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Abstract

The rigidity of a scene observed by a camera is often the fundamentahpissn used to infer
3-D information automatically from the images taken by that camera. Howeviglea sequence
of a natural scene often contains objects that modify their topology (ftarine, a smiling face or
a beating heart) thus violating the rigidity assumption necessary to recdrbe&®:D structure
of the object. In this thesis, we address the challenging problem of neagike 3-D model of a
deforming object and the motion of the camera observing it purely from imegeesces, when
nothing is known in advance about the observed object, the internahptees of the camera or
its motion.

Previous solutions to thison-rigid structure from motioproblem have either provided ap-
proximate solutions using linear approaches to a problem that is intrinsicailimear or re-
quired strong assumptions about the nature of the 3-D deformations. thékis, we propose a
non-linear framework based on bundle adjustment to estimate model andagzemameters. We
then upgrade the proposed framework to deal with the case of a stenepacaetup. We show
that when the deforming object is not performing a significant overall ngition a monocular
approach leads to poor reconstructions, and only by fusing the informfation both cameras
can the correct 3-D shape be extracted.

However, the problem of 3-D reconstruction of deformable objects is stilldmentally
ambiguous: given a specific camera motion, different non-rigid shagrebe found that fit the
observed 2-D image data. In order to reduce this effect, we introdageegiriors based on the
observation that often not all the points on a deforming object are movingiglly but some
tend to lie on rigid parts of the structure. First, we propose motion segmentédjorittams
to divide the scene automatically into the rigid and non-rigid point sets. Sicavel use this
information to provide priors on the degree of deformability of each poinicially all the above
methods only work under the assumption of orthographic viewing conditPehaps the most
valuable contribution of this thesis is to provide a new algorithm to obtain metrnstaictions
of deformable objects observed by a perspective camera.
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Chapter 1

Introduction: Deformable Structure from Motion

One of the central interests of the Computer Vision community in recent yeardden the
inference of 3-D information about the world directly from image sequetaden from a moving
video camera, when the specific details of the camera and its motion are allavat kh advance.
Such free-form inference can only succeed if certain assumptionsiade, the standard one
being that the scene observed by the camera is rigid: its geometry is staticamdyttmotion is
that of the camera. However, deformations which vary the structure ludijgesare, on the other
hand, constantly appearing. The human body itself is a remarkable examydeles and bones
stretch and tend the skin of the face to perform an incredible variety oéssions. Even at the
organic level shapes are far from being rigid: hearts beat and luag®atinuously inflating and
deflating. In this thesis we explore the challenging case of scenes thadtatempletely rigid,
but which have certain degrees of flexibility or deformation.

The problem of 3-D inference from image sequences, generically kr@astructure from
motion, was originally considered in the context of mobile robots, which czamgeras when
navigating in cluttered environments and use the data received to build mae# slurroundings
and improve their movement estimates. However, the algorithms developeddiaadly found
more immediate demand in areas such as multimedia, the entertainment industrygdisidene
To address the problem of 3-D reconstruction from video sequelficemerigid scenes, we will
relax the previous assumption of a static world and instead aim to recoveniyahe essential
shape of objects but also information about their deformation.

The approach used in this thesis will extend recent work in non-rigid fiaetoon [19, 16,
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141], which has demonstrated that it is possible under certain viewingtimorsdto infer the
principal modes of deformation of an object alongside its 3-D shape withiruatgre from
motion estimation framework. The models recovered by these algorithms, bseggiently be
used as compact representations of the objects suitable for use in traaRingation or other
analysis. There have been other computer vision systems able to build similsinabte 3-D
models of non-rigid objects. However, most of them rely on having additinf@mation — for
instance depth estimates available from 3-D scanning devices [151] —verble&n refined to
represent the specific object under observation: for example phydiesed human face models
[41]. Crucially, factorization methods work purely from video in an urgtogined case: a single
camera viewing an arbitrary 3-D surface which is moving and articulating. Athdhere are
no constraints as to the type of objects that may be modelled, this thesis hsesddenainly on

the domain of human motion analysis — in particular 3-D reconstruction of faxébn.

1.1 Structure from motion: the rigid case

A camera is a projective device, which converts incoming rays of light into énaagitions
depending only on the direction of the rays when they strike the lens: noraf@on is gained
directly about the depth of the objects viewed. To recover depth informatieessential to
make use of multiple images of an object from different viewpoints: if theralis ane camera,
it must move relative to the object. If the motion of the camera were known xEmple if it
were attached to a precisely-driven robot arm) then calculating deptldwewa simple matter
of triangulation. In most interesting scenarios, however, this is not thee tlas camera motion
itself is also uncertain. It was shown by [94] that in fact with certain assiompit is possible
to simultaneously estimate both the motion of a camera and the geometry of the sdens.it
Structure from motion has since been defined as this problem of combimedrioé of the 3-D
motion of a camera and the geometry of the scene it views solely from a ssgoEimages.
The underlying assumption which has allowed solutions to structure from mtuidoe
achieved is that of scene rigidity: if objects are known not to change forrde their shapes
are invariant entities of which estimates can be gradually refined. In typiegéilods, large num-
bers of well-localised features of high image salience — usualtyier points — are detected in
each image of a video sequence. Postulating that each is associated \pithtaldy identifiable

3-D entity in the environment, the features are then matched between eachquaisecutive (or
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close) video frames. The assumption of rigidity in the scene [150] transtatemathematical
constraints on the parameters describing camera motion, and many featunesyatwide suf-
ficient constraint equations such that solutions for both the motion and tatdos of the 3-D

features may be obtained.

There has been a great deal of work in rigid structure from motion in theAaglecades. Of
particular importance to its wide application has been the development of taesmidpich work
even when the camera is uncalibrated: the specifics of its focal lengthtlaedmternal parame-
ters are not known in advance. These self-calibration algorithms, foliparinfrom the seminal
work of Faugeras et al. [44], provide the flexibility of being applicablerem cases where little
is known about the details of image capture. Solutions to the problem ofaldifation have
been given in the case where camera motion is general — it exercisestallefjrees of free-
dom [60, 146] and also to more specific scenarios: where the cameravis kamly to rotate on
the spot [63, 3], only to translate without rotation [105], or even wheeecimera has a zoom
lens [119, 71], all of which call for slightly different algorithms which takecount of this extra

prior knowledge.

In a certain relatively common scenario — that when the range of deptlteoé ®bjects is
much smaller than their distance from the camera — a linear approximation to cg@oenatry
known as an affine projection is valid, and in this case a direct linear metrogsfimating
camera motion and scene geometry over long image sequences can beusasl.and Kanade's
factorisation algorithm [138], developed in the early 90's, has beerobiiee most influential
works in structure from motion. The algorithm takes a set of image coordidi@ number of
features which can be matched in each image of a sequence of arbitrgtly, land performs a
direct singular value decomposition (SVD) to recover its affine shaperatitbhn components,
taking advantage of the bilinear form of the shape and motion parametees2-Dhmatches
observed in an image sequence are stacked in an observation matrix aich shown to have
rank 3. It was consideration of such issues of rank which led to the aéialisthat not only
rigid motion, but also a certain class of deformations could be dealt with withifatherisation

framework, as will be discussed later.
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1.2 Classification of non-rigid shapes

Biological shapes through their inherent nature are non-rigid. Sofietsstke the skin and
muscles vary their shape under stress and pressure. This effecaily dbvious when one
examines the rich and complex set of expressions that can be exhibiteluinyaan face simply
by actuating different groups of muscles. These combinations of complsguiau actions have
been studied and modelled with particular care, not only from a physiolquigat of view but
also with the aim of creating realistic computer generated animations from whialessiype

results are available nowadays, as shown in figure 1.1.

Figure 1.1: A computer animated character performing different facfalessions.

Similarly, non-rigidity and deformation are common properties of biologicatsires both
at the cellular and organic levels. Cells may constantly vary their morpholagicature under
the effect of physical and chemical interactions. Figure 1.2 shows ampe of the temporal
evolution of a murine chondrocyte cell. On the other hand, organs maglrieneresting facts
about their function with careful analysis of the the deformations thatappé¢heir motion. For
instance, anomalies in the heart may be detected by inspecting the repels@®pilne cardiac

muscles.

Figure 1.2: A live cell moving and deforming. The sample is taken from an immediksrain

of murine chondrocytes. The purpose of the experiment is to obtain liveeisnaigthe varying

cytoskeleton of the cell [891Courtesy of Dr J. Campbell and Dr M. Knight
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Given the wide range of possible degrees of non-rigidity present inaada effort to clas-
sify the type of motion of an object is necessary to understand which modebmapplied
to efficiently describe the shape variations. A first attempt was presegtetidng [75] and

resulted in three generic classes of non-rigid motion:

o Articulated motion appears when an object is made up of a series of codmeetewise
rigidly moving parts. A clear example is the collection of articulations of a humaly bo

connected by several joints with different degrees of freedom.

¢ Fluid motion is represented by structures which can freely vary their skapk a flame,
water flow or clouds. They involve strong topological changes in theictre such that

they appear not to have any relevant continuity in their deformations.

e Elastic motion is distinguished from fluid motion by a continuity in the deformations that
appear in the motion. The shapes presented in figure 1.1 and figure W.2lalssic exam-

ples of elastic motion.

This classification has been further refined by Goldgof et al. [50] amchithamettu et al.
[81] by introducing specific measures for the non-rigidity of the objecthéscope of this work,
we focus particularly on elastic motion that will be referred to more generallyefamable
motion throughout this thesis.

Given a deformable motion, our aim is to estimate the underlying 3-D structutedh-
spected object using a structure from motion approach to the analysisiofdge data. Thus,
we seek a description of the visual motion in terms of a deformable 3-D modehamglobal
rigid transformations that affect the shape. Given the complexity of thielgmmg deformable
3-D models have been studied extensively over the last two decadee fpurjhoses of detect-
ing, tracking and analysing the non-rigid motion appearing in an image. 8efopoducing the
3-D deformable model used in this thesis, we proceed first with a geresatigtion of different

non-rigid models that have been proposed within the Computer Vision community.

1.3 Deformable shape models

As previously stated, a deformable object is a shape which varies its tgpwitig continuity.
Accordingly, a deformable model of an object is one which has paramd¢stsibing not just

its shape but also the possible ways that the shape can change. Cargridphical model of a
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human skeleton to be used in animation: by setting the values of a list of paramaterspond-
ing to the angles at each of its joints, it can be put into different configuration computer
vision, there has been a large amount of work involving deformable motielgjexts, but with
certain restrictions. In many cases the models used have been definadd{perhaps bene-
fiting from some automatic refinement) or using sensing systems other than rfesngsion,
such as 3-D scanning devices [151], structured light, markers, dalthstereo [49] or multiview
reconstruction [115]. Often the models are specialised to represarifispges of objects. As
an example, elaborate 3-D face models have been constructed to obtéitertlize tracking
systems [32, 72, 116, 125] and, for instance, in the domain of medical iaredgsis, complex
models of the left ventricle of the heart have been applied to diagnosedoaditions [4, 48].

In an attempt to classify deformable shape models, the literature generaltifiedethree
main categories according to the mathematical description used to represdetdiming struc-

ture:

e Parametric deformable models. The non-rigid object shape is modelled hyoh [z
rameters which explicitly vary the structure of a contour/surface. Parammeddels are
generally constructed a priori to suit the specific type of deforming skiagpe human

faces, hearts, cells, etc).

o Implicit deformable models. A specific deformation is represented as a farittad is
directly estimated from the image data. This function is defined as a level-agtigher

dimensional scalar function whose levels can adapt to a larger rangéopfdhtions.

e Generative models. The model is extracted using statistical techniquea fesge collec-
tion (data-set) of examples showing all the possible changes in topology objact. The

model is therefore a compact description of the given data-set.

These models have been successfully applied to different domains of analyesis, detec-
tion, tracking and recognition of deformable shapes. In the following sectie present detailed

descriptions and relevant examples of each class.

1.3.1 Parametric deformable models

Kass et al. [86] were the first to introduce 2-D parametric deformable lmadecesfully in

an image analysis domain. The problem addressed was to estimate the shagefainable
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(a) (b)

Figure 1.3: An example of anakecontour (in black) with control points (in blue) which define

its shape. Asnakeis moved to match the image contour of the object (in grey) using external
forces (red arrows) which attract the model to image edges as shown intéanal forces assure

the smoothness of the contour whose position is iteratively estimated untilrgenee (b).

object using a parameterized planar contour cafledke The parameters of the model are
estimated such that the snake fits the deforming image contour accuratetdett@compute

the parameters, the algorithm gradually iterates to fitstieketo the deformable shape under
the influence of external image forces (for instance, image edges) tmdahforces given by
smoothness constraints of the model as shown in figure 1.3. A 2-D con&asilg generalizable

to deal with 3-D images, leading to the definition by Cohen [22] bAHoon Further research
improved the performance shakecurves introducing robustness to the measured image data
[136] and specific priors over the modelled objects [123, 165], resuitirey very successful

approach for medical applications.

Another class of parametric models which has received considerabléiaitenthe past
is the family of shapes callesuperquadrics[114, 56, 103, 45, 15, 104]. Initially introduced

in computer graphics by Barr [7kuperquadricsare essentially derived from the parametric

4

—

Figure 1.4: An example of differesuperquadricellipsoids used to model deforming shapes in

images. The different shapes are obtained by varying the paramethesroathematical model.
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X X
Figure 1.5: A simple level-set parameterisation of a circle contour using @ asrthe scalar
function. Circles of different radius (right) can be obtained by intdiisga cone (left) with

planes (the levels) at different heights.

forms of quadric surfaces (see figure 1.4 for an example), and adetodit a deformable object
globally. However, they are not very accurate in describing natui@besh since the quadric

surfaces may result in too coarse an approximation of the real shape.

1.3.2 Implicit deformable models

A crucial drawback of parametric deformable models is their difficulty to attapnexpected
changes in the modes of variation in the given image data. The contognakanodel has to be
constructed accurately to be able to cope with all possible deformationbfeat. However, in
some cases, complete knowledge of all the possible shape variations vaitalble in advance.
For instance in the medical domain, diseases like a tumor may change the stfotugans
and cells unexpectedly. If the parameterized model does not accouhéese deformations, the
result of the fitting procedure will be inaccurate.

A formulation of deformable models without an explicit parametrization of th@eheas
introduced by Osher and Sethian [111] using front propagation. Iraghpsoach, the deforming
shape (or contour) is considered as a particular level-set of a saaletidn. Thus each level
corresponds to a particular deforming surface/contour which has tdtée o the image data
(see figure 1.5 for an example). Since the level-set approach doeslyain a fixed set of
parameters but on a family of curves, the representation power of an ing@foitmable model

is higher than that of a parametric one.
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However, the computations necessary to estimate the level-set are codilyeaumateraction,
if required, is problematic to implement since there are no evident paramesedstofor driving
the convergence. Nevertheless, implicit deformable models have beessstudly applied in

stereo vision [43], detection and tracking [112] and computer graph&4 [

1.3.3 Generative models

Generative or statistical models are obtained from a large set of olises/af the deformations
appearing in the inspected object. For instance, 2-D deformable modetssfifave been gen-
erated from large training sets of images of different people with a raheepoessions. These
models, determined for example via principal component analysis (PCA}dR& advantage
of the fact that a head-on view of a face is reasonably approximatediresaa combination of
the learned basis components. Such linear models have since been éxtendpe with the
non-linearities introduced by significant variations of face orientatiomlssaff-occlusion [52]
and with local deformation [23] . However, they still suffer from requrierge amounts of
specialised training data and can fail to encode non-linear deformatigesuapy from very
different views. Other learned 2-D deformable models have included motigte outline or
contour of moving human figures [11, 124, 9].

Specifically tuned to facial analysis, Vetter and Blanz [13, 12] have intred elaborate
techniques to create photorealistic 3-D morphable models. The shape &né fexe model
is derived using hundreds of 3-D laser scans of subjects of diffaiga sex and ethnic origin.
After a preprocessing stage which cleans and aligns the mesh and tekbunggition, the model
is extracted from the collection of data using PCA producing a statisticatiggésn of the data-
set in terms of linear basis shapes which represent the principal modasaiion of the model.
The 3-D shape and texture model can then be applied to fit a new subijggaLsngle image as
input, as shown in figure 1.6.

Similarly, active shape mode(®\SM) [91, 25, 28, 90, 31] parameterize the 2-D shape vari-
ations of a deforming object. Each object is represented using a seatafdepoints which
usually corresponds to key points on the object (such as the cornbesmiuth or the eyebrows
in the case of facial analysis). The shape is then described as a s€& b&gis shapes which
are fitted to obtain the principal modes of deformation of the large set of tggimage data (see
figure 1.7 for an example). An advantage of such models is that they t@ed directly from

images (there is no need for expensive instrumentation such as laseegcadowever, 2-D
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@)

(b) (©)

Figure 1.6: The figure shows how 3-D morphable models can be usedie@rabe 3-D structure

and texture of faces in images. The image data (a) is fitted using the lineadbasiiption for

the 3-D shape and 2-D texture in the model. The result (b) is the extrade@ure from the

image plus a 3-D mesh of the face which are combined to obtain the final 3-CxHi¢ dace (c).

Courtesy of Dr. Thomas Vetter and Dr. Sami Romdhani

(a)
Figure 1.7: An example of active shape models (ASM) (b) used to modelEhelpe variations

AN

<— First Basis——— >

ATATAIAIA

8 280

<—Second Basis———>

(b)

of the left ventricle of the heart in an echocardiogram (a). The leftricde is located at the top

right of figure (a). The ASM model consists of a set of 2-D basis sheym@se linear combination

describes the deforming shape. Figure (b) presents the first two &addkeir variations with

respect to the mean shape of the ventri€leurtesy of Dr T. Cootes
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models have difficulties in coping with strong pose variations which redueeaghlicability
of the approach. The shape of the non-rigid object appearing in a neyeiozn then be fitted
by computing the weights assigned to each basis which result in the beskimpation of the
object contour. Of more recent introducticagttive appearance model8AM) [24, 100] are a
generalisation of active shape models which also incorporate the texttive déforming shape
to obtain a statistical description of the object’s 2-D shape and appearance

The advantage of statistical models compared to parametric ones is that ¢hégraved
solely from real observations and thus encapsulate the deformatiorapfedr in the non-rigid
object. Often an a priori model of a surface such agerquadrichas less representation power
since itis not able to accurately describe a real world object. As a dakwlaage data-sets from

which to extract a comprehensive statistical model are not easy to collect.

1.4 A linear model for 3-D deformable shapes

As we have stated in the previous section, it is possible to generate acstatigical models
from either 2-D or 3-D large collections of data. The approach followekigthesis is of similar
nature but differs in a fundamental aspect: given a set of 2-D imageunazasnts extracted from
an uncalibrated video sequence, we seek to obtain a full 3-D deformallel mbthe scene.
Thus, the problem is not only restricted to the statistical inference of then8rrigid model
from 2-D data but also to the estimation of the camera matrices which projecinhagid object
onto the image plane.

The shape at each time instance is formulated as a linear combination of a asisghmpes
which describe the principal modes of deformation of the 3-D structure.niddel parameters,
which we will refer to as configuration weights, are given by a set ofassdhat provide the
appropriate weight for each basis. In a geometric form, the 3-D shaperissented as a cloud
of points lying over the deforming surface. Mathematically, the 3-D shapepiesented as a
matrix S which contains the 3-D coordinates for each point of the object. Therméafg shape
S at a certain frame is given by the linear combination of the basis stsgpesighted by the

configuration weight$y such that:
D

S:gldsd S,8¢ € 0¥P lgeD (1.1)
=1

whereD is the number of basis shapes d@the number of points in the model.
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Each basis shape describes a particular mode of deformation of the obcinstance,
in the face modelling domain, the basis shapes may represent specificefgmiatsions like
surprise or a grin as presented in figure 1.8. Models created as a coioba set of bases
have been previously used in many applications ranging from facial €i8486, 151], tracking

[109, 49] and biomedical domains [79].

| 3,
LS

\E

First Basis Second Basis Third Basis
Figure 1.8: An example of the linear pointwise model used in this thesis. The msadehposed
of a set of 3-D basis shapes which are defined by a collection of 3-I1 poordinates. A
deformation is represented as a linear weighted combination of the setesf. bHse first basis
usually represents a mean 3-D description of the shape (in green).etbrdsand third bases
are showed in the figure as a 3-D displacement (blue lines) from the meapocent. The
resulting structure given the displacement for each basis (red poinlysefers to dominant

facial expressions (for instance, surprise and grin).

1.5 A factorization approach to 3-D deformable modelling

In this thesis we are interested in models which represent the full 3-D ggoaietdeformable
object, but in particular in acquiring these models automatically and only fromesneggher
than having to use prior information or specialised sensors — a model-itea@proach. The
nature of this problem leads us back to the original structure from motiostiqne what can
be determined about the motion of a camera and the 3-D non-rigid shapesafethe when no
information about the camera or the structure is available?

Recent results have started to open up this research direction [19.&8]4droving that 2-D
point tracks in an image sequence are sufficient to recover 3-D nimhshigpe and motion under
the same affine viewing conditions in which Tomasi and Kanade’s algoritbuegrsuccessful in

the rigid case. This novel non-rigid factorization approach assumeththdtD non-rigid shape
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can be represented by the linear model described in the previous sddtigininsight was that
since this representation is linear, it fits naturally into the factorisation framkev@mce more the

underlying geometric constraints are expressed as a rank constrahtis/bsed to factorise the
measurement matrix into two lower dimensional matrices that encode the motioneastubiie

of the object using singular value decompositiwn: M S.

However, in common with all factorization methods, the result is not uniquetlaec
exists a full rank transformation matrix that gives the following alternative reconstruction:
W=MQ Qs = MS. The fundamental problem is to find the transformatiothat imposes the
correct structure on the camera matrices encodedaimd removes the ambiguity upgrading the
reconstruction to a metric one. Whereas in the rigid case the problem of dogthe transfor-
mation matrixQ to upgrade the reconstruction from affine to metric can be solved line&8},[1

in the non-rigid case it results in a non-linear problem.

1.6 Motivations for this thesis

Existing non-rigid factorization methods are very promising and do indestlpe models from
scratch that can be useful for tracking or animation in many domains, betanewvarious lim-
itations which have led to interesting avenues of research in this thesis emadniodivated our
work. The improvements we have proposed to some of the outstanding praidestiute the
main contribution of the work presented here. The three main issues whiblaweeaddressed
in this thesis are: the non-linearity of the non-rigid structure from motionlprapits inherent
ambiguous nature and the extension of the method to deal with perspectivagroagditions.
Firstly, previous solutions to the non-rigid structure from motion problene feather pro-
vided approximate solutions using linear approaches [19, 141, 16] toldepn that is intrin-
sically non-linear or required strong assumptions [17, 159, 161] atheuhature of the 3-D
deformations. Theon-linearity of the problem stems from the fact that the parameters mod-
elling the camera motion and the 3-D deformations are strongly coupled. Maréo order to
obtain a valid solution, orthogonality constraints have to be forced on thiéormihcomponent
of the motion, thus introducing a further degree of non-linearity. In thisshe® propose a non-
linear framework based on bundle adjustment to estimate model and camanzepers. The
advantage of this method is that it provides a maximum likelihood estimate in thenpeesge

Gaussian noise, and prior knowledge on any of the model parameteeasiinbe incorporated
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into the cost function in the form of penalty terms. The proposed frameisdhen upgraded to
deal with the case of a stereo camera setup. We show that when the degfobjent is not per-
forming a significant overall rigid motion, a monocular approach leads to r@@onstructions,

and only by fusing the information from both cameras can the correct3apesbe extracted.

Secondly, non-rigid structure from motion continues to baarerently ambiguousproblem
since the contribution to the image motion caused by the deformations and rigid raotion
often difficult to disambiguate. Given a specific configuration of points enitfiage plane,
different 3-D non-rigid shapes and camera motions can be found tlla¢ fineasurements. To
solve this ambiguity prior knowledge on the shape and motion should be useddtrain the
solution. Recently, Xiao et al. [159] proved that the orthogonality coimtravere insufficient
to disambiguate rigid motion and deformations. They identified a new set ofraoms on
the shape bases which, when used in addition to the rotation constrainvislepacclosed form
solution to the problem of non-rigid structure from motion. However, thdutsm requires that
there beD frames (wherd® is the total number of basis shapes) in which the shapes are known

to be independent.

In this thesis we propose an alternative approach based on the dlusetkat often not all
the points on a moving and deforming surface — such as a human facerdargaoing non-rigid
motion. Frequently some of the points are on rigid parts of the structure —sfiamnice the nose —
while others lie on deformable areas. Intuitively, if a segmentation of pointgigitly moving
and deforming ones is available, the rigid points can be used to estimate taé ngat motion
and to constrain the underlying mean shape by estimating the local deformatausively with

the parameters associated to the non-rigid component of the 3-D model.

Finally, all the methods cited previously rely on affine imaging conditions in wtiielob-
jects viewed are relatively flat and distant from the camera — they caonpetwith theprojec-
tive distortions which become significant when the scene is closer (and focal lengtis@ter),
as may often be the case with PC-mounted “webcam” devices viewing uaees.f Xiao and
Kanade [161] were the first to develop a two step factorization algorithmefmonstruction of
3-D deformable shapes under the full perspective camera model. In #sis the present an
alternative approach to non-rigid shape and motion recovery undeulth@efspective camera
model. Once more, the solution is based on the assumption that the scenescantaiiure

of rigid and non-rigid points. First rigid and non-rigid motion segmentation ifopmed on the
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image data to separate both types of motion under perspective imaging candifiorobtain
the metric upgrade information we perform self-calibration on the rigid spoirits which pro-
vides estimates for the camera intrinsic parameters, the overall rigid motionearetin shape.
We then formalise the problem of non-rigid shape estimation as a constrandtaar mini-
mization using the estimates given by the self-calibration algorithm as the stapimgqr the

minimization and providing priors on the degree of rigidity of each of the points.

1.7 Contributions of this Thesis

In the following section we describe the main contributions of this thesis, irrdanoe with the

motivations exposed in the previous section:

e We propose a framework for non-linear estimation of the geometric paranaftehe
deformable model based on an adaptation of bundle adjustment techr8g§u&3]to the
non-rigid scenario. The non-linear optimization method is able to refine the mantion
shape estimates by minimizing image reprojection error, imposing the correztuséron

the motion components by choosing an appropriate parameterisation.

e The non-linear framework can easily be modified to include views taken éifferent
cameras. We have extended existing non-rigid factorization algorithms teetlke samera
case and presented an algorithm to decompose the measurement matrix inttidheofno
the left and right cameras and the 3-D shape [34, 33]. The addetta@iotsin the stereo
camera case are that both cameras are viewing the same structure ane tledatthe
orientation between both cameras is fixed. Our focus is on the recovdigxiifile 3-D

shape rather than on the correspondence problem.

e We have proposed two methods for automatic rigid and non-rigid motion sedinarita
the case of orthographic [35] and perspective [36] viewing condititmshe affine case,
our method follows asequential backward selection strategy initially considering all
the trajectories in the measurement matrix and iteratively deleting the points tfihit ex
the most non-rigid motion. As the stop criterion for the classification task, tileabthe
measurement matrix of the remaining points is computed, which will become 3 wahen o

the rigid trajectories are left.

