hence

camera rotation and translation are both predicted, allowing the use of a very local

search for the remaining features. Tracked features are subjected to a confidence eval-

uation before their image positions are used to update camera pose by a least-squares

method (weighted by feature confidence.)

2.2.4 Inertial Sensors for Robustness

The use of inertial sensors such as rate gyroscopes and accelerometers is wide-spread

in virtual and augmented reality applications. Visual tracking systems perform best

with low frequency motion and are prone to failure given rapid camera movements

such as may occur with a head-mounted camera. Inertial sensors measure pose deriva-

tives and are better suited for measuring high-frequency, rapid motion than slow

movement where noise and bias drift outweigh. The complementary nature of vi-

sual and inertial sensors has led to the development of a number of hybrid tracking

systems.

You et al (1999) combine rate gyroscopes with natural feature tracking. The system

measures rotation only. Each frame, an initial rotation estimate is obtained from rate

gyroscopes. Natural feature tracking as in Park et al (1998) is then used to correct

this initial estimate. Natural feature tracking is replaced by fiducial tracking in You

& Neumann (2001), which also adds linear accelerometers and introduces a state esti-

mate in the form of an extended Kalman filter. Square fiducials with unique internal

patterning are used: this patterning allows the tracking software to tell individual

markers apart using principal component analysis. Marker positions are predicted for

each frame and accurately determined using a coarse-to-fine detection procedure. The

detected image positions are directly used as measurements for the EKF.

The same combination of inputs (6-DOF inertial data and fiducial-based vision) is also

used by Yokokohji et al (2000): inertial sensors and an extended Kalman filter are used

2.2 Tracking for Augmented Reality Applications 29

not only to improve the robustness of a hardware-assisted landmark tracking system,

but also to compensate for the end-to-end system delay by predicting future user head

motion for the HMD display section. The authors go to great engineering lengths to

minimise the system’s delay so as to reduce dynamic registration error, specifying

the use of a real-time operating system capable of running in time with camera refresh

signals and treating video fields individually for both input and output video streams.

2.2.5 Combinations with Other Trackers

An alternative to visual and inertial tracking is commercially available in the form of

magnetic tracking. Trackers such as the Ascension1 Flock of BirdsTM can provide track-

ing accurate to few centimeters, which makes them suitable and popular for virtual

reality applications. Augmented reality requires higher positioning accuracy for good

registration. Thus, hybrid systems combining magnetic tracking with computer vision

techniques have emerged. The major advantage of magnetic tracking when compared

to inertial systems is that magnetic trackers give a direct measurement of pose: thus,

even if a visual system should fail to track anything, the magnetic system can be used

without error-prone integration of noisy measurements of derivatives and hence the

systems do not fail catastrophically.

Bajura & Neumann (1995) present a video see-through system which relies mostly

on magnetic tracking for its pose estimate. A single camera and LED fiducials are

used to reduce registration errors. The LEDs are sufficiently bright that they can be

detected by merely segmenting the image according to pixel intensity. Matching is

done to the nearest predicted feature location. However, visual 3D pose reconstruc-

tion from detected fiducials is rejected on the grounds that it is too sensitive to noise

and occlusions. Instead, virtual objects are temporarily displaced to line them up

with the detected fiducials, with the assumption of correct camera pose and camera

parameters. This displacement keeps the distance between virtual objects and cam-

era constant to avoid apparent size changes. The system uses a radial lens distortion

model to minimise static registration errors - this is done by un-distorting the video

1http://www.ascension-tech.com

http://www.ascension-tech.com

2.2 Tracking for Augmented Reality Applications 30

feed rather than by distorting virtual features. Further, the video see-through feed can

be delayed until the augmented features are rendered, which achieves good dynamic

registration. However, this causes the perceived view to lag behind the user’s head

motion.

State et al (1996) describe a fiducial/magnetic hybrid video see-through AR system.

The visual system makes use of up to twelve unique two-colour concentric circles as

fiducials, tracked with stereo cameras. Fiducials are detected by an exhaustive pixel

search, performed on a small search window to speed up computation: firstly, the

image is segmented to detect the colours present in the fiducial to be found. Next the

image is searched for the outer ring of the fiducial and once this is found, detection of

the inner circle is attempted. Once both these colour regions have been found, their

center of mass is calculated.

Search windows are kept small by two methods: firstly, magnetic tracking is used

to predict the new camera pose. Next, a single fiducial (which has previously been

selected for ease of tracking) is found in the image, and camera pose refined by rota-

tion about the camera center according to this fiducial’s image position. The method

for processing the remaining fiducials then depends on the number of them found:

Should fewer than three be detected, the system is deemed under-determined and a

rule-based system adjusts pose by one of six heuristic methods depending on which

camera detects which fiducial. Should four or more be found, a least-squares solution

is calculated. The case of three detected fiducials yields two possible solution which

are compared to the magnetic tracker’s prediction to choose between them. Once a

pose update has been found, an internal estimate of the magnetic tracker’s error is

updated. This error estimate aids pose prediction in the next frame.

The resulting system is capable of sub-pixel static registration errors. However, dy-

namic errors are large due to the lack of synchronisation between the visual and mag-

netic sensors. The lack of a motion model means that state cannot be predicted. Fur-

ther, the system is sensitive to lighting conditions due to the dependence on colour

information in the fiducial detection.

2.3 Augmented Reality Displays 31

Auer et al (1999) also combine magnetic and stereo visual tracking. Magnetic infor-

mation is used to predict pose for a fiducial tracker based on black wall-mounted rect-

angles. Fiducial tracking is done in two stages: in the first, corners are roughly located

as the intersection of image intensity edges. Subsequently, the corner positions are de-

termined to sub-pixel accuracy by matching with a 5×5 pixel corner template. Many

features (10-16) are tracked in the scene, and a form of RANSAC is used to eliminate

outliers, after which a least-squares method refines pose. The inclusion of the visual

system was found to improve the static positional accuracy over a purely magnetic

alternative by a factor of three for translation and by a factor of ten for rotation.

Not all hybrid systems use magnetic information; the combination of two visual track-

ing systems, one inside-out and the other outside-in, has recently been studied by

Satoh et al (2003). The inside-out tracker employs fiducials placed in the scene and

is combined with outside-in tracking of one or more point-like markers attached to

the user’s head. For the case of only one head marker, measurements are combined

by constraining the pose output from the inside-out tracking to lie on the line from

the outside camera through the head marker. If more than one head marker is used

the sum squared re-projection error of all markers in all cameras can be minimised.

In either case, registration accuracy is improved beyond that provided by inside-out

tracking by itself.

2.3 Augmented Reality Displays

2.3.1 Optical and Video See-through Displays

Augmented reality displays may be fundamentally split into two categories: optical

see-through displays with which the user views the real world directly, and video see-

through displays with which the user observes the real world in a video image of some

sort. Each category of device has both advantages and disadvantages; these are most

easily illustrated in the context of Head-mounted Displays (HMDs).

2.3 Augmented Reality Displays 32

An optical see-through HMD typically places a semi-silvered mirror before the user’s

eyes. The user can see the real world through the mirror, but can also see computer

graphics drawn on miniature screens visible in the mirror’s reflection: graphics are

superimposed on the real world by additive mixing. This has the effect that graphical

regions drawn as black appear transparent to the user, offering unmodified view of

real objects in the same place.

A video see-through HMD does not let the user see the environment directly - the

display mirror is fully reflective, and the user sees only what is drawn on the miniature

screens. A view of the real world is typically provided by a video stream from display-

or head-mounted cameras. Augmented graphics can be rendered directly into this

video feed by any mixing required, so that e.g. black virtual objects can appear in the

scene.

The primary advantage optical see-through HMDs have over video-based models is

that they offer (in theory) a superior view of the real world: apart from an attenuation

(and possible loss in contrast) the user’s view of the real world is unmodified so objects

can be observed in full resolution and without any time delays. By contrast, the view

through a video-based display is of lower resolution and dynamic range, may have

regions out of focus, and necessarily lags behind the real world somewhat.

The primary disadvantage of the optical displays is the inferior integration of virtual

graphics into the real world. Since light from the real world strikes the user’s eye di-

rectly, the computer cannot see what the user sees, but must instead guess where to

draw graphics based on other position sensors and some display calibration: it is up

to the user to tell the computer how to line up real and virtual images. By contrast, a

computer has full access to the user’s view in the case of video see-through displays.

This means the computer can potentially draw annotations and graphics in exactly the

right place, without user intervention. Further, video see-through displays are capable

of drawing virtual graphics at the right time, since the real world and corresponding

graphics appear to the user at exactly the same time; on optical see-through displays,

the view of the real world is instantaneous, while the view of virtual graphics is neces-

2.3 Augmented Reality Displays 33

sarily delayed. This can produce the unpleasant effect of graphics ‘swimming around’

the real world when the user’s head moves.

Apart from registration accuracy, the ability to insert objects by arbitrary mixing al-

lows video see-through displays to produce richer composited scenes and allows for

diminished reality: the removal of real components from the scene. By contrast, the

only way to remove a real object in an additive-mixing display is to cover it with col-

ors much brighter than the object to be obscured - this is obviously only possible up

to a certain brightness of object to be masked.

2.3.2 Advances in HMDs

From the first twin-CRT-based display of Sutherland (1968), head-mounted displays

have made great advances in resolution and compactness; however many issues re-

main outstanding, particularly in the field of AR. Some recent attempts have been

made to address some of the shortcomings of the display format.

Kano et al (2004) present the reflex HMD, an optically see-through device which at-

tempts to compensate for the time delay between sensing, rendering and display. In-

stead of rendering just the user’s expected field-of-view, a larger image is rendered

which includes elements outside of the field-of-view. When the image is transmitted

to the display, the LCD panel sync signals are modified so that only a portion of this

large image is displayed: the signals are modified according to the integrated signal

from rate gyroscopes so as to compensate for any head rotation which occurred be-

tween the original pose estimation and completion of associated rendering. This tech-

nique does incur distortions when a pinhole projection model is used, but dynamic

registration errors near the center of the display are measurably reduced (Kijima &

Ojika, 2002) and users are able to perform a “lock on” task faster than without this

compensation.

Kiyokawa et al (2003) present the fourth-generation ELMO (Enhanced see-through

display using an LCD panel for Mutual Occlusion). This optically see-through device

2.3 Augmented Reality Displays 34

Figure 2.2: An occlusion-capable optical see-through HMD. An LCD panel in the focal
plane of the ELMO display allows real objects to be hidden from view. Traditional
optical see-through displays (left) produce transparent and insubstantial-appearing
overlays while ELMO (right) gives objects a solid appearance. Images courtesy of
Kiyoshi Kiyokawa of Osaka University.

contains an emitting micro-display like most other HMDs, but also inserts an LCD

panel into the path of incoming light, allowing portions of the incoming light to be at-

tenuated. This allows for much more flexible mixing of incoming and virtual light, al-

lowing real-world objects to be properly occluded by virtual graphics and dark objects

to be drawn. The view through the prototype device (with and without the occluding

panel enabled) is shown in Figure 2.2. The disadvantage of this approach is the extra

optics required to generate a new focal plane for the LCD; the twin ring-shaped optical

paths increase the mass of the device (which includes back-of-head counterweights)

to 2 kg. An effort to produce a more compact device achieving the same effect is be-

ing pursued by Cakmakci et al (2004), however this system is still in early stages of

development.

2.3.3 HMD Calibration

The calibration of head-mounted displays for AR has also been the focus of substantial

research. When video see-through displays are used, this calibration is not too diffi-

cult, since the computer can make a large number of measurements directly from the

incoming video stream, and standard computer vision camera calibration techniques

2.3 Augmented Reality Displays 35

can be employed - such as the method of Tsai (1987), who introduces a rich camera

model including radial distortion and proposes a a two-stage calibration technique

consisting of an initial linear solution followed by a nonlinear optimisation.

When optical see-through displays are used, measurements can no longer be made au-

tomatically but must be supplied by the user. Further, calibration is no longer limited

to camera-intrinsic parameters, but extrinsic parameters (the sensor-eye offset) must

also be estimated. Ergonomics limit the number and accuracy of measurements a user

can be expected to make, and hence the camera models employed are often simplified

to reduce the number of degrees-of-freedom requiring calibration.

Approaches have differed in the method by which users are to make measurements:

Janin et al (1993) compare the direct measurement of users’ eye positions to an optimi-

sation approach in which crosshairs are aligned with a real-world calibration target.

Alignment can be performed both by aligning the crosshairs on-screen and by user

head-motion. The optimisation minimises the re-projection error of all such measure-

ments to calibrate a simple pin-hole projection model. The authors have found the

optimisation method to produce results far more accurate than direct measurement.

Azuma & Bishop (1994) use a multi-step calibration procedure to determine intrinsic

and extrinsic parameters. Some steps involve the positioning of software cursors in

the display to determine intrinsic parameters, while other involve aligning the user’s

eye along a bore-sight to recover extrinsic parameters. An obvious disadvantage of

this method is that the bore-sight-equipped calibration target must be present in the

scene. The intrinsic parameter calibration used is relatively simple; no distortion is

considered, and the aspect ratio of the display is considered known.

Tuceryan & Navab (2000) do not separate the calibration into separate intrinsic and

extrinsic parameters and instead calibrate a 3×4, 11-DOF projection matrix in a single

linear step. Measurements are gathered using a single 3D point with known coordi-

nates. The user sees a cross-hair in the display and aligns this with the 3D point by

moving his or her head. Twelve measurements are made with the cross-hair in vari-

2.3 Augmented Reality Displays 36

ous positions. The authors call this method SPAAM, for single point active alignment

method.

Genc et al (2000) extend this system from the monocular to the stereo case; instead

of having the user perform one individual calibration for each eye, both eyes are cal-

ibrated simultaneously. This is done by replacing the monocular cross-hair with a

solid disk simultaneously visible in both eyes, with a horizontal offset between the

disk positions for each eye; this gives the user the perception that the disk is located

at a certain depth in the image. Again, a single 3D point is used as a target for align-

ment, but this is now performed in 3D: the user’s head must be positioned at the

correct depth so that the disks in both eyes line up with the target object. While this

method decreases calibration time for the user, there is the danger that it will produce

erroneous results if displays on left and right eye are vertically misaligned or slightly

rotated.

The approaches described so far operate by aligning the user’s head relative to fixed

objects in the environment. Fuhrmann et al (1999b) take a different approach, and

alignment of on-screen cross-hairs is against a hand-held tracked target (this hand-

held device forms part of the AR application’s user interface.) Eight points are sam-

pled per eye: these are essentially the four corners of the viewing frustum, sampled

at two different depths. This special geometric arrangement is used to produce sim-

ple equations for individual calibration parameters. Per-user calibration overhead can

be reduced to four sampled points per eye once some parameters of the display are

known. This work is followed up (Fuhrmann et al, 2000) with a mention of the po-

tential for the calibration of a display’s radial distortion; the authors proposes either

dense sampling of a grid or the capture of an image through the display with a cam-

era, but no results for optical see-through displays are presented. Tang et al (2003)

have performed an evaluation of the accuracy of SPAAM versus Fuhrmann et al’s

stylus-based approach and find that the hand-held stylus method produces superior

results.

Owen et al (2004) carry on to produce perhaps the most ambitious HMD calibration

to date. The display is mounted on a mobile rig in front of calibration pattern, and

2.3 Augmented Reality Displays 37

a 5-megapixel digital camera, also mounted on a mobile rig, is used to measure the

shape of the display’s virtual imaging plane - which the authors determine is not a flat

plane as implied by a pinhole projection model, but rather a highly curved surface.

Once the rich intrinsic description of the display has thus been acquired, projection

parameters for any user can be calculated from knowledge of the user’s eye offset from

the calibrated display center; this offset is measurable using few user inputs, or indeed

by physically measuring the user’s inter-pupilliary distance. Work on this method

is ongoing, as is the incorporation of knowledge of the display’s curved projection

surface into a compensating rendering technique.

2.3.4 Hand-held AR

Head-mounted displays offer the enticing prospect of fully immersive AR experi-

ences, but can in practice suffer from registration and usability difficulties. An al-

ternative to HMDs is the use of hand-held display devices for AR. A device with a

screen and on-board camera operates in video see-through mode and acts much like

the viewfinder of a video camera, offering the user an unintrusive interface to aug-

mented information without the bulk and cables typically involved without a head-

mounted system.

Perhaps the first example of hand-held AR is presented by Rekimoto (1995). The

author lists problems with previous HMD based systems and proposes the use of a

hand-held palmtop display device, calling this the magnifying glass approach: “While

a real magnifying glass optically enlarges the real world, a system based on this ap-

proach enlarges it with information”. The NaviCam consists of a hand-held LCD-TV

screen to which a small camera has been mounted, tethered to a computer and a video

compositing engine. Bar-codes mounted on real objects in the world (such as a calen-

dar) are recognised and pertinent information (such as the day’s schedule) is overlaid

when such bar-codes come into view.

The author conducts a user study in which users are required to “visit” three bar-

codes using various AR display devices. The NaviCam allows the users to complete

2.3 Augmented Reality Displays 38

the task in less than half the time required using a traditional HMD; further users find

the hand-held device superior in almost all ergonomic aspects tested. Only the lack

of hands-free operation and the weight of the device (430g) are considered negative

aspects.

Since the work of Rekimoto, the computing power of hand-held devices has increased

to the point that a tether to an external computer is no longer required for some AR

applications. Three categories of device appear particularly promising as hand-held

AR interfaces: Tablet PCs, PDAs and mobile telephones.

Of these classes, tablet PCs are the most powerful, but also the heaviest; furthermore

the tablet PC is a relatively new class of computer and is not yet well-established in

the market. Consequently, few tablet-based AR systems have been presented in the

literature.

Vlahakis et al (2002) use a tablet PC as part of the larger ARCHEOGUIDE project.

ARCHEOGUIDE aims to enhance the experience of guests visiting archaeological

sites. For example, reconstructions of historic buildings are rendered in their origi-

nal (now ruined or empty) locations. The project investigates multiple types of AR

apparatus: HMDs are used for video see-through augmentations, while tablet and

pocket PCs are used as replacements for paper guides. The tablets are equipped with

differential GPS and a compass, and can replay multimedia streams chosen according

to the user’s location.

Zhu et al (2004) present the PromoPad, an augmented reality shopping assistant using

video see-through augmentations on a tablet PC. Registration is marker-based and

based on the Owen’s earlier extension of the ARToolkit system (Owen et al, 2002).

Emphasis is placed on the PromoPad’s ability to detect context from the user’s location

and update the presented information accordingly: For example, products known to

be of interest to a customer can be highlighted in the display, while less desirable

products can be hidden (diminished reality.)

Personal Digital Assistants (PDAs) do not yet have the processing power of tablet PCs

2.3 Augmented Reality Displays 39

- in particular, floating-point performance, 3D graphics and image-capture bandwidth

are lacking - however they offer the attraction of a much smaller form-factor than

tablet PCs. The devices now offer respectable integer processing power and built-in

wireless connectivity, and both of these aspects have been exploited for AR.

Wireless networking can be used to work around limited processing power by trans-

mitting images to a nearby workstation and treating the PDA as a “thin client”. This

approach is widely taken, for example by both Geiger et al (2000) and Gausemeier

et al (2003) in the context of the AR-PDA project. In one prototype application, a user

is instructed to insert a memory card into a digital camera by a virtual miniature man;

in another, extra components for an electric oven are superimposed on the view visi-

ble on the PDA. In both of these approaches tracking and rendering is performed fully

on the PC; images captured on the hand-held device are transmitted to a remote host,

tracked and augmented, and the finished images are broadcast back to the PDA. Pas-

man & Woodward (2003) let the PDA perform some of the work: the camera image

is thresholded before transmission to the server, the server sends back only the aug-

mented graphics, and compositing is performed on the PDA. This approach reduces

bandwidth requirements between the client and server. Operation over GSM is at-

tempted but is very slow (5 seconds per frame.) Newman et al (2001) also operate

the PDA as a thin client but it is tracked externally using the ultrasonic Bat tracker.

Graphics are not overlaid onto a camera image, rather the user is presented with a

VR-style view from the device’s viewpoint.

Other approaches have attempted to run applications directly on the PDA. This has in-

volved the development of a number of enabling technologies, notably the creation of

fast integer-based OpenGL-like graphics libraries (e.g. KLIMT1), and a port of the AR-

Toolkit library to the pocket PC platform (Wagner & Schmalstieg, 2003a). Although

pure pose estimation performance of up to 15 frames/sec is possible on an XScale

CPU, current cameras cannot supply more than 8 frames/sec to the CPU; nevertheless,

fully self-tracking PDA applications using this framework have been demonstrated by

Wagner & Schmalstieg (2003b).

1http://studierstube.org/klimt/

http://studierstube.org/klimt/

2.3 Augmented Reality Displays 40

A further use of the PDA’s wireless connectivity is the creation of multi-user AR ap-

plications; MacWilliams et al (2003) demonstrate that PDAs can usefully coexist with

many other display modalities in a distributed AR framework but have encountered

some rendering performance issues using a cross-compiled VRML renderer. Wagner

et al (2005) present the widely-demonstrated “Invisible Train” multi-user application;

the authors claim the ease-of-use and public acceptance of the form-factor exceed that

previously encountered with HMDs.

Finally, the emergence of user-programmable mobile phones featuring built-in cam-

eras has seen first attempts at harnessing this soon-to-be ubiquitous platform for AR

applications: Möhring et al (2004) present a simple technology demonstration of a

self-tracking camera phone, and more phone-based applications can be expected to

follow.

2.3.5 Other AR Displays

Beyond head-mounted and hand-held AR a few other display devices have been em-

ployed for AR. These include video projectors, which combine some of the advantages

of optical and video see-through systems: the computer can observe the registration

of real and virtual objects, but only after a small delay. For example, Karitsuka & Sato

(2003) use a backpack-mounted projector as a replacement for an optically see-through

HMD.

A more specialist display is the virtual showcase (Bimber et al, 2001), a device based on

a large semi-silvered mirror; this class of display mixes the user’s view of a real object

in a showcase with images generated on a computer monitor or projection surface.

Magnetic head-tracking and shutter glasses worn by the user allow the graphics to

be accurately positioned in relation to the real objects. The difficulties encountered

by optical see-through mixing - i.e. virtual objects appearing transparent - can be

addressed by illuminating real objects with structured illumination, darkening those

regions which will appear behind virtual objects (Bimber & Fröhlich, 2002).

2.4 Occlusions in AR 41

2.4 Occlusions in AR

When real and virtual objects coexist in a scene, virtual objects will sometimes be

hidden behind real objects, and real objects may be obscured by virtual ones. In the

context of video see-through AR, anything rendered by the computer will by default

appear in front of the video image; occlusions of real objects by virtual ones are there-

fore not a problem. However, for real objects to hide virtual ones, the virtual ones

must not be drawn. This can be achieved in a variety of ways. Early approaches to

handling the occlusion of real and virtual objects include those of Wloka & Anderson

(1995) and Breen et al (1996). Both investigate the use of stereo cameras to estimate a

depth map of the real objects in the user’s view, and use this depth map to handle the

occlusion of augmented visuals.

Wloka & Anderson (1995) motivate this approach by pointing out that in most AR

applications, the assumption of an unchanging scene is unrealistic because of (for

example) the user’s interaction. A speed-optimised depth-from-stereo algorithm is

developed; this requires two cameras aligned such that epipolar lines are parallel to

scan-lines. Sub-sampled images are vertically raster-scanned to detect intensity dis-

continuities: this is done to group pixels into vertical blocks of three or more pixel’s

length, where the pixels any block are of a similar intensity. Blocks in the left and

right image are then matched according to length, intensity, and vertical position. The

horizontal offset between the matched blocks then yields the z-position of this block,

which is entered into the z-buffer1 in both frames. Some pixels may be matched more

than once and some not at all; such pixels use weighted contributions of the multiple

measurements or their pixel neighbours. The authors go to great lengths to imple-

ment this algorithm (already designed for speed rather than accuracy) efficiently by

imposing coherency constraints and parallelizing the algorithm for the dual-processor

hardware available, and the algorithm executes in 370ms per quarter-size frame pair;

strong artifacts are however visible in the composited images.

1A z-buffer is a depth buffer in OpenGL. When a 3D primitive is rendered, each pixels’s depth is first
compared to the values in the z-buffer; if the pixel to be rendered is further away from the camera than
the value in the z-buffer, the pixel is discarded; otherwise it is rendered and the z-buffer updated.

2.4 Occlusions in AR 42

By contrast, Breen et al (1996) study the case of a static scene further. A polygonal

depth map is not generated once-per-frame but only once for a given camera arrange-

ment; the map is invalid as soon as the camera moves. The authors argue that for

simple scenes for which 3D models can be generated, better results can be achieved by

registering these in a calibrated 3D environment, and then rendering these 3D models

as black into the scene (black corresponds to transparent using on the authors’ video

compositing system, and so the video is seen.) Using registered models, respectable

interactive frame-rates are achieved.

More recent work on the application of depth-from-stereo to AR occlusion has been

presented by Kanbara et al (2000). This approach differs from previous depth-from-

stereo methods by calculating stereo depth only in the bounding boxes of the virtual

objects to be rendered: as long as these occupy only a small portion of the screen, this

leads to a significant increase in performance, and so the depth-from-stereo algorithm

requires only 40ms per typical frame pair to execute. Kanbara uses blue markers in

the image for tracking, and Sobel edges are extracted from the bounding box regions

of both images in the stereo pair. Pixels on edges are matched between pairs using the

sum-of-absolute-distances in 5×5-pixel image patches, yielding edge depths; pixels

between edges are assigned depths by interpolating between edge depths, and some

consistency metrics are applied to reject outliers. Depth values are then written into

the z-buffer and so subsequently rendered virtual graphics are clipped.

Kiyokawa et al (2003) employ a commercial depth-from-five-cameras system to es-

timate an occlusion map in a game application used to demonstrate their occlusion-

capable ELMO HMD (cf. Section 2.3.2). This system yields a 280×240 pixel depth

map at 30Hz. It requires five synchronised cameras, but the very compact cameras

used on their display do not offer such a facility; this results in occasional errors in the

recovered depth map, as illustrated in Figure 2.3.

Monocular approaches to occlusion handling also exist. Berger (1997) does not explic-

itly estimate depth and does not use 3D models of real occluding geometry. Rather,

an estimate of occlusion regions is built by tracking 2D contours found in the image.

By observing the motion of these contours over time, they can be labeled as being “in

2.4 Occlusions in AR 43

front of” or “behind” individual elements of virtual imagery. To generate clipping

masks from groups of occluding contours (which may not form a closed shape), ac-

tive snakes are employed. The set of edges is rendered and then blurred to produce

an intensity field; a snake is initialised at the bounding box of the field, and allowed

to shrink to fit the maxima (edges) of the intensity field. The resulting shape is used

to clip the virtual graphics, and impressive results are presented for scenes without

complex textures, as demonstrated in Figure 2.3. The computational performance of

the algorithm is not discussed. Lepetit & Berger (2000) later extend this idea to a high-

accuracy off-line scenario; by tracking user-seeded occluding curves through a video

sequence, a 3D reconstruction of the occluding object is computed. The resulting ac-

curate segmentation of the sequence into foreground and background allows virtual

objects to be inserted into the video with high precision.

