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Abstract

The ability to track multiple and articulated objects is arportant one, not least in the areas of au-
tonomous and teleoperated robotics, visual surveillandehaman motion analysis. This thesis is con-
cerned with marker-free real-time detection and trackihgrbculated objects, targeting human hands
with the aim to study methods that can be applied to enhare@taraction between humans and 3D
(real or virtual) objects.

A survey summarises methods used to approach this anddglaiblems in the literature. It indi-
cates that, despite the large body of research in this fiedd venty or so years, the area still proves
challenging. Two main approaches have been identified. Tstekhown as generative tracking, uses an
explicit kinematical representation of linkages or coaisiis between object parts and tracks by minimis-
ing error of projected control points. The second, knowniasrgininative approach, little is specified
beforehand, but training data is used in order to create aoxe@peen image observations and 3D poses.
This thesis describes novel work in both areas.

In the generative area, a method for tracking of articulatgidcts is described. It is a new extension
of a method for tracking rigid objects in which the motion straints between parts of the object are
imposed up-front within the tracking process. The intarrfe pose update is derived as the solution of
a linear system. This method has been applied to track ktazliobjects, including hands and multiple
objects with motion constraints.

An alternative method is that based on estimating the mati@ach subpart independently, thereby
introducing redundant degrees of freedom, and imposingtraints later in a lower dimensional sub-
space. This method is reviewed and a comparison betweearttiithe aforementioned method is pre-
sented in terms of accuracy, efficiency and robustness.

In the discriminative area, an inference-based approaathapted in which a non-parametric relation
between global image measurements and 3D poses is leangtaisiultivariate regressor based on Rel-
evance Vector Machine. This relation is a continuous mapatavs fast and efficient pose estimation
from static images. This method can detect and estimateDh@3e of hands from static images, so it
can be applied to (re-)initialise the generative tracker.

In this thesis, the use of multiple view is adopted as a smiutdo reduce the ambiguities for both
generative and discriminative methods. Experiments withls and multiple views are described and a
novel extension of the discriminative method for multiplews is proposed and evaluated.
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Introduction

1.1 The importance of the interface in personal robotics

The vast growth in portable computer power, the looseningesifictions on wireless communications,
and advances in micro-fabrication and electronic miniastion, have all contributed to the rapid growth
of the field of personal or person-oriented robotics — a fielt embraces the areas of assistive, recre-
ational and humanoid robotics, and wearable compuling (May

In the speculative design of future products in this fieldsifrequently assumed that the human-
computer interface (HCI) will be “natural”. However, intaces between operator and machine have
been slow to evolve. The teleprinter, in use since the 1928sevolved internally but not radically into
today’s flat-panel display and ergonomic keyboard. Thelutiem spawned at Xerox Palo Alto of point
and click using mouse and GUI is going on thirty years old. @eping natural interfaces by emulating
natural competences in vision, speech, and so on, has pnoweld more difficult than envisaged — but
the motivation to develop them is undiminished largely lseaimpoverished interfaces reatly limit
the acceptance of smart devices. Who over the age of fifteeedothered to discover the key code
sequences needed to use advanced features of their videdereor mobile phone?

It is possible to identify three core areas of academic @stein the design of interfaces. First is how
to sense and actuate near to, or upongtgernalto, the human body. This is the area of perceptual user
interfaces [[TT97,_Pen00], involving speech and vision. $&eond is how to interact with and relate

to computing when it intrudes into our personal space, aa eafled social and affective computing
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[DEA99, [RN98,BAO2]. The last is the study of how to sense acwiatewithin and connect to the

human body using, for example, direct brain-computer faters [MooOlL, LCO05, WGH03] .

1.2 Hand pose recovery and tracking

This thesis describes research into the first area: in pdatiénto visual sensing for the recovery of
hand pose and its changes over time. The hand, and our skilbofpulation, differentiates humans
from all animals but the primates. It also plays an importéie in the interaction between people, in
conveying meaning and intention both non-verbally and azdalition to speech. Particularly powerful
are pointing or deictic gestures which provide disambiguatand gestures which accompany facial
expressiond [PSH97].

The first developments in hand pose estimation and trackieig wchieved by using mechanical
devices and gloves. Sturman and Zeltzer [SZ94] commengdtitte history of tracking devices for me-
chanically or electrically interpreting hand motions begéth post-WW!II development of master-slave
manipulator arms’ but they noted too the development of Hreggraph during the Renaissance. One of
the earliest optical hand tracking systems, based on LEBs that of Ginsberg and Maxwell [GM83].
However, such was the unreliability of vision-based haadkers, that glove-based and mechanical sys-
tems (like the Phantom) were the only devices in use in th®488d 1990s. Indeed, they remained
the sole way of recovering detailed and continuous joinbrimiation until very recently, when visual
marker-based systems became commercially availablelfg.gicon). Their disadvantage is that, even
when using the lightest fabric, glove-based devices mgtre movement of the hand they are meant to
measure, and the user must carry either signal and powers;avlbatteries if wireless links are used.

There are a several factors that contribute to the difficofityisual tracking of the hand and recovery
of its pose.

First there are issues of modelling. The shape of the hanitisrtain, even when the joint angles are
known, and the lengths of the inter-joint links (bones) ae@rebd. This is because the amount of tissue
on the bone differs from person to person, and because iteezgd about when the hand moves.

Then there are the problems of feature detection and dateiation common to any tracking pro-

cess. These are hugely compounded by the high degree of actlizsion, and of “apparent occlusion”
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Figure 1.1: The human hand skeletal system and degreedbimreof each joint as described by [StL92].
(©[Stu92], reproduced with permission.)

where finger bounding contours are lost. It is, for examplehw impossible to determine the degree
of flexion of fingers in some configurations using a single aanfiécing the back of a hand. These dif-
ficulties arise too in whole-body motion capture, but are etimes eased there by the different colours
of clothing. Work in gesture recognition has frequently lekpd this, using gloves with differently
coloured fingers (e.gl [Lyo(2]).

Again on the “data side” of the processing the speed of hangements can be very high, not only
of the hand overall, but also of the joints, causing motiair,ldliasing, and loss of tracking. Again the
hand presents more acute problems than that of whole-bodipmavhere the motion is slower, more
constrained, and often cyclic (e.g. walking).

Even when the above are solved or finessed, the core difficeritypins. Recovering the pose is an
optimization problem in a high dimensional space. Togethdrand and a forearm have 29 bones and
18 joints with observable movements, each joint with up tegrdes of freedom (DOF), as shown in
FigureT1. Even the more compact model used conventiomatlgmputer graphics models hands with

20 or 21 DOF. Such dimensionality can be reduced using thesmobnstraints imposed by tendons and
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Figure 1.2: Muscles and tendons of the back of the hand int®donstraints on hand coupling joint
positions. (©[Stug2], reproduced with permission.)

limitations of muscles in natural hand motion, as illustchin Figurd_LPR.

Finally, but very much related to the difficulties of taminigth dimensionality, is the fundamental
uncertainty as to what the overall problem representatimulsl be. Some would argue that although 3D
modelling has its imperfections, much is known about hundylshape, kinematics and dynamics, and
these should form the basis of any explanation of the imatge @thers would argue that the visual data
do not support recovery of a highly parametrized model, hatexplanations based on non-parametric

fitting of training data are more valid.
1.3 Key approaches

These two quite different approaches to estimate the posgiofilated objects in 3D are apparent in the

literature: generative and discriminative.
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1.3.1 Generative algorithms

The more traditional approach for tracking of objects in 3R@npasses thgenerativealgorithms, also
known as model-based or “estimation by synthesis” methB&SD]. In these methods, an initial es-
timate of the pose is used to update a model that predictpieasance by projecting a 3D model into
the image at a predicted pose. Then new measurements aireeditmestimate the pose update, as illus-
trated in Figur€Tl3. The object model usually is a computaplgjcs replica of the target object designed
by hand. In this approach, the accuracy of the object modkttzmcamera calibration parameters are in

many cases critical points for the tracking performance.

Figure 1.3: Generative approach for tracking: for each &aam optimisation algorithm uses a motion
model and the difference between the projected object mamlithe observed image to estimate the
motion parameters, which then update the model pose.

Hogg's Walker [Hog8B] is an example génerative model-basedethod, which relies on a more or
less realistic jointed body model “enlivened” with a setaihj angles to predict appearance. The angles
are adjusted to best fit the actual appearance in the imaget hMad and body models present in the
literature use standard or generalised cylinder moflelg8d@MN78BM9I8[ SBFUO0], but both simpler
planar and more sophisticated deformable models have tseeheug.[[JBY96k, GD9Y6].

Although it seems intuitive to use depth maps from sterececam(e.g.[[HHDY8]), cheaper image
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features can be explored. The most widely used feature inhimat between image and model is the
edge, e.g.[IGDY96, DBR00, DCOZ2, Bra99, dTMO06], but incregsise is made of internal features, such
as cornerd [TMdMOZa] and image motion [BM98, SBHOO, Y98, 99N

The key distinction in fitting pose to the image data is betwwerks that adopt statistical techniques
based on simple unimodal probability density functions EBand solve deterministically, e.. [BM98,
DCO02,[dTMO06], and those that represent arbitrary multinh@&IaFs using mixture models or particle
filters [SBEOO| DBROO, 1B96]. Overcoming ambiguities, paurtarly troublesome from single views, is
explored in [STO1ld, RMKQ3]. By using a set of constraints lnelar relations between joint angles, a
closed-form solution for the inverse kinematics can beiabthif control points are reliably located in
the finger tips and the hand palm [LH98]. However, this is guigsible if visual markers are used, for

marker-less tracking, more sophisticated estimation austlare required.
1.3.2 Discriminative algorithms

Discriminative approaches for 3D pose estimation provideidge between 3D model-based and 2D
appearance-based methods. Although such methods outpasiconfiguration of articulated objects,
these outputs are obtained after view-based measureméhtsutvthe projection of an object model
at a predicted pose to restrict the search. Instead, thebamed on methods such as classification
[ASO2,[AASKO4 [ TSTCOR, STTC03], temporal series [Bra99}emression methods [RASS01, ATD4c].
The relationf(-) between image measuremestand 3D posey is learned from the data, i.e., sets of
correspondences — y. Furthermore, the set of measuremextmay not have topological meaning

and can be, for example, a set of global image descriptogsir€fil.% illustrates this approach.