In the case where perspective distortions affect the measuremerappraach is based on
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the fact that rigid points will satisfy the epipolar geometry while the non-rigidtsowill

give a high residual in the estimation of the fundamental matrix between paiisvas.

We use a RANSAC algorithm to estimate the fundamental matrices and to segment the

scene into rigid and non-rigid points. Additionally, we exploit a measure ofitdygee
of deformability of a point to infer a prior distribution of the probability of a td@y

being rigid or non-rigid given that measure. These distributions are tbed as priors
to perform guided sampling over the set of trajectories and lower the nuohlbbendom

samples needed to be drawn from the data.

e The advantage of performing a prior segmentation of the image points into ndidan-
rigid trajectories is that this information can be used to constrain the solutioe shtipe
and motion recovery. Firstly, the rigid points can be used to obtain an dedunitéal esti-
mate of the overall rigid rotations, translations and mean shape. Secomrdkydtvledge
that some points on the object do not deform can be used to impose prithrs won-rigid
shape. Our prior expectation is that the points detected as being rigid haxe @on-rigid
component and can therefore be modelled entirely by the first basis. Svepaefine lin-
ear and non-linear methods to impose these priors [35] and we show thpbidible to
obtain exact reconstructions with noiseless data and improved recdiwstsuend a higher

rate of convergence with real data.

e Finally, this thesis presents a novel approach for the 3-D Euclideans&uootion of de-
formable objects observed by a full perspective camera [36, 93krGin automatic seg-
mentation of the scene into rigid and non-rigid point sets, using the algorithrtioned
above, the set of rigid points is used to estimate the internal camera calibrateongters
and the overall rigid motion. The problem of non-rigid shape estimation is tremalised
as a constrained non-linear minimization adding priors on the degree ahudidity of

each point.

The contributions here exposed are presented in the thesis as folloafsteCh is a literature
review of the factorization framework for structure from motion recoary its application to
the case of rigid and non-rigid structure recovery under differentivig conditions. Chapter
3 describes our framework for non-linear estimation of the deformable Inamdecamera pa-

rameters. The framework can easily deal with the case of two or more caaepmesented in
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chapter 4. Chapter 5 describes the use of shape priors for deformaligling in the case of
affine viewing conditions. First we propose an automatic rigid/non-rigid maegmentation
algorithm. The results of the segmentation are then used to derive priore aedghee of de-
formability of each point in the 3-D object. Such priors are used to drivantteeence of the
parameters of the deformable model. In chapter 6 we propose a new satutioa problem
of metric structure recovery from perspective images. A new rigid/mgid-motion segmenta-
tion algorithm is derived which can deal with projective distortions. Thectire and motion
recovery is then formulated as a two step process where the metric uggaag®rmation is
computed first using the rigid points and the deformable structure is then estiosig a non-
linear optimization approach. Chapter 7 ends this dissertation presenteaisspthe proposed
methods which may lead to future improvements and further avenues ofaleseshe domain

of deformable modelling.
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Chapter 2

Factorization methods for Structure from Motion

The geometry between two views taken either by a moving camera or by tweediffeameras
is nowadays a well understood concept. The fundamental matrix is the maitenteol that
relates image coordinates between a pair of views [94, 95]. Similarly, theees are related by
the trifocal tensor [130, 156, 61], which allows to transfer a point in tfe¢ &§ind second view
into the third view and, similarly, with lines. The constraints arising from fouwsief the same
scene are encapsulated by the quadrifocal tensor [144].

These multi-view tensors are used as a first step to obtain an initial projestivastruction
of the 3-D shape of an object. However, while these inter-image relatiensbde to describe
the constraints between views of the same scene, they are not alwaystéad use. A wide-
baseline between views is necessary for the estimate of the multi-view tenberad¢ourate. On
the other hand, matching image points from very different views is a comksttat can easily
lead to outliers in the data used for estimation.

Matching image features becomes relatively simple when the images are takeddsely
spaced views. However, the overall small baseline affects the depth #stirofithe structure
negatively. In order to avoid critical configurations of views, the onlggdlole solution is to have
a large number of views for which the overall baseline is wide enough to alfoaccurate 3-D
reconstruction.

The described tradeoff is crucial for the 3-D reconstruction of gemdjects observed from
a video sequence. If we restrict the problem to the case of a single caimeraultiple views

are given by a temporal sequence of images taken by a moving camera dixbgl camera and
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a moving object or by a combination of both. As a result, the distinguishablahésie is the
motion of the projected 3-D object in the sequence of images. In this cadesierly using
the information of two, three or four views may give poor results as prelyjawoted. Thus, a

solution which uses the whole information of the entire sequence is alwefergile.

2.1 A factorization approach to Structure from Motion

In the early 90’s Tomasi and Kanade [139] found an elegant and sirajpigan to this problem
by analyzing the image measurements observed from different views aisiegk perspective
camera model. Since the motion of each point is globally described by a prgmiseetric
model, the position of their projection on the image plane is constrained. Asilg iieall the
measurements (i.e. the image coordinates of all the points in all the views) |ketemb in a
single matrix, the point trajectories will reside in a certain sub-space. Thendioreof the sub-
space in which the image data resides is a direct consequence of twae fdlototype of camera
that projects the scene (for instance, affine or perspective) anétheerof the inspected object
(for instance, rigid or non-rigid).

The crucial advantage of this technique is in the fact that it provides anl iintgar and
global solution to the problem simply by factorizing the image measurements inteltiwe
motion and 3-D structure using the aforementioned sub-space propdhysaf measurements.
This solution by factorization is given by the whole information of the measumésvaand solved
using linear methods.

Given the success and flexibility of Tomasi and Kanade'’s bilinear formulatidhe shape
and motion components, we now describe the factorization approach amblitation to dif-
ferent models of camera projection and types of object structure. Fimal§pcus on existing

non-rigid factorization approaches and point to some unsolved issues.

2.1.1 The factorization framework: motion and 3-D structure

The rigid factorization method introduced by Tomasi and Kanade [139] islsiln powerful.

It provides a description of the 3-D structure of a rigid object in terms afta&feature points
extracted from salient image features (for instance, image cornersgr thdicking the points
throughout all the images composing the temporal sequence, a set dbtiieets available (see

figure 2.1 for an example). These trajectories are constrained globalhchtframe by the rigid
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Figure 2.1: The figure shows how point trajectories are extracted froitle® sequence. First
row: four frames of the movi&'Arrivée d’'un traina la Ciotat (1895, directed by Lungre
brothers). Second row: the image points (in red) are extracted in th&dins¢ and successively
tracked in the following frames. Third row: the measured image data is showheoimage
plane. Each point is defined by two image coordinates. The collection of thisjab each frame

composes a trajectory in time which describes the motion of the rigid point.

transformation which the shape is undergoing. Rigid factorization techsjtectly factorize or
decompose the complete collection of image trajectories into the bilinear compohemttion
and3-D structure The role of thanotioncomponents is to project tf&D structureon the image

plane for each frame using a particular camera model.

In order to describe the framework in detail, we need to introduce the foedatisathe-
matical description of the trajectories that will subsequently be factorizede @ trajectory is
extracted, the location of a poiijtin a certain frame can be defined as a non-homogeneous
2-vectorw;j = (uj; vi;)T or as a homogeneous 3-vecte = (ujj vij 1)7 whereu;; andv;; are

the horizontal and vertical image coordinates respectively.

A compact representation of these elements can be expressed colledtiegialh-homogeneous
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coordinates in a single matrix, called theeasurement matrix, such that:

Wi1 ... Wqpp
W= : : (2.2)
WF1 WEp

W is a ZF x P matrix whereF is the number of image frames aRdthe number of trajectories

extracted. Ideally, the measurement matrix should contain perfect infonredtiout the object

being tracked. However, in practice the measurements are corruptexisgyamd outliers given

by mismatched points. Additionally, some element¥ afay not be available for some points in
particular frames due to occlusions. Nevertheless, we continue theifatitam problem assum-

ing there are no missing entriesWn

It is possible to decomposginto the product of two matrices as:
W=MS (2.2)

whereM and S are respectively thenotionand 3-D structurecomponents of the measurement

matrix. The matriced ands can be further decomposed such that:

M1
Mo
M= | S=18 S, --- Sp (2.3)

Mr

whereM; with i = 1...F is the camera matrix that projects the 3-D metric shape onto image frame
i. The size and structure #f generally depends on the type of camera that projects the scene.
The componens; with j = 1...P defines the 3-D structure for each pojrand its size depends
on the shape properties (for instance, whether it is rigid or non-rigitie flamework is such

that the productvij = M;S; defines the projection of the poipbnto the image frame

2.1.2 The rank of the measurement matrix

An interesting property of the measurement matrix is that it is rank-deficirmhtresides in a
lower dimensional space. In fact the dimension is given by the size of the mrertid structure
matricesM andsS. This property was first used by Tomasi and Kanade [138] who firseved
and exploited the rank deficiency of measurement matrices storing imagedr@eextracted

from a body undergoing a rigid transformation. Also known asréimk constraint of a matrix
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Figure 2.2: The measurement matsixs decomposed into the product of thetion matrix M

sowel
sowel

and the3-D structurematrix S. The matrixM contains the parameters of the model that vary
frame-wise (i.e. object motion and camera parameters) \8lglentains the parameterisation of
the 3-D structure for each point. The sizeiadnds depend respectively on the camera model

and the 3-D point parameterisation.

this property may be exploited by using common techniques for matrix factorzZsée section
2.1.3) to reduce the dimensionality of the matfiand factorize it into the product afands.
Further studies of the factorization framework have shown that trajestoel®nging to dif-
ferent deforming objects show similar rank constraints. Different raviksld be obtained de-
pending on the model used for the camera models observing the scend 3245considering
different rigid objects moving independently [29], dealing with non-rigigeots [19] or articu-
lated structures [143, 163, 107]. Moreover the rank constraint &éas applied successfully in
the work presented by Irani [77] to obtain an estimate of multi-frame optical fibo different

camera models and types of motion.

2.1.3 Singular Value Decomposition (SVD) and factorization

The rank-constraint can be efficiently used to obtain a decompositi@niroterms of motion
and structure. SVD is a rank revealing matrix decomposition algorithm thtatrfses a generic

H x L matrixWw into a product of 3 matrices:

WHxL = Ul Zixl Vo (2.4)

wherez is a diagonal matrix whose entries are the singular valu@sfs anH x L orthogonal
matrix such thatu" = I,y andV is a square and orthogonal matrix such thay = vvT =

I «L. The number of singular values different from zero reveals the actudd of the data
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stored in the measurement matrix, and they are ordered from largest tostraalterding to
their magnitude.

If the L columns ofw are linearly dependent, each column can be obtained as a linear combi-
nation of a subgroup af columns withr < min{H,L}. The valuer is also called the rank of a

matrix and this property is directly related to the singular valuessoch that:
di=0 Vi>r (2.5)

whered; are the diagonal entries &fandi = 1...L. As a consequence of the zero-entrieg,in

equation (2.4) can be rewritten as:
WHxL = Unxr Zrsr V] o (2.6)

Here,U andV are orthogonal matrices defining respectively tiiege andnull spaceof Ww. By
using the SVD, obtaining the closest rankaatrix in terms of the Frobenius norm to the original

matrix is guaranteed, if the noise contaminatinig isotropic and Gaussian [51].

2.2 Rigid factorization

A object moving rigidly enforces a rank constraint over the measurematrected from the
image sequence capturing the motion of the object. The given rank depanti® camera
model used to project the 3-D structure in the image plane. The following sedtow how
factorization methods can extract 3-D structure from sequences vientieebrthographic and

perspective cameras.

2.2.1 Rigid Structure under orthographic projection

The first use of the rank constraints to solve multi-view problems was intrddiogelomasi
and Kanade [138] to deal with the case of rigid objects under orthograpmera projection.
In this scenario, the measurement matrix consists of trajectories extraotadifsingle object
undergoing rigid rotations and translations as showed in figure 2.1. FHogke $ramei, the

measurements can be represented in matrix form such that:

Wi= [ Wiz ... Wp ] (2.7)
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It is possible to obtain the measurement maitrbyy stacking they; for all F frames:

W1

T 28)

Wr

A single pointj belonging to a 3-D object in a generic framean be projected using an

orthographic camera such that:

X]
i1 fi2 Ti3 tui
wij = i i i Y, n ui _RX 4+ (2.9)
la Tis Tie tyi
Zj

whereR; contains the first two rows of a rotation matrix; is a 3-vector containing the metric
coordinates of the 3-D point, artgdis a vector representing the translation component. Every
point belonging to the rigid structure shares the same rotation and transigtios\. the previous

expression is valid for every point in the generic frame

X1 Xo - Xp
lip ri2 Tri3
Wi=| wjp ... wp |= Y. Y2 -+ Yp | +Ti (2.10)
lia Tis Tis
Z Zo - Zp

whereT; is a 2x P matrix with the replicated translation vectpfor each point. It is possible to

rewrite the expression in a compact matrix form as:
Wi =Ri{S+T; (2.11)

Stacking the rows df; for every frame we obtain the complete measurement matrix:

W1 Rg T
X; Xo - Xe
Wo Ro T2
W= ' = . i 2 - Yo |tH]| =MS—+T (2.12)
2, Zo - Zp
Wg RF Tk

wherev is the F x P measurement matri¥, is the Z x 3 collection offF rotation matricess is
the 3x P structure matrix containing the 3-D coordinates of all the world pointsTdaé F x P
matrix with the translation for each frame.

It is easy to eliminate the translation component by determining the centroid of the imag

points for every frame and subtracting it from the image coordinates. Indkis the components
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M ands are matrices of at most rank 3, thus Tomasi and Kanade’s algorithm olataiimstial

decomposition by performing a truncated SVD withk 3 such that:

Worxp = U2Fx3 L3x3 Vgxg (2.13)

It is then possible to rearrange the 3 products to obtain an initial affine estmwdttbe motion

and structure components such that:
M=UvT and S =+zv' (2.14)

One important aspect that should be emphasized is that rank revealingcaltezhniques,
such as SVD, do not provide the solution to the 3-D reconstruction profdém The reason
is that the rank-3 decomposition is not unique, but up to a generic affinsforanation. Any
non-singular 3 3 full rank matrixQ and its inverse may be inserted in the decomposition giving

an equivalent result:

W= (MQ)(@~'8) =M(aq ")S=ms (2.15)

The matrix product leads to the same measurement matrix, but the structMranofS has
clearly changed. This ambiguity may easily be eliminated by enforcing orthmaiity of the
rotation matrices comprising (i.e., imposing the metric constraint) and, thus, upgrading the

decomposition from affine to metric.

Computing the transformatiof

A generic orthographic camera matrix at fraimgan be expressed in vector form as:

rT
il
Ri = (2.16)
rT
i2
Taking into account every=1...F, itis possible to write the following over-constrained system

of equations:

rhQQtrip =1
rhaQTri =1 (2.17)
rhQQriz=0

which expresses the orthonormality of the rowskpf The equations are quadratic in the un-
knowns which are the elements @f In order to solve the system linearly, Tomasi and Kanade

define the 3< 3 symmetric matrixd = QQ7, solve the system for the 6 unknownsBrand then
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c)
c f . Cc f
y LZ) g y LZ> g
(@) (b)
Figure 2.3: (a) An orthographic camera projects the 3-D points lying on tleetodurface onto
image plané]. Orthographic projection assumes the object being far from the image qlahe
that the projecting rays are all parallel to the optical axis and perpendtoutize image planél.
(b) A full perspective camera projects the 3-D points with rays passiogdjrthe optical center
C of the camera. The coordinates projected onto the image plane haverdiffeege positions

depending on the depth of the pointsand the internal parameters of theagg@uner as the focal

length f).

extractQ using Cholesky decomposition. Finally, the correct matrix structure foratifiza-
tion of rigid shapes is obtained by applying the transformation to the affind@olcomputed

via SVD:

M=MNQ andS=Q 'S (2.18)

which ensures that containg- rotation matrices as shown in equation (2.12).

The orthographic camera is typically a good approximation when the objegith s small
in comparison to the distance from the camera. In this case depth recowificidt and may
be sensitive to noise, so an orthographic model is more reliable. Nevegh#te method has
been extended to more general affine camera models, such as the wsadcpee [82] and

paraperspective [117].

2.2.2 Perspective factorization

If we now assume a perspective projection model for the camera (see Zigfor a comparison
with the orthographic case), a 3-D homogeneous o@im\/ill be projected onto image framie

according to the equation:

— 1 _ -
Wij = N PiXj (2.19)

i
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wherew;; andXj; are both expressed in homogeneous coordinateswije= [uij vij 1T and
)Zj = [X; Y] Z; 1]7), P; is the 3x 4 projection matrix and;j is the projective depth for that point.
Scaling the image coordinates of all the points in all the views by their comelgpp projective

depth gives aB x P measurement matrix:

A1aW11 ... A1pWip Py
W= : : =| ! |s=ms (2.20)

AFIWEL ... AFPWEp Pg

wherel is the rescaled measurement matgix: [il...ip] is a 4x P shape matrix which con-
tains the homogeneous coordinates of Bh@&-D points and! contains the perspective cameras
for each frame. In the case of rigid structureands are at most rank 4. Therefore, the rank of
the scaled measurement matiis constrained to be< 4.

If the true projective depths; were known it would be possible to factorize the measurement
matrix into two rank-4 matrice$] andS using SVD. Similarly to the orthographic case, the result
of the factorization would not be unique since any invertibbe 4l matrixQ and its inverse can
be inserted in the decomposition, leading to the alternative camera and shizjpestiq and
Q~1S. Therefore, without assuming any additional constraints on the canmrepagtoe scene the
reconstruction can be calculated up to an overall projective transfommdtiaqyeneral, the true
projective depthgj are unknown so the essence of projective factorization methods is to deal
with the estimation of projective depthg in order to obtain a measurement matrix which could
be decomposed into camera motion and shape in 3-D projective space @smgkiconstraint
described above. Variants of the projective factorization method hae fm®posed so far for
the case of scenes with rigid objects.

The first work to extend Tomasi and Kanade’s algorithm to the perspecdinera case was
by Sturm and Triggs [132] who proposed a non-iterative factorizatiothoaefor uncalibrated
cameras. The method solves for the projective depths by calculating ttienfiemtal matrices
and epipoles between pairs of views. The overall accuracy of theithigodepends greatly on
the estimation of the epipolar geometry, as large errors in the fundamental matrdd affect
the measurement matrix and result in errors in the shape and motion. On theaitieHan and
Kanade [57] perform a projective reconstruction using a bilinear feettion algorithm without
calculating the fundamental matrices. Heyden’s method [68] uses a difiezgative approach.

It relies on using sub-space constraints to perform projective steuttam motion. Ueshiba and
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Figure 2.4: Three independent objects are represented in an imagéusyea of feature points.
The motion of each object is defined on the image plane by the 2-D coorduofatesentroid

(t1, t2 andt3) and the rotation matrice&{, R, andR3) which project it onto the image plane.

Tomita [149] presented a method by which the projective depths are itdyagstimated so that
the measurement matrix is made close to rank 4. The authors also derived coasiaints
for a perspective camera model to upgrade the structure to Euclideantimdéternal camera
parameters are known. Recently, Tang and Hung [137] proposedrativigealgorithm for pro-
jective reconstruction based on minimizing an approximation of the 2-D reghi@jeerrors using
weighted least-squares. The iterative nature of these algorithms leadtotbemrone to falling
into local minima. Additionally, slow convergence rates are also reportpdcigly in the case

of image noise affecting the trajectories.

2.3 Non-rigid factorization

The dimensionality of the sub-space in which the image trajectories lie doesyotiepend
on the camera model that projects the 3-D structure. The rank may alsdepending on the
specific structure of the scene; for instance the object may changejits shthe scene could be

composed of different objects moving independently.

2.3.1 Multi-body factorization

Given multiple independently moving objects in a scene, it is possible to reforntliatactor-
ization framework to model the 3-D structure and motion components of eactt sbjgarately.

In this case, the measurement matrix contains trajectories belonging tomitdjects (see fig-
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ure 2.4). This scenario was extensively studied in the work of Costeit&anade [29]. Briefly,
N independent objects are present in a scene and, as a result, eachtééemedelled by a
specific 3-D structurg™ of size 4x P, wheren=1...N andyN_; P, = P. Each independent

shape can be arranged in a single structure using a block raadtigh that:

s® 0 0
o s@ ... o
s=| _ . (2.21)
0 O s(N)

Notice that in this case, the 3-D coordinates are homogeneous and gentdgg§ is of size

4N x P, yielding the following structure for each generic independent shape

XM XL X
s = R (2.22)
U0 2() '
1 2 P
1 1 1

Note that in this case the coordinates cannot be registered to a commornccsinize there are

multiple objects and the overall centroid will not be preserved by orthddgagojection. Thus,
(n)

the 2x 4 motion component; ” for each shape contains the rotation and translation parameters

for framei:
(m (m () ((n
r. I r. th
" = I<1n> I<Z;> .(3;) l::n (2.23)
s Tis  Tig i
The overall motion matri¥ can now be written as:
u u@ouY
1 4@ (N)
M M ... M
M— 2 2 2 (2.24)
_ M(Fl) M(Fz) M(FN) _

This formulation implies that each trajectory has already been assigned tortket@bject. By

grouping together structure, motion and measurement matrices we obtain:

P u? oMM || s@ o0 . o0
w) M@ uY 0 s@ ... o0
{ w | || ] o 2 ST S| (@2s)
ud u? ) || o 0o .. sV
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where:
W= [ ey ‘ @ ‘ ‘ N ] (2.26)

is the F x P measurement matrix obtained by putting together the trajectories belonging to the
N independent objects.

Provided an initial grouping of the trajectories is given, it is possible to fitndrasformation
Q that forces the particular structure wfand s for the multi-body factorization scenario. In
this case, the rank of is constrained to beM since the measurements are a product of full
rank matrices such that= Mor.an Sanxp. The task of correctly segmenting different objects
by observing their 2-D motion is not trivial [166], and this problem, esskfuiaa correct 3-D
reconstruction, has triggered an active stream of research on mogioresttion. A complete

investigation of these issues is postponed until chapter 5 (section 5.2).

2.3.2 Articulated factorization

The dimensionality of the sub-space in which image trajectories reside iesrbgsa quantity
proportional to the number of independently moving objects present in #resdiowever, if
the objects share a dependency such as a joint or a common rotationaesxiggy(re 2.5) the
rank varies with the interdependency between the 3-D shapes.

When two independent objects are considered, the resulting rank of Hsureenent matrix
isr =8 . However, if for instance the shapes have a joint between them, thepsab-repre-
senting the trajectories will decrease by 1 or 2 dimensions depending omajberties of the
joint. This means that the sub-spaces of the two shapes intersect andkiaf ¥awill reduce
respectively ta = 7 orr = 6. Therefore, if the trajectories of the first object are stored(th

and for the second iW®, and no degeneracies are present, it follows that:
rank(W?) = 4 and rank(W®®) = 4 (2.27)

However, by merging the data together into a single measurement matrix, theifigllcank
property holds:
rankq ey ‘ e ]) <8 (2.28)
showing that a relation between the two shapes is present. Recent warkonhated factoriza-
tion describes two types of joints: the universal joint and the hinge joirg,[183].
When two objects are linked byuniversal joint(see figure 2.5) the distance between the

two centers of mass is constant (for instance, the head and the torsafee lbody) but they



48 Chapter 2. Factorization methods for Structure from Motion

Figure 2.5: An articulated object composed of two shapes connectedibiyersal joint(rep-
resented by a circle). Shap®) and shapg2) are projected onto the image plane and they are
composed of a set of feature points whose centroids are indicatedties|yeby the 2-D-vectors
t(M) andt(®. Each object has independent rotational comporréhtandr? , while the 3-vectors

d® andd® specify the translation between the centroid of each shape anuhiversal joint

have independent rotation components. At each frame the shapesismhiog a joint satisfy the
following relation:

t® L rWgD — (2 L g2g®@ (2.29)

wheret® andt® are the 2-D image centroids of the two obje®$) andR(? the 2x 3 ortho-
graphic camera matrices adtl andd® the 3-D displacement vectors of each shape from the
central joint. The constraint expressed in equation (2.29) is the reasthrefreduced dimension-
ality of the joint sub-spaces. It is possible to refer the articulated motion tonanom reference

frame centered on the centroid of the first object thus simplifying the shafrxraauch that:

s g
s=| o s@_4® (2.30)
1 1

wheres is a full rank-7 matrix. The motion for a framdas to be arranged accordingly to satisfy
eqguation (2.29) as:
INCINNEY ] (2.31)
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Finally, we can write the full expression for the image coordinates of twoctbjéked by a

universal jointfor the frame as:

s 4o
w0 [ | =[50 w2 @ || o so-ge (2:32)
1 1

The image coordinates for every frame can then be stacked to form teeagistructure of the
factorization framework and, once more, the problem is to fit the multi-view tdetiae model

expressed in equation (2.32).

In order to find the reduced sub-space for the measurememtsaitruncated SVD is used
to compute the initial solution fdt and$S. In the case of aniversal joint the task is to find the
correct transformatioQ«7 that determines the exact factorization in accordance with equation
(2.32). Similarly to the rigid and multi-body case, this problem can be neatlydaulith a linear

system. Further details can be found in [143], alongside a descriptiaidafanal joint models.

2.4 Deformable factorization methods: a review

In the case of deformable objects, a single object varies its 3-D strucitiregegpect to a set
of deformation modes. The specific number of modes used to define the Isasthe effect of
forcing a specific rank-constraint over the image trajectories storgd Tius, by imposing the
correct rank, it is possible to carry out an approach similar to those stisdun the previous

sections for other factorization problems.

The main issue to be solved is the computation of the transformation méatra¢ upgrades
the structure and motion to metric space. In addition, the simultaneous estimatiotiari el
deformable shape is often ambiguous. Given a particular motion there mayibas/non-rigid
shapes that fit the measurements. Special care needs to be takemgeiipertype of information

provided to the system to allow disambiguation.

Deformable shapes are the central interest of this work, thus we willaedlte next sections
to describing the non-rigid factorization methods in the literature beforeptieg our own

contributions.
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@Q@ @&® N

< U -

First basis Second basis Third basis

Figure 2.6: Three basis shapes obtained from the 3-D reconstructeohwhan face taking on
different facial expressions. The first basis generally represeatmiean structure of the object,
in this particular case a neutral expression. The second and third bapisssshows a surprise
and exaggerated grin expression and they are obtained by summing tHeasis (the mean

component) with the second and third (i% = S1+ S, andSz = S + Sz respectively).