Recent real-time work on occlusion has focused on real objects (in particular, the user’s

hands) dynamically occluding virtual objects. Stricker et al (1998) present an interac-

tive tic-tac-toe application. The player places a real playing piece on a real tic-tac-toe

board and then pushes a virtual button, upon which the computer places its virtual

piece onto the board. The computer’s playing pieces (and the button) should not

be drawn when the user’s hand covers them. Occlusion is handled by detecting the

user’s hand using background subtraction; the area detected as not being part of the

background is used to mask the z-buffer prior to rendering. This approach is made

possible by a homogeneous background (white paper plus playing grid) and the as-

sumption of a static camera. A resulting image is shown in Figure 2.3.

Fuhrmann et al (1999a) concentrate on the occlusion of virtual graphics by humans,

use maker-based human motion capture to register occluding users in a collaborative

scene. A 3D humanoid model aligned to the motion-capture pose is rendered into the

z-buffer to occlude scientific visualisations in a collaborative application. For regions

such as hands which can change shape in ways not tracked by the system, the “phan-

tom” is blurred by rendering concentric shells of the object at various transparencies

which represent the probability density of that portion of hand-space being occupied.

Results of this procedure are illustrated in Figure 2.3.

2.4 Occlusions in AR 44

Berger (1997)
Courtesy of Marie-Odile Berger

Stricker et al (1998)
Courtesy of Didier Stricker /

Fraunhofer IGD

Fuhrmann et al (1999a)
Courtesy of Anton Fuhrmann

Kiyokawa et al (2003)
Courtesy of Kiyoshi Kiyokawa of

Osaka University

Fischer et al (2003)
Courtesy of Jan Fischer

Figure 2.3: Occlusion handling in AR. This figure illustrates results from previous
attempts to handle AR occlusions.

2.4 Occlusions in AR 45

Fischer et al (2003) remove the limitations of Stricker’s background-subtraction ap-

proach: instead of a simple unmoving background image, a 3D textured model of the

scene is used. At each frame this is re-rendered using a camera pose obtained from

ARToolkit tracking. This rendered version of the expected scene is then compared

with the video feed to determine occluder positions. Since this comparison is done

on a per-pixel basis, the alignment between rendered scene and viewed scene must

be very accurate: for this purpose the scene is split into individual textured surfaces,

and the position of each surface is refined by aligning feature points prior to render-

ing. Pixel comparison operates by a criterion in HSV-space designed to minimise the

influence of lighting changes. The algorithm’s complexity limits its run-time speed to

circa 1 frame/second, but the authors suggest potential speed improvements; further,

the color-based background subtraction produces occasional errors, as illustrated in

Figure 2.3.

Mulder (2005) also employs background subtraction to determine occluder positions,

but this is done in layered 3D, in the context of an enclosed manipulation space akin

to a virtual showcase. Multiple static cameras observe a user’s hands in front of a blue

cardboard background. The resulting images are binarised into foreground or back-

ground. When rendering, these binary masks are then used to determine occlusion:

the scene is first rendered into graphics hardware; subsequently, occlusion is deter-

mined at discrete depth intervals by considering several planes perpendicular to the

user’s viewing direction. For each plane, all cameras’ binary masks are projected into

the plane; where the occluding mask portions overlap, a real occluding object at that

depth is assumed to exist, and virtual pixels behind this layer are overwritten. The al-

gorithm uses a combination of stencil- and z-buffering to accomplish the procedure in

graphics hardware and to further determine the position of real objects which should

be occluded by virtual objects (since the display used is optically see-through, such

occlusions of real objects by virtual ones must also be handled specially.)

2.5 Motion Blur 46

2.5 Motion Blur

Motion blur occurs due to the non-instantaneous exposure time of video cameras.

When an object is moving or a camera rotating, projections move across the imaging

sensor during the time taken for exposure, blurring images in the direction of motion.

Large motion blur which spans 10 pixels or more in the image can severely compro-

mise the performance of many tracking systems: sharp points (e.g. LEDs) are turned

into lines; sharp edges are turned into ramps; characteristic texture patches are turned

into a blurred homogeneous regions. This makes the extraction and matching of fea-

tures from blurred video frames difficult.

Motion blur is generally seen as a nuisance by the tracking community. A common

strategy is to avoid blur altogether, by moving cameras slowly or by changing cam-

era settings: for example, the popular unibrain Fire-i camera used in many vision

systems allows the electronic selection of a short exposure time. In the context of aug-

mented reality, neither approach is universally applicable: cameras are often head- or

hand-mounted, making it hard to constrain the speed of motion, and cameras are of-

ten selected for their physical compactness or transmitting features rather than a rich

electronic control set, and so motion blur remains in the image to be dealt with. In

recent years, some real-time tracking systems which attempt to handle motion blur in

software have emerged.

Claus & Fitzgibbon (2004) describe a machine-learning approach to creating a fiducial

detector capable of coping with real-world tracking situations, which provide difficul-

ties such as motion blur, clutter, and large variations in lighting and scale. Fiducials

consist of four black dots arranged in a rectangle; machine learning is used to train a

classifier which can label each pixel in the image as “black dot” or “not black dot”, and

further processing rejects those matches which are not part of a rectangular fiducial.

The circle detector is trained from a set of 12×12-pixel input images which include

dots under a range of lighting conditions and blur. This makes the detector somewhat

robust to moderate amounts of motion blur encountered.

2.5 Motion Blur 47

Gordon & Lowe (2004) obtain some resilience to motion blur by tracking features

obtained by the scale-invariant feature transform. The SIFT transform (Lowe, 2004)

extracts features of many scales from the image, and hence makes use of large-scale

features which are less affected by moderate amounts of blur. Further, the system

which can perform a localisation step at each frame and may so be considered robust

to motion blur in that even if tracking fails during transient motions, tracking can

be resumed once the camera rotation slows down. Many fiducial-based systems also

exhibit this quality and so these systems are wide-spread in AR. The absence of pose

estimates during rapid rotations may be acceptable for many applications.

The work described above, and indeed the edge-based tracking system described in

Chapter 4, are examples of techniques used to overcome the problems presented by

motion blur. A few attempts have also been made to exploit the opportunities presented

by motion blur:

Lin (2005) analyses images of moving vehicles taken with a roadside camera. Motion

blur is used to estimate the speed of vehicle motion; this estimate is then used to de-

blur the image, allowing blurred registration plates to be read. The method uses a

Fourier transform to detect the image orientation of blur, and blur magnitude is esti-

mated by analysing intensity ramps in scan-lines where the vehicle borders a uniform

background (a blue sky).

Rekleitis (1996) uses motion blur to estimate optical flow in an image. Steerable filters

applied to the Fourier transform of image patches are used to determine the orienta-

tion of local blur. Once orientation has been determined, the 2D spectrum is collapsed

to obtain the patch’s spectrum along the direction of blur; blur length is extracted us-

ing cepstral analysis. Run-time performance is limited by the cost of 128×128-pixel

FFTs.

Favaro et al (2004) exploit both motion blur and distance-varying defocus present in

images to reconstruct a scene’s depth map, radiance and motion. The use of mo-

tion blur is an extension to the authors’ previous work in the domain of shape from

defocus. Blur is modeled as a diffusion process whose parameters are estimated by

2.5 Motion Blur 48

minimising the discrepancy between input images to the output of the hypothesised

diffusion process. This approach attempts to determine the maximum of informa-

tion from every pixel of two or more input images; as such it differs greatly from the

approach taken in Chapter 7, where a small set of parameters (camera rotation) is

estimated from a single image in the shortest possible amount of time.

3
Mathematical Framework

This chapter introduces the mathematical framework employed throughout the re-

mainder of this thesis.

3.1 Coordinate frames

Points in 3D space are represented as homogeneous coordinates of the form (x y z 1)T .

These coordinates are measured in a particular coordinate frame which may be de-

noted by a subscript. For example the coordinates of a point in the “World” coordinate

frame may be denoted (xW yW zW 1)T .

The same point usually has different coordinates in different coordinate frames. Co-

ordinates are transformed from frame A to frame B by left-multiplication with a 4×4

Euclidean transformation matrix denoted EBA, where the subscript BA may be read

3.2 Motions 50

as “B from A”:

xB
yB
zB
1

= EBA

xA
yA
zA
1

. (3.1)

Transformation matrices may be chained together by multiplication: The product

ECA = ECBEBA transforms points from coordinate frame A to coordinate frame C.

The transformations further have an inverse, e.g. E−1
AB = EBA.

Transformation matrices take the form

E =

R t

0 0 0 1

 (3.2)

where R is a 3D rotation matrix (|R| = 1, RTR = I) and t is a translation vector. The

set of all possible E forms a representation of the 6-dimensional Lie Group SE(3), the

group of rigid body transformations in R
3.

3.2 Motions

With time, the transformations between coordinate frames may change. Such a change

is represented with a 4×4 motion matrix denotedM :

EBA|t+ = MBEBA|t (3.3)

where MB represents motion in coordinate frame B. Motion matrices, also being rigid

body transformations in 3D space, take the same form as E in Eq. (3.2).

Motion matrices M have six degrees of freedom and may be minimally parametrised

as six-dimensional motion vectors µ, whereµ1, µ2 and µ3 represent translation along

the x, y and z axes and µ4, µ5 and µ6 describe rotation around these axes. Motion vec-

tors, like motion matrices, are usually written with a subscript denoting their reference

3.2 Motions 51

frame (however this is sometimes dropped to aid readability.) For a given motion vec-

tor µB in frame B the corresponding motion matrix is given by the exponential map:

MB = exp(µB) ≡ e

6
∑

j=1

µBjGj

(3.4)

where Gj are the group generator matrices. The generator matrices take the values:

G1 =

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

, G2=

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

, G3 =

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

, (3.5)

G4=

0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

, G5=

0 0 −1 0
0 0 0 0
1 0 0 0
0 0 0 0

, G6 =

0 1 0 0
−1 0 0 0

0 0 0 0
0 0 0 0

Differentiating 3.4 about the origin (µ = 0), the partial derivatives of motion matrices

with respect to the motion parameters are simply the corresponding generators:

∂M

∂µj
= Gj . (3.6)

Further, complex coordinate frame transformations are easily differentiable by appli-

cation of the chain rule:

∂

∂µBj
(ECBMBEBA) = ECBGjEBA. (3.7)

Closed forms of both the exponential and the logarithm (µ = lnM) exist. Further

information on the Lie Group SE(3) and its properties may be found in Varadarajan

(1974) and Tomlin & Sastry (1995).

It is sometimes useful to express motions in one coordinate frame in a different coor-

dinate frame. For example, a certain motion MB in coordinate frame B can be trans-

formed to frame A in matrix form

MA = EABMBEBA. (3.8)

Alternatively motions can be transformed as vectors using the adjoint operator. The

adjoint of a transformation matrix yields a 6×6 matrix such that

µA = Adj(EAB)µB (3.9)

3.3 Uncertainty in Transformations 52

and takes the value (writing the cross operator ∧)

Adj(E) =

[

R t ∧R
0 R

]

. (3.10)

3.3 Uncertainty in Transformations

Often the true value of a transformation matrix is unknown and only a noisy estimate

can be obtained. In the same way as motions are defined in a specific coordinate frame,

errors are also relative to a frame. Considering the noisy estimate of the transforma-

tion from frame A to frame B and choosing (without loss of generality) to represent

errors in frame B, the relationship between estimate and true state (denoted by a hat ˆ)

is written

EBA = exp(ǫB)ÊBA. (3.11)

The error 6-vector ǫ is modeled as normally distributed:

ǫB ∼ N(0,ΣB). (3.12)

Here, ΣB is the estimate’s 6×6 covariance matrix in coordinate frame B, and can be

written in terms of expectation:

ΣB = E
(

ǫBǫT
B

)

. (3.13)

If the errors in 3.11 were represented in frame A instead of frame B,

EBA = ÊBA exp(ǫA), (3.14)

then the distribution of ǫA is different from that of ǫB. For example, an ambiguity in

rotation in coordinate frame B corresponds to a coupled translation and rotation ambi-

guity in coordinate frame A. For this reason it is necessary to know how to transform

covariance matrices from one coordinate frame to another.

Considering a single sample from the error distribution, this can be transformed from

one coordinate frame to another just as motions in Eq. (3.9):

ǫA = Adj(EAB)ǫB. (3.15)

3.4 Software 53

Then by expectation,

ΣA = E
(

ǫAǫT
A

)

(3.16)

= E
(

Adj(EAB)ǫBǫT
BAdj(EAB)T

)

(3.17)

= Adj (EAB) E(ǫBǫT
B)Adj(EAB)T (3.18)

= Adj(EAB)ΣBAdj(EAB)T (3.19)

and so error covariances also transform from one coordinate frame to the another by

the adjoint.

3.4 Software

Software libraries which enable the rapid implementation of the above framework

in the C++ programming language have been made available under a public license.

These libraries have been written by members of the CUED Machine Intelligence Lab.

TooN - (Tom’s Object Oriented Numerics) - is a templated vector/matrix library which

provides an interface to BLAS/LAPACK linear algebra methods and contains classes

encapsulating the functionality described in this chapter. It is available at

http://savannah.nongnu.org/projects/toon

libCVD - (Cambridge Vision Dynamics) - is a further library providing methods for

video input/output, image manipulation and more. It is designed to facilitate the

development of software such as that used in this thesis. The library may be obtained

at http://savannah.nongnu.org/projects/libcvd

http://savannah.nongnu.org/projects/toon
http://savannah.nongnu.org/projects/libcvd

4
Markerless Visual Tracking

4.1 Introduction

This chapter describes a markerless visual tracking system which will be used as

the primary registration sensor for the AR applications in this thesis. Such a system

should deliver accurate pose estimates in real-time from live video feeds at up 50Hz

and still leave computing resources for AR rendering; further, tracking needs to be

robust to the rapid motions common in AR, for example the rotations of a user’s head.

A markerless tracking system must track natural features which are already available

in the scene, and so the system must find these features in the video feed. The choice

of features to be used is a function of the amount of processing time available per

frame: in some scenarios it is feasible to perform complex full-frame feature extraction

to obtain richly described point features which can be matched from frame to frame

4.1 Introduction 55

(using, for example, Lowe (2004)’s scale-invariant feature transform (SIFT)). However,

such operations are mostly still too computationally expensive for real-time AR use.1

Since fast operation is a primary requirement, the tracking system used in this the-

sis is based on the work of Drummond & Cipolla (1999). This system tracks the

image edges of known three-dimensional objects for which a CAD model is avail-

able. Objects are tracked by comparing projected model edges to edges detected in

a monochrome video feed. The advantage of tracking edges is that these can be de-

tected very quickly by the use of a prior: an advance guess of where each edge will be

in the image. As described in Section 4.2, this allows the system to perform very rapid

edge searches using a 1D search along strips of pixels perpendicular to the predicted

edge locations. The number of pixels searched in the image is thus vastly lower than

for any full-frame feature extraction, and this results in fast operation. This system

has previously been applied to the real-time control of articulated and mobile robots

(Drummond & Cipolla, 1999; Klein, 2001; Molana, 2000).

The local, prior-based edge search is rapid, but is also essential to solve the correspon-

dence problem. Fiducials can be designed with unique appearances so telling one

from the next is easy; point features are often characterised by image patches or gra-

dient measurements taken in their surroundings. Image edges, on the other hand, are

merely modeled as one-dimensional intensity discontinuities and are therefore diffi-

cult to distinguish from one another. Hence, the tracking system employs the prior

to resolve any ambiguities: if multiple image edges are found close to a model edge

projected into the image, the tracking system assumes that the nearest image edge

corresponds to the model edge.

For this reason (and also because the range of local search is limited) it is essential

that the prior pose estimate for each frame is quite accurate. In robotics, good priors

can be obtained by the use of motion models; since the robot inputs are known, the

position of the camera for a new frame can be predicted using a model of the robot’s

dynamics. For a head-mounted camera, this is not possible, and a user’s motions can

1The recently developed FAST corner detector by Rosten & Drummond (2005) may be a notable
exception.

4.1 Introduction 56

Figure 4.1: Substantial motion blur due to 2.6 rad/s camera rotation, with 100x100
pixel enlargement

be quite unpredictable. Even if a first-order constant-velocity motion model is used

to predict to the user’s motions, rapid head accelerations can result in priors which

are far enough from the actual pose that tracking fails, either due to correspondence

errors or due to features being outside the search range.

This chapter shows how low-cost inertial sensors (rate gyroscopes) can be added to the

visual tracking system to provide the accurate priors necessary for robust operation.

Due to drift, rate gyroscopes cannot reliably track head orientation by themselves:

these devices measure angular velocity, and thus pose must be obtained by integra-

tion of noisy measurements, resulting in unbounded errors over time. Thus rate gy-

roscopes produce good high-frequency measurements but poor low-frequency ones;

this is in contrast to the visual system, which fails under rapid motion but produces

very accurate results when moving slowly. It is the fusion of these complementary

sensors that yields good results in both circumstances - up to the point when images

are sufficiently degraded by motion blur.

In anything but sunny outdoor lighting conditions, a camera’s shutter must remain

open for a considerable amount of time to capture enough light for a noise-free image;

in fact many cameras’ exposure times are almost the full amount of time available for a

frame (in the case of a PAL camera, almost 20ms per field.) When a camera is moving,

scene elements move across the image during exposure, resulting in motion blur: An

example of a motion-blurred field captured from a camera rotating with 2.6 radians/s

is shown in Figure 4.1. Motion blur is a problem because it degrades trackable features:

4.2 Tracking System Operation 57

it smears sharp image edges into gradated blurs, point features into lines, and textured

areas into homogeneous grays. In such conditions, most visual tracking systems fail.

This chapter shows that edge-based tracking can be made to operate even in the pres-

ence of very substantial blur. This is possible because the low-latency inertial sensors

can be used to predict the direction and magnitude of blur at any point in the im-

age. Using these predictions, the behaviour of edge detection can be adapted to suit

the circumstances: instead of searching for an intensity step in the image, the tracking

system can search for blurred edges instead. By fully exploiting the information which

the rate gyroscopes make available, sequences with rotational velocities of up to 4.7

radians per second - in which features are blurred over distances as great as 50 pixels

- have been tracked.

Section 4.2 describes the standalone operation of the edge-based tracking system, as

it might be used for a robotics task. Section 4.3 describes inertial sensors which can

be used to directly measure rotational velocity, and Section 4.4 shows how measure-

ments from the visual and inertial sensors can be combined. The resulting tracking

performance is described in Section 4.5.

4.2 Tracking System Operation

The tracking system continually updates an estimate of the position of a video camera

relative to known objects in the world. This pose estimate is stored as a 4×4 coordinate

frame transformation matrix ECW which transforms points xW from the world coor-

dinate frame W , in which the model is described, to the camera-centered coordinate

frame C:

xC = ECWxW . (4.1)

This matrix, which completely describes the pose of the camera relative to the world,

is updated by continually comparing the video image of the known features with their

expected image positions. This process is illustrated in Figure 4.2, where a cardboard

4.2 Tracking System Operation 58

model of a ship-part as might be encountered by a welding robot is placed at a known

position. This tracking loop is performed once per video frame and consists of four

steps:

1. Image acquisition Images are captured from a monochrome PAL video camera

connected to the workstation via frame-grabber card.

2. Model rendering A CAD model of the known object or environment is rendered

using an estimate of the camera’s position. This determines which model edges

are expected to be visible in the video image.

3. Image measurement Edges of the CAD model are compared to edges found in the

video image by performing local searches for the nearest video edges.

4. Pose update Based on the measurements made, a new pose which bests aligns

model to image edges is computed.

These individual stages are now described in more detail.

4.2.1 Image Acquisition

For tracking experiments, images are captured with a Pulnix TM-500 monochrome

video camera. This camera delivers full-frame interlaced images with 576 lines at

25Hz or can deliver individual fields of 288 lines at 50Hz. The camera accepts C-

mount lenses: typically an 8.5mm lens with a horizontal field-of-view of 36◦ was used

for the robotics applications of Drummond & Cipolla (1999) and Molana (2000). To

improve the tracking system’s robustness, in Klein (2001) this lens was replaced with

a 4.2mm wide-angle lens. With a horizontal field-of-view of 80◦, this lens increases the

number of trackable features visible in any frame and reduces apparent image motion

due to camera rotation. This effect is illustrated in Figure 4.3.

Images are captured on a PC equipped with a video capture card based on the BT878

chip-set. Captured images are 8 bits per pixel greyscale and have a resolution of

4.2 Tracking System Operation 59

1

2

3

4

Figure 4.2: Tracking system loop. 1: Image acquisition, 2: Model rendering 3: Image
measurement 4: Pose update

4.2 Tracking System Operation 60

Figure 4.3: Comparison of 8.5mm (left) and 4.2mm (right) lenses from the same po-
sition. Using the 4.2mm lens, the system can ‘see’ more features for tracking, but
straight lines are noticeably bent by lens distortion.

768×576 for full frames or 768×288 for individual fields. Images are displayed on

the workstation using hardware-accelerated glDrawPixels.

4.2.2 Model Rendering and Camera Model

A CAD model describing the geometry of the object to be tracked is available. This

model describes occluding faces and salient edges of the object and is measured in the

world (W) coordinate frame. After a frame is captured, the tracking system renders

the edges of the model to the screen using the prior pose estimate, which may be just

the pose estimate derived from the previous frame, or an estimate obtained from a

motion model. Using the superscript “-” to denote the prior, a point in the world

reference frame xW = (xW yW zW 1)T projects into the image as

(

u
v

)

= CamProj
(

E
-
CWxW

)

(4.2)

4.2 Tracking System Operation 61

where the CamProj() function represents the mathematical model of the camera and

lens used. A standard pin-hole model would use a projection of the form

LinearCamProj

xC
yC
zC
1

=

[

fu 0 u0

0 fv v0

]

xC

zC
yC
zC

1

 (4.3)

where fu and fv describe the lens’ focal length and u0 and v0 describe the optical

center (all in pixel units). This projection model assumes that lenses exhibit no radial

distortion; while this is often the case for telephoto lenses, wide-angle lenses often

exhibit substantial amounts of barrel distortion. This effect can be observed in Figure

4.3.

The system uses a polynomial model of barrel distortion as found in Ghosh (1988).

The relationship between a radius r in an undistorted, pin-hole projected image and its

mapping r̃ in a distorted image can be approximated by a polynomial in odd powers

of r̃, where r, the undistorted radius, is calculated by

r =

√

(

xC

zC

)2

+
(

xC

zC

)2

. (4.4)

The polynomial approximation takes the form

r = r̃ + α1r̃
3 + α2r̃

5 + ... (4.5)

It is computationally more convenient to re-arrange this by reversion of series to the

form

r̃ = r − β1r
3 − β2r

5 + ... (4.6)

Only the first three terms of this expression are used, yielding

r̃ = r − β1r
3 − β2r

5. (4.7)

The full camera projection including radial distortion is given by

CamProj

xC
yC
zC
1

=

[

fu 0 u0

0 fv v0

]

r̃
r

xC

zC
r̃
r

yC
zC

1

 . (4.8)

4.2 Tracking System Operation 62

Hidden edge removal is performed using hardware-accelerated OpenGL. The CAD

model’s faces can be rendered into the z-buffer using an un-distorted projection model.

Points along the model’s edges are then tested for visibility by drawing individual pix-

els at these points and using the GL ARB occlusion query extension, which allows the

success of the pixel’s z-buffer test (and thus the visibility of the point) to be read back

by the application.

4.2.3 Image Measurement

On every model edge, sample points are generated at 20-pixel intervals and tested

for visibility. At each visible sample point, a local search for the nearest image edge

is performed, and the distance to this detected image edge recorded. This process is

illustrated in Figure 4.4.

ith sample point

nidi

Figure 4.4: Video edge search at a sample point

At the ith sample point, 1-D edge detection is performed in the direction of the edge

normal ni (the direction of this normal is adjusted to the nearest 45 degrees.) Edges

are found by convolution with the kernel
(

1 −1
)T

. The nearest local maximum

which exceeds a threshold is accepted as the nearest edge, and the distance di to this

edge is recorded. If no nearby edge is found, the sample point is skipped. All the edge

distances measured in the image are stacked as an error vector d.

4.2 Tracking System Operation 63

4.2.4 Pose Update

Using these image measurements, the posterior pose which best aligns the rendered

model to the edges in the video image is calculated. The posterior pose ECW is ex-

pressed as a small motion from the prior pose:

ECW = MCE
-
CW (4.9)

where MC , the small motion in the camera frame, is parametrised by the motion 6-

vector µ. To calculate µ, a Jacobian matrix J which describes the effect of each element

of µ on each element of d is calculated by taking partial derivatives at the current

camera pose estimate:

Jij =
∂di

∂µj
(4.10)

The partial derivatives are found by differentiating the projection equations for each

sample point w.r.t. the six motion parameters µ1...µ6:

∂di

∂µj
= −ni ·

∂

∂µj

(

ui

vi

)

(4.11)

= −ni ·
∂

∂µj

(

CamProj
(

MCE
-
CWxi

))

(4.12)

These differentials may be found by the chain rule as shown in Appendix B.1. For

N sample points this yields an N×6 Jacobian matrix. The motion vector may then be

found as the solution of the equation

Jµ = d. (4.13)

This can be found by least-squares, using the pseudo-inverse of J

µ = J†d ≡ (JTJ)−1JT d (4.14)

however this solution is not very robust. Due to noise, mis-detection of features and

occlusion, the statistics of d are significantly non-Gaussian. In particular, the error

distribution typically encountered has higher-density tails than a Gaussian, and thus

a direct least-squares solution is inappropriate. Instead, a robust estimation for µ is

performed by finding the least-squares solution of

[

W
1

2J
P

]

µ =

(

W
1

2 d

0

)

(4.15)

4.2 Tracking System Operation 64

where P and W are diagonal matrices of size 6×6 andN×N respectively. The regular-

isation matrix P corresponds to a zero-motion prior and serves to stabilise the solu-

tion. W is a weighting matrix which scales down the influence of outliers on the esti-

mation: the effect of each sample point is re-weighted by a decaying function of d to

obtain a robust M-estimator. An introduction to M-estimators is given in Appendix C.

4.2.5 Motion Model

Once the posterior pose estimate has been found, the next frame is acquired from the

camera and the tracking loop recommences. In the simplest implementation of the

tracking system, the calculated posterior becomes the prior pose estimate for the next

frame. This greatly restricts the range of velocities over which the tracking system

can be used over, since even quite gentle camera pans can move features beyond the

range of local edge detection if the detection is started at the previous frame’s position.

