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Abstract

The ability to track multiple and articulated objects is an important one, not least in the areas of au-

tonomous and teleoperated robotics, visual surveillance and human motion analysis. This thesis is con-

cerned with marker-free real-time detection and tracking of articulated objects, targeting human hands

with the aim to study methods that can be applied to enhance the interaction between humans and 3D

(real or virtual) objects.

A survey summarises methods used to approach this and related problems in the literature. It indi-

cates that, despite the large body of research in this field over twenty or so years, the area still proves

challenging. Two main approaches have been identified. The first, known as generative tracking, uses an

explicit kinematical representation of linkages or constraints between object parts and tracks by minimis-

ing error of projected control points. The second, known as discriminative approach, little is specified

beforehand, but training data is used in order to create a mapbetween image observations and 3D poses.

This thesis describes novel work in both areas.

In the generative area, a method for tracking of articulatedobjects is described. It is a new extension

of a method for tracking rigid objects in which the motion constraints between parts of the object are

imposed up-front within the tracking process. The inter-frame pose update is derived as the solution of

a linear system. This method has been applied to track articulated objects, including hands and multiple

objects with motion constraints.

An alternative method is that based on estimating the motionof each subpart independently, thereby

introducing redundant degrees of freedom, and imposing constraints later in a lower dimensional sub-

space. This method is reviewed and a comparison between thisand the aforementioned method is pre-

sented in terms of accuracy, efficiency and robustness.

In the discriminative area, an inference-based approach isadopted in which a non-parametric relation

between global image measurements and 3D poses is learnt using a multivariate regressor based on Rel-

evance Vector Machine. This relation is a continuous map that allows fast and efficient pose estimation

from static images. This method can detect and estimate the 3D pose of hands from static images, so it

can be applied to (re-)initialise the generative tracker.

In this thesis, the use of multiple view is adopted as a solution to reduce the ambiguities for both

generative and discriminative methods. Experiments with single and multiple views are described and a

novel extension of the discriminative method for multiple views is proposed and evaluated.
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Introduction

1.1 The importance of the interface in personal robotics

The vast growth in portable computer power, the loosening ofrestrictions on wireless communications,

and advances in micro-fabrication and electronic miniaturization, have all contributed to the rapid growth

of the field of personal or person-oriented robotics — a field that embraces the areas of assistive, recre-

ational and humanoid robotics, and wearable computing [May04].

In the speculative design of future products in this field, itis frequently assumed that the human-

computer interface (HCI) will be “natural”. However, interfaces between operator and machine have

been slow to evolve. The teleprinter, in use since the 1920s,has evolved internally but not radically into

today’s flat-panel display and ergonomic keyboard. The revolution spawned at Xerox Palo Alto of point

and click using mouse and GUI is going on thirty years old. Developing natural interfaces by emulating

natural competences in vision, speech, and so on, has provedmuch more difficult than envisaged — but

the motivation to develop them is undiminished largely because impoverished interfaces reallydo limit

the acceptance of smart devices. Who over the age of fifteen can be bothered to discover the key code

sequences needed to use advanced features of their video recorder or mobile phone?

It is possible to identify three core areas of academic interest in the design of interfaces. First is how

to sense and actuate near to, or upon, butexternalto, the human body. This is the area of perceptual user

interfaces [TT97, Pen00], involving speech and vision. Thesecond is how to interact with and relate

to computing when it intrudes into our personal space, an area called social and affective computing
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[DEA99, RN98, BA02]. The last is the study of how to sense and actuatewithin and connect to the

human body using, for example, direct brain-computer interfaces [Moo01, LCO+05, WGH+03] .

1.2 Hand pose recovery and tracking

This thesis describes research into the first area: in particular into visual sensing for the recovery of

hand pose and its changes over time. The hand, and our skill ofmanipulation, differentiates humans

from all animals but the primates. It also plays an importantrôle in the interaction between people, in

conveying meaning and intention both non-verbally and as anaddition to speech. Particularly powerful

are pointing or deictic gestures which provide disambiguation, and gestures which accompany facial

expressions [PSH97].

The first developments in hand pose estimation and tracking were achieved by using mechanical

devices and gloves. Sturman and Zeltzer [SZ94] commented that ‘the history of tracking devices for me-

chanically or electrically interpreting hand motions began with post-WWII development of master-slave

manipulator arms’ but they noted too the development of the pantograph during the Renaissance. One of

the earliest optical hand tracking systems, based on LEDs, was that of Ginsberg and Maxwell [GM83].

However, such was the unreliability of vision-based hand trackers, that glove-based and mechanical sys-

tems (like the Phantom) were the only devices in use in the 1980s and 1990s. Indeed, they remained

the sole way of recovering detailed and continuous joint information until very recently, when visual

marker-based systems became commercially available (e.g.by Vicon). Their disadvantage is that, even

when using the lightest fabric, glove-based devices restrict the movement of the hand they are meant to

measure, and the user must carry either signal and power cables, or batteries if wireless links are used.

There are a several factors that contribute to the difficultyof visual tracking of the hand and recovery

of its pose.

First there are issues of modelling. The shape of the hand is uncertain, even when the joint angles are

known, and the lengths of the inter-joint links (bones) are defined. This is because the amount of tissue

on the bone differs from person to person, and because it is squeezed about when the hand moves.

Then there are the problems of feature detection and data-association common to any tracking pro-

cess. These are hugely compounded by the high degree of actual occlusion, and of “apparent occlusion”
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Figure 1.1: The human hand skeletal system and degrees of freedom of each joint as described by [Stu92].
( c©[Stu92], reproduced with permission.)

where finger bounding contours are lost. It is, for example, all but impossible to determine the degree

of flexion of fingers in some configurations using a single camera facing the back of a hand. These dif-

ficulties arise too in whole-body motion capture, but are sometimes eased there by the different colours

of clothing. Work in gesture recognition has frequently exploited this, using gloves with differently

coloured fingers (e.g. [Lyo02]).

Again on the “data side” of the processing the speed of hand movements can be very high, not only

of the hand overall, but also of the joints, causing motion blur, aliasing, and loss of tracking. Again the

hand presents more acute problems than that of whole-body motion, where the motion is slower, more

constrained, and often cyclic (e.g. walking).

Even when the above are solved or finessed, the core difficultyremains. Recovering the pose is an

optimization problem in a high dimensional space. Together, a hand and a forearm have 29 bones and

18 joints with observable movements, each joint with up to 3 degrees of freedom (DOF), as shown in

Figure 1.1. Even the more compact model used conventionallyin computer graphics models hands with

20 or 21 DOF. Such dimensionality can be reduced using the motion constraints imposed by tendons and
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Figure 1.2: Muscles and tendons of the back of the hand introduce constraints on hand coupling joint
positions. ( c©[Stu92], reproduced with permission.)

limitations of muscles in natural hand motion, as illustrated in Figure 1.2.

Finally, but very much related to the difficulties of taming high dimensionality, is the fundamental

uncertainty as to what the overall problem representation should be. Some would argue that although 3D

modelling has its imperfections, much is known about human body shape, kinematics and dynamics, and

these should form the basis of any explanation of the image data. Others would argue that the visual data

do not support recovery of a highly parametrized model, and that explanations based on non-parametric

fitting of training data are more valid.

1.3 Key approaches

These two quite different approaches to estimate the pose ofarticulated objects in 3D are apparent in the

literature: generative and discriminative.
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1.3.1 Generative algorithms

The more traditional approach for tracking of objects in 3D encompasses thegenerativealgorithms, also

known as model-based or “estimation by synthesis” methods [SKS01]. In these methods, an initial es-

timate of the pose is used to update a model that predicts the appearance by projecting a 3D model into

the image at a predicted pose. Then new measurements are obtained to estimate the pose update, as illus-

trated in Figure 1.3. The object model usually is a computer graphics replica of the target object designed

by hand. In this approach, the accuracy of the object model and the camera calibration parameters are in

many cases critical points for the tracking performance.

Figure 1.3: Generative approach for tracking: for each frame, an optimisation algorithm uses a motion
model and the difference between the projected object modeland the observed image to estimate the
motion parameters, which then update the model pose.

Hogg’s Walker [Hog83] is an example ofgenerative model-basedmethod, which relies on a more or

less realistic jointed body model “enlivened” with a set of joint angles to predict appearance. The angles

are adjusted to best fit the actual appearance in the image. Most hand and body models present in the

literature use standard or generalised cylinder models [Hog83, MN78, BM98, SBF00], but both simpler

planar and more sophisticated deformable models have been used e.g. [JBY96b, GD96].

Although it seems intuitive to use depth maps from stereo cameras (e.g. [HHD98]), cheaper image
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features can be explored. The most widely used feature in matching between image and model is the

edge, e.g. [GD96, DBR00, DC02, Bra99, dTM06], but increasing use is made of internal features, such

as corners [TMdM02a] and image motion [BM98, SBF00, YD98, WN99].

The key distinction in fitting pose to the image data is between works that adopt statistical techniques

based on simple unimodal probability density functions (PDFs) and solve deterministically, e.g. [BM98,

DC02, dTM06], and those that represent arbitrary multimodal PDFs using mixture models or particle

filters [SBF00, DBR00, IB96]. Overcoming ambiguities, particularly troublesome from single views, is

explored in [ST01a, RMK03]. By using a set of constraints andlinear relations between joint angles, a

closed-form solution for the inverse kinematics can be obtained if control points are reliably located in

the finger tips and the hand palm [LH98]. However, this is onlypossible if visual markers are used, for

marker-less tracking, more sophisticated estimation methods are required.

1.3.2 Discriminative algorithms

Discriminative approaches for 3D pose estimation provide abridge between 3D model-based and 2D

appearance-based methods. Although such methods output 3Dpose configuration of articulated objects,

these outputs are obtained after view-based measurements without the projection of an object model

at a predicted pose to restrict the search. Instead, they arebased on methods such as classification

[AS02, AASK04, TSTC03, STTC03], temporal series [Bra99], or regression methods [RASS01, AT04c].

The relationf(·) between image measurementsx and 3D posesy is learned from the data, i.e., sets of

correspondencesx → y. Furthermore, the set of measurementsx may not have topological meaning

and can be, for example, a set of global image descriptors. Figure 1.4 illustrates this approach.

Figure 1.4: Discriminative approach for pose estimation: amapping learnt from a large database of
training pairs can output a pose directly from image measurements, without needing a model to generate
image measurements.
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Ideally training image measurementsx and anglesy would be recovered simultaneously. For the

hand, the best – or at least the most obvious – method of recovering joint angles is using a data glove,

but unfortunately wearing the glove ruins the imagery. For whole body, Hwang et al. [HKL06] recently

presented a data base of 3D poses and silhouettes, but his hasnot been done for hands yet. Furthermore,

this constrains the training set to the grabbed images, making it more difficult to try new camera configu-

rations or to vary the global orientation of the hand to obtain a more comprehensive training set. Another

method is to generate synthetic imagery from a hand model using synthesised joint angle data. In order

to constrain the angles to natural motion, a commonly employed method [Bra99, AS03, AT04a] is to

render imagery from 3D models using joint angles previouslyrecovered from given data. This provides

accurate ground truth data, but the resulting accuracy of the pose estimation for real images is reduced

by the lack of realism in the training set.

These methods can be implemented using global image measurements, so prediction of the pose is

not necessary and such methods can work without a coherent temporal sequence. On the other hand, their

accuracy and comprehensiveness in terms of the parameter space is limited by the training set used, and

the image measurements tend to be more expensive than those of generative methods. But the growth of

computational power has recently enabled the implementation of methods that can cover a large range of

3D poses that can be recovered quickly.

1.4 This thesis

In this thesis, both generative and discriminative approaches have been explored: a generative model-

based 3D tracker that assumes that the inter-frame motion ofthe hand can be reasonably well predicted;

and a discriminative image-based 3D hand detector that can be applied for (re-)initialization of this

tracker. Thus, the advantages of both systems can be combined: the robustness of a discriminative de-

tector with the speed and accuracy of a generative tracker. The detector provides a set of initial pose

parameters that roughly describes the pose of the objects given the observation, and the tracker quantita-

tively refines the estimates at each iteration (and for each new image frame).

While this work is centred on sensing and perception, it was developed in the context of other work

in the Active Vision Laboratory in Oxford in wearable computing, and is envisaged as the precursor to
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Figure 1.5: Overview of a motivating application. The user is watched by external cameras that track
the head gaze to determine the focus of attention and the hands in interaction with objects. A wearable
camera provides information from the user’s view point and the combined outputs could be used to
control an assistive robot arm.

exploring actuation in assistive robotics. Figure 1.5 sketches the sort of assistive workbench proposed.

This thesis addresses the element of hand pose recovery using multiple cameras, work that is described

chiefly in Chapters 5, 6 and 7 and has been published in [dTM06]and [dM06]. Figure 1.6 shows typical

results. Of lesser relevance but still pertinent to this thesis is the work on head tracking using 3D ap-

pearance models of [TMdM02a], and the body of work on active wearable cameras described in Mayol’s

thesis [May04]. Some experiments using the wearable to track hands are reported here in Chapter 4 and

in [dMM06].

1.4.1 Thesis outline

Description of the experimental work commences in Chapter 3, where certain background matters are

outlined. The physical work space for tracking is described, followed by the client-server architecture for

monitoring trackers that can run in parallel and the camera calibration algorithms. Also included is the

skin colour detection method, which is a key developtment ofthis chapter, being used as a component of

the works published in [TMdM02b], [dMM06], [MTdC+03] and [dM06].

Chapter 4 describes an implementation of the RAPiD rigid object tracker [Har92a] and experiments
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(a) (b)

Figure 1.6: Example results from (a) 3D kinematical tracking and (b) 2D appearance based pose recover
using a Relevance Vector Machine – work described in Chapters 5 and 7 respectively.

with multiple views using synthetic data. This is followed by the description of an application that

combines a simple 2D image-based discriminative detector and RAPiD to estimate the pose of a pointing

hand in 3D from the view of a wearable robot. This system is themain contribution of this chapter,

published in [dMM06].

In Chapter 5, a novel extension of RAPiD is proposed for tracking of articulated objects. This tracker,

dubbed ART (Articulated RAPiD Tracker), is tested on some sequences of images containing synthetic

and real articulated objects. Next, Chapter 6 describes another state-of-the-art approach for real-time

tracking of articulated objects [DC02] and shows comparisons with ART in terms of accuracy, efficiency

and robustness. This novel comparison has been published in[dTM06].

Chapter 7 describes a discriminative approach for hand poseestimation from static images. This

method uses global image measurements based on shape contexts [BMP02] and a regression method

[AT04a] to map measurements to 3D poses. The effects of the use of rotation invariance shape contexts

are analysed. The key development is a combination of multiple views. Experiments comparing the

performance of single and multiple views indicated that theproposed multiple view extension improves
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accuracy and reduce the complexity of the regressor. This work has been published in [dM06].

Conclusions are drawn at the end of each chapter, but Chapter8 draws the various threads together

to provide a formal conclusion to this thesis and to list its main contributions. This chapter also points

out new possibilities of research that are open as continuation of the work presented here.

But the thesis continues now in Chapter 2 by presenting a quite detailed survey of the recent research

achievements in object, person, limb and hand tracking. Thereview is rather longer — actually, much

longer — than that which is required to support the remainingchapters. (Indeed, at first reading of the

thesis, it may be best to continue to Chapter 3, and return later.) The motivation for writing at length is

touched on now.

1.5 A postscript on available subject reviews

Although there are a couple of reviews in the literature for 3D hand pose estimation — Wu and Huang

[WH99b] review model-based methods for hand analysis and animation in HCI and Erol et al.’s review

[EBN+05] also includes discriminative and mapping-based methods for pose estimation from a single

frame — there is a lack of archival review material on methodsto track articulated objects.

Some useful material is contained in the reviews of the broader fields mentioned below, but it is dif-

fuse. In the area of Human-Computer Interfaces (HCI), Porta’s paper [Por02] provides a comprehensive

survey on the use of vision in HCI. Turk’s slight later review[Tur04] targets non-expert readers. Jaimes

et al. [JS05] cover multi-modal HCI, including all the senses. Duric et al. [DGH+02] review methods

regarding to three sets of criteria: the task that they are focused on: detection, tracking or recognition;

the models used to represent humans; and the method for pose update used; before focussing on adaptive

HCI.

For the field of Human motion capture (HMC), Aggarwal and Cai [AC97] present taxonomies of

past research subdividing them on motion analysis of human body parts, tracking of human motion with-

out using body parts, and human activity recognition. A similar subdivision of the research literature

was adopted by Gavrila [Gav99]. Moeslund and Granum [MG01] present a more comprehensive sur-

vey, proposing a taxonomy based on functionalities, i.e., they describe methods that combined would

compose a complete HMC system: subject modelling and initialisation, segmentation and tracking, pose
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estimation, and action recognition.

When reviewing Gesture Recognition, Cassel [Cas98] soughtto provide a common framework for

the generation and interpretation of spontaneous gesture (including facial expressions) in the context

of speech. Watson [Wat93] presents the earliest survey and cites appearance-based methods based on

classification or tracking of deictic gestures. The survey by Pavlovic et al. [PSH97] was the first to

discuss view-based vs. 3D model-based methods. They support 3D model-based methods, but admit

that this approach is more challenging, which explains why view-based methods have been explored in

more depth. Parts of this survey have been updated in [WH99c]and [WH01].



2

Articulated object tracking and pose
estimation: a literature survey

2.1 Introduction

Research on vision-based sensing of hands was first reportedin the early 1980s, but the last decade has

seen a burgeoning of the field, driven, of course, by cumulative progress in vision algorithms, but also

by advances in computing and camera hardware and the perceived value of potential applications. This

chapter presents a detailed survey of hand pose estimation and tracking methods. A number of methods

for human motion capture have also been included, because oftheir parallels with hand tracking.

The review has been divided in three sections. Section 2.2 isconcerned with 2D methods, and starts

by reviewing image-based methods that run “model-free” in Section 2.2.1, methods based on exemplars

are reviewed in Section 2.2.2, and those that run with with 2Dmodels are considered in Section 2.2.3.

Section 2.3 is concerned with those methods where the model is built in 3D. There is a consider-

able number of methods that use partial 3D models, and these are outlined in Section 2.3.1, 2.3.2 and

2.3.3. Methods that include quite complete kinematic models are less varied, and these are examined in

Section 2.3.4–2.3.7.

Section 2.4 of the review considers the intermediate class of methods which has come to prominence

in recent years where 3D shapes are deduced directly from image appearance. High-level methods for

action and intention recognition are not included, and little attention is given to gesture recognition meth-
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ods. The survey concludes with a summary, a list of challenges that still remain, and some considerations

as to likely future directions in the field.

2.2 2D methods

Two dimensional or image-based approaches are applicable to problems where it is enough to recover a

two-dimensional description of the hand pose and a qualitative description of the gesture. The number

of recognisable gestures is limited, but they can be very robust.

2.2.1 Model-free methods

Some methods do not model the hand’s appearance. Instead they track a cloud of moving features or

blobs that are likely to be hands, and attach meaning to them [FAB+98, Que95, WADP97, BPH98,

WLH00]. One of the most robust model-free methods is that of Kölsh and Turk [KT04b]. It uses a set

of KLT feature trackers (named after Kanade, Lucas [LK81] and Tomasi [ST94]) which is initialised in

the hand region (see Figure 2.1). The position of these features is bounded by the skin colour blob and

a geometric constraint that prevents features being located too close to or too far from each other. The

hand position is determined by the median feature among the set. This system is able to work at video

rate, with performance superior both to that of a raw KLT tracker and to that of a mean-shift tracker

[Bra98].

Figure 2.1: 200×230 pixel areas cropped from the 720×480-sized frames of a video sequence showing
the tracking result with highly articulated hand motion. The cloud of dots represents the flock of features,
the large dot is their mean. (From [KT04b], reproduced with permission.)

2.2.2 Exemplar-based methods

Exemplar-based representations are simple to create and are capable of representing highly nonlinear

configuration manifolds. Exemplars can be thought of as minimally preprocessed select representa-

tives of the training data itself, which together ‘span’ therange of the modelled entity [And01]. Some
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exemplar-based methods do not present any pre-processing step and use whole image patches to repre-

sent instances of the target object. For instance, Darrell and Penland [DP95] simply use correlation for

gesture recognition. In some cases, even parts of the background are included. For this reason, such

methods are usually memory-intensive. In most cases, accuracy and speed are achieved by using fast

search methods, powerful classifiers and temporal information.

Efficient classification methods

Gavrila and Philomin [GP99] use chamfer matching and a coarse-to-fine search in the image grid to speed

up matching. In order to detect multiple body poses, a database of shape templates is partitioned into a

number of clusters following their dissimilarity. Clustering is done recursively, leading to the creation of

a tree of templates. Matching is then done by traversing the tree structures, from root to leaves, following

the path with most similarity with the observed image. This prunes a large number of comparisons that

would be done if exhaustive search was used. Pedestrian detection is performed at near video-rate, but

the accuracy of this system is between 75-85% of detection rate.

Boosting [RO00] is a fast and powerful classification technique based on a weighted cascade of weak

but quick classifiers. This combination provides accurate results with a good description of the decision

boundary. Viola and Jones [VJ01] proposed a method for object recognition based on boosting of simple

image features founded on Haar wavelets. Their results for face detection make this a gold standard

method for this task. Although its application is quick, thetraining phase is computationally demanding.

Variations upon the method have been applied to hand tracking, with nuances to improve the training

time [KT04a], [JRM06], [WAP06]. Lockton and Fitzgibbon [LF02] applied this for real-time gesture

recognition to replace keyboard and mouse.

Using temporal information

A variety of techniques has been employed to model temporal sequences, including PNF (past, now,

future) networks [PB98], tree-based search [Lyo02], finitestate machines [HTH00] and, most commonly,

Hidden Markov Models (HMMs) [WBAS03], probably due to its success in speech recognition.

Starneret al. [SWP98a] use HMM to represent a lexicon with four states to recognise some gestures

of American sign language (ASL). The silhouette of the handsare obtained with skin detection and they
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(a) (b)

Figure 2.2: (a) Camera with multiple offset flash sources. (b) The letter ‘R’ in ASL recovered Canny
edges and the depth edges obtained with the technique of Feriset al. ( c©[FTR+04], reproduced with
permission.)

are described using a 16 element feature vector built from basic moment-like blob measurements. In

[TB02], Toyama and Blake show how two dynamic processes (global motion and shape changes) can

share the same joint observation density provided by the chamfer distance. This leads to an attractive

homogeneity of description and implementation. The drawback is that this requires the use of a large

particle set, which must simultaneously represent hypotheses of both shape and position. Fei and Reid

[FR04] argue that in many applications these processes can (or even should) be decoupled, potentially

leading to a more economical use of particles and hence to greater efficiency and reliability. They propose

a method for the analysis of complex hand motion that assumesthat the hand motion consists of two

independent components: cyclic shape variations and hand region motion. The former is modelled by an

HMM using silhouette moments, the latter is a particle-based colour region tracker. Each maintains a full

PDF of its respective component of the motion, and they interact via an importance sampling function.

Matching image information

This review turns to consider how the observed image is matched with prior knowledge of the hand’s

appearance. The simplest method in terms of implementationis template matching or normalised cross

correlation as used in [FAB+98]; but it is very common to use shape descriptors [dCJ01] for hand pose

classification [YI98], image moments [Hu62] being popular descriptors for this task [FAB+98, Lyo02].

Other descriptors employed for matching are (i) those basedon the analysis of the curvature of the

silhouette contour [HSS02] and (ii) polar histograms [OS03a] computed from the centre of the silhouette

of the hand [WAP06] [FTR+04]. (The second reference uses a multiple offset flash gun tohelp recover

depth edges in hand images. The illustration and results in Figure 2.2 are a good example of the difficulty
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caused by partial occlusion.) In [TSTC03], Thayananthanet al. compare two methods for matching of

Canny edge images. One method is based on shape context and the other combines an exemplar-based

detector based on chamfer matching with an optimisation method for model-fitting. They conclude

that chamfer matching outperforms shape contexts, but chamfer matching requires a high number of

templates for matching.

2.2.3 Trackers with 2D object models

Prior knowledge can be exploited to obtain a more quantitative description of the hand shape. Model-

based methods use a description of possible hand shapes and tracking is performed by matching the

model pose with the observed hand images.

Active contours [BI98] as well as deformable templates [BH95, HCT95, BS02, Bow99, KH95, BF95,

TLC+98] have been used to model the hand’s appearance in images, methods robust to small variations

in pose and shape of the hand. Deformable 2D templates comprise points on the outline of the hand

that are used as interpolation nodes for an approximation ofthe outline. The template sets and their

corresponding variability parameters are stored, and matching involves minimising the summed squares

of differences between points from the image silhouette andthe templates. This is a simple and successful

method if the original viewpoint is maintained, or if characteristic views are available. Triesch and von

der Malsburg [Tv01] employed a variation on this approach, elastic graph matching, in which the hand

image is represented as a labelled graph. The distribution of nodes describes postures in 2D.

Another image-based method to track an articulated model was proposed by MacCormick and Isard

[MI00]. With an articulated model and active contours to segment the index finger, they tracked four

degrees of freedom, namely planar translation, orientation of the thumb and of the index finger, using

CONDENSATION [IB98, IB96]). Unlike model-free and classification-basedmethods, this system recovers

continuous parameters rather than recognising gestures from a discrete “vocabulary”. In [MI00], the au-

thors show the application of this tracker to implement a virtual workspace with a more natural interface

for drawing objects, as shown in Figure 2.3.

For whole body tracking, more complex articulated models have been used recently assuming that

each limb part can be modelled in the image by a rectangular shape. Bregleret al. [BOC+98] model the

body segments with a multi-dimensional mixture of Gaussianblobs, modelling motion, shape and grey
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Figure 2.3: The virtual workspace described in [MI00]: the thumb activates the pen and the orientation
of the index finger continously controls the thickness of thelines; the black piece of paper (tracked with
a simple Kalman filter) controls the position and orientation of the whole drawing image. ( c©[MI00],
reproduced with permission.)

level distributions. The blobs are initialised using motion coherence likelihoods, based on optical flow.

For a two parts articulated body, they use Expectation-Maximisation to estimate the pose with simple

kinematic priors to constrain the blob estimation. In their“cardboard people” tracker Juet al. [JBY96b]

use three different views, viz frontal, oblique and side on,to design two-dimensional templates that

represent projections of the object in each view. They trackwalking motion, but it is assumed that the

orientation of the object does not change along the sequence. Lu et al. [LPV06] use a planar layered

model capable of handling occlusion for gait analysis. For each body part, it actively selects which side

is more likely to have reliable edges for walking movements (avoiding, for example, edges between the

legs because they are often perturbed by clothing). Local tracking of body parts is based on mean-shift,

and strong motion priors (such as arms move in opposition to thighs) are included. Good results are

reported for examples which conform with these priors.

In [MR98] Morris and Rehg model the projected motion of an inter-joint link in the scene as affine

flow patches with imposed kinematic constraints. This is similar to Ju’s model [JBY96b], but with fewer

parameters and a more direct connection to the underlying articulated motion. These two approaches are

compared in Chapter 6.

The above methods give continuous pose estimates in 2D, which is not always required in problems

related to registration of articulated objects. Felzenszwalb and Huttenlocher [FH00, FH04] proposed

the use of pictorial structures for object recognition, based on dynamic programming with discretisation

of the parameter space. The algorithm searches the parameter space to minimise a cost function that
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combines the matching score of the object parts with kinematic constraints. The matching score is based

on how well rectangles can fit areas segmented by background subtraction. The joints have a spring-like

model and the kinematic constraints try to minimise their degree of distortion from an up-right pose.

Ronfardet al. [RST02] built a similar system, but they replace the rathersimple part detectors with

dedicated detectors learned for each body part using Relevance Vector Machines (RVMs) [Tip01], which

are support vector machines-like classifiers that offer a well-founded probabilistic interpretation and

improved sparsity for reduced computation.

Ramanan and Forsyth [RF03] use clustering to learn the appearance of objects that move in a video

sequence. This approach, calledforeground enhancement, is different from traditional background sub-

traction since it is used to learn the appearance and not to find people. Therefore, once the appearance

is known, they can track people who initially stand still, solong as they move at some point. They use a

probabilistic graphical model to locate and track multiplepeople in video sequences.

Kumaret al. [KTZ04] extend Felzenszwalb and Huttenlocher’s approach[FH04] by using a complete

graph model, rather than a tree structure. In order to estimate the maximuma posterioriestimate of the

pose and shape parameters, a loopy belief propagation method is used, which is a message passing

Viterbi-like algorithm for graphs with loops. The authors show that this gives more constraints for the

pose estimation and better results than a tree structure.

More robust to unconventional human body poses is the methodof Mori et al. [MREM04]. It uses a

method for segmentation that gives theprobability boundariesbased on brightness and texture. This is

applied with two different parameters: one that segments regions of the image large enough to be likely

to contain half limbs and torso segments, and one that super-segments the image, givingsuper-pixels.

Next, a method for detection of salient body parts is appliedto the large segments. This method is based

on four cues: contour, shape, shading and focus. These cues are combined and the regions with highest

score are selected and combined using constraints on relative widths, lengths, adjacency, and similarity

of clothing. The output of this system is a ranked shortlist of possible configurations of the human body

in the image. Each pose configuration is obtained from the association of different segments of the

images, which enables the computation of a body segmentation (see Figure 2.4). The main drawback of

this system is the dependence on its training set for robustness. Furthermore, the design of this method
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was driven by its data: baseball players images. This allowed the use of specific features, such as the

symmetry and regularity of the players’ uniforms, which, inmost of the showed images, are highly

distinguishable from the background.

(a)

(b) (c) (d) (e)

Figure 2.4:(a): Data flow the algorithm of Moriet al. [MREM04]. (b-e): Selected result from the short-
list of final configurations: (b) input image, (c) candidate half-limbs, (d) extracted body configuration,
(e) associated segmentation. ( c©[MREM04], reproduced with permission.)

The method above estimates pose from single images independently. This review now turns to meth-

ods that exploit spatio-temporal information.

Yacoob and Davis [YD98] use an approach for learning and estimating temporal flow models from

image sequences. Such models are created by applying principal component analysis to time sequences

of parametric models of body part motion. These observations are obtained using the “cardboard body”

of [JBY96a]. This approach bridges the gap between traditional instantaneous optical flow estimation and

multi-frame motion estimation. The learned motion models are used in a spatio-temporally constrained

image-motion formulation for simultaneous estimation of several rigid and non-rigid motions.

Wu et al. [WHY03] also explore temporal priors, but instead of constraining a spatio-temporal man-

ifold, a motion filter is used. Articulated objects are not modelled as single objects with low-DOF joints.

Instead, each rigid partk is measured (zk) in the image independently and the pose of each part is re-

dundantly described by its posexk, independent from the other parts of the object. The measurements

of each part give a local likelihoodpk(zk|xk) for the pose. The local priorpk(zk) can be obtained using

temporal information, thus it depends on previous measurements. This is combined with neighbourhood



2.3 3D model-based tracking 20

Figure 2.5: Mean field Monte Carlo tracking of 3-part finger presented in [WHY03]. ( c©[WHY03],
reproduced with permission.)

priors, which constrain this part to be connected to its neighbours. The system is modelled with a dy-

namic Markov network, which serves as a generative model forthe articulated motion. In their most

challenging experiment, a 10-part articulated body was tracked at 0.56 frames/second, using 200 par-

ticles per part, but the lack of different texture on hand parts make this difficult for hands. Figure 2.5

illustrates the results for a 3 parts finger.

2.2.4 Discussion

2D image-based methods simplify tracking and pose estimation by focusing on motions that are parallel

to the camera plane and by restricting the appearance changes. A considerable robustness is achieved

with methods that model (or are invariant to) scale and shapechanges, but they either do not provide

enough information about the hand pose (e.g. model-free methods) or they are view-dependent. For in-

stance, methods that use image-based articulated models can struggle with fingers pointing at the camera.

Such methods have not successfully been applied to full-DOFwhole hand tracking because the lack of

strong textures challenges their effectiveness.

2.3 3D model-based tracking

The models in the previous section were two dimensional. This review now considers methods based on

3D models, starting with those that employ a simple rigid model to track hands, moving on to methods

in which specific image features locations are used, and ending with those that model many or all of the

available degrees of freedom.

2.3.1 Tracking hands in 3D without estimating fingers joint angles

Several early 3D hand trackers used rigid hand models, with the intention of using the hand as a 3D

pointer or mouse. In [COK93] Cipollaet al. tracked four coloured markers on a hand (three on the
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ends of fingers) to recover 3D orientation which was then usedto control the orientation of a graphics

model. Without using colour markers, Cipolla and Hollinghurst [CH98] tracked the thumb and index

finger using active contours. The intersection between the finger line visible from the two cameras and

a ground plane was computed, allowing for simple interaction with a robot. Bretzner and Lindeberg

[BL98] used three cameras to track three fingers to establishboth the position and orientation of a rigid

hand in 3D. An ingenious alternative to the using multiple views was the use in [SK99] and [SLM+02]

of a single camera with multiple light sources to cast shadows onto a planar surface

In [OZ00], O’Hagan and Zelinsky propose decoupling gesturerecognition and pose estimation. Their

system assumes a 3D rigid planar hand model. A curvature analysis allows features on the outline

of the hand silhouette to be selected in each image of a stereopair, allowing the planar pose of the

hand palm to be determined. An image-based classification iscombined with 3D rigid hand tracking to

recognise gestures. More practical results are shown by Segen and Kumar [SK98, SK00] in a video-rate

application. As in O’Hagan and Zelinsky, gestures are recognised using peak and valley detection on

the hand silhouette. A finite state machine analyses movements to refine gesture recognition. The same

image features are also used to estimate 3D position, azimuth and elevation for both the index finger and

the thumb. This system is applied to 3D scene composition andnavigation.

Satoet al. [SSK01] use skin detection to segment hand blobs in a two cameras system, allowing

the 3D position to be computed through triangulation of the centre of the hand. The orientation is then

determined using the principal axis of the hand and the left and right end points. A small set of gestures

is recognised using a neural network applied to segmented, normalised and sub-sampled hand images.

2.3.2 3D tracking of an articulated arm with fixed basis

A number of authors have modelled and tracked hands as a rigidextensions of the forearm, articulated at

the elbow and shoulder. Gonçalveset al. [GdUP95, BGP96] developed a monocular system capable of

tracking human arm in 3D where the limbs are modelled as truncated cones, the shoulder is a spherical

joint and the elbow is a planar joint, giving the model 4 DOF. The image measurements are obtained by

thresholding and smoothing the image, and the method performs 1D searches for the highest gradient

perpendicular to the projection of each limb segment (forearm, arm and hand tip). Only five control

points per segment are searched. Tracking is performed by a recursive estimator that performs random
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walk in the spherical joint velocities and uses the ExtendedKalman Filter. Ambiguities are avoided

by constraining angles. Tracking was achieved at 11 Hz (in 1995, when typical processor speeds were

100 MHz) and the standard deviation of the estimates of hand tip position is some 1% of the distance

between the camera and the user’s hand.

Vogler and Metaxas [VM96] use three near-orthogonal views and impose priors on the human body

shape. Deformable silhouettes are used and heuristics are applied to locate the position of joints. For

tracking, the method actively selects of the best viewpointfor each body part in each frame [KM96]

and, once selected, planar rotations and translations are estimated to drive updates to the 3D model. A

Kalman filter is used for prediction and gesture recognitionis performed using an HMM to recognise a

set of 53 gestures from ASL. (The word accuracy achieved was of 88% for the 3D context-dependent

experiments with 456 testing gestures. The authors made useof a commercial HMC system based on

magnets interchangeably with their vision-based method.)