2.4.1 The deformable model

Bregler, Hertzmann and Biermann were the first to propose an exterfsSiomasi and Kanade’s
factorization algorithm to deal with the case of non-rigid deformable 3-Cxttra [19]. Here,
a model is needed to express the deformations of the 3-D shape in a camayadhe chosen
representation is a simple linear model where the 3-D shape of any spexifigurations

is approximated by a linear combination of a setDobasis shapeSy (see figure 2.6) which

represent the principal modes of deformation of the object:
D
S = dz 1gS¢ S,8q € 0¥F lgeO (2.33)
=1

where each basis shapgis a 3x P matrix which contains the 3-D locations®Bbbject points for
that particular mode of deformation. A perfectly rigid object would coroespto the situation
whereD = 1.

Similarly to Tomasi and Kanade, Bregler et al. also assumed a scaled agphagprojection
model for the camera. In this case, the coordinates of the 2-D image posgsvel at each

framei are related to the coordinates of the 3-D points according to the followingtiequ

D
Wi = { Wit ... Wip } =R (dz |ide> +Ti (2.34)
=1
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where
i1 rj2 [rj3
R=1| (2.35)
lia Tlis Tig
is the 2x 3 matrix containing the first two rows of a rotation matrix dgdthe configuration
weight for basigl at framei. When the image coordinates are registered to the object’s centroid,

equation (2.34) can be rewritten in matrix form as follows:

S1 S1
wi:[|i1Ri IiDRi:| :[Mil MiD:| : | =MiS (2.36)
Sp Sp

If theseP points can be tracked throughout an image sequence, the point trackserstacked

into the  x P measurement matrix and we may write:

l11R1 ... lipR1 S1 M1 ... Mip S1
W= : : = E : ;| =Ms (2.37)
lF1iRF ... |rDRf Sp Mr1 ... Mpp Sp
SinceM is a Z x 3D matrix ands is a D x P matrix, the rank ofv when no noise is present
must ber < 3D. Note that, in relation to rigid factorization, in the non-rigid case the rank is
incremented by three with every new mode of deformation. The goal ofrfaatimn algorithms
is to exploit this rank constraint to recover the 3-D pose and shape-dizgies and deformation
coefficients) of the object from the correspondence points stored in
In order to obtain a solution fat ands, it is possible to perform a truncated SVD to rank
3D similarly to the rigid case. However, the result of the factorizatioW ¢ not unique; any
invertible I x 3D matrix Q and its inverse can be inserted into the decomposition leading to
the alternative factorizatiow = (Q)(Q~18). The problem is to find a transformation matgix
that imposes the replicated block structure on the motion métsixown in equation (2.37) and
that removes the affine ambiguity upgrading the reconstruction to a metrid/dmexeas in the
rigid case the problem of computing the transformation matrig upgrade the reconstruction
to a metric one can be solved linearly (see section 2.2); in the non-rigid itagesing the
appropriate repetitive structure and forcing the metric constraint to the nmotitnix ¥ results in
a non-linear problem.
Various methods have been proposed so far in the literature [19, 16188117] and they

will be discussed in the following sections. It is important to note that while thekidtructure
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of the motion matrix4 is not required if we only wish to determine image point motion, it is

crucial for the recovery of metric 3-D shape and motion which is the mainajaalr work.

2.4.2 Bregler et al’s method

Bregler et al. [19] introduced the non-rigid factorization framework suimglgested a solution for
the computation of the matrig The main problem addressed in their work is the separation of
the configuration weightky from the rotation matriceg;. The solution proposed is calledib-
block factorizatiorand it consider§ sub-blocks derived from a row-wise partitionto$uch that

the equation of each sub-blo®kis given by:

M = [IilRi IiDRi] (2.38)

The entries of each sub-block are then rearranged as a rank-JIpoodeict of 2 vectors giving a

D x 6 matrixM; which can be expressed as:

ligri li1
M = : =| : i1 fi2 fia fia fis fie (2.39)

.
lipr; lip

wherer; = [ri1,..,rig]" are the coefficients of the rotation matdix Thus, Bregler et al.’s ap-
proach extracts configuration weights and rotation components by penpF SVDs truncated
to rank 1 and then stacking each component inté &3 matrixR.

Since the individual elementg for k= 1...6 obtained from the decomposition do not form
orthonormal matrices, a further orthogonalization is required to upgradmtdel to a metric
one. This can be done simply by applying the metric constraints to the niadrid computing
the correcting transformatia@y, s as in section 2.2.1. Finally, it is possible to compute the full

3D x 3D transformatiorg as:

_ - .
0Q ... 0

a=| . (2.40)
00 ... Q

a block-diagonal matrix that upgrades the structure to metric.
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Discussion
The method presents a significant weakness; the rank-1 SVD usedddzad] in equation
(2.39) is a coarse numerical approximation when the measurements atedfig noise. Thus,
the second and further singular values retain a considerable contribatibe solution. Ad-
ditionally, the true transformation matrix is usually dense in the off-diagonal values and so
the block diagonal approximatiof can only be a solution for a sub-group of all the possible
transformations. Only very simple deformations may be solved using thisagpro
Furthermore, the solution f&; andlig is computed exclusively from the motion matiix
obtained directly after performing the initial ranl®&VD on the measurement matrix. This first
decomposition redistributes the structure and motion components randomlyehétardS as
pointed out by Brand [16]. However, Bregler et al.'s method assunagatithe components re-
ferring to configuration weights and camera parameters are fully contaified his assumption
does not hold in principle and a transformation able to reorder the comisostesuld be carried
out before thesub-block factorization
Solutions to this problem are proposed in [141] by using an iterative optimizatid in [16]
by using a flexible factorization approach. The following sections desthiése approaches in

more detail.

2.4.3 Torresani et al.'s approach

Torresani et al. [141] define an optimization method to correct the inatesplution proposed
by Bregler et al. described in the previous section. After obtaining aro&pate solution with

sub-block factorizationtheir approach optimises the following non-linear cost function:

D
Xi = Wi —Ri dz liaSq (2.41)
=1

withi=1...F andd = 1...D. This optimization is performed by alternatively minimizing
three different least-square problems in the three classes of modetgtara:R;, lig andSq.
While each class of parameters is estimated, the other two are assumed to r@mstantc This
procedure is also known as Alternating Least Squares (ALS) [13¥jtdras the advantage that
it may converge to a solution without the complexity of using a full non-linearagrch.

Torresani et al. report that an appropriate initialisation can be obtagiag an initial guess
of the camera matrice® which they compute by applying Tomasi and Kanade'’s rigid factor-

ization over the non-rigid measurementsiinDifferently, the configuration weightg; are ini-
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tialised randomly and this permits to obtain the first estimatgafith the ALS approach. Note
that, to obtain more robustness, the rotation components of the orthograpmécacmodel are
parameterized using the Rodriguez formula instead of considering edlol 6felements im;.
A regularization of the shape matrix is also used during the iterative optimiza#iga & prevent
ill-conditioned values on the shape when there is not enough out of pitaten.

While this method does preserve the replicated block structure dfrtierix it minimizes an
algebraic cost function rather than a geometrically meaningful criteriora faigther drawback,
occasionally the algorithm presents a slow convergence to the solutianlgiiie zig-zagging
behavior of the minimization in the different parameter spaces (for a demeatysis of the

behavior of ALS methods in the SfM domain please refer to [20]).

2.4.4 Brand’s orthonormal decomposition and flexible factorization

Brand proposed an alternative algorithm calflexible factorizatior[18], where a solution for
Q is achieved without computing the second series of rank-1 SVDs. The meghoders the
camera matrices and configuration weights using an alternative techniie @dhonormal
decomposition

The strategy is to minimize the deformations (encoded irthel basis shapes storeddh
with respect to the mean basis comporg@ntomputed from the three most significant singular
values. The reason for forcing this constraint is based on the olisertlaat most of the motion

of the object can be explained by the rigid component.

Flexible factorization

Concisely, the algorithm consists of an initialisation step where an approxiraatfdrmatior
is computed estimating the matrix in a band around the diagonal values. Tlwaepmroposed
by Brand [16] corrects each column-triple independently applying the nigittic constraint to

each(2F x 3) My vertical block init as shown here:

Since each 2 3 g sub-block is a scaled rotation (truncated to dimension 2 for weak pergpecti
projection) a 3x 3 matrixQq (with d = 1...D) can be computed to correct each vertical block

My by imposing orthogonality and equal norm constraints to the rows ofiggacEachiy block
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contributes one orthogonality and one equal norm constraint to solted@lements iQq.
Each vertical block is then corrected in the following wal§g  M4Qq). The overall ® x 3D

correction matrixQ will therefore be a block diagonal matrix with the following structure:

[ Q1 0 ... O ]
0 Q ... O
a=| | (2.42)
0 0 ... Qb

Unlike the method proposed by Bregler et al. [19] (where the metric canisivas imposed only
on the rigid component, so thag = Q for eachd = 1...D) this provides a different corrective
transform for each column-triple &f The 3-D structure matrix is then corrected appropriately
using the inverse transformatioi:— Q5.

Brand included a final minimization scheme in Aexible factorizatioralgorithm [16]: the
deformations ir§ should be as small as possible relative to the mean shape. The idea hete is tha
most of the image point motion should be explained by the rigid component. Thigilarsto
the shape regularization used by other authors [141, 2].

This final stage re-estimates the transformation matstarting from the corrected = MQ

by minimizing the following cost function:

tr {(fQ — )T (fIQ — M) } +tr {éTQTzaé)} (2.43)
wherezZ is a matrix such that:
S2
Z8 = : (2.44)
Sp

Thus, a global solution is achieved by taking into account both the motion-&nst&icture ma-
trices and strengthening the mean motion component with respect to the diédoswantained
in the (D — 1) basis shapes.

Orthonormal decomposition

The final step in the non-rigid factorization algorithm deals with the factorizaifdhe motion
matrix i into the 2x 3 rotation matrice®; and the deformation weightg. Brand proposed an
alternative method to factorize each 2 row sub-block of the motion m?atleixliT ®R; (where®
indicates the tensor product aide: [li1...lip] is aD-vector containing the configuration weights

for each frame).
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Following equation (2.39), each motion matrix sub-bldtksee [18] for details) is rear-
ranged such thdt; — 1~7IiT. The motion matrixi’ of size 6x D is then post-multiplied by the

D x 1 unity vectorc= [ 1 ... 1] thus obtaining:
~T

wherek = lj1 + lio+ ...+ lip (the sum of all the deformation weights for that particular frajne
A matrix 4; of size 2x 3 is built by re-arranging the coefficients of the column veeorThe

analytic form of4; is:

kl’il kl’iz kl’i3

A (2.46)

kria  kris  Krig

Sincer; is an orthonormal matrix, the equatiofg| = \/m is satisfied, leading t@] =
AiAiT /A;. This allows one to find a linear least-squares fit for the rotation matrix
In order to estimate the configuration weights the sub-block métiisx rearranged as equa-
tion (2.39) obtaining% — M. The configuration weights for each framare then derived ex-

ploiting the orthonormality oR; since:
Mri = : =2 (2.47)
My - . — . .

Discussion

The method proposed by Brand consists on estimating the off-diagonalrekeof® using a
least-squares approach to minimize the Frobenius norm of equation (Z43gntially, this
further step has the effect of forcing a strong prior over the strenftheodeformations of
the inspected object. By absorbing most of the contribution of the motion intoriebéisis
(also called the mean component or mean basis), Brand observed thatiefoathations can
be irremediably lost. This is also supported by further tests presented imaskiiwhich show
that the prior introduced in thiéexible factorizatiormay be too restrictive to be applicable in
specific scenarios with varying degrees of non-rigidity. We should dtegssthe fact that the
cost function is strictly an algebraic error without any consideration ofygametrical model

describing the 3-D structure and temporal deformations.
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2.45 Xiao et al.'s closed form solution

The main problem with the previous approaches stems from the fact tloatrdgfon and motion
are ambiguous. Given a specific configuration of points on the image plidfeeedt 3-D non-
rigid shapes and camera motions can be found that fit the measuremeraki€lihis ambiguity
prior knowledge about the shape and motion could be used to constramlutiers

Recently, this approach was adopted by Xiao et al. [159] by introducigdhcept obasis
constraints a set of linear constraints which, when used in addition to the rotation eantstr

uniquely determine a closed-form solution to the non-rigid factorizationlenob

The basis constraints

In the rigid caselD = 1), it is possible to solve for the transformati@y linearly imposing the
metric constraint on the rotation matrices (see section 2.2.1). However infitrendéle case,
imposing only the constraints derived from the orthographic projection hmedders a solution
space that contains a set of invalid or degenerate solutions. In ordemtave this ambiguity,
Xiao et al. introduced a new set of constraints based on prior informatiemtioe data and they

proved that the added linear equations can solve uniquely. for

Xiao et al.'s assumption is that a setfframes exists in which the basis shapes are inde-

pendent such that the shape in that frame can be exactly describednmyea3sD basis. This

assumption forces a particular structure in the motion matrikor convenience, the measure-

ment matrix is arranged such that thdrames corresponding to the independent bases are in the

first 2D rows ofW:

[ R 0 o |
0 Ro 0
S1
W= 0 0 el Rp i | =MS (2.48)
lo+11Ro+1) lor12RD+1) -+ lDrypRD1Y Sp
| IraRe IFoRE lFoRe |

thus, the top B x 3D block of the motion matri is a block-diagonal matrix containing tiie
camera matrices for the independent basis shapes. Xiao et al.'s algotithins a closed-form

solution by enforcing this particular structureMan (2.48).
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The closed form solution
In more detail, the new set of linear equations is used to dollinear problems over the sub-

matricesq obtaining a column-wise patrtition of the mattpsuch that

o= w | | o (2.49)
where eaclyg withi =1...D is a D x 3 matrix. In order to solve for the full transformati@n
the basis constraints are appliedimes for each sub-transformatiqQg. Then, the problem is to
find the set of linear equations that force the exact structure of the motitix mna(2.48).

In the following, we will show how to build the linear system for a generic colktripie
Mgy. Having obtained an initial solutioin= M3 (see section 2.1.3) with a ranbb3lecomposition,
Xiao et al. build a set of linear equations that verifies the following conditions

Mg = MQq. (2.50)

For instance, if we consider the second transformaiignve would find the solution that trans-

formsi such that:

Ro

fiQ, =M, = ' (2.51)
0

lip+1)2RD11)

lr2RF

By exclusively using the metric constre_lints, it is not p(_)ssible to determineghneguations
to solve uniquely foRg. This is the crucial problem of the previous methods. Xiao et al. intro-
duced their basis constraints defining a new set/{i3}— 1) equations which, when combined
with the equations given by the metric constraints are enough to solve the diystam. The
constraints are quadratic over the unknowns storey ilmence, Xiao et al. introduce ®3«< 3D
symmetric matrixBq such thatdy = Qng. The basis constraints are determined such that the
structure in equation (2.48) is satisfied for the configuration weights. Thibevtrue if the

following equations are satisfied:

li =1, i=1...D
(2.52)

ligy=0, i,d=1...D,i #d
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These basis constraints lead to a new setF({D}— 1) equations as described in [159]. Notice
that a further step is required to extract the corresponding three-catamsformation matriQq
from each symmetric matriky. Xiao et al. suggest computing the solution via SVD; siBge
is, in a noiseless case, a rank-3 constrained matrix. However whenisiisesent the solution

is numerically approximated to the closest solution in the sense of the Frolmemius

Discussion

Solving for the transformation matrix by dividing the problem idolinear systems permits
finding a closed form solution that upgrades the factorization to the d¢@trecture. A drawback

of this approach lies in the independency of the solution; each column-Higge upgraded
separately, since the block structurea$ not forced in the solution of the systems of equations.
As aresult, after fixing a reference bagi3,— 1) orthogonal transformations need to be computed
to align each of the bases using Procrustes analysis [127].

These further computations are very critical, since incorrect solutionddwead to a mis-
alignment of the bases and a violation of the repetitive structure of the motioixmautdi-
tionally, the alignment procedure proposed by Xiao et al. attains an estatios only when
identical and isotropic Gaussian noise with zero mean affects the measisésssnan analysis
on Procrustes methods in [40]). Such a condition rarely occurs ingeaésios, and in fact might
occur only in synthetic tests for which the algorithm can obtain exact récmtions.

Another criticism has been made regarding the sensitivity of the method tglyreslected
independent bases as reported in [17]. Often it is not trivial to find glesiset of independent
bases in a real sequence of a deforming object. Even though the methaobtaaya unique

solution, this solution changes with the selection of a different set of bases

2.4.6 Brand's direct method

Recently, Brand [17] proposed a variation of Xiao et al.'s appro&éB] based on the deviation
of the computed solution from the orthogonality constraints and on weagkemggions on the
independent basis shapes.

The approach focuses initially on the estimation of the first three-columrforamation Q1
which corrects the rankE3 approximatedi obtainingMQ; = M;. This step has the dual effect
of estimating the overall motion componerisand the first set of configuration weighls

with i = 1...F for the mean basis shape. However, differently from Xiao et al.'s mettned
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computation ofy; is not given by a least-squares estimation: a quasi-Newton method is applied
to a non-linear cost function constructed to impose the orthogonality cortstia 1. In this

way, the rank-3 approximation as described in section 2.4.5 is avoided at@dwtisformation is
estimated given the actuaDQarameters af;.

A second stage forces the repetitive structur® by linearly computing the full transforma-
tion Q that imposes the pre-estimated rotati@n$o eachD triplet in the motion matrix. In the
case of no noise, this two-step procedure provides exact results withesiz data. However,
the author reports more erratic behavior in the performance of the algontienever the data
is corrupted by noise, since local minima may appear during the quasi-Nesatiomation.

In order to counteract this effect, Brand proposes different siestdsed on finding multi-
ple solutions foiQ; and combining them to obtain a better correction for the rotation matrices. A
solution is to introduce weaker basis constraints by assuming that thereaesetefD frames
for which theD-vectors of configuration weights are orthogonal to each other. In detel, if
we collect in a singl® x D matrix the configuration weights for tti2zframes in which the bases

are independent, we obtain orthogonal matrix:

=+ - (2.53)

In the case of Xiao et al's approach [159], the basis constraints floeaatrixL. to be an identity
matrix such thaf. = I.

No justification is provided that supports the use of these constraints lyutham the wrong
selection of the independent basis proposed by Xiao et al. in equatid) (2duld perform
notably worste than the wrongly selected orthogonal condition propgsBcHnd. Alternatively,
another suggestion is to start the minimization from a different initialisation ofdhenpeters to

obtain multiple estimates @f;.

Discussion

Two main positive contributions are present in the direct method. Firstly,@éctlyr estimates
the parameters of the transformation matrixwith a quasi-Newton minimization scheme and,
thus, it avoids the rank-3 numerical approximation in Xiao et al's method indke of noise.
Secondly, it enforces the repetitive structureMofvithout solvingD separate basis alignments.

On the other hand, a weakness is present whenever noise affecetahertie matriceg; are
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not reliably estimated after forcing the first transformati@nover the numerically computed
M. Multiple solutions have to be found by imposing weaker priors over the tameiof the
configuration weights and by initializing the quasi-Newton minimization from diffépoints.
Nevertheless, the solution proposed by Brand performs better thanetieys algorithms and
it shows reliable results in real experiments, where as Xiao et al.'s medfiledd select reliable

independent basis shapes.

2.5 Closure

A factorization approach to structure from motion computation exhibits corsiteadvantages
over alternative methods. In this chapter we have shown that differetibrmand structure
models may be fitted to a set of trajectories obtained from measurements avagasequence.
As a consequence of the global constraints given by the models, the imiagérajectories live
in a certain sub-space defined numerically by the rank of the measurenteixtima

From this observation, every method presented here finds an initial salotiocemotionand
3-D structureby truncating unnecessary components fiomith SVD, and then by correcting
the solution with a transformation matrtx that imposes explicit geometric constraints given
the specific model. This approach is successful in many cases with somtiers in the
deformable case.

The main issue is in the ambiguous formulation of the problem. For a deformadghe,sh
deformation and motion are strongly coupled elements. Not only in a mathematisal &ince,
for instanceR; andl,y appear multiplying each other inside the motion matisbut, as shown
by Xiao et al. [159], a solution computed only by forcing constraints overcdimera motion
may be degenerate and not unique. Moreover, numerical approximgtinks, 159] often do
not provide good estimates for the geometric parameters of the deformabét mod

Thus, a solution that respects the mathematical structure of the factorizatinework and
the geometric constraints of the camera projecting the scene is desirahlehlaway, the prob-
lem should be formulated by expressing the produdt ahds as a set of non-linear equations.
In this case, the full interaction of the model parameters is explicit and tiaengaers of the de-
formable model may be estimated using non-linear optimization techniques, as exptained

in the next chapter.



62



63

Chapter 3

A non-linear approach to non-rigid factorization

The non-rigid factorization algorithms described in the previous chaptiar$tom a series of
drawbacks. Most of them (Bregler et al. [19] and Brand [16]) dbraspect the replicated block
structure of the motion matriX expressed in (2.37). It is important to notice that the replicated
structure does not affect the estimation of the motion of image points, whichsrtfadse factor-
ization algorithms very well suited to non-rigid tracking [141, 16]. The raokstraint imposes
that the trajectories of image points lie in B 8imensional sub-space, whdbeis the number

of basis shapes, and that any new trajectory may be generated as actinganation of the
columns of the motion matriX. If a point is only tracked in a small sub-set of images in the
sequence, this constraint allows to predict its trajectory in the entire segjubns permitting to
incorporate new tracks. This property is strictly based on the numeribadzace in which the

trajectories resides and not on the geometrical model estimated from theremeaatimatrix.

However, if the main goal is to recover the camera matrices and the 3-Digidrstructure
then preserving the replicated block structure of the motion mataifter factorization becomes
crucial. If this is not achieved, it results in an incorrect estimation of the metioch in turn
affects the estimate of the 3-D structure. In the experimental section of tygertwe will show
results which prove that the 3-D reconstructions and the motion recousiegl previous non-
rigid factorization methods [16, 19] are not completely satisfactory. Itiquaar, the estimation

of the 3-D pose is unstable and this affects the quality of the deformable.shap
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3.1 Factorization as a non-linear estimation problem

Most of the algorithms presented so far, rely on the minimization of algebraicfanctions
using linear schemes (with the exception of [17]). However, the coereot function to be min-
imized should be geometrically meaningful and, by construction, strictly noaflifienerefore,
existing methods only provide an approximation of the true solution so when afiects the

measurements their performance is compromised.

Xiao et al.’s work [159] provides an exact closed-form solution. eev, it requires infor-
mation about the independency of the basis shapes that model the objais’'s aideformation,
and the solution is affected by their incorrect estimation. Additionally, as ribbigeBrand [17],
the selection of the independent bases is trivial with well-behaved synthetariments but it

becomes increasingly error prone with real images of deforming objects.

In order to overcome the problems encountered by previous methodspwatmoduce a
non-linear optimization stage [38, 35] to refine the motion and shape estimatdsminimizes
the image reprojection error and imposes the correct structure onto the mmatior by choosing

an appropriate parameterisation of the model parameters.

3.1.1 The non-rigid cost function

The goal is to estimate the motion parametgrshe 3-D basis shape and the deformation

weightslig such that the distance between the measured image pgjrasd the reprojection of

the estimated 3-D points is minimised. However, the coordinatésare extracted by a mea-
surement process and, therefore, they are affected by noise ardstain degree of uncertainty
nij. The measured coordinates can be expressed in terms of the exact measuremgrsisch

that:

Wij = Xjj + Nijj (3.1)
The projection equation for a 3-D poipin image frame is given by:

D
Xij = M;iS; :Ridz liaSqj (3.2)
=]
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wherex;; are the image coordinates of the point &dis the I x 1 parameterisation of the

shape basis for a deformable pojrguch that:

sj=| (3.3)

with the 3-vectolSy; defining thed basis component for point

Following equation (3.1), the uncertainty over the measurements is obtaime thfe residual
given byn;j; = wjj —X;j. This residual is generally referred to as the reprojection error of the
image coordinates in the literature and it expresses the difference betvecemage coordinates
given the estimated model parameters and the measured data. Hence,sthiegogecast the
problem of estimating the non-rigid structure and motion parameters by minimizimgptheof

the reprojection error of all the points in all the frames such that:

mln Z i (1= mln Z I wij —xij |2 (3.4)

Note that the error is a sum &fP quadratic cost functions. Assuming the noise can be mod-
elled with a Gaussian distribution, the minimization of equation (3.4) provides aMaxénum
Likelihood (ML) estimate of the parameters.

The definition of this non-rigid cost function could rise two major criticisms. Fing,num-
ber of parameters can increase dramatically with the number of frames dognplos scene
and the complexity of the modelled object. This may render the minimization of equatin (
computationally unfeasible given the size of the parameter space. Séwemiyh non-linearity
of the cost function is likely to produce multiple minima which would result in a diffican-
vergence to the global minimum of the function. The solution proposed isoanmafation of
bundle-adjustment techniques for deformable structure from motion whiécHescribe in the

following sections.

3.2 A bundle-adjustment approach to deformable modelling

The non-linear optimization of the cost function in (3.4) is achieved usinyarnherg-Marquardt
[106] iterative minimization scheme modified to take advantage of the spardeditacture of

the matrices involved. This method is generically termed bundle-adjustment irommguter
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vision [147] and photogrammetry [5] communities and it is a standard proeesiccessfully
applied to numerous 3-D reconstruction tasks [67]. Our main contributimifien analysis of
its applicability to the non-rigid modelling framework.

In the next section, we will review the concepts involved in bundle-adjudtihevenberg-
Marquardt minimization and sparse computation) and reformulate the fationiZeamework

as a non-linear, large-scale minimization problem.

3.2.1 Levenberg-Marquardt minimization

Levenberg-Marquardt methods [92, 99, 106] use a mixture of Gidesgon and gradient de-
scent minimization schemes switching from the first to the second when the estiHegsian
of the cost function is close to being singular. An algorithm with mixed behavisually ob-
tains a higher rate of success in finding the correct minimum than otheraaghyg®. Other similar
second-order or quasi-Newton algorithms may be used to minimize the coetibfurHowever,
Levenberg-Marquardt technigues have been studied and testedightyran many Computer
Vision applications [67] and they have been found to deliver satisfacésyits. Examples are
mostly given for classical inference problems in Computer Vision suchragafuental matrix
computation [8], camera calibration [118] and 3-D sparse reconstryéidnHowever second-
order methods have been successfully applied to less conventional igegrnegblems such as
model-based face reconstruction [47], mosaicing [102] and recatisinof curves [10].