Instead, a decaying velocity model is used to predict the camera’s pose at the next

frame. For the current frame at time t, the prior for the next frame at time t+ ∆t is

E
-
CW|t+∆t = M

-
CECW|t (4.16)

Where the predicted inter-frame motionM
-
C depends on the 6-DOF velocity estimate v:

M
-
C = exp(v∆t) (4.17)

This velocity estimate is updated with the tracking system’s motion vector µ and a

decay term which damps the system and aids stability:

v|t+∆t = 0.9(v|t + µ) (4.18)

The resulting motion model helps the camera track large velocities, as long as these

are relatively constant (limited acceleration) and as long as motion blur does not sig-

nificantly corrupt the image. However, in some situations the motion model can have

a negative effect; for example, a camera moving and then striking an object under-

goes very rapid deceleration. A tracking system without motion model would have

4.3 Inertial Sensors 65

Figure 4.5: Rate gyroscopes affixed to camera

no trouble tracking the now stationary camera, whereas the constant velocity motion

model may not cope with the sharp change in speed and cause tracking to fail.

4.3 Inertial Sensors

To increase the tracker’s robustness towards rapid rotations, three Futaba G301 piezo-

electric gyroscopes were affixed to the camera as shown in Figure 4.5. These gyro-

scopes produce an output voltage which varies linearly with rotational velocity. The

voltage is sampled using a 10-bit ADC and transmitted to the workstation via a serial

link at 9600 bps, resulting in a sampling frequency used of 171 Hz. The circuitry used

was developed by Kumar (2001).

Each gyroscope produces an output voltage V linearly related to angular velocity:

V = b+ αω (4.19)

where ω is rotational velocity about the gyroscope’s axis, b a bias voltage and α the

gyroscope sensitivity. At rest when ω = 0, the bias b can be measured directly. For a

4.4 Sensor Fusion 66

������������������������
� �� ���	
� �����������������

Figure 4.6: Long-term bias drift from three rate gyroscopes

single axis, angular displacement θ is found by integration over time:

θ =

∫

V − b

α
dt (4.20)

The parameter α can be determined by performing the above integration while rotat-

ing the gyroscope about a known angle.

The form of equation 4.20 means that estimates of angular position are very sensitive

to errors in bias: small steady-state errors in b produce unbounded errors in θ. The

rate gyroscopes used are sensitive to operating temperature and their bias can change

markedly over time as shown in Figure 4.6. Hence, the value of b must be continually

updated to ensure long-term robustness. The mechanism used for this is described in

Section 4.4.3.

4.4 Sensor Fusion

The visual tracking system by itself offers highly accurate, drift-free measurements as

long as motion is not too rapid; the rate gyroscopes provide reliable measurements of

rapid motion but bias errors and noise result in drift when stationary. The comple-

mentary strengths and weaknesses of the two sensors make them ideal candidates for

sensor fusion. This fusion is described here, and has three key components: an initial-

isation of the visual tracking system’s pose estimate before video frame processing, a

4.4 Sensor Fusion 67

modification of the edge detection process to support motion blur, and an update of

the gyroscope’s bias estimate.

4.4.1 Tracking System Initialisation

The visual tracker described in Section 4.2 uses local edge searches about a predicted

prior position in the video feed. Furthermore, it linearises pose changes about the

prior pose. As a result, the visual tracking system is best suited for correcting small

pose errors and the prior needs to be accurate. If image motion beyond the range of

the local edge search occurs (for example, due to sudden rapid camera rotation), the

visual tracking system fails entirely.

The time needed to capture a video frame from the camera and transfer this frame

from video hardware to the tracking system is large compared to the time needed to

sample information from the gyroscopes. Hence, a record of gyroscope information

corresponding to camera motion between the previous and the current video frames

is always available to the tracking system before image processing commences. This

information can be used to predict camera orientation for the new video frame, and

replaces the rotation component of the motion model previously described. Linear

accelerometers are not currently used, so the estimate of linear velocity v1...v3 from

Section 4.2.5 remains unchanged. The vector µ
-
C representing predicted change in

camera pose is formed by combining the tracker’s velocity estimates with gyroscope

measurements:

µ
-
C =

(

v1∆t v2∆t v3∆t θ1 θ2 θ3
)T

(4.21)

with θn evaluated as in Equation 4.20 and vn being the predicted linear displacement

along the nth axis. The prior prediction E
-
CW|t+∆t

for the camera pose is computed

using this estimated motion and the previous frame’s posterior, ECW|t as before:

E
-
CW|t+∆t = exp

(

µ
-
C

)

ECW|t. (4.22)

This operation provides the prior estimate needed for the model rendering step of the

tracking system’s operation.

4.4 Sensor Fusion 68

4.4.2 Parametric Edge Detector

In Section 4.2.3 (which describes Step 3 of the tracking system loop) the camera was

assumed to capture images using an ideal sampling function f(t) = δ(t). Under this

assumption edge detection could be performed by constructing a vector i of pixel in-

tensities around each sampling point in the direction of the edge normal and convolv-

ing with the differential kernel kdiff =
(

−1 1
)

to give a vector of edge intensities, of

which the nearest large local maximum is the detected edge position.

The assumption of a very short exposure time is not however valid for the camera

used. Although cameras with very rapid exposure times exist, these usually require a

high light intensity for operation and may not be suitable for operation in a standard

environment, e.g. inside a normal building. Under these conditions, cameras often

exhibit substantial motion blur, as illustrated in Figure 4.1. A better model of the

sampling function of these cameras is a rectangular pulse:

f(t) =
1

te

{

1 − te
2
≤ t ≤ te

2

0 otherwise
(4.23)

where te is the camera’s exposure time. An image edge (step function) moving across

the image at a rate of v pixels/second will thus appear as an intensity ramp of length

vte pixels in the sampled field. The edge detection in Step 3 of the tracking system

loop can be modified to detect blurred edges by using inertial sensor information to

produce an estimate of camera motion during the sampling period:

µC = te
(

0 0 0 ω1 ω2 ω3

)T
. (4.24)

For each sample point, an estimate of the length b of an edge’s motion blur in the direc-

tion of the edge normal can simply be found by multiplying with the corresponding

row of Jacobian matrix J from Equation (4.10); i.e. for the ith sample point

li = JiµC . (4.25)

4.4 Sensor Fusion 69

Figure 4.7: Image motion vectors of motion blur predicted from inertial sensors

Figure 4.7 shows the system’s estimate of motion blur superimposed over a blurred

video frame.1 Edge detection is performed by convolution with a matched filter. The

ramp kernel kramp is used:

kramp =
1

2l2
(

−l −l+2 ... l−2 l
)T
. (4.26)

When this kernel is convolved with the pixel intensities, the maxima indicate the

sensed locations of blurred edges. The edge detection process is illustrated in Figure

4.8. The first plot shows image pixel intensity measured along the horizontal black

line in the enlargement. These pixel intensities are convolved both with the differen-

tial kernel kdiff (second plot) and a ramp kernel kramp of length 36 (third plot.)

4.4.3 Gyroscope Re-calibration

As shown in Figure 4.6, the gyro bias parameters b are not constant. For long-term

robustness, it is therefore necessary to update the system’s bias estimate. This is done

by comparing inertial predictions of rotational motion with measurements made by

the visual system. If the rotational displacement around an axis between two visual

measurements time ∆t apart is Θn and the bias value is assumed to take the form

1Figure 4.7 shows predicted blur vectors. For edge detection, only the edge normal component as
calculated in Equation 4.25 is used.

4.4 Sensor Fusion 70

0 50 100
150

160

170

180

190

200
Intensity Along Edge Normal

Position

P
ix

el
 In

te
ns

ity

0 50 100
0

1

2

3

4

5

Position

E
dg

e
S

tr
en

gt
h

Kernel [-1 1]

0 50 100
0

1

2

3

Position

E
dg

e
S

tr
en

gt
h

Ramp Kernel (Length 36)Response to kernel [−1 1] Response to ramp kernel (l=36)

E
d

g
e

st
re

n
g

th

Position

E
d

g
e

st
re

n
g

th

Position

Image intensity

Position

Enlargement and sampled pixels

Figure 4.8: Still frame from a tracked sequence with enlargement and plots of pixel
intensity and detected edge strengths taken along the black line in the enlargement

4.5 Results 71

b = btrue + ewhere e is bias error, it follows from equation 4.20 that (assuming perfect

measurements)

e =
α (Θ − θ)

∆t
. (4.27)

In practice, differential measurements are noisy, and bias values are corrected by a

small (typically 1
100

th) fraction of the calculated error. This avoids corruption by spu-

rious measurements and does not impact performance since bias drift is a gradual

process.

4.5 Results

The tracking system presented was tested on three different test scenes with available

edge models. The ‘tabletop’ scene (shown in Figure 4.8) places the camera in a simple

immersive table-top environment as used for the visual guidance of a mobile robot in

Klein (2001). The ‘ship’ scene points the camera at a model of a ship part (Figure 4.2)

such as could be found in a visual servoing application (Drummond & Cipolla, 1999).

The ‘cubicle’ scene contains a portion of a computer lab (Figure 4.1).

In each scene, the camera undergoes increasingly rapid motion relative to its target

while the tracking system was run in three modes: without any inertial informa-

tion, using inertial information to predict camera pose, and using inertial informa-

tion both for pose and blur prediction. Table 4.1 shows the maximum rotational ve-

locities at which tracking was sustainable. The tracking system’s performance dif-

fers greatly from scene to scene: While the ‘ship’ and ‘tabletop’ scenes contain many

edges of modest contrast, the ‘cubicle’ scene contains high-contrast feature such as

windows and light fittings and is trackable even at high rotational velocities. A video

(edge tracking.avi) demonstrating tracking performance is enclosed on the accom-

panying CD-ROM.

Figure 4.8 shows the tracking system correctly tracking a sequence in the ‘tabletop’

scene while the camera is rotating about its vertical axis with 3.1rad/s. This was the

highest rotational velocity at which correct tracking was maintained for this scene.

4.5 Results 72

Sequence: Tabletop Ship Cubicle

Visual sensor only [rad/s] (pixels) 0.3 (3) 0.3 (3) 1.0 (11)

With pose initialisation 0.8 (8) 1.2 (13) 3.6 (38)

With blur prediction 3.1 (33) 2.0 (21) 4.7 (50)

Table 4.1: Tracking system performance for three scenes: Maximum trackable rota-
tional velocities in rad/s (and corresponding motion blur in pixels)

0.0 0.8 1.8 3.1 4.9

Figure 4.9: Motion blur enlargements at various rotational velocities [rad/s]

Video image quality at different rotational speeds is compared in Figure 4.9, which

shows enlargements corresponding to the central white outline in Figure 4.8. The first

four enlargements show rotational velocities trackable with the combined system, the

last was untrackable.

Fitting error was measured for the ‘tabletop’ test scene by fitting straight lines (in the

undistorted space) to each edge’s sample points’ measurements and calculating the

residual error after the line was fit. The mean error for sample points with no motion

blur was found to be 1.1 pixels. The error increased to 4.2 pixels for sample points

with a motion blur of 7 pixels and reached a maximum of approximately 5.5 pixels for

motion blurs of 20-33 pixels.

The results demonstrate that the addition of an inertial pose prediction to the tracking

system greatly increases the system’s robustness. Pose prediction by itself is however

not sufficient when camera motion is such that motion blur corrupts image measure-

ments. In this case, the estimation of motion blur and use of a parametric edge detec-

tion algorithm further increase the robustness of the system.

While the inertial sensors used can measure rotational velocity, linear velocity is still

estimated from visual measurements. This shortcoming could be addressed by the

4.5 Results 73

addition of linear accelerometers; however, since these devices measure the second

differential of position and require the subtraction of a gravity vector, results are likely

to be inferior to those for the rotational sensors.

It should be pointed out that neither the rate gyroscopes nor the linear accelerome-

ters provide any information about possible motion of the objects tracked, and so the

tracking of rapidly moving objects is not supported. Hand-held manipulation of ob-

jects being tracked, e.g. the ship part, generally produces motions much slower than

those produced by camera shake, and is well-trackable.

The motion blur correction used is not suitable for parallel edges whose separation

is comparable to the size of local motion blur. The use of more advanced rendering

techniques (such as the use of multiple levels of detail) may help address this issue.

However this would require suitably marked-up models and further increase the sys-

tem’s already considerable dependency on data prepared off-line.

5
HMD-Based Augmented Reality

5.1 Introduction

This chapter shows how a HMD-based AR application can be built around the mark-

erless tracking system described in Chapter 4. It describes the development of an AR

application based on a stereoscopic, semi-transparent Head-Mounted Display (HMD)

which can overlay computer-generated graphics onto the user’s view of the real world.

By mounting a camera at a fixed offset to this display, the tracking system can be used

as the position sensor necessary for accurate registration of the computer-generated vi-

suals with objects in the real world. Figure 5.1 shows a picture of the helmet-mounted

display and sensors.

While the tracking system of Chapter 4 can be used un-modified, tracking head-pose

alone is not sufficient to render graphics in the right place: a calibration of the user’s

eye positions and of the display’s projection parameters is also required. This chapter

5.1 Introduction 75

Gyro ADC
and serial link

Camera and
rate gyroscopes

display
See−through

Figure 5.1: Head-Mounted Display. The display is mounted to a hard-hat to which
camera and rate gyroscopes have also been attached.

shows how these parameters can be estimated using a simple calibration procedure

and nonlinear optimisation. This optimisation allows the use of a nonlinear projec-

tion model which can compensate for the radial distortion produced by the display.

Finally, to avoid virtual graphics lagging behind the real scene, velocity predictions

from inertial sensors are used to improve the system’s dynamic registration.

Section 5.2 describes the features of the display used, while the application it is used

for is described in Section 5.3. Section 5.4 describes the rendering method used to

draw augmented visuals, while Section 5.5 describes how the rendered visuals can

be accurately registered with the view of the real world using calibration and predic-

tion. Finally, Section 5.6 describes the performance of the resulting head-mounted AR

system.

5.2 Head-Mounted Display 76

1

2

3

1: SVGA display

2: Semi-silvered mirror

3: Concave semi-silvered mirror

Figure 5.2: Optical layout of the HMD

5.2 Head-Mounted Display

The head-mounted display used is a Sony Glasstron LDI-100B. This display features

one 800×600 pixel, 24 bpp display per eye. In its standard configuration, an SVGA

signal is displayed identically on both displays; here, the display has been modified to

produce frame-sequential stereo. Even-numbered frames from the computer are sent

to one eye’s display, odd-numbered frames to the other. The SVGA output is set to

operate at 85Hz, resulting in a 42.5Hz update-rate for each eye.

The optical layout of the Glasstron HMD is illustrated in Figure 5.2. The display op-

erates in optical see-through mode: light from the outside world passes through the

semi-silvered mirrors to reach the user’s eyes, giving the user a slightly darkened but

otherwise undistorted view of the external environment. Simultaneously the user can

see the images produced by the SVGA displays. This additive mixing of real and vir-

tual images limits the scope of augmented visuals possible: As discussed in Section

2.3, it is not possible for real objects to be removed from the user’s field of view. Vir-

tual objects have a transparent appearance and cannot fully occlude real objects in the

view (unless these are perfectly black.)

Figure 5.3 demonstrates how a user’s view can be augmented with extra informa-

tion using the HMD. Panel 1 shows the user’s view of a scene without wearing the

5.2 Head-Mounted Display 77

HMD. Panel 2 shows the view when the HMD is worn, without any graphics being

displayed: the view through the optics introduce a slight darkening and loss in clarity,

and the user’s field-of-view is reduced. To overlay annotations into the user’s field of

view, SVGA images are sent to the display: such an image is shown in Panel 3. Due to

the additive mixing operation of the HMD, black portions of this image will not affect

the user’s view, and light portions of the image will appear as transparent overlays.

The composited view is shown in Panel 4.

21

3 4

Figure 5.3: Image composition in the HMD. 1: User’s view without an HMD. 2: The
same view wearing the HMD. 3: Computer graphics sent to the HMD 4: Resulting
composited view formed by additive mixing. Also faintly visible in this panel is the
size of the rectangular area in which augmented visuals can be drawn.

5.3 A Prototype Maintenance Application 78

5.3 A Prototype Maintenance Application

To evaluate the proposed AR system, a maintenance application mock-up was pro-

grammed. This application envisages an AR replacement for a paper-format mainte-

nance checklist. For example, a mechanic performing a 100-step procedure on a gas

turbine may currently refer to a paper checklist which describes and illustrates the

steps to be taken. An AR replacement for this checklist would project instructions

directly into the mechanic’s field-of-view and directly highlight the relevant part in

a step, eliminating the need to go back and forth between workpiece and checklist.

For maintenance applications involving electronic devices, this application could fur-

ther be sped up by automatically detecting when certain steps have been taken by the

operator and advancing the checklist appropriately.

The application developed here demonstrates this principle on the basis of an ink-jet

printer. A CAD model of this printer was constructed, allowing it to be tracked by

the edge-based tracking system described in Chapter 4. A two-step checklist was pro-

grammed, by which the user is instructed to check the position of the power switch,

and press one of the printer’s buttons. The current activity is displayed as a text call-

out which points at the location of the switch or button; further, an animated 3D arrow

also shows the user where the next control is. Finally, the button to be pressed is high-

lighted with a ring which appears flush with the body of the printer. It is this printer

maintenance application which appears on the display in Figure 5.3.

An AR printer maintenance application has previously been presented by Feiner et al

(1993), who demonstrate the KARMA (Knowledge-based Augmented Reality for Main-

tenance Assistance) system: This system is designed to facilitate the difficult task of

authoring AR applications by automatically deciding which things must be shown

to the user in which order based on a maintenance instruction list. In this chapter

the emphasis is on accurate registration rather than the function of the application;

as a result, the application presented here does not approach the functionality of the

KARMA system, but the quality of registration is improved.

5.4 Projection Model and Rendering 79

Beyond the printer application, a CAD model of a server room was made and a sec-

ond instance of the maintenance application generated: this one to guide a network

technician to move a patch cable from one port in a network switch (located in a rack

of network equipment) to another. This application is interesting because it is immer-

sive - the tracked and augmented visuals surround the user (in contrast to the printer

application in which only a single isolated object is viewed.) Again, text call-outs and

arrows were used to illustrate the task. Further, in this application, individual equip-

ment racks are given labels.

Illustrations of both of these applications and an evaluation of their performance is

given in Section 5.6.

5.4 Projection Model and Rendering

3D graphics are rendered to the display by treating each eye’s LCD screen as the image

plane of a virtual camera located at that eye. This allows normal computer graphics

projection models to be used. This section describes the projection model and ren-

dering procedure used to render the view of each eye. Since each eye is treated in-

dividually with no shared parameters, the remainder of this section will describe the

monocular case.

Given a calibrated display (the calibration procedure is described in Section 5.5) and

a functioning tracking system, the position of the user’s eye at any point in time is

known and described by the matrix EEW which describes the transformation from the

world (W) to the eye (E) coordinate frame. The projection of a point xW in the world

to a pixel position on one eye’s screen is given (similarly to Section 4.2) as

(

u
v

)

= EyeProj
(

EEWxW

)

(5.1)

where EyeProj() the eye-screen camera model. The display exhibits a small amount

of radial distortion (in this case pincushion distortion); while the magnitude of this

distortion is much smaller than the distortion exhibited by the 4.2mm tracking lens,

5.4 Projection Model and Rendering 80

it is nonetheless plainly visible in the display, and a polynomial radial distortion ap-

proximation is included in the projection model. This differs from the model used for

tracking in that only a single distortion parameter β is sufficient to model the weaker

distortion:

EyeProj

xE
yE
zE
1

=

[

fu 0 u0

0 fv v0

]

r̃
r

xE

zE
r̃
r

yE
zE

1

 (5.2)

with

r =

√

(

xE

zE

)2

+
(

xE

zE

)2

(5.3)

r̃ = r − βr3. (5.4)

Rendering is performed using accelerated z-buffered OpenGL. The display of lines

and textured triangles is supported. For the evaluation of the AR display, the same

CAD model as used for tracking is drawn, using black triangles (which appear trans-

parent in the display) for hidden line removal. Rendering the edges of the tracking

CAD model thus allows immediate visual inspection of the accuracy of tracking and

calibration.

Radial distortion is not directly supported in the OpenGL rendering transformation,

and therefore requires a separate step. In Section 4.2 radial distortion was performed

on a point-by-point basis: only a few hundred points needed to be distorted very accu-

rately, with no need for smoothly distorted lines or triangles. The requirements for AR

rendering are different; the rendering of arbitrarily complex meshes may be required.

Further, long line segments and large textured triangles should also be displayed with

correct distortion, so a by-vertex distortion scheme is inappropriate.

Instead, the texturing approach presented in Watson & Hodges (1995) is used. An

undistorted projection of the scene is first rendered into an off-screen buffer using full

hardware acceleration. Radial distortion can then be applied by rendering a distorted

grid to the screen using this buffer as a texture map. The vertices of the grid are pre-

distorted with the inverse of the HMD’s optical distortion to produce an undistorted

5.5 Registration 81

view for the user. A 20×20 grid has proven sufficiently accurate to avoid discontinu-

ities at the grid cell boundaries.

5.5 Registration

5.5.1 Registration for Optical See-through Displays

For an AR application to function, the virtual graphics must be accurately registered,

that is, correctly aligned with the relevant objects in the real world. For video see-

through systems, in which the computer has access to the image the user sees, accurate

registration can be achieved by simply employing visual tracking such as described in

Chapter 4; the tracking system’s projection model (ECW and CamProj()) can then be

used to render augmented visuals in the right place into the video feed.

E C

Figure 5.4: In an optical see-through system, the user and computer see different im-
ages. User’s view (left) and computer’s view (right).

Registration becomes more difficult for optical see-through systems such as used here.

In these cases, the computer does not have access to the image of the real world that

reaches the user’s eyes. Instead, the computer uses video from a head-mounted cam-

era which is mounted at some fixed offset to the display and most likely has very dif-

ferent projection parameters. This is illustrated in Figure 5.4, which shows the differ-

5.5 Registration 82

Coordinate Frames:
W World
C Camera
E Eye

EyeProj (5 params)

ECW (from visual tracking)

EEC (6 params)

W

C

E

Figure 5.5: Coordinate frames and calibration parameters needed for projection

ence in the view the user and computer have of a scene. This difference in viewpoints

must be accurately determined by a calibration procedure.

The tracking system measures ECW , the transformation from world coordinate frame

W to the head-mounted camera’s coordinate frame C. To obtain the position of a user’s

eye EEW required for rendering, an estimate of the transformation from camera to the

user’s eye EEC must be obtained (from which EEW = EECECW). Further, the projec-

tion parameters parameters fu, fv, u0, v0 and β used for rendering of the augmented

visual must also be calibrated. This gives a total of 11 parameters to be calibrated

for each eye, as illustrated in Figure 5.5. Calibration is performed by gathering mea-

surements from the user and then optimising projection parameters based on these

measurements.

5.5.2 User Calibration Procedure

Due to differences in users’ head geometries, the display parameters must be cali-

brated separately for each user, otherwise augmented features rendered are likely to

5.5 Registration 83

be significantly misaligned with their intended real-world locations. Indeed, even for

a single user, a system perfectly aligned during one session can be very much mis-

aligned when starting the next, as the AR display will not be in exactly the same place

relative to the user’s eyes. Very slight movements of the display relative to the eyes

can have a large impact on the display’s optical center and indeed on the magnitude of

radial distortion encountered; focal length and modelled eye position are also affected.

Therefore, it is currently necessary to calibrate the display for every single use. Since

the computer cannot see the view the user receives, calibration must rely on user in-

put. Here, a calibration procedure which extends the approach of Janin et al (1993) is

employed.

The user is provided with a mouse which controls cross-hairs visible in the AR dis-

play. To calibrate the projection parameters, the user is asked to align projected model

vertices with their real-world location. To do this, the user first selects a projected ver-

tex with the left mouse button, and then clicks on its real-world position with the right

mouse button. A number of software measures are taken to make this task as accurate

as possible:

• To reduce the negative impact of tracking jitter and user head motion on mea-

surement accuracy, information from the tracking system is used to motion-

stabilise the cross-hairs with respect to the projected geometry. If the mouse

is not moved, the cross-hairs are not kept in a fixed screen position; instead, they

are kept at a fixed screen offset from the current projection of the selected ver-

tex. This appears intuitive in the display and means the user must not keep their

head absolutely rigid during calibration. Further, the effect of tracking jitter on

measurements is almost completely eliminated, since cross-hairs and projected

vertex jitter by the same amount.

• the area immediately around the cross-hairs is cleared of any augmented visuals

to provide the user with a clear view of the target geometry;1

1This effect is not shown in Figure 5.6 but can be observed in the video hmd calibration.mpg.

5.5 Registration 84

• the eye not being calibrated is masked with a fully white screen, which obscures

that eye’s view of the real world sufficiently to ensure that the user calibrates the

monocular view of the correct eye rather than a stereo view.

A high-contrast, accurately modelled calibration object is used to simplify the task.

To ensure a good calibration, the user is encouraged to make measurements at many

different places in the display, including the center and the extremities. Also, the user

is encouraged to make measurements using vertices at many different distances - this

is crucial for proper stereo alignment. If the tracking environment contains features at

many depths, this is simply done by selecting some vertices which are near and some

which are far away; if the environment is shallow, the user is encouraged to move

nearer and further from the object during the course of the calibration.

Generally, the user will make five measurements at one range, then five at a different

depth, and then make further measurements to clean up any remaining misaligned

vertices as necessary. Figure 5.6 illustrates this procedure in six panels. The view in (a)

is completely uncalibrated. The user has selected a vertex to adjust (indicated by a di-

amond) and moves the cross-hairs to the real-world position. The user clicks the right

mouse button and the calibration is updated accordingly (b). The user then selects the

next vertex (c) and clicks on the corresponding position (d). After three more measure-

ments (for a total of five) the view is well aligned from this viewpoint (e); however,

moving the closer to the target reveals errors (f) and more measurements will have to

be made at this range. It should be pointed out that the very limited range of move-

ment shown is due to constraints imposed by photography through the AR display,

and a real user’s head would move about more. The video file hmd calibration.mpg

which demonstrates the calibration procedure is enclosed.

The method presented here differs from the previous calibration methods discussed in

Section 2.3.3. It is most similar to the method of Janin et al (1993), but differs in a few

aspects: Perhaps the most significant is the use of a motion-stabilised cursor which

greatly reduces the negative impact of tracking jitter on calibration and no longer re-

quires the user to hold their head very still during calibration. Further, any vertex

5.5 Registration 85

dc

e f

ba

Figure 5.6: Calibration seen through the display

5.5 Registration 86

included in the tracked CAD model (rather than a single calibration point) can be

used for calibration; this has the advantage that the user can always ‘fix’ the currently

worst-projected part of the image and this leads to a more rapidly constrained calibra-

tion. Finally, the projection model used is richer (as described in Section 5.4).

