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Abstract

The aim of this work is to track non-rigid objects using appearance in real-time
without a pre-learned model. The tracker should be robust to noise, occlusions,
changes in lighting conditions, and pose variations. Recovery from tracking failure
should be possible.

The approach taken is to localise small image patches within each frame of a
video sequence using function optimisation. Mutual Information (MI) is chosen
as the similarity metric, due to its robustness to outlier pixel values and lack of
assumptions about linear intensity relationships. The choice of similarity metric
and descriptor strongly influence performance, whatever the application, hence
the contributions made here have wide applicability.

Despite the wide use of MI for registration, many open problems still exist. MI
suffers from artefacts in its function surface, which can prevent convergence.
Numerous different MI methods have been proposed to overcome artefacts, but
few methods have published analytic derivatives, precluding their use in fast
Newton-type optimisation. This thesis shows that MI methods only differ in
how the joint-histogram is generated from image intensity samples, and places
them into a single mathematical framework consisting of four families. Analytic
derivatives are derived in every case.

The availability of analytic derivatives allows MI to be placed into a Lucas-Kanade
tracking framework, termed MILK. An inverse-compositional formulation for op-
timisation is presented. This yields a faster convergence, because the Hessian is
pre-computed.

In addition to slowing convergence, artefacts shift the maximum away from its
“true” position, i.e. they induce bias. Multiple proposals to reduce the effect
of artefacts are tested in this light. Of these, only super-sampling reduces arte-
facts in a controllable way. This concurs with existing theory that histogram
(and hence MI) accuracy is limited by the number of samples and the histogram
resolution.

Super-sampling is taken to its logical conclusion using an extension of the Non-
Parametric (NP) windowing method. NP-windowing is equivalent to taking sam-
ples at infinite resolution, by utilising the implicit structure of image data to
integrate interpolation functions over entire pixels. Novel simplifications to ex-
isting theory using Green’s theorem are also introduced. NP-windowing yields
biases of half (or less) than that of other MI methods. It also improves conver-
gence, and is independent of template size.



MI is applied to tracking where the problems of drift and mismatch, must be
traded off. The primary cause of drift and mismatch is simplistic appearance
models. This is overcome using a proposed method to cluster appearance ex-
emplars on-the-fly using a Bayesian approach to descriminate between cluster
inliers and outliers. The method is termed Simultaneous Modelling and Tracking
(SMAT). Greedy selection of particular clusters for tracking allows real-time per-
formance. SMAT is extended to model object shape and recovery from tracking
failures is made possible by selective correction of the feature position. The zig-
zag-zen family of semi-automated tests is proposed, making emperical tests using
multiple (11) sequences of many frames (568 on average) practical. In testing,
the advantages of: MI over SSD, SMAT over other template based methods, and
shape modelling are clearly demonstrated.

Key words: Mutual Information, Artefacts, Sampling, Resolution, Registration,
Appearance Modelling, Shape Modelling, Tracking, Template Update Problem,
Lucas-Kanade framework, Inverse Compositional formulation
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Chapter 1

Introduction

The motivation behind this work was to track non-rigid objects using appearance

in real-time without a pre-learned model. The tracker should be robust to noise,

changes in lighting conditions, occlusions, background clutter and changes in the

appearance of the object, due to its non-rigidity and pose variation. Moreover,

recovery from tracking failure should be possible, as should failure detection.

Tracking algorithms come in a number of guises and are widely used in many

different applications of which a few examples are given. Small patches are tracked

to solve for the 3D positions of tracked features, to build 3D models of objects

[85], to insert virtual objects into augmented reality environments [95], to assist

in robot navigation and mapping [23, 58], and to solve for structure and motion

within a scene [83]. In some cases, multiple regions in a scene are correlated over a

sequence of frames to obtain a description of scene motion [74]. Tracking objects

through sequences is also useful to generate motion models of humans [86] and

hands [80, 41] and for use in downstream processes like identification e.g. when

head tracking [64, 19]. In addition, the detection of humans may be improved by

the use of so-called temporal templates [8].

1



2 Chapter 1. Introduction

Tracking in this work, is treated as a series of sequential registrations, where

a similarity measure between a template and a reference image is maximised.

Although tracking algorithms vary widely, there are three requirements that most

methods have in common:

1. A method to represent image data.

2. A warp or transformation between the coordinates of the template im-

age (appearance model) and the current frame (reference image) in the

sequence, in order to find the region of correspondence between them.

3. A similarity metric to compare the corresponding sets of data from the

current frame and the template.

Numerous methods to represent data exist e.g.: local polar patches of height

or intensity [35], collections of local gradient histograms called SIFT features

[44], and edge maps for chamfer-matching [80]. Localisation of the outline or

silhouette of an object has many different applications [75, 31, 79, 101], and the

use of contours can be particularly useful when solving for sets of occlusions in a

scene [100]. In this work, a somewhat traditional representation, consisting of the

intensities of a rectangular image patch, is used. A variety of similarity metrics

are available to compare image patches, and a rich description of articulated

object motion is possible [2, 6], since the rectangle centre gives an explicit object

location for use in downstream algorithms.

Standard rigid warps are utilised in this work, including: translation, Euclidean,

similarity and affine warps. Rigid warps are used to avoid over-parameterisation

and resulting instability when using the small image patches associated with

tracking applications. The size of the image patches depend on the features
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being tracked and the resolution of the video sequence, but typical dimensions

ranged from 11× 11 pixels to 50× 30 pixels.

Although Sum of Square Differences and Normalised Correlation are popular sim-

ilarity metrics for tracking, Mutual Information is favoured in this work. Mutual

Information is used, due to its well known robustness to noise, occlusion and

variations in lighting conditions.

In Chapter 2, the reasons for the above choices of representation method, warp

parameterisation and similarity metric are discussed in more detail, within the

context of previous work. A background to the remainder of the thesis is also

provided. Within this scope, several contributions are made.

Multiple variants of the MI function exist. The most common variants form

four broad families, which differ primarily in how the signal (image) is sampled.

Chapter 3 places these four families into a single mathematical framework. The

Jacobian and Hessian of each type of MI is derived, which is novel for three

families. The methods are also compared in terms of computational cost and

registration performance.

It was found that MI has artefacts in its surface, which has two effects: the

introduction of numerous spurious local maxima, and the biasing of the global

maximum away from its “true” position. Extensive literature exists on this sub-

ject proposing a variety of solutions [47, 66, 70, 34], but many solutions only

solve the symptoms of the problem (artefacts in the function surface) rather than

the cause (insufficient samples and ignoring available information). In Chapter

4 a detailed analysis is made of the root causes of artefacts. Several measures

to reduce the effects of artefacts are proposed along with a discussion of exist-

ing proposals. All of these methods are methodically tested, but one method

in particular: super-sampling the template; allows the effect of artefacts on bias
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and convergence accuracy to be finely controlled and removes the assumption of

independence and identical distribution.

In Chapter 5, super-sampling is extended to its logical conclusion, where a method

is proposed that analytically integrates the effect of an interpolation method when

generating a histogram from a pair of sampled images. The method extends a

technique called Non-Parametric Windowing, introduced by Kadir and Brady

[37], which is effectively the same as taking infinite samples. This eliminates much

of the bias in the position of the global maximum and improves convergence.

The Jacobian and Hessian derived in Chapter 3 allows MI to be placed into

a Lucas-Kanade (LK) tracking framework. In a LK-framework, localisation is

performed by using the Jacobian and Hessian to iteratively update the warp

parameters. Calculating the Hessian is usually the most expensive operation in

each iteration. In Chapter 6, the MI function is reformulated into a so-called

inverse-compositional formulation to give a constant Hessian, using an approach

similar to that proposed by Baker and Matthews for SSD [4]. The proposed

technique is termed MILK: MI in a Lucas-Kanade framework.

Having placed MI into a LK-framework and surmounting the problems associated

with registering small image patches, MI is used for tracking features through a

motion sequence. The problems of drift and misrepresentation, due to simplistic

appearance models, are overcome by a proposed method to incrementally cluster

feature exemplars. The cluster used for localisation is selectively chosen on-the-

fly, allowing real-time performance. A Bayesian approach is used to threshold

the inliers and outliers of each cluster. This method, referred to as Simultaneous

Modelling and Tracking (SMAT) is presented in Chapter 7.

Additionally, the same clustering methods are used to build a shape model using

groups of features. The use of shape improves robustness since it allows recovery
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from tracking failures. The appearance and shape models are stacked together to

form an N-tier hierarchical model, to give a richer description of the object and

further improve robustness. This method is referred to as N-tier SMAT, and is

also presented in Chapter 7.

Chapter 7 concludes by introducing the zig-zag-zen family of semi-automated

tests to measure the performance of the tracker. The partially automated ap-

proach to measuring performance characteristics allowed the testing of eleven

sequences with a mean length of 568 frames, giving more objective results than

many evaluations in the literature. All the test frameworks used in this work

have been made available on Internet.

The thesis is concluded in Chapter 8.
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Chapter 2

Background

2.1 Previous Work

2.1.1 Tracking

Extensive research has been dedicated to tracking non-rigid objects. However,

even within controlled environments, with pre-learned models and without real-

time constraints, this is a difficult problem. Tracking algorithms may perhaps be

grouped into three major types: object detectors, motion predictors and align-

ment algorithms.

Detection-type algorithms rely on training a model of a particular type of feature.

A brute-force search using the model is then applied to every frame of a sequence

to detect the features of interest. Detectors have become popular since Viola

and Jones [91] demonstrated a face detector that was sufficiently optimised to

detect faces at above real-time rates. This has spawned further human detection

algorithms such as the Hockey player detector of Okuma et al. [61] and the

human tracker of Micilotta et al. [55].

7
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Since a brute-force search is made every single frame, detection-type methods

tend to be robust, as there is no reliance on successful localisation in previous

frames. However, the approach also has some disadvantages. Training is normally

time-consuming (of the order of days), precluding the models from being updated

on-the-fly. The object being tracked must be known beforehand and sufficient

examples of the object must be gathered to train a model. The requirement of a

priori data, restricts the tracker to a particular application, e.g. a tracker trained

on faces will not track cars. The localisation of objects is coarse, as it is limited

to the resolution of the brute-force search, resulting in a noisy track. Finally,

identification of specific objects, e.g. Nick ’s face versus a face, is difficult.

Motion predictors, such as the CONDENSATION method of Isard and Blake

[31], rely on sampling an image randomly to locate a given feature. By fitting a

Probability Density Function (PDF) to the locations based on the match scores,

the sampling method then focuses on regions where the tracked feature is likely to

be found. A motion model is fitted to inter-frame variations in the object position,

allowing the position of the object to predicted in the next frame. Due to the

random sampling that these methods use, they allow an explicit trade-off between

speed and accuracy to be made. Motion predictors also offer good localisation

and support multiple probable locations for the same object. However, the initial

motion model is often inaccurate and multiple passes through the same sequence

are required for the method to work [31].

Alignment algorithms are based upon maximising or minimising a similarity func-

tion between the model and the image for a set of warp parameters. Function

minimisation may resemble the poor cousin of the previous two methods, because

without augmentation, multiple hypotheses are not supported, and accurate regis-

tration is required in every frame during a sequence. However, alignment-methods

are generally rapid to compute, and give the most precise localisation of the three
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tracking approaches. Moreover, an a priori model is not necessary, although one

is often used. Alignment or registration, also has wider applicability as a “low

level vision” process, e.g. aligning medical images [92, 77, 42, 17], 3D object mod-

elling [25], image-mosaicking [12, 15] and object identification [13, 26, 24, 9, 51].

Many recent approaches rely on a combination of these methods. In this work,

the main focus will be on an alignment-type approach, because of the desire for

real-time tracking without an a priori model.

2.1.2 Modelling Appearance Variation

Despite the wide applicability of alignment-based tracking algorithms and reg-

istration algorithms, there are still many open problems. In particular, many

tracking algorithms unavoidably tend to drift off target or suffer from mismatch

error and catastrophic failure [52, 40]. These failures occur because tracking algo-

rithms generally rely on appearance remaining the same across multiple frames.

Ambiguity caused by distractors in the scene also induce tracking error [18] as

does occlusion [98, 57, 100, 60].

The use of an appearance model can partially overcome these issues, but in many

cases, a priori data is used to build the model or train the tracker e.g. [61, 86].

Other methods incrementally build probabilistic appearance models to improve

robustness, e.g. the WSL tracker of Jepson et al. [33]. The WSL tracker main-

tains a 3 component model for each pixel in the template and “shifts” between

the components using Expectation Maximisation (EM). However, the use of EM

combined with a large pixel-level model means that it is too expensive for real-

time use. The discriminative tracker of Collins et al. [18] also builds a model on

the fly. For robustness they use different combinations of RGB channels to form

multiple features. However, the method assumes the foreground to be a rectan-
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gle centred in a rectangular background region, which makes tracking irregularly

shaped objects that vary in pose difficult. Also, the use of many features (125)

makes real-time tracking of large objects difficult. Nguyen and Smeulders use a

simpler model that does not require multiple iterations per frame [57]. Instead

they apply a Kalman filter to each pixel, which yields more robust results. Even

this simpler model is too slow for real-time performance.

One of the simplest and earliest approaches to localisation, suggested by Lucas

and Kanade [45], has often proven to be as effective as more sophisticated ap-

proaches. Lucas and Kanade used the Sum of Squared Difference (SSD) operation

to measure similarity between a representative image patch (template) and the

region overlapped in the reference image, utilising a Newton-Raphson method to

traverse the search space and thereby limit processing. This method is relatively

accurate, particularly so in modern manifestations such as the strategic update

method of Matthews et al. [53]. Moreover, modern formulations of registration

algorithms use quasi-Newton methods and many of the more expensive tasks

are pre-computed, thereby allowing above real-time performance. Notable exam-

ples are the Inverse Compositional approach of Baker and Matthews [3] and the

parametric models of Hager and Belhumeur [28].

2.1.3 Organisation

The remainder of the chapter is organised as follows. In Section 2.2 the problem

of registering two images is formalised. In Section 2.3 various similarity measures

are introduced. Feature detection methods were also used in this work although

no contributions were made in this area. These are briefly discussed in Section

2.4. A more detailed background into the formulation of the Mutual Information

operation and appearance modelling methods is more appropriately given in their
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respective Chapters 3 and 7.

2.2 Registration

To begin, the problem of tracking is formalised as an optimisation problem. Given

a grey-scale motion sequence of Nn frames, let f
(n)
R (x) represent the image inten-

sity at position x in frame n. The current frame is also referred to as the reference

image. The frame index n will often be omitted for clarity.

The tracking of a feature through a sequence is treated as a series of registrations

between the (fixed) reference image, fR, and a floating template image, fT . Both

images are functions of position x ∈ R2, i.e. x = (x1, x2). Adding components

to x allows the representation of volumetric or higher dimensional data.

Since fR and fT are represented as lattices of intensity at integral positions for

x, interpolation is used to obtain values at non-integral positions. The choice

of interpolation method is beyond the scope of of this thesis, although it has

some bearing on advanced sampling schemes, such as NP-windowing, which is

discussed in in Chapter 5. Even so, the interpolation method is an important

design choice and the interested reader is referred to the survey of Amidror [1].

For convenience and computational efficiency fR is treated as infinite in extent

and sampling is only performed within the bounds of the lattice of fT . For regions

outside of the defined lattice for fR, the image is defined as 0. Hence fT may

be considered constant with respect to a warp function, and the use of complex

boundary checking routines is avoided.

Each registration operation aims to align fR and fT , by minimising a distance

function d between the two images for some warp function w with parameters v:

vreg = argv min d[fR(w(x,v)), fT (x)] (2.1)
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To maintain notational clarity w(x,v) is referred to hereafter as xw. Distance

functions that increase with greater similarity may be trivially converted to min-

imisation convention by multiplying them by -1.

Numerous minimisation algorithms exist, and the interested reader is referred to

the Coconut Project [7] and Numerical Recipes [68] for an overview of these. A

detailed analysis of what algorithms should be used is beyond the scope of this

work, so only “simple” gradient descent algorithms were implemented, namely:

the simplex algorithm, Powell’s method, the Variable Metric Method, the Con-

jugate Gradients Method, and Levenberg-Marquardt’s Method [68, 50]. These

may be distinguished from methods using simulated annealing methods and hi-

erarchical searches, but this choice does not imply the superiority of a particular

set of methods.

Within the gradient descent methods a further distinction is made between Newton-

type methods and Brent-type methods. Newton-type methods “jump” to a new

position based on the local curvature and gradient e.g. the Levenberg-Marquardt

method [50]. Brent-type methods choose a direction to minimise along and then

perform a Brent line minimisation using a combination of the golden search and

a parabolic interpolation [10], e.g. Powell’s Direction Set method. Newton-type

methods are less robust than Brent-type methods but are often faster when the

Hessian (local curvature) matrix is cheap to obtain. Using the methods of Chapter

3, Hessians are obtainable, so the Levenberg-Marquardt method was favoured.

2.2.1 Warp Parameterisations

In this thesis, “warp” is a term used for any transformation between two positions,

x and xw, of the same dimensionality as specified by a warp parameter v. The

dimensionality of v increases with the complexity of the warp. In all, four different
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warps were considered and are summarised in Table 2.1. Components of v are

referred to as v1, v2, etc.. The Jacobians of warps are typically multiplied by the

gradient image, because the chain rule is required for differentiation. Hence the

gradient images multiplied by the warp gradients are supplied for reference:

∇f ∂wtx

∂v
=

(
fx1 fx2

)
∇f ∂weu

∂v
=

(
fx1 fx2 (fx1 fx2)R

′(x1 x2)
T

)
∇f ∂wsi

∂v
=

(
fx1 fx2 (fx1 fx2)v4R

′(x1 x2)
T (fx1 fx2)R(x1 x2)

T

)
∇f ∂waf

∂v
=

(
fx1x1 fx2x1 fx1x2 fx2x2 fx1 fx2

)

where R is the standard rotation matrix:

R(θ) =

 cos θ sin θ

− sin θ cos θ


The Hessians for these warps are trivial to derive and are shown in Appendix A.2.

Warps are sometimes referred to by their number of Degrees of Freedom (DoF):

e.g. 3DoF warp instead of Euclidean warp.

More complex grid based warps could have been used, such as camera homogra-

phies [30], large parameter viscous fluid model based warps used by D’Agostino

[22], mesh deformation warps used by Bartoli & Zisserman [5] and Pilet [65],

and surface fitting used by Torresani & Hertzmann [84] However, this thesis fo-

cuses on registering small patches, which have too little information for high DoF

warps. For this reason, only the warps of Table 2.1 were implemented. Arguably,

the hierarchical structural models, proposed in Chapter 7, provide equivalence to

more complex warps.
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Name Dimensions Equation for xw

Translation 2 wtx(x,v) =

 x1 + v1

x2 + v2


Euclidean 3 weu(x,v) =

 +x1 cos v3 + x2 sin v3 + v1

−x1 sin v3 + x2 cos v3 + v2


Similarity 4 wsi(x,v) =

 +x1v4 cos(v3) + x2v4 sin(v3) + v1

−x1v4 sin(v3) + x2v4 cos(v3) + v2


Affine 6 waf (x,v) =

 x1v1 + x2v3 + v5

x1v2 + x2v4 + v6


Table 2.1: The various rigid warps used in this work

2.3 Similarity Measures

When registering a pair of images, any similarity function d may be used, but

several constraints affect this choice. The evaluation of d should be fast, robust

to outlier pixels, and have a basin of convergence with sufficient gradient to allow

rapid convergence without giving ambiguous results. The ability to obtain a

Hessian rapidly is also a consideration.

Many similarity metrics are available for the comparison of an appearance model

(template) and the region of overlap in the reference image (current frame), and

subsequent optimisation. For the localisation of image patches, SSD is probably

the most widely used measure [45, 28, 40, 3, 99]. Perhaps this is so, because

SSD was shown to be rapid to compute and easily differentiated, when it was

introduced for image registration by Lucas and Kanade [45]. SSD is also simple

to implement and has a wide basin of convergence, aiding optimisation. As

the name implies, the SSD function is simply a normalised sum of the squared
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differences between corresponding pixels in the pair of images:

dssd(v) =
1

Nx

∑
x

[fr(w(x,v))− ft(x)]2 (2.2)

where Nx is the number pixels defined by the lattice ft.

However, SSD is not tolerant of the outlying pixel values caused by noise and

occlusions. SSD assumes a linear relationship between the intensities of the two

images, making it intolerant of changes in lighting conditions. An example of an

SSD function surface is shown in Figure 2.1a.

Normalised Correlation (NC) has been proposed to surmount the problems caused

by outlying pixel intensities with some success, and is also popular for registration

applications, e.g. Ukrainitz and Irani aligning sequences in space and time [89].

Levin and Weiss [43] use NC to register object fragments as one step in segmenting

an object from the background. Normalised Correlation relies on computing the

products of pixel values. As a result it is more robust to lighting changes since

outliers have less influence on the product operation.

dnc(v) =

∑
x fR(x)fT (xw)

(
∑

x fR(x)2)
1
2 (

∑
x fT (xw)2)

1
2

(2.3)

NC also has a wide basin of convergence, as shown in Figure 2.1b. However,

it still assumes a linear relationship between the intensities of the template and

reference images, and the wide basin of convergence can make convergence slow.

Mutual Information (MI) has proven to be a superior metric in many respects to

both SSD or NC. Since its concurrent introduction and popularisation by Viola

& Wells [92], Studholme et al. [77] and Collignon et al. [17], it has been widely

adopted, particularly in the medical imaging field. MI has seldom been applied

to tracking problems in the literature, because the limited number of intensity

samples available in small image patches leads to over-sparse histograms and
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inaccurate estimates of entropy. Reducing the histogram resolution solves this

issue (e.g. 8× 8 bins for an 11× 11 template worked well), but this also assumes

that the tracked feature contains sufficient intensity variation (i.e. gradients at

this discretisation are finite). If the assumption of sufficient gradient is not met,

SSD and NC will perform better, as they only have a single degree of freedom

and hence a higher sensitivity to intensity variations.

2.3.1 Mutual Information

Mutual Information (MI) is only slightly more expensive than SSD or NC to

compute, and was favoured in this work, due to its known robustness to noise,

occlusions and environmental lighting conditions [93]. MI also has a sharper peak

leading to more specific localisation. In a comparative study of registration meth-

ods, an MI based algorithm outperformed 15 other algorithms [97]. The choice

of similarity metric and descriptor patch often has a large effect on performance,

whatever the final application. Hence, the contributions made in this work to

understanding MI should be of wide interest.

The origins of MI are in information theory[20]. It was first proposed by Shannon

[71] as method to measure the entropy of the shared information between two

signals, with quantised amplitudes over a period of time. It is a simple extension to

consider 2D images rather than 1D signals, which consist of quantised intensities

over a 2D space.

MI relies on computing a joint-histogram of intensities, and as a result, is tolerant

of non-linear relationships between the intensities in images. Chapter 3 discusses

MI in detail, but the MI equation is given here for reference:

dmi =
∑
r,t

prt(r, t) log

(
prt(r, t)

pr(r)pt(t)

)
(2.4)
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where pr, pt, and prt, are the respective Probability Density Function (PDF)

estimates of intensity for the reference, template and joint of the two images,

while r and t are the reference and template intensities. Note how (2.4) does

not follow the somewhat traditional form of distance function in (2.1), where a

one-to-one functional relationship between intensities in fR and intensities in fT

is assumed. Rather the statistical relationship between the images, summarised

using a histogram, is used.

Multiple forms of MI have been developed [67], of which four examples are shown

in Figure 2.1b-f. The main difference between MI methods is how the joint-

histogram is constructed from image intensity samples. One approach, used by

Wells et al. [96] is to convolve the histogram with a Parzen window [63], to

account for uncertainty in the intensity values. Thevenaz and Unser use a more

sophisticated approach to Parzen windowing [81] using B-splines, which is applied

during the construction of the histogram, giving more accurate results.

In addition, Partial Volume Interpolation (PVI) was introduced by Maes et al.

[47], which increments several histogram bins for each sample based on the dis-

tance of the sample point from the surrounding pixels. Chen and Varshney ex-

tended this concept to Generalised Partial Volume Estimation, which uses ex-

tended spatial support [14].

Mutual Information has been applied as a similarity measure using a number of

different optimisation methods with varying degrees of success, including the sim-

plex algorithm [54], Powell’s method [17, 47], Gradient Descent [96], hierarchical

brute-force searches [78] and hierarchical approaches [81, 32]. A number of these

methods were systematically compared by Maes in [48].

Few of the available MI methods use an analytic derivative, precluding the use

of Newton-type methods. The analytic derivative is difficult to obtain because
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Figure 2.1: Some examples of function surfaces for SSD, NC and several MI

measures, as a template is translated in the X direction across the reference

image. The same template is used in each case, with the ground truth at 92

pixels.

of the non-linear flooring functions implicit to the histogramming process used

in calculating MI. Notable exceptions are a Jacobian for Partial Volume Inter-

polation by Maes et al. [48], a Jacobian for standard sampled MI by Crum et

al [21], and a Jacobian and Hessian for MI using B-spline Parzen windowing by

Thevenaz & Unser [81]. A general derivation for Jacobians and Hessians for the

four common types of MI has been developed in this work and is discussed in

Chapter 3. Figure 2.1 shows some examples of function surfaces for SSD, NC and

several MI measures.