Most of the computational burden of iterative second-order methodpissented by the
Gauss-Newton descent step, each iteration of which requires the tialcwathe inverse of the
Hessian of the cost functio@. Specifically to the deformable factorization ca€ecan be ex-
pressed in terms of thd-vector® containing the model parameters such Bat (©yy,...,0F,
Or1,-..,0rF, @51,...,®5p)T, whereQj;, Oy andOs; represent respectively the parameters for
the configuration weights, orthographic cameras and 3-D basis shapeach view and each

point. Hence, the cost functidd can be written as a sum of squared residuals:
F,p
cE) =Y |n;|? (3.5)
I7J

where the residual for each frame and each point can be expressefFR x 1 vectorn such
thatn = [n];...nfp]T. At each iteratiort of the algorithm, an updat&' is computed in order
to descend to the minimum of the cost function such that the new set of paransegé/en by

o1 = @' + A'. By dropping the iteration indeixfor notation clarity, it is necessary to express
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the generic incremerdt in the model parameters as a second order Taylor expansion assuming

local linearities in the cost function such that:

C(O+A)~C(O)+g' A+ %ATHA (3.6)

whereg = J'n is the N x 1 gradient vector and is the N x N Hessian matrix that can be
approximated a#l = J'J (Gauss-Newton approximation of the Hessian matrix; see [147] for
details) withJ = g—g representing theR2P x N Jacobian matrix in the model parameters. In order
to find the incremenh, the minimum of the quadratic functi@=g" A+ %ATHA is computed by
imposingg—g = 0. Thus, the expression of the Gauss-Newton descent step canllyesfipaessed

as:

HA=—g 3.7)

Levenberg-Marquardt algorithms differ from a pure Gauss-Newtathaakesince they apply

adampingterm to equation (3.7) obtaining:
(H+AI)A=—g (3.8)

The added term1I has a twofold effect in the minimization. Firstly, by modifying the parameter
A, it is possible to control the behavior of the algorithm that can switch betfiestrorder (for
high values ofA) and second order (low) iterations. Secondly\I makes the solution of (3.8)

numerically stable by forcing thait+ AT is a full-rank matrix and thus properly invertible.

3.2.2 Sparse structure of the Jacobian

Solving for the normal equations in equation (3.7) is a problem of compl€Xi?) and this step
has to be repeated at each iteration. In order to render the computasdrdees the number of
parameters increases, it is possible to exploit the sparse structure attisanJ.

Motion components (configuration weights and camera parameters) alatedrbetween
different views and, similarly, structure components are unrelated betitferent point trajec-
tories. As a result, the Jacobian matrix contains a large number of entriesiicn the partial
derivatives are zero, as we show in the graphical representationstrfuitture in figure 3.1.

It is possible to solve for the incremeatin (3.7) efficiently by calculating the inverse of
H using the sparse structure of Standard approaches for sparse computation are described in
[147] and [67]. Notice that, again, this property is valid for any rigid aod-nigid factorization

model, since the sparseness relation is given by the independency behaten parameters
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®ll ®12 ®l3 ®Rl ®R2 ®R3 ®S O, ©, ®S4 ®SS ®S6

1 ~S2 783

Figure 3.1: Sparse structure of the Jacobian matrix. We show an exam@@driomes and 6
points P1, P2, P3,P4,P5,P6). The zero-entries of the matrix are displayed as white bla®ks.
©)2 and®,3 represent the configuration weights respectively for frame 1, 2 af@k3.0r, and
Ors3 are the vectors of the camera components for each fram@an®s, Os3, O, Oss, O

encode the basis shapes for each deformable point.

(for each frame) and 3-D structure (for each point) in the multi-view costtion and thus

independent of the chosen model.

3.2.3 Proposed implementation

The cost function of a deformable object presents more degreeseufofre than in the rigid
case, which could lead to the existence of multiple local minima for the motion, rdafmm
and structure components. It is possible to reduce the chance of fallingpgatbminima by
carefully designing the algorithm with respect to the following aspects: inittadisamodel

parameterisation and the use of priors.

Parameterisation

The camera matrice® are parameterised using unit quaternions [74] giving a total of4
rotation parameters, wheFeis the total number of frames. Quaternions ensure that there are no
strong singularities and that the orthonormality of the rotation matrices is pegsby merely
enforcing the normality of the 4-vector. This would not be the case with tHer Eungle or

the rotation matrix parameterisations, where orthonormality of the rotations isqoomnglex to
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preserve. The quaternion normalization is directly enforced in the costifun by dividing the
quaternion with its norm. Indeed, in an initial implementation the 3-D pose wampéesased
using the 6 entries of the rotation matridas however the use of quaternions led to improved
convergence and to much better results for the rotation parameters andthesg.

The method proposed by Bar-ltzhack [6] in an attitude control contexded to obtain the
quaternions from the set of rotation matriégs The algorithm has the main advantage to yield
the closest quaternion representation if the constraints of matrix ortholiigrara not exactly
satisfied. This eventuality usually appears during the initialisation of the nearlptimization
scheme after the first computation of the corrective transfsga for the rigid component of
the motion. Schematically, the method first define the matgiven the singular elemen{sy}

belonging to a generic 8 3 rotation matrixg:

l1—"ro2—rss ro1+r12 r31+ri3 r23+r32
1 ro1+riz 2o —Tr11—1T33 r32+4r23 31 —ris
rz1+ris r32+r23 raz3—roo—ri1 ro—1ro1

i l23—r32 31 —ris ro—roz r11+roo+rss ]

The algorithm then follows with the following three steps:

1. Compute the eigenvaluesg&f

2. Find the largest eigenvaldgax

3. Extract the eigenvector @fwhich correspond t&max

The given eigenvector is the closest quaternion to the matrix the case of an exact orthonor-
mal matrix we would obtaiimax= 1.
Finally, the structure is parameterised with {8e< D) x P coordinates of th& shape bases

and theD x F deformation weight$g.

Initialisation

A further critical factor is the choice of an initialisation for the parameters efrttodel. It is
crucial, for bundle adjustment techniques to work, that the initial estimate be tddhe global
minimum to increase the speed of convergence and reduce the chareagfrapped in local

minima, particularly when the cost function has a large number of paramstarshas case.
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A similar initialisation to the one used by Torresani et al. in their tri-linear optimization
scheme [141] is chosen. The idea is to initialize the camera matrices with the matiespznd-
ing to the rigid component, which is likely to encode the most significant pareafnibtion.

A different initialisation which gives a reasonable starting point is to usedtimates given
by Brand’s algorithm for both motion and structure [16]. Occasionallyyéwer, we have ob-
served problems with the convergence given this initialisation and generaéiy the motion
associated to the rigid component is used as the initial estimate the minimizationsr¢laghe

minimum of the cost function in fewer iterations.

Regularization prior

Occasionally, the non-linear optimization leads to a solution correspondinkpéalaninimum.
In particular, at times the 3-D points tend to lie on a plane. To overcome this sitpatiior on
the 3-D shape has been added to the cost function. The prior statesetiokptin of the points
on the object’s surface cannot change significantly from one frame toetktesince the images
are closely spaced in time. This is implemented by adding a penaltyGetimat penalizes for

strong variations between the shape at fraimaasli + 1 given by:

D D
Cs(©) =|| dz liaSd —dz l(i+2)aSd |7 (3.10)
=1 =1

In this way the relief present in the 3-D data is preserved. Similar reguli@nzizrms have also

been reported in [2, 141].

3.3 Previous work in non-rigid BA

Aanaes and Kahl, also proposed a bundle adjustment solution for thagmbrsecenario [2].
However, their approach differs in some fundamental aspects. Firstly,itfitial estimate of
the non-rigid shape was obtained by estimating the mean and variance obtdata-obtained
directly from image measurements. The approach assumes that the caraaralibaated, and
although the authors state that their algorithm would work in the uncalibratedtbay do not
give experimental evidence. In contrast, we consider a scenarid basecalibrated data from
a generic video sequence. The second main difference is in the paraatéiarof the problem.
In [2] the camera rotations are parameterised by the six elements of the ratetion. We are
using quaternions instead which, as will be shown in the experimental seletamis to better

behaved results for the motion estimates.
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In terms of their experimental evaluation, Aanaes and Kahl do not providaalysis of the
recovered parameters, only some qualitative results of the 3-D recdiwstrutn contrast, our
guantitative experimental analysis shows that we are able to decouple motiaieformation

parameters (see next section for a detailed description).

3.4 Experimental results

In this section we show results of our non-linear optimization approach witthetic and
real image sequences. The quality of the 3-D reconstructions are taitragd quantitatively
with respect to ground truth values and qualitatively over two sequenteswubject perform-

ing different facial expressions.

3.4.1 Synthetic data

Xiao et al. [159] showed in recent experiments that previous method&forrdable factoriza-
tion [19, 16, 141] may fail even for simple deforming objects. Using similattstic data sets,
the forthcoming tests will shed some light on the efficiency of the proposedimear optimiza-
tion procedure for 3-D reconstruction. The experiments are constrbgtgenerating a random
set ofD basis shapes whose linear combination creates varying deformable&8sstontained
in a cube of 50« 50x 50 units (see figure 3.4.1). The set of configuration weilihtre obtained
by fitting polynomials to randomly generated values. This was necessaryeio smoother de-
formations rather than erratic and unrealistic changes in the 3-D strutteael@aframe. Notice
that the configuration weights and, thus, the temporal evolution of therdafimms are as generic
as possible. For instance, there is no assumption of independency afsibeshapes as required
by the method of Xiao et al. [159] (see section 2.4.5 for a description)ll¥ittee generated 3-D
shapes are projected onto the image plane (of size6480) by means of random orthographic
camera®;. The experimental setup is completed by fixing the number of poinesta10 and
frames toF = 30.

Two set of tests are presented. First, the number of basis shapes fexb sizch that
d = 2...5 to verify the algorithm’s performance with increasingly complex deformatiohs
second test is then performed to obtain an evaluation of the quality of thesteection in case

of varying strength of the deformations but fixing the number of basiseshtagD = 3. This
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S &3 dE

Figure 3.2: Some frames of the cube sequence used for testing the algoFitlendeformable
points are sampled inside a cube of 5050 x 50 (wire-frames are added to show the solid

contour).

measurement is directly calculated between the ratio of the norm of the rigidoc@mis of the

3-D metric shapes and the norm of the 3-D deformable structures (h@fgjextion) such that

ratio = “ﬁ;‘:;’if‘ﬁ“. In order to validate the performance 25 trials were performed for estcip s
and for different Gaussian noise conditions with variaoee 0.5, 1, 15, 2.

The results are obtained with a MATLAB implementation of non-rigid bundle adjest
using the built-in function sgnonl i n for non-linear minimization. The software is designed in
a such way that the sparse structure of the Jacobian is automatically conbyutattulating
the derivatives of the cost function with different number of basis et@p Initialisation of
the model parameters is as described in the previous section. The stap erastfixed for the
tolerance over the increment in the model parameters (fixed &).10he minimisation usually

converges in a time ranging between 10-30 seconds (on a AMD-Athloopéputer clocked at

3800 MHz) for the set of synthetic data considered in the experiments.
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Figure 3.3: Relative 3-D error (%), r.m.s. rotation error (deg) and 2{¥ajection error for
the synthetic experiments for different basis shabes2...5 and increasing levels of Gaussian

noise. The ratio of non-rigidity is fixed to 40% for all the trials.

Figure 3.3 shows three plots representing the 3-D reconstruction epmssed in percent-

age relative to the scene size (which it is defined as the maximum &f yrendz coordinates),
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Figure 3.4: Relative 3-D error (%), r.m.s. rotation error (deg) and 2{@ajection error box-
plots for the synthetic experiments for different basis shape<...5 and Gaussian noise fixed

ato = 1.5. The ratio of non-rigidity is fixed to 40% for all the trials.

the absolute rotation error expressed in degrees for varying numbesisf shapes and the root
mean squared (r.m.s.) 2-D image reprojection error expressed in pixelpldis of this figure
show the mean values corresponding to 25 random trials applied to eakbfl@aussian noise.
As expected, higher complexity in the degrees of deformation (given bigdheasing number of
basis) results in worse performance of the algorithm. Note that the incgdas#ls of Gaussian
noise do not affect the estimate of the 3-D structure and rotations strongly.

In order to evaluate more accurately the results, a box-plot in figure 3wisshe statistical
properties of the errors for the experiment with Gaussian noise level ditke = 1.5. The plot
consists of four blue boxes (one for each number of basis) which langmupper lines define
the 25th and 75th percentiles of the sample. The red line in the middle of the boxsiartpte
median. The black lines extending above and below the box show the ratiye rest of the
samples. The outliers are shown as red plus signs and they represehtearpin the algorithm
convergence to the minimum. Usually this refers to the minimisation being trapped dala lo
minima.

Figure 3.5 shows results of experiments for increasing degrees ofigidity of the 3-D
structure. Notice that, higher levels of deformity in the shape negativelgtatfie estimation
of the model parameters. An important observation for both experiments felkbwing: the
recovered values for the 3-D reconstruction and rotation errors tleamverge to the global
minimum in the case of ho noise (when perfect data is available).

The box-plots in figure 3.6 reveal a higher rate of outlier errors showiagg difficulties in
finding the global minima in the case of increasing deformations. In thess tasalgorithm

showed a tendency to converge to the minimum too slowly or to converge to lastation.
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Figure 3.5: Relative 3-D error (%), r.m.s. rotation error (deg) and 2{ajection error for the
synthetic experiments for different ratio of deformation (10%, 40%, 8096%) and increasing

levels of Gaussian noise.
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Figure 3.6: Relative 3-D error (%), r.m.s. rotation error (deg) and 2jWajection error box-
plots for the synthetic experiments for different ratio of deformation (18985, 80%, 100%)

and fixed Gaussian noise & 1.5).

This effect is a consequence of the intrinsic ambiguity of the solutions in $eafadeformable
structure from motion as discussed in Xiao et al. work’s [159]. In otdesolve this problem,

we will introduce our solution based on rigidity priors later in chapter 5.

3.4.2 Experiments with real images and manually tracked data

In this section we compare the results obtained with our bundle-adjustmestt Bel3 recon-
struction algorithm with those obtained using Brand’s non-rigid factorizatiethod [16]. A
direct comparison with Xiao et al.’s approach is not meaningful sinceigdvaat find it possible
to extract a set of independent basis shapes that lead to a reas@talnistiruction (a problem
already reported in [17] for real data). A real video test sequehowsthe face of a subject
performing an almost rigid motion for the first 200 frames, moving his heachdpawn. The
subject then changed facial expression with his head facing fronhénext 309 frames (see

figure 3.7). The point features which appear in figure 3.7 were manuahyetighroughout the
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Frame 67 Frame 115 Frame 182 Frame 204 Frame 224

Frame 275 Frame 300 Frame 345 Frame 358 Frame 467 Frame 504

Figure 3.7: Key frames of the sequence used in the experiments in sectidnvdth manually
tracked points superimposed. The subject performed an almost rigid motighef first 200

frames moving the head up and down and then changed facial exprisdiomnext 309 frames.

sequence. The number of basis shapes is fixed heuristically=td®d, a compromise between
the complexity of the model and the number of captured deformations. Theutatiop time
required for the algorithm to convergence is consistently higher (8 minpfesximately) given
the number of frames, points and deformations which increases the nuiparameters to
estimate.

The results of the 3-D reconstructidrfer some key frames in the sequence obtained using
Brand’s factorization method are shown in figure 3.8. The front viewthef3-D reconstruc-
tion show that the recovered 3-D shape does not reproduce the éapiassions accurately.
Besides, depth estimation is not precise, which is evident by inspection tghgews of the
reconstruction. Notice the asymmetry of the left and right sides of the face.

In figure 3.9 we show the reconstructed 3-D shape recovered afibrirggpthe bundle ad-
justment refinement step. The facial expressions in the 3-D plots regrdtia original ones
reliably: notice for example the motion of the eyebrows in the frowning espagframe 467)
or the opening of the mouth in surprise (frame 358). Finally, the top views $inat the overall
relief appears to be well preserved, as is the symmetry of the face.

The evolution of the weightgy of the deformation modes can be traced throughout the

sequence. In figure 3.10 we show the value of the weight associated withean component

Lvideo available at http:/www.bmva.ac.uk/thesishive/2006/DelBuel/index.html
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Figure 3.8: Front, side and top views of the 3-D reconstructions obtanoad the non-rigid
factorization algorithm without bundle adjustment for some of the key fram#seisequence.

No ground truth is available in this experiment.

Ay N e
O NG N

Frame 1 Frame 67 Frame 275 Frame 300 Frame 358 Frame 467

Figure 3.9: Front, side and top views of the 3-D reconstructions obtaiftedagplying non-

linear optimization. No ground truth is available in this experiment.
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Figure 3.10: Values obtained for the rigid component (top), deformatiaghtse(middle) and
rotation angles (bottom) using Brand'’s approach (A) and bundle adjus{B)for the sequence

in figure 3.7.

(top)d = 1 and of those associated with the 4 remaining deformation modes (middle}tsResu
given for both Brand’s flexible factorization (left) and for the bundl@uatinent scheme (right).
Notice how Brand’s flexible factorization has a tendency to suppresk defarmations — the
weights associated with the deformation modes for frames with small deformhtivas small
value. This results in the recovered 3-D shape not reproducing tia éxpressions accurately.
The weights associated with the deformation modes have higher values inrtie-adjusted
solution. Interestingly, around frame 360 the first non-rigid mode ofrdedition experiences a
large peak, which corresponds to the opening of the mouth in surprideoas sn figure 3.7.
This indicates some tendency in the configuration weights to reflect thelyinddacial expres-
sions. Although this peak is present also in Brand’s solution, it is possildbderve by visual

inspection that the corresponding 3-D reconstruction in figure 3.8 isergtaccurate.

The results obtained for the motion parameters are shown in the bottom drégure 3.10.
The rotation angles around the X, Y and Z axes (up to an overall rotatiemgeovered for each
of the 509 frames in the sequence. In particular, the tilt angle varied smdbtolyghout the

first 200 frames capturing the up and down tilt of the head of about 5edegdn total while
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the rotation angles around the other 2 axes did not vary significantly thootighe sequence.
Notice that both solutions capture this motion correctly. However, the resthisned with the

bundle-adjusted solution (right) qualitatively presents less variations ia pbthe scene where
the subject is not rigidly moving. Using Brand’s algorithm (left), it is posstbl@otice sudden
variations of the motion which cannot be observed by visual inspection imthge sequence.
This indicates that the estimation of the orthographic camera matrices in Braettisd may be

affected by the deformations appearing in the scene.

e

5
i

RIGID WEIGHT
5
ROTATION
ANGLES

12 — ~ | — |
10} B 180 f_\v‘\ .

300 350 400 450 500

0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250
FRAMES FRAMES

Figure 3.11: Values used for the initialisation of the non-linear minimization algoritihe
value obtained for the rigid component (left) and rotation angles (rightt@mgputed with the

motion corresponding to the rigid component.

The non-linear refinement step is initialised using the values of the firsguwafion weight
and the rotation angles associated with the mean component as shown ir8figuré&ote that
the deformable bases and configuration weights are initialized to very smadimavalues. This
initialisation was first used by Torresani et al. [141] in their tri-linear optitidrastage and it
provided reasonable results. It can be observed from the plot thaigidecomponent of the
motion is a good description of the object’s rotation, and in fact the bundilestatent step does
not optimize these parameters much further and focuses on the refineiteatdeformation

parameters.

3.4.3 Experiments with real images and automatically tracked data

In this section, the behavior of the method is tested with image measurements ebizine
matically with a point tracking algorithm [37]. The scope of this test is to shovighsibility of
a complete unsupervised system for 3-D deformable reconstruction gtfadiin an uncalibrated
video sequence showed in figure 3.12. A ranklet-based tracker §p2ejally designed to cope
with deforming structures automatically generates the tracks that are inpuhétwon-linear

optimization scheme. The system has to cope with a complex 960 frame sequerceh the
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Frame 1 Frame 250 Frame 335 Frame 420 Frame541 Frame 710 Frame 960

Figure 3.12: Key frames in the sequence used to test the reconstructzoB-bf deformable
shape with automatic tracking of feature points. The subject performed siraalia rigid and
non-rigid motion. Automatically tracked points are superimposed. A set ofraines outlines

the face structure.

subject is undergoing 3-D motion and performing different facial esgoms.

A total of 91 points were initialized automatically according to a saliency criteB8i [The
tracker was able to follow a good number of feature points reliably thraugthe sequence,
even in relatively poorly textured areas such as the subject’s cheekbdmroughout the 960
frame sequence, only 8 points out of the initial 91 were lost. Howevertaic&umber of points
initialized on homogeneous texture turned out to be unreliable, and theyndyidéect the 3-D

shape estimation in those areas.

Figure 3.13 shows the front, top and side views of the 3-D reconstructisix &y frames
with different expressions. The number of basis shapes is fixed+t® since this value can gen-
erate a model which capture most of the deformations appearing in the edaerse. Higher
values forD would obtain more accurate models but at the cost of a higher computational time
required to minimize the cost function. The initialisation of the non-linear optimizasicten-
tical to the one described in section 3.2.3. The overall depth is generatgctonotice the point
belonging to the neck relative to the position of the face, and the nose poinigom the
face plane. Face symmetry is generally well preserved, as it is possibtgite from the top
views of the reconstruction. Some outliers are obvious in frame 710 in the@yeegion and
generally on the neck area where the tracker performs poorly; satiiréepoints are wrongly
reconstructed by our non-rigid model.

Finally, the reconstructed motion and deformation parameters are displafigdria 3.14.
The estimated angles follow the rotation of the subject’'s head reasonablyaiits limited be-
tween 10 and-15 degrees for the "beta” angle, while "alpha” and "gamma” show tiny tiaria.

The rigid weight is nearly constant for the whole sequence in accordeititéhe subject’s head
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# } . i ket ) a e \
Frame 1 Frame 250 Frame 335 Frame 541 Frame 710 Frame 960

Figure 3.13: Front, side and top views of the 3-D reconstructions obtd&ipgtle combined

system for some of the key frames in the sequence.
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being at the same distance from the camera. The non-rigid configuratiohte/@iggsent more
erratic behavior; the two spikes around frame 280 and 670 correspspéatively to a grin and

an angry facial expression.

3.5 Summary

Non-linear optimization is applied to obtain a reliable solution for 3-D deformadderrstruction
from uncalibrated video sequences. The key features of the appeoasist on enforcing the
repetitive pattern of the motion matrikwhile at the same time explicitly considering a proper
parameterisation for the orthographic cameras using quaternions. Featkes put to render the
approach tractable: Levenberg-Marquardt minimization safely desdemgrds the minimum
of the defined cost function and sparse computation efficiently solvesfidr iteration.

In contrast, the previous linear methods obtained approximate solutionsghactieg the
non-linear structure of the framework. The direct consequence ig@ing of motion and de-
formation components as we have observed in the results using Brandadhiedih Xiao etal.’s
[159] approach avoids the ambiguities but needs to make assumptionstamaependency of
the 3-D basis shapes.

However, it is shown in the synthetic tests that our non-linear optimizatioroappmot al-
ways converges to the global minimum of the cost function. This effect @aexjuence of the
intrinsic ambiguity of the solutions: local minima are likely to be present if additiorfarma-
tion about the 3-D structure of the deforming object is not introduced asopisly discussed
by Xiao et al. in [159]. In order to solve this problem, we will introduce oolution based on
rigidity priors later in chapter 5.

The framework presented here can be easily extended to deal witlkediffgpes of non-rigid
objects (for instance, articulated structures) and of camera models bginbahe cost function
C accordingly. Additionally, prior information and/or regularization terms magdmgly inserted
in the minimization by adding quadratic penalty terms in the same way as those irgdoituc
equation (3.10) to ensure the temporal smoothness of the 3-D reconstsudtitese terms may
help descend towards the global minimum of the cost function and, if applietlys can force
specific priors on the motion and 3-D structure componergs

The expression of the problem as a sum of cost functions for each ipeagfav;; allows us

to deal with missing entries in the measurement matri¥ience, if a point becomes occluded
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at a certain frame (a likely event in a practical scenario), it is still possibpetimrm non-linear
optimization by not including the cost function related to the lost entry in the minimization
Although robust estimation is not an issue of this work, point trajectorietd doave un-
certainty information associated with their covariance matrjxderived from the image point
tracking algorithm. In this case, it would be possible to define optimal estimattee gia-
rameters given the uncertainties by minimizing the Mahalanobis distance ofdldeadjc terms
zf’jp | nij ||(2:ij' The covariance values can be easily included in the estimation and may lead to a
more robust inference.
In the following chapter, the non-rigid factorization framework will be exethto deal with
the information extracted from multiple cameras; a necessary solution whensgrected de-

formable object undergoes minimal rigid motion.
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Chapter 4

Stereo Non-Rigid Factorization

The factorization framework is a flexible tool for modelling data from poirjettories extracted
from uncalibrated video sequences. In the case of deformable oljacaspect of relevant in-
terest is the applicability of the previously described algorithms to the case thbeobject is
viewed by multiple cameras. More specifically, we have formulated the prdioleanstereo rig,
where the two cameras remain fixed relative to each other throughout thenseq In this case
the measurement matrix requires not only the temporal tracks of points in thadefight image
sequences but also the stereo correspondences between lefttarichaige pairs. We have de-
veloped a new method to factorize the measurement matrix into the left and righbmmatrices
and the 3-D non-rigid shape. Note that this method requires both camerassymthronized.
However, if this were not the case, it could be elegantly solved inside aiteation framework
using the solution proposed by Tresadern and Reid [142] for the symigation of stereo video

sequences in an uncalibrated scenario.

4.1 Stereo, motion and structure

Using a calibrated stereo pair is a common and practical solution to obtain re3idblecon-
structions (see figure 4.1). In its simpler formulation, once the stereo ridjlisatad, the depth
of points in the image is estimated by applying triangulation [148]. In order tdrobtxurate
depth estimates, the cameras are usually separated from each otherrifiGasighaseline thus
creating widely spaced observations of the same object. The disadvaitifggeconfiguration

though, is that having a wide baseline makes the matching of features bgiaiegf view a
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X

rel

Figure 4.1: A classic stereo setup. The 3-D pdinis projected into the left and right images
with coordinatesv- andwR. The camera cente@®, andOg are displaced in 3-D with a baseline

d and relatively rotated with a8 3 rotation matrixRg

more challenging problem.

On the other hand, the task of computing temporal tracks from the single azeguences
is relatively easier since the images are closely spaced in time. As a drawlisukrities may
be insufficient to obtain a reliable depth estimation and, as a result, longesrszzs are needed
to infer the 3-D structure. Particularly, in the case of non-rigid structuseifficient overall rigid

motion is necessary to allow the algorithms to correctly estimate the reconstruatammgters.

Hence, a question of relevant interest is the feasibility of an approatleffi@ently fuses
the positive aspects of both methods. The problem of recovering 3-Etstewusing a stereo-rig
moving in time or a stereo rig looking at a moving object has been defined fagttiease as the
stereo-motiorproblem [154, 39, 131, 97] (see figure 4.1). Ho and Chung [73] fimsnulated
this problem within the factorization scenario. Following a similar direction, wedhice a
multi-camera motion model that is able to deal with a time-varying shape and to findaa lin
solution that is subsequently optimized with the non-linear procedure peesenthe previous

chapter.
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Figure 4.2: A stereo motion setup. A point is moving in space and its position ins3sBown
for each time instance a§;, X, andX3. The three points are then projected into the respective
image frames obtaining the image coordinatgs w5 andwj for the left camera and/?, w5
andw§ for the right one. The dotted lines connecting the points represent thér&idatory
in time of the point in the left and right images. Since the position of the camera®ds the
relative orientatiorkre) and camera displacemesibetween the camera centé&s andOR are

considered constants in time.
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4.2 The stereo camera case

The main contribution presented here is to extend the non-rigid factorizatitiodseto the
case of a stereo rig, where the two cameras remain fixed relative to eagttlotbughout the
sequence. However, the same framework could be used in the case mioBeocameras. Torre-
sani et. al. [141] first introduced the factorization problem for the multiplaera case but they

did not provide an algorithm or any experimental results.

