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Abstract

This thesis treats one fundamental problem in computer vision which is imagetlodject

reconstruction. It concentrates on the problem of improving the geometiizacy of the re-
constructed three-dimensional (3D) models. We define two principal lihessearch which
are: i) improving camera calibration accuracy, and ii) improving reconstimuatiouracy based
on Helmholtz Stereopsis (HS). Starting by improving the accuracy of camaéibmation is a

natural idea, because it is a preliminary stage to most reconstruction teelnigS is a rela-
tively recent reconstruction technigue (2002), based on the prindiplelmholtz reciprocity,

and which is remarkable for its ability to reconstruct a wide range of sesfaegardless of
their surface properties.

In camera calibration, we present a collection of methods based on ingandmrch can be
used to improve calibration accuracy of the camera. Two main classes ofdaeth® pre-
sented. The first one is based on Points at Infinity (Pl), and applies tanaldting cam-
era. The second one is based on a novel entity called the Normalised IfndgeAbsolute
Conic (NIAC). The NIAC generalises the invariance properties of thegbrat the Absolute
Conic (IAC), and we demonstrate its application for zooming camera calibrdtidmoth sit-
uations, experiments with synthetic and real data showed some improvenserdtandard
camera calibration methods which do not consider such invariance pesper

In object reconstruction using HS, we present two main contributionglyk-inge improve the

intrinsic accuracy of the standard HS technique, by formulating an optimumataecon-

struction method, which gives a Maximum Likelihood (ML) estimate under stan@aussian
noise assumption. Secondly, we look at HS in a broader perspectdeytmerve that the
standard pixel based implementation is biased in the case of rough andfal\stiextured

surfaces. We propose a novel formulation, supported by recexdnasin the field of Physics,
which does not suffer from such limitations. Results are given with a vaoiebpjects pre-

senting diverse surface properties and whose reconstruction witlertonal reconstruction
techniques is challenging. We show that HS is able to produce realistic arallyiaccurate

3D models.

Keywords: Computer vision, camera calibration, Vanishing Points, Image of the Absolute
Conic, Normalised Image of the Absolute Conic, image-based object tegoinen, Helmholtz
Stereopsis.
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Notations

We adopt the following main mathematical typesetting conventions.
Scalar values are represented in italic, for examybe ).

Vectors are represented in boldface italic, for examplall vectors are assumed to be column
vectors by default. When a row vector is considered, this is indicated &gpliby using the
transpose symbdl. For examplep denotes a column vector, white' denotes a row vector.

By abuse of notationA~ " denoteA~!)T or (AT)~!, whereA is an invertible matrix.

Matrices are represented in a sans serif font, for examrpler 7. Block notations are used
when appropriate. For examgle|t] denotes the matrix which is the result of the concatenation
of the matrixR and the vectot (obviously they must have the same number of rows). When

f
a block consists only of zeros, it is usually omitted for clarity, for example f stands
1
f 00
for [0 f Of.
0 0 1

In projective geometry, entities are usually defined up to an arbitrarzeomscale factor. The
~ notation is used to represent equality up to the arbitrary non-zero sctbe fa

Unless specified otherwisgy|| denotes thd., norm of the vectow, which is defined as the
square root of the sum of its squared components.

The bar symbol over a variable, suchasis sometimes used to represent the mean value of
the variable.

Xi
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2D two-dimensional
3D three-dimensional
BRDF Bidirectional Reflectance Distribution Function

DIAC Dual Image of the Absolute Conic

DLT Direct Linear Transform

HS Helmholtz Stereopsis

IAC Image of the Absolute Conic

LM Levenberg-Marquardt

ML Maximum Likelihood

NIAC Normalised Image of the Absolute Conic
PDF Probability Density Function

PI Point at Infinity

RAC Radial Alignment Constraint
RANSAC Random Sample Consensus
RMS Root Mean Squared

SSD Sum of Squared Differences
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Chapter 1

Introduction

Image-based object reconstruction consists in inferring three-dimexigj@n) information
from two-dimensional (2D) images. If we consider the human vision systentaskds per-
formed almost effortlessly. For example, our two eyes allow us to locatetshijethe 3D
space and interact with them with an amazing simplicity; looking at an objectfoebperiod
of time allows us to appreciate its speed in addition to its trajectory; also, we =3 ¢ue
shape of an object from the way it reflects light, and we can anticipate tfeceproperties
of an object and even its shape from visual observation of the texige lefore touching it.
We have become so accustomed to reasoning in 3D that we tend to forgamiitieges provide

us only 2D information about our environment.

In computer vision, the sensor used to infer 3D information is the camera. thékbuman
eye, the camera provides 2D information about the scene but in this casdamrthof images,
which are collections of finite elements called pixels. The challenge of imaggdbabject
reconstruction consists of recovering the 3D geometry of the sceneafsmhof such images.
Although the task appears almost trivial in the case of the human vision sythetranslation

into automatic and accurate computer vision algorithms is still an area of actzarob.

The ability to build 3D models from images is of broad interest and finds applitsitiomany
aspects of science as well as everyday life. Fields of application inctudexémple 3D mea-
surements in manufacturing industry, where traditional metrology applicatisualy have a

high cost which can be reduced by using automatic artificial vision inspetetabmiques. The

1



2 Chapter 1. Introduction

entertainment industry is also a sector where computer vision is widely aplipdrticular
in the production of special effects in films, and in the generation of virtuwalds for video
games. In robotics, 3D vision is of primary interest for the developmentiminmous sys-
tems such as planetary land rovers used for the exploration of distapt@lanmore generally
for the development of robots aimed at exploring hostile environments thabthe accessed
directly by humans. In other applications such as augmented reality, convigiter is used
to supplement human vision. An example of this type of application is in medicirerendD
models of organs or tissues can be overlaid onto live images of a cameeinomassist the

surgeon during an operation.

Whether they are intended to replace or supplement the human vision systemacy is usu-
ally important. There are several ways of improving the accuracy of ttenstructed 3D
models. One strategy is to improve the knowledge of the sensor used totittgpeaviron-
ment - this is done through camera calibration. The other strategy consistsriovingpthe
reconstruction method used. In most situations, camera calibration is a prejirstage to

reconstruction.

Let us illustrate the problem with a simple example which is not related to compuien.vis
Suppose that we are given a ruler and would like to measure a 3D objecicastely as
possible. The first thing we would like to ensure before carrying outnaggtsurement is that
the ruler is accurate. We may want to make sure that the graduations abnéetediad even try
to generate more graduations on the ruler if this is possible. This is whatlixeabirating
the sensor. Once this is done, we can concentrate on the measuremerhitgedf stage, the
object may be very irregular, we may not be able to access it from alipessigles because
of some spatial constraints, or we may simply have time constraints that prsvieam taking
as many measurements as we would like. For all these reasons, we may haaleetsome
strategic choices on the parts we are going to measure, and we may havapmlete the
dimensions of occluded areas by applying some arithmetic to the visible parysnoaking
some assumptions on the surface. Some methodologies for reconstructsttpfiee of the
object may be more accurate than others. They are usually indeperfdiet calibration

accuracy of the ruler.

Let us now come back to computer vision. Calibrating a sensor means buildimaglel of
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the way it perceives its environment. In the case of a camera, we can thiaclo pixel as a
directional sensor: each pixel represents a line of sight on which museli@Dtpoint viewed

by the camera. This is a geometric description of the camera. In additionpie&tiban take a
range of intensity values depending on the light reflected by the objdatestrthat it captures,
the light received by a particular pixel depending on many factors ssitheascene lighting,
the colours of the objects in the scene, the object surface propertiedsamtheir shape and

relative spacial arrangement. This is a photometric (or radiometric) déeargf the camera.

Object reconstruction involves transforming the low level 2D cues cordtamiae images into
high-level 3D models. Naturally both the geometric and the photometric prapeftibe cam-
era become useful at this stage. For example, the pixel position providesation about the
position in space of the imaged surface point and the pixel intensity pravifiemation about
the local surface orientation at this point. There exists a multitude of recatistt methods
each of them capitalising on a particular cue. In this thesis, the reconstrtetionique chosen
is called Helmholtz Stereopsis (HS). It is based on a physical principle ddé&dholtz reci-
procity and has been chosen for its wide range of application. Contrary to nooststeuction

methods, HS does not rely on any assumption regarding the surfacatesp

1.1 Objectives

The main objective of this thesis is to investigate methods of improving the geomattie a
racy of the reconstructed 3D models. We distinguish two main problems: caadyeation
and object reconstruction. Both problems contribute to the generalaagcaf the 3D model
reconstructed. For example, the best reconstruction method wouldmeréwy poorly if the
camera is inaccurately calibrated, and equally, calibrating accurately aa#ra no use if
it is not followed by an accurate reconstruction method. Both problemssizadly be treated
sequentially; first the camera is calibrated and then the object is recdssitrut should be
mentioned here that there exists more sophisticated technique where thekwartast be so

clearly separated (see Section 2.3.6).

Improving the geometric accuracy of 3D reconstruction is too generalldeun, which goes

beyond the scope of a single PhD thesis. For this reason we have idestifitedmore specific
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objectives. In the case of camera calibration, we concentrate on geooaditsiration, therefore
leaving the radiometric calibration problem as a separate issue. In thefaasemstruction,
we focus on improving the accuracy of the reconstruction based on H® olfjectives can

therefore be restated as follows in the light of the two main problems defined:

1. Improve the accuracy of geometric camera calibration,

2. Improve the accuracy of the reconstruction based on HS.

The essential issues addressed in this thesis are:

1. In camera calibration, the constraints used are provided by the alisaroef a specific
calibration object. The more images we take of the calibration object, the mofe con
straints we have for the calibration of the camera. Multiplying the informatioitcdola
by taking multiple images at different positions or with different lens settingspisori
a plausible strategy for increasing the number of constraints and therebglthration
accuracy. However, everytime the camera moves or changes its settingdsthintro-
duces new parameters to calibrate. Can we significantly increase the nohvews,
and thereby the number of calibration constraints available, without inogeaiditrarily

the dimensionality of the problem and affecting the calibration accuracy?

2. For objectreconstruction, HS has been shown to be a powerful chietha large variety
of objects. Can we improve further the intrinsic accuracy of the methodifdr gbjects?
What are the limitations of the current HS algorithm? In particular, can we @xten

applicability of the method to a wider class of surfaces?

1.2 Contributions

Our contributions are at two levels. The first one is in camera calibratiorsetend one in
HS. They are clearly related by sharing the same goal: improving the geometticacy of
the 3D models reconstructed. But they are also distinct and independientedder interested

only in camera calibration will benefit from our work on camera calibratiod snfree to
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implement it followed by the reconstruction method of their choice. Similarly, aarkwn HS

is independent of the technique chosen to calibrate the camera.

In the case of camera calibration, our main contributions are the following:

e Investigation of the use of invariants to increase calibration accuracy.

e Proposition of a novel method based on Points at Infinity (PI) for calilgatimanslating
camera. Contrary to similar methods which make use of the invariance to tramgslatio
our method does not require the observation of sets of parallel lines ic¢he snd is
therefore more flexible. The novel method results in an improvement in theat#il

accuracy compared to standard calibration methods which do not explaivtréance

property.

¢ Definition of a novel entity called the Normalised Image of the Absolute ConidQyl|
which is the extension of the Image of the Absolute Conic (IAC) to zooming iawee.
The NIAC is a geometric abstraction which encapsulates all the camera pearsiine

variant to zooming.

e Proposition of a novel method for calibrating a zooming camera based onAli: Nhe
method requires only to take several images of a plane and it has beemtshiogymore

accurate than other plane-based calibration methods.

In the case of image-based object reconstruction using HS, the followimgitautions have

been made:

o Definition of a radiometric distance for optimum normal estimation. The novelrdista
introduced is a Maximum Likelihood (ML) estimate under standard Gaussiae as-

sumption. This guarantees an optimum surface normal estimation.

¢ Observation that the standard HS constraint is biased in the case ofandgitrongly

textured surfaces.

e Formulation of a novel HS constraint applicable to rough and/or strongtyresk sur-

faces and demonstration of its success on a variety of challenging fjeatb
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1.3 Structure of the thesis

The thesis is structured as follows. This chapter was a general introdwetile the aim of
motivating the work presented in this thesis and stating the main objectives amibetons.
The rest of the thesis is divided into three parts. Part | is dedicated to aaraldration. It
starts with Chapter 2 in which we review the main camera calibration methodst khqater,
we also introduce some general concepts such as the camera modelmantbsations which
will be useful in the rest of the thesis. In Chapter 3, we propose a ravaEra calibration
method for a translating camera. In Chapter 4, we continue our explordtionasiants and
define a novel invariant to translation, rotation, and zoom, called the NV¥¥&show how this
invariant can be used to calibrate a zooming camera. Part || concerdraties reconstruction
of 3D models from images. It starts with a broad review of the topic in Chapt&fesconsider
the applicability of the different techniques in terms of types of object sasf#o which they
apply. This motivates the choice of HS for reconstruction in this thesis. &pteh 6, we tackle
the normal estimation problem with HS and come up with an optimum solution to the prob-
lem. In Chapter 7, we pursue reconstruction of surfaces using H$ibutme extending the
method to a wider class of surfaces, which could not be reconstrudieieémrty by previous
implementations of the method. Part Ill, which consists only of Chapter 8elibee discus-
sion on improving the geometric accuracy of the 3D models reconstructedndtudes and
proposes some avenues for future work. Some additional material aof$ @re given in the

appendices at the end of the thesis.

1.4 List of publications

The results from this research have been reported in a number of figvica

Conferences:

e J.-Y. Guillemaut, A.S. Aguado, and J. lllingworth. Using Points at Infinityfarameter
decoupling in camera calibration. Froc. British Machine Vision Conferencpages

263-272, volume 1, September 2002.
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e J.-Y. Guillemaut, A.S. Aguado, and J. lllingworth. Calibration of a zooming came
using the Normalized Image of the Absolute Conic.Phoc. International Conference

on 3-D Digital Imaging and Modelingpages 225-232, October 2003.

e J.-Y. Guillemaut, O. Drbohlav, Rara, and J. lllingworth. Helmholtz Stereopsis on
rough and strongly textured surfaces. Rroc. International Symposium on 3D Data

Processing, Visualization and Transmissipages 10-17, September 2004.

Journals:

e J.-Y. Guillemaut, A.S. Aguado, and J. lllingworth. Using Points at Infinityfarameter
decoupling in camera calibrationEEE Transactions on Pattern Analysis and Machine

Intelligence volume 27(2):265-270, February 2005.
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Chapter 2

Background

2.1 Introduction

The main sensor used in computer vision is the camera. It provides infornsdimnt the
physical world surrounding us in the form of 2D images. Before beirlg tbextract 3D
information from such images, it is important to be able to model the phenomekiog ta
place in the camera during image formation. The estimation of the parametersrobties
of the image formation process is the aim of camera calibration. This is of majortamge
in computer vision, as it is a preliminary stage to most vision based objectstegction
techniques. As such, camera calibration has been a topic of interest iutmysion and
photogrammetry for nearly half a century, and there exists a very exéeligrature on the
topic. It is obviously not possible to mention all the methods here, howevestnigy is
intended to give a good overview of the diversity of the existing appmescimcluding the

most commonly used methods.

The chapter is structured as follows. First, the different camera modetteaceibed in Sec-
tion 2.2. Then a taxonomy of the main approaches for the estimation of the pararoé
the camera model chosen is proposed in Section 2.3. In this chapter, wiatedstuce the

notations which will be employed in the rest of the thesis.

11



12 Chapter 2. Background

Figure 2.1: Man Drawing a LuteAlbrecht Direr, 1525. The artist illustrates here an example of device

which can be used to draw perspective images of objects.

2.2 Geometric camera model

The camera model characterises the mapping (perspective projectomBfd world points
to 2D image points taking place in the camera during image formation. Historicall§irshe
perspective pictures appeared early in the fifteenth century with Ranaesgainters who in-
troduced the primary concepts of perspective and projective geonseteyHig. 2.1 for an il-
lustration of the principle). In particular, they designed tools such asah®era obscurdor

dark room), which is the ancestor of todays camera, in order to genegdigtic rendering of
scenes. Some of the material contained in this section is now fairly standattjd reason
references are sometimes omitted. The reader interested is referreddardttaxtbooks on

the topic [46, 154, 72].

2.2.1 Basic pinhole model

The pinholecamera model is the most commonly used geometric camera model in computer
vision. It is illustrated in Fig. 2.2. It consists of an image planeand a pointC called
the optical centre or the camera centre. The plAhgassing through the optical centre and

parallel to the image plane is called focal plane. Focal plane and image piaseparated by
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focal length

Figure 2.2: The pinhole model. Note that the image plane is placed intfobithe focal plane even
though physically it is located behind; this conventiondgsiigalent, it is preferred because it allows to

work with non-inverted images.

a distancef; that is called the effective focal length. The line passing through the bpéntre
and perpendicular to the image plane is called the optical axis; it intersects the plzane in

a point called principal point.

A ray of light emitted by a scene poi® travels through the optical centre and intersects the
image plane in an image poipt In thecamera reference frameentred aC' with the Z axis
pointing along the optical axis (see Fig. 2.3), the relation linking a 3D @@int [ X, Y., Z,, 1] "
and its projectiorp, = [z, y., w.] " in the image plankis expressed in homogeneous coordi-
nates by
Jo 0
P~ fo 0f Pe, (2.2)
1 0

where the symbol- denotes the equality up to a non-zero scale factor.

2.2.2 Extrinsic and intrinsic parameters

In the previous section, the camera reference frame was introducaddeeit was mathe-

matically the most appropriate for expressing the perspective projectiosiinpe form (see

'Note that by abuse of notation we have dropped4r@mponent in the expressionpf. Image points being

located in the image plane, th#ecomponent is always equal ffg.
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image % U

reference
frame v p

camera
reference Y,
frame

Y world
reference
Xu frame

Figure 2.3: The different reference frames used to model the image fiwmprocess. The intrinsic pa-
rameters represent the transformation from the image todteera reference frame, while the extrinsic

parameters represent the transformation from the camee toorld reference frame.

Eqg. (2.1)). In practice, however, the camera reference frame isiremtlgt accessible to the
operator, because it is not attached to any visible reference objeatival centre for ex-
ample is located somewhere inside the camera). For this reasoimdbe reference frame
and theworld reference framare defined; they are linked respectively to the image and some
easily recognisable features from the environment (or world). Twad@Erameters calleid-
trinsic andextrinsicparameters are introduced; they characterise the transformations betwee

reference frames.

The intrinsic parameters

These parameters define the projective transformation between a 30p@Rrpressed in the
camera reference frame and its image- [u,v,w]' expressed in pixel coordinates. It has
already been seen in the previous section that the focal length modelsntih@l peojection

within the camera reference frame. The other intrinsic parameters rapthee2D transfor-
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mation required to convert camera coordinates into image coordinates:

m, —mycotl ug
D~ my/sinf vy | Pe- (2.2)
1

(up, vp) are the coordinates in pixels of the principal point, they represent teetdietween

the origins of the two framesn,, andm, are the number of pixels per unit distance. Finally,
for generality,d represents the angle between the axesdv of the image reference frame.
For most normal camer#s= = /2 rad, however in some rare instances this parameter can take
different values. In practice, it can also be convenient, for lineariti@equations, to compute

a general model with all the parameters. Combining Eqg. (2.1) and (2.2)bta&o
p~I[K|0] P, (2.3)
whereK is called thecalibration matrixand is defined by

fomu  —fomycot®  ug
K= fomy/sinf  wg| - (2.4)
1

The parameterg,, m, andm,, are redundant, they can be grouped into two new parameters,
the focal lengthf = fym,, in pixel units along the: axis, and the aspect ratio= m,,/m,,.

The aspect ratio can be different from 1 in the case of CCD camermd,iamsually necessary

to estimate it for an accurate calibration. Note also that the teem— f cot 6 is called the

skew parameterin summaryK is parametrised by five intrinsic parameters:

f —fcot@ g
K= fr/sinf wg| - (2.5)
1

The extrinsic parameters

They define the transformation from the camera reference frame into tiebneference frame.
This transformation models the camera orientation (rotation m&yrand location (translation

vectort) with respect to the world reference frame. A world paiit= [X,Y, Z,1]" and its
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coordinatesP.. in the camera reference frame are related by

Po~ P. (2.6)
1

There are six extrinsic parameters: three for the rotation and three foatigation.

Eqg. (2.3) and (2.6) can be grouped into a single relation linking 3D pdtits world coordi-

nates and their projectignin pixel coordinates:
p~MP, 6 with M=KI[R]|t], (2.7)

whereM is called theprojection matrix The projection matrix has eleven degrees of freedom
and is fully characterised by intrinsic and extrinsic parameters. The btwok[R | £] repre-
sents the 3 by 4 matrix obtained from the concatenatioR ahdt¢. This concise notation is

commonly used in the rest of this thesis.

2.2.3 Zooming camera model

So far, only camera models with static parameters have been considerechingocamera
models, however, must incorporate variable parameters in order to acaatena@riations in
the lens’ zoom. This is typically a complex problem, because of the variationg iogttical
alignment of the lens’ components, and the displacement of these elememjsradaoptical
axis which occur during zooming. The choice of the zoom model is usualtgtdit by the

accuracy required, and also by the individual specifications of eatieia.

The primary effect of zooming is to change the focal length of the cameranddel this, it
is convenient to separate the focal length from the other intrinsic paranbtedefining the

following matrices:

1 —cotf wug f
Ki = r/sinf wvy| and F= f
1 1
An ideal zooming camera model is obtained, witlencapsulating the zooming properties and

K; containing the other intrinsic parameters:

M=KF[R|t. (2.8)
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It has been observed in [165, 166] that zooming can also affect tdefigiew of the camera,
which can be approximated by considering a variable principal point. A noagrate model
[166] considers a variable position of the optical centre along the optieal(d axis of the
camera reference frame), in addition to the three other variable parametf83], a general
methodology for building models of cameras with variable parameters is peesamd applied
to the case of variable zoom and focus lenses. The main idea is to desacibeamera
parameter by a polynomial function of the lens control settings. More detailde found in
[164].

2.2.4 Lens distortion model

The pinhole model is generally a good approximation of the image formatiorgsdaking
place in most cameras. However, in reality, a number of deviations callecrationsare
observed. There are many types of deviations (see [127] for a detigigsdiption). Typically
theradial distortionis the most significant one. It consists of a displacement of the image points
radially towards or away from the centre of radial distortion. Usually it fcant to claim that
the centre of radial distortion and the principal point are the same, but tii$ recessarily the
case (see [166]). This effect is generally relatively well modelled if tigtodtion coefficients
k, andk, are introduced to warp distorted image poipts= [uq, v4, 1] to undistorted ones
p = [u,v,1]T by the relation

u =g + (ug — up) (1 + Kk1d? + Kod?)

with  d* = [r(ug — uo)]* + [va — vo]*. (2.9)

v =g + (vg — vo)(1 + K1d?® + Kod")

For greater accuracy, it is necessary to introduce a centre of rastiaftasbn independent of the

principal point.

2.2.5 Other models
Approximations of the general pinhole model

So far, it has been assumed that the optical centre of the camera is a finttelfps possible

to define other models calledfine modeldy placing the optical centre in the plane at infinity
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[72]. In addition, it is possible to construct approximations of the germndlole model such
as theparaperspectiveor orthoperspectivanodels. A hierarchy of such camera models is
presented in [6]. Such models are less accurate, however they paesstuced number of

parameters, which can reduce considerably the complexity of many appliation

Thin lens model

With the pinhole model, the objects observed were always in focus, becalg one ray
coming from each visible point could enter the camera. But the aperturesaf eamera is not
a point and it is therefore necessary to use an optical system madeex bergsother elements
to guarantee that the rays emerging from the same 3D point converge amntlearaage point.
The behaviour of these systems is relatively complex, however, it can bellehdelatively
accurately by the thin lens model [19]. With such a model only points locateplana parallel
to the image plane can be in focus. An example of application is in shape friotudewhere
the amount of blur is used to infer the object geometry [27]. This model is mach complex
than the pinhole model, in particular it does not present the linear propefties latter model,

and is therefore rarely used in computer vision applications.

2.3 Camera calibration

The problem of camera calibration consists in estimating the parameters of thet chod
sen for the camera. Many of the techniques used in computer vision arethé§mm the
photogrammetry literature. Typically, being able to calibrate a camera adguisatitical
because it affects directly the accuracy of the reconstruction madeifnrages. The task is
carried out by deriving some relations between the 3D world and the imdgastig the cam-
eras. Each relation constrains the camera parameters. When presenifficiant number,
these constraints form a system, whose solution gives the values of @achgter. The com-
plexity of the equations depends on the nature of the relations that aréststeptherefore it
is of critical importance to consider adequate entities for the definitions of teéstions. Typi-
cally, the entities considered for calibration are objects with known chaistate, for example

3D points with known coordinates (see Fig. 2.4). But it is possible to use noptasticated
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Figure 2.4: A typical camera calibration pattern made of two orthoggiahes containing points with

known 3D coordinates (control points).

entities which, for example, can be more complex geometric shapes, or evgindinyeobjects
such as the Image of the Absolute Conic (IAC) (see Section 2.3.3). Othevaghes called
auto-calibration(or self-calibration remove completely the requirement of having angri-

ori knowledge about the scene observed. In this section, a taxonomy off¢rertt camera
calibration methods is proposed. The methods are classified accordingoimffegties of the

entities used to form the calibration constraints.

2.3.1 Calibration from point correspondences

The simplest correspondence which can be established is through 3® wiiimknown coor-
dinates. These points are called control points and are defined on atatipattern, usually
made of two or three mutually orthogonal planes (see Fig. 2.4) and engiheéh very high
accuracy. The key idea is to find values of the intrinsic and extrinsic paeasnehich will best

map the control points to their corresponding image points.

Linear methods

Linear methods have been used extensively for solving the calibratidabepnqsee [63, 51]
to cite only a few). This approach is call€irect Linear Transform (DLT)1]. A good

description of this class of methods is given in [72]. In the case of an miahble camera
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(no lens distortion), each correspondence between a 3D poiat{ X, Y, Z, 1] T and its image
p = [u,v,w]" is constrained by Eq. (2.7). Denoting by the vector formed by concatenating

all the row vectors of the camera calibration mattfx

my m]—
m= | my where M = m; , (2.10)
ms mg
the following constraint can be derived from Eq. (2.7):
o’ —wP"  wPT
wPT ()—r —uP—r m=20. (211)

—oPT  uPT o'

It appears that the three equations defined above are linearly depetind is one point cor-
respondence leads to only two constraints on the element4 (he first two equations for
example). The general system having 11 unknowns (5 intrinsic paraater6 extrinsic pa-
rameters), it can be solved with a minimum of six world points in a general poggam[25]
for a characterisation of all the degenerate configurations). In peadtiwould be very inac-
curate to consider only the minimum number of points because of the noise ixttaetion of
the image points, therefore a larger number of points is used and a leasésgolution can
be computed. Stacking up the previous equatiods, a 12 matrix A such thatAm = 0 can
be defined (note that has dimensiorn x 12 if only two linearly independent equations are
considered for each correspondence). In [63], the pseudosigused to find the solution
that minimiseg|Am/|| subject to the constraint that the last elementrofs equal to 1, while
in [72], Singular Value Decomposition (SVD) [112] is used to find the solutii@ minimises
||Am|| subject to the constraint thiim|| = 1. Other constraints such dsn5|| = 1, where
my, is the 3-vector formed by the first three componentsiof, have also been considered
in [51] for their invariance to rigid camera motion. The quanttyn minimised by these

techniques is calledlgebraic error[70].

It is important to note that these methods estimate the coefficient of the canfieratm
matrix, but do not provide directly the values for the camera parametemte Ere various
ways to estimate these parameters. For example, [58, 51] give some araiytidds for the

computation of these parameters. A simpler way is to apply the RQ decompositi?h [1
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in order to decompos#/ in the form given in Eq. (2.7), from which each parameter can be
identified subsequently as in [72]. It has been shown in [67] that ab&dgedistance is very
sensitive to the choice of the reference frames. In particular, this cdrniddzad conditioning

of the system, and thereby poor accuracy in the evaluation of the paranigtersolution is to
apply an appropriate normalisation which guarantees that the system isonditioned and
that optimum results are obtained. There is a vast literature on methods to cappuotally

the solution of such a system of equations [80, 67, 70, 98, 85, 1080997, 31]. In general,
the closed-form solution is attractive because it is very fast to compute.n@jor drawback

is that it is limited to linear models, and therefore does not allow to solve for thertis
parameters. In addition, minimising a geometric distance rather than an algdistaicce

usually leads to more accurate results.

Non-linear methods

Non-linear methods perform a direct search in the parameter spaceeintofihd the parame-
ters which minimise an appropriate cost function. This is a classical methodpinotogram-

metry calledoundle adjustmerti27, 152]. Typically the cost function is of the form
> _dpi, KR []P;)?, (212)

whered is a geometric distance or error function. The method requires the useooflenear
optimisation algorithm such as the Levenberg-Marquardt (LM) algoritht@][1For example,
the Gold Standard camera calibration algorithm described in [72] uses thaalgarithm to
compute an initial estimate for all the linear parameters, which are then refinbdrulle
adjustment. Generally the minimisation can be extended to several image fraroederito
have a larger number of correspondences and thereby improve thaa@cof the estimation
of the parameters. One nice property of this method is its generality; it is abdedonanodate
arbitrary camera models, including complex lens distortion models, by simply ingltidese
parameters into the distance functiéminimised. Non-linear methods can be more accurate
than the linear ones. However because these methods require use oatveitptimisation
algorithm, convergence to the right solution is not always guarantepeciadly if there are a

large number of parameters to optimise. In particular, there is a risk, if the thistinitialised
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badly, that the algorithm will converge to a local minimum which is differenirfithe correct

solution. These methods are also much more computationally expensive treamiiethods.

Two-step methods

A good compromise consists in combining the two previous approaches:satafithe pa-
rameters are computed using a linear method, then the remaining parameteesestimated
using a non-linear optimisation technique. The convergence of the lattet gpiamnteed if
the initial guess provided by the linear method is far from the optimum solutiordditien

it is usually slow. An algorithm with faster convergence properties is megdn [155]. The
key idea in this paper is to use the Radial Alignment Constraint (RAC) in dodgecompose
the camera parameters into two groups. The first group of parametdesnsothe extrinsic
parameters (except the position along thexis) and the scale factor and can be computed
linearly. The second group contains the effective focal lerfgthe radial lens distortion coef-
ficients and the position along theaxis; the computation of these parameters require the use
of non-linear optimisation techniques, however the convergence is ugxélgmely fast (one

or two iterations according to [155]) because of the small humber of Jasali’he method
presented in [155] is able to accommodate radial lens distortion, howewsuires that some
of the intrinsic parameters are provided by the manufacturer. This assanigpgomehow re-
laxed in [86] where two additional intrinsic parameters are pre-computattijpal point and

scale factor).

The approach in [155, 86] is limited to radial lens distortion models becauseotiign types
of distortions it is usually not possible to apply the RAC. A more general metlasdwoposed
in [161]. The method separates the set of camera parameters into two aéirst thet contains
the external and internal non-distortion parameters, while the secoodrgatns the distortion
parameters only. The procedure involves optimising alternatively the &tsifparameters
(linear algorithm) while the second set is fixed, and then the second satarhpters (non-
linear algorithm) while the first set is fixed. The procedure is repeatedaamilergence. The
lens distortion parameters optimised are the radial distortion, the decentriogidisand the

thin prism distortion.
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Conclusions

Calibration from point correspondences is probably the best estathligigoach for camera
calibration. A comparative review of some of the most commonly used methodeis ig
[117]. This class of methods usually gives the best accuracy. The maintlioniteowever is
the lack of flexibility, in particular the requirement of using a high accuradipration pattern

which is typically difficult and expensive to produce.

2.3.2 Calibration using Vanishing Points
General concept

In this section, methods using particular points calladishing Points (VPsyhich are defined
by parallel lines, are considered. We start by introducing a few casoéprojective geometry
which are required to understand the methods. In projective geomeyrgeaof parallel lines
intersects in a point located infinitely far away called a Point at Infinity (Fidthematically,
such points are characterised by their last homogeneous coordinateisvbipual to zerd,e.

a Pl can be written in the forrtd",0)T. The set of all Pl form a plane called the plane at
infinity .., which represents all possible 3D directions. The projection of B 4 (dT, 0)"

is a point

v~ K[R|t|D ~ KRd, (2.13)

called a VP. It can be observed from the previous equation that a VPapémdent of transla-
tion of the camera. Intuitively, one can compare them to the image of stars ikytloe goints
far away on the horizon, which stay fixed as an observer moves with gldtemal motion in
the scene. In the image plane, such points appear as the intersectionrojé¢istign of parallel
lines. Analogously, parallel scene planes intersect in a line located in the atanfinity and
whose projection in the image is called a vanishing line. The line of intersectoesents all

the directions contained in the plane.

The general idea of VP(or vanishing line)-based methods is to use thamsa of VPs to
camera translation in order to decompose the calibration into two stages. Tihsiéinémd
rotation parameters are computed in a first stage from the VPs only; thiatramparameters

are then computed in a second stage from other known scene featswediy(lsegments or
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points). VPs are computed directly in the image as the intersection of paralle[26e159,
43, 28, 160, 12, 33, 88]. For robustness, VPs are usually comprdsdthe intersection of
more than two lines, by minimising an appropriate criterion @ege[33]). One VP provides
two constraints on the intrinsic parameters and the rotation in the form of Eg)(@hree
equations minus the scale factor). Therefore with three VPs, the rotati@e (tlarameters)
and only three of the intrinsic parameters (usually the coordinates of tr@gaipoint and the

focal length) can be computed in the first stage.