All forms of MI are prone to the effect of artefacts to some degree, and these

have been under examination for some time [46], with a study by Pluim et al. of

artefacts [66] probably being the most comprehensive review to date. Attempts

to better explain these phenomena have been made by several authors. Tsao
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published the results of a large number of empirical tests in [88]. Some theoretical

explanations have also been given, like that of Moddemeijer [56], who showed that

the variance of an MI estimate is dependent on the number of samples and the

number of intensity bins. Ji et al. extended this work and related it back to the

issue of interpolation artefacts [34].

Artefacts can cause optimisation algorithms to converge slowly, necessitate man-

ual pre-alignment close to the correct position, and result in the algorithm be-

coming trapped in local maxima [48, 66]. More seriously, even if the optimisation

algorithm converges to the global maximum, this maximum may have been shifted

slightly due to bias. When tracking small image patches, the limited number of

samples makes the effect of artefacts particularly evident.

2.4 Feature Detection

Before leaving this Chapter, one important issue for any tracking algorithm should

be addressed: the detection of features. Although for some applications it is

adequate for a human operator to select features by hand, in many cases this

will lead to poor results. Firstly, automated algorithms are more practical when

large numbers of features must be selected. Secondly, a human operator may

not necessarily select features that a good to track, since the nature of trackable

features will depend on the similarity method used.

Tomasi and Kanade deem good features to be those that have a Hessian (ob-

tained by multiplying the gradient vector by its transpose) with sufficiently large

eigenvalues [82]. This implies that the image gradient is above the noise level of

the image and is well conditioned, i.e. is not ambiguous in the x or y direction.

Harris and Stephens [29] independently (and earlier) came to a similar conclu-
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sion and applied the same approach to very local (3× 3) image patches to detect

corners and edges. The result is a score for “edginess” using a linear combination

of the (3 × 3) patch intensities with precomputed weights. The Harris corner

detector is widely used when detecting features for SSD trackers.

One of the problems with the Harris corner detector is that it only considers

small local regions. In fact scale is also an important consideration when selecting

salient features to track. Kadir and Brady suggested using entropy as a measure

of saliency for regions that considered scale [36]. This has more recently been

extended to have affine invariance [39].

Lowe also considers scale [44], and passes multiple difference of Gaussian filters

over a pyramid of images to detect local intensity extrema. This serves to extract

regions that are uniform compared to their surroundings. A histogram based

representation of each region is used to make the selected features invariant to

transformations (SIFT). Obdrzalek and Matas [59, 51] use a similar approach

in selecting Maximally Stable Extremal regions. Transformation invariance is

achieved by using the position of maximum curvature to define a frame of refer-

ence.

Feature detection was not within the scope of this thesis, and methods were used

as published. The saliency detector of Kadir is favoured in this thesis, because

like the Mutual Information metric, it is entropy based and hence a better match

for the measure. If SSD or NC are used as similarity measures, then the Harris

corner detector, or the more advanced SUSAN detector of Smith and Brady [76],

would make a better choice.



Chapter 3

Mutual Information

In this chapter, the four most common variants of Mutual Information are placed

into a single mathematical framework. In Section 3.1, it is demonstrated that

these four variants, namely: standard sampling, Partial Volume Estimation, In-

Parzen Windowing and Post-Parzen Windowing; vary only in how the joint his-

togram is constructed from image samples. Jacobians and Hessians are derived for

all these methods, using an approach similar to that of Thevenaz and Unser [81],

but who considered In-Parzen Windowing only. In Section 3.2, this is extended

to standard sampling, post-Parzen window estimation and the general form of

partial volume estimation. Using the established framework, the methods are

compared in terms of computational cost, in Section 3.3. Finally, in Section 3.5,

the MI methods are tested and compared in terms of convergence and bias using

144,000 tests, before concluding in Section 3.6. The symbolic conventions used

in this chapter follow those defined in the Section 2.2 on registration.

21
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3.1 The families of Mutual Information

3.1.1 Histogram Estimation

A measure of the information mutual to fT and the corresponding region in fR

is obtained from the joint intensity histogram h(r, t,v) of the two images. The

symbols r ∈ [0; rmx] ∩ Z and t ∈ [0; tmx] ∩ Z index the intensities that fR and fT

respectively consist of (Z is the set of integers).

The histogram may be normalised to give an approximation of the PDF of in-

tensities, i.e. prt(r, t,v) = 1
Nx
h(r, t,v), where Nx is the number of samples used

to construct the histogram. MI is defined in terms of p rather than h for clarity,

and the dependence on v is explicitly indicated:

dmi(v) = −
∑
r,t

prt(r, t,v) log

(
prt(r, t,v)

pr(r,v)pt(t)

)
(3.1)

A frequently used form of (3.1) has three entropy terms: dmi = Hr + Ht −

Hrt. This form gives the same result, but the condensed form above is used for

conciseness. Mutual Information increases with increasing similarity between ft

and the corresponding region in fr, so to maintain the convention of referring

to function minimisation the negative MI value is used, i.e. the negative sign is

removed from (3.1).

The PDFs pr and pt are easily obtained from the joint PDF, since pr =
∑

t prt,

and pt =
∑

r prt. Note the treatment of r and t as discrete variables (or indices),

indicating the finite bin-size of the histogram h from which p is derived. MI is

not invariant to the bin-size ∆i, which limits its bounds, as does the number of

sample points: dmi ≤ log(min( rmx

∆i
, tmx

∆i
, kmxNx)), where kmx indicates the number

of histogram bins populated per sample. The joint histogram is defined in terms
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of two window functions ψ(), which act as membership functions:

h(r, t,v) =
∑
x

ψ

(
r − fR(xw)

∆i

)
ψ

(
t− fT (x)

∆i

)
(3.2)

Each sample taken from fR and fT is added to one histogram bin:

ψ(ε) = β−0 (ε) =

 1 0 < ε < 1

0 otherwise
(3.3)

This kind of sampling is referred to as standard sampling. The β() function in the

above equation comes from the B-spline family of functions, and a brief digression

describing these is now made.

3.1.2 B-splines

B-spline functions are a family of functions with several useful properties. Firstly,

the sum of a B-spline function for all integral distances from a real value is one,

i.e. it has a partition of unity. This means that no additional renormalisation

is required when histogramming. Secondly, the integral of a B-spline is one.

Thirdly, order n B-splines are the convolution of any set of B-splines whose order

sums to n. Lastly, the derivative of an order n B-spline is the difference between

two, offset, order n− 1 B-splines. These properties are summarised below.∑
a∈Z

β(ε+ a) = 1 ε ∈ R∫
ε∈R

β(ε) = 1

βn(ε) = βn−1(ε) ∗ β0(ε)

∂βn
∂ε

= βn−1(ε+
1

2
)− βn−1(ε−

1

2
)

The 0th order B-spline β0 is simply a top hat function, centred about 0, i.e.

β0(ε) = 1 when |ε| ≤ 1
2

and 0 otherwise. The offset top-hat functions β−0 =
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Figure 3.1: The first four B-spline functions are shown in the top row along with

their respective derivatives in the bottom row. B-spline order increases from left

to right. Note how each B-spline is the convolution of the previous B-spline with

the zeroth order B-spline. Note also, that each derivative is the difference between

two order n − 1 B-splines offset from each other by one. Higher order B-splines

can be constructed recursively in exactly the same manner.

β0(ε− 1
2
) and β+

0 = β0(ε+
1
2
) are also defined. Some examples of B-spline functions

and their derivatives are given in Figure 3.1. A more detailed description of B-

spline functions and their numerical computation is given by Unser et al.in [90].

3.1.3 Choice of ∆i

When using MI as a similarity metric, the size of the bins in the joint-histogram,

∆i, must be chosen. The choice affects the computational cost for evaluating MI

(see ancillary costs in Table 3.3), but more importantly it affects how meaningful

the MI measure is. Too small a ∆i, results in too many bins relative to the number

of samples, Nx, and an underpopulated histogram that does not describe how in-

tensity values are clustered. The practical effect of an underpopulated histogram
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is uniformly low MI values, with the position of match being indistinguishable

from the surrounding surface, making optimisation difficult or impossible.

In this work, the relationship established by Hadjidemetriou et al. [27] was used,

where they recommended that the number of bins, Ni = 256
∆i

, be proportional to

the cube root of the number of samples:

Ni ∝ N
1
3
x ⇒ ∆i ∝ N

− 1
3

x (3.4)

The experiments of Chapters 4 and 5 established that for an 11× 11 template, a

∆i of 32 worked well, allowing a constant of proportionality to be established.

3.1.4 Different Sampling Methods

For Standard Sampling (STD), (3.2) and (3.3) show that for each of the Nx

lattice points in fT , each histogram in hrt is incremented once. For reference

the windowing function for STD is restated in (3.5a), where f is an image, i is

an intensity index, ∆i is the bin size of the histogram, and x is a sample point.

An explanation of each sampling function below follows, and each method is

illustrated in Figure 3.2.

ψstd(i− f(x)) = β−0 (i− f(x)

∆i
) (3.5a)

ψ(o)
pve(i) =

∑
x′∈Z2

βn(x− x′)β−0 (i− f(x′)

∆i
) (3.5b)

ψ(o)
ppz(i) = β−o (i− floor(f(x))

∆i
) (3.5c)

ψ
(o)
ipz(i) = β−o (i− f(x)

∆i
) (3.5d)

Partial Volume Estimation (PVE), introduced by Maes as Partial Volume Inter-

polation (PVI) in [47], aims to make shifts between histogram bins smooth as the
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Figure 3.2: Illustration of various Sampling Methods. (a) standard sampling

extracts a single interpolated value and populates a single histogram bin. (b)

shows Post Parzen windowing, which is similar to (a) except the histogram is

blurred after the bins have been populated. (c) shows In-Parzen windowing,

which differs from (b) in that the blurring occurs during histogram construction,

i.e. before the intensity value is binned. Finally, (d) shows Partial Volume

Estimation, where the values of the surrounding lattice intensities are used to

populate the histogram.
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parameters of v vary. PVE has the added advantage of not adding any (possibly

false) information other than the given data. The method involves populating

the intensity histogram bins of the four lattice points surrounding each sample by

a weighted amount. The weighting is proportional to the area of overlap between

the square regions around the sample and lattice points. This is equivalent to

integrating the region of influence of each neighbouring pixel when using nearest

neighbour interpolation: i.e. h(i) =
∫
x
β−0 (i− fnni(x)).

Chen and Varshney extended partial volume interpolation to generalised Partial

Volume Estimation (PVE) by using higher order B-splines to weight a larger

region of pixels [14]. Although PVE techniques have been treated as alternative

interpolation methods, strictly speaking they are alternative sampling methods.

Hence the term “PVE” being used, rather than “PVI”.

The windowing function for PVE is given in (3.5b), where x′ are the coordinates

of all lattice points in the image and n indicates the order in the sampling family.

Note that (3.5b) collapses to (3.5a) with nearest neighbour interpolation for o = 0,

since in this case only one valid value for x′ exists, that of the lattice point nearest

to x. For notational clarity, the first window function in (3.5b) is shown to take

a vector as an input. This is simply a product of two window functions, one for

each dimension of the vector, i.e. βo(x) =
∏K

k=1 βo(xk), where K is the number

of components in the vector x.

The advantages of PVE are that it only adds information explicitly given in the

image, it is relatively inexpensive to compute and has a smooth surface. The

disadvantage is that for orders below 2, PVE is only C1 smooth with cusps at

points of v where grid-alignment between ft and fr occur. A strong bias towards

these cusped positions exists. Also, a nearest neighbour model of the world

ignores much of the information implicit to the image. Note, that Cn smooth
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means that the nth derivative of the function is continuous at all points.

Two types of Parzen windowing routines exist: Post-Parzen Windowing (PPZ)

and In-Parzen windowing (IPZ). In PPZ, the histogram is constructed first and

then convolved with a Parzen window. In IPZ, each sample is convolved during

histogram construction. IPZ uses a sample’s intensity value before the informa-

tion loss implicit to discretisation occurs.

The window equation for post-Parzen windowing is given in (3.5c), where floor(f(x))

indicates reduction to the first integer value below f(x). The floor() function

could have been shown as a sum of windowing functions, but this would make

the equation unwieldy. (3.5c) shows an oth order B-spline window function, but

any window function may be used. B-splines were used since they are inexpen-

sive and their derivatives are easily obtainable [90]. The advantage of post-Parzen

windowing is that it improves on the basic sampling method using a computa-

tionally cheap operation: O(i2maxw
2). However, there is information loss due to

blurring of the histogram, and the function is not necessarily smooth.

In-Parzen windowing differs slightly, in that it lacks the implicit discretisation

of intensity values as shown in (3.5d). As a result, In-Parzen windowing has a

guaranteed Co−1 smooth function surface and a more accurate histogram. Again

some information loss occurs due to blurring of the histogram, and the method

is comparatively expensive. Both (3.5c) and (3.5d) collapse to (3.5a) for o = 0.
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3.2 Jacobians and Hessians

The Jacobian of MI may now be found by applying the product and chain rules

to (3.1) and collecting the terms together:

∂dmi
∂v

=
∑
r,t

∂prt
∂v

(
1 + log

(
prt
pr

)
− log(pt)

)
− prt
pr

∂pr
∂v

Nx is assumed to be constant for a given template. A more general definition of

the above equation has been given by Thevenaz [81], where a non-constant Nx

was accounted for. However their approach constructs the problem such that Nx

is constant anyway. Directly adapting [81], to make this assumption at the start

of the derivation (using assumption of a bounded template and a reference image

of infinite extent, made in Section 2.2) simplifies the remaining steps considerably.

The summations in the fourth (last) term may be split to give
∑

r
1
pr
p′r ·

∑
t prt,

since pr and p′r are not dependent on t. However
∑

t prt = pr since it is a sum of

a joint histogram. So the fourth term becomes
∑

r p
′
r, because p−1

r and pr cancel.

However, because Nx is constant and p is based on a histogram,
∑
p always

equals one, and therefore
∑
p′ always equals zero, so this term disappears.

Also if the third term (
∑

r,t p
′
rt log(pt)) is separated out, the summations may

again be split to get
∑

t log(pt)
∑

r p
′
rt. But

∑
r p

′
rt = p′t is zero as the template is

constant, so the third term also disappears.

The remaining two terms are combined and the derivative of MI becomes:

∂dmi
∂v

=
∑
r,t

∂prt
∂v

log

(
eprt
pr

)
(3.6)
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3.2.1 Derivative of histogram function

The derivative of the histogram function may be obtained using the chain rule:

∂prt
∂v

=
∂

∂v

1

Nx

∑
x

ψ[t− fT (x)

∆i
]ψ[r − fR(xw)

∆i
] =

1

Nx

∑
x

ψT [t− fT (x)

∆i
]
∂

∂v
ψR[r − fR(xw)

∆i
]

=
1

Nx∆i

∑
x

ψT
∂ψR
∂ε

∂ε

∂fR

∂fR
∂w

∂w

∂v
= − 1

Nx∆i

∑
x

ψT
∂ψR
∂ε
∇fR

∂w

∂v
(3.7)

The derivatives for the reference window functions differ for each sampling method.

The intensities are indicated by r since only a derivative for the reference image

is required:

∂ψstd
∂ε

(r) = δ(r − fR(xw)

∆i
)− δ(r − 1− fR(xw)

∆i
) (3.8a)

∂ψ
(o)
pve

∂ε
(r) =

′∑
x

(
β+
o−1(xw − x′)− β−o−1(xw − x′)

)
β−0 (r − fR(x′)

∆i
) (3.8b)

∂ψ
(o)
ppz

∂ε
(r) =

(
β+
o−1(r −

fR(xw)

∆i
)− β−o−1(r −

fR(xw)

∆i
)

) ∑
m∈Z

δ(r −m) (3.8c)

∂ψ
(o)
ipz

∂ε
(r) =

(
β+
o−1(r −

fR(xw)

∆i
)− β−o−1(r −

fR(xw)

∆i
)

)
(3.8d)

It should also be noted that for PVE the ∇f factor in (3.7) should be removed,

since ψpve does not depend on fR(xw), but on xw. Apart from this difference,

note how similar the structures of all these equations are. Note also how the δ

functions in ∂εψstd and ∂εψppz imply that the function is constant at most points,

except at certain v positions on the cost function surface where a step change

occurs. This exactly mirrors reality.

In these cases (STD and PPZ) the derivative function surface is a zero plane

populated by impulse functions, and the analytic derivative supplies almost no
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information to the optimisation function, resulting in failed convergence. Hence

it is better to use the approximate derivative ∂ψR

∂ε
≈ ∆ψR

∆ε
:

∂ψstd
∂ε

(r) ≈ β−0 (r − fR(xw)

∆i
)− β−0 (r − 1− fR(xw)

∆i
) (3.9a)

∂ψ
(o)
ppz

∂ε
(r) ≈

(
β+
o−1(r −

fR(xw)

∆i
)− β−o−1(r −

fR(xw)

∆i
)

) ∑
m∈Z

β−0 (r−m)−β−0 (r−m−1)

(3.9b)

Crum et al. also obtained the result in (3.9a) for the MI gradient for standard

sampling [21], but via a different route. Crum et al. examined the fractional

variation in the neighbouring bins of a given intensity caused by perturbating

each warp parameter. The limit as the perturbations shrank to zero was taken.

Since registration in [21] was achieved using a viscous fluid model, only the first

order gradient was necessary and the second order gradient (Hessian) was not

derived. In the following subsection the Hessian is derived for all four MI families

discussed thus far.

3.2.2 MI Hessian

The MI Hessian is approximated to:

∂d2
mi

∂v1∂v2

=
∑
r,t

(
∂prt
∂v1

∂prt
∂v2

1

prt
− ∂pr
∂v2

∂prt
∂v1

1

pr
+

∂p2
rt

∂v1∂v2

log

(
eprt
pr

))
=

∑
r,t

(
∂prt
∂v1

∂prt
∂v2

(
1

prt
− 1

pr

))
(3.10)

because in the second term
∑

t
∂prt

∂v2

∂pr

∂v1
1
pr

=
∑

t
∂prt

∂v2

∂prt

∂v1
1
pr

. The third term is

approximately zero near the minimum. Its use only improves the speed of opti-

misation slightly at considerable computational expense. In Chapter 6 the impli-

cations of this approximation are examined in more detail.
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3.3 Computational Costs

The computational costs of sampling methods are important when selecting which

one to use for a particular application. Also, MI is sometimes regarded as an

expensive option compared to say sum of square differences or normalised corre-

lation. This subsection shows that this is not necessarily true.

The SSD operation is O(Nx): each operation requiring a warp, a template pixel

access and multiple reference pixel accesses for interpolation. For MI, the only

additional cost is to access each bin in the histogram after its construction, i.e. MI

is O(Nx + tmxrmx). More sophisticated MI methods require multiple bin updates

per sample, which can also increase computational cost. Theoretical estimates of

costs for each function are given in Table 3.3.

The costs of calculating the Jacobian would appear to be substantially higher,

since one histogram per warp parameter is required. However, there is some

redundancy between the gradient and function evaluations, so this increase is

not substantial. Likewise for the Hessian. Depending on how the registration

problem is formulated, there are many opportunities for pre-processing to reduce

costs substantially. In Chapter 6 such techniques are considered in detail.

Some empirical tests were performed to verify the predictions of computational

cost, the results of which are given in Figure 3.3. The mean time to evaluate each

function 10000 times is displayed for six template sizes in units of µs per pixel.

There is some overhead to each function evaluation, but this becomes negligible

as the size of the template increases, and the mean cost per pixel reaches a steady

state value.
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Table 3.1: The computational complexity of various similarity methods, using

Nearest Neighbour Interpolation (NNI), Bi-Linear Interpolation (BCI) and Bi-

Cubic Interpolation (BCI). Standard sampled MI is only slight more expensive

than SSD to compute.

Function Order Interp. Reads of Writes Ancillary

(o) Method ft+fr updates

SSD n/a NNI Nx(1+1) Nx

SSD n/a BLI Nx(1+4) Nx

SSD n/a BCI Nx(1+16) Nx

MI(std) n/a NNI Nx(1+1) Nx tmxrmx

MI(std) n/a BLI Nx(1+4) Nx tmxrmx

MI(std) n/a BCI Nx(1+16) Nx tmxrmx

MI(pve) 1st n/a Nx(1+4) 4Nx tmxrmx

MI(pve) 2nd n/a Nx(1+9) 9Nx tmxrmx

MI(pve) 3rd n/a Nx(1+16) 16Nx tmxrmx

MI(ipz) 1st BLI,BCI Nx(1+(4,16)) 4Nx tmxrmx

MI(ipz) 2nd BLI,BCI Nx(1+(4,16)) 9Nx tmxrmx

MI(ipz) 3rd BLI,BCI Nx(1+(4,16)) 16Nx tmxrmx

MI(ppz) 1st BLI,BCI Nx(1+(4,16)) Nx 4tmxrmx

MI(ppz) 2nd BLI,BCI Nx(1+(4,16)) Nx 9tmxrmx

MI(ppz) 3rd BLI,BCI Nx(1+(4,16)) Nx 16tmxrmx
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Figure 3.3: Computational cost when evaluating (a) similarity functions and (b)

their Jacobians as well. For each function the mean time per function evaluation

is given for 10000 evaluations. Individual crosses indicate the results for six

template sizes (152, 202, 302, 402, 502, 602 pixels). Results are given in units of µs

per pixel. Each function has a some overhead, but as the number of pixels in the

template increases the realtive overhead becomes negligible. Hence, the cost per

pixel asymptotes to the minimum cost shown.
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Figure 3.4: The eight data sets used for testing the similarity metrics. The

templates are the green shaded images in the upper left corner in each case,

and the corresponding region in each image is indicated as a small green shaded

region. The resolution is approximately three times higher than what was used

in testing.

3.4 Test Setup

A series of experiments was performed to evaluate the ability of each MI family

to converge to a ground truth position. For comparison the MI methods were

also compared to the Sum of Squared Differences metric and to Normalised Cor-

relation. Analytic Jacobians and Hessians were used in all cases. The derivatives

for SSD are given in Section 6.1.1, as they are more relevant to the material of

Chapter 6 than this Chapter. The derivatives for NC are large expressions and

were not found in the literature, so these are given in Appendix A.1. The PPZ

and IPZ variants of MI with third order Parzen windows were tested, while second

order PVE was used. Although first order PVE (also known as Partial volume

Interpolation) is more widely used at this time, it exhibits significant artefacts

which negatively impact registration performance.

A standard test set was used for the testing in this and the following three chap-
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ters. The test set consisted of the eight high resolution (2560 × 1920) images

shown in Figure 3.4. In each case the full image was used as a reference and

small sub-regions were selected as templates to be matched to the original. The

images were blurred with a normalised 12 × 12 top-hat function before being

down-sampled by 12 times.

Pairs of templates were extracted from each image. The first template was chosen

to align exactly with the lattice of the down-sampled reference image. The second

template was translated relative to the first by 1
3

of a down-sampled pixel (or 4

normally sampled pixels) in each direction. The two templates in each pair are

respectively referred to as a lattice-aligned template and a lattice-offset template.

Pairs of templates were chosen because it was found that certain similarity mea-

sures have a bias towards or away from positions of lattice alignment. This bias

is referred to as positional bias to distinguish it from a positive or negative bias

in the amplitude of the function value, so called amplitude bias. The two types

of bias are related, but the former is easier to relate to convergence performance.

The positional-bias may be measured by performing a hierarchical brute-force

search in the region of the ground truth, to obtain a biased ground truth position.

An example of a function surface with a non-zero bias is given in 3.5a. A brute-

force search is used because some function surfaces, like that of STD, have many

discontinuities causing other optimisation methods to fail. The hierarchical search

consisted of a 21× 21 lattice of points in v, with 0.1 pixel spacing. Twelve levels

were used with the spacing decreasing by a factor of 2
3

each level. The grid always

centred on the previous position with the best (lowest) function value.

In Chapter 4, a comprehensive study is made of bias. For now, it suffices to say

that the positional-bias should be measured before testing convergence, to ensure

the effects of positional-bias do not influence convergence rate. Lattice-aligned
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Figure 3.5: Illustration of a convergence test. (a) First the biased ground truth

(red o) is located relative to the “true” ground truth (blue cross) (b) The registra-

tion is initialised from random starting positions (red dots) at pre-set distances

from the biased ground-truth (c) The distances from converged positions (red

dots) to the biased ground truth are measured.

solutions are generally rare, so experiments using lattice-aligned templates are

relegated to Chapter 4 where they are more relevant.

Convergence tests were initiated from 600 positions at six offsets (0.5, 1.0, 1.5,

2.0, 3.0 and 4.0 pixels) at random angles, much like the example in Figure 3.5b.

The same set of offsets was used for every similarity metric, to avoid favouring one

metric over the others. After convergence (shown in Figure 3.5c) the Euclidean

distances between each converged point and the biased ground truth was mea-

sured to obtain an error value. The use of multiple starting points and multiple

images prevents the results from being affected by a particular dataset or by the

starting position on the function surface.

The experiments were performed for five template sizes, ranging quadratically

from 92 to 172 pixels, to examine the effects of sample size. For the MI met-

rics, a histogram bin-size of 16 intensities was found to work well. In all cases,

the Levenberg-Marquardt algorithm was used for convergence, and translation

warps were used. Comparable results were obtained with other methods, so only
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Figure 3.6: Bias for each MI family, SSD and NC, split into (a) mean and (b)

standard deviation values.

translation results are shown to preserve space. In all 144,000 tests were made

(5 template sizes * 6 measures * 100 points * 6 distances * 8 images).