4.2.1 The stereo motion model

When two cameras are viewing the same scene, the measurementimdlircontain the image
measurements from the left and right cameras resulting ih:aB matrix whereF is the number
of frames andP the number of points. Assuming that not only the single-frame tracks but also

the stereo correspondences are known we may write the measurementinaatrix
W= (4.1)

where for each framethe stereo correspondences are:
wh=| wL L wR=| wR R (4.2)
] Wll P W|P | Wll “ee W|P

Note that, since we assume that the cameras are synchronized, at eactepimtes left and
right cameras are observing the same 3-D structure and this results inditiersad constraint
that the structure matrix and the deformation coefficierl{g are shared by left and right camera.
The measurement matrikcan be factored into a motion matidand a structure matrig which

take the following form:

|11R,Ii ... |1DRIi
L L S1
IF1R ... |epR
W= F F ; (4.3)
|11R§ ... |1DR§
Sp
||:1RE .. IFDRE

whereR- andRrR are the rotation components for the left and right cameras. Once morewse h
eliminated the translation for both cameras by registering image points to theidenteach

frame.
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Note that the assumption that the deformation coefficients are the same foit tredleight
sequences relies on the fact that the weak perspective sdalifagy must be the same for both
cameras. This assumption is generally true in a symmetric stereo setup WwheoZ,,4 are
usually the same for both cameras.

Itis also possible to express the stereo motion mathy including explicitly the assumption
that a fixed stereo rig is being used. In this case the rotation pair for thanéftight cameras
can be expressed in terms of the matrix that encodes their relative orientaiton Ry such

that: RR = R,iR-. The motion matrix1 in equation (4.3) can be consequently expressed as:

|11R& .. |1DR&
||:1RI|E ||:DRI|E
M= (4.4)
l11RrelRY ... l1pRrelRE
lF1RreiRE ... |FDRrelRE

4.2.2 Non-rigid stereo factorization

Once more the rank of the measurement matiix at most ® sinceM is a 4 x 3D matrix and

S is a D x P matrix, whereP is the number of points. Assuming that the single frame tracks and
the stereo correspondences are all known, the measurement ¥natay be factorized into the
product of a motion matri¥ and a shape matrig by truncating the SVD of to rank D (see

section 2.4.1):

W= —§— 5 (4.5)

Computing the transformation matrix

The result of the factorization is not unique sir{&g)(Q—8) would give an equivalent factoriza-
tion. We proceed to apply the metric constraint in a similar way as was deséoibte single
camera case in section 2.4.4, correcting edelx 8 vertical block init independently. Note that
in this case we have used five constraints per frame: 2 orthogonality @mstfone from each
camera) and 3 equal norm constraints (computed from réwsl122i, 2i + 2F — 1, 2i + 2F of

the motion matrix wherei is a generic frame). Each vertical block will then be corrected as:
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My < MyqQq. The overall transformatio is a block diagonal matrix such that:

@ 0 ... 0
0 Q ... O

a=| @)
0 0 ... Qb

The shape matrix will be corrected with the inverse of the block-diagonadfisemation:S
Q8.
Factorization of the motion matrii

In the stereo case we factorize eack @D sub-block of the motion matrix (which contains left
and right measurements for each frainiato its truncated X 3 rotation matriceg" andrR and
the deformation weightky using orthonormal decomposition. The structure of the sub-blocks
can be expressed as:
My L. Mk R-
' b .. 4.7)
MR MR RR RR
The approach used to estimate the rotation components for the left and aigletras is
similar to the algorithm described in section 2.4.4. Since now we have 4 rowsapese, we

arrange the motion sub-blocks such that:

o re
M—Mi= lip lin (4.8)

e r r
wherert = [rf...r5]" is a column vector which contains the coefficients of the left rotation
matrixR- and similarly forrR. Post-multiplying the rearranged mattixby the 2D unity vector

c=[1...1]T gives a column vectas;:

aj = Mic (4.9)

which may be rearranged into ax43 matrix A; with analytic form:

[ L L L
krip krp kriz

krb,  krk  krk A
i4 i5 i6 _ L (4.10)
kiR kB kr AR

A;

R kR KR
| kriz krig krig
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wherek = li + ... +lip. SinceR"- andRrR are orthonormal matrices, the following equation is

satisfied:

RL O Al o AAT 0
: L _ WL (4.11)

0 R 4x6 0 A% 6x4 0 Ay 4x4
Therefore, a linear least-squares fit can be obtained for the rotatioit@s&r andRg and the
weightslig can be subsequently estimated in a similar way as shown in section 2.4.4. Finally a
minimization scheme similar to the one used by Brand [16] irflbisble factorizatioralgorithm
is applied here (see section 2.4.4).

So far we have presented an extension of non-rigid factorization metbdtie case of a
stereo camera pair. In particular our algorithm follows the approach apnd[16]. While
this new method improves the quality of the 3-D reconstructions with respecbse tlsing a
monocular sequence, it still performs a partial upgrade ofrtbonand3-D structurematrices
sinceq is computed initially as a block diagonal matrix and then corrected with Brdiedible
factorization

In the next section we will describe a non-linear optimization scheme whiatersrthe

appropriate structure to the motion matrix, allowing to properly disambiguate batifve motion

and shape parameters.

4.2.3 Stereo non-linear optimization

An analogous approach as described in section 3.2 is used to refine tha aratistereo compo-
nents estimated from the linear method. Similarly to the monocular case, the otijprogrror

for the stereo rig is defined by rearranging equation (4.4) giving:

xk —RF S liaSai
oy = | T 20l (4.12)
X5 — ReetR[Y g liaSaj
Optimization of the deformable parameters is performed through the minimizatior ab#t

functionC(©) such that:

FP
min  C(@)= min | nij 1% (4.13)
Rrel RN lig Syj Rrel RE lig Sy % N

is the minimization of the sum dfP quadratic cost functions for the left and right cameras.
The initial estimate for the constant relative orientaipmnbetween the left and right cameras
is estimated from the camera matriGgsandRg (see section 4.2.2) using a least squares estima-

tion. Unit quaternions were used again as the parameterisation and thgaorditity constraint
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was enforced by fixing the 4-vector norm to unity such that the solutiocesigaconstrained to
lie on a hypersphere of dimension 4.

If the internal and external calibration of the stereo rig were known imaackr after a process
of calibration or self-calibration, an alternative initialisation could be compbtedecovering
the 3-D structure and performing Principal Component Analysis (PCAtherdata to obtain
an initial estimate for the basis shapes and the coefficients. Howeveraoigeavas to use an

initialisation that does not require a pre-calibration of the cameras.

4.3 Experimental results

This section shows the performance of the proposed stereo-motion atgeriirstly, synthetic
stereo sequences are generated under different Gaussian rbdef@amation conditions to as-
sess the validity of the method. A further synthetic test using a computerigi@h) generated
face model will show the behavior of the configuration weights and motion oapis when the
object in the stereo sequence is static (only deforming). We then carspmd real experiments
where the object underwent only a small amount of rigid motion (apart thremdeformations)
and we will show the improvement of the method by comparing the output of theecntar
factorization and the stereo algorithms. Non-linear optimization will follow the adetplinear

solutions.

4.3.1 Experiments with a synthetic non-rigid cube

A similar setup as the one used in the monocular case (see section 3.4.1) i deatbnstrate
the behavior of the method in the stereo case. A set of deformable poimsiemnéy sampled in-
side a cube of 58 50 x 50 units. A minimal overall rigid motion is introduced to avoid possible
ambiguities arising from a completely static object. The 3-D structure compugaathatframe is
then projected with 2 orthographic cameras displaced by a baseline oft2@nd relatively ro-
tated by 30 degrees about thhaxis. Finally, different levels of Gaussian noige£ 0.5,1,1.5,2)

are added to the measurements obtained by the stereo pair. Notice thatphe setistructed in
such way that the overall rigid motion is not enough to reconstruct theesegs using monocu-
lar factorization followed by bundle adjustment. We performed a test andteéned a relative
3-D reconstruction error of 50% resulting in a meaningless reconstruction

The results show the plots for the relative 3-D error, rotation error apdojection error
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Figure 4.3: Relative 3-D error (%), r.m.s. rotation error (deg) and 2dajection error for the
synthetic experiments with a stereo pair for different basis shdpe3. . .5 and increasing levels
of Gaussian noise. The ratio of non-rigidity is fixed to 40% for all the trialaive orientation

between the cameras is fixed to 30 degrees with a baseline of 20 pixel units.
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Figure 4.4: Relative 3-D error (%), r.m.s. rotation error (in degreed)2ab reprojection error
for the synthetic experiments for different ratios of deformation (10%5,480%, 100%) and

increasing levels of Gaussian noise.

tested over 25 trials with a 3-D shape deforming with different numberssi$ lshapes (figure
4.3) and different degrees of non-rigidity (see figure 4.4) defineatas = % Notice in

this case a higher reconstruction error of the relative 3-D structure a@udo the monocular

case with higher degrees of deformation.

4.3.2 Synthetic experiments with a CG generated face

In this section we have generated a sequence using a synthetic faceomgidelly developed by
Parke et. al. [113]. This is a 3-D model which encodes 18 different lesist the face. Animat-
ing the face model to generate facial expressions is achieved by actaatthg different facial
muscles. In particular we have used a sequence where the head daifoatpany rigid motion,
only deformations a situation where, clearly, monocular algorithms would faibtopute the

correct 3-D shape and motion. The sequence was 125 frames longioitet deforms between
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GROUND TRUTH STEREO BA

Figure 4.5: Front, side and top views of the 3-D synthetic face for framerge first column
shows the shape ground truth while the following two columns present theeg@dhstructions
for the linear and bundle adjustment algorithms. Deformations are presenyimathe mouth

region. Notice that the face does not perform rigid motion for the wholeesszp.

frames 1 and 50, remains static and rigid until frame 100 and deforms oaresgween frames

100 and 125.

Once the model was generated we projected synthetically 160 points evetnilguied on
the face, onto a pair of stereo cameras. The geometry of the cameragohabat both optical
axes were lying on the XZ plane and each pointing inwards by 15 dedgreesefore the relative
orientation of the cameras about the Y axis was 30 degrees and 0 abduatiteZ axes. The
camera model used to project the points was a projective model howeygietting conditions

were such that the relief of the scene was small compared to the overthll dep

We show in the following figures the comparisons between three key fraihtles synthetic
sequence providing the 3-D ground truth and the 3-D reconstructienibddinear and bundle
adjustment algorithms. Figure 4.5 presents a deformation localised in the mgiath a¢ frame
20. A first visual inspection shows that the result obtained by the bumjlestanent have a
qualitative advantage over the stereo linear algorithm. Even if the geneaal shape is close
to the ground truth, only the optimised solution with bundle adjustment can modednydhe
deformations. Frame 70 (see Figure 4.6) shows the synthetic face gtroim) with no defor-
mations appearing. The static pose of the shape permits to compare the SiDedemstructed

by the algorithms. Compared to the ground truth, the shape obtained by tee atgorithm
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GROUND TRUTH STEREO BA

Figure 4.6: Front, side and top views of the 3-D synthetic face for framerfe first column
shows the shape ground truth while the following two columns present thee@dhstructions

for the linear and bundle adjustment algorithms. The shape is completely staii firmathe.

GROUND TRUTH STEREO BA

Towt *
Wt

Figure 4.7: Front, side and top views of the 3-D synthetic face for franbe TBe first column
shows the shape ground truth while the following two columns present thee@dhstructions

for the linear and bundle adjustment algorithms. Deformations are localizee imalith and

cheek regions.
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shows a good frontal reconstruction but it presents a worst estimatite oélief (see side and
top views). The non-linear solution obtains a depth estimate qualitatively dlmskee ground

truth. Finally figure 4.6 presents the reconstruction obtained for framevh2%e the synthetic
face shows consistent deformations in the cheeks and mouth area. figteatgrithm obtains
a reasonable mean 3-D shape but it fails in capturing the deformationaraygpan the ground

truth.

Figure 4.8 shows the results for the estimated rotation angles and configuaiights be-
fore and after the non-linear optimization step. The results after bundistadjnt describe fairly
accurately the geometry of the cameras and the deformation of the facatibufar, the stereo
setup was such that there was no rigid motion of the face (only deformatiendptical axes of
the left and right cameras lay on the XZ plane and the relative rotation oftheras about the
Y axis was constant and equal to 30deg. In this case we have grothd/atues for the rela-
tive orientation of the cameras since the sequence was generated saflithdtiotice how the
values obtained for the rotation angles before bundle adjustment — leftibitesome problems
around frames 10 and 115, when the deformations are occurring. tAédsundle adjustment
step the the relative rotation about the Y axis is estimated with a final resuldefgzsulting in
a 3deg error given the ground truth. The relative orientations abodt émel Z axes are correctly
estimated to 0deg — notice that the graphs for the left and right anglespeemnsposed.

Once more, the estimated values for the deformation weights after bundl¢naeijudave
larger values than before the optimization. This explains the fact that the modeteds to
explain the non-rigid deformations accurately. Interestingly, the coeffiieemain constant

between frames 50 and 110, when no deformations were occurring.

4.3.3 Experiments with real data

Comparison with the monocular solution

In this section we compare the performance of our stereo factorizatiorithlgo- before the

non-linear optimization — with Brand’s single camera non-rigid factorization ndetiMe present

some experimental results obtained with real image sequences taken witltohgyaichronized

Fire-i digital cameras with 4,65mm built in lenses. The stereo setup was saicthéhbaseline
was 20cm and the relative orientation of the cameras was around 30degsefuences of a
human face undergoing rigid motion and flexible deformations were use&MilieE sequence

(82 frames), where the deformation was due to the subject smiling and th8ROW (115
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Figure 4.8: Values obtained for the rigid component (top), deformationhi®igniddle) and

rotation angles (bottom) before (A) and after bundle adjustment (B) fagythhetic sequence.

¢) SMILE sequence: right view

: left view

d) EYEBROW sequence: right view

Figure 4.9: Three images from the left (a) and right (c) views of the Sdkequence and left

(b) and right (d) views of the EYEBROW sequence.
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frames) sequence where the subject was raising and lowering theesgelitigure 4.9 shows 3
frames chosen from the sequences taken with the left and right cameras.

In order to simplify the temporal and stereo matching the subject had somersmpl&eed
on relevant points of the face such as along the eyebrows, the chinehipshA simple colour
model of the markers using HSV components provided the representagdntasgrack each
marker throughout the left and right sequences respectively. Tresteatching was initialized
by hand in the first image pair and then the temporal tracks were used tteupeastereo

matches.

| o *
N % >
\ \ fl
\ A \
< < <

a) Left camera b) Right camera c) Stereo

Figure 4.10: SMILE sequence: Front, side and top views (above, middtegm) of the 3-D

model for the a) left camera, b) right camera and c) stereo setup fob.

Figure 4.10 shows front, side and top views of the 3-D reconstructiotesnelal for the
SMILE sequence. First we applied the single camera factorization algaditheioped by Brand
—described in section 2.4.4 —to the left and right monocular sequencebleWapplied the pro-
posed stereo algorithm to the stereo sequence. In all cases the nuntksakefl points was
P = 31 and the chosen number of basis shapes was heuristically fikee-to.

Figure 4.9c shows how the stereo reconstruction provides improveltsteBle reconstruc-
tions obtained using singularly the information from the left and right sezpgehave worse

depth estimates that can be noticed especially in the side and top views. ®hstrected face
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a) Left camera b) Right camera c) Stereo

Figure 4.11: EYEBROW sequence: Front, side and top views (abovelentmiitom) of the 3-D

model for the a) left camera, b) right camera and c) stereo setup sexpuienD = 5.

is strongly asymmetric especially in the mouth region and the points on the faoraneal-
most belonging to a plane. Differently, after merging the data from bothese@s in the stereo

algorithm, we obtained a symmetric shape and a satisfactory curvature oféhead.

Figure 4.12(A) shows the front, side and top views of the 3-D reconainsobtained for
frames 16, 58 and 81 of the SMILE sequence. While the 3-D shape rapjpeiae well recon-
structed, the deformations are not entirely well modelled. Note how the smilam®e 58 is not
well captured. This was caused by the final regularization step prdgnsBrand described in
section 4.2.2. We found that while this regularization step is essential to olmtathegtimates
for the rotation parameters it fails to capture the full deformations in the modhés. i due to
the fact that the assumption is that the deformations should be small relative reetim shape
so that most of the image motion is explained by the rigid component which resulisdara
description of the deformations. However, we will see in the following sed¢hanhthe bundle
adjustment step resolves the ambiguity between motion and shape parameéteuse@aeds in

modelling the non-rigid deformations.

Figure 4.11 shows the 3-D reconstructions obtained for the EYEBROWeseg. Once

more, the single camera factorization algorithm was applied to the left andseglaences and
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Figure 4.12: Front, side and top views of the reconstructed face forNHeESsequence using
the stereo algorithm (left) and after bundle adjustment (right). Recotistnscare shown for

frames 16, 56 and 81 of the sequence.

the stereo algorithm was then applied to the stereo sequence. In this cedqoer8-D model
obtained using stereo factorization is significantly better than the ones abtaitiethe left and
right sequences. In fact, the left and right reconstructions hawepaor quality, particularly
the depth estimates. The points belonging to the nose, mouth and chin are dknast(pee
side view) while the ones on the forehead have a particularly wrong defithage (see top
view). Note that there was less rigid motion in this sequence and therefosintjle camera
factorization algorithm is not capable of recovering correct 3-D infaionavhereas the stereo

algorithm provides a good deformable model.

Results after non-linear optimization

In this section we show the results obtained after the final non-linear optinmzap.

Figure 4.12 shows the front, side and top views of the 3-D reconstrudiiefiose and after
the bundle adjustment step for three frames of the SMILE seqlieriiee initial estimate is
shown on the left and the results after bundle adjustment are shown agtthé/Xhile the initial

estimate recovers the correct 3-D shape, the deformations on the &acetavell modelled.

Lvideo available at http://www.bmva.ac.uk/thesigshive/2006/DelBuel/index.html
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Figure 4.13: Values obtained for the rigid component (top), deformatiaghtse(middle) and

rotation angles (bottom) before (A) and after bundle adjustment (B) fdB ki E sequence

However, bundle adjustment succeeds to capture the flexible structotee how the upper lip

is curved first and then straightened.

Figure 4.13 shows the results obtained for the estimated motion parametemnfigdration
weights using the initial stereo factorization method and the improved resultbafiéle adjust-
ment. The bottom graphs show the rotation angles about the X, Y and Zeo@gred for each
frame of the sequence for the left and right cameras (up to an ovetatilorg). The recovered
angles for the left and right camera after bundle adjustment reflecinadryhe geometry of the
stereo camera setup. This was such that both optical axes lay approxioratbly XZ plane —
therefore there was no relative rotation between the cameras about the X axes — and the
relative rotation about the Y axis was about 15deg. Note that these \@eie®t ground truth
and only approximate as they were not measured accurately. Also notedhatation matrices
for the right camera are calculatedRis= R,e|R- WhereR,e is the estimated relative orientation.
Figure 4.13(B) shows how the estimates of the rotations about the X andsZ(iaxelue and
green) for the left and right views are close to being zero. The reladtegion between left and

right cameras about the Y axis (in red) is closer to 15deg after bundlstauat than before.
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Figure 4.13 also shows the evolution throughout the sequence of the wdltee configura-
tion weights associated with the mean component (top) and the 4 modes ahdtéor (middle).
The values appear to be larger after bundle adjustment confirming thaditHénear optimiza-
tion step has achieved to model the deformations of the face. It is also tinigraEsnote how
the first mode of deformation experiences a big change starting arcameé #0 until frame 75.

This coincides with the moment where the subject started and finished the spriégssirn.

4.4 Summary

A stereo-motion approach has been presented with the aim to reconsgWittshape of a
deformable object using image sequences extracted from a sterecAgaidr.result, the non-
rigid factorization framework has been accordingly updated to accommtidat®nstraint that
trajectories in the left and right camera refer to the same 3-D object.

By construction, the method fuses naturally the advantages of motion aed afgsroaches.
A global solution for the time varying motion and 3-D structure is obtained froeninfiage
tracks without any prior calibration of the stereo pairs. Widely separatrdasviews allow
a more reliable estimation of motion and deformation parameters even in the eludergid
motion of the object.

Additionally, non-linear optimization, as presented in the previous chaptperfsrmed to

obtain the correct replicated structureMinResults show a relevant improvement in the motion

and structure estimates and thus the optimization stage is strongly recommendsgditioao
correct solution.

The main assumptions of our method are that the cameras must be syndahamizetereo
matches be available. Synchronization can be enforced using the medsethied in [142] but
nowadays it is common to obtain synchronized video from stereo cametaseoSnatching

could be tackled by extending current techniques [73, 110] to deal wathdh-rigid case.
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Chapter 5

Deformable modelling under affine viewing

conditions using shape priors

Deformable 3-D shape recovery is an inherently ambiguous problemn @igpecific rigid mo-
tion, different non-rigid shapes could be found that fit the measurenmmolve this ambiguity
prior knowledge about the shape and motion should be used to constraiolttien. We base
our approach [35] on the observation that often not all the points on émawd deforming
surface — such as a human face — are undergoing non-rigid motion. Sdheepwints are fre-
quently on rigid parts of the structure — for instance the nose — while otheos litzformable
areas. First we develop a segmentation algorithm to separate rigid arrijitomotion. Once

this segmentation is available, the rigid points can be used to estimate the ovetatigtgpn and

to constrain the underlying mean shape. We propose two reconstructoittatgs and show that
improved 3-D deformable models can be obtained from priors on the slyapsirgy synthetic

and real data.

5.1 Motivation

A main issue of factorization approaches for deformable structure stemstfre fact that de-
formation and motion are ambiguous. Intuitively, imagine a deforming object likleeat of
paper floating in the air or a tree bending by the blowing wind; the conceptetbn and de-
formation are not clearly defined if a notion of global motion is not speciflénk deformations

that appear in a non-rigid object can be defined as the deviation of tipe $ifwan the global
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motion. This observation is supported by recent studies on the notion of sivarage by Yezzi
and Soatto [164] where the authors precisely separate motion and deéform@mponents for

robust matching, registering and tracking of deformable objects. Imgn®@slts are obtained
by explicitly defining the mean component of the object first and then calcgldgéformations

in an active contours domain.

Our approach is slightly different, we realize that the rigid component ddtitueture carries
useful information about the overall non-rigid shape. Our main assumigtithat some of the
points are frequently on rigid parts of the structure while others lie on ohefole areas. For
the set of rigid points, multi-frame rigidity constraints hold [150] and thesebesayppropriately
enforced in reconstruction algorithms to obtain reliable camera motion estimateke@ther
hand, if a rigid 3-D structure is correctly identified, the rigid points can leelus constrain the
underlying mean shape. The deformations can then be estimated as Idatibdevfrom this
mean shape in a further refinement step.

The approach introduced in this chapter requires an initial informationargrer which of
the point trajectories stored in the measurement métere rigid and which non-rigid. Notice
that, similar priors were required to obtain an exact solution for the casdep@ndently moving
(section 2.3.1) and articulated objects (section 2.3.2), where trajectoloegy g to the different
parts of the object have to be identified to obtain a proper reconstructiars, We first need to
introduce methods and techniques to perform a reliable segmentation otnagéatories into
rigid and non-rigid components.

Once the points have been segmented into the rigid and non-rigid sets werrdwm over-
all rigid motion from the rigid set and we formalise the problem of non-rigidoshestimation
as a constrained minimization adding priors on the degree of deformabilitycbfpaznt. We
perform experiments on synthetic and real data which validate the appapaicshow that the
addition of priors on the rigidity of some of the points improves the motion estimatkthard-D

reconstruction.

5.2 Motion segmentation from image trajectories: previous wrk for rigid scenes

The assumption that a scene observed by a camera contains a single jagidi®loften not
realistic. For instance, when both the camera and the observed objeabwre, the motion of

the background (usually degenerate since most often it can be apptediasa planar object)
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and the one of the inspected object represent two distinguishable visegl Similarly, often

there will be more than one independently moving object in the scene (fonagsta traffic scene
containing different vehicles). In these cases it is crucial to be ablegioesat the trajectories
belonging to the respective object so that exact reconstructions caridiaed.

A first approach to segmentigjpurely rotating objects was given by Boult and Brown [14]
using bi-partite graphs to cluster the image trajectories. Starting from areetfestimate of the
rank robust to noise, the method performs a rank-constrained SVD ongagurement matrix
givingw =UzV' and assigning points to motion clusters by selecting the most significant columns
of VT. The process is repeated iteratively until Meets of rank-3 measurements are successfully
detected. Motion dependencies and degeneracies are not explicitly ndastetleese could affect
the convergence of the method.

Costeira and Kanade [30] first proposed the use ofhape interaction matrig, defined as
G = VV' whereV is the matrix of right singular vectors. In the presence of independent nsotio
and noiseless data the following condition for the matrbolds:

1 if trajectoriesmandn correspond to the same motion
Gmn= (5-1)

0 otherwise

wherem=1...P andn=1...P with P being the number of trajectories. Hence, each element
Gmn specifies whether a pair of trajectories belongs to the same motion or not.veipuwethe
presence of noise the conditions in equation (5.1) will not be satisfiedlygx@cproof of the
properties of; is given by Kanatani [85] using the properties of independent motiorspabes.
A procedure that optimizes the energy of the entries igsfused by Costeira and Kanade [29] to
cluster theN sets of trajectories such that the matiis block diagonal (see figure 5.1). Neither
a priori knowledge of the number of shapes nor an estimate of the raniuged. A known
drawback [76] of this method is that noise and outliers affecting the measate modify the
conditions in equation (5.1). In this case, the approach is likely to obtain-agstirdnal solution.
Motion dependencies [166] are also a known weakness of the apyfoat explicitly modelled.

In order to improve the performance under noise conditions, Ichimufgpfo®osed a dis-
criminant criterion that drives the clustering by choosing the trajectories tivithmost useful
information for grouping. The approach relies on an initial computation oliage interaction
matrix. This may lead to inaccurate application of the discriminant criterion if the estingated

unreliable. However, the overall performance of the algorithm is supesimpared to Costeira
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N; +N, N, N,

(@) (b)

Figure 5.1: Example ofhape interaction matrixc obtained from two Kl = 2) rigid objects

with P, = 5 andP, = 3. A dark square represents a pair of trajectories belonging to the same
motion. Figure (a) represents a spakghat is given before ordering of the trajectories into the
two clusters of independent motions. Figure (b) shewafter computing the permutation which
arranges the measurement matrix suchithat[ws|W2] with w; andw, containing the trajectories

for the first and second object respectively.

and Kanade’s approach.