Calibration from images of sets of parallel lines

Caprile and Torre give a simple camera calibration method requiring onlyefoubalibration
target in [26]. It is assumed there that the camera has no skew and thapétst aatio is
known (for example it has been pre-calibrated). The method is basedeqordberty that
under these conditions, the principal point is located at the ortholewttre triangle with
vertices defined by the VPs of the three mutually orthogonal sets of pdna#leldefined by
the cube. Once the principal point has been estimated, the focal lengthemthe rotation
parameters are computed in a straightforward manner from the equatforexidey the VPs.
Finally, the translation parameters are obtained from the additional infornm@ateided by the
correspondences of the projection in two images of a segment of knogth lend orientation.
Degenerate configurations appear if one or more VP are at infinity in thesimeagif one or

more sets of parallel lines are parallel to the image plane.

Similar calibration methods considering images of a parallelepiped have besenged in
[159, 43, 28]. In [159], the principal point of a camera with zero skew known aspect ratio,
is computed as the orthocentre of a triangle whose edges are the vaniskhmgflithe three
orthogonal planes defined by the calibration pattern. The authors als@sgme geometric
characterisation of the camera orientation and focal length in terms otteshgthe slope of
the vanishing lines obtained and the area of the triangle previously caestriitimately, they
estimate the camera position from the image of known 3D points. In [43], it isrshiwat, for
a camera with zero skew, known aspect ratio, and principal pointraegsto be at the image

centre), the three virtual image lines intersecting at the principal pointactdgoing through

2The intersection of the three altitudes of a triangle is called the orthocentre.
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one of the three VPs, depend only on the rotation parameters. The methdek calated
to the previous methods [26, 159] by observing that the virtual lines agstt are actually
the altitudes of the triangles previously defined. Point correspondereesed to derive the
translation and focal length after the rotation has been computed. The seamarine property
is used in [28] to compute the orientation of a camera with known intrinsic paresnétem

one image of a planar grid containing two orthogonal sets of parallel lines.

In [160], it is shown that a single vanishing line constructed from threes ¥4h be used to
compute the camera focal length and orientation. The three VPs are obft@inethe image
of an hexagonal pattern, by intersecting parallel opposite edges.afighing line is then fitted
to the VPs obtained. The authors relate swing, pan and tilt angles (alsa#iéesingth) to some
geometric characteristics of the vanishing line and the VPs, such as sltpeept with image
axis or ratio of distances. The translation parameters are obtained frocortespondence
of known scene points on the grid. The other intrinsic parameters areomguted with this

method.

Calibration from images of a plane

Another method for calibrating the intrinsic parameters of a camera is ded@nilpg2]. The
method calibrates the camera from several images of a plane taken urideendifZiewing
angles. The main advantage compared to the previous VP-based methot is titd neces-
sary to ensure the orthogonality of the planes observed. The planénsomtzattern defined by
at least four points with known coordinates (no three of them being cojirszathat the planar
homography between the plane and each image can be computed. The dyoimycigrthen
used to compute the vanishing line of the plane and some specific VPs on thisisnghown
that the principal point lies on a line perpendicular to the vanishing line amdjgbrough a
particular VP (this line is actually theentre linedescribed in [62, 61], another application in
calibration is described in Section 2.3.3). If more than two images are usequtjribgal point
can be estimated as the intersection of all the perpendicular lines constriibiscconstruc-
tion is valid for a known aspect ratio, however if it is not the case, it is stidlsjie to use
the same procedure to calibrate iteratively the camera, initialising with a good &stifrthe

aspect ratio. Other properties are used to estimate the focal length argptw eatio once
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the other intrinsic parameters have been computed. The method requiressttweesimages
of the calibration pattern, depending whether the aspect ratio must be ceohgputet (in all

cases the skew is assumed to be zero).

Calibration from architectural scenes

Some important applications of VP methods are in architecture, where manstnadiires
such as buildings usually contain plenty of mutually orthogonal sets of pdna#is [33, 88].
An example of an interactive system for image-based reconstructionildings is presented
in [33]. The operator is asked to assist in the marking of mutually orthogmtalof parallel
lines in the image, which are then used to calibrate the intrinsic parameters andetiia-
tion of the camera under the assumption of known aspect ratio and zevo Akeadditional
point correspondence is finally used to obtain a metric calibration (up tdiagé€actor). The
algebraic solution proposed in [33] is mathematically equivalent to the previmihods. A
similar calibration algorithm is presented in [88]. The originality is that the astheformu-
late VP-based calibration in terms of some properties of the Image of the Adsodunicw
(see next section for a formal definition). The main idea is that orthogorialgpcoded by
conjugacy with respect to the absolute cofig. Then, two orthogonal VPs; andwvs are
conjugate with respect to, i.e. v| wv, = 0. Similarly, it can be observed that a vanishing line
L and a VPv, respectively corresponding to a plane and a direction orthogonal fdahe, are
pole-polar with respect te, i.e. I = wv. In any case, one constraint on the intrinsic parame-
ters, which can be combined with other constraints to solve for calibraticonbes available
(three such constraints arising from three orthogonal VPs are suoffi€i@e assume a camera

with zero-skew and known aspect ratio).

Conclusions

In summary, the main advantage of VP-based methods is that they replaegtirvement of
a calibration pattern with accurately located control points on a pattern mae¢sadf parallel
lines, usually required to be in mutually orthogonal planes. This presemts poactical ad-
vantages, especially in the case of architectural scenes. One limitatiomdrag/éhat VPs can

be difficult to localise accurately. For example, if the angle between thégdaeene lines and
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the image plane is small, the point of intersection of the image lines, which defm&$ths

located far away in the image plane and usually cannot be computed abcurate

2.3.3 Calibration using the Image of the Absolute Conic

Even though it has been seen in the previous section that the use of \dhwaify calibra-
tion, parallelism and orthogonality remain strong constraints. Methods loasé: Image of
the Absolute Conic (IAC) propose to relax the orthogonality constraintlloywing arbitrary
relative positioning of the planar calibration object observed. They afsomulate elegantly

the calibration problem in terms of the estimation of an imaginary geometric object.

The absolute coni€,, was introduced to the computer vision literature by Faugeras and May-
bank in [50]. The conic consists of the set of poiXs Y, Z, W] T satisfying the equations
X 4vi4+22=0
(2.14)
W =0
This conic is located in the plane at infinity and is the circle of ratligs,/—1, which consists
purely of complex points. It is invariant under rigid motions and under umfohanges of

scale. The image of the absolute cofig by the camera projection matrix is the conic
w=K TK!, (2.15)

which is also an imaginary object. It can be observed that the IAC is intaatme posi-
tion and orientation of the camera [49]. This is a very powerful propeggabse it results
immediately that computing the intrinsic parameters. (the calibration matrixx) is equiv-
alent to estimating the IA@. Oncew is known, K can be obtained from Eq. (2.15) using
for example Cholesky factorisation [112]. The IAC provides a veryweaient mental repre-
sentation of the intrinsic parameters, and finds many applications in plaad-bakbration

[89, 88, 175, 138, 96, 95, 62, 61] and also in auto-calibration (setdBe2.3.6).

Calibration of cameras with constant intrinsic parameters

The general principle is given by Zhang in a seminal paper on plaredlmzsnera calibration

[175]. The main idea is to compute some particular points belongingitom the observation
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of a planar pattern, and then to use appropriate techniques [173] toditi@to these points
and recovetw. In particular, on each plane there exists two points caliemllar points with
canonical coordinatek = (1,1,0)" andJ = (1, —i,0)". These two points are the two points
of intersection of the calibration plane with the absolute conic. ThereforertagesP and
Q of the circular points belong t@, i.e. PTwP = 0 andQ'wQ = 0. In practice, these
two complex equations are equivalent, and two real constraints are abtajrisolating real
and imaginary components of either equation. Since each plane providadtvpaints, and a
conic is uniquely defined by five points, it is usually required to obsenreetplanes in order to
estimate all five intrinsic parameters. If the skew is assumed to be zero, thetatves are suf-
ficient. Practically, it is equivalent to either observe several planesimgéesmage or to take
several images of the same plane viewed from different orientationsdiffagent constraints
obtained are linear and a least-square solution can be found by applgimdgees similar to
the linear methods described in Section 2.3.1. In [175], the author followsalitgation by
a non-linear minimisation (bundle adjustment) using LM in which it is possible to incate
two extra parameters accounting for the radial lens distortion. Obviousfcassary condi-
tion for plane-based camera calibration is that the planes have diffeientation (otherwise
they would intersect the absolute conic in the same circular points, and tieensy®uld be

under-constrained). An exhaustive study of the singularities is givEr8Bj.

In [96], the square calibration target is replaced by one made of orie aimd a pencil of lines
passing through the centre of the circle. For each line, the VP is compatedte preservation
of the cross-ratio defined by the two intersections of the line with the circlezghtre of the
circle, and the PI of the line. All the VPs obtained in such a way are usedddifie which
is the line at infinity of the calibration plane. The image of the circular pointsamed as the
intersection of this line with the image of the circle. The main advantage of this fatiom
compared to the previous one is that it is not necessary to establish aespmrdence between
points on the calibration target and points on its images. One drawback @éoisahat it is
not possible to compute two of the orientation parameters (this is due to thel sgntraetry
of the target). Alternatively there exist other ways to estimate the circulatgodib69] uses
a method similar to [175], but uses a planar pattern made of at least threentidn conics to
estimate the planar homography, and thereby the IAC. In [89] it is showrtdinaputing two

circular points associated with one plane is equivalent to carrying out &cmettification of
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this plane. This can be achieved in a stratified manner. In a first step the aiftiperties of the
scene are recovered by identifying the line at infinity from two or more dgtamllel lines.
In a second step the metric properties are recovered by using two dotsstrhich can be a
known angle between lines, or equality of two (unknown) angles, or akiength ratio. In
this perspective, [175] is equivalent to using right angles and a ratin@bf the edges defined
by a square. Right angles are usually the easiest to use because treabisidance of them

in man-made structures.

Calibration of zooming cameras

It has been shown in [138] that the method can be extended to zoomingasaniaro types
of zooming models are considered: i) varying focal length only or ii) vayyotal length and
principal point. In [138], the zooming parameters corresponding to theehohdsen result in
additional unknowns each time the zoom factor is changed. The constlafiried in [175]
can then be expressed with respect to all the unknowns (including zoganageters) and
stacked up in a matrix in order to solve the system by similar technique. A doesequence
of this approach is that the complexity of the system increases rapidly withuiimer of
images (whereas it was constant in [175]), which can lead to conveggaoblems. In or-
der to guarantee a good conditioning of the system, column rescaling sucolinans have
equal norms is applied to the matrix containing these constraints [138]. AnieHue is the
optimality of these methods, in particular it appears that the distance minimised lisaatge
and therefore is not physically meaningful. An optimal solution (in the semaitnises the
Cramer-Rao lower bound) is proposed in [95]. However the solutiorlid wader the assump-
tion that only the focal length is varying (the other parameters have beecafibrated). An
interesting solution to avoid the increase of the dimensionality when the fogahleswaried
is given in [62, 61]. The main contribution there is to show that Ponceletréime can be
used to define some invariants to the focal length. In particular, it is deratedtthat when
observing a plane with known metric properties, the camera centre must lieinrieacalled
the centre circle[62]. The centre circle projects onto the image plane in a line segment called
thecentre line which is the locus of the principal point. Analytic expressions for theseesu
are given in [62, 61]. It is shown that the centre line is independenteofdbal length and

can be used to represent a geometric cost function, whose minimisation etlovpsitation of
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the coordinates of the principal point and the aspect ratio (it is assunmiettiéhekew is zero).
Once these parameters are computed, focal length can be computechfamage in a simple

way.

Conclusions

The main advantage of calibration methods based on the IAC is the simplificatibe ge-
ometry of the calibration pattern used from the traditional 3D grid made of@quints to a

simple planar pattern which can be produced at low cost with a standaterprin

2.3.4 Calibration using other geometric entities

The two previous sections were entirely dedicated to two very important dgegoreatities
which are VPs and the IAC. In this section, we list a few other calibration ndstihased
on other useful geometric entities. The common characteristic of these teehnigthat they
exploit some geometric properties of the calibration object, such as invariamorder to

simplify the calibration process.

Lines

After using 3D objectsd.g. orthogonal planes) or 2D objects (planes undergoing an unknown
motion) it seems natural to consider 1D objects. Lines have been used inaceatibration
for different purposes [176, 40]. [176] investigates the requirénfmncalibrating a single
camera from a set of aligned points. In particular, it is demonstrated thahdtipossible
to calibrate a single camera from a free-moving 1D object, however it bexpossible with
three aligned points separated by known distances, if one point is fixache@ calibration
is possible with a free-moving rigid bar carrying two markers under theirement that at
least two cameras are observing the scene (see for example [18])alibbation objects are
of major interest for the calibration of multi-camera set-ups where it is redjdimeall the
cameras to observe simultaneously the calibration pattern, which is usuallyctioglavith
a 2D or 3D pattern. Another application of lines is for calibrating the distorti@j. [A'he

method is based on the fundamental property that a camera follows the pinhidé¢ ifrend
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only if the projection of every line in space onto the camera is a line. In prattieemethod
minimises a cost function which measures the total distortion error in all segméimésimage.
Different distortion models at different orders are accommodated by thieoche The only
assumption of the method is that there exists straight lines in the scene. Theigieated in

the photogrammetry literature under the name ofdliuenb line method24].

Spheres

Spheres have strong invariance properties which can be used in tiatibia [107], it is shown
that the aspect ratio of a camera can be computed from the image of a.spherenethod
is based on the observation that, because of the radial distortion, theliogchontour of a
sphere appears as a distorted ellipse, which can be approximated byheciaer polynomial.
In practice, such a polynomial is fitted to the extracted occluding contodrthenaspect ratio
can be estimated from the coefficients of this polynomial. In [131], it is shbatspheres can
also be used to determine the principal point and the focal length. In gartiitis shown that
after correction of the lens distortion, the major axis of the ellipse repregethiEnoccluding
contour goes through the principal point, which can be determined frommtigrsection of at
least two images of a sphere. It is also shown that the focal length is rédasedne intrinsic
properties of the ellipse (eccentricity, length of the major axis and distaagetfre principal
point). More recently, it has been demonstrated that the IAC [144] or i [@) can be
computed from the outline of three spheres, from which the intrinsic canaesangters can be

estimated.

Techniques based on geometric properties of the scene increase ibiitfleof the method
because they take advantage of the geometric cues present in the Hoempatterns used are
common shapes such as edges of building, or patterns produced eaasilstdnydard printer

(planar grid).

2.3.5 Active calibration

It is shown in this section that it is possible to replace the knowledge of thaefep of the

scene by some knowledge about the motion of the camera. This class of m&thuadled
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active calibration The main idea is to use some specific controlled motion in order to simplify
the computation of the camera parameters, usually by exploiting some invapiapesties of
the intrinsic parameters with respect to the motion. The motion is dictated by theedenfr
freedom of the platform on which the camera is mounted. The most typical motosgered

are translation, rotation or planar motion.

Pure rotation of the camerad. rotation around the optical centre) is a motion frequently
encountered in computer vision. In [131, 132], the author considermthmnal calibration
of a camera mounted on a rotary stage. The method uses pairs of imagedeskps a pure
rotation with known axis and angle of rotation. In such circumstances, itssilple to predict
the location of the features observed in the second image from their positios finst image,
given the intrinsic parameters. An error in the intrinsic parameters result®iroain the
estimated location of the features. The intrinsic parameters can be estimatedrjsimgnthe
squared distance between the predicted and measured feature poéinparaimeters estimated
include the focal length, the aspect ratio, the position of the principal poitttlae radial
distortion. The method requires rotation around two orthogonal axesX(twedY” axis of the
camera) if all the parameters must be estimated. If it is not required to estimaispiet ratio,
one rotation axis is sufficient. One drawback of the method is that it is regetesadjust the
position of the camera very accurately with respect to the rotary stageén tarénsure that

the optical centre coincides with the axis of rotation.

In [10], it is shown that it is possible to compute the focal length, asptotaad image centre
of a camera carrying small pan, tilt and roll movement, by solving a simple linesaera of
equations. The approach does not require any calibrated patterasdmionly scenes with
stable edges. In [34], the calibration of a camera with pan, tilt and zoom nistammsidered.
Similarly to [131, 132], the idea is to search for the parameters that minimisegb&@d im-
age and the observed image after zooming or rotating the camera by a knglenRepeating
this approach for a large number of zoom settings yields a look-up table géimagnification
and zoom centres, which are then linearly interpolated. After the calibratitre zoom pa-
rameters, the other parameters are recovered by generating pulatimansotion around the
pan and tilt angle. Contrary to [131, 132, 10] which considered spjaasares, [34] opted for
a dense optical flow approach based on image warping, which makes thedmetine robust

in the case of an outdoor environment.
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A method for active calibration of a camera mounted on a robot arm andvirtige light spot
is presented in [134]. For each camera parameter, a controlled motioriasnped (involving
either rotation or translation), which defines a cost function whose minimisaggaits in the
parameter value. Each parameter is estimated sequentially in this approachbridihality
of the method is that the search for the optimum value is performed directly iltlsp&ce,

which results in the robot doing some repetitive movements until the solutioreleasfbund.

There exist many other methods exploiting the properties derived froaifispeontrolled mo-
tion. In addition, it is possible to combine these methods with the ones using geopnep-
erties of the scene. For example, in [13], a stationary camera is calibratedte images of a
planar pattern fixed on a turn table, by considering VP properties. lbisrskthat the locus of
the VP generated by the planar pattern is a conic section, which can b&oudetrmine the
focal length, principal point and aspect ratio. Similarly, it is shown in [B&} a VP traverses a

conic section when the camera moves with an arbitrary translation and a fiseof aotation.

Active camera calibration methods use properties of controlled motions toatalidprcamera
without requiring any accurate calibration grid. These methods shoulditsdered every
time the camera is mounted on an active device possessing the appropriatsdégdreedom
to generate the motion required. One limitation of these methods however is thaeihend
on the assumption that the device on which the camera is mounted is able tagariarawn

motion. Deviations from the expected motion will usually affect the calibraticu@cy.

2.3.6 Auto-calibration

All calibrating methods presented so far exploit some knowledge about dithestructure
(geometry) of the scene or about the relative motion between the scertheandmera. In
either case, the task is onerous because of the requirement of aatecm@libration pattern or
the necessity to generate accurate motions of the camera or the objectitionaddlibration
must be done before the vision tasks. Auto-calibration (also called dddfat#on) relaxes all
of these requirements, by estimating the camera parameters directly frouesmse@f generic
images. This offers great flexibility by allowing calibration to be done, famagle, with the

same images used for the vision tasks.

It is well-known in computer vision that without any knowledge of the scettkthe cameras,
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there exists a projective ambiguity in the reconstructi@njf a sufficient number of point cor-
respondences are provided, it is possible to estimate the structure oétieeatd the camera
matrices only up to a projective transformation (see for example [72, Z8B. main idea of
auto-calibration is to exploit the rigidity of the scene and some constraints antthmesic or
extrinsic parameters in order to remove this ambiguity and thereby estimate theagzaraem-
eters. Theoretically, the ambiguity can be removed only up to a similarity tranafimm,i.e.

it is not possible to compute the absolute positions and orientations of the cafmeither the
scale of the reconstruction). In a nutshell, auto-calibration determinestthesio parameters
for each camera and the relative position and orientation of the camerassp#ect to the first
one. It will be observed that the constraints generated are intimately rétathd absolute

conic.

The original idea of auto-calibration is due to Faugestal. [49]. Their approach is based
on the Kruppa equations, which relate the epipolar transformation to the lAl&icase of
cameras with fixed intrinsic parameters. Geometrically, the two epipolar plangentato
the absolute conic give rise to two epipolar lines tangent to the IAC in each imdger-
ever, because the IAC is invariant under a rigid motion, it produces twet@nts from the
correspondence of the tangents in the two images, which are repreatgebcaically by the
Kruppa equations. Since the IAC is determined by five parameters, thfeeedifcameras are
sufficient to solve for all the intrinsic parameters. The Kruppa equatimguwadratic, there-
fore there exist multiple solutions, and their computation is usually difficult. Hitiad, the
Kruppa equations define constraints on pairs of images rather than the seguence, which

results in weaker constraints and more ambiguities.

A second approach to auto-calibrationsisatification In [47], the world is described as a
succession of strata: projective, affine and Euclidian (or metric). Infthmework, auto-
calibration is broken down into two steps. In the first step, affine progeatie recovered from
an initial projective reconstruction by identifying the plane at infinity, while skeond step
consists in recovering the Euclidian properties via the identification of thawksconic. The
most difficult task among the two is usually to identify the plane at infinity. Polk&nd Van
Gool define a constraint called theodulus constrainivhich can be used for this purpose in the
case of a camera with fixed intrinsic parameters [109]. The constraint®arknear, however

the number of unknowns involved is limited to three, which simplifies their estimatitie. T



2.3. Camera calibration 35

recovery of the metric properties follows from the constraint that the IA@kl be the same

for all views. This results in linear equations.

A third approach is based on thbsolute dual quadri€151]. The absolute dual quadric is the
quadric represented by tHex 4 matrix:

Qs = ro . (2.16)
0" 0

Geometrically it consists of the planes tangenftQ. The advantage of using the absolute
dual quadric is that it encodes both the plane at infinity and the absolute &ibthe same
time. The dual absolute quadric projects into the Dual Image of the Absolutie (IDIAC)
w* =w™ T = KKT. As with the absolute conic, the dual absolute quadric is fixed under a rigid
motion of the camera. This property, in addition to some constraints on the intpiaisione-
ters, can be used to compute the camera parameters. Depending on thiectypstraints on
the intrinsic parameters(g. known principal point, zero skew, known aspect ratio, constant

intrinsic parameters...), the constraints obtained are either quadratic or linear

The early auto-calibration methods considered only the calibration of carneder the as-
sumption of constant intrinsic parameters. It is however possible to alibvata a camera
with less restrictive constraints, using for example only the zero-skewrgsn [109]. Auto-
calibration may look like an attractive solution, however one criticism is the lacikadbility
of the method. Usually a good initialisation is required, and even though it isagee conver-
gence is not always guaranteed (see [20] for an evaluation ofadfation). In addition, there
exist some critical motion sequences for which the solution is ambiguous. Adaxoaf the
different critical motion sequences is given in [135], in the case oftammtrinsic parameters,
and in [137], in the case of zooming (variable focal length) camerastalctipe some impor-
tant cases of critical motion sequences occur for orbital motion, planarmptioe translation
or rotation. Examples of algorithms for auto-calibration of a rotating camergiaen in [66]
in the case of constant intrinsic parameters, or in [122, 2] in the caseofing cameras. The
case of a camera undergoing a translation or planar motion are treatedtigedg in [97] and
[7]. In addition, it is interesting to note that Triggs proposed an auto-edidr method from

images of a plane [150].
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2.4 Conclusion

There exists a multitude of camera calibration techniques. From the mostainimgjrap-

proach requiring accurately located features in the scene, to autoatialitwhich on the con-
trary does not require any information about the structure or the motioreafaimera, a very
rich collection of methods has been encountered. Some of them are lvagedroetric prop-
erties of the scene, while others focus on specific motions of the cameeasie Bhusually a
trade-off between accuracy and flexibility of the methods. For exampledtealibration is

the most flexible technique, it is also the least stable and accurate, while mdthseld on

point correspondences remain the most trusted techniques when high@cis required.

Many methods have one common characteristic: the use of invariancetmepénvariance
properties can for example be defined with respect to some geometric entitiith cespect
to some specific camera motions. The geometric entities involved can be cayjestis such
as points, lines or spheres, but also imaginary objects such as the albsaoliater the absolute
dual quadric used in auto-calibration. Invariants allow decoupling ofdheeta parameters and
define constraints on subsets of the parameters. This is a powerferprogcause it implies
reduction of the number of unknowns solved simultaneously. The resisgbaint of the thesis

investigates how invariants can be applied to increase the accuracy afceatibration.



Chapter 3

Calibration of a translating camera

using Points at Infinity

3.1 Introduction

The key idea developed in this chapter and the following one is that invagantbe used
to increase the accuracy of the camera calibration process. It hadyabbean observed in
the previous chapter that specific geometric entities (real or even imaparahalso specific
motion sequences exhibit some invariance properties which can be ussglchmera calibra-
tion. In this perspective, this chapter presents a novel camera calibnagitthrod based on the
invariance properties of Points at Infinity (PI) to decouple the translatamponent from the
other camera parameters. It also gives some insight into the influence usehd invariants

on the accuracy of the estimation of the camera parameters in the case of/#limethod.

There are two main motivations for decoupling the translation parametergtieother cam-
era parameters. Firstly, decomposition in the parameter space leads to suptepblems.
Secondly, if the translation parameters are decoupled from the oth&adrata additional im-
ages obtained by translation does not introduce additional parameterspimbiem. That is,
the data size can be increased, and thereby estimation accuracy, witleasing the problem
dimensionality. The idea of parameter decomposition has been used in @hgphcomputer

vision. In [8], it was shown that for two collections of 3D points related Ibgtation and trans-

37
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lation the estimation of the motion can be decoupled based on the propertiecentrad. A

similar problem for 2D motion projections is described in [74] and [115]. ln¢hse of mo-
tion estimation from line correspondences, the direction of lines has bedrtaussompute the
rotational part of the transformation [9]. Additionally, work on shape matghas considered

the decomposition of rotation and translation for a 2D transformation of pirages [4].

Our approach presents some similarities with previous methods based ohivgrifoints
(VPs) [26, 159, 43, 28, 160, 12, 33, 88]. VPs have strong inveeigmoperties, however, there
are usually not many in images and they are difficult to compute. Even if cenagilé effort has
been directed towards their estimation [123], existing VP-based calibratitimodeusually
require pairs of parallel scene lines to define VP location. In contrasgmaroach computes
a Point at Infinity (PI) from known single straight lines in the scene, amohfilates a novel
constraint which relates single line orientation to the projections of the Pls,Téquations
linking scene and image data can be expressed independently of trandithhods that use
lines for the estimation of motion and structure have been previously coedidef90, 162].
A discussion of the advantages of the use of lines in terms of accuracy sunsezents is
given in [162]. If orientation of lines can be more accurately and reliablgsueed than point
location, then this results in more accurate features. In an implementationhstiaég can
be defined by edges in the scene or by pairs of points; generally theiremuexrbeeds the
number of parallel scene line pairs or usable distinguished image pointsgsuworners) that

are necessary for many other calibration methods.

In Section 3.2, the use of Pl in the inverse image formation problem is coediderd an
invariant for the equations linking the coordinates of 3D points and thejeqtions is defined.
Section 3.3 formulates the two stage camera calibration procedure basei$ amvahiant.

Finally experimental results with synthetic and real data are discussedtiorséet.

3.2 Inverse image formation and Points at Infinity

It is assumed in this chapter that image formation is modelled by a standard paamoéza
as described in Eq. (2.7). For generality all the intrinsic parameters dvel@ttin the model,

i.e. the camera matrix is of the form described in Eq. (2.5). The equation map@Dgaene
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point P; = (X,Y,Z,1)" to the corresponding 2D image poipt = (u,v,1)" under such

conditions is summarised below

f —fcotf wug
p; ~ K[R|t]Pl, with K = fr/ sinf wvg| - (31)
1

Many approaches to camera calibration have been described in theuysrebi@pter. The ma-
jority of the methods, including the Gold Standard algorithm described in ¥, point-
based information and simultaneously estimate all the parameters by minimisingiariahc
of the form described in Eq. (2.12). This cost function can be genedatis a sequence of
images by extending the sum to all the images. The resulting cost function id tadiee-
projection error, and its minimisation leads to tidaximum LikelihoodML) estimate under
some standard hypotheses on the noise distribution (measurement egr@sussian, see
e.g. [72], pp86-87). When camera motion is considered, the solution can eolarge
number of parameters. However, if invariants are used, it can be simgifdthat the min-
imum depends only on a subset of the parameters. For example, VPs oarth® decou-
ple the camera position from the other parameters. Contrary to previousdaaibimg VPs
[26, 159, 43, 28, 160, 12, 33, 88], the decomposition method progueeddoes not require
a calibration pattern containing parallel lines, but can be implemented fratnaayldines or
pairs of points in a known scene. The only requirement for our methodtishibalirections

defined by the lines or pairs of points are known.

It has already been observed in the previous chapter that the projettaPl in an image
is a VP, and that an important property VPs is that they are independeminuéra trans-
lation. Pl are defined by the direction of straight lines in the scene. If agigioints

P, = (X;,Y;, Zi, W))T (W; # 0)andP; = (X;,Y;,Z;,W;)" (W, # 0) is considered,

the direction of the ling P; P;) is represented by the #9;; = W; P; — W, P;, which can be

written in the formD;; = (d,;,0), whered,; is the vector formed by the first three compo-
nents ofD;;. The projection ofD;; into the image defines a V&;; ~ K[R|t|D;; = KRd,;
which is translation invariant. Sind€R can be interpreted as an homography, and an homog-
raphy preserves collinearity,; must lie on the lingp,p;) (see Fig. 3.1), that iQ‘Tj'Uij =0,

wherel;; ~ p; X p; is the homogeneous representatiorimfp; ). With the notationH = KR,
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C

Figure 3.1: Projection of a pair of 3D points in an image. The pair of 3Dm®(P;, P;) defines a
direction which is represented by a pol; in the plane at infinityrr . This point projects into a VP

v;; which is constrained to lie on the image line passing thrqug#ndp; .
the following equation independent of the translation is obtained:
liHd;; = 0. (3.2)

Thus the minimisation problem originally defined in Eq. (2.12), in terms of the distahe-
tween observed and estimated points, can now be reformulated in terms stémed between
observed image lines and their corresponding estimated VP, by minimising thieicoton

defined below

> d(lij, Hdij)* . (3-3)
(2]

In this equationd denotes the distance between observed and estimated points. This general
notation is deliberate; it will be seen next that different expressionbeamnsidered for this
distance, thus defining different cost functions. It is important to notestinzh cost functions
involve only intrinsic and orientation parameters. Once these parameterbéew determined,

the translation can be computed by considering Eq. (3.1) for knidwndR matrices. As such,

the original minimisation problem can be divided into two sub-problems. The setion

shows how this decomposition can be applied in the context of camera calibratio
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3.3 Application to camera calibration

The general problem of computing all the camera parameters from oaeavasimages related
by a translation, using a camera calibration object, is considered. Theat@libobject consists
either of 3D lines with known directions, or 3D points with known coordinapesr$ of points
are used to define lines with known directions in this case). In total, the syshe® +

3n unknowns (where: is the number of images): 5 fo«, 3 for R and, for each image, 3
for t. In general, when correspondences between 3D points and their im@gksown, the
camera parameters can be computed simultaneously by solving for a mhtex K[R|t]
satisfyingp, ~ MP; for each world to image point correspondence, as described privious
in Section 2.3.1. Alternatively, the results of Section 3.2 can be used to desentipe full
parameter space into two smaller sub-systems. The first one contains oparameeters from

K and R (8 parameters), whereas the second one contains the remaining pasdinosbhar
(there aren independent systems of 3 parameters, one for each image). Thus tworsimple

problems are defined:

1. Intrinsic parameters and orientation estimatio@iven a set of world directiond;; and
the associated image linés, compute a3 x 3 full rank matrix H = KR such that

1}, Hd;; is minimised for eacli, ;).

2. Position estimationGiven a set of world to image point correspondenPesndp;, and

two known matrices< andR, compute a vectat such thap, ~ K[R|t]| P; for each:.

Note that there is no restriction on the nature of the translation motion followételgamera.
The translation can be arbitrary, for example it does not have to be tedttica single linear

or planar path. The only requirement is that the orientation of the camesandbehange.

The3 x 3 matrix H defined in Problem 1 is the homography between the plane at infinity and
the image plane. Ondd is known,K andR can be recovered by a simple RQ decomposition
[72] (p 150). However, Problem 1 is different from a simple homogyagstimation problem.
Namely, there exists no strict correspondence, but only a constrafrégtadblishes that a VP
should lie on the image line. This is fundamentally different to other camera a@ibmeth-

ods that propose computing the VP from parallel lines before estimatingiineragparameters
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[26, 159, 43, 28, 160, 12, 33, 88]. It should also be noted that thetms defined in Prob-
lem 1 are similar to the estimation of the fundamental matrix via the 8-point algoritAmIf6
the case of the fundamental matrix estimation however, the solution matrix mugjdmedate
to satisfy the singularity constraint (rank 2), whereas in this case a filklmaatrix (rank 3) is
sought. Depending on the application, it is not always required to sobldd®n 2. If required,
it can be solved in a rather straightforward manner using least-squatesdgees. For this
reason the focus in this section is on solving Problem 1. The reader teinghe details of

the resolution of Problem 2 is referred to Appendix A.