2.3.3 Using finger tip locations

If a reliable estimation of the position of the finger tips is available, it is possible to obtain solutions

for hand pose using inverse kinematics [Cra89]. Both single[CGH02], [LH00] and multiple cameras

[Lie04], [Reh95] have been used (as, incidentally, has active illumination [SKK00] and laser tracking

[PCI03]), and a wide variety of methods have been proposed todetect and locate fingertips. These include

(i) coloured markers [Lie04, CGH02, LH00, RL00]; (ii) circle detection by fitting [vHB01] and Hough

transforms [CC03]; (iii) line detection with the Hough transform [Ahm95], [GW00]; (iv) curvature anal-

ysis [YI98]; (v) correlation [Reh95]; and (vi) trained neural nets [NR99]. To eliminate ambiguities

constraints imposed by limitations of muscles and tendons must be included in the model. Most use hard-

coded linear dynamic constraints between joint angles to reduce the dimensionality [LH98, CGH02]1.

Motion priors are used to predict over periods of occlusion [LH00, Lie04, RL00].

Perhaps the main advantage of these methods is that they do not require a model of the hand to be

back-projected into the image. However, if no colour markers are used, detection of fingertips is very

challenging particularly if the image region around a fingertip is skin coloured, as is common situation

1For instance, the relation between the proximal inter-phalangealθ1 and the distal inter-phalangealθ2 joint angles is mod-
elled asθ1 = 2/3θ2. The abduction dofs are often ignored as in [CGH02].
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when the fingers are bent. Even when markers are used, the measurement of the palm is made unreliable

by skin movement.

2.3.4 Marker-less articulated tracking using complete 3D models

The methods described on this section onwards involve the use of a complete 3D model.

Symmetric tracking with a kinematic chain

In the early 1990s Rehg and Kanade [RK94, Reh95] developed the first system to track unmarked hands

using a realistic (27 DOF) 3D kinematic chain at near video rates. Finger phalanges were modelled as

simple cylinders, fingertips as halves of spheres, and the palm as a couple of planes linking two cylinders.

Two feature extractors to measure the sum of squared differences (SSD) were presented: deformable

templates registration and point and line features. In template registration, the cost function is based

on intensity errors used to measure the geometric misalignment between an input image and the image

predicted by the projected kinematic model. Each finger is described by a planar template deformed with

an affine transform to approximate the projection. Templates provide a useful level of generality, and

make it possible to exploit arbitrary texture cues. But for aspecific object like the hand, the constraints

provided by the template matching can be approximated by purely geometric error functions involving

point and line features [RK94].

Point and line features tracking is performed by projectingthe middle axes of the truncated cylinders

onto the image and searching for edges in directions perpendicular to the projected segments. Search for

edge in the finger tips is also performed. The significantly lower computational cost of computing point

and line features makes on-line tracking possible. The residual error between the estimated position of

the features and the actual located features are combined and minimised using a weighted Gauss-Newton

iterative method to estimate the state update as follows:

qk+1 = qk − [J⊤k Jk + S]−1
J⊤k Rk, (2.1)

whereJk is the Jacobian matrix for the residualRk, both of which are evaluated with the state vector

qk andk is the iteration index.S is a constant diagonal conditioning matrix used to stabilise the least

squares solution in the presence of kinematic singularities.
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The method was implemented on multiple processors using separate frame grabbers for the two

cameras and a separate computer to render and display the estimated model, resulting in a 10 Hz tracking

of 19 degrees of freedom (where the middle fingers were not tracked) and 7 Hz on all 27 degrees of

freedom. The on-line version did not include Rehg’s method of occlusion reasoning, which was restricted

to off-line because of its computational complexity. Although the palm is modelled, for simplicity its

projection is not used for tracking.

Lu et al. [LMSO03] describe a method for hand tracking using a singleview from a motion sequence.

A combination of spheres and truncated cones models the appearance of each part of the hand. Three

image cues are used for tracking: edges, optical flow and shading information. Since there is not much

image features on bare hands, the standard optical flow couldnot provide good results. As a solution,

optical flow and shading information are combined using a generalised version of the gradient-based

optical flow constraint that includes shading flow, i.e., thevariation of the shading of the object as it

rotates with respect to the light source. Similarly to Rehg’s work, 2D image feature discrepancies drive

changes in 3D pose via the Jacobian. To combine the multiple cues, Luet al. use Lagrange multipliers.

An iterative method to impose joint constraints is also described. Basically, once the pose estimation

results on some of the joints moving further than its limit, the joint is fixed to its limit and a new solution

is estimated with this joint modelled as a rigid object. Tracking at 4 Hz was achieved on a Pentium 4

1 GHz cpu.

An alternative to Rehg and Kanade’s notation was proposed byBregler and Malik in [BM98]. Instead

of using standard full projective geometry, scaled orthography is used. Thus the effects of changes in

distance from the camera are compensated by changes in scaleof the object. This seem to be appropriate

for problems with unknown camera calibration and objects far from the camera, as it is common for full

body tracking. The image measurements are based on comparisons of internal pixels of warped image

of object parts. The method is formulated using Lie Algebra,i.e., the motion between each pair of object

parts is represented using a combination of the exponentialof the canonical matrix of the coordinate

frame of each DOF. These are used to build a linear relationship between instantaneous motion and

pose change, allowing to obtain a least squares approximation of the pose update (exponential twist) for

articulated objects, given the image measurements. As shown in Chapter 6, this turns out to equivalent to
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the motion screw obtained by standard Jacobian-based methods for articulated object pose update. The

experiments in [BM98] show successful tracking of a 6 DOF human body using a single camera and of a

19 DOF body using three cameras and a well-known “Eadweard Muybridge” sequence. The frame-rate

achieved is not reported.

Whole body tracking using a quantised feature space

In their influential work, Gavrila and Davis [GD96] modelledthe human body using superquadrics. Four

widely spaced cameras were used, and the model projected into each of them under perspective. A

fitting cost was defined by chamfer matching in a filtered and background-subtracted edge image, and

coarse-to-fine search in parameter space used to determine the best-fitting quadrics,

A local best-first search was used for pose update. However, using 22 dimensions per human makes

the the search space large, and brute-force search daunting. Instead they proposed a search space de-

composition in which the parameter space was recursively partitioned in a tree-like structure of subsets

of parameters. At the leaf level were single parameters thatwere optimised individually, but the whole

parameter set was used to verify the error. Once a parameter was optimised, it was fixed while the re-

mainder were optimised. The parameters that have not been searched yet keep the predicted values from

the previous iteration. This is an asymmetric search method, and different results can be obtained if

different orders are used. The authors’ preferred order waspersons; followed by head/torso position and

inclination; torso twist; then arm pose.

The method worked well provided the image conditions were made benign — the subjects wore

tight-fitting clothes of contrasting colour and the motion was straightforward. Tracking more complex

motions, such as their tango sequence, required manual intervention.

2.3.5 Model refinement

In order to adapt the hand model to different users, some researchers have also optimised the “static”

body parameters. Luet al. [LMSO03] for example refine the length and thickness of fingers while

tracking. During the first frames of a sequence, and after pose updates, the residual errors in edges

and optical flow are accumulated and used to modify the hand shape by anisotropic scaling. Bregler

and Malik [BMP04], show that the state space of their earliermotion tracking framework [BM98] can
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be extended to also optimise over the kinematic model, and over the complete image sequence instead

of just image pairs. The twist (state of the pose parameters)is kept fixed to the values obtained by the

tracker and the equations are rearranged to optimise the length of each link of the articulated body. Based

on Tomasi-Kanade’s factorisation method [TK92], Bregler’s system of equations is iteratively factored

to optimise the articulated model and update the pose and shape parameters along a video sequence. A

more advanced model is that of Plänkers and Fua [PF02] who refine meta-balls (generalised algebraic

surfaces defined by a summation overn 3D Gaussian density distributions) attached to an articulated

skeleton. The meta-balls simulate the gross behaviour of bone, muscles and fat tissue. The model is

projected into the images and its silhouette is extracted. Tracking is performed in four steps (i) The

silhouette of previous frame serves as initialisation for current frame; (ii) Optimise using active contours

on disparity-filtered gradient image; (iii) Refine the body model to stereo data constrained by current

silhouette estimate; and lastly (iv) Optimise the silhouette of the fitted model using active contours.

The use of a model that accurately reproduces the objects appearance must have a positive effect

on tracking precision. However, there has been no analysis of whether, when resources are finite, such

improvements compensate for the extra computational effort necessary for update and projection of a

detailed model as it moves.

2.3.6 Motion filters

Motion filters have been used in many hand tracking methods tosmooth the pose estimate and to provide

predictions that improve the reliability of the tracker. Some have already been mentioned in passing.

Methods based on the Kalman filter

Shimada and Shirai [SS96] use the Extended Kalman filter (EKF) for monocular hand tracking in 3D and

also allow model refinement by including the length of finger parts in the state vector. First, the best fitting

solution is obtained with EKF and then this solution is modified applying inequality constraints based on

human hand physiological restrictions. In cases where multiple solutions satisfy the constraints, multiple

hypotheses are generated (based on symmetry w.r.t. the image plane) and their fitness is evaluated. This

system was only evaluated using simulations. Wachter and Nagel’s persons tracker [WN99] uses an

Iterative Extended Kalman Filter (IEKF) which consistently integrates edges and image texture cues for
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the pose update.

Stengeret al. [SMC01] use an Unscented Kalman Filter (UKF) [JU97] to update the pose of their

model, which like Rehg’s has 27 DOF, but it is built from 39 truncated quadrics (Figure 2.11), giving,

of course conic projections. The hand dynamics are modelledusing position, velocity and acceleration.

The UKF is found to be more tolerant of non-linearities than the EKF, and permits higher frame rates

than more sophisticated estimation methods such as particle filtering.

(a) (b)

Figure 2.6:(a) wire frame of the 3D hand model used by Stengeret al. [SMC01]. (b) Projection of this
model on the input image during tracking. ( c©[SMC01], reproduced with permission.)

Stochastic and multiple hypotheses search strategies

The challenges of unconstrained tracking and 3D tracking from monocular vision have lead to the re-

search in methods to avoid local minima caused by ambiguities and configurations with singularities.

Deutscheret al. [DNBB99] have demonstrated that probability density functions (PDFs) for kine-

matic variables such as joint angles are actually non-Gaussian. This tends to happen particularly often in

joint angle PDFs near their end-stop values and close to singularities where the kinematic chain lies in

physically distinct but visually indistinguishable configurations. Their solution for human body tracking

was to useCONDENSATION. Sidenbladhet al. [SBF00] presented a method similar to that of Deutcher’s,

but they use limb texture in addition to edges alone.

Another stochastic solution was proposed for hand trackingby Nirei et al. [NSMO96]. Given a rough

initial estimate obtained by mouse clicks, a Genetic Algorithm was used to minimise the estimation error

of optical flow and maximise the overlap between the projected model and silhouette images using the

chamfer distance. They then applied Simulated Annealing torefine the pose estimate. The results were
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not obtained in real-time (unsurprisingly!), but they demonstrate that all the fingers could successfully

be tracked in a short video sequence.

Stochastic tracking frameworks such asCONDENSATION are capable of dealing with complex PDFs

and avoid local minima, but the curse of dimensionality threatens this approach. The minimum num-

ber of particles required for successful tracking is exponentially proportional to the dimensionality of

the problem [JDM00]. One of the issues that makeCONDENSATION computationally expensive is the

definition and evaluation of the likelihood. Deutscher, Blake and Reid [DBR00] address this problem

by developing the Annealed Particle Filter (APF) which usesa weighting function to approximate the

likelihood. This weighting function is easy to be calculated and, unlikeCONDENSATION, the perturbation

of the particles always decreases with time. This allows theuse of much larger particle distributions with

less computational effort. Davison, Deutscher and Reid [DDR01a] demonstrated the application of this

algorithm for Human Motion Capture for character animation(see Figure 2.7). The particle distribution

is used by the APF to evaluate several parameters of the weighting function in attempts to find a value

that minimises it. Clever search strategies are needed to help particles to locate the global minimum of

the weighting function to overcome the complexity of the search space. APF tends to be rather wasteful

of computational resources in the searching of configuration space. At each time step, the APF must add

a noise vector to the particles. The noise has to be large enough to lead to a search that covers a suffi-

ciently large volume of the configuration space. This improves the tracking results, but many particles

are wasted in randomly generated configurations.

(a) (b)

Figure 2.7:(a) Projection of the 3D body model on the image of one of the 3 viewfrom a handstand
video sequence used by Davisonet al. [DDR01a]. (b) The virtual character on the pose obtained by the
APF algorithm. The curve shows the trajectory of the base of the subject’s spine.( c©[DDR01a], reproduced
with permission.)
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To address this problem, Sminchisescu and Triggs [ST01b, ST01a] adopted a covariance weighted

sampling in which a covariance matrix representing uncertainty is associated to each body pose hypoth-

esis. This allows iterative generation of hypotheses that are less ambiguous, resulting in a more efficient

distribution of the available tracking estimates. In parallel, the searching method of APF was improved

by Deutscheret al. [DDR01b] by adding noise to each individual parameter of a particle in proportion

to the variance observed in that parameter across the particle set. Another improvement was the use of a

genetic algorithm-like particle crossover operator. Thisupdate on the algorithm lead to a 4-fold increase

in processing speed.

An alternative bottom-up approach has been presented by Sigal et al. [SISB03]. They represent

body parts individually and a stochastic algorithm places the parts randomly in 3D. A graphical model

based on message passing and learning combines image measurements and spacial constraints and, in

[SBR+04], also temporal constraints. Bottom-up part detectors based on PCA of concatenated images

(of multiple views) are used to aid detection of parts. They suggest their results improve on the APF

because errors are not accumulated. However, although the optimisation searches for solutions that do

not violate the constraints between body parts, these are not hard constraints and the system may provide

impossible body configurations. (The stochastic method used is similar to that of [WHY03], mentioned

earlier (page 19).)

Bray et al. [BKMM +04] proposed the Stochastic Meta-Descent (SMD) method for hand tracking.

It is a gradient descent method with local step size adaptation that combines rapid convergence with

scalability and, as only a single hypothesis is considered,requires fewer samples thanCONDENSATION

and less computational power than the APF. Although SMD can avoid some local minima, it does not

guarantee that the global minimum is reached. In [BKMV04], Bray et al. incorporated SMD within

a Particle Filter to form ‘smart particles’. After propagating the particles, SMD is performed and the

resulting new particle set is included such that the original Bayesian distribution is not altered. As a

particle method, it maintains multiple hypotheses needed to cope with clutter and occlusion, but reduces

the number of particles needed. Figure 2.8 shows an example of 3D recovery using (note) structured

light.
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(a) (b) (c)

Figure 2.8: A frame from a video sequence used by Brayet al. [BKMV04]. (a) and (b) show mesh
created by the structured light, the red dots show the projected model with the tracking result obtained
using: (a) APF and (b) Smart Particle Filter (SPF). (c) showstwo views of the 3D model whose pose was
obtained using SPF. ( c©[BKMV04], reproduced with permission.)

A deterministic alternative

While much effort has been made to explore stochastic approaches for human body tracking, Smin-

chisescu and Triggs have begun to explore such spaces deterministically, considered a way of avoiding

entrapment in local suboptimal minima [ST02] . They addressthis problem by building ‘road maps’

of nearby minima linked bytransition pathways– paths leading over low ‘passes’ in the cost surface,

found by locating thetransition state(saddle points with 1 negative eigenvalue) at the top of the pass and

then sliding downhill to the next minimum. Their results have shown that their algorithm can stably and

efficiently recover large numbers of transition states and minima, and also serve to underline the very

large number of minima that exist in the problem of monocular3D model based tracking.

2.3.7 Using data-driven dimensionality reduction

The use of articulated models simplify occlusion handling and allows the description of a larger number

of hand poses. Although there has been an agreement that a 3D hand model should have at least 26 DOF,

it is also clear that the configurations of muscles and tendons of the hand constrain the range of motion

of each joint. For example, the fourth finger can not be flexed naturally without influencing the pose of

the middle and small fingers because of interconnection of tendons (see Figure 1.2).

Heap and Hogg [HH96] represented hands as surface meshes extracted semi-automatically from 3D

Magnetic Resonance Images. Since this is not based on an articulated model, the number of DOF of this

representation is huge, but they have shown that by applyingPCA to the point distribution data, the shape
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deformation could be represented in a low dimensional space, as illustrated in Figure 2.9. For tracking,

the outline of the hand mesh was projected into the image plane and edge measurements are used. The

pose update was performed by solving a linear system of equations in least squares. Tracking could be

achieved at 10 frames per second using a single camera, but ambiguous motions and self-occlusions were

not successfully overcame.

Mean

(b)

+2sd

(a)

-2sd

Figure 2.9: The first (a) and second (b) modes of variation of 3D hand point distribution model of Heap
and Hogg [HH96]. ( c©[HH96], reproduced with permission.)

Wu et al. [WLH01], describe the space of possible hand configurations using a set of pre-defined

states based on binary finger poses: fully flexed or stretchedfor each finger, giving a set of25 = 32

possible states of hand pose. Four of them were pruned because they were considered infeasible as

most people cannot perform these hand poses naturally. Subjects were asked to move their hands to

these 28 states while wearing a data-glove that acquires 15 DOF of the hand. Global position and

orientation variations are not considered in this paper. The state space was reduced to 7 dimensions

using PCA and it was demonstrated that the transitions between states follow linear paths in this space.

Thus the hand pose is represented as a linear combination of the 28 states. An importance sampling

approach is used for tracking. This shares some points withCONDENSATION, but the hypotheses are only

generated along the nearest linear manifolds between two basis states, with some diffusion in the higher

dimensional space. The 3D model is projected to the image as acardboard model, and this method
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combines edge measurements with a comparison between the area of the projected model and the hand

silhouette image to compute the likelihood of hypotheses. The experiments show that, in comparison

to standardCONDENSATION in the IR7 space, this approach provides better results and longer latency

requiring an order of magnitude less samples.

Using the same dimensionality reduction method and a similar image likelihood function, in [ZH03]

Zhou and Huang propose an eigen-dynamics analysis method tolearn the dynamics of natural hand

motion as a high order stochastic linear dynamic system. This is used to build a dynamic Bayesian

network to analyse the generative process of an image sequence of hand motion. In the inference phase,

the hand motion is decomposed into global motion and finger articulation, and an iterative divide-and-

conquer approach [WH99a] is used to track the hand. For global motion, the iterative closest point

algorithm is applied, and for finger articulation, sequential Monte Carlo is used to sample in the manifold

spanned by the learned dynamic model. This system was testedwith synthetic and real data and accurate

results were obtained even with partial occlusion and cluttered background, but the experiments do not

show how the system performs when there are both global and articulated motion at the same time.

Other relevant work in this area is that of Katoet al. [KCX06] who reduces the state space dimen-

sionality to 5D using ICA (independent components analysis), showing that it performs better than PCA,

and Grochowet al. [GMHP04] who represent the probability distribution function of the parameter space

using a scaled Gaussian process latent variable model (SGPLVM) proposed in [Law04]. All the param-

eters of the SGPLVM are learned automatically from the training data. They show that it is possible

to optimise the PDF to describe new poses in real-time for applications of inverse kinematics systems.

Although this method allows to represent the PDF at a low dimensional space through a non-linear pro-

jection, it does not restrict the configuration state. Posesthat are very different from those in the training

set can still be represented, but they have a very low PDF. Theauthors have used this method to represent

styles of human movements and proposed a method to interpolate between styles (Figure 2.10).

2.3.8 Discussion

The key benefit of model-based trackers is that they permit, in principle, a comprehensive exploration of

the space of possible poses – they really do describe the detail of all the degrees of freedom. However,

the quality of the measurements to drive the model depends onthe similarity between the model and the
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Figure 2.10: An SGPLVM latent space learned from a baseball pitch motion capture sequence by the
method described in [GMHP04]. The learning process estimates a 2D position associated with every
training pose; plus signs indicate positions of the original training points. Some novel poses are shown,
illustrating that new poses extrapolate from the original poses in a sensible way. The grey level indicates
the likelihood of each position in this planar projection ofthe state space. ( c©[GMHP04], reproduced with
permission.)

real object (hand), and accurate models are not broadly available and certainly not cheap to compute.

With imperfect data it becomes hard to justify maintaining large numbers of degrees of freedom, and,

even if we suppose perfect measurements, the problem of optimisation in a high dimensional space is

significant. While much has been made of stochastic approaches, such spaces have also been explored

deterministically [ST02], but results have underlined thevery large number of minima that exist in the

problem of monocular 3D model based tracking.

Good initialisation is important for these methods and, as they are incremental, a bad image or pose

estimate can pollute all later estimates [Bra99]. Applications that target hand tracking that require a

highly detailed description of the hand shape in 3D normallyuse images in which the camera is zoomed

in the hands. In these cases, natural hand motions can be too sudden and fast in the images.

2.4 Direct 2D view to 3D pose transformations

This section approaches view-based methods to estimate 3D pose. These are also known as discrimi-

native methods, and provide a bridge between 2D methods and 3D model-based methods. They extract

measurements from images which are linked to the kinematic chain representation of the object in 3D.
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For instance, template matching or global image descriptors are used. Once the measurements are ex-

tracted, a pattern recognition method is applied and a 3D pose estimate is obtained as output. Since the

measurements can be extracted without requiring a prediction of the state, discriminative methods can

be applied from static images for pose estimation or to initialise 3D trackers.

As usual in pattern recognition, these methods require training. The training set is often an extensive

collection of possible hand appearances associated with 3Dposes that generate them. The most practical

method to obtain a comprehensive training set is based on creating synthetic images using a hand model

that is rendered at a range of 3D poses. So to restrict the training set to natural poses, data acquired

from glove aided motion capture is used. In the case of whole body, publicly available datasets of human

motions can be used.

An advantage of discriminative methods is that they do not require computation of projection and

occlusion handling at the inference phase, as this is implicitly done in the generation of training samples.

Another advantage is that since the inference uses the training set, these methods naturally incorporate

data-driven motion constraints. This also allows to reducethe dimensionality of the parameters space.

The obvious disadvantage is that the range of possible posesis limited by the training set and extrapo-

lations are not usually successful. The same is true about camera views which are not included in the

training set.

Two approaches encompasses the discriminative methods: classification-based and mapping-based,

further described in Sections 2.4.1 and 2.4.2, respectively.

2.4.1 Classification-based methods

In the classification-based approach for 3D pose estimation, a large discrete set of 3D poses constitutes

the set of classes. The image measurements are evaluated as an input to the classifier and a 3D pose is

obtained as output. The ability to provide a 3D pose output isthe key difference between these methods

and the 2D appearance-based methods. Furthermore, the factthat the training set contains pairs of

measurements and 3D poses is used to aid the search.

Usually only one sample image measurement is available for each class of 3D pose, thus variants of

nearest-neighbour classifiers are commonly used. The massive number of classes make this a formidable

classification problem, which is eased by avoiding exhaustive search. This can be done by the following
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methods: (i) performing coarse-to-fine search; (ii) grouping the training set by similarities in appearance

and in 3D pose parameters; (iii) using motion priors and timesequence information. Sample research

works of these methods are further detailed below.

Coarse-to-fine search

In the coarse-to-fine approach of Athitsos and Sclaroff [AS03], two similarity measures: the approximate

directed chamfer distance and the line matching cost. A large pose database was used, containing over

105 samples and the query could be made in 15 seconds, but the matching results were poor for real

images: only14% of the queries resulted in the best pose estimate, and even ifall the 256 best matches

are combined, the mean of correct matches among them is only84%.

In [AASK04], an improvement was achieved by combining a large set of simple weak classifiers

using BoostMap in the coarse search to select a subset of candidate matches. In the fine search, they used

exhaustive chamfer matching. This reduced the query time to2.3 seconds and improved that recognition

rate to95%. The quality of the classification results were judged by a human operator following the

visual agreement between query and retrieval image.

Grouping training samples for tree-based search

One problem with exemplar-based matching is that the exemplar sets can grow exponentially with the

number of degrees of freedom of the object. For this reason, Stengeret al. [STTC03] use a tree search

(similar to Gavrila and Philomin’s method [GP99]) which leads to a dramatic reduction in the number of

comparisons required for matching.

Another improvement is that [STTC03] also uses the probabilistic tracking framework proposed by

Toyama and Blake [TB02], so the search tree works as a dynamicBayesian network for motion estima-

tion, as illustrated in Figure 2.11. But unlike Toyama and Blake, Stengeret al. perform the probabilistic

tracking in the space of the kinematic parameters of the articulated object (joint angles, rotations and

translations). An advantage of using a parametric model to generate templates is that less storage space

is required, because a finer pose estimation can be obtained by generating new templates on line, as the

leaf is reached. Furthermore, two poses that are distant in the parametric space can be close to each

other in appearance [TSTC03]. For example, the appearance of the outline of a flat hand with the palm
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facing the camera can be similar to that of the back of the handfacing the camera, but parametric-based

clustering puts these two poses far apart.
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Figure 2.11: Schematic example of tree-based estimation ofthe posterior density, obtained from
[STTC03]. (a) Each node is associated with a non-overlapping set in the state space, defining a par-
tition of the state space (here one DOF of rotation of the hand). The posterior for each node is evaluated
using the centre of each set, and sub-trees with low posterior are not further evaluated. (b) Corresponding
constant posterior density of the stateθ given the measurementD, and piecewise constant approximation
obtained. ( c©[STTC03], reproduced with permission.)

To build the search tree, two methods have been evaluated Thayananthanet al. in [TSTC03]. The

first is based on the hierarchicalk-means algorithm, which partitions the space as a multi-dimensional

Voronoi diagram and the cluster centres are used as nodes in each level of the tree. In the second method,

the dimensionality of the parameters space is reduced usingPCA and the resulting space is partitioned by

a regular hierarchical grid where, again, the centres of theobtained hyper-cubes are used as nodes in each

tree level. Their experiments show that the tree obtained byboth partitioning methods give qualitatively

similar results and search time of around 2s per query. However the training process with the PCA-based

method is much faster.

Based on the above search tree idea, in [STTC04] Stengeret al. proposed an alternative classifi-

cation method which uses a multi-class cascade of classifiers for shape template matching. Unlike the

normal use of boosting for single object detection, the cascade of classifiers is arranged in a tree order

to recognise multiple object classes (hand configurations)hierarchically, as shown in Figure 2.12. Each

weak classifier is trained to detect a single hand pose, if that pose is detected, the search continues for

child classifiers that do a finer classification. As usual withboosting approaches, the main advantage is



2.4 Direct 2D view to 3D pose transformations 37

its speed, but the number of classifiers needed grows exponentially with the dimensionality of the pose

parameters, demanding much memory.
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Figure 2.12: (a) Standard single class cascade of classifiers to detect an object – each classifier has a
high detection rate and a moderate false positive rate. (b) Cascade of classifiersCi

j from [STTC04] for
multiple classesj in a tree structure (with levels indexed byi) – similar objects are grouped together
and the classifiers on the leaves recognise single objects. Abinary tree is shown here, but the branching
factor can be larger than two. ( c©[STTC04], reproduced with permission.)

Using spatio-temporal priors

The tree-based system of Stengeret al. [STTC03] can also incorporate temporal priors. Given the par-

tition of the state space, the state transition distributions p(θt|θt−1) are modelled as first order Markov

processes, and the transition probabilities are computed by histogramming transitions in the training set.

This allows the computation of the temporal priorsp(θt)p(θt|D0:t−1) (whereD are measurements and

θ is the state vector) in a video sequence, which facilitates pruning the search tree, speeding up pose es-

timation as the motion follows a prediction. Although high accuracy can be obtained, the computational

cost of this system is still too high for real-time applications. Using a relatively small range of hand

poses, in [TSTC03] each frame takes 2 seconds to be processedin a 1 GHz Pentium 4.

An alternative is to use simpler image measurements and stronger temporal priors. In [FAK03],

Fillbrandtet al. use a simple graph of transitions between states of the handpose that restricts the search

space, as only neighbouring states are checked. This graph was coded following transitions that happen

in German sign language. A similar idea was implemented in [HSS02], where a simple moment-based
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descriptor is used. In the learning stage, if the distance between the image descriptor of the current image

and the previous state is greater than a threshold, a new state is built.

Brand [Bra99] uses ten scale-invariant central moments on low resolution silhouette images. A

dynamical manifold is used for inference of trajectories. This is defined as a locus of all possible poses

and velocity configurations, embedded in a higher-dimensional measurement space. The inference is a

search for a sequence of events (path on the manifold) that best explains a sequence of observations.

To model manifolds a method identifies neighbourhoods wherethe relationship of position to velocity

is roughly linear. Each neighbourhood is described with a multivariate Gaussian PDF. The manifold

is approximated by an HMM with each neighbourhood Gaussian being the output of a hidden state,

and a transition topology specially matched to the dynamical structure of the manifold. The HMM is

learnt using entropy minimisation which, unlike previous methods, leads to a model that does not get

“lost” at crossings and gives a more compact and accurate representation. To handle rotations around

the gravity axis, the HMM is replicated once for each view, re-estimating the output distribution of each

view-specific HMM. The 3D pose results are, in most cases, qualitatively close to the actual pose of the

input image sequence. But with evidence as weak as image moments, the learned prior dominates the

reconstruction, so input images of poses that are not in the training set result in the nearest 3D pose in

the training set, which, in many cases, is not accurate.

Hee-Deoket al. [YPL06] proposed a framework of HMM models for whole body gesture recognition

which recognises continuously, without the need of gesturesegmentation. This framework initially has an

array of HMMs for meaningless actions followed by an array ofHMMs for gestures that are recognised

and the whole scheme is closed as a loop. This paper concentrates on gesture/action recognition, rather

than low level vision, so it is based on accurate human motioncapture data obtained from the system

described in [HKL06]. The dimensionality of the pose parameters is reduced using Fisher discriminant

analysis.

In order to get a more continuous (in terms of inter-class difference in the pose output) estimation of

3D poses from a discrete set of training appearances, Shimada et al. [SKS01] combine an appearance-

based discriminative method with a three-dimensional generative tracker. In the first stage, the silhouette

of the hand (segmented by threshold) is described using the normalised eccentricity, which is a position
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and scale invariant descriptor. For rotation invariance, the maximal points are aligned with the training

vectors for matching. Classification is sped up using an adjacency map and beam search, which is

implemented in a distributed system. Once the appearance has been matched, its 3D pose combined is

with the predicted pose in order to generate the next prediction using a motion model. The new prediction

helps to speed up the appearance matching method by restricting the search area. This paper shows good

qualitative matching results, which were obtained at videorate (30Hz) on a 6 node cluster, but it does

not show results using the 3D motion prediction module.

2.4.2 Mapping-based methods

Mapping-based methods use pairs of image measurements and 3D poses to learn a continuous map

between them. They can provide smooth pose estimation results rather than an estimate that is out of a

discrete set. The results can be compared to an interpolation of the training data, but in some cases small

extrapolations are also possible. Mappers can usually be implemented with parametric functions, which

mean that their memory complexity is much lower than that of classification-based methods. In those

cases, their evaluation does not require large numbers of comparisons, so their speed is also greater than

that of classification-based methods.

Lin et al. [LWH01] modified the method of data-driven dimensionality reduction described in

[WLH01] to create a mapping-based method. A feature vector built from measurements obtained from

shape descriptors was acquired from each basis state in the training phase. In the application phase, this

feature vector is acquired and its distance to each basic state is measured. This distance is taken as the

weight of each state, determining a point in the state space,which is then lifted to the original 15 DOF

configuration space to reconstruct the hand pose.

Shakhnarovichet al. [SVD03] introduced an algorithm that learns a set of hashing functions that

efficiently indexes examples. The method uses local regression, which works as interpolated k-nearest

neighbours and accounts for proximity not only in the 2D measurements, but also in the 3D pose param-

eters.

Prior to that, Rosaleset al. [RASS01] proposed a system that uses a non-linear supervised learn-

ing framework, the specialised mappings architecture (SMA). As in Brand’s paper [Bra99], image mo-

ments are used as measurements: seven real-valued scale, translation and rotation invariant Hu moments
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[Hu62]. These are computed from hand silhouettes which are detected and tracked using a skin colour

blob tracker that locates and refines the solution adaptively. A face detector is used to improve the initial-

isation of the skin colour detector. The pose estimation system consists of a set of 30 specialised forward

mapping functions, each one built as a one hidden layer feed-forward network with 5 hidden neurons.

These functions are learned using expectation-maximisation (EM). Each of them provides a mapping

from the whole measurement space to the state space of 3D poses. To select the best solution, a feed-

back function takes the estimated pose, renders the 3D hand model and generate image measurements

that are then compared with the input data. This method was evaluated quantitatively with a database

of synthesised images generated using ASL gestures rendered at several orientations varying pan and

elevation (the hand pose is described using 22 joint angles and two orientation parameters). This added

up to 300,000 synthesised images, of which 8,000 were used for training and the rest for testing. The

reported mean error was very small (≈ 1◦ to 3◦), but the standard deviation was large enough to provide

results that do not match the input ASL gesture entered. Qualitative results were also shown using real

hand images.

In [MM01, MM02], Mori and Malik used shape context matching [BMP02] to locate the centre of

limbs joints. The 3D pose is then estimated by using Howe et al.’s method [HLF99]. This is a Bayesian

learning framework to recover 3D pose from known joint centres based on a training set of pose-centre

pairs obtained from re-synthesised motion capture data.

A global image descriptor that is a simplification of shape contexts is used by Guanet al. in [HGT06],

where the multi flash approach of [RTF+04] and [FTR+04] provides a clean depth discontinuity map, so

the shape contexts describe a virtually noise free hand edges image. The mapping method used is based

in self-organising maps.

In [AT04a], Agarwal and Triggs use a 100D global image descriptor based on a histogram of shape

contexts of the silhouette contours. A human body model with55 DOF is used to render training images

and a regression-based method was used to learn the relationbetween image measurementsx and 3D

posesy. Four regression methods were evaluated: (1) regularised least squares and (2) Relevance Vector

Machine (RVM) [Tip01] regressors applied in both case to (a)linear and (b) Gaussian kernel bases. For

synthetic images, resulting mean error in 3D pose estimation were: (2a) > (1a) > (2b) > (1b), but
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the difference between the best and the worst of them is only less than3◦. However, the implicit feature

selection obtained by RVM regression gives much more sparsity, reducing the complexity of the pose

estimation process: only 6% of the training examples were retained. They have shown good quantitative

results on synthetic data: mean estimation error of6◦ over all joints for the Gaussian RVM (though

many of the 55 DOF are inactive and it is not clear whether thisis considered for this result). Only poor

qualitative results were obtained for real images, and the demonstrative video shows reconstruction with

many jitters along the sequence. Figure 2.13 illustrates a result of this tracker.

(a) (b) (c)

Figure 2.13: A sample result of [AT04b](a) 3D human model used for training and its noise-free
projected silhouette(b), which is used for training the regressor.(c) left: a test image obtained from
http://mocap.cs.cmu.edu; centre: background subtracted image segmentation result used forextraction
of the shape contexts;right : reconstructed 3D pose. Note the difference between the subject and the
training model and the amount of noise in the segmented image. ( c©[AT04b], reproduced with permission.)