3.5 Results

Using the test setup of Section 3.4 the bias and convergence were measured.

The results for positional-bias are shown in Figure 3.6, with separate series for

each similarity measure, plotted for increasing template size. As expected, bias

generally decreases as the size of the template increases. This occurs because

larger sample sizes supply more information to the similarity measure, diluting

the effects of individual outliers that could pull the template off-target. The

obvious exceptions are the SSD and NC similarity metrics, which are virtually

unaffected by the number of samples. These metrics also exhibited the lowest

bias. The reason for the good performance and lack of variation for template size

is due to the fact that the templates extracted from the test-set have exactly the

same lighting conditions and no additional noise. These are assumptions that
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Figure 3.7: Mean of convergence error for each MI family, SSD and NC

SSD and NC explicitly make. The standard deviations of bias in Figure 3.6b,

are generally around half the value of the mean, showing that the results are

consistent.

Within the MI similarity functions, the ascending order of performance was:

PVE, PPZ, STD and IPZ. PVE generally has a bias towards integral positions,

which is what leads to its large bias value. This is discussed in detail in Section

4.2.3. For PPZ, the large bias at low template sizes occurs due to slight blurring

of the histogram with the kernel dominating over the data when the sample size

is small. For larger templates PPZ and STD exhibit very similar bias values. IPZ

outperforms all the above MI methods, due to the uncertainty in the intensity

being better modelled. IPZ blurs the joint-histogram less than PPZ while using

more of the information implicit to the data than STD or PPZ.

The results of the convergence tests are shown in Figure 3.7. Each similarity
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Figure 3.8: Standard deviation of convergence error for each MI family, SSD and

NC

metric is shown separately, plotting mean error across all images and tests against

the initial offset from the biased ground truth position. As expected the lower

the initial offset the lower the final error. Also, in general the larger the template

size, the lower the mean error. The exception is SSD, which showed similar

performance at all template sizes, because there was insufficient noise to generate

significant outliers.

Of all the methods NC performed the best, particularly at large offsets. This is

due to the function’s large basin size. Again SSD and NC perform well against MI

due to the lack of occlusions, noise and variation in lighting between the template

and the reference image.

Of the MI methods PVE outperformed SSD and performed better than NC up

until 2 pixel offsets for a large templates, because it too has a large basin size. The
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larger basin arises from the greater spatial support used in each measurement,

which is equivalent to increasing the template size by 2 pixels in each dimension

for “free”.

PPZ outperformed STD, due to its better population of the joint histogram and

the inclusion of uncertainty of intensity. Both of these methods have implicit dis-

continuities as shown in (3.5a) and (3.5c), which introduce numerous local min-

ima. These local minima (hiss) are discussed in detail in Section 4.2.1. For now

it suffices to mention that hiss has little effect while the steps of the convergence

algorithm are large. However as convergence is approached, the steps become

steadily smaller until the macroscopic variations in the function surface are over-

whelmed by hiss. The net result is that convergence is never quite reached. Hence

the low but non-zero error at low initial offsets, which is particularly apparent

for small templates.

If the low non-zero error of PPZ is considered, it can be seen that the convergence

of IPZ is similar to PPZ because the point of inflection in the two convergence

performance plots is at the same initial offset (2 pixels). Better performance

was expected due to the better use of a Parzen window, but the results seem to

indicate that similar orders of performance induce similar convergence rates.

The standard deviations of convergence error are shown in Figure 3.8. These

values were obtained by taking the standard deviation of error for all 100 random

angles, followed by a mean across images. Most similarity functions showed

consistent performance. The exceptions are NC and PVE, because these functions

have wide basins of convergence, which not only surround the global minimum,

but the local minima as well. Similar standard deviation values were obtained

in the testing for Chapters 4 and 5. Standard deviation plots are not shown in

Chapters 4 and 5, since this would double the number of figures without aiding
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analysis.

3.6 Conclusion

This chapter has introduced a single framework for the four main families of MI,

namely: Standard sampling, Partial Volume Estimation, In-Parzen Windowing

and Post Parzen Windowing. The analytic Jacobians and Hessians of these meth-

ods were derived. A computational cost analysis was performed, which shows that

STD MI is not much more expensive to compute than Sum of Squared Differ-

ences. The implementation was used to test the convergence of various image

metrics using the Levenberg-Marquardt Method on a diverse array of images.

Despite their simplicity, SSD or NC are the methods of choice where the image is

not occluded and the intensities of the template and reference image are linearly

related. NC performs well even at large initial offsets due its large basin size.

Where numerous outliers exist, PVE gives the best convergence performance, but

at the cost of a large bias. So once the algorithm has converged it is recommended

that IPZ is used to reduce the bias the result.

In Chapter 4 the discussion of the families of Mutual Information that have been

introduced is continued. However the focus shifts to consider the artefacts in the

function surface of Mutual Information and how these affect convergence.



Chapter 4

Reducing Mutual Information

Artefacts with Super-Resolution

(and other methods)

At this point four families for mutual information have been introduced (in Chap-

ter 3) and placed into the same mathematical framework for use in registration.

The fact that the function surface of MI is not always smooth has been briefly

mentioned and the potentially negative results of these surface irregularities have

been demonstrated in the results in Section 3.4. These irregularities are hereafter

referred to as artefacts and in this Chapter their effects are further considered.

Artefacts occur for all similarity functions, not just MI. At this point a distinction

between two types of artefacts is drawn: hiss and periodic glitches. Hiss appears

as random high frequency shifts in the cost function surface. These random shifts

are generally small compared to the overall value at each position. Hiss is caused

by non-linearities in the function dmi, which cause discrete shifts in histogram bin

populations as the warp parameters v vary. This behaviour is essentially random,

43
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since it depends on numerous local shifts in value for each sample point.

Glitches are a periodic pattern in the cost function surface. They have a larger

amplitude than hiss, although this is generally still smaller than the absolute

function value. Glitches also have the more insidious effect of shifting global min-

ima away from their “true” positions. This effect is called positional-bias. Unless

otherwise specified “bias” should be taken to mean positional-bias. Glitches are

generally caused by a combination of the synchronisation of the reference lat-

tice and the warped lattice of the template combined with the effect of local

correlations in the two sets of data.

In MI, the characteristics of these artefacts are affected by how the joint-histogram

of fR and fT is sampled. In Figure 4.1, two typical examples of hiss and glitches

in MI are shown. First order PVE is well known [66] to have a strong bias

towards integral valued translations (lattice alignment), as demonstrated by the

cusps at these points. STD has a bias away from lattice alignment, which is

demonstrated by the local minima at these points. STD is also a discontinuous

function, exhibiting the numerous local extrema typical of hiss.

Following some background in Section 4.1, the causes of artefacts are discussed in

Section 4.2. Techniques to reduce the effects of artefacts are presented in Section

4.3. Next, these techniques are compared in terms of registration performance in

Section 4.4 before concluding in 4.5.

4.1 Background

The MI value obtained for a given set of warp parameters, is calculated from

an estimate of the PDF of intensity values in fR and fT . Hence the accuracy

of the MI value is dependent on the accuracy of the histogram estimate. Typi-
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Figure 4.1: Examples of hiss and periodic glitches in function surfaces. The

ground truth is a translation of 92 (pixels) in each case. First order PVE has

a strong bias towards lattice alignment, exhibiting a regular pattern of cusps.

STD is discontinuous, exhibiting the semi-random behaviour referred to as hiss,

a noticeable bias away from positions of lattice alignment.

cally, the histogram is based on taking one sample per template pixel from each

image, so called standard sampling. Three methods have been proposed, which

seek to obtain a more accurate histogram, or at least smooth the cost function

surface: In-Parzen Windowing [94, 63], Post-Parzen Windowing [81] and Partial

Volume Estimation [47, 14]; but none of them eliminate artefacts entirely. Be-

fore discussing these methods further a digression is made into the inaccuracy of

histogram sampling.

4.1.1 The Inaccuracy of Histogram Estimation

Consider the example of a 2 pixel square region in a larger image, where linear

interpolation is used, like that in Figure 4.2a. If it were practical to extract and

represent a continuous PDF, it would resemble the PDF shown in Figure 4.3a.

Generally it is not practical to represent a PDF in this way, so a histogram

representation with intensity bins of finite size, ∆i, is used. This leads to the



46 Chapter 4. Reducing Mutual Information Artefacts with Super-Resolution

(a) (b)

Figure 4.2: Examples of 2× 2 pixel images that are (a) continuous in space and

intensity (b) continuous in space with discrete intensities. The cross-hairs show

four sample points at interpolated positions that are used to form the histogram

in Figure 4.3c. Using a higher sampling frequency would provide a better approx-

imation of the histogram (Figure 4.3b). Parzen windowing also gives an improved

approximation (as shown in Figure 4.3d).

approximated PDF shown in Figure 4.3b. To illustrate this effect more clearly,

each intensity in Figure 4.2b is coloured according to its membership among the

bins of fixed size, much like those defined in Figure 4.3b.

Even with this approximation, obtaining an accurate histogram is too expen-

sive for practical use, since it would involve computing the area between each

iso-intensity contour in Figure 4.2b. So, a further approximation is made by

populating the histogram using one sample per pixel. The four sample points

in this example are indicated by the crosses in Figure 4.2a & b. This sampling

regime leads to a histogram like that shown in Figure 4.3c. Clearly this is a poor

representation of the “true” PDF of Figure 4.3a. However, usually the template

is somewhat larger than 2×2, so a much larger number of samples is taken. This

improves the statistical relevance of the histogram significantly, but sub-pixel in-

formation inherent in the ordering of the pixels is lost. Sampling in this manner

also assumes independence and identical distribution (IID) of samples. The fact
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Figure 4.3: Examples of histograms that are (a) continuously sampled in space

and in i (b) discretely defined in i but continuously sampled in space (c) discretely

sampled in space and i (d) discretely sampled, as in (c), but then convolved with

a Parzen Window. The discrete intensity sampling in (b) means that it is an

approximation of (a). Normally spatial sampling is discrete as well, resulting in

the much worse approximation shown in (c). Parzen windowing ameliorates this

effect somewhat in (d).
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that these assumptions are seldom correct is generally ignored. Kadir and Brady

have proposed a method to more accurately estimate the statistics of images that

does not assume IID [37]. This method is extended to obtain MI estimates from

image pairs in Chapter 5.

Due to the finite size of the bins and the limited number of samples, MI is

generally underestimated (or amplitude-biased). Ji et al. [34] and Moddemeijer

[56] both discuss amplitude-bias and derive estimates for it. Amplitude-bias is

mentioned to differentiate it from the positional -bias that is considered in this

work. Positional-bias is a shift of the minimum away from its “true” position.

In Figure 4.4a-d increasing sample rates are used to obtain progressively better

MI estimates and hence lower bias values. These two forms of bias are simply

a different way of looking at MI estimation error, albeit on different axes of the

function surface plots. However for optimisation methods, it is generally more

useful to know the error in the position of the minimum than the error in the

function value at the minimum.

In addition to the discretisation of the intensity domain, the histogram probabil-

ities are discretised as well, due to a finite number of samples. This is essentially

a non-linearity within the MI function and is the primary cause of hiss.

4.1.2 Interpolation

For all but the most trivial of transformations, values at non-grid positions must

be obtained using interpolation. Numerous interpolation techniques exist, of

which a few are summarised: Nearest Neighbour, Bi-linear and Bi-cubic. Figure

4.5 illustrates an interpolated position x′ = (x′1, x
′
2) between four pixels xn =

(x
(n)
1 , x

(n)
2 ) |n ∈ [1; 4] and is referred to in the following descriptions. In Nearest

Neighbour Interpolation (NNI), the sample point takes its value from nearest
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Figure 4.4: Amplitude bias (horizontal red line) and positional bias (vertical red

line) at the minimum of a (negative) MI function surface. The amplitude and

positional bias are respectively measures of the absolute errors in d and x from the

minimum of the true MI of the images. The effect of increasing the sampling rate

is shown from left to right: where in (a)-(d), 1, 4, 16 and 64 samples per pixel are

taken. As the sampling rate increases, the true MI value is better approximated

and both amplitude & positional bias decrease. It should be clear that these are

merely two ways of referring to MI estimation error, albeit on different axes.
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Figure 4.5: An interpolated position between four pixels positions, where the

relative distance between point x′ and x3 is shown.
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lattice point:

f(x′) = f(xn) |n = argn min |xn − x′|

where f is some arbitrary image, x′ is the position of the sample point and

xn|n ∈ [1; 4] are the positions of the lattice points. So in the example in Figure

4.5, f(x′) = f(x2).

In Bi-Linear Interpolation (BLI), the value of the sample point is a weighted sum

of the four closest lattice points. The weightings are inversely proportional to the

distances in the x1 and x2 directions between the sample and lattice points:

f(x) =
4∑

n=1

wnf(xn)

where wn =
(∆x− |x′1 − x

(n)
1 |)

∆x

(∆x− |x′2 − x
(n)
2 |)

∆x

where ∆x defines the spacing between the lattice points.

Bi-cubic interpolation simply extends the spatial support to a wider region and

uses cubic functions to combine the values of the 16 closest lattice points. For

interest one set of bi-cubic equations is given:

f(x1, x2) =
2∑

i=−1

3∑
j=0

aiajfij (4.1)

ai = b(| − ẋ1 − i|) (4.2)

aj = b(| − ẋ2 − i|) (4.3)

b(ε) =
1

6
(−4(ε− 1)3 + 6(ε)3 − 4(ε+ 1)3 + (ε+ 2)3) (4.4)

where ẋ indicates the fractional part of a value x, and fij is the intensity of one of

the 4× 4 neighbourhood surrounding the current position x, in left to right, top

to bottom order. This gives a surface that is C2 smooth, versus the C0 surface

for BLI and discontinuous surface for NNI. Care should be exercised when using

Bi-cubic interpolation, since the values obtained with this method may go outside
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of the intensity bounds defined by (min(f),max(f)). Either cropping of values

or a histogram with additional bins may be required.

Partial Volume Interpolation or Estimation are often treated as another interpo-

lation method [47, 66]. In this work it is treated as a different sampling method,

and was discussed as such in Section 3.1.4.

4.2 Artefacts and their Causes

4.2.1 Hiss: Artefacts caused by Non-linearities

The root cause of hiss is non-linearities in the function dmi, which induces discrete

shifts in the intensities at sample positions as the warp parameters, v, vary.

This is clearly demonstrated by the δ() functions in the derivative of mutual

information in (3.8a). Other similarity metrics also suffer from hiss. For example

a common implementation of the Sum of Squared Differences function is:

dssd(v) =
∑
x

[fT (x)− floor(fR(xw))]2

The floor function is explicitly shown indicate the effect of representing interpo-

lated samples as 8-bit integers for gray-scale. The result of this is clearly seen

when comparing the two function surfaces shown in Figure 4.6a, where discrete

and continuous representation are shown.

To understand how hiss arises, again consider Figure 4.2. In particular refer to

the upper left sample point in Figure 4.2b. The point is slightly left of the iso-

intensity line (on which all values are 10). Its interpolated value is 10.05, but

because of the integer representation it takes a value of 10 exactly. Now, consider

a small change to warp parameters v, such that the sample points shift slightly
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Figure 4.6: Examples of surfaces for SSD functions for discrete and continuous

representations. (a) and (b) show the same function, but in (b) the surface is

shown over a shorter range of values. The discrete representation results in regions

of constant value separated by discontinuities. The frequency of discontinuities

is limited by the gradient of the template and reference images. The continuous

representation also has regular discontinuous changes in gradient because bi-linear

interpolation was used.

to the right. The shift is just sufficient that only the upper left point crosses

an iso-intensity line. It now takes an interpolated value of around 9.95, with a

new discretised value of 9. This change occurs sharply as the iso-intensity line is

crossed, resulting in a discontinuity in the cost function.

For MI with standard sampling, hiss occurs via the same mechanism. In this

case, the crossing of the iso-intensity line induces a discrete shift between two

bins in the joint histogram. If the trajectories of each sample point are traced for

a particular direction in v-space, the number of discontinuous changes is finite:

equalling the number of times an iso-intensity line is crossed. The limited number

of discontinuities is clearly observed if the function surface is plotted over a shorter

range of values in Figure 4.6b and resembles NNI. Note that hiss, as defined in

this work, is not the same as white noise commonly observed in analogue signals,

since its frequency is bounded.
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Hiss may only be removed if the non-linear parts of the equation are removed:

e.g. by removing the floor routine implicit to SSD as shown in Figure 4.6. For MI,

standard sampling and Post-Parzen windowing generate hiss due to their inherent

discretisation of sample values, whereas PVE and In-Parzen Windowing do not.

This is clearly seen in Figure 4.7 where the traces show the cumulative sum of

histogram bins for each MI family as one component of v is varied. The traces

for standard sampling and Post-Parzen windowing both exhibit discrete shifts as

the samples discretely shift between histogram bins. The traces for In-Parzen

windowing and PVE vary continuously. This behaviour is predicted theoretically

by the Jacobian of the four MI methods in (3.8a)-(3.8d), where standard sampling

and Post-Parzen windowing both exhibit a zero plane interspersed with Dirac

Delta functions.

4.2.2 Quantifying Hiss

The quantification of hiss is now considered. Although the amplitude changes

induced by hiss may be quantified, by evaluating dmi at a fine resolution, this

would be computationally expensive and not very useful. However, estimating

the number of bin shifts that could occur between two v positions can provide

a likelihood of the optimisation algorithm becoming stuck in a spurious local

minimum.

Consider the change in image intensity with respect to a change in gradient for

a single sample at point xn, with current warp parameters v:

∂f(xnw)

∂v
= ∇f(xnw)

∂w

∂v
(xn,v)

where xnw = w(xn,v). Since the number of discontinuities is sought, only those

changes sufficient to induce a bin shift matter. If local linearity is assumed and
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Figure 4.7: Traces of Histograms sampled using (a) Standard Sampling, (b) Post

Parzen Windowing, (c) In-Parzen Windowing, and (d) PVE for varying trans-

lation. Discrete random shifts in the histogram bins for standard sampling are

clearly visible. Post-Parzen windowing gives smoother traces, but the shifts are

still discrete. PVE and In-Parzen windowing eliminate the non-linear floor func-

tion and hence exhibit smooth traces. For clarity only hr is shown, rather than

hrt.
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the sample is assumed to be somewhere between two iso-intensities with uniform

probability, then the probability of a bin shift, ps, is:

ps(∆v) = |∇f(xnw)
∂w

∂v
(xn,v)| · |∆v|

where ∆v is a change in warp parameters and | · | indicates the absolute value

applied to individual components of a vector. The effects of multiple samples are

combined to obtain the total expected number of bin shifts Ns. This gives an

equation of the form Ns ∝ ∆v:

Ns(∆v) = |∆v|
Nx∑
n=0

|∇f(xnw)
∂w

∂v
(xn,v)| (4.5)

Separation of an MI value into a hiss component and an underlying, “true” com-

ponent is not possible. So it is impossible to tell if an optimisation algorithm has

converged to a spurious minimum or a “true” local minimum. This is not serious,

since the effects of hiss are generally overwhelmed by the trends in the function

surface at the macroscopic level. As the optimisation algorithm approaches con-

vergence the steps taken will shorten. Eventually the steps taken reach a level

where the effects of hiss exceed the macroscopic trends in the surface. This is the

uncertainty in the distance to the “true” local minimum.

4.2.3 Glitches: Artefacts caused by Harmonics

Glitches are a manifestation of harmonics between the lattice points of the refer-

ence image and the sample points corresponding to the warped template lattice.

Harmonics are also a problem in many physical systems, which are engineered

to prevent or eliminate them: e.g. the NTSC standard of displaying at 29.997

frames per second to avoid harmonics with 60Hz (US) power supply, and low pass

filtering the input to Analogue to Digital converters to prevent aliasing.
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Commonly seen results of harmonics (glitches) include the visible scan-line seen

when filming a computer screen and Moiré fringes in textured images of insuffi-

cient resolution. In all cases, glitches occur because the phases of two frequencies

interfere constructively in some regions and destructively in others. In other

words this effect is simply a manifestation of beats, with the interfering frequen-

cies arising from the template and reference pixel lattices. Since MI (or any other

similarity function for that matter) is based upon intensities within a finite re-

gion, a net amount of constructive or destructive interference can occur. This

net interference in turn induces a positive or negative bias into MI. As warp

parameters vary the net interference varies and hence the bias.

Since the period of the variation from constructive to destructive interference is

dependent on the lattice periods, the glitch period, Tc, can be obtained directly:

Tc = min(Tr, Tt)frac

(
max(Tr, Tt)

min(Tr, Tt)

)
(4.6)

where frac(.) indicates the fractional component of a real number. Figure 4.8

serves to illustrate how glitches can occur. Consider two sinusoidal signals of

differing frequency (an analogue for lattice sample rate). Now consider a small

moving window, over which the SSD is taken (an analogue for a similarity metric).

The net result is a varying SSD signal depending on the position of the moving

window, with a period of variation following (4.6).

Pluim et al. made some effort to describe the structure of glitches for two sampling

methods (standard sampling and first order PVE) in [66]. For completeness a

similar description is included here.

For standard sampling, interpolation methods such as BLI and BCI cause sam-

pled intensities to be averaged when the sample points are not aligned with the

reference image lattice. In the histogram, the net effect is a movement from bins

at the extremities of the histogram towards regions of high probability density.
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Figure 4.8: Demonstration of how beats in a pair of signals generate glitches. In

(a) two sinusoidal signals (red and green plots) of differing frequency are shown.

In some areas interference is primarily constructive and in others it is primarily

destructive. The green box shows a finite region over which the SSD is measured.

In (b) shows how SSD varies as the region of measurement is shifted across the

two signals. The high frequency variation in SSD is referred to as glitches.
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The result is the marginalisation of the outlying bins. Usually this means that

bins with large populations increase at the cost of bins with small populations. So

in the joint histogram, which dominates the MI function, there is a net decrease

in entropy, resulting in an overall increase in MI. An illustrative example is shown

in Figure 4.9a-c, with the resulting bias away from lattice alignment shown in

Figure 4.1.

In unusual cases, e.g. adjacent mono-intensity regions with a sharp border as in

Figure 4.9d-f, a shift from well populated bins to un-populated bins may occur,

causing a decrease in MI. MI is similarly affected if Parzen windowing is used,

but these effects are partly masked out by the blurring effect of the convolution

operation.

For first order PVE, the opposite happens. For a sample point aligned with a lat-

tice point, one histogram is populated per sample. As the sample shifts away from

the lattice point, three additional bins are incremented by some fractional value

dependent on d. The extreme case is anti-alignment (the sample point is equidis-

tant from the surrounding lattice points). Each of the four bins corresponding to

the neighbouring lattice point are incremented by 1
4
.

The net result is a dispersion of the joint histogram, and an increase in entropy for

the joint histogram. Since the joint histogram dominates, MI decreases alignment

between the reference and warped template lattice decreases. This net bias to-

wards lattice alignment is shown in Figure 4.1. As the order of PVE is increased,

these effects are greatly reduced, as found by Chen and Varshney[14], since the ra-

tio of bins populated per sample between alignment and anti-alignment decreases

from 1
4

for 1st order, to 4
9

for 2nd order, to 9
16

for 3rd, etc.

The glitches caused by PVE are particularly noticeable when the number of

samples per histogram bin is low, since an underpopulated histogram offers many
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Figure 4.9: The effect of bilinear interpolation is to concentrate probabilities

in central bins as shown for two example images (a) and (d). In the middle

column: (b) and (e), a histogram extracted from points aligned with the lattice is

shown. In the rightmost column: (c) and (f), a histogram is obtained from points

sampled exactly out of phase with the image lattice using linear interpolation.

The shift from outlying bins to inner bins is clearly visible. The bottom row

(d)-(f) shows an unusual case where the entropy will increase as a result. For

clarity 1D histograms (rather than 2D joint-histograms) are shown.
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Figure 4.10: Partial volume estimation results in more histogram bins being

populated. A histogram of the image in (a) is shown when sample points are

aligned with the lattice in (b) and when out of phase with the lattice in (c). For

clarity 1D histograms are shown.

opportunities for dispersion. One such example is shown in Figure 4.10.

4.2.4 Quantifying Glitches

As mentioned, apart from generating spurious minima in some cases, glitches

have the insidious result of shifting the maximum away from its original position

in v-space: positional-bias. As for hiss, disambiguating the spurious minima of

glitches from the “true” local minimum is not possible, but if their frequency is

high the macroscopic trends of the cost function surface due to the image data

will dominate. If not, optimisation will fail anyway.

Because the precise effects of glitches are data dependent the author takes the

conservative view that the uncertainty in the position of the “true” local minimum

is an entire glitch period. Assuming optimisation has converged to the correct

minimum, and since one spurious minimum, at most, is generated per glitch, the

uncertainty can be no worse than:

Exmax =
1

2
min(Tr, Tt)frac

(
max(Tr, Tt)

min(Tr, Tt)

)
(4.7)
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where Tr = ∆xr and Tt = w(∆xt,v), assuming that warp parameters v are such

that Tt has a sufficiently low fundamental frequency.