3.3.1 Practicality

Problem 1 uses only the directional information contained in the scengeddrom 3D lines
with known direction, or pairs of known 3D points. One practical advantdghe decomposi-
tion method is that it can be used in situations where only directional informatfmesent in

the scene, as for example in the case of architectural applications [33yt83ein directions
are defined by edges of buildings. The method is also useful in situatiosis @re is inter-
ested only in the intrinsic parameters or in the orientation of the camera. Arailliantage
over standard camera resectioning is that when multiple images obtainedfumelatranslat-
ing camera are used, data size is increased, without requiring to complitieraad translation
parameters. Accurate calibration can therefore be done from direlctidaamation only. If

all the camera parameters are required, a full camera calibration isipeddyy solving both
problems sequentially. In that case, Problem 1 still uses only directiorahiation, while

Problem 2 requires additional information, such as point correspaeden

3.3.2 Linear solution

In this section, a simple linear solution is developed. In comparison to nor-iinetbods,
linear methods are significantly faster and easier to implement. It should lwkthatd=q. (3.2)
being structurally identical to the equation relating the fundamental matrix to in@ges pn
correspondence in two images, similar methods can be applied. Our solutiorilés o the
eight-point algorithm described in [67]. One important difference havesthat the matrixy

has rank 3, while the fundamental matrix is a rank-2 matrix.
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Writing 1;; = (lij, , lij, , lijz)T and denoting byh the entries ofH in row major orderij.e.

hy h{
h=1h, where H= |hJ | ,
hs3 hj

a straightforward development of Eg. (3.2) leads to the following equathiohns linear in

the unknownh;:

(lij, dj, lij, di lij.d)h = alih = 0. (3.4)

Each direction defines one such constraint on the unknowns. Fronofrsdirections, a» x 9
matrix A is obtained by stacking up the term% defined in Eq. (3.4) for each direction. The
vectorh is then computed by solving the linear systditn = 0. The system has 8 unknowns
(H has 9 entries, but it is defined up to a non-zero scale factor), therafminimal solution is
obtained from 8 directions in a general position. The term general positlbbe clarified in
Section 3.3.4, where the degenerate configurations will be describéite trase of exactly 8
correspondenceg, has rank 8 and the solution is obtained by searching for its right null-space
The null-space being of dimension 1, the corresponding solution is defpxa scale factor.
This is consistent with the fact that the homogeneous solution mfdtigxalso defined up to a

non-zero scale factor.

In practice it is best to consider a large number of correspondenceden to diminish the
influence of noise and increase the accuracy of the solution computededuitng system of
eqguations is overconstrained, and because of noise, there existaltyeme solution satisfying
exactly Ah = 0. In the absence of an exact solution, an approximate solution minimising
an appropriate cost function is sought. It has been chosen here to mitimisesidual error
defined by||Ah||. This error has no direct physical meaning; for this reason it is sometimes
called the algebraic error, in contrast to other measures which minimise fompéxa geo-
metric distance (see [70]). It is necessary to enforce another cimstuaing minimisation in
order to avoid the trivial solutioh = 0. Several constraints have been considered, however
minimisation subject to the constraint thgi| = 1 is one of the most common, and it has
been shown to produce good results in the case of other applications{se#0]), and for

this reason has been also considered here. This is a standard minimisabtempand it is

well-known that its solution is the unit eigenvector corresponding to the smallpsnvalue
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of ATA[67]. A simple way for computing this eigenvector is for example the Singularé/a
Decomposition (SVD) algorithm [112]. The method is summarised in Algorithm g¢hduld
be noted that when a large number of correspondences is considdrasla very large number
of rows, and it may not be possible to carry out the SVD due to memory limitatbosanple
solution is to replace the original system of linear equaéddn= 0, by the system of normal
equationsd’h = 0 with A’ = AT A, which has dimensiof x 9. These two systems are math-
ematically equivalent, however in practice the second implementation is pefeecause it

has a constant complexity and memory requirement.

Algorithm 1 Basic linear computation R

1. For each world directiod;; and the associated image lif, compute the vectot;;

defined in Eqg. (3.4).
2. Stack up all the vectoks;; into a singlen x 9 matrix A.

3. Compute the SVD ofl (or AT A if considering the normal equations). After decompo-
sition, the matrix is written in the forrd = UDV ", whereU and V are two orthogonal
matrices andD is a diagonal matrix with positive diagonal entries, arranged in descend-

ing order down the diagonah is given by the last column of.

4. H = KR is obtained fromh.

Normalisation

It has been proven in a recent stream of work [80, 67, 70, 98, 83, 99, 30, 77, 31] that
without an appropriate normalisation scheme, algorithms minimising an algebri@icaisare
usually bound to perform poorly. In this section, similar considerationagpéed to the novel
linear calibration method developed. We chose to apply a similar normalisatioegstras

the one described in [67]. Other techniques in agreement with more naaelitations could
have been considered, however the technique chosen has the gdvahtzeing simple to
implement, and lead to very good results for our application. Given the similarityden the
equations defined in Problem 1 and the ones defined for the fundamertial im§67], many

of the results demonstrated there apply directly to our case, and will thenedébbe proven
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again in this section.

Ideally, the result of the camera calibration should be independent ohthieecof the coordi-
nate system (origin and scale) for each image. However, it has been &hf67, 70] that this
is not the case, and that in practice some reference frames will give testats than others.
The difference in accuracy observed can be attributed to the numewitdition of the system
of equations involved. The aims of the normalisation are therefore: i) to elimihatende-
sirable effects due to the arbitrary choice of the origin and scale for megdhe data, ii) to

improve the numerical stability of the algorithm used to solve the system.

Mathematically, a change of coordinate system is equivalent to applying ardyritansfor-
mation to the input data. For this reason, two homographies are considereeiro represent
the possible transformations. The first homographgffects the image data, transforming the
end-pointsp, of each image segment infy ~ Tp,, or equivalently transforming the image
linesl;; ~ p; x p; into i}j ~D; X P~ T~ "1,;;. The second homography affects the scene
data, transforming the Ri;; into d;; ~ T'd;;. Denoting byH and A the matrices defined in

Eq. (3.2) respectively before and after transformation of the input deg&an write that
. T . ~
(B; x B;) Adij = [T_T(Pi X Pj)} HT'di; = (p; x p;) ' T 'AT'd;; =0,

and it results thatf = T-2HT’. This shows that there exists a one-to-one correspondence
betweenH andH. However, it has been shown in [67] that these solutions do not gieeais
the same error subject to the constrdiht| = ||h|| = 1. In fact the smallest unit eigenvector
for the first equation matriX is usually not an eigenvector for the other equation madfix
This means that the solution obtained is expected to vary according to tmenedeframe
chosen. The question that then naturally arises is which transformatiopplioia order to

define a canonical frame where the results are optimal.

To answer this question it is necessary to consider numerical stability. @ar inethod com-
putes the unit eigenvector corresponding to the smallest eigenvallle4flt has been shown
in [67, 60] that the accuracy of the computation of this eigenvector is retatélte condi-
tion number of the system matrix, which is defined as the ratio of the largest tortakkest
eigenvalue. In order to reduce the sensitivity to small perturbations, aneltyincrease the
accuracy of the computation of the eigenvector, the condition number mustdeanalose

to unity as possible. After observing that the major reason for poor conlitioof AT A is
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the lack of homogeneity in the input data used to construct this matrix, Harttyssthat
there exists a simple strategy based on translating and scaling the input datausB of the
similarity of the two problems, it is possible to adopt a similar normalisation schemet vgh

described below.

The end-points of the image lines with homogeneous coordifates w)' can be treated

exactly like the input points described in [67E. they are normalised such that they satisfy

ST =30y =0,

% Z?:l 9%2 = % Z?:1 y7,2 =1, (3.5)

Vi w; =1.
In practice, such a normalisation is achieved by first translating the entsguch that their
centroid is at the origin, and then scaling them such that their two principal mterage both
equal to unity. After transformation, the data forms a circular cloud of poif@serage radius
one about the origin. Alternatively, the normalisation could have been dpgiliectly to the
coordinates of the image linéshowever this requires a different normalisation method, like
the one proposed fal, because the last coordinateldé not guaranteed to be non-zero (see

next paragraph).

In the case ofl = (U,V,W)", it is also possible to make an analogy with the input points
considered in [67], however the major difference is that the set of pwimist guaranteed to
be bounded in this case. In particular, the Pl corresponding to linebgbdoathe XY plane
are of the form(U, V,0) ", i.e. they are located at infinity. Thus, the previous normalisation
framework is no longer possible, because concepts such as the canéroiwt defined or would

have too large values. To address this limitation, Pl are transformed suc¢hehaatisfy

Z?:l Ui = Z?:l Vi=0,

E?:l Ui2 = Z?:l Vz'2 = Z?:1 Wf ] (3.6)

Vi UZ+VZ+W2=1.
This can be achieved by first translating and scaling the data in order tty sh@sfirst two
equations, then normalising each point so that their norm is one, and itdyapeating these
two procedures until convergence. In practice, convergence igebtafter only a few itera-
tions. This normalisation scheme was suggested in [72] for application in $eendzen some

of the points are at or near infinity.
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The whole procedure is summarised in Algorithm 2. In practice, experimezgalts with
the image of a synthetic grid used for calibration in Section 3.4.1 showed ati@uin the
condition number of the matrix of normal equatioA$A from 6.7 x 107 to 12.5, when data
normalisation is carried out. This confirms that the normalisation scheme adsgiglopri-

ate.

Algorithm 2 Normalised linear computation &R

1. Normalisation ofl: Compute a similarity transformation, consisting of a translation
and scaling, that takes the end-points points of the line segriigdsa new set of end-
points centred at the origif®, 0) " and such that the two principal moments are equal to
unity. Compute the coordinates of the normalised Iine-segﬁgn(talternatively apply

the same normalisation as fdrdirectly to the line coordinatds.

2. Normalisation ofd: Compute a similarity transformatioft’, consisting of a transla-
tion and scaling, that takes the poirtg to a new set of pointsiz-j with homogeneous

coordinatesgU;;, V;;, W;;) satisfying Eq. (3.6).
3. Linear solution:Apply Algorithm 1 to the setl;; < I;; to obtainQ.

4. De-normalisation:SetH = T-1QT".

3.3.3 Minimisation of a geometric distance

The linear solution is computationally attractive. However, it presents some limisagiach
as the non-invariance to the coordinate reference frame, which rddoiiatroduce normal-
isation. Another criticism of this method is that the algebraic distance it minimisekttheas
physical meaning. In this section, a non-linear method which minimises a geoufistence

is introduced.

The geometric distanageomfrom a VPv with homogeneous coordinatés, v, w) T (w # 0)
to the corresponding linewith homogeneous coordinatés, b, ¢) " is defined as the shortest
distance from a point to a line in the image plane, and is given by the followingatd result

from geometry:
1

dgeom(val) = m

a1 b2 4 el (3.7)
w w
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Direct minimisation of the sum of squared geometric distance can lead to iatecesults
because some individual measurements with large uncertainties may dbeuperall sum.
There are two main situations in which large uncertainties are expected.r3treafe is when
short image segments are observed; in this case, starting point andiehdrpaso close that
the computation of the line coordinates is usually inaccurate. The secanis e@asen the scene
direction observed is nearly parallel to the image plane; in this case thesgonding VP is
located near infinity and therefore far away from the observed image llineoth cases, the
computation of the point-to-line distance is inaccurate because either the time oint have
large associated uncertainties. It is proposed here to evaluate theaimtgen the computation
of the geometric distance associated with each pgird;;), in order to compute a weighted

sum of squared distances.

The overall uncertainty can be represented by the covariance matrig wéthor of geometric
distances. In order to simplify the estimation of the covariance matrix, we makellising

assumptions:

e Image lines are defined by their end-points, and(the/) coordinates of each end-point
follow independent Gaussian distributions centred at the true end-pmrdioates and

with standard deviation for each coordinate,

e Scene directions are represented by pairs of 3D points whose caeslfiolow inde-
pendent Gaussian distributions centred at the true 3D point coordimategth standard

deviationo’ for each coordinate,

e Errorsin pairs of image lines and 3D directions in correspondence suienasl indepen-

dent.

Because the errors in the inputs defining the different pairsd;;) are independent, the error

in the geometric distance corresponding to this pair can be represented/iéydtsce or by its
standard deviationgeom The geometric distance can therefore be corrected by multiplication
by the inverse of the standard deviatiagom The cost function to be minimised is the sum of
squared distances defined by:

1
Z ngeon(vij,lij)2 . (38)

— O
ij _geom
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This is comparable to the Mahalanobis distance. Its minimisation should lead tdiamuop
solution which takes into account the distribution of errors present in ioho geometric

distances.

We must now determinegeomfor a given pair of image lines and VP. The distributionigfom
depends on both the distributionlodndwv. We first show that under the assumptions made, all
VPs have the same associated covariance and therefore only the woganighe image lines

Il needs to be considered. VPs are related to points at infinity the relatiorv = Hd. This
defines a linear relation. However we know that all the 3D directions havsstime covariance
because of the assumptions made. It results immediately from the linearity ofe¥ieus

relation that all VPs also have the same covariance.

Given an image line with coordinatés= (a,b,c)" and a VP with coordinates = (u, v, w) ",

we compute an approximation of the variancedgfon(v,1) using error propagation as de-
scribed in [72] (pp 123-125). Each coordinate of the end pgints: (z;,y;, 1) " andp; =
(zj,y5,1)" of the observed image segmdrare independent variables following a Gaussian
distribution centred at the exact location of the end point, and with stanéaiatidno, there-

fore it can be shown that a first-order approximation of the variance eoflistribution of

dgeon‘('U, l) is:

Oeom=JZJ ", (3.9)
where
2 0 —X; — $]'
=0’ 0 2 —Yi — Yj , (3.10)
—ri—x; —yi Y w A+ ad
and
_ 1 a(a®+b2 4c) blat4+b2 +c)
—W[%—W B 1) (3.11)

X isthe covariance matrix of the distribution of the image lines &nslthe Jacobian matrix of
the transformation mapping an image line and VP to a geometric distance, evaltiaiet).

The details of the computation are given in Appendix B.

The distanceénanis non-linear. A solution can be computed by using standard non-linear min-
imisation algorithms, such as the Levenberg-Marquardt (LM) algorithr][ffitialised with

the result of the linear method. In practice, it has been observed thdidiee ®f the weights
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is not very important. During the minimisation, the orientation is parameterised byee-th
vector using the Rodriguez formula, as recommended in [152]; this eliminatesdblems of
singularities which can appear with other parameterisation such as Eules aimgthe param-
eterisation, the three parameters define a vector parallel to the rotationlzogs wagnitude

represents the rotation angle [46].

3.3.4 Degenerate configurations

It has been seen in Section 3.3.2 that at least eight world direafigrend their associated
image lined;; in a “general position” are necessary to comp#fteln this section, the term
“general position” is clarified and a comparison with the degeneracies ioatbe of camera
resectioning [25] [72] (chapter 21) is given. It is assumed that thexeatleast eight 3D
directions and their associated image lines. The general study of theedages is made
in the case of a single camera, however the study generalises easily ts¢hefaaultiple

translated cameras, by noticing that translating the camera is actually equiealgroducing

additional translated 3D lines in the scene.

Let us now suppose that there is a degeneracy. There exists two diatik@ matriceg/ and

H' satisfying Eq. (3.2) for al(z, 7). It results immediately from the bilinearity of Eq. (3.2) that
Hy = H + OH’ (wheref is a scalar value) is also a solution. However the determinant of this
matrix de{Hpy) is a real-coefficient polynomial of degree 3dnthus it has at least one real
solutionéd, different from zero (ifdy = 0, thenHy = H, andH,y has rank 3, which contradicts
the fact that its determinant is zerdyp, does not have full rank,e. rank(Hy,) < 2, because
by construction d€H,,) = 0. In addition, it is clear that rarflly,) # 0, otherwise there
would exist a non-zeré such thatH + 6H' = 0, i.e. H ~ H’, which contradicts the original
assumption that the solutions are distinct. We conclude that there exists a mgtivhich
has rank 1 or 2. According to the rank of this degenerate matrix, two tyipesgeneracies are
defined. Both configurations are described below. It is important to natdhby can occur
for any number of 3D lines (not restricted to the minimum case of eight linedprg as the

features are arranged according to the characteristic patterns dedioad
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M
7%\/\\ b,/ /D,

Figure 3.2: The “rank 1” degenerate configuration. The 3D lines eithemfa Linear Line Complex
with a rayR going through the camera centr¢lines D, D, D3), or are parallel to a plare (lines
Dy, ...,Dyg).

“Rank 1" degeneracy

A “rank 1” degeneracy occurs if there exists a fidygoing through the camera centre and a
planeP, such that all the 3D lines either intersécior are parallel td® (see Fig. 3.2). The set
of 3D lines intersecting at a common lifie forms a pattern calletlinear Line CompleXsee
[133]). A proof of this result is now given. Given that the degenesatetion matrix has rank 1,

it can be written in the fornHy = rd ', whered is a 3-vector orthogonal to the null-space of
Hy, andr is a 3-vector in the span dfy. Replacing in Eq. (3.2), we obtal@rdeij =0,
which is equivalent td,;r = 0 ord'd;; = 0. The first casd;;r = 0 means that the point

r belongs to the image ling;, or equivalently that the corresponding 3D line intersects the
ray R obtained by back projecting. The other casdeij = 0 means that the 3D line with
directiond;; intersects the plane at infinity somewhere on the dné we call P any plane

with line at infinity d, it follows that the 3D line with directiod,;; is parallel toP.

“Rank 2" degeneracy

It is difficult to give a simple geometric characterisation of the “rank 2” degaecy, but our
experience is that this configuration does not follow a simple regular steuand is rather
unlikely to happen in engineered patterns. For illustration purposes, areiofag sample
“rank 2" degenerate configuration generated with MaBrls shown in Fig. 3.3. The image
was generated in the following manner. Given a rank-3 mairand a set of directiond;, an

arbitrary rank 2 matrix, was defined, and used to construct the set of lines (Had;) x
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Figure 3.3: Camera image of a sample “rank 2" degenerate configuratiamtr@ry to the “rank 1”
case, there is no simple geometric pattern characterism@irangement of the 3D lines and the pose

of the camera.

(Hd;). Such features satisl)f H.d; = 0, becausé+,d; andl; are orthogonal by construction.

Analogy with degeneracies in camera resectioning

It is interesting to note that there exists an analogy between these dagermrfigurations
and the ones occurring in the case of camera resectioning. The detgermrnfigurations in the
case of camera resectioning have been studied in [25] and [72] (cl2dptdn particular, it is
shown there that the most important degenerate configurations arisewherpoints all lie
on the union of a plane and a single straight line containing the camera aaniy¢he camera
and points all lie on a twisted cubic. It is straightforward to show that caseefjussalent to
our “rank 1” degenerate configuration, when pairs of points are tesém lines. Computer
simulations have confirmed the hypothesis that case ii) corresponds tathe2't degenerate

configuration, however it remains to prove mathematically that they are stripilyadent.

3.3.5 Constrained camera calibration

Until now, a general projective camera has been considered. In$leeotaestricted cameras,
for example zero-skew, known aspect ratio, known principal poiktnorvn intrinsic param-
eters, the camera calibration is still possible by minimising either an algebraicemmaegric

error. The minimisation of an algebraic error (which leads to a smaller minimisatidrhegm)
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can be done by defining a reduced measurement matrix as described. irH 0ever it is

not always possible to estimate a restricted camera matrix with a linear algorithmthigo
reason, a geometric distance is usually preferred. The same geometmceliatin the case
of a general camera can be considered, with the difference that ontathera parameters to

be estimated must be included in the minimisation, while the other constraints aresehfo

3.4 Results

In this section, the decomposition method is evaluated with images of a calibratio lgree
different implementations are considered: linear method minimising the algehsténak
daig With or without normalisation of the input data, and non-linear method minimiging

(no normalisation required in this case). In the implementation, the linear metisedbe
SVD algorithm, while the non-linear method uses the LM algorithm. In the resafihgy,
the different methods are respectively labeltlstomposition (norm. linearfecomposition
(linear) anddecomposition (non-linearfror comparison, the results of two additional camera

calibration methods described below are included.

Camera calibration from point correspondend@g, 70]. The procedure consists of two stages.
In the first stage, a linear solution is found by SVD; both scene and images jpave been nor-
malised by applying a translation and scaling to the input data prior to SVD¢cammended

in [70]. In the second stage, a non-linear solution is found by non-lineamisation (bundle
adjustment). The LM algorithm is used at this stage; it is initialised with the resultseof
linear method. The whole camera calibration procedure is described if1ZpP) under the
name of Gold Standard Algorithm. The result graphs corresponding to thii®chare labelled

standard

Camera calibration from VPEB3, 88]. VPs are computed from the intersection of parallel lines.
Three sets of mutually orthogonal parallel lines define three VPs whicheased to compute
the intrinsic parameters (assuming zero skew and a known aspect ratithearotation. The
parameters are computed linearly using SVD. Pre-normalisation is applied émdhgoints

of the lines in order to guarantee good conditioning of the equation matrix [B8te these

parameters have been computed, the translation is recovered by cimgsatititional point
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correspondences. The results graphs corresponding to this meth&@balledvanishingor
vanishing (aspect ratio = 1) In the first case, the aspect ratio is obtained from the standard
calibration method, while in the second case the aspect ratio is not pretadilarad assumed

to be 1.

Experiments were performed with synthetic and real data. In both casedibeation grid
made of two orthogonal planes containing control points was used. Thitpoints provide
the input data necessary for the standard calibration method. The inpatiairs required
for the decomposition method are obtained by considering pairs of comtirttp The set of
parallel lines required for calibration from VP is obtained by least-sqfitireg of a line to
each set of aligned control points; this defines three sets of paralleiMiniet are mutually

orthogonal.

The general criterion of evaluation used is the Root Mean Squared YRM& reprojection

error, which is defined by, = \/% > d(p;, K[R[t|P;)%. It measures how closely the
control points mapped to the image by the estimated camera matrix match the noisy input
data. In our implementation, the control points used for computicare different from the
ones used for camera calibration. The problem with using the same seint$ par both
calibration and evaluation is that it leads to biased results, because the &iM $gprojection
error is a residual error in this case, which is not a good indicator ofuhétg of the solution
obtained. For example, with exactly eight correspondences, the residoiis zero because
there exists an exact transformation which matches the control points toilyemage points;
however this does not mean that the transformation estimated is accurate,camttary it is
more likely to be inaccurate. If more correspondences are considaeetgsidual error will
increase because it becomes more difficult to fit a model to the noisy datdetidsiour is
contradictory to what is expected for the accuracy. More details on this ¢ap be found in
[72] (chapter 4). However, the RMS reprojection error does noibéxtiis behaviour when
computed with different sets of points, because points used for the tgalaae independent
from the ones used for estimation. This gives a more reliable measure ot¢heaey of
the calibration methods. In practice, the points used for the computation oéphejection
error are contained in a third plane orthogonal to the two other calibratioveplased for
calibration. It should be noted that the reprojection error thus defindtfésaht from the cost

function minimised by the non-linear decomposition method, for this reason thertadthod
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may not necessarily show a reduction in the error when compared with thedieeomposition

method.

In the case of simulations with synthetic data, the ground truth values of taenpters are

available, therefore it is possible to compute another criteria called RMS estineatiar. It

is defined byeest = \/ﬁ > (xi — T;)?, wherez; are the ground truth parametess,are the
estimated parameters, anddenotes the number of trials or repetitions of the experiment. This
criterion measures how closely the estimated camera parameters match the ooigedree
camera parameters. This measure is not available with real data becaesée® values are

not accessible in that case.

3.4.1 Synthetic data

Each plane in the synthetic grid contains 100 control points. The camerélitatahas the
following parametersuy = 384 pixels, vy = 247 pixels, f = 714.3 pixels,r = 1.167, and

0 =90.018°.

Firstly, Gaussian noise was added to the spatial coordinates of the extirmeige points, in
order to study the robustness of the camera calibration method. The noigednje both co-
ordinates is independent. This is usually a reasonable assumption wherimeagee defined
by pairs of points. If lines were to be extracted directly from the image, a wmrglicated

model of noise would be required. In this set of experiments, a single imagasidered for
calibration. The standard deviation of the noise injected in the image coorslnaaiged from
0 to 1 pixel. For each noise level, the simulation was repeated 100 times, with a differed

used for the random number generator each time, so as to guarantee allgtiaganingful re-

sults. Fig. 3.4 shows the RMS estimation error for each of the camera parsyaeig Fig. 3.5
shows the RMS point reprojection error, in both cases with respect tovbkedethe noise
injected in the image. It can be observed that the results of the decompositioochaee very
similar to the other two methods. It can be noticed that the normalised decompositibod

performs better than the non-normalised method. In general, the non4irethod leads to
good results, even if the improvement over the linear methods is negligible Tieeeresults
show that the decomposition method can accurately compute the parametarsaisg con-

ditions. The method computing VPs is not as accurate because it uses «ialiprmation:
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only parallel direction can be used, and it is not able to estimate the skevspact aatio.

In a second set of experiments, the influence of the number of imagesnsled accuracy of
the calibration is considered. For this purpose, a sequence of 10 imgggsted by a pure
translatiort motion of the camera, is generated. To relate the accuracy to the number esimag
considered, subsets of 1 to 8 images are randomly selected, and the calileedion is per-
formed with the images selected. The experiments are repeated 100 timeshf@izzaof the
subset. Again, for each experiment, a different seed is used foridemanumber generator,
in order to guarantee statistically meaningful results. Fig. 3.6 shows the RiSaion error
for each of the intrinsic parameters and Fig. 3.7 shows the RMS pointjeefiom error with
respect to the number of images considered. The noise level of thei@anstse was set to
o = 1pixel for all the experiments and no information about the translation was usean
be observed that the RMS point reprojection error decreases rapidlyd different methods
when the number of images increases, and it seems to converge to soméoéisyvapues. It
seems that the normalised method leads to more accurate results than the lisedrome,
although the improvement is not very significant. The non-linear method ss&rusate but it
does not give the expected improvement in accuracy over the linear rsetitoel decomposi-
tion method appears to be slightly more accurate than the other methods whemtber rof

images is increased.

3.4.2 Real data

A sequence of 20 images of a grid was produced with a Pulnix TMC-7D8Rm@aequipped
with a 6 mm lens. The calibration grid was made of three planar grids, eacthirtiog 36

control points generated by a printer, which were positioned on three Hyututhogonal

planes (see Fig. 3.9). The coordinates of the control points were dasifie a measuring tape,
the accuracy is estimated to be of the order of one millimetre. The coordindtesiofages of
the control points were extracted using the algorithm available in [21], whkiblased on the
Harris corner detector [64]. The camera is mounted on a robot arnfr(ge2.8) that is used to

generate a translation motion (up to the robot’s accuracy). The images abpaewent some

!Note that in the case of real experiments, the translation motion will neveetiect, and therefore lower

accuracy is expected.
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Figure 3.4: RMS estimation error for each camera parameter with respebe noise level in the case
of synthetic experiments of camera calibration from a griglage. The RMS error is computed across

100 trials.
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Figure 3.5: RMS point reprojection error with respect to the noise léwehe case of synthetic experi-

ments of camera calibration from a single image. The resudte obtained from 100 experiments.
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Figure 3.6: RMS estimation error for each intrinsic camera parametén vaspect to the number of
images considered in the case of synthetic experimentswéigacalibration with a translating camera.

The noise level was fixed to = 1 pixel. The results were obtained from 100 experiments.
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Figure 3.7: RMS point reprojection error with respect to the number ddgms considered in the case
of synthetic experiments of camera calibration with a tiziteg camera. The noise level was fixed to

o = 1 pixel. The results were obtained from 100 experiments.

Figure 3.8: Camera mounted on the robot arm used to generate the tianstattion.
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Figure 3.9: Real images used for calibration. The images are obtainetiamglating the camera

mounted on a robot arm.

Table 3.1: Estimated intrinsic parameters in the case of real expensnef camera calibration with a

translating camera. The results are given in the case of gight images. For each method the mean

value and the standard deviation were obtained from 100rempats.

ug (pixels) wvo (pixels)  f (pixels) r 0 (degrees)
mean 327.4 257.1 695.2 1.107 90.17
standard std 0.146 0.192 0619 0.237x 1073 8.98 x 10~3
g mean 329.5 257.5 695.4 1.107 90
vanishing std 0.703 0.181 0.669 0.256 x 103 0
vanishing mean 321.0 3254 676.9 1.000 90
(aspect ratio = 1) std 0.558 0.243 0.676 0 0
decomposition mean 326.7 258.6 696.0 1.107 90.18
(linear) std 0.203 0.513 0.444 0.251x 1073  6.06 x 1073
decomposition mean 326.6 257.7 695.2 1.107 90.19
(norm. linear) std 0.194 0.400 0.459 0.233 x 1073  5.89 x 10~3
decomposition mean 326.6 257.7 695.2 1.107 90.19
(non-linear) std 0.194 0.400 0.458 0.231 x 103 5.92 x 10~3

lens distortion. In this case, only the radial distortion is corrected, andteofider coefficient

appears to be sufficient [155]. Here the lens distortion can be apptelgrcalibrated from

the image of lines, by requiring them to be straight. This technique is knowregdumb-

line method in the photogrammetry literature [127]; an implementation for computenyss

presented in [40]. In the case of calibration from multiple images separgtedrslation of

the camera, random subsets of 1 to 8 images were selected. We made 16drteiath subset

size. Table 3.1 shows the mean and the standard deviation of the pararhedsrol@ained for

the different methods considered, in the case where eight images wesidea®d. Fig. 3.10

shows the RMS point reprojection error with respect to the number of inwmesdered.
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Figure 3.10: RMS point reprojection error with respect to the number cdgas considered in the case
of real experiments of camera calibration with a transgatiamera. The results were obtained from 100
experiments. The graph corresponding to the VP method witiispect ratio assumed to be 1 leads to

large RMS point reprojection error of the order of 15 whicé aot visible in the figure.

It can be seen that the accuracy of the methods increases with the numirages. The
decomposition method and the method computing VPs (with the aspect ratio olfraimed
the standard method) perform better than the method using point cordesmas. With the
method using point correspondences, the size of the parameter spaes@sceach time a new
image is included. For example sifimages are considered, then theresafe3n parameters to
estimate (5 intrinsic plus 3 for the orientation, and 3 for the position of the cacoeraspond-
ing to each image). When the size of the parameter space increases, thfebeshg trapped
in a local minimum increases and it becomes less likely to converge to the glokbatumin
In comparison, with both the decomposition method and the method computing #éRsz¢h
of the parameter space remains fixed for the first stage (8 parametarslarl® to the syn-
thetic data analysis, the linear method with normalisation is more stable than thenatised
solution. In the particular case where the method using VPs is provided withstiext ra-
tio obtained from the standard method, it gives more accurate results thath#renethods.
However, the method computing VPs has some limitations: i) it assumes the careaerda
skew, ii) it requires to provide a value for the aspect ratio. Some inaciesgrare expected if

the VP method is provided with an incorrect value for the aspect ratio. ¥eongle, it can be
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seen in Fig. 3.10 that the method performs poorly when initialised with an aspiecof one,
which is however a reasonable value for most CCD cameras. It is possiptevide a better
value for the aspect ratie,g. by using the non-linear standard camera calibration method, but

this requires to run another preliminary calibration algorithm.

Overall if we compare the results of synthetic and real data, it can bettsatetihe decomposi-
tion method usually performs better than the other methods when multiple imagesedrdtu
can be noticed that in some cases the non-linear decomposition method is dessafigcu-
rate than the linear one. From a theoretical point of view, there is nondasthe non-linear
method to be more accurate since the cost functions used are differermii®duction of this
section). Practically, the results observed are very close and theghsacseis not significant;
they could be due to the approximations performed when formulating the nesr-lost func-
tion, to different noise conditions in synthetic and real experiments, omh@ $eaccuracies in

the translation motion in the case of real experiments.

3.5 Conclusions

It has been observed that it is possible to decouple the translation parsufinete the other
parameters during camera calibration. The main idea is that directions in tie ae@erepre-
sented by PI, which project to VPs, and can be used to derive equittatare independent
of translation. This property has been used to formulate a novel caméreattan method.
Its originality consists in replacing the strict constraint that a Pl maps to a YR, dofter
constraint that establishes that a VP should lie on the corresponding imag€&Hisenew for-
mulation presents some advantages in terms of flexibility compared to standamtiBds,

because it is not required to have sets of parallel lines present in the.sce

The main advantage of the decomposition method remains its ability to split the paramete
space into two smaller sets of parameters; the first set contains the intridsposition pa-
rameters, while the second one contains only the translation parametergrdsests some
advantages in terms of accuracy over more conventional methods stiud @Gsld Standard
algorithm, which solves for all the parameters simultaneously. The adva¢agenes all the

more significant when a translation motion is used to generate more data frsoethe, as
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this does not imply any increase in the dimensionality of the problem, when tloengesi-
tion method is considered. This however requires an apparatus abledmgean accurate
translation motion. Deviations from the expected translation motion may affeecthgacy

of calibration.

Experimental results showed that the accuracy of the decomposition mettmdsrable to
other methods when a single image is considered. If several imagestedpayaa transla-
tion motion are considered, the decomposition method performs often bettehéhstandard

method or the method computing VPs.
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Chapter 4

The Normalised Image of the Absolute
Conic (NIAC) and its use for zooming

camera calibration

4.1 Introduction

In this chapter, the study of invariants in camera calibration is continuedjripfind exploit-
ing a novel invariant in the case of a zooming camera moving freely in 3Despdee ability
to zoom is of considerable interest in computer vision, as it enables to éocsslected parts
of the scene which present higher interest, however this also requirecorplex calibration
techniques. In the case of motorised zoom lenses, the relationship betveckems control
parameters and the camera parameters can be determined from the resalitsrafion at a
series of sampled lens settings. For example, in [142], the parameter ealireated at the
sampled positions are stored in a look-up table, from which parameteespornding to new
settings can be derived by interpolation. Note that the principle is similar to thetdiali-
bration method used by Truced al. in the case of triangulation-based range sensors using
structured laser light [153]. [29] showed that this calibration processbe speeded up by
replacing the previous algorithm by an adaptive algorithm, which selectmatitally which
values should be included in the look-up table based on the accuracy. Wfilsduced a more

compact representation by fitting a polynomial at the sampled values fopasameter [166].

65
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The latter technique has been reported to be accurate, however it ingposeth variations on
the parameters, which may be too restrictive in certain cases. It has h@en & [5] that a

more general algorithm can be obtained by using neural networks.