This method has been modified to include a dynamical model with motion priors [AT04c] and has

been embedded in a tracking framework combining dynamics from the previous state estimate with a

special regressor to disambiguate the pose. Tracking is then formulated either as a single fully regressive

model or by using the regression estimates in a multiple hypothesis tracker based inCONDENSATION

[AT06b]. In contrast to Rosaleset al. [RASS01], this method demonstrate an ability to deal with ambi-

guities in a probabilistic manner. A similar method was contemporaneously proposed by Sminchisescu

et al. [SKLM05]. For hand tracking, Thayananthanet al. [TNS+06] extended the Tipping’s original

Relevance Vector Machine method [Tip01] for multidimensional target spaces and multiple hypothe-

ses. Unlike Agarwal and Triggs [AT05] regressor, this includes the hyper-parameters in the optimisation

process.

In [AT06a], Agarwal and Triggs used SIFT features [Low04] computed on a regular grid on the
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whole image. No segmentation is required, but the contribution of the background noise to the image

descriptor is minimised by eliminating or downweighting background features using non-negative ma-

trix factorisation [LS99], which is trained with features from clean foreground images. Pose estimation

is then performed using the same unimodal regression methodas in [AT04a], because the experiments

only show estimation of the upper body pose, which is less ambiguous than the whole body. The exper-

iments show that, for images with cluttered background, this method provides similar pose estimation

performance to the method based on segmented silhouettes. The downside of this method is that it is not

invariant to scale, rotation or translation, but it can be robust to some variation in clothing. In [AT06a],

extensive experiments with synthetic images were performed, but only a few real image samples are

shown. Both in the real and synthetic images shown, people wear tops with fairly uniform textures. The

authors claim that better results can be achieved if larger training sets are employed.

2.5 A note on criteria for comparative evaluation of results

Despite a large body of work has been found in the literature,no standard methodology has been found

to evaluate tracking and pose estimation results. For body tracking there are some human motion capture

(HMC) data available publicly, (e.g. [Car]), but such data was used to generate synthetic imagesto which

the tracker is applied, as the original HMC natural images are not available. An exception is the database

described in [HKL06], which has human motion capture data with silhouettes and original images, but

it is not publicly available. For hand tracking, there is no standard database or systematic evaluation

method.

Ramanan and Forsyth [RF03] report tracking success whenever there isanyoverlap between a limb

and the ground truth. This is probably very generous, but it is a good criteria for real-time applications

on images with severe occlusions, fast movements and large acceleration. Most of the researchers have

claimed that a qualitative visual agreement between the back projected models and the image is the most

basic requirement of tracking performance. This is usuallydemonstrated with videos made available in

the Internet.

The cost function that is used to minimise the state estimateof the trackers can provide a quantitative

description of the tracking result. However, it does not provide a meaningful evaluation of the error of
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the pose estimate.

Track life is the length of time that the tracker remains on target. Track loss occurs if the measured

cost grows arbitrarily large because the model is no longer projected on the correct parts of the image.

Track life can be used to validate the result, though it is nota strong criteria, because problems caused

by singularities and deficiencies of the model may not be madeexplicit [Reh95].

For whole body tracking, Sigalet al. [SBR+04] were able to perform a quantitative evaluation using

a professional marker-based motion capture system that wascalibrated with the cameras used for track-

ing. This is the most accurate solution, but such professional systems are rarely available for research

purposes mainly due to their cost.

Manually measured ground truth data has been employed by some authors (e.g. [BGP96]). Such

measurements are usually obtained through mouse clicks in the position of the joints in the images

and the use of a minimisation method to estimate the model posture from the measured positions. The

obvious disadvantage of this method is that human operatorsare not reliable (or not available), specially

for long sequences. The measurements can also be inaccuratebecause some joints may not be visible in

all the images and determining the position of the joints is not always obvious.

Some researchers have used off-line processing using more computationally demanding parameters

and multiple cameras to estimate the ground truth data. Suchdata is used to evaluate on-line real-time

or monocular implementations (e.g. [FGTK02, TRMM01]). However, the reliability of such method is

dubious if the same method is applied for on-line and off-line tracking.

A plausible alternative is to perform experiments in which the user is asked to touch known points in

the world, as Bernardoet al. did in [BGP96]. But this does not accurately evaluate the estimation of all

the joints of the hand.

Therefore, there is a demand for comparative evaluations ofdifferent methods for 3D hand tracking.

While a standard framework or benchmark database is not defined, the evaluation method will be chosen

according to the resources available and comparisons can bemade between methods implemented within

an institute, rather than globally.

This thesis shows comparisons of methods in Chapters 6 and 7.In the former, two generative meth-

ods are compared in terms of accuracy, efficiency and robustness. The comparison is based on their
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formalism, quantitative tracking results on synthetic data, and time measurements. In the latter, a single

view is compared with a multiple views discriminative method. That comparison is based on quantitative

tracking results on synthetic data, qualitative results onreal images and time measurements.

2.6 Summary and concluding remarks

This chapter reviewed the main approaches to hand tracking including a range of references from meth-

ods based on extracting meaning directly from low level image features to higher level methods. The

main interest was on methods that estimate the hand pose in 3Din real-time. A lower level method to

locate areas of interest is studied in Chapter 3, where it is identified that there has been a consensus that

the most reliable cue for hand tracking is obtained by skin colour detection using classifiers applied to a

colour space with brightness normalisation.

Two main approaches for 3D hand pose estimation have been identified: generative model-based and

discriminative estimation methods. The use of a training set of natural hand poses is essential for dis-

criminative methods. For model-based methods, it has been shown that such data is of great importance

to reduce the dimensionality of the state space, reduce ambiguities and increase accuracy and reliability.

Temporal information and motion priors have originally been used only for model-based methods,

but recent discriminative methods have shown that the use ofsuch information reduces the estimation

cost and the ambiguities.

Although discriminative (or “tracking as detection”) approaches are robust and have no latency limit,

they do not make model-based methods obsolete [LF05]. As shown later in Chapters 4–6 of this thesis,

model-based methods are view independent and less dependent on the training data. They can also

provide a complete and continuous coverage to the parameters state. Model-based methods are easily

scalable for multiple views and this has shown obvious improvements to the estimation results. But

recently such approaches have been left aside for model-based methods. In discriminative methods they

have only been explored modestly so far (e.g. [HSS02]). This thesis exploits multiple views for both

generative and discriminative approaches. A novel multiple view discriminative method is described in

Chapter 7 and comparisons with a single view implementationare shown.

Considering the literature, overall, some very good results have started to be shown with fast meth-
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ods, but their robustness and accuracy have still not reached a point where a wide range of follow up

applications could be successful. This shows that much improvement can still be achieved. Some con-

tributions have been achieved in this thesis, which are described in the next chapters.



3

Software tools and apparatus

3.1 An architecture for object tracking

The methods for hand tracking to be described in Chapters 4, 5and 6 of this thesis were developed within

the context of the assistive workbench illustrated earlierin Figure 1.5 of the introductory chapter.

From that sketch, it can be surmised that the principal task modules are (i) rigid object tracking;

(ii) hand tracking; (iii) head tracking; and (iv) hand tracking from the wearable robot. In addition there

are the tasks of (v) data fusion and (vi) 3D visualisation. Inthis thesis we are concerned with tasks (i),

(ii), (iv) and (vi). They have been implemented as separate processes in a client-server CORBA-like

architecture, with communication via TCP sockets, as shownin Figure 3.1.

An object is tracked on the client side and visualised (and reasoned about) on the server side of this

architecture. To avoid communicating graphics primitives, two instances of the object are maintained,

one on either side. One way to do this would be to construct theinstances simultaneously from a common

configuration file which would specify the object type, communication port and initial configuration and

pose. However, specifying the port in this way would requireall objects to exist throughout. Instead, to

enable the dynamic addition and removal of objects, the object is created first on the client side, and a

predefined port is defined on the server side via which new objects can register their existence. When

one does, the object is duplicated on the server, and a mechanism invoked which dynamically allocates

a dedicated port for communication between the two instances.
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Figure 3.1: The communication of object position, orientation and other configuration requires the
existence of a corresponding object in the viewer application. The tracking blocks are independent
processes.

This system and all video-rate code has been implemented in C++, using the Active Vision Labo-

ratory’s Vision Workbench (VW) library. This library incorporates basic computer vision methods and

some modules of numerical processing based on VXL [The03]. The graphical user interface is based on

GTK- - and 3D visualisation methods uses OpenGL, which takesfull advantage of any available acceler-

ated hardware for 3D graphics. This frees the cpu from the heavy processing needed to render 3D objects.

VW also defines standard interfaces to acquire images from cameras on-line, or from disk off-line.

All data files for information on 3D objects, camera configurations, colour classification data, and

so on, are written in XML, where each information block lies between two readable and meaningful

tags. This allows complex articulated objects to be modifiedby editing text files, without re-compilation.

Figure 3.2 shows a sample graphical user interface created using these libraries showing the visualisation

of cameras, hand, object and underlying desk.

The server and clients run under Linux. This is not a real-time operating system and cannot guarantee

completion times. Even with careful algorithm design the occasional frame is dropped, particularly when
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Figure 3.2: The GUI created to control and visualise articulated objects.

images are captured to disk while being processed. Care has been taken to account for the occasional

variation in inter-frame duration. As suggested by Figure 3.2 up to three cameras are used in this work.

In most of the experiments in this thesis, Sony VL500 digitalcameras cameras have used with up to three

sitting on the same Firewire (IEEE 1394) interface. Table 3.1 shows the frame rate obtained for various

sizes of image and capture modes. Ifc cameras are connected to a single interface, all the camerasdeliver

one frame sequentially, so the maximum interval between theacquisition of an image from each camera

is 1/(rc), wherer is the frame-rate. Although the Sony VL500s can be externally synchronized, other

cheaper cameras cannot. In practice the speed of movement issufficiently small for the time skew to be

tolerable.

Mis-calibration of the cameras, however, is much less tolerable.
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Image YCbC Max frame Max. no.
Size Mode rate (Hz) cameras

320×240 4:2:2 30 3
640×480 4:2:2 15 3
640×480 4:1:1 30 2

Table 3.1: The maximum frame rate achievable for the given number of Firewire cameras, image size
and capture mode.

3.2 Camera calibration

The methods of object pose recovery using explicit 3D modelsdescribed in Chapters 5 and 6 require

cameras whose internal and external parameters are known. To estimate these parameters, a method

based on Section 2.5 of [Tor02] is employed: the radial distortion and calibration parameters are esti-

mated iteratively. To ease initialisation, the user clickson the hinge of the calibration grid (shown in

Figure 3.3b). Corner features are located using Harris’ corner detector [CH88] and the algorithm tries

to fit lines to the un-distorted location of the corner features. The distortion is modelled using Harris’

formulation [Har92b], in which the relation between the displacement of an ideal image point and its

radial distanceru from the centre of distortion is modelled as

rd = ru

(

1
√

1− 2κ1r2u

)

(3.1)

This is the forward distortion equation, whereκ1 < 0 models barrelling distortion andκ1 > 0 models

pin-cushion distortion. The backward equation (below) corrects measured distorted image points back

to their ideal position:

ru = rd





1
√

1− 2κ1r2d



 (3.2)

The matching error between the undistorted image and the ideal image is minimised with Levemberg-

Marquardt to estimateκ, which is initialised with zero. An estimate of the calibration is then performed

and the process is iterated until convergence.

The camera calibration step is based on the method describedby Faugeras [Fau93] (at least for

the intrinsic parameters as will become clear below). Givena 3D pointX represented in homogenous

coordinates in the world coordinate frame, its projectionx onto the image plane of a camera (with radial
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distortion corrected for) is taken as

λx = PX, (3.3)

whereP is the 3×4 projection matrix andλ is a scale factor. IfX is in a Euclidean frame,P can be

decomposed as two meaningful geometric entities: the internal and external calibration parameters

P = K(R t) (3.4)

where the external parameters are the rotation and translation that transform points defined in the world

coordinate frame into those defined in the camera frame, and where the internal calibration describes the

transformation between an ideal image and the pixel image

K =





f s̄ px

0 αf py

0 0 1



 . (3.5)

Here f is the focal length,α is the aspect ratio,(px, py) defines the principal point, and̄s = −fxs

describes the often neglible image skew. As there are 6 rotational and translational DOF and 5 internal

calibration parameters, a minimum of 6 correspondences{Xi ↔ xi} between known scene points and

measured image point correspondences are required to recover P. However, a useful rule of thumb

[HZ01] is that for a good estimation the number of constraints should exceed the number of unknowns

by a factor of five, suggesting that around 30 correspondences is practical minimum. The set of world

points is defined by the corners of the squares on the ubiquitous 3D calibration grid (Figure 3.3), and the

image positions determined to around±0.1 pixel by fitting extended straight lines to the edgels computed

along the edges of the squares, and then intersecting the lines.

Initial values for the elements ofP are found by a direct linear transformation. In practice it is safe

enough here to set the scale by fixingp34 = 1 and recovering the other 11 elements, but more generally

one should guard againstp34 ≈ 0 by recovering all 12 using a null space method. These initialvalues

are then refined by non-linear minimization

P = arg min
P
′

∑

i

d(xi, P
′Xi)

2 (3.6)

whered(xi, P
′Xi) is the Euclidean distance observation and estimation. Herethe Nelder-Mead simplex

method has been used [NM65] but others have used Levenberg-Marquardt [Lev44, Mar63] with equal
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(a) (b)

Figure 3.3: (a) The Sony VL500 camera, three of which are usedin this work. (b) The calibration grid in
which the corner of the squares are used to compute{xi ↔ Xi} correspondences. For calibration, best
results are obtained if the grid occupies the whole image.

success. WithP determined, the rotation and internal matrix is found by applying QR-decomposition to

the inverse of the leftmost3× 3 block ofP

λ′R−1K−1 = QR← PL
−1

so thatR = Q−1 andK = λ′R−1, where the scale is fixed so thatk33 = 1. (There are also other

sign ambiguities that between rows and columns ofK andR that are resolved by requiring the focal

length, aspect ratio and principal point coordinates to be positive.) The translation is determined by:

t = R(p14, p24, 1)
⊤.

To generalise the calibration data for any image resolutionused, and to benefit from statistical cen-

tring, a normalised image is employed. For an image with width w and heighth, the conversion of

parameters is done as follows:

f̂ =
f

w
p̂x =

px

w
− 1 p̂y =

1

w
(py − h) . (3.7)

3.2.1 Interpolation over zoom

The Sony cameras have controllable zoom lenses and it is convenient to be able to adjust these without

performing a full re-calibration.

The process described above was repeated for values of zoom motor setting 40, 100, 200, 300,. . .,

1300, 1400 from the accessible range of 40, 41,. . ., 1432. For each calibration position, ten images of the

grid were acquired (under small variations in lighting) foreach of these zoom positions and the internal
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Figure 3.4: Interpolation of calibration parameters obtained from 10 images at each zoom motor position.
The mean parameter value is shown by a circle and the standarddeviation by errorbars. The dotted lines
show interpolation using 5th order Chebyshev polynomials.

parameters recalculated. Since calibration estimates were performed only for one out of fifty odometry

positions, it was found that a more reliable interpolation would be obtained if a polynomial fit was used

across the range, rather than local linear interpolations.Chebyshev polynomials were chosen due to their

stability, the fitting method described in section C.2 of [Tor02] was employed. Through experimental

evaluation, it was found that the use of fifth order polynomials gave good interpolations.

The plots in Figure 3.4 show the estimated focal length, aspect ratio and principal points for one of

the cameras throughout the zoom range. The parameters are shown for normalised images. Note that

the principal points are close to the image centre up to odometry position 900. The aspect ratio, which

should be constant across the range of odometry positions, presented some small variation explained by

the “mopping up” of errors elsewhere in the system.

The error bars are relatively small for most estimages because the image data was acquired with

small intervals and small pose changes for each zoom position. But the obtained polynomials provided

good genaralisations across the zoom range, considering that calibration estimates were available from a

very limited set of zoom positions.
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Figure 3.6: Desktop environment with the tree cameras and the planar pose estimation object.

For other two cameras of the same model the focal length and aspect ratio showed all but identical

behaviour, but there was greater variation in the principalpoint as shown in Figure 3.5. Again this is

expected depends on the alignment of all the lens elements and image plane and would be harder to

control in manufacture than the distance of the lens to the image plane.

3.2.2 Re-working the external calibration

In normal use, the internal calibrations of the Sony cameras, including the variation over zoom, have been

found to remain valid over long periods of time. However, theexternal calibration is much more suscep-

tible to change, by accidental bumping of furniture and so on. To avoid having to perform a complete
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recalibration (and, hence, completely wiping out the benefits of interpolation) a more convenient planar

calibration of the external parameters has been used. It hasthe advantage too of forcing the world’s

Z-axis to be perpendicular to the desk.

Figure 3.6 shows the planar calibration object in use. The planar object defines the worldZ = 0

plane, and its oriented pattern defines theX- andY -axes. The projection equation (Eq. 3.3) is simplified

to that of a plane to plane homography

λ





xi

yi

1



 = P3×3





Xi

Yi

1



 (3.8)

whereP is the homography whose elementsp can again be estimated linearly, up to scale, as the null

space ofA in Ap = 0 where

A =













...
Xi Yi 1 0 0 0 −Xixi −Yixi xi

0 0 0 Xi Yi 1 −Xiyi −Yiyi yi

...













(3.9)

for n ≥ 4 points. Again one can refine the initial estimate by non-linear optimization. As the internal

calibration is known, one can recover

H = (h1 h2 h3) = K−1P , (3.10)

whereh3 is the translation and whereh1 andh2 are the first two columns on the rotation matrix, all

modulo a scale factor. Rotation matrices are orthogonal andhave unit norm, and the actual translation

and rotation matrix rows are first estimated as

(r1 r2 t) =
2

||h1||+ ||h2||
(h1 h2 h3) . (3.11)

The third column of the rotation is first determined asr3 = r1 × r2. However, due to image noise

and discretization problems, these columns will not be mutually orthogonal and of unit norm. This is

corrected by means of the singular value decomposition (SVD) [Str88]

U W V
⊤ ← R̃ = (r1 r2 r3)

R = U V⊤ . (3.12)
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(HereW is the diagonal matrix of singular values ofR̃, andU andV are both orthonormal matrices. The

columns ofU form a basis in IR3 for the range of̃R and the columns ofV form the basis of the nullspace

of R̃. If all the singular values are set to 1, the reconstructed matrix R is the orthonormal rotation matrix

closest tõR in the Frobenius distance sense [PTVF88].)

The pose estimation methods described both here and earlierestimate the rotation and translation

of the observed object in the camera coordinate frame. Laterit will be more convenient to describe the

camera position in the world frame. This is simply the inverse Euclidean transformation

RW
C = R

−1 tCW = RW
C (−t) . (3.13)

3.2.3 Detection and localisation of the calibration object

Some care has been taken to automate the detection and localization of the calibration object (Fig-

ure 3.7(a)). The initial detection is based on ring templates (Figure 3.7(b)), which are rotationally in-

variant but not easily confused with random darkspots in theimage. To improve the robustness, the

template is generated with a number of registered sample images obtained with slightly different scales

and perspective.

The template is correlated with the image (Figure 3.7(b)) the maxima detected, and straightforward

geometric reasoning determines the appropriate correspondence in the scene. The least squares estima-

tion method of Section 3.2.2 (referred to as the linear method hereinbelow) gives the first estimate of the

transformation which can be refined non-linearly using, e.g., Nelder-Mead simplex method over the sum

of squared distances between the projected and measured disc centres (Equation 3.6). Examples results

are shown in Figure 3.8.

It is of course necessary to improve the calibration by usingmore image evidence. This could be

done just as earlier by using a grid to generate points and line and capturing one image, but here a

different approach is taken. The estimate of the transformation is handed over to a tracker which refines

the rotation and translation to best fit the projection of theknown triangular and rectangular objects to the

observed edges in the image, as shown in Figure 3.9. The RAPiDtracker is first described in its proper

context in Chapter 4. However, in addition to its using more image data, the tracker makes repeated

estimates allowing an assessment of the error that arises because of unmodelled variations in lighting,
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(a)

(b)

(c)

Figure 3.7: (a) Calibration pattern used for camera pose estimation, showing the origin and axes of
the world coordinate. (b) Template for ring detection obtained from 15 images of rings; (c) Result of
template match for a view of the scene shown in Figure 3.8.

image noise, and vibration, and because of the stochastic nature of robust pose and robust collinearity

methods (described in Section 4.2.4).

3.2.4 Calibration results

The accuracy of the camera external parameters was assessedby determining the error in the angles from

the world origin to the camera and the error in the distance.

The arrangement of cameras was as in Figure 3.6: they were widely separated, and zoomed out

sufficiently far that the entirety of the 0.5m sided manipulation cube was visible, volume consistent with

that based on biomechanical analysis and used by Mayolet al. [MTM02]. Figure 3.10 shows a view of

the scene rendered using the information return from the calibrations of the three cameras.

To assess the likely error in the individual camera externalcalibrations, and hence the likely error in

the position of an object recovered in three cameras, 21 images per camera were acquired at different

times (without moving the cameras or target object) and the pose estimation algorithm was applied

1000 times per image. On average, the RAPiD tracker used 700 control points. Robust pose and robust
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Linear Estimate Non-linear refinement

Figure 3.8: Example View from camera 2 showing the detected feature points as asterisks and the pro-
jection of the corresponding scene points after linear and non-linear estimation.

Camera 2

Figure 3.9: Refinement of the pose estimations obtained in Figure 3.8 using the RAPiD 3D rigid object
tracker with edge features.

collinearity (see Section 4.2.4) were applied using 20 and 10 iterations, respectively. The whole process

was iterated 10 times per frame to ensure that starting transients had decayed.

Following a procedure suggested by Thompsonet al. [TRMM01], the mean translation̄tWC from

the world origin to the camera was derived as was the mean unitdirectionn̄ of the camera axis in world

coordinate frame. The object pose in the camera coordinate frame, is expect to be estimated with less

accuracy in translation along the camera axis and rotationsin depth. These translate to camera pose esti-

mates in the world coordinate frame (centred on the calibration object) as translation errors that are highly

correlated in the three dimenions. Thence, the inaccuracy in translation was computed using a measure-
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Figure 3.10: A view of a 3D model of the cameras, desk and calibration plane, rendered using the
rotations and translations returned from the calibration.

ment that is suitable for multivariate cases. Assuming thatthe distribution of the pose estimations can be

modelled by a Gaussian, one can determine the principal axesby obtaining the eigenvalues and eigenvec-

tors of the covariance matrix of the pose estimationsΣ[t] =
∑

j [tWC j − t̄WC ][tWC j − t̄WC ]⊤. Each

eigenvalueλ corresponds to the variance in the direction of its eigenvector. An inaccuracy measurement

can be defined by the volume of the ellipsoid defined by these eigenvectors and eigenvalues through this

formula (see Figure 3.11a):

V =
4

3
πλ1λ2λ3 (3.14)

A more meaningful measurement is obtained if the expected standard deviationσ can be used (recall that

σ =
√
λ). This can be thought of as an expected value of the distance between the pose estimation and

the mean of the estimated pose. This measurement can be defined by

∆t = 3√σ1σ2σ3 (3.15)

Note that the equalityσ1σ2σ3 =
√

det(Σ[t]) simplifies the implementation of the last equation.

The error in rotation was expressed by two angles,∆α which is the standard deviation in the angle

between the individual direction vectors and the meann̄, and∆θ the standard deviation in the cyclotor-

sion about̄n, as shown in Figure 3.11. Table 3.2 shows the inaccuracy of the pose estimation, computed

with the 21000 trials for each camera.
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Figure 3.11: (a) Ellipsoid defined by the principal standarddeviations of the position estimation in the
translation space. (b) Angles used to evaluate the deviation in rotation axisα and in rotation angleθ.

Camera ∆tmm ∆θ◦ ∆α◦

0 8.1 0.48 0.12
1 4.6 0.46 0.15
2 9.3 0.85 0.29

Table 3.2: Pose estimation inaccuracy for the position of the cameras∆t, the orientation of their optical
axis∆θ the rotation about this axis∆α. Position and orientation are expressed in the world coordinate
frame.

Now it should be noted that these errors are fromindividualcamera’s calibration. If it is assumed that

the camera position is correct, the error can be tranferred back to a point in the scene. But because the

cameras are close to orthogonal, the error ellipsoids for a point viewed close to the centre of each camera

will intersect orthogonally, and the resulting error covariance is not ellipsoidal, but can be approximated

by a sphere of radius

r ∼ ∆α
( π

180

)

D

whereD is the typical distance from camera to scene. HereD ∼ 1000 mm, giving a translational error

in an observed object ofr between 2 mm and 4 mm. One expects this error to scale proportionally with

depth, but inversely with focal length because a fixed error in the image corresponds to a smaller angular

error. For this reason, where zoom lens is available, the pose estimate is done by zooming into the

calibration object. Using the interpolation method described earlier, once the pose estimate is done, the

cameras can zoom out to increase the field of view for the tracking experiments.
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3.3 On the detection of hands images: a skin colour classifier

The third competence developed to support the research in the remaining chapters is that of hand de-

tection. Any markerless visual method designed to detect and track an object without intervention must

confront the question of how in the first instance to associate features observed in the image (be they

pixels, edges, corners, etc.) with the object itself. Locating hands is likely to be difficult compared with,

for example, face detection because hands are articulated objects that present both high variation in their

shape and in their degree of self-occlusion. However, thereis a useful uniformity in human skin colour

allowing the development of a localization method based on pixel colour classification. As the review

has indicated, and Chapters 4 and 7 will show, the resulting silhouette is sometimes all that is needed for

3D pose estimation. If internal edges are to be used, as they are in Chapters 5 and 6, the silhouette is still

valuable in restricting search for an initial pose.

3.3.1 Eliminating brightness from the colour space

Classification based on colour requires pixels imaged from skin to form a tight cluster in some colour

space. Although we loosely describe skins as being of different colour, the spectral variability is depen-

dent mainly on the amount, density and distribution of melanin pigment in the skin, not on its colour

[Mar02]. Thus, to a large extent it is the brightness of the skin that varies, not its colour [YLW98a].

Brightness normalisation involves reducing the dimensionality of a colour space (typically from three di-

mensions to two) by projecting points into a plane of constant brightness in the space. It is inevitable that

un-modelled variations result in some overlap in the 2D space between skin and non-skin clusters, but

the drop in dimensionality substantially cuts the volume ofdata and time required for training. Moreover,

if the colour space decouples brightness and colour information from the outset, the task of brightness

normalisation can be achieved by neglect rather than computation.

3.3.2 The choice of a colour space

Researchers into colour science, an important area long before the digital era, have proposed a large

number of colour spaces each tailored to a different task. Among colour spaces that are decoupled, the

most common — and commonly used for skin detection — are the CIE Chromatic space (used in, for ex-
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ample, [YLW98b]), the HSV (hue, saturation and value) space(e.g. [RMG98], [AP96], [ZYW00]), and

the YUV/YCbCr space (e.g. [Coh, Fri99, YLW98a, FdC00]). Several comparisons of spaces for skin

detection have been carried out, but Martinkauppi’s thesis[Mar02] suggests that there is no definitive

conclusion as to which is the best, in part because differentdatabases with different illumination condi-

tions have been used, but principally because the differences in output quality are marginal. Explanatory

and exploratory notes about these spaces are given in Appendix A.

Since the goal here is to implement a video-rate method, processing time becomes the key criterion

by which to assess methods. Now the decision becomes straightforward. The conversion to HSV or HSL

requires a non-linear transformation algorithm, making this the least efficient in terms of computational

cost. Conversion to CIE is linear and fast enough. However, it turns out that many digital colour cameras,

like the Sony VL500 used here, deliver images already encoded by hardware in the YCbCr space. As

explained in Appendix A, the Y channel holds the luminance information, which is to be neglected, and

the Cb and Cr channels hold the chrominance information which is to be used for classification.

3.3.3 Classifying pixels for skin detection

Several methods have been applied to the problem of classification of skin pixels. [DHS00]. The simplest

“manually” carve out a portion of colour space to be classified as skin [CnN98], defining it by thresholds

or a lookup table. More common is to allow different colours to have a probability of arising from skin,

and to learn the underlying PDF. Within this approach there are variations in how the distribution of skin

samples is modelled.

Yang and Waibel [YW96] (and see [FdC00]) argue that a Gaussian PDF is good enough for their

small dataset of skin colour samples. However, is not able toaccount for subtle variations in large

databases. Nor do Yang and Waibel include training data to model the background colour distribution.

This is assumed to be uniform, and a simple threshold in the PDF of the skin class defines the decision

boundary. Multi-modal Gaussian mixtures were proposed by Jebara [JP97]: indeed any two-class clas-

sifier could be applied to this problem, but doing so would miss the point that the feature space has only

three or fewer dimensions and the classes do not need to be modelled analytically.

Jones and Rehg [JR98, JR02] have shown that non-parametric histogram models provide higher

accuracy and lower computational cost than using multi-modal Gaussian mixtures. However, their clas-
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Figure 3.12: Screen shot of the application to train the classifier for skin detection: the classification
result is shown in the top left (skin is indicated by red, background by black and unknown by white).
The panel on the bottom left shows the training areas alreadyselected by the user for skin (dashed) and
background (solid).

sification was done in RGB colour space, which is less robust to illumination changes. This problem

is largely eliminated in the truncated (Y)CbCr colour space, and it is this approach which is developed

here.

Histogram-based classification in the CbCr colour space

Skin colour detection is modelled as a maximuma posterioriclassification problem, using histograms

to model discrete PDFs [FP03]. During training histograms are built in the colour space for each class

involved — here there are just two, skinS and backgroundB. If a pixel with colour(Cb, Cr) is known

to be in the classS the bin countcS [uv] is incremented, where

u = floor (Cb/b) v = floor (Cr/b) , (3.16)

andb is the bin size. The resulting bin counts are normalized so that

P (uv|S) = cS [uv]/TS (3.17)

whereTS =
∑

uv cS [uv] is the total number of pixels labelled as skin during training.

During classification the posterior is determined using Bayes’ rule

P (S|uv) =
P (uv|S)P (S)

P (uv|S)P (S) + P (uv|B)P (B)
(3.18)
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where the prior probability isP (S) = TS/T andT is the total number of pixels used in training. The

likelihoods and priors involving the background are definedsimilarly (and as this is a two-class problem

can be derived without storing a second histogram). Then a particular pixel with its colour(u, v) is

labelled as skin if

P (S|uv) > P (B|uv), (3.19)

which can for this two-class problem be simplified tocS [uv] > cB[uv]. (When there is neither skin

nor background training sample for a givenuv bin, an uncertainty arises, asP (S|uv) = P (B|uv) = 0.

For the skin detection application, what matters in this case is that it is known that thisuv bin does not

represent a skin value, so it is classified as background.)

Iterative Training Method

The training process consists of selecting skin and background regions of images. This task is performed

manually and can be very tedious for a large training set. Butoften only a few images are enough to

create a good model for classification. To inform the user, a train-and-classify system was implemented.

Before the user starts segmenting a new image, the system shows the classification result for this image

using the current training set. The user then judges whetherit is necessary to use this image for training

or not depending on the size of miss-classified areas in the image. For each image, the software shows

a track of the areas already selected by the user and it does not add samples from areas selected before.

This idea is similar to the iterative training method proposed by Saxe and Fouls [SF96]. Figure 3.12

shows a screen shot of this software.

3.3.4 Qualitative evaluation

Tuning the generalisation power via the bin size

The training method described in Section 3.3.3 was used to populate the CbCr space with more than 500

thousand skin samples and more than 1.2 million background samples obtained from the image database

described in Section A.5. Both Cb and Cr ranges were 0-255, and the bin size wasb = 1. Figure 3.13(a)

shows the histogram of the skin samples in the CbCr colour space, and Figure 3.13(b) shows the area

of this colour space populated by skin samples some 1273 CbCrlocations. The same is done for the
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Figure 3.13: (a) Skin histogram for unitary bin size and (b) the “overhead” view of the occupied region
of CbCr space. (c) and (d) are same for the background. (e,f) Derived lookup tables using a bin size of 1
and 2 respectively

background in figure parts (c) and (d), where 5144 CbCr locations are populated. The skin “area” is

quite large because samples were acquired under different illumination conditions.

Lookup tables were built from these histograms. The first, inFigure 3.13(e), retained the bin size of

1, but it was found to leave gaps in the skin region. Figure 3.13(f) shows the result of increasing the bin

size tob = 2. Many of the unknown CbCr classification values are extinguished. The effect of increasing

the bin size on an arbitrary image is shown in Figure 3.14.
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(a)

(b) (c)

Figure 3.14: (a) An arbitrary image, and the effect on increasing the bin size fromb = 1 in (b) to b = 2
in (c) for skin detection. (The original image (a) isc©2006 http://www.palhacomatraca.com.br, reproduced with
permission.)
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Results in uncontrolled conditions

Further results are shown in Figure 3.15. Some of these images were obtained with the camera set to

adjust the brightness and contrast automatically. Such automatic modes also normalise image colours

to “improve” the appearance to the human eye under variations in illumination. Others have cluttered

background and include wooden objects whose colour is oftenclose to that of skin.

Figure 3.15: Input images and their classification results.Some of them present challenging background
with wooden objects whose colour is similar to skin colour.

3.3.5 Sources of noise and dealing with them

Even when the illumination is controlled and the camera parameters are static, there are several sources

of noise that lead to miss-classification. Table 3.3 lists some of the sources of noise and some possible

methods to reduce their effect.
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Source of noise Alleviated by
Saturated white pixels Adaptive iris
and black shadows
Compression artifacts Interfaces with no compression
Light oscillations Increase generalisation of the classifier
Colour subsampling Smoothing or morphological operations

Table 3.3: Sources of noise and methods that can be used to reduce their effect.

One of the less expected of these is a systematic mis-classification of pixels at the edges of objects,

where the colour appears to belong neither to the object nor the background. In digital colour cameras, the

image is acquired on a planar CCD array composed by grey levelphotosensors laid behind colour filters.

These colour filters are usually arranged in the Bayer pattern [Bay76], as shown in Figure 3.16. Each

pixel is composed of four subpixels, one red, one blue, andtwo green. These proportions acknowledge

the human eye’s greater resolving power in green light.

Figure 3.16: Bayer arrangement of colour filters on the pixelarray of an image sensor.

Spatial aliasing occurs at sharp edges since each colour is acquired from a different position. This

is illustrated in Figure 3.17(a), where pixels on the edge ofa white square on a black background are

assigned to intermediate colour tones. An example from a real image in 4:1:1 YCbCr format is shown in

Figure 3.17(b), where various tints are visible around the ring.
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showing black/white edge
Original image Aliased imageCCD array with Bayer Pattern

(a)

(b)

Figure 3.17: (a) An illustration of colour aliasing due to subsampling for CCD arrays with Bayer filters.
(b) Detail of a YCbCr 4:1:1 image of a black disc on a white background where colour aliasing is evident
near the edges. Subject to limitations of colour reproduction on paper, the enlarge region is tinted yellow.

3.3.6 Noise reduction

A variety of more or less principled methods can be applied toreduce noise, all implementing spatial

low-pass filtering of some sort, and all assuming that the hands are of substantial size in the image.

Routinely used are computing connected regions and thresholding on their area, followed by median

filtering (e.g.[GW00]). Figure 3.18 shows a typical result of applying both these techniques. Among

other possible alternatives is the successive applicationof opening and closing morphological operations.