Strong artefacts only occur near “pathological” warps, where the rotated lattice

of the template is at an angle and scale such that the period in the x1 and x2

is a multiple of the reference lattice-period i.e. when a Pythagorean triangle is

formed: e.g. Rotation angle, θ, is 0, or θ = 30◦ and scale of 2√
3
. Away from these

positions in v, the warped lattice points of the template have multiple harmonics

from the point of view of the reference image axes, resulting in exceedingly weak

glitches. Care should be exercised to ensure that solutions near to positions

of lattice alignment are not overwhelmed by glitches. This can easily occur in

applications like tracking, where translation warps are used.

4.3 Reducing the Effects of Artefacts

Techniques to reduce the amount of hiss, glitches and bias are now considered.

The first and most obvious way to eliminate hiss has already been mentioned:

reformulate the similarity metric to eliminate discontinuous functions such as

flooring, or binning. This will completely remove hiss, but can come at a compu-

tational price. In-Parzen windowing [81] and PVE [47, 14] both do this by using

a continuous function to populate histogram bins as shown in Figure 4.6 and 4.7.

A second common technique is to break synchronisations between the template

lattice and the reference lattice as suggested by Pluim et al. [66]. In some appli-

cations where only translation warps are used, a slight rotation or rescaling will

achieve this. The rotation or scaling should be large enough that several com-

plete glitch periods occur over the region being sampled, to prevent regions with

strong harmonics generating glitches. This is the reason that Tsao [88] obtained
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a result where rescaling the template by π
3

gave smaller artifacts than rescaling it

by 128
129

. A larger rescaling results in larger glitch periods and uncertainty, but is

more likely to break up harmonics in the reference image. For more complex warp

functions with rotations, scales and shears, this is less of an issue. The proviso

is that solutions are not near pathological warps and the optimisation algorithm

should not drift too close to such warps.

Expanding spatial support is also an effective way of reducing glitches. This is

equivalent to applying a low pass filter to the data. Since the passband of the

filter is at a lower frequency (less than 0.5 pixel−1) than the glitch frequency

(greater than 1 pixel−1 by definition) the effect of glitches is greatly reduced.

The main disadvantage of expanded spatial support is that some loss in the

higher frequency information occurs and it is more expensive computationally.

An example of increased spatial support is increasing the order of PVE [14].

Expanding intensity support (populating multiple intensity bins per sample) re-

duces the effect of glitches, since it accounts for the inherent uncertainty in the

values of the samples obtained from each image. This has the effect of blurring

the histogram. This effect is stronger than the blurring effect due to interpolation,

effectively masking it. Examples of increasing intensity support are: increasing

the size of a Parzen window (or using a Parzen window at all), and increasing

the histogram bin-size as Thevenaz and Unser did using grey-cones [81]. There

are no inherent disadvantages to this method apart from increased computation.

However large image gradients (in a strong texture for example) can still cause

artefacts to be generated.

Noisy data can cause relatively large shifts in intensity for a small shift in ∆v.

This can result in strong glitches from the correlation of local regions where

synchronisations occur. Ji et al.[34] suggest that smoothing the data initially can
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reduce hiss substantially, since there are less outlying bins that are populated.

Hence glitches are reduced, since synchronisations must be over a larger region.

However, this causes information loss in the original data.

Lastly, the rate at which the images are sampled can be increased. (4.5) and

(4.7) show that this reduces the effects of hiss and the number of glitches relative

to the sample rate. For hiss, an increased sample rate gives a better populated

histogram and more random shifts (since each sample follows a path as v that

crosses iso-intensities) but the size of the shifts is smaller. Moddemeijer showed

the variance in MI to be inversely proportional to the number of samples [56]. For

glitches, increasing the sample rate results in a lower Tt and a lower uncertainty

in the position of the minimum, Exmin. The main disadvantage of this method

is the increased computational expense. Even so, as shown in (4.5) and (4.7),

choosing the sample rate allows fine control of glitch period and hiss frequency,

allowing these to be altered on-the-fly during optimisation. Also, hiss only needs

to be controlled when close to convergence, allowing computation and accuracy

to be explicitly traded-off. No analogy for increased sampling resolution exists

for PVE, because PVE is equivalent to the integral of a weighted window over

the local region while using Nearest Neighbour Interpolation.

Summary As discussed, many strategies have been proposed to deal with arte-

facts in the MI function surface. In this section two types of artefacts were con-

sidered separately: hiss, which is caused by discontinuities in the function; and

glitches, which are caused by harmonics between the lattice spacing of the ref-

erence image and the sample point spacing. Generally the above proposals have

only been considered so far as the implications for the particular application or

choice of sampling method. Certain techniques can then be chosen in a princi-

pled manner to give the highest convergence rate and lowest bias at the lowest
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computational cost. Six strategies to reduce artefacts have been discussed:

1. Eliminate function discontinuities: hiss has little effect since optimisation

methods sample the function surface relatively sparsely.

2. Expand spatial support: This reduces the amplitude of glitches at some

computational cost (see Table 3.3).

3. Break synchronisation between lattices: this is only possible in some appli-

cations where solutions are far from pathological warps.

4. Expand intensity support: This also reduces the amplitude of glitches at a

computational cost.

5. Smooth the data: this results in a sharper peak and smoother surface at

the cost of partially compromising the data.

6. Increase the sample rate: At some computational cost, this reduces both

the amplitude and increases frequency of glitches, in a controllable manner,

making them less visible to an optimisation method that sparsely samples

the function surface.

In the next section the above methods are critically compared in terms of con-

vergence rate and bias, allowing a principled choice to be taken.

4.4 Experiments

4.4.1 Experimental Setup

The test setup described in Section 3.4 was used to measure the performance of

the various MI estimation methods in terms of:
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• Bias: Euclidean distance between the ground truth and global minimum.

• Convergence: The mean distance from the (biased) global minimum.

As in Section 3.4, 600 offsets at random angles from the biased ground truth

were used to initialise a Levenberg-Marquardt minimisation algorithm. Six fixed

distances were used for the initial offset: 0.5, 1, 1.5, 2, 3 and 4 pixels. The same

set of offsets was used for each function to prevent bias due to an unlucky choice

of initial position. The offsets were from the biased global minimum, rather

than the ground truth, so as to decouple the effects of bias and convergence to

spurious minima. The biased global minimum was obtained using a hierarchical

brute-force search in the region of the ground truth.

Six sets of experiments were performed, considering each of the strategies dis-

cussed in Section 4.2 for reducing the effects of artefacts. Experiments were per-

formed for five template sizes, ranging quadratically from 92 to 172 pixels, and

a fixed histogram bin-size of 32 intensities. In addition, tests for five histogram

bin-sizes, ranging exponentially from 42 to 642 intensities were made, with a fixed

template size of 172 pixels.

Varying the intensity bin-size is equivalent to varying the amount of spatial sup-

port. However, bin-size influences the results to such an extent that it is included

with every set of experiments. In all cases BLI was used when interpolating. In

all, approximately one million individual tests were performed: 8 images, 5 tem-

plate sizes + 5 intensity bin-sizes, 6 offset sizes, 21 functions and modifications

(like smoothing or lattice alignment), and 100 angles for each offset distance.
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Figure 4.11: Bias when removing function discontinuities for lattice-aligned tem-

plates of varying size.

4.4.2 Eliminating Discontinuities

To examine the effect of the removal of discontinuities, four MI functions are

compared: STD, 3rd order PPZ, 2nd order IPZ, and 2nd order PVE. For this

set of experiments both lattice-aligned templates (i.e. where the template lattice

exactly aligns with the reference lattice) and lattice-offset templates were used.

The bias obtained for each function is shown in Figure 4.11a. The bias ought

to be zero for PPZ and STD, because MI is greatest when the reference and

template images exactly match. However in practice, the minimum MI exists for

a region rather than a point, due to the functions’ discontinuous nature. As a

hierarchical search is used to find the biased minimum, and the search algorithm

returns the first point for which a minimal MI is found, an erroneous non-zero

bias is obtained. The “bias” in this case approximately expresses the size of the

region of the minimum. IPZ and PVE populate multiple bins in the histogram,

and it is not always possible to obtain an exact match between the reference and

template, so non-zero biases are also obtained in these cases. Even so, the bias

values are all below 0.05 pixels.

The mean convergence error for each function is plotted for increasing initial
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Figure 4.12: Convergence when removing function discontinuities for lattice-

aligned templates of varying size.

offsets in Figure 4.12. As expected, the convergence results degrade as the initial

offset from the minimum increases. Convergence also improves as the template

size increases, because more samples (information) are available, resulting in an

increased radius for the basin of convergence.

Lattice-aligned solutions are rare in practice, so the results in Figure 4.11 and 4.12

are given for interest only. More realistic test results are given in Figure 4.13a

and 4.14, where the bias and convergence are respectively shown for lattice-offset

templates .

The biases for lattice-offset templates, in Figure 4.13a, are larger than those

for lattice-aligned templates, in Figure 4.11. This occurs, because the reference

image no longer contains a region that exactly matches the template, and the

information lost during the blurring and down-sampling, can never be recovered

completely. For all the MI functions, bias decreases as the template size in-
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Figure 4.13: Bias when removing function discontinuities for lattice-offset tem-

plates when varying (a) template size and (b) histogram bin-size.
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Figure 4.14: Convergence when removing function discontinuities for lattice-offset

templates of varying size. MIstd and MIppz are discontinuous, while MIipz and

MIpve are smooth.
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creases, because of the additional samples (information) contained within larger

templates. PVE has the largest bias overall, due to its favouring of lattice-aligned

positions. PPZ performs slightly better. However, due to the large histogram bin-

size, PPZ over-blurs the histogram, so STD demonstrates a still lower bias. IPZ

yields the lowest bias of all, due to its use of the fractional information contained

within intensity values.

As shown in Figure 4.14, all the functions perform similarly well, for all template

sizes, when initial positions are close to the minimum, and similarly badly when

initial positions are distant from the minimum. This is expected because initial

positions close to the minimum are usually within the basin of convergence and

are likely to converge. Distant initial positions usually fall outside the basin of

convergence and converge to spurious local minima. At intermediate positions,

a range of performances are observed, because initial positions are generally on

the edge of the basin of convergence. At these positions, slight differences in the

algorithm or template size causes large variation in performance. In addition,

convergence is generally good, when the initial offset is less than the radius of the

basin of convergence. Initial offsets beyond this boundary show an inflection in

performance curves, and the error approximately equals the initial offset.

Hence there are two main differentiators of performance:

• The range of performance at intermediate initial offsets.

• The initial offset where an inflection of performance is observed.

Neither STD nor PPZ achieve a mean error of zero when the initial offset is low,

despite the initial position being within the basin of convergence. This occurs,

because at positions close to convergence, the steps taken by the optimisation
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are sufficiently small that hiss overwhelms the macroscopic trends of the func-

tion surface. An earlier example shown in Figure 4.4, clearly demonstrates this

effect. IPZ and PVE, which are smooth functions, manage to achieve zero mean

errors when initial offsets are low. So the main advantage of a smooth function,

is that zero convergence errors are possible with Newton type optimisations. Dis-

continuous functions would need a search algorithm to achieve similar results or

a method to reduce hiss. However, at points distant from the minimum, the

function surface is sampled sparsely, so hiss has little effect on convergence rate.

STD demonstrated the worst convergence performance when varying template

size, because of the simplistic way in which it populates the histogram. PPZ

yielded significant improvements, because it accounts for uncertainty in intensity

values and populates the histogram less sparsely. IPZ exhibited further improved

convergence performance at low initial offsets, but had the same point of inflection

in convergence performance (2 pixels) as PPZ. This indicates that the improved

performance of IPZ relative to PPZ, is solely due to its lack of hiss. At large

initial offsets, PVE has the lowest convergence error out of all the methods in

Figure 4.14, because it has larger spatial support than the other methods. This

increases the size of the region being considered in the reference image, and has

the effect of increasing the radius of the basin of convergence. Hence, results at

distant offsets are substantially better for PVE than those for any of the other

methods. At larger offsets, PVE exhibits the greatest range of performance,

indicating sensitivity to template size.

Figure 4.13b and 4.15 respectively show the results for bias and convergence while

varying bin-size for lattice-offset templates. The bias is generally the lowest (best)

at intermediate bin-sizes, with large biases when the bin-size is too large or too

small. For large bin-sizes, the resolution of the intensity histogram becomes too

low to describe the joint statistics, and hence loses the ability to discriminate
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Figure 4.15: Convergence when removing function discontinuities for lattice-offset

templates and varying histogram bin-size.

between well matched and poorly matched data. This is particularly apparent

for PPZ and IPZ, which blur the histogram with a Parzen window. In these cases

the histogram describes the Parzen window statistics rather than those of the

data.

For low bin-sizes, there are too few samples to adequately characterise the joint

statistics. In this case, all positions in the function surface appear to have equally

high MI and again the ability to discriminate is lost. Hence STD, has an optimal

bin-size of between 8 and 32 intensities. Methods that populate multiple bins,

such as PVE, IPZ and PPZ, are by their nature less affected by lack of sam-

ples, so in these cases optimal bias is obtained for lower histogram bin-sizes of

approximately 16 intensities.

In the convergence tests, shown in Figure 4.15, PVE again performs the best due

its larger basin of convergence. IPZ outperforms STD and PPZ at equivalent bin-
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Figure 4.16: Bias when increasing spatial support for lattice-offset templates

when varying (a) template size and (b) histogram bin-size.

sizes due to its continuous nature and the fact that it uses all available intensity

data, including fractional data. When using optimal bin-sizes, PPZ outperforms

STD, because PPZ models the uncertainty in intensity better. However, PPZ

catastrophically fails once the histogram starts to become over-blurred.

To summarise, the advantage of smooth functions is that they allow convergence

errors of zero when using Newton optimisation algorithms and the initial position

is within the basin of convergence, without the use of techniques to reduce hiss.

4.4.3 Increasing Spatial Support

In this set of tests, the effects of increasing spatial support were considered, i.e.

widening the size of the region used for PVE. The bias is respectively plotted in

Figure 4.16a and b for varying template size and intensity bin-size, for four MI

functions: STD and PVE of first, second and third order.

First order PVE gave a large constant bias of 0.467 pixels, because of its strong

bias towards positions of lattice alignment. Recalling from Section 3.4 that the

lattice-offset template was offset by 1
3

of a pixel in each direction, a bias of
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Figure 4.17: Convergence when increasing spatial support for lattice-offset tem-

plates of varying size.

√
2.1

3

2
= 0.467 pixels was expected, and corresponds to the results.

Increasing the spatial support to second order reduced the bias to approximately

0.2 pixels. A further increase to third order gave additional, but less significant,

reductions in bias. This improvement in bias occurred because the difference

between histogram dispersion at lattice-aligned and lattice-offset positions de-

creased, as discussed in Section 4.3. The same pattern of decreasing bias was

observed for larger templates at optimal bin-sizes. STD outperformed PVE in

every case, since it has no bias towards lattice alignment.

Figure 4.17 and 4.18 plot the convergence results when varying template size and

bin-size. First order PVE outperforms STD at positions close to the minimum,

when the initial offset increases to 1 pixel. However, convergence performance

quickly degrades because other local minima, caused by glitches, capture the
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Figure 4.18: Convergence when increasing spatial support for lattice-offset tem-

plates and varying histogram bin-size.

optimisation algorithm. Second order PVE outperforms both of these functions,

because it is smooth and does not suffer from a strong pattern of glitches. No

further improvement was observed for third order PVE, except when using low

bin-sizes, because higher orders of PVE populate more bins per sample. This

indicates that increasing the PVE order beyond two does not significantly increase

the radius of the basin of convergence.

In summary, increasing PVE order reduces the size of function glitches and hence

reduces bias and improves convergence. However, beyond second order the per-

formance improvements become increasingly marginal.
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Figure 4.19: Bias when desynchronising template and reference pixel-lattices for

lattice-offset templates when varying (a) template size and (b) histogram bin-size.

4.4.4 Breaking Lattice Synchronisation

In this set of experiments, the effect of breaking lattice synchronisation was con-

sidered. To do this, the scale of the template was increased by 7.7%. Glitches

in the function surface have a large effect on first order PVE, as has been noted

[66], and a suggested solution is to prevent synchronisation of the template and

reference lattice points by scaling the image slightly [48, 88].

The bias when varying bin-size and template size are respectively plotted in

Figure 4.19a and b for STD, 1st order PVE, 2nd order PVE and 1st order PVE

with a scaled template. A scale of 1.077 was chosen so that the pixels in the

middle sized (13 × 13) template would have a range of phases (relative to the

reference lattice) that was distributed over 360◦.

Using an upscaled template reduced the bias substantially, but increasing the

PVE order to two yielded larger reductions. Despite the scale being “tuned” to

the 13×13 template, the bias continued increasing for larger template sizes. Bias

for smaller templates improved less than it did for larger templates, implying

that the distribution of phase should be at least 360◦ to disrupt the pattern of
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Figure 4.20: Convergence when desynchronising template and reference pixel-

lattices for lattice-offset templates of varying size.
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Figure 4.21: Convergence when desynchronising template and reference pixel-

lattices for lattice-offset templates and varying histogram bin-size.
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Figure 4.22: Bias when increasing intensity support for lattice-offset templates

when varying (a) template size and (b) histogram bin-size.

glitches. Similarly reduced biases were obtained when varying bin-size.

The convergence results, plotted in Figure 4.20 and 4.21, demonstrate that up-

scaling the template yields significant improvements in convergence for larger

templates. Again, the performance improvement for templates below 13× 13 in

size is minimal, bearing out the conclusion that to disrupt glitch patterns, upscal-

ing should be sufficient to give a distribution of phase over 360◦. Again increasing

PVE order to two gave greater improvements in convergence rates.

4.4.5 Increasing Intensity Support

This set of tests sought to examine the effects of increasing intensity support,

where Parzen windows are used to blur the histogram with kernels of successively

increasing size. The bias is respectively plotted in Figure 4.22a and b, for varying

template size and intensity bin-size, for six MI functions: STD, second and fourth

order PPZ, first, second and third order IPZ.

The advantages of using second order PPZ over STD have already been discussed.

In Figure 4.22a, where a fixed bin-size of 32 is used, increasing the PPZ order to
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Figure 4.23: Convergence when increasing intensity support for lattice-offset tem-

plates of varying size.

four increases the bias, because the joint-histogram becomes over-blurred. How-

ever, Figure 4.22b shows that fourth order PPZ compares comparably to, but no

better than, other methods for low bin-sizes. IPZ has a generally lower bias than

PPZ, due its better use of (fractional valued) sample data. For IPZ, the bias also

increases with PVE order at large bin-sizes, due to over-blurring. However, this

trend is reversed at low bin-sizes, due to the sparsity of the histogram having an

effect. The improvement is less significant between second and third orders.

The convergence results plotted in Figure 4.17 and 4.18, lead to similar conclu-

sions where IPZ outperforms PPZ and STD at low initial offsets because it does

not suffer from hiss. Again, increasing the IPZ order from one to two yields

significant improvements for high resolution histograms, with a more marginal

improvement thereafter.
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Figure 4.24: Convergence when increasing intensity support for lattice-offset tem-

plates and varying histogram bin-size.

In summary, increasing the intensity support can improve both convergence and

bias, but successive increases in PVE order have a decreasing effect, as ever finer

descriptions of the kernel and histogram add little new information. For large

kernels, care should be exercised not to over-blur the histogram, as this induces

ringing.

4.4.6 Smoothing the Images

The use of pre-smoothed images was also examined for possible improvements in

performance. Smoothing was applied to the reference image and the template,

before sub-sampling and extraction of the template. This approach was used to

avoid negatively affecting the results by aliasing the intensities at the borders of

the images. For the smoothing experiments, a 36×36 smoothing window was used
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Figure 4.25: Bias when smoothing images for lattice-offset templates when vary-

ing (a) template size and (b) histogram bin-size.

on the high resolution images: equivalent to a 3× 3 window in the sub-sampled

images.

The bias is respectively plotted in Figure 4.25a and b, when varying template

size and intensity bin-size, for four MI functions: STD, 3rd order PPZ, 2nd order

IPZ, and 2nd order PVE. Comparing Figure 4.25 to Figure 4.13, it is shown that

smoothing generally reduces bias for STD, and PPZ. PVE is less affected, while

for IPZ there is a large increase in bias.

For STD and PPZ an improvement in bias occurs, because smoothing reduces

noise, while allowing each pixel to contain some information of a more global

nature. This results in a better joint PDF estimation. IPZ uses the factional

intensity data of every pixel already, so smoothing causes a net loss of information

contained within each sample, resulting in an increase in bias. PVE shows little

variation in bias, because second order PVE already has large spatial support, so

smoothing gives no new information to the function.

Convergence when using smoothed data and a fixed bin-size of 32, plotted in

Figure 4.26, is significantly improved for STD and PPZ, because the reduction

of noise in the images also results in a reduction of hiss. For IPZ, a substantial
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Figure 4.26: Convergence when smoothing images for lattice-offset templates of

varying size.
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Figure 4.27: Convergence when smoothing images for lattice-offset templates and

varying histogram bin-size.
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improvement is also observed, because smoothing near the border is equivalent

to increasing the size of the template slightly. The result is an increased radius

for the basin of convergence, which is seen by the shift of the point of inflection

to an initial offset of 3 pixels. The convergence performance of PVE shows little

change, due to its already wide spatial support.

The convergence results, when varying the bin-size (plotted in Figure 4.27) allow

similar conclusions to be drawn. However, the optimal histogram bin-size de-

creases for all the methods, because the sample data is less local. Over-blurring

of the histogram also occurs more easily for smoothed data, as demonstrated by

the reduction in performance for 642 pixel sized bins.

In summary, smoothing improves convergence, because of the inclusion of global

data, unless the global data is already used, as it is in PVE. Smoothing also re-

duces hiss for STD and PPZ leading to a significant improvement in convergence.

In general, bias is also reduced, unless local intensity information that is being

used, e.g. for IPZ, is lost.

4.4.7 Increasing Sample Rate

In these tests, the effects of increasing the sampling rate are examined by succes-

sively increasing the number of samples per template lattice point. The bias is

plotted in Figure 4.28a and b, when varying template size and intensity bin-size

respectively, for four MI functions: STD with sampling rates of 1,22,42 and 82

samples per template pixel.

As expected, increased sampling rates decreases the bias, since more of the infor-

mation implicit in the 2D lattice structure of the images is used. Super-sampling

also reduces the inaccuracy of the histogram estimate, as discussed in Section
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Figure 4.28: Bias when super-sampling for lattice-offset templates when varying

(a) template size and (b) histogram bin-size.

4.1.1, and allows lower histogram bin-sizes to be used as shown in Figure 4.28b.

The improvements in performance become increasingly marginal, since the infor-

mation that may be extracted from sampled data is limited. Despite the decreas-

ing rate of improvement, lower biases are obtained than for any of the functions

tested thus far. Moreover, the bias may be controlled more finely by the choice of

the sample rate, since the lattice structure implicit to the images is used, partially

eliminating the assumption of independence and identical distribution.

Increasing the sample rate also results in improved convergence rates, plotted

in Figure 4.29 and 4.30. In particular, the mean convergence error at low initial

offsets approaches zero, as the amplitude of hiss relative to the macroscopic trends

in the function surface decreases. The fact that hiss and convergence error may

be finely controlled by the sample rate is clearly demonstrated in Figure 4.29 and

4.30, by the steady improvement in convergence and bias as the sample rate is

increased. The performance of STD also improves substantially, at high histogram

resolutions, because of the increased number of available samples. Hence, the

optimal histogram bin-size decreases as well.

In summary, the use of increased sample rates can improve performance, like
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Figure 4.29: Convergence when super-sampling for lattice-offset templates of

varying size.
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Figure 4.30: Convergence when super-sampling for lattice-offset templates and

varying histogram bin-size.
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all the methods discussed above. However, unlike other methods, controlling

the sample rate allows fine control of the bias and mean convergence error. The

sample rate can be varied according to the step size in an optimisation algorithm,

because the shape of the function surface does not change substantively if the

sample rate is varied slowly. Other methods, such as changing the order of the

function, have too coarse an effect to be used in this way. Moreover, the effects

of hiss may be almost entirely eliminated. STD is generally substantially cheaper

than IPZ or PVE to compute and has lower bias. PPZ can improve the results

of STD at low sample rates.

4.5 Conclusions

In this Chapter, it was shown that all sampling methods give an approximate

joint PDF of intensity. This approximation causes two types of artefacts: hiss

(caused by function discontinuities) and glitches (caused by harmonics between

the template and reference image lattices). Hiss and glitches affect registration

performance in two ways: inducing spurious local minima and shifting the global

minimum away from its “true” position (bias). Many techniques have been sug-

gested to improve registration performance, all of which were compared using the

theory established in Chapter 3. Comparisons in terms of both bias and conver-

gence rate were made, where previous work has considered convergence rate only,

using a comprehensive array of tests ( 1.0 million).

Bias turned out to be an important consideration, since in many cases it was

a substantial fraction of a pixel or more. As expected, increasing template size

improves convergence rate and bias, since more samples give a more representative

histogram. Most functions have an optimal bin-size of intermediate value, since
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low bin-sizes lead to overly sparse histograms and poor statistical models, and

large bin-sizes result in over-blurring when using kernel functions.

PVE generally gives the best convergence due to its wider basin of convergence.