Wau et al. [158] initially compute an approximated over-segmentation of the nuoflrele-
pendent motions using Ichimura’s method. The method then computes addiaste measure
for the points belonging to each object based on the orthogonality prapefttbe sub-spaces
of the independent shapes and it reduces the over segmented motionsdoréoe number of
sets. As a result, the metric proposed is robust to the noise distribution senoettiogonality

condition between sub-spaces still holds with corrupted data.

Kanatani [83] drops the concept of thbape interaction matriin favor of directly fitting
the trajectories taken from the independent objects to the related suisspdodel selection
[84] is used to infer the number of independent motions and outlier reject®8] ftrengthens
the approach in the case of outlying image trajectories. The estimation ofedifferotions is
performed in a framework similar to the Expectation-Maximization (EM) algorithdy ghus, it
is prone to local solutions. The method, however, is inserted in a soundistfimmework with
particular robustness to noise. A further improvement introduced byyauayad Kanatani [135]

permits to deal with degeneracies given 2-D planar motions in the sceneppkoagh using
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the EM algorithm is also presented in the work of Gruber and Weiss [S4temMaetorization
is formulated as a factor analysis problem [53] with the interesting possibilityroing known
priors over the motion and structure components of the objects.

Of broader applicability, the approach of Vidal and Hartley [152] mayditadvith motion
degeneracies and missing entries in the measurement matrix using a combined wittlgen-
eralized principal component analysis (GPCA) [153] and Powerfaeiiion [66]. Briefly, an
initial rank-5 decomposition of is performed via Powerfactorization that allows to deal with
missing data. This initial decomposition preserves the structure of the moticersliwghile
reducing the dimensionality of the problem. Motion sub-spaces are then fittied w-degree
polynomial over the decomposed set of trajectories using least-sqUzP€3A). Spectral clus-
tering [155] is finally applied over a similarity matrix constructed over the diffiéiation of the
5-degrees polynomial. Validation over synthetic experiments is not presbatehe algorithm
can deal successfully with degenerate and independent motion for reeesu matrices with
up to 30% of missing entries. Notice that a known drawback is that the GPCAodwtteed a
number trajectories that grows exponentially with the number of motions.

Specifically designed for articulated structures (see section 2.3.2), phneaah of Yan and
Pollefeys [162] separates dependent motions connected by joints.ndthiod (with some simi-
larities to the algorithm we propose in section 6.4.1) employs RANdom SAmplee@sus [46]
(RANSAC) to assign the trajectories to each articulated part. Given themamdture of the
algorithm, a sampling prior is assigned to increase the chance of selectingpiairage trajec-
tories that are most likely to belong to the same group. The sampling prior is ¢tedpith
a distance measure obtained from #irape interaction matriof the articulated object. Given
the known sensitivity of thehape interaction matrito image noise, this approach could lead to

inaccuracies in the computation of the prior.

5.3 Rigid and non-rigid motion segmentation

We now consider the problem of segmenting the rigid and non-rigid motionin§esieforming
shape which contains a sub-set of rigid points. In this case, the image tragsctomposing the
measurement matrix are given by two contributions: the overall rotation and translation which
the object is globally undergoing and the local deformations of eachig@hpoint. Both sets

of rigid and non-rigid points share the same rigid transformation and coasdy this renders
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the straight application of the algorithms for independent motion segmentagearged in the
last section less effective.

For instance, if we consider Kanatani’'s sub-space technique [83hétion segmentation,
the aim would be to assign every rigid trajectory to a sub-space of dimensiod e non-rigid
trajectories to a sub-space of dimensidh However, the rigid points could be understood as
non-rigid points with only one basis shape, and therefore the sub-fmatte non-rigid points
would completely include the one for the rigid points. Thus, the method wouldtteddssify
every trajectory as being non-rigid. To the best of our knowledge tkare other work able to

separate rigid and non-rigid trajectories belonging to a single object.

5.3.1 Our approach

Our approach instead consists in the application of a sub-set selectiondnuegttioe non-rigid
component of the point trajectories encoded in the measurement mag8ix-set selection is a
technique commonly used in feature selection problems where a groufguwifes extracted to
obtain a robust solution to a particular estimation problem [80].

Under the factorization framework, features are represented by thejeipwint trajectories
stored inW. Our goal is to find the set of features whose motion can be modelled exsetiygid
motion. In this case we formulate the segmentation problem as finding a sabtsgectories

Wrigia Within the measurement matrix such that the following condition is satisfied:
rank(wrigid) =3. (5.2)

The segmentation algorithm followsaquential backward selection stratdg§8] by initially
considering all the trajectories in the measurement matrix and iteratively detaimdy one
those which are contributing most to the rank of the matrix, i.e., the points thititetkie most
non-rigid motion. As the stop criterion for the classification task, we computesttie of the
measurement matrix of the remaining points which will become 3 when only the rigéttories
are left.

Obviously the rank of the rigid points will not be exactly equal to 3 in the pres®f noise
as it can be observed in figure 5.2. Instead, we have used an automatixnetietermine the
deformability index of a set of trajectories described in the work of Royw@inury [126]. This
method estimates the value Bf— the number of basis shapes needed to describe the non-rigid

motion — automatically in a non-iterative way.
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Figure 5.2: The plots show the values of the singular values ordered ¢ertiding order and
extracted from different measurement matrices containing rigid pointstedfdoy noise. The
rigid points are extracted from a face (left) and a deforming box (right)cofpletely rigid

object has a rank-3 measurement matrix (i.e. the fourth singular valueastequero). Denoise
techniques are necessary to remove the noise component so that #3sc@rkition can be used

to detect measurements belonging to a rigid object.

5.3.2 Estimation of the degree of deformability

The approach is based on a reinterpretation of the deformable factamipatiblem in a stochas-
tic framework. In this way, provided a statistic description of the noise ptirrg the image
measurements, it is possible to compute a whitened measurement matrix fromtiéhiciiue
of the rank and, thus, the number of basis shapes can be extracted.

In more detail, the image coordinates for a franage first arranged into aP2vector such
thaty; = [Ui1,...,Up,Vi1,...,Vip]T. Now the projection of the deformable points onto the image

plane may be expressed as:

S1 O

Sp O
yiT:miTSZ IilRi(l) IiDRi(l) IilRi(Z) IiDRi(Z) (5.3)

0 51

0 Sp

with s containing the re-arranged6x 2P structure matrix.Ri(l) and Ri(z) denote respectively
the first and second row of the orthographic camera matratranged in the R-vectorm;. The

noise componemt; is considered additive and obtained from a zero-mean random privess
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g =mls+n;.
As a further step, the method computes tRe<2P correlation matrix for each image trajec-
tory such that:
Cy = 1 iyiyiT =s' <1 immf) s+ Cn (5.4)
F £ F £
wherecCy, is the covariance of the noise affecting the measurements. An exact estindateso
required which can be inferred from the measurement process thaistita image coordinates
stored inW (for instance such information can be obtained from a point trackingittigosuch
as the Kanade-Lucas-Tomasi (KLT) tracker [128]).
In the case of no noise, the correlation maitixhas a rank equal todd However, the
additive contribution oft, increases the overall rank by an unknown value. The problem is to
find a transformation which can remove the contribution of the noise. Ir todad a solution,

the noise covariance is firstly diagonalised using SVD:
. |
Ch =ULU (5.5)

where the matrit hasL non-zero diagonal elements with> 6D. It is possible to compute the

rank reduced factors fd, such that:
Cn = Upul ZLxL ﬁgpr (5.6)
The noise can then be transformed into an independent and identicallydisdri@lD) process
by pre-multiplying equation (5.3) with the factéfl)f%) o giving:
gy = (6%%) CmTs+ (ﬁi%)_lni — M s+ A (5.7)
Therefore, the correlation for the transformed coordingités given by:

leoor_ [l o1
Cy_Ei;y.yi =s (Fi;m.mi s+1I (5.8)

wherel is aL x L identity matrix. After applying SVD oy, it can be observed that the number
of basis shapeb can be obtained simply by counting the number of singular values over 1 and

dividing the result by 6:

D_ number of singular values 1
N 6

This method provides a fixed threshold for comparing the singular valudeahatrix to

(5.9)

determine the deformability indé. For the case of a 3-D rigid body the deformability ind2x
is equal to 1 while in the case of a non-rigid body the indeR is 1, therefore this provides a

good selection criterion to separate both sets of trajectories in the prexfenmse.
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5.3.3 The complete segmentation algorithm

Our approach uses the deformability index measure described in theyseéotion as a stop-
ping criteria to detect when the set of points gives an irdex 1, meaning that the remaining

points are rigid. The complete algorithm is detailed below:

e |nitialize Wrigid = W
e Determine the initial deformability indeR for Wigig

1. Computenyigig ~ Uzv' with SVD and truncate to rankCB

2. Defines = £/2yT

3. Extract the non-rigid component of the shape meﬁ@%,l)xp = [ S ... % }
where eacFISj is a 3D — 1) x 1 vector which contains the 3-D coordinates of jHe

3-D point associated to tHe — 1 non-rigid bases such that:

Sij
S >
Sj = .J and éj =
Soj
| Soj |
4. Determine the maximum vector nor&:= max{|| S|, ... ,||Sp||}.

5. Remove the selected trajectdryrom Wgig and determine the new deformability

indexD.
6. If D = 1 stop the iteration.

7. Else, goto step 1.

Algorithm 1.

We have obtained successful rigid and non-rigid motion segmentationsntimetig sequences
using this algorithm. The results will be discussed in the experimental sectiote thiat the
method converges to the right solution only if there is a unique set of rigidgsirch that
D = 1. In the case where different groups of features satisfy the ramdtitian (for instance, in

the case of multiple or articulated objects) the algorithm could converge to treset.
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5.4 The proposed shape prior

Once we have segmented the scene into rigid and non-rigid points, we edmeuisformation
on the rigidity of the points to constrain the shape estimation. First we definetiséraints that
arise based on the observation that a generic shape is composed byitbitigferent degrees
of deformation. Kim and Hong [87] defined tkegree of non-rigidityf a point as its degree of
deviation from the average shape to classify points into three classes:négidrigid and non-
rigid (for a more detailed description refer to section 6.4.1). Based on thisureethey proposed
a method to estimate average shape using the degree of non-rigidity to weigiurtiibution
of each point in an iterative certainty re-weighted factorization schemeoritrast, we use the
knowledge that some points of the scene are rigid to construct specific diaestraints which

will in turn eliminate the inherent ambiguities present in non-rigid shape estimation.

5.4.1 Rigidity constraint

Definition (rigid point). If the motion of a point j is completely rigid for the entire sequence,
the structure referring to the point can be expressed entirely by the &gss D= 1) called the
rigid basis

It follows from this definition that a completely rigid poiptis entirely parameterized by:
Sj = (5.10)

whereS; is a 3-vector which contains 3-D coordinates of the rigid componend&d 3D —1)
vector of zeros. Following the segmentation of the scene into rigid andigishpoints, it is
possible to re-order the measurement matrix by defining the permutation matroh that:

[11R1 ... lipR1
. i Srigid Snonrigid
WP = [ Wrigid ‘ Wnonrigid } = : : (5.11)
0
leiRE ... |epRe

wheresyigig is a 3x r matrix containing the 3-D coordinates of theigid points, Sponrigid IS a
3D x (P —r) matrix containing the 3-D coordinates of tBebasis shapes for th@ —r) de-
formable points and is a 3D — 1) x r matrix of zeros.

Notice that it is now possible to apply Tomasi and Kanade's rigid factorizatiothe mea-

surement matrix containing the image trajectories of the rigid paigg and decompose it into
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the motion and rigid structure components as:

R1
Wigid = | * | Srigid (5.12)
RF
obtaining an initial solution for the orthographic camera matrices for eaatefeand for the 3-D

rigid component of the structure.

5.5 Non-rigid shape and motion estimation using shape pri&

In this section we solve for the non-rigid shape and motion given the 2-D irtvagks and
incorporating the above constraint on the automatically segmented rigid p@uatsapproach
is to minimize image reprojection error subject to the rigidity of the non-deformaiigtg. The

cost function being minimised is:

D
= i — Xii 2— i — (Rj ligS 2 5.13
X %HWJ Xij | %HWJ ( :Eld d) | (5.13)

wherew;; are the measured image points adthe estimated image points. We propose two
alternative solutions to this constrained minimization: a linear alternate leasescaaproach
which incorporates the rigidity constraints using Generalised Singular Zaemposition and

a fully non-linear minimization scheme using priors on the rigid shape paranietekdaximum

A Posteriori estimation.

5.5.1 Linear equality-constrained least squares

First we propose an alternating least squares scheme to minimize the oc#brfuttescribed
in equation (5.13). The algorithm alternates between solving for the bageshand for the
configuration weights;qy. Note that the algorithm does not solve for the overall rigid motion
encoded in the rotation matric@ssince these are calculated before hand by running the rigid
factorization algorithm of Tomasi and Kanade on the segmented rigid poihéscdnfiguration

weights are initialised to random values. The scheme can be summarisedws:follo

1. Giveng; andljq equation (2.36) can be used to estimatmearly subject to the constraint
ép = 0 for p € Q with Q being the set of points considered to be rigid throughout the

sequence.

2. Giveng; ands solve for alll;y using linear least-squares.



112 Chapter 5. Deformable modelling under affine viewing conditions usingesheors
3. lterate the above two steps until convergence.

Rearranging equation (5.11) the problem of solving¥subject to the rigidity constraint can be

expressed as an unconstrained least squares system of the form:

2

A b
min X— (5.14)
AC Ad

whereA encodes the linear equatiogghe linear constraints ariandd are the known observa-
tions. It can be shown [51] that far— oo the final solution lies on the surface defineddxy= d

and thus we obtain a linear equality-constrained least squares (LS#¢ipro
min || Ax—b ||? (5.15)

subject to:

cx=d (5.16)

In our specific casex alternatively represents the parameters for the 3-D basis shapes)(step 1
or the configuration weights (step 2),is the matrix of linear equations given the previously
estimated rigid motion componentsthe known observations i.e., the rearranged measurement
matrix entries. The matrig encodes the linear constraints that enforce the non-rigid component
of the basis shapéﬁ being equal to zero.

A method to solve the above LSE problem is to directly factorize haihdC using Gener-

alized Singular Value Decomposition (GSVD) (see [58] for details).

5.5.2 Bundle adjustment using priors

An alternative approach to minimize the deformable cost function in equatid®)(& given by
non-linear optimization. One of the main advantages of performing a priaresggtion of rigid
and non-rigid motion is firstly that the rigid motion (estimates of the rotation matRLean

be pre-computed by performing rigid factorization on the rigid points. Thisides a reliable
initial estimate for the rotation parameters which, coupled with the priors on thelgape, help
solve the ambiguities.

The camera parametegsat each frameéare then used to infer the mean basis component of
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the deformable points such that:

+
R1

Sirrr) - Sip | =] Wnonrigid (5.17)
RF
whereS, ;4 is the 3-vector which contains the coordinates of the rigid basis for thenbirst
rigid point (note that there ar@ — r) non-rigid points). Finally, the deformable components of
the structure (configuration weights and 3-D basis) are initialised to smatbawdm values as

already shown in section 3.4.2.

5.5.3 Forcing the prior

Our prior expectation is that a poiptdetected as being rigid will have a zero non-rigid compo-

nent and can therefore be modelled entirely by the first basis shape:

Sij Sij
S 0
B T
whereS; = [ sgj SB,- } . Therefore our expected prior value of the coordinates of the

non-rigid baseéj is zero in this case. For every rigid point in the scene we model the distribution
of 5 as a Gaussian with a small variance and solve the problem as a Maximum Aidtoste
estimation (MAP).

An alternative solution would have been to explicitly parameterise the pointsagtilythe
rigid component by completely removing in the minimisation the non-rigid bﬁﬁeblowever,
we expect that the algorithm providing the motion segmentation may be inaccur#tés case
a hard decision given by the complete elimination of the non-rigid bases prarfa the rigid
points can negatively affect the estimation process since, in the caseond \priors, we are
trying to infer the wrong model. Differently, a prior enforced as a penaliy tean account of

inaccuracies in the priors computation as we have shown in section 6.5.3.

5.6 Results

We show results for the proposed segmentation algorithm and the deforBaBldéape estima-
tion with both linear and non-linear approaches. Synthetic experimentseated especially to

test the performance of the algorithms with different ratios of rigid/non-nogithts. The real
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(@) (b) (©) (d) (e)

Figure 5.3: Synthetic sequence. Example of ground truth of the 3-D shiéip@ rigid points

(vertices of the cube) and (a) 8, (b) 16, (c) 32, (d) 64 and (e) b28rigid points.

experiments focus on face modelling: a set of trajectories is extractedarsubject perform-
ing different facial expressions and then subsequently reconsiruitie the non-linear method

using priors.

5.6.1 Synthetic data

The synthetic 3-D data consisted of a set of random points sampled insideatsize 56
50x 50 units. Five sequences were generated with 8, 16, 32, 64 and a28jtpoints sampled
inside the cube. Each sequence also included 8 rigid points (the vertitesafbe). Figure 5.3
shows the 3-D data used in each of the five sequences with the rigid poired jgarfor display
purposes. Our aim is to show the performance of our approach uiifigedt degrees of non-
rigidity. The deformations for the non-rigid points were generated usindgam basis shapes
as well as random deformation weights. Two basis shapes were useleaficst basis shape
had the assigned configuration weight equal to 1. The data was therdrateteranslated over
25 frames and projected onto the images using an orthographic camera andd&laussian
noise was added to the image coordinates. The overall rotation aboukianyas 90 degrees

at most and the ratio of the norm of the non-rigid and rigid points of the 3-Diengfrapes

ratio = [jrmanl was fixed to 40%.

Rigid and non-rigid motion segmentation

Figure 5.4 shows results of the motion segmentation algorithm on a sequénge uigid and
32 non-rigid points. The Gaussian noise level for this particular expetimenset to be = 1.5

pixels. The algorithm iteratively classifies points according to the curanewofD as shown in
Algorithm 1. The—y axis of the graph shows the current value of the deformation ikdard
the —x axis represents the number of iterations. The first 32 iterations remowegidpoints as

the deformability inde)D of the remaining set of points is consistently close to 2. When tffe 33



5.6. Results 115

N
N 43}

Deformability Index
P
(5]

0 4 8 12 16 20 24 28 32 36 40
Iteration number
Figure 5.4: Deformability index for the automatic segmentation experiment. &phghows

its sudden decrease upon iteration number 33 which corresponds tdettt@oseof the first rigid

point.

iteration is reached, a rigid point is selected and one can observe ansthigein the value of
D to 1.5 which then tends to 1. This is the cut-off point and the 8 remaining pointsoarectly
classified as being rigid.

In order to test the algorithm exhaustively, we performed 1000 trialsgoh eonfiguration
when we varied the ratio of rigid/non-rigid points and used 5 different lef/&aussian noise
(062=0, 05, 1, 15, 2 pixels). Results showing the number of misclassified points are disprayed
table 5.1. The values refer to the mean number of misclassified points whBr=Hestopping
condition becomes true. Notice that the algorithm achieves very low misclassificates (a
maximum of 1 rigid point misclassified as non-rigid) until the trial with 64 non-rigidchts and
8 rigid points. For this ratio of rigid/non-rigid points we found the algorithm ibféa levels of
noise of 15 pixels and above (indicated with a cross in the table) since the given tidesas

terminating the iterations prematurely.

3-D reconstruction

We have tested three reconstruction algorithms: the linear GSVD methodgehadfjdstment
without priors (MLE) and bundle-adjustment incorporating priors on ti® Sructure (MAP).

Figure 5.5 shows the relative 3-D reconstruction error, absolute rotation and 2-D image
reprojection error using each of the 3 algorithms, for varying ratios @f/rign-rigid scene points
and different levels of image noise. It becomes clear that GSVD and M#gdorm MLE thus

showing the improved performance when prior information on the shapedgioiated. In fact
the GSVD and MAP error curves appear superimposed which showththatonverge to the

same solution, with the main observable difference being the higher speedvafrgence for the
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Noise
Rigid
Non-rigid || 0 | 0.5 1 15 2
8/8 0 0 0.325| 0.356 | 0.313
8/16 0| 0.902| 0.933| 0.989 | 0.993
8/32 0 0 0.557 | 0.999 1
8/64 0| 0.981| 0.976 X X

Table 5.1: Mean number of misclassified rigid points on 1000 trials for theremgsts with 8

rigid points and varying number of non-rigid points {8, 32,64). A cross indicates a failure of

the algorithm to classify the rigid set of points.

-©-8points GSVD  -©- 8 points MLE  -©- 8 points MAP
—%—16 points GSVD - - 16 points MLE -X- 16 points MAP
—5-32 points GSVD  -13- 32 points MLE -EJ- 32 points MAP
~A-64 points GSVD  -#A- 64 points MLE A 64 points MAP
—$—128 points GSVD -~ 128 points MLE -¢)- 128 points MAP
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Figure 5.5: Relative 3-D error (%), r.m.s. rotation error (in degrees$Pa reprojection error (in

pixels) for the synthetic experiments for different ratios of rigid/non-rigiéhts and increasing

levels of Gaussian noise.
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-©-3 basis GSVD -© 3 basis MLE {9-3 basis MAP
—¢4 basis GSVD -X- 4 basis MLE %4 basis MAP
-5-5 basis GSVD -E} 5 basis MLE 135 basis MAP

7]

IS

w
X

2D error (pixels)

Relative 3D error (%)
N

Rotation error (degrees)

H
%e

25 3

05 25 3 0.5

15 15
Noise Noise

3-D Error Rotation Error 2-D Error
Figure 5.6: Relative 3-D error (%), r.m.s. rotation error (deg) and 2{ajection error for the
synthetic experiments for different numbers of basis shapes and shigdavels of Gaussian

noise.

MAP approach. Note that the MLE approach is not able to compute a t8ri2ceconstruction
even for the noiseless case showing that the added priors are fundhtoeavoid local minima
given by ambiguous configurations of motion and deformation parameters.

The number of basis shapes was then varieg @, 4 and 5) to test the performance of the
algorithm with respect to this parameter. Figure 5.6 shows the 2-D imag€geetioa error,
relative 3-D reconstruction error and absolute rotation error obtained ®&%D, MLE and
MAP. As expected, the error increases with the number of basis shapeli 8 algorithms.
Once more GSVD and MAP have almost identical performance and proeitier besults than

MLE.

5.6.2 More realistic data

In this experimerit we use real 3-D data of a human face undergoing rigid motion — mainly
rotation — while performing different facial expressions. The 3-D dada waptured using a
VICON motion capture system by tracking the subject wearing 37 markeéredace. Figure 5.7
(a) shows four key-frames showing the range of deformations of s@pressions in the tested
sequence.

The 3-D points were then projected synthetically onto an image sequendeagids long
using an orthographic camera model and Gaussian noise of vagaad®5 pixels was added

to the image coordinates. In this case the segmentation of points into rigid afifitbeets

Lvideo available at http://www.bmva.ac.uk/thesishive/2006/DelBuel/index.html
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(@) (b)

Figure 5.7: (a) The four frames show a few facial expressions peé by the subject. A VI-
CON motion capture system extracts the 3-D locations from the markers attacte subject’s
face (b) Face points used in the real experiment. Points connected witlfrarites show the

selected rigid points located on the nose, temples and side of the face.

was done manually. Figure 5.7 (b) shows a frontal view of the face wher&4 rigid points —

situated on the nose, temples and the side of the face — are connected wittamies.

Figure 5.8 shows the ground truth and reconstructed shape from $idaetand top views
using the bundle adjustment algorithm incorporating rigidity priors on thedadorming points.
The deformations are very well captured by the model even for the framgkich the facial

expressions are more exaggerated.

5.7 Closure

The proposed formulation with shape priors relies on the presence tbé @aints on the de-
forming surface that are only undergoing rigid motion. The priors may hetoacted by simply
selecting manually the rigid points lying on the object or by automatically findingahegpwith

the motion segmentation algorithm provided in section 5.3. Given a reliableasigmanf rigid

and non-rigid motion, our approach follows with an initial estimation of the rigidponents of
the 3-D structure and camera motion exclusively from the rigid trajectoriegpplying Tomasi
and Kanade factorization [139]. Notice that at this stage, robust algwsitbr rigid factorization

such as [1, 78] may be also applied to deliver more accurate reconstisictio
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Figure 5.8: Front, side and top views of the ground truth and recongtréete with priors.

Reconstructions are shown for frames 1, 167, 273 and 310.
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We then propose to use the extracted rigid component as a strong stgpestimating
the remaining 3-D deformable structure by designing two different algoritiinstly, the non-
rigid parameters are estimated using an alternating equality constrainedjeasgssestimation
over the configuration weights and non-rigid 3-D structure componerite Weping fixed the

orthographic camera parameters previously estimated with the rigid factomizatio

Secondly, we include the prior information in the non-linear optimization framieywce-
sented in chapter 3. The problem is reformulated as the minimization of a namn-tiost func-
tion and, thus, it requires an initialisation close to the global minimum for the rigichan-rigid
parameters of the model. This is reasonably provided by the estimation of ith@aigameters
given from the detected rigid points as shown in our experimental sectios. also evident
that the introduction of the priors as penalty terms in the cost function giveuag results

compared to MLE estimation.

The whole approach relies on the extraction of rigid motion from the image toaes stored
in W. To support the detection of these points, we have introduced a specifiodnfor the
segmentation of rigid/non-rigid motion based on the rank constraint propeftiégid shapes.
We employ a procedure introduced in [126] that can efficiently estimate thbeuof basis

shapes of the deforming object in the presence of noise.

Provided an accurate estimation of the noise covariance, the algorithormerivell with
different ratios of rigid/non-rigid points and different levels of noisieeting the measurements.
In real cases, its efficiency can be affected whenever the noise staditinot correctly provided

or whenever the assumption that there is a sub-set of points that istperigid does not hold.

Finally, notice that in our synthetic experiments we have shown that theagpvath priors
converges to the global minimum and thus to the exact 3-D structure andaaméon in the
case of no noise. Exact results are also obtained by Xiao et al. [1B@] pgors based on the
independency of the basis shapes. A clear advantage of their abpsahe proposed closed-
form solution that is guaranteed to achieve a unique solution. On the othey the method is
quite sensitive to the selection of the independent bases (see sectiomRaddisicussion) and no
study under different levels of noise is given. The advantage ofautien consists on the use
of priors extracted from rigid points lying over a deformable surfaceidRignoving points are
intuitively easier to detect, even with manual initialisation, than a set of indembdsis shapes.