Another approach (perhaps one that is acceptable only because the emphasis of research is elsewhere)

(a) (b) (c)

Figure 3.18: Noisy classification results, such as that shown in (b), can be improved using large blob
segmentation followed by the median filter, leading to the result shown in (c).
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(a) (b)

Figure 3.19: Classification under more constrained situation: (a) skin and background clusters; (b) clas-
sification look up table obtained using bin of size 10. Black represents skin colour and grey represents
background.

Figure 3.20: Samples of segmented hand images of a single user from a simple background (wooden
table). No post-processing was applied to the images.

is to apply the low pass filter to the environment, reducing the variability in the lighting, the degree of

clutter, and cameras settings. In this kind of situation, the clusters of skin and background can be very

compact and have little intersection. As an example, Figure3.19(a) shows the clusters obtained from

a background that consists of a dark wooden table, and from the hands of four subjects under stable

illumination. Note that the clusters are so well separated that a simple threshold in the Cb channel could

classify them. To allow more generalisation and noise in thebackground, the histogram-based classifier

was used with bins of size 10, making the lookup table very compact and classification very fast: the

average processing time for640 × 480 images was 10ms using a 1 GHz Pentium 4. The resulting hand

segmentations are shown in Figure 3.20, where no post-processing has been applied.
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3.3.7 A note on adaptation

Although brightness normalisation provides robustness tolight intensity variations, it will not account

for changes in the colour of the ambient lighting or reflectedlight. There are two approaches to retaining

the compact skin clusters already computed: first, adapt thecamera parameters to the environment, so

that the colour appearances are the same as during training;or, second, adapt the lookup table to the

illumination conditions by using samples of skin coloured objects in the image.

The first option is achieved by the process ofwhite balance, which is usually implemented in the

hardware of video cameras or digital still cameras. White balancing a camera is done by acquiring the

image of a white region of the scene. The camera then shows true white as white and adjusts all the other

colors accordingly [WS00]. The second consists of locatingan area of the image which is known to be

skin coloured. Once such area is located, the maximum and minimum values in each channel (CbCr)

in this area can be used to translate and scale clusters of thetraining set and the lookup table can be

updated. In [May04], for example, a skin patch is selected manually in the beginning of acquisition,

and in [SWP98b] part of the user’s face is guaranteed always to be visible in the bottom of the image.

Alternatively, a face detection method that works independently of colour such as Viola and Jones’

method [VJ01] could be used to locate a skin patch. For situations in which the only skin coloured object

are hands, Hanet al. [HASW06] collect samples of skin from the first frame using arough skin colour

model in RGB space. A region grow-based algorithm is appliedto collect more training samples of skin

and these are used to train a SVM classifier.

3.4 Summary

In this chapter, the software tools and apparatus used throughout this thesis have been described.

First, the architecture and software system underlying thevideo-rate tracking of multiple objects with

multiple cameras was outlined. This is a modular system, built in the context of a larger project, that can

distribute tasks over processors and communicates resultsvia sockets.

The use of calibrated cameras facilitates model-based tracking of objects in 3D using multiple cam-

eras. The second section of the chapter described the two methods of camera calibration. The first

method, based on a 3D calibration grid, was used to recover the internal calibrations of the three Sony
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digital cameras over their complete range of zoom settings.In order to avoid having to repeat this com-

plete calibration if the cameras were moved, a second methodbased on a planar tile was used to recover

the external parameters. A method for detecting and determining the alignment of the planar object was

described, and the accuracy of recovery when three cameras are used was assessed.

The last section of the chapter outlined the classification method used to detect initially where the

hand is located in the image. Because skin varies predominantly in brightness, not colour, brightness

normalisation reduces the dimensionality of the pixel and makes skin colour clusters more compact,

while retaining distinguishability from background pixels. Results in Appendix A confirmed the view

in the literature that there is little difference in terms ofcolour separatation between those colour spaces

that use brightness as one of its axes, so the choice of colourspace was determined by computational

cost.

Classification of colour pixels was achieved by learning thelikelihood of a pixel of some colour

arising from a particular class, and using Bayes’ rule to determine the posterior. This is a simple and

effective method that is able to model classes that have multimodal and discontinuous PDFs, essential

for large datasets of skin colour pixels acquired with different cameras under different illumination, and

essential for modelling the background class. The bin size of the histogram can be set to be inversely

proportional to the number of training samples. The larger the bin, the more general is the model and the

faster is the classifier.
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Real-time tracking of rigid objects

A method to track known rigid objects in 3D is described. Thisis based on the RAPiD

tracker, proposed by Harris [Har92a]. A sparse set of edge features is used to measure

the observed image movement. An efficient search method is used and the pose update

is computed by solving a linear system. For these reasons, this system is very fast and a

multiple view implementation can run in real-time.

Due to its speed, this tracker has been chosen as the basis to build an articulated object

tracker, described in later chapters. To give background for the next developments, this

chapter describes the RAPiD tracker and experiments that validate the implementation for

multiple view tracking. This is followed by the descriptionof a single view application that

associates RAPiD with a detection method to locate and tracka pointing hand in images.

This system was applied to command the gaze direction of a wearable active camera.

4.1 Introduction

The use of prior information about an object’s shape is the essence of model-based vision. This chap-

ter describes a method to track known rigid objects in 3D which is based on Harris’ RAPiD Tracker,

proposed in [Har92a].

This chapter begins with a description of this method using the notation of Thompsonet al. [TRMM01]

(Section 4.2) and follows by describing some experiments toevaluate the accuracy of this tracker for a

calibrated multiple view situation (Section 4.3). Section4.4 describes a method that associates colour in-
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formation with the RAPiD tracker to estimate the pointing direction of a hand from a wearable camera’s

viewpoint. This chapter finishes with a summary in Section 4.5. The main contributions of this chapter

have been published in [dMM06].

4.2 RAPiD tracker

RAPiD (Real-time Attitude and Position Determination) is amodel-based three dimensional tracking

algorithm for a known rigid object executing arbitrary motion [Har92a]. The basic assumption of this

tracker is that the change between the current estimated pose and the actual pose is small enough (i) to

allow linearisation of the solution and (ii) to make the problem of matching edges straightforward. It

is also assumed that the cameras are calibrated and the object to be tracked is specified in a Euclidean

coordinate system.

Deriving and using a linear pose update was not the only contribution of Harris’ RAPiD tracker. A

number of early model-based trackers (e.g. [Gen92, Low92, Sul92]) recovered image features explicitly,

such as straight lines, throughout each image, and then adjusted the pose of the model so that the dis-

tance between projected and observed features was minimised. Harris [HS90, Har92a] made video-rate

tracking possible on meagre general purpose hardware by being far more parsimonious with the use of

the image data. He searched perpendicularly from just a few control points on projected lines to locate

nearby image edges and then adjusted the pose to minimise thesummed squared-distances, a method

to become the norm in active contours. Although processor speeds have since increased a hundredfold,

economy still remains an issue as the the number of control points to handle complex and multiple objects

has increased similarly.

4.2.1 Scene and projected image motion

A 3D object is described in its own coordinate frame 0 as a set of control pointsX0 = [X0, Y 0, Z0]⊤.

These points may be genuine points on the object, but more usually they are parametrised locations on

fixed crease or albedo edges, or are generated on the fly as extremal edges of a curved object, as sketched

in Figure 4.1. To allow multiple and possibly moving camerasto be treated equally, the object’s pose will

be one or other representation of the rotation and translation {RW
0 , t0W} that take points in frame 0 into

points in a fixed world frameW . The position of each camera Ck is defined similarly by{RC
W , tWC}k.



4.2 RAPiD tracker 74

so the pose of the object in a camera coordinate frame is represented byXCk = RW
Ck

XW + tWCk
.

k

11
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Optic

W

0
A

Axis

Y

Figure 4.1: Each object is modelled within its own coordinate frame 0 as a set of control points lying on
edges, which may be crease, albedo or extremal edges.Ck, W andAn are thek-th camera, the world
andn-th object aligned frames, respectively.

As a matter of convenience, letA be a frame that is aligned withW but has its origin coincident with

the object frame0: XA = RW
0 X0. Then, the pose of an objectX at some instant is described in the

world frame by

XW = RW
0 X0 + t0W = XA + t0W , (4.1)

The object’s angular and rectilinear velocities are definedin the frameA and represented byω andv

respectively. The object’s instantaneous velocity in the world frame is then:

Ẋ
W

=
(

[

−XA
]

×
I3×3

)

(

ω

v

)

= H s . (4.2)

The antisymmetric matrix[a]× is such that[a]×b is the vector producta× b. The velocity in the world

frame is transformed into a camera frame as

ẊC = RC
WHs . (4.3)

The projection into a normalised image (i.e., one correctedby the intrinsic calibration to have focal

length and aspect ratio unity, and origin at the optic centre) is x = XC/ZC , and so the projected motion
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Figure 4.2: The search from the predicted control pointx is along a convenient direction̂d close to the
edge normal. For fast image search,d̂ may be taken as one of the eight cardinal directions.

is

ẋ = (1/ZC)(Ẋ
C − xŻC)

= (1/ZC) [I3 − x[001]] RC
WHs , (4.4)

whereI3 is the3× 3 identity matrix andx[001] is an outer product.

4.2.2 Measurements of edge-normal motion

Full motion vectorsẋ = (x′ − x) could be used to recover the screws with three or more point to

point matches. But it is more usual to match control points toimage lines or curves (with relatively large

curvature radius), and the resulting aperture problem requires measurement of the projection ofẋ onto a

directionn̂ normal to the edge on which the control point lies [TRMM01], as shown in Figure 4.2. The

measurement equation for each control pointi becomes

1

ZC
i

n̂⊤
i [I3 − xi[001]] R

C
W His = n̂⊤

i ẋi (4.5)

or f is = di ,

Harris [Har92a] pointed out that if the pose change is small,the predicted and located lines (or curves)

are close to parallel and the perpendicular distancen̂
⊤

ẋ ≈ dn̂⊤d̂, whered is the distance between the

x and the located edge along any unit vectord̂. For fast image search,̂d is taken as one of the eight

cardinal directions which is closest tôn.

Each edge measurement builds up a row ofF and an element ofd in this equation:

Fs = d (4.6)
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and each distance measured gives a one-dimensional motion constraint, so it is required to stack at least

six measurements to the equation above before solving usingsome variant of least squares (further details

are given in Section 5.4).

Note that this system is straightforwardly extended for multiple views. For each cameraC, a different

set of projected control pointsxC
i is created and Equation 4.5 is computed. The kinematic screwvector

s is specified in the aligned object frameA, so it is the same for all cameras. Thus, each control point

from each camera adds a row to the system of Equation 4.6.

4.2.3 Control points and visibility calculation

To avoid ambiguity, if two or more edges of equal gradient intensity are found along the search path,

the nearest to the prediction is chosen. The control points along curves or lines are not fixed in object

coordinates. The spacing between projected control pointsis fixed in the image, and this is what dictates

the number of control points per line of the object, and thus their position. This avoids making repeated

or overlapping measurements along object lines that are nearly parallel to the camera’s optic axis, a

repetition which would skew the weighting.

Although visibility calculations are performed for rendering in the hardware of graphics accelerators,

it is not straightforward to match the resulting rendered object with the track-able representation of

individual control points – an explicit relation between their position in the imagex and their position in

the 3D objectX is needed. For this reason, visibility calculations are implemented as part of the process

to compute control points. Since the number of control points is much smaller than the number of pixels

in the object, this process is not too expensive.

Polyhedral objects

For convex polyhedral objects, visibility calculation canbe computed for whole control lines rather than

control points individually. A control line is visible if atleast one of its neighbouring faces has its

outward normal facing the camera.

For concave objects and multiple objects of any shape, some extra processing has to be done. Each

control point from lines that were considered visible in thestep described above has to be tested against

the other faces of the object in order to verify if one of them is occluding it. This is done by ray tracing:



4.2 RAPiD tracker 77

if the line that links the control point and the centre of the camera crosses one of the faces of the object,

this control point is occluded.

To avoid ambiguity caused by lines of the same face that are projected too close to each other, when

only one of the neighbouring faces of a line faces the camera,the angle between the normal of this face

and a vector that goes from the control line to the centre of the camera is verified. If this angle is close

to 90◦this line is not tracked. In the example of Figure 4.3, the edges of the back lines on the top of the

object were not tracked for this reason1.

Figure 4.3: Tracking a synthetic synthetic cross-shaped object. Left : 3D view showing the camera and
the object: the object in blue is at the at the synthesised ground truth pose, this is superposed by the object
at the estimated pose in red.Right: camera view with the projection of the predicted control points (pink
crosses), the normals to the lines (green lines), and the located control points (red crosses).

Rings, spheres and cones

Planar circles are parametrised by position, radius and orientation. The number of control points is

computed according to the size of the projected circle in theimage and this is used to establish the

angular spacing in which a control point must be created on the circle. Discs are composed by an inner

and outer circle and a zone in between them that occludes objects behind the disc. To verify if a given

control point is occluded by a disc, first it is verified if the control point is behind the disc’s plane. Next,

it is checked if the point is in the “shadow” of the disk. For that, the angle between the camera centre, the

disk centre and its bounding contour is compared with the angle between the control point being tested,

the camera centre and the disc centre. An additional test is done to verify if the control point is within

1For detailed description of computational geometry methods involved in the visibility calculation, see [O’R98].
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the “hole” of the disk.

For spheres, cones and quadric objects, a method to compute occluding contours is described in

[Ste04]. However this involves factorisation of matrices for each object component. In this thesis, a

simpler method was employed by assuming that the bounding contours are in the intersection between

the object and a plane that crosses the part centre. For spheres, this plane is orthogonal to the camera

axis. This approximation saves some computation at little expense in the accuracy if the camera is not

too close to the sphere. The localisation of control points is then computed in the same process as that

of circles. To check occlusion, three tests are used, the computationally cheapest is first: (i) Is the point

within the sphere’s radius? (ii) Is it closer to the camera than the sphere centre? (iii) Is it further than the

sphere and in the “shadow”?

For truncated cones, a plane on the cone axis is used and the bounding contours are defined by two

lines and two circles. The control points are created following the normal process for polyhedrals and

circles. Occlusion handling is performed using these tests: (i) if the point is beyond the ends of the

cylinder it is not occluded; (ii) if the point is within the cylinder radius it is definitely occluded; (iii) if the

point is closer to camera than the leading edge of the cylinder it cannot be occluded; (iv) if the ray to the

point passes through the cylinder contour and the distance from the camera is greater than the cylinders,

it is occluded.

4.2.4 Robust methods

The use of robust methods based on RANSAC (Random Sampling Consensus) [FB81] to improve the

performance of polyhedral tracking was explored in [AZ95, HM99, TRMM01]. In this thesis, robust

methods are used in two steps of RAPiD: to select collinear points (robust collinearity), and to compute

the whole object’s pose (robust pose). RANSAC requires thatthe standard deviation of measurements

is known a priori to discriminate between inliers and outliers. Here, this value is not known, so robust

estimation is performed using Least Median of Squares (LMedS) [RL87].

For robust pose, this consists of selecting minimal sets of measurements (six in the case of estimating

s) chosen randomly to compute model parameters. These parameters are then used to compute the

deviation between the fitted estimate and all the measured control pointsei = |di − dfitted
i |. This is

iterated, and the solution with the smallest median ofe is used to estimate the standard deviation of the
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Figure 4.4: Robust collinearity: rejecting outliers.

data. This obviously requires that at least 50% of the measurements are inliers. The standard deviation

is estimated exploiting the fact that 1
φ−1(0.75)

√

med|ei| is an asymptotically consistent estimator ofσ

whenei are distributed likeN(0, σ2), whereφ is the cumulative distribution function for the Gaussian

pdf, thus

σ =
1

φ−1(0.75)

√

med|ei| = 1.48
√

med|ei| (4.7)

Then the measurements are split between inliers and outliers according to [RL87]:

i ∈
{

inliers if |ei| ≤ 1.96σ
outliers otherwise

(4.8)

The final estimate ofs is obtained using all the inliers. The 1.96 coefficient was derived in [TRMM01]

and it is typically of order 0.03 in the ideal image with focallength unity. Using the Rousseeuw formula

in reverse, they found that this translate to|ei| ∼ 1.2 pixel in a physical image using cameras with focal

length of around 3000 pixels, which is also a typical value for most of the experiments presented here.

This is a commensurate with the edge search mechanism, whichoperates only to±1 pixel accuracy.

The expected confidenceP that a valid minimal set ofm features will be selected afterI trials when

the fraction of valid data isψ is estimated by

P = 1− (1− ψm)I (4.9)

It is desired thatP be as close to 1 as possible. The values were chosen empirically, as explained later.

Robust collinearity [AZ95, HM99] aims to avoid edges mismatches when locating control lines.

In situations like that shown in Figure 4.4, background noise or even other parts of the object being
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tracked can cause mismatches on locating a control line (edges a, b and c). The robust collinearity

method consists of picking pairs of points at random to definea line, and computing the perpendicular

distance from each edge location to the line. The standard deviation is computed and used to calculate a

threshold on the perpendicular distance that is used to determine the inliers and outliers. In the example

of Figure 4.4, the control points d–h are correctly matched to the image line, but the points a, b and c are

mismatched to another edge. Robust collinearity detects these control points as outliers, and they should

not be considered in the calculation of the change in pose.

The combination of robust collinearity and robust pose is important because robust pose requires

more measurements in the minimal set, which means that more iterations are needed. If a number of

outliers is eliminated with robust collinearity, the estimate of the fraction of valid dataψ for robust pose

is increased. A sample situation in which robust collinearity alone is not enough occurs when the object

has two lines projected near each other, and one of them has weak edges in the image. Robust collinearity

may fit all the points to the same line, then robust pose eliminates the mismatching points that should

have matched the weak line. This combination has been explred in detail in [KD05].

4.2.5 Convergence and filtering

Thompsonet al. [TRMM01] show that because of the approximate nature of thelinearisation, it is useful

to iterate the solution within each image, allowing the poseof the object to converge to a more accurate

results. This approach has been used in some of the experiments detailed later.

During the iterations of robust pose, some minimal sets leadto hypotheses ofs with unrealistically

fast motion. To save computation and avoid unstable motion estimates, these hypotheses are eliminated

without being checked against all the measurements. An alternative to improve the stability of the motion

estimate is to damp Equation 4.6 by modifying it to:

(

F

λI

)

s =

(

d

0

)

, (4.10)

whereλ is a damping factor [WL88]. As before, a least squares solution method is applied to estimates.

This formulation assumes regularised entries ins.

To deal with fast (but smooth) motions, or low frame rates, Harris [Har92a] adopted the Kalman filter

(e.g. [Bro83]) to maintain an estimation of the motion and improve the tracking results using prediction
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of the pose.

The experiments presented in this chapter are interested onverifying the accuracy of the pose es-

timation assuming that the frame rate is high enough so inter-frame motion is small. For this reason,

damping and filtering have not been used. Another reason for this choice is that the intended appli-

cation of tracking hands interacting with objects shares some features with teleoperation (e.g. contact

and abrupt motions). In teleoperation, the application of afilter with a motion model such as constant

velocity has proven less satisfactory [MRT98].

4.3 Multiple view experiments

In this section, experiments with multiple cameras are described. Section 4.3.1 shows experiments with

synthetic images and Section 4.3.2 describe an experiment with real images.

4.3.1 Synthetic images

To evaluate the RAPiD tracker it is necessary to compare its pose recovery results with ground truth

data. A convenient way to obtain accurate and reliable ground truth data is to build an artificial three

dimensional scene such as that shown in Figure 4.5. In this scene, the object was placed in the centre of

the world coordinate system (position[0, 0, 0]), and three cameras were placed in regular intervals of a

circle on the planeXZ, centred in[0, 0, 0].

Tracking experiments with six polyhedral objects were performed: a cube, a parallelepiped, a cross

(shown in Figure 4.3), an L-shaped object, a pointed object (shown in Figure 4.5) and an object composed

of two separated cubes. The background was black and the objects were textured with a uniform colour.

The artificial light sources were placed at positions that allow the appearance of edges in the object’s

surface creases.

The experiments were performed on 50 frames long sequences,one sequence per object. In these

sequences, the first pose of the object is known by the tracker. In each frame, a rotation of1.8o about the

axis of vector[1, 1, 1]⊤ indicated in Figure 4.5 was applied to the object.

The parameters of the Harris tracker were chosen so that real-time processing performed (i.e. each

frame could be processed in less than1
30s). In a 1.8GHz Pentium 4 machine the following parameters

were adopted: 12 pixels of spacing between control points inthe images, 21 pixels of search path for
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Figure 4.5:Top: artificial scene showing the cameras, the pointed block object and its rotation axis (dark
red line).Bottom: views of the three cameras, with the same symbols used in Figure 4.3.

control points. The robust collinearity method was iterated 3 times and the robust pose 10 times. These

values result from assumingψ = 80% of inliers andP = 95% of confidence for robust pose. For robust

collinearity, 3 iterations are enough to giveP = 99% of confidence assuming thatψ = 60% of the data

are inliers (see Equation 4.9).

The experiments were performed using400×300 pixel images and cameras with focal length of 700

pixels. The distance between each camera and centre of the object was 18 metric units, and the diameter

of the objects ranged between 3.46 (cube) and 7.48 (parallelepiped) metric units. This means that parts

of the biggest objects exceeded the field of view of some cameras for a range of rotations2.

For 300 frames, the mean processing time per frame was13.4ms, with standard deviation of6.1ms

and maximum of31.9ms (occurred when 241 control points were used to track the cross-shaped object).

Since the ground truth motion is the same for all the objects the evaluation results have been computed

together. The accuracy evaluation quantities of Section 3.2.4 have been used. The results are shown in

in Figures 4.6, 4.7 and 4.8 for translation, angle of rotation and axis of rotation, respectively.

Table 4.1 gives an overview of the results obtained in these tracking sequences. Translation error is

2Note thatfd/Z + x > h, wheref is the focal length,d is the diameter of the object,x is the position of the object in the
image (in this case, the centre of the image) andh is the height of the image. This also happens in the horizontal direction of
the image for the longest objects.
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Figure 4.6: Top: mean of the recovered translations (X, Y andZ) for synthetic images (in a metric
unit normalised by distance between the cameras and the objects) versus set rotation (in degrees), in
comparison with the ground truth data.Bottom: mean of the error (solid line) and inaccuracy (bars).

∆t/dist (×10−3) ∆θo ∆αo

mean 1.0 0.7 1.7
Error std 0.6 0.9 2.7

max 4.7 3.7 15.5

Table 4.1: Synthetic tracking results: mean, standard deviation and maximum error in the estimate of
translation∆t/dist, angle∆θo and axis of rotation∆αo.

normalised by the distance between the camera and the objectso if this distance is 1m, the mean error of

the position estimative is∼ 1mm, and the expected error of the orientation estimative is∼ 1.7o. Since

these synthetic images created for the tests described heredo not simulate the noise that is usually present

in real images, the error obtained is attributed to the linearisation done and to the pixelation due to the

relatively low resolution used.

The quirk in the estimate ofX andZ that happens at rotation of 59◦(shown in Figure 4.6) hapenned

because this is a critical pose for the object models and the rendering setup used. All these objects are

made predominantly by cubes, and at that pose, some of the albedo and crease edges become invisible
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Figure 4.7:Top: recovered rotation (θ) versus set rotation (in degrees) around the fixed rotation axis in
comparison with the ground truth data.Bottom: mean error and standard deviation.

due to the lack of contrast caused by the position of the lightsource. At that pose, some of the planes of

the objects are close to aligned with the the axis of two cameras in the set, also reducing the number of

located control points.
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4.3.2 Real images

To evaluate the tracking performance for real images, we performed experiments with a sequence grabbed

from the calibrated cameras in the desktop environment shown in Figure 3.6. The tracked object was a

sheet of paper with the pattern described in Section 3.2 printed on it. Images of resolution640 × 480

were used.

In this 140 frames video sequence, the tracked object is placed on the cover of a book that is∼ 12mm

thick. The sequence starts with the book on the centre of the coordinate frame, which means that the

initial position of the tracked object is about[0, 0, 12]mm (see Figure 4.9-left). Shortly after, the cover of

this book is opened up to about10o (see Figure 4.9-centre); then there is a small pause and the book is

closed, back to the original pose. After that, a rotation about theZ axis is applied, followed by a pause

when the angle of rotation was∼ 45o (see Figure 4.9-right), and a new motion combining this rotation

and a translation in bothX andY is started just before the end of the sequence.

frame 1 frame 34 frame 134

Figure 4.9: Key frames viewed from camera 2 (see Figure 3.6) with the control points.

The tracker was applied with real-time parameters: the spacing between control points was such that

the average number of located control points was of 128 (adding the three views). The mean of the time

per frame was15ms. The estimated poses shown in Figures 4.10, 4.11 and 4.12 visually agree with the

set rotations above. For a quantitative evaluation, these results are compared with results obtained using

the more expensive set of parameters that have been used for camera pose estimation in Section 3.2.4,

with the difference that now multiple views are combined. With those parameters, the average number

of located control points was 698. The results obtained withthese more expensive parameters are taken

as “ground truth”.
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Figure 4.10:Top: recovered translations (continuous lines) for a sequenceof real images in comparison
with the ground truth data (dotted lines).X, Y andZ are represented in red, green and blue, respectively.
Bottom: estimation error.

A robustness test regarding to error on initialisation is also presented in experiment. The tracker was

initialised with the object placed on position[0, 0, 0], i.e., as if the sheet of paper was laying on the desk,

and not on a book that is on the desk. This is why the control points were misplaced in the view of the

first frame shown in Figure 4.9. Note (from Figures 4.10, 4.11and 4.12) that only 6 frames were enough

to recover the correct pose of the object. A quirk in the tracking result happens at around frame 110 for

the estimate ofX andZ. This was probably caused by change in the cardinal direction of the edges

search paths, but this did not affect subsequent results andother DOFs.

∆tmm ∆θo ∆αo

Mean 2.29 0.51 8.40
STD 2.81 0.68 19.80
Max 26.19 5.89 125.90

Table 4.2: Tracking error for a sequence of real images, showing the mean, the standard deviation and
the maximum error in the estimate of translation∆t/dist, angle∆θo and axis of rotation∆αo.

Table 4.2 shows the mean, standard deviation and maximum error for the whole sequence (including
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Figure 4.11:Top: recovered rotation (θ) in comparison with the ground truth data.Bottom: angle (θ)
estimation error in degrees.

the error in the first frames). These values were computed from a single tracking attempt. Note that

the estimated axis of rotation (angleα) sometimes presented a very high error, but the overall error was

not too large because the estimated angle of rotationθ for the frames where this occurred was not large

(smaller than 7◦).
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Figure 4.12:Top: recovered axis of rotation (continuous lines) and ground truth (dotted lines).AX , AY

andAZ are represented by red, gree and blue, respectively.Bottom: orientation (α) error in degrees.
The error inα can be very large when the angle of rotation (θ) is small.



4.4 Detection and tracking of pointing hand from a wearable camera 90

4.4 Detection and tracking of pointing hand from a wearable camera

In previous section, it was shown that RAPiD was evaluated asa method to track rigid objects using

multiple calibrated cameras in a desktop environment. In this section, a single-view application of this

method is described. RAPiD is combined with an image-based shape detector which uses the skin colour

detector of Chapter 3 to locate and track a specific hand shapefrom a wearable camera’s viewpoint.

Unlike the experiments described before, the camera is obviously not static. In fact, the camera is an

active vision system that is worn on the shoulder of the user.The goal of this work is to aid the user

interface using the localisation and tracking of deictic gestures.

4.4.1 Introduction

Recent technology allows the implementation of robotic systems that are light enough to be worn with-

out inconvenience to the user. This leads to a wide range of applications from assistive technologies to

entertainment and portable communication. Wearable active cameras provide views of the environment

which are rich in information about the wearer’s location, interactions and intentions. But the images

from them present severe challenges because neither the sensor nor its underlying “platform” is station-

ary. Compounding these difficulties, most researchers use cameras that are more or less rigidly mounted

to one or other body part — head, shoulder, chest and hand haveall been used — making the imagery

highly dependent on posture.

Mayol [May04] developed prototypes for a miniature wearable active camera, and argued that mount-

ing it at the shoulder gives an optimum location measured against field of view, independence from the

wearer’s movements, and, important in wearable applications, social acceptability. The ability to redi-

rect the camera also allows switching between sensing contexts: one context may be focused on the

manipulative space; another may be the horizon, aligned with gravity; and a third may be fixated on an

independently moving object. Such devices require a range of sensing and perceptual modalities. In

[MTM00] inertial and visual cues are used to stabilise gaze by detecting user and image motion. In

[TMdM02b] slaving the device from head motion is investigated.

In the wearable domain, hand gesture recognition is a natural replacement for keyboard and mouse-

based input. In [SWP98a], for example, a hat-mounted camerais used for a sign language recognition
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task, and interestingly performs better than a wall mountedone, while in [KOKS01] a bare hand is used

as a cursor-and-click device for interacting with menus displayed on a head mounted display. Pointing

gestures are the main form of non-verbal communication, presenting a major complement to speech in

human to human communication [PSH97].

The interest of this section is on using the view from the wearable camera to detect and track pointing

gestures in order to determine the focus of attention and redirect the camera. In order to allow natural

user interface, it is necessary to use real-time algorithms. To that end, a coarse-to-fine method for shape

detection was proposed. This is invariant to translation and rotation, but retains the ability to identify

position and orientation of the pointing hand. Using a cyclic finite state machine, this detection method

is combined with RAPiD to refine the pose estimate and add depth information about the position and

orientation of the hand. Such parameters enrich the abilityof the wearable camera to perform a saccade

to the pointed area in 3D.

4.4.2 The wearable camera system

The wearable active camera consists of a miniature camera mounted at the end of a serial chain of three

motorised axes. As shown in Figure 4.13, the device is mounted on a collar and lies just above the

shoulder of the wearer, its location was found optimal against a number of criteria. Full details about the

device’s kinematics and spatial layout are given in [May04].

Collar

Robot

1

2

4

3

Figure 4.13: Wearable Visual Robot: (1) 2-axis accelerometer, (2) CMOS colour camera, (3) three mo-
torised axes, (4) wireless video transmitter. The wearableinterface box containing the data transceiver,
micro-controllers and batteries is worn at the hip.
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Figure 4.14: A finite state machine to combine detection and tracking of pointing hand.

4.4.3 Locating pointing gestures robustly

The hand detection algorithm is a coarse-to-fine matching method that is able to find the hand and also

to estimate its pointing direction in the image plane without the need for scanning all the pixels. This is

combined with the RAPiD tracker in a finite state machine shown in Figure 4.14.

Preprocessing

The first step in detection consists of skin colour detection, which is done using the method described

in Section 3.3. If most of the background captured by the wearable camera is dark, then the automatic

contrast normalisation of the camera can produce some saturated blobs in the hand image for Caucasian

users, destroying the colour information in those regions.To finesse this problem, white saturated pixels

were classified as skin. This reduces the false negative classification rate at a cost of increasing the

false positive rate. But this is not critical because the hand detection method takes the global shape into

account. Figure 4.15 shows the result of this method for a challenging image.

(a) (b) (c) (d) (e)

Figure 4.15: a) Original colour image, which has saturated areas and video interlacing artifacts; b) skin
detection result; c) threshold result; d) combined (OR) image; e) filtered result obtained with the median
filter with a3× 3 image.
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Since the shape detection and tracking methods are based on control points, rather than global images,

skin detection and filtering can be applied only to the regions of interest to reduce the computational cost.

Hand shape detection

Techniques for finding objects of a known shape include the use of 2D correlation, image moments, and

specific spatial filters [dCJ01]. The first two methods work well when noise is small and when objects do

not vary too much. But several kinds of distortion happen often in hand images: the hand can appear as

a non-contiguous object due to occlusion and shadows; it canbe in different orientations; other objects

with similar colour and size can be present; and small variations in the hand shape can occur. To cope

with these factors and with image noise generated by the wireless video transmission, a robust shape

detector is needed.

Since the camera is located on the user’s shoulder, the variation in the scale of the hand in the image is

not expected to be very large, at least in the first frame of reference of the pointing gesture sequence. The

detector uses the local shape descriptor presented in [MDTM04]. Given an image location,r = 5 rings

with different radii centred at this location evaluate the skin classification valueC of the imageI(·) at

everyπ/K radians (in this experiment,K = 32), as shown in Figure 4.16. A positive value (C(I(i, j)) =

1) in the curve indicates skin, a negative value (C(I(i, j)) = −1) indicates background. For rotation

invariance, the descriptor builds a feature vectorp where each element consists of a similarity measure

between each possible pair of response curves, i.e.,

p = [h1,2, h1,3, h1,4, h1,5, h2,3, h2,4, h2,5, h3,4, h3,5, h4,5] (4.11)

wherehm,n is the similarity between the2K-dimensional curvesm andn. Since the values ofC(I(·))

are either 1 or -1,hm,n is computed by

hm,n =
1

2K

2K
∑

k=1

Cm,kCn,k . (4.12)

Note thatp is invariant to rotation since it is a descriptor calculatedwith the shape itself, and invariant to

column permutations.

A templatep is generated from a training image in which the user clicks onthe metacarpophalangeal

joint of the index finger and on the index finger tip3. This determines the centre and the orientation of
3For the nomenclature of hand bones and joints, see Figure 1.1.
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Figure 4.16: Extracting and matching the shape descriptor:(a) outdoor view of the hand; (b) the shape
detector locates the pointing gesture and its direction; (c) values extracted from the rings, where the 1
indicates skin area and -1 indicates background; template values are showed by dashed blue lines and
solid red lines show the current signal after best alignment. (From [MDTM04], with permission.)

the template, respectively. Upon application, a new samplevectorp is compared with the templatep to

determine the similarityg(p,p) to the shape under search, determined by

g(p,p) =
1

S

S
∑

i=1

pipi , (4.13)

whereS = r!/2!(r − 2)!, wherer is the number of rings used (hereS = 10). Note thatg(·) ∈ [0, 1].

Thus, the detector is a function that tries to find the position of p′ in the imageI(·), such that

p′ = argmax
p

g(p,p) . (4.14)

The spacing between rings and the number of rings was determined experimentally. The best trade-

off between accuracy and computational power for192× 144 images was obtained using 5 rings spaced

from each other by 4 pixels. The innermost ring has radius of 11 pixels.

In order to speed up the detector, a coarse-to-fine search method was used. In the first stage, a gross

search is done and the similarity is evaluated only once in each 27 pixels in the vertical and horizontal

directions. Next, a fine search is done centred on all skin colour pixels in the neighbourhood of the

best location found in the gross search. Once the position that maximisesg(p,p) is found, the hand

orientation is estimated by searching for the orientationθ of the templatep that maximises the similarities

hm,m′ between the rings of the template and the located image descriptor.

To save computational time, the matching scoreg(p,p) is evaluated before moving to a finer stage.

If it falls below a threshold, it is considered that no pointing hand has been located in the image and the

system waits for the next frame. The same happens after the finest search in order to decide whether to
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move to the tracking stage or not. Figure 4.17 shows that the detector functions under quite different and

severe image noise.
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g(p,p) = 0.86 g(p,p) = 0.85 g(p,p) = 0.81 g(p,p) = 0.72

Figure 4.17: Challenging images and detector response values: (a) outdoor noise image where hand
is non-contiguous (finger striped), (b) ghostly finger; (c) indoor image with change in shape (sleeve
retracted); (d) Non gesturing hand. The video noise in (a) and (b) is encountered at the limits of the
wireless transmitter’s range.

4.4.4 Hand tracking

The shape detector initialises three degrees of translational and rotational freedom that most affect image

appearance. The other 3 DOF are set to default values, and allare passed to an implementation of RAPiD.