Joamera
Jeamers”

Figure 1.4: Discriminative approach for pose estimatiormapping learnt from a large database of
training pairs can output a pose directly from image measargs, without needing a model to generate
image measurements.
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Ideally training image measurementsand anglesy would be recovered simultaneously. For the
hand, the best — or at least the most obvious — method of rengyeint angles is using a data glove,
but unfortunately wearing the glove ruins the imagery. Fhole body, Hwang et al[ |[HKL06] recently
presented a data base of 3D poses and silhouettes, but metHasen done for hands yet. Furthermore,
this constrains the training set to the grabbed images,mgakinore difficult to try new camera configu-
rations or to vary the global orientation of the hand to abtaimore comprehensive training set. Another
method is to generate synthetic imagery from a hand modegssinthesised joint angle data. In order
to constrain the angles to natural motion, a commonly engaaypethod[[Bra9<, AS038, AT044a] is to
render imagery from 3D models using joint angles previowsgovered from given data. This provides
accurate ground truth data, but the resulting accuracyeoptise estimation for real images is reduced
by the lack of realism in the training set.

These methods can be implemented using global image measui® so prediction of the pose is
not necessary and such methods can work without a coherspbtal sequence. On the other hand, their
accuracy and comprehensiveness in terms of the paramets splimited by the training set used, and
the image measurements tend to be more expensive than tfrgeseenative methods. But the growth of
computational power has recently enabled the implememntati methods that can cover a large range of

3D poses that can be recovered quickly.

1.4 This thesis

In this thesis, both generative and discriminative apgdieachave been explored: a generative model-
based 3D tracker that assumes that the inter-frame motitredfand can be reasonably well predicted,;
and a discriminative image-based 3D hand detector that eaapplied for (re-)initialization of this
tracker. Thus, the advantages of both systems can be codnliime robustness of a discriminative de-
tector with the speed and accuracy of a generative trackiee. detector provides a set of initial pose
parameters that roughly describes the pose of the objees tgie observation, and the tracker quantita-
tively refines the estimates at each iteration (and for eaghimage frame).

While this work is centred on sensing and perception, it wvalbped in the context of other work

in the Active Vision Laboratory in Oxford in wearable comimgi, and is envisaged as the precursor to
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Figure 1.5: Overview of a motivating application. The usematched by external cameras that track
the head gaze to determine the focus of attention and thesharnateraction with objects. A wearable
camera provides information from the user’s view point amel tombined outputs could be used to
control an assistive robot arm.

exploring actuation in assistive robotics. Figlrd 1.5 clkes the sort of assistive workbench proposed.
This thesis addresses the element of hand pose recoveryasitiple cameras, work that is described
chiefly in ChapterEl4]6 arid 7 and has been published in [dT06]dM06]. Figuré_ 116 shows typical
results. Of lesser relevance but still pertinent to thisithés the work on head tracking using 3D ap-
pearance models df [TMdMORa], and the body of work on actieanable cameras described in Mayol's
thesis [May0%]. Some experiments using the wearable t& trands are reported here in Chajifer 4 and

in [AMMO8].
1.4.1 Thesis outline

Description of the experimental work commences in Chdgtavi®re certain background matters are
outlined. The physical work space for tracking is descrjlbeltbwed by the client-server architecture for
monitoring trackers that can run in parallel and the camatibration algorithms. Also included is the
skin colour detection method, which is a key developtmerthisfchapter, being used as a component of
the works published i [TMdMO02b][ TdMM06], [MTdC03] and [dMO86].

Chaptef# describes an implementation of the RAPID rigigatbijracker[[Har92a] and experiments
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(a) (b)

Figure 1.6: Example results from (a) 3D kinematical tragkémd (b) 2D appearance based pose recover
using a Relevance Vector Machine — work described in Chsfitandl respectively.

with multiple views using synthetic data. This is followeg the description of an application that
combines a simple 2D image-based discriminative deteaRAPID to estimate the pose of a pointing
hand in 3D from the view of a wearable robot. This system isrtfaén contribution of this chapter,
published in[[dMMO6].

In ChapteEDb, a novel extension of RAPID is proposed for tiregkf articulated objects. This tracker,
dubbed ART (Articulated RAPID Tracker), is tested on somgusaces of images containing synthetic
and real articulated objects. Next, Chapfer 6 describethangtate-of-the-art approach for real-time
tracking of articulated objects [DCD2] and shows compassw@ith ART in terms of accuracy, efficiency
and robustness. This novel comparison has been publisHe@MDE6].

Chaptell ¥ describes a discriminative approach for hand essmation from static images. This
method uses global image measurements based on shapet€{Bfd02] and a regression method
[AT044] to map measurements to 3D poses. The effects of thefustation invariance shape contexts
are analysed. The key development is a combination of nhltigws. Experiments comparing the

performance of single and multiple views indicated thatgreposed multiple view extension improves
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accuracy and reduce the complexity of the regressor. Thik tas been published ih [dMD6].

Conclusions are drawn at the end of each chapter, but CHaptexws the various threads together
to provide a formal conclusion to this thesis and to list i@imcontributions. This chapter also points
out new possibilities of research that are open as contonat the work presented here.

But the thesis continues now in Chapter 2 by presenting & geitailed survey of the recent research
achievements in object, person, limb and hand tracking. ré%iew is rather longer — actually, much
longer — than that which is required to support the remaimingpters. (Indeed, at first reading of the
thesis, it may be best to continue to Chapler 3, and retuen)athe motivation for writing at length is

touched on now.
1.5 A postscript on available subject reviews

Although there are a couple of reviews in the literature forl&and pose estimation — Wu and Huang
[WH99KE] review model-based methods for hand analysis amdation in HCI and Erol et al.'s review
[EBNT05] also includes discriminative and mapping-based metfiodpose estimation from a single
frame — there is a lack of archival review material on methtodsack articulated objects.

Some useful material is contained in the reviews of the l@pédlds mentioned below, but it is dif-
fuse. In the area of Human-Computer Interfaces (HCI), Pop@per [Por02] provides a comprehensive
survey on the use of vision in HCI. Turk’s slight later revi@lur0O4] targets non-expert readers. Jaimes
et al. [JS05] cover multi-modal HCI, including all the senses.ribet al [DGHT02] review methods
regarding to three sets of criteria: the task that they araded on: detection, tracking or recognition;
the models used to represent humans; and the method for pdatewsed; before focussing on adaptive
HCI.

For the field of Human motion capture (HMC), Aggarwal and (3&C97] present taxonomies of
past research subdividing them on motion analysis of hurodg parts, tracking of human motion with-
out using body parts, and human activity recognition. A Emsubdivision of the research literature
was adopted by Gavrila [Gavi99]. Moeslund and Granum [MGOo&fent a more comprehensive sur-
vey, proposing a taxonomy based on functionalities, iteey tdescribe methods that combined would

compose a complete HMC system: subject modelling and lisdition, segmentation and tracking, pose
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estimation, and action recognition.

When reviewing Gesture Recognition, Cas5el [Chs98] saiagptovide a common framework for
the generation and interpretation of spontaneous gestwckiding facial expressions) in the context
of speech. Watson [WatbP3] presents the earliest survey igesl appearance-based methods based on
classification or tracking of deictic gestures. The survgyPlavlovic et al. [PSH97] was the first to
discuss view-based vs. 3D model-based methods. They sugipanodel-based methods, but admit
that this approach is more challenging, which explains wieywsbased methods have been explored in

more depth. Parts of this survey have been updated in [WHSSE[WHO1].



Articulated object tracking and pose
estimation: a literature survey

2.1 Introduction

Research on vision-based sensing of hands was first reportied early 1980s, but the last decade has
seen a burgeoning of the field, driven, of course, by cunwagirogress in vision algorithms, but also
by advances in computing and camera hardware and the pedloelue of potential applications. This
chapter presents a detailed survey of hand pose estimatebtracking methods. A number of methods
for human motion capture have also been included, becaubkeioparallels with hand tracking.

The review has been divided in three sections. SeEfidn Z.@riserned with 2D methods, and starts
by reviewing image-based methods that run “model-free”eént®n[Z.Z.1L, methods based on exemplars
are reviewed in Sectidn 2.2.2, and those that run with witm&ilels are considered in Sectlon212.3.

Section[Z.B is concerned with those methods where the medglilt in 3D. There is a consider-
able number of methods that use partial 3D models, and theseudined in Section 2.3.L,2.3.2 and
Z3.3. Methods that include quite complete kinematic modet less varied, and these are examined in
SectiolZ314=237.

SectiorZ 4 of the review considers the intermediate clasgethods which has come to prominence
in recent years where 3D shapes are deduced directly fromeirappearance. High-level methods for

action and intention recognition are not included, antklattention is given to gesture recognition meth-
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ods. The survey concludes with a summary, a list of challetigat still remain, and some considerations

as to likely future directions in the field.

2.2 2D methods

Two dimensional or image-based approaches are applicapl®blems where it is enough to recover a
two-dimensional description of the hand pose and a quaktatescription of the gesture. The number

of recognisable gestures is limited, but they can be verysob

2.2.1 Model-free methods

Some methods do not model the hand’s appearance. Insteattdahk a cloud of moving features or
blobs that are likely to be hands, and attach meaning to tit&BT98, Que9s[ WADPS7, BPH98,
WLHOQ]. One of the most robust model-free methods is that @sK and Turk[[KT04b]. It uses a set
of KLT feature trackers (named after Kanade, Lu¢as [LIK81 @&omasi[ST94]) which is initialised in
the hand region (see Figure2.1). The position of these fiesis bounded by the skin colour blob and
a geometric constraint that prevents features being Iddate close to or too far from each other. The
hand position is determined by the median feature amongethelsis system is able to work at video

rate, with performance superior both to that of a raw KLT keacand to that of a mean-shift tracker

[Bra9g].

Figure 2.1: 206230 pixel areas cropped from the %24880-sized frames of a video sequence showing
the tracking result with highly articulated hand motion.eftioud of dots represents the flock of features,
the large dot is their mean. (From [KT045], reproduced with permission.)