5.5.3 Nonlinear Optimisation

Each user measurement provides the system with two pieces of information; a 2D dis-

play coordinate (ũ ṽ)T specified by the user’s cross-hairs, and a 3D sensor-camera

coordinate (xC yC zC 1)T which was the selected vertex’s camera-frame position

at the time of the measurement. The ideal HMD calibration would project all the

camera-frame coordinates to their measured display positions. Due to measurement

noise and model inaccuracies, this is not achievable, and projection parameters are

chosen to minimise the sum-squared re-projection error

ǫ =

N
∑

n=1

(ũn − un)2 + (ṽn − vn)2 (5.5)

where N is the number of measurements made, and (un vn)T is the projection of

the nth sensor-camera coordinate. Re-writing the above in terms of an error vector e,

ǫ = |e|2 , e =

ũ1 − u1

ṽ1 − v1
...

ũN − uN

ṽN − vN

(5.6)

The minimisation of this error is equivalent to the tracking problem described in Sec-

tion 4.2.4, with the addition of the minimisation of the camera parameters. Writing the

display’s intrinsic projection parameters as a vector p,

p =
(

fu fv u0 v0 β
)T
, (5.7)

and using a vector µ to update the camera-to-eye transformation with the equation

EEC|t+1 = exp

6
∑

j=1

µjGj

EEC|t , (5.8)

5.5 Registration 87

the re-projection error is minimised by solving

[

Jµ Jp
]

(

µ

∆p

)

= e (5.9)

where

Jµ
ij =

∂ei
∂µj

Jp
ij =

∂ei
∂pj

. (5.10)

The differentials can be calculated using the chain rule as presented in Appendix B.2.

In contrast to Section 4.2.4 where measurements were significantly non-Gaussian, the

user’s measurements can be considered less prone to clutter and feature mis-detection

and so the error terms here are considered to follow a Gaussian distribution. Hence

the pseudo-inverse solution to the above equation is used:

(

µ

∆p

)

= λ
[

Jµ Jp
]†

e (5.11)

One iteration of the above equation is performed per frame. The scale factor λ ≈ 0.1

slows down convergence, aiding numerical stability and allowing the user to observe

convergence in the display. Typically convergence takes less than a second after each

new measurement.

5.5.4 Dynamic Registration

Once the calibration parameters have been accurately determined, the display should

exhibit correct static registration: virtual graphics should be correctly aligned to the

real world when the user does not move. Dynamic registration errors can however

still occur when the user moves - this is because the user perceives the real world

with no delay, whereas the virtual graphics are rendered with some latency. This time

difference becomes most apparent when panning, and virtual annotations appear to

‘lag’ behind the real world.

Many factors contribute to the latency in the augmented visuals, such as the time

required to capture a video field and transfer this into computer memory, the time

to track this video image, the time required to render an augmented view, and the

5.5 Registration 88

time required for this rendered view to appear on the HMD. Most of these delays can

be determined experimentally; knowledge of delay times can then be used to lower

the apparent latency of the system. Information from the inertial sensor has a lower

latency than information from the visual tracking system, and so extra information

from the gyroscopes can be used to update the pose which is used for rendering the

augmented visuals. Beyond this, a constant velocity model can be used to predict

what a user’s head pose will be at the time the graphics appear on the screen.

Given a time tc which corresponds to the time at which the tracking system captured

a frame, a time tg which corresponds to the last available gyroscope measurement,

and a time td at which the the next frame is expected to appear in the display, then

tc < tg < td. The matrix ECW obtained from the tracking system corresponds to time

tc and will be written ECW|tc . For rendering, this is replaced with a prediction of the

pose at display time, ECW|td :

ECW|td = MCECW|tc (5.12)

with MC = exp(µ), and

µ =

(td − tc)

v1
v2
v3

θ1
θ2
θ3

+ (td − tg)

ω1

ω2

ω3

. (5.13)

The linear motion components µ1..µ3 are hence formed from the tracking system’s

velocity model (described in Section 4.2.5), whereas the rotational components µ4..µ6

are formed in two parts: firstly an integral θi of the gyroscope measurements available

between times tc and tg and secondly a prediction based on ωi|tg , the last measurement

of rotational velocity made (c.f. Section 4.3). The integrals are as in Eq. (4.20):

θi =

∫ tg

tc

Vi − bi
αi

dt . (5.14)

5.6 Results 89

A trade-off between good registration while panning and increased jitter (cf. Section

5.6.3) can be achieved by artificially moving td closer to tg.

5.6 Results

5.6.1 Maintenance Application

Figure 5.7 shows typical views the user might see when running the maintenance

application. These images were recorded by mounting a video camera behind the

HMD and then calibrating the set-up through the video camera’s viewfinder.

The left column shows the printer application, the right column shows scenes from

the computer room. In both cases, CAD models of the scene are drawn in addition

to the user instructions: these serve to evaluate registration. When the CAD model

is well aligned with the real world, the user can be convinced that the instructional

augmentations are drawn in the correct place. In the case of the printer, tracking is

robust thanks to adequate lighting and the printer’s prominent edges. This sequence

also demonstrates the flexibility of visual tracking, in that when the user picks up the

printer to examine the switch (third image), the tracking system is capable of tracking

this motion. This would e.g. not be possible with magnetic tracking, unless the printer

were also magnetically tracked.

The printer is tracked well as long as the user keeps it in the tracking camera’s field-

of-view: as soon as the user turns away from the printer far enough, tracking fails and

must be re-initialised. However, manual re-initialisation when the printer is a working

distance away is rapid.

The computer room sequence is more problematic. Subdued lighting and a large

amount of clutter relative to the CAD model make tracking less stable. Any track-

ing failure requires the user to reset the tracking system which involves a trip back

to the starting position, since a graceful failure recovery mechanism is not available.

5.6 Results 90

Figure 5.7: Captures from a video recorded through the HMD running the two ex-
ample applications. Left column shows the printer maintenance application, right
column the machine room.

5.6 Results 91

Besides suffering from robustness issues, registration is affected at close range: the

networking hardware to be manipulated is not modelled and tracked well enough to

reliably highlight the correct network port; only the rectangular outline of the switch

is used for tracking, and the ports are spaced at 1cm intervals.

The moderate lighting conditions in the machine room also very negatively impacts

the usability of the display - the darkening effect of the see-through optics makes it

difficult to clearly see the real world. Further, the constrained augmented field-of-

view becomes very limiting in this rather cramped space: the network switch to be

modified can only be seen in its entirety when standing at the other end of the room.

The network maintenance application was therefore abandoned and replaced with a

simple entertainment demo modelled after the film ‘The Matrix’: the user is instructed

to pick up a red pill, after which a matrix-like effect is projected on the walls and

surfaces of the scene (bottom two pictures in Figure 5.7.)

5.6.2 Calibration Performance

A systematic evaluation of calibration performance is difficult to achieve since only the

user can evaluate the final results; however a numerical measure of the quality of the

static calibration can be obtained from the RMS re-projection error of all calibration

points: ideally this error would be zero. This error was evaluated by performing

eight stereo calibrations (sixteen monocular calibrations) using the test model shown

in Figure 5.6. On average, each monocular calibration involved twelve measurements.

The RMS residual error for all measurements is shown in Table 5.1.

To evaluate the effect of including the radial distortion term in the projection model,

each calibration was also re-calculated without radial distortion. This resulted in a

residual error which was on average greater by 0.7 pixels.

Subjectively, registration errors with distortion enabled appeared smaller than 1cm

when viewing the object from a distance of 50-150 cm. With distortion disabled,

5.6 Results 92

monocular registration errors were similar, however the effect on stereo perception

was significant; graphics often appeared to float a few centimeters in front of the real

object. This is supported by the numerical calibration results. On average, removing

radial distortion from the projection model caused calibrated left-right eye separation

to increase by 3mm, and also caused calibrated eye centers to move 1.8cm further

forward.

Distortion Enabled Yes No

Mean Reprojection Error(pixels): 3.4 4.1

Rendering Speed (Frames/sec/eye)

GF2MX Simple scene: 40 83

GF2MX Textured scene: 27 49

GF5900 Simple scene: 149 342

GF5900 Textured scene: 131 263

Table 5.1: Effect of radial distortion on calibration and rendering performance

5.6.3 Dynamic Registration Error

The full AR system, implemented on a 2.4GHz dual-Xeon machine with an nVidia

Geforce 5900 video card, has a latency of 60-70ms, i.e. the virtual graphics lag 60-70ms

behind the user’s head motion. The rate gyroscopes can be used to reduce this latency

by 20ms. The remaining 40ms of latency can be masked by prediction with a velocity

model - this accurately aligns real and virtual imagery during panning, but increases

jitter when the user’s head is stationary.

The increased jitter is tabulated in Table 5.2, which measures RMS jitter of a single

Prediction used Display Jitter (pixels)

Lens used: 4.2mm 8.5mm

Tracking only: 1.5 0.9

Up to last gyro measurement (20ms:) 2.0 1.3

Full prediction (20+40ms:) 7.0 6.8

Table 5.2: Rendering jitter in the HMD while stationary

5.6 Results 93

printer vertex rendered to the HMD over the course of 100 frames with the track-

ing camera held stationary 70cm from the printer. Jitter is measured for two tracking

lenses and for three prediction strategies: One renders directly according to the latest

tracking system pose; the next renders up the last available gyroscope measurements

(20ms); the third predicts another 40ms beyond this. The results show a marked in-

crease in jitter for the latter case: at these levels, jitter becomes very apparent to the

user, however lag when panning disappears. A compromise could be to modify the

prediction behaviour depending on the user’s movements: when the user’s head is

not moving rapidly, prediction could be turned down.

Table 5.2 further compares jitter for the 4.2mm wide-angle lens typically used for

tracking and an 8.5mm zoom lens used in previous systems which do not use radial

distortion models e.g. Drummond & Cipolla (1999). The 4.2mm lens is used here to

increase tracking robustness as detailed in Section 4.2. The disadvantage of using the

wide-angle lens is a reduction in the tracking system’s angular resolution. Table 5.2

shows that this increases jitter in the HMD. However, jitter from the tracking system

is small compared to jitter introduced by prediction, and the advantages of using the

wide-angle lens for tracking outweigh the slight increase in jitter.

Holloway (1995) has argued that correcting for radial distortion found in AR displays

can have a net negative effect on registration, in that the static registration improve-

ments gained by modelling radial distortion can be outweighed by the extra latency

incurred. Table 5.1 shows how rendering performance changes when distortion is

enabled, using two different graphics accelerators: an nVidia Geforce 2MX card and

an nVidia Geforce 5900 card. With the older 2MX card, enabling distortion correction

drops the frame-rate to under the display’s maximum rate of 42.5 frames/second/eye;

The distortion step contributes up to 8ms of latency to the system. The more modern

card requires under 2ms of extra time per frame to perform the distortion correction.

This cost is already small compared to the total system latency, and produces no mea-

surable increase in jitter. Further, the cost will only decrease in future as graphics

accelerators improve fill-rates; one may conclude that compensating for radial distor-

tion no longer significantly impacts dynamic registration.

5.6 Results 94

5.6.4 Ergonomic Issues

The HMD AR system has a number of ergonomic weaknesses and limitations which

become apparent as the display is worn.

Bulk: The hard-hat with HMD, gyros and camera attached is uncomfortably bulky

and heavy. The hard-hat must be done up tightly to prevent motion of the display

during a session - this can cause discomfort.

Restricted view: The HMD offers a very limited field-of-view (30◦) for the virtual

graphics, which limits the system’s usefulness when the user is close to the object be-

ing manipulated, or in immersive environments such as the machine room.1 Further,

the user’s view of the real world is restricted by the HMD’s frame and perceived con-

trast is reduced (c.f. Figure 5.3.)

Alignment sensitivity: Very small motions of the HMD relative to the user’s eyes can

cause large shifts in the virtual imagery. This is a problem for longer-term use of the

display, as the hard-hat will shift on the user’s head. The display may then need to be

re-calibrated.

Eye Strain: The reduced contrast of the user’s view of the real world, combined with

imperfect stereo calibration and the fact that the real and virtual graphics are not al-

ways in focus together, can put strain on the user’s eyes.

Tether: A large number of cables run from helmet to PC and this restricts the user’s

movements. The current implementation tethers the user to a desktop workstation,

thus limiting the working space. It is possible to replace the workstation with a laptop;

1Watson & Hodges (1995) point out that early binocular displays had horizontal fields-of-view of
over 100 degrees; however, these displays had low resolution and also produced large distortions, which
were not corrected at the time. As a result, manufacturers decreased field-of-view to avoid the resolution
and distortion problems. The authors hypothesised that since distortion could now be corrected with
their approach, manufacturers could revisit wide-FOV displays; unfortunately this does not appear to
have happened.

5.6 Results 95

however the need for stereo graphics mandates a workstation-class laptop, and these

are typically heavy.

These HMD-related factors all contribute to the HMD being uncomfortable for long-

term use. Further, successful use of the system is complicated by the inability of the

tracking system used to automatically re-initialise after failure. The need to manually

re-align the system after every tracking failure makes the system impractical for use

outside laboratory conditions.

6
Tablet-Based Augmented Reality

6.1 Introduction

While the traditional delivery medium for AR has been the head-mounted display (as

used in the previous Chapter) tethered to a workstation or laptop, the emergence of

powerful PDAs and tablet PCs potentially provides an alternative medium particu-

larly well suited for interactive AR applications. In these devices, the display, user-

interface and processor are united in one compact device which can operate without

trailing wires or a bulky backpack. Rather than augmenting the user’s view of the

world directly, they act as the viewfinder for a video camera and operate by augment-

ing the video feed as it is displayed (in the same manner as video feed-through HMD

systems.) The great advantage is that here, small latencies do not matter. Further, no

user calibration is necessary; any user can pick up the system and instantly make use

of the application. Finally, a pen offers a highly intuitive user interface for interacting

with AR applications.

6.1 Introduction 97

Figure 6.1: Maintenance application on the tablet PC (montage with screenshot.)

While PDAs offer a very compact and unobtrusive form-factor, the video bandwidth

and processing power they offer is unfortunately still rather limited. Tablet PCs on

the other hand now offer the performance required for AR systems such as presented

here; for example, the maintenance application which was used with the HMD in

Chapter 5 can operate at full frame-rate completely on the HP Compaq TC1100 tablet

PC illustrated in Figure 6.1. This device uses a 1GHz ULV Pentium-M processor. A

10” screen with 1024x768 pixels is driven by an NVidia Geforce4 420 Go graphics

accelerator. Video input is provided by a unibrain Fire-i fire-wire camera which is

attached to the back of the tablet and fitted with a wide-angle lens. This provides

colour 640×480 pixel video at 30 frames per second.1

Tablet-based AR is an emerging field with its own unique set of challenges which

1Unfortunately most PCMCIA firewire cards provides no power to the camera, necessitating the use
of power from the USB port and a replacement of the camera’s power regulator.

6.2 A Tablet-based Entertainment Application 98

must be addressed to produce truly usable systems. This chapter identifies these chal-

lenges and attempts to address them with suitable combinations of existing and novel

technologies. An AR entertainment application, described in Section 6.2, has been de-

veloped for evaluation purposes: this application sets demanding standards for both

tracking and rendering. A robust combination of multiple tracking systems including

a novel outside-in LED tracker is described in Sections 6.3-6.6. Rendering techniques

required to convincingly insert virtual objects into real-world footage are described in

Sections 6.8-6.9; in particular, a novel method to refine the occlusion of virtual graphics

by real objects is presented.

Details of the application’s implementation are presented in Section 6.7, while results

and an evaluation of the format’s capabilities are presented in Section 6.10.

6.2 A Tablet-based Entertainment Application

This section describes Darth Vader vs. the Space Ghosts, an AR entertainment application

written to showcase tablet-PC based AR. The application uses a real-world tabletop

game environment as seen in Figure 6.2. This environment is a circa 90×90cm model

which resembles a Cluedo board and models a single floor of a house. Thin 7cm-high

wall-papered walls separate individual rooms and corridors.

The environment is physically empty, but contains virtual characters in the game:

these can be seen by observing the environment with the tablet PC, which has a video

camera attached to it: in the augmented view seen on the tablet’s screen, the virtual

characters appear to run around the tabletop environment. The player has control

over one such character, Darth Vader: by touching the screen with the tablet’s pen,

the player can instruct Darth Vader to move to a specific location in the house. Darth

Vader can collect virtual bonuses and power-up items which are scattered around the

environment.

The world is further populated by Space Ghosts, which emerge from a cellar and at-

6.2 A Tablet-based Entertainment Application 99

Figure 6.2: Tabletop game environment used for “Darth Vader vs. Space Ghosts”

6.3 Tracking Strategy 100

tempt to catch Darth Vader. The player must make Darth Vader avoid contact with

these ghosts or virtual lives are lost. To safely clear a level, all the space ghosts must

be destroyed: this is accomplished by picking up the Death Star bonus and calling in

laser strikes from the Death Star above. Once all ghosts have been destroyed, the next

level commences with more ghosts.

Calling in a laser strike requires the user’s physical interaction with the game world:

the user holds a number of tokens (red playing pieces from the game Connect Four)

which must be thrown into the game world. A virtual laser strike is then fired at the

location the token comes to rest, and any space ghosts in a radius of it are destroyed.

Care is required when picking up power-ups, for these sometimes contain handicaps:

For example, more ghosts may appear, or Darth Vader may become a “ghost magnet”.

Power-ups can be identified only by close examination, which requires the user to

physically move the tablet close to the location of the power-up.

6.3 Tracking Strategy

The primary requirement for the correct operation of the application is an accurate

and continuous knowledge of the pose of the tablet-mounted camera, so that visuals

on the tablet can be drawn correctly.

The TC1100 tablet PC used is sufficiently powerful to run the edge-based tracking

system described in Chapter 4 at 30 frames per second (A CAD model of the tabletop

environment is used for tracking.) This system in itself provides all the pose and

camera model information necessary to directly render virtual graphics onto the live

video stream which is displayed on the tablet’s screen. However, this system relies

on a reasonably accurate prior pose estimate for every frame in order to operate: if

such an estimate is not available, tracking fails and cannot be resumed without re-

initialisation. Thus tracking can fail after any difficulty encountered, such as when the

camera is pointed away from the tracked environment, moved very rapidly, or when

6.3 Tracking Strategy 101

Figure 6.3: Back of the tablet PC showing fire-wire camera and infra-red LEDs

the environment is substantially occluded by the user; in these cases or at application

start-up, a manual rough alignment is necessary to recommence tracking.

To increase tracking robustness to the point at which it is usable by un-trained users,

a second tracking system operates concurrently with the edge-based tracker. This

system uses an external camera which is mounted at the periphery of the playing en-

vironment and observes the tablet PC. The camera is attached to a workstation which

computes the tablet’s pose and sends this information to the tablet over a wireless

network. To complement the edge-based tracking running on the tablet, this system

should be capable of localising the tablet independently at each frame, i.e. not require

a prior pose estimate: for this reason, fiducials are attached to the back of the tablet

PC in the form of six small infra-red LEDs, as shown in Figure 6.3. Attaching fiducials

to the tablet PC and using outside-in tracking means that it is not necessary to include

any fiducials in the game world. The LED tracking system is described in Section 6.4.

Figure 6.4 illustrates the sensors and targets used to determine the tablet’s pose. Four

coordinate frames are defined in the application: the world coordinate frame of the

table-top game environment W , the tablet-mounted camera’s coordinate frame C, the

tablet-mounted LEDs’ coordinate frame T , and the coordinate frame S of the external

camera that observes the LEDs.

6.3 Tracking Strategy 102

Game World

Tablet Camera

Workstation

Tablet Back with LEDs

Token−Detection Camera

LED Camera(s)

S

W

T

C

Figure 6.4: Overview of the game application’s sensors and coordinate frames

To combine measurements from inside-out and outside-in tracking in a meaningful

way, the workstation runs a statistical filter (an Extended Kalman Filter or EKF) which

combines measurements from both sensors. For this to be possible, the knowledge of

the relative positions of the LED camera to the playing field, and of the tablet-mounted

camera relative to the LEDs is required. The EKF and the calibration method em-

ployed to determine these coordinate frame transformations are described in Section

6.6. Changes made to the operation of the edge-based tracking system to combine it

with the statistical filter are described in Section 6.5.

Besides tracking the pose of the tablet PC, the application also requires detection of

tokens which the user throws into the game. This detection is performed by the LED-

tracking workstation, which is connected to a ceiling-mounted camera that views the

entire playing field. This camera is used solely to detect tokens which land in the

playing area. Positions of detected tokens are sent to the tablet via wireless network.

The token-detection procedure is described in Section 6.7.2.

6.4 Outside-in LED Tracking 103

6.4 Outside-in LED Tracking

This section describes the outside-in tracking system used to estimate the pose of the

tablet PC from an external camera. For robustness and ease of tracking, a fiducial-

based approach is chosen; however since the fiducials are in this case mounted to the

display device rather than the environment, the aesthetic disadvantages of fiducial-

based tracking are avoided. A further advantage of attaching the fiducials to the dis-

play device rather than the environment is that the display is powered, and so active

fiducials can be used. Six infra-red emitting LEDs are attached to the back of the tablet

PC and these are observed by one or more external cameras.

Infra-red LEDs are chosen as fiducials as they have a number of advantages over larger

printed markers: their small size makes occlusion by users less likely1; their size in the

image changes insubstantially with distance; finally, they are easily detected in a video

image. The monochrome Pulnix TM-500 external cameras used are sensitive to infra-

red light, and an infra-red transmissive notch filter can be used to block all visible

light, leaving only the LEDs visible - this is illustrated in Figure 6.5. Using this filter,

the LEDs can be easily detected and false positive rates (during indoor operation) are

negligible.

Localising the tablet from a calibrated external camera requires the system to be able

to find four non-colinear points for which the positions on the tablet are known: the

correspondence between detected features and fiducials on the tablet must be solv-

able. The disadvantage of using LEDs is that in contrast to paper markers which can

have unique patterns printed in them, LEDs do not easily lend themselves to being

individually distinguished by appearance. While it is possible to strobe LEDs to de-

termine their identity (e.g. Welch et al, 1999), this requires information to be merged

over many frames, whereas a full pose estimate each frame is desired here. Instead,

LEDs are identified based on their relative positions in the image by exploiting the fact

that the LEDs are mounted co-planarly to the back of the tablet in known positions.

1While not attempted here, the small size of the LEDs also makes their inclusion directly into the
device’s casing a realistic possibility.

6.4 Outside-in LED Tracking 104

Figure 6.5: Tablet-mounted LEDs viewed through the external camera. Top, view with
the LEDs on and no filter; Bottom, the same view when an IR-transmissive filter has
been placed before the lens.

Each LED’s physical position on the back of the tablet is known in the back-of-tablet

coordinate frame T . The position of the ith LED is xT i =
(

xi yi 0 1
)T

(all z-

coordinates are zero since the LEDs are mounted in the plane of the tablet.) Figure

6.6(a) shows the six LEDs in frame T represented as black dots.

The matching procedure used requires an offline training stage which allows fast cor-

respondence at run-time. Permutations of four LEDs are repeatedly selected from

the six, and for each permutation a numerical descriptor of this permutation is cal-

culated: At run-time, these descriptors can be used to rapidly determine the identity

of the detected LEDs. A single training permutation is shown in Figure 6.6(b). A

3×3 plane-to-plane homographyHT is generated which warps these four LEDs to the

homogeneous unit square, as shown in Figure 6.6(c); HT therefore satisfies

c1a1 c2a2 c3a3 c4a4

c1b1 c2b2 c3b3 c4b4
c1 c2 c3 c4

 = HT

x1 x2 x3 x4

y1 y2 y3 y4

1 1 1 1

 (6.1)

6.4 Outside-in LED Tracking 105

ca b

(0,0)

(0,1) (1,1)

(1,0)

TT

Figure 6.6: Training procedure for LED matching: Of the six tablet-mounted LEDs (a),
each permutation of four (b) is warped to the unit square (c) and the warped positions
of the remaining LEDs recorded.

with
[

a1 a2 a3 a4

b1 b2 b3 b4

]

=

[

0 1 1 0
0 0 1 1

]

(6.2)

The homography HT can be found using standard techniques (as described in Ap-

pendix D.1.) The remaining two LEDs are also transformed by this homography, as

shown in Figure 6.6(c); their transformed positions
[

a5 b5
]T

and
[

a6 b6
]T

are

stored as keys into a table of all the permutations considered.

For the 360 possible permutation of four from six LEDs, only 60 are considered; there

are 15 possible combinations of four LEDs, and for each combination four permuta-

tions which form clockwise, planar quadrilaterals are considered.

At run-time, monochrome video images of 768×288 pixels are received at 50Hz. In

each image, LEDs are detected using thresholding and flood-fill. The center of mass

of each cluster of pixels which pass the threshold forms the detected LED center; the

ith center is denoted
(

ui vi

)T
. To establish correspondence, the LED center pixel

coordinates are first un-projected into the image plane: this removes the effect of radial

distortion caused by the camera lens. Using the same camera model as used for edge

tracking in Section 4.2, the ith LED un-projects to the image plane as

(

ũi

ṽi

)

= CamUnproject

(

ui

vi

)

(6.3)

=

(

ui−u0

fu

r
r′

vi−v0

fv

r
r′

)

(6.4)

6.4 Outside-in LED Tracking 106

ca b

Figure 6.7: Run-time LED matching procedure: Of the six detected LEDs (a), four are
selected (b) and used to compare the remaining two to trained permutations (c) to
determine their identity.

where u0 and v0 are the camera’s principal point and fu and fv the x- and y- fo-

cal lengths. The distorted radius r′ is found directly found from ui and vi as r′ =
√

((ui − u0)/fu)2 + ((vi − v0)/fv)2; the corresponding un-distorted radius r is found

by inverting Equation (4.7) using four Newton-Raphson iterations.

The six LEDs un-projected into the image plane are shown in Figure 6.7(a). Four LEDs

which form a clockwise planar quadrilateral are chosen at random: these are high-

lighted in Figure 6.7(b). A homography HR which projects the corners of the unit

square to the image-plane positions of the four LEDs is calculated, i.e.

w1ũ1 w2ũ2 w3ũ3 w4ũ4

w1ṽ1 w2ṽ2 w3ṽ3 w4ṽ4
w1 w2 w3 w4

 = HR

0 1 1 0
0 0 1 1
1 1 1 1

 . (6.5)

This homography is then applied to the two key LED positions of each permutation

considered in the training stage. The two key LEDs are projected into the image plane

as illustrated in Figure 6.7(c). If the four LEDs used to create this permutation are the

same four LEDs as those selected at run-time, the projections of the two key LEDs are

expected to fall close to the image-plane positions of the remaining two LEDs in the

image; hence the permutation with the smallest sum-squared error between projected

key positions and image-plane detected LED positions yields the identity of the LEDs

detected in the image.

6.4 Outside-in LED Tracking 107

Once the LEDs have been identified, the coordinate frame transformation EST which

describes the pose of the tablet back relative to the observing camera can be found.