The idea is that the user tells the robot that (s)he is performing a pointing gesture by starting with the

hand at a roughly standard distance from the camera. Next theuser can adjust the depth of the pointing

direction and this is identified by the tracker.

Since the aim here is to track a single pointing gesture, a rigid model of the hand is enough. In

order to reduce the computational cost, a simple planar model was used, so self-occlusion handling is

not necessary. This model comprises straight edges along which control pointsX0 are distributed in the

model coordinate frame. Since this is a monocular system, the world coordinate frame can coincide with

the camera coordinate frame, as shown in Figure 4.18.

Since the images are binarised on skin colour, finding edges is trivial. But as the finger is narrow,

some care has to be taken not merely to chose the edge closest to the control point. In Figure 4.19,

for example, this would be a mismatch. The edge detector restricts the direction of the edge to be

dependent on the searching direction. The hand model used here is a polygon such that all the lines may

lie in between hand and background pixels. Therefore, considering the clockwise direction, the search
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A C   W0

Figure 4.18: The hand and camera coordinate frames.

is performed from right to left. The first value change from 1 (skin) to 0 (background) is taken as the

located edge. This also prevents the tracker fitting to background edges.
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Figure 4.19: The search is made similarly to Figure 4.2, but here the search is directional and only
considers skin-to-background edges.

The size of path for edge searching2L is set to a value that is proportional to the proximity between

the hand and the camera, because the speed of the hand in the image is likely to be proportional to this

proximity. Thus,L = K/ti−1
Z 0C

, whereti−1
Z 0C

is the distance between the camera and the hand in the

previous frame of the video sequence. The constantK is set toK = 5ti=0
Z BC

, whereti=0
Z BC

is the

default translation in depth that is used in the first iteration of the tracker after the detector is executed.

Figure 4.20 shows a skin colour segmented image overlapped by a projection of the five-line planar

hand model showing the control points. Although the model used does not have a realistic appearance,

the experiments have shown that modelling the finger as a triangle increases the motion constraints
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along the finger axis. This also makes it more robust to rotations in depth. Such additional constraints

compensates the lack of edges on the wrist, which were not included to avoid requiring that the user

wears a long-sleeved shirt or a bracelet. The simplicity of this model speeds up projection calculations.
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Figure 4.20: (a) Projection of the hand model (black line), search paths (segments with a triangle indi-
cating the end of the search), control points (circles) and located edges (‘*’). (b) Representation in the
camera coordinate frame of the hand model projected in the image in (a). The units are in millimetres
and theZ axis is the camera axis.

4.4.5 Monitoring tracking

To monitor the tracking performance, the norm of RAPiD’s residual vector||d|| (before pose update)

could be used. But outliers and unmatched control points arenot included in the residual which this

means that the value of||d|| does not reflect the success of the tracker. Thus, the choice was made for

a cost function that depends on the actual distance between the located edgesr and the projected lines

l of the model after the pose update. Using homogeneous coordinates, each point can be modelled as a

vectorx = (x, y, 1)⊤, and the lines are defined byl = xm
′ × xn

′, which is equivalent to the following

determinant:

l =

∣

∣

∣

∣

∣

∣

î ĵ k̂
x′m y′m 1
x′n y′n 1

∣

∣

∣

∣

∣

∣

, (4.15)
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wherexm
′ andxn

′ are two points that lie inl. The distancemp,q between linelp and pointrq can be

computed by:

mp,q =
r⊤q lp

√

l2xp
+ l2yp

(4.16)

The cost function is then defined by the sum of all the distancesm between all the found edges and their

respective lines:

C =
1

WD

∑

∀p,q

mp,q, (4.17)

whereD is the total number of control points in the whole model, andW is the worst case constant,

defined byW = 2L, which is the number of pixels in the path for searching edges. When no edgerp is

located in the search path for a control point,mp,q is set toW.

The cost function result is employed to determine if the tracker has lost the hand and the detector

needs to be called. The function is also used to verify if the tracking results are good enough to be used to

perform a camera movement toward the target. A second condition for that is the stability of the hand in

the space. If the change of pose||s|| is below a given threshold for 1 second, the camera can be redirected

to the target direction.

4.4.6 Results

The experiments described here were performed on a video sequence of 1104 frames grabbed from the

wearable camera in an office environment with no illumination control and with a cluttered background.

An approximate of the ground truth trajectory was generatedfrom mouse clicks on three points of the

hand: on the index finger tip, on the index finger MCP knuckle, and on the middle finger PIP joint

knuckle. The Nelder-Mead simplex algorithm [NM65] was usedto minimise the geometric error [HZ01]

between mouse clicks and pose hypotheses to estimate groundtruth. Figure 4.21 shows a sample image

with the mouse clicks used to estimate the ground truth data and the pose estimation results in comparison

to tracking results.

The plots in figure 4.22 show the pose estimation results (thick blue curves) with time (in frames) in

comparison with the ground true estimative (thin red curves) for four degrees of freedom. When the cost

function indicated a bad pose estimate, the hand detector was invoked. The circles illustrate the frames

where this happened. Cost function results are shown in Figure 4.23.
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(a) (b) (c)

Figure 4.21: Ground truth data estimation and tracking result. (a) Original image with the points used to
estimate ground date; (b) Projection of the model with pose parameters obtained with the ground truth
data and with RAPiD. (c) Model in the 3D pose estimated by the “ground truth” data and by tracking
method. In both (b) and (c), solid blue indicates RAPiD result and dashed red indicates ground truth
estimate.

These results show that the estimates of parameters parallel to the image plane (X, Y andθz) are

good match to the “ground truth” data, but the same is not observed for the depth parameters (e.g.Z).

However the estimate of ground truth data was not reliable for depth parameters because only three

mouse-clicked points in a single view were used, without sub-pixel accuracy. It was difficult to choose

more points to be clicked, as the hand texture is plain. A better estimate of the ground truth would be

obtained if multiple views were available for the same sequence. The above can be verified in the video

sequence that demonstrate the results.

The same video sequence was used to evaluate the applicationfor redirecting the wearable camera to

an object of interest. The results are plotted in Figure 4.24, which, for clarity, shows only the estimated

pose and the “ground truth” in the frames where the re-direction process was called. The wearable

camera’s movement and location of object of interest is assumed to take 1s, after which the wearable

camera moves back to the hand detection context.

4.5 Summary and conclusion

This chapter described the RAPiD rigid object tracker and its implementation for multiple view track-

ing, using the notation of [TRMM01]. Occlusion handling anddynamic generation of control points

was discussed for objects made of simple geometric primitives like planes, lines, circles, spheres and

truncated cones. Evaluations with synthetic and real images have validated the implementation as a real-
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Figure 4.22: Results of the integrated system (thick blue curves) showing the detector calls (circles) and
the ground truth estimate (thin red curves). The space is measured in millimetres, angle in radians and
the time in frames. The estimated values ofX, Y , Z andθZ are plotted against time, in frames.

time tracking method. The merits of this method for real-time multiple views implementation are the

main point of interest and for this reason this method was chosen as the basis for the development of an

articulated tracking system, described in next chapter.

An application of RAPiD and the skin colour detection methoddescribed in the previous chapter

was described. This is method for detecting and tracking a specific hand shape — pointing — with

applications of estimating the focus of attention or controlling the gaze direction of a wearable active

camera. This enhances user-robot interaction and enables the recognition of an important non-verbal

communication gesture.

This method combined a 2D shape detector and the RAPiD 3D tracker using a finite state machine.

Criterion functions for both the detector and the tracker were used to automatically monitor their result
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Figure 4.23: Cost function results for the experiment shownin Figure 4.22 plotted against time (in
frames). The dashed line is the threshold used to indicate whether the tracker is lost, and the circles
indicate when the hand detector was called.

in order to change the state in the finite state machine. The detection method provides an initial estimate

of the planar pose parameters which are then refined with 3D information by RAPiD.

The experiments have shown that a simple rigid planar model of the hand lead to acceptable tracking

results with low computational cost.
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Figure 4.24: Pose estimations (‘*’) and estimated ground truth (‘o’) when the re-directing process was
called. The estimated values ofX, Y , Z andθZ are plotted against time, in frames.



5

An articulated RAPiD tracker: ART

This chapter describes a novel extension of Harris’ RAPiD rigid object tracker to track

articulated objects in 3D. It generates a linear system for pose update in terms of a minimal

set of variables. A subpart of the object is chosen as its basis with six degrees of freedom

and the pose of the remaining subparts are described in termsof the joints connecting from

this basis in a kinematic tree. Experimental demonstrations of this system are given in a

video-rate implementation using imagery from multiple cameras.

5.1 Introduction

With the aim of performing full-DOF tracking of hands, this chapter develops a method to track generic

articulated objects in real-time. Hands can be modelled as kinematic chains, which are assemblage of

links and joints. In robotics,forward kinematicsis the process of calculating the position in space of the

end of a linked structure given the angles of all the joints. This process is based on performing transfor-

mations from the basis coordinate frame to the end of the chain. This is what is normally done to update

the pose of an articulated object when a new pose vector is available. In this straightforward process,

only one solution, i.e., position of the end of the chain, is obtained (for acyclic kinematic systems).

Inverse kinematicsdoes the reverse: given the end point of the structure, the goal is to find the joints

angles necessary to reach it [Cra89]. In general, this is solved by an optimisation process that locates the

parameters that minimise the distance between the target endpoint and its current position. Depending on

the kinematic chain and on the position of the target point, there might be zero, one or multiple solutions.
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Figure 5.1: A simple articulated object to illustrate the basics of ART.

Section 2.3.3 presented an overview of inverse kinematics methods applied to 3D hand tracking

using accurate measurements of fingertip locations obtained, for instance, colour markers. The problem

becomes more challenging for marker-less tracking of articulated objects, as reviewed in Section 2.3.4.

Based on the success of the RAPiD tracker for real-time tracking of rigid objects, this chapter de-

scribes an extension of this method for articulated objects, dubbed ART. Section 5.2 develops this ex-

tension with a simple two parts example and extrapolates to complete chains. Section 5.3 describes the

algorithm used to implement this method for kinematic treesand discusses the case of closed loop kine-

matic graphs. Section 5.4 evaluates some methods to solve linear systems in order to compute the pose

update. Details of a hand model and occlusion handling are presented in Section 5.5. Experiments are

described in Section 5.6 and the chapter ends with a summary in Section 5.7.

5.2 Extending RAPiD to articulated objects

Consider two subparts labelled 0 and 1, connected by a pure revolute joint with joint angleθ1 located

at ℓ0 in subpart 0’s frame, as shown in Fig 5.1. A point P atX1 referred to the local frame attached to

subpart 1 of the articulated mechanism is at

X0 = T0
1X

1 =

(

R(θ1) ℓ0

0⊤ 1

)

X1 (5.1)

in part 0’s frame. For generic rotations, the matrixR is composed from the angleθ and axisᾱ using

Rodrigues’ formula [Cra89]:

R = I3×3 + sin θ[ᾱ]× + (cos θ − 1)(I3×3 − ᾱᾱ
⊤

) , (5.2)
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where[ᾱ]× is the cross product matrix formed from̄α.

As point P is stationary in frame 1, differentiation with respect to time gives

Ẋ0 = θ̇1

(

R′(θ1) 0

0⊤ 0

)

X1 = θ̇1U
0
1X

1 , (5.3)

whereR′ is the element-by-element derivative ofR with respect toθ1. For a generic rotation matrix,R′ is

computed by differentiating (5.2):

R
′ = cos θ[ᾱ]× − sin θ(I3×3 − ᾱᾱ

⊤

) (5.4)

Similarly for purely prismatic joints

T0
1 =

(

I3 ℓ0 + θ1û1

0⊤ 1

)

, U0
1 =

(

03 û1

0⊤ 0

)

(5.5)

whereû1 is a unit vector and parameterθ1 is now a length, not an angle.

This is straightforwardly extended to a point on subpartJ of a mechanism

X0 = T0
1(θ1)T

1
2(θ2)...T

J−1
J (θJ)XJ , (5.6)

Ẋ0 =
(

θ̇1D
0
J1 + θ̇2D

0
J2 + . . .+ θ̇JD

0
JJ

)

XJ , (5.7)

whereD0
J1 = U0

1T
1
2...T

J−1
J ; D0

J2 = T0
1U

1
2...T

J−1
J ; and so on. For a mechanism with(N + 1) parts, this

expression can be written as a linear sum over allN joint velocitiesθ̇ = (θ̇1 . . . θ̇N )⊤

Ẋ0 =
(

a1|a2| . . . |aJ |04×(N−J)

)

θ̇ = A4×N θ̇ , (5.8)

whereaj = D0
JjX

J . As Ẋ0 is a direction vector, its fourth component is always zero. Below a is used

as a 3-vector, and a(3×N) matrixA is written asA3×N = (I3|0) A4×N .

If the pose of base part (0) is given by{RW
0 , t0W } referred to the world frame, then the instantaneous

velocity in the world frame is (returning to non-homogeneous coordinates)

ẊW = RW
0 Ẋ0 + ω × RW

0 X0 + v

= RW
0 A3×N θ̇ + ω ×XA + v , (5.9)

wherev andω are the instantaneous global velocity and angular motion asused in Chapter 4.
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The key observation is that, just as in Eq. (4.2), the velocity in the world frame can be written linearly

as

Ẋ
W

= Hs (5.10)

but nowH hasN extra columns at the right

H =
(

[−XA]× I3×3 RW
0 A3×N

)

(5.11)

ands is augmented with the joint velocities

s =





ω

v

θ̇



 . (5.12)

Like in RAPiD, edge features sought along near-orthogonal lines are used to reduce the cost of

matching. Therefore the construction of the pose update equation from the measurements follows exactly

as given in Eqs. (4.5) and (4.6), i.e., the motion parametersare estimated by solving

Fs = d , (5.13)

with control points and measurementsd are obtained from all the parts of the articulated body.

5.3 ART algorithm

The articulated RAPiD tracker has been implemented as a video-rate (30Hz) process for multiple artic-

ulated objects viewed by one or more cameras. The articulated object is represented as a graph (e.g. a

tree) where each node stores data about the position and orientation of each joint, the type of the joints

(revolute or prismatic) and the nodes that this node is connected to. Joints with more than one DOF are

implicitly represented as a combination of 1 DOF joints. This can could lead to gimbal lock for rotations

near90◦, but this has not been a problem in our experiments because the tracked objects (specially the

hand) do not move to this range in joints with more than 1 DOF. Each node has a representation of a

rigid object which is the same as in RAPiD. Algorithm 1 summarises the tracking method, and certain

of its steps are fleshed out below.

For kinematic chains with branches (i.e. kinematic trees),the coupling of subparts with joints can be

represented as a tree. To gather the information to completeeach pose update, the tree is explored depth
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Algorithm 1 Articulated RAPiD tracker (ART) for kinematic trees – one iteration of the pose update.

1: At the base part set cumulative transformationT0
0 = I4.

2: for each subpartj in a depth-first expansiondo
3: Setp to bej’s parent
4: Compute and store cumulativeT0

j = T0
pT

p
j

5: Compute and storeD0
jj = T0

pU
p
j

6: for each jointj′ = j − 1 back toj′ = 1 do
7: Compute and storeD0

jj′ = D0
pj′T

p
j

8: end for
9: for each camerado

10: for each visible control pointi on subpartj do
11: ConstructAi, Hi and thencef i

12: Search for image edge, computedi.
13: Append rowf i to matrixF, anddi to vectord
14: end for
15: end for
16: end for
17: Derives from Fs = d (Eq. 5.13).
18: Update pose and joint angles

first. This reduces the amount of computation required to calculate the coordinate frame transformations.

Denoting the root and current subparts as nodes0 andj, respectively, and the parent of the current node

asp, the cumulative transformation (Eq. 5.6) at the current node is found asT0
j = T0

pT
p
j and stored at the

node. To populate Eq. (5.7), the dependency on the joint angle (or length) between parent and current

nodes is determined asD0
jj = T0

pU
p
j , and the dependencies on joint angles (or lengths)θj′ earlier than the

current node’s parent found asD0
jj′ = D0

pj′T
p
j . TheD matrices are again stored at the node.

Further computational saving is made on computing the matrix A (5.8) when there is a prismatic

joint. As shown in Equation (5.5), with exception of the firstthree elements of the rightmost column of

U
j−1
j , all other elements are zero. This means thatU

j−1
j T

j
j+1T

j+1
j+2 · · · TJ−1

J = U
j−1
j , so there is no need to

computeTk
k+1 for k further down the kinematic chain in the calculation ofD0

Jj .

Kinematic chains with closed loops are represented following a standard solution for inverse kine-

matics. In [GA90], the pose change of the end effector (or of any chosen link in or after the loop) is

represented following two paths from the base, i.e., using two Jacobian matricesA andB. Given the two

sets of joint parametersθa andθb, the inverse kinematics solution is obtained by makingAθ̇a−Bθ̇b = 0.

In the example of Figure 5.2(a),θa = [θ01, θ12, θ02]
⊤ andθb = [X02]. For this simple example,A andB

can be derived analytically (see e.g. [GA90]).
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Figure 5.2: Examples of closed loop kinematic chain: (a) theplanar RRRP mechanism, where circles
represent revolute joints and the square represents a prismatic joint. Link 0 is the basis and the position
of the prismatic joint is the end effector. (b) A more complexkinematic chain with a loop, where each
block represents a link and lines represent joints.

To apply the same idea using ART’s representation, each control point from links inside a loop adds

two rowsf for the same measurementd, eachf following a different path in the loop. For the example of

Fig. 5.2(b), control points in the link 7 have two possible representation in the coordinate frame of link

0:

X0 = T0
1(θ0,1)T

1
2(θ1,2)T

2
3(θ2,3)T

3
6(θ3,6)T

6
7(θ6,7)X

7 , (5.14)

= T0
1(θ0,1)T

1
5(θ1,5)T

5
6(θ5,6)T

6
7(θ6,7)X

7 . (5.15)

Each measurement of links 2–7 adds two rowsf to F and the system can be solved as before. The

number of DOFs of the system of Eq. (5.13) remains the same, sothe computational complexity of pose

estimation is not affected by the presence of loops. Note that it is necessary to use weighted least squares

to avoid erroneously increasing the importance of nodes in or below a loop. For generic chains (specially

long or non-planar mechanisms), it is troublesome to determine the set of singular poses analytically, so

it is necessary to do rank monitoring to solve Equation (5.13). Note that the flow control of Algorithm 1

needs to be modified in order to detect and deal with loop closing.

5.4 Solving the linear system

A critical step of the tracking method is to determine the pose update by solving the linear system of

Equation 5.13, specially when robust pose is used. Althoughit is known that all methods to solve linear
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systems have asymptotic complexity ofO(N3), whereN is the number of variables [PTVF88], different

methods have different coefficients in the polynomials thatexpress their time complexity. This can imply

significant differences for the range ofN that usually occurs for articulated objects tracking.

In ART, the number of unknowns is smaller than or equal to the number of equations. The robust pose

calculations are done using minimal sets of measurements, so the number of equations and unknowns

are always the same, which means that the systemFs = d can be solved by

s = F−1d (5.16)

For the final optimisation using all inliers, there are more measurements than degrees of freedom andF

is a rectangular matrix. The system can then be solved using the Moore-Penrose pseudo-inverse ofF.

That is,

s = (F
⊤

F)−1
F
⊤

d . (5.17)

However, linear systems do not need to be solved necessarilyas in (5.16) or (5.17). A matrix decomposi-

tion method that does not require full matrix inversion can be used. A usual way of solving these systems

is by means of singular value decomposition (SVD), as it allows to diagnose how close to degenerate

(or how close to singular) is the linear system [PTVF88]. ButSVD is not the most efficient method to

solve linear systems. If a singularity check is not performed, other matrix decomposition methods can be

applied, providing faster computations. The processing time of the following methods have been eval-

uated: SVD, QR, Cholesky and Eigendecomposition (see [PTVF88] for details about these methods).

Another point that was considered is that sinceF⊤F is symmetric, a significant computational saving can

be achieved by avoiding redundant multiplications to compute half of the matrix.

To evaluate our implementation of these variations, sections of test were written and the result shown

in Figures 5.3, 5.4 and 5.5, the lines labelled asoptimisedshow the results using a modified matrix

multiplication method that avoids redundant computations. The lines labelled asfull show the results

obtained using the matrix decomposition method to solve thegeneric system (5.13). The lines labelled

ason FtF are those that used (5.17) to solve the system by inverting the square matrixF⊤F. The graphs

show the average time (in milliseconds) after 1000 repetitions of each experiment. For each matrix

dimension, a linear system is created from random Real numbers and all the methods are applied to
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Figure 5.3: Results for a typical situation for robust pose:the number of unknowns (DOF) is equals the
number of equations (measurements).Left : full graph showing all the methods;right : zoom on the 4
fastest methods for dimensions between 6 and 30 (more typical range for hand tracking).

solve the same system. These computations were performed ona 1.8GHz Pentium 4 machine. The

numbers were represented using 64bits double precision.1

The results show that Cholesky decomposition (using theoptimisedF⊤F calculation) provides the

best results, specially when there are more equations than unknowns. The gap between the optimised

and non-optimised versions is very large for Cholesky because this method assumes that the matrix is

symmetric and simply does not check elements above the diagonal. So the upper part of theF⊤F matrix

is not even copied from the bottom part, saving time with memory access. Note that, in Figure 5.3Full

QRperformed better thanQR optimised. This is possibly because of the fact that if the matrix is already

square, there is no benefit of using theoptimisedF⊤F calculation for pseudo-inverse for QR. Apart

from that, theoptimisedversions gave faster results than the other versions of the methods. Therefore,

Cholesky decomposition with theoptimisedF⊤F calculation was chosen as the standard for the tracking

experiments.

If the precision of the results is not critical, a 32 bits implementation can be considered for machines

with 32 bits processors (which is the case of the machine usedin these experiments). By comparing

the graphs of Figure 5.6 with those of Figure 5.5, one can notethat, in some cases (e.g.Full SVD) the

1The graphs show some recurring quirks in processing time which are probably due to due to system’s memory management
issues, because the machine used was running as a single userLinux with the X interface switched off, so cpu time sharing was
not an issue. But these quirks do not affect the comparative analysis.
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Figure 5.4: Results for 500 equations, an average situationfor tracking with three cameras.

computation time drops down to around 50% of the time taken ifdouble accuracy is used. The deviation

among the linear system solutions obtained by different methods is≤ 1.1 × 10−7. Note that there are

two issues with single precision number. The first is that accumulated roundoff errors in the solution

process can swamp the true solution. The second is that for most ANSI C compilers, float variables are

automatically converted to double before any operation is attempted. Therefore, for some compiler and

library versions, the overhead of float to double (and vice-versa) conversions can make processing 32

bits variables take more time than processing 64 bits variables [PTVF88].
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Figure 5.5: Results for a situation that occurs when the tracking accuracy is prioritised using a large
number of measurements: 1500 equations.
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5.5 A 3D hand model

For the hand tracking experiments, a hand model was build including palm, thumb, fingers and, for some

experiments, the forearm. The proportions of this hand model are based on measurements taken from a

single subject, but as in the implementation of RAPiD, all the parameters are set in an XML-based text

file, so they can be easily changed if measurements from othersubjects are available. The model uses a

combination of 20 truncated cones, 21 spheres and 6 planes, as shown in Figures 5.7 and 5.8.

Figure 5.7: Hand model used in the tracking experiments. Themodel has 22 DOF of internal joint angles
and 6 DOF of global pose parameters.

(a) (b)

Figure 5.8: (a) Wire frame projection of the hand model on a hand image. (b) Projected control points to
be used for pose update.



5.5 A 3D hand model 114

The palm is rigid, and each finger is modelled as a planar mechanism with 3 DOF for flexion and 1

DOF for abduction and adduction with the palm. The same modelis used for the thumb, but its plane is

not parallel to the fingers’ planes. This gives a total of 20 internal DOF plus 2 DOF for the wrist, and 6

DOF of global pose parameters. Thus the hand motion vectors is 28 dimensional.

5.5.1 Occlusion handling

Self-occlusion handling is a critical task for complex articulated objects. Rehg and Kanade [RK95a]

deal with it through a top-down approach using knowledge of the model to verify the registration of

templates. A state space partitioned into regions of fixed visibility order of fingers is used. It is assumed

that a finger can not occlude another and be occluded by it at the same time, which complies with the fact

that fingers are modelled as planar kinematic chains and there are tight limits on adduction/abduction. A

window function attached to each finger segment masks the contribution of segments that are occluded.

This method saves computation, but it fails for poses such as“crossed fingers”.

In ART, each control point is first checked against its own rigid body first, as described in Sec-

tion 4.2.3. Next, the resulting visible control points are checked against other parts of the kinematic

graph. Some computation is saved by not checking occlusion against object parts that are behind the

control point. Figure 5.9 shows an example of hand pose with asignificant amount of self-occlusion and

the control points generated for that pose.

(a) (b)

Figure 5.9: Hand at a pose with significant amount of self-occlusion (a), and projected control points
generated at that pose (b).
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A few tens to few hundreds of control points contribute rows to the measurement system. When

using multiple cameras, the measurement equations are gathered into a single system to solve for the

pose, as in Chapter 4 and in [BM98, TRMM01].

5.6 Experiments

To demonstrate ART, output from video rate (30 Hz) experiments on increasingly complex objects

is shown in Figure 5.11–5.15. The imagery was captured from three calibrated cameras viewing a

0.5 × 0.5 m2 working area on a desk from near orthogonal directions as shown in Figure 3.6. Videos

demonstrating these tracking results are available at http://www.robots.ox.ac.uk/∼teo/art/

In the experiments of Figures 5.13 and 5.15, mismatching is reduced using robust methods. Least me-

dian of squares is used to remove non-collinear outliers amongst measured control points which should

belong to the same line [TRMM01], and guided MLESAC [TM02] [TM05] is used to select control

points in the robust generation of the solution to Eq. (5.13). To improve the confidence of the method,

the implementation tries to select at least one control point per visible object part. To illustrate the im-

portance of robust pose for tracking, Figure 5.10 shows a synthetic sequence in which tracking fails if

no outlier rejection method is used and succeeds otherwise.The same figure also illustrates that if this

articulated object is tracked as two single unconstrained objects, tracking fails.

Figure 5.10: Tracking a synthetic articulated object made of two blocks linked by a 2 DOF revolute joint.
In this sequence, the object rotates around an axis centred on the large block and the joint is kept static.
The three panels show intermediate tracking results obtained by: tracking the two parts individually
(left); tracking both parts as a single articulated object (centre); and also using robust pose (right).

Figure 5.11 shows three frames cut from a sequence where a book modelled with three planes (front,

back and spine), two hinges, and eight DOF is tracked. The white crosses show the projection of the
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Frame 1 Frame 264 Frame 686

Figure 5.11: Tracking a book using an 8 degrees of freedom model in ART. The images (top) are all from
the same camera of the three. The white crosses are the predicted control point positions, and the red are
the corresponding measured image positions. The graphicaloutput in the bottom shows the fitted pose
in the world coordinate frame, generated from a viewpoint opposite to that of the camera of the top row.

model’s control points in the image, and the red crosses showthe located edges. Here, two iterations of

the linear update were used per frame. Tracking continues inthe presence of potential distraction caused

by the presence of occlusions, texture in the object, and theproximity of model and image edges.

Although articulation has been described above in terms of single objects with subparts, the method

can be more generally used to apply motion constraints between objects. For example, to track a ball

while it rolls on a moving table, one can model the table as thebase part, and the ball as connected to

it using two 1-DOF prismatic joints. Figures 5.12 and 5.13 show more complicated examples. In Fig-

ure 5.12, two entities: a plane and an articulated object made of two cylinders are tracked. In Figure 5.13,

four entities, a plane, a mug, a ball, and two articulated cylinders, are tracked. In both cases, the set is

tracked asonearticulated object, with 10 DOF and 14 DOF, respectively.

In Figure 5.12, the 3D pose of the basis object (the plane) has6 DOF, the 2D pose of the articulated

object with respect to the planar object is represented with3 DOF, and 1 DOF represents the joint of the

articulated object. In Figure 5.13, the 14 DOF comprises 6 DOF for the planar object, 2 each for ball and

mug with respect to the plane, and 4 for jointed cylinders.
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Figure 5.12: Two objects being tracked simultaneously: a planar object and an articulated object that
rests on the planar object. The first three images show the views of the three cameras used with super-
imposed control points and the bottom right image is a 3D display showing the world coordinate frame
and the object model in the pose that matches the acquired images.

Figures 5.14 and 5.15 show hand tracking experiments. In theformer, the hand is kept flat and

performs abduction movements. The latter figure shows a sequence of tracking a hand and a box, the hand

with a single articulation for the fingers. The hand and the box are modelled as a single 7 DOF kinematic

tree (3 for the hand, plus 1 for the fingers and 3 for the box withrespect to the hand), constrained to the

table plane. When the hand grasps the box, the degrees of freedom between hand and box are switched

off and the whole set is tracked as a rigid object, reducing the dimensionality of the problem. To switch

off DOFs, elements ofs and columns ofF are removed from linear systemFs = d before computings.
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Frame 3 Frame 2518 Frame 4106

Figure 5.13: Tracking four objects as a 14-DOF articulated,or “motion-constrained”, object. Also shown
are graphical views generated from the corresponding contemporary object poses.

Figure 5.14: Three views of a hand with predicted and locatedcontrol points superimposed, and the
synthesised hand at the position estimated using these images during a tracking sequence.



5.6 Experiments 119

Frame 4 Frame 301 Frame 463

Figure 5.15: Tracking a hand grasping a box. The graphical images show the view from above.
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5.7 Summary

With the aim of building a real-time method to track articulated objects, this chapter examined how

to extend a rigid object tracker that has proven successful as a real-time multi-view method (RAPiD).

Although rigid and articulated objects are different in terms of how image measurements are associated

to motion parameters, the articulated version of RAPiD estimates motion parameters maintaining the

same formulation as the original method. The control pointsare sought in the image in the same way

and a linear system is used to estimate the motion parameterswith the same formulation as that of the

original method.

The articulated RAPiD tracker (ART) is able to track generalarticulated objects including branched

kinematic trees and closed loop kinematic graphs. Details that contributed to enable a real-time imple-

mentation were given. These include: a method to process thearticulated trees which uses information

computed for previous nodes, preventing redundant calculations; and the choice of a method to solve

systems of linear equations efficiently.

Satisfactory tracking results have been achieved for man-made objects like books and tools. It was

also shown that multiple objects can be tracked as a single articulated object with phantom joints that

can represent motion restrictions that may happen, for instance, due to contact.

A 3D hand model has been implemented and tracking experiments were described with the hand

moving on its own and in interaction with another object. In both cases, some constraints have been

applied to the finger movements. Despite the demonstrated success, the inaccuracy of the model has

caused difficulty to track all DOFs of the hand reliably. Thiscan be improved by means of data-driven

dimensionality reduction methods as discussed in Section 2.3.7.

Next chapter describes an alternative representation of articulated objects for tracking and presents

comparisons with ART. Further details about robustness andcomputational complexity are also exam-

ined.



6

Linear recovery of articulated pose
change: comparing pre- and post-imposed

constraints

This chapter contrasts two methods of imposing constraintsduring the tracking of articu-

lated objects. The first method develops constraints using the conventional kinematical ap-

proach described in Chapter 5. The second method is that of Drummond and Cipolla [DC02],

which tracks the subparts of an articulated object individually, and hence uses the maximal

set of variables, but then imposes the motion constraints using Lagrange multipliers.

This chapter shows that these methods, despite their very different formulations, are func-

tionally equivalent in terms of the pose results recovered.Further comparisons between the

methods are drawn in terms of computational speed and algorithmic simplicity and robust-

ness, and it is the last area which is the most telling. The comparative results suggest that

using built-in constraints is well-suited to tracking individual articulated objects, whereas

applying constraints afterwards is most suited to problemsinvolving contact and breakage

between articulated (or rigid) objects, where the ability quickly to test tracking performance

with constraints turned on or off is desirable.

6.1 Introduction

The ability to track multiple and articulated modelled objects is an important one, not least in the areas of

autonomous and teleoperated robotics, visual surveillance and human motion analysis. It is an area which
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Figure 6.1: Two representations to track articulated objects illustrated with an object with two links and
a revolute joint: post- and pre-imposition of constraints.

is still proving challenging more than twenty years after Hogg [Hog83] demonstrated visual tracking of

a walking person, modelled using 3D cylinders à la Marr and Nishihara [MN78]. The taxing issues

remain those of how to represent the objects and their composited pose, how to associate observable

image data with the correct part of the object, by what computational means economically to adjust the

high dimensional state vector to improve the fit to current observations, and, lastly, how to overcome

fundamental ambiguities in the observations.

As discussed in Chapters 1 and 2, a large variety of ways of addressing these issues have been

proposed. The work reported in this chapter is motivated by adesire to understand better the interaction

of the human hand with objects at the transition between articulated, independent motion and constrained,

possibly rigid, combined motion. An issue of especial concern is how to represent articulated pose to

detect a transition from articulated to rigid motion and vice versa. Perhaps each link or subpart should be

tracked independently, thereby introducing redundant degrees of freedom, and constraints imposed later

in a lower dimensional subspace. Alternatively the available kinematic constraints might be imposed

up-front within the tracking process. In support of the latter approach, Rehget al. [RMK03] note that

the kinematics define the state of the scene and define the mapping from scene to image. Figure 6.1

illustrates the two approaches.

Exemplars of both classes of method have been reported in a number of application areas. In the

former class, and applied to tracking a number of mechanisms, is the work of Drummond and Cipolla

[DC00, DC02]. They track subparts independently and then apply constraints using Lagrange multipli-

ers. A similar approach based on kinematic sets is describedby Comportet al. [CMC04, CMC06]. The

object parts parameters and articulated constraints are optimised using an iterative method. In the area of

hand tracking is the work of Wuet al. [WHY03] who impose constraints on independent subparts via a
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Markov network. Hel-Or and Werman [HOW96] fuse constraintsand measurements using an extended

Kalman filter (EKF) by treating constraints as measurementswith zero uncertainty. The kinematic chain

approach is applied to tracking a robotic arm by Nickels and Hutchinson [NH01], who use an EKF to

recover a state vector of arm joint angles and velocities from point measurements; however they simplify

matters by assuming a fixed and known base pose. In hand tracking, Rehg and Kanade [RK95b] put

joint angles and pose into a Newton non-linear minimization. In full body tracking, Bregler and Malik

[BM98] develop a linear relationship between instantaneous motion and pose change; and Sidenbladhet

al. [SBF00] use the kinematics in a generative model of image appearance. In each case, however, the

surrounding observation and computation methodologies are sufficiently different to make immediate

comparison difficult, and no detailed comparison is available in the literature.

Two works in the different classes that appear most similar in other respects are those of Bregler and

Malik [BM98] and Drummond and Cipolla [DC02]. Both develop linear expressions for the pose updates

of articulated objects using exponential representationsof motion and Lie algebra. The differences — in

addition of course to the way that articulation constraintsare imposed — are the use of different image

measures, viz. warped image patches and edges, respectively, and the use of different image projections,

viz. scaled orthography and full perspective.

This chapter attempts to make a fair comparison of the two constraint approaches. First, edge data

and perspective projection are used for both. Second, both methods are re-implemented using Harris’

earlier RAPiD tracker as a common base. In RAPiD [HS90, Har92a], Harris proposed an object pose

update which is linear in the elements of the kinematic screw. Here it is shown that RAPiD, described

in Chapter 4, is entirely equivalent to Drummond and Cipolla’s rigid body tracker based on Lie algebra

[DC99], which forms the basis of their articulated tracker [DC02]. The screw is synonymous with the

exponential twist, and so for articulated tracking with kinematic constraints it was not needed to slavishly

to re-implement Bregler and Malik, but instead the extension of RAPiD to articulated objects described

in Chapter 5 is used (here referred to as ART). The implementations therefore share much of their code.