In the previous approaches, parameter values at new settings arednfi@m the values at
a sample of lens settings. For accurate results, the procedures regeinseasampling over
the range of all possible settings, which is a demanding task. In additiom{lesegh a dense
sampling is carried out, there is no guarantee of obtaining accurate reshésafexists some
discontinuities in the parameter variations. Finally, these techniques reqeites¢hof mo-
torised lenses with indexed position settings, which is not the case for altadgewdnologies.
Self-calibration methods relax all these assumptions by offering the possibitiglibrate the
camera directly from the same images which are used for the vision task ombept of self-
calibration was first introduced in [49] by Faugertsal. in the case of cameras with fixed
lens settings, and then generalised to zooming cameras by Polé&tfalsn [111]. The ap-
proach is very attractive, however there exists a number of critical motigmences for which
the solution is ambiguous [135, 137]. An example of a degenerate caatfigukvhich occurs
frequently in practice is the case of a rotating camera. In this case it is asibj®to resolve
depth because of the absence of parallax. For this reason, speafithaits for rotating and
zooming camera have been developed, for example in [2, 122]. Other radihud tried to
simplify the self-calibration task by reducing the number of parameters to estiF@atexam-
ple, Sturm has shown in [136] that pre-calibration can be used to modeitdrdependency
between the zooming camera parameters, which reduces self-calibratiandstitmation of
a single parameter. Generally self-calibration techniques rely on suffenehaccurate point
correspondences, and require good initial values. Convergeobéeprs and noise usually

limit the accuracy of such techniques (see [20]).

One of the main reasons why the calibration of a zooming camera is difficulttis thereases
significantly the number of parameters to estimate, in particular when multiple imegesel
for calibration. Previous works have taken advantage of invariantsdougée the camera
parameters into simpler sub-problems and guarantee that the number ofwnskof each sub-
problem is constant. Some examples of invariants used in camera calibratigteivanishing
Points (VPs), which are invariant to translation [26, 159, 43, 28, 18033, 88], or the Image
of the Absolute Conic (IAC), which is invariant to changes in position amehtation [89, 88,



4.1. Introduction 67

175, 138, 96, 95, 62, 61] (see Chapter 3 for more examples of int&xidn this chapter, the
invariance properties of the IAC are extended to include invariance tmingp by defining a
novel invariant called th&lormalised Image of the Absolute Conic (NIAQ)is shown that
the camera parameters independent of the position, orientation and zoamidgtermined
uniquely by the NIAC. The invariance properties are used to definetdisttanethod requiring
only three or four views (depending on the camera model) of a squara guibiitrary positions.

This enables the calibration to be decoupled into three sub-problems:

1. Estimation of intrinsic parameters independent of the zoom (computedthtioeNIAC),

2. Estimation of focal length representing the zoom for each image (comuitadyh the

IAC for each image)

3. Estimation of extrinsic parameters for each image.

In general, zooming imposes a large-scale non-linear minimisation which iyusnatable
and less likely to converge to the solution. This is not the case with our methaghfoh
each of the sub-problems has small dimension, and can therefore bersokvefficiently and

accurately.

In comparison with other plane-based calibration techniques for zoommgres [138, 62,
61], our method has the advantage of increased generality (it is nattedtto zero-skew
cameras as in [138, 62, 61]) and also better accuracy when compdi€&8javhich computes
simultaneously all the intrinsic parameters. Under the NIAC framework, theadgitesented
in[62, 61] is actually a special case of our algorithm for zero-skew casn®ur method is the
only one which minimises an exact geometric distance. [138] minimises an dlgdistance,

which requires careful normalisation of the data, while [62, 61] defingésan approximation
of a geometric distance. In order to accommodate all types of camerasasuero-skew
or non-zero skew cameras, several implementations are proposedariMeyspresenting the
zooming model adopted in this chapter, giving a theoretical and experinjastification for

it. Then the novel invariant is introduced. The following section shows ihoan be used for

calibrating a zooming camera. Finally some results with synthetic and real dajavan.
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4.2 Zooming camera model

The zooming camera model described in Section 2.2.3 is adopted in this chéfitierthis
model, zooming is equivalent to varying only the focal length of the camehasibeen shown
by Willson in [165, 163, 166, 164] that this is not the physically most aceurabdel, mainly
because the principal point can exhibit significant changes in positt@hakso because the
optical centre can move along the Z axis while zooming. However, thereaseed motivations
for considering a fixed principal point. Firstly, it simplifies considerablydhmera calibration
process. For example, under this assumption, it is possible to calibratendnzpeamera from
three images of a planar grid taken with arbitrary positions and orientatiereer@ly, a model
with varying principal point would require to observe at least two plandsgimultaneously in
order to define a sufficient number of constraints on the camera parantétats consisting of
several planes are more complicated, and they are difficult to position ic¢he & we would
like them to be observable from all camera viewpoints - especially in the dameamera
moving freely in the 3D space. Second, even though this model is not theacmstate for
the computation of each individual parameter, it turns out that it is sufflgiancurate for the
computation of the overall projection matrix because the error made by eoimgjdhat the
principal point is fixed is compensated by an error in the position of the Ganentre. For
most applications in computer vision, it is sufficient to calibrate only the projectiatrix,
without accessing each single parameter, and such a model is sufficiesuhage. Theoretical

and experimental results supporting this model are given in this section.

4.2.1 Theoretical justification

Zooming is obviously independent of the position and orientation of the cambeaefore, we
can make the simplifying assumption that the camera is located at the origin of tloeframe
and pointing along the axis, without loss of generality. Under this assumption, the camera

projection matrix is given by:

f —fcotf wug O
My o 00 = fr/sinf vy O
1 0
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In a zooming camera model with varying principal point, zooming induces iati@ar A f,
Aug andAuvg in the values of the focal length and the coordinates of the principal polmg. T

projection matrix becomes

f+Af —(f+Af)cotl ug+ Aug 0
M+ A fuo+Aug,v0+Ave = (f+Af)r/sinf v+ Avg 0f ,
1 0

and a pointP = (X,Y, Z,1) " is projected into the image point:

ZAUO
P = Myt Afuot+augvo+av P = MrrafuoweP + | ZAvg
0

If we now consider a alternative zooming model where the principal poifixesl, but the
camera centre is translated by the vedtdtx, Aty, 0], then the same poirf® projects into

the image point

Atx (f + Af)(Aty — cot OALy)
p = Mpiafuowo | P — | Aty = M¢iAfuowP — %Aty
0 0

It can be observed that the two models are equivalent if and only if

ZAuy = —(f+Af)(Atx —cot Aty ),
ZAvy = _%Aty :
which requires that
Atx = —giay(Buo+ < Av).,
Aty = - (fZ_i_Slee)TAUO .

If all scene points are located in a plane parallel to the image plane Zliethe same for all
scene points and the two equations above can be satisfied simultaneowadhsf@ne points,

i.e. the two models are strictly equivalent. If this is not the case, but the depthisefimall

with respect to the average deph.can be replaced by the average depth value, and the two

models are still equivalent up to a first order approximation.
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Figure 4.1: Displacement of the principal point while the camera is zimgn The curve is obtained

from 36 zoom settings; some estimated focal lengths have &egotated on the graph for information.

4.2.2 Experimental validation

Some experiments were carried out in order to evaluate the accuracyabfdben model. The
camera used is a Sony DXC-9100P equipped with a FujinonkSBRM-38 zooming lens
which has a 5-60 mm focal length range. This is a progressive scama;aime resolution of

the images produced 0 x 576 pixels. The camera is mounted on a tripod, and its pose and
orientation are kept constant during the experiment, so that variationspatameters are due
only to zooming. The camera is pointing at a calibration grid made of two ortladgoiare
grids of size 420 mm. The calibration grid is located approximately 2500 mm awaythe

camera. A collection of images is acquired for different zoom setting.

The position of the principal point has been determined for each zoom sbitinglibrating
the camera using the Gold Standard algorithm described in [72]. It cabdseveed in Fig. 4.1
that the principal point describes an approximately linear motion in the imagetivhiamera
is zooming. The amplitude of the movement is about 25 pixels along the horizoigadnd

more than 40 pixels along the vertical axis.

The experiment carried out by Willson in [165] has been repeated, iimgjukde model which

compensates the motion of the principal point by a motion of the camera cehtob, mad not
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been considered in [165]. Briefly, the experiment starts by calibratinigeatiamera parameters
for the largest zoom setting, then the zoom factor is reduced and theaasoatibrated for
each new setting, allowing only a given number of camera parameters tahigrmpumber is
dictated by the choice of the zoom model. For example, the simplest modeltsensiowing
only the focal length to vary, while a more elaborate model includes also thedardinates
of the principal point. For each model, the normalised Root Mean SquaM8)Reprojection
error is computed and gives a measure of the accuracy of the modelofirhalisation consists
in scaling the absolute RMS reprojection error values by the inverse of the naglius of
the cloud of image points, for each image. Such a normalisation is necessayént to
eliminate the influence of the scale of the grid which varies significantly duedmirg. For
information, the mean radius of the cloud of image pointsipixels for the smallest zoom
factor and168 pixels for the largest zoom factor. The minimum error obtainable is given by
performing a full calibration independently for each setting. In all cabeszalibration is done
using the Gold Standard algorithm described in [72]. The linear method igagstalise the

varying zoom parameters, which are then refined by non-linear optimisation

The results are shown in Fig. 4.2. It can be observed that the minimumremains approx-
imately constant over the range of zoom variation. The model allowing onlfottad length
to vary is not surprisingly the least accurate; it results in an increase iefnejection error
by a factor of 120 over the range of zoom variation. The model which alline principal
point to vary is the most accurate, it is able to capture most of the variatidnisitexi by this
camera, resulting in an error increase by only a factor of 2. With the thirdemeklere the
principal point is fixed, but the position of the camera centre is allowed pwih the focal
length, the error increases by only a factor of 6 over the whole rangearh variation. This
is 20 times more accurate than the model with ghlyarying, and is a fairly close approxima-
tion of the camera model with varying principal point. These results confiamntkie motion
of the principal points tends to be compensated by the motion of the opticaécdfiom a
practical point of view this means that even though there may be a signiéoantn the esti-
mation of the parameters when assuming a fixed principal point, the estimation ofd¢rall
camera projection matrix can be done much more accurately (20 times with thisaydyaer
cause errors are compensated. This is still not as accurate as cmgsaleariable principal

point, however it is usually accurate enough for most applications. Alsayst be considered
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Figure 4.2: Comparison of the accuracy of the different zooming camesdeis. The bottom graph is

a magnification of the top graph.
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that the loss in accuracy due to having a simpler model is balanced by a gaxibilitly of
the calibration method (possibility to use simpler calibration targets becausegaveeneters
must be estimated) and also the possibility to define simpler invariants. Theifiystituse
invariants may ultimately translate into an improvement in accuracy when multiple iraegjes
used, which may not be observed with a more complex camera model. In see® te
error induced by the fixed principal point assumption may still be too large though only
the camera matrix is computed. In such cases, it is necessary to computettioaies of
the principal point for each image, in addition to the other camera paramé&tassdoes not
mean that simpler calibration technigques assuming a fixed principal poinbtweeful. These
can for example be used to provide an initial estimate of the camera paramkieinscan be
then refined and extended to a more general camera model includinggvarymeipal point

by bundle-adjustment.

4.3 A novel invariant; the NIAC

This section defines a novel geometric entity called the Normalised Image oftbelute

Conic (NIAC) which encapsulates the camera parameters invariant to zgomin

4.3.1 Invariance properties of the IAC

For a given focal lengtlf, the IAC is defined by the conic coefficient mateix = (KfoT)—1

or equivalently by the following equation (see Appendix C):

9 cost

(4= 0)? + (0 = v0)* + 2% (u — o) (0 — v0) = — 2. (4.1)

W
It appears immediately that any given IAC is centred at the principal poohtfzatf is related
to only the scale of the IAC. Under the model defined previously, zoomingfibre produces
a one-parameter family of IAC which can be parameterised by the focahlgng he effect of
varying f is illustrated in Fig. 4.3. The set of IAC obtainedismothetiqcurves are related by
an expansion or geometric contraction) and concentric, with centre th@gadipoint(ug, vo)

of the camera.
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Figure 4.3: lllustration of the transformation of the IAC while the carags zooming. The different
IAC wy, are all centred in the principal poi@t and homothetic. It is possible to choose one of them,

for example the one with focal length 1 as a reference, thatalleNIAC w1 .

Table 4.1: A hierarchy of invariants and their properties. VPs are liiavg to translation. The IAC

extends the invariance properties to rotation. Ultimatilg NIAC adds invariance to zooming.

invariant motion
NIAC translation, rotation, zoom
IAC translation, rotation
VPs translation

4.3.2 The NIAC

We define the Normalised Image of the Absolute Conic (NIAC)h&sIAC corresponding to
a focal length ofl. The NIAC is an imaginary conic represented by the symmetric matrix
w1 = (K1K{")~!. By constructiony; is invariant to the position, orientation and change in the
focal length of the camera. It has four degrees of freedom, camelépg to the coordinates of
the principal poin{ug, vg), the aspect ratie, and the angle between the two axis of the camera

6.

In terms of invariant, the NIAC can be considered as the natural exteofiba IAC to zoom-

ing cameras. In the hierarchy of invariants, at the bottom we have the kiek are invariant to
translation, then the IAC which extends the invariance properties by adutaigpn, and finally
the NIAC which adds the zoom invariance (see Table 4.1). Because & éticapsulates all
the intrinsic parameters invariant to zooming, calibrating these parametergvaleqt to es-
timatingw;. Oncew, is known,K; and therefore the intrinsic parameters invariant to zooming

can be recovered from Cholesky factorisation [112].
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4.4 Application to camera calibration

Before describing the novel camera calibration method, a brief remindeaegbrinciple of
plane-based camera calibration using the IAC is given. The main idea idéocedhe compu-
tation of the calibration matrix representing the intrinsic parameters, by the estimation of the
IAC. The absolute conic being an imaginary object, it is a priori not dirediseovable, how-
ever it has been shown in [175, 138] that it is possible to compute the image oémarkable
points belonging to it from the observation of any planar calibration targetsd two points

are callectircular points and we give a summary of their computation below.

4.4.1 Computation of the circular points

Let us suppose that the camera is pointing at a planar calibration targetefiitidn, the
circular points of this plane are the two points of intersection with the absoluie.céor
simplicity and without loss of generality, it is assumed that the calibration planeaseld in

the planeZ = 0, in which case the points of intersection with absolute conic are the two points
I =1[1,i,0]" andJ = [1,—i,0]". Because the plane is marked with known control points,
it is also possible to compute the homogragthypetween the calibration plane and its image,
from which we can derive that the images of the two circular pointsBre: HI = hy + ihs
andQ = HJ = h; — ihy. Both points lie on the IAC. In the case of a camera with constant
intrinsic parameters, each image of a calibration plane provides two sucs paitthe IAC.

A general conic is defined uniquely by five points. Therefore it is gefiicto make three
plane observations (two in the case of a zero skew camera becauseadtiitienal zero-skew
constraint) in order to obtain a sufficient number of constraints and deteramiguely the

IAC, and therefore.

In the case of a zooming camera, it is necessary to consider a morelgevetiant defined
for example by the NIAC, which is invariant to translation, rotation and zoone. Galibration
algorithm can be broken into three stages. In the first stage, the invariansic parameters
encapsulated in the NIAC are computed; such parameters are the ctesdihéhe principal
point, the aspect ratio and the skew parameter. This is the most complicatedo$tdu

method. The next stages concentrate, separately for each imagen fire oomputation of
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the focal length, which represents the zooming effect, then on the compubdtioe extrinsic

parameterd,e. position and orientation.

4.4.2 Computation ofK;

The matrixK; represents the intrinsic parameters of the camera which are invariantaogech
in position, orientation and zooming. These parameters are charactarigadly by the NIAC

w1 = (K1K{")~!. Like the IAC, the NIAC is an imaginary conic, it is therefore not directly
observable, and a special construction is needed. As for the IAC, fitveniation is provided
by the observation of a sufficient number of calibration planes, whichigiea set of pairs of
images of the circular points. However, this time there exists as many difféx€ras there

are pairs of images of circular points, therefore a more elaborate stiateggded.

We start by observing that, if the parameters fréfmare known, it is possible to define a
normalised image reference frame in which the NIAC is a unit circle centrégbairigin. In

this normalised image reference frame, the camera has effectively apmit astio, zero skew,
and its principal point is at the origin. Such a reference frame is obtaneggtlying an image
transformationT which is composed of a shear transformation alongXhaxis (to eliminate

the skew), a scaling along thé axis (to correct the aspect ratio), and a translation (to map the
principal point to the origin). The transformation obtained is parametrisédunyparameters

t1,to,t3 andty (t3 # 0):

1 0 to 1 1 ¢4 0 1 t1 to
T=| 14 ts 1 0| =] t3 ta - (4.2)
1 1 1 1

The main idea of the method is that calibration can be reformulated in terms of ydlegftifie
unique transformatiorm which maps the NIAC to a unit circle centred at the origin. Because
all IAC are homothetic and concentri€, maps the set of IAC into a set of concentric circles
centred at the origin. We show that such a configuration can be chi@seadteniquely by the
perpendicular bisectors to the chords defined by the pairs of imagesofatipoints on the

IAC. The result is stated below. The concept is illustrated in Fig. 4.4.
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\ Py,

\It,

(@) (b)

Figure 4.4: wy,, wy, andwy, are three concentric homothetic conics centre@'atOn each conic
wy,, the pointsPy, andQ, represent the images of the circular points. They define edotio each
conic. We assume that none of the chords passes thi@ugihd that no two chords are parallel. The
perpendicular bisectors to the chords are representedebinttsl ¢, , 1+, andly,. In the general case
where the conics are non-circular (a), the perpendicutsgdors pass through the centtaf and only

if the chord is parallel to an axis of the conke.§.1l;, andly,). Because there exists only two axXig,,

Iy, andly, cannot be concurrent @t. The only case wheig,, 1, andly, are concurrent &' is when

the conics are circular (b).

Result 1 Considern (n > 3) concentric homothetic conics centred @t Take one chord
on each conic such that no chord passes throdghand no two chords are parallel. The

perpendicular bisectors to the chords are concurténtC if and only if the conics are circular.

Proof If the conics are circles, it is clear that the perpendicular bisector to ezofu is a
diameter, and therefore that the set of all perpendicular bisectorsaearcent at the common
centreC of the set of circles. Reciprocally, let us assume that the conics arérclesc Then

each chord must be parallel to the diameter conjugate to the perpendiceletobisee [120],

Three of more lines are concurrent if they meet at one point.
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p 120). However, because they are orthogonal, the perpendicuéatdnisand its conjugate
diameter define the two axes of the conic. It results that the chords aallgbto one of the
axes of the conic on which they lie. The conics being concentric and hotimttieey share
the same axes. Also, because none of the chords are parallel, thisdefing distinct axes,
which is impossible because there can be only a pair of axes. We dedudtkeetitanics are

circular. This completes the proof of Result1.

Given a pair of images of circular poinf3 = HI = hy +ihs and@Q = HJ = hy — ihs, with
hi = [h11, ho1, ha1] T andhg = [h12, hao, h3o] T, it can be shown that after mapping By the

equation of the perpendicular bisector is:

l = [—(dl + tldg), —t3d2, (m1 +time + tg)(dl + tldg) =+ (t3m2 + t4)t3d2]T , (43)

with
(m, = iz (hsthn + haahaz)
me = m(h?ﬂhﬂ + hsohaa), (4.4)
di = haah11 — haihiz,
dy = h3a2ha1 — h3ihaoo .

The derivation is given in Appendix D. It follows that calibratitg is equivalent to finding
the unique values of the parameters.,ts andt, for which the perpendicular bissectdrare
concurrent at the origin. Once this transformation has been estimated|AReidNgiven by
wi = T T and the intrinsic parameters 6§ = 7—!. A number of algorithms for estimating

these parameters are presented below.

Non-linear solution minimising a geometric distance

The first method proposed consists in finding the solution which minimises thefssopared
distanceslgeom between the liné defined in Eq. (4.3) and the origin for each image:

[(m1 + t1ma + t2)(dy + tida) + (t3ma + t4)t3ds]?

d2oom= 4.5
geom (di + t1d2)? + (t3d2)? (4-3)

In the case of a zero-skew camera, we higve 0, and the previous expression simplifies to

[(m1 + t2)d1 + (tzma + t4)tsda)?

2= 4.6
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A minimum of four images is required to determine uniquely the fixed intrinsic pasmim

the case of a general camera. With a zero-skew camera, three imageffiaieng, because

t1 is already known to be zero. Minimising such cost functions requiredinear techniques
such as the Levenberg-Marquardt algorithm. Given the very small nuafhaknowns, the
method usually requires very few iterations before converging. Alsaritaope with poor
accuracy initialisations. Experiments showed good convergence fisspdrowever it isa
priori not guaranteed that there exist no local minima in the vicinity of the solution which
may affect the convergence of the algorithm to the correct solution. dctipe, a reasonable
initialisation which gives good results is to choose the principal point at thedroagtre, an
aspect ratio of one and zero-skew. Alternatively, the method definee inetkt paragraph can

be used for initialisation.

Linear solution minimising an algebraic distance

Contrary to non-linear methods, linear methods are usually simpler to implemeatidgesthey
do not need any initialisation and do not suffer from convergencdgmoh However, they are
usually not so accurate, because the distance minimised is not geometrarndadicphysical
meaning. In this case, the following algebraic constraint is defined byriegthe origin to

lie on the linel:

[0, 0, 1]l = (m1 + timeo + tg)(dl + tldg) + (t3m2 -+ t4)t3d2 =0. (47)

In practice, considering this equation does not present any advantagthe previous method
because the equation remains non-linear in the case of a general chloweer, in the case

of a zero-skew camera, the unknown valugsvy andr are related to the entries @f by

1 0 —UQ
_ w1 _ 1
T=K'=| 1 _w|, (4.8)
1
and the following substitution can be carried oyt:= 0, ty = —ug, t3 = % andty = —"2. It

leads to the equation

1 1
(m1 — wo)d + <m2 _ ”°> Zdy =0, (4.9)
T T T
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which appears to be linear in the unknowns, vy andr?:

r2u0

—dy —da mid; Vo = —mady . (410)

7,2

This equation is similar to the one obtained by Gurdjbal. in [62, 61] using the centre-line

constraint. A least-square solution can be obtained by using for examgledbdo-inverse.

Both linear and non-linear algorithms for computing the invariant intrinsicrpatars encap-

sulated in the NIAC are summarised in Algorithm 3.

4.4.3 Computation of F;

ComputingF; is a simple matter of finding the isotropic scaling factawhich maps the NIAC
into a conic passing through the images of the two circular points for each inégproceed
as follows. Having compute#, the system of IAC can be mapped into the system of circles

centred at the origin, which takes the form
Z 1

72 r?
1 f?
while the transformed images of the circular points are mapped to
P’ = K '(hy +ih2) = b} +ih}y, and Q' = K;'(hy —ihy) = h] —ih},. (4.12)
By requiring P’ andQ'’ to be onw’;, we obtain
(k] £ihy) "W} (k) £ihh) =0, (4.13)
which, after equating both real and imaginary parts to zero, leads to thejtvatiens
' T AN,
hy wihy = hy wihy, (4.14)
Wy Wik = 0.

Substituting’; by its expression in Eq. (4.11), and writid = [h);, b4y, by ] T andhy =

[R)5, hhs, h%5] T, the two following equations are obtained:

Wiy + hhy? — Wy ® — kb,
fQ _ 12 22 11 21 . (4.15)

N N N
31h32 _h11h12_ 217922

7 2 7 2
h31 _h32
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Algorithm 3 Computation of the parameters encapsulated in the NIAC

hii hi2 his

1. For each view of the grid, estimate the homography= |1y, hoy hos| between

hs1  hsa hss
the calibration plane and its image.

2. For each view, precompute constamtg, mo, d; andd, defined in Eq. (4.4).
3. Linear solution minimising an algebraic distance:

(a) Assemble all vectoris-d;, —ds, m1d;] and all constants-mod, into respectively

ann x 3 matrix A and am-vectorb (wheren is the number of views).
(b) Compute pseudo-inverge™ = (ATA)~1AT,

(c) The parameters are given pyug, v, %] = ATb.
or non-linear solution minimising a geometric distance:

(a) If the camera skew is non negligible, find the parametgrs,, t3 andt, which
minimise the sum of squared distances defined in Eg. (4.5). If the skewligineg
ble, sett; = 0 and replace previous distance by the one defined in Eq. (4.6). The

parameters can be initialised from the results of the previous algorithm bygsettin

t1 =0,ts = —ug, t3 = % andty = —U70.
1t ty
(b) The solution igs; = ts t4 |, from which the parameters can be computed.

1
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It should be noted that the first equation is indeterminatg if= hj,, and the second one if
hi, = 0 or hy, = 0. Both equations are simultaneously singulakijf = h4, = 0, which
corresponds to the case where the optical axis of the camera is pergantbche calibration
plane. If this configuration is discarded, there exists always at leasequation ang’ can
be computed uniquely. If more than one equation are available, a lease ssplation can
be computed. In general two equations are considered, but in somecestanore may be
available, this is for example the case when several images are taken witinging the focal

length.

4.4.4 Computation ofR and t

For each image, we have the following constraint on the extrinsic parameters
roro t] ~ PR (4.16)

The equality is up to a scale factor. The absolute value of the scale factdrecdetermined
by requiring the norm of the first two columns of the term on the right haael-® be one
(the columns of a rotation matrix are unit vectors), while the sign is obtained dujirireg
the observed object to be in front of the image plane of the camefds given byrs =
r1 X 739. The orthogonality of the matrix is usually not satisfied due to noise, buteanforced
for example by computing the Singular Value Decomposition (SVDR @ind requiring each

singular value to be equal to one (see [154]).

4.45 Practical considerations
Normalisation

Normalisation is carried out before computing the homographies betweealiiation plane
and the image plane. The technique employed is described in [72] andtsangisrmalising
world points and images points such that their centroid coincide with the oridithaeraverage
distance from the origin i/2. In the case of the non-linear methods, no extra minimisation is
required. In the case of the linear method, it can be shown that weightthgezan in Eq. (4.10)

by the inverse of/d? + d5 produces a very good approximation of the geometric distance
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defined in Eq. (4.6), which also ensures good conditioning of the systame iMformation can
be found on this topic in [62, 61]. The fact that our techniques requésglittle normalisation
is a strong advantage over other plane-based calibration techniqureass[i38], which rely

heavily on normalisation.

Degenerate Configurations

It has been seen earlier that a minimum of three or four views of the calibaiaoe is neces-
sary, depending on the camera model. In addition, the three following aisampave been
made during the discussion: i) the optical axis of the camera is not perpéardiz the calibra-
tion plane (Section 4.4.3 and Appendix D), ii) the chords defined by the plaimsages of the
circular points do not pass through the principal point of the camerau({Rgsiii) and no such
chords are parallel (Result 1). After observing that the chords ar&ahishing lines of the
calibration planes observed, it is straightforward to show that ii) cooredpto the case where
the optical axis of the camera is parallel to the calibration plane, while iii) qoorets to the
case where two cameras are related by a translation and/or a rotation alarg aarallel to

the calibration plane. This characterises all the degenerate configgtation

45 Results

In this section, the methods presented earlier are tested and evaluatesparismn with the
method presented in [138] is also given. When referring to these metthedfollowing ter-
minology is adoptedSturm & Maybankdenotes the Sturm and Maybank method described
in [138], linear NIAC (s=0) non-linear NIAC (s=0)and non-linear NIACdenote the meth-
ods based on the NIAC which minimise, respectively, an algebraic distaiticez@ro-skew
assumption, a geometric distance with zero-skew assumption, and a geoisédrice with a
general camera model (no zero-skew assumption). It should be natiethéhmethodinear
NIAC (s=0)is identical to the method derived by Gurdjetsal. using the centre line constraint

in [62, 61]. Gurdjoset al. refer to a theorem of projective geometry (Poncelet’s theorem) to

characterise the locus of the principal point when a zero-skew cameomiising. Although
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Figure 4.5: Real images used for calibration. Each image illustrataffereiht zoom setting.

this is different from the NIAC concept, both methods result in the same Igystem of equa-

tions in the case of a zero-skew camera.

In all experiments, the camera is pointing at a planar calibration gridgge€ig. 4.5). The
position, orientation and zoom are varying for each frame. For each jnttaggbomography
is computed using the Direct Linear Transform (DLT) method as descibgt?], with the

appropriate normalisation. Then the different methods are applied.

4.5.1 Synthetic data

The calibration target used for simulations consists of a square grid dfszzex 20 cm which
containsl0 x 10 control points. The grid coincides with the plade= 0 of the world reference
frame. The synthetic camera has the following constant intrinsic paramegers384 pixels,

vy = 247 pixels,r = 1.167. We conducted different sets of experiments for the following
values of the skew angle? = 89.9° andf = 89°. In practice most cameras will exhibit
very little skew, and the skew parametecan be identified to zera.e. 6 ~ 90°. The focal
length is the only varying intrinsic parameters. For each frame, the foogihés assigned

a random value between 476 pixels and 1428 pixels, following a unifortritdison on this
interval. The optical centre of the camera is located on a sphere with ra8iosdhd centred

at the middle of the calibration grid. The position and orientation of the cameemergted by
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applying the following Euler transformation. A random rotation is applied esgigely around
the Z axis (rotation), theX axis (precession) and finally the axis (nutation). The rotation
around theX axis is constrained betwe&0 ° and70 °, so as to be in the optimum condition
required by thé&sturm & Maybankmethod. Under such conditions, the grid occupies the whole
image at the maximum zoom factor. Some Gaussian noise is added in the cesdiheach

imaged control point in order to simulate image noise.

Knowing the ground truth parameter values, it is possible to compare theaagaf the dif-
ferent methods. The evaluation criterion adopted is the RMS estimation aefiaed by:
cest= 1/ & >.;(z — T)2, wherez is the ground truth parameter amds the estimated param-
eter. The RMS value is computed for each parameter, from a total of M#diements. In
the case of the fixed intrinsic parameters, an absolute error is computed awhlibgive error
is computed for the focal length. This is a good measure of how closely tineaésd camera
parameters match the noise-free camera parameters. It was chosercowipiate the RMS
reprojection error. The main reason is that, due to the arbitrary motion ofatinere, it is
difficult to place an extra calibration pattern in the scene which is visible fibmeavpoints
without generating occlusions in some views. This means that, to avoid ocugi® RMS
reprojection error would have to be evaluated on the same control poeddarscalibration.
In that case the RMS reprojection error corresponds to a residaa) wirich is well known to
be a poor measure of the quality of the solution obtained (see [72], ChBptEor example,
the non-linear NIACmethod is expected to always lead to lower residuals because it has one
extra degree of freedom compared to the other methods and can thdiefbe data better,

which does not mean it computes more accurately the camera parameters.

Two types of experiments were carried out. In the first case, the in#ueinithe image noise
was studied by varying the standard deviation of the spatial perturbatiedad the image
feature coordinates from 0 to 1 pixel. 10 images are considered durisg ¢éxperiments. The
results are shown in Fig. 4.6. In the second set of experiments, the icdloéthe number of
image frames was considered. The image noise level was constant daodLgakel during

these experiments. The results are shown in Fig. 4.7. In each caseptdraments were done
with two values for the skew anglé: = 89.9° andf = 89°. The casé = 89.9° corresponds
to a low skew, which is the case of most cameras. It should also be mentiaied the case

of a purely skewless cameré £ 90°), the results obtained are similar to the cése 89.9°,
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and have been omitted for this reason.

It can be observed that the error in the estimation of the parameters iesri@asarly with

the image noise level. The methods based on the NIAC are usually more tacttua the
Sturm & Maybankmethod. In the case of a small skew, the best performing methods are the
ones using the NIAC (either linear or non-linear) based on the zems-aksumption{ = 0).
However if the skew parameter differs more significantly from zero, thendin-linear NIAC
method becomes more accurate. Similarly, when varying the number of framegears that
thelinear NIAC (s = 0) andnon-linear NIAC ¢ = 0) are always more accurate than Steirm

& Maybankmethod. Thenon-linear NIACis usually not so accurate when a small number of
frames is considered. However, with a larger number of frames it becomesaccurate than

Sturm & Maybankand than the other methods based on the NIAC in the case of larger skew.

The methods based on the NIAC present the following advantages cainjoatiee Sturm

& Maybankmethod. Firstly they exploit some invariance properties, which guarantaes th
the number of parameters estimated at each stage is small and constant, whilenter of
unknowns estimated simultaneously by 8term & Maybankmethod increases linearly with
the number of images and has no bound. This presents an advantagsebéoaeans that the
complexity of the problem does not increase with the number of images coesidgecondly,

the Sturm & Maybankmethod is based on the minimisation of an algebraic distance, while the
methods based on the NIAC consider either a geometric distance (case-thear NIACand
non-linear NIAC (s=0) or a close approximation of a geometric distance (casieedr NIAC
(s=0)). The minimisation of a geometric distance usually leads to more accurate reattteth
minimisation of algebraic distances which sometimes lack physical meaning. krappat

the methods which rely on the zero-skew assumption (cdseeair NIAC (s=0)andnon-linear
NIAC (s=0) generally produce very similar results. Closer inspection of the grapiovebow

that the non-linear method is slightly more accurate, but that the improvemeott &s farge

as expected. This suggests that the algebraic distance minimised by the litieed lee very
good approximation of a geometric distance. This is explained by the fadh#haspect ratio

is close to one. It is expected that the results of the linear method would datetiidhe aspect
ratio differed more significantly from one. Tm®n-linear NIJACmethod is the most accurate
when a significant skew is present°] and a large number of views is considered. In the case

of smaller skew values or no skew at all, then-linear NIACmethod is usually less accurate
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Figure 4.6: Results with synthetic data. Influence of the noise. The RMi&@tion error was computed
for each parameter from a total of 1000 experiments. Theerleigel indicated represents the standard
deviation of the zero mean Gaussian noise added to the intagdiosates. 10 images were used for

calibration. The experiments were made Witk 0.1° (a) andd = 1° (b).