However it also exhibits a large bias giving inaccurate solutions, even when the

spatial support is increased. The large glitches of first order PVE were greatly

reduced by upscaling the template by 7.7%, but this yielded less of an improve-

ment than increasing the spatial support. Moreover, scaling allows strong features

near the edge of the template to bias the position of the minimum, because their

relative shift in position is greater. Other methods do not have this disadvantage.

Pre-smoothing the images allows STD and PPZ to achieve similar convergence

performance to IPZ. In the case of STD this comes at much lower computational

cost. For IPZ the bias increases for smoothed data, because the loss of local in-

tensity information that IPZ already uses, while PVE is unaffected by smoothing.

Discontinuities in STD and PPZ prevented convergence errors of zero at positions

close to the function minimum, because hiss overwhelms the macroscopic trends

in the function surface. However, increasing the sample rate allows hiss to be

reduced, with the added advantage of reducing the already low bias of STD as

well. Moreover the improvements in hiss and bias may be finely controlled, so

they may be applied during function optimisation. Other parameters, such as

function order, are too coarse to be used in this manner. The advantage of using

super-sampled STD is that it often comes at lower computational cost than other

methods and allows the bias the final solution to be controlled as well, because it

partially eliminates the assumption of independence and identical distribution.

In Chapter 5 the idea of super-resolution is followed to its logical conclusion

where an algorithm has been developed that integrates the effect of taking infinite

samples when obtaining a histogram.



Chapter 5

NP-windowing applied to Mutual

Information

Despite its benefits, the registration accuracy for MI may still be improved upon.

Due to the limited number of samples available in some applications like tracking,

the resolution of the intensity-histogram is limited by the relationship given in

Section 3.1.3 to avoid overly sparse histograms becoming statistically meaningless

[81, 27]. Even then, the MI value has a variance dependent on the histogram bin-

size and number of samples [56, 34]. Also, the position of the image pixels relative

to the world is arbitrary, as are the histogram bin boundaries relative to the light

spectrum. So small changes in position, can result in unpredictable changes in the

PDF and instability in the MI value, as was shown in Chapter 4. Finally, using

each pixel as a single sample assumes independence and identical distribution.

The fact that these assumptions are often incorrect, is generally ignored.

Parzen windowing [81] and Partial Volume Estimation (PVE) [49, 14] have been

proposed to improve PDF estimation and MI stability. Parzen windowing ac-

counts for uncertainty in intensity by blurring the histogram slightly. PVE ex-

87
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plicitly smooths MI values for small shifts by using distance values to weight the

relative effects of nearby pixels. However, both methods require sufficient samples

to populate the histogram and may suffer from artefacts and bias [66]. Parzen

windowing requires a kernel to be specified beforehand, and the histogram bin-

size must be specified for PVE and Parzen Windowing depending on the number

of samples.

A method addressing these shortcomings was proposed by Kadir and Brady,

where the statistics in arbitrary regions in an image were estimated [37, 38]. This

is the foundation of this chapter. However, in this chapter the more complicated

case of a pair of 2D images, is considered. In addition, substantial simplifications

to the theory are made using Green’s Theorem and standard polygon rendering

methods, which avoids having to consider multiple geometric cases. This method

is referred to as NP-windowing.

Essentially, NP-windowing is just another method for obtaining the intensity

PDF for images and joint-images. But it is equivalent to sampling the images at

infinite resolution. Unlike more traditional sampling methods, arbitrary selection

of a kernel is not required. Moreover, the spatial structure inherent to images,

specified as a lattice of pixel values, is used.

In this chapter, the joint-distributions obtained from NP-windowing were used

to obtain better estimates of Mutual Information. In the registration framework

established in Section 2.2, NP-windowing yielded improved convergence rates

with less bias. NP-windowing also has a broader application to estimating image

statistics and the measurement of entropy e.g. in saliency detection [36]. Im-

portantly, the implementation of NP-windowing is sufficiently rapid in terms of

computation for practical use. This has two important implications: MI may be

used in applications where few samples are available, such as tracking small im-
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age patches; and the position of maximum MI is closer to ground truth position,

resulting in improved registration accuracy.

Independently, Rajwade et al. have also developed a similar density estimation

method [69] for joint-distributions. Rajwade’s method works slightly differently

to this method, in that it assumes constant gradient over each pixel. The gradients

from each image form pairs of bounding parallel lines in intensity space allowing

the histogram to be incrementally populated by parallelograms. The constant

gradient assumption is not true and generates geometric singularities that need

to be solved by arbitrary limiting factors.

Moreover, Rajwade’s method is never extended to actually registering images,

and geometric singularities are solved by limiting the extent of the parallelo-

grams, which decreases accuracy. The methods discussed in this chapter are

more general, and unlike Rajwade’s method, the geometric constraints used are

explicitly derived from the problem formulation and interpolation method.

The rest of the chapter is organised as follows. In Section 5.1, the method for

constructing PDFs from neighbourhoods of intensity values using the proposed

NP-windowing method is presented. Section 5.2 discusses the combining of multi-

ple neighbourhoods into a complete histogram, and the subsequent computation

of MI. A resolution aware version of the proposed NP-windowing method is also

presented. Next, in Section 5.3, the special case of interpolation methods with

non-constant PDFs within each neighbourhood is considered. Section 5.4 dis-

cusses some experiments and results, before the Chapter concludes in Section

5.5.

Please note that in this Chapter a slight notational digression from the convention

in Section 2.2 is made. Previously the reference and template images were denoted

fr and ft. In this chapter they are instead respectively referred to as f1 and f2
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and treated as two interchangeable signals, which makes the explanation clearer.

5.1 MI from NP-windowed PDFs

This section describes the proposed NP-windowing method used to obtain a PDF,

and hence an MI value. To begin with, recall from standard probability theory

[62] that a function of a random variable creates another random variable whose

distribution may be determined by the transformation formula between the two.

To illustrate, consider a group of adjacent pixel values in a template image (e.g.

α1, β1, and γ1 in Figure 5.1a). In a registration application, the pixel values

have corresponding values in a second reference image (e.g. α2, β2, and γ2 in

Figure 5.1b). Intensity f at any point x = (x1, x2) may be computed using

an interpolation method utilising the α, β and γ values. In Figure 5.1a and b

colour is used to indicate the half bi-linear interpolated (Half-BLI) intensity of

two images as it varies over a 1× 1 pixel region. Half-BLI uses three values from

a triangular-shaped region for interpolation.

Each pixel is split into two triangles, denoted (αi, βi, γi) and (αi, β
′
i, γi) in Figure

5.1a and b. The two corresponding sets of intensity triplets from corresponding

positions in the template and reference image form a neighbourhood of six values.

The size of the neighbourhood varies with the interpolation method used, e.g.

for bi-cubic interpolation the neighbourhood-size is 32: 2 images x 16 points; and

for bi-linear interpolation the neighbourhood-size is 8: 2 images x 4 points.

The position of the lattice points relative to the world is arbitrary, so x is treated

as a random variable with bounded uniform distribution: 0 ≤ x1 < 1 and 0 ≤

x2 < 1. The bounds arise naturally from the spacing between the pixels (also

referred to as the lattice-spacing). This implies that the intensities of the two



5.1. MI from NP-windowed PDFs 91

images, f = (f1, f2), are also a random joint variable, with a distribution that may

be found using a transformation formula. The bounds in px are also transformed

to form bounds in pf . The bounded region of intensity probabilities is called the

intensity polygon.

Notice how the intensity polygon for a square pixel, consists of two triangles,

corresponding to each pair of triangles in f1 and f2. The vertex coordinates in

the joint-PDF directly correspond to the intensity values in the two images, and

each triangle corresponds to a single neighbourhood. The probability over each

triangle should sum to one, hence the smaller triangle has a higher weighting

in Figure 5.1c. Finally, notice that for other sampling methods, the choice of

diagonal can critically affect the result, while for NP windowing it merely has the

effect of flipping the shared edge between the two triangles in the joint-PDF.

This leads to a four step approach:

1. Obtain all neighbourhoods in image 1 and 2 for a given warp and interpo-

lation method.

2. Calculate the intensity polygon for each set of samples.

3. Render the intensity polygons to a histogram. Alternatively, locate all poly-

gon intersections and generate a new list non-overlapping intensity poly-

gons.

4. Calculate the MI.

Step 1 simply requires the extraction of all neighbourhoods. This step is not

discussed further except to mention that interpolation methods will, in general,

only approximate the true band-limited signal and hence the true PDF. Better
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Figure 5.1: (a) & (b) Interpolated intensities for two images: respectively f1(x),

and f2(x), where blue indicates low intensity and yellow indicates high intensity.

Half bi-linear interpolation is used, requiring each pixel to be split into two tri-

angles (Split by the red line). Each corresponding triangle pair in (a) and (b)

describes a triangle of uniform probability in the joint-PDF of intensity, shown

in (c). For each triangle in the joint-PDF, the probability must integrate to one,

hence the smaller triangle has a higher weight, indicated by the darker shade of

gray. Note how the vertices of the two triangles in (c) correspond to intensity

values in (a) and (b) respectively. Note also, that the choice of diagonal in (a)

and (b), will simply change the shared diagonal between the two triangles in the

joint-PDF, i.e. this choice negligible effect on the NP-windowing method.
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approximations of signal may be obtained if information about the sampling pre-

filter is available, or has been estimated using empirical methods [87]. For nearest

neighbour interpolation this method breaks down to first order PVE as defined

in (3.5b).

5.1.1 Single linear signal

For illustrative purposes step 2 is first discussed for the case of a single linear

interpolated 1D signal. Pairs of neighbouring samples are required for linear

interpolation, so the neighbourhood is of size two. Each pair of adjacent samples:

α and β defines a straight line, denoted as

f = ax+ b | 0 ≤ x < 1 (5.1)

where x and f are simply the scalar (1D) forms of spatial position x and intensity

f . The symbols a and b allow a simplified equation to used, and relate to the

neighbourhood as follows: a = β − α, and b = α.

As discussed, x is treated as a uniformly distributed random variable: px(x) =

1, 0 ≤ x < 1. The PDF of f , pf (f) is simply a transformed version of px,

obtained using the inverse function x(f) = f−b
a

.

pf (f) = |J(f)|px(x(f)) (5.2)

where |J | = |∂x
∂f
| i.e. the determinant of the Jacobian of x with respect to f .

Conveniently in this case |J(f)| = |a|, which is constant, so

pf (f) =

 1
|a| f ∈ [a; a+ b)

0 elsewhere
(5.3)

px acts as a bounding function, giving the bounds on pf shown in (5.3).
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5.1.2 Joint linear signal

For a joint linearly interpolated signal, two equations describe the signals: f1 =

a1x1 + b1 and f2 = a2x2 + b2. Both signals are 1D but to keep the Jacobian

square, separate variables for the spatial position (x1 and x2) are used. The

inverse equations are x1 = 1
a1

(f1 − b1) and x2 = 1
a2

(f2 − b2). The determinant of

the Jacobian becomes:

|J | =

∣∣∣∣∣∣
∂
∂f1
x1(f1, f2)

∂
∂f1
x2(f1, f2)

∂
∂f2
x1(f1, f2)

∂
∂f2
x2(f1, f2)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1
a1

0

0 1
a2

∣∣∣∣∣∣ =
1

a1a2

(5.4)

As this is a joint case, the PDF has two dimensions and the boundary becomes

a 2D polygon. In this simple linear case, the polygon is a rectangle bounded by

0 ≤ x1 < 1 and 0 ≤ x2 < 1, i.e. a1 ≤ f1 < a1 + b1 and a2 ≤ f2 < a2 + b2.

5.1.3 Joint half-bilinear image

Compared to the single and joint 1D case above, the derivation of |J | and the

subsequent evaluation of the PDF is rather more complex for pairs of 2D images.

Initially the simplest useful 2D interpolation method is considered: half Bi-Linear

Interpolation (Half-BLI). Half-BLI uses neighbourhoods of three values from each

image: interpolating within two triangular areas. Figure 5.1 shows two such

neighbourhoods where Half-BLI is used. This yields two equations of the form

fi = aix1 + bix2 + ci (5.5)

where i ∈ {1; 2} is the index of each image. Again, a, b, and c are calculated

from α, β, γ for the simplified form used in (5.5). These values are calculated as
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follows: 
a

b

c

 =


−1 1 0

0 −1 1

1 0 0




α

β

γ

 (5.6)

In this case the Jacobian is naturally square so a determinant may be obtained

directly. In other cases, discussed in [62], a dummy variable is required to make

the Jacobian square. The pair of inverse functions is:

x1 =
c1b2 − b1c2 − b2f1 + b1f2

b1a2 − a1b2
x2 =

c1a2 − a1c2 − a2f1 + a1f2

−b1a2 + a1b2
(5.7)

So |J | is:

|J | =

∣∣∣∣∣∣
∂x1

∂f1

∂x2

∂f1

∂x1

∂f2

∂x2

∂f2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
b2

a1b2−b1a2

−a2

a1b2−b1a2

−b1
a1b2−b1a2

a1

a1b2−b1a2

∣∣∣∣∣∣ =
1

a1b2 − b1a2

(5.8)

The Jacobian for each neighbourhood is twice the inverse area of the intensity

polygon (triangle) defined by the points (α1, α2), (β1, β2), and (γ1, γ2). This is

exactly what one would expect for a constant |J |, since each triangle represents

half a sample (pixel), so each pixel integrates to one in the histogram.

5.2 Obtaining the PDF estimate

Having obtained the intensity polygon for each neighbourhood, step 3 may now

be considered: obtaining the PDF estimate for the entire image. This simply

consists of summing the distributions for each neighbourhood together:

ρf (f) =
1

Nn

Nn∑
n=1

1

|Jn(f)|
fxn(xn(f)) (5.9)

where n indexes each neighbourhood. Nn is the total number of neighbourhoods

and is used to normalise the values so that the the PDF integrates to one. (5.9) is
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expressed in a general form to indicate that the signals may have more than one

spatial dimension x and that there may be more than one signal with co-varying

amplitudes, f .

Two methods for evaluating (5.9) were considered. First, the list of polygons

may be intersected, with contributions from each intersecting region summed, to

obtain a new list of non-overlapping intensity polygons. Even in the relatively

simple case of half-BLI, which has constant distribution within each polygon, this

is time consuming, because the process is O(Nn!). So intersection and summing

is only practical for small numbers of polygons: 40-50 polygons in the implemen-

tation tested for this work. For more complex interpolation methods, where the

distribution varies within each polygon, intersection and summing becomes even

less practical.

The second option, favoured in this work, is to use existing polygon drawing

methods to “render” each polygon to an approximate PDF: i.e. a histogram.

Unlike standard rendering algorithms, the drawing routine sums rather than re-

places “pixel” values. The downside with this approach is a slight loss in accuracy,

dependent on the histogram bin-size. Distributions that vary within a polygon

may be represented as a “texture” to be rendered.

One could expect that the cost of evaluating the histogram is dependent on the

number of neighbourhoods, Nn, and the average image gradient, i.e. approxi-

mately O( ∂f
∂x
Nn), since the larger the gradient the larger the area of the intensity

polygon to be rendered. However, the costs are relatively constant since intensity

polygons are added to the histogram using a standard rendering routine with flood

filling at the polygon centre and (precise, intersection based) anti-aliasing at the

edges. The anti-aliasing at the polygon edges uses the bulk of the computational

cost of rendering.
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5.2.1 Special geometric cases

Special cases where polygons collapse to lines or points are easily detectable,

because their area is zero, and points have a perimeter of zero. Points are modelled

as unit impulses in the PDF.

Since the intensity distribution is constant, lines are normalised by their length

and split into segments wherever they intersect bin boundaries. Bins are in-

cremented by the proportion of each line’s length they contain. Non-varying

distributions would use the same procedure but require explicit integration over

each segment.

5.2.2 Computation of MI

MI may be obtained directly from the PDF estimate using the standard equation:

dmi =

∫
∀f
ρf (f) log

(
ρf (f)

ρf1(f)ρf2(f)

)
dy (5.10)

where ρf1 =
∫
ρfdf2 and ρf2 =

∫
ρfdf1. In this case, since the PDF estimate is

actually a histogram, the integral becomes a summation.

Due to the finite size of the bins and the limited number of samples, MI is

generally under-estimated. The residual error was found by Moddemeijer to be

approximately proportional to the square of the bin size [56] and inversely pro-

portional to the number of samples. Since NP-windowing is equivalent to taking

infinite samples, a major source of MI estimation error is completely eliminated

by NP-windowing. Accurate PDFs may be obtained even when there are few

(tens of) samples e.g. for small image patches.

The residual error due to bin size may also be eliminated by estimating MI directly

from ρy i.e. without constructing a histogram. However, as already discussed,
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this would require the intersection and summing of intensity polygons, which is

too slow for practical use.

5.2.3 Resolution Aware PDF estimation

In the above NP-windowing implementation, the neighbourhood values for the

template were obtained directly from the template lattice. However the warped

template lattice points will generally not align with the reference lattice, as shown

in Figure 5.2a, where the warped template coordinate system is shown in green

in the reference image coordinate system.

This means that reference intensities are interpolated. So long as the scales of the

template and reference pixel-lattices are similar, the underlying reference image

will be well modelled. However as the relative scale increases, the reference image

is sampled ever more sparsely, and the interpolated image models the original

reference image ever more inaccurately. Naturally, this has a negative impact on

the PDF estimate. To overcome this problem, a resolution aware version of the

NP-windows algorithm is proposed.

The resolution aware method is principally the same as the existing approach,

except that a locally irregular lattice is used to obtain each neighbourhood, like

that shown in 5.2b. The lattice is chosen so that each point in both the refer-

ence and the template intersects the irregularly sampled grid, while maintaining

rectangular regions. The triangles defined by each neighbourhood are normalised

by the relative area of the rectangular region to preserve statistical accuracy, so

(5.9) becomes:

ρy(y) =
Nn∑
n=1

An
1

|Jn(y)|
fxn(xn(y)) (5.11)

The computational cost is approximately quadrupled when the relative scale of
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Figure 5.2: Template coordinate system (green region) warped into the reference

image coordinate system. As shown the lattice points of each coordinate system

generally will not line up, so interpolation is required to obtain the reference

intensities. (a) In standard NP-windowing, a regular lattice is used for sampling,

and the underlying reference image will be well modelled. However if the relative

scale becomes too large, the reference image becomes too sparsely sampled to

accurately model its statistics. (b) The resolution aware implementation uses a

locally irregular lattice to ensure that every reference pixel within the template’s

bounds is sampled. Hence the reference image statistics are always correctly

modelled.
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the template and the reference image is one. Otherwise, the cost is dependent on

the image with the higher resolution spacing in the reference coordinate system.

5.3 Bi-Linear Interpolation: A Varying Distri-

bution

For some kinds of interpolation the distributions in histogram space are not con-

stant within each polygon. One such example is considered: (full) bi-linear in-

terpolated images. These distributions are more difficult to deal with, since they

require explicit integration over their area to obtain a PDF.

Considering the example just given, the equations for a pair of bi-linearly inter-

polated images is:

fi = aix1x2 + bix1 + cix2 + di (5.12)

where i indexes each image. This yields two sets of inverse functions of form

xi(f1, f2) = P (f1, f2, 1) +
√
P (f1, f2, 2), where P (..., ε) indicates a polynomial of

degree ε. This concise form is used because some of the following equations are

difficult to read otherwise. Both sets of solutions give the same solution for |J |:

|J(f1, f2)| =
[
(b2c1 − b1c2 + a2(d1 − f1)− a1(d2 − f2))

2

−4(a2c1 − a1c2)(b2(d1 − f1)− b1(d2 − f2))
]− 1

2 (5.13)

As for the half bi-linear case, the valid region is bounded by a polygon with

vertices corresponding to the pixel values of the neighbourhood: (α1, α2), (β1, β2),
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(γ1, γ2), and (δ1, δ2), with the relationship:
ai

bi

ci

di

 =


1 −1 1 −1

−1 1 0 0

−1 0 1 0

1 0 0 0




αi

βi

γi

δi

 (5.14)

Evaluating
∫
|J |df2df1 between such complicated boundaries is difficult, because

multiple geometric cases must be considered [37]. This can be avoided by splitting

the quadrilateral into two simple polygons (triangles) and using Green’s Theorem

to re-parameterise the problem.

Green’s Theorem states
∫ ∫

R
(
∂J ′1
∂f1
− ∂J ′2

∂f2
)dA =

∮
C
J ′2df1 + J ′1df2, where C defines

the curve around a region R. Letting J ′2 = 0 and J ′1 =
∫
|J(f1, f2)|−1df2 yields:

ρ =

∮
C

J ′1(f1, f2)ds (5.15)

Now, f ′(s) = (mjs + cj, s) is substituted for f = (f1, f2), where mj and cj are

respectively the gradient and f -intercept defining line segment j of the intensity

polygon. The rules of integration by substitution are applied to (5.15) and (5.13):

ρ =

∮
C

J ′1(mjs+ cj, s)ds (5.16)

The result of the above (double) integration is an equation containing more than

100 terms and factors. For interest the form of the equation is:

ρ = k1

√
P (s, 2) + P (s)(k2 + log[P (s) + k3

√
P (s, 2)]

+k4 log[P (s) + k5

√
P (s, 2)] + k6 log[

P (s) + k7

√
P (s, 2)

P (s)
] (5.17)

Clearly the implementation of (5.17), although giving a precise result, would be

too slow for practical use. Several hundred operations would be required just to
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initialise the constants for each polygon. In addition, a few tens of operations

would be required to calculate every bin overlapped by the polygon. This is in

contrast to half bi-linear interpolation, where nine operations (4 subtractions, 2

multiplies, 3 additions) are required to calculate the area of each triangle. A

flood fill routine (one add per bin) is used over most of the overlapped region,

i.e. Half-BLI is about two orders of magnitude faster than BLI. Using bi-cubic

interpolation (BCI) in an NP-windowing framework turns out to be even more

problematic. The intensity equations for BCI have form fi = P (x1, x2, 3), and

these are not invertible.

For BLI, the potential improvement in accuracy is limited and comes at too great

a computational cost for practical use. Hence, an NP-windowing technique for

BLI and a pair of images was not implemented, because Half-BLI was found to

work well, as shown in the results section. BLI for a single image is far simpler

to implement and has practical use in applications such as saliency detection and

estimation of image statistics. This method was implemented as is now discussed.

5.3.1 Applying Green’s Theorem to BLI for a single image

A more applicable example, using Green’s theorem to obtain the PDF of a single

bi-linearly interpolated image is proposed in this section. This method would be

useful for measuring local image statistics and interest point detection [36]. BLI

has the following form:

y1 = ax1x2 + bx1 + cx2 + d (5.18)

.

To obtain the square matrix necessary for obtaining the determinant of the Ja-

cobian a dummy variable is used: y2 = x1, which is integrated out in the final
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step. The inverse equations of x1 and x2,in terms of y1 and y2, are:

x1(f1, f2) = f2 (5.19)

x2(f1, f2) =
f1 − bf2 − d
af2 + c

(5.20)

yielding the Jacobian:

|J | =

∣∣∣∣∣∣ 0 1

− 1
af2+c

−b(af2+c)+a(−bf2−f1+d)
(af2+c)2

∣∣∣∣∣∣ =
1

af2 + c

Solving the area integral in the general case simply requires integrating with

respect to f2: ∫
1

af2 + c
df2df1 =

∫
1

a
log(|af2 + c|)df1 (5.21)

.

Again the neighbourhood defines an intensity polygon in the intensity PDF, where

each edge of the polygon denotes a linear relationship between f1 and f2: f2 =

mjf1 + nj, where k indexes the current edge. Substituting this and integrating

yields: ∫
1

a
log(a(mjf1 + nj) + c)df1 (5.22)

=
1

mja2
[(a(mjf1 + nj) + c) log(|a(mjf1 + nj) + c|)−mjaf1]

However there are some geometric special cases that need to be considered, since

without care (5.22) can become indeterminate. These cases are tabulated in Table

5.1. The actual derivations are trivial using L’Hopitals rule and are not discussed

further.

The above method yields the same results as Kadir and Brady’s earlier work [37],

but with lower algorithmic complexity. In the original approach [37], 24 individual

cases needed to be considered. The above method, utilising Green’s theorem,
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Description Mathematically Derivation

Intensity Polygon a = 0
∫

1
2c
f1(2nj +mjf1)

is a parallelogram (i.e. same as half-BLI case)

Constant Intensity a = c = 0 This is a point. Use half-BLI.

Constant Gradient This is a line. Use half-BLI.

Horizontal Line mj = 0 1
a
f1 log(|akf2 + c|) kf2 = 0 or 1

Vertical Line mj =∞ 0

Singularity a(mjf1 + nj) + c = 0 0

Table 5.1: Special cases when integrating Jacobian for a single BLI image

considers only the special cases in Table 5.1. The Matlab code of the above

implementation consists of 250 lines, most of which were required for polygon

slicing routines. An example, comparing the histograms obtained using various

sampling methods, is shown in Figure 5.3.