In the next chapter we show that the information provided by the rigid pofmasdeformable
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object can be crucial in the case of projective distortions affecting theemmagasurements.
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Chapter 6

Deformable metric reconstruction from perspective

cameras using priors

So far, all the algorithms we have presented for deformable factorizatioluding our non-
linear optimization (MLE and MAP) methods, assume the case of images acguded weak
perspective viewing conditions. An extension to more general cameralsrisdequired when
the inspected shape presents perspective distortion effects. This iasthevben images are
acquired at closer distances or with a camera with a wide field of view. Givéeformable
object and a perspective camera, disambiguating the non-rigidity contribudind the camera

distortions is fundamental for obtaining a correct reconstruction.

In this chapter we present a novel approach [36, 93] to the recovengtric 3-D deformable
models from perspective images. The solution proposed is based orsteation that often not
all the points on a deformable surface are undergoing non-rigid motiomas gbthem might
lie on rigid parts of the structure. First we use an automatic segmentation afgaaiticlentify
the set of rigid points which in turn is used to estimate the internal camera calibpatiameters
and the overall rigid motion. We then formalise the problem of non-rigid skapmation as a
constrained non-linear minimization adding priors on the degree of defdityath each point.
We perform experiments on synthetic and real data which show firstly e, when using a
minimal set of rigid points, it is possible to obtain reliable metric information andyrsig, that
the shape priors help to disambiguate the contribution to image motion causedbyakiin

and perspective distortion.
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6.1 Rigid metric reconstruction from perspective cameras

Affine and orthographic cameras are only an approximation of the realngeconditions af-
fecting the projection of a rigid body onto the image plane. These models aeealjg effective
when the relief of the object is small compared to the distance from the caewmra.cOn the
other hand, when these assumptions weaken, the use of a perspactemenodel is necessary
to obtain a correct 3-D reconstruction of the object. However, the inttamuof a perspective
camera model requires the knowledge of the internal and external pararoéthe camera that
can be estimated directly from the measured image data using self-calibraticodsettle will

show in the following section solutions for this problem in the case of rigidly ngweinjects.

6.1.1 The perspective camera model

In the most restrictive of affine camera model, the orthographic model, thection of 3-D
points is a direct mapping of the 3-D shape coordinates onto the image plangénades only up
to an overall rotation, translation and scale. A more faithful model of reajiingaconditions is
given by the perspective camera model (see figure 6.1). Image padgé/an as the projection

of the 3-D structure through a perspective cankerg defined mathematically as:
Pi =KilRi | ti] (6.1)

where the 3« 3 rotation matrix®; and the translation vectay represent the Euclidean transfor-
mation between the camera and the world coordinate system respectiv&lyisiad3x 3 upper

triangular matrix which contains the intrinsic camera parameters:

fx s W
1

where fy and fy represent the focal length divided by the pixel width and height reisedc
(ux, vy) represents the principal point asds a factor which is zero in the absence of skew. The
intrinsic camera parameters may vary (for instance in the case of a zoonmmagajaor remain
fixed at each frame.

A point X = [X; Y; Z; J7 in homogeneous 3-D coordinates is projected with a perspective
camerep; into the image framesuch that the following relation holds:

— 1 _ -
Wij = N PiXj (6.3)

ij
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Figure 6.1: Comparison between an orthographic camera (a) and ag@repne (b). The 3-D
points X1 and X, are projected on the image plabeto give the image coordinateg andw.
respectively. Orthographic projection (a) assumes the object beifrpfiathe image plane such
that the projecting rays are all parallel to the optical axis and perpendicuthe image plane
0. As a result, points having the sarfiey) coordinates but different depthare projected at
the same image location. In the perspective case (b), the projected imadaatesn,; andw,

have different image position depending on the depth§;adndX5.

with wij = [ujj vij 1T = [w]} 1]T representing the 2-D homogeneous image coordinateX; pt
projective depth of poinj at framei. However, given the 2-D image pointg; extracted from an
object moving rigidly in a perspective image sequence, the value of thectqmojective depths
Aij is unknown. In order to obtain a correct solution for the projective cas®rand projective
points)? j, the extracted measurements need to be properly corrected by the peojeeights

)\ij-

However, solving for the projective camera matriegand projective structur¥ j is of lim-
ited use. The preserved geometrical properties obtained by estimatingjeétpye reconstruc-
tion are restricted to the incidence of lines and the cross ratio between paiitsWhat we
seek is to obtain a metric 3-D structure from the perspective trajectoriegsghav initial solution
from the projective camera matricesand projective structurk j- Itis possible to upgrade the
estimated projective parameters to metric through a self-calibration prottss camera that

solves for the unknown elementsHn R; andt; in equation (6.1).
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6.1.2 Self-calibration

Self-calibration is the simultaneous estimation of 3-D structure and camera matiely from
image sequences when no information is available about the internal calibcdtibe cam-
era, the scene or the specific location of the camera as it moves. Commonlgdséth self-
calibration can be distinguished in two classes: stratified [122, 121, 5%%48, 42] and
direct [44, 101, 60, 146, 70, 65, 120, 3] approaches. The qtnakdifference between the
two groups is that stratified approaches work in stages by upgradingistajly the structure to
affine and finally to metric. Differently, direct approaches obtain in onge thte full calibration

of the camera which upgrades the reconstruction to metric.

Stratified approaches

A stratified method begin by seeking a solution for the perspective cameriges&irand 3-D
structureX j- The procedure then upgrades the geometry in two steps: first frospguive
to affine and secondly from affine to Euclidean. To upgrade the récmtisn we rely on the
estimation of invariant geometric entities in each of the geometric spaces @ffinieclidean).
Obtaining an affine reconstruction requires the location of the location qfléme at infinity —
the invariant entity for the affine space. Once an affine reconstructadstéined, solving for the
absolute conic — the invariant for the Euclidean space — upgrades trestecction to Euclidean.
The main advantage of a stratified approach is that the solution from affinettac spaces
is linear after the determination of the plane at infinity (for instance, using thieati@roposed
in [60]). However, the computation of the plane at infinity may require to deter specific
properties of the scene such as the vanishing points of parallel lineshérroute is using the
modulus constraint [122] to compute the coordinates of plane at infinitytlyiréeithe method,
however, requires solving a set of quartic equations and this may rémedaigorithm unpractical

given the large number of possible solutions.

Direct approaches

Direct methods, on the other hand, solve for the metric structure of the shisgetly from the
initial estimation of the projective matrice’s and the projective 3-D coordinaté% without

going through an affine upgrade of the geometry. The work of Fasgsral. [44] was the
first to analyse this problem, showing that self-calibration was feasibla famera moving
through an unknown scene with constant but unknown intrinsics. Theochegbtimates the

camera calibration form pairwise fundamental matrices by introducing thpg&requations to
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solve for the unknown parameters.

Of more practical use, the method presented by Pollefeys et al. [119]satlmwirectly
impose constraints on the intrinsic camera parameters given an explicit perisaten of the
camera calibration matrik (see section 6.4.2 for a detailed description). Different approaches
showed later that direct self-calibration is possible also in the case of rpeo#is scenarios:
where the camera is known only to rotate on the spot [63, 3], only to trangititeut rotation
[105] or even when the camera has a zoom lens [119, 71].

Finally, note that for both approaches there remains an unsolved ambigyditytty an over-
all rotation and translation between camera and world coordinates in the éarclghace. It is
not possible to remove this ambiguity unless prior information about the locaitibre camera

is available.

6.2 Projective rigid factorization

In order to perform self-calibration and reconstruct a rigid shape ap twerall similarity trans-
formation (rotation, translation and scale), an initial estimation of the projentatgicesp; is
needed. In a multi-view scenario, we have already discussed the aglvsuofesolving the prob-
lem using factorization techniques in the case of a rigid object moving freelyi@wed with an
orthographic camera (see section 2.2). Similarly, a factorization solutiorsssipe for the per-
spective case using an extension of Tomasi and Kanade’s apprivachagset of images taken
under perspective viewing conditions. This will provide an initial estimatiothefprojective
matricesp; and the structur& j up to an overall projective transformation that in turn can be
upgraded to metric by any of the self-calibration methods presented in tieyseection.
Sturm and Triggs [132] firstly introduced projective factorization explgitihe rank con-
straint of the measurement matrix after the estimation of the welghtdssuming the values of

the projective depths are known and given equation (6.3), it is possiblgtea w

AaW11 ... A1pWip Py

(6.4)
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whereV is the F x P matrix containing the rescaled measurememis,a F x 4 matrix ands
a 4x P matrix. Thus, after re-weighting the image coordinatgs the corrected is a rank-4

matrix. This property is used to perform SVD truncated to the fourth singalae to obtain a
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solution for the projective motion and structure. Similarly to the affine cases@etion 2.2), the
matricesM andsS are only estimated up to a>d4 projective transformation matrig such that

W = MQQ 1S = MS. The problem of estimating the true perspective depth is fundamental to obtain
a correct decomposition and, as already presented in section 2.2.2, lpanthes have been
developed in the last decade. Solving the problem in the case of non-bgdt® poses new

challenges and the next section is dedicated to the mathematical definition obftienp.

6.3 Deformable metric 3-D reconstruction from perspectivéemages

Given a non-rigid shape, its 3-D structure changes from frame to frameesk; = [)Zil .. .)Zip] is

a (4 x P) matrix representing the shape at frani® homogeneous coordinates. The deformation
of a shape can often be explained as a linear combination of a &takis shapesy with
d=1...D. Inthe projective case the 3-D vectors are expressed in homogetmangnates and
so the shape may be written [161] as:

dezllide - 4xP 3xP
Xi= Xiel Sqell (6.5)

1T
whereSy are the 3< P basis shapesy are the corresponding deformation coefficients Argla
P-vector of ones. The projection of the shape at any frapt@o the image is then governed by
the projection equation:
D
_ _ 1 lidSq
W; = PiX; = Pj 2d=1 (6.6)
1T

In matrix form this can be re-written for all frames as:

_ . . S1
Wy DTS P S B :
W= — : ; ; ' (6.7)
_ . . Sp
Wi ||:1P|(:1'3) ... ||:DP|(:1'3) PI(:4) T

wherePi(m) are the first three columns of the projection matF?§<4,) is the fourth column and

is aP-vector of ones.
Clearly, the rank of the measurement matrix is at m@stH3L for the projective case [161].
Once more, if the projective depthg were known the measurement matrix could be rescaled

and decomposed into projective motion and shape matrices using factorization



6.4. Our approach 129

6.3.1 Previous work

In their most recent work Xiao and Kanade [161] proposed a new methestimate the projec-
tive depths using thel3+ 1 sub-space constraint and then upgrade the projective reconsiructio
to a metric one using an extension of their affine closed form solution to tispgsive camera
case. However, their method still relies on the assumption that thelbeftzames in which the
basis shapes are known to be independent.

Xiao and Kanade’s method is a two step approach with similarities to an algorigsamed
by Han and Kanade for the rigid case [57]. First, the projective weiyhtare estimated using
the sub-space constraints arising from (BB + 1) rank-constrainednotionand3-D structure
matrices. Similarly to the work of Han and Kanade [57] and Mahamud and rHE& the
procedure is carried out by performing an alternating minimization ®wvand S respectively.
Additionally, the weights\;; are constrained to avoid degenerate solutions (for instance, some of
theAj; can be equal to zero).

The second step is essentially an extension to the non-rigid case of the npetipoded
by Han and Kanade [57] to recover rigid structure from uncalibrateds/iwith a direct self-
calibration approach. However, to avoid degenerate solutions givadetbemations, a new set
of equations is introduced forcing the constraint that there exists a s@tiredependent basis
shapes as previously introduced by Xiao et al. [159] in the orthograaisie.

The aim is to estimate the overdBD + 1) x (3D + 1) transformation matrixy which up-
grades the structure to metric and to preserve the repetitive structure wfotien matrixM.
Similar to the orthographic case, the basis constraints are introduced tausaguely for each
D column-triple ofQ. Procrustes analysis is then used to align the structure of the motion matrix
M to respect the repetitive structure of the factorization framework andriove the scaling and

translation ambiguities.

6.4 Our approach

Once more, our approach is based on the assumption that some of the peiritica The
method requires three steps. First the image points are segmented into thedigidrarigid
sets. The rigid points are then used to perform self-calibration and teeetwe overall rigid
motion and the camera calibration parameters as well as the metric rigid shagdéy, Fie non-

rigid bases and the deformation coefficients are estimated using a nonHimadle adjustment
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approach initialised using the estimates given by the rigid points. The bundigtradnt step
can be seen as a refinement step with priors on the degree of deformdiitigypmints with the

aim to avoid ambiguous configurations of motion, perspective distortion efiedrdation.

6.4.1 Step 1: Segmentation of rigid and non-rigid motion under perspeive viewing

In the case of affine cameras the rank of a measurement matrix contairéhgfaigid points is
constrained to be at most 3. This numerical condition of the measurement mataix used to
obtain a reliable segmentation of rigid and non-rigid points using the featlgetisa strategy
as presented in section 5.3. However (see equation (6.4)), when theadandescribed by the
perspective model, the rank of the measurement matrix increases to dlgartivat the measure-
ment matrix has been rescaled with the correct estimates of the projectivis dgp When the
points in the measurement matrix are non-rigid the overall ranRis 3 in the projective camera
case wher® is the number of basis shapes. Unfortunately, the rank constraint tch@nsed
directly to segment rigid and non-rigid points, since the rigid points couldyaa explained
as non-rigid points with zero configuration weights for the non-rigid bdspas. Additionally,
the segmentation method presented in the previous chapter may misclassifyngglgs being
non-rigid since the perspective distortion could be mistaken as a deformation

Instead, our new approach is based on the fact that rigid points will ysatisf epipolar
geometry while the non-rigid points will give a high residual in the estimation diithéamental
matrix between pairs of views. We use a RANSAC algorithm [46] to estimate tidafuental
matrices from pairwise frames in the sequence and to segment the scengidhémd non-rigid
points. Therefore, in this case we consider the dominant motion to be the rigicmad the
non-rigid points to be the outliers.

However, a well known drawback of random sampling and consenshsitgies is the com-
putational cost required to obtain a valid set of points when the perceafamgliers is high,
due to the large number of samples needed to be drawn from the datatuvafety, this is the
most likely scenario in non-rigid structure from motion where we normally déil a small
proportion of completely rigid points. Here we exploit a measure of the degfrdeformability
of a point to infer a prior distribution of the probability of a trajectory beingdigr non-rigid
given that measure. These distributions are then used as priors tonpgdaed sampling over
the set of trajectories in a similar approach to the one proposed by Tamtbiurray [140] for

the stereo matching problem.
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Degree of non-rigidity
Kim and Hong [87] introduced the notion of Degree of Non-rigidiDo(N) of a point viewed by
an orthographic camera as an effective measure of the deviation of ithtefioon the average
shape. If the average 3-D shape of a time varying siiape[Xi: ... Xijp] (in non-homogeneous
coordinates) is given b = [X; ... Xp| the Degree of Non-rigidity for point is defined as:
F
DoN; = i;(xij — X)) (Xij = Xj)T (6.8)

The 2-D projectiorc; of the DoN will be thus given by:
c Y v \TnT c T
Cj= .ZRi(Xij *Xj)(xij *Xj) Ri = .ZI(W”' fXj)(Wij fXj) (6.9)
1= 1=

wherew;; are the image coordinates of pojrit framei andx; are the coordinates of its projected
mean shape. While thBoN cannot be computed without an estimation of the mean 3-D shape
(and this implies finding a 3-D deformable reconstruction), the value of ifegron can be
estimated directly from image measurements.

An approximate estimate of the projected 2-D mean shapean be given simply by the
rank-3 approximation of the measurement matrcomputed using singular value decomposition
and given bySV D;(W) = MB. The projected deviation from the mean for all the points would then
be defined by{wi; —X;} =w—MB. Kim and Hong computed a more sophisticated estimate of the
average shape, but for simplicity we have used the above descriptioh tdcshown to give a
reasonable measure of the degree of deformability.

Notice that the previous definitions all assume affine viewing conditions.ederyvour tra-
jectories resides in a projective space so we need to re-define the meason-rigidity. First,
the original measurement matrix must be re-scaled by the estimated projeetifatsi;j. We
calculate the projective weights; using sub-space constraints [70] and express the rescaled
measurement matrix as= {A;; [wﬁ 1]7}. Then, we estimate the mean shape as the rank-4 ap-
proximation of the rescaled measurement matrix computed using singular \eomposition
and given bySV Q(W) = MS. The projected deviation from the mean would then be defined as
before by{wj; —X;} = W — M3 and the projection of thBoN can finally be computed as:

F
Oy = 3 (Wi —%;) (W —%j)". (6.10)

in the form of a 2< 2 covariance matrix. Instead of using the full informatiorcpfwe approxi-

mate the scorsas the sum of the diagonal valuesipf
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Figure 6.2: Conditional densities for the score given: (a) that a poingid p(s|r) or (b)
non-rigid p(sr) approximated from the normalised frequency histograms for differerthsyic
and real sequences with different degrees of perspective distod@armation and ratio of

rigid/non-rigid points.

Computation of the prior
Tordoff and Murray [140] showed that guided sampling based on letye extracted from the
images can greatly improve the performance of a random sampling methedjadispin the
presence of noise or of a high number of outliers. In these cases stadRAAISAC becomes
computationally prohibitive given the large number of random samples thatrawsawn from
the data. Here we use the 2-D projection of fieN defined in the previous section to provide the
scores for each point trajectory which will be used to build a prior distribution of theditional
probability of each point in the object being rigid or non-rigid given thisreco

We have inferred the conditional probability density functions for theess@iven that a
point is rigid p(s|r) (see figure 6.2(a)) or non-rigid(s|r) (see figure 6.2(b)) by computing the
normalised frequency histograms over many experimental trials with synthetreal sequences
with different perspective distortions, degrees of deformation andsrafingid/non-rigid points.
We have then approximated the histograms by fitting appropriate analyticidus. To derive
the prior conditional density function of a point being rigid given the nigidity scorep(r|s)

we use Bayes theorem:

Cpsnp) - plen)
PII® = "0t 2 b + p(sn) (6.11)

Figure 6.3 shows an example of a prior obtained from our experiments. tNatelthough

the computation of the score is specific to each method the derivation of thegprém the
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Figure 6.3: Estimated prior given by the estimated densjtigs) and p(s|r).

distribution of the score is general.

Guided RANSAC

We use guided RANSAC to estimate the fundamental matrices between pairasgfcative
views for all theF frames composing the sequence. This process will be used to provide a se
mentation of the image trajectories into rigid and non-rigid ones since the nidrtragectories

will not satisfy the epipolar geometry and will therefore give a high redioludne computation

of the pairwise fundamental matrices. In order to speed up the processeanthe prior derived

in the previous section to draw the point samples: points with the highest coradigimbability

of being rigid will be chosen more frequently. The RANSAC with priors idre is outlined

as follows:

1. Compute the scorefor each trajectory if.
2. Sampleb trajectories given the prigo(r) and the score.

3. For each sample estimdte — 1) fundamental matrices from each pair of consecytive

frames.

4. Calculate the distance of the points from the 1 instantiated models and find the

trajectories that are within a threshald

5. Repeal times and determine the largest consensus given a set of trajectories,
Algorithm 2.

The method employed to estimate the fundamental matrix is the standard 8-point algo

rithm [62] giving b = 8. The distance thresholdwhich decides whether a point is an inlier
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or an outlier (rigid or non-rigid in this case) was set empirically td be4.12. It was fixed by
taking into account the sum of the residuals given by the estimation of Felafnental matrices
using normalised coordinates. Notice that we do not consider outliers irhienpatching from
frame to frame. We show results which asses the performance of the gaiagding RANSAC
algorithm applied to the segmentation of rigid and non-rigid points in the expetétszction.
To notice that a common problem of RANSAC methods is their weakness to eldsiatliers,
that in our case corresponds to strong deformations affecting a rejgadrof the image mea-
surements. Additionally, we assume that the image points are extracted fiagleareon-rigid
body. The algorithm would fail in the presence of articulated structumgsr{ftance, the torso

and the hands of a person) which show clustered rigid motions.

Once the scene has been segmented into the rigid and non-rigid point sEisate metric
non-rigid shape in two further steps. First we use the rigid points to estimataniera intrinsic
parameters — which provide the necessary information to upgrade theusdrta metric — and
the overall rotations and translations. Secondly, we formulate the estimatimetg€ non-rigid

shape as a global non-linear minimization with shape priors over the rigidttvegc

6.4.2 Step 2. Computing the metric upgrade

In order to obtain a metric upgrade, we first extract a projective réaarmon from the measure-
ment matrix given the rigid set of points using Heyden’s [68] sub-spad¢kadeThe upgrade to
metric space is then obtained using Pollefeys et al.’s approach for detatalibration which
provides estimates for the camera intrinsic parameters, the overall rigid motibthea rigid

shape.

Perspective reconstruction

Given the segmentation of the trajectories into rigid and non-rigid, we may nmae: w
W= [ Wrigid ‘ Wnonrigid ] (6.12)

whereﬁrigid andﬁnomigid are respectively theRx r and & x (P —r) matrices containing the
rigid and @ —r) deformable image points. Following the projective approach outlined in sectio

6.1.1, we initially extract the projective 3-D shape and motion using the satesmethod of
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Heyden [68] obtaining:

Py
Wrigid — | { X1---X; } = Mrigid Srigid (6.13)

Pr

with Mrigid and §rigid containing respectively the projective matridgswith i = 1...F and the
homogeneous coordinates for the rigid 3-D pobﬁ}SNith j =1...r. Note that the method com-
putes the projective weighls; and decomposeEigid into the rigid motion and shape matrices.
Once more, the decomposition \c—zﬁgid is up to an unknown 4 4 projective transformatio
such thaﬁrigid = Mrigid Q Q*lérigid. We solve uniquely fog and then upgrading the rigid structure

to metric by performing self-calibration over the projective matrices storéqgig.

From perspective to metric: self-calibration

In our specific case, we have used the well-known self-calibration mettogabsed by Pollefeys
et al. [120]. The main advantage of this direct method is that it allows to impfiseett con-
straints on each of the camera intrinsic parameters (focal length, pripcipdland aspect ratio)
since the camera calibration matrix is parameterized explicitly in terms of them. Edbh o
parameters may be considered to be known, unknown but constantelnetvesvs or unknown
and varying.

The projection matripp; for framei is a rank 3 matrix which may be decomposedas
Ki[Ri | ti], where the rotatior®; and the translatio; represent the Euclidean transformation
between the camera and the world coordinate system&andan upper triangular as already
shown in equation (6.2).

The basic idea of this method (for a detailed description see [118]) coariparameterizing
thedual image absolute coni®" in such a way that it enforces the constraints on the calibration

parameters using the equation:
W =Kk OPQ*Pl =PiQQ'p/ (6.14)

wherek; encodes the intrinsic parameters of the camerare the projective camera matrices
andQ* is theabsolute quadridor which a minimum parameterisation of 8 parameters is used.
Note that constraints on the intrinsic camera paramétesase translated to constraints on the

absolute quadric. As suggested by Pollefeys et al. the solution of théeepralan be obtained
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through non-linear least squares minimizing:

= 2

min;l

where initial estimates are obtained by means of a linear method.

KiK' PiQ*p|

_ 6.15
R (6.13)

F

After performing self-calibration, it is possible to obtd@invhich allows to upgrade the cam-

era matrice®; and structure to metric space. @@id may be expressed as:

Kl[Rl‘t]_]
— . Si1 - Sy
Wrigid = : (6.16)
1 -~ 1
Kg [RF |t|:]
The matrixSyigig given by the collection of the 3-vectors such tBafia = [S11... Sy is the 3xr

rigid basis of the deformable 3-D structure.

6.4.3 Step 3: Non-linear optimization

Following the approach presented in chapter 3, we solve for the nonshgiake and motion given
the 2-D image reprojection error. The cost function being minimised is the ggordistance
between the measured image points and the estimated reprojectedpsifits || wij — Xij =
il Wij _piii,- |> wherep; is the projection matrix in the Euclidean frarh@nd )Zij is the
4-vector that encodes the homogeneous metric 3-D coordinates ofjpoifitamei. In order
to ensure good numerical conditioning we work with normalised image codedinaa described
in [67].

We parameterize the projection matrices in terms of the calibration makicéise rigid
rotation matrice; using quaternions and the translation vectprs The coordinates of the
non-rigid points)zij are parameterized in terms of the basis shafgsand the deformation

coefficientdig. We may now write the non-linear minimization scheme as:
2

. 5 4-1liaSaj
arg KiRiTSI?jhd % wij — M | Ki[Riti] . (6.17)

wherell is a function such that:

a
a
n{p|= ; (6.18)
c
C

We then impose the priors on the rigid points (zero value for the non-rigid coerg) as we

explained for the orthographic case in section 5.5.2. If the motion of a pa@rdompletely rigid
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for the entire sequence, the structure referring to that point can lwessqul entirely by the first
basis @ = 1) called the rigid basis. From this it follows that for a rigid paia =0 V d>1
whereS; = [S];,...,S; 1T

Note thatS; is a D + 1 vector which encodes tH2 basis shapes for pointand Sy is a
3-vector which contains 3-D coordinates of basis sh&ber point j. Notice that this forces
3(D —1) zeros in each column of the shape matrix corresponding to a rigid point. Vi wr
these expectations as priors on the coordinates of the basis vBg¢t@nsd solve the problem as

a Maximum A Posteriori (MAP) estimation.

Note that the final expression for theotionand3-D structurematrices is as follow:

[11K1R1 ... [1pKiR1 Kitg

=|
I

[ S_rigid ‘ §nonrigid ] (6-19)

le1KeRE ... IppKeRe Krtg

where the(3D + 1) x r rigid component of the 3-D structuéigid is given in homogeneous
coordinates by:
Srigid

lT

with 0 being a 3D — 1) x r matrix of zeros and ar-vector of ones. Th&3D+ 1) x (P—r) matrix
S_nomigid contains the deformable bases for the non-rigid points in homogeneoubraies such

that:

— Snonrigid
Snonrigid = (6.21)
1T

wherelis a(P —r)-vector of ones.

Initialisation

Non-linear optimization requires an initialisation of the parameters to minimize. Thécmetr
rigid component of the shape and structure given by self-calibratioreis tasobtain a reliable
initialisation of the intrinsic and extrinsic parameters for the camera and the ntetigtuse for

the rigid points. Now it is possible to estimate the first b&sikr the deformable mode given
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the projection matriceB; = K;[R;|tj] using the expression:

+
P

Siryry --- Sip _ _
) = . wnonrigid (6-22)

1 o1
Pr

The coordinates of the rest of the basis shapes which enco@e-tlenon-rigid component3y
withd = 2,...,D are initialised to small random values [141, 38]. The configuration weights a
sociated with the mean shapgare initialised to 1 while the rest of the weiglhtsare initialised

to small values.

6.5 Experimental results

This experimental section validates the methods for rigid/non-rigid segmensaiib®D metric
reconstruction with synthetic and real experiments. The synthetic testesigndd in such
a way as to verify the performance of the method in case of different ratidagid/non-rigid
points and with two different setups of perspective distortions. Additiontly quality of the
3-D reconstruction is tested with cameras with constant and varying intrinsics

Finally, three experiments present the performances of the approach @éask of real de-
forming objects. Two tests use image measurements obtained from a Vicom sylieh pro-
vides as well the ground truth for comparing the 3-D reconstructions. r@maining test is

performed over less accurate measurements extracted by an image gt ¢(kd.T).