This is done by first calculating a Homography HP which maps the tablet-back LED

positions into the camera’s image plane:

w1ũ1 w5ũ6

w1ṽ1 ... w5ṽ6
w1 w6

 = HP

x1 x6

y1 ... y6

1 1

 . (6.6)

This homography is used to calculate an initial estimate of the transformation EST ;

this procedure is described in Appendix D.2. This estimate is then refined by opti-

mising the pose estimate to minimise the sum-squared re-projection error |e|2, where

e =

u1 − u′1
v1 − v′1

...
u6 − u′6
v6 − v′6

(6.7)

and the reprojected pixel coordinates u′i and v′i are found as

(

u′i
v′i

)

= CamProj

EST

xi

yi

0
1

. (6.8)

and EST is updated by iterating

EST |n+1 = exp(µS)EST |n (6.9)

with

µS = J†e (6.10)

Jij =
∂ei
∂µSj

(6.11)

where the derivatives Jij are found as in Appendix B. Ten iterations are used for each

frame.

6.4 Outside-in LED Tracking 108

To use the pose estimates in the Kalman Filter of Section 6.6, an estimate of the uncer-

tainty of this pose estimate is required. A 6×6 pose covariance matrix ΣS in the LED

camera frame can be found by considering the pose estimate EST to be the true pose

ÊST corrupted by normally distributed errors in the LED camera’s coordinate frame

S :

EST = exp(ǫS)ÊST (6.12)

ǫS ∼ N(0,ΣS). (6.13)

These errors originate from the estimation of the motion vector µS in Equation 6.10;

this can be re-written µS = µ̂S + ǫS . The error originates from the LEDs’ detected im-

age positions ui and vi, which are assumed to be corrupted by uncorrelated Gaussian

noise of one pixel variance:

ui = ûi + ǫui

vi = v̂i + ǫvi (6.14)

ǫui, ǫvi ∼ N(0, 1).

The error vector e of Equation (6.7) is hence also corrupted by noise of variance I12

(the 12×12 identity):

e = ê + ǫ (6.15)

ǫ ∼ N(0, I12) (6.16)

The covariance ΣS can then be found by expectation:

ΣS = E
[

ǫSǫT
S

]

= E
[

(µS − µ̂S)(µS − µ̂S)T
]

= E
[

(J†e − J†ê)(J†e − J†ê)T
]

= E
[

(J†ǫ)(J†ǫ)T
]

= J†I12J
†T

= (JTJ)−1 (6.17)

The estimated pose, covariance, and frame time-stamp are transmitted to the Ex-

tended Kalman Filter every frame.

6.5 Inside-Out Edge Tracking 109

6.5 Inside-Out Edge Tracking

Since the LED tracking can continually provide the tablet with reasonable prior pose

estimates (even if the edge tracker should fail), the edge tracker on the tablet PC need

not be as robust as the tracker running the HMD-based application in Chapter 5: oc-

casional edge-tracking failures will merely produce a brief glitch on the screen rather

than require a re-initialisation. Further, the tablet PC, being a piece of computing

equipment with moving parts, is unlikely to undergo the same accelerations as a head-

mounted camera may encounter. For these reasons, the rate gyroscopes used in Chap-

ters 4 and 5 to tolerate fast rotations are not needed here, and their removal from the

system reduces bulk and weight attached to the tablet PC.

The operation of the tracking system is further modified by the use of an EKF to track

the tablet’s pose. The tracking system’s motion model described in Section 4.2.5 is

not used; instead, the EKF running on the workstation maintains a motion model and

provides the tracking system with a pose prior for every frame. Further, the tablet’s

posterior from every frame is transmitted to the filter. Besides the current pose esti-

mate, the filter also requires a covariance matrix, that is, an estimate of the amount of

uncertainty present in each measurement.

To calculate this, the tracking system’s image measurements (i.e. the edge normal dis-

tances d) are assumed to be corrupted by noise. Denoting the true normal distances

by d̂ and assuming independent Gaussian noise of 1 pixel variance, the measurements

relate to the true distances as

d = d̂ + δ , δ∼N(0, IN) . (6.18)

The errors propagate through the Equations (4.9) - (4.14) to produce a noisy motion

estimate µC , which is related to the true motion µ̂C as

µC = µ̂C + ǫC (6.19)

ǫC ∼ N(0,ΣC) . (6.20)

6.6 Extended Kalman Filter 110

The covariance ΣC which describes the variance of camera pose in the camera refer-

ence frame C can be found using expectation. Treating the estimation as using least-

squares,

ΣC = E
[

ǫCǫ
T
C

]

(6.21)

= E
[

(µC − µ̂C)(µC − µ̂C)
T
]

= E
[

(J†d − J†d̂)(J†d − J†d̂)T
]

= E
[

(J†δ)(J†δ)T
]

= J†E
[

δδT
]

J†T

= (JTJ)−1 (6.22)

Here, the weight matrix W and stabilising prior P used in Eq. (4.15) have been omit-

ted. The prior matrix P is not required since this role is now assumed by the Kalman

filter. However, the weight matrix W used to obtain an M-Estimator is used for cal-

culating pose but not covariance. This corresponds to the assumption that all image

measurements are inliers which contribute information to the system, and will result

in slight under-estimates of covariance.

6.6 Extended Kalman Filter

6.6.1 An Introduction to Kalman Filtering

To combine the measurements from the tablet-mounted camera and any fixed cameras

observing the LEDs mounted on the back of the tablet, a Discrete Extended Kalman

filter is employed. This section describes the filter and the steps required to combine

the two sources of pose information used. The operational principles of the filter are

described only as an introduction, and the description draws on more detailed works

on the subject (Kalman, 1960; Maybeck, 1979; Welch & Bishop, 1995); in particular,

the notation used here is loosely based on Welch and Bishop’s tutorial.

6.6 Extended Kalman Filter 111

An Extended Kalman Filter estimates the state of a system as time passes. The state

estimate is based on noisy measurements which can be made from the actual system,

and on a model of the system’s dynamics which is used to predict the behaviour of

the system with passing time. Central to a Kalman filter is it’s model of uncertainty:

Errors in measurements and in the current estimate of system state are all modeled as

multivariate Gaussian distributions.

The propagation of a Kalman Filter’s state can be described as a Predictor-Corrector

cycle (Welch & Bishop, 1995). This is illustrated by a simplified 1D example in Figure

6.8, which shows a Kalman filter tracking the position of an object with time. An

estimate of the object’s position at time t is represented as a Gaussian PDF shown in

Panel A. To estimate the position of the object at time t+1, the mean of this PDF is

transformed by a motion model, which in this case predicts motion to the right; at the

same time, since system inputs are not known, they are modeled as Gaussian process

noise and hence the uncertainty in the object’s position increases with time. This wider

a-priori PDF for the object’s position at time t+1 is shown in Panel B. The application of

the motion model and increase in state uncertainty is the predictor stage of the Kalman

filter.

At time t+1, a measurement of the system state is made; this measurement yields a

Gaussian likelihood density function for the object’s position as illustrated in Panel

C. By combining the measurement with the prior position estimate, an a-posteriori

estimate of the object’s position can be formed (Panel D); the uncertainty of this esti-

mate is now lower than that of either the prior or the measurement individually. The

acquisition of measurements and the associated reduction of state uncertainty is the

corrector stage of the Kalman filter. The filter continually loops through prediction

and correction as time advances.

6.6.2 Filter State

The filter used for tracking tablet pose tracks a 12-DOF system state x which con-

tains tablet camera pose (6-DOF) and velocity (6-DOF). The classical EKF formula-

6.6 Extended Kalman Filter 112

Position

P
ro

ba
bi

lit
y

D
en

si
ty

Position

P
ro

ba
bi

lit
y

D
en

si
ty

Position

P
ro

ba
bi

lit
y

D
en

si
ty

Position

P
ro

ba
bi

lit
y

D
en

si
ty

Correct

Predict

(A) (B)

(C) (D)

Posterior at timet

Prior at timet+1

Prior at timet+1

Measurement Posterior at
time t+1

Figure 6.8: Predictor-Corrector cycle of the Kalman Filter

tion would use a 12-dimensional state vector to encode filter state in a fixed reference

frame; in the application presented here, this could be done by storing pose and ve-

locity relative to the world coordinate frame W as two 6-vectors, with pose stored in

its logarithm form. Covariance could similarly be expressed in the world coordinate

frame.

However, this representation would introduce needless complications to virtually all

calculations performed by the filter. Instead, the implementation here forgoes a fixed

reference coordinate frame and performs all calculations relative to the tablet-camera

frame C. Filter state x is not stored as a 12-vector, but is instead represented as a

transformation matrix ECW and a velocity 6-vector vC in coordinate frame C. Prior

and posterior covariances are also expressed in tablet-camera coordinate frame C.

6.6 Extended Kalman Filter 113

While this is not the most compact representation of the state possible, it effectively

linearises the filter about the current pose estimate and simplifies further calculations.

(The representation used here is equivalent to operating a classical EKF with state

stored as a 12-vector, where the first six elements of this vector represent the logarithm

of camera pose in frame C, i.e. with the first six elements of the state vector set to zero

at all times.)

Thus, for time t, the filter’s estimate xt of the true (and hidden) system state x̂t is

xt =
{

ECW|t, vC|t

}

. (6.23)

The state estimate relates to the true state as

ECW|t = exp(ǫpose)ÊCW|t

vC|t = ǫvel + v̂C|t
. (6.24)

The state error 12-vector ǫC|t at time t is thus

ǫC|t =

(

ǫpose

ǫvel

)

(6.25)

and is modeled as normally distributed

ǫC|t ∼ N(0, Pt). (6.26)

where Pt is the filter’s state error covariance at time t.

6.6.3 Prediction Step

Pose predictions across a time interval δt from a previous state are made using a

constant-velocity dynamic model, with acceleration modeled as zero-mean indepen-

dent normally distributed process noise. Denoting prior estimates by the minus su-

perscript (−), prior estimates of future state are given by the the time update function

f(). This is given here sans unknown noise and driving function but parametrised by

elapsed time δt:

x-
t+δt = f(xt, δt) =

{

exp(vC|t δt)ECW|t, vC|t

}

. (6.27)

6.6 Extended Kalman Filter 114

The corresponding prior state covariance P
-
t+δt

is found by transforming the previous

covariance by the time-update Jacobian A, and by adding process noise:

P
-
t+δt

= APtA
T + σ2

p

[

0 0
0 I6

]

(6.28)

where σp is the system’s process noise (acceleration) parameter and A takes the from

A =

[

I6 δtI6
0 I6

]

(6.29)

in accordance with the system dynamics.

6.6.4 Correction Step

Measurements (denoted by the superscript m) from the tracking systems are in the

form of pose estimates of the transformation E
m

CW with measurement covariances Σ
m

C .

To integrate information from pose measurements into the filter, measurements E
m

CW

are converted to an innovation motion which describes the motion from the filter’s cor-

responding prior state to the pose described by the measurement:

MC = E
m

CW|t+δtE
-
CW|t+δt

−1 (6.30)

Further, the measurement’s covariance Σ
m

C is transformed into the filter’s reference

frame and used to compute the Kalman gain K. Dropping the subscript t+ δt,

K = P
-
HT

(

HP
-
HT + Σ

m

C

)−1

(6.31)

where the measurement interaction matrix takes the value H = [I6 0] indicating that

only pose and not velocity are measurable. The a posteriori pose estimate is found by

weighting the innovation motion by the Kalman gain and applying the result to the

prior pose:

ECW = exp (K log(MC))E
-
CW (6.32)

and the posterior covariance is appropriately reduced:

P = (I6 −KH)P
-
. (6.33)

6.6 Extended Kalman Filter 115

6.6.5 Sensor Offset Calibration

Since the inside-out tracking of Section 6.6 observes the table-top maze (W) through

the tablet-mounted camera (C), it produces pose measurements of the form {ECW , ΣC},

which can be directly filtered as described above. On the other hand, the LED tracking

system described in Section 6.4 observes the tablet-mounted LEDs (T) with an exter-

nal camera (S) and hence produces pose estimates of the form {ET S , ΣT }; for these

measurements to be filtered they must first be transformed into the filter’s coordinate

frame C.

For this purpose, knowledge of the transformations ECT (Tablet camera from tablet

back) and ESW (LED tracking camera from world) is required. Providing the tablet

camera is rigidly attached to the tablet and the sensor camera rigidly mounted in the

world, these transformations may be considered fixed and need be calibrated only

once. Although the transformations can not be directly measured, they can be calcu-

lated by observing the changes in the two sensor measurements. Chaining together

transformations,

ESW = EST ET CECW . (6.34)

The transformation ESW is unchanged by inserting an observed motion in the tablet

camera frame MC and a simultaneously observed motion in the tablet back frame MT .

ESW = ESTMT ET CMCECW = EST ET CECW (6.35)

Canceling and re-arranging,

MT ET CMC = ET C

MT ET C = ET CM
−1
C (6.36)

Baillot et al (2003) have recently identified this problem as one studied in robotics as

AX=XB. Park & Martin (1994) present a closed form solution which estimates ET C

from two or more sets of motion measurements, and this method is also used here.

Once ET C (and thus, simultaneously, ESW) has been obtained, measurements from

6.7 Application Implementation 116

LED tracking can be transformed into the tablet camera frame

E
m

CW = E−1
T CET SESW

Σ
m

C = Adj(E−1
T C)ΣT Adj(E−1

T C)
T (6.37)

and so measurements from both inside-out and outside-in tracking are accommo-

dated. This completes the equations required for implementation of the filter.

6.7 Application Implementation

This section describes some of the engineering aspects of the AR application imple-

mentation.

6.7.1 Kalman Filtering over the Network

Filtered estimates of the tablet’s pose are primarily required by the inside-out edge-

based tracker running on the tablet PC. However, the Kalman filter is implemented on

the LED-tracking workstation. The two machines are connected by an 802.11b wireless

network so that the communication of measurements and pose updates is possible.

Aggressive NTP (Network Time Protocol) polling is used to ensure the clocks on the

two machines are synchronised to sub-millisecond accuracy.

The tablet PC timestamps and transmits every measurement it makes to the Kalman

filter, which also receives local measurements from the LED tracking system. Due

to transmission delays, tablet measurements often arrive out-of-sequence in relation

to LED measurements; a roll-back history of the filter is kept so that measurements

arriving late can be inserted into a previous filter state and subsequent measurements

re-applied.

To avoid a filter-query round-trip delay when the tablet needs a position prior for a

new frame, the time-stamped 12-DOF state of every posterior calculated by the filter

6.7 Application Implementation 117

Figure 6.9: Token detection. Tokens are recognisable by their colour and shape in the
feed (shown here) from an overhead camera. Colour templates, shown in the top left,
can be selected in the image to calibrate the system.

is broadcast to the tablet. From the latest posterior received, the tablet can trivially

compute a prior appropriate to an incoming frame by applying a constant-velocity

motion model.

6.7.2 Token detection

To detect tokens thrown into the game, the workstation employs a unibrain Fire-i

firewire camera which is mounted on the ceiling above the maze. This camera de-

livers colour images of the playing field to the workstation at 30Hz. The tokens used

in the game are red “connect-four” game-pieces; these can be identified in the video

feed simply by their colour and approximate shape.

Detection of a new token is transmitted over the wireless link to the game running

on the tablet PC: this indicates that a token has come to rest in a certain spot on the

playing field, and a laser beam attack is then activated at that position. Therefore, to-

kens which are in motion (in mid-air, bouncing or rolling) should not be transmitted

6.8 Rendering 118

to the application. The application ignores moving tokens by recording the positions

of all tokens found in a video frame and by then checking that these are still present in

the next video frame; if a token has moved less than a small threshold number of pix-

els, its position in the playing field is calculated using a plane-to-plane homography

and transmitted to the tablet. This strategy can support very large numbers of tokens

present on the board at once, and large numbers of tokens thrown into the game si-

multaneously (in practice the number is limited to ten by the rendering speed of the

tablet PC rather than the detection process.)

Further, the positions of tokens which have already been transmitted to the application

are stored so that if a user should occlude tokens during the course of the game, these

are not registered as new tokens as soon as the occlusion passes. Token locations are

cleared after completion of a game.

6.8 Rendering

The raison d’être of the tracking systems described in the previous sections is to pro-

vide a pose estimate with which virtual graphics can convincingly be rendered into

the video feed provided by the tablet-mounted camera. The graphical compositing

capabilities of the tablet PC are vastly superior to that of the HMD-based system of

Chapter 5; while stereo display is not possible, graphics can be rendered at higher

resolution and colour fidelity, and (most importantly) the system is not limited to ad-

ditive mixing. Virtual objects can occlude real ones and can be draw in many nuanced

colours and in high detail (as opposed to high-visibility bright green outlines as used

for the HMD.)

The disadvantage of this level of detail is that small rendering mistakes which would

not be noticed in the HMD become apparent and even jarring on the tablet’s screen.

This section presents the standard graphical rendering algorithms used for the tablet’s

display. In Section 6.9 these will be shown to be lacking in areas where real objects

6.8 Rendering 119

occlude virtual characters, and so an algorithm to refine the occlusions of virtual char-

acters by real objects in the scene is described there.

The game running on the tablet PC operates a track-render loop; each frame arriving

from the tablet-mounted camera is processed as follows:

1. Colour-space conversion: incoming video data is in YUV411 format. This is

converted to RGB and greyscale prior to further processing.

2. Prior calculation: a pose prior for the current frame is calculated from the last

received filter state.

3. Edge-based tracking: the tracking system of Section 6.5 is run on the greyscale

image data.

4. Rendering: The current game-state and current video frame are rendered to the

tablet’s screen according to the calculated pose.

5. Game mechanics: User input is processed and the game state updated.

A typical resulting frame is shown in Figure 6.10, which is a screen-shot from the game

application running: the virtual characters of Darth Vader and the two space ghosts

as well as various other items appear correctly placed in the scene.

Rendering is performed using OpenGL, which is hardware-accelerated by the nVidia

GeForce4 420 Go processor. The full screen with a resolution of 1024×768 pixels is

used. The rendering loop used for each frame is illustrated in Figure 6.11.

As with the HMD application of Section 5.4, visuals are not directly rendered with ra-

dial distortion. Instead, rendering is initially performed using an undistorted pinhole-

camera model; the rendered image is subsequently warped to match the camera lens’

distortion. This approach requires the use of a visual buffer with destination-alpha

support (that is, the alpha values of rendered OpenGL fragments are recorded). At

the beginning of each frame, the screen is cleared to a transparent background with a

6.8 Rendering 120

Figure 6.10: A scene from Darth Vader vs. the Space Ghosts

6.8 Rendering 121

1

8

2

3 4

5 6

7

Figure 6.11: Rendering Loop using z-Buffering

6.8 Rendering 122

distant z-value. This is illustrated in Panel 1 of Figure 6.11; in the illustration, a blue-

screen analogy is used to indicate transparency (all blue objects are actually transpar-

ent in the application.)

Next, the real-world walls of the game world are rendered into the scene, again using

a transparent colour (Panel 2) and the camera pose estimated by the tracking system.

This has the effect of filling the graphic card’s z-Buffer with the positions of these

walls, which should hide any virtual objects located behind them.

When the z-buffer has been populated, game characters and items are rendered. Game

characters are stored in id Software’s .md2 file-format, which is widely documented

and for which rendering code is available1 ; other game items such as laser strikes

are simply described by their OpenGL primitives. All game characters2 and items

are rendered using z-buffering so that portions hidden behind walls are not drawn.

A semi-transparent circular shadow is rendered under each character or object to in-

crease its apparent integration in the real world. The rendered characters appear in

Panel 3 of figure 6.11.

The resulting image, which consists of clipped game objects against a transparent

background, is now uploaded to a texture map (this process is represented by the

grid in Panel 4). The current video frame is now rendered to fill the screen as shown

in Panel 5.

To insert the game objects into this video image, the stored texture map is rendered

using a distorted 20×20 grid of quadrilaterals, as illustrated in Panel 6. The grid is

distorted by applying the effects of the camera’s radial distortion to the un-distorted

coordinates of the sampling grid (Panel 4) according to the procedure described by

Watson & Hodges (1995). The blue portions in Panel 6 illustrate the transparent sec-

tions of the texture, so only the game objects appear in the composited image (Panel

1A tutorial software implementation by DigiBen at http://www.gametutorials.com was until re-
cently freely available but now requires purchase. This implementation is used here.

2The Darth Vader model used for the tablet AR application was created by Gilbert “Arcor” Arcand
and is available at http://www.planetquake.com/polycount/cottages/alcor/. All other graphics are
bespoke.

http://www.gametutorials.com
http://www.planetquake.com/polycount/cottages/alcor/

6.9 Occlusion Refinement 123

7), to which some user interface elements (such as status text and controls to interact

with the tracking system) are added (Panel 8) to complete the rendered image.

6.9 Occlusion Refinement

In augmented reality applications such as the game presented here, virtual objects and

the real world co-exist in close proximity. To appear believable, these objects should

not only be well registered with the real world, they should also occlude real objects

behind them, and be occluded by real objects in front. The accuracy of this occlusion

greatly affects the user’s perception that the virtual object belongs in the scene in the

sense that occlusion errors are instantly recognisable and destroy the scene’s believ-

ability.

The standard approach for handling occlusion is to use z-buffering. By populating

the z-buffer with an estimate of the real world’s depth, occlusion of the subsequently

rendered virtual objects is automatically handled by the rendering hardware. The z-

buffer can be filled with information generated from a stored 3D model and a pose

estimate as done in Section 6.8; alternatively, data generated on-line can be used (e.g.

Wloka & Anderson (1995) use depth from stereo.) Whichever method is used, the

values in the z-buffer will occasionally not correspond to the real depth in the scene,

and occlusion errors will occur.

Considering only those systems which assume knowledge of the occluding real geom-

etry, the most obvious source of error is an inaccurate model of this geometry. How-

ever, even if the model is accurate, tracking errors (or jitter) or incorrect projection

parameters can produce noticeable occlusion errors in the image. This is particularly

true of systems in which the tracked feature and the occluding geometry are some

image distance apart: in this case, any small rotational tracking error produces an

amplified occlusion error.

By tracking the visible edges in the scene to obtain pose, the application presented here

6.9 Occlusion Refinement 124

Enlargement

Figure 6.12: Occlusion error when using z-buffering to clip virtual characters

is also optimising for those features which cause occlusion and this goes a long way

to providing a good level of realism. However, the system still produces substantial

occlusion errors on occasion.

Figure 6.12 shows an example in which the occluding wall has been rendered into the

z-buffer too high, so that too much of the virtual character is occluded. Even though

the position of the occluding wall was measured during tracking, it is drawn in the po-

sition which best fits all measured edges. To solve this problem, an approach has been

developed which optimises the location of an occluding edge using measurements

from that edge only.

To achieve this, the rendering process described in the previous section must be mod-

ified. The new procedure is illustrated in Figure 6.13. Z-buffering is no longer used

to determine object-world occlusions; instead, each character is initially rendered un-

occluded (Figure 6.13, Panel 1) onto the transparent background.

Using software edge-based rendering techniques, the viewing frustum which contains

the rendered character is intersected with the game-world geometry to produce a clip-

ping polygon (Panel 2) which corresponds to the portions of the game world which

should occlude the virtual character. This polygon can be used to remove hidden por-

6.9 Occlusion Refinement 125

7 Composited Result

6 Clipped character4 Refined clipping polygon

2 Initial clipping polygon1 Un−clipped character 3 Local edge search

8 Previous method − No occlusion refinement

5 Blended clipping polygon

Figure 6.13: Occlusion refinement procedure

6.9 Occlusion Refinement 126

tions of the character by drawing it over the rendered character using a transparent

colour1 (illustrated as blue.) The result of clipping with this polygon would be identi-

cal to the results of the z-buffering approach described in the previous section.

Each individual occluding edge of this clipping polygon is now refined (Panel 3) by

analysing the video input: Closely spaced sample points (akin to those used for track-

ing in Chapter 4) are initialised along the edges, and a perpendicular search for the

nearest image edge is performed in the video image. A two-DOF optimisation ad-

justs the endpoints of each edge to best match the nearest detected image edge. The

resulting refined clipping polygon is shown in Panel 4.

If the virtual character were clipped with this refined polygon, occlusion errors would

be reduced; however, the resulting edge between virtual and real graphics can have an

unnaturally sharp appearance. In the video image, occluding regions of geometry pro-

duce edges which are somewhat blurred due to the camera’s optics and sampling. The

pixel-precise clipping of virtual characters looks harsh by contrast (even despite the

slight blur introduced by the radial distortion correction.) Furthermore, near-vertical

or near-horizontal clipping lines are prone to producing “crawling jaggies” artifacts

with slight camera motion or tracking jitter.

To make occluding boundaries appear more seamless, the clipping polygon’s occlud-

ing edges are transformed into thin (the equivalent width of two video image pix-

els) alpha-gradated quadrilaterals as illustrated in Panel 5. The alpha-values of this

blended, refined polygon are now used to over-write2 alpha values of the rendered

character. The resulting clipped character is visible in Panel 6.

The occlusion refinement procedure is repeated for each virtual object inserted into the

scene. Z-buffering can still be used so that virtual objects properly self-occlude. Once

all characters and objects have been clipped, the frame-buffer is copied to a texture

and the AR rendering cycle continues as in the previous section. Panels 7 and 8 of

1OpenGL channel masks are used so that only the alpha channel is modified.
2Suitable blending is used to preserve transparencies already present, as e.g. in the shadows or the

transparent background

6.10 Results 127

Figure 6.13 compare the resulting composited images: Panel 8 shows the character

incorrectly clipped using z-buffering, while Panel 7 shows the character clipped using

the occlusion refinement procedure.

6.10 Results

6.10.1 Real-time Performance

The full AR occlusion-refining track-render system described in this chapter operates

at the full video frame-rate of 30 frames per second on the tablet PC. CPU usage on the

tablet registers at 70%. On the workstation, LED tracking, filtering and coin detection

run at full frame-rate and occupy a total of 15% of processor time.

The occlusion refinement code requires approximately 1ms of execution time per ob-

ject to be refined, however this can vary greatly with viewpoint (and hence the com-

plexity and size of clipping polygons). This limits the number of objects which can si-

multaneously be drawn on-screen while maintaining full frame-rate to approximately

10.

6.10.2 Errors

Tracking jitter was evaluated by keeping the tablet static and observing the noise on

incoming measurements. Typical RMS jitter values for the edge-based and LED track-

ing are tabulated in Table 6.1. Tracking jitter reduces the apparent registration of real

and virtual objects, with virtual objects appearing to wobble on a static background.

Edges LEDS
Trans/ Rot Trans/ Rot

Jitter (mm/deg) 1.1 0.17 5 0.5
σ (mm/deg) 1.0 0.15 8 2.85

Table 6.1: Tracking jitter compared to estimated standard deviation

6.10 Results 128

The observed jitter of the edge-based tracking agrees with the expected error. The

LED measurements yield lower observed jitter than the expected error. This is likely

because the LED centroids in the image are extracted to sub-pixel accuracy and the

σ=1 pixel assumption in Section 6.4 is overly pessimistic.