2.2.2 Exemplar-based methods

Exemplar-based representations are simple to create anchpable of representing highly nonlinear
configuration manifolds. Exemplars can be thought of as mmHy preprocessed select representa-

tives of the training data itself, which together ‘span’ taege of the modelled entity [And01]. Some
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exemplar-based methods do not present any pre-processim@red use whole image patches to repre-
sent instances of the target object. For instance, DamdllRenland IDP95] simply use correlation for

gesture recognition. In some cases, even parts of the lackgrare included. For this reason, such
methods are usually memory-intensive. In most cases, acgw@nd speed are achieved by using fast

search methods, powerful classifiers and temporal infoomat
Efficient classification methods

Gavrila and PhilominIGP99] use chamfer matching and a estrgine search in the image grid to speed
up matching. In order to detect multiple body poses, a dae@béshape templates is partitioned into a
number of clusters following their dissimilarity. Clusteg is done recursively, leading to the creation of
a tree of templates. Matching is then done by traversingrédeestructures, from root to leaves, following
the path with most similarity with the observed image. Thisnes a large number of comparisons that
would be done if exhaustive search was used. Pedestriactidates performed at near video-rate, but
the accuracy of this system is between 75-85% of detecti@n ra

Boosting [RO0OD] is a fast and powerful classification tegeibased on a weighted cascade of weak
but quick classifiers. This combination provides accuraselts with a good description of the decision
boundary. Viola and Jones [VJ01] proposed a method for bbgeognition based on boosting of simple
image features founded on Haar wavelets. Their resultsaice tletection make this a gold standard
method for this task. Although its application is quick, tregning phase is computationally demanding.
Variations upon the method have been applied to hand trgckitth nuances to improve the training
time [KT044], [JRMOG6], WAPOB]. Lockton and Fitzgibboh [I0E] applied this for real-time gesture

recognition to replace keyboard and mouse.
Using temporal information

A variety of techniques has been employed to model tempe@lences, including PNF (past, now,

future) networks[[PBEZ8], tree-based sealch [Lyo02], fisitee machine§ [HTHOO] and, most commonly,

Hidden Markov Models (HMMs)IWBAS(3], probably due to itscess in speech recognition.
Starneret al. [SWP984a] use HMM to represent a lexicon with four stategtmgnise some gestures

of American sign language (ASL). The silhouette of the haarésobtained with skin detection and they
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Figure 2.2: (a) Camera with multiple offset flash source9.Ttie letter ‘R’ in ASL recovered Canny
edges and the depth edges obtained with the technique ofdtaii (©[ETR™04], reproduced with
permission.)

are described using a 16 element feature vector built frosccbmoment-like blob measurements. In
[TBO2], Toyama and Blake show how two dynamic processesdbédlmotion and shape changes) can
share the same joint observation density provided by thenfdradistance. This leads to an attractive
homogeneity of description and implementation. The drakbsa that this requires the use of a large
particle set, which must simultaneously represent hymeathef both shape and position. Fei and Reid
[EROZ] argue that in many applications these processesocavén should) be decoupled, potentially
leading to a more economical use of particles and hence sdagrefficiency and reliability. They propose
a method for the analysis of complex hand motion that assuhaghe hand motion consists of two
independent components: cyclic shape variations and legiolr motion. The former is modelled by an
HMM using silhouette moments, the latter is a particle-das®our region tracker. Each maintains a full

PDF of its respective component of the motion, and they aatevia an importance sampling function.
Matching image information

This review turns to consider how the observed image is nedtetith prior knowledge of the hand’s
appearance. The simplest method in terms of implementaitamplate matching or normalised cross
correlation as used in [FABOE]; but it is very common to use shape descriptbrs [dCJ01hémd pose
classification[[YI98], image moments [HuU62] being populasctiptors for this task [FAB9E,[Lyo02].
Other descriptors employed for matching are (i) those basethe analysis of the curvature of the
silhouette contoul [HSSD2] and (ii) polar histograims [O&j@®mputed from the centre of the silhouette
of the hand[[WAPOG6]I[FTR04]. (The second reference uses a multiple offset flash ghelfrecover

depth edges in hand images. The illustration and resultigiré[Z.2 are a good example of the difficulty
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caused by partial occlusion.) InJTSTCO03], Thayananteaal. compare two methods for matching of
Canny edge images. One method is based on shape contexteanithéin combines an exemplar-based
detector based on chamfer matching with an optimisatiorhatefor model-fitting. They conclude

that chamfer matching outperforms shape contexts, but feramatching requires a high number of

templates for matching.
2.2.3 Trackers with 2D object models

Prior knowledge can be exploited to obtain a more quantéadiescription of the hand shape. Model-
based methods use a description of possible hand shapesaakihg is performed by matching the
model pose with the observed hand images.

Active contours|[BI98] as well as deformable templales [BHICTI5/BS0P, Bowg9, KHI5, BEDS,
TLC 98] have been used to model the hand’s appearance in imag#sas robust to small variations
in pose and shape of the hand. Deformable 2D templates cegnpoints on the outline of the hand
that are used as interpolation nodes for an approximatiaheobutline. The template sets and their
corresponding variability parameters are stored, andmradnvolves minimising the summed squares
of differences between points from the image silhouettetl@templates. This is a simple and successful
method if the original viewpoint is maintained, or if chaexistic views are available. Triesch and von
der Malsburgl[TvOIll] employed a variation on this approadaistee graph matching, in which the hand
image is represented as a labelled graph. The distribufiondes describes postures in 2D.

Another image-based method to track an articulated modglpn@posed by MacCormick and Isard
[MIOQ]. With an articulated model and active contours toreegt the index finger, they tracked four
degrees of freedom, namely planar translation, oriemtatfothe thumb and of the index finger, using
CoNDENSATION[IB98| [IB9€]). Unlike model-free and classification-basedthods, this system recovers
continuous parameters rather than recognising gestunesdrdiscrete “vocabulary”. 1nMI00], the au-
thors show the application of this tracker to implement &uairworkspace with a more natural interface
for drawing objects, as shown in Figurel2.3.

For whole body tracking, more complex articulated modelgeHaeen used recently assuming that
each limb part can be modelled in the image by a rectanguémestBregleet al. [BOC™98] model the

body segments with a multi-dimensional mixture of Gaussiaibs, modelling motion, shape and grey
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Figure 2.3: The virtual workspace describedlin IMI00]: tharhb activates the pen and the orientation
of the index finger continously controls the thickness oflihes; the black piece of paper (tracked with
a simple Kalman filter) controls the position and orientatid the whole drawing image.  (©[MI0Q],
reproduced with permission.)

level distributions. The blobs are initialised using motmoherence likelihoods, based on optical flow.
For a two parts articulated body, they use Expectation-Mgadtion to estimate the pose with simple
kinematic priors to constrain the blob estimation. In theardboard people” tracker Rt al. [JBY96b]
use three different views, viz frontal, oblique and side tindesign two-dimensional templates that
represent projections of the object in each view. They tiaalking motion, but it is assumed that the
orientation of the object does not change along the sequdnecet al. [LPV06] use a planar layered
model capable of handling occlusion for gait analysis. Rahebody part, it actively selects which side
is more likely to have reliable edges for walking movemeats(ding, for example, edges between the
legs because they are often perturbed by clothing). Loaeking of body parts is based on mean-shift,
and strong motion priors (such as arms move in oppositiomighs$) are included. Good results are
reported for examples which conform with these priors.

In [MR98] Morris and Rehg model the projected motion of areirbint link in the scene as affine
flow patches with imposed kinematic constraints. This idlainto Ju’s modell[JBY96b], but with fewer
parameters and a more direct connection to the underlytimyted motion. These two approaches are
compared in Chaptéi 6.

The above methods give continuous pose estimates in 2Dhwéiwt always required in problems
related to registration of articulated objects. Felzermbkvand Huttenlochel [EH0O0, FHO4] proposed
the use of pictorial structures for object recognition,dshen dynamic programming with discretisation

of the parameter space. The algorithm searches the paraspeiee to minimise a cost function that
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combines the matching score of the object parts with kineneanstraints. The matching score is based
on how well rectangles can fit areas segmented by backgradotichstion. The joints have a spring-like
model and the kinematic constraints try to minimise thegrde of distortion from an up-right pose.

Ronfardet al. [RST02] built a similar system, but they replace the ratheple part detectors with
dedicated detectors learned for each body part using Relevéector Machines (RVMs) [Tip01], which
are support vector machines-like classifiers that offer #-f@ended probabilistic interpretation and
improved sparsity for reduced computation.

Ramanan and Forsyth [RHO3] use clustering to learn the agpea of objects that move in a video
sequence. This approach, calfedeground enhancemeris different from traditional background sub-
traction since it is used to learn the appearance and notdgé&ople. Therefore, once the appearance
is known, they can track people who initially stand still,lsng as they move at some point. They use a
probabilistic graphical model to locate and track multipéple in video sequences.

Kumaret al. [KTZ04] extend Felzenszwalb and Huttenlocher’s apprd&€f04] by using a complete
graph model, rather than a tree structure. In order to egithe maximura posterioriestimate of the
pose and shape parameters, a loopy belief propagation dhethesed, which is a message passing
Viterbi-like algorithm for graphs with loops. The authofsoss that this gives more constraints for the
pose estimation and better results than a tree structure.

More robust to unconventional human body poses is the methbtbri et al. [MREMO4]. It uses a
method for segmentation that gives t@bability boundariedbased on brightness and texture. This is
applied with two different parameters: one that segmemgi®ns of the image large enough to be likely
to contain half limbs and torso segments, and one that sgmgnents the image, givirgyuper-pixels
Next, a method for detection of salient body parts is appletthe large segments. This method is based
on four cues: contour, shape, shading and focus. These riesrabined and the regions with highest
score are selected and combined using constraints orveslgiilths, lengths, adjacency, and similarity
of clothing. The output of this system is a ranked shortlfgta@ssible configurations of the human body
in the image. Each pose configuration is obtained from thecesson of different segments of the
images, which enables the computation of a body segment@ie Figur€2]4). The main drawback of

this system is the dependence on its training set for robastnFurthermore, the design of this method
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was driven by its data: baseball players images. This atlote use of specific features, such as the
symmetry and regularity of the players’ uniforms, which,nost of the showed images, are highly

distinguishable from the background.

super-
pixels salient
limbs \
input partial full
image > regions configurations | | configurations
& \ salient / ¢ &
. finding torsos . limb .
segmentation body parts pruning completion scoring
(a)

(b) () (d) (e)

Figure 2.4:(a): Data flow the algorithm of Morét al. [MREMO4]. (b-e): Selected result from the short-
list of final configurations: (b) input image, (c) candidatfdimbs, (d) extracted body configuration,
(e) associated segmentation. (©[MRENO4], reproduced with permission.)