88 Chapter 4. The Normalised Image of the Absolute Conic (NIAC) and its usmfoning
camera calibration

N Uy N A f
w60 w50 — 8
2 %0 S 4 5
2 40 g )
(7] o 30 g
3 % S 3
IS < 20 IS
E 2 £ b
D D o
o 10 o 10 %)
)] =
= s 4
o 4 6 8 1FF 4 6 8 10 4 6 8 10
number of frames number 8f frames number of frames
r —
(%]
0.08 § 4
5 g
@ 0.06 = 3
_S g —— Sturm & Maybank
= ] linear NIAC (s=0)
kS 0.04 5 2 —=— non-linear NIAC (s=0)
D -% —S— non-linear NIAC
(0]
0 002 £ 1
= 7]
hd (O]
U) K oy K oy 3 oy K
S 0
4 6 8 10 4 6 8 10
number of frames number of frames
@ 6=0.1°
N U, N Vo f
% 60 % 50, - 8
2 2 S
2 50 g 4 5
2 40 2 o
) o 30 g
s % S 5
S T 20 IS
E 2 £ b
D D o
o 10 Lo 10 w0
n =
= = o 4
o 4 6 8 1F 4 6 8 10 4 6 8 10
number of frames number 8f frames number of frames
r —
[%]
0.1 g 4
= D
9 (0]
S 008 T,
_S 0.06 g —+— Sturm & Maybank
T ’ 7] linear NIAC (s=0)
kS s 2 —< non-linear NIAC (s=0)
5 0.04 = —©— non-linear NIAC
(0]
IS
g 0.02 g ' %\@\@\@
hd v @
%)
S 0
4 6 8 10y 4 6 8 10
number of frames number of frames

() 6=1°

Figure 4.7: Results with synthetic data. Influence of the number of franTéie RMS estimation error
was computed for each parameter from a total of 1000 expeténeThe noise added to the image
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Table 4.2: Intrinsic parameters invariant to zooming calibrated fritver 30 real images.
ug (pixels) wvq (pixels) r 0 (degrees)

Sturm & Maybank 371.0 299.2 0.912 90

linear NIAC (s=0) 366.3 317.5 0.914 90
non-linear NIAC 6=0) 366.3 317.7 0.913 90

non-linear NIAC 364.9 316.3 0.912 90.19

than the other methods. This suggests that including the skew parameter iitiation
penalises the method in the case of negligible skew values. Most camesastprg negligible

skew, it is usually preferable not to include this parameter in the calibration.

45.2 Realdata

We carried out some experiments with real data. The camera used is a S@¥YIDOP
equipped with a Fujinon S22BRM-38 zooming lens which has a 5-60 mm focal length
range. The lens exhibits very low lens distortion which can be ignoredglasgtibration. We
grabbed a sequence of 30 images of the grid shown in Fig. 4.5. The canfenad-held, and
the zoom settings are changed manually by the person who holds the c&aehagroup of
five successive images were acquired with a constant zoom settingygranly the position

and orientation of the camera. We show in Fig. 4.5 one image for each of thesixsettings.

We calibrate the camera using all 30 images. The values obtained for intramaimeter invari-
ant to zooming are shown in Table 4.2, while Fig. 4.8 shows the mean focahleagputed
for each group of images acquired at constant focal length, for m@&thod. Error bars rep-
resenting plus or minus three times the standard deviation have been addedjtaghs. It
can be observed that the different methods produce consistent .vallsss it appears that
the methods based on the NIAC generally produce slightly smaller standaatiaies, which

suggests they capture better the set of values expected for the fagthl. len

4.6 Conclusions

A novel technique for calibrating a zooming camera has been presertiededhnique capi-
talises on the invariance properties of a novel mathematical object calledtheahsed Image

of the Absolute Conic (NIAC) in order to simplify the calibration equations. AC is a
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Figure 4.8: Results with real data. The graphs show the error bars fazgtimation of the focal length
for each group of images in Fig. 4.2. Each image within a gnwap acquired with a fixed focal length.

The error bars represent plus or minus three times the sthdéaiation of the estimated focal lengths.

mathematical representation of the intrinsic camera parameters which aranbt@zooming,
translation and rotation of the camera. In practice, the NIAC can be estimmatedfminimum
of three or four images (depending on the camera model) of a planar talibgrid taken
from arbitrary positions, orientations and zoom settings. The main idedstomsusing the
invariance properties to decompose the calibration problem into three simplgrgblems,
each having constant number of unknowns. Different implementatiorestie=n proposed in
order to accommodate the different types of cameras, in particular wittandroon-zero skew
cameras. Results with synthetic and real images showed that the algoritredbabke NIAC
are usually more accurate than the Sturm and Maybank algorithm [138hwhitnates all the

parameters simultaneously.

An apparent limitation of the method is the assumption of a fixed principal poirgorEtical
results and experiments suggest that this is a valid assumption as long aa caifii@ation
consists only in computing the projection matiibe. it is not necessary to estimate separately

all camera parameters. This is the case of many applications in computer vision.



Part |l

Photometric aspect:
Image-based object reconstruction

using Helmholtz Stereopsis

91






Chapter 5

Background

5.1 Introduction

Image-based object reconstruction consists in inferring information ogabmetry of a 3D
scene (also callestructurg from a set of 2D images acquired with a camera. In contrast with
the first part of the thesis which focused on estimating the properties ohathera used, the
objective of this part is to measure geometric properties of the objectsvelday the camera.
These two tasks are obviously complementary. The more knowledge abadtrtbor we have,
the more information about the scene it is possible to extract. The applicafionage-based
object reconstruction are numerous; they include robotics, measuréonantality control,
virtual reality applications and the entertainment industry, for example tlai@neof special

effects in films.

Imaged-based object reconstruction has been a focus of researdlorfe than 40 years now,
however there exists still no fully automatic system giving a satisfactoryrges@ution to the
problem. One reason why image-based object reconstruction is suelienging task is that

it is usually an ill-posed problem in the case of non-model based recotistriechniques:

the solution is usually not unique and does not depend continuously oatheTd tackle this
problem, a wide variety of methods have emerged; they all attempt to regulagigeoblem

and make it tractable by making some assumptions. Some common assumptions simplify th
geometry of the object, by assuming for example smooth surface variatiogsnlify the

reflectance properties of the object, by assuming for example a Lambetiectance model.
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Another reason why reconstruction using a camera is such a challengkig that a camera

is a passive sensarg., it does not interact with the scene, but only produces a snapshot of
the light intensities emitted by the scene. Extracting depth information from su@hage

can be difficult because the intensity of each pixel is related only indirectligg@eometry

of the scene. This contrasts with active sensors which generate aaghaleasure how it is
perturbed by the scene to derive geometry information; a common exampieofige sensor

is the laser range scanner, which computes depth information from the maedghe time

of flight of an emitted laser beam reflecting on the object surface [15dlivdmethods are
now well established, and they are typically more accurate than passivedagttevertheless
they require complicated equipment, and can fail to detect the surfacdexft®bvith non-

Lambertian properties.

This chapter presents an overview of the main image-based object tretioss methods. We
concentrate on automatic reconstruction techniques involving cameras -c¢hidga active
methods which use controlled light sources, but not other active methiuidh wroject a pre-
defined pattern on the scene and for which reconstruction is more triviagd.chapter plays a
similar role to Chapter 2 in the case of camera calibration. The aim of this reviewe@npare
the different state-of-the-art reconstruction techniques, and motivatehoice of Helmholtz
Stereopsis (HS) as the reconstruction technique adopted in this thesisealles already fa-
miliar with these techniques may want to quickly read through this chapter ceg@aalirectly

to the next one.

5.2 Conventional stereo methods

Conventional stereo techniques are inspired by the human vision systegnu3éntwo or more
images of a scene taken from different viewpoints to estimate depth. Thesmagee ob-
tained from a collection of fixed cameras or from a single moving camera.fUmdamental
problems can be distinguished: i) the correspondence problem and i@abestruction prob-
lem. We start by describing how these problems are solved in the caseiobdipsages, and

then generalise tdV views.
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5.2.1 Two-view geometry

Correspondence problem

The correspondence problem consists of matching points which congdp the projection
of the same physical scene point in each image. This appears at firsasighvery difficult
problem because a point in one image can be matched a priori with any pdtre wther
image. However, there exist a number of assumptions which can be madkeirtammake this

problem tractable. We distinguish two main classes of methods: area-rastzhture-based.

Area-based method®mpare intensity profiles in neighbourhoods of potential matches in order
to define correspondences. Good reviews on this topic can be fouratdmple in [46, 45,
118]. Traditionally, a correspondence is represented by a value dileakritywhich measures

the amount of displacement between two corresponding pixels. For @eadhirpthe first
image, the corresponding pixel in the second image is the one which maximisessarme

of similarity between the two neighbourhoods, thus yielding a dense setrm@fspondences
represented by a disparity map. Commonly adopted measures of correlaitres&Ssum of
Squared Differences (SSD) or the normalised cross-correlatiorh I8aasures are computed

over pixel neighbourhoods defined by generally fixed-size rectangindows.

Area-based methods present several limitations. Firstly, the window musigeeenough to
include sufficient intensity variations. Secondly, it is implicitly assumed that tb@ eovered
by the window is not significantly distorted between the two images; if the scdmbitax
rapid depth variations, this may require to use small dimension windows. Thagicusly a

trade-off between maximising the intensity variations and minimising the dispariitioais

when choosing the window shape and size. A number of adaptive algonthiols are able to
adjust automatically the window to the intensity and disparity patterns have begospd [79,
56]. These technigues have been reported to improve significantly thesteaction, however
matching remains difficult in the case of poorly textured surfaces or nowotsnodjects. In
addition, the underlying assumption of area-based methods is that cordésg points have
similar intensities in the two images. This requires that: i) the intensity of the lighttefle
by object surface varies slowly with respect to the direction of viewing, &)ilumination

conditions do not vary significantly between the acquisition of the two imagekjiiq the
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Figure 5.1: lllustration of the epipolar geometry. The basel{g,C'.) intersects the image planes in
two epipolese; ande,.. Given an image poinp, in the left image, its corresponding poipt in the

right image is constrained to lie on a line passing througteihipolee,. and called epipolar line.

baseline (distance separating the two cameras centres) is small with resfleetdistance

from the surface observed.

Feature-based metho@sldress some of the previous limitations by considering distinguished
image primitives which present the advantage of being more stable under illionirzand
view-point changes than image windows. While the earliest implementation estrécted
to small baseline (see [46]), more recently a new class of algorithms forlveigeline stereo
have emerged [11, 113, 143, 94, 158]. The advantage of matchingsreaparated by a wide
baseline is that it enables more accurate subsequent triangulation. afllnefeconsidered by
these methods are selected for their invariance properties with respecspeptive foreshort-
ening and illumination variations. A variety of features have been considérey are defined
for example by corners [11], segments formed by pairs of cornef3,[thadrangles delim-
ited by edges [113] or regions driven by the local extremal properfidsedntensity function
[94, 158]. Each feature being attributed some descriptors charaaggitisinvariance proper-
ties, the matching problem consists in finding pairs of features which minimisppaoiate
metric in the space of descriptors. Most methods try to minimise the Mahalanotzinadis
however it has been shown in [94] that more robust metrics can be epadidOne disadvan-
tage of feature-based techniques, compared to area-based teshisdhat they provide only

a sparse reconstruction of the scene.
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Epipolar geometry

Finding a correspondence would be a very time consuming task if everg gitxgl or feature
in the second image has to be checked for correspondence. Fortuttegedyexists a simple
geometric constraint which enables to restrict the search to a single line;otssraint is
called theepipolar constrainf46, 154, 72]. Theepipolar geometrys illustrated in Fig. 5.1.
In a nutshell, the epipolar geometry imposes that the two optical centres ahalahmage
points in correspondence must be coplanar (so that the two incoming lighintersect in a
3D point); the plane thus defined is called gpipolar plane Given one point in an image,
this forces the corresponding point to lie on the image line defined by thednti&ns of the
epipolar plane with the image plane of the other camera. Mathematically, the egjpotaetry
is encoded in a matrix called tfiendamental matri¥ which satisfies the equatian Fzy =

0 for any pair of image points; and x» in correspondence. In the latter equatidrz,
represents the equation of the epipolar line corresponding to the imagerppor whichxz,
is constrained to lie. In practice, once the fundamental matrix has been esijthetesearch
for correspondences can be simplified further by applying a preliminanyimgaof the images

such that conjugate epipolar lines are horizontal; this process is cadigfication[57].

The fundamental matrix has rank 2, it has therefore seven degreesedbm (9 entries mi-
nus one degree of freedom for the scale factor and another defgireedom because of the
rank 2 constraint), and can be computed from a minimum of seven poieispamdences [72].
Many methods for fundamental matrix estimation have been proposed amnd agyiew with
comparative evaluation can be found in [174]. The eight-point algoriBhremains a popu-
lar algorithm for estimating the fundamental matrix because of its simplicity (it is Nreeat
because it performs nearly as well as more complex algorithms involvindgjmeer-minimisa-
tion if appropriate normalisation is carried out [67, 174, 98]. The estimafitmedundamental
matrix and the matching problem are intimately related: the fundamental matrixesgaint
correspondences, however point correspondences are @oadthy the fundamental matrix.
Robust technigues based for example on Random Sample ConsendNSARA[52] have
been considered to solve automatically the problem [147]. With such ted®)ithe set of pu-
tative correspondences can be re-assessed at each iterationrito@sgure consistency with

the fundamental matrix estimate. It should be mentioned that in the case whéngritisc
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parameters of the camera have been calibrated, image points can besedpnesamera coor-
dinates, rather than image coordinates, in which case the fundamental masxatparticular

form and is called thessential matrixt [91].

Finally, the epipolar geometry constraint is by far the most commonly usedraorisn stereo
vision; however there exists a number of other geometric constraints wéaichecconsidered.
These include: continuity, uniqueness, ordering, disparity gradiersti@ntsetc The reader

interested in these constraints is referred for example to [46].

Reconstruction problem

Once image points have been matched, the reconstruction problem réalitessecting pairs
of rays defined by the backprojection of points in correspondends.pfbcedure is calletti-
angulation This task can be carried out unambiguously in the case of fully calibrateém s,
because image points and the camera projection matrices define uniquelydpatingys that
must be intersected. This is however not the case when the camerastaléy alibrated or
uncalibrated. In particular it has been shown that the camera projectioicesadnd therefore
the 3D structure of the scene can be recovered only up to an arbitraryrgiriiansformation
in the case where only the intrinsic camera parameters are known [9llyarpto an arbitrary

projective transformation in the case of uncalibrated cameras [65].

Even for calibrated cameras, given two camera matrices and some paoggpmmdences, the
backprojected rays will generally not meet perfectly in 3D space beazfiesrors in the local-
isation of the matched image points and estimation of the epipolar geometry. Farabomr
it is convenient to reformulate the triangulation problem in terms of minimisation @fpan
propriate cost function. This cost function must be invariant to the clagsiesformations
characterising the ambiguity in the reconstruction in order to provide meatirggiults [71].
For example, although computation of the mid-point of the common perpendioldath rays,
or computation of an optimum solution to a system of linear equations as in [@8]pbovide
valid results in the case of fully calibrated cameras or cameras with knowrsiatgarameters,
these methods are not suitable for the case of uncalibrated camerasisFeation, Hartley
and Sturm proposed an analytical solution, unaffected by projectimsftnanation of the in-

put data, which minimises the sum of squared distances between image poictngrghte
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epipolar lines in each image [71].

5.2.2 N-view geometry

The accuracy of the reconstruction can naturally be improved by coimgjde larger number
of overlapping views of the scene, thus providing more powerful disamaltign constraints.
In particular, it has been shown that algebraic representations analégahe fundamental
matrix in the two-view case can be defined for three and four views; thegmee are called
respectivelytrifocal [68, 148] andquadrifocal[149, 69]tensors With the fundamental ma-
trix, they provide very powerful tools for scene reconstruction, bseahey encapsulate the
multilinear matching constraints arising in two, three or four views, into a singlebedic
object. Unfortunately, there exist no generalisation of these tensors ® timam four views
[149]. In many applications, a much larger number of views is considénecgfore different
reconstruction techniques must be adopted. One of the main challengaggsbathen is how

to ensure consistency of the correspondences and reconstructicahrithhges.

Multi-baseline approaches

Okutomi and Kanade have proposed a multi-baseline approach which ie bl correspon-
dences using an arbitrary number of views separated by a lateral dispat, thus eliminating
the need for subsequent consistency enforcement [105]. The maiisithet, if the search for
correspondences is expressed in terms of scene depth estimationif@aleuly its inverse)
rather than the disparity for each pixel in a reference image, then the raezfstorrelation
can be extended to multiple frames by summing the SSD computed for each pairgesima
The authors report that the method results in more precise matching becauseabure of
correlation presents a sharper global extremum as more baselineslace athis implemen-
tation is limited to a particular spatial configuration, however it has been shoj01] that it
can be generalised and used successfully with a large number of napeatigmeras. In this
work, they use a set of 51 cameras mounted on a geodesic dome of 5-metetest. They
first produce an initial reconstruction for each group of 3 to 6 neigtibgicameras with a

modified version of the multiple-baseline algorithm presented in [105]; thensdauctions is
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then merged into a consistent model by using a volumetric integration method. Gumlins
posed a different technique, which can cope with a more general camefiguration [35].

In this approach, the matching problem, which was expressed so far in tige ispace, is
reformulated in the 3D space. Matching is carried out by sweeping a pldhe 8D space and
backprojecting all image features into this plane. Counts resulting from alld@rfeajures are
accumulated and used to estimate the likelihood of a 3D feature being presachecell in

the plane. Contrary to [105], the computational cost is linear in the numleagfes, however

it produces only a sparse reconstruction based on detected edges.

Structure from motion

The reconstruction of the scene from correspondences establistuesd anultiple images ob-
tained by moving a camera is callsttucture from motion The most general approach to
determine structure from motion lsundle adjustmenfl52], which consists in estimating
the projection matrices and the 3D points which minimise the reprojection erroredeif
Eq. (2.12). This approach gives a Maximum Likelihood (ML) estimate in tise cd additive
Gaussian image noise, however its solution requires a large-scale minimiseitvemié¢h there
is no direct solution and a starting point must be provided [72]. In theafeae affine camera,
Tomasi and Kanade developed a factorisation algorithm which has thatadea of involving

only linear equations and provides a ML affine reconstruction [146].

The approach has been generalised to projective cameras by SturB9]n [lhe algorithm
iterates between estimation of some homogeneous scale factors for each aimagenol per-
forming a factorisation similar to [146] for the given scaling factors. Thisgsahe problem of
the choice of the initialisation, and also the convergence properties of tlagveealgorithm

are not clear. In addition, the algorithm no longer provides a ML estimate indkis. A general
drawback of factorisation methods [146, 139] is that they assume all @m&multaneously
visible in all images, which is usually not the case because features camé&demporarily
occluded. There exist many other structure from motion algorithms (ses&onple [106]); in
particular, we can distinguish betwelatch algorithmswhich process all images at the same
time, andsequential algorithmsvhich update the structure and motion whenever a new frame

is added to the sequence.
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Many approaches do not solve the correspondence and recdigstiproblems independently,
but combine them into an iterative algorithm [14, 53, 110]. In these appesa correspon-
dence and reconstruction are first solved for sub-groups of imageghich there exists mul-
tilinear matching constraints which can be computed directly, then the resultsfered by
enforcing a consistency constraint within all sub-groups. For exanm]&4], image pairs or
image triplets defined by consecutive frames are used to track and matchgnmagiees and
produce sequentially a reconstruction of the scene. In [53], image trggletsiso considered,
however the sequential approach is replaced by a hierarchicalagbpvehere structure and
motion are estimated first for each image triplet, which are then registered rgequences
and finally into the entire sequence of images; registration is done by estim&lihgro-
graphies which maximise the overlap between reconstructions. This apppoasents the
advantage of distributing the errors optimally across the sequence of imadé40], Polle-
feyset al. propose an alternative approach where two images are chosendmned and
define the initial structure and motion, which is then updated every time a newis/eded.
Hartley and Zisserman discuss the possible strategies for obtaining an ixtialstruction in
[72]. They recommend to terminate any reconstruction with a global minimisatiprusteg
bundle adjustment. It should be mentioned finally that the techniques preseftection 2.3.6

are particularly useful for upgrading the final reconstruction fronjgmtive to metric.

5.3 Volumetric methods

Volumetric methods eliminate some of the limitations inherent to conventional stereo tec
nigues by reasoning directly in 3D. In particular, volumetric techniques elteiha necessity

to extract features or to have textured objects that can be matched edsilyhdse techniques
can cope with arbitrary camera positiong, it is not necessary to impose a small baseline
between images. With such techniques, the 3D space is usually restrictedtodiny box
enclosing the scene to reconstruct and is discretised into small elementsveadédsl The
reconstruction problem can then be expressed in terms of classifyingxkeésvnto different
states according to their properties, for example transparent (emptpaque (full). We dis-
tinguish two main classes of volumetric methods depending on the cue usedrtthanféD

information: shape from silhouettendshape from photo-consistendmn additional review of
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volumetric methods can be found in [124].

5.3.1 Shape from silhouettes

The main idea of this class of methods is that the result of the segmentation abjbetipn
of an object from the background defines a 2D shape, cal@lthauette which backprojects
into a cone tangent to the 3D object. The volume resulting from the intersedtibe oones
generated by all images defines an approximate reconstruction of threedbebject. The first
implementation is due to Martin and Aggarwal. In [93], they apply simple thregiplech-
nigques followed by a connected-component analysis in order to extecibflect silhouette.
They represent the scene by what they call a volume segment reateseand consists of a

set of line segments parallel to one axis.

Other implementations have considered a voxel representation basette®g 140, 59]. With
these methods the 3D space is discretised into elementary volume elements@adlisdl he
reconstruction task consists in labelling voxels as either opaque or transplepending on
whether they belong to the scene objects or not. A memory-efficient exgedion is obtained
using octrees. The reconstruction starts at a coarse resolution withxelsviaitialised as
opaque. Each voxel is projected into each image, and depending on iti®thoadthin the
silhouettes, the voxels are either labelled opaque, transparent or anmbigunbiguous voxels
are processed recursively at finer levels until all voxels have bkeessiftied or the required
level of accuracy has been obtained. In [140], for example, the bisjptaced on a turntable
which is used to generate the multiple views required for reconstructioncarera has been
precalibrated and the turntable indexed so that the projection matrix is kreovaach view.
It has been shown in [59] that a reconstruction can be obtained froalibrated cameras. In
this paper, the authors use two cameras pointing at approximatively orthlogioections to
define a projective sampling of 3D space. They relate each novel vievese tivo views by
computing the corresponding trifocal tensor, which is used to projectiatetmine the state

of each voxel. As in [140], a hierarchical coarse-to-fine apprdeded on octrees is adopted.

The previous approaches used a regular discretisation of the 3D. spack representations
are rather simple to implement, however they are computationally expensivinendack

precision because of the quantisation effect [22]. With such technibigisaccuracy can be



5.3. Wolumetric methods 103

obtained only at the cost of adopting a high-resolution discretisation cespdich increases
significantly the run-time. This trade-off is overcome in [22] by adopting eagislar grid. The
irregular grid consists of tetrahedrons defined by applying Delaunaygtriation on sample
points belonging to the object surface. A final reconstruction is obtaigegkiracting the

surface of the visual hull.

The main limitations of volumetric techniques based on silhouette intersection aeeii)-th
ability to reconstruct concavities (unless the camera can be placed nezbjéloe inside the
concavity, which is usually not the case) and also ii) the necessity to be abbgmoent the
object from its background. In [84], Laurentini studies these ambigudtidsproposes the term
visual hullto define the best reconstruction obtainable by volume intersection technitjue
visual hull inferred by a given number of images may not always be sedlim the convex hull
of the object, depending on the object geometry and camera configurdttwesver it is guar-
anteed to contain the object, thus providing an upper bound for recotistru§egmentation
can be done for example by blue screen technique (chroma keying)) végaires a special
laboratory setting to ensure that the object is surrounded by a unifarkglmind with a given
colour not appearing on the foreground object. This poses a probltéma dbject contains a

similar colour. Alternatively, background subtraction techniques carohbsidered (see.g.

[140]). These require controlled lighting condition and can suffer fetvadow effects.

Figure 5.2: lllustration of the different reconstructions obtaineddape from silhouettes (a) and shape
from colour-consistency (b) in the case of a simple objedalenaf two red and green triangles. In both
cases the reconstruction is done from three cameras loattbé position<, C, andC’3, and the

model obtained is represented by the union of the object Aadhatched area. Shape from colour-
consistency produces a more accurate reconstruction tizgre rom silhouettes because it exploits the

additional colour information contained in the scene.
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5.3.2 Shape from photo-consistency

Contrary to shape from silhouette techniques which considered only adgidaersion of the
images obtained by segmentation, shape from photo-consistency techeipleit the full
photometric information contained in the images by introducing the notion of cotmsis-
tency [119] also callegphoto-consistenciB2]. A shape is said to bphoto-consistentvith a
set of images if, for each image in which a surface point is visible, the regliEaving this
point is equal to the radiance measured at the corresponding pixel., dtnsistent voxels
can be assumed to be surface voxels and attributed the colour of thetimoge whereas in-
consistent voxels can be assumed to correspond to empty space andreforéhbe removed
from the volume (see Fig. 5.2(b)). Starting with a 3D space with all voxelsnasg opaque
and applying the consistency test in order to carve away inconsistegisuaxtil all the visible
voxels are colour-consistent leads to a reconstruction of the scenistamt with all the im-
ages. In analogy with the visual hull [84], Kutulakos and Seitz called tsereeonstruction
obtainable, which is consistent with the set of all the source imagephthte-hull[82]. Such
a reconstruction is a more accurate approximation of the object geometrththaisual hull
because photo-consistency allows the reconstruction of concavitiesewdresufficient texture

information is present on the object surface.

The determination of the visibility of the voxels is a fundamental problem. In tkeifir-
plementation using colour-consistency, called Voxel Coloring [119], Seitk Dyer define a
constraint on the positions of the cameras calleddtdinal Visibility Constraintwhich allows
the voxel space to be topologically sorted according to the distance frooatheras. Their
approach guarantees that occluding voxels are visited before odolodels and thus allows
a reconstruction via a single pass through this space. Their approdtihbieng but restricted
to objects located outside the convex hull defined by the camera centredakas and Seitz
eliminate this limitation by proposing a multi-pass extension of Voxel Coloring c&feate
Carving [82]. In their implementation, they carry out near-to-far scans similar to tieei
Voxel Coloring, but repeated along each axis of the 3D referenoeefia both positive and
negative direction, considering at each time only the cameras which amnirofrthe moving
plane for consistency evaluation. Their approach allows arbitrary @apusitions, but it is not

optimal because it considers only a subset of the images for consistedagtéon, which may
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lead to a failure to carve voxels inconsistent with the entire set of camerasmsistent with

subsets of images.

Culbertsonet al. address this problem by processing only the voxels whose visibility has
changed at each iteration, until convergence [37]. Their approads ® an optimal solution
in the sense it is consistent with all images, but requires the use of compkestdactures
to compute the exact visibility of the voxels. In addition, it exhibits large run-tingetu
40 min) compared to Voxel Coloring (a few seconds or minutes). Alterngtitsertet al.
[44] proposed a multi-hypothesis technique. In a first step, colourthgges are assigned to
each voxel based on their projection in the set of images. In a second/sigs located at
the surface of the volume are checked and hypotheses inconsistent witbsitaie removed.
Voxels with no hypotheses remaining are carved away from the volume.pideedure is
iterated until no further hypotheses can be removed, at which point teeran only voxels
having a single hypothesis, which belong to the object surface and @efegmnstruction of

the object [44].

Almost all methods based on photo-consistency are based on the simplifgnmption that
the scene is Lambertian [119, 82, 37, 44, the reflectance of a surface point is the same in
all the directions. The advantage of making this assumption is that considtesya very
simple form because consistent voxels are expected to have the sameicaach image.
Under such an assumption consistency can be evaluated by simple thireglobltie standard
deviation of the set of projection colours [119, 82, 37, 44]. Theresaveral limitations to this
thresholding approach. Firstly, the choice of the threshold affectstljitbe results obtained.
A low threshold is very selective, and there is a risk to carve consisteefs;owvhile a high
threshold may keep inconsistent voxels in the reconstruction. Slaledaghelax this assump-
tion in [126] by using an adaptive threshold, however this still requiresitiee to pre-define
some thresholds. In other work, the hard limits imposed by a threshold havereplaced
by some probabilistic measures of consistency [23, 16, 171]. Secamdiynore importantly,
the Lambertian assumption is valid only for a restricted class of objects; nadsihjects are
not Lambertian and are likely to be very poorly reconstructed with the pus\atgorithms. A
method able to deal with specular highlights has been proposed in [17®mM&thod assumes
that the light reflected by a surface is only modulated by the incident lightpifmgiicing a set

of colours which are collinear in the colour space when the viewing direivaried. Under
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this framework, photo-consistent voxels can be detected by evaluatirgplifreearity of the

set of projection colours in the RGB space (a Lambertian surface poriddo the limit case
where the line segment is restricted to a point). The method is able to recorstitaader
class of objects than the previous methods, however it relies on the assuthptidghe scene
is illuminated by light sources which have the same colour, and also the sumiadel is still

limited to a certain class of objects. Bonfort and Sturm propose another dfeth@construct-
ing specular surfaces where consistency is determined in terms of thisteanyg of the set of
normals computed at each voxel [17]. The method is however restrictegrédy specular

surfaces and requires the use of a calibrated pattern during readitstru

A number of extensions to the previous algorithms have been propos¢tildh Prock and
Dyer propose methods for improving the performance of voxel colodiggrsghms. In partic-
ular, they show that the computation of the projection of voxels in images captimised by
using hardware texture mapping. They also propose a coarse-t@finreagh based on an oc-
tree to optimise memory usage and processing time, which is normally an issue hitretac
methods. In [125], it is shown that the voxel space can be warped tdiaitdrdomain thus
allowing the reconstruction of objects located far away from the camenaglhas the back-
ground. One limitation of the methods reviewed so far is that they all rely orstengption of
accurately calibrated cameras; errors in calibration result in errorgrojection of voxels in
the images, which in turn corrupt the photo-consistency measure. Intordédress this prob-
lem, Kutulakos proposes to define photo-consistency up to specific imagéotmaations that
they callsuffle transformationf81]. Saito and Kanade tackle the problem of reconstruction
with uncalibrated cameras in [116]. As in [59], they select two views whegecameras are
approximately pointing at orthogonal directions and are related by theidafaental matrix,
in order to define a projective grid. They compute the projection of voxelssing the funda-
mental matrices relating novel views to the initial two views. Another extensiorsoged in

[39] for modelling scenes containing transparent objects.

5.4 Photometric methods

In contrast with previous methods which exploited the displacement of imagerés due

to camera motion relatively to the object in order to reconstruct the geometheddcene,
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photometric methods infer 3D information from the radiance measured atimacfe pixel
under different illumination conditions. With these methods the scene is viewedsingle
camera. If we assume for simplicity that the camera is orthographic and & goints
(z,y, z) project to pixel§x, y) in the image, the reconstruction problem consists in assigning
a depthz = f(z,y) to each image point (this is easily generalised to projective cameras), thus
producing a %D reconstruction. Typically, rather than direct depth estimation the problem is
formulated in terms of the estimation of surface gradignt;) or surface normalp, ¢, —1) T,

wherep andq are defined by:

of (z,y)

B of (z,y)
P= "5 '

o (5.1)

and ¢ =

Once the gradient has been estimated at each surface point, depth removered by inte-
gration (see for example [145]). In order to be integrable, it is usualbgssary to enforce
the integrability constraint which guarantees that the mixed second pariiatilees are equal
(see for example [55]). It can be observed that photometric methoddblréoareconstruct
only a surface patch where each point can be modelled by a surfadd hgigtion f. In the

case of more complex objects for which a full 3D model is needed, it may beseary to

reconstruct several surface patches and merge them together.

5.4.1 Shape from shading

A single image provides only one constraint on the radiance at each imagehuwever there
are two unknowng andgq to estimate at each image point. This is clearly an ill-posed problem.
It has been shown however that it is still possible to produce a recotistitby imposing
some additional constraints, for example on the smoothnegs &uch methods are called
shape from shadingnd are due originally to Horn (see for example [75]). They are usually
computationally intensive and lack robustness due to the necessity of icitngdtonstraint

in order to regularise the problem. A review of shape from shading mettardbe found in
[172].
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5.4.2 Photometric stereo

Photometric stereo considers several images obtained by varying the illuminatite scene
while keeping the camera at a fixed position. Unlike shape from shadingyrgbtem is well-
posed and does not require to impose additional constraints. The iddasvagroduced by
Woodham in [167]. In photometric stereo, the relation between the image iigtansl the
surface gradient representedigandg, for given illumination conditions, is usually modelled
by a reflectance map. With the knowledge of the reflectance map, each irafigesdone
equation in the two unknowns andgq for each pixel. These equation are usually non-linear
and therefore a unique solution cannot be guaranteed with only two viewthe case of a
Lambertian surface, these equations become linear when expresseespittrto the unit
surface normal at each pixel [167], and a linear solution can be coohfota three images or
more using least square techniques. Because three views or more |eadveraonstrained
system of equations, it is possible to recover additional information suttteadbedo at each
surface point in the case of Lambertian surfaces. In comparison witkentanal stereo meth-
ods which work well on rough surfaces with discontinuities in surfacentateon, or textured
surfaces with varying reflectance, photometric stereo is more efficieneioabe of smooth

surfaces with few discontinuities and uniform properties [167].