5.4 Experiments

To demonstrate the superiority of NP-windowing when estimating MI it was com-

pared to the current state of the art MI registration methods. In all, four meth-

ods were compared: NP-windowing, standard sampling (STD) (One sample per

pixel), third order partial volume estimation (PVE) [14] and second order B-spline

Parzen windowing (IPZ) [81]. Since an analytic derivative for NP-windowing is

beyond the scope of this work, optimisation was performed using Powell’s Direc-

tion Set method [68]. In all cases MI was maximised for 2DoF translation warps

only. BLI was used to obtain reference image values corresponding to template

lattice points. Half-BLI was used as the interpolation model to populate the

histogram for NP-windowing. The test setup described in Section 3.4 was used.
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Image

0 100 200

Std sampled

Intensity
0 100 200

Parzen windowed

Intensity
0 100 200

NP windowed

Intensity

Figure 5.3: Some examples of histogram obtained from the image on the far left

using different sampling methods. From left to right these are: standard sam-

pling, Parzen windowing and NP-windowing. Notice the discrete changes between

bins in standard sampling, where one expects a PDF to be smooth. Parzen win-

dowing gives an improved estimate by explicitly accounting for the uncertainty

in intensity samples, but this is simply a convolved version of the standard sam-

pled histogram, so it still exhibits sudden changes and under-sampling in certain

regions. NP windowing on the other hand exhibits a smooth nature where the

statistics in all regions are well described.
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Figure 5.4: Bias when varying (a) template size and (b) histogram bin-size, for

lattice-aligned templates.

Again performance was measured in terms of bias and convergence, for five tem-

plate sizes ranging from 92 to 172 pixels, with a constant histogram bin-size of

162 intensities. Performance was also measured as the bin-size in the histogram

varied exponentially from 162 to 2562 bins, with a constant template size of 172

pixels.

The results for bias while varying the number of intensity bins is given for both

lattice-offset and lattice-aligned templates in Figure 5.4. The convergence re-

sults, when varying bin-size, are plotted in Figure 5.5 and 5.6 for lattice-aligned

and lattice-offset templates respectively. Not unexpectedly the bias is low, if not

zero, for the lattice-aligned templates, as the lattice-aligned template has a strong

global minimum. Both NP-windowing methods and PVE give zero bias in these

cases respectively, because of the high accuracy of NP-windowing and the biasing

of PVE towards lattice-aligned positions [66]. However, lattice-alignment is un-

usual and these results are given to contrast them with results from a lattice-offset

aligned template.

As demonstrated in Figure 5.4 bias is larger in the common lattice-offset case.

In the lattice-offset case, notice that NP-windowing is again the best performer
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Figure 5.5: Plots showing convergence for varying histogram bin-size when using

lattice-aligned templates

and unlike the other methods is almost completely unaffected by the number of

bins in the joint histogram. For other methods, performance steadily drops with

increasing histogram size, due to the lack of samples. PVE performs the worst in

terms of bias. Again, this is due to the bias of PVE towards lattice-alignment.

Similar conclusions may be drawn from the convergence results in Figure 5.5 and

5.6. The number of bins has less influence on NP-windowing than any other

method. For STD, PVE and IPZ there is similarly good performance at low

initial offsets from the minimum, whatever the histogram bin-size. Likewise, at

distant initial offsets performance is poor in all cases. At intermediate distances

however, there is a range of performances, and it is at intermediate distances

where success or failure are similarly likely, that the influence of an algorithm’s

parameters is clearest.
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Figure 5.6: Plots showing convergence for varying histogram bin-size when using

lattice-offset templates

PVE was the second best performer in terms of convergence, because of a larger

basin size arising from extended spatial support. Apart from PVE, the basin

of convergence is neither affected by the number of histogram bins, nor by the

sampling method used.

The results for bias while varying template size are given for both lattice-aligned

and lattice-offset templates in Figure 5.7. The convergence results, when varying

template size, are plotted in Figure 5.8 and 5.9 for lattice-aligned and lattice-

offset templates respectively. In Figure 5.7, the bias generally decreases as the

template size (and number of available samples) increases, because the statistics

represent the data better and tend to dominate over the local blurring effects of

the kernel (if one is used). This is particularly evident for PVE. However, the

decrease in bias is negligible for NP-windowing, since it makes maximal use of

available information, and additional pixels add mainly redundant data.
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Figure 5.7: Bias when varying (a) template size and (b) histogram bin-size, for

lattice-offset templates.
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Figure 5.8: Plots showing convergence for varying template sizes when using

lattice-aligned templates
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Figure 5.9: Plots showing convergence for varying template sizes when using

lattice-offset templates

In Figure 5.9a, the point of inflection for convergence tests shifts rightwards as

the template size increases. This indicates that additional data can increase

the size of the basin of convergence despite adding only redundant information.

Parzen windowing is least affected by the number of samples (lowest range at

intermediate values), and PVE gives best performance for the 17x17 template

due to its wide spatial support. However, NP-windowing gives a better mean

performance than either method and outperforms other methods in the most

difficult case (9x9 template).

Interestingly, the use of a resolution aware approach to NP-windowing degraded

performance, although it did compare favourably to other MI estimation meth-

ods. This occurred because the position of the locally regular lattice points is

dependent on the warp parameters resulting in beats and hence glitches. The

induced glitches reduce the convergence rate and increase bias relative to the
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standard NP Windows implementation.

5.5 Conclusions

In this chapter the NP-windowing method for obtaining the joint distribution of

a pair of images was introduced. Unlike existing methods the proposed approach

neither assumes sample independence nor identical distributions. Moreover, the

method does not require arbitrary parameters like kernel size to be chosen. NP-

windowing effectively eliminates the error caused by having a finite number of

samples. NP-windowing is a general case for both STD and for first order PVE.

NP-windowing for half-bilinear and bilinear interpolation schemes was developed

theoretically. Because of its simplicity, relative accuracy, and speed, the half bi-

linear approach was implemented, using standard polygon rendering routines to

generate joint histograms.

The histograms obtained using NP-windowing were used in registration appli-

cations to maximise the Mutual Information between a reference image and a

template with respect to some warp parameters. The registration accuracy was

compared to existing state of the art registration methods using MI. Performance

was measured in terms of bias and convergence using a set of eight images at a

range of initial starting points. In all, more than half a million tests were per-

formed.

In general, NP-windowing had less bias than any of the methods it was compared

to (more than 40% less than its nearest competitor in some cases). In addition,

the number of histogram bins and sample size did not significantly affect NP-

windowing, implying that it makes maximal use of available data. NP-windowing

typically demonstrated the best convergence properties, although the increased
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spatial support of 3rd order PVE gave advantages when converging from initial

positions distances far from the function minimum. However, NP-windowing

can tolerate decreased sample sizes better than PVE. The radius of the basin

of convergence increases with sample size, but is unaffected by histogram bin-

size. Resolution awareness did not improve performance, since the position the

resolution aware sampling points is coupled to the position of the template and

reference pixel-lattices. The result of this is beats and hence glitches, which

generate local minima, reducing the convergence rate and increasing in bias.

NP-windowing is recommended for applications where bin-size should be a non-

critical choice and where the number of samples is limited or unknown. Moreover,

in domains where the bias (shift in true global minimum) must be kept to a

minimum, it can be concluded that NP-windowing should be used.

The effects of sampling methods on the Mutual Information and artefacts in

its function surface were discussed in the Chapters 3 and 4, and increasing the

sampling rate was shown to provide the best results. In this Chapter, the proposal

of sampling at a higher resolution was taken to its logical conclusion by sampling

at infinite resolution. A return to the general registration problem is made in

Chapter 6: where a method is proposed to obtain substantial improvements in

speed.



Chapter 6

MILK: Mutual Information in a

Lucas-Kanade Framework

The previous three Chapters considered various methods for sampling images

to obtain accurate values for Mutual Information with the aim of reducing the

effects of artefacts in the function surface. In this Chapter, the more practical

issue of formulating the MI optimisation function in a Lucas Kanade framework

is considered, with the aim of reducing the computation required for registration.

In particular, an inverse compositional formulation for aligning a template and a

reference image using mutual information is proposed.

Lucas and Kanade made one of the earliest practical attempts to efficiently align

a template image to a reference image [45], using the Sum of Squared Difference

similarity metric. Processing was limited by using a Newton-Raphson method to

traverse the space of warp parameters. In Newton-Raphson optimisation, itera-

tive parameter updates to alignment parameters are obtained by multiplying the

Jacobian by an inverse Hessian. Lucas and Kanade mainly considered transla-

tions, but they demonstrated that any linear transformation could be used.

113
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Later research considered more complex transforms and attempted to reformu-

late the similarity metric allowing pre-computation of some terms. In particu-

lar, Hager and Belhumeur [28] proposed inverting the roles of the reference and

template at a strategic point in the derivation, and Shum and Szeliski [73] con-

structed the warp as a composition of two nested warps. In a general treatise on

Lucas-Kanade (LK) techniques [3], Baker and Matthews combined these ideas to

formulate the inverse-compositional method.

An approach similar to that used by Baker [3] is used, in this Chapter, to ob-

tain a constant Hessian for the MI similarity metric. To maintain the convention

established by Baker, the derived formulation is also referred to as an inverse

compositional formulation. This uses two techniques: first, the alignment func-

tion is composed as a base warp and a warp variation; and second, the roles of

template and reference image are inverted or exchanged. This is difficult in the

case of MI because the template and reference values are not separable into two

terms. But with some limited assumptions of constancy, a speed improvement is

obtainable.

The remainder of the chapter is arranged as follows. After providing some back-

ground in Section 6.1 the inverse compositional formulation of MI is presented in

Section 6.2. The derivation obtained is compared to existing methods in terms of

convergence and speed in Section 6.3 before the conclusions are given in Section

6.4.

6.1 Background

Many optimisation algorithms exist, but LK methods use a subset of these: the

so called Newton-type methods i.e. methods, which assume locally parabolic
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Name Update

(Full) Newton Descent v(k+1) ← v(k) −H−1G

Quasi-Newton Descent v(k+1) ← v(k) − H̃−1G

Steepest Descent v(k+1) ← v(k) − λG

Levenberg Marquardt v(k+1) ← v(k) − ((1 + λI)H̃)−1G

Table 6.1: Updates for four Newton-type optimisation Methods. (1 is a matrix

of ones). Although not explicitly indicated, several λ values may be tested for

the Levenberg-Marquardt and Steepest Descent methods.

topology and “jump” to the minimum using gradient information to update the

warp parameters, v, as follows: v(k+1) ← v(k)−H−1(v(k))G(v(k)), where H is the

Hessian of an image similarity function, d, and G is the Jacobian of d. Newton

methods should be contrasted with methods that choose a direction, bracket the

minimum, and minimise along the line using Brent’s algorithm [10], e.g. Powell’s

Method or Variable Metric Methods [68]. Bracketing methods are more stable

than Newton methods, but somewhat slower, since more function evaluations

are performed. Speed is often more important than accuracy in image alignment

where minima are numerous and closely spaced, because stable methods will often

fail despite their robustness.

Generally LK type methods apply Quasi-Newton optimisation, i.e. an approxi-

mate Hessian, H̃, is used. In general, Newton and Quasi-Newton only perform

well when near to the minimum. Steepest Descent methods, which ignore local

curvature and instead multiply G by a scalar step-size value, λ, perform better at

points further from the minimum. The Levenberg-Marquardt [50] method com-

bines these two methods for optimal performance. A summary of these methods

is given in Table 6.1, which follow the conventions of the registration framework

established in Section 2.2.
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6.1.1 Lucas-Kanade Framework

The Lucas-Kanade (LK) framework uses the sum of squared differences metric

defined for a warp parameter, v, and a change in the warp ∆v:

dssd(v + ∆v) =
∑
x

[fr(w(x,v + ∆v))− ft(x)]2 (6.1)

Following the derivation of Lucas and Kanade [45], a first order Taylor expansion

is applied to the function within the brackets:

dssd(v + ∆v) =
∑
x

[fr(w(x,v)) +∇fr
∂w

∂v
∆v − ft(x)]2 (6.2)

where ∇fr is the gradient of the image fr with respect to its coordinates. A

partial derivative with respect to ∆v is then obtained:

∂dssd
∂∆v

= 2
∑
x

[∇fr
∂w

∂v
]T [fr(w(x)) +∇fr

∂w

∂v
∆v − ft(x)] (6.3)

Assuming a locally parabolic shape and setting the gradient to zero gives a closed

form solution for updating v of the form: ∆v = H̃−1G, where:

G = 2
∑
x

(
∇fr

∂w

∂v

)T

(ft(x)− fr(w(x)))2 (6.4)

H̃ = 2
∑
x

(
∇fr

∂w

∂v

)T (
∇fr

∂w

∂v

)
(6.5)

Of course, a truly parabolic surface seldom occurs. Instead the warp parameter

is iteratively computed and updated until the variation in parameters or function

values becomes sufficiently small. The computational cost of each update is

O(NxNv) for G and O(NxN
2
v) for H, where Nx is the number of pixels and Nv

is the number of warp components.

The Hessian is denoted with a tilde because of an early hidden approximation

that is not mentioned mentioned in the literature. The approximation is made
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in the Taylor expansion, which neglects some of the second order information. A

full second order expansion applied to the the entire dssd function yields the full

Hessian:

H = 2
∑
x

[∇fr
∂w

∂x
]T [∇fr

∂w

∂x
] + (fr − ft)[

∂w

∂v
]T (∇ · ∇fr)[

∂w

∂v
] +∇fr[

∂w

∂v
]T [
∂w

∂v
])

(6.6)

In a full Newton derivation (6.6) would replace (6.4). Apart from the second term

in H being computationally expensive to compute O(NxN
2
v) it is often marginal

compared to the first term, especially near the minimum and has little effect on

convergence.

6.1.2 The Inverse-Compositional Method

Baker and Matthews presented a reformulation of the SSD distance function and

update method called the inverse compositional method in [3]. The warp function

was re-composed as a function of two warps w(x,v) and w(x,∆v) with the roles

of fr and ft inverted:

dssd(v,∆v) =
∑
x

(ft(w(x,∆v))− fr(w(x,v)))2 (6.7)

Following the steps in Section 6.1.1 using this formulation yields the following

approximation of the Hessian: H̃ = (∇ft ∂w∂v )T (∇ft ∂w∂v ). This depends solely on

the template and is therefore constant with respect to v. In other words the

Hessian may be precomputed, decreasing the overall complexity of each iterative

update to v from O(NxN
2
v)to O(NxNv).
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6.2 Mutual Information

For reference the MI function, its first and second derivative are restated from

Section 3.2:

dmi =
∑
r,t

prt(r, t,v) log

(
prt(r, t,v)

pr(r,v)pt(t,v)

)
(6.8a)

Gmi =
∂dMI

∂v
=

∑
r,t

∂prt
∂v

log

(
eprt(v)

pr(v)

)
(6.8b)

Hmi =
∂2dMI

∂v2
=

∑
r,t

∂prt
∂v

T ∂prt
∂v

(
1

prt
− 1

pr

)
+
∂2prt
∂v2

log

(
eprt
pr

)
(6.8c)

In this Chapter, only the standard sampled version of Mutual Information was

considered, because the primary focus is on speed, and standard sampling is

the fastest method. Moreover, the methods described in this Chapter are easily

adapted to the other MI methods, and the simplicity of standard sampling lends

clarity to the following derivations.

For the standard sampled implementation, approximate derivatives of ψ were

used to obtain ∂prt

∂v
and ∂2prt

∂v2 by respectively treating ψ′ as the convolution window

[−1 +1] and ψ′′ as a convolution window [−1 +2 −1]. In Chapter 3 the last term

in (6.8c) was neglected because it is expensive to obtain and has little effect upon

convergence once the solution is near the local minimum. This is the analogue of

neglecting certain second order terms for SSD in (6.4).

6.2.1 Inverse-Compositional MILK

The inverse compositional derivation for MI can now be obtained in the same

manner as for SSD, by splitting the warp into a function of two parameters:

dMI(v,∆v) =
∑
r,t

prt(v,∆v) log

(
prt(v,∆v)

pr(v)pt

)
(6.9)
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Hereafter to save space the function parameters are not shown, i.e. pt = pt(0),

pr = pr(v) and prt = prt(v,0). Using the same approach as Section 6.1.2 for MI,

the following gradient and Hessian functions are obtained.

G =
∑
r,t

−prt
pt

∂pt
∂∆v

+ log

(
eprt
prpt

)
∂prt
∂∆v

(6.10)

where the first term falls away because the prt factor may be separated to form∑
t
p′t
pt

∑
r prt =

∑
t p

′
t = 0. In the second term, the pr factor is also removed,

using the reasoning of Section 3.2:

H =
∑
r,t

prt
p2
t

∂pt
∂∆v

T ∂pt
∂∆v

−prt
pt

∂2pt
∂∆v2

− 2

pt

∂pt
∂∆v

∂prt
∂∆v

+
1

prt

∂prt
∂∆v

T ∂prt
∂∆v

+log

(
eprt
prpt

)
∂2prt
∂∆v2

(6.11)

In the first term of (6.11), only one term is dependent on r so the summation

over r may be separated out to form:
∑

t
∂pt

∂∆v

T ∂pt

∂∆v
1
p2t

∑
r prt = 1

pt

∑
t
∂pt

∂∆v

T ∂pt

∂∆v
.

Similarly the third term also has only one factor dependent on r, so it simplifies

to − 2
pt

∑
t
∂pt

∂∆v

T ∂pt

∂v
. Hence (6.11) simplifies to:

H =
∑
r,t

− 1

pt

(
∂pt
∂∆v

T ∂pt
∂∆v

+
∂2pt
∂∆v2

)
+
∂prt
∂∆v

T ∂prt
∂∆v

+ log

(
eprt

prpt(∆v)

)
∂2prt
∂∆v2

(6.12)

In (6.12) there are three terms, the first of which is first order and independent

of fr. The second term is first order but dependent on fr and the third is second

order. The second order information can be neglected as was done for SSD, since

again it is marginal at positions close to the minimum. The second term presents

more of a problem, since it is also O(NrtN
2
v) to compute, where Nrt is the number

of joint histogram bins. However if it is assumed to be approximately constant

relative to ∆v, H in (6.12) may be entirely pre-computed. This assumption still

gives good results, as will be shown.
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6.3 Experiments

The inverse compositional formulation for optimising MI was compared to the

forward additive formulation using a number of tests for convergence error. The

number of iterations and time to reach convergence was also recorded. In addition,

comparisons were made with the full Newton (i.e. un-approximated Hessian) for

both formulations.

The test setup described in Section 3.4 was used to measure the performance of

the registration algorithms discussed in this Chapter, with some slight differences.

For testing, the optimisation algorithm was initialised with 100 random angles at

offsets ranging from 0.25 to 5 pixels. Levenberg-Marquardt was used to optimise

an affine warp. The affine parameters were randomly chosen with a normal

distribution and a standard deviation of 0.03. Bi-linear interpolation was used in

each case.

Levenberg-Marquardt was chosen, because it uses the Hessian directly, unlike

methods like Powell’s method or the Conjugate gradients method, which build

up a Hessian from a series of function evaluations. Hence, the latter two methods

do not benefit from the MILK techniques discussed in this Chapter. However,

recent work has shown that an inverse compositional formulation can be applied

to the Goldfarb-Broyden-Fletcher-Shannon optimisation method [11]. An affine

warp was used because it has sufficient parameters for Levenberg-Marquardt to

have a clear speed advantage over methods that construct a Hessian over multiple

iterations. For lower parameter warps this advantage would be less clear.

Two sets of analyses were performed. Firstly, performance was measured as the

number of bins in the joint histogram was varied from 42 to 642 bins in multiples

of four. Secondly, performance was measured as the template was varied in size

from 92 to 172 pixels. In all 104,000 individual tests were performed.
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Table 6.2: Mean costs of evaluating terms in (6.8a) and (6.9) in ms per measure-

ment as a function of template size and no. of histogram bins. Pre-processed

terms are bold.

Template Size Forwards Additive Inverse Compositional

92

112

132

152

172

dMI G H̃ H

1.732 3.995 0.046 8.349

1.737 4.064 0.099 9.099

1.854 3.969 0.048 8.698

1.787 4.081 0.054 9.021

1.807 4.105 0.128 9.160

dMI G H̃ H

1.773 0.311 1.745 3.899

1.750 0.403 1.851 1.342

1.774 0.408 1.940 1.492

1.824 0.426 2.129 1.594

1.795 0.464 2.430 1.748

No. Bins

42

82

162

322

642

dMI G H̃ H

1.886 3.894 0.057 8.035

1.885 4.005 0.039 8.759

1.882 4.160 0.222 10.655

1.905 4.762 0.591 16.757

2.157 6.513 1.320 38.153

dMI G H̃ H

1.838 0.374 1.774 0.934

1.847 0.425 1.863 1.542

1.859 0.575 2.218 3.003

1.919 0.946 3.117 7.404

2.142 2.254 6.299 22.010
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The mean time to evaluate each term in (3.1) and (6.9) is given in Table 6.2.

The cost is given as a function of both increasing template size and decreasing

histogram bin-size. The processing overhead confounds the figures slightly, but it

is clear that the cost increases with template size and decreases with the bin-size.

In addition the cost per iteration is much lower for the inverse compositional

approach, since only d and G need to be evaluated.

In Figure 6.1, the mean number of function evaluations is shown. In the Levenberg-

Marquardt method G and H̃ (dark / blue) do not need to be evaluated every

time d (shaded / green) is measured so these evaluations are separated. The

number of evaluations follows a bell curve when plotted against increasing offset

distance. A bell shape occurs because more function evaluations are required

the further the initial position is from the maximum when within the basin of

convergence. When outside this region the algorithm often terminates early upon

getting stuck in a local maximum, with a low radius basin of convergence. The

full-Newton methods generally requires less iterations due to their more accu-

rate Hessians. Smaller template sizes generally implied fewer iterations: due to

a higher frequency of failure (see Figure 6.2). The inverse compositional method

also generally had fewer iterations, also due to more frequent failure and early

termination.

The mean convergence error for five different template sizes is shown in Figure

6.2. As expected, the larger the template (i.e. the more data) the lower the

mean error. The mean convergence error for varying numbers of histogram bins

is shown in Figure 6.3. As the number of bins increases, the error decreases as

the function is more discriminative, until 322 bins is reached. For 642 bins the

error increases again, since the histogram is too sparsely populated. This results

in the MI function becoming more unstable and convergence more difficult.
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In all cases, performance in Figure 6.2 and 6.3 is similarly good for low offsets.

Note that the mean error never reaches zero. This is due to the large number

of degrees of freedom and the fact that the MI cost function surface is noisy.

Likewise, performance is similarly bad for large offsets. At more intermediate

offsets, however, there is a range of performance. It is at these distances which

are near to the edge of the basin of convergence where the accuracy of G and H̃

can critically result in successful convergence or failure.

The full-Newton approach gave very similar results to the quasi-Newton methods.

From this it can be concluded that the additional second order information is not

worth computing. It only decreases the number of evaluations slightly (See Figure

6.1) and the loss in Hessian accuracy is not sufficient to make failure more likely.

The inverse compositional approach was generally less accurate than the forwards

additive method with the greatest differences at intermediate offsets. On average,

the inverse compositional approach had 3.6% more error (σ = 8.3%). However

the inverse compositional method was on average 17.0% cheaper to evaluate (σ =

8.1%).

In addition to the tests above, a tracking algorithm was implemented using the

strategic update approach of Matthews and Baker [53]. In the sequence, the

tracking performance of forwards additive MI and inverse compositional MI were

compared on a video sequence. The results are shown in Figure 6.4. As shown

the inverse compositional approach performed just as well as forwards additive.

SSD is also shown for comparison. SSD also tracked well, but a large occlusion

by the hand pulled the tracker off target.
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Figure 6.1: Mean no. evaluations for dmi and dssd (shaded/green) in the forwards

additive and inverse compositional formulations. The number of evaluations of

G & H̃ are shown as well (dark/blue).
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Figure 6.2: Mean convergence error when varying the template size for MI and

SSD in forwards additive and inverse compositional formulations
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Figure 6.3: Mean convergence error when varying the histogram bin-size for MI

and SSD in forwards additive and inverse compositional formulations

6.4 Conclusion

In this chapter, an inverse compositional formulation for Mutual Information

was introduced. This reformulates the Mutual Information function so that the

approximated second derivative is dependent primarily on the template image

values and therefore constant. The cost of evaluation was reduced by 17% on

average. On average the inverse compositional algorithm had a 3% larger mean

convergence error. Considering the performance gains this is only a slight dis-

advantage since more processing cycles are available for improving robustness.

With more optimised code, further performance gains are possible.

Using some of the techniques presented over the last four Chapters, in Chapter 7

Mutual Information is applied in a Lucas-Kanade framework for tracking objects

over entire video sequences.
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Figure 6.4: Tracking a face over a video sequence using using Forwards Additive

and Inverse Compositional MI and SSD at (a) Frame 24 (b) Frame 37 (c) Frame

100 (d) Frame 200. The MI trackers perform similarly well despite the differences

in implementation. SSD generally tracks well, but failure is induced by an early

occlusion.



Chapter 7

Simultaneous Modelling and

Tracking

In this chapter the Mutual Information function is used in a Lucas Kanade frame-

work to track objects through a motion sequence. The aim of this work is to track

non-rigid objects using appearance in real-time without a pre-learned model.

Lucas-Kanade (LK) type alignment [45] has often proven to be effective despite

using only a very simple model (a single template) to track. It is natural to

extend feature localisation, by image registration, to tracking a feature over a

motion sequence. The last known location for the feature can be used to initialise

the next registration as long as the motion is sufficiently slow, i.e. the temporal

sampling rate is sufficiently high. This leads to a further problem, how and when

to update the template. If the template is never updated, so-called no-update

tracking, tracking will only work while the template closely represents the current

appearance of the feature. This assumption is generally safe for several frames

after the one from which the feature was extracted. Eventually however, the

template does not represent the feature sufficiently well and a mismatch failure

127
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ensues, and the tracker begins to track some other region that resembles the

template more than the actual feature. Often recovery from mismatch is not

possible. One alternative to this, is to update the template after every frame,

i.e. keeping the representation as recent as possible. However, sub-pixel errors

inherent to each match are also stored in each update. These errors gradually

accumulate and the template drifts off the original feature.