The method above estimates pose from single images indepiydr his review now turns to meth-
ods that exploit spatio-temporal information.

Yacoob and David [YDZ8] use an approach for learning andnesitng temporal flow models from
image sequences. Such models are created by applyinggalimgmponent analysis to time sequences
of parametric models of body part motion. These observatase obtained using the “cardboard body”
of [JBY964]. This approach bridges the gap between traditimstantaneous optical flow estimation and
multi-frame motion estimation. The learned motion mode¢sigsed in a spatio-temporally constrained
image-motion formulation for simultaneous estimation@fegal rigid and non-rigid motions.

Wu et al. [WHYO03] also explore temporal priors, but instead of cosisiing a spatio-temporal man-
ifold, a motion filter is used. Articulated objects are notdalbed as single objects with low-DOF joints.
Instead, each rigid paft is measured#y) in the image independently and the pose of each part is re-
dundantly described by its poseg, independent from the other parts of the object. The measnts
of each part give a local likelihoogl, (zx|xy) for the pose. The local prig; (z;) can be obtained using

temporal information, thus it depends on previous measeinésn This is combined with neighbourhood
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Figure 2.5: Mean field Monte Carlo tracking of 3-part fingeeganted in[WHYO3]. (©WHY03],
reproduced with permission.)

priors, which constrain this part to be connected to its maigirs. The system is modelled with a dy-
namic Markov network, which serves as a generative modeihrarticulated motion. In their most
challenging experiment, a 10-part articulated body wasked at 0.56 frames/second, using 200 par-
ticles per part, but the lack of different texture on handsarake this difficult for hands. Figute 2.5

illustrates the results for a 3 parts finger.
2.2.4 Discussion

2D image-based methods simplify tracking and pose estimdly focusing on motions that are parallel
to the camera plane and by restricting the appearance chadgeonsiderable robustness is achieved
with methods that model (or are invariant to) scale and sliéyp@ges, but they either do not provide
enough information about the hand poseg(model-free methods) or they are view-dependent. For in-
stance, methods that use image-based articulated modedtraggle with fingers pointing at the camera.
Such methods have not successfully been applied to full-B@&le hand tracking because the lack of

strong textures challenges their effectiveness.
2.3 3D model-based tracking

The models in the previous section were two dimensionals fdview now considers methods based on
3D models, starting with those that employ a simple rigid gidad track hands, moving on to methods
in which specific image features locations are used, andhgwiith those that model many or all of the

available degrees of freedom.
2.3.1 Tracking hands in 3D without estimating fingers joint angles

Several early 3D hand trackers used rigid hand models, Wwéhrttention of using the hand as a 3D

pointer or mouse. IN_J[COK93] Cipollat al. tracked four coloured markers on a hand (three on the
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ends of fingers) to recover 3D orientation which was then usembntrol the orientation of a graphics
model. Without using colour markers, Cipolla and Hollingdtu/CH98] tracked the thumb and index
finger using active contours. The intersection between tigefiline visible from the two cameras and
a ground plane was computed, allowing for simple interactioth a robot. Bretzner and Lindeberg
[BL98] used three cameras to track three fingers to estabtiinthe position and orientation of a rigid
hand in 3D. An ingenious alternative to the using multiplews was the use i [SKB9] and [SL'NdZ]
of a single camera with multiple light sources to cast shadomto a planar surface

In [©Z0d], O’'Hagan and Zelinsky propose decoupling gestecegnition and pose estimation. Their
system assumes a 3D rigid planar hand model. A curvaturgysieallows features on the outline
of the hand silhouette to be selected in each image of a spaeoallowing the planar pose of the
hand palm to be determined. An image-based classificatioondined with 3D rigid hand tracking to
recognise gestures. More practical results are shown bgrSagd Kumar[SK98, SK00] in a video-rate
application. As in O’Hagan and Zelinsky, gestures are resegl using peak and valley detection on
the hand silhouette. A finite state machine analyses movisnienefine gesture recognition. The same
image features are also used to estimate 3D position, dziamat elevation for both the index finger and
the thumb. This system is applied to 3D scene compositiomanidation.

Satoet al [SSKO1] use skin detection to segment hand blobs in a twoetasnsystem, allowing
the 3D position to be computed through triangulation of teete of the hand. The orientation is then
determined using the principal axis of the hand and the teftraght end points. A small set of gestures

is recognised using a neural network applied to segmentethalised and sub-sampled hand images.
2.3.2 3D tracking of an articulated arm with fixed basis

A number of authors have modelled and tracked hands as aeritpdsions of the forearm, articulated at
the elbow and shoulder. Goncalvetsal. [GAUP9%5] BGPY96] developed a monocular system capable of
tracking human arm in 3D where the limbs are modelled as &teaccones, the shoulder is a spherical
joint and the elbow is a planar joint, giving the model 4 DOReTmage measurements are obtained by
thresholding and smoothing the image, and the method pesfdD searches for the highest gradient
perpendicular to the projection of each limb segment (fwneaarm and hand tip). Only five control

points per segment are searched. Tracking is performed bguasive estimator that performs random
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walk in the spherical joint velocities and uses the Extenlatiman Filter. Ambiguities are avoided
by constraining angles. Tracking was achieved at 11 Hz (851%hen typical processor speeds were
100 MHz) and the standard deviation of the estimates of hgnpaosition is some 1% of the distance
between the camera and the user’s hand.

Vogler and Metaxas [VMSZ6] use three near-orthogonal viemgienpose priors on the human body
shape. Deformable silhouettes are used and heuristicpphedto locate the position of joints. For
tracking, the method actively selects of the best viewpfinteach body part in each frame [KM96]
and, once selected, planar rotations and translationsstireagded to drive updates to the 3D model. A
Kalman filter is used for prediction and gesture recognit®performed using an HMM to recognise a
set of 53 gestures from ASL. (The word accuracy achieved Ww88% for the 3D context-dependent
experiments with 456 testing gestures. The authors madefuseommercial HMC system based on

magnets interchangeably with their vision-based method.)
2.3.3 Using finger tip locations

If a reliable estimation of the position of the finger tips im#able, it is possible to obtain solutions
for hand pose using inverse kinematics [Cia89]. Both sif@@H0Z], [LHOC] and multiple cameras
[Lie04], [Reh9%] have been used (as, incidentally, hasradtiumination [SKKO0] and laser tracking
[PCIO03]), and a wide variety of methods have been proposddttxrt and locate fingertips. These include
(i) coloured markerd [Lie04, CGHOR, LHOO, RLOQJ; (ii) ciecbetection by fittingllvHBO1] and Hough
transforms[[CCQ3]; (iii) line detection with the Hough tefiorm [Ahm95%], [GWOO]; (iv) curvature anal-
ysis [YI98]; (v) correlation [[Renh95]; and (vi) trained nalmets [NR9B]. To eliminate ambiguities
constraints imposed by limitations of muscles and tendamst e included in the model. Most use hard-
coded linear dynamic constraints between joint anglesdaae the dimensionality [LH98, CGHO02]
Motion priors are used to predict over periods of occlusiadQd,(Lie04 [RLOD].

Perhaps the main advantage of these methods is that theyt dequire a model of the hand to be
back-projected into the image. However, if no colour maslane used, detection of fingertips is very

challenging particularly if the image region around a fintigeis skin coloured, as is common situation

For instance, the relation between the proximal inter-ghgéald; and the distal inter-phalange® joint angles is mod-
elled ash, = 2/36,. The abduction dofs are often ignored adin [CGHO02].
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when the fingers are bent. Even when markers are used, themeesnt of the palm is made unreliable

by skin movement.

2.3.4 Marker-less articulated tracking using complete 3D mdels

The methods described on this section onwards involve ta@ia complete 3D model.
Symmetric tracking with a kinematic chain

In the early 1990s Rehg and Kanalde [RK94, Réh95] developefirgt system to track unmarked hands
using a realistic (27 DOF) 3D kinematic chain at near viddes:aFinger phalanges were modelled as
simple cylinders, fingertips as halves of spheres, and tine @sa couple of planes linking two cylinders.

Two feature extractors to measure the sum of squared diffese(SSD) were presented: deformable
templates registration and point and line features. In tetepegistration, the cost function is based
on intensity errors used to measure the geometric misabghimetween an input image and the image
predicted by the projected kinematic model. Each fingerssideed by a planar template deformed with
an affine transform to approximate the projection. Templagi®vide a useful level of generality, and
make it possible to exploit arbitrary texture cues. But fapacific object like the hand, the constraints
provided by the template matching can be approximated bglypgeometric error functions involving
point and line feature$ [RK94].

Point and line features tracking is performed by projectirgmiddle axes of the truncated cylinders
onto the image and searching for edges in directions peipdadto the projected segments. Search for
edge in the finger tips is also performed. The significantiydlocomputational cost of computing point
and line features makes on-line tracking possible. Theluasierror between the estimated position of
the features and the actual located features are combitketiiammised using a weighted Gauss-Newton

iterative method to estimate the state update as follows:
Qeyr = A — [I0 Ik + 5] I] Re, (2.1)

whereJ, is the Jacobian matrix for the residugl, both of which are evaluated with the state vector
q; andk is the iteration indexs is a constant diagonal conditioning matrix used to stabiliee least

squares solution in the presence of kinematic singularitie
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The method was implemented on multiple processors usingraepframe grabbers for the two
cameras and a separate computer to render and displayithatest model, resulting in a 10 Hz tracking
of 19 degrees of freedom (where the middle fingers were nokédd and 7 Hz on all 27 degrees of
freedom. The on-line version did not include Rehg’s methaatolusion reasoning, which was restricted
to off-line because of its computational complexity. Altigh the palm is modelled, for simplicity its
projection is not used for tracking.

Lu et al. [LMSOO03] describe a method for hand tracking using a singles from a motion sequence.
A combination of spheres and truncated cones models theaeppee of each part of the hand. Three
image cues are used for tracking: edges, optical flow andrgipatformation. Since there is not much
image features on bare hands, the standard optical flow cmilgrovide good results. As a solution,
optical flow and shading information are combined using aegdised version of the gradient-based
optical flow constraint that includes shading flow, i.e., agiation of the shading of the object as it
rotates with respect to the light source. Similarly to Rehgork, 2D image feature discrepancies drive
changes in 3D pose via the Jacobian. To combine the multigs, d_uet al. use Lagrange multipliers.
An iterative method to impose joint constraints is also dbed. Basically, once the pose estimation
results on some of the joints moving further than its lintig joint is fixed to its limit and a new solution
is estimated with this joint modelled as a rigid object. kiag at 4 Hz was achieved on a Pentium 4
1 GHz cpu.