Section 6.2 reviews the way in which scene and image motion are described in Drummond and

Cipolla’s tracker (here referred to as DCT), and shows that for rigid objects this method is entirely equiv-

alent to RAPiD tracker. Section 6.3 reviews how constraintsare imposed in DCT and, for comparison
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with ART, gives detail of the solution for both kinematic chains and branching trees. Section 6.4 gives a

comparison of the two approaches in terms of accuracy, efficiency, and robustness. Finally, Section 6.5

of this chapter draws conclusions on the applicability of the pre-constrained and post-constrained meth-

ods in the light of the earlier findings. The main contributions described here have been published in

[dTM06].

6.2 Scene and projected image motion

RAPiD was originally formulated using inhomogeneous coordinates, whereas DCT used homogeneous

coordinates. To provide continuity with previous work, this chapter must move between both, but will

do so mostly without comment. In both RAPiD and DCT, a single rigid object (or rigid subpart of an

articulated object) is described in an object frame 0 by the coordinatesX of each of a set of control points

— points which may be genuine points on the object, but which more usually are parametrized locations

on fixed crease or albedo edges, or are generated on the fly as extremal edges of a curved object, as

described in Chapter 4.

In DCT the aim is to recover the 6-vectorα of coefficients of the generators of SE(3) describing the

change of homogeneous transformation between object and camera. To draw proper comparison with

RAPiD, this change is specified in the aligned frame, and so itis the4 × 4 transformation from object

to world frames that is updated after movement, fromTW
A TA

0 to TW
A MTA

0 , whereM = exp (
∑

i αiGi).

To conform with the conventional screw order, the first and last three generators of the Lie group from

[DC02] were switched; in turn they are associated with angular velocities about theX-, Y - andZ- axes,

and with translational velocities in theX-, Y - andZ-directions

G1 =









0 0 0 0
0 0−1 0
0 1 0 0
0 0 0 0








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0 0 1 0
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


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
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0 0 0 0









G5 =


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
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0 0 0 0








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







0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0









(6.1)

As the change in pose is small,M is approximated byM ≈ I +
∑

i αiGi, and the velocity in world
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coordinates can be written
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Comparison of Eq (6.2) with Eq (4.2) shows that recoveringα is identical with recovering the screws.

The equivalence is maintained whichever frame is used to specify motion.

DCT similarly recoversα from image motion, and for completeness it is shown that the measurable

image motion derived from the homogeneous expressions in [DC02] is identical with Eq. (4.4). In

normalized image coordinates [DC02] has




u
v
w



 = RC
W XW = XC , and





u̇
v̇
ẇ



 = RC
W Ẋ

W
, (6.3)

from which the inhomogeneous image motion is derived as

ẋ =
1

w
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
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ẇ
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ẇ

0
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u̇
v̇
ẇ





=
1

ZC
[I3 − x[001]] RC

W Ẋ
W
. (6.4)

InsertingẊ
W

from Eq. (4.2) into Eq. (6.4) again yields Eq. (4.4).

Thus, for rigid objects, the two methods are functionally equivalent. (Note however that in [DC02]

α is recovered for each object in theobject’s frame. The screw recovered,α0, is then within a linear

transformation of that in the aligned frame,α0 = T 0
AαA, as clarified later.)

The edge-normal motion is thus related to the state vectorα just as it is for the state vectors,

described in Section 4.2.2.

6.3 Enforcing constraints after measurement

This section reviews Drummond and Cipolla’s method of applying motion constraints to articulated

objectsafter making measurements on independent subparts. Their approach is to adjust the optimum
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screws (now denoted byα) obtained for each individual subpart so that the constraints are satisfied and

the overall fitting cost is minimized. The solution is reached using Lagrange multipliers.

6.3.1 The cost of (mis-)fitting single object data

For each individual subpart, the measurement system

Fα = d (6.5)

in [DC02] is similar to that developed in Eq. (4.6) but the pose adjustment takes place in the object frame,

not the aligned frame. The measurementsd are identical with those derived earlier, but the rowsf of F

are generated now using

Ẋ
W

=

(

RW
0 t0W

0⊤ 1

)

(

∑

i

αiGi

)

(

X0

1

)

. (6.6)

Without constraints, the optimal least squares solution for each subpart would be used to update that

subpart’s pose. However, when the constraints are applied,each value ofα is modified toβ, and it is

necessary to know the additional cost of fitting. For anyindividually suboptimal solutionβ, the sum-

squared fitting cost isSβ = (Fβ−d)⊤(Fβ−d) whose minimum isSα = (Fα−d)⊤(Fα−d). A little

manipulation gives the well-known quadratic form for the extra cost

Sβ − Sα = (β −α)⊤[F⊤F](β −α) . (6.7)

6.3.2 Developing and imposing constraints

Consider first a simple example of two parts with translational velocities given by vectors of coefficients

βp andβq defined in their local Cartesian framesp andq. (That is, the first’s velocity isβpxx̂p +βpyŷp +

βpz ẑp, and similarly for the second.) The constraint that the twoy-velocities are equal can be written as

(βp − βp
q)

⊤





0
1
0



 = 0 , (6.8)

where the superscriptp denotes a value referred to thep-th frame, and absence of superscript denotes

a value referred the native object frame given by the subscript. Drummond and Cipolla observed that

exactly the same can be done using theG-matrix basis, again provided theβ values refer to the same
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frame. So, to impose constraints between two subpartsp andq, they wrote

(βp − βp
q)

⊤ck
p,q = 0 (6.9)

where, to constrain the associated quantity, eachck
p,q, k = 1, . . . ,Kp,q is a 6-vector drawn from the set1

ωx ωy ωz vx vy vz

c =

















1
0
0
0
0
0

















,

















0
1
0
0
0
0

















,

















0
0
1
0
0
0

















,

















0
0
0
1
0
0

















,

















0
0
0
0
1
0

















,

















0
0
0
0
0
1

















. (6.10)

As framesp andq are related byXp = T
p
qX

q, the screwβp
q is given by

βp
q = Ad(Tp

q)βq . (6.11)

The adjoint transformation, abbreviated below toT p
q ≡ Ad(Tp

q), is derived in Appendix B. The reason

for considering the pose update in each subpart’s own frame in this method now becomes clear: it is that

the vectorsc become easy to specify and they are independent of pose (for most constraints).

Drummond and Cipolla’s method seeks the optimum solution for the articulated object as that which

minimizes the additional cost of sub-optimally fitting the individual subparts, subject to all relevant

constraints being satisfied. WritingC = F⊤F, they consider the problem as one minimizing the sum over

all parts

min
βp , βp

q

[

(βp −αp)
⊤
Cp(βp −αp) + (βp

q −α
p
q)

⊤
C

p
q(β

p
q −α

p
q)
]

(6.12)

subject to the constraint set

[βp − βp
q ]
⊤c

k=1...Kp,q
p,q = 0 . (6.13)

The relationship betweenCq
p andCq is detailed in Appendix B. However, we note that the second term of

the minimization is actually invariant to changes in frame,and the problem is more efficiently written in

terms of theβ’s in their native frames, so that the second cost term becomes

(βq −αq)
⊤
Cq(βq −αq) (6.14)

1The constraints are not restricted to this set. If the joint jas a pivot that is not at the origin, its contraint vector would be
different.
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Figure 6.2: A general branching model.

and the constraints are modified to

[βp − T p
q βq]

⊤c
k=1...Kp,q
p,q = 0 . (6.15)

Depending on the physical constraints, each set contains0 ≤ Kp,q ≤ 6 individual constraint equations,

where the lower and upper equalities indicate, respectively, complete freedom and complete rigidity

between the two subparts.

6.3.3 Handling general articulated graphs in DCT

In [DC02], Drummond and Cipolla describe the solution for two subparts connected by a hinge, and in

[DC01] they sketch a solution for a chain of subparts which isalso demonstrated with a kinematic tree

(human body). However, for comparison with the articulatedRAPiD tracker, it is necessary properly

to understand how DCT might handle branching in the kinematic chain. A solution that handles both

non-branching chains and branching trees is developed here.

ConsiderN + 1 subparts arranged in an articulated tree. The DCT problem becomes one of finding

min
All βq

∑

q

(βq −αq)
⊤
Cq(βq −αq) (6.16)

subject to sets of motion constraint equations. Each subpart q with children generates one constraint set

for each of its childrenq+:

[βq − T q

q+βq+ ]⊤ck
q,q+ = 0 1 ≤ k ≤ Kq,q+ . (6.17)

Now consider the subpartq as shown in Fig. 6.2, with ancestorsp, p−, etc, and with possible multiple

lines of descendantsa, a+, etc,b, b+ etc. The constraint sets referencingβq involve the parent ofq and
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each of its children, if they exist. That is,

If parentp exists:
[

βp − T p
q βq

]⊤
ck

p,q = 0 (6.18)

If 1st childa exists:
[

βq − T q
a βa

]⊤
ck

q,a = 0 (6.19)

If 2nd child b exists:
[

βq − T q
b βb

]⊤
ck

q,b = 0 (6.20)

and so on ifq has further children.

That part of the Lagrange system depending of differentiation w.r.t.βq is therefore

2Cq(βq −αq)−
Kp,q
∑

m=1

λm
p,qT p

q
⊤
cm

p,q +

Kq,a
∑

m=1

λm
q,ac

m
q,a



+

Kq,b
∑

m=1

λm
q,bc

m
q,b + . . .



 = 06 , (6.21)

where the first term derives from the cost, and the remainder from the constraints, and where theλ’s

are the Lagrange multipliers. The first summation is omittedif q has no parent, the second ifq has

no children, and further terms of the sort shown in brackets are added if there are further children.

Rearranging,

βq = αq +

Kp,q
∑

m=1

λm
p,q

1

2
C−1

q T p
q
⊤
cm

p,q −
Kq,a
∑

m=1

λm
q,a

1

2
C−1

q cm
q,a



−
Kq,b
∑

m=1

λm
q,b

1

2
C−1

q cm
q,b − . . .



 . (6.22)

Similar expressions can be written for the otherβ’s, and replacing all theβ’s in the(p, q) constraint set

(Eq. 6.18) gives

K
p−,p
∑

m=1

λm
p−,pc

k
p,q

⊤
C−1

p T p−

p

⊤
cm

p−,p −
Kp,q
∑

m=1

λm
p,qc

k
p,q

⊤
[

C−1
p + T p

q C
−1
q T p

q
⊤
]

cm
p,q

+

Kq,a
∑

m=1

λm
q,ac

k
p,q

⊤T p
q C

−1
q cm

q,a



+

Kq,b
∑

m=1

λm
q,bc

k
p,q

⊤T p
q C

−1
q cm

q,b + . . .





= 2ck
p,q

⊤
[T p

q αq −αp] k = 1, . . . ,Kp,q . (6.23)

Replacing all those in the(q, a) constraint set gives

Kp,q
∑

m=1

λm
p,qc

k
q,a

⊤
C−1

q T p
q
⊤
cm

p,q −
Kq,a
∑

m=1

λm
q,ac

k
q,a

⊤
[

C−1
q + T q

a C
−1
a T q

a
⊤
]

cm
q,a

+

K
a,a+
∑

m=1

λm
a,a+ck

q,a
⊤T q

a C
−1
a cm

a,a+



+

Kq,b
∑

m=1

λm
q,bc

k
q,a

⊤
C−1

q cm
q,b + . . .





= 2ck
q,a

⊤
[T q

a αa −αq] k = 1, . . . ,Kq,a. (6.24)
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If there are multiple children,b and so on, expressions similar to Eq.(6.24) can be written for the (q, b)

constraint set by swappinga↔ b, and so on.

These expressions are more compactly expressed as

Pp,qλp−,p + Qp,qλp,q + Ra
p,qλq,a

(

+Rb
p,qλq,b + Rc

p,qλq,c + . . .
)

= lp,q (6.25)

Pq,aλp,q + Qq,aλq,a + Ra
q,aλa,a+

(

+Sb
q,aλq,b + Sc

q,aλq,c + . . .
)

= lq,a . (6.26)

Again, the bracketed terms are used for additional children, and a further equation of the form of Eq.

(6.26) generated for each additional child, witha↔ b, a↔ c, etc.

Thek-th row andm-th column of the various quantities are

lp,q(k) = 2ck
p,q

⊤
[T p

q αq −αp] (6.27)

Pp,q(k,m) = ck
p,q

⊤
C−1

p T p−

p

⊤
cm

p−,p (6.28)

Qp,q(k,m) = −ck
p,q

⊤
[

C−1
p + T p

q C
−1
q T p

q
⊤
]

cm
p,q (6.29)

Ra
p,q(k,m) = ck

p,q
⊤T p

q C
−1
q cm

q,a (6.30)

Sb
q,a(k,m) = ck

q,aC
−1
q cm

q,b (6.31)

6.3.4 Specific cases of graphs

Now consider specific cases through examples shown in Fig. 6.3. Below we detail the implications

of each of these types of topographies in the solution with DCT. General graphs can be modelled by

combining elements of each of these cases.

Non-branching kinematic chains

When the subparts are arranged as a linear chain, labelled here from0 toN , as illustrated in Figure 6.3(a),

the system to be solved for theλ’s becomes block tridiagonal,



















Q01 R2
01 0 0 . . . 0

P12 Q12 R3
12 0 . . . 0

0 P23 Q23 R4
23 . . . 0

...
...

...
...

...
...

0 0 . . . PN−2,N−1 QN−2,N−1 RN
N−2,N−1

0 0 . . . 0 PN−1,N QN−1,N





































λ01

λ12

λ23
...

λN−2,N−1

λN−1,N



















=



















l01
l12
l23
...

lN−2,N−1

lN−1,N



















(6.32)
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Figure 6.3: Examples of special cases of kinematic chains: (a) a single kinematic chain; (b) a branching
kinematic tree; and (c) a closed loop kinematic chain – the same as in Figure 5.2(b).

for which a standard method,O(N) in the number of links, exists to recover theλ values without explic-

itly building or inverting the matrix (e.g. [PTVF88]). Oncetheλq,q+1 are known, the constrained screws

βq are derived for each subpart from Eq. (6.22). Since the constrained screwsβq are expressed individu-

ally in each object part coordinate frame, there is a risk that rounding errors lead to small breakage in the

articulated constraints. These can be corrected by reinforce the constraints by running down the kine-

matic chain and updating the poses using the adjoint transformations [DC01]. Algorithm 2 summarizes

this method of pose updatefor a kinematic tree.

Kinematic trees

When branching occurs, the system loses its block tridiagonal form, and its structure depends of course

on the object’s structure. By way of example, the structure in Fig. 6.3(b) generates the following system

for solution.




















Q01 R2
01 0 0 R5

01 0 0

P12 Q12 R3
12 0 S5

12 0 0

0 P23 Q23 R4
23 0 0 0

0 0 P34 Q34 0 0 0

P15 S2
15 0 0 Q15 R6

15 0

0 0 0 0 P56 Q56 R7
56

0 0 0 0 0 P67 Q67






















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
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








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






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







=
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










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l23
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l56
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



















(6.33)

The structure is block symmetric, and is likely to remain sparse, but this system can no longer use a

generalO(n) solver. However, in [DC01], Drummond and Cipolla use a statistics propagation method
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Algorithm 2 One iteration of the D&C’s Tracker, with modifications for trees.
1: for each subpartq = 0 · · ·N do
2: for each camerado
3: for each visible control pointi do
4: ConstructHi and thencef i

5: Search for image edge, computedi

6: Add row f i to measurement matrixFq

7: end for
8: end for
9: Deriveαq from Fqαq = dq (Eq 6.5)

10: ComputeCq
−1, from Cq = Fq

⊤Fq

11: ComputeAd(Tq

q+) from Eq. (B.9) (except leaves)
12: end for
13: for each constraint setdo
14: ComputeP, Q, R, S andlq from Eqs (6.27-6.31)
15: end for
16: Solve tridiagonal (Eq. 6.32) or block symmetric (e.g. Eq. 6.33) system for allλ
17: for each subpartq do
18: Deriveβq from Equation (6.22) and update part poses.
19: end for

and a breadth first search to compute the Lagrange coefficients for each joint sequentialy, and thus in

O(n).

Closed loop kinematic chains

The general solution of Equations (6.25) and (6.26) can alsobe employed to build the constraint system

for closed loop kinematic chains. In the example of Fig. 6.3(c) the constraintsλ34 andλ36 can be

described as links to brother nodes. The same happens between λ36 andλ67 for the other side of the

branch. Therefore, the constraint system becomes:


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


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












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0 P23 Q23 R4
23 R6

23 0 0 0
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34 0 0 0

0 0 P36 S4
36 Q36 0 R5

36 R7
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P15 S2
15 0 0 0 Q15 R6

15 0

0 0 0 0 R3
56 P56 Q56 R7

56

0 0 0 0 S3
67 0 P67 Q67






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


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


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
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







(6.34)

Again, the constraints system loses its block tridiagonal form and becomes less sparse. Similarly

to the ART representation (see Section 5.3), an additional issue is that extra constraints added by loops

introduce singularities into the constraints system, demanding rank monitoring to avoid noise imposing
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spurious rigidity. The iterative solution of [DC01] is an alternative that does not require rank monitoring.

Note that the flow control of DCT (Algorithm 2) needs to be modified in order to detect and deal with

loop closing.

6.4 Experimental comparison of ART and DCT

6.4.1 Similarity of results

Despite their very different constraint formulations, both the articulated RAPiD tracker developed in

Chapter 5 and the Drummond and Cipolla tracker reviewed in Section 6.3 are single-shot linear methods,

and, given that relationships between scene and image have been shown to be identical, one should

expect them to give the same results. To verify this against known ground truth, a CAD model of two

hinged subparts was generated, and both trackers deployed on the resulting imagery as the hinged opened

between successive frames. In each experiment increasing amounts of zero-mean Gaussian noise were

added to the image displacements measured between control points and image edges. Figure 6.4(a)

shows a typical view and match set. The lower trace in Figure 6.4(b) shows the deviation in degrees from

the veridical hinge angle recovered using ART. The upper trace shows the rising standard deviation.

Figure 6.4(c) shows the same when the individual subparts are tracked without imposition of constraints.

Figure 6.4(d) shows that as soon as the constraints are applied in DCT the modified angle becomes all

but identical with that recovered using kinematic constraints in (b). Indeed, the results from ART and

DCT differed by at most parts in105, effectively at the limits of expected numerical accuracy.

6.4.2 Computational cost

Figure 6.5 shows comparisons of the times for a single updatecycle of the core operations of ART and

DCT, run on a 1.8 GHz Pentium 4. Times were accumulated over many trials, with each data point

taking at least 20 s to collect, giving each datum the same fractional error of order10−2%. Also, in both

cases, similar care was taken to avoid unnecessary calculation. The object is taken to haven subparts

with p control points per subpart, and is made up of a single articulated chain. Subfigure (a) shows that

with up to 10 subparts there is negligible difference between the methods, and that at 30 subparts the

time taken by ART is about twice that by DCT. Up to 100 parts thecost in ART is still dominated by

O(N2), but beyond (not shown) it does becomeO(N3) as expected for the Cholesky decomposition
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Figure 6.4: Comparison of the numerical performance of the Articulated RAPiD tracker with the DC
tracker for two subparts connected by a single revolute joint as increasing Gaussian noise is added to the
measured displacements for the object shown in part (a), which is CAD-generated, so exact ground truth
is available. Results from: (b) the articulated RAPiD Tracker; (c) unconstrained subpart tracking; (d)
after adding the constraints in the DC tracker. In each graphthe solid curve is the deviation from ground
truth, and the dashed curve is the standard deviation.
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Figure 6.5: Times (in ms) for update cycles of the cores of ARTand DCT compared. The comparisons
are: (a) As a function of number of subpartsN with a fixed number of six control points per part; and
(b) as a function of the number of control pointsp per subpart, with a fixed number of five subparts. In
this region ART is predominantlyO(N2) (but is expected to become orderO(N3) for higher values of
N ), while DCT remainsO(N). For fixedN both methods exhibit an orderp dependence.
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Figure 6.6: (a) Times (in ms) for the shared operations (occlusion testing, image search and measurement,
and related OS overhead) in one cycle of ART and DCT, as a function of the average number of visible
control points in the whole body. (b,c) show the “4 blocks” and “hand” models related to the upper two
traces in part (a).

of the (n + 5)2 matrix F⊤F that occurs in the least squares solution ofFs = d. (Recalls contains

the six screw componentsand n + 1 joint parameters.) Figure 6.5(b) shows that both methods scale

predominantly linearly with the number of control pointsp per link. (Exploration of the apparently noisy

results at highp suggests these are a reproducible and uninteresting quirk of memory management in the

matrix library used.)

Figure 6.6(a) shows, for the same CPU, the computational time of operations that are shared by

both trackers, including occlusion handling, projection of control points, image operations, and related

operating system overhead. Three objects of increasing complexity were used: a single part box with 6

DOF, an object with 4 parts and 9 DOF (Figure 6.6b), and a hand with forearm model with 17 parts and

28 DOF (Figure 6.6c). The tests used 320×240 images acquired from three cameras. The search range

from control points was±10 pixels. The number of potential control points was increased in steps but,

because of occlusion, not all the control points are always visible, and so the average visible number for

a sequence is used as the abscissa. The time increase is dominated by a linear dependence on the number

of visible control points.

For all but small problems, DCT is faster than ART and its linear behaviour with number of parts

demands its use on large problems, say involving more than 100 subparts. However, for modest numbers

of subparts, the timing differences are insignificant compared with the equally shared costs. As examples,

the different cores of DCT and ART took 0.45ms and 0.41ms respectively, to run on the four-block object
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Figure 6.7: The hand model (a), and the block structures of its corresponding matrix andλ subscripts
(b).

with 100 control points, but shared operations took some 6ms; on the hand model with some 170 control

points ART’s time was 2.5ms, but the shared operations took over 13 ms.

The core times given for DCT are so far those for simple chainswhere the tridiagonal system is

solved. On a chain with the same number of parts as the hand and, again, 170 control points, DCT took

some 1.2 ms, but solving the actual branched system shown in Fig. 6.7 took some 2.5 times longer,

and hence taking a little longer than ART. It was found that once any branching occurs, general matrix

solvers give a solution time dependent mostly on the number of subparts, not the degree of branching:

for example, with 16 parts, two chains of eight takes the sametime as four chains of four. However, it

was not investigated to what extent careful hand-tuning of the code to a specific object would change

this.

6.4.3 Algorithmic robustness

In general, tracking unconstrained subparts is certainly more fragile than tracking subparts collectively

in a constrained system. The more degrees of freedom, the greater the likelihood of fitting to noise.

Breakage might occur when, for example, the available control points do not provide sufficient constraint

— a cylinder with points only along its extremal boundaries is an example (Figure 6.8) — or when a

subpart moves quickly at the end of a long linkage (Figure 6.9).

On first consideration this seems to make DCT inherently lessrobust than ART, but this is not the
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Figure 6.8: A synthetic two-cylinders articulated object with a cluttered background. Since no control
points are located on the ends of the cylinders, it is not possible to track the two cylinders without
articulated constraints.

case. Assume that, at the start of an update cycle, both trackers have placed their subparts in the same

location. They will generate the same control points and therefore generate the same measurements.

Suppose first that there are enough measurements to determine the pose of each subpart, but that

the measurements belonging to a particular subpart are quite erroneous. Using ART, the costs are im-

mediately shared and the pose updates of all the subparts will be disturbed somewhat, whereas in DCT

the initial pose updates (α) will all be better, except that for the erroneous one. However, when the

constraints are imposed, the costs of (mis-)fitting with theβ values areall correctly accounted for and

minimized. Because the measurements are the same, the solutions must be same.

Suppose now that there are insufficient measurements to determine the pose update of a particular

subpart. It is important not to discard those measurements that are available, but instead invent a pose

updateα for that subpart against which the change in cost when using someβ instead may be measured,

a change which could easily now be a decrease rather than the usual increase. This tactic extends to

zero measurements, where the cost change when moving the part is zero. However, what is lost in this

case is the ability to separate the recovery of the Lagrange multipliers and theβ values. Insufficient

measurements means thatC = F⊤F is rank deficient, and so cannot be inverted for Eq. (6.22). There

appears no generalizable alternative to solving the linearsystem in its entirety, with a stacked vector of

β’s andλ’s as the unknowns. Alternatively, weak regularisation canbe used to compute an approximate

of C.
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Frame 34 Frame 40 Frame 50

Unconstrained

Constrained

Figure 6.9: An example showing (top) tracking failure when subparts completely unconstrained, con-
trasted with (bottom) successful tracking the same parts are constrained. The failure arises here because
of scene rotation giving rise to rapid motion at the end of thechain of parts. (As the text explains, this is
not a comparison between DCT and ART.)
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6.4.4 Data robustness

To consider the likely cost of computing the solutions to ARTand DCT in a robust manner using a

random sampler such as RANSAC [FB81] or LMedS [RL87], the formal relationship already mentioned

in Section 4.2.4 is used:

P = 1− (1− ψm)I , (6.35)

whereP is the confidence that a valid minimal set ofmmeasurements will be selected afterI trials when

the fraction of valid data isψ. Although, for a range of problems, experiment indicates that this should

be regarded as an underestimate of the number of trialsI actually required, the comparative results will

be less affected. ForN subparts with(N − 1) 1 DOF joints, the trials required are

IART =
log(1− P )

log(1− ψ5+N )
; IDCT = N

log(1− P )

log(1− ψ6)
. (6.36)

Multiplying these expressions by the different time costs per iteration of each method, gives the pairs

of curves in Figure 6.10 for 10, 20 and 30 subparts, derived atP = 95% confidence, and each plotted

as a function of the percentage of outlying or invalid data,100(1 − ψ). Also shown is the locus of the

crossover point, as the number of parts is varied. For a modest number of parts and quite low values of

corruption, ART’s requirements undercut DCT’s, but more remarkable is how rapidly a certain fraction

of outliers becomes intolerable as the number of subparts rises.

6.5 Discussion and conclusions

This chapter contrasted two different methods of tracking articulated objects in a video sequence. The

first method is the straightforward, but novel, extension ofHarris’ RAPiD tracker to handle articulation

(dubbed ART) by explicitly including the kinematics in the linearized pose update equation, described in

Chapter 5. The second is the articulated tracker of Drummondand Cipolla (dubbed DCT) which imposes

motion constraints on subparts after they have been trackedindependently.

To motivate the comparison, it was shown that Harris’s original method for recovering the kinematic

screw of a single rigid object (described in Chapter 4) is entirely equivalent to Drummond and Cipolla’s

later formalism based on Lie algebra. It was noted that Bregler and Malik had also described the the-

ory of a kinematics-based tracker using Lie algebra, and it was concluded that ART is equivalent to
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Figure 6.10: Pairs of curves showing the times required to complete the required random sampling trials
as the percentage of invalid, outlying, data varies. The pairs of curves are for 30 (left), 20 (centre), and
10 (right) subparts, and in each pair the solid and dotted lines are from ART and DCT, respectively. Also
shown is the locus of curve pair intersections.

their formulation, but one suited explicitly to perspective projection. Drummond and Cipolla’s method

was reviewed, and methods for solving the constraints system of branching kinematic trees and loopy

kinematic graphs were given.

Comparative experiments on both methods showed, first, thatthe results for the pose updates are

identical, notwithstanding the constraints being appliedin very different ways. Both are done performing

linear least squares in a single shot, and so their equivalence is expected.

Second, it was shown empirically that the computational kernel of DCT retainsO(N) complexity

in the number of subpartsN , whereas ART rises fromO(N) for low numbers, toO(N2) for, say,

30 < N < 100 before eventually succumbing toO(N3). For largeN , DCT’s behaviour is characterized

in the best case byN inversions of a fixed size6 × 6 matrix and, at least for a non-branching chain, a

O(N) recovery of Lagrange multipliers, whereas ART has to inverta (6 + (N − 1))2 matrix. However,

for tens of subparts the absolute difference in core cost is substantially outweighed by the commonly

shared costs of model projection, image search, and so on.

Where DCT appears less satisfactory than ART is in the area ofalgorithmic robustness. One dif-

ficulty occurs when, rather than a simple chain of parts, there is branching into a tree structure. The

description of the ART algorithm shows it to be, de facto, a simple tree-based method. But in DCT, as
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noted earlier, at a branch a subpart has more than two sets of motion constraints to satisfy, and the matrix

to be solved in Eq. (6.33) no longer has a tridiagonal structure. Instead it acquires a block-symmetric

structure dependent on the model’s structure, but no general fast solution methods exists for the solution

of such systems. Indeed, in [DC01], Drummond and Cipolla adopt a statistics propagation method to

compute the Lagrange coefficients for each joint sequentially. Again, when there is insufficient informa-

tion to solve for the initial pose update of a particular part, the tridiagonal method cannot work, unless

regularisation is used.

A more general curiosity in DCT is that thelesscomplicated the object’s kinematics, themorecom-

putation has to be done to impose the constraints. This, and the issues raised in the previous paragraph,

are outcomes of allowing the degrees of freedom to grow to their maximum and then having to prune

them back when those freedoms are not required. While this extra effort is rather neatly tamed if the

problem is a well-behaved chain of subparts, exceptions (such as kinematic loops) become hard to man-

age.

Hands are articulated objects where the motion of each part is highly constrained by the motion of

neighbouring parts. These are not simple punctual articulated constraints, they also include dynamic

constraints and the motion of each part is also influenced by parts that are not directly adjacent to it

(see Section 2.3.7). It is difficult to code such constraintsfollowing DCT’s model. If a data-driven

dimensionality reduction model is to be used, it is more straightforard to code the constraints using

minimal representations.

An attempt has been made to characterize the time requirements of both methods to complete trials

of a random sampler. Here it does seem that ART has an advantage over DCT, but for both methods the

time required for trials increases sharply with rising number of parts, suggesting that it is more prudent

to improve the quality of measurement than to rely on random sampling to “clean up” afterwards.

The most significant aspect of Drummond and Cipolla’s methodis that it makes comparatively easy

the switching on and off of constraints, after, and separately from, the expensive process of making

image measurements. It appears to provide exactly the mechanism required to account for the motion

of objects which make contact and later break apart. As contact approaches between two parts, tracking

performance with and without the relevant constraints can be tested, to decide whether the motion was
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constrained or was still independent.

While the application of constraint hypothesis-and-test to rigid objects is straightforward, a more

significant challenge is to apply it to separate articulatedobjects. The approach favoured by the conclu-

sions of this chapter would be to track the joined articulated entities using ART, and employ DCT at the

contact.



7

Regression-based hand pose estimation
from multiple cameras

In this chapter an RVM-based learning method is developed for hand pose recovery. The

method is based on that proposed by Agarwal and Triggs for whole body pose recovery.

However, hand pose recovery appears a more challenging problem than whole body pose

estimation due to the greater degree of actual occlusion, and the greater degree of appar-

ent occlusion where finger bounding contours are lost. Further difficulties arises from the

acyclic character of usual hand motions that tend to be fast and sudden in images. Also,

no a priori positions can be assumed for hands. But we can use the facts that bare hands’

textures are fairly uniform and their colour has a relatively small variance in comparison

to clothing. The key development proposed here is a combination of multiple views. Such

method allows the use a new modification of shape contexts forrotation invariance, reducing

the number of required training samples for pose estimation. An experimental comparison

of the pose recovery performance using single versus multiple views is reported for syn-

thetic and real imagery. The effects of the number of image measurements and the number

of training samples on performance are also taken into account for the comparison.

7.1 Introduction

As mentioned earlier in this thesis, two quite different approaches to the problem of pose estimation

of articulated objects are apparent in the literature. The first, and more traditional, is thegenerative
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approach, in which an estimate of the pose is used to update the model that predicts the appearance, e.g.

by projecting a 3D model into the image. Measurements of the deviation between prediction and reality

are used to estimate the pose update. The tracking methods studied in chapters 4, 5 and 6 are generative

trackers. Such trackers can achieve good qualitative pose estimates at high frame rate, but they need to

rely on models that give a good approximation of the tracked object. Furthermore, these trackers need a

good estimate of the initial state, and at any time, if its prediction is not a good match to the true state,

tracking will fail.

The approach ofdiscriminativealgorithms has recently been more widely explored for articulated

objects [AS02, AASK04, TSTC03, STTC03, Bra99, SVD03, AT04c]. The idea is to recover a direct, but

non-physically based, mapping between a (robust) representation of appearance and the model parame-

ters such as joint angles. Inter alia, the approach exploits, as Wuet al. [WLH01] note, the fact that the

range of typically explored poses of hands is much smaller than the entire range.

As mentioned in Chapter 2, two main approaches to relating image measurements qualitatively to 3D

poses: classification-based and mapping-based. The formeris computationally expensive and can only

output pose estimations that are in the training set. The second is fast and is able to output estimates in a

continuous manifold of the parameters space. The key factorof mapping-based approaches is the model

used to build the map.

In this chapter, a mapping-based approach is developed for the problem of hand pose estimation.

This is based on a multivariate regression method that follows in part Agarwal and Triggs’ work on

whole body pose estimation. However, the hand pose recoveryis in general a more difficult problem,

not least because of the far greater degree of actual occlusion, and of “apparent occlusion” where finger

bounding contours are lost. For this reason this chapter proposes an extension of the single view method

to multiple cameras, an approach which Erolet al. [EBN+05] points out has not been widely explored

for this problem. An experimental comparison of single and multiple view performance is presented,

taking into account variation in the number of image measurements and training samples needed.

A framework of the method described in this chapter is illustrated in Figure 7.1. Once the images

are acquired, a pre-processing step is to extract image descriptors is performed on both the training and

testing phase. This step, described in Section 7.2, produces a compact description of appearance, for
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Figure 7.1: Framework showing the combination of the methods employed in the training phase. For
each image, first the shape contexts of the silhouette contour are calculated. Next, vector quantisation
is performed to produce a compact global image descriptor. The multiple view data are combined by
concatenation and an RVM-based regressor is trained using the 3D poses.

which we use, as did Agarwal and Triggs, shape contexts descriptors. A novel modification is introduced

for rotation invariance without loss of information about the shape. A compact global image descriptor

is obtained though vector quantisation, and multiple view information is combined by concatenation. To

train the regressor, it is necessary to gather a set of training pairs of multiple view images and 3D poses,

section 7.3 describes the acquisition of training and testing data. The regression method used to learn

the mapping between appearance and 3D poses is described in Section 7.4. Section 7.5 describes the

experiments and results. A summary and the conclusions are drawn in Section 7.6.

7.2 Extracting Multiple View Image Descriptors

The initial step of the method (both in training and application phases) is the conversion of each image of

a hand into a silhouette contour, and thence into a compact description using shape contexts. Because of

the wide variation in scale and orientation of hands in imagery, it is important to incorporate invariance

to these transformations within the context. A novel modification for rotation invariance is proposed. Its
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description is followed by the description of our method forcombination of multiple view information.

7.2.1 Shape Contexts

Shape contexts, proposed by Belongieet al. [BMP02], are rich shape descriptors that are usualy com-

puted for points on the silhouette contours. They encode local information about each point relative to

its neighbours, and they can be made scale and rotation invariant.