Two recent approaches to overcome the problem of drift and mismatch, include

those by Matthews et al. [53], and Kaneko and Hori [40]. Matthews strategic

update approach is a simple but effective extension of the naive update algorithm,

where the first template from the frame is retained and used to correct location

errors made by the updated template. If the size of the correction is too large,

the algorithm acts conservatively by not updating the template from the current

frame. Kaneko on the other hand, makes a trade-off between accumulated drift

error and mismatch error. In Kaneko’s algorithm, the template is updated just

before a mismatch error occurs, thereby delaying the onset of drift. Each of

these errors is estimated from the boundary of the maximum error for possible

templates.

The drawback to Matthews approach is that the appearance of the feature could

change sufficiently that the correction is always larger than the threshold. This

will result in the update being repeatedly blocked, and possible failure due to

mismatch. Kaneko’s approach attempts to minimise the number of updates, but

eventually sub-pixel errors accumulate sufficiently for drift to occur. Both of

these methods also rely on the first template being a good representation of the

feature.

Consider the appearance of an object as it varies in pose as a manifold in a multi-

dimensional appearance-space. All of the above methods rely on representing
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the feature as one or two points on the manifold (templates). As the feature

pose varies, the tracking algorithms attempt to shift the point on the manifold

quickly enough for successful tracking. This work uses the philosophy that a

successful tracking algorithm will try to model as large a region of the manifold

as possible. This requires storing all the exemplars of appearance, rather than

just one or two. Given sufficient exemplars from successful tracking, updates to

the appearance-model could theoretically be reduced to zero, while the tracked

feature would never be mismatched.

A suggested alternative to this approach, from the field of generalised predictive

control [16], is to detect abrupt changes in appearance and use this as a cue to

extract a new template. Both the new and old templates are used for a short-

time thereafter, gradually ageing out the template that obtains comparably lower

similarity measures each frame. This approach although requiring less memory,

does not support multiple modalities and cannot take advantage of previously

known appearances.

The remainder of the chapter is arranged as follows. After a background to

tracking using one and two template models, in Section 7.1, the proposed Simul-

taneously modelling and Tracking (SMAT) approach is presented in Section 7.2.

The extension of this method for use in modelling shape and hence multi-tier

models is discussed in Section 7.3. Next, a description of the experimental setup

is presented in Section 7.4, which introduces a new method for testing tracking

algorithms.

Testing was performed on 11 challenging sequences with a mean length of 568

frames. The results of these tests are discussed in Section 7.5, before the Chapter

is concluded in Section 7.6.
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7.1 Tracking with one and two template models

For reference, the minimisation function used for registration is restated, with

the addition of an index for frame number, m, for the reference image, fr, and

an index m′ for a particular template, ft:

vopt = argv min d[f (m)
r (w(x,v)), f

(m′,m)
t (x)] (7.1)

The index, m′, used for ft indicates that ft is one template chosen from within a

list of templates, for alignment in the current frame.

After alignment, a new exemplar may be extracted from each frame. Typically

this is extracted from the region in fr overlapped by ft when warped by vopt.

Each pixel in the new exemplar corresponds to the warped position of each pixel

in ft:

f (m)
x (x) = f (m)

r (w(x,v
(m)
opt )) | x ∈ { Defined pixels of ft} (7.2)

where f
(m)
x is the exemplar extracted from frame m, and v

(m)
opt contains the pa-

rameters giving the image alignment of optimum match. The pixel positions in

fx will generally not line up with the pixels in fr, so interpolation is required.

Perhaps the simplest model of appearance is the no-update method, which solely

consists of the exemplar extracted from the first frame in the sequence:

f
(m′,m)
t (x) = f (1)

x (x) ∀m ∈ [1;Nm] (7.3)

where Nm is the number of frames in the sequence. The no-update model, illus-

trated in Figure 7.1a, works only as long as the template closely resembles the

feature being tracked. As mentioned, the resemblance is typically fleeting, and

tracking fails due to a mismatch error, as shown in Figure 7.2.

One alternative is the naive-update method, where the template is updated after

every frame:

f
(m′,m)
t (x) = f (m−1)

x (x) ∀m ∈ [1;Nm] (7.4)
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(a) No update (b) Naive Update

Sequence

Exemplars

(c) Strategic Update (d) SMAT Update

{Templates
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Figure 7.1: Building models using various update strategies. In each sub-figure,

the upper row shows sequence frames, the middle row shows new exemplars ex-

tracted from each frame, and the bottom row shows the template used for tracking

in the current frame. (a) The template is never updated. (b) The template is

updated naively every frame. (c) Two templates are kept and one of them is

selectively updated. (d) All the exemplars are collected into a single model.
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Figure 7.2: The patterns of accumulating error are shown for several update

strategies. When no update is used, the error remains low until the model no

longer represents the feature well and mismatch occurs. A spontaneous recovery

occurs by chance towards the end of the sequence. For naive update, a steady

increase in error (drift) occurs, due to accumulation of sub-pixel errors. Strategic

update acts conservatively by blocking the update for overly large corrections,

thereby avoiding drift or mismatch, but eventually mismatch failure will occur.
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With naive-update, sub-pixel errors inherent to each match are stored during

every update and gradually accumulate, resulting in the template drifting off the

feature. The naive update method is illustrated in Figure 7.1b, and an example

of drift is shown in Figure 7.2.

Matthew’s strategic-update model combines the no-update and naive-update ap-

proaches in the following way. After obtaining an initial alignment with the

updated template, v′
opt, the registration operation is repeated with the exemplar

from the first frame to correct for any errors, and to obtain vopt. If the correc-

tion of the second registration is too large, the algorithm acts conservatively by

blocking an update from the current frame, m:

v′
opt(m) = arg min

v|vopt(m−1)

d(f
(m′,m)
t , f (m)

r ) (7.5a)

vopt(m) = arg min
v|v′

opt(m)

d(f (0)
x , f (m)

r ) (7.5b)

f
(m′,m+1)
t =

 f
(m′,m)
t |vopt(m) − v′

opt(m)| > τv

f
(m)
x Otherwise

(7.5c)

where τv indicates the accepted threshold for the correction factor. The strategic

update method is illustrated in Figure 7.1c, with an example of its performance

in Figure 7.2.

Modified versions of the naive and strategic update methods, which use the prin-

ciple of never using interpolated intensities, are also possible. This modification

is referred to as the zero-interpolation principle (ZIP).

7.1.1 Zero Interpolation Principle

Because the intensities in f
(m)
x are interpolated from f

(m)
r , there is a slight blurring

and information loss. This is particularly apparent with warps of high shear or
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low scale, where several w(x,vopt) points may occur within a single pixel-spacing

in fr. In these cases, the interpolated values of fx do not approximate reality well

and tracking failure becomes likely.

The zero interpolation principle aims to prevent the information loss associated

with interpolation by extracting exemplars aligned with the pixel-lattice of fr.

These exemplars, denoted fzip, are obtained from the rectangle closest to the

matching region that is also aligned with the pixel-lattice of fr, with associated

parameters vzip. To prevent an accumulation of offsets between vopt and vzip, the

position of each exemplar relative to the first exemplar, f
(1)
x , is also stored and

compensated for after registration in each frame. The set of ZIP exemplars has

the benefit of being more general than normally extracted exemplars, because

they are always slightly offset from the actual feature.

7.2 Simultaneous Modelling and Tracking

The inclusion of a second template in the strategic update model improves track-

ing results substantially. Simultaneous Modelling and Tracking (SMAT) extends

this by storing the exemplars extracted from every frame, selecting templates

from amongst the exemplars to locate the feature by solving (2.1), as illustrated

in Figure 7.1d for four templates.

To limit the computational cost, the collection of exemplars is clustered on-the-

fly, with each cluster, Cn, being represented by its median, µn. Only the cluster

medians are ever used as templates, limiting m′ in (2.1) to m′ ∈ [1;Nn], where Nn

is the number of clusters. The median rather than the mean is used to avoid the

pixel blurring inherent to the averaging of multiple intensity values. On-the-fly

clustering is what differentiates this method from a particle filter. If particles
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were used to select from amongst (many) stored templates, the large number

of particles would require the warp space of the image to be randomly sampled

as well. Numerous particles would be required to obtain statistics about which

templates have a high probability of obtaining a match and which do not, mak-

ing a implementation that operates in real-time unlikely. Also, registration via

sampling of the warp space is often less precise than registration via optimisa-

tion. This negatively impacts upon the quality of the stored templates and hence

tracking robustness.

A weighting, wn, is also associated with each cluster, which represents the esti-

mated a priori likelihood of the cluster resembling the current appearance of the

feature being tracked. So the probability of the model matching the current fea-

ture appearance may be treated as a sum of likelihoods: P =
∑Nn

n=1wn
p(fg|d(f (m)

x ,µn))

p(bg|d(f (m)
x ,µn))

.

The weights satisfy the constraint,
∑

nwn = 1.

Two examples of such models are shown in Figure 7.3, with the exemplars repre-

sented as dots in a 2D analogue of appearance space, where the distance between

two appearances is represented by dMI . Using Figure 7.3, the construction of the

model, P , is now described.

In each new frame, f
(m+1)
r , the tracked feature will change in appearance as con-

ditions such as pose and lighting vary, with a corresponding shift in the feature’s

position in appearance space. In the examples of Figure 7.3a and b, the new

positions are indicated by stars. Updates to single template models serve only to

move the position of the model in appearance space, rather than properly describe

the occupation of X. Ideally each new exemplar is added to the nearest cluster,

otherwise clusters become overly inflated and are no longer specific to the feature.

Moreover, some exemplars can be included that arise from an undetected tracking

failure, which are not representative of the true feature. Either way mismatch



7.2. Simultaneous Modelling and Tracking 135

error can ensue, so membership to a given cluster must be determined.

Membership is determined in the following way. A collection of distances between

µn and the matches with exemplars known to be foreground is maintained. In

practice, this is obtained from the distance values, d, between the µn and each

member of Cn. A normal distribution is fitted to these. Before each optimisation,

a pre-search is normally used to locate the basin of convergence. The position

giving the best score is used to initialise the optimisation algorithm. The scores

of the remaining points are stored as examples of matches between µn and back-

ground exemplars. A normal distribution is fitted to the background distance

scores. Pre-search scores are good at detecting ambiguous but incorrect matches,

because many of these are on the edges of the basin of convergence. If the ra-

tio between the foreground and background likelihoods is greater than one fx is

deemed to be a member of cn:

p(fg|d(f (m)
x , µn), ηn(fg)(µ, σ))

p(bg|d(f (m)
x , µn), ηn(bg)(µ, σ))

(7.6)

This improves upon an earlier published incarnation of the model, which required

a pre-selected bounding factor. The earlier thresholding method used a factor, τ ′,

multiplied by the standard deviation of MI values between the median exemplar

and the other members of the cluster. The factor sometimes needed to be tuned

to specific sequences and gave unstable results, hence (7.6) is now used. The

cluster boundaries produced by (7.6) are indicated by the ellipses in Figure 7.3.

Newly created clusters are generally less reliable than previously established ones,

since they have fewer samples and may be the result of an earlier tracking failure.

To model the effects of increasing relevance and reliability, the weights of each

cluster are updated after after one of the clusters has achieved a successful match



136 Chapter 7. Simultaneous Modelling and Tracking

as follows:

wn ←

 wn+α
1+α

n = nmatch

wn

1+α
n 6= nmatch

(7.7)

where α is a learning parameter. This allows frequently successful clusters to

dominate in the model, but allows obsolete clusters to be gradually removed.

The learning parameter should be chosen with care. Too large an α-value al-

lows potentially erroneous exemplars to quickly dominate within the model and

marginalises older data that is more reliable. Too low an α-value prevents the

model from reacting to new appearances and possible mismatch. In practice an

α-value of 0.1 was found to work well.

To reduce computational expense further, a greedy approach is used when choos-

ing between the clusters. Alignment, using (2.1), is attempted starting with

the highest weighted cluster. If a match within the membership boundary, using

(7.6), is obtained, as illustrated in Figure 7.3a, the new exemplar of appearance is

added to the current cluster with appropriate updates to the weightings, median,

ηfg and ηbg. Otherwise alignment is attempted using the next highest weighted

cluster, and so on.

If none of the existing clusters achieves a successful match, as illustrated in Fig

7.3b, the most recently extracted exemplar, f
(m−1)
x , is used as a template: as this

is the most likely to resemble the feature in its current form. A new cluster is then

formed using this template, f
(m−1)
x , and the newly extracted region f

(m)
x , with an

initial weight of zero. The number of clusters is limited to keep computational

costs low. If this limit is exceeded, the cluster with the lowest weight is replaced.

The algorithm is stated in Figure 7.2.
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(a) New appearance matches
existing component

(b) New appearance requires
new component

w=0.5
C1

C2

C1 C4

C2w=0.3

w=0.5

w=0.3

w=0.2

C3

w=0.2

C3

Key:

New Exemplar

Median Exemplar

Exemplar

Threshold of matching cluster after update

Thresholds of unmatching clusters

Threshold of matching cluster before update

Figure 7.3: Diagram of Simultaneous Modelling and Tracking, showing 3 clusters

of exemplars (dots) in appearance space. The tracked feature has a new appear-

ance (star), which in (a) is within the bounds of Cluster 2 after minimisation,

which is appropriately updated. In (b) no cluster achieves a successful match, so

a new cluster is created, using the most recent template and the new exemplar

obtained for the corresponding region in the current frame.

7.2.1 Zero Interpolation Principle & SMAT

Similarly to one or two template models, ZIP may be applied to SMAT. However

this raises some issues with the clustering method, because for large warps the

ZIP exemplar may be rotated away from the matching component. Hence the

appearances will be highly dissimilar, and should not be clustered together. Two

solutions to this problem were considered.

For warps that are too large, e.g. warps inducing a mean pixel shift of more

than 0.1, a new cluster could automatically be generated. The disadvantage with

this approach is that the limit is an arbitrary parameter to be chosen. Also, in

sequences of agile objects, literally hundreds of clusters will be generated, most

of which are deleted. The frequent radical changes to the model make drift more

likely. A more sophisticated and processor intensive clustering method could solve

these issues, but at the cost of real-time performance.

Alternatively, the new exemplar could be added to the matching component as
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Require: f
(n)
r | n ∈ [0;Nn], V, f

(0)
x

f
(0)
x ← f

(0)
r (w(x,v))

Nn ← 1, C1 ← {f (0)
x }, w1 ← 1, T1 ← C1 = f

(0)
x

η1,fg(µ, σ) = (0, inf), d
(fg)
n = {d(f (0)

x , f
(0)
x )}

η1,bg(µ, σ) = (0, 0), d
(fg)
n = {d(f (0)

x ,voff )}

for m = 1 to Nm do

for n = 1 to Nn do

vopt ← argv min d[Tn(x); f
(m)
r (w(x,v))]

if ρ(dopt|η(σ(fg)
n ,µ

(fg)
n ))

ρ(dopt|η(σ(bg)
n ,µ

(bg)
n ))

> 1 then

f
(m)
x ← f

(m)
r (w(x,vopt))

Cn ← Cn; f
(m)
x

wn ←

 wn+α
1+α

n = nmatch

wn

1+α
n 6= nmatch

Sort Cn in order of descending wn

Break from for n loop.

else if n == Nn then

vopt ← argv min d[f
(m−1)
x (x); f

(m)
r (w(x,v))]

f
(m)
x ← f

(m)
r (w(x,vopt))

n′ = max(N
(max)
n , n+ 1)

Cn′ ← {xm, f (m−1)
x }

wn′ ← 0

Tn′ ← f
(m)
x

Update σ
(bg)
n′ , µ

(bg)
n′ , d

(bg)
n′ , σ

(fg)
n′ , µ

(fg)
n′ , d

(bg)
n′

end if

end for

end for

Figure 7.4: The SMAT algorithm
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before. However, the clusters no longer represent nearby points in appearance

space. Instead they represent a connection by causality, so the median loses its

meaning as the cluster becomes over-sized. To surmount this issue, the founding

exemplar of the cluster is used as a cluster-representative instead. This assumes

that if Ck′ obtains a successful match in the current pose, successful matches

will occur in all similar poses. For its simplicity this approach was taken when

employing the ZIP.

7.3 N-tier hierarchical models

The SMAT method for clustering has so far only been considered for representing

feature appearance as it varies through a sequence. In fact SMAT can be used to

cluster any kind of data. All that is required is: a method to describe the data,

and some measure to differentiate inliers and outliers.

For large non-rigid objects, using the single appearance-model described in Sec-

tion 7.2 requires large numbers of clusters to represent all the variations in object

appearance. Not only is this computationally expensive, but it is poorly rep-

resentative, since insufficient exemplars are available to populate each cluster.

Higher order warp parameterisations can reduce the number of clusters required,

but these are still somewhat limited in their descriptiveness. An alternative is a

bag-of-features approach: where the object is treated as multiple small features

that are independently tracked and modelled. However, small features are more

prone to failure, as they consist of fewer pixels and occlusions therefore are more

likely. Another alternative is to use a hierarchical approach, where a larger region

is tracked and used to pre-align smaller child features.

N-tier SMAT utilises both ideas and extends them by using the relative positions
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of parents and children in a tree structure to build up a model of shape. An

example of a 3 tier structure, used to model a face, is shown in Figure 7.5. Using

the shape-model, a likelihood may be attached to the position of the child features,

and hence to the probability of tracking failure. This allows tracking failures to

be corrected and possible erroneous updates to the model to be blocked. N-

tier SMAT thereby combines the advantages of tracking large features (robust to

noise, occlusions and large motions) with those of tracking multiple small features

(rich object description and accurate modelling of articulated shapes). The shape-

model is also treated as a collection of weighted clusters: pshp =
∑

nwnη(µn, σn).

A recursive alignment is applied starting at the root-parent feature, in a man-

ner illustrated in Figure 7.5 for a human face. First the largest “head” feature

is aligned using the SMAT process discussed in Section 7.2. Second, the child

features of the head (the “forehead” and “mouth region”) are offset from their

positions in the previous frame by the interframe shift of their parent. Third, a

SMAT alignment is applied to each child as per Section 7.2, except the update is

held in abeyance. Steps two and three are repeated for the “mouth region” chil-

dren: “left mouth corner” and “right mouth corner”, again with their respective

SMAT updates held in abeyance.

In step six the positions of the “left mouth corner” and “right mouth corner” are

concatenated into a vector describing the “mouth region” shape, which is fitted

to each cluster of the shape-model. If the current shape fits an existing cluster,

the shape-model is appropriately updated and the updates to appearance-models

for the child features that were held in abeyance are applied. If the current shape

does not fit the existing model, a new cluster is generated, but the appearance

updates of the children are blocked. In addition, the current shape is “corrected”

to fit the nearest cluster. The correction simply changes the initial position for



7.3. N-tier hierarchical models 141

vs.

feature by shift in parent

1. Align "face" feature

2. Offset "bottom face"

3. Align "bottom face" feature

4. Offset "left corner" and "right

corner" features by shift in parent

of "left and right corner" appearances

model, with possibility of blocking update

6. Check agreement with "bottom face" 

features

5. Align "left corner" and "right corner" 

Figure 7.5: Illustration of the structure of a 3 tier shape-model and how the shape-

model is used to recursively align and update the appearance-models at each tier.

In steps 1 to 5, a hierarchical approach is used to match the features based on

appearance, using shifts in the parent features to update the initial position of

children. Step 6 is the first in series of steps going back up the model, where the

updated positions based on appearance are compared to existing shape models.

If the new shape is novel, a new shape cluster is spawned, but the appearance

update is blocked and the shape corrected, because a failure may have occurred.

Subsequently similar shapes will reinforce the new cluster, indicating that further

corrections are not necessary.
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optimisation in the next frame. If the corrected track is not an error, but due to

an unseen shape, then the tracked position in the next frame should match the

new shape-cluster. Step six is applied again at the level of the parent feature and

updates are propagated upwards through the hierarchy.

The above shape update process is very similar to the SMAT appearance mod-

elling process of Section 7.2, with some slight differences. Firstly, a PCA model

is fitted to each cluster of shape exemplars, and Mahalanobis distance is use to

measure the similarity of shape. Secondly, “background” and “foreground” shape

scores are not available as they are for appearance, so a hard bound is required

to establish cluster membership. A bound of 2σ, was chosen empirically, and

worked well for all the sequences tested.

The shape-model consists of the positions of children relative to their parent, so a

central feature (i.e. star model) or mean position is not required for a coordinate

system base. This is an important advantage, since the use of a central feature

makes tracking dependent on that feature’s reliability. On the other hand, using

an mean position allows outlying points in the shape to deform the entire shape

and induce tracking failure in the remaining features.

As implemented, the hierarchical approach may be extended to any number of

levels where multiple appearance-models are sandwiched together with shape-

models, and is hence referred to as a thick shape-model.

A similar hierarchical alignment was also implemented, which does not explicitly

model the shape of the object. Rather, the relative shift of parent objects is

applied to the initial positions of child objects without any further modelling.

This still implicitly models the dependence of child objects on their parents,

which is similar to a multi-scale registration [32, 77]. This approach is referred

to as a thin shape-model. Both methods yielded significant improvements over
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independently tracked features. However, the use of a thick shape-model allows

recovery from tracking failures in child features. Different warps may be used at

different levels in the hierarchy as long as transformations between the two warps

are available. Such transformations are not necessarily unique.

For the thick shape-model, the child feature positions are concatenated together

to form a NfNv component vector, where Nf is the number of features and Nv

is the number of vector components. As the use of PCA implies, a multi-modal

normal distribution for shape is used, to give a Mahalanobis distance measure:

dmh(sX) =
√

(sX − Cµ)TC−1
σ (sX − Cµ) (7.8)

where Cµ is the mean of the cluster, and Cσ is the standard deviation of the

cluster. In practice, the number of available shape exemplars is limited, so Cσ

will often be non-invertible. Hence, Singular Value Decomposition is applied

to obtain the eigenvectors Cvec and eigenvalues Cval from Cσ and this distance

equation is used instead:

dmh(sX) =
√
CT
vec(sX − Cµ)C ′

val (7.9)

where C ′−1
val is the pseudo-inverse of Cval with values close to zero being floored

to zero for stability. The N-SMAT algorithm is outlined in Figure 7.6.

7.4 Testing methods

Testing tracking applications typically involves the researcher hand selecting the

positions of features in each frame. Such an operation is time consuming, so test-

ing using large numbers of long sequences is impractical. Hand selected features

are not necessarily accurate, from the point of view of the registration algorithm,

since a human’s selection may be based largely on context unavailable to the
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Align using SMAT, store the update without applying it

for All children do

Apply change in parent to child

Align children using SMAT

end for

Assemble shape vector

if Shape fits existing model cluster then

Update matching cluster with new shape

Apply the child’s update

else

Generate new shape component

end if

Figure 7.6: Outline of the N-SMAT algorithm

tracker. Conclusions are difficult to draw in this case. To overcome this problem

the zig-zag-zen family of semi-automated tests is proposed.

7.4.1 Zig-zag-zen tests

In general, the only position that is known with absolute certainty, from the point

of view of the tracker, is the position of the selected feature in the first frame.

Any comparison against this position in the same frame is absolute as well. The

zig test uses this property by tracking a frame through a sequence from frame 0

to frame Nm and then by reversing the sequence back to frame 0. The second

instance of frame 0 is referred to as frame 2Nm. The area of overlap between

the f
(2Nm)
x and f

(0)
x gives an indication of how far the tracker has drifted from its

original target. This is referred to as the zig test. Note that for trackers using
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Figure 7.7: Zig-Zag-Zen tests consist of running sequences sequentially forwards

and backwards and comparing the exemplars at intervals of 2Nm (indicated by

joined circles). Three types of tests are shown: zig tests, where the position in

the initial frame at the beginning and end of a cycle are compared, zig-zag tests,

where a further forward cycle is made allowing comparisons in every frame, and

zig-zag-zen tests where increasing numbers of cycles are used to analyse tracking

accuracy.

models of dynamics, the dynamical model should have its signs inverted at frame

Nm, due to the reversed time flow.

Generally, as sequence length increases, so does track error. However as shown in

Figure 7.8, this is not always case, because sometimes the tracker can re-acquire

its original target later on. In some cases failure occurs in the forward phase, and

re-acquisition occurs in the reverse phase, giving a false “success”. For this reason

some user input is required to give a ground-truth at intervals in the sequence (in

this work, 1
10
Nm intervals were used). Tracked positions too far from the ground-

truth are flagged as failures automatically. Additional performance figures may

be obtained by varying the proportion of the sequence that is used.

Although the matched region in the frames after frame 0 might not be true

representations of the original feature, they are representations of some feature.
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Figure 7.8: Examples of results obtained from Zig-Zag-Zen tests. In general as the

number of frames and cycles increases, the area of overlap at the beginning and

end of each test will decrease. There are some exceptions where re-acquisitions of

the original feature occur on the backward cycle and a temporary improvement

in performance is observed at around frame 50. For this reason, some manual

ground-truthing is necessary to “sanity check” the results.