An alternative to Rehg and Kanade’s notation was propos&téyler and Malik in[[BM98]. Instead
of using standard full projective geometry, scaled ortapyy is used. Thus the effects of changes in
distance from the camera are compensated by changes irostiateobject. This seem to be appropriate
for problems with unknown camera calibration and objeat$rtan the camera, as it is common for full
body tracking. The image measurements are based on coomo$ internal pixels of warped image
of object parts. The method is formulated using Lie Algebea, the motion between each pair of object
parts is represented using a combination of the exponeuitidde canonical matrix of the coordinate
frame of each DOF. These are used to build a linear relatiprisftween instantaneous motion and
pose change, allowing to obtain a least squares approximatithe pose update (exponential twist) for

articulated objects, given the image measurements. Asrshio@haptefD, this turns out to equivalent to
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the motion screw obtained by standard Jacobian-based dsetboarticulated object pose update. The
experiments in([BM98] show successful tracking of a 6 DOF harbody using a single camera and of a
19 DOF body using three cameras and a well-known “Eadweargbkitige” sequence. The frame-rate

achieved is not reported.
Whole body tracking using a quantised feature space

In their influential work, Gavrila and Davis [GDB6] modelldte human body using superquadrics. Four
widely spaced cameras were used, and the model projectecdch of them under perspective. A
fitting cost was defined by chamfer matching in a filtered antk@pund-subtracted edge image, and
coarse-to-fine search in parameter space used to detetmibest-fitting quadrics,

A local best-first search was used for pose update. Howesiig 22 dimensions per human makes
the the search space large, and brute-force search daumtistgad they proposed a search space de-
composition in which the parameter space was recursivaljtipaed in a tree-like structure of subsets
of parameters. At the leaf level were single parametersvikeag optimised individually, but the whole
parameter set was used to verify the error. Once a paramatepptimised, it was fixed while the re-
mainder were optimised. The parameters that have not beecheel yet keep the predicted values from
the previous iteration. This is an asymmetric search methad different results can be obtained if
different orders are used. The authors’ preferred ordemsesons; followed by head/torso position and
inclination; torso twist; then arm pose.

The method worked well provided the image conditions wereleniaenign — the subjects wore
tight-fitting clothes of contrasting colour and the motioasastraightforward. Tracking more complex

motions, such as their tango sequence, required manueaiénten.
2.3.5 Model refinement

In order to adapt the hand model to different users, someurgsers have also optimised the “static”
body parameters. Let al [LMSOO03] for example refine the length and thickness of fiagehile
tracking. During the first frames of a sequence, and aftee pp&lates, the residual errors in edges
and optical flow are accumulated and used to modify the haagesby anisotropic scaling. Bregler

and Malik [BMPO04], show that the state space of their earetion tracking framework IBM98] can
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be extended to also optimise over the kinematic model, aed the complete image sequence instead
of just image pairs. The twist (state of the pose parametgigpt fixed to the values obtained by the
tracker and the equations are rearranged to optimise tglefneach link of the articulated body. Based
on Tomasi-Kanade’s factorisation method [TK92], Breglesystem of equations is iteratively factored
to optimise the articulated model and update the pose arpkgierameters along a video sequence. A
more advanced model is that of Plankers and Fua [PF02] wirermeta-balls (generalised algebraic
surfaces defined by a summation oveBD Gaussian density distributions) attached to an artiedla
skeleton. The meta-balls simulate the gross behaviour & bmuscles and fat tissue. The model is
projected into the images and its silhouette is extractehcking is performed in four steps (i) The
silhouette of previous frame serves as initialisation forent frame; (ii) Optimise using active contours
on disparity-filtered gradient image; (iii) Refine the bodpdel to stereo data constrained by current
silhouette estimate; and lastly (iv) Optimise the silhtaief the fitted model using active contours.

The use of a model that accurately reproduces the objectsaeguce must have a positive effect
on tracking precision. However, there has been no analysidether, when resources are finite, such
improvements compensate for the extra computational taffecessary for update and projection of a

detailed model as it moves.
2.3.6 Motion filters

Motion filters have been used in many hand tracking methodsmth the pose estimate and to provide

predictions that improve the reliability of the tracker.n®®mhave already been mentioned in passing.
Methods based on the Kalman filter

Shimada and Shirdil[SS96] use the Extended Kalman filter jE#tfmonocular hand tracking in 3D and

also allow model refinement by including the length of fingentpin the state vector. First, the best fitting
solution is obtained with EKF and then this solution is meadifapplying inequality constraints based on
human hand physiological restrictions. In cases whereipteibolutions satisfy the constraints, multiple
hypotheses are generated (based on symmetry w.r.t. the iphage) and their fitness is evaluated. This
system was only evaluated using simulations. Wachter argkldapersons trackef [WN99] uses an

Iterative Extended Kalman Filter (IEKF) which consistgrititegrates edges and image texture cues for
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the pose update.

Stengeret al. [SMCO01] use an Unscented Kalman Filter (UKE)]JW97] to updhe pose of their
model, which like Rehg’s has 27 DOF, but it is built from 39rtcated quadrics (Figufe2]11), giving,
of course conic projections. The hand dynamics are modaBew) position, velocity and acceleration.
The UKF is found to be more tolerant of non-linearities thiae EKF, and permits higher frame rates

than more sophisticated estimation methods such as jgdfitteking.

(a) (b)
Figure 2.6:(a) wire frame of the 3D hand model used by Stengeal. [SMCO1]. (b) Projection of this
model on the input image during tracking. (©[SMCO1], reproduced with permission.)

Stochastic and multiple hypotheses search strategies

The challenges of unconstrained tracking and 3D trackioghnfmonocular vision have lead to the re-
search in methods to avoid local minima caused by ambiguitiel configurations with singularities.

Deutscheret al. [DNBB9Y] have demonstrated that probability density fiorts (PDFs) for kine-
matic variables such as joint angles are actually non-Gauss$his tends to happen particularly often in
joint angle PDFs near their end-stop values and close talsiriies where the kinematic chain lies in
physically distinct but visually indistinguishable coniigtions. Their solution for human body tracking
was to useCoNDENSATION. Sidenbladret al. [SBEQQ] presented a method similar to that of Deutcher’s,
but they use limb texture in addition to edges alone.

Another stochastic solution was proposed for hand tradiyniirei et al. [NSMO96]. Given a rough
initial estimate obtained by mouse clicks, a Genetic Alidponi was used to minimise the estimation error
of optical flow and maximise the overlap between the progeat@del and silhouette images using the

chamfer distance. They then applied Simulated Annealingfine the pose estimate. The results were



2.3 3D model-based tracking 28

not obtained in real-time (unsurprisingly!), but they dersiate that all the fingers could successfully
be tracked in a short video sequence.

Stochastic tracking frameworks such@snDENSATION are capable of dealing with complex PDFs
and avoid local minima, but the curse of dimensionality dees this approach. The minimum num-
ber of particles required for successful tracking is exmpiadly proportional to the dimensionality of
the problem[[JDMOD]. One of the issues that ma@l@apeENSATION computationally expensive is the
definition and evaluation of the likelihood. Deutscher, k&and Reid[[DBROO0] address this problem
by developing the Annealed Particle Filter (APF) which uaeseighting function to approximate the
likelihood. This weighting function is easy to be calcuthtnd, unlikeCONDENSATION, the perturbation
of the particles always decreases with time. This allowsigeeof much larger particle distributions with
less computational effort. Davison, Deutscher and ReldRDIDA] demonstrated the application of this
algorithm for Human Motion Capture for character animatisee Figur€217). The particle distribution
is used by the APF to evaluate several parameters of the tir@glunction in attempts to find a value
that minimises it. Clever search strategies are neededpheicles to locate the global minimum of
the weighting function to overcome the complexity of thersbapace. APF tends to be rather wasteful
of computational resources in the searching of configunagfmace. At each time step, the APF must add
a noise vector to the particles. The noise has to be largegbnoulead to a search that covers a suffi-
ciently large volume of the configuration space. This impsothe tracking results, but many particles

are wasted in randomly generated configurations.

() (b)

Figure 2.7:(a) Projection of the 3D body model on the image of one of the 3 vimm a handstand
video sequence used by Davisetnal. [DDRO14]. (b) The virtual character on the pose obtained by the
APF algorithm. The curve shows the trajectory of the bas@®ftubject’s spine(©[DDRUI4], reproduced
with permission.)
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To address this problem, Sminchisescu and Triggs [STO161&Tadopted a covariance weighted
sampling in which a covariance matrix representing unoestas associated to each body pose hypoth-
esis. This allows iterative generation of hypotheses treatess ambiguous, resulting in a more efficient
distribution of the available tracking estimates. In pafathe searching method of APF was improved
by Deutscheet al. [DDRO1b] by adding noise to each individual parameter o&gigle in proportion
to the variance observed in that parameter across thelpatit Another improvement was the use of a
genetic algorithm-like particle crossover operator. Tupdate on the algorithm lead to a 4-fold increase
in processing speed.

An alternative bottom-up approach has been presented k& &i@l. [SISB03]. They represent
body parts individually and a stochastic algorithm pladesgarts randomly in 3D. A graphical model
based on message passing and learning combines image emasts and spacial constraints and, in
[SBRT04], also temporal constraints. Bottom-up part detectasetl on PCA of concatenated images
(of multiple views) are used to aid detection of parts. Thaeggest their results improve on the APF
because errors are not accumulated. However, althoughptireisation searches for solutions that do
not violate the constraints between body parts, these atgand constraints and the system may provide
impossible body configurations. (The stochastic method isssimilar to that of [WHYO0B], mentioned
earlier (pag€&9).)

Bray et al. [BKMM T04] proposed the Stochastic Meta-Descent (SMD) methoddod hiracking.