Among modifications of shape contexts found in the literature, are (i) that of Ohashi and Shimodaira

[OS03a, OS03b, FTR+04], which is simpler than Belongieet al.’s method, but the final image descriptor

is similar to that obtained after vector quantisation (as done by Agarwal and Triggs); and (ii) that of

Thayananthanet al. [TSTC03], who used edge orientation and a continuity constraint for shape context

matching, so neighbouring pixels in the image have to match neighbouring pixels in the shape contexts

space), but the basic image descriptor is the same. The method presented here aims to obtain a robust

global image descriptor, rather than to provide a match between sets of object points.

(a) (b)

Figure 7.2: An example of a hand image with a cluttered background (a) and its pixel-wise silhouette
countour extracted by skin detection followed by edge detection (b).

Recovery of the silhouette of the hand, assumed un-gloved, is achieved using the histogram-based

classifier presented in Chapter 3. This is applied to subsampled to90×120 pixels to reduce computation

cost. In our database, hands occupied about 20% (±6.2% STD) of the image pixels. The shape contexts

are computed only from positions on the silhouette contour,which is easily derived by edge detection

in the resulting binary skin/not-skin image. Figure 7.2 shows the extraction of silhouette contour points

from a hand image with clutter in the background. Note that only a few points are located outside the

contour of the silhouette of the hand.

At any point on the contour, neighbouring contour points areaccumulated in 60 bins arranged in
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Figure 7.3: The shape context of a point at the tip of the indexfinger: (a) the regions taken into account for
computation; (b) the obtained context. The column order in the histogram follows a counter-clockwise
scan starting from fiducial “0◦” dashed line, and the row order follows from outer to inner sectors.

log-polar fashion, five along the radial direction and twelve around the polar angle, spaced equally in

log-distance and angle, respectively. To provide a first layer of scale invariance, the inner radius is set

proportional to the meanµ of the distances between all the pairs of points in the silhouette. In our

implementation, the inner radius isµ/8, and radius increases in octaves to2µ, typically covering all of

the hand silhouette. Figure 7.3 illustrates the construction of a shape context for a point in the silhouette

of the hand shown in Figure 7.2. The resulting 60-bin histogram is normalised, providing again for scale

invariance. For imagei the complete image description is generated as the set ofni 60-bin histograms

computed atni points along the silhouette contour.

Figure 7.4 shows the complete set of shape contexts for one hand silhuette. Then points in 60

dimensions are projected onto the first two principal components. Because the individual shape contexts

computed at neighbouring points do not change drastically,and the primary principal components pick

out a principal plane, it is possible, even in this feature space, to discern the characteristic four fingers

and thumb.

7.2.2 Rotation Invariance

As mentioned before, the orientation of hands in natural actions can largely vary. This can be a challenge

for discriminative methods if each different orientation requires a new set of training samples. The

solution present in this chapter is to use rotation invariant image descriptors and multiple view. Therefore



7.2 Extracting Multiple View Image Descriptors 148

−150−100−500

−150

−100

−50

0

50

1st PC

2nd PC

Figure 7.4: The 60-d shape context manifold obtained from a hand silhouette, visualised via a projection
onto the first two principal components.

the pose estimation can be focused on internal parameters (joint angles), and the global pose can be

estimated with the use of triangulation. Another benefit of rotation invariance is that it aleviates the need

for the cameras setup consistence between training and testing phases.

Essentially, rotation invariance is achieved by orientingthe fiducial line of the shape contexts accord-

ing to some local feature of the shape. For instance, Figure 7.5 shows the shape contexts of a point at the

tip of the middle finger for different images. In this example, the fiducial line is oriented by the tangent

of the local contour. Note that the difference between the shape contexts of that point in a synthetic hand

image (panel a), a real image (panel b), and the same image rotated (panel c) is very small in comprarison

to the shape context of that point in a hand at a different grasping pose (panel d).

Belongieet al. ensured rotational invariance by aligning the fiducial “0◦” line with the tangent to the

silhouette contour at each point. While this works well if the contour is smooth, which in our experience

requires either large images or using proper linked edge detection, the result in low resolution images,

and using pixel contour points, was found to be noisy. A more robust alternative was found to be to use

the geometric centre of the silhouette and to set the fiducialline to be orthogonal to the line from the

centre to the contour point.

The rotation invariance of both tangent-based and centroid-based methods is obtained at the cost of
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Figure 7.5: The silhouettes, log-polar bins, and the resulting shape context vectors obtained from the
tip of the middle finger in four different images using tangent-oriented rotation invariant shape contexts.
Context (a) is from a synthetic training image. Its similarity with real images is shown in panel (b), and
(c) illustrates rotation invariance. The shape context from a different hand pose is shown in (d).

reducing the amount of global information about the shape ofthe silhouettes. This can be visualised in

the projection of the 60 dimensional shape contexts space shown in Figure 7.6(b, d, and f) – note that

these shape context manifolds do not present discerning hand characteristics – and through the nearest

neighbour classification results shown in Figs. 7.7 and 7.81. The solution that we adopt in this chapter

is to orient the shape context with the axis that links the wrist to the tip of the hand. For simplicity, we

assume that two points of the silhouette contour lie on the image borders, and these points are taken to

be either side of the forearm. This is more robust than, for instance, using the principal axis obtained

through PCA, as it can vary abruptly depending on the hand pose. The illustrations of Figure 7.6(g and

h) and the results in Figs. 7.7 and 7.8 show that this maintains the discrimination power of non-rotation

invariant shape contexts and adds robustness to planar rotations.

1The results in Figs. 7.7 and 7.8 were obtained through classification using global multiple view descriptors for the images,
as described later, in Secs. 7.2.3 and 7.2.4.
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Figure 7.6: Methods to orient the shape contexts for rotation invariance (left) and their respective de-
scriptors in the 60 dimensional space of shape contexts projected in 2 dimensions using PCA: (a and b)
without rotation invariance, i.e., using a fixed orientation for the whole image; (c and d) using tangents
obtained with a3 × 3 window (as suggested in [BMP02]); (e and f) using the orientation orthogonal to
the ray from the mass centre (indicated by the blue circle); (g and h) aligning the shape contexts with the
hand’s axis.
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Figure 7.7: Nearest-neighbour classification results using multiple view descriptors obtained from the
silhouettes on the first column, using (i) not invariant shape contexts and three methods of rotation
invariance: (ii) tangent-based, (iii) centroid-orientedand (iv) hand axis-oriented shape contexts. Note
that using the hand axis (iv), the ‘fingers ambiguity’ is avoided.
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Figure 7.8: Same as Figure 7.7 for another set of testing images. Here, even though the hand is roughly
aligned with the training data, tangent-based and hand axis-based rotation invariant shape contexts pro-
vided better results than the shape contexts without rotation invariance.
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7.2.3 Encoding a Global Image Descriptor

In order to reduce the dimensionality needed to describe an image, a coding method is used. In this

chapter, we adopt the same method as Agarwal and Triggs [AT04a]: vector quantisation. In the training

phase, a codebook is created in a similar fashon to that of histogram, with bins being calculated using

a clustering method. From a training set ofI images all (
∑I

i=1 ni) 60-d shape context vectors are

clustered intoK centroids using theK-means algorithm [DH73]. Each individual shape contextj in

imagei becomes re-expressed as aK-dimensional vectorxij with K − 1 zero elements and a single

unit element. In both training and application phases, the complete image descriptorxi is generated by

summing these and normalising byni

xi =

ni
∑

j=1

xij /ni .

To soften the effects of spatial quantisation, the descriptors are built allowing context vectors to vote with

Gaussian weights into the few centres nearest to them [AT04a].

Figure 7.9 shows the centroids obtained from 546 training images with a total of 128659 shape

context descriptors.

7.2.4 Combining Multiple View Information

Some possibilities have been considered to combine multiple view information. In [UMKR96], the view

which is most perpendicular to the hand palm is selected and the other are discarded. However, in many

cases it is difficult to estimate the orientation of the hand if each view is analised individually.

The low level approach is to group all the shape contexts fromall the images together before per-

forming clustering to build the codebook. The problem of this approach is that the improvement obtained

by using multiple views may not be very significant, as one setof measurements can be associated to

more than one global orientation.

An alternative is to estimate the pose from each view individually and combine the results at a high

level using, for example, a graphical model [Mur02]. If global pose parameters can be estimated using

triangulation and if regressors can be trained with a set that is comprehensive in terms of the internal pose

parameters and orientations, then the same regressor couldbe applied for all the cameras, and the setup
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Figure 7.9:K-means of all the shape contexts of a particular training setare shown as stars. The shape
contexts of two samples, one with the fingers stretched and another with the hand in a fist pose, are
plotted to aid visualisation (differentiated here by greenand blue dots).

of cameras would not need to be the same as in training. However, as discussed later, it is not realistic to

use very large training sets.

In [HSS02], it was demonstrated that the discrimination power is proportional to a measure of the

complexity of the curvature of the contour. Thus, for each view, the matching score is weighted by this

measure and they are added up to the final score. In the approach proposed here, it is not necessary

to employ a shape complexity measure to weight each view: theregressor does that implicitly if linear

kernels are used. For that, the information is combined in anintermediate level, by generating vectors

x for each camera individually and concatenating them into a higher dimensional vector that describes

the current measurements from all the cameras. The regressor is then trained using these concatenated

vectors, as illustrated in figure 7.1. The advantage of this approach is that the images drescriptor en-

code information from all the views separately, reducing the number of traning data needed to use the

additional pose constraints that multiple views offer. Thedrawback is the need for an agreement of the

cameras poses between training and application phases, though the descriptor is robust to rotations on
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the cameras planes and to variation in scale, i.e., the proximity between the cameras and the hand can

vary, as well as the internal camera parameters (e.g. focal length).

In the present implementation,K is set to 30 for each view, so the image descriptors of a three-views

data set are represented in a 90-dimensional manifold as shown in Figure 7.10. For comparison, 90-d

single view image descriptors were also obtained from the same training set by usingK = 90.

Note that, for multiple views, the first and second principalcomponents are roughly aligned with

the variation inθZ , and with the overall degree of flexion of the fingers, respectively, whereθZ is the

rotation around the forearm axis, as detailed in Sec. 7.3. This hints that this dataset of hand appearances

can roughly be represented with two degrees of freedom. Thiseffect cannot be observed for single view

descriptorsx. In that case, the manifold seems to need at least three dimentions to show more separability

between hands poses.

7.3 Obtaining and testing the training data

So far, we have described the generation of a possibly multiview image descriptorx. An essential input

to the later regression process is, of course, the association of eachx with a set of known joint anglesy.

For this chapter we use a subset of the hand trajectory database prepared by Thayananthan and

Stenger [STTC03] at Cambridge University’s Department of Engineering, using an Immersion Corpora-

tion’s CyberGlove. The database contains the trajectory of20 joint angles of the hand of two users. The

28 DOF hand model described in Section 5.5 was used to synthesize images at the poses of this database,

soy ∈ IR28. Since the CyberGlove used does not include sensors betweenthe forearm and the palm, the

two degrees of freedom of this joint were set to constant values.

7.3.1 Training Sets

We demonstrate experiments using two training sets. The first, dubbedopen-close, consists of a trajectory

that starts with all the fingers stretched after which a grasping gesture is performed in 78 frames. The

glove used to generate this data did not have a global position and orientation sensor, so the trajectory was

duplicated seven times for15◦ spaced values0◦ ≤ θZ ≤ 90◦, giving a total of 546 poses, some of which

are shown in Figure 7.11. For desktop tasks the variation of the other orientation parameters (θX andθY )

is usually small enough to enable us to rely on the invarianceproperties of the modified shape contexts.
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Figure 7.10: 90-d manifolds ofx vectors obtained from a training data visualised using projection onto
the first two principal components. The silhouettes of the hand at some key poses (6 poses for each
θZ angle) are shown in their location in the manifold. Panel (a)shows the manifold for single viewx
vectors, and panel (b) shows the same for multiple viewx.
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Figure 7.11: Images rendered in camera 2 (top view) for 3 of 7 angles and 5 of 78 grasp strengths from
theopen-closetraining set. The number above each image is its index in the set.

1 40 79 148 239

Figure 7.12: Some images from thecomplextraining set rendered in camera 2 forθZ = 0◦.

A more accurate global orientation can be obtained by triangulation when multiple views are used. For

a fair comparison between single and multiple view,θX andθY are not taken into account. For multi-

camera application, the hands were rendered from three different viewpoints. These viewpoints have the

same camera calibration parameters as those used on the acquisition of real images for recognition.

The second training set, dubbedcomplex, has fingers moving individually, as shown in Figure 7.12.

This sequence has 239 internal poses that, as before, are reproduced for15◦ spaced values0◦ ≤ θZ ≤

90◦, giving a total of 1673 three-dimensional poses.
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Figure 7.13: The distances between vectors describing theopen-closetraining set of 546 images for a
single view. (a) Distances of the image descriptorsx and (b) distances of the 28-d poses vectorsy. Note
the repetition of a pattern in this map, because at each 78 samples the same trajectory is reproduced, with
an addition of15◦ to θZ .

7.3.2 Assessing the training set

Figure 7.13(a) shows the dissimilarityD between thex image descriptors in matrix form. The natural

dissimilarity measure for histograms is theχ2 test statistic [BMP02]:

Di,j = D(xi,xj) =
1

2

K
∑

k=1

[xi(k)− xj(k)]
2

xi(k) + xj(k)
, (7.1)

wherei andj are sample (i.e., image) indexes andk is the descriptors’ dimension index2. The dissimilar-

ity between 28 dimensionaly vectors of pose is shown in Figure 7.13(b), obtained using the Euclidean

distance. The reduced number of low values in the off-diagonal elements ofD(xi,xj) shows the dis-

crimination power of the image descriptor. Due to the similarity of the silhouettes, there remains more

confusion amongstx vectors as the fingers are closed up.

In order to assess the discriminatory power of the image descriptorsx, a nearest neighbour classifi-

cation experiment was performed with 36 hand images – 9 hand poses taken from 4 orientations. The

results, shown in Figures 7.14 and 7.15, suggest that the image descriptor is robust enough to provide a

good qualitative description of the hand shape from images that are not in the training set, even though

the hand model is not accurate. Figure 7.15 also shows that the use of multiple views can improve the

2Since shape contexts are histograms, this measure was also used previously in the criterion function of the clustering
algorithm for vector quantisation – Section 7.2.3.
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nearest neighbour classification result.
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Figure 7.14: (a) Distance map between the 36 testing samples(9 images with 4 different rotations) and
the 546 training samples and a single view. The repetition inthe pattern at each 9 samples confirms
rotation invariance. (b) Nearest-neighbour classification results for nine samples of the same orientation.

Figure 7.15:1st row: sample images from camera 2 with modifications in orientation, translation and
scale. The nearest-neighbour classification results usingsingle view with scale and rotation invariant
descriptors are shown in the2nd row. The3rd row shows the same, using multiple views.

An improvement is expected to be achieved with regression because a neighbourhood of training

samples is taken into account in the parameters space, whereas nearest-neighbour simply returns the

sample with highest score. Another obvious advantage is that the formulation of a regression-based

method and its sparsity make it much faster than nearest neighbour classification.
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7.4 Learning to Relate Descriptors to 3D Poses

To relate the image descriptorsxi to the 3D joint angles and pose settingsyi, Agarwal and Triggs [AT04a]

proposed the use of a regression method that learns the relation betweenI pairs of vectors(xi,yi) by

estimating the coefficients or weights of a linear combination of basis functionsφk. The problem is

described as:

yi =

p
∑

k=1

akφk(xi) + ǫ ≡ Af(xi) + ǫ (7.2)

whereǫ is a residual error vector,yi ∈ IRm (i = 1, 2, · · · , I), andak ∈ IRm (k = 1, 2, · · · , p). For

compactness, the weight vectors can be gathered into anm× p matrixA ≡ (a1 a2 · · · ap) and the basis

functions into a IRp-valued functionf(x) = (φ1(x) φ2(x) · · ·φp(x))⊤. As discussed later,p = K for

linear kernel, andp = I for Gaussian kernel. In order to estimate the bias of the samples in the state

space, one can usef(x) = (1 φ1(x) φ2(x) · · ·φp(x))⊤ and add a weight parameter to be estimated, but

this is unnecessary if the data is standardized to have zero mean and unit standard deviation.

For I training pairs, the estimation problem takes this form: estimateA such that

A = arg min
A

{

I
∑

i=1

||Af(xi)− yi||2 +R(A)

}

(7.3)

whereR(·) is a regulariser onA. Gathering the training vectors into anm×I matrixY ≡ (y1 y2 · · · yI)

and ap× I feature matrixF ≡ (f(x1) f(x2) · · · f(xI)), equation (7.3) can be rewritten as:

A = arg min
A

{

||AF− Y||2 +R(A)
}

(7.4)

7.4.1 Regression with Relevance Vector Machines

For unidimensional signalsy, Tipping [Tip01] proposed the use of Relevance Vector Machine (RVM),

a method based on sparse Bayesian learning to estimate efficiently anA(1×p) with large sparsity. Each

weight parameter is associated with an independent noise modelα and there is a prior forα parameters

(hyperpriors), which are modelled as Gamma functions, so they have a high probability near zero, en-

forcing sparsity in the estimate of the weights. Upon minimization, the regularization parameters push

the weightsa of the less relevant basis functions to zero, thus producinga sparce model. This sparsity

can save computational time and space.
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Figure 7.16: Map of non-zero elements of matrixA(m×p) resulting from RVM regression of individual
parameters separately, using a threshold to select an average of 10 relevance vectors per DOF.

A straightforward adaptation of this method for multidimensional state vectorsY can be achieved by

regressing input vectorsx against each of them individual elementsyj of y separately and concatenating

the obtained row vectors of weights into matrixA(m×p).

An experiment with theopen-closedata set was performed usingK = 90 (i.e. K = 30 for each

view) and linear kernel functions (f (x) = x). During the optimization, weight valuesa that were smaller

than a thresholdTa where set to zero.Ta was set to a value that give an average of 10 non-zero weights

for each dimensionyj. The resulting non-zero elements ofA matrix are represented in Figure 7.16. The

application of the obtained regressor on samples from the training set resulted on the mean absolute error3

of 3.1◦, and mean standard deviation of2.3◦. The worst result was obtained with the interphalangeal4

joint of the thumb, which is occluded in many of the training images. For that joint angle, the average

error was9.5◦ and the standard deviation was6.9◦.

A problem with regressing parameters independently is thatnoisy data potentially provide impossible

output poses. For example, a regressor trained to recover 3Dpose of walking humans might output poses

having both legs to the front.

7.4.2 Agarwal and Triggs’ Regression Method

The pose of each DOF of the hand in natural motion without external forces is clearly not independent

from the pose of the others. In [AT06b], Agarwal and Triggs describe an adaptation of Tipping’s method

that estimate the whole matrixA in a single process, creating a linear combination of relations with

3Computed by
PI

i
|Af(xi) − yi|/I

4For hand joints nomenclature, see Figure 1.1 and [Stu92].
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multi-dimensional output. This regressor is estimated by direct optimisation of the weights keeping the

hyperprior parameters fixed.

The first step of this algorithm is to initialiseA with ridge regression. The regulariser is chosen to be

R(A) ≡ λ||A||2, whereλ is a regularisation parameter. The problem can be describedas the minimisation

of

||A~F− ~Y||2 = ||AF− Y||2 + λ||A||2 , (7.5)

where~F ≡ (F λI) and~Y ≡ (Y 0). A can be estimated by solving the linear systemA~F = ~Y in least

squares, i.e.,A ← [(~F~F
⊤
)−1~F~Y

⊤
]⊤. Ridge solutions are not equivariant under scaling of inputs, so both

x andy vectors are scaled to have zero mean and unit variance beforesolving. The mean and standard

deviation of the components ofx andy are kept for application on testing data.

The next step is to apply a modification of Tipping’s RVM regression method. Instead of modelling

p(α) (the hyperpriors of the weightsa) as Gamma functions, Agarwal and Triggs usep(a) ≈ ||a||−ν ,

which is a simple case of Gamma function with constant parameters. Their method is a maximum a priori

type and directly optimises the weight parametersa, while Tipping’s is a type-II maximum likelihood

approach that integrates out the parameters and optimizes the hyperparameters.

In order to reduce the risk of premature trapping of weight parameters to zero and overfitting, Agar-

wal and Triggs proposed to successively approximate the penalty terms with quadratic “bridges”. There-

fore, witha an element ofA, the regularisersR(a) = ν log ||a|| are approximated byν2 (||a||/ascale)
2 +

const, whereascale is a constant that is updated at each iteration5. The approximation has the same

gradient as the original function ata = ascale, and ifconst is set toν(log||ascale|| − 1
2), the same values

ata = ascale, as shown in Figure 7.17.

Agarwal and Triggs proposed the use of column-wise set of priors in the regulariserR(A): with a a

column ofA, R(a) ≈ ν
2 (||a||/ascale)

2 + const, implying that the estimated matrixA has some columns

tending to zero as the method iterates,ak ≈ 0. Depending on the kernel function used, two different

aspects of cost reduction for pose estimation can be achieved:

• If linear basis functionsare used, i.e.,f(x) = x, the zero vectorsak indicate which components

5In [AT04a] and [AT04c], the authors have missed the divisionby two in the approximation of the regularizersR(a), but
this has been corrected in [AT04b] and [AT06b].



7.4 Learning to Relate Descriptors to 3D Poses 162

−4

−3

−2

−1

0 

Figure 7.17: Quadratic “bridges” approximations to theν log ||a|| regularisers, introduced by Agarwal
and Triggs [AT04a] to prevent weight parameters from prematurely becoming trapped at zero in the
minimization process, which can cause overfitting.

of vectorsx can be removed without compromising the regression result.Therefore, RVM can

be used as afeature selectionmethod, resulting in a reduction in the number of shape descriptors

needed.

• Alternatively,kernel basis functionscan be used. They are expressed byφi(x) = K(x,xi), making

f(x) = [K(x,x1),K(x,x2), · · · ,K(x,xn)]⊤, whereK(x,xi) is a function that relatesx with

the training samplexi. For example (as used in this chapter), one can use a Gaussiankernel

K(x,xi) = eβ||x−xi||
2

, with β estimated from the scatter matrix of the training data. In this case,

the column-wise sparsity ofA acts as a method toselect relevant training samples.

The estimation ofA is then performed in a similar fashion as to Equation 7.5, by iteratively solving

the linear system:

A(F R) = (Y 0) (7.6)

where0 is am × p matrix of zeros andR is a p × p matrix whose rows are defined byν/ascale, and

ascale is the norm||a|| of each column vector ofA from the previous iteration. To reinforce sparsity, the

columns ofA whose norms are small are set to zero. This process is repeated until A converges.

Figure 7.18 shows theA matrix obtained by this method using linear kernel functions in theopen-

closedata set, with multiple view 90-d descriptorsx. The thresholdTa on the norm of the column



7.4 Learning to Relate Descriptors to 3D Poses 163

0 30 60 90

0

10

20

nz = 280

A matrix from A&T regression method

(a)

0 30 60 90

0

10

20

nz = 217

A matrix from unidimensional regressions

(b)

Figure 7.18: Map of non-zero elements of matrixA(m×p) resulting from linear regression using Agarwal
and Triggs’ method, selecting 10 relevance vectors in total(a). The result obtained with RVM of indi-
vidual parameters shown in Figure 7.16 is reproduced in (b) to show that some agreement between the
two methods is obtained on the selection of columns ofA.
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vectors||a|| was tuned to select 10 relevant features, resulting in the selection of 5 features from camera

1 (side view), 3 features from camera 2 (top view), and 2 features from camera 3 (another side view).

For samples in the training set, regression with this matrixresulted in a mean absolute error of2.7◦,

and a mean standard deviation of2.0◦. The worst average error and standard deviation were11.8◦ and

8.2◦ respectively, both for the interphalangeal joint of the thumb. This represents an improvement in

comparison to the results obtained by regressing the DOFs individually. As discussed later, the column-

wise sparsity of matrixA, allows the application of this method for feature selection or sample selection.

It is interesting to note that many of the vectors selected using Tipping’s method coincide with rows

selected by Agarwal and Trigg’s method, confirming the common theoretical basis of both.

7.4.3 Applying the Regressor with Feature and Samples Selection

It has been observed that Gaussian kernel functions can provide better results at the expense of being

slower than linear kernel functions [AT04a]. Indeed, the results showed later suggest that linear functions

are less stable to noise than Gaussian kernel functions. Thealternative proposed here is to combine both

by first reducing the dimensionality of the image descriptors x with feature selection and then using

regression with Gaussian kernel functions to select the most relevant samples. Since the dimension of

the vectorsx is reduced in the first stage, all the distance calculations required to computef(x) with

Gaussian kernels is sped up.

After the training process has been performed to obtain matrix A and the sets of selected features

and samples, the algoritm shown in Algorithm 3 is applied to estimate the hand pose given a new (set

of multiple view) image(s). Note that, although the initialsteps are not affected by feature selection and

sample selection, these have a large impact on steps 6 to 13 (specially 11). Thus a trade-off between

speed and robustness can be achieved.

7.5 Experiments and Results

This section presents experiments on applying regression for feature selection, samples selection and

both combined. Aiming to perform a fair comparison, for bothsingle-view and three-views data, 90-

dimensionalx descriptors were used, with the difference that, for the former, all the elements ofx were

obtained from the same view, and, for three-views, each viewwas described by a 30-dimensional vector,
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Algorithm 3 Pose Estimation with Selected Features and Samples (application phase)
Require: lists of selected features, selected samplesxi, shape contexts centroids, meansx and y,

std(x), std(y), and matrixA
1: for each camerac do
2: if there are selected centroids from this viewthen
3: Extract the hand silhouette using skin detection and edge detection
4: Compute all the shape context vectors from all the silhouette contour points
5: Calculate their distances to all the centroids of this view
6: Soft histogramming: create the image descriptorxc′ taking into account only bins related to the

selected centroids
7: end if
8: end for
9: Concatenate the vectorsxc′ into a single vectorx′

10: Standardise it using the meanx andstd(x) from the training set
11: Evaluate functionsφi(x

′) to build f(x′), wherei is the index of kernel functions related only to the
selected training samples

12: Apply y← Af(x′) with the selected columns ofA only
13: ‘De-standardise’y, using the meany andstd(y) from the training set

and they were concatenated to buildx. The parametersλ andν were both set to0.3, which, in most of

the experiments in this chapter, lead to convergence after three iterations for linear kernel functions, and

after five iterations for Gaussian kernel functions.

7.5.1 Number of Relevance Vectors

The graphs of Figure 7.19 show the number of selected relevance vectors as a function of the threshold

Ta. Note that the same threshold leads to the selection of more relevance vectors for a single view. This

hints that even though the same number of training samples (and of the same dimensionality) is used in

both cases, fewer relevance vectors are selected for multiple views, indicating that their measurements

are more discriminative. Fewers samples and fewer featuresare needed to achieve the same relevance

for multiple views. A similar behaviour has been observed for thecomplextraining set.

7.5.2 Synthetic Images

For the experiments with synthetic images, ground truth is available. The data set was evenly split in a

training set and a testing set (with no intersection) from the same sequence of movements. Although this

practice makes training and testing data very similar, it isenough to distinguish the performance between

single and multiple view methods.
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Figure 7.19: Number of selected relevance vectors for linear and Gaussian kernels for single and multiple
views as a function of the thresholdTa evaluated for both theopen-closeandcomplextraining sets.
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camera 1 camera 2

Figure 7.20: Silhouettes obtained from a sample pose in the training set from camera 1 and 2, highlighting
(with red ‘*’) the points whose shape context is taken into account after the selection of two relevant
features.

Open-Close Data Set

The sequence of movements in theopen-closedataset can roughly be described by two degrees of free-

dom: flexion of the all joints and twisting movement of the hand about the forearm axis (θZ ). In order

to verify the ability of the regressor to identify this, a feature selection experiment was performed, i.e.,

a regressor with linear kernel functions was trained with the thresholdTa on ||a|| tuned to select only

two relevance vectors. But for a single-view, three features were selected, because any greater threshold

resulted on only one feature. For three-views, one vector from the top view and another vector from one

of the side views (camera 1) were selected, as shown in Figure7.20 and 7.21.

The points of the silhouette shown by red ‘*’ in Figure 7.20 are those whose shape contexts (SC) have

the selected centroids among their four nearest centroids in SC space (the soft histograming implemeded

considers a neighbourhood of four centroids). Note that, for both views the centroids selected are close

to the wrist rather than the finger tips. A possible reason forthat is that features closer to the finger tips

present too much variation between samples and they are not present for some of the samples, like those

with the hand in fist pose. This was also observed for single view.

Figure 7.22 illustrates the result by showing the estimatedangle of the interphalangeal joint of the

index finger and the results forθZ . Recall that at each 78 frames the images were generated for adifferent

value ofθZ (global hand orientation). Note that the pose of the hand wasestimated individually for each

frame, which explains the jittering motion.
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Figure 7.21: Shape contexts manifold with the centroid of the selected cluster from camera 2 indicated
by a blue circle.
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Figure 7.22: Regression results using only three (for single view) and two (for multiple views) relevance
vectors (out of 90), with a linear kernel and synthetic images: (a) estimated angle of the interphalangeal
joint of the index finger; (b) estimated angleθZ of global rotation about the forearm axis.
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Figure 7.23: Regression results using only 10 samples (out of 273), with Gaussian kernel functions and
synthetic images: (a) estimated angle of the interphalangeal joint of the index finger; (b) estimated angle
θZ of global rotation about the forearm axis.

These results show that the regressor is able to give a rough approximation of the pose using a

minimal set of selected vectors (in this case, image features). Even using fewer features for multiple

views it is possible to achieve higher accuracy than with a single view. Also, the results forθZ with a

single view seem to have no correlation with the ground truth. Furthermore, for single view, asθZ grows,

the estimate for other angles gets poorer because the top view does not offer enough distinct features on

its own when the fingers get nearly aligned to the camera axis.

When using Gaussian kernels, it is harder to intuit the minimal set of samples needed to estimate the

pose. Ta was chosen so that 10 relevant samples were selected from thetraining set. The trajectories

obtained from single and multiple views are shown in Figure 7.23 in comparison with the ground truth.

Both for single and multiple views, the selected samples aremostly from “near-fist” hand poses. This

may seem odd, but it is not usual in RVM for the the most relevant samples to be distant from the obtained

pose estimates, and for them not to be the most comprehensivesamples in terms of the variability of state

(poses) [Tip01].

Figure 7.24 reports the application of feature selection followed by samples selection to combine

speed and performance. Note that the superiority obtained for multiple views is more evident forθZ .
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Figure 7.24: Regression results combining both feature selection and samples selection for the interpha-
langeal joint of the index finger (a) and the angleθZ (b). The parameters were tuned to select 13 or 12
features for single and multiple view, respectively; and 29samples.

Complex Data Set and Quantitative Results

Thecomplexdata set incorporates a large range of hand poses, so it is more difficult to illustrate the results

with graphs as shown for theopen-closedata set. Figure 7.25 shows the mean and standard deviation

of the error for each parameter (DOF) of the hand for thecomplexdata set, using half the samples for

training and half for testing with both feature selection and samples selection. In this case, 36 relevance

vectors with 35 dimensions were selected for both single andmultiple view. For a comparison, the STD

of the training trajectory is also shown. Note that both the greatest variation in angle and the greatest

average error occur in the proximal interphalangeal joint of the fingers. In this database, the use of

multiple views reduces the error in a roughly uniform manneralong the pose parameters.

Table 7.1 shows a quantitative evaluation of the results forboth data sets using synthetic images. The

columns ‘ftrs.’ and ‘spls.’ indicate how many relevance vectors were selected with linear and Gaussian

kernel, respectively. The column ‘worst result’ shows the average error for the parameter (DOF) whose

estimate was the worst, indicated in the column ‘which DOF’.The abbreviation T IP refers to thumb’s

inter-phalangeal joint, and M DIP to the distal inter-phalangeal joint of the middle finger.

As expected, the worst estimates occurred in two cases: (i) for DOFs related to parts of the hand

whose contour was occluded in many of the images, and (ii) forthe rotationθZ when a single view is
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Figure 7.25: Panel (a) shows the standard deviation (STD) ofthe value of each hand parameter along
the trajectory of thecomplexdata set. Parameter 1-6 are absolute pose, 7 and 8 are wrist angles, 9 is
abduction of the little finger and 10-12 are flexion angles. The same pattern repeats for each of the other
fingers and thumb. Panel (b) shows the mean error and STD for each parameter using a single top view.
Panel (c) shows the same for multiple views.
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# Data
Kernel Ftrs. Spls.

Avg.
STD

Worst Which
Views Set Error Result DOF

1

Open-Close
Linear 3 273 8.6◦ 6.9◦ 23.2◦ θZ

Gaussian 90 10 5.6◦ 4.3◦ 14.5◦ T IP
Both 13 29 2.3◦ 2.0◦ 6.0◦ θZ

Complex
Linear 31 839 3.0◦ 2.7◦ 11.4◦ M DIP

Gaussian 90 42 2.9◦ 2.5◦ 9.9◦ M DIP
Both 35 36 2.9◦ 2.6◦ 10.7◦ M DIP

3

Open-Close
Linear 2 273 5.4◦ 4.4◦ 17.0◦ T IP

Gaussian 90 10 3.6◦ 2.7◦ 14.9◦ T IP
both 12 29 1.6◦ 1.2◦ 7.0◦ T IP

Complex
Linear 31 839 2.5◦ 2.1◦ 8.9◦ M DIP

Gaussian 90 41 2.4◦ 2.0◦ 8.3◦ M DIP
Both 34 36 2.4◦ 2.0◦ 9.0◦ M DIP

Table 7.1: Results with synthetic data obtained using 273 and 839 training samples foropen-closeand
complexdata sets, respectively. The same amount of samples was usedfor testing, though there is no
intersection between the sets. For both data sets, the totalnumber of features used is 90.

used, as this is not a rotation parallel to the top view image plane.

In general, the improvement obtained by using multiple views is evident, particularly when the num-

ber of features used is small. However the improvement is view-dependent, and if a single view captures

the most meaningful silhouette the improvement is diminished. A further reduction in improvement

arises because the synthetic images used so far are noise free. As shown in next section, improvement is

restored when using real images.

7.5.3 Real Images

For real images, whole training sets were used, giving 546 training pairs for theopen-closedata set and

1679 for thecomplexdata set. For testing, images of the right hand of a single subject were used. Since

there is no ground truth available for the real images, only qualitative results are shown.

Figure 7.26, shows the estimated index PIP joint andθZ angles obtained by training the regressor with

theopen-closedata set and applying it to the nine images shown in Figure 7.15. It is intuitive to visualise

the correctness of these results, as both the estimated index PIP joint andθZ angles are expected to grow

with time. In this case, the use of multiple views does not seem to show an improvement in relation to

single view.

However, Figure 7.27 shows that multiple views provide a significant improvement for images with
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Figure 7.26: Regression results obtained using theopen-closedata set, combining linear kernel functions
to select 30 features (out of 90) and Gaussian kernel functions to select 46 and 47 samples (out of 546)
for single and multiple view data, respectively. (a) shows results for the interphalangeal joint of the index
finger, and (b) forθZ .

more complex movements, using the regressor trained with the complexdata set. This improvement

becomes more evident when a small selection of features and samples is used, as shown in Figure 7.28.

Note that, for a single camera, the regressor seems to be unable to recover some of the poses, probably

because the measurements generate poses that extrapolate the space of trained poses.