A systematic error between LED measurements and tablet camera measurements was

observed in some situations. Depending on the position of the tablet in the playing

volume, this error was as large as 2cm. It is likely that this errors is caused by inaccu-

racies in the calibration of ESW and ET C and errors in camera parameter values.

6.10.3 Dynamic Performance

A video file (tablet tracking.avi) demonstrating tracking performance is enclosed.

In this video, the tracked edges are rendered into the scene to allow visual inspection

of tracking performance. During normal operation, these edges are not rendered.

In standalone operation, the edge-based tracking of the tablet camera is prone to fail-

ure on rapid motions. Further, there is a possibility of the edge-based tracking falling

into local minima. These failure mechanisms are illustrated in the enclosed video file.

The LED tracking does not suffer any adverse effects from rapid motion. The LEDs are

bright enough that the LED camera’s exposure time can be set to a sufficiently small

value to eliminate motion blur. However, the LED tracking by itself is not accurate

enough to properly register the augmented visuals. This is due to both the systematic

pose errors described above and the relatively large tracking jitter.

When edge-based tracking and LED tracking are combined, the LED tracking’s ini-

tialisation is for the most part sufficiently accurate to allow the edge-based tracking to

converge correctly. Recovery from total edge-tracking failure is possible as long as the

LEDs are in view of the observing camera. It should be noted this volume is larger

than appears in the result video, in which the tablet is tethered for filming.

6.10 Results 129

The systematic error described above can produce oscillatory behaviour in the system

state. However, since the augmented visuals are rendered using the edge tracking

posterior, this oscillatory behaviour of the state is not observable in the AR display -

there is however a small probability that at any given frame, edge-tracking will not

converge correctly, and this causes occasional one-frame glitches in the display.

The use of ad-hoc re-weighting of innovations of the different sensors in the EKF to

account for their differing error behaviours has shown great potential in reducing this

oscillation. Simultaneously, re-convergence after edge-tracking failure can be sped

up. Robust implementations of the EKF (e.g. Cipra & Romera, 1991) may offer perfor-

mance increases but have not been implemented.

6.10.4 Occlusion Refinement

An accompanying video file (tablet refinement.avi) demonstrates the effect of oc-

clusion refinement. In most scenes, the use of occlusion refinement is beneficial to

the composited appearance. However for some configurations the refinement intro-

duces new errors. In particular this is the case if an occluding edge in the image is

very low-contrast and in close proximity to other texture edges or shadows. In this

case the edge position refinement converges on an incorrect edge, producing large,

often dynamic, and mostly very noticeable occlusion errors. There remains scope for

improvement of the occlusion refinement procedure, for example by using alternative

line-fitting techniques, information from previous frames, or adjoining edges.

In the absence of correspondence failures, the occlusion refinement system enhances

the appearance of the composited scene. In particular, the visible effect of tracking

jitter is reduced. Further, the “crawling jaggies” effect when occluding edges are near-

horizontal or near-vertical is mostly eliminated by the alpha-blended clipping proce-

dure.

The occlusion refinement system presented here only works for edges which are

known to be present in the scene; the occlusion of virtual graphics by other objects

6.10 Results 130

is not attempted. Thus, a user’s hand, if placed in front of the game world, will be

ignored by the system and characters which should be covered will be rendered over

the hand. Approaches to handle such occlusions by dynamic scene elements have

been proposed and are discussed in Section 2.4, but are not implemented here. On the

other hand, the application presented here usually requires both the user’s hands to

hold the tablet PC and pen (and/or tokens); they are therefore rarely seen in the video

stream.

6.10.5 The Tablet PC as an AR Format

This chapter has described the implementation of an AR game application on a tablet

PC. This application was demonstrated at the International Symposium on Mixed and

Augmented Reality (ISMAR’04) in Arlington where an un-trained (albeit technical)

audience was able to operate the game application. In contrast to the HMD-based ap-

plication described in Chapter 5, which both trained and un-trained users find cum-

bersome and difficult to operate, users had no trouble picking up the tablet PC and

immediately interacting with the AR application. In particular, the lack of per-user

calibration and the pen interface allow intuitive use of the device. The fusion of two

tracking strategies ensured that for the most part,1 tracking was transparent; that is,

users did not need to worry about the tracking system but could focus on the applica-

tion.

In direct comparison to PDAs, the tablet PC at 1.4kg is uncomfortably heavy to hold

one-handed for extended periods of time; two-handed use is not possible because one

hand is required to hold the pen, and the user’s choice of supporting hand positions

are limited because the tablet’s LEDs should not be obscured. Further, the device be-

comes rather hot, particularly around the area which the user holds. These two factors

limited the amount of time users were comfortable holding the tablet to a few minutes.

However, it is expected that as tablet PCs become lighter, or PDAs more powerful, full

1Systematic failures occurred when the tablet-mounted camera or the external camera received a
knock, changing the calibrated ESW or ET C matrices.

6.10 Results 131

frame-rate hand-held AR will become a very practical and ergonomically acceptable

possibility.

7
A Visual Rate Gyroscope

7.1 Introduction

Many visual tracking algorithms have difficulty tracking scenes in which the camera

is undergoing rapid rotation. As discussed in Chapter 4, even moderate camera ro-

tation can cause image features to move very rapidly across the image, and motion

blur caused by non-zero exposure time can corrupt the visual features which tracking

systems require for operation.

For this reason, practical AR systems using head-mounted vision either use fiducials

(which can be localised every frame, ensuring tracking can be resumed even if it fails

during rapid motion) or combine head-mounted tracking with alternative forms of

input which are robust to rapid rotation. For example, the previous chapter employed

outside-in LED tracking for robust tablet tracking, and rate gyroscopes were used to

assist HMD tracking in Chapter 5.

7.1 Introduction 133

Rate gyroscopes are relatively cheap, offer high-bandwidth output from an enclosed

unit, and require virtually zero computational cost. Even so, they increase the volume,

mass and power requirements of any AR system, and for this reason they are (for

example) not used with the tablet PC in Chapter 6. This chapter describes a computer

vision-based replacement for rate gyroscopes: an algorithm which estimates camera

rotation from video images.

To be a viable replacement for rate gyroscopes this algorithm is designed to have min-

imal computational requirements. As demonstrated in Section 7.3, the algorithm can

compute rotation estimates in under 3 milliseconds per frame on a 2.4 GHz computer.

This is sufficiently rapid for it to be used as an initialiser for subsequent tracking algo-

rithms while maintaining real-time performance. Further, as with rate gyroscopes, no

prior information is required and so the performance of the algorithm is not affected

by earlier tracking failures.

The algorithm operates by analysing the structure of the motion blur present in the

image. The basis for its operation is the insight that in the presence of sufficient motion

blur, the only sharp edges present in the image will be those parallel to the direction

of blur; this allows the center of camera rotation to be computed rapidly, without the

use of large-scale 2D image computations. Once the center of rotation is found, the

magnitude of rotation can be quickly computed under some simplifying assumptions.

The algorithm’s operation is described in Section 7.2 and results are presented in Sec-

tion 7.3. The algorithm is subject to a number of limitations, some of which (notably

the ambiguity of sign) are unavoidable and others which are the result of speed vs.

accuracy trade-offs; these are described in Section 7.4.

7.1 Introduction 134

Figure 7.1: Canny edge-extraction of an un-blurred (left) and blurred scene (right).
The un-blurred scene contains edges in all directions while in the blurred scene, edges
in the direction of blur dominate.

7.2 Method 135

7.2 Method

7.2.1 Overview

This section describes the algorithm to estimate camera rotation from the motion blur

present in a single video frame. Since the algorithm is designed for speed rather than

accuracy, a simple model of motion blur is used. Only rotation is considered: it is

assumed that the camera is either not translating, or the translation is not contributing

significantly to motion blur; further, the scene is assumed to be static.

During the frame’s exposure, the camera is assumed to rotate with constant angular

velocity about a center of rotation
(

xc yc

)T
in the image plane. Points d pixels

away from this center will therefore be blurred across an arc of length θd, where θ is

the angle the image rotates during exposure of the frame.

Considering projection by a standard pin-hole model with the camera center at the

origin, the optical axis aligned with the z-axis and the image plane at z = F , the point

about which the image rotates has coordinates

c =

xc

yc

F

 (7.1)

with all units in pixels. In 3D space, the camera rotates around an axis of rotation

which passes through the origin and is described by the unit vector â. It follows that

c is the projection of â into the image plane. In the case that â is parallel to the image

plane (i.e. when the camera is purely panning), c is at infinity in the image plane, and

the model turns arcs of blur in the image into straight lines.

Strictly speaking, the image locus swept by a point under camera rotation could be

any conic section; the circular assumption corresponds to a very large focal length or

a spherical imaging surface. However, the circular assumption yields faster compu-

tation and introduces only small errors, particularly when using lenses which exhibit

barrel distortion (most wide-angle lenses are prone to exhibit this effect.)

7.2 Method 136

The algorithm operates in two stages: Section 7.2.2 demonstrates how the axis of ro-

tation â can be found. Once this has been calculated, the blur length is estimated

in Section 7.2.3. Apart from the pixel aspect ratio, the method requires no precise

knowledge of camera parameters - the focal length F used in calculations can be very

approximate, and here it is set to 640 pixels. Consequently, all quantities are calcu-

lated in pixel units. A conversion of these results to 3D coordinates is straightforward

if camera focal length and optic center are known. Knowledge of frame exposure time

can then be used to obtain rotational velocity from the calculated blur length.

7.2.2 Axis of Rotation

To determine the axis of rotation in a blurred image the directional nature of motion

blur is exploited. Any point in the image is blurred tangentially to a circle centered on

c, and not blurred in the perpendicular direction (radially towards c). It follows that

image edges emanating radially from c are corrupted by blur, while intensity edges

in tangential directions are preserved. This is illustrated in Figure 7.1: The top right

image shows a frame affected by motion blur. Beneath it is the result of a Canny edge

extraction (Canny, 1986) of this frame: edges parallel to the direction of blur dominate.

Thus, the point c can be found as the point which is most perpendicular to all edges

remaining in the blurred image.

Figure 7.2 illustrates the operation of the algorithm. To avoid the cost of full-frame

edge extraction, the input image (Panel 1) is sparsely searched for edgels. This is

done along a grid of vertical and horizontal lines spaced 10 pixels apart. The changes

in intensity between adjacent pixels along these lines are computed: local maxima

of instantaneous intensity change which exceed a threshold value are assumed to be

edgels. Typically, between 100 and 600 edgels are found in this way, and the position

p =
(

x y F
)T

of each edgel is recorded. Figure 7.2 shows edgels extracted by this

grid search in Panel 2.

At each edgel site, the local image intensity gradient is found using the Sobel operator

(Pingle, 1969). This yields the values Gx and Gy which describe local gradient in the

7.2 Method 137

0 200 400 600 800 1000
0

50

100

150

200

250

position

in
te

n
si

ty

Maximal−gradient ramp

1 2

43

5 6

Figure 7.2: Operation of the Algorithm. (1) Blurred input picture. (2) The image is
searched for local gradient maxima along a sparse grid. (3) Sobel extraction is per-
formed along these 1D edgels and the orientation of maximal image gradient is indi-
cated by black lines. The best intersection of the black lines (i.e., the center of rotation
in the image; white ×) is found using RANSAC and optimisation. Green denotes the
inlier set. (4) Pixels along concentric circles around the rotation center are sampled.
(5) Plot of the pixel intensity values sampled clockwise along the black circle. The
highest-gradient intensity ramp is indicated: this is interpreted as the least-blurred
feature on the circle and used to estimate blur length. (6) By combining estimated
blur lengths from all circles, the overall angular blur (and hence the estimated camera
rotation) is found. The estimated blur length is drawn in the image.

7.2 Method 138

x and y directions respectively. The vector g =
(

Gx Gy 0
)T

then describes the

direction of maximum gradient, which is normal to any edge in the image. Panel 3 of

Figure 7.2 shows edgel normals extracted from the video frame.

Each edgel describes a line l = p+λg in the image plane along which the rotation cen-

ter c is expected to lie. This line is more conveniently expressed as the intersection of

the image plane with a plane N passing through the origin; this plane is parametrised

by its unit normal vector n̂, given by

n̂ =
p × g

|p × g| . (7.2)

To find the image rotation center c RANSAC (Random Sample Consensus, Fischler &

Bolles, 1981) is employed, followed by an optimisation using only the consensus set.

In the RANSAC stage, each hypothesis is formed by randomly selecting two edgels a

and b. The image rotation center c is the given by the intersection of lines la and lb.

To support rotation centers at infinity, c is not explicitly calculated. Instead, the algo-

rithm calculates the axis of rotation a. The image rotation center c is thus implicitly

described as the intersection of a with the image plane.

The axis of rotation a lies along the intersection of planes Na and Nb:

a = n̂a × n̂b (7.3)

To evaluate consensus for each hypothesis, the sum of angular error terms from all

other edgels is found. For the ith edgel, θi is the angle at pi in the image between the

line li and the vector c−pi; Figure 7.3 illustrates this quantity and the relevant vectors

in the image plane.

Instead of calculating θi directly, it is more computationally efficient to approximate

this angle with φi, the angle between the plane Ni and the plane containing pi, c and

the optic center. The square of the sine of this angle is used for an error metric. In

terms of the hypothesised axis of rotation a, the error metric ǫi is

ǫi =
|(a × pi) × n̂i|2

|a × pi|2
= sin2(φi) ≈ sin2(θi). (7.4)

7.2 Method 139

Current edgel

Optical Center

Line

Hypothesised blur center

Image Plane

pi

θi

gi a

a×pin̂i

c

li

φi

Figure 7.3: Consensus evaluation for the ith edgel and a center hypothesis

The error metric is capped at a threshold value ǫmax and the hypothesis with the lowest

summed error is selected. The consensus set for this hypothesis is the set of N edgels

whose error metric is lower than ǫmax.

The winning hypothesis a is normalised and then optimised to minimise the sum-

squared error |ǫ|2, where ǫ is the vector of error metrics for the consensus set. This is

done using four Gauss-Newton iterations. At each iteration,

a′ = a + ∆a (7.5)

∆a = (JTJ)−1JT ǫ (7.6)

Where J is the N×3 Jacobian matrix describing partial derivatives of ǫ with ∆a

Jij =
∂ǫi
∂∆aj

(7.7)

7.2 Method 140

and is found by differentiating Equation (7.4) w.r.t. ∆a:

Jij =
∂

∂∆aj

(

|((a + ∆a) × pi) × n̂i|2

|(a + ∆a) × pi|2

)∣

∣

∣

∣

∣

∆a=0

(7.8)

=
∂

∂∆aj

(u

v

)

=
vu′ − uv′

v2
(7.9)

with u′ = 2((a × pi) × ni) · ((Ij × pi) × ni) (7.10)

v′ = 2(a × pi) · (Ij × pi) (7.11)

where Ij is the jth column of the 3×3 identity matrix. Once a has been optimised, the

image center of rotation c is found by extending a to intersect the image plane. The

extracted rotation center is indicated in Panel 3 of Figure 7.2.

7.2.3 Blur magnitude

Whereas the axis of rotation has been determined by analysing image structure in the

direction perpendicular to local blur, the magnitude of blur is determined by looking

at pixels in the blurred direction. Pixels are sampled from c-centered circles in the im-

age using an incremental rasterisation algorithm. The circles are initialised at sparse

radial intervals (typically 50 pixels apart) to maintain high run-time speed. This pro-

cess is illustrated in Panel 4 of Figure 7.2. Each scanned circle produces a 1D signal of

image intensity along the circle; this signal is assumed to have been convolved with a

rectangular pulse of length d, which must be estimated. One such signal is shown in

Panel 5 of Figure 7.2.

Rekleitis (1996) estimates this blur length using cepstral analysis: convolution of the

signal with a rectangular pulse produces a sinc-pulse envelope in the frequency do-

main. The cepstrum (the inverse Fourier transform of the log power spectrum) is used

to recover this envelope’s fundamental frequency, which is proportional to the length

of motion blur in the image. While this method is attractive in its conceptual elegance,

it is unfortunately not appropriate here. To make the results of the Fourier- and cep-

stral analysis resilient to noise, a large number of image samples are needed. Further,

7.3 Results 141

the minimum of the cepstrum becomes difficult to locate in images with large blur as

camera noise starts to dominate.

Instead, an ad-hoc approach to blur length detection is adopted. Under the assump-

tion that the axis of rotation has been correctly calculated and that the samples are

therefore taken along the direction of blur, blur length cannot exceed the length of the

shortest intensity ramp which was produced by an intensity step in the scene. How-

ever, merely measuring the minimum ramp length is unreliable, since two intensity

steps of opposite sign in close proximity can produce arbitrarily short ramps in the

image.

To avoid under-estimating blur length, only ramps which span a large (50 greyscale

levels or more) intensity change are considered: These are assumed to have originated

from large isolated intensity steps in the image. Under the further assumption that the

largest intensity step in every scene spans approximately the same intensity increase,

the gradient of the steepest ramp to span this change is then inversely proportional

to the length of motion blur. This maximal-gradient ramp is found by a brute-force

search in which the shortest distance to span the threshold intensity change is found.

The maximal-gradient ramp thus found is illustrated in Panel 5 of Figure 7.2.

To combine the results of each circular scan, the maximal gradients of each scan are

first scaled according to relative circle radius, and then combined by calculating their

p-norm (with p = 5) to provide some resilience to outliers. The inverse of this result

forms the estimate for the magnitude of camera rotation during the frame’s exposure.

7.3 Results

This section describes the single-frame performance of the system for sequences where

the system can operate correctly. There are many scenarios in which the system will

always yield incorrect results. These cases are discussed in Section 7.4.

7.3 Results 142

Figure 7.4: Rotation center placement results for four test scenes (un-blurred in top
row.)

The visual gyroscope was implemented in C++ on a 2.4GHz Pentium-4 computer and

tested on live video footage. Images are captured from a fire-wire camera at 30Hz, are

greyscale and have a resolution of 640×480 pixels with a square pixel aspect ratio. The

camera’s exposure time was set to its maximum value of approximately 30ms.

Figure 7.4 shows the algorithm’s choice of rotation center for a number of different

motions in four test sequences. The center-extraction section operates fairly reliably

for scenes with motion blur of 10 pixels length or greater, even when these scenes

contain very bright elements which make blur length detection problematic.

Figure 7.5 compares the output of the algorithm to the output of a Futaba G301 piezo-

electric rate gyroscope mounted to measure camera panning about the vertical axis.

The left plot shows a series of camera shakes of increasing intensity recorded in an

indoor setting (the same scene as used for Figure 7.2). Since the visual gyroscope pro-

duces measurements with a sign ambiguity, the results show the absolute value of

horizontal image motion in pixel units. The plot on the right of Figure 7.5 compares

7.3 Results 143

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

Time [frames]

M
ot

io
n

[p
ix

el
s]

Rate gyroscope
Visual gyroscope

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

500

Rate Gyroscope Measurement [pixels]

V
is

ua
l G

yr
os

co
pe

 M
ea

su
re

m
en

t [
pi

xe
ls

]

Figure 7.5: Estimated blur magnitude results compared to a rate gyroscope (taken as
ground truth.)

2000 samples of rotational velocity taken from the visual and rate gyroscopes. Ideally,

the left plots should be identical, and the plot on the right should show a y = x line.

The execution speed of the algorithm is largely limited by the floating-point com-

putations required to determine the center of rotation (RANSAC and optimisation).

The cost of these computations scales linearly with the number of edgels used; it is

therefore possible to tune execution speed by varying the maximum number of edgels

processed per frame. To reliably obtain an execution time of under 3ms per frame,

the algorithm processes only the 300 strongest edgels of the 300-2000 edgels typically

found in an image. Average computation times of different stages of the algorithm are

shown in Table 7.1.

Process Time [msec]

Edgel extraction 0.50
Best edgel selection 0.05
RANSAC 0.65
Optimisation 0.35
Circular sampling 0.15
Blur length search 0.40

Total 2.10

Table 7.1: Timing results on a 2.4GHz Pentium 4

7.4 Limitations 144

7.4 Limitations

This sections describes some known limitations of the proposed system.

1. Sign ambiguity in blur magnitude: Under the assumption of time-invariant

illumination and an instantaneous shutter across the frame, there is no way of

distinguishing the direction of time in a single frame. This information must be

acquired elsewhere, e.g. by comparison with other frames or from a tracking

system’s motion model. A method for resolving this ambiguity using image

patches from the previous frame is described in Section 7.5; it is conceivable that

for multi-modal tracking systems (e.g. those employing a particle filter pose

representation) the sign ambiguity is acceptable.

2. Intolerance to strobing lights: Illumination is assumed to be of constant inten-

sity throughout a frame’s exposure. Some objects, such as CRT screens, do not

satisfy this assumption, and produce sharp edges in otherwise blurred images.

If the rest of the image is strongly blurred, these sharp edges can cause both the

axis of rotation and blur magnitude to be mis-detected.

3. Requirement of edges in the scene: Scenes completely devoid of sharp edges

cannot be well distinguished from heavily blurred images. In such cases the

system can produce erroneous results. Further, if a scene’s edges are all oriented

in similar directions the system will frequently mis-detect the axis of rotation.

For example, a diagonal pan across a chess-board is poorly handled, since the

rotation axis detection stage lacks sharp diagonal edges.

4. Requirement of motion blur: The system over-estimates blur magnitude for

images with small amounts of motion blur, or no blur at all. For scenes with no

blur, the center of location is effectively random. However, any sharp elements

present in the scene will ensure that blur magnitude estimates are bounded. It

would therefore be possible to simply discard estimates predicting small rota-

tions.

7.4 Limitations 145

Figure 7.6: Some failure modes of the algorithm. Top left: a CRT computer monitor
here refreshes three times in a single 30ms exposure, causing sharp edges in an other-
wise blurred image. Top right: the window in the top right of image is bright enough
to saturate the camera sensor, causing sharper-than-expected edges at its border. Bot-
tom: The camera is undergoing sharp acceleration and not rotating with constant ve-
locity (as can be observed by the locus of the bright light sources.) In all cases, blur
length is under-estimated.

7.5 Combination with Edge Tracking 146

5. Assumption of linear camera: The intensity transfer function of the camera used

is assumed to be linear (gamma=1.0). Scenes with bright light sources which

saturate the camera sensor can be problematic, as their edges can produce high-

gradient intensity ramps even under very large blur.

6. Pure rotation assumption: The algorithm assumes that motion blur is caused

purely by camera-centered rotation and not by camera translation. In practice,

when using a head-mounted camera, rotation does indeed contribute the largest

component of motion blur, so this assumption is not unreasonable. There can

however be cases in which translation is misinterpreted as rotation, particularly

if the depth of the scene is very shallow.

7. Fixed rotation center assumption: The algorithm assumes that the axis of rota-

tion is fixed during exposure. Very rapid camera acceleration can however cause

the axis of rotation to change during a frame. In these cases the paths traced by

points in the image no longer form concentric circles, and the detection of the

rotation center can fail.

Some of these limitations are illustrated in Figure 7.6.

7.5 Combination with Edge Tracking

To test the algorithm’s viability as an initialiser for prior-based tracking systems, the

algorithm was combined with the edge-based tracking described in Chapter 4: instead

of querying rate gyroscopes over the serial port, each video frame is passed to the

visual gyroscope to obtain a rotation estimate. This rotation estimate is used to update

camera pose and to modify the edge detection behaviour of the tracking system.

To resolve the directional ambiguity of the visual gyroscope’s output, the tracking

system’s motion model (as described in Section 4.2.5) was employed. This motion

model tracks the camera’s velocity with time. Its linear component is used directly to

7.5 Combination with Edge Tracking 147

Figure 7.7: Eight consecutive frames of a pan across the AR game world. This se-
quence is trackable using the visual gyroscope combined with edge tracking.

predict the camera’s pose, but its rotational component is used only to disambiguate

forwards and backwards for the gyroscope’s rotational estimate.

Using this motion model, the visual gyroscope is capable of assisting the edge-based

tracking of camera pans. However, sudden pans initiated from rest can cause this

strategy to fail: at rest, the motion contains zero velocity plus random noise, so if the

first frame of motion contains substantial blur, the system effectively has a 50% chance

of failure.

The attached video visual gyroscope.avi illustrates this behaviour. Figure 7.7 shows

some consecutive frames from this test sequence in which the camera pans rapidly

starting from rest. The motion model has no chance to learn the direction of motion

because tracking is immediately lost.

To reliably choose a forward direction, information from a previous frame is required.

The system was modified to sample nine 33×33-pixel image patches (arranged in a

3×3 grid) from each video frame. At the next frame, a camera rotation estimate is

generated; to determine the direction of motion, the stored patches are compared to

their projected positions in both the forward and backward directions by a simple

sum-squared difference metric. Each patch votes for the direction yielding the smaller

sum-squared difference, and the winning direction is chosen. The computational cost

7.6 Conclusions 148

of this procedure is under 0.3 milliseconds per frame. The attached video illustrates

the performance of the resulting gyroscope replacement system running in standalone

operation.

Even when the direction of motion can accurately be determined, some ad-hoc mea-

sures are required to track a sequence with rapid camera shake. Although the edge-

based tracking system is designed to handle motion blur, it is unreliable when used

with frames containing motion blur over 100 pixels, such as those found in the middle

of the sequence in Figure 7.7. Edge-based tracking is hence disabled for frames with

blur exceeding 70 pixels. Likewise, the visual gyroscope output is unreliable at low

levels of blur, so this too is disabled at levels of blur under 5 pixels (at these moderate

levels, the edge-based tracking system can often cope unaided.)

Using this combination of visual gyroscope and edge-based tracking, challenging se-

quences previously requiring the use of rate gyroscopes become (partially) trackable

using only visual techniques, as demonstrated in the attached video sequence: track-

ing eventually fails due to a mis-estimation of translational error in the horizontal

direction rather than orientation, an error that neither the algorithm presented here

nor physical gyroscopes could correct.

7.6 Conclusions

This chapter has presented a simple method for calculating camera rotation up to a

sign ambiguity from a single blurred image; further, the ambiguity can easily be re-

solved by the use of a neighbouring image. The use of sharp features remaining in the

blurred image makes the method fast, permitting its use in combination with other

real-time tracking systems.

While axis of rotation of the camera can computed fairly reliably, measurements of

blur magnitude are currently fairly noisy. Further, the system is limited to operation

in favourable conditions (as described in Section 7.4). While these limitations mean

7.6 Conclusions 149

that the system can not yet fully replace the functionality of actual gyroscopes, it has

nevertheless been demonstrated to be useful as an initialiser for the edge-based track-

ing used in previous parts of this thesis.

8
Conclusion

8.1 Summary

This thesis has investigated the application of visual tracking techniques to augmented

reality. This has been done in the context of two AR systems: one based on a head-

mounted display and one based on a tablet PC. Each system offers different challenges

and opportunities and visual tracking techniques have been adapted to suit each in

turn.