If the sequence is again cycled forwards to frame 3Nm (Nm), as shown in Figure

7.7b, all pairs of exemplars separated by 2Nm may be compared. This variation

is referred to as the zig-zag test. For models more complex than the naive update

model though, the appearance and shape-model dynamics can bias the results.

A final variation is to cycle through the sequence multiple times, which is referred

to as the zig-zen test (a Zig-Zag Nz times). Similar to the zig test, the overlap

between f
(0)
x and f

(NzNm)
x is measured. As shown in the example in Figure 7.8

this will generally also induce steadily increasing drift for increasing numbers of

cycles.

Only zig tests were performed on the image sequences, with a varying Nm, in

this work. Zig-zag tests were avoided, because complex models, where model

dynamics would have an effect, were being examined. Zig-zag-zen tests were

also avoided because they were time consuming to perform, and added little

information to the results obtained from zig tests.
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7.4.2 Error Metrics

The dissimilarity of exemplars f
(0)
x and f

(2Nm)
x may be measured in many ways,

such as: finding the SSD of f
(0)
x and f

(2Nm)
x ; finding the difference between v0 and

v2Nm , or measuring the overlap between f
(0)
x and f

(2n)
x .

The first error metric biases towards SSD based trackers. Also, high appearance-

match scores may be obtained despite a feature being mismatched. Differencing

warp parameters gives some measure of error, but produces multiple parameters

for assessment and is hence difficult to interpret. Combining the warp difference

into a single value is problematic, due to the differences in scale between the

various values.

Hence in this work, the ratio between the overlapping region and the area of the

larger of the two patches f
(0)
x and f

(2Nm)
x , is measured.

A(f
(0)
x ∩ f (2Nm)

x )

max(A(f
(0)
x ), A(f

(2Nm)
x ))

(7.10)

Using a max ratio avoids the issue of the smaller exemplar being completely

encompassed by the larger one and then giving a falsely “perfect”result of 1.

7.4.3 Feature selection

The choice of feature is an important part of an effective tracking strategy, since

badly chosen features will cause early failure. As a simple example consider trying

to track a vertical edge using an image patch. The lack of a constraint in the y

direction will lead to random vertical drift. The high error that results in such

a case is due to the poor choice of feature rather than a low quality tracking

algorithm.
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Humans are good at selecting relevant features, however their choices are aug-

mented by additional knowledge of the world which is unavailable to the average

automated feature tracker. Hence, manually selected features are not necessarily

good to track either.

Objects were pre-selected and the child features were chosen using the entropy

based feature detector of Kadir and Brady [36], because the similarity measure

used, MI, is also entropy based. This is analogous to choosing features based on

their corner ratio for SSD based LK-trackers, as proposed by Shi and Tomasi [72].

7.4.4 Test data

Eleven long (568 frames on average) and challenging sequences of various subjects

were obtained. These were split into two groups: eight sequence tracking single

features, and three sequences for testing shape-models using 3-tiers of features.

Objects tracked included humans in sporting events, human faces with chang-

ing expressions, gesturing human hands, pedestrians, yachts, and wild animals

in Kruger National Park. Backgrounds were in some cases highly variable and

cluttered, including ripples in a swimming pool and moving bushes. Likewise

some sequences had lighting conditions that varied drastically. The first frame of

each test sequence is shown in Figure 7.9.

7.5 Results and Discussion

The test framework of Section 7.4 was used to compare the proposed SMAT

method to existing trackers. In particular the tests attempted to answer some

specific questions. How much do models of increased complexity improve perfor-

mance? Does the zero principle improve performance? Does the use of higher
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Figure 7.9: Test sequences used. Set 1 was used to test single feature tracks. Set

2 was used to track 3-tier of object models. The tracking performance on the

smallest feature (lowest in the hierarchy) was examined, as this feature is the one

most likely to fail due to occlusion or fast motion. The main frame length was

568 frames, and features were hand-selected from the top ten features selected by

a Kadir-Brady saliency detector.
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Figure 7.10: Comparison of SSD and MI metrics for one/two template meth-

ods: No-update, Naive-update and Strategic-update. Warp used: translation.

Bar groups show mean while increasing sequence length. Lines show standard

deviation.

order warps improve performance? Does the use of shape-models improve per-

formance?

Ten zig tests were performed for each test sequence, ranging in length from 10% to

100% of the sequence length The mean percentage overlap between the rectangles

at the beginning and end the sequences is shown in Figure 7.10 to 7.16. The

standard deviation is also shown to express variability of the results. Bar groups

show performance as sequence length is increased in 10% intervals from 10%

to 100%, with the green bars indicating the mean percentage overlap and the

red lines indicating the standard deviation. The standard deviation increases

relative to the mean value as the sequence length increases. This occurs because

complete failures are detected for increasing numbers of sequences, whose results

are excluded to avoid biasing the results. The result is fewer tests being used to

calculate the mean and a higher relative standard deviation.

In the first set of tests, test-set 1 was used to compare the one/two template

update methods, namely: no-update, naive-update and strategic-update. These
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methods were compared for the SSD and MI (standard sampled) similarity met-

rics, as shown in Figure 7.10 In all cases translation warps were used.

Although the results of Section 3.5 showed SSD comparing well to MI, in this

set of tests, the variations in pose and noise within the image sequences strongly

demonstrate the advantages of using MI compared to SSD. Superior results for

MI are seen for all the models used. These are a direct result of MI not making

any assumptions about the relationship between the intensity of the template and

that of the reference image. MI generally has a smaller basin of convergence than

SSD, so the no-update method causes earlier failure due to mismatch.

Comparing the different update methods, the sudden failure due to mismatch that

occurs when using the no-update approach is clearly evident. The naive-update

approach shows significant improvements, with more graceful degradation as the

sequences lengthen. The use of an additional template for the strategic-update

approach improves the results still further, especially for the longer sequences.

This good performance is due to the descriptiveness granted by the additional

template, which allows greater variation in pose without failure.

Tracking performance is subjectively illustrated for SSD and MI while tracking

the head of an Olympic swimmer in Figure 7.11. In both cases, SMAT algorithms

with translation warps were used. Tracking the feature (swimmers) head in this

sequence is difficult for two reasons. Firstly, the head is often submerged in water

completely changing its appearance, shown in frame 19. Secondly, the ripples in

the water create numerous outlier pixel intensities in the template, visible in most

frames. The result is that the SSD tracker fails due to mismatch frame 138, while

MI manages to track the feature until frame 250.

In the second set of tests, test-set 1 was used to examine whether the use of

higher order warps improves performance. The results are shown in Figure 7.12
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SSD MI

Figure 7.11: Subjective comparison of SSD and MI in “swim” sequence
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Figure 7.12: Comparison of performance using four warp types: Translation

(2DoF), Euclidean (3DoF), Similarity (4DoF) and Affine (6DoF) for Strategic

and SMAT update methods. Bar groups show mean while increasing sequence

length. Lines show standard deviation. Metric: MI.

for the strategic-update approach and SMAT. In general performance degraded

as the number of DoF increased. This is partially due to the high sensitivity of

rotation, scale and affine parameters, which can lead to unstable optimisation.

This is a particular issue if the template size is low, since there is insufficient data

to for the number of parameters being optimised. Increasing the number of DoF

gives more opportunities for drift to set in, which accounts for the increasingly

graceful degradation as the number of DoF increases. Furthermore, the greater

number of DoF allows the template more variation relative to its initial position,

so a low area of overlap may be obtained, despite the centres of the two regions

being in close proximity to each-other.

For the translation warps, the strategic-update method showed better perfor-

mance at intermediate frames, while SMAT performed better at the beginning

and end of sequences. Failure for the strategic-update method was also somewhat

more dramatic when it occurred unlike the graceful degradation of SMAT. This

was due to the strategic-update method tracking well using the initial template
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and failing due to mismatch. SMAT has a more general description and degrades

in performance more slowly.

In all other cases, SMAT significantly outperformed the strategic update ap-

proach, because when SMAT drifts slightly from over-sensitive parameterisa-

tion, recovery using a previous appearance is possible. This is more difficult

for strategic-update, because two templates cannot adequately describe all the

variations in appearance. When an incorrect update to the appearance-model

occurs failure is absolute, because the correction cannot escape erroneous local

minima.

Figure 7.13 subjectively compares the tracking performance of the Strategic up-

date and SMAT algorithms while tracking an Olympic athlete. In both cases MI

was used as a similarity metric. Translation warps were used to force the tracking

algorithms to generalise well despite large pose and scale changes, or fail. The re-

sults show, the strategic update algorithm fails due to mismatch at around frame

122, with complete failure by frame 311. Notice how similar the region being

tracked by strategic update is to the first template, because the model does not

change sufficiently to represent the new appearance. SMAT on the other hand

tracks the runner throughout the sequence.

An example of tracking a person through a lobby, using SMAT with a similarity

warp, is given in Figure 7.14. This particular sequence is difficult because the

feature (pedestrian) being tracked moves from a sunlit region to a shadowed

region, with a large change in appearance. However the structure of the feature

remains fairly similar throughout the sequence, allowing successful tracking when

using SMAT combined with MI. No other combination of tracking method and

similarity metric managed to track past frame 50.

In the next set of tests, test-set 1 was used to examine whether using the lattice
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Figure 7.13: Subjective comparison of Strategic Update and SMAT in “run”

sequence. The strategic algorithm fails by frame 311 because the scale changes

cannot be represented using only two exemplars. SMAT tracks to the end of the

sequence.
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Figure 7.14: Example of tracking using MI and similarity warps in “lobby” se-

quence. The pedestrian moves from an area of sunlight to and area of shadow,

making tracking difficult. The use of SMAT combined with MI allowed successful

tracking to the end of the sequence.
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Figure 7.15: Comparison of between using warped templates and lattice aligned

templates for strategic-update & SMAT methods, and Translation & Euclidean

warps. Bar groups show mean while increasing sequence length. Lines show

standard deviation. Metric: MI.

aligned templates improves performance or not. The strategic-update and SMAT

methods were used for this tests. Translation and Euclidean warps were also

compared. The complete set of results is shown in Figure 7.15.

For the strategic-update method the inclusion of the ZIP improved results slightly.

For translation, the improvement probably occurred because the use of ZIP

meant that data used to match the reference and the template was not diluted

by multiple interpolations. This not only reduces drift, but slightly widens the

appearance-model in the case of the strategic-update method.

For Euclidean warps, the use of ZIP widens the manifold of the appearance-

model still further, as the inclusion of an extra DoF allows the two templates to

be rotated relative to each-other. The large error that occurs early on, is due to

the extra DoF and because rotation is a sensitive parameter.

Non-ZIP SMAT, generally outperformed strategic-update for longer sequences

and had a more graceful degradation in performance as sequences increased

in length. However, strategic-update performed well at intermediate sequence
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Figure 7.16: Comparison of performance for no/thin/thick shape-models. Bar

groups show mean while increasing sequence length. Lines show standard devi-

ation. Tracking method: SMAT. Metric: MI. Warp: Similarity + Translation +

Translation

lengths due its conservative nature, with a sudden degradation in performance.

The use of ZIP degraded the performance of SMAT for translation warps. The

reason is the large number of clusters that are created in the ZIP version of

the SMAT algorithm. As only the first few clusters are used, and new clusters

are frequently created, the clusters never become properly populated and do not

adequately describe local regions in the appearance manifold.

For Euclidean warps, the performance of SMAT improved slightly when using

ZIP. The extra degree of freedom imbues better representation of the feature

being tracked, which offsets the negative effects of large numbers of improperly

populated clusters. The initial error occurs for much the same reason as it did

for the strategic-update method.

It can be concluded that the use of ZIP will generally only improve the perfor-

mance of one/two template methods, since they do not fully represent features.

In the case of large appearance-models such as SMAT, the extra descriptiveness

offered by ZIP does not greatly augment that of the existing appearance-model.

Test-set 2 was used to examine the effects of modelling shape-models in multiple
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tiers. In each test three features, in three tiers, were used. A similarity warp was

used for the top level tier, while translation warps were used for the second and

third tiers to avoid over parameterisation. The results in Figure 7.16 show the

performance for the lowest tier i.e. the feature most likely to fail.

As shown, even using a thin shape-model (i.e. treating the problem as a multi-

scale registration) improves performance significantly over independent tracking.

Explicitly modelling the shape improves performance further. However, thick

shape-models should be used with care, since they can drag features off their

correct position. This appears to occur in the “Thick” results of Figure 7.16

at 40% of the maximum sequence length. However the use of a thick shape-

model allows re-acquisition to occur, hence the intermittent improvements seen

for intermediate length sequences.

Figure 7.17 shows a subjective comparison between tracking with no shape-model,

a thin shape-model and a thick shape-model using the “Nick’s face” sequence.

A hierarchy of three features was used for tracking: the face at the highest level

using similarity warps, the left cheek using similarity warps, and the left nostril

at the lowest level using translation warps. The smallest feature, namely the

nostril, is the most likely to have tracking failure, due to the high likelihood of

occlusion and the rapid movement relative to the template size.

As shown, in Figure 7.17, an early failure (frame 148) occurs for the independently

tracked nostril, due to pose variation and rapid movement. Recovery never occurs.

For the thin shape-model, failure occurs some frames later (by frame 173), because

the optimising from high to low scale grants robustness to rapid movements. The

thin shape-model never recovers from the mismatch error in frame 173. The thick

shape-model, also fails slightly in frame 150, but a recovery by frame 173 occurs

due to a correction by the shape model. A similar recovery occurs in frame 320,
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No shape-model Thin shape-model Thick shape-model

Figure 7.17: Subjective comparison of the no/thin/thick shape-models for “Nick’s

face” sequence. Unlike the other methods, the thick shape-model recovers from

a mismatch error in frame 150 and an occlusion in frame 267.
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after an occlusion by the hand causes temporary failure in frame 267.

7.6 Conclusion

The Simultaneous Modelling and Tracking (SMAT) algorithm has been proposed,

which builds up a model of the appearance of a feature using a single exemplar

from the initial frame. This done on-the-fly while the feature is being tracked,

allowing real-time performance. In outline, SMAT stores the exemplars of the

feature extracted from each frame and clusters them. Using a greedy process,

clusters are selected to track the feature in the current frame, based on their

weight.

The SMAT method was extended to track multiple features of a single object and

model the relative positions between these features to build up a shape-model.

The same clustering process used for the appearance- and shape-models. The

extended method uses a hierarchical approach to track the features, by placing

the features into a tree-like structure, which consists of shape-models sandwiched

between appearance-models. This method is referred to as N-tier SMAT.

A new set of semi-automated testing methods has been proposed called the zig-

zag-zen tests. The test methods work by cycling forwards and backwards through

a sequence. The position of tracker frame 0 is compared to its position at the end

of the backwards cycle. The sequence length is progressively increased to examine

how performance degrades. Ten ground-truth positions were used to ensure that

a false successes from re-acquisition in the backwards cycle did not occur. The

use of lattice-aligned exemplars was also proposed to avoid the onset of drift due

to interpolation blur.

The proposed zig test was used to test the effects of the following on the per-
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formance of a tracking application: similarity metric, coordinate warp function

used, template update method used, and shape-model used. This test method

allowed exhaustive testing on 11 challenging sequences with a mean length of 568

frames.

The use of the SMAT method yielded improvements over one/two template meth-

ods, because the method fully describes the manifold of a feature in appear-

ance space, whereas one/two template methods only describe one point. Hence,

the strategic-update method outperformed naive-update, which outperformed no-

update.

The use of non-lattice aligned templates was also tested. For one/two template

methods this improved the results, partially because of the lack of interpolation

blur. The increase in descriptiveness granted to the appearance-model, by the

use of exemplars slightly offset from the actual feature, probably had more of an

effect. The improvement is particularly obvious for high DoF warps. For SMAT,

ZIP gave little improvement (or degradation at times), due to the generation of

multiple under-populated clusters.

N-tier SMAT yielded some performance improvements compared to indepen-

dently tracking features, and over using a hierarchical approach to alignment.

This is because a shape-model allows recovery from tracking failures.



Chapter 8

Conclusion

The aim of this work was to track non-rigid objects in real-time without a priori

data. Tracking had to be robust to noise, occlusions and variation in lighting

conditions. These objectives were partially met by developing a method to model

the appearance and shape of a feature during tracking it, termed Simultaneous

Modelling and Tracking (SMAT).

Additional robustness was imparted to the tracking algorithm by using Mutual

Information (MI) as a similarity metric when comparing images. Two particu-

lar difficulties became apparent when using MI to register small image patches.

Firstly, many different methods for the estimation of MI had been published and

the best method for the purposes of tracking needed to be selected. Secondly,

many of these methods had no published analytic derivative, precluding the use

of a fast Newton-type optimisation method like Levenberg-Marquardt (LM).

To study the plethora of available MI methods, the four most widely used MI

families were placed into a single mathematical framework in Chapter 3, namely:

standard sampling, post-Parzen windowing, in-Parzen windowing and generalised

partial volume estimation. It was shown that these families differ only in the
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sampling function, i.e. how the joint-histogram is populated. The mathematical

framework allowed the construction of analytic derivatives for each family, which

was novel in every case except in-Parzen windowing and first order partial volume

estimation. Importantly, the computation of the analytic derivatives shared re-

dundancies with the function computation, yielding significant speed advantages

when using LM optimisation, e.g. computing the MI, its Jacobian and Hessian

for a 6DoF affine warp, only cost three times one function evaluation rather than

the 36 times that would normally be expected.

Exhaustive testing was performed, to compare the various MI methods, Nor-

malised Correlation (NC) and Sum of Squared Differences (SSD) measures to

each-other. NC had a wide basin of convergence, allowing it to perform well for

noise free, unoccluded images. However PVE, the best of the MI methods, man-

aged to perform as well as NC at substantially lower computational cost. The

disadvantage of PVE is its large bias (a shift in the function minimum away from

its true position). For this reason, PVE is a recommended measure where speed

is paramount and a large basin of convergence is required. When the images

being registered are noise free and unoccluded, and accuracy of the final solution

is important, NC or SSD are recommended.

Further investigation revealed that the inferior performance of standard sampling,

post-Parzen windowing and in-Parzen windowing methods compared to PVE

occurred because of artefacts in the function surface. In Chapter 4, it was shown

that two types of artefacts exist: hiss (numerous discontinuities in the function

surface) and glitches (patterns of local minima). Hiss arises from the finite bin-

size of the joint-histogram and the discrete shifts in membership as sample points

shift in the reference image dependent on the warp parameter. Glitches arise

from harmonics between the pixel-lattice of the reference and template images.
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The effect of hiss was minimal so long as the Newton steps were large enough.

However, as the algorithm approached convergence the effects of hiss overwhelmed

the macroscopic trends in the function surface. This resulted in non-zero con-

vergence errors; even for initial positions within the basin-of-convergence. The

effect of glitches is to generate widely spaced local minima and to to shift the

position of the minimum away from its “true” position, i.e. bias. Measures to

limit the effects of artefacts were examined and tested. The issue of artefacts has

been examined before, but never in a complete way that considered positional

(as opposed to amplitude) bias and never comparing all the MI families.

Notably, testing found a large bias associated with the impressive convergence

capabilities of PVE, hence it is not recommended where final registration accu-

racy is important. Of all the methods to reduce artefacts, using super-resolution

(increasing the sampling resolution) was found to give the lowest bias, while

reducing the effects of both hiss and glitches in a controllable way. Hence, a

trade-off between computation and accuracy was possible. Standard sampling

with a controlled sampling rate is the recommended method for registration.

The idea of super-resolution was taken to its logical conclusion in Chapter 5,

where the NP-windowing technique was extended to consider a pair of 2D im-

ages. NP-windowing integrates the effects of interpolation over an entire pixel

to populate the histogram in a manner that is equivalent to sampling at infinite

resolution. This was achieved by using the structure inherent in the ordering of

image data, which is discarded by most sampling methods. Numerical integration

was required for each neighbourhood of samples. However since standard render-

ing algorithms were used, NP-windowing was only an order of magnitude slower

than standard sampling: making it practical for use in registration applications,

rather than merely a theoretical curiosity. NP-windowing collapses to first order

PVE in the simplest case of Nearest Neighbour interpolation.
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Testing revealed an improved rate of convergence and lower bias for NP-windowed

MI than for any other MI method. The bias was limited solely by accuracy of

the interpolation method. Hence, NP-windowing should be the method of choice

for applications such as medical image registration where accuracy is critical.

NP-windowed MI was further extended using a resolution aware approach. This

did not yield expected improvements in bias or convergence, due to the effects of

harmonics in the template and reference pixel-lattices. Substantial simplifications

to the existing NP-windowing theory were also introduced using Green’s theorem

to perform a perimeter integral rather than an area integral.

To increase the speed of optimisation, MI was placed into a Lucas-Kanade frame-

work, termed MILK, in Chapter 6. The MI function was reformulated into an

inverse compositional formulation, where the roles of the template and reference

image are inverted and the effects of warps and warp variations are separated.

This was difficult for MI, because the the intensities of the reference and tem-

plate are not separable in the joint-histogram. However with the assumption

that the co-intensities remain similar a constant Hessian was obtained for a given

template-reference image pair.

In testing with a registration algorithm, speed improvements of 17% were ob-

tained. This less than expected improvement, occurred because the less accurate

Hessian required more iterations to reach convergence. Moreover, the initial

computations are relatively expensive, especially if the number of iterations is

not large. Testing using naive updates on sequences of data showed that com-

parable registration and tracking performance could be obtained for the inverse

compositional formulation.

The image registration algorithms that had been developed were finally applied

to tracking features through image sequences, in Chapter 7. This raised a new
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problem: how and when to update the template used for tracking. The SMAT

algorithm was proposed, which built a multi-modal appearance model by storing

examples of the feature being tracked and clustering these on-the-fly. The result

was increased robustness over the current state of the art.

The proposed clustering method was used to model the position of multiple fea-

tures relative to a parent object i.e. a model of shape. Multiple appearance and

shape models were then stacked together to allow hierarchical registration of fea-

tures, improving robustness and giving a richer description of articulated objects.

In addition, a novel testing method for the semi-automated testing of tracking

algorithms on multiple test sets, was proposed. This allowed testing using eleven

sequences with a mean length of 568 frames.

Testing vindicated the choice of MI as a similarity measure, where it outperformed

SSD in noisy sequences with changes in lighting conditions and outlying pixels.

SMAT also outperformed other real-time tracking algorithms which used only one

or two templates as appearance models, because the SMAT appearance model

fully described possible variations in appearance. The use of shape models had

the marked benefit of allowing recovery from tracking failures, in addition to

increased robustness to occlusion and rapid movement.

8.1 Future work

In the future, the NP windowing method will be extended to other applications

such as 3D medical imaging, where the accuracy of the final solution (bias) is

important. This method will use a combination of MI alignment methods to opti-

mise basin-of-convergence size, speed and final registration accuracy. In addition,

extensions to unify generalised PVE and NP-windowing should be considered, by
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interpolating probabilistically from neighbouring pixels. Such an approach will

allow a more computationally efficient hierarchical optimisation to be performed.

The improved NP-windowing implementation, using Green’s theorem, will be

applied to saliency detection methods.

Much research is still to be done in the use of multi-dimensional joint histograms,

either due to the use of colour or the encoding of neighbourhood statistics. High-

dimensional joints have not been practical before, due to the lack of samples. NP

Windowing solves this issue and easily generalises to multi-dimensional statistics,

where standard geometry can be used to detect simplex intersections and calculate

volumes. The use of such multi-dimensional joints will impact on diverse range of

applications including image restoration, resolution enhancement, segmentation

and labelling.

Recently, detection methods have increasingly been used for tracking, but pre-

training is still required. In future work, registration methods like SMAT should

be used to bootstrap detection methods, with the algorithm reverting to registra-

tion when detection approaches fail. This should lead to more efficient algorithms

where the trade-off between speed and tracking accuracy is explicitly made.

It is the hope of the author that this thesis places Mutual Information in the same

position as Sum of Square Differences, as a mature and well understood similarity

measure. MI and SSD can then be selected for a particular application based

on their merits, rather than MI being avoided, due to a perceived complexity,

computational expense and impracticality.
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Jacobians and Hessians

A.1 Normalised Correlation

Normalised correlation relies on computing the products of pixel values. As a

result it is more robust to lighting changes since outliers have less of an influence.

Dnc(v) =

∑
x ft(x)fr(xw)

(
∑

x ft(x)2)
1
2 (

∑
x fr(xw)2)

1
2

(A.1)

The derivative of the normalised correlation function is obtained by applying

a combination of the chain rule and quotient rule. Note that because of the

derivative operation is distributive with respect to addition, it may be applied

within the sum. Since the function consists of several sums multiplied together

too many steps are required in this derivation to show here.
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Note that ∇fr = d
dw
fr.
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The Hessian for the normalised correlation function is even more complicated to

obtain and Mathematica was used for its derivation:
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The warp derivatives used in Hessians are sometimes complicated to visualise, so

some warp derivatives have been provided for reference in Appendix A.2.

A.2 Various Warp Hessians

There are four types of coordinate warps w(x,v) that are used in this work:

translation, Euclidean, similarity and affine warps. These have the following
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Hessians:
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In all the above equations:

R =

 cos v3 sin v3

− sin v3 cos v3


R′ =

 sin v3 − cos v3

cos v3 sin v3


R′′ =

 − cos v3 − sin v3

sin v3 − cos v3
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