The implementation of photometric stereo is very simple in the case of Lambertiacesr
however such surfaces are not representative of most reatssarftkeuchi proposed an algo-
rithm for the reconstruction of specular surfaces [76]. The methodinex)to replace point
sources by area sources in order to be able to avoid localised specsitdrdiecould not be
measured otherwise. The previous method is however limited to purely spe®ilanirror
like, surfaces. In order to model a wider variety of surfaces, more onpflectance models
have been considered [102, 141]. In [102], a method is presentatidaeconstruction of
surfaces with hybrid reflectance models which are a combination of Lambariid specular
models. The method does not require any prior knowledge of the relataregth of Lamber-
tian and specular components, and is able to estimate surface normal atfteaistbectance
parameters at each surface point. However it requires a large nurnimeages in order to
provide a sufficiently dense sampling of the photometric function. Alterngtifegare and

de Figueiredo have considered a class of reflectance maps eali@oed reflectance mayie
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model real surfaces [141].

Unfortunately, a formal reflectance model is not applicable for all sedaln [168], Woodham
measures empirically the reflectance properties of the surface. Thetarfie map is stored
in a look-up table built by observing a calibration sphere made of the sameiahatethe
object to reconstruct. This approach is able to model arbitrary typesrfafces, however
the surface reconstructed must be made of the same material as the calibbgicn have
constant albedo, and both objects must be illuminated and viewed under aleoticlitions.
In this work, Woodham also considered the use of multi-spectral imageslér to acquire
simultaneously all images. He uses three light sources equipped with eed, @md blue filters
to illuminate the scene which is captured with a 3CCD camera. In [32], photonsétrieo
has been generalised to colour images and showed to result in moretagea@struction
compared to grey-level images because of the larger number of cotsprimided by colour

information.

So far the previous methods all considered light sources with known pusitiio [ 73], Hayakawa
proposed a method which does not require amyiori information about the light source po-
sitions and strengths. The algorithm uses Singular Value Decompaosition) (®\Rctorise
the matrix containing the image intensities for each frame into two componentsselatam
respectively surface and light-source information; the method is similar toattterfsation
method employed for structure from motion in [146]. The method is able to conspuf@Ece
normals, surface reflectance, light direction and light source intengityeMer, there exists an
ambiguity in the reconstruction, which is represented by an arbitrary inleestik 3 matrix.
Hayakawa resolved the ambiguity by imposing an additional constraint éecsueflectance
or light-source intensity. Belhumeaet al. characterise the ambiguity in the case of continuous
Lambertian surfaces [15]. They show in this case that# f(x,y) is the true surface, any
surfacez’ = A\ f(z,y) + px + vy with A, u, andv real numbersX # 0) is an equally valid re-
construction; they call this ambiguous transformation a generalised lefstt@ansformation.
In the case where the surface albedo is constant or known in advaniég|l light sources
have the same intensity, they show that the ambiguity reduces to a sign ambiguaitit 6m-
biguity), which can be resolved by considering shadows (if presentiintages). Drbohlav
andSara showed in [42] that the general ambiguity reduces to a two degreeealidim group

of transformation in the case where the surface reflectance is the surhashlzertian and
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specular component.

One limitation of photometric stereo is that it is based on a local shading m@adet,assumed
that the radiance at a surface patch is due only to the light internally gedextesources. Such
a model is inaccurate because it ignores inter-reflection effeetslight generated by the
reflection on other surface patches, or cast shadows, which argyledthl phenomena. In
[103], Nayaret al. proposed a method able to deal with these effects. They start by gegeratin
a reconstruction using photometric stereo without taking into account ieflections, and then
iteratively update the reconstruction by including the inter-reflectionsymed by the current
reconstruction, until convergence. The approach is however limitechtincimus surfaces and
assumes a Lambertian surface model. In [168], it is showed that theomstrained system of
equation defined by at least three images of a surface with constant @iépedbe used to form
a confidence estimate. The confidence estimate measures the deviationdrimmatrmodel
and can be attributed to global phenomena such as inter-reflectiong shadsws which are
not explained by the latter model. This provides a convenient mechanistetecting such

phenomena which corrupt the reconstruction.

5.5 Helmholtz Stereopsis

In contrast with previous methods which assumed the surface refleatértbe object re-
constructed to be known in advance or to follow a particular parametric mblééiholtz
Stereopsis (HS) is able to reconstruct arbitrary surfaces, without malkin assumption on
their surface properties. The reflectance properties of a surfacaeasured by theBidirec-
tional Reflectance Distribution Function (BRDRyhich is defined as the ratio of the outgoing
radiance to the incident irradiance at a given surface point [104fexp®its the symmetry of
the BRDF with respect to the incoming and outgoing directions, which is knewtebnholtz
reciprocity. This principle states thahe BRDF at a surface point remains unchanged when
the viewpoint and the light source are interchangdthe universality of this principle makes
HS very attractive for reconstruction of surfaces - the only assumptiate nsathat there are
no inter-reflections. The idea of using Helmholtz reciprocity in computer viishappeared
in [92], and was later on implemented in [177, 178]. The method requiresmiarazand a point

light source whose positions can be interchanged, thus producingaegipairs of images.
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The constraint derived enables estimation of the depth and normal ape&tiof a virtual
camera sampling the 3D space from a minimum of three reciprocal pairs of snegen for
different camera and light source configurations. This is only a nagessndition for points
to be in correspondence, therefore the authors imposed an additionathsress constraint
which assumes the scene is made locally of fronto-parallel planes. We lirméloes to a gen-
eral description of the method for now; a more detailed description of thmaliggorithm as

well as further developments will be presented in later chapters.
HS presents a number of advantages compared to other reconstructiniguesh namely
[178]:

e It does not assume any model for the BRDF,

e It provides both depth and normal information, thus combining the advatagmon-

ventional and photometric stereo,
e Itis unaffected by lack of texture (unlike conventional stereo),

e It simplifies the detection of discontinuities (normally problematic with other teclasigu
because shadowed and half occluded regions are in corresporaleaciprocal pairs of

images.

The following assumptions are implicit in HS:

There are no self-occlusions,

There are no self-shadows,

e There are no inter-reflections,

The surface is locally smooth so that it can be represented locally byrameéeplane,

The BRDF is uniform over the area sampled by a camera pixel.

The original implementation of HS considered calibrated cameras and soditis assump-
tion has been relaxed in [179] where a novel matching constraint basétklonholtz reci-

procity is derived in the case of uncalibrated cameras and light souittesnknown strengths
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and positions. The only assumption remaining is that the radiometric respufribescameras
are linear and equal and that the light sources are isotropic. Thestegciion obtained by
enforcing this constraint presents a projective ambiguity, which candmévesl in a stratified
manner by imposing additional geometric or photometric self-calibration camistrahe au-
thors investigate the special case where the distance from the scenedorias and sources
is large with respect to the scene relief. They show that in this case thenpétoiminformation
allows the additional computation of the surface normals and the strengthranticsh of the
light sources up to an arbitrary invertible transformation. They also wbskat in this case the
camera can be accurately modelled by an affine model, which allows redo€tioem ambigu-
ity in the reconstruction and all other previously computed information up tokamary affine
transformation, provided there is a minimum of four observed points andcéneras/sources

pairs considered. The upgrade to metric follows from standard selfratidib techniques.

Other work showed that reconstruction is possible using HS with a singlepegciprocal
images [156, 180]. In [156], Tu and Mendoncga reformulated thenstcaction problem in
terms of finding an optimum path along epipolar lines using dynamic programmimgcdst
function minimised is derived from the Helmholtz reciprocity constraint and iefbee inde-
pendent of the surface BRDF, which makes the method applicable with aayfyqurfaces.
In addition, the cost function considered includes normal information, winiposes tighter
constraints on the reconstruction than conventional dense stere@eapgsdased on dynamic
programming. In another binocular implementation [180], Zicldeml. observed that the
Helmholtz reciprocity constraint defines a first-order non-linear partfédrdntial equation
in the point coordinates and their first-order derivatives, for whicly firevide a solution in
the simplified case of distant cameras and light sources, under scaledraghic projection
camera models. Their implementation proceeds in two steps. They first conigudeeach
epipolar line a one-parameter family of solutions which is indexed by the cbhbaepth at the
end-points of each line, and then impose a smoothness criterion acrogskeliiges in order

to select the correct solution for each epipolar line.

Janlo et al. [78] addressed the problem of radiometric calibration of the Helmholtz stereo
setup. The radiometric calibration is necessary to compensate for theniformity of the
radiometric camera responses and the anisotropy of the light sourceg.sfibw that in the

case of HS, it is sufficient to calibrate the ratio of the radiance due to threesouer the pixel
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sensitivity at each pixel in each image, and propose a method to compute/dhesse from a
minimum of two reciprocal pairs of images of an arbitrary planar surfabey Teport improve-
ments by an order of magnitude in the surface normal estimation when radiooatitoiation
is performed. Other extensions of HS have been proposed in the cohtexfistration of 3D

models to a pair of reciprocal images [157] and computer graphics [121].

5.6 Conclusions

We have encountered very diverse image based object reconstrngationiques. These tech-
niques can be classified for example according to the cue used to infef@Mation. For this
reason, these techniques are grouped under the general catégbgpe from Xechniques,
where X represents the cue used for reconstruction. In convensterab, the main cue used
is the disparity; volumetric methods have considered silhouettes or phosgstorty, while
photometric methods are based on illumination or shading, and HS on Helmhahzocéty.
We concentrated on the most popular techniques, however it is worth miegttbat the list of
cues that can be used for reconstruction is not limited to these technigtires t€zhniques are
for example shape from focus/defocus, shape from texture, ape $ttan zoom. In addition,

itis possible to combine different cues thus producing more efficienheagction techniques.

Another way to look at the reconstruction problem is to consider the classj@fts to which
the methods are applicable. It appears that the Lambertian assumptiondmpradt in com-
puter vision because of its simplicity. It is at the basis of conventional stechmiques as well
as shape from photo-consistency. Even though the reconstructionref geoeral surfaces
has been considered, in particular in the context of photometric steree, itiethods remain
restricted to a certain class of surfaces following an assumed model whfoh reflectance
properties have been measured in advance. Shape from silhouettesiscep&on, however it
has been observed that the reconstruction obtained by this method is limited/tsuhlehull,

which is usually a coarse representation of the object. HS is anothertiexcep

What is the best reconstruction technique? This depends on the equigvaédable, the time
constraints (should the system be real-time?), the required degreauch@gor flexibility,etc

If accuracy is the main concern however, it seems a good idea that thee @fdhe method
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should be driven by the surface properties of the objects that we wastdostruct, because
deviations of the real surface properties from the model assumed bgdbiestruction method
will inevitably result in inaccuracies in the reconstruction of the scene gegniecause one
of our objectives is to improve the accuracy of the reconstruction of theavidass of objects

possible, the rest of this thesis will concentrate on reconstruction using HS



Chapter 6

Minimising a radiometric distance for
accurate surface reconstruction with

Helmholtz Stereopsis

6.1 Introduction

In the previous chapter, we reviewed the main image-based object teaion techniques.
We observed that Helmholtz Stereopsis (HS) possesses some uniquedediich make the
technique applicable to a wider class of objects than other techniques. th#pter and the
following, we continue the development of this technique, and proposenééerof improve-

ments and extensions aimed at improving the accuracy of the 3D model génerate

In this chapter, we concentrate on improving the accuracy of the sunfateal estimation
from a set of image correspondences using HS. As in most reconstrietibniques, two
fundamental problems can be distinguished: abeespondencand thereconstructiorprob-

lems. In the case of HS, the principle of Helmholtz reciprocity has been agplfednulate a
matching constraint which is independent of the surface properties objbet reconstructed.
An appropriate minimisation of this constraint results in a set of correspaedean sets of
images, from which the depth and the surface normal can be recondtriibiereconstruction

of the normal, in particular, is of high importance because it has been gdverless affected
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by the smoothness assumptions made during reconstruction, compared épthestimate
[177, 178]. For this reason, the final reconstruction is usually obtdnoedthe integration of

the normal field. Previous implementations of HS were limited to a linear leastesgs@mate

obtained from Singular Value Decomposition (SVD) for the surface noesiihation. While

the reconstruction problem appears as a more straightforward probtapaced to the match-
ing problem, in particular in the case of surfaces with arbitrary unknowiasel reflectance
properties, it remains however an essential part of the reconstructionigeie and affects di-
rectly the final geometry of the reconstruction, and should thereforbenaeglected. In this
chapter, we carry out a deeper analysis of the normal reconstructiblem. In particular, af-
ter observing that the linear least squares solution minimises an algebrancédistae propose

an optimum solution based on a novatliometricdistance.

Linear algorithms have been extensively used in computer vision to solveegnat problems
such as camera calibration or scene reconstruction [72, 48]. Thdseigees proceed by
defining a set of linear equations for which a solution is easily computedatite, there exists
no exact solution because all measurements are corrupted by noisfotbem approximate
solution is found by minimising an appropriate cost function. In the case drlisystems of
equations, the solution is usually found by least squares techniquesribnelefined by such
a system of linear equations is sometimes called "algebraic” because it mehsu far the
linear equations are from being satisfied in a purely mathematical senseaudapalgorithm
for solving such problems is, for example, the Singular Value Decompos#dD) algorithm
[112]. The reason why these algorithms are so popular is that thereahigtar (and therefore
unigue) solution and that this solution is usually computationally cheaper to d¢ertiyan with
more complicated methods. However one major criticism of such methods is tlzdgeieaic

distance usually lacks a physical meaning or interpretation.

Hartley [67, 70] and more recently Izquierdo and Guerra [77] andlyse reasons for the
poor performance of the method minimising algebraic distances. Hartley dhtbatethe poor
performance can be attributed to the lack of numerical consideration whengsthe system,
more precisely to the poor conditioning of the set of equations resultingtfremoise contam-
inating the input data. He observes that a major cause for the poor coimitimithe system
of equations is the lack of homogeneity in the input data, and proposes a sionplalisation

scheme based on translation and scaling of the input data in order toatiirgsoblem. The
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concept of normalisation was originally introduced in the case of the computatithe fun-
damental matrix via the eight-point algorithm [67], and was later generalisgttiéo problems
such as camera calibration or estimation of the trifocal tensor [70]. Alteatgtizquierdo and
Guerra considered another class of normalisation transformationsaibfimiiagonal matrices
in order to improve the conditioning of the system - this presents some similaritiesheith
standard technique of rescaling rows and/or columns of the equation mesdxilaed in [60].
They also show that another cause of instability is the linear dependehegdrethe rows
of the equation matrix. In the same line of research, a variety of estimationiqeelsnrhave
been developed and applied to improve the solution of various problems inut@myision
[80, 98, 85, 100, 99, 30, 31]. In all these works, normalisation has lshown to improve

greatly the accuracy of the parameters estimated.

In spite of the improvement due to normalisation, methods minimising an algebraiuodistee
not as accurate as methods minimising a physically and statistically meaningfalcgis&he
choice of the optimum distance is motivated by the type of measurements involsdtba
they are affected by noise. For example, in geometric problems such asaazatilration, ho-
mography estimation, fundamental matrix estimation or structure from motion, taacks
minimised are naturally geometric distances. A popular choice of cost funotibase cases is
the reprojection error, which measures the distance between measuranetiieir reprojec-
tion [67, 70]. In the case of surface normal estimation using HS, thespmnelence problem is
assumed solved already, therefore the measurements affected byredise pixel intensities
or radiance values at the matched points, and an optimum distance musirdhbeetlefined in
the space of radiances. In this thesis | develop a novel distance calleditbmetric distance
It measures the modification to be made in each image in order to satisfy exaddglthkoltz
reciprocity constraint at the point considered,; this yields a Maximum Liketih®IL) surface
normal estimate under standard Gaussian image noise conditions. The mdiradiage of
considering such distances, rather than algebraic ones, is that nan+m@misation tech-
niques are usually required to compute the solution. Non-linear minimisationigeesnare
iterative and usually not as stable as linear techniques, in particular wlkaegeanumber of
variables is optimised. Fortunately, in the case of the defined radiometric aistdre total
number of variables to optimise can be reduced to only two, in which case téosatan be

computed at extremely low computational cost.
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The chapter is structured as follows. We start by giving a brief overeieldS and describe
the conventional linear least square solution for surface normal estimatemefer to this
solution as thalgebraicsolution. We then define a nowaldiometricdistance in Section 6.3.
In the following section, we observe that an extension is required in dodeupport image
saturations. Finally, we give some results and compare algebraic andgnetdo solutions

with both synthetic and real data, before concluding the chapter.

6.2 Overview of Helmholtz Stereopsis

Consider the configurations of object, light source and camera whidhesteated in Fig. 6.1.
O, andO, are two points in space arXl is a point on a surface. We denotedyy= || O; — X ||
andd, = ||O,—X|| the distance from the poin@; andO, respectively to the surface poiXi,
and definey; = dil(Ol — X)) andv, = diT(OT — X)), which represent the unit vectors pointing
from the surface poinX to O; andO.. respectively. The surface normal &t is given by the
unit vectorn. The Bidirectional Reflectance Distribution Function (BRO®)X , u, v) of the
surface pointX is by definition the ratio of the outgoing radiance along the directido the
incident irradiance along the directian If we position an isotropic light source of intensity
atO; and a camera &, the pixel intensity 7, observed by the camera is:

vr-n

iy = f(XavlavT’)

If the positions of the light source and the camera are now interchdrgednalogous formula

is obtained for the radiandg observed by the camera at position:

v N

ip = f(X, v, ) 2

K. (6.2)

The two images observed by such cameras form what is known as aoipair. The
Helmholtz reciprocity principle imposes th#t X, v;,v,) = f(X,v,,v;). Denotings; =

d—évl ands, = d%vT, Eqg. (6.1) and Eq. (6.2) can be combined to form the constraint [178]:
1 T

(i18; —irsy) M =0. (6.3)

We adopt the convention that the pixel intensity equals the scene radaremufvalently that they are propor-
tional). This is usually a reasonable assumption for high quality caméitis. ot the case, radiometric calibration

can be performed in order to meet this requirement.
Note that the same light source with the same intensiiy used.
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(b)

Figure 6.1: A reciprocal pair of images. The position and orientatiothefcamera and light source are

interchanged.

Two such constraints provided by two reciprocal pairs are sufficiesbitopute the surface
normal. If more constraints (one per reciprocal pair of images) are bigila is possible
to define a multi-ocular matching constraint and thereby estimate both the depthsefrface
point and its normal [92, 177, 178]. The remarkable feature of thist@insis that it uses only
a non-parametric property of the BRDF (Helmholtz reciprocity) and doemage any use of
the actual BRDF values, thus enabling the reconstruction of objects wiitinaaylunknown
surface properties. The implementation of this constraint is discussed ifs detide rest of
this section. We start by a general description of the algorithm, and thenliieseparately

how the correspondence and the reconstruction problems are solvedermetails.

6.2.1 Algorithm summary

HS requires to define a sampling of the 3D space around the object ofsinterg177, 178],
the authors introduced a virtual camera in the scene in order to define sarhpling. Equiv-
alently, the 3D space can be discretised regularly into voxels as in the foatbeovolumetric
methods. This is effectively equivalent to the sampling proposed by [iI78],in the case of
an orthographic virtual camera. The bounding box of the volume thusedifimust be chosen

large enough to contain the object to reconstruct. The concept is illusinafagl 6.2.

Like most volumetric methods, HS reasons directly in 3D in order to establishspmmdences.

In the case of HS, correspondences are found by hypothesisingaimat voxel contains an
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Figure 6.2: lllustration of the HS reconstruction algorithm. The 3D @pas discretised into voxels.
Voxels are hypothesised to contain an object surface paimd, we use the distributions of vectors
w = i;8; — 1,8, tO test the validity of this assumption at each voxel. We shewexamples. The blue
voxel, which does not contain any surface point, yields aloam distribution of vectorsv, while the
red voxel, which contains a surface point, results in a sebpfanar vectors. This defines a method

to identify surface points and also compute the surface abatrsuch points.

object surface, and then testing the validity of the hypothesis based oistitieLdion of vectors
w = i;8; — 1,8, defined in Eq. (6.3) by each reciprocal pairs of images at the giveel vbx
a nutshell, voxels containing a surface point are expected to prodwgdamar distribution of
vectorsw, while voxels which do not contain any surface points are likely to yield doan
distribution of vectorav. The mechanism for discriminating surface from non-surface voxels

is described in more details in Section 6.2.2.

Once surface voxels have been identified, this defines effectively @ smage point corre-
spondences. For each surface voxel, the surface normal candhdartiified by finding the
normal to the distribution of vectors. We refer to this part of the algorithm as the reconstruc-

tion problem and describe it in details in Section 6.2.3.

6.2.2 Correspondence problem

In the case of HS, the standard solution to the correspondence prdfedi’[7, 178] is based

on SVD. We summarise it below. W > 3 constraints defined in Eg. (6.3) (one for each
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reciprocal pair) are stacked into a matrix, we obtain

(ih S, — Iry Sry )T

(il2 Si, — Ury STQ)T

Wn =0 with W = . (6.4)

B (Zlnsln - irn STn)T

The main idea is to look at the distribution of row vectord/fnin order to establish whether
or not the point considered is a surface point. If the intensities use@fstricting the matrix
W come from a point which is located on a surface, these vectors are aoplath the matrix
W is expected to be of rank 2. If the point is not part of an object surfdeerows of the
matrix W are likely to be random ant/ to be of rank 3. This is the ideal case. In practice,
the problem is more complex because the measurements are corruptedhndithe rank 2
constraint is never going to be satisfied, in a purely mathematical sensefaatespoints. For

this reason, an alternative measure of rank has been proposed.

After applying SO W can be written:

01

W =UDV' withD = oo andoy > 09 > 03 > 0. (6.5)

03

The support measure is defined in terms of the second and third singlias¥a andos of
W by
03

s=1——. (6.6)

02

A similar measure has been used in previous work [92, 177, 178]. Theumedefined in
Eq. (6.6) is strictly equivalent to the measure defined in [92, 177, 1A8]has the advantage
of normalising the value between 0 and 1, a value close to 1 correspondinligth chance

of the point being located on a surface. The general idea is that the dblhemn vectors
from the orthogonal matri¥ represent the three principal directions of an ellipsoid, and the
corresponding singular values, o, andos represent the strength along each axis. As such,
ideally at a surface point the ellipsoid should be flat,o5 should be zero. In practice, because
of noise, the system has always rank 3 and we use the ratio defined(®.&qo measure the

non-flatness of the ellipsoide. how close numerically the matri¥/ is from being rank 2.
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It is important to mention that Helmholtz reciprocity gives only a necessargition for a cor-
respondence to exist. This is not a sufficient conditions. One way oliwag this ambiguity is
to impose an additional constraint on the surface. In[92, 177, 17&sibben assumed that the
surface is locally constant. In this case the support measiuge measure of rank, is averaged
over a rectangular window of fixed size centred at the point of interestre§pondences are
found by finding the window which maximises this value. In previous implementgtibhas
been assumed that the surface to reconstruct% surface. Thus the search for correspon-
dences is equivalent to finding the optimum depth (or elevation) along eattbal direction.

In practice, the support measure is computed at the centre of eachofdkelgrid, and only
the one which maximises the support measure along each vertical line is detBypéally the
local depth constancy assumption results in a low resolution reconstruétarthis reason,
the depth value is used only as a means to solve the correspondenceprélviere accurate
estimate of the geometry is obtained from the computation of the normal, whichashshes

next.

6.2.3 Reconstruction problem

Given some correspondences, previous approaches [92, 18]/have estimated the normal

n at each point as the column vector Bf corresponding to the smallest eigenvalue, from
the SVD of W expressed in Eq. (6.5). At this stage, no additional smoothness conhsrain
required, therefore the normalis computed only from the intensity values at the projection
of the point considered.€. no windowing was applied). It has been observed in [92, 177, 178]
that the normal estimate thus obtained is a more accurate estimate of the objeetrgeban

the depth value obtained when solving the correspondence problemticufzarit preserves
better the high frequency content of the surface variations (up to tmeaheampling). This is
attributed to the fact that no assumption was made about the local surtgoe ishthis case.
As in photometric methods, integration of the normal field has been used andhef ¢he

reconstruction to compute an accurate 3D model of the object.

It can be shown (see for example [67]) that the solution obtained frol S\Mthe vectorn

which minimises

IW - n|®> = [(i,s1, — ir;sr,) - n]*  subjecttoljn|| = 1. (6.7)
J



6.3. Surface reconstruction based on a radiometric distance 123

This cost function can be re-written in the form

Z dalg(n7 ilj ) iT‘ja Slj) STJ' )2 ) (68)
J

whered, g denotes the algebraic distance associated with a pair of reciprocal ISR

andz'rj and a normah, which is defined by

dalg(nv Z-l]' ’ iij Sljv STj)2 - [(Z.lj Slj - iT‘j 87’]') ' n]2 . (69)

It can be observed that
d . . 2 — . s 2 2 . 6 10
a|g(n7llj727”j7slj787“j) ||le8lj /LTj STJ‘H COs Oé] 9 ( . )

wherea; denotes the angle between the vec(t@]rsl], — ir,;8y,;) and the surface normai.
cos® aj represents clearly a physical quantity that we would like to minimise, howeeer th
physical meaning of the scaling factpi; s;; — i, sy, |2 is not so obvious. It is possible to
eliminate the influence of this term by normalising the rowd/6fto one, however it may be
the case that the weights introduced by this factor in the cost function defirte. (6.8) play
an important role by attenuating the effect of measurements correspondimgitgensities or
cameras/light sources located far away from the scene point. The efftbds term is not very
clear, and it is not very clear either whether it should be included or netwilV come back
briefly to this problem in the results section. In any case, such a measueth@v normalised
or not) does take into account the nature of the noise contaminating the emasis, and
for this reason cannot be optimum. It has been considered in previaksnaainly for its

simplicity. In the next section, we investigate a novel measure which is optimum.

6.3 Surface reconstruction based on a radiometric distance

6.3.1 Definition of the radiometric distance

Since the fundamental entities observed (and likely to be affected by ramsdhtensities
or equivalently radiances, it seems a natural idea to perform the minimisatewtlylin the

space of radiances. We search for the surface nornaaid the pairs of estimated intensities
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{1, ir, }; which minimise the following cost function:
Z [(%lj — i) + (i, — z‘,,j)Q] subject to(i;, s, — iy, 8r,) =0 Vj. (6.11)
J
Note thats;; ands,; are known in the previous equation because the cameras are calibrated.
This cost function measures the corrections to be made in the intensitieveibgereach
reciprocal pair of images in order to fulBkactlythe constraints in Eg. (6.4). After eliminating
the constraints, the cost function can be written:

. 2
Z [(%lj — %)2 + <jlj -Z%lﬂ' - z;j) ] ) (6.12)

j "

where the variables to optimise areand {%lj }j. This isa priori a complex minimisation

problem involving3 + N unknowns, wheréV is the number of reciprocal pairs of images.

It is shown in appendix E that this minimisation problem can be simplified to thetstarthe

surface normah which minimises the following cost function:

Z (Cit; 80, — iryr,) -] (6.13)

(51, -m)? + (87, - m)?

By analogy with the previous section, we re-write the cost function in tira for

Zdrad(nvilj7i7”j7 Slj7 87‘]')2 b (614)
J

whered,aq denotes the radiometric distance associated with a pair of reciprocal reeesis

i;, andi,; and a normah, which is defined by

(71,81, — ir;8r;) - n]2
drad(m, iy, ir., 81, 8y, )2 = —2 L . (6.15)
ra ( 31 T 2l TJ) (slj .n)2 4 (Srj . n)Q

This is a simple minimisation problem with only two degrees of freeddml|(= 1). A
visibility constraint must also be enforced. This constraint stateadpat > 0 andw,.-n > 0.
Note that this does not take into account self-occlusions. It is possibigdace this constraint
during minimisation of the cost function, however it is simpler and usually seiffi¢o verify
that the visibility constraint is satisfied after convergence of the searohithlgn. Any non-
linear iterative method can be used to carry out the optimisation, such agdompée the
Levenberg-Marquardt (LM) algorithm. The search can be initialisedef@mple with the
results of the SVD solution, or even by choosing an arbitrary normal giatisthe visibility

constraint.
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6.3.2 Comparison with the algebraic distance

From Eqg. (6.9) and Eq. (6.15), it results that for a given reciproaglqf images:

2 1
(s, m)2 4 (s m

drad(n7iljairj; Slj,Srj) )Qdalg(nailj7i7”j7 Slj7 87‘]')2 . (616)

It is difficult to give a simple interpretation of the multiplicative factor relating the twea-
sures. However, it becomes apparent that the discrepancy betveetmoticonstraints is due
only to the positions of the camera and light source relatively to the surface paithicloes
not depend on the surface albedo or reflectance property. This\doesean that the accuracy
of the normal estimation does not depend on the latter properties, it protbaddy however
the relative performance of the two measures does not. In practice, thissmnimiethe two
measures are equivalent for surface patches equidistant fronmaraand light sources and
whose normal bisect all reciprocal pairs. This is approximately the ddsari@ontal surfaces

located at the centre of the turntable in our experimental set up (see Sg&iah

6.3.3 Maximum Likelihood estimate

We now justify statistically the cost function based on the radiometric distaniodvadefined
in Eq. (6.14), and show its minimisation provides a Maximum Likelihood (ML) estirnétiee
surface normal under standard Gaussian noise assumptions. Thestiatiam is similar to

the one given in [72] (pp 86—88) in the case of geometric distance for @apby estimation.

We assume that the intensity measurement error follows a Gaussian distribitti@ero mean

and standard deviation at each pixel, and that these measurements are independent. Under
this assumption, the Probability Density Function (PDF) of each measureirehirpensity

iis:

1 -
P(i) = 5 o 50707 (6.17)

wherei denotes the true intensity at the pixel considered. The true intensity valthesright
image{i,, }; are related to the true intensity values in the left imgge}; by the true surface

normaln, such that

by, = ———1j; . (6.18)
Sp. M

rj
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Therefore the PDF of the measurements given the true surface noramal the true intensity

values{i, }; in the leftimage is:

2
1 e (BT
. - 1“3z {(”j —iy) +<Sr,- s _”"j> }
P({levzm}j‘n’ {llj}j) :HQTI‘UQE ! :

J

(6.19)

We assume that the errors in the determinatios;pland s, are negligible compared to the
intensity measurement error; this is a reasonable assumption if the geomi@iriaticen of the
camera is very accurate, and the surface points can be localisedtelyc(ttas may require a
very dense sampling of the 3D space in practice). If we write the log-likelinwedbtain:
—i—Nlog(L) .
2mo?
(6.20)

The ML estimate of the surface normaland the image intensities in the left ima{j% }; are

J

. . ) 1 ) . Sl . n_. . 2
log P({i1;,ir; }j|m, {i1; }5) = ~5,2 g [(le — zl].)2 + (s 2 S zrj>
. T
J

the values which maximise this log-likelihood. As for the normal estimation, this isagut

to minimising the cost function defined in Eq. (6.12).

6.4 Treatment of image saturation

It has been mentioned earlier that one of the outstanding features of Hf iisdbes not make
any assumption about the surface reflectance properties of the olgecul&ities, which are
traditionally problematic with the majority of image-based reconstruction algorithtnaby
become features which help resolve the matching problem in the case of el®rtheless,
from a practical point of view, it is not always possible to capture altsfzities due to the
limited range of the camera sensor. This may result in some saturations of ghénpexsity
measured, which corrupts the constraints because the intensities cedsalemot the ones
physically expected. So far, very little attention has been given to this pnobfenong all
publications in the field of HS, only Tu and Mendonga reported a solutiod%@][in the
case of a binocular implementation. We propose a similar treatment of imagetisatima
the multi-ocular case, and adapt consequently the radiometric distanceddeéiflier. Even
though image saturation is usually a relatively localised phenomenon in the ihagmred

it can result in some artefacts in the reconstruction.
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The idea is very simple. When a saturation is observed in a reciprocalfpaiages (usually
the saturation is observed simultaneously in both images at reciprocal pgsiiomeans
that the normal approximately bisects the incident and emerging rays. Wesexjis by the
constraint:

(vi—v,) - n=0. (6.21)

This constraint replaces Eq. (6.3) when saturation is observed. Inabé the appropriate
rows of W in Eq. (6.4) must be replaced kg, — v,)". As for the radiometric constraint
defined in Eq. (6.15), it must be replaced by:
2
S S
drad(M, i1, iy, 81, Sp, )2 = [(7 - J) -n] . (6.22)
R T T sl [ls i
This distance is similar to the cost function defined by Tu and Mendonc¢é] jt the case

of binocular HS.

6.5 Results

6.5.1 Synthetic data

The aim of the experiment is to compare the accuracy of the methods baskgtbraie and
radiometric distances, for surface normal estimation. In order to testthesmy of the surface
normal estimation independently of the correspondence problem, it is adshateorrespon-
dences are known in advance. Two implementations are considered fdgéteaic distance.
The first defines rows for the matri¥/ as stated in Eq. (6.5) and is calladnormalised al-
gebraig while the second implementation normalises the rows to unit values and is called
normalised algebraicThe issue of normalisation has been discussed earlier when treating the

reconstruction problem.

A planar and uniform surface patch with ground truth normak generated randomlyN
pairs of pointsO; andO,. are generated randomly; they defiNereciprocal pairs of images
(here radiance values) of the surface patch. The points are coestitaitbe located on the
same side of the patch such that the visibility constraint is satisfied for alfroeailpairs. The
distance from the points to the patch is also selected randomly within the interMah where

e = 1073 m, in order to avoid the configuration where the camera or light source ietboa
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the surface point. In the implementation, the random positions are obtainedneyaging
points with random spherical coordinatesé, ¢) in the respective intervals, 1], [0, 7 /2] rad
and|0, 2x] rad; in this parametrisation, 6 and¢ denote respectively the radial, azimuth, and
zenith coordinates. The radiance values generated are perturbedfoymean Gaussian noise

with standard deviation. The strength of the light source is constant and equal-to1, 000.