It is a gradient descent method with local step size adaptdatiat combines rapid convergence with
scalability and, as only a single hypothesis is consideregilires fewer samples th&oNDENSATION
and less computational power than the APF. Although SMD eaidssome local minima, it does not
guarantee that the global minimum is reached. [In_[BKMVO4jayBet al. incorporated SMD within

a Particle Filter to form ‘smart particles’. After propamef the particles, SMD is performed and the
resulting new particle set is included such that the origBeyesian distribution is not altered. As a
particle method, it maintains multiple hypotheses needembpe with clutter and occlusion, but reduces
the number of particles needed. Figlirel 2.8 shows an examh@B oecovery using (note) structured

light.
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Figure 2.8: A frame from a video sequence used by Bragl [BKMVO04]. (a) and (b) show mesh
created by the structured light, the red dots show the piegjemodel with the tracking result obtained
using: (a) APF and (b) Smart Particle Filter (SPF). (c) shtwgsviews of the 3D model whose pose was
obtained using SPF. (©[BKMV04], reproduced with permission.)

A deterministic alternative

While much effort has been made to explore stochastic appesafor human body tracking, Smin-
chisescu and Triggs have begun to explore such spaces destically, considered a way of avoiding
entrapment in local suboptimal minima_ [ST02] . They addibss problem by building ‘road maps’
of nearby minima linked byransition pathways- paths leading over low ‘passes’ in the cost surface,
found by locating théransition statgsaddle points with 1 negative eigenvalue) at the top of #ss@and
then sliding downhill to the next minimum. Their results Bahown that their algorithm can stably and
efficiently recover large numbers of transition states amuima, and also serve to underline the very

large number of minima that exist in the problem of monocBRmodel based tracking.
2.3.7 Using data-driven dimensionality reduction

The use of articulated models simplify occlusion handling allows the description of a larger number
of hand poses. Although there has been an agreement thatan8Dvodel should have at least 26 DOF,
it is also clear that the configurations of muscles and tesadnhe hand constrain the range of motion
of each joint. For example, the fourth finger can not be flexadnally without influencing the pose of
the middle and small fingers because of interconnectionnofaies (see FiguieT.2).

Heap and Hogd [HH96] represented hands as surface meshastedtsemi-automatically from 3D
Magnetic Resonance Images. Since this is not based on enlaitid model, the number of DOF of this

representation is huge, but they have shown that by appB@® to the point distribution data, the shape
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deformation could be represented in a low dimensional sgec#lustrated in Figure—2.9. For tracking,
the outline of the hand mesh was projected into the imagee@and edge measurements are used. The
pose update was performed by solving a linear system of ieqsain least squares. Tracking could be
achieved at 10 frames per second using a single camera, bigwms motions and self-occlusions were

not successfully overcame.
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Figure 2.9: The first (a) and second (b) modes of variationDohdnd point distribution model of Heap
and Hoggl[HH95]. (©[HHZG], reproduced with permission.)

Wu et al. [WLHOI], describe the space of possible hand configuratiosing a set of pre-defined
states based on binary finger poses: fully flexed or stretétredach finger, giving a set & = 32
possible states of hand pose. Four of them were pruned leethey were considered infeasible as
most people cannot perform these hand poses naturally.e@sbjere asked to move their hands to
these 28 states while wearing a data-glove that acquires@b &f the hand. Global position and
orientation variations are not considered in this papere 3tate space was reduced to 7 dimensions
using PCA and it was demonstrated that the transitions leetwtates follow linear paths in this space.
Thus the hand pose is represented as a linear combinatidre && states. An importance sampling
approach is used for tracking. This shares some points@atpensaTION, but the hypotheses are only
generated along the nearest linear manifolds between tais btates, with some diffusion in the higher

dimensional space. The 3D model is projected to the image asdiboard model, and this method
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combines edge measurements with a comparison betweerethefahe projected model and the hand
silhouette image to compute the likelihood of hypotheselse @xperiments show that, in comparison
to standardConpeNnsaTioN in the R’ space, this approach provides better results and longarciat
requiring an order of magnitude less samples.

Using the same dimensionality reduction method and a giinilage likelihood function, in[ZHQ3]
Zhou and Huang propose an eigen-dynamics analysis methlgénto the dynamics of natural hand
motion as a high order stochastic linear dynamic system.s Ehused to build a dynamic Bayesian
network to analyse the generative process of an image segwémand motion. In the inference phase,
the hand motion is decomposed into global motion and fingerudation, and an iterative divide-and-
conquer approach [WH9Pa] is used to track the hand. For blologion, the iterative closest point
algorithm is applied, and for finger articulation, sequaitlonte Carlo is used to sample in the manifold
spanned by the learned dynamic model. This system was tegtedynthetic and real data and accurate
results were obtained even with partial occlusion and elatt background, but the experiments do not
show how the system performs when there are both global dicdlated motion at the same time.

Other relevant work in this area is that of Kagbal [KCX06] who reduces the state space dimen-
sionality to 5D using ICA (independent components analystsowing that it performs better than PCA,
and Grochovet al. [GMHPO04] who represent the probability distribution ftioa of the parameter space
using a scaled Gaussian process latent variable model (#@Rhroposed in[[Law04]. All the param-
eters of the SGPLVM are learned automatically from the ingirdata. They show that it is possible
to optimise the PDF to describe new poses in real-time foliGaipns of inverse kinematics systems.
Although this method allows to represent the PDF at a low dsinal space through a non-linear pro-
jection, it does not restrict the configuration state. Pdisasare very different from those in the training
set can still be represented, but they have a very low PDFalitters have used this method to represent

styles of human movements and proposed a method to inteedmaveen styles (Figufe2]10).
2.3.8 Discussion

The key benefit of model-based trackers is that they permfitinciple, a comprehensive exploration of
the space of possible poses — they really do describe thi¢ ofle#dl the degrees of freedom. However,

the quality of the measurements to drive the model dependseosimilarity between the model and the
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Figure 2.10: An SGPLVM latent space learned from a baselital pnotion capture sequence by the
method described in [GMHPD4]. The learning process estismat2D position associated with every
training pose; plus signs indicate positions of the oribfreining points. Some novel poses are shown,
illustrating that new poses extrapolate from the origiradgs in a sensible way. The grey level indicates
the likelihood of each position in this planar projectiortioé state space. (©IGMHPU4], reproduced with
permission.)

real object (hand), and accurate models are not broadliabl@iand certainly not cheap to compute.

With imperfect data it becomes hard to justify maintainiagge numbers of degrees of freedom, and,
even if we suppose perfect measurements, the problem ahisption in a high dimensional space is
significant. While much has been made of stochastic appesaduch spaces have also been explored
deterministically [[STO2], but results have underlined Wieey large number of minima that exist in the
problem of monocular 3D model based tracking.

Good initialisation is important for these methods and hay &are incremental, a bad image or pose
estimate can pollute all later estimatées [Bila99]. Appiared that target hand tracking that require a
highly detailed description of the hand shape in 3D normadlg images in which the camera is zoomed

in the hands. In these cases, natural hand motions can baddersand fast in the images.

2.4 Direct 2D view to 3D pose transformations

This section approaches view-based methods to estimateo8& (hese are also known as discrimi-
native methods, and provide a bridge between 2D methodsBmddlel-based methods. They extract

measurements from images which are linked to the kinemhataepresentation of the object in 3D.
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For instance, template matching or global image descepoe used. Once the measurements are ex-
tracted, a pattern recognition method is applied and a 3 psimate is obtained as output. Since the
measurements can be extracted without requiring a predicti the state, discriminative methods can
be applied from static images for pose estimation or todlse 3D trackers.

As usual in pattern recognition, these methods requireitrgi The training set is often an extensive
collection of possible hand appearances associated wifio8Bs that generate them. The most practical
method to obtain a comprehensive training set is based atirgesynthetic images using a hand model
that is rendered at a range of 3D poses. So to restrict th@rgaset to natural poses, data acquired
from glove aided motion capture is used. In the case of whatly fpublicly available datasets of human
motions can be used.

An advantage of discriminative methods is that they do nqtiire computation of projection and
occlusion handling at the inference phase, as this is imtiglaone in the generation of training samples.
Another advantage is that since the inference uses thengaset, these methods naturally incorporate
data-driven motion constraints. This also allows to redieedimensionality of the parameters space.
The obvious disadvantage is that the range of possible pediesited by the training set and extrapo-
lations are not usually successful. The same is true aboo¢r@aviews which are not included in the
training set.

Two approaches encompasses the discriminative methassifatation-based and mapping-based,

further described in SectiofsZMK.1 dnd2.4.2, respegtivel
2.4.1 Classification-based methods

In the classification-based approach for 3D pose estimatiderge discrete set of 3D poses constitutes
the set of classes. The image measurements are evaluatedngsiato the classifier and a 3D pose is
obtained as output. The ability to provide a 3D pose outpthiteskey difference between these methods
and the 2D appearance-based methods. Furthermore, ththddhe training set contains pairs of
measurements and 3D poses is used to aid the search.

Usually only one sample image measurement is availablesfct elass of 3D pose, thus variants of
nearest-neighbour classifiers are commonly used. The veassmber of classes make this a formidable

classification problem, which is eased by avoiding exheestearch. This can be done by the following
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methods: (i) performing coarse-to-fine search; (ii) grogpthe training set by similarities in appearance
and in 3D pose parameters; (iii) using motion priors and t@guence information. Sample research

works of these methods are further detailed below.
Coarse-to-fine search

In the coarse-to-fine approach of Athitsos and Sclaroff [Z]Svo similarity measures: the approximate
directed chamfer distance and the line matching cost. Aelpase database was used, containing over
10° samples and the query could be made in 15 seconds, but theingatesults were poor for real
images: onlyl4% of the queries resulted in the best pose estimate, and eadirthie 256 best matches
are combined, the mean of correct matches among them iS¢y

In [AASKO4], an improvement was achieved by combining adasgt of simple weak classifiers
using BoostMap in the coarse search to select a subset dbeémdhatches. In the fine search, they used
exhaustive chamfer matching. This reduced the query tinRRedtseconds and improved that recognition
rate t095%. The quality of the classification results were judged by ma&u operator following the

visual agreement between query and retrieval image.
Grouping training samples for tree-based search

One problem with exemplar-based matching is that the exansgtts can grow exponentially with the
number of degrees of freedom of the object. For this reasamg8ret al. [STTCO3] use a tree search
(similar to Gavrila and Philomin’s method [GRE99]) whichdisao a dramatic reduction in the number of
comparisons required for matching.