7.5.4 Computational Cost

As the aim is to use this system for (re-)initialisation of a video-rate hand tracker, the computational

cost is evaluated in this section. Although most componentsof this system were implemented using an

interpreted language (MatLab 6.5, except where indicated), the time measurements presented here give

a good clue of the computational complexity of each part of the algorithm. These experiments were

performed using a computer with two 2.4GHz Pentium 4 CPUs and750MB of RAM running Red Hat 9

Linux (though the algorithm was not parallelised).

Feature Extraction

This is the first step to obtain image descriptors, both for training and testing samples. For 5037 images

of 120 × 90 pixels, the average time for skin colour detection was 2.8msusing a compiled C++ imple-

mentation. To extract subsampled silhouette contour points and calculate their shape contexts it takes
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Figure 7.27: Results obtained from real images (top row) forsingle view (middle row) and multiple
views (bottom row), using Gaussian kernel with all the samples and all the features.

Figure 7.28: Results obtained from real images (top row) forsingle view (middle row) and multiple
views (bottom row), using combined linear kernel to select 32 features (out of 90) and Gaussian kernel
to select 38 samples (out of 1679)).



7.5 Experiments and Results 175

Kernel
Input Selected

Iters.
Total

Dim. RVs Time (s)
Linear 90 32 4 6.7

Gaussian 90 38 4 327.7
Both 32 38 5 305.4

Table 7.2: Training time for thecomplexdata set (1679 samples) for linear, Gaussian and the combined
kernels to select 32 features and 38 samples.

further 141.7ms per image in MatLab. Next, to calculate the quantised vectorshc it takes 26.4ms per

image. Therefore, the average time for this pre-processingstage is 170.9ms and this is the only stage

where the use of multiple view can represent a linear (O(C), whereC is the number of cameras) increase

in the amount of time required by the algorithm.

Training Phase

The most demanding step of the training phase is the clustering to obtain the centres for vector quantisa-

tion. With thecomplexdata set the algorithm did not converge until the maximum number of iterations

(30) was reached. For this,K-means can take between one and ten days, depending on how many iter-

ations of the second phase were performed, and this is data dependant [Seb84]. For theopen-closedata

set, a result was obtained between 30 mins and 2 days, again, depending on the view and the number of

second phase iterations performed. No convergence was reached within 30 iterations, but experiments

have shown that the quality of the centroids for vector quantisation does not affect the discrimination

power of the obtained vectors [JT05].

Given the training samples represented by the (concatenated) quantised vectorsx, to train Agarwal

and Trigg’s regressor is a much faster process, as shown in table 7.2. Note an improvement in speed using

the linear kernel functions followed by Gaussian kernel functions (both) in relation to using Gaussian

kernel functions only.

Application

As shown in table 7.3, the actual pose estimation process is extremely fast (note that the scalars are

in microseconds). For both for training and application, the difference between using both kernels and

Gaussian kernel functions only is not very significative in comparison with the difference between these

and the use of linear kernel functions only. However, combining both methods give the robustness of
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Kernel Features
Training Time
Samples (µs)

Linear 32 1679 7.2
Gaussian 90 38 35.7

Both 32 38 25.4

Table 7.3: Average time over 1679 trials for the applicationof the regressor to thecomplexdata set using
linear, Gaussian and the combined kernels. Note that the time scale is in microseconds (µs).

Gaussian kernel functions and the additional reduction on the risk of overfitting if all the features are

used.

Summing up all the steps give, in the worst case (three cameras and Gaussian kernel functions)

651.69ms per frame, which is a very good result for a global detector with no prior information of the

hand pose, implemented mostly in an interpreted language. Better results are expected in a compiled

version, but the use of this method for detection only to (re-)initialise a generative tracker is still the best

option for better results at lower computational cost.

Memory Usage

For application, this algorithm is not very memory demanding. Below is the list of required data:

• list of selected features:O(K),K is the dimension ofx;

• selected samplesxi: O(K × I), I is the number of training samples;

• shape context centroids:O(K);

• mean and standard deviation for vectorsx andy: O(K) andO(m), wherem is the dimension of

the state vectorsy;

• matrixA: O(m×K) for linear kernel functions orO(m× I) for Gaussian kernel functions.

For a new image, in order to getx′ (steps 4 to 6 of Algorithm 3), first it is necessary to obtain all

the shape contexts from the silhouette contour. These areO(r × a × n), wherer anda is the number

of radial and angular bins of the shape contexts. In this chapter, r = 5 anda = 12; n is the number

of points in the silhouette contour. For thecomplexdata set the average number of points per image is

2549.1 per image in the experiments of this chapter, which is not a high value for today’s computers.
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However, the training phase can be particularly demanding,specially in the clustering step, where it

is convenient to keep all the shape context of all the training images in the memory:O(r × a× n× I).

With thecomplexdata set, 750MB of memory was enough for all the experiments (including training and

clustering), in a MatLab implementation. But, for training, it was necessary process views individually

and store data from the other views in the HD. Obviously, a significant amount of memory could be

saved in a C or C++ implementation, in which numbers would notneed to be represented with double

precision for the calculations.

7.6 Conclusions

This chapter presented a regression-based method for estimation of hand pose in 3D from global image

descriptors, advancing the single-view method of Agarwal and Triggs [AT04a] proposed for human pose

estimation.

Skin silhouettes were extracted from colour imagery, and their contour points described using the

shape contexts of Belongieet al. [BMP02]. The considerable variation in hand pose typically observed

in imagery requires care to be taken to ensure scale and rotational invariance in the contexts. The use of

contexts aligned with the axis of the forearm was found to be the best. By ensuring rotational and scale

invariance, the number of training samples needed was reduced, provided triangulation was first used to

recover the global pose parameters.

A global image descriptor for each view was obtained by coding the manifold of shape contexts using

vector quantisation, and the descriptors combined at an intermetiate level into multiview descriptors by

concatenation. The mapping between multiview descriptorsand 3D poses was learned using Agarwal

and Triggs’ [AT04a] extension of Tipping’s Relevance Vector Machine [Tip01].

Our experiments have, inter alia, examined the effects of feature selection (linear kernel functions)

and sample selection (Gaussian kernel functions) both on the quality of pose determination and on the

computational time, using both synthetic and real imagery.We have found that linear kernel functions

have the advantage of computational cost independent on theamount of training data used. However, we

have found Gaussian kernel functions to be more robust, so wehave performed experiments combining

both linear and Gaussian kernels for speed and robustness. Our experiments have also shown that, for
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general views, fewer relevance vectors are needed in the multiple view case. Their measurements are

more discriminative, allowing correct pose estimates to berecovered in cases where a single view all but

fails.

An obvious modification to the current image descriptor would be the use of a more sophisticated

coding method, like Gaussian mixtures or Jurie and Triggs’smethod [JT05]. Another possibility is to

explore the extension of RVM for multidimensional target spaces of Thayananthanet al. [TNS+06]

which, like the original RVM, optimises the hyperparameters. But the main thrust of future work should

be to evaluate how relevant is the use of multiple hypothesesif multiple views are employed. A more

application-oriented direction of this work is the integration with a generative tracker for real-time results,

as done in [AT05], [EZ05], and [RS06].



8

Conclusions

This thesis concludes with a brief overview of the topics that have been discussed. The

main contributions are listed and some suggestions are given for interesting areas of future

research.

8.1 Summary of this thesis and conclusions

After an introduction to the motivation for the work in the area of visual human-computer interaction,

this thesis presented a review of the literature focused on hand tracking and human motion capture.

Two main approaches for 3D articulated object pose estimation have been identified: generative and

discriminative. Generative methods are the more traditional approach to tracking in which a model of

the object is rendered at a predicted pose and image measurements evaluate the agreement between this

model and the observed image. These are then used to compute anew prediction of the pose and the

tracking cycle repeats.

The discriminative approach is a natural way of estimating pose from a single image, but it has also

been extended to “tracking-by-detection” frameworks. This method relies on extensive prior knowledge

of appearances and poses of the object in order to build a direct map between image observation and 3D

pose.

This thesis has developed methods in both categories. It started by revising a generative method

first proposed in the early 1990’s by Harris [Har92a] for tracking rigid objects in real-time. RAPiD

tracker uses sparse edge measurements to compute the pose update by solving a linear system. As a test
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of the combined use of calibration, hand detection using colour, and tracking at video-rate using edge

following, an application was developed in which a pointinghand controlled the direction of gaze of a

wearable active camera.

By analysing the motion of kinematic chains, it was shown that the formalism developed in RAPiD

could be transferred to articulated objects. The articulated RAPiD Tracker (ART) was tested with syn-

thetic and real images, including a video sequence of the hand grasping a box, where both hand and box

are tracked.

Acquiring information about the interaction between objects was one of the original motivations of

this thesis. For this reason, an alternative method to represent articulated objects was studied. This

method, proposed by Drummond and Cipolla [DC02], is based onestimating an initial motion screw

for each object part individually and then imposing constraints afterwards. Although this is clearly

different from ART’s approach, which encode all the constraints in a single system, it was shown that

these methods provide equivalent results. However, they differ in terms of simplicity, robustness and

asymptotic speed in relation to the number of object parts. It was shown that ART is more suited to

articulated objects with highly constrained parts (e.g. hands), and Drummond and Cipolla’s tracker

(DCT) is more appropriate for problems in which the constraints between parts are low and where the

ability to switch on and off the constraints is desired.

Although the bone linkage of hands can clearly be modelled asa kinematic tree, skin tissue chal-

lenges generative methods if its complex dynamics is not modelled, but modelling such tissues can be

computationally expensive. Furthermore, the reported success of generative methods for hand tracking

is usually restricted to predictable movements, but suddenmotions are very usual for hands. For these

reasons, a discriminative method was implemented.

This method is based on building a map between a global shape descriptor and 3D poses. Hand

images are described using shape contexts measured at the contour of the silhouette of skin coloured

blobs. This description is encoded using a quantisation of the shape context space which gives a high

dimensional vector for each image. A multiple view descriptor is obtained by concatenation of these

measurements. To create an efficient map between image measurements and 3D poses, a multivariate

regression method based on Relevance Vector Machines was implemented. Experiments have shown
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accurate pose estimation results on synthetic data and satisfactory results on real images. Comparisons

between single and multiple view versions of this method showed that the extension to multiple views

proposed in this thesis improves the results and reduces thenumber of relevance vectors required.

8.2 Contributions

Although a vast literature was found in this field, the problem of 3D hand locating and tracking in real-

time remains very challenging and it is still open for contributions. This thesis has achieved significant

contributions in the following areas:

• Tracking articulated objects

A novel articulated object tracker described with the same formalism as RAPiD was proposed

in Chapter 5. This method can track articulated objects withany type of joints and topology.

A qualitative evaluation of this method was presented for a range of objects, including a hand

interacting with a box.

An alternative method (DCT) was investigated in Chapter 6. In this method, constraints are post-

imposed after an initial estimate of the motion of each object part is computed. A novel compara-

tive study between this approach and the pre-imposed constraints approach of ART was presented.

This study took into account equivalences in their formulation, tracking results, simplicity, robust-

ness and speed of the methods varying a number of parameters.This comparison was published in

[dTM06] and [dTM05].

• Estimating 3D hand pose from multiple view

A new regression-based method for 3D hand pose estimate frommultiple view images was pro-

posed in Chapter 7. The experiments showed that this method achieves better performance in

comparison to using a single privileged view. Not only accuracy is improved, but complexity can

be reduced. Results of this work have been published in [dM06].

8.2.1 Secondary contributions

• Literature survey
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Despite not presenting new technical advances in the field, Chapter 2 tries to attend to the current

demand for a survey of the literature. A lack of comprehensive surveys focused on hand tracking

has been identified, since the last comprehensive review in this field was published ten years ago

[PSH97].

• Skin detection

One of the apparatus building methods presented in Chapter 3is a skin colour detector that is based

on a histogram-based classifier applied to the YCbCr colour space. Its novelty lies on the particular

combination of colour space and classification method. Thismethod is an important component

of the systems published in [TMdM02b], [dMM06], [MTdC+03] and [dM06].

• Guiding a wearable active camera using pointing gestures

Chapter 4 presented a new system that combines a fast shape detector with the RAPiD tracker

in order to detect and track pointing gestures. A cost function diagnoses the result to evaluate if

the detector should be fired to re-start tracking. This system was applied to command the gaze

direction of a wearable active camera mounted on the user’s shoulder. Parts of this work have been

published in [dMM06] and [MTdC+03].

8.3 Future directions

Some of the work developed contemporaneously to this thesisgive clues of future directions. Below, key

points are listed.

In the field of image features for 3D tracking, results can be enhanced if other image features are

combined with the edge features used in this thesis. For instance edges can be combined with optical flow

and shading information in [LMSO03]. A combination framework as that of Tordoffet al. [TMdM02b]

can also be evaluated for this application.

To reduce the complexity of ART and improve robustness, learnt hand motion data can be used.

A method such as Lawrence’s SGPLM [Law04] can provide an efficient data-driven dimensionality

reduction of the state space incorporating learnt constraints.

This thesis concentrated on pose update assuming that the frame-rate is high enough. To improve
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the results for fast (but smooth) motions, a motion filter canbe used. Alternatively, a particle filter-based

method such as that of [BKMV04], can be applied to improve robustness and avoid local minima, but

this may increase the computational cost.

Although shape contexts are strong descriptors, they rely on good silhouette or edge segmentation

results, which is not always possible for cluttered backgrounds. An alternative is the use of SIFT features,

as done in [AT06a]. In that work, the appearance of human-like parts is learnt in order to suppress

background features, so no segmentation is required. This method is likely to be very successful for

hands, because bare hands texture is much simpler than the texture of people wearing different clothes.

For the global image descriptor, it can be relevant to evaluate coding methods that are better than the

simple vector quantisation employed in Chapter 7. An example is the method of Jurie and Triggs [JT05].

Even though the use of multiple views virtually eliminates ambiguities in pose estimation, the amount

of self-occlusion in hands still make some different hand poses have similar appearances (e.g. a fist). A

study of the importance of multiple regressors (e.g. [TNS+06]) for pose estimation should be considered

as future work.

This thesis advocates that hands should be located and tracked using the combination of a discrimi-

native and generative methods. This has been done in Chapter4, limited to pointing hand detection and

tracking. The combination of the approaches of Chapters 7 and 5 will extend the range of possible poses,

but this has not been attempted in this thesis.

The methods developed in this thesis are yet to be integratedwith other systems that watch humans

to perform action and intention recognition. Methods for combination of temporal information shall

be applied, and the research on behaviour understanding shall lead to the ultimate goal of developing

smart human–machine interfaces. Current methods demand training and some effort that, despite being

subtle, in the long term can lead to chronic damages of RSI. Inthe ideal interface, the training and effort

should be transferred to machines: they should observe humans and be able to adapt themselves for the

optimal communication — but the poor researchers that develop them will all suffer from RSI before

such interfaces become available.
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Colour spaces

This appendix describes the colour spaces that are most commonly used for brightness normalisation in

order to detect skin colour. A large set of skin and background samples is used to show their spread in

the different colour spaces.

A.1 The RGB colour space

Extensive experiments in the human visual system have showed that the cones — sensors in the eye

responsible for colour vision — can be divided into three principal sensing categories, corresponding

roughly to red (R), green (G) and blue (B) [WS00]. Therefore,colours are seen as combinations of these

so-called primary colours [GW00]. For this reason, most of the cameras and emissive colour displays

represent pixels as a triple of intensities of the primary colours in the RGB colour space:[R,G,B] ∈ IR3.

This is also the reason why the RGB space is very commonly usedby the computer graphics and image

processing community.

A disadvantage of the RGB representation is that the channels are very correlated, as all of them

include a representation of brightness. This is illustrated in Figure A.1 and A.2, in which the brightness

information can be recognised from R, G and B channels shown separately.

True colour 24 bits RGB images have the triple[R,G,B] represented by 256 discrete values (ranging

from 0 to 255) [Jac01], thus the range of RGB colour values forms the cube of (28)3 possible values as

shown in Figure A.3. The high correlation between lightnessand RGB channels can be noted by the line

of the grey values, whereR = G = B. In fact, if the corresponding elements in two points,[R1, G1, B1]
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(a) (b)

Figure A.1: Sample colour image (a); and its grey level version (b).

R G B

Figure A.2: RGB channels of image in Figure A.1(a) shown separately.

and[R2, G2, B2], are proportional, i.e.,

R1

R2
=
G1

G2
=
B1

B2
, (A.1)

they have the same colour, but different brightness [YW96].Differences in brightness are often dis-

regarded by humans, as our visual system is capable of adapting to different brightness and various

illumination sources such that the perception of a colour constancy is maintained within a range of envi-

ronmental lighting conditions [WS00].

A.2 The CIE chromatic space

The CIE chromatic space is a standard proposed in 1931 by the Commission Internationale de l’Eclairage

– the International Commission on Illumination. Some modifications have been proposed later, but this



A.3 The perceptual colour space 186

white

0

black R = G = B

magenta

Blue cyan

yellow

255
Green

255

255
Red

Figure A.3: The RGB colour cube.

section is restricted to the 1931 standard. It has been used in several colour processing tasks [GW00] and

it is used to define the colour gamut, i.e., the range of possible colour values that a device can represent.

This two dimensional space has thex andy axes respectively defined by the pure chromatic colours

red and green(r, g), defined by this normalisation process:

r = R
R+G+B

g = G
R+G+B

(A.2)

which is, in fact, a IR3 → IR2 map. Pure blue (b) is redundant after the normalisation becauser+g+b = 1

[WS00].

The use of this colour space for skin detection has became popular specially after the work on face

tracking developed at SCS, Carnegie Mellon University [YW96, YLW98b].

A.3 The perceptual colour space

The perceptual colour spaces were designed by Smith in [Smi78] in order to provide a more “intuitive”

way of describing colours and lightness. Three quantities are used to define them: hue, saturation and

brightness. Brightness embodies the achromatic notion of intensity. Hue is an attribute associated with

the dominant wavelength in a mixture of light waves. It represents colour as perceived by an observer.

Thus, when we call an object blue, yellow or red, we are specifying its hue. Saturation refers to the

relative purity or the amount of white light (or grey of equalintensity) mixed with a hue. Primary

colours (pure red, green and blue) are fully saturated, whereas colours such as pink (red and white) and

lavender (violet and white) are less saturated. The degree of saturation is inversely proportional to the

amount of white light added [GW00].

Basically, there are two distinct perceptual colour spaces: HSL (hue, saturation, lightness); and
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Figure A.4: HSV and HSL colour spaces.

HSV (hue, saturation, value). Both are defined with polar coordinate systems. HSV is represented by a

hexcone where Hue is the angle around the vertical axis, S is the distance from the central axis and V

is the distance along the vertical axis. Primary and secondary pure colours are fully saturated (S = 1).

As illustrated in Figure A.4, starting fromH = 0o (which represents pure red), a secondary or primary

colour is located at each60o of hue. Complementary colours are180o opposite one another measured

by H. Colours along the vertical axis have zero saturation, i.e., grey scale values. Note that whenS = 0,

the value of H is irrelevant [Jac01], [Smi78].

HSL colour space is a double hexcone and can be thought of as a deformation of the HSV space. The

distinction between HSV and HSL lays in the representation of brightness information, which determines

the distribution and dynamic range of both the brightness (Lor V) and saturation (S). In practice, the

HSL colour space is best for grey level image processing and also for representing objects in such a

way that colour images can be distinguished even in monochrome images (e.g. to show colour cartoons

on black-and-white TV receivers), whereas the HSV image space is a better representation for colour

processing [Jac01].
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As described in [RMG98], [AP96], and [ZYW00], on performingskin detection, the brightness

channel is discarded and the HS space is used instead. Therefore, there is no significant difference

between HSV and HSL in this application [Bow99].

H S V

Figure A.5: HSV channels from Figure A.1(a) shown separately.

Figure A.5 shows the H, S and V channels obtained from image from Figure A.1(a).

A.4 The YUV and YCbCr colour spaces

The YUV image space was created in order to make colour television broadcasts backwards-compatible

with black and white TV receivers. The colour signal also needed to conserve bandwidth because three

channels of RGB data would not fit into the limited broadcast signal bandwidth. The Y channel de-

scribes Luma, the range of value between dark and light, which is the signal shown in black and white

televisions. The U and V chrominance channels subtract the Luminance values from Red (U) and Blue

(V) to represent the colour only information (without brightness) [Mal02]. Thence, the basic conversion

equation from RGB to YUV is:

Y = 0.3R + 0.6G + 0.1B
U = B − Y
V = R− Y

(A.3)

The coefficients used to obtain luma are the same as those usedfor the NTSC standard conversion

from RGB to grey level images [Poy96]. These coefficients arebased on psychovisual experiments that

estimated the proportion of red, green and blue that we perceive. It is shown that approximately 65% of

all the cones in the human eye are sensitive to green light, 33% are sensitive to red light and only about

2% are sensitive to blue, but the blue cones are the most sensitive [WS00].
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The YCbCr colour space was developed as part of ITU-R BT.301 during the development of a world-

wide digital component video standard. This colour space was extensively used in the development of

the JPEG standard, and was used for skin colour detection by several research projects, including the

Pfinder [WADP97].

As shown in equation A.4, YCbCr is a scaled and zero-shifted version of the YUV, so that the

chrominance values are always positive [PM93]:

Cb = U
2 + 0.5

Cr = V
1.6 + 0.5,

(A.4)

for U ranging between[−0.9, 0.9] andV ranging between[−0.7, 0.7], which are the ranges obtained

from the conversion from RGB∈ [0, 1]. So the range ofCb andCr are (0.05, 0.95) (0.06, 0.94),

respectively. For digital 8-bits values of U and V, a 128 shift is employed, rather than 0.5.

Figure A.6 shows the RGB colour cube in the YCbCr colour space. It shows that not all the possible

values in the triple[Y,Cb,Cr] represent possible RGB colours. Therefore, special care must be taken to

about overflow or underflow in RGB, when converted from YCbCr.Brightness normalisation is done by

discarding the Y channel.
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Figure A.6: The RGB colour cube in the YCbCr colour space, using 8 bit representation of values.
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A.5 Visualising the colour spaces

To illustrate the effect of brightness normalisation usingthe above colour spaces, each method has been

applied to the image of Figure A.1(a). An intermediate grey level (127) was chosen and the resulting

images are shown in Figure A.7. Note that skin areas appear uniform and that shading information is lost

for all the three methods.

(a) (b) (c)
CIE Pure Colours HSV CbCr

Figure A.7: Resulting images after brightness normalisation of the image in Figure A.1(a) using the CIE
colour space (a), the HSV without the V channel (b), and the YCbCr without the Y channel (c).

In order to illustrate the distribution of skin samples in the colour spaces, a database with images

from 141 different people was used. This database is composed by hand images grabbed from seven

volunteers, and the AR face detection database of the University of Purdue [MB98]. The Purdue database

contains 134 people (men and women) from several ethnic groups. Background samples were obtained

from the background regions in the images (e.g. people’s clothing and other objects) and other images

grabbed in the laboratory, as shown by some samples in FigureA.8. The camera used in the acquisition

had the automatic colour and brightness balance.

Skin and background regions of the images in this database were manually selected in order to obtain

the data set. After the training process, more than 0.5 million samples of skin and more than 1.2 million

samples of background were obtained. Figure A.9 shows the skin and background samples in the RGB

colour space.

Figure A.10(a) shows the plot of only skin samples in the RGB colour space. Note that the samples

are more spread in the direction of the brightness variation. The directions of global variation of the sam-

ple data can be evaluated by performing Principal ComponentAnalysis in this space [dCJ01], [Mar02].



A.5 Visualising the colour spaces 191

(a) (b) (c)

Figure A.8: Database samples: (a) hand images from local volunteers; (b) faces from the AR database;
(c) background.

The eigenvector of the covariance matrix of the samples which is associated to the largest eigenvalue is

oriented according to the largest variation of the data set.The second eigenvectors points to the direction

that is perpendicular to the first, and has the second largestvariation of the data, and so on. The eigen-

vectors of the skin colour database are shown in Figure A.10(b). The angle between the first eigenvector

and the vector that points to the direction of the brightnessvariation is only 3.35 degrees. This confirms

that it is necessary to use a normalised colour space or remove brightness information in order to get a

more compact cluster of skin samples.

To illustrate the compression of the skin colour cluster in normalised colour spaces, Figures A.11,

A.12, A.13 show the skin and background samples in the CIE, HSV and YUV chromatic spaces, respec-

tively.

In comparison to the plots of the skin and background samplesin the full colour spaces, the plots in

normalised planes illustrate that such projections lead tolower dimensional spaces with more compact

skin colour samples, improving the separability between them and background samples.
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Figure A.9: Colour samples in the RGB space: skin (red circles) and background (blue crosses) samples
plot together.
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Figure A.10: Variation of skin samples: (a) Skin colour samples in the RGB space; (b) Eigenvectors
of the skin samples in the RGB space in their respective mean position. The first, the second and the
third eigenvectors are indicated by a star, a square and a circle in its end, respectively. The dashed line
indicates the grey level (brightness) direction.
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Figure A.11: Skin (red circles) and background (blue crosses) in the CIE chromatic space.

(a) (b)

Figure A.12: Skin (red circles) and background (blue crosses) shown in the HSV colour space (a); and
their projection into the HS plane (b).
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(a) (b)

Figure A.13: Skin (red circles) and background (blue crosses) shown in the YCbCr colour space (a); and
their projection into the CbCr plane (b).
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Adjoint transformation in DCT

This appendix complements information of Chapter 6 about the adjoint transformation used by Drum-

mond and Cipolla.

Consider two framesa andb where points are related by the homogeneous transformation

Xb = Tb
aX

a =

(

Rb
a tab

0⊤ 1

)

Xa . (B.1)

To derive the effect of changing frame on the screw vector,α, consider writing the scene velocity in

frameb in two different ways
(

Ẋ
b

0

)

=
∑

i

αb
iGiT

b
a

(

Xa

1

)

= Tb
a

∑

i

αa
i Gi

(

Xa

1

)

(B.2)

indicating that
∑

i

αb
iGi = Tb

a

∑

i

αa
i GiT

a
b . (B.3)

Recalling thatα = (ω⊤v⊤)⊤, and the earlier expressions forGi, Eq. (B.3) is just

(

[ωb]× vb

0⊤ 0

)

=

(

Rb
a tab

0⊤ 1

)(

[ωa]× va

0⊤ 0

)(

Ra
b −Ra

btab

0⊤ 1

)

, (B.4)

where[ω]× is the antisymmetric matrix such that[ω]×r = ω × r. Hence

[ωb]× = Rb
a[ω

a]×R
a
b (B.5)

which is equivalent to

ωb = Rb
aω

a . (B.6)
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Also

vb = −Rb
a[ω

a]×R
a
btab + Rb

av
a = [tab]×R

b
aω

a + Rb
av

a . (B.7)

The relationship between the screws is defined as

αb = Ad(Tb
a)α

a (B.8)

and hence using Eqs. (B.5,B.7) the adjoint is given by

Ad(Tb
a) =

(

Rb
a 0

[tab]× Rb
a Rb

a

)

(B.9)

Eq. (B.9) agrees with Drummond and Cipolla, given that they recoverα = (v⊤ ω⊤)⊤. Though a minus

sign appears missing from the definition of their antisymmetric matrix [t]∧.

As the measurement vectord is an invariant,Fbαb = Faαa and so

Fb = Fa Ad(Tb
a)

−1 (B.10)

which gives

Cb = Fb⊤Fb = Ad(Tb
a)

−⊤Ca Ad(Tb
a)

−1 . (B.11)

This differs from the equivalent in Drummond and Cipolla, a difference which may arise because

equation (29) in ref [DC02] statesTb
aGi(T

b
a)

−1 =
∑

j Ad(Tb
a)ijGj, in contradiction with the later (agreed)

statement in equation (32) in ref [DC02] thatαb = Ad(Tb
a)α

a.
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In Proc SIGGRAPH, pages 522–531. ACM, 2004.

[GP99] D. M. Gavrila and V. Philomin. Real-time object detection for “smart” vehicles. InProc
IEEE Int Conf on Computer Vision, pages 87–93, 1999.

[GW00] R. C. Gonzalez and R. E. Woods.Digital Image Processing. Prentice Hall, Pearson
Education Int., New Jersey, 2nd - international edition, 2000.

[Har92a] C. Harris. Tracking with rigid models. In A. Blake and A. Yuille, editors,Active Vision,
pages 59–73, Cambridge, MA, USA, 1992. MIT Press.

[Har92b] C.H. Harris. Camera calibration. Technical report, Roke MAnor Research, Siemens, UK,
1992.

[HASW06] J. Han, G. M. Awad, A. Sutherland, and H. Wu. Automatic skin segmentation for gesture
recognition combining region and support vector machine active learning. InProc of the
IEEE Conf on Automatic Face and Gesture Recognition, Southampton, UK, 2006.

[HCT95] A. Hill, T. F. Cootes, and C. J. Taylor. Active shape models and the shape approximation
problem. In D. Pycock, editor,6th British Machine Vision Conference, volume 1, pages
157–166, Birmingham, July 1995. BMVA.

[HGT06] R. S. Feris H. Guan and M. Turk. The isometric self-organizing map for 3d hand pose esti-
mation. InProc of the IEEE Conf on Automatic Face and Gesture Recognition, Southamp-
ton, UK, 2006.

[HH96] T. Heap and D. Hogg. Towards 3d hand tracking using a deformable model. InProc
2nd IEEE Int Conf on Automatic Face and Gesture Recognition,Killington VT, 1996,
Killington, Vermont, USA, October 1996.

[HHD98] I. Haritaoglu, D. Harwood, and L. S. Davis. W4s: A real-time system for detecting and
tracking people in 212d. In H. Burkhard and B. Neumann, editors,5th European Con-
ference on Computer Vision, Vol. I, number 1406 in Lecture Notes in Computer Science,
pages 877–892, Freiberg, Germany, June 1998. Springer.

[HKL06] B. W. Hwang, S. Kim, and S. W. Lee. A full-body gesturedatabase for automatic gesture
recognition. InProc of the IEEE Conf on Automatic Face and Gesture Recognition,
Southampton, UK, 2006.

[HLF99] N. Howe, M. Leventon, and W. Freeman. Bayesian reconstruction of 3d human motion
from single-camera viceo. InNeural Information Processing Systems (NIPS), 1999.

[HM99] J. J. Heuring and D. W. Murray. Modelling and copying human head movements.IEEE
Transactions on Robotics and Automation, 15(6):1095–1108, 1999.

[Hog83] D. C. Hogg. Model-based vision: a program to see a walking person.Image and Vision
Computing, 1(1):5–20, 1983.

[HOW96] Y. Hel-Or and M. Werman. Constraint fusion for recognition and localization of articu-
lated objects.Int Journal of Computer Vision, 19(1):15–28, July 1996.

[HS90] C. Harris and C. Stennett. RAPiD – a video rate object tracker. InProc 1st British
Machine Vision Conf, Oxford, pages 73–78, 1990.



Bibliography 203

[HSS02] Y. Hamada, N. Shimada, and Y. Shirai. Hand shape estimation using sequence of multi-
ocular images based on transition network. In15th Int Conf on Vision Interface, pages
362–368, Calgary, Alberta, Canada, May 27-29 2002. CIPPRS and IAPR.

[HTH00] P. Hong, M. Turk, and T.S. Huang. Gesture modeling and recognition using finite state
machines. InProc of the IEEE Conf on Automatic Face and Gesture Recognition, Greno-
ble, France, March 28–30 2000.

[Hu62] M. K. Hu. Visual pattern recognition by moment invariants. IRE Trans. Information
Theory, IT, 8, 1962.

[HZ01] R. Hartley and A. Zisserman.Multiple View Geometry in Computer Vision. Cambridge
University Press, 2001. second printing.

[IB96] M. Isard and A. Blake. Contour tracking by stochasticpropagation of conditional den-
sity. In Proc 4th European Conf on Computer Vision, Cambridge, UK, pages 343–356.
Springer, 1996.

[IB98] M. Isard and A. Blake. Condensation: Conditional density propagation for visual tracking.
Int Journal of Computer Vision, 29(1):5–28, 1998.

[Jac01] K. Jack.Video Demystified. LLH Technology Publishing, third edition, 2001.

[JBY96a] S. Ju, M. Black, and Y. Yacoob. Cardboard people: a parameterized model of articulated
motion. InProc IEEE Int Conf Automatic Face And Gesture Recognition, pages 38–44,
Killington, 1996.

[JBY96b] S. X. Ju, M. J. Black, and Y. Yacoob. Cardboard people: a parametrized model of artic-
ulated motion. InProc 2nd IEEE Int Conf on Automatic Face and Gesture Recognition,
Killington VT, 1996, pages 38–44, 1996.

[JDM00] A. K. Jain, R. P. W. Duin, and J. Mao. Statistical pattern recognition: A review.IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(1):4–37, January 2000.

[JP97] T. S. Jebara and A. Pentland. Parametrized structurefrom motion from 3d adaptive feed-
back tracking of faces. InProc of the IEEE Conf on Computer Vision and Pattern Recog-
nition, pages 144–150, San Juan, Puerto Rico, June 1997.

[JR98] M. J. Jones and J. M. Rehg. Statistical color models with application to skin detection.
Technical report, Compaq Computer Corporation, CambridgeResearch Laboratory, Mas-
sachusetts, USA, December 1998.

[JR02] M. J. Jones and J. M. Rehg. Statistical color models with application to skin detection.
Int Journal of Computer Vision, 46(1):81–96, January 2002.

[JRM06] A. Just, Y. Rodriguez, and S. Marcel. Hand posture classification and recognition using
the modified census transform. InProc of the IEEE Conf on Automatic Face and Gesture
Recognition, Southampton, UK, 2006.

[JS05] A. Jaimes and N. Sebe. Multimodal human computer interaction: A survey. InIEEE Int
Workshop on Human Computer Interaction (in Conjunction with ICCV), Beijing, China,
October 15–21 2005. Invited paper.

[JT05] F. Jurie and W. Triggs. Creating efficient codebooks for visual recognition. InProc IEEE
Conf on Computer Vision and Pattern Recognition, San Diego CA, June 20-25, 2005.

[JU97] S. J. Julier and J. K. Uhlmann. A new extension of the kalman filter to nonlinear systems.
In SPIE AeroSense Symposium, Orlando, FL, USA, 1997.

[KCX06] M. Kato, Y.W. Chen, and G. Xu. Articulated hand tracking by PCA-ICA approach. In
Proc of the IEEE Conf on Automatic Face and Gesture Recognition, Southampton, UK,
2006.



Bibliography 204

[KD05] C. Kemp and T. Drummond. Dynamic measurement clustering to aid real time tracking.
In Proc 10th Int Conf on Computer Vision, Beijing, China, Oct 15-21. IEEE, 2005.

[KH95] C. Kervrann and F. Heitz. Learning structure and deformation modes of nonrigid objects
in long image sequences. InProc of the IEEE Conf on Automatic Face and Gesture
Recognition, Zurich, Switzerland, June, 26–28 1995.

[KM96] I. A. Kakadiaris and D. Metaxas. 3D human body model acquisition from multiple views.
In Proc 5th Int Conf on Computer Vision, Boston, USA, pages 618–623. IEEE Computer
Society Press, 1996.

[KOKS01] T. Kurata, E. Okuma, M. Kourogi, and K. Sakaue. The hand mouse: Gmm hand-color
classification and mean shift tracking. InSecond Int Workshop on Recognition, Analysis
and Tracking of Faces and Gestures in Real-Time (in conjunction with ICCV), pages 119–
124, Vancouiver, Canada, July 2001.
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