The BRDF of the surface patch has been modeled by the modified Phoactaefie model
which is described in [87, 83]. It consists of the sum of a diffuse padtaspecular part. We

follow the formalism adopted in [83], and define:

1 2
Fukae (X, 01,0,) = ki + k=" cos™ ar, (6.23)
e s 2w

wherea denotes the angle between the perfect specular reflective directiagheederging
direction. This model has three parameterst; and ks, which represent respectively the
specular exponent (large values results in sharper specular reflctioe diffuse reflectivity
and the specular reflectivity. We considered two different settings.fil$teone corresponds
to the valuesn = 40, k; = 0.4 andk; = 0.05, while the second one corresponds to the
valuesn = 1, k; = 1 andks = 0. The second settings corresponds to a Lambertian model.
The advantage of this model over the original model described in [108&isttls physically
plausible,.e., it produces BRDF values which do not violate the laws of physics, in jpdatic
the reciprocity principle on which HS is based. More complex physicalebasmdels such
as the Torrance and Sparrow model [36] could have been consideiegever we found it
sufficient to limit ourselves to this model. There are two main reasons for doisgFirstly,
the Phong model is the most commonly used shader in computer graphicsid§edchas
been observed from Eg. (6.16) that the discrepancy between the ti@oads is not related to
the BRDF, therefore in theory the relative performance of the two methaalgiscted to be

similar regardless of the choice of BRDF model.

Two sets of experiments were carried out. In the first set, we considexdarfumber of 10 re-
ciprocal pairs of images selected randomly as described earlier, antheastandard deviation
of the noise added to the measured radiance between 0 and 5, in ordelytthstinfluence of
the noise level. The experiment is repeated 10,000 times, and the Root Meare® (RMS)
angular error between the estimated normal and the true normal is compugézetfomethod.

The RMS angular error between the set of estimated normaland true normals;; is de-
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Figure 6.3: Influence of the standard deviation of the Gaussian additiage noise on the accuracy

of the normal reconstruction. 10 pairs of reciprocal imagiesowere considered in all experiments. (a)

shows the results in the case of a Lambertian surface, wihjleqnsiders a Phong reflectance model

with parameterg,; = 0.4, k; = 0.05 andn = 40. RMS values computed from 10,000 experiments.
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Figure 6.4: Influence of the number of reciprocal image pairs considerethe accuracy of the normal

reconstruction. The standard deviation of the Gaussiaitiaglinage noise is = 5 in all experiments.

(a) shows the results in the case of a Lambertian surfacée @hiconsiders a Phong reflectance model

with parameterg,; = 0.4, k; = 0.05 andn = 40. RMS values computed from 10,000 experiments.
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fined by \/% >i 0, 0(nig, Mij)?, whered(n;;, nij) denotes the angles between the vectors
n;; andn;;. The results can be found in Fig. 6.3. In the second set of experimeatspise
level is constant and equal o= 5, and the number of reciprocal pairs considered is allowed
to vary between 3 (minimum number supported by the method) and 20. Agairpberaent

is repeated 10,000 times, and the Root Mean Squared (RMS) angulabetneen the esti-
mated normal and the true normal is computed for each method. The resulis aumd in
Fig. 6.4. It appears that in both cases, the method based on the radions#icd is much
more accurate than the methods based on the algebraic distance. The maringiemen-
tation of the method based on the algebraic distance seems to be slightly morgetivan
the unnormalised version, however the improvement is not very signifidéuet fact that the
method based on the radiometric distance is the most accurate does not Gsw@sse. It

is supported by the fact that this method corresponds to the ML estimator.

6.5.2 Real data

The experimental setup (see illustration in Fig. 6.5) consists of a camera,t adigite and
a turn-table which performs the interchange of camera and light sousittops. The cam-
era and light source are positioned symmetrically with respect to the axigatioro of the
turntable, such that rotating the turntable by 188 equivalent to interchanging camera and
light source positions. Inaccuracies in the positioning typically introduceeserrors in the
measurements because the pairs of images acquired do not corregpotigl ® reciprocal
configurations. A 12 bit digital camera Vosskuhler CCD-1300 equippgda25 mm lens was
used along with a halogen lamp equipped with a diaphragm and acting as égidisburce.
The resolution of the images produced by the camei8d x 1280 pixels. The distance be-
tween the camera and the centre of the table is approximately 80 cm and thealist@neen
the camera and the light source 60 cm. The geometric calibration of the caeetamwied out
by grabbing three images of the same planar calibration grid translated by knorements,
thus forming a 3D calibration object. A standard calibration method based bn f8Wowed
by lens distortion calibration, has been used. We did not consider monessoated methods
such as the ones described in the first part of the thesis because afticalar experimental

setup constraints.
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Figure 6.5: Experimental setup used for reconstruction.

Experiments were carried out with four different objects: a snooki(lbig. 6.7), two types
of teapots (Fig. 6.8 and 6.9) and a doll (Fig. 6.10). The first three objests specular sur-
faces, while the last object seems to be approximately Lambertian. Thesteaion proce-
dure is the same for each object. Eight reciprocal pairs of images aesaget by rotating
the turntable by regule?2.5° increments. A set of images is shown for one of the objects in
Fig. 6.6. A bounding box is defined for each object, in order to restricdehech for correspon-
dences. The bounding box is discretised into square voxels of resalutiomx 1 mmx 1 mm
in the case of the snooker ball and the doll, &xdm x 2 mm x 2 mm for the teapots which
are larger. The size of the window used during depth search is sexto pixels for all ob-
jects. In addition, some thresholding of the input images has been dorre ppedcessing in
order to eliminate the background. Such segmentation is rather crude asuhi/unot able
to eliminate all background pixels; this is not a problem because the remaioiimg pvill be

discarded automatically during reconstruction if they produce inconsisteasurements.

HS outputs two cues which can be used for reconstruction: the depth emdtimal at each
surface point. The depth map is shown in (b) of each figure; points aresamed with a

brightness proportional to the scene depth. The depth maps seemligenagiher noisy and
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left

right
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right

Figure 6.6: The eight reciprocal pairs of images considered in the cB8embject 'Teapot 1'.
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(b)

Figure 6.7: Reconstruction of the object 'Snooker ball’. (a) shows ohthe input images. (b) repre-

sents the depth map, (c) the normal field and (d) the suppasune. (e) shows the 3D model obtained

from integration of the normal field. (f) shows the same madéh mapped texture.
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inaccurate. This is due to the fact that the matching constraint provided bgingpdelmholtz
reciprocity defines only a necessary condition for finding correspoces. Even though a
smoothness constraint has been enforced by maximising the supportrensasumed over a
5 x 5 window during depth search, this is not always sufficient to resolve tdtadlambiguity.
The use of larger windows would have resulted in less noisy depth maghidutould penalise
the reconstruction of sharper surface variations, because of theales\fittering effect of the
smoothing. There is obviously a trade-off between filtering out the noidepegserving the
surface variations. A needle map representation of the normal field ia givée) of each
figure. The normal was computed by minimising the cost function based omdiemetric
distance. It can be observed that the normal field seems to have meeesurface variations
better than the depth map. This is because no smoothness assumption hambeext this
stage. Naturally the normal field will be chosen as the main cue for inferrsmg@Ehmodels of

the objects.

Before presenting the final 3D models, a last intermediate result useftgdonstruction is
presented in (d) of each figure. The result in question is the suppodumeassociated with
each normal. The support measure defined in Eq. (6.6) takes valueselpe®rvand 1, the
value of 1 representing the highest level of confidence. As expeitteal) be observed that
points located on the object surface are associated with high supporiraégeasry close to
1), while background points have a very low support measure (close fddde that the low
support measure for the background is due to the threshold imposed éariiey background
segmentation. From a theoretical point of view, background points cailddonstructed
by the algorithm, and it may not be necessary to eliminate them. The problem ihéhat
exist many occlusions/self-shadows at the vicinity of the object, which coatplaonsiderably
the reconstruction process. Even though methods for the detection losiots have been
reported to be applicable in this case [178], this is not so straightforwanthgtement in
practice, and no implementation has yet been reported in the literature. Thetellgjoz is to
produce a 3D model of the object. Such a model is obtained by integratior abtimal field
using the method reported in [145]. In our implementation, the support meass treated
as a confidence value for each normal, and was used to weight théadésdawrmal during
integration. The 3D model obtained is shown in (e) of each figure. (fvshtbhe same 3D

model mapped with the texture from one of the input images.
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(©) (d)

(e) ®

Figure 6.8: Reconstruction of the object 'Teapot 1'. (a) shows one ofitjpeit images. (b) represents
the depth map, (c) the normal field and (d) the support meageyrehows the 3D model obtained from

integration of the normal field. (f) shows the same model wiipped texture.
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(b)

(e) )

Figure 6.9: Reconstruction of the object 'Teapot 2'. (a) shows one ofitipeit images. (b) represents
the depth map, (c) the normal field and (d) the support meagerehows the 3D model obtained from

integration of the normal field. (f) shows the same model witpped texture.
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Experiments were carried out with both the algebraic and radiometric distaHogvever, the
gualitative comparison carried out (in particular on the snooker ball fachvthe shape is
knowna priori) did not show any immediately visible improvement due to the use of the radio-
metric distance. For this reason, only results with the radiometric method hewmedmorted
here. It would have been interesting to measure quantitatively the improvedi@mned by
considering the radiometric constraint, however no ground truth was bleafiar that. We
believe that the similarity of performance of the two measures is due to the tiestiitcam-
era and light source placements relatively to the object which are imposed byjkrimental
setup. Indeed, given the relatively small size of the objects compared thsth@ce separat-
ing them from the camera and light source, this distance can be consaeegproximately
constant. Also, because of the visibility constraint imposed, there is not saage for inci-
dent and emerging angle variations. The constancy of these terms metnethatltiplicative
factors appearing in Eq. (6.16) do not exhibit large variations whicmatly penalise the alge-
braic distance. It results that for this particular set-up, the algebraicaamometric distances
are nearly equivalent. The benefit of using the radiometric distance é®gto be larger for

setups allowing more flexibility in camera and light source placements.

The first three objects are particularly challenging to reconstruct Bedha surfaces are highly
specular. HS seems to be performing very well on these objects as well the cimpler
Lambertian object. The reconstruction appears very smooth and visualgctoOnly a few
very small artefacts are visible at the location of the specularities for thethinese objects
(visible in the depth map, the normal field and also to a lesser extent in the DBrzicglel).
These are caused by saturations due to specularities which are noaliEehbas expected in
theory, and introduce a slight bias in the surface normal estimate. Thedegtesaturations
observed are due to the fact that the point light source assumption isaxdtyesatisfied in
practice, and also because the surface is not an ideal speculatoreftetror surface). The
phenomenon remains very localised however, and does not affgatweh the reconstruction
because saturation does not usually occur simultaneously in all redigraics (except for

horizontal surfaces located on the axis of rotation of the turntable).

One limitation of our implementation is that the reconstruction is restricted to objdates
which are simultaneously visible in all reciprocal pairs of images. For exaroplg the top

part of the snooker ball has been reconstructed, also the handle tdabets appear as a
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I

(d)

Figure 6.10: Reconstruction of the object 'Doll’. (a) shows one of theuhpnages. (b) represents the

depth map, (c) the normal field and (d) the support measupesh@vs the 3D model obtained from

integration of the normal field. (f) shows the same model witipped texture.
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separate components not connected to the rest of the reconstructiens frtainly attributed
to our experimental setup which does not allow arbitrary camera and lightesplacements.
A more flexible implementation would allow more general camera and light solacerpents.
The problem with such an implementation is that there exist many occlusionsothapicthe
reconstruction, and an efficient mechanism to discard them is needésl carhdone rather
simply by observing that a point is occluded in one image if it is in a shadowesliarthe
reciprocal image, therefore occlusion detection is simplified to shadowtidetedn such an
implementation, any point visible in at least three reciprocal pairs of images{thimum
requirement to compute the support measure) could be reconstructeldy, Rinan be noticed
in the reconstruction of the doll, that some outliers are present at the @lgjectary. These
are due to some occlusions. These may have been eliminated if a more effankgtound
segmentation had been applied, or alternatively if a segmentation had beged oat later on
on support measure values (it can be observed that outliers havedopgort measure than

surface points).

6.6 Conclusions

In this chapter, we concentrated on the reconstruction problem in theot&$®. A novel
method for surface normal reconstruction has been presented. Thedngthased on the
minimisation of a cost function which consists of squared radiometric distauresied over
all reciprocal pair of images in which the surface is visible. Physically, ds¢ function rep-
resents the modification to be applied to the intensities of the projection of eyéaets in
order to satisfy exactly the Helmholtz reciprocity principle. The normal fdmthis method
has been shown to be a ML estimate under standard Gaussian assumptibra &ilution
can be computed at low computational cost because of the small numbdimoisagion vari-
ables involved. The case of image saturations due to specularities hasatscdnsidered and

successfully integrated in our reconstruction algorithm.

In the case of synthetic data, it has been verified experimentally that tieeneitic cost func-
tion results in a significant improvement in the accuracy of the normal estimatiopared to
the algebraic method based on SVD. Experiments carried out with realluateed that the

method is able to produce realistic 3D models of a variety of objects which areredifficult
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to reconstruct because of their surface properties, however theviempemt resulting from the
use of the method has not been quantified because of the absenceirnd ¢math for these

objects.

The radiometric distance offers an optimum solution to the surface normal @stinpaob-

lem, however the correspondence problem still relies on the use of aigabiution provided
by SVD. While it appears to be sufficiently accurate, we believe that thestsescope for
improvement in solving the correspondence problem in a more efficientenaamd hope our

work on surface normal estimation will inspire the development of similar methdtsifield.



Chapter 7

Generalisation of Helmholtz Stereopsis

to rough and textured surfaces

7.1 Introduction

We continue the work on Helmholtz Stereopsis (HS). In this chapter, weeatnate on extend-
ing the class of surfaces to which the method is applicable. More specifis@lgeneralise
the method to the reconstruction of textured and rough surfaces. All imptatizers of HS

presented so far [92, 177, 178, 179, 156, 180] considered thastaction of smooth uniform
surfaces. This was also the case of the objects reconstructed in timugrelvapter of this the-
sis. In reality, however, many objects do not satisfy this assumption. Wegligntwo main

classes of common objects which violate this assumption: i) rough objextdocally non-

convex) and ii) textured objects. We argue that the standard versio® aftich constructs
constraints based on single pixel measurements in images can fail on gects olm the case
of textured surfaces, the violation is due to the high frequency variatibttesurface scat-
tering properties which cannot be captured by the finite sensor elemarite tase of rough
surfaces, the constraint is corrupted by inter-reflections occurritignithe non-convex geom-
etry of the surface. In both cases, the reasons for the violation of tietraint are intimately

related to the definition of the Bidirectional Reflectance Distribution FunctiGt)B).

This chapter is structured as follows. We start by analysing the phys@asbns for the failure

141
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of the standard HS constraint on both types of surfaces. Then a matebd which is able
to produce correct unbiased constraints for both types of surfageepssed - the definition
is supported by recent work in the field of physics and remote sensiiginiportant to note
that the solution proposed here addresses only the problem of locatéfiesations which are
encountered for example in rough objects. Global inter-reflections ceur @t a large scale
and are usually very difficult to take into consideration. This is validatedsomple test object.
Then the implementation in the context of HS is presented. Finally some experimesutids

with real objects are presented, as well as a comparison with the stan8amthich uses raw

pixel measurements.

7.2 Problem with rough and strongly textured surfaces

In this section, we explain and illustrate on elementary examples that the HBabonhde-
fined in Eq. (6.3) is affected by the presence of texture and inter-tieftscoccurring in rough

surfaces when single pixel measurements are used to construct it.

7.2.1 Original Helmholtz Stereopsis constraint formulaton

The HS constraint expressed in Eq. (6.3), results directly from theromifp of the BRDF (see
derivation in previous chapter). Therefore the question of the validityeofonstraint concerns
actually the validity of the reciprocity of the BRDF associated with the intensity areagents.

In order to clarify this aspect, it is necessary to go back to the originalitefi of the BRDF.

The BRDF was originally defined by Nicodemeisal. in [104] as a means of characterising the
geometric reflecting properties of a surface. Let us consider a supfaintx, (see Fig. 7.1).
In order to avoid dealing with microscopic representations, which complicaisiderably
the parametrisation of the problem, the surface is represented locally bgrarmee plane.
It is assumed that a relatively large arda of the surface is illuminated along the direction
represented by the vectoy by a well collimated beam with uniform irradiandé?; (v;), and
that the pointe, is located well within the ared;. Let us denote by L, (x,, v,) the resulting
radiance reflected at the poimt. in the direction represented by the vecigr Because of

some physical phenomena occurring at the surface of the material, tlamaadmanating
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from this point can be considered as the sum of contributions of elemeatsafocated in the
neighbourhood of the point, - unless the surface is perfectly smooth and opaque in which
case only the point,. contributes. In order to take into account these phenomena, thelarea
is chosen large enough such that all points susceptible to contribute tdfldwtas radiance
dL,(x,,v,) areincluded. The Bidirectional Reflectance Distribution Function (BRDfer
defined as the ratio of the outgoing radiance to the incoming irradiaece,

dLr (wm 'Ur)

4B, (v1) (7.1)

fv-(wra Uy, 177-) =

It is clear from the definition that this is a purely theoretical concept invghniinitesimal
elements which cannot be measured in reality. In particular, the reflectethca should be

confined within a solid angle element, if exact BRDF measurements were to lge mad

Figure 7.1: Reflectance geometry for theoretical definition of BRDF.

In practice, a major source of limitation is due to the resolution of the sensercditsequence
is that radiance measurements are actually average values of the rasheacating from the
surface area corresponding to the projection of the sensor elemerii(s&.2). If we denote
by A, the area of the projection of the sensor element obsetwinonto the surface (actually
its reference plane), the actual BRDF measured can be expressednatithdy as:

feanaafn v v,) — A dmen L@ o) ALy (@, v,)
Sensol Ty Yy Y1) — dEl(er) — dEZ(,U’J ,

(7.2)

where the bar symbol over a variable denotes its mean value. In the pd¥®wonstraint

formulated in Eq. (6.3), the image brightness measured at single pixel lcs@imhdenoted



144 Chapter 7. Generalisation of Helmholtz Stereopsis to rough and texturfadesir

by i; or i,, actually correspond to such average valdés(x,,v,). In the case of smooth
uniform (.e. non-textured at the scale of observation) surfaces, the scatteripgrpes of
the surface can be considered statistically uniform and isotropic acreseférence plane.
It results that the reflected radiandé, (x,, v, ) is approximately constant over the arda
covered by the sensor, and therefdi®, (., v,) ~ dL,(x,,v,). Thus in the case of such
surfaces, Helmholtz reciprocity is satisfied and the constraint in Eq. (6v8)ics We explain

next the reasons why this is usually not the case with rough or texturect®bje

Figure 7.2: Reflectance geometry for BRDF measurement with a finite gine@ element.

7.2.2 Textured surfaces

The notion of texture is related to the scale of observation; for exampleet sheaper is
usually considered non-textured at macroscale, although it is texturex @dserved at a mi-
croscopic scale. Here we refer to textured surfaces as surfadels appear textured at the
scale of observation. At this scale, such surfaces usually have st#liistica-uniform prop-
erties. This poses some problems when carrying out single pixel measuscbeeause the
portions of the surface covered by the pixel projections vary as theraacthanges its position
and orientation in space. Practically this means that it is not possible at tleds@arry out
statistically meaningful measurements of the surface radiance emanatingp&smface. This
is illustrated on a simple example in Fig. 7.3. Suppose for simplicity that the swisezved
is Lambertian and the variable surface albedis either O (shown in black) or 1 (shown in

white). A camera in a position according to Fig. 7.3(b) perceives a paalhefiop = 1 while
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a camera in configuration according to Fig. 7.3(a) wouldsee 1/3. The configurations in
Fig. 7.3(a) and Fig. 7.3(b) are in reciprocal positions yet yield diffeabgerved intensities,

hence the principle of reciprocity, at the pixel scale, is violated.

X X

(a) (b)

Figure 7.3: lllustration of the failure of reciprocity in the case of taxed surfaces. The portion of the
surface viewed by a finite size sensor element depends orathera position and orientation. This

results in non-reciprocal measurements.

7.2.3 Rough Surfaces

So far, it has been implicitly assumed that surfaces reflect the light conaingthre light source
directly into the camera. This is known asoaal shading modegb4] (p 77). Even though this
is not the most accurate model of the physics of light reflection, this pewiidient in the case
of smooth convex objects. Concave surfaces require a significantly coorglex description
because the light emitted by a light source may be reflected several timestiface to

surface before reaching the camera. This phenomenon is dalézereflection It can occur

a priori with any surface presenting some concavities. We consider an importastafla
surfaces accommodating such phenomena: rough surfaces. Sfadesuare microscopically

non-convex and usually present strong inter-reflections.

Let us illustrate the problem on the simple non-convex scene depicted in.&igTfle scene
consists of two planar patches, one of which (denotedb)yis a perfect mirror. We consider

a camera and a light source and acquire a reciprocal pair of intensityureeznts. If we
firstignore the mirror, the intensity andi, measured are reciprocal (we assume the surface is

non-textured and therefore reciprocity holds). If we now introducertineor into the scene, an
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inter-reflection occurs. It can be observed that this inter-reflectiotribates to the intensity
i; observed in the left image (see Fig. 7.4(a)), whereas it does not adetti the intensity
i, observed in the right image because the ray from the interreflectionegdlbh camera
at a different pixel (see Fig. 7.4(b)). Therefore, the measuremeataalonger reciprocal
because of the inter-reflections. It should be noted that it was nossegehere to consider
measurements over finite extent sensor elements in order to prove theaworocity of the
measurements. In practice, the averaging of BRDF over the area etisgrthe sensor would
show a similar effect, unless the size of the concavity is smaller than the dremdad by
the sensor, in which case all inter-reflections would be captured by tisersend reciprocity

would be maintained.

(b)

Figure 7.4: lllustration of the failure of reciprocity in the case of noonvex surfaces. The patch
denoted byM is a perfect mirror. The solid line represents the opticéh pallowed by the ray of light
responsible for the formation of the image of the pa¥t if the mirror is not taken into account. The
dashed line represents an inter-reflection caused by ttadimttion of the mirror into the scene. The
inter-reflection contributes only to the image Xf by the left camera in this case because the inter-
reflection in the right image is measured at a different piaetl reciprocity becomes violated. Similar

effects occur in rough surfaces.

7.3 Novel Helmholtz Stereopsis constraint for rough and textured

surfaces

In this section, we formulate a novel HS constraint which does not siuéfer the limitations

of the previous one, and demonstrate its validity on a simple test example.
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7.3.1 Definition of the novel Helmholtz Stereopsis constrat

Itis clear from the previous section that the idea of carrying out indaligixel measurements
must be abandoned in the case of textured or rough surfaces. Thiers@ioposed is based
on carrying radiance measurements over extended areas corregpkanithe projection of the
same surface region. Let us denotebya surface region containing the surface patptat
which we would like to measure the reflectance properties. We define thé&BREhe ratio of
the average radiance emanating from this region to the incoming irradiase&(s (7.2)). If
the projection of the regior,. in the left and right images are denoted respectiflgndpP,.,
the average radiances can be approximated by the average pixel insecwitiputed oveP,

in the left image and, in the right image:

1 1
I = — 7y and I, = — i . 7.3
= 5> 73)

Note that by abuse of notation, the same symbols have been used to dgmmes exnd their
areas. The remaining question now is how to chose thedréaorder to guarantee reciprocal

measurements.

In the case of smooth textured surfaces, the new definition guarantg@a®cal measurements
as long as the image regiof®% and P, backproject exactly onto the same surface paich
The proof is straightforward. Every optical path passing through a jpoie surface neigh-
bourhood being reciprocal, the average intensity valyesd I, are also reciprocal because
they correspond to the integration of all paths through the region. Inipeat is not possible
to average the intensity values over areas which correspond strictly tatieearea, because
of the finite resolution of the sensor elements. However, if the size of thraging area is
large enough with respect to the size of the sensor element, the errorttieditute resolution

of the sensor becomes negligible.

In the case of rough surfacase( locally non-convex), it has been proved recently in [128, 129,
130, 41] that such a definition guarantees reciprocity. The macraesifaprough surface can
be represented locally by a reference plane (see Fig. 7.5). The maiofitteaproof is that, if
the surface exhibits a reciprocal behaviour at a microscopic level, tlvan ibe easily shown,
at least within the scope of geometric optics, that any optical path passimgyththe structure

is reciprocal. As a result, after summing all possible paths, our previdimtibe of BRDF is
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reciprocal, up to boundary effects caused by optical paths for whichntident ray enters the
surface outside the patch and leaves inside it (or similarly, when the inc@eernters inside
the point neighbourhood and leaves outside). In practice, the impacuoidary effects can
be decreased by averaging over more extended surface point oeigbbds.

B) 1A
X /

Figure 7.5: A rough surface can be represented locally by a referengee fl@presented here by a

dashed line). An extended neighbourhood is considerederefierence plane (represented by a solid
line). Two optical paths are shown. The p&th) enters and leaves inside the neighbourhood defined.
This is not the case of the optical p&tR), which enters outside of the neighbourhood and leavesansid
it, and therefore contributes to the boundary effects. éfieighbourhood is chosen large enough, the

boundary effects due to local inter-reflections becomeigigdg.

We can therefore define the following HS constraint which is applicable tto teatured and
rough surfaces:

(1s; —Irs;) - m=0. (7.4)

Note that the concept of rough or textured surfaces depends onaleecasavhich the surface
is viewed. For example, a sheet of white paper is a smooth surface at asteler while it
is rough at a microscale. Clearly the averaging region should be adaptieel $oale of the
texture or structure pattern of the surface. We will come back to the probiene choice of
the scale in Section 7.4. Before that, we validate the novel constraint défife). (7.4) on a

simple test object.

7.3.2 Experimental validation

A simple experiment was conducted with a concave object exhibiting strorgraitections.
The object consists of a spherical cap obtained by sectioning a whiteppimgbalt. The

reference plane chosen is the one corresponding to the plane of thénciitis plane, we

1The concavity is not a hemisphere because the plane of the cut dqesssdhrough the centre of the ping-pong
ball.
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consider the poinK located at the centre of the circle defined by the cross section, andechoos
the region bounded by the circle as the extended neighbourhood foothts im this particular
case, there exists no boundary effects, because the scene cdrmidysome concavity, and all

the optical paths entering or exiting the concavity must pass inside the edteaiddbourhood
defined. The outer part of the ping-pong ball is coated with some clay &r ¢ocensure that
there are no transparency effect perturbing the experiment. Note thadlject is locally
smooth, however it exhibits strong inter-reflections at the scale of the wiooleavity. This

test object is very simple however very interesting because it allows us ladeis® single
concavity, and test the new principle on this concavity, without being taifieby boundary

effects. More complex examples of rough surfaces will be seen in the®B8&c5.2.

The objective of the experiment is two-fold. Firstly we would like to show tha¢lpbased
radiance measurements are affected by inter-reflections, secondlpuwie Nie to verify that
even though it is not possible to reconstruct accurately the microstrusittine object (here
the inner part of the ping-pong ball), it is possible to reconstruct the retragiure of the
object (here the orientation of the ping-pong ball section) by considartegsities averaged
over the area covered by the projection of the section in each image. pharegntal set-up
described in Section 6.5.2 of the last chapter was used to acquire redipescs of images
of the object. In total, five different sets were acquired, each se¢gmonding to a different
inclination angles of the ping-pong ball section and containing eight rezappairs of images.
The inclination angle is measured with respect to the vertical direction (seg Blg The
values of the inclination angle considered are given in the first row deTall. We show in

Fig. 7.7 the images corresponding to the case where the inclination angte &°.

Yo oo

¥l

Figure 7.6: Experimental setup for the ping-pong ball section. The redmmof the ball is inclined by

an anglex with respect to the vertical direction
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Figure 7.7: One set of eight reciprocal pairs of images of a ping-pon§deaition (inclination angle

a = 45). The bottom row images are obtained by interchanging tfeitipa of the light source and
camera with respect to the top row image. The outer shell@®f galues is the clay that is holding the

half ping-pong ball and also ensures that there are no taaespy effect perturbing the experiment.

Limitation of the pixel based constraint

We first tried to reconstruct the entire surface of the ball section by eygptiie standard HS
algorithm, which considered point-based intensity measurements. We clecset thf images
corresponding to the smallest inclination an@é ) in order to minimise the occlusions. For
this specific inclination, each point in the concavity is visible in all eight recigirpairs of
images, therefore the whole concavity can be reconstructed. We apmietethod described
in the previous chapter. The results obtained for the depth map, normakfididupport
measure, are shown in Fig. 7.8. Even though all points within the concagigsanciated with
a high support measure, it can be observed that the points located attthra bf the concavity

present large depth and normal errors.

The 3D model obtained by integrating the normal field is shown in Fig. 7.9(aje that we
applied some manual segmentation based on the support measure in orlier cafiback-
ground points which did not present any interest for the experiment. Saefacts are clearly
visible at the bottom of the 3D model. These artefacts are probably due taéfieation ef-
fects which are stronger in the central part of the concavity. For casgrgrthe 3D model
obtained in the case of the snooker ball is given in Fig. 7.9(b). This olgdtaghly similar
except that it is convex instead of concave. The snooker ball daggresent the artefacts
visible in the case of concave surfaces. This experiments suggestseticatigtraint based on

single pixel radiance measurements is corrupted by inter-reflectionsriocrcin concavities.
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al v
(@) (b)

Figure 7.8: Reconstruction of the half ping-pong ball. (a) represdmsiepth map, (b) the normal field

and (c) the support measure.

(@) (b)

Figure 7.9: Reconstruction of the inner part (a) and outer part (b) ofteespal cap. (a) corresponds to
the ping-pong ball section considered in this section, evfhl) corresponds to the snooker ball consid-
ered in the previous chapter (see Fig. 6.7). Both models wofetaned from integration of the normal
field. Similar view points are considered for both objectss tlearly visible that (a), which is concave,
is not as well reconstructed as (b), which is convex. Thasfmthe first case are due to inter-reflections

which corrupt pixel based intensity measurements.

Further experiments need to be made in order to quantify the phenomenon.

Validity of the constraint based on extended regions

In this case, we are interested in reconstructing the macrostructure afthpang ball, which

is represented by the orientation of its cross section. For each set ofspvageompute the
average intensitie$; and I, over the area covered by the projection of the ping-pong ball
section in each reciprocal pair of images. The constraints defined in7Ef). dan then be
formed for each reciprocal pair of images, and the nommehn be computed by using one of
the methods defined in the previous chapter. In this case, we used theaeaiianethod (see

Section 6.3).
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Table 7.1: Comparison between the inclination angles estimated bypsing the novel constraint based
on radiance measurements over extended regiegg (vith the ground truth valuesxgr). o is the
angular difference between the two normals. Note éhiat not equal to the difference betweegy;
andagt because the two normals are usually not located in the sartieallane. All values are in

degrees.

Set 1 2 3 4 5

acr 2.9 174 36.1 450 545

et 3.7 151 37.4 46.7 56.7
5 38 28 13 26 26

Table 7.2: Root Mean Squared (RMS) and maximum deviation angle of thtovg(I;s; — I,.s,.) from
the plane orthogonal to the normal (eight vectors were usedmpute the deviation). All values are in

degrees.

Set 1 2 3 4 5
RMS 0.25 0.22 0.15 0.14 0.14
max 0.37 034 0.29 0.30 0.24

In order to evaluate the accuracy of the normal estimation, the results of¢bastruction
are compared with the ground truth normal obtained by performing convahtibereo on
the outlines of the cut of the ball. The results are shown in Table 7.1. Tleey geexhibit a
relatively good agreement. We also evaluate the consistency of the setstfaints in Eq. (7.4)
formed by all the reciprocal pairs. Consistent measurements should leaglemar vectors
(I;s; — Irs,). We therefore measure the angular deviation of these vectors from the pla
perpendicular to the recovered normal The Root Mean Squared (RMS) and the maximum
deviation are shown in Table 7.2. The sets of constraints appear coh$istatt orientation

of the ball. This evidence supports the theory that the constraint careddagletermine the

macro-structure of the scene.

7.4 Implementation

The implementation of the previous constraint to rough and textured sudaoastruction
requires to construct consistent measurements of surface radiaheerefically, these mea-
surements are computed by averaging intensity values over image regicgsponding to the

projection of the same physical surface patch, as described in Eg. $u&) a construction is
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non-trivial because the image areas over which the intensity measureineunis lse averaged
depend on the local reference plane orientation and also on the lotalb$d¢he structure or
texture sub-elements, which are both unknawpriori. We propose two different algorithms

to address these issues.

7.4.1 Extended HS algorithm

The first algorithm proposed is callextended HSThis algorithm uses simple isotropic fil-
tering of the images by an appropriate convolution kernel in order to ajppate the average
radiance values. In the implementation, although Eq. (7.3) suggests simpgiage a Gaus-
sian convolution kernel was used in order to down-weight the contribofitime most distant
points in the neighbourhood. The choice of the parameters of the convoktiael (size and
standard deviation) are dictated by the scale of the surface structureuretsub-elements.
Currently these parameters are set empirically. The main advantage of thisnempéion is
that it is simple and leads to a negligible increase in the run-time compared to tharstan
implementation based on single pixel measurements, because the image coamsvaatide

done as a pre-processing step.