The HMD-based system exposes a head-mounted camera to the user’s very rapid and

unpredictable head rotations. Visual tracking must be robust to these rotations. To

achieve this robustness, an existing edge-based tracker is equipped with a wide-angle

lens and rate gyroscopes, and further modified so that tracking can proceed even

when camera rotation substantially corrupts the image with motion blur. An existing

nonlinear calibration procedure used to calibrate the tracking system’s lens is adapted

8.2 Contributions 151

and used to calibrate the head-mounted display; this allows nonlinear distortions in

the display to be compensated for and results in improved registration for the user.

The tablet-based application presented is centered around a fixed playing area and

can make use of external cameras. For this application the emphasis is less on robust-

ness to rotations than on reliable tracking which can survive the intermittent failure of

the tablet-mounted tracking system. The use of active fiducials attached to the tablet

makes this possible without prominent markers in the game world. The higher-quality

display capability of the tablet’s screen sets higher demands on graphical rendering,

and small rendering errors which are missed on the HMD become jarring on the video

see-through display; one such class of errors (real objects not accurately occluding vir-

tual ones) is addressed through further local tracking in the image being augmented.

Finally, this thesis has presented a software alternative to the use of rate gyroscopes.

This algorithm was developed after the AR applications had been completed; due to

time constraints it was therefore not directly tested in an AR context. Instead, it is

presented as a tool which may be applicable to many tracking applications, and its

potential is illustrated by integration with the edge-based tracker previously used.

8.2 Contributions

What follows is a list of the contributions made in this thesis.

• Edge tracking under very fast rotation. The use of a wide-angle lens and of rate

gyroscopes to modify the tracking system’s edge detection produces a tracker

that can continue to operate using blurred images which few (if any) other track-

ing systems could support.

• An intuitive display calibration system which compensates for radial distortion.

Instead of forcing users to move their head to satisfy arbitrary geometric con-

straints, the calibration system presented here merely requires the user to correct

8.3 Future Work 152

any parts of the overlay which appear out-of-place using a simple point-and-

click interface. The framework used permits the correction of radial distortion,

improving registration accuracy.

• A robust method of tracking a tablet PC’s pose using a novel outside-in fiducial

tracker and inside-out edge tracking. This method combines the robustness of

the outside-in tracker with the accuracy of the inside-out system, and does not

require any markers to be placed in the tracked scene.

• A real-life demonstration of tablet PC-based AR. The tablet PC has a number

of ergonomic advantages over head-mounted displays and the suitability of this

device as an AR medium has been demonstrated by the development and public

demonstration of a functional game application.

• An occlusion refinement procedure: a method of improving the integration of

virtual graphics into real scenes by exploiting the availability of a scene CAD

model to identify and then refine individual occluding edges.

• A fast algorithm to extract camera rotation from motion blur. The low computa-

tional cost of this algorithm makes it suitable as a drop-in replacement for rate

gyroscopes.

8.3 Future Work

The work undertaken for the production of this thesis has revealed numerous areas in

which more research and development are required. A number of these relate to the

tracking techniques employed, but others to AR in general.

• A prior-based tracker in isolation will never be robust. The edge-based tracker

can and will occasionally fail, rate gyroscopes or not. Only when combined with

an alternative, absolute source of measurements (e.g. the outside-in tracker) can

it be considered robust. When outside-in tracking is not available, a method of

8.3 Future Work 153

detecting tracking failure, and a method to automatically re-initialise tracking

are required.

• The calibration of optically see-through HMDs remains difficult. Methods to

reduce the quantity of user input - for example, by sharing information between

the eyes - are required. Further, the motion of a display on the user’s head still

destroys calibration; a method of correcting for such motions without resorting

to a full calibration would be beneficial. Approaches along the lines of that taken

by Owen et al (2004) are encouraging.

• The field-of-view (FOV) of consumer HMDs is too small for immersive appli-

cations. The field-of-view of optically see-through displays is typically small

partially because a wide-FOV displays incur large amounts of nonlinear dis-

tortion and this has historically made accurate registration difficult; however,

with modern projection models and graphics hardware able to appropriately

pre-distort images with little overhead, distortion should no longer stand in the

way of wide-angle displays.

Appendix A

Results Videos

The majority of research described in this thesis involves the processing of video ma-

terial. Results for video sequences are difficult to express in numbers or images, hence

a CD-ROM with results videos is attached to this document. This appendix contains

descriptions of the videos found on the CD-ROM.

edge tracking.mpg

This video demonstrates the edge tracking presented

in Chapter 4. The video compares tracking perfor-

mance for the ‘cubicle’ environment, using no gyro-

scope information, gyro initialisation without blur

prediction, and finally initialisation with full blur

prediction.

A Results Videos 155

hmd calibration.mpg

This video is shot live with a video camera looking

through the Sony Glasstron HMD. It demonstrates

the HMD parameter calibration described in Section

5.5.2. The user selects model vertices and clicks in

the correct locations in the display, aligning the ren-

dered model with the real world.

hmd printer.avi

This video is shot live with a video camera looking

through the Sony Glasstron HMD. It demonstrates

the printer maintenance application described in

Section 5.3. The user is visually guided through a

checklist.

hmd machineroom.avi

This video is shot live with a video camera looking

through the Sony Glasstron HMD. It demonstrates

the machine room application described in Section

5.3, and shows a ‘Matrix’-style graphical overlay

later on.

A Results Videos 156

tablet tracking.avi

This video is shot live with a video camera viewing

the tablet PC’s external monitor output. It shows

that robust and accurate tablet tracking is achieved

when inside-out and outside-in tracking are com-

bined (as described in Section 6.3.)

tablet refinement.avi

This video demonstrates the difference between

rendering a character with standard z-buffer tech-

niques, and rendering with the occlusion refinement

code described in Section 6.9. The video alternates

between the two rendering techniques as the charac-

ter moves around the game world.

visual gyroscope.avi

This video demonstrates the operation of the vi-

sual gyroscope described in Chapter 7. The stan-

dard edge-based tracker cannot track the rapid cam-

era motions in the video. Tracking is improved by

employing the single-frame gyroscope, but its direc-

tional ambiguity causes tracking to fail. The ambigu-

ity can be resolved using information from the pre-

vious frame, resulting in increased (but not perfect)

tracking robustness.

Appendix B

Projection Derivatives

B.1 Tracking Jacobian

This section describes the calculation of the tracking system Jacobian used in Chapter

4. The derivatives of the form ∂di

∂µj
as written in Equation (4.11) are best computed by

splitting some of the projection Equations (4.2 ... 4.8) into smaller divisions:

(

u
v

)

=

[

fu 0 u0

0 fv v0

]

A1

A2

1

 (B.1)

(

A1

A2

)

=
r̃

r

(

C1

C2

)

(B.2)

(

C1

C2

)

=

(

xC

zC
yC
zC

)

. (B.3)

where r =
√

C2
1 + C2

2 and r̃ = r − β1r
3 − β2r

5. Defining further

B ≡ r̃

r
= (1 − β1r

2 − β2r
4), (B.4)

Equation (B.2) becomes
(

A1

A2

)

= B

(

C1

C2

)

. (B.5)

B Projection Derivatives 158

The partial derivatives of these individual equations are readily obtainable:

Eq. B.1: JA =

[

∂u
∂A1

∂u
∂A2

∂v
∂A1

∂v
∂A2

]

=

[

fu 0
0 fv

]

(B.6)

Eq. B.4: JB =
[

∂B
∂C1

∂B
∂C2

]

=

[

−2β1C1 − β2(4C
3
1 + 4C1C

2
2)

−2β1C2 − β2(4C
3
2 + 4C2C

2
1)

]T

(B.7)

Eq. B.5: JC =

[

∂A1

∂C1

∂A1

∂C2

∂A2

∂C1

∂A2

∂C2

]

=

[

B 0
0 B

]

+

(

C1

C2

)

JB (B.8)

Eq. B.3: JD =

[

∂C1

∂xC

∂C1

∂yC

∂C1

∂zC
∂C2

∂xC

∂C2

∂yC

∂C2

∂zC

]

=

[

1
zC

0 −xC

z2

C

0 1
zC

−yC
z2

C

]

. (B.9)

Finally, the derivative of xC =
[

xC yC zC 1
]T

w.r.t. µj follows from Equation

(3.6):
∂xC

∂µj
= GjECWxW . (B.10)

and combining these partial differentials with Equation (4.11), eliding the subscript i

for the ith measurement, yields the derivatives

∂d

∂µj
= −n · JAJC

[

JD
0
0

]

GjECWxW . (B.11)

B.2 HMD Calibration Jacobian

The partial differentials needed to calibrate the HMD in Section 5.5 are found analo-

gously to the differentials in Section B.1. The HMD however uses a slightly simplified

projection model (cubic as opposed to quintic distortion) and each feature point pro-

duces two lines of the Jacobian, since the aperture problem of edge tracking does not

apply. Further, derivatives with respect to intrinsic projection parameters are required.

Repeating the process of Section B.1, we split the motion-undergoing projection equa-

tion
(

u
v

)

= EyeProj(MEEECxC) (B.12)

B Projection Derivatives 159

into smaller parts:

(

u
v

)

=

[

fu 0 u0

0 fv v0

]

A1

A2

1

 (B.13)

(

A1

A2

)

= B

(

C1

C2

)

(B.14)

B =
r̃

r
= (1 − βr2) (B.15)

(

C1

C2

)

=

(

xE

zE
yE
zE

)

(B.16)

where r =
√

C2
1 + C2

2 and r̃ = r− βr3 in accordance with the simpler cubic projection

model. Again, partial derivatives of these equations, and the of the point xW are

obtained:

Eq. B.13: JA =

[

∂u
∂A1

∂u
∂A2

∂v
∂A1

∂v
∂A2

]

=

[

fu 0
0 fv

]

(B.17)

Eq. B.15: JB =
[

∂B
∂C1

∂B
∂C2

]

=
[

−2βC1 −2βC2

]

(B.18)

Eq. B.14: JC =

[

∂A1

∂C1

∂A1

∂C2

∂A2

∂C1

∂A2

∂C2

]

=

[

B 0
0 B

]

+

(

C1

C2

)

JB (B.19)

Eq. B.16: JD =

[

∂C1

∂xE

∂C1

∂yE

∂C1

∂zE
∂C2

∂xE

∂C2

∂yE

∂C2

∂zE

]

=

[

1
zE

0 −xE

z2

E

0 1
zE

−yE
z2

E

]

(B.20)

∂xE

∂µj
= GjEECxC (B.21)

Combining these equations yields the motion of the projected geometry w.r.t. the

motions µj :

∂

µj

(

u
v

)

= JAJC

[

JD
0
0

]

GjEECxC (B.22)

The negative of these derivatives form the Jacobian matrix Jµ of Equation (5.10). To

find the matrix Jp, the projection equations are differentiated w.r.t. the intrinsic pro-

B Projection Derivatives 160

jection parameters. For one measurement,

Jp = −
[

∂u
∂fu

∂u
∂fv

∂u
∂u0

∂u
∂v0

∂u
∂β

∂v
∂fu

∂v
∂fv

∂v
∂u0

∂v
∂v0

∂v
∂β

]

(B.23)

= −
[

A1 0 1 0 −r2C1

0 A2 0 1 −r2C2

]

(B.24)

Appendix C

M-Estimation

This appendix introduces a robust estimation technique called M -Estimation. This

technique is based largely on the insight of Tukey (1960) that least-squares solutions

are not appropriate for outlier-contaminated data sets and subsequent work by Huber

(1981, 1964) and others. M-Estimation is now commonly used in computer vision and

excellent tutorials on the subject exist (Zhang, 1997).

Consider the tracking pose estimation of Section 4.2.4 as a least-squares estimation

problem. Treating the problem as linear, given a vector of N observations d and a

Jacobian matrix J (of size N by M), the task is task is to find a vector of M parameters

µ which minimises the sum-squared residual error

|Jµ − d|2 . (C.1)

This can be formulated as in terms of an objective function O(µ). The task is then to

find

argmin
µ

O(µ) (C.2)

where the objective function is

O(µ) =

N
∑

i=1

ρ(Jiµ − di). (C.3)

C M-Estimation 162

Ji is the ith row of the measurement Jacobian, and each residual r contributes ρ(r)

towards the objective function, with ρ(r) = r2 for the least-squares case. The objective

function is minimised by setting its differentials w.r.t. µ to zero. Define (Hampel,

1974) the differential of ρ() as the influence function :

ψ(r) =
d

dr
ρ(r) (C.4)

so for the sum-squared case case ψ(r) = 2r. Differentiating w.r.t. the vector µ to find

the minimum,

dO(µ)

∂µ
= 0 (C.5)

N
∑

i=1

JT
i ψ(Jiµ − di) = 0 (C.6)

N
∑

i=1

JT
i Jiµ =

N
∑

i=1

JT
i di (C.7)

JTJµ = JT d (C.8)

µ = (JTJ)−1JT d . (C.9)

This gives the standard pseudo-inverse solution for the least-squares problem.

Least-squares solutions are appropriate for cases in which measurements are cor-

rupted by independent Gaussian noise. In the case of the visual tracking system,

measurements are not only corrupted by small Gaussian noise but also contain many

outliers, i.e. measurements which differ significantly from their true value due to fea-

ture mis-detection, occlusion or clutter. The error distribution of any individual mea-

surement is therefore very heavy-tailed in comparison to a Gaussian distribution, since

outside of a Gaussian region immediately surrounding the correct feature location, the

probability of encountering outliers may be seen as uniform across the frame.

The influence function ρ(r) for least-squares is proportional to the size of the residual.

As can be deduced from Equation (C.6), outliers which produce large residuals thus

have a scaled-up influence on the computed optimum. This means that least-squares

estimation is not robust in the presence of any significant number of outliers.

C M-Estimation 163

A common strategy for robustly estimating parameters in the presence of outliers is

to replace the objective function ρ(x) with one of a set of robust functions designed to

reduce the impact of outliers. Such functions are typically characterised by having a

bounded influence function, and a whole range of potential functions is outlined in

Zhang (1997).

To implement an M-estimator, the minimisation is re-formulated as recursive weighted

least-squares problems. This is done by expressing ψ(r) in terms of a weight function

ω(r) where

ω(r) =
ψ(r)

r
(C.10)

such that the influence function ψ(r) may be replaced by a weighted residual. Weights

for each residual are pre-computed at each iteration using the previous iteration’s

residual. For the nth iteration,

wi = ω(ri|n−1) = ω(Jiµ|n−1 − di) (C.11)

so that the influence function ψ(ri) can be replaced by the weighted residual riwi.

Substituting Eqs. (C.10-C.11) into Eq. (C.6), the objective function is minimised:

N
∑

i=1

JT
i (Jiµ − di)wi = 0 (C.12)

N
∑

i=1

JT
i wiJiµ =

N
∑

i=1

JT
i widi (C.13)

JTWJµ = JTWd (C.14)

µ = (JTWJ)−1JTWd (C.15)

whereW is a diagonal matrix containing the weightsw1...N . The solution corresponds

to the least-squares solution of the problem W
1

2Jµ = W
1

2 d.

Smith (2001) employs local edge searches for the task of segmentation, and has ex-

perimentally observed that edge measurement statistics resemble a Laplacian (rather

than Gaussian) distribution. The use of the “Fair” estimator which matches this dis-

tribution and contains few discontinuities is recommended, and this is the estimator

used here. Table C.1 shows a comparison of this estimator to least-squares. The tuning

constant c is set to 4 pixels for the tracking system.

C M-Estimation 164

Estimator Least-squares Fair

Objective function ρ(r) 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

-10 -5 0 5 10

r2
 0

 1

 2

 3

 4

 5

 6

 7

 8

-10 -5 0 5 10

c2
(

|r|
c
− log

(

1 + |r|
c

))

Influence function ψ(r) -20

-15

-10

-5

 0

 5

 10

 15

 20

-10 -5 0 5 10

2r

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-10 -5 0 5 10

r
1 + |r|

c

Weight function ω(r) -10

-5

 0

 5

 10

-10 -5 0 5 10

2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-10 -5 0 5 10

1
1 + |r|

c

Table C.1: Comparison of least-squares and “Fair” estimators

Appendix D

Homographies

D.1 Estimating a Homography

This appendix describes an algorithm to estimate an 8-DOF plane-to-plane homogra-

phy H of the form

w1u1 w2u2 w3u3 w4u4

w1v1 w2v2 w3v3 w4v4
w1 w2 w3 w4

 = H

x1 x2 x3 x4

y1 y2 y3 y4

1 1 1 1

 (D.1)

when the quantities un, vn, xn and yn are known. Multiplying out to obtain u1,

u1 =
w1u1

w1

(D.2)

=
H11x1 +H12y1 +H13

H31x1 +H32y1 +H33

. (D.3)

Re-arranging this in terms of the elements of H

H11x1 +H12y1 +H13 −H31x1u1 −H32y1u1 −H33u1 = 0 (D.4)

and similarly for v1

H21x1 +H22y1 +H23 −H31x1v1 −H32y1v1 −H33v1 = 0 . (D.5)

D Homographies 166

The known quantities in Equation (D.1) thus yield eight equations, which can be writ-

ten as Ah = 0:

x1 y1 1 0 0 0 −x1u1 −y1u1 −u1

0 0 0 x1 y1 1 −x1v1 −y1v1 −v1
x2 y2 1 0 0 0 −x2u2 −y2u2 −u2

0 0 0 x2 y2 1 −x2v2 −y2v2 −v2
x3 y3 1 0 0 0 −x3u3 −y3u3 −u3

0 0 0 x3 y3 1 −x3v3 −y3v3 −v3
x4 y4 1 0 0 0 −x4u4 −y4u4 −u4

0 0 0 x4 y4 1 −x4v4 −y4v4 −v4

H11

H12

H13

H21

H22

H23

H31

H32

H33

= 0 . (D.6)

These equations can be solved subject to |h| = 1 by finding h in the null-space of A

using the Singular Value Decomposition (SVD) of A:

A = UΛV T (D.7)

h is then the column of V corresponding to the smallest singular value. The homogra-

phy could be further refined by nonlinear optimisation, however this is not required

for the application presented here.

D.2 Estimating Pose from a Homography

This section describes a method of estimating an SE3 coordinate frame transformation

from a homography. Given knowledge of the coordinates {xP , yP} of coplanar points

at zP = 0 in a frame P and knowledge of the normalised projections {u′, v′} in frame

C (this coordinate frame corresponds to a camera observing the coplanar points), a

homography H can be computed such that

w1u
′
1 wnu

′
n

w1v
′
1 ... wnv

′
n

w1 wn

 = H

xP1 xPn

yP1 ... yPn

1 1

 . (D.8)

From this, an estimate of the transformation ECP is desired. Applying ECP to the

points in frame P, we require

w1u
′
1 wnu

′
n

w1v
′
1 ... wnv

′
n

w1 wn

1 1

=

xC1 xCn

yC1 ... yCn

zC1 zCn

1 1

= ECP

xP1 xPn

yP1 ... yPn

0 ... 0
1 1

. (D.9)

D Homographies 167

Comparing the structure of ECP and H ,

E =

| | | |
r1 r2 r3 t

| | | |
0 0 0 1

(D.10)

H =

| | |
h1 h2 h3

| | |

 (D.11)

reveals that h1 and h2 are the mapped directions of the plane’s x- and y-axes in coor-

dinate frame C. This suggests that an approximation to ECP can be formed by setting

t = h3 and using h1 and h2 as the basis for the rotation component of the SE3 matrix

(having first scaled H so that the resulting rotation has determinant one.) In prac-

tice h1 and h2 are rarely perfectly orthogonal, and the rotation matrix may be found

from h1 and h2 by Gram-Schmidt orthogonalisation, or more commonly by minimis-

ing the Frobenius-norm difference between [h1h2] and two computed orthonormal

vectors [r1r2] (Sturm, 2000).

Here an alternative approach is used. Writing the Homography as

H =

−a− |
−b− t

−c− |

 (D.12)

the 2-vector c represents
[

∂w
∂x

∂w
∂y

]

; for problems in which the plane in P is close

to parallel to the imaging plane, these parameters are small, and estimated poorly

compared to the larger-valued a and b. Here the values of c are re-estimated, and the

original values are only used to resolve a directional ambiguity.

Consider the SVD of

[

−a−
−b−

]

:

[

−a−
−b−

]

= UΛV T (D.13)

Where Λ is the diagonal matrix of singular values λ1 and λ2 with λ1 > λ2. The ho-

mography H has a scale freedom; before proceeding further, H is re-scaled by 1/λ1,

D Homographies 168

such that the SVD now becomes
[

−a−
−b−

]

= U

[

1 0
0 λ

]

V T (D.14)

=

[

u11 u12

u21 u22

] [

1 0
0 λ

]

[

v1 v2

]T
(D.15)

The first column v1 of V , which corresponds to the unity singular value of the SVD,

is the direction in the Pxy-plane which produces the maximum change in x and y in

frame C. Geometrically, this maximum change in xC and yC occurs when there is no

change in zC ; the direction v1 in P projects to a direction parallel to the image plane in

C.

The homography can be re-written as

H = H

V
0
0

0 0 1

V T 0
0

0 0 1

 (D.16)

=

−aV− |
−bV− t

−cV− |

V T 0
0

0 0 1

 (D.17)

To obtain an orthonormal basis for the SE3’s rotation matrix, c is now replaced with

values which will be chosen to orthonormalise the first two columns ofH . This results

in a matrix H ′ from which an SE3 transformation is readily found.

H ′ =

| | |
r1 r2 t

| | |

 (D.18)

=

−aV− |
−bV− t

α β |

V T 0
0

0 0 1

 (D.19)

=

u11 λu12 |
u21 λu22 t

α β |

V T 0
0

0 0 1

 (D.20)

The matrix V T can be considered a rotation matrix which aligns plane coordinates in

the frame P to the axes v1 and v2. The column
[

u11 u21 α
]T

above then corre-

sponds to the direction in C of the direction v1 in the Pxy plane. As noted earlier, this

direction in C is parallel to the image- (i.e. zC-) plane; therefore α = 0.

D Homographies 169

To calculate β, note that the second column
[

λu12 λu22 β
]T

must be a unit vector,

hence β =
√

1 − λ2 since (u2
12 + u2

22) = 1. The sign of the root is chosen such that the

dot-product of
[

0 β
]

V T and c is positive.

Once H ′ has been determined, r3 = r1×r2 completes the transformation matrix ECP .

The estimate may still be inaccurate and nonlinear optimisation of reprojection error

is used to refine the transformation.

Bibliography

Armstrong, M. & Zisserman, A. (1995). Robust object tracking. In Proc. Asian Confer-

ence on Computer Vision, vol. I, pp 58–61. 2.1.1

Auer, T., Brantner, S. & Pinz, A. (1999). The integration of optical and magnetic track-

ing for multi-user augmented reality. In M. Gervaut, D. Schmalstieg & A. Hilde-

brand, eds., Virtual Environments ’99. Proc. of the Eurographics Workshop, pp 43–52,

Vienna. 2.2.5

Azuma, R. & Bishop, G. (1994). Improving static and dynamic registration in an opti-

cal see-through HMD. In Proc. SIGGRAPH ’94, pp 197–204. 2.3.3

Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S. & Macintyre, B. (2001).

Recent advances in augmented reality. IEEE Computer Graphics and Applications, pp

34–47. 2.2

Baillot, Y., Julier, S., Brown, D. & Livingston, M. (2003). A tracker alignment frame-

work for augmented reality. In Proc. 2nd IEEE and ACM International Symposium on

Mixed and Augmented Reality (ISMAR’03), pp 142–150, Tokyo. 6.6.5

Bajura, M. & Neumann, U. (1995). Dynamic registration correction in video-based

augmented reality systems. IEEE Computer Graphics and Applications, 15, pp 52–61.

2.2.5

Behringer, R., Park, J. & Sundareswaran, V. (2002). Model-based visual tracking for

outdoor augmented reality. In Proc. IEEE and ACM International Symposium on Mixed

and Augmented Reality (ISMAR’02), Darmstadt, Germany. 2.1.2

Bibliography 171

Berger, M.O. (1997). Resolving occlusion in augmented reality: a contour based ap-

proach without 3D reconstruction. In Proc. IEEE Intl. Conference on Computer Vision

and Pattern Recognition (CVPR ’97), 91, IEEE Computer Society. 2.4

Bimber, O. & Fröhlich, B. (2002). Occlusion shadows: Using projected light to gen-

erate realistic occlusion effects for view-dependent optical see-through displays. In

Proc. IEEE and ACM International Symposium on Mixed and Augmented Reality (IS-

MAR’02), Darmstadt, Germany. 2.3.5

Bimber, O., Fröhlich, B., Schmalstieg, D. & Encarnação, L.M. (2001). The virtual

showcase. IEEE Computer Graphics and Applications, 21, pp 48–55. 2.3.5

Breen, D., Whitaker, R., Rose, E. & Tuceryan, M. (1996). Interactive occlusion and

automatic object placement for augmented reality. In Proc. of Eurographics, pp 11–22,

Poitiers, France. 2.4

Cakmakci, O., Ha, Y. & Rolland, J.P. (2004). A compact optical see-through head-worn

display with occlusion support. In Proc. 3rd IEEE and ACM International Symposium

on Mixed and Augmented Reality (ISMAR’04), pp 16–25, Arlington, VA. 2.3.2

Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on

Pattern Analysis and Machine Intelligence (PAMI), 8, pp 679–698. 7.2.2

Cho, Y. & Neumann, U. (1998). Multi-ring color fiducial systems for scalable fiducial

tracking augmented reality. In Proc. Virtual Reality Annual International Symposium

(VRAIS’98), 212, IEEE Computer Society, Washington, DC. 2.2.1

Cho, Y., Park, J. & Neumann, U. (1997). Fast color fiducial detection and dynamic

workspace extension in video see-through self-tracking augmented reality. In Proc.

5th Pacific Conference on Computer Graphics and Applications (PG’97), 168, IEEE Com-

puter Society, Washington, DC, USA. 2.2.1

Cipra, T. & Romera, R. (1991). Robust kalman filter and its application in time series

analysis. Kybernetika, 27, pp 481–494. 6.10.3

Claus, D. & Fitzgibbon, A.W. (2004). Reliable fiducial detection in natural scenes. In

Proc. 8th European Conference on Computer Vision (ECCV’04), vol. 3022, pp 469–480,

Prague. 2.5

Bibliography 172

Comport, A., Kragic, D., Marchand, E. & Chaumette, F. (2005). Robust real-time

visual tracking: Comparison, theoretical analysis and performance evaluation. In

IEEE Int. Conf. on Robotics and Automation, ICRA’05, pp 2852–2857, Barcelona, Spain.