Another improvement is that [STTCO3] also uses the prolsdisiltracking framewaork proposed by
Toyama and Blake [TB02], so the search tree works as a dyrAayiesian network for motion estima-
tion, as illustrated in FiguieZ1L1. But unlike Toyama andKke!, Stengeet al. perform the probabilistic
tracking in the space of the kinematic parameters of thewsatied object (joint angles, rotations and
translations). An advantage of using a parametric mode¢ét@ate templates is that less storage space
is required, because a finer pose estimation can be obtajngenerating new templates on line, as the
leaf is reached. Furthermore, two poses that are distarfteirparametric space can be close to each

other in appearance [TSTCQO03]. For example, the appeardribe outline of a flat hand with the palm
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facing the camera can be similar to that of the back of the ffaeidg the camera, but parametric-based

clustering puts these two poses far apart.
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Figure 2.11: Schematic example of tree-based estimatiothefposterior density, obtained from
[STTCO3]. (a) Each node is associated with a non-overlappgt in the state space, defining a par-
tition of the state space (here one DOF of rotation of the hafide posterior for each node is evaluated
using the centre of each set, and sub-trees with low postEemot further evaluated. (b) Corresponding
constant posterior density of the stétgiven the measuremenl, and piecewise constant approximation
obtained. (©[STICO3], reproduced with permission.)

To build the search tree, two methods have been evaluateghiiatharet al. in [TSTCO3]. The
first is based on the hierarchicglmeans algorithm, which partitions the space as a multiedsional
Voronoi diagram and the cluster centres are used as nodashreyel of the tree. In the second method,
the dimensionality of the parameters space is reduced B¥#gand the resulting space is partitioned by
a regular hierarchical grid where, again, the centres oftt@ined hyper-cubes are used as nodes in each
tree level. Their experiments show that the tree obtainelldbly partitioning methods give qualitatively
similar results and search time of around 2s per query. Hemtére training process with the PCA-based
method is much faster.

Based on the above search tree ideal_in_[STTCO04] Stesigat proposed an alternative classifi-
cation method which uses a multi-class cascade of classfbershape template matching. Unlike the
normal use of boosting for single object detection, the ads®f classifiers is arranged in a tree order
to recognise multiple object classes (hand configuratibiearchically, as shown in FiguEe2112. Each
weak classifier is trained to detect a single hand pose, tfgbse is detected, the search continues for

child classifiers that do a finer classification. As usual Witlosting approaches, the main advantage is
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its speed, but the number of classifiers needed grows expalhemith the dimensionality of the pose

parameters, demanding much memory.
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Figure 2.12: (a) Standard single class cascade of classtfiedetect an object — each classifier has a
high detection rate and a moderate false positive rate. #sg&tle of classifierS; from [STTCO4] for

multiple classeg in a tree structure (with levels indexed By— similar objects are grouped together
and the classifiers on the leaves recognise single objedifaky tree is shown here, but the branching
factor can be larger than two. (©[STTCOZ], reproduced with permission.)

Using spatio-temporal priors

The tree-based system of Stengérl [STTCO03] can also incorporate temporal priors. Given tae p
tition of the state space, the state transition distrimstja(0;|6;_,) are modelled as first order Markov
processes, and the transition probabilities are compuytduskogramming transitions in the training set.
This allows the computation of the temporal prigf®,)p(6;|Dy..—1) (WwhereD are measurements and
0 is the state vector) in a video sequence, which facilitataripg the search tree, speeding up pose es-
timation as the motion follows a prediction. Although higtcaracy can be obtained, the computational
cost of this system is still too high for real-time applicats. Using a relatively small range of hand
poses, in[[TSTCO3] each frame takes 2 seconds to be prodessddGHz Pentium 4.

An alternative is to use simpler image measurements andggraemporal priors. I [FAK03],
Fillorandtet al. use a simple graph of transitions between states of the paselthat restricts the search
space, as only neighbouring states are checked. This grapleaded following transitions that happen

in German sign language. A similar idea was implemented 83B2], where a simple moment-based
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descriptor is used. In the learning stage, if the distanbed®n the image descriptor of the current image
and the previous state is greater than a threshold, a nenistadilt.

Brand [Bra99] uses ten scale-invariant central momentsoanrésolution silhouette images. A
dynamical manifold is used for inference of trajectoriebislis defined as a locus of all possible poses
and velocity configurations, embedded in a higher-dimeraioneasurement space. The inference is a
search for a sequence of events (path on the manifold) tisatelxplains a sequence of observations.
To model manifolds a method identifies neighbourhoods wtiereaelationship of position to velocity
is roughly linear. Each neighbourhood is described with dtimawiate Gaussian PDF. The manifold
is approximated by an HMM with each neighbourhood Gauss&ingbthe output of a hidden state,
and a transition topology specially matched to the dynahsittacture of the manifold. The HMM is
learnt using entropy minimisation which, unlike previousthods, leads to a model that does not get
“lost” at crossings and gives a more compact and accurategeptation. To handle rotations around
the gravity axis, the HMM is replicated once for each viewestimating the output distribution of each
view-specific HMM. The 3D pose results are, in most casedijtgtigely close to the actual pose of the
input image sequence. But with evidence as weak as image ntentke learned prior dominates the
reconstruction, so input images of poses that are not inrdligirig set result in the nearest 3D pose in
the training set, which, in many cases, is not accurate.

Hee-Deolket al. [YPLOE] proposed a framework of HMM models for whole bodgtyge recognition
which recognises continuously, without the need of gestegenentation. This framework initially has an
array of HMMs for meaningless actions followed by an arrajidfMs for gestures that are recognised
and the whole scheme is closed as a loop. This paper conesnina gesture/action recognition, rather
than low level vision, so it is based on accurate human matapture data obtained from the system
described in[[HKLOB]. The dimensionality of the pose parterseis reduced using Fisher discriminant
analysis.

In order to get a more continuous (in terms of inter-clasted#hce in the pose output) estimation of
3D poses from a discrete set of training appearances, Shietad [SKS01] combine an appearance-
based discriminative method with a three-dimensional give tracker. In the first stage, the silhouette

of the hand (segmented by threshold) is described usingahmeaiised eccentricity, which is a position
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and scale invariant descriptor. For rotation invarianbe,rhaximal points are aligned with the training
vectors for matching. Classification is sped up using ancadiegy map and beam search, which is
implemented in a distributed system. Once the appeararecbden matched, its 3D pose combined is
with the predicted pose in order to generate the next piiediasing a motion model. The new prediction
helps to speed up the appearance matching method by riegttive search area. This paper shows good
gualitative matching results, which were obtained at vicdie (30Hz) on a 6 node cluster, but it does

not show results using the 3D motion prediction module.
2.4.2 Mapping-based methods

Mapping-based methods use pairs of image measurementsDaposgs to learn a continuous map
between them. They can provide smooth pose estimationsesiiher than an estimate that is out of a
discrete set. The results can be compared to an interpolatithe training data, but in some cases small
extrapolations are also possible. Mappers can usually peimented with parametric functions, which
mean that their memory complexity is much lower than thatla$sification-based methods. In those
cases, their evaluation does not require large numberswgbaasons, so their speed is also greater than
that of classification-based methods.

Lin et al. [LWHO1I] modified the method of data-driven dimensionaligduction described in
[WLHO1T] to create a mapping-based method. A feature veaidt ttom measurements obtained from
shape descriptors was acquired from each basis state irathingy phase. In the application phase, this
feature vector is acquired and its distance to each base istaneasured. This distance is taken as the
weight of each state, determining a point in the state spalsieh is then lifted to the original 15 DOF
configuration space to reconstruct the hand pose.

Shakhnarovicket al. [SVDO03] introduced an algorithm that learns a set of hagliimctions that
efficiently indexes examples. The method uses local reigresahich works as interpolated k-nearest
neighbours and accounts for proximity not only in the 2D measents, but also in the 3D pose param-
eters.

Prior to that, Rosalest al. [RASSO1] proposed a system that uses a non-linear supdriésrn-
ing framework, the specialised mappings architecture (M in Brand’s paper [Bra%99], image mo-

ments are used as measurements: seven real-valued soaétion and rotation invariant Hu moments
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[Hu6Z]. These are computed from hand silhouettes which erected and tracked using a skin colour
blob tracker that locates and refines the solution adaptiveface detector is used to improve the initial-
isation of the skin colour detector. The pose estimatiotesysonsists of a set of 30 specialised forward
mapping functions, each one built as a one hidden layer fla@ehrd network with 5 hidden neurons.
These functions are learned using expectation-maxiroisg&EM). Each of them provides a mapping
from the whole measurement space to the state space of 3B. pbeeelect the best solution, a feed-
back function takes the estimated pose, renders the 3D haddlrand generate image measurements
that are then compared with the input data. This method walsi@&ed quantitatively with a database
of synthesised images generated using ASL gestures rehdeseveral orientations varying pan and
elevation (the hand pose is described using 22 joint anglddveo orientation parameters). This added
up to 300,000 synthesised images, of which 8,000 were usedaiaing and the rest for testing. The
reported mean error was very small (° to 3°), but the standard deviation was large enough to provide
results that do not match the input ASL gesture entered. itatiad results were also shown using real
hand images.

In [MMO1] MMOQZ2], Mori and Malik used shape context matchitiMP0Z2] to locate the centre of
limbs joints. The 3D pose is then estimated by using Howe. strabthod [HLE99]. This is a Bayesian
learning framework to recover 3D pose from known joint cegtbased on a training set of pose-centre
pairs obtained from re-synthesised motion capture data.

A global image descriptor that is a simplification of shapetegts is used by Guaat al. in [HGTO€],
where the multi flash approach of [RTB4] and [FTR"04] provides a clean depth discontinuity map, so
the shape contexts describe a virtually noise free handsddgege. The mapping method used is based
in self-organising maps.

In [AT04¢&], Agarwal and Triggs use a 100D global image degoribased on a histogram of shape
contexts of the silhouette contours. A human body model 8&DOF is used to render training images
and a regression-based method was used to learn the rdbetimeen image measuremertand 3D
posesy. Four regression methods were evaluated: (1) regularsed $quares and (2) Relevance Vector
Machine (RVM) [TipO1] regressors applied in both case tdifear and (b) Gaussian kernel bases. For

synthetic images, resulting mean error in 3D pose estimatiere: (2a) > (1a) > (2b) > (1b), but
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the difference between the best and the worst of them is eslythar8°. However, the implicit feature
selection obtained by RVM regression gives much more dyarsiducing the complexity of the pose
estimation process: only 6% of the training examples wewgred. They have shown good quantitative
results on synthetic data: mean estimation erro6%bver all joints for the Gaussian RVM (though
many of the 55 DOF are inactive and it is not clear whetheright®nsidered for this result). Only poor
gualitative results were obtained for real images, and émeahstrative video shows reconstruction with

many jitters along the sequence. Figure P.13 illustratesaltr of this tracker.
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Figure 2.13: A sample result of [ATO4i{p) 3D human model used for training and its noise-free
projected silhouettéb), which is used for training the regressdc) left: a test image obtained from
http://mocap.cs.cmu.edeentre; background subtracted image segmentation result useskfiaction

of the shape contextsight: reconstructed 3D pose. Note the difference between thecund the
training model and the amount of noise in the segmented imag&®©[AT046], reproduced with permission.)