6.5.1 Synthetic data

The 3-D data consists of a set of random points sampled inside a cubesafGx 100 x
100 units. Several sequences were generated using different etimgd/non-rigid points.
In particular, we used a fixed set of 10 rigid points while using 10 and 50rigid points.
The deformations for the non-rigid points were generated using randsia shapes as well as
random deformation weights. The first basis shape had the largesttveejghl to 1. We also
created different sequences varying the number of basis sHape8 @ndD = 5) for both ratios
of rigid/non-rigid points. Finally, in order to evaluate different levels afgpective distortion we
used 2 different camera setups in which we varied the distance of the tubjee camera and the
focal length (Setup 1: z=250, f=900; Setup 2: z=200, f=600). Hiedata was then projected

onto 50 images applying random rotations and translations over all the @aessian noise of
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Noise

Experiments 0 05 1 15 5

Expl: D=5, 10/10, setup 1) 0.28 | 0.48 | 0.55| 0.72 | 0.77

Exp2: D =5, 10/50, setup 1| 0.31 | 0.38 | 0.46 | 0.55 | 0.72

Exp3: D=3, 10/10, setup 1] 0.95| 1.36 | 1.53 | 1.60 | 1.54

Exp4: D =3, 10/50, setup 1] 2.19 | 2.38 | 2.33 | 2.78 | 2.51

Exp5: D=5, 10/10, setup 2| 0.95| 1.36 | 1.53 | 1.6 | 1.54

Exp6: D =5, 10/50, setup 2 0.3 | 0.34 | 0.39 | 0.51 | 0.58

Exp7: D =3, 10/10, setup 2| 0.65 | 0.94 | 1.27 | 1.42 | 1.45

Exp8: D = 3, 10/50, setup 2| 2.09 | 2.37 | 2.28 | 2.31 | 2.27

Table 6.1: Mean misclassification error for different levels of Gaussserwith variances =

0.5, 1, 15, 2 pixels. The eight experimental setups use different number of lfase 3,5),
ratios of rigid/non-rigid points (10L0, 10/50) and camera parameters (Setup 1: z=250, f=900;
Setup 2: z=200, f=600). The mean error is computed over 100 testadbrsetup and level of

noise.

increasing levels of variance was added to the image coordinates.

6.5.2 Motion segmentation results

The experimental setup described beforehand was first used to obtaidieation of the per-
formance of our segmentation approach presented in section 6.4.1. Ristsampling prior
p(r) was generated from a larger set of synthetic and real data. Sectastéyusing the guided
RANSAC approach were performed over the synthetic experimentsibed@bove. Eight dif-
ferent experimental setups were tested with varying number of rigidfgah{points (10'10,
10/50), basis shape®(= 3,5) and camera parameters (Setup 1, Setup 2).

The RANSAC procedure was tested over 100 trials for each setup aaddb level of noise.
The number of samples randomly chosen over the prior distribution wastx2s00. At each
new trial the motion components (rotation and translation) of the objects atemdygenerated
obtaining a 50 frames long sequence. The results in table 6.1 show the rede-afjid points
being classified as rigid for the different setups. Better performaneestdaained for higher

ratios of rigid/non-rigid points and for more complex deformations (i.e., mosskghapes).
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Noise

P
arameter 0 0.5 1 15 2

meanf 0 | 049|098 | 134 | 254

std. dev.f | 0.02 | 0.66 | 1.42 | 1.46 | 2.62

max. f 0.09 | 3.43 | 856 | 597 | 10.02

meanp, | 0.01| 072 | 119 | 161 | 214
meanp, | 0.01| 0.77 | 1.18 | 1.63 | 2.26

Table 6.2: Mean, standard deviation and maximum relative error (%) fdiottad length, and
absolute mean error for the principal poin,{ py) for the different levels of Gaussian noise.

Results obtained when the intrinsic parameters were constant.

Experiments 4 and 8 obtain the worse results achieving a mean misclassifieatiaf more
than 2 points.

Notice also a better algorithmic behavior in the case of stronger perspdidieetion com-
pared to weaker ones since the effects of perspective distortionseémunétions are less am-

biguous in such cases.

6.5.3 3-D reconstruction results with constant intrinsics

For the first set of experiments we assumed that all the camera paranfieteidength, aspect
ratio, principal point and skew (equal to 0) remained constant oveetiigesce. We then applied
our 3-D reconstruction algorithm to all the experimental setups descréfedh The results are
summarized on the first row of figure 6.4 where we show the 3-D metric séwartion error
expressed in percentage relative to the scene size, the absolute ratati@xpressed in degrees
and the r.m.s. 2-D image reprojection error expressed in pixels. The plois figtre show the
mean values of 5 random trials applied to each level of Gaussian noise.

Our proposed algorithm appears to perform well in the presence of imzige. The 3-D
reconstruction error is low even for large perspective distortions and farge proportion of
non-rigid versus rigid points. The 2-D error is also small and it appedrs tf the same order
as the image noise. Figure 6.4 also illustrates that the rotations are corréictigted. Reliable
estimates for the internal camera parameters (focal length and principgl @® obtained even
in the presence of noise and they are summarized in table 6.2.

As expected, less accurate results were obtained in the presence akditie non-rigid
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Figure 6.4: 3-D error, rotation error and 2-D error curves. Firgt neesults obtained when the
focal length §) was constant. Second row: results obtained for the 4 experiments wytingar

intrinsics (see text for description).

points) in the original set of rigid points as shown in figure 6.5. This is due ddaht that
outliers introduce errors in the initial estimates obtained by the projective réegitbrization
and self-calibration. However, after applying bundle adjustment thdétsesyproved, providing

acceptable motion and structure estimates.
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Figure 6.5: 3-D error, rotation error and 2-D error plots in the presehtwo non-rigid points in
the set of rigid points. Setup 2 is used in two experiments with varying numbgidhon-rigid

points. Results show the effect of outliers compared to the case with tdatec

6.5.4 3-D reconstruction results with varying intrinsics

We then performed a set of experiments in which some of the internal pararoéthe camera
were varyied throughout the sequence. We designed 4 differeatimgnts using camera setup
2 (Z =200, f =600), aratio of 10 rigid to 50 non-rigid points and 5 basis shapes. FogrExp
ment 1 the focal length of the camera varied linearly throughout the seguwenile the rest of

the internal parameters remain constant. In the optimization algorithm we cratsithe focal
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length unknown and allowed it to vary during the minimization while the princip@itpeas
considered to be unknown but fixed throughout the sequence andgbetaatio and skew were
considered knownr(= 1 ands = 0). Experiment 2 had the same experimental setup but during
the optimization process we allowed both the focal length and the principaltporary in the
minimization. In Experiment 3 the focal length and the principal point both gahieoughout

the sequence. In the minimization we considered the focal length unknahallawed it to vary

but the principal point was assumed to be fixed but unknown. Finally irexent 4 we used
the same setup as in Experiment 3 but allowed both the focal length and tbgakipoint to

vary in the minimization.

The results for all 4 experiments are illustrated on the second row of f@jdrelThe results
obtained for the internal camera parameters are summarised in table 6.3. ddte the noisy
cases in which the real principal point was varying better estimates wamet assuming the

principal point constant during the minimization.

Finally, we performed another experiment in order to show that inclusigriofs is fun-
damental to avoid local minima and to improve the reconstruction results. We th®same
set of experiments in which only the real focal length was varying anelcasatio and principal
point were assumed constant during the minimization. Results with and withagtpriors are

illustrated on figure 6.6.

As expected, better results are obtained when priors are used. Thie cdearly seen in
the case of no noise where the use of priors allows to improve the coneerge the global
minimum. Notice that the minimizations with and without priors were initialized with the same
values thus showing that the inclusion of the additional penalty terms insrdaseeliability of

the reconstruction and the convergence of the algorithm.

6.5.5 Real experiments

In these experiments we tested our method using real 3-D data of a huneaanfhof a scene
with deforming and rigidly moving objects. We present three experiments; ifirfiéewo we

test our method compared using ground truth given by accurate measisesbtained from a
VICON motion capture system. The final test shows the 3-D reconstrucguits with mea-

surements automatically generated by a point tracking algorithm (KLT).
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Noise
Parameter
0 0.5 1 15 2
meanf 0 056 | 1.68 | 1.69 | 3.90
std. dev.f 0 018 | 1.26 | 094 | 199
Expl max. f 0 083 | 349 | 322 | 7.16
meanpy 0 059 | 148 | 1.29 | 6.03
meanpy 0 091 | 243 | 250 | 3.46

meanf 0.01| 293 | 514 | 1028 | 1097
std. dev.f | 0.01 | 0.79 | 292 | 6.96 | 433
Exp2 max. f 0.02| 391 | 836 | 2012 | 1492

meanp, | 0.09 | 1117 | 1801 | 26.68 | 27.50

meanp, | 0.08 | 6.66 | 14.80 | 2293 | 2891

meanf 0.69| 1.04 | 1.16 | 310 | 292

std. dev.f | 0.27 | 0.50 | 0.38 | 258 | 1.15

Exp3 max. f 104 | 175 | 181 | 596 | 4.47

meanpy 297 | 296 | 3.01 | 377 | 3.97

meanpy, | 3.49 | 334 | 347 | 588 | 3.79

meanf 0.05| 211 | 493 | 1040 | 10.38
std. dev.f | 0.04 | 1.05 | 351 | 292 | 466
Exp4 max. f 0.09| 3.60 | 880 | 1427 | 1417

meanp, | 0.10 | 595 | 1271 | 1601 | 16.31

meanp, | 0.07 | 3.49 | 10.61 | 1434 | 1554

Table 6.3: Mean, standard deviation and maximum relative error (%) ofoited fength and

absolute mean error (pixels) of the principal poipg,(py) for different levels of Gaussian noise.
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Figure 6.6: Obtained results with and without using shape priors. 3-D, eotation error and
2-D error curves for the set of experiments obtained with camera setbipb&sis shapes and
10/10, 10/50 rigid/non-rigid points. Focal length was varying while aspect ratio anttipal

point were constant.

Human face

In the first real experiment, 37 trajectories are generated from a husartiat is undergoing
rigid motion while performing different facial expressions. The 3-D poiatonstructed by the
motion capture system are then projected synthetically onto an image seqdeinames long
using a perspective camera model. The size of the face model was1dB< 102 units and the
camera setup was such that the subject was at a distance of 300 unith&aamera and the
focal length was 600 pixels so the perspective effects are significant.

In this case the segmentation of points into rigid and non-rigid sets was domaiyally
selecting 14 points situated on the nose, temples and the side of the face.pbis are high-
lighted on the frontal view of the first frame of figure 6.7. This figure shdle ground truth
(squares) and reconstructed shape (crosses) from front, sidefawiews. The 2-D reprojection
error was (067 pixels, the absolute 3-D error wa22 units and the focal length was 523 pix-
els. The results are satisfactory even considering that the selectedaigid were not perfectly
rigid during all the sequence. Note that the deformations are very wdllregpby the model

even for the frames in which the facial expressions are more exaggerate

Pillow scene

The scene consisted of a set of 12 rigid points (9 on two boxes and Zahair) and a set of
20 deformable points situated on a pillow which was deforming during the segugee first

row of figure 6.8). The 3-D points were then projected synthetically onicmage sequence 75
frames long using a perspective camera model. Gaussian noisg pixéls was added to the

image coordinates. The size of the scene wasg 82 x 53 units and the camera setup such that
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Frame 1 Frame 31 Frame 74
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Figure 6.7: Front, side and top views of the reconstructed face. Regotiens are shown for
frames 1, 31 and 74. Cross marks are used to indicate the reconstrutilersguare marks

refer to the ground truth. Highlighted marks on the frontal view of frame icatd rigid points.

the scene was at a distance of 150 units from the camera and the fodhl e 900 pixels
and constant during the sequence. Figure 6.8 shows the ground tquéngs) and reconstructed
shape (crosses) from two different viewpoints. The 2-D reprojeaioor was 05 pixels, the
absolute 3-D error was.34 units and the absolute rotation error was12degrees. The focal
length was estimated to be 899 pixels. The same experiment was repeatadying the real
focal length from 700 to 1000 during the sequence. In this case theepidjection error was
0.96 pixels, the absolute 3-D error wa$% units and the rotation error7ZZ degrees while the

mean focal length error was B4 pixels (see table 6.4).

Cushion scene: automatically tracked data

In this experiment we show qualitative results with measurements obtainecfikarfi tracket.
Some key frames of the sequence are presented in figure 6.9 (a) shbeiabject rigidly ro-
tating (frames 1 and 160) and three deformations (frames 340, 410 @yd A8e 560 frame
long video sequence is captured with a Fire-i digital camera wi@ahm built in lenses. The
tracking algorithm is able to obtain 256 trajectories located on the rigid (60 pmietshe box)

and non-rigid (196 points over the cushion) surfaces of the scereetrdjectories are then sub-

Lhttp://www.ces.clemson.edustb/klt/
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Frame 5 Frame 30 Frame 60

Figure 6.8: Real 3-D data. First row shows examples of the analyseé.s&=cond and third
rows show two views of the reconstructed scene. Cross marks indicatesteuction while

square marks refer to ground truth.

] Error
Experiment
2-D (rm.s.)| 3-D (%) | Rotation (r.m.s.)| f error
f =900,d = 150 0.95 pixel 1.34 2.11 degree 1 pixel

f =700—1000,d =150 | 0.96 pixel 1.65 2.77 degree | 34.84 pixel

Table 6.4: Estimated errors for the pillow sequence. Two setups with coiitsinexperiment)
and varying (second experiment) intrinsics are tested and results avedfar the 2-D repro-

jection, 3-D reconstruction, rotation and focal length errors.
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sampled in time to obtain an overall sequence of 112 frames giving a meastingaieix w
of size 224x 256. Ground truth reference is not available in this scene, thus we shigvihe
results for the 3-D reconstruction after performing self-calibration uiagigid points and non-
linear optimization to correctly model the shape deformations. The cameraimparameters
were considered constant for each frame and the aspect ratio amdveke fixed to 1 and O
respectively. The presented results are obtained after 40 iterations mdthlinear optimization
algorithm with a number of basis shapes sdbte 5.

Figure 6.9 shows front, side and top views of the 3-D reconstrucifmisthe deforming
object. Frames 1 and 160 show only rigid displacements of the object anthéh8<D structure
is correctly not deforming for the two frames. The last three frames shewtukhion bending
and the box structure remaining rigid. Note in the top views of figure 6.9 (dptaserved

orthogonality of the two reconstructed planes belonging to the box.

6.6 Closure

The proposed approach for the estimation of Euclidean non-rigid shaipeaf sequence of un-
calibrated images takes advantage of an initial segmentation of the sceneimintgid and
non-rigid from which self-calibration can be used to extract the metric rigittaire and the
internal camera parameters. Then, a non-linear optimization stage globadg aod refines the
estimates for the deformable components of the inspected object.

Motion segmentation of rigid and non-rigid points under perspective vieeonditions is re-
quired to define the priors for the specific object. The approach pezberbased on a RANSAC
technique whose convergence is aided using sampling priors over théetesgt of trajectories
in W. The discriminant for separating the two classes of motion is given by thestency of a set
of trajectories with the epipolar geometry obtained by estimating fundamental esdbetween
pairs of view.

The construction of shape rigidity priors has a twofold effect. Firstly, estigahe internal
camera parameters allows to upgrade the structure from projective to npetrie. SSecondly, as a
computational aspect, the introduction of the priors in the non-linear optimizsttimns relevant
increments in the convergence ratio to the global minimum. Xiao and Kanadefitlig [161] —

based on prior knowledge about the independency of the shape-bpsderms well in the case

2Video available at http://www.bmva.ac.uk/thesichive/2006/DelBuel/index.html
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(@) (b) (©) (d)

Figure 6.9: Five key frames of the sequence with automatically tracked afafiames 1, 160,
340, 410 and 490. The first column (a) shows the tracked points (bli$3 gong over the
rigid and non-rigid parts of the scene. Note the perspective distortiectaf§ the rigid box.
The remaining columns shows front (b), side (c) and top (d) views ofkkion and box 3-D

reconstructions.
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of no noise but has a slow convergence ratio when Gaussian noigptsdire image coordinates.
Our non-linear minimization, on the other hand, converges fast (usuafiyfas 30 iterations)
regardless of the level of Gaussian noise in our synthetic experiments.

Xiao and Kanade’s algorithm — based on prior knowledge about the émdigmcy of the
shape bases — performs well in the case of no noise but has a slowgmme ratio when noise
corrupts the image coordinates.

The experiments on synthetic and real data have shown firstly that evemuwging a mini-
mal set of rigid points and when varying the intrinsic camera parameters issiqe to obtain
reliable metric information and secondly that the shape priors are funddnertzoid local
minima given by ambiguous configurations of motion, perspective distortidrdaformation.
Notice that the method can successfully recover from situations in whiclh adants are mis-
classified as rigid even when the deformations are strong. The segmemstatenobtains rea-
sonable results for the configuration of basis, cameras and points testeglyer we noticed a
higher misclassification ratio with weak perspective effects and highgopion of non-rigid
points. A further observation is that points that are semi-rigid (being riglg fum a part of
the sequence), may appear undetected since they conform with the egigpataetry only for a

subset of frames.
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Chapter 7

Conclusions

This thesis has dealt with different aspects of the problem of modellingrdafile shapes from
uncalibrated video sequences. We have reviewed and discussed thmsnptbposed so far
in the literature and described their strengths and weaknesses. In theirigllsections we
summarise our proposed solutions to some of the shortcomings of curremidsetind point out

directions for future research and improvements to our framework.

7.1 Non-linear optimization for non-rigid structure from m otion

Three dimensional reconstruction of deformable shapes is intrinsicallg-imear problem due
to the fact that the parameters modelling the camera motion and the 3-D defossagatrongly
coupled. The linear solutions proposed in the literature, which impose anlatity constraints
on the camera matrices, fail to provide accurate reconstructions. Rec@atyet. al. [159, 160]
proved that the orthonormality constraints on the camera rotations arefficiestito solve the
ambiguities and they proposed a new set of constraints on the shape bas&swork proves
that when both sets of constraints are imposed, a closed-form solution podhlem of non-
rigid structure from motion exists. However, their approach requiresthct basis shape in the
deformable model be observed independently in at least one view. Thitiodneas been proved
to break down with noisy data or when the number of basis shapes is netttpestimated.

In this thesis we have proposed an alternative approach using a nan-tipgmization
scheme which preserves the correct geometric structure of the motion anthistrmatrices

by minimizing a non-linear cost function which expresses the image reprajeetior in the
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model parameters. This minimization presents two main challenges. Firstly it isdeaggein
essence since the number of parameters to estimate increases with the nuridyes and with
the number of basis shapes. In this sense, a careful choice of tmegiarzation of the problem
has proven to improve the results. Secondly the high non-linearity of théurmgion introduces
possible local minima which may prevent the algorithm from converging to @ilescdution. In
order to render the minimization tractable, we have reformulated bundlet@aejuistechniques,
which take advantage of the sparseness of the jacobian matrix, to dealevithsh of deforming

objects.

7.2 Stereo non-rigid factorization

Given the same non-linear estimation framework, we have shown that it extend the
method to include measurements from different cameras, to extract reli@bte®nstructions,
and to compute the relative orientation of the cameras in an uncalibratediscénahis thesis
we have concentrated on the stereo camera case. The use of two orama®s is necessary
when the obiject is only deforming since structure from motion methods regusignificant
component of rigid motion to obtain accurate depth estimates. Our experimemstsit the
reconstructions obtained with monocular views are of poor quality. Asategeincluding dif-

ferent camera views solves for the model parameters.

7.3 Non-rigid 3-D modelling using shape priors

A non-rigid object can be thought of as an underlying rigid body unmiaggglobal rotations
and translations while suffering some local non-rigid deformations. Foréaison, non-rigid
3-D shape recovery is an inherently ambiguous problem. Given a spigidienotion, different
non-rigid shapes can be found that fit the measurement. To solve this dyliguyropose to
exploit prior knowledge on the 3-D structure such as the rigidity of somesobliserved points.
We have focused on the observation that often not all the points on a mamthgleforming
surface are undergoing non-rigid motion. Some of the points are frdguanrigid parts of
the structure while others lie on deformable areas. Intuitively, if a segmemiatavailable, the
rigid points can be used to estimate the overall rigid motion and to constrain tedyind mean
shape by estimating the local deformations exclusively with the parametersaies to the non-

rigid component of the 3-D model. We have showed that improved estimatdsecachieved
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when these priors are used. However, an algorithm able to perforrmatitosegmentation of

rigid and non-rigid motion is required for our approach to be viable.

7.4 Motion segmentation of rigid/non-rigid points

Rigid and non-rigid motion segmentation is not a trivial task since rigid pointsataays be
understood as non-rigid points which can be described by a single lbagie.sHowever, we
have shown that it is possible to separate rigid points in both the orthograptithe full per-
spective case by exploiting the constraints arising from the rigidity of thetstl In the case of
orthographic cameras, we have introduced a segmentation method basddabure selection
strategy. Trajectories which are highly non-rigid are selected firstandved from the measure-
ment matrix untilw reaches the rank-3 condition that corresponds to the remaining trajsctorie
moving as a rigid body.

In order to segment points in the projective case, we used a differgm gty to disambiguate
rigid and non-rigid trajectories: rigid trajectories give small residuals wisen to estimate fun-
damental matrices between pairs of views. We have introduced a RANSAG@dnetiich ran-
domly selects sets of trajectories until the best candidate is found. To aiarttpisg procedure,
we have proposed to assign a sampling prior given a measure of defliyratla point which

increases the likelihood to select rigid trajectories.

7.5 Metric 3-D reconstruction of non-rigid shape from perspetive images

In the case of perspective viewing conditions, once the scene haségeented into rigid and
non-rigid point sets, the rigid trajectories can be used to obtain an estimate ofehn rigid
shape, the overall rigid motion and the camera calibration parameters (Wlnaht@ upgrade
the structure to Euclidean space). This supporting rigid structure and nuatiobe used as the
initial estimate for a non-linear estimation framework of the overall non-rigidctire where
the non-rigid basis shapes and configuration weights are estimated asdoatibns from the
mean rigid shape. The fact that image motion is a consequence of threeriffentributions:
perspective distortions, rigid motion and local deformations is a sourcessille ambiguities
between the parameters of the model. However, we show that these ambigaiyié= avoided
by incorporating priors on the degree of deformability of each point in thémnization process.

In particular, our expectation is that the rigid points will be fully describedhwyfirst basis
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shape. These priors can be incorporated within a maximum a posteriori gstifftamework.

7.6 Future work

One of the fundamental observations we have used in this thesis is thedfatigloften reason-
able to assume that not all the points on the surface of a non-rigid obgedeésrming: while

some of the points might be undergoing pure rigid motion others might defaitme aame time.
This constraint has proved very valuable both to provide priors on tipedef deformability of
each point and to allow the computation of the metric upgrade transformation caskeof per-
spective viewing conditions. However, the assumption that a point is corypligiie throughout

a long image sequence can become too restrictive. A class of trajectorfes/@ot dealt with
in this thesis is the class of points which have a semi-rigid behavior. Semi-rigits@e points
that are rigid for some frames of the sequence but that occasionallsndefith respect to the
mean shape. These points could also provide valuable priors to be us&lshape estimation
while relaxing our assumptions. Notice, however, that the automatic segmaradgmrithms

described above would have to be modified to cope with the detection of pahtsatbe a mixed

behaviour.

A further interesting aspect is the extension of our framework to deal widrent types of
non-rigid objects. In this thesis, we have restricted ourselves to the tassirgle deforming
object but often, in a generic and unknown video sequence, image tn@k belong to a struc-
ture with higher complexity. For instance, in the case of the human body, tkedabviously
deformable but trajectories could also be extracted from the torso, adregswhich are con-
nected as articulated shapes. Image trajectories lying on different refatneing and articulated
parts would have to be associated to the correct model describing thelépendency of each
body. The problem of associating (i.e. segmenting) the entri@scofrectly to the appropriate
object part would be extremely challenging, especially if the only informati@ilable are the
image tracks taken from an uncalibrated sequence without any useedlefiors.

Of more direct practical use, a future avenue of research is the eteofsthe framework
to deal with missing entries in the measurement matrixt is a rather optimistic assumption
to believe it is possible to identify the coordinates of all the feature points in allvigws,
particularly when dealing with long sequences. Besides, this posestieagion the types of

object motion permitted: there cannot be so much rotation for instance thatsdheefeatures
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go out of view. Note that this is not a problem for the non-linear minimizatioméwsork since
if an entryw;; in W is missing, the quadratic term referring wg; is not included in the cost
function. However, the non-linear methods require initialisation which wiparusing one of
the linear approaches for which the complete measurement matrix is reghdeitionally, our
proposed motion segmentation algorithms require no missing entriesAnpossible solution
would be to adapt methods already designed for the rigid case to deal igtimadle structure

such as the sub-spaces technique of Sugaya and Kanatani [134].

Figure 7.1: Tracking faces with deformable models. The methods predarites thesis can be
used to generate a 3-D deformable model which can then be used effittetndgk in real-time

a face performing various expressions [108durtesy of E. Miioz

7.7 Applications

From the applications point of view, we plan to exploit the generated geomsidels in several
computer vision systems. Our deformable models obtained automatically fromcafibwated
image sequence have already been shown to obtain promising resultsftraieking [109, 108]
(see figure 7.1 for an example). A new avenue to explore is their appli¢atioadical images. In
this case the use of priors may help to model and register deformable bidlstgggees given the
rigidity of some parts of the structure. For instance, in the case of diagofdsgsirt conditions it
would be possible to detect possible anomalies in the motion of the organ bylzavaccurate
deformable model of a heart.

A real-time tracking algorithm which uses deformable models could be useidéadravatar
as demonstrated by Buenaposada et al. [21] and as shown in figurln s case, the face
was modelled as a set of 2-D planar patches. If the tracking algorithnucaessfully describe
the deformations appearing in the object, this in turn can be used directly totardaragnthetic
object or 3-D avatar without requiring strong post processing effyrthe user. Moreover, the

introduction of 3-D basis shapes to this scenario will ease the task of aninshtipgs with large



156 Chapter 7. Conclusions

Figure 7.2: A system [21] for real time face tracking (upper row) anraatic animation of
a synthetic 3-D face (lower row). The tracking system is based on a [@dndr) statistical
description of the image appearance. The extracted parameters th#telése deformations in

the image are used to pilot the animation of the 3-D f&amurtesy of Dr J. M. Buenaposada

pose variations particularly when they suffer strong deformations.

Finally, our proposed techniques for rigid and non-rigid motion segmentatiald be ap-
plied to cases in which the deviation of a set of object points from the ovégaliconfiguration
is indicative of a harmful situation. For instance in the medical domain, thetgrofra tumor

could be detected when some of the points on the surface begin to behraveagid.
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