2.1.2

Davison, A.J. (2003). Real-time simultaneous localisation and mapping with a single

camera. In Proc. 9th IEEE International Conference on Computer Vision (ICCV’03), pp

1403–1410, Nice. 2.1.3

Drummond, T. & Cipolla, R. (1999). Real-time tracking of complex structures with on-

line camera calibration. In Proc. British Machine Vision Conference (BMVC’99), vol. 2,

pp 574–583, BMVA, Nottingham. 2.1.1, 2.1.2, 4.1, 4.2.1, 4.5, 5.6.3

Espiau, B. & Chaumette, F. (1992). A new approach to visual servoing. IEEE Transac-

tions on Robotics and Automation, 8, pp 313–326. 2.1.2

Favaro, P., Burger, M. & Soatto, S. (2004). Scene and motion reconstruction from de-

focused and motion-blurred images via anisotropic diffusion. In Proc. 8th European

Conference on Computer Vision (ECCV’04), vol. 3022, pp 257–269, Prague. 2.5

Feiner, S., Macintyre, B. & Seligmann, D. (1993). Knowledge-based augmented real-

ity. Communications of the ACM, 36, pp 53–62. 1.4, 5.3

Ferrin, F.J. (1991). Survey of helmet tracking technologies. In Proc. SPIE Large Screen

Projection, Avionic, and Helmet-Mounted Displays, vol. 1456, pp 86–94. 2.2.2

Fischer, J., Regenbrecht, H. & Baratoff, G. (2003). Detecting dynamic occlusion in

front of static backgrounds for AR scenes. In EGVE ’03: Proceedings of the workshop

on Virtual environments 2003, pp 153–161, ACM Press, New York. 2.4, 2.4

Fischler, M. & Bolles, R. (1981). Random sample consensus: A paradigm for model

fitting with applications to image analysis and automated cartography. Communca-

tions of the ACM, 24, pp 381–395. 2.1.1, 7.2.2

Fuhrmann, A., Hesina, G., Faure, F. & Gervautz, M. (1999a). Occlusion in collabo-

rative augmented environments. In Proc. 5th EUROGRAPHICS Workshop on Virtual

Environments, Vienna. 2.4

Bibliography 173

Fuhrmann, A., Schmalstieg, D. & Purgathofer, W. (1999b). Fast calibration for aug-

mented reality. In VRST ’99: Proceedings of the ACM symposium on Virtual reality soft-

ware and technology, pp 166–167, ACM Press, New York, NY, USA. 2.3.3

Fuhrmann, A., Schmalstieg, D. & Purgathofer, W. (2000). Practical calibration proce-

dures for augmented reality. In Proc. 6th Eurographics Workshop on Virtual Environ-

ments. 2.3.3

Gausemeier, J., Fründ, J., Matysczok, C., Brüderlin, B. & Beier, D. (2003). Develop-

ment of a real time image based object recognition method for mobile AR-devices.

In Proc. 2nd ACM International Conference on Computer Graphics, Virtual Reality, Visu-

alisation and Interaction in Africa (SIGGRAPH AFRIGRAPH’03), Cape Town. 2.3.4

Geiger, C., Kleinjohann, B., Reimann, C. & Stichling, D. (2000). Mobile AR4ALL.

In Proc. IEEE and ACM International Symposium on Augmented Reality (ISAR’00), pp

181–182, Munich. 2.3.4

Genc, Y., Sauer, F., Wenzel, F., Tuceryan, M. & Navab, N. (2000). Optical see-through

HMD calibration: A novel stereo method validated with a video see-through sys-

tem. In Proc. IEEE and ACM International Symposium on Augmented Reality (ISAR’00),

pp 165–174, Munich. 2.3.3

Gennery, D. (1992). Visual tracking of known three-dimensional objects. Int. Journal of

Computer Vision, 7:3, pp 243–270. 2.1.1

Ghosh, S. (1988). Analytical Photogrammetry, 2nd Edition. Pergamon Press. 4.2.2

Gordon, I. & Lowe, D. (2004). Scene modelling, recognition and tracking with invari-

ant image features. In Proc. 3rd IEEE and ACM International Symposium on Mixed and

Augmented Reality (ISMAR’04), pp 110–119, Arlington, VA. 2.5

Hampel, F. (1974). The influence curve and its role in robust estimation. Journal of the

American Statistical Assocation, 69, pp 383–393. C

Harris, C. (1992). Tracking with rigid models. In A. Blake, ed., Active Vision, chap. 4,

pp 59–73, MIT Press. 2.1.1

Bibliography 174

Hoff, W., Nguyen, K. & Lyon, T. (1996). Computer vision-based registration tech-

niques for augmented reality. Intelligent Robots and Computer Vision XV, 2904, pp

538–548. 2.2.1

Holloway, R. (1995). Registration Errors in Augmented Reality Systems. Ph.D. thesis, Uni-

versity of North Carolina at Chapel Hill. 1.2, 5.6.3

Huber, P. (1981). Robust Statistics. Wiley. C

Huber, P.J. (1964). Robust estimation of a location parameter. Annals of Mathematical

Statistics, pp 73–101. C

Isard, M. & Blake, A. (1998). CONDENSATION - conditional density propagation for

visual tracking. International Journal of Computer Vision, 29, pp 5–28. 2.1.3

Janin, A.L., Mizell, D.W. & Caudell, T.P. (1993). Calibration of head-mounted dis-

plays for augmented reality applications. In Proc. IEEE Virtual Reality Annual Inter-

national Symposium (VR’93), pp 246–255, Seattle. 2.3.3, 5.5.2, 5.5.2

Kalman, R. (1960). A new approach to linear filtering and prediction problems. ASME

Journal of Basic Engineering, 82, pp 35–45. 2.1.1, 6.6.1

Kanbara, M., Okuma, T., Takemura, H. & Yokoya, N. (2000). A stereoscopic video

see-through augmented reality system based on real-time vision-based registration.

In Proc. IEEE Virtual Reality 2000 (VR2000), pp 255–262. 2.4

Kanbara, M., Fujii, H., Takemura, H. & Yokoya, N. (2001). A stereo vision-based

mixed reality system with natural feature point tracking. In The Second International

Symposium on Mixed Reality (ISMR’01), pp 56–63. 2.2.3

Kano, H., Kitabayashi, K. & Kijima, R. (2004). Reflex head mounted display: Head

mounted display for virtual reality with time lag compensation. In Proc. Tenth Inter-

national Conference on Virtual Systems and Multimedia (VSMM’04), pp 119–127. 2.3.2

Karitsuka, T. & Sato, K. (2003). A wearable mixed reality with an on-board projector.

In Proc. 2nd IEEE and ACM International Symposium on Mixed and Augmented Reality

(ISMAR’03), pp 321–322, Tokyo. 2.3.5

Bibliography 175

Kato, H. & Billinghurst, M. (1999). Marker tracking and HMD calibration for a video-

based augmented reality conferencing system. In Proc. 2nd Int’l Workshop on Aug-

mented Reality, pp 85–94, San Francisco, CA. 2.2.1

Kemp, C. & Drummond, T. (2004). Multi-modal tracking using texture changes. In

Proc. British Machine Vision Conference (BMVC’04), BMVA, London. 2.1.3

Kemp, C. & Drummond, T. (2005). Dynamic measurement clustering to aid real time

tracking. In Proc. 10th IEEE International Conference on Computer Vision (ICCV’05),

vol. 2, pp 1500–1507, Beijing. 2.1.3

Kijima, R. & Ojika, T. (2002). Reflex HMD to compensate lag and correction of deriva-

tive deformation. In Proc. IEEE Virtual Reality Conference (VR’02), pp 172–179, IEEE

Computer Society, Washington, DC, USA. 2.3.2

Kiyokawa, K., Billinghurst, M., Campbell, B. & Woods, E. (2003). An occlusion-

capable optical see-through head mount display for supporting co-located collab-

oration. In Proc. 2nd IEEE and ACM International Symposium on Mixed and Augmented

Reality (ISMAR’03), pp 133–142, Tokyo. 2.3.2, 2.4

Klein, G. (2001). Visual guidance of a mobile robot. Fourth year project, Cambridge

University Engineering Department. 4.1, 4.2.1, 4.5

Klein, G. & Drummond, T. (2002). Tightly integrated sensor fusion for robust visual

tracking. In Proc. British Machine Vision Conference (BMVC’02), vol. 2, pp 787 –796,

BMVA, Cardiff. 1.8

Klein, G. & Drummond, T. (2003). Robust visual tracking for non-instrumented aug-

mented reality. In Proc. 2nd IEEE and ACM International Symposium on Mixed and

Augmented Reality (ISMAR’03), pp 113–122, Tokyo. 1.8

Klein, G. & Drummond, T. (2004a). Sensor fusion and occlusion refinement for tablet-

based AR. In Proc. 3rd IEEE and ACM International Symposium on Mixed and Aug-

mented Reality (ISMAR’04), pp 38–47, Arlington, VA. 1.8

Klein, G. & Drummond, T. (2004b). Tightly integrated sensor fusion for robust visual

tracking. Image and Vision Computing, 22, pp 769–776. 1.8

Bibliography 176

Klein, G. & Drummond, T. (2005). A single-frame visual gyroscope. In Proc. British

Machine Vision Conference (BMVC’05), vol. 2, pp 529–538, BMVA, Oxford. 1.8

Koller, D., Klinker, G., Rose, E., Breen, D., Whitaker, R. & Tuceryan, M. (1997). Real-

time vision-based camera tracking for augmented reality applications. In D. Thal-

mann, ed., ACM Symposium on Virtual Reality Software and Technology, ACM Press,

New York, NY. 2.2.1

Kumar, P. (2001). Visual tracking with inertial guidance. Fourth year project, Cam-

bridge University Engineering Department. 4.3

Lepetit, V. & Berger, M.O. (2000). Handling occlusions in augmented reality systems:

A semi-automatic method. In Proc. IEEE and ACM International Symposium on Aug-

mented Reality (ISAR’00), pp 197–146, Munich. 2.4

Lin, H. (2005). Vehicle speed detection and identification from a single motion

blurred image. In Proc. Seventh IEEE Workshop on Application of Computer Vision

(WACV/MOTION’05), vol. 1, pp 461–467, Breckenridge, CO. 2.5

Lowe, D. (1992). Robust model-based motion tracking through the integration of

search and estimation. Intl. Journal of Computer Vision, 8, pp 113–122. 2.1.1

Lowe, D. (2004). Distinctive image features from scale-invariant keypoints. Interna-

tional Journal of Computer Vision, 60, pp 91–100. 2.5, 4.1

MacWilliams, A., Sandor, C., Wagner, M., Bauer, M., Klinker, G. & Brügge, B. (2003).

Herding sheep: Live system development for distributed augmented reality. In

Proc. 2nd IEEE and ACM International Symposium on Mixed and Augmented Reality

(ISMAR’03), Tokyo. 2.3.4

Marchand, E. & Chaumette, F. (2002). Virtual visual servoing: a framework for real-

time augmented reality. In G. Drettakis & H. Seidel, eds., Proc. Eurographics 2002,

vol. 21,3, pp 289–298, Saarbrcken, Germany. 2.1.2

Marchand, E., Bouthemy, P., Chaumette, F. & Moreau, V. (1999). Robust real-time

visual tracking using a 2D-3D model-based approach. In Proc. 7th IEEE International

Conference on Computer Vision (ICCV’99), vol. 1, pp 262–268, Kerkyra, Greece. 2.1.1

Bibliography 177

Matsushita, N., Hihara, D., Ushiro, T., Yoshimura, S., Rekimoto, J. & Yamamoto, Y.

(2003). ID CAM: A smart camera for scene capturing and ID recognition. In Proc. 2nd

IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR’03),

pp 227–236, Tokyo. 2.2.2

Maybeck, P. (1979). Stochastic models, estimation and control, vol. 1, chap. 1. Academic

Press. 6.6.1

Mellor, J.P. (1995). Enhanced reality visualization in a surgical environment. A.I. Tech-

nical Report 1544, Massachusetts Institute of Technology, Artificial Intelligence Lab-

oratory. 2.2.1

Möhring, M., Lessig, C. & Bimber, O. (2004). Video see-through AR on consumer cell-

phones. In Proc. 3rd IEEE and ACM International Symposium on Mixed and Augmented

Reality (ISMAR’04), pp 252–253, Arlington, VA. 2.3.4

Molana, R. (2000). Visual guidance of a mobile robot. Fourth year project, Cambridge

University Engineering Department. 4.1, 4.2.1

Mulder, J.D. (2005). Realistic occlusion effects in mirror-based co-located augmented

reality systems. In Proc. IEEE Virtual Reality Conference (VR 2005), pp 203–208, Bonn.

2.4

Naimark, L. & Foxlin, E. (2002). Circular data matrix fiducial system and robust image

processing for a wearable vision-inertial self-tracker. In Proc. IEEE and ACM Interna-

tional Symposium on Mixed and Augmented Reality (ISMAR’02), pp 27–36, Darmstadt,

Germany. 2.2.1

Neumann, U. & Cho, Y. (1996). A selftracking augmented reality system. In Proc. ACM

Symposium on Virtual Reality Software and Technology (VRST’96), pp 109–115. 2.2.1

Newman, J., Ingram, D. & Hopper, A. (2001). Augmented reality in a wide area sen-

tient environment. In Proc. IEEE and ACM International Symposium on Augmented

Reality (ISAR’01), New York. 2.3.4

Owen, C., Xiao, F. & Middlin, P. (2002). What is the best fiducial? In Proc. First IEEE

International Augmented Reality Toolkit Workshop, pp 98–105, Darmstadt. 2.2.1, 2.3.4

Bibliography 178

Owen, C.B., Zhou, J., Tang, A. & Xiao, F. (2004). Display-relative calibration for op-

tical see-through head-mounted displays. In Proc. 3rd IEEE and ACM International

Symposium on Mixed and Augmented Reality (ISMAR’04), pp 70–78, Arlington, VA.

2.3.3, 8.3

Park, F. & Martin, B. (1994). Robot sensor calibration: Solving AX=XB on the euclidean

group. IEEE Transactions on Robotics and Automation, 10, pp 717–721. 6.6.5

Park, J., You, S. & Neumann, U. (1998). Natural feature tracking for extendible robust

augmented realities. In Proc. Int. Workshop on Augmented Reality. 2.2.3, 2.2.4

Pasman, W. & Woodward, C. (2003). Implementation of an augmented reality system

on a PDA. In Proc. 2nd IEEE and ACM International Symposium on Mixed and Aug-

mented Reality (ISMAR’03), pp 276–277, Tokyo. 2.3.4

Pingle, K.K. (1969). Visual perception by a computer. In A. Grasselli, ed., Automatic

Interpretation and Classification of Images, pp 277–284, Academic Press, New York.

7.2.2

Pupilli, M. & Calway, A. (2005). Real-time camera tracking using a particle filter. In

Proc. British Machine Vision Conference (BMVC’05), pp 519–528, BMVA, Oxford. 2.1.3

Rekimoto, J. (1995). The magnifying glass approach to augmented reality systems.

In Proc. International Conference on Artificial Reality and Tele-Existence Conference on

Virtual Reality Software and Technology (ICAT/VRST’95), pp 123–132. 2.3.4

Rekleitis, I. (1996). Steerable filters and cepstral analysis for optical flow calculation

from a single blurred image. In Vision Interface, pp 159–166, Toronto. 2.5, 7.2.3

Rolland, J., Davis, L. & Baillot, Y. (2000). A survey of tracking technologies for virtual

environments. In W. Barfield & T. Caudell, eds., Fundamentals of Wearable Computers

and Augmented Reality, chap. 3, Lawrence Erlbaum Assoc. 2.2

Rosten, E. & Drummond, T. (2005). Fusing points and lines for high performance

tracking. In Proc. 10th IEEE International Conference on Computer Vision (ICCV’05),

vol. 2, pp 1508–1515, Beijing. 2.1.3, 1

Bibliography 179

Satoh, K., Uchiyama, S., Yamamoto, H. & Tamura, H. (2003). Robust vision-based

registration utilizing bird’s-eye view with user’s view. In Proc. 2nd IEEE and ACM

International Symposium on Mixed and Augmented Reality (ISMAR’03), Tokyo. 2.2.5

Shahrokni, A., Drummond, T. & Fua, P. (2004). Texture boundary detection for real-

time tracking. In Proc. 8th European Conference on Computer Vision (ECCV’04), vol.

3022, pp 566–577, Prague. 2.1.3

Simon, G. & Berger, M.O. (1998). A two-stage robust statistical method for temporal

registration from features of various type. In Proc. 6th IEEE International Conference

on Computer Vision (ICCV’98), pp 261–266, Bombay. 2.1.1

Smith, P.A. (2001). Edge-based Motion Segmentation. Ph.D. thesis, University of Cam-

bridge, UK. C

State, A., Hirota, G., Chen, D., Garrett, W. & Livingston, M. (1996). Superior aug-

mented reality tracking by integrating landmark tracking and magnetic tracking. In

Proc. SIGGRAPH’96, pp 429–438. 2.2.5

Stricker, D., Klinker, G. & Reiners, D. (1998). A fast and robust line-based optical

tracker for augmented reality applications. In Proc. First International Workshop on

Augmented Reality (IWAR’98), pp 129–145, AK Peters, San Francisco. 2.2.1, 2.4

Sturm, P. (2000). Algorithms for plane-based pose estimation. In Proc. IEEE Intl. Con-

ference on Computer Vision and Pattern Recognition (CVPR’00), pp 1010–1017, Hilton

Head Island, South Carolina. D.2

Sundareswaran, V. & Behringer, R. (1998). Visual servoing-based augmented reality.

In Proc. First IEEE Workshop on Augmented Reality (IWAR’98), San Francisco. 2.1.2

Sutherland, I.E. (1968). A head-mounted three-dimensional display. In Proc. Fall Joint

Computer Conference, pp 757–764, Washington, D.C. 2.3.2

Tang, A., Zhou, J. & Owen, C.B. (2003). Evaluation of calibration procedures for op-

tical see-through head-mounted displays. In Proc. 2nd IEEE and ACM International

Symposium on Mixed and Augmented Reality (ISMAR’03), pp 161–168, Tokyo. 2.3.3

Bibliography 180

Tomlin, C. & Sastry, S. (1995). Control of systems on Lie groups. In S. Sastry, ed.,

Memorandum No. UCB/ERL M95/8, Advanced Topics in Adaptive and Nonlinear Control,

University of California at Berkeley. 3.2

Tsai, R. (1987). A versatile camera calibration technique for high-accuracy 3D machine

vision metrology using off-the-shelf TV cameras and lenses. IEEE Journal of Robotics

and Automation, RA-3, pp 323–344. 2.3.3

Tuceryan, M. & Navab, N. (2000). Single point active alignment method (spaam) for

optical see-through HMD calibration for AR. In Proc. IEEE and ACM International

Symposium on Augmented Reality (ISAR’00), pp 149–158, Munich. 2.3.3

Tukey, J. (1960). A survey of sampling from contaminated distributions. In I. Olkin,

ed., Contributions to Probability and Statistics, pp 448–485, Stanford University Press.

C

Vacchetti, L., Lepetit, V. & Fua, P. (2004). Combining edge and texture information

for real-time accurate 3D camera tracking. In Proc. 3rd IEEE and ACM International

Symposium on Mixed and Augmented Reality (ISMAR’04), pp 48–57, Arlington, VA.

2.1.3

Varadarajan, V. (1974). Lie Groups, Lie Algebras and Their Representations. No. 102 in

Graduate Texts in Mathematics, Springer-Verlag. 3.2

Vlahakis, V., Ioannidis, N., Karigiannis, J., Tsotros, M. & Gounaris, M. (2002). Vir-

tual reality and information technology for archaeological site promotion. In Proc.

5th International Conference on Business Information Systems (BIS02), Poznan, Poland.

2.3.4

Wagner, D. & Schmalstieg, D. (2003a). ARToolKit on the PocketPC platform. Tech.

Rep. TR-188-2-2003-23, Technical University of Vienna. 2.3.4

Wagner, D. & Schmalstieg, D. (2003b). First steps towards handheld augmented re-

ality. In 7th Intl. Symposium on Wearable Computers (ISWC’03), pp 127–137, White

Plains, NY. 2.3.4

Bibliography 181

Wagner, D., Pintaric, T., Ledermann, F. & Schmalstieg, D. (2005). Towards massively

multi-user augmented reality on handheld devices. In Proc. Third Intl. Conference on

Pervasive Computing (PERVASIVE’05), pp 208–219, Munich. 2.3.4

Wang, J., Azuma, R., Bishop, G., Chi, V., Eyles, J. & Fuchs, H. (1990). Tracking a

head-mounted display in a room-sized environment with head-mounted cameras.

In Proc. SPIE Helmet-Mounted Displays II, vol. 1290, pp 47–57, Orlando, FL. 2.2.2

Ward, M., Azuma, R., Bennett, R., Gottschalk, S. & Fuchs, H. (1992). A demonstrated

optical tracker with scalable work area for head-mounted display systems. In Proc.

1992 Symposium on Interactive 3D graphics (SI3D’92), pp 43–52, ACM Press, New

York, NY, USA. 2.2.2

Watson, B. & Hodges, F. (1995). Using texture maps to correct for optical distortion in

head-mounted displays. In Proc. IEEE Virtual Reality Annual Symposium (VRAIS’95),

pp 172–178. 5.4, 1, 6.8

Welch, G. & Bishop, G. (1995). An introduction to the Kalman filter. Tech. Rep. TR

95-041, University of North Carolina at Chapel Hill, updated 2002. 6.6.1

Welch, G. & Bishop, G. (1997). SCAAT: incremental tracking with incomplete infor-

mation. In Proc. 24th annual conference on Computer graphics and interactive techniques

(SIGGRAPH ’97), pp 333–344, ACM Press, New York. 2.2.2

Welch, G., Bishop, G., Vicci, L., Brumback, S., Keller, K. & Colucci, D. (1999). The

HiBall tracker: High-performance wide-area tracking for virtual and augmented

environments. In Proc. ACM Symposium on Virtual Reality Software and Technology.

2.2.2, 6.4

Wloka, M. & Anderson, B. (1995). Resolving occlusion in augmented reality. In Proc.

Symposium on Interactive 3D Graphics, pp 5–12, New York. 2.4, 6.9

Yokokohji, Y., Sugawara, Y. & Yoshikawa, T. (2000). Accurate image overlay on see-

through head-mounted displays using vision and accelerometers. In Proc. IEEE Con-

ference on Virtual Reality, pp 247–254. 2.2.4

You, S. & Neumann, U. (2001). Fusion of vision and gyro tracking for robust aug-

mented reality registration. In Proc. IEEE Conference on Virtual Reality, pp 71–78. 2.2.4

Bibliography 182

You, S., Neumann, U. & Azuma, R. (1999). Hybrid inertial and vision tracking for

augmented reality registration. In Proc. IEEE Conference on Virtual Reality, pp 260–

267. 2.2.4

Zhang, Z. (1997). Parameter estimation techniques: a tutorial with application to conic

fitting. Image Vision Computing, 15, pp 59–76. C, C

Zhu, W., Owen, C., Li, H. & Lee, J.H. (2004). Personalized in-store e-commerce with

the PromoPad: an augmented reality shopping assistant. Electronic Journal for E-

commerce Tools and Applications, 1. 2.3.4

	1 Introduction
	1.1 An Introduction to Augmented Reality
	1.2 The Registration Challenge
	1.3 Visual Tracking for Augmented Reality
	1.4 AR with a Head-Mounted Display
	1.5 AR with a Tablet PC
	1.6 Exploiting Motion Blur
	1.7 Layout of this Thesis
	1.8 Publications

	2 Background
	2.1 Markerless Visual Tracking
	2.1.1 Early Real-time Systems
	2.1.2 Visual Servoing
	2.1.3 Recent Advances in Visual Tracking

	2.2 Tracking for Augmented Reality Applications
	2.2.1 Passive Fiducial Tracking
	2.2.2 Active Fiducial Tracking
	2.2.3 Extendible Tracking
	2.2.4 Inertial Sensors for Robustness
	2.2.5 Combinations with Other Trackers

	2.3 Augmented Reality Displays
	2.3.1 Optical and Video See-through Displays
	2.3.2 Advances in HMDs
	2.3.3 HMD Calibration
	2.3.4 Hand-held AR
	2.3.5 Other AR Displays

	2.4 Occlusions in AR
	2.5 Motion Blur

	3 Mathematical Framework
	3.1 Coordinate frames
	3.2 Motions
	3.3 Uncertainty in Transformations
	3.4 Software

	4 Markerless Visual Tracking
	4.1 Introduction
	4.2 Tracking System Operation
	4.2.1 Image Acquisition
	4.2.2 Model Rendering and Camera Model
	4.2.3 Image Measurement
	4.2.4 Pose Update
	4.2.5 Motion Model

	4.3 Inertial Sensors
	4.4 Sensor Fusion
	4.4.1 Tracking System Initialisation
	4.4.2 Parametric Edge Detector
	4.4.3 Gyroscope Re-calibration

	4.5 Results

	5 HMD-Based Augmented Reality
	5.1 Introduction
	5.2 Head-Mounted Display
	5.3 A Prototype Maintenance Application
	5.4 Projection Model and Rendering
	5.5 Registration
	5.5.1 Registration for Optical See-through Displays
	5.5.2 User Calibration Procedure
	5.5.3 Nonlinear Optimisation
	5.5.4 Dynamic Registration

	5.6 Results
	5.6.1 Maintenance Application
	5.6.2 Calibration Performance
	5.6.3 Dynamic Registration Error
	5.6.4 Ergonomic Issues

	6 Tablet-Based Augmented Reality
	6.1 Introduction
	6.2 A Tablet-based Entertainment Application
	6.3 Tracking Strategy
	6.4 Outside-in LED Tracking
	6.5 Inside-Out Edge Tracking
	6.6 Extended Kalman Filter
	6.6.1 An Introduction to Kalman Filtering
	6.6.2 Filter State
	6.6.3 Prediction Step
	6.6.4 Correction Step
	6.6.5 Sensor Offset Calibration

	6.7 Application Implementation
	6.7.1 Kalman Filtering over the Network
	6.7.2 Token detection

	6.8 Rendering
	6.9 Occlusion Refinement
	6.10 Results
	6.10.1 Real-time Performance
	6.10.2 Errors
	6.10.3 Dynamic Performance
	6.10.4 Occlusion Refinement
	6.10.5 The Tablet PC as an AR Format

	7 A Visual Rate Gyroscope
	7.1 Introduction
	7.2 Method
	7.2.1 Overview
	7.2.2 Axis of Rotation
	7.2.3 Blur magnitude

	7.3 Results
	7.4 Limitations
	7.5 Combination with Edge Tracking
	7.6 Conclusions

	8 Conclusion
	8.1 Summary
	8.2 Contributions
	8.3 Future Work

	A Results Videos
	B Projection Derivatives
	B.1 Tracking Jacobian
	B.2 HMD Calibration Jacobian

	C M-Estimation
	D Homographies
	D.1 Estimating a Homography
	D.2 Estimating Pose from a Homography

	Bibliography