A limitation of the algorithm is that it implicitly assumes an approximately uniform scale fo
the texture or structure pattern. In practice, the method has been abgerie fairly in-
sensitive to the choice of the size of the convolution kernel, as long as iffisietly large

to capture the texture or structure variations. For this reason, the pseagsumption is not a
problem for a large number of objects, such as the ones considerecxpiements described
in the next section. A more sophisticated implementation, able to cope with laigdoss in
texture or structure scale, would determine automatically the scale of the textsieicture
sub-elements, and adjust it locally at each image neighbourhood. Intkeot#he determi-
nation of the texture scale, it has been shown that the polarity providesfd atatistic [54]

(p 196). Similar techniques may be applicable to rough surfaces. An diternaethod which

works well with both types of surfaces is presented in the next section.
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7.4.2 Adaptive HS algorithm

The second algorithm proposed is calledaptive HS The algorithm tries to dynamically
improve the averaging in Eg. (7.3). The surface neighbourhood iesepted by a disc whose
orientation (represented by the norm&l and scale (represented by the radi)anust be
determined. The main idea of the algorithm is that the support measure steoojdilmum at
the correct scale and surface orientation. We therefore try torfinddr» which optimise the

support measure associated with the surface patch.

The solution proposed is iterative and requires initialisation of the surfarweal. Such initial-
isation is provided for example by the results of the extended HS algorithoniloed earlier,
or by choosing any normal satisfying the visibility constraint. At each iteratio® current
normal estimate is used to compute the exact projection of a disc centred apthgdovided
by the previous algorithm. A number of hypotheses are made concernimgdhes of the
patch and only the one resulting in the best support measure is retametthé¢ one leading
to the largest support measure defined in Eq. (6.6)). Rewriting Eq. With)the intensities
averaged over the projection of the disc with optimum radius, a refined hdsrtreen com-
puted, and the optimum radius can be re-estimated for the same series thigdsgso We iterate
the procedure until the change in the orientation of the normal estimated is d&sa tiertain
threshold (.1 ° in our implementation) or the maximum number of iterations is exceeded (10

in our implementation). The algorithm is summarised in Algorithm 4.

In terms of run-time, the adaptive HS algorithm is slower than the extendedddé@tlam

because it is iterative and also because the computation of the projectiodisd & more
computer intensive. The adaptive HS algorithm is however expected ¢ongive accurate
results because it averages the intensities over areas correspondiregpimjection of the

same surface point neighbourhood and also optimises the scale at gack point.

7.5 Results

In this section we demonstrate the applicability of the method to textured and sowfglces.
The experimental setup and methodology are the ones described in treuprelvapter. The

reconstruction method is also similar to the one described in the previous Gleoiept that
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Algorithm 4 Adaptive HS algorithm
The objective is to compute the normahnd radius- of the circular surface patch with highest

support measure. The parametee represents the tolerance in angular change in surface

normal orientation, and,,,. is the maximum number of iterations.

1. Initialisation:i < 0, s «— —o0, n < ng, r < 0, wherenyg is the normal provided by

the extended HS algorithm, if available, or otherwise any value satisfyingish®lity
constraint.

2. Do:
(&) Assume that the orientation of the patchnisand compute the average image
intensitiesl; and I, for different radius hypotheses,

(b) Form the constraints in Eq. (7.4) and compute the normahd the support mea-

sures;, associated with each radiug using for example the method described in
Section 6.3,

(c) Find the parametéio,: Which leads to the highest support measure (largest
value defined in Eg. (6.6)),

(d) If Skopt < S exit the loop,
(e) Otherwise sef to the absolute value of the angle betweeandmn,,,
() Update:i < i+ 1, 5 < Sgopr T < Mgy T < Thegpes

while § > e andi < i,42.-

3. Returnn.
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(a) (b)

Figure 7.10: Images of the textured objects used for reconstructionis@)mug and (b) the head of a

polystyrene mannequin.

consistent radiance measurements provided either by the extended ld8ptivea HS algo-
rithms are used. These two techniques are compared with the standardori®ialglescribed

in the previous chapter.

7.5.1 Textured surfaces

Two textured objects were considered (see Fig. 7.10). The first omaugavith some blue dot
patterns painted on a white background surface. The second objqmiligsséyrene mannequin
head, in this case the texture comes from the material itself. Both surfacspeular, which

makes the reconstruction difficult with standard techniques.

For both objects, a bounding box has been defined and the 3D spatedmasliscretised
into square voxels at a resolution mm x 2mm x 2mm. A window of size5 x 5 pixels

is used to resolve the matching ambiguity during depth search. In the case efttdnded
HS algorithm, a Gaussian convolution kernel of sizex221 pixels with standard deviation
4 pixels was used. The choice of the size of the kernel is dictated by theafdhe texture
at the surface of the objects. In this case, the scale has been seleciedati;mpWe have
observed that the choice of this parameter does not need to be venataccClose values
will most likely lead to the same results as long as the scale is large enough toectqsu
texture sub-elements. Unnecessarily large scales are however omtmended because they
would result in a decrease in the resolution of the reconstruction. In #esafahe adaptive

algorithm, the scale, which is represented by the radius of the disc prqjectdidwed to take
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0

(b)

Figure 7.11: The grey level of a pixel encodes the radius (in mm) of the dégecesenting the surface

patch at each point, after convergence of the adaptive H8ittitn, for the two textured objects.

arbitrary values within the intervéd, 5] mm sampled at a resolution of 0.5 mm. The algorithm
selects automatically the best value within the interval for each surface pidietoptimum

scale found after convergence at each surface point can be ifoérgl 7.11.

The results of the reconstruction are shown in Fig. 7.12 and Fig. 7.13it&ivaly, it can be
observed that the depth map and the normal field are less noisy andrajypaiere accurate in
the case of the extended and adaptive HS algorithms, compared to thedtdSdalgorithm.
Regarding the support measure, although it is clear that points located stitface of the
object have high values, it is difficult to say which method leads to the highést by simple
visual observation. More is said on this topic in the next paragraph.nlbeaobserved that
most background points are eliminated (zero support measure). Thie te the input image
thresholding which has been applied during reconstruction and alsodbgement for the
surface points to be visible simultaneously in all reciprocal pairs of imagespite of this
filtering, there remains a number of background points, in particular in e akthe mug. In
the final reconstruction, these outliers were eliminated based on the supgasure values.
Such segmentation was done manually, although the task could certainly beaseddn the
future. We did not consider doing such optimisation in the current implementédtémause
our objective is to demonstrate the feasibility of HS in the case of texturedoaigth surfaces,
therefore it is not desirable to add other potential sources of erroreianhlysis. The 3D
models were then produced by integration of the normal fields weighted byfipert measure

at each point, as described in the previous chapter. Background pargstdo zero support,
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Table 7.3: Comparison of the RMS support measure obtained by the éliffeeconstruction algorithms

for the textured objects considered.

Mug  Mannequin head

standard HS  0.9455 0.9438
extended HS 0.9869 0.9883
adaptive HS  0.9912 0.9908

which has the effect of eliminating them from the reconstruction. It canbserved that the
3D model obtained with the extended and adaptive HS have a smootherappethan the
one obtained from the standard HS algorithm. We also show the 3D model edbtaynthe
adaptive HS algorithm texture mapped with one input image in Fig. 7.14. Thégesgem

realistic and able to capture accurately the 3D shape of the objects.

Quantitatively, we use the Root Mean Squared (RMS) support measorelén to define a
measure of the consistency of the normals obtained with the intensity meastsefenRMS
support measure is computed only over the points which belong to the objisates hence the
necessity of an accurate segmentation from the background if we wamiethgure to be reli-
able. Denoting byV the number of surface points and &y the support measure at the surface
point parameterised hiyandj, the RMS support measure is defined Q%% Do Zj s?j. The
values obtained for the different algorithms are presented in Table 7e3qddntitative results
confirm that the support measure is increased with the two methods cangidetended re-
gions (extended and adaptive HS algorithms) compared to the standatddtighan. Such an
increase is important because it means that these methods are able teprmieconsistent
models than the standard one. The extended HS and adaptive HS algoiiteerg close
results. As expected, the adaptive HS leads to the highest valuessedtimithe only one to

optimise the scale and orientation of the patch locally at each surface point.

7.5.2 Rough surfaces

We now consider the reconstruction of two objects with rough surfaeesHg. 7.15). The first
one is a teddy bear, and the second one is a piece of corrugatedaadBoth surfaces are
highly anisotropic and exhibit strong inter-reflection effects, making thenstruction again

very challenging by state of the art techniques.

The reconstruction is made at a resolutior2ofim x 2mm x 2 mm for the teddy bear and
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Figure 7.12: Reconstruction of the object 'Mug’. The left, middle andhigolumns correspond re-
spectively to the standard, extended and adaptive HS Higwsi From top to bottom, the rows represent
the depth map, the normal field, the support measure, andhe®lel obtained from integration of

the normal field.
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Standard HS Extended HS Adaptive HS

Figure 7.13: Reconstruction of the object 'Mannequin head’. The leftddfe and right columns
correspond respectively to the standard, extended andieglis algorithms. From top to bottom,
the rows represent the depth map, the normal field, the stippeasure, and the 3D model obtained

from integration of the normal field.
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() (b)

Figure 7.14: Texture mapped 3D models obtained by the adaptive HS atgoifior the two textured

objects.

@ (b)

Figure 7.15: Images of the rough objects used for reconstruction: (a}esldy bear and (b) a sheet of

corrugated cardboard.
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Figure 7.16: The grey level of a pixel encodes the radius (in mm) of the dégeesenting the surface

patch at each point, after convergence of the adaptive H8itilgn, for the two rough objects.

1mm x 1 mm x 1 mm for the corrugated sheet. As previously, a window of §ize5 pixels

is used to resolve the matching ambiguity during depth search. In the casetefitty bear,
we used a convolution kernel of size 2121 pixels with standard deviation 4 pixels for the
extended HS algorithm, and allowed the radius of the disc representingrfaeespatch to
take arbitrary values within the intervil, 5mm| sampled at a resolution of 0.5 mm for the
adaptive HS algorithm. The size of the structure elements is much larger indbeotthe
corrugated sheet, therefore it is necessary to define larger extezgleds for averaging. The
size of the convolution kernel was set to 101.01 pixels with standard deviation 20 pixels and
the possible values for the radius to the interizall0 mm| sampled at a resolution of 1 mm.
Again it was observed that the scale did not matter much as long as it waslawggh to
cover the concavities defining the surface structure and make the bgeffiscts negligible.

The optimum scale found after convergence at each surface poirvismsh Fig. 7.16.

Fig. 7.17 and Fig. 7.18 show the results of the reconstruction for the tiifersdt algorithms.
Similarly to the previous section, we can observe that the depth maps andl fietdsare
more noisy in the case of the standard HS algorithm. This is considerably inapbg\vée al-
gorithm considering extended regions. It is interesting to note that in tleeoféise corrugated
sheet, the microstructuree. here the undulations of the structure, can be reconstructed. We

provide a reconstruction of a smaller area of the sheet at a finer resaluftag. 7.19.

It can be verified that the support measure at surface points is négfasvhen single pixel

measurements are considered, in particular in the case of the corrubattd $he darker
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Standard HS Extended HS Adaptive HS

Figure 7.17: Reconstruction of the object 'Teddy bear’. The left, midalfel right columns correspond
respectively to the standard, extended and adaptive HSithlgis. From top to bottom, the rows repre-
sent the depth map, the normal field, the support measurghar8D model obtained from integration

of the normal field.
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Figure 7.18: Reconstruction of the object ‘corrugated sheet’. The feftjdle and right columns cor-
respond respectively to the standard, extended and addp8valgorithms. From top to bottom, the
rows represent the depth map, the normal field, the suppasume, and the 3D model obtained from
integration of the normal field. Note that the images reprtsg the support measure in the case of the
extended and adaptive HS algorithms are not missing or ptau they appear invisible because the

support measure is very high at every point.
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(© (d)

Figure 7.19: Reconstruction of the object 'corrugated sheet’ at a smatlale using the standard HS
algorithm. (a) represents the depth map, (b) the normal, fie)Jdhe support measure, and (d) the 3D

model obtained from integration of the normal field.
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Table 7.4: Comparison of the RMS support measure obtained by the éliffeeconstruction algorithms

for the rough objects considered.

Teddy bear corrugated sheet

standard HS 0.9506 0.9367
extended HS 0.9861 0.9970
adaptive HS 0.9900 0.9973

region of lower support measure suggest the location of regions nfesteaf by the inter-
reflection effects. This tendency, visually observed, is confirmed bRWMS8 support measure
computed over the surface points of both objects, after appropriate stgioe of the back-
ground, which are shown in Table 7.4. The adaptive algorithm leads toighedt support
measure among all algorithms. In the case of the teddy bear, the 3D modekodbaiath the
extended or adaptive algorithms have a smoother appearance, whichaislsttlh capture fine
details such as the seam on its belly. In the case of the corrugated sheptssisle to re-
construct both the microstructure and the macrostructure of the objecthiatser that the
reconstruction of the microstructure has several disadvantages. Eihstt/a high memory re-
quirement and run-time because of the necessity to sample the surfacrafiae’resolution.
Such reconstruction would not be practical if a large area was to bastuooted at such a res-
olution. Secondly the reconstruction at a microscopic scale is necessaghuirate because
of the inter-reflection effects. This is suggested by the lower suppoguneabserved in this
case. We show the 3D models obtained by the adaptive HS algorithm afteetexdpping in
Fig. 7.20.

7.6 Conclusions

Rough and highly textured surfaces are often encountered in realitg. abiity to recon-
struct their shape is important in computer vision. In this work, we explicitlyresked the
problem of reconstructing such surfaces by Helmholtz Stereopsis {M&pbserved that ra-
diometric constraints constructed from single pixel measurements aresagheiased when
inter-reflections or strong texture are present. We showed that a sdkitmoonstruct consis-
tent measurements from image regions corresponding to the projectioressartie bounded
surface patch instead. An experiment on a hemispherical concavigleevgood agreement of

the results with the theory. It is important to note that solution proposed sslelr¢he problem
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(b)

Figure 7.20: Texture mapped 3D models obtained by the adaptive HS dfgorior the two rough

objects.

of local inter-reflections only; global inter-reflections effects aregy\@rallenging and usually

very difficult to take into account.

Two different HS algorithms generalised to highly textured and rouglasesfwere proposed.
The first algorithm, called extended HS, approximates the average imagaaesl by pre-
processing each input image using isotropic filtering. This is equivalenhtumg the standard
HS algorithm on the pre-convolved input images. As such, consistentunesasnts can be
obtained without significant increase in the run-time of the standard HSithlgorThe other
algorithm, called adaptive HS, finds the optimum scale and refines the ndotaaied by the
extended HS algorithm, by iteratively averaging the intensities over are@sponding to the

projection of the same surface point neighbourhood.

The experiments on objects exhibiting rough surface properties or demhge showed that
the novel formulation usually results in an increase in the quality of both thin ceegp and
the normal field reconstructed, compared with the standard HS algorithiso ltessulted in a
significant improvement in the consistency of the radiometric constraintstasedidate the
hypotheses on surface geometry, and produced realistic 3D models withhe@ngeometries.
It is important to mention that in certain cases, for example if the scale of thedgxdttern
or structure pattern defining the rough surface is large with respect wathera resolution,
then the standard HS algorithm is usually able to produce visually accuraesteuctions.

In this case, it is therefore usually possible to obtain a reconstruction afctmee both at a
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microscopic scale (with the standard HS algorithm) and a macroscopic sdtieh@/ novel
algorithm). The reconstruction obtained by the standard HS algorithm hagdisadvantages
however: i) it has a high computational cost because of the fine resohetipiired and ii) it

may be inaccurate because of the limitations inherent to the standard HSagumetntioned

earlier.
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Chapter 8

Conclusions and future work

8.1 Conclusions

In this thesis, we have considered the problem of improving the accufabyjert reconstruc-
tion from images. Our contributions were made in two main areas of computen vigich

are camera calibration and Helmholtz Stereopsis (HS).

In the case of camera calibration, we have concentrated on using irtgdriamder to increase
the accuracy. Invariants allow more accurate determination of the cantaragiars because
they define constraints on subsets of the camera parameters, that csadlie generate new
data without increasing arbitrarily the dimensionality of the problem. We havsidered two

main situations.

The first situation corresponds to a translating camera. In this case veel&zeloped a novel
calibration method which is based on Points at Infinity (P1) representingtitires present in

the scene. The method uses the invariance properties to translation mottus podjection of

these points, called the Vanishing Points (VPs), in order to decouple trstatiian parameters
from the other parameters, thereby generating two simpler sub-problemsongtant number
of unknowns. Our method differs significantly from other VP-based nustheecause it does
not require to observe parallel sets of lines in the scene. This is a coatdiel@dvantage in

terms of flexibility, in addition to the improvements in calibration accuracy that wleserved.
The second situation that we considered is the case of a zooming camera rinegig in 3D

171
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space. For this purpose, we have introduced the novel concept Nbtihealised Image of the
Absolute Conic (NIAC), which comes as a generalisation of the Image of liselate Conic

(IAC) to zooming cameras. The NIAC can be considered as a particutanoesof the set of
all possible IAC representing the different possible zooming factois.alh imaginary object
which cannot be observed directly. We proposed several algorithmits fibetermination. The
method requires three or four views of a planar grid, depending on thereamodel adopted.
It decouples the camera parameters into three sub-sets with constant ofipgr@ameters: the
first one containing the intrinsic parameters independent to zooming, thiedsene containing
the remaining intrinsic parameters (focal lengths) for each view, and agh@dontaining the
extrinsic parameters. The different algorithms proposed accommodatéfdrerd types of

cameras (zero or non-zero skew). Experiments with synthetic andatakdowed the novel
method is more accurate than other plane based calibration methods which cmsinler

such invariance properties.

In the case of reconstruction using HS, we have proposed sevetdabations which increase
the accuracy of the standard implementation, and also open up the possiliitpabtructing

a wider class of objects.

The first main contribution we have proposed in this field is a method to reachsitimally
the surface normal at each surface point. This replaces the stawotlstidrsbased on Singular
Value Decomposition (SVD) which had an algebraic basis and lacked digatymeaning.
Our method is based on the minimisation of a novel distance that we have calletiibe
metric distance. Effectively, minimising the radiometric distance is equivalent tonising
the modification in intensities to be applied in each image in order to satisfy exacttyShe
constraint at each surface point. The solution is simple, and it has beem shat it provides
a Maximum Likelihood (ML) estimate in the case of standard Gaussian adddige nondi-
tions. In addition, we addressed the problem of image saturations duecdaspleighlights.
Experiments with synthetic data confirmed the superiority of the radiometridraarisover
the algebraic one. In the case of experiments with real data, the noveliragasved able
to reconstruct accurately the object geometry, although the improvementatas obvious

compared to the algebraic solution, in the case of our particular experinsetal

Our second contribution in HS is to show that the standard HS implementatioth dvasedi-
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vidual pixel measurements is biased in the case of rough or texturedesirfdVe proposed
an alternative measure which can be used for the reconstruction of gk of surfaces
and is compatible with the most recent definition of Bidirectional Reflectanctitiison
Function (BRDF) for locally non-convex surfaces. We demonstratecypipéicability of the

novel constraint defined on several real test objects.

Throughout the second part of the thesis, a variety of real objects emrsidered. Some
were textured, others almost uniform. Regarding their surface progpestene were smooth,
others were rough. Almost all objects were specular. In all casesetioastruction obtained
appeared accurate and realistic. It is important to mention again that no@tgsu regarding
the surface properties has been made at any stage of the reconstrddiierillustrates the

great potential of HS for the reconstruction of surfaces.

8.2 Future work

In the stratified representation of invariants shown for camera calibratierNIAC occupied
the highest position after the IAC and the VP. One limitation of the zooming caraébaec
tion method based on the NIAC is that it assumes that the principal point refn@dsvhile
zooming. This is not the case of all camera technologies. However, veediimerved that the
assumption is reasonable if the aim of camera calibration is to compute the gvejadtion
matrix rather than the individual camera parameters. If these parameterdencemputed
separately and accurately, it may be necessary to consider other medkpdading on the

particular camera behaviour.

One can wonder how far it is possible to go in the hierarchy of invarianigaiticular, it could
be tempting to try and incorporate the coordinates of the principal point intovel imvari-

ant, thus extending the invariance properties to another level. In the taftplane-based
camera calibration, including the coordinates of the principal points makesr@arakbra-

tion more complicated because it can no longer be performed from sev@ned of a single
planar calibration planex(images of a single plane provide orily. constraints on the intrin-
sic parameters, therefore there can be at most only one variable parametgy all intrinsic

parameters). This implies that if such an invariant was to be consideredieacamaplex cal-
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ibration grid should also be used, which would make calibration more complitatese in

practice.

One possible line of research would be to define invariants which incatgtens distortion.
In this thesis, we have considered only invariants in the case of an utelispin-hole camera.
If the camera deviates from such a model, the distortion has first beesctamrby applying
other methods, and then our methods have been applied to the undistorted.imagmre
efficient framework would define invariants which incorporate the len®idisn. In [155],
Tsai has already considered an invariant to the radial distortion bufirotig case of camera
calibration from a single image. In the case of multiple images separated bysktram a

free motion, or a free motion plus zooming, new invariants must be defined.

In the field of HS, we have proposed an optimum solution to the normal reactien problem.
However we believe that there remains scope for improvement in solvingpthespondence
problem more accurately. The current solution to this problem is still base8\D, and
although it lead to good results, it seems reasonable to think that this agpecbestruction
could benefit from more sophisticated techniques, which find corregmmes in a statistically

optimum manner.

If we consider the applicability of the method, the range of objects covergdiis large.
In addition to smooth uniform objects, we have extended the applicability of thieoche¢o
objects with textured or rough surfaces. The solution proposed takeadotant local inter-
reflections, however global inter-reflections remain problematic, beaafuthe large scale at
which such effects can occur and the difficulty to detect them. Anothes offasbjects that

cannot be reconstructed by HS is the case of transparent objects.

Another line of research that we have already started exploring is tledogenent of volumet-
ric implementations of HS. The current multi-ocular implementations of HS treaetionf

struction problem independently along each line of the grid. We believe thatadld benefit
significantly from the use of methods which solve simultaneously the comdspae and re-
construction problem in 3D. In this framework, the problem could be fortadlas finding a
surface which maximises the support measure over its surface. This altavdto eliminate

the fronto-parallel assumption imposed during computation of the surfaath,deecause the

ambiguity could now be resolved by imposing more appropriate constraints sarttaee evo-
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lution in space. In addition, such a procedure would use optimally the doutpetaesulting
from the HS constraint (surface normal orientation and depth at edat).@o far only normal

orientation has been considered for the generation of the final 3D model.
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Appendix A

Camera position estimation

This chapter describes different methods for the computation of the camsteon in the case
that the intrinsic and orientation parameters have already been estimatedordiblem has
been labelled Problem 2 in Section 3.3. Two methods are presented: a hdeanan-linear
method. Typically the linear method is computed first because of its simplicity, &oitbised

by the non-linear method which gives a refined solution.

A.1 Linear solution

Once the intrinsic parameters and orientation are known, the position (statian vectort)
can be computed from point correspondences. Sihcare real points in the scene which are
not located at infinity, their last coordinate is non-zero, and the homogsraordinates can
be scaled so that the fourth coordinate is unity. Under this assumptiorg.Ejjcén be written

in the form

The two terms in the previous equation are equal up to a scale factor, thaitisrthss product

is zero, and it follows that

p; X (K[R|O]P; + Kt) = [p;]x (K[R|O]P; + Kt) = 0.
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In the previous expression, for convenience, the cross prodadiden expressed in terms of

the skew symmetric matrix, which for the vectar= (p;,, pi,, pi;) ' is defined by

0 —Pis Dis
[Pilx = | pi, 0 -—pi
—Pis Diy 0

The previous equation can be written in the form
Bit = C; with BZ = [pi]XK and C;, = —[pZ]XK[RIO}PZ . (Al)

This defines a system of three equations. However, since the skew syommagtix has rank 2,
the equations are not linearly independent, thus the third equation caxafopie be omitted.
From a set of. point correspondences2a x 3 matrix B and a2n vectorc are obtained by
stacking up the matriceB; and vectors:; respectively for each correspondence. The vettor

is then computed by solving the linear syst&h= c.

As the system has 3 unknowns, and each point correspondenceadeaagsequations, a min-
imum solution is obtained from%lpoints. The3 x 3 matrix B has rank 3, so it is invertible
andt = B~'c. If only one point is available the camera calibration is still possible but up to

an overall scale factor.

In practice, the system is usually over-determined, and an approximatesdiuhat min-
imises||Bt — c|| is sought. The matri8 having full-rank, a least-square solution is obtained

by computing its pseudo-inverse [72]. The procedure is described wrigig 5.

Algorithm 5 Basic linear computation af

1. For each world to image point correspondenEgsaindp;, compute the matri; and

the vectore; from equation (A.1).

2. Assemble all the matricd; into a single matrixB, and all the vectorg; into a single

vectore.
3. Compute the pseudo-inverse®fby the formulaB* = (B"B)~'BT.

4. Obtaint = B*e.
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A.2 Minimisation of a geometric distance

In order to refine the solution obtained previously, we search for thelttion vectort which
minimises the sum of squared geometric errors defined by the distance behegeojection

of 3D points and the corresponding image points in the image plane
dgeondPi» K[RIE]P:) = [|p; — K[RIt] P . (A.2)

A suitable algorithm to solve such a non-linear minimisation problem is for example th

Levenberg-Marquardt (LM) algorithm [112].
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Appendix B

Approximation of the variance of the

geometric distance

In this section, error propagation is used to compute the variance of tmeetyéo distance
dgeom(v, 1) defined in Eq. (3.7). For simplicity, it is assumed that the uncertaintiydgh(v, 1)
results only from the uncertainty in the measure of the image line coordihaighe coordi-
nates of the associated Vanishing Point (B assumed to be known exactly. The motivations

for such an approximation are explained in Section 3.3.3.

We start by making some statistical considerations regarding the distributthe ehd points

of image lines, in order to compute the covariance matrix of their coordinatesassumed
that the coordinates of end points = (z;,;,1)" follow a Gaussian distribution with mean
p; = (%, 7;,1)" and standard deviatiom for each coordinates, which are assumed inde-
pendent. Under these assumptions, a line p, x p,; with end pointsp;, = (z;,¥;, n’
andp; = (z;,y;,1)" depends on the distribution of the vectoar;, z;,:,y;) ", which has
mean(:f:i,a*:j,gi,gj)T and covariance matrix?/, where the matrix is the identity matrix.
The function which maps the vectdr;, z;,y;,y;)" to the coordinates of the image line
l = (yi — yjyzj — zi, 7y; — 279;) |, has a Jacobian matrik evaluated atz;, z;, 7i, 7;) |

which is equal to:

bo=]-1 1 0 0
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It results from error propagation (see for example [72], pp 1234128 the coordinates of the
line form a random variablewith meanl = (y; — 9;,Z; — %i, %;5; — Z;4;) ' and covariance

matrix
2 0 —T; — :Ii‘j

S =0’hlly =0° 0 2 —i — j
—Zi—T; —Yi—Y T+ U+
Now the function which maps the coordinates of the image line (a,b,¢)' to the ge-

ometric distancelgeon(v,1), given a known VPv = (u,v,w)", is considered. The Jaco-

bian matrix of this function, evaluated &t= (y; — 7;,%; — Zi, %;5; — Z;7;) ', is defined by

ddgeom Idgeom d, - - - )
J =[5, = —ae]. The partial derivatives are given by:

8dge0m ]. a a 1

aa = 724—1)28(1( +b +C)+( +b +c )8a7,m
1 u 1 2a
e 2% T T
1 v alar +b2 +c)
e e ]
Odgeom 1 v blay +b7 +c)
T ViR [ T ] ’
Odgeom 1 0 0 1
e = T2+b28c< +b +c)+(a—+b o 9 T

s

It should be noted that the expression of the second partial derivaivdbe deduced from

the expression of the first one by symmetry, interchangiramndb, andu andv. Applying
error propagation one more time, it is obtained gbm is a random variable with variance

aéeom= JXJ". This proves the result stated in Section 3.3.3.



Appendix C

Equation of the IAC

We consider the general model defined in Eq. (2.5) for the calibration niétiive.

f —fcotf wy
K= SiJ;Te vo | - (C.1)
1

In matrix form, the Image of the Absolute Conic (IAC) is represented algeddha by the

equation

plwp=0, (C.2)

wherew = K~ T K~ is the conic coefficient matrix.

We have
1 cos —ug — vg cos 6
r T
K1 — } sng  _wsing | (C.3)
f
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and it follows that

w ~ K TK™! (C.4)
i cos _, _ wgcosf
1 1 o Uuop po
~ cosf sin 6 sin @ __wvgsiné (C5)
r r r r
vg cos O vg sin 0
|—uo — = R f f
i cos _ __ wgcosf
1 = uQ po
— cos 1 __vo _ ugcosh (C 6)
r r2 r2 r ’ ’
v cos O v ug cos 6§ 2 cos @ v 2
| —ug — eosd g wocosh 3 gypgeosd U o f

Substituting the expression ofin Eq. (C.2) and noting = [u, v, 1] T, the following equation

is obtained after simplification:

(=00 + (0~ 10 + 2% (0 — ) (0 ) = 1. )



Appendix D

Equation of the perpendicular

bissector to a chord on the |IAC

We consider a pair of images of circular poifs = HI = h; + ihy andQ = HJ =
hi — ihs on the the Image of the Absolute Conic (IAC), with = [hi1, ko1, k3] and
hs = [h12, hao, h3a] . We want to compute the equation of the perpendicular bisector to this

chord after the image transformati@nhas been applied.
We first observe that the mid-point @PQ)] is the point:

mq
(haihi + hagha) = |mgy| » (D.1)
1

T3, + h,

and the direction of the lin€P Q) is represented by the Point at Infinity (PI):

dy

D ~ h3ohy — h31tha = |dy| - (D.2)

0
This can be verified by noting that the poimid, D, P andQ are aligned (they are linear
combinations of the base vectdis and hy) and that they are harmonic (their cross ratio is
—1). It should be noted that the denominator in the expressiavi &f non-zero if and only if
the optical axis of the camera is not orthogonal to the image plane. Fourarametersn,,

ms, di andd, have been introduced in the two previous equations.
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After transformation byl', M and D are mapped respectively into

my my + tyma + to
M =T |my| = tamg + t4 ) (D-3)
1 1
and
dq dy + t1do
D' =T \|dy| = | tzdy |- (D.4)
0 0
Noting that a normal vector toP'Q’) is N = [—tsds, d; + t1d2, 0], we conclude that the

perpendicular bisector to the chord is represented by the equation

—(d1 + t1d2)
l= —t3ds : (D5)
(m1 4+ tima + t2)(dy + tidz) + (t3ma + t4)t3ds



Appendix E

Simplification of the cost function

based on the radiometric distance

We would like to compute the valuesand{ilj }; which minimise the cost function

. 2
F(n,{i,};) = [(%lj —i,)? + (? Zglj -~ Z) ] . (E.1)

Tj

J

We start by writing the partial derivatives &f with respect td‘lj:

OF (n, {1 }; R s, m (s, N,
V7, M:Q(il,—il,)—i—Q b ( & il.—iT) , (E.2)
01y, ! ’ Sp; M \Sp; M7 I
and observe that they are equal to zero at the optimum value, which lethdsdonstraints:
.4 S - n 2 A . S -n
Y7, U, + u; =1, + Uy, - (E.3)
Sp; M Sp; M

From each constraint, we can deduce the expressiép aff the optimum:

. . 8. N Sr. M
V), %:<le+ s ) . (s, )

S, M 5 m)2 4 (s, - m)?

2
, (E.4)

which after simplification can be written

Vi 1 = i1, (S, n)? + ir, (81, - M) (8r; - M)
Jyu; = (s, ‘n)2 + (s, - n)>

(E.5)

We also compute the two following terms which will be useful next:

(Slj ‘n) [(ilj 81, —ir; Sr; )-n]
o e, m?
J it
81, -n% _ _ (8r; -'n.)[(zlj 81, —ir; sr;)m]
Sr; M L T (s1; n)2+(sr; n)?

W, —iy, =

vJ, (E.6)
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190 Appendix E. Simplification of the cost function based on the radiometric distanc

In addition, the partial derivative af with respect to the surface normalis
0F (n, {%lj}j) Sy M, - \: 90 [s,n
— = 2; |:<37”] i —m) U5 <Srj n)} : (E.7)
which, after observing thﬁ% = s, simplifies to:
OF(n, {ilj ) 8, M
on =2 Zj: |:<87«]

All variables%l]. can be eliminated from this expression by substituting the terms defined in the

n)s;. — (s

PR (8r; - ; ;M8 EB)
iy, — iy | U (5, )2 . .
Ty

system of equations (E.6), which results in:

OF(n {’Ll ) 22 { Sy, - 7,1 sl — i 8p;) - M

24 (s, -m)?

(ilj B (s1 'n)[(iljslj — i, srj) . n]> (87, -m)sy; — (81, - M)y, ‘ (E.9)

(Sl]‘ : n)2 + (Srj : n)2 (srj : n)2

After simplification, we finally obtain:

{zl i) [(i1,81; — ir;8r;) - M) [(i1; 80, +ir;81,) - M][(8r; - )81, — (51, - M) 5]
X ((st, 2 + (57, PP |
(E.10)

At the optimum,n must satisfy the constrmM 0. This defines a system of three
non-linear equations with unknowns the three components (there are actually only two

unknowns since the scale afcan be arbitrary). We could solve directly this system.

Alternatively we can define an auxiliary cost functiGhwhich depends only om, by sub-
stituting the terms defined in the system of equations (E.6), into the originafwragion F',
which leads to:

F (E.11)

G(n) = Z [(i1,81; — ir;8r;) T

- (51, -m)? + (s, -m)?"

, thusF' andG have the same minimum. Therefore,

. . C()F(’n.,{:il.}J) 8G( )
Itis easy to verify that—;_~

the solution to the original problem can be found by minimigiag/Ve found this preferable to
solving the non-linear system of equations deflnedruguM = 0, because the equations
involved are simpler, and also because it is more similar to the problems solvdteicbap-
ters, which means that similar methods can be applied. Such a solution campeted by

using a non-linear minimisation technique such as the Levenberg-Matdqustjalgorithm.
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