This method has been modified to include a dynamical modél mittion priors [[AT04k] and has
been embedded in a tracking framework combining dynamim® fihe previous state estimate with a
special regressor to disambiguate the pose. Trackingnsftimenulated either as a single fully regressive
model or by using the regression estimates in a multiple thgsis tracker based BONDENSATION
[ATO6H]. In contrast to Rosalest al. [RASS01], this method demonstrate an ability to deal wittba
guities in a probabilistic manner. A similar method was eomporaneously proposed by Sminchisescu
et al [SKLMO5)]. For hand tracking, Thayananthat al. [TNST0€] extended the Tipping’s original
Relevance Vector Machine methdd [Tip01] for multidimemsibtarget spaces and multiple hypothe-
ses. Unlike Agarwal and Triggs [AT05] regressor, this idgs the hyper-parameters in the optimisation
process.

In [AT062], Agarwal and Triggs used SIFT featurés [LowO4hmuted on a regular grid on the
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whole image. No segmentation is required, but the contdbubf the background noise to the image
descriptor is minimised by eliminating or downweightingckground features using non-negative ma-
trix factorisation [LS9B], which is trained with feature®i clean foreground images. Pose estimation
is then performed using the same unimodal regression methau [AT044], because the experiments
only show estimation of the upper body pose, which is lessigumolns than the whole body. The exper-
iments show that, for images with cluttered backgrounds thethod provides similar pose estimation
performance to the method based on segmented silhouettesioivnside of this method is that it is not
invariant to scale, rotation or translation, but it can bleusi to some variation in clothing. In]AT06a],
extensive experiments with synthetic images were perfdrrbat only a few real image samples are
shown. Both in the real and synthetic images shown, peopée teps with fairly uniform textures. The

authors claim that better results can be achieved if largérihg sets are employed.
2.5 A note on criteria for comparative evaluation of results

Despite a large body of work has been found in the literatooestandard methodology has been found
to evaluate tracking and pose estimation results. For badking there are some human motion capture
(HMC) data available publiclyg.g [Cal]), but such data was used to generate synthetic imagasich

the tracker is applied, as the original HMC natural imageshat available. An exception is the database
described in[[HKLOB], which has human motion capture daté wilhouettes and original images, but
it is not publicly available. For hand tracking, there is nanslard database or systematic evaluation
method.

Ramanan and Forsyth [REO3] report tracking success whetlexe isany overlap between a limb
and the ground truth. This is probably very generous, bt & good criteria for real-time applications
on images with severe occlusions, fast movements and laggesation. Most of the researchers have
claimed that a qualitative visual agreement between thk pagected models and the image is the most
basic requirement of tracking performance. This is usuddinonstrated with videos made available in
the Internet.

The cost function that is used to minimise the state estifdtee trackers can provide a quantitative

description of the tracking result. However, it does notvite a meaningful evaluation of the error of
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the pose estimate.

Track lifeis the length of time that the tracker remains on target. K'tass occurs if the measured
cost grows arbitrarily large because the model is no longgjepted on the correct parts of the image.
Track life can be used to validate the result, though it isanstrong criteria, because problems caused
by singularities and deficiencies of the model may not be neagécit [Reh95].

For whole body tracking, Sigait al. [SBR™04] were able to perform a quantitative evaluation using
a professional marker-based motion capture system thataliasated with the cameras used for track-
ing. This is the most accurate solution, but such professisystems are rarely available for research
purposes mainly due to their cost.

Manually measured ground truth data has been employed bg sothors €.g [BGP96]). Such
measurements are usually obtained through mouse clickseimpasition of the joints in the images
and the use of a minimisation method to estimate the modélmofom the measured positions. The
obvious disadvantage of this method is that human operatersot reliable (or not available), specially
for long sequences. The measurements can also be inacbacatese some joints may not be visible in
all the images and determining the position of the jointsoisatways obvious.

Some researchers have used off-line processing using raporputationally demanding parameters
and multiple cameras to estimate the ground truth data. 8aizhis used to evaluate on-line real-time
or monocular implementationg.¢ [EGTKOZ,[TRMMOQO1]). However, the reliability of such metthds
dubious if the same method is applied for on-line and o#-liracking.

A plausible alternative is to perform experiments in whicé tiser is asked to touch known points in
the world, as Bernardet al. did in [BGP96]. But this does not accurately evaluate thignegion of all
the joints of the hand.

Therefore, there is a demand for comparative evaluatiod#fefent methods for 3D hand tracking.
While a standard framework or benchmark database is notadkfine evaluation method will be chosen
according to the resources available and comparisons caiathe between methods implemented within
an institute, rather than globally.

This thesis shows comparisons of methods in Chaplers Blamdfre former, two generative meth-

ods are compared in terms of accuracy, efficiency and robssinThe comparison is based on their
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formalism, quantitative tracking results on syntheticadaind time measurements. In the latter, a single
view is compared with a multiple views discriminative medhd@hat comparison is based on quantitative

tracking results on synthetic data, qualitative resultsaathimages and time measurements.
2.6 Summary and concluding remarks

This chapter reviewed the main approaches to hand trackalgding a range of references from meth-
ods based on extracting meaning directly from low level imméntures to higher level methods. The
main interest was on methods that estimate the hand pose in &al-time. A lower level method to
locate areas of interest is studied in Chapier 3, wherediestified that there has been a consensus that
the most reliable cue for hand tracking is obtained by skinurodetection using classifiers applied to a
colour space with brightness normalisation.

Two main approaches for 3D hand pose estimation have begtifieé: generative model-based and
discriminative estimation methods. The use of a trainirntgo§@atural hand poses is essential for dis-
criminative methods. For model-based methods, it has Hdemmrsthat such data is of great importance
to reduce the dimensionality of the state space, reducegaiitibs and increase accuracy and reliability.

Temporal information and motion priors have originally beesed only for model-based methods,
but recent discriminative methods have shown that the useidf information reduces the estimation
cost and the ambiguities.

Although discriminative (or “tracking as detection”) appches are robust and have no latency limit,
they do not make model-based methods obsdlete [LF05]. Asrshater in ChapterSl43-6 of this thesis,
model-based methods are view independent and less dependdine training data. They can also
provide a complete and continuous coverage to the parasngtiie. Model-based methods are easily
scalable for multiple views and this has shown obvious im@neents to the estimation results. But
recently such approaches have been left aside for modetibmasthods. In discriminative methods they
have only been explored modestly so farg( [HSS02]). This thesis exploits multiple views for both
generative and discriminative approaches. A novel meltypbw discriminative method is described in
Chaptefl and comparisons with a single view implementatrershown.

Considering the literature, overall, some very good redudive started to be shown with fast meth-
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ods, but their robustness and accuracy have still not reaahmoint where a wide range of follow up
applications could be successful. This shows that muchawgment can still be achieved. Some con-

tributions have been achieved in this thesis, which areritextin the next chapters.



Software tools and apparatus

3.1 An architecture for object tracking

The methods for hand tracking to be described in Chaptétadd® of this thesis were developed within
the context of the assistive workbench illustrated eaitigfigure[ b of the introductory chapter.

From that sketch, it can be surmised that the principal taskutes are (i) rigid object tracking;
(i) hand tracking; (iii) head tracking; and (iv) hand traudx from the wearable robot. In addition there
are the tasks of (v) data fusion and (vi) 3D visualisationthis thesis we are concerned with tasks (i),
(ii), (iv) and (vi). They have been implemented as separabegsses in a client-server CORBA-like
architecture, with communication via TCP sockets, as shavifigure[31.

An object is tracked on the client side and visualised (aadared about) on the server side of this
architecture. To avoid communicating graphics primitjueg instances of the object are maintained,
one on either side. One way to do this would be to construghtances simultaneously from a common
configuration file which would specify the object type, conmwation port and initial configuration and
pose. However, specifying the port in this way would reqaiiebjects to exist throughout. Instead, to
enable the dynamic addition and removal of objects, thectligecreated first on the client side, and a
predefined port is defined on the server side via which newctdbfEan register their existence. When
one does, the object is duplicated on the server, and a meaiavoked which dynamically allocates

a dedicated port for communication between the two instance
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Tracking machine(s) Viewing/interpreti
machine
Tracker 1
Tracker 2 -
Viewer
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Head Tracker Object 2
Head Objec} Head Objec}
| = Hand Objec

Hand Tracker

Hand Objec

Figure 3.1: The communication of object position, orieot@tand other configuration requires the
existence of a corresponding object in the viewer appboati The tracking blocks are independent

processes.

This system and all video-rate code has been implemented+) @Sing the Active Vision Labo-
ratory’s Vision Workbench (VW) library. This library incporates basic computer vision methods and
some modules of numerical processing based on VXL [The(3. graphical user interface is based on
GTK- - and 3D visualisation methods uses OpenGL, which thlkeéadvantage of any available acceler-
ated hardware for 3D graphics. This frees the cpu from theyhei@cessing needed to render 3D objects.
VW also defines standard interfaces to acquire images froneias on-line, or from disk off-line.

All data files for information on 3D objects, camera configiaras, colour classification data, and
so on, are written in XML, where each information block liestieeen two readable and meaningful
tags. This allows complex articulated objects to be modifigdditing text files, without re-compilation.
Figure[3.2 shows a sample graphical user interface created these libraries showing the visualisation
of cameras, hand, object and underlying desk.

The server and clients run under Linux. This is not a reaktiperating system and cannot guarantee

completion times. Even with careful algorithm design theastonal frame is dropped, particularly when
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Figure 3.2: The GUI created to control and visualise aréitad objects.

images are captured to disk while being processed. Caredmsthken to account for the occasional
variation in inter-frame duration. As suggested by Fidugu to three cameras are used in this work.
In most of the experiments in this thesis, Sony VL500 digieaheras cameras have used with up to three
sitting on the same Firewire (IEEE 1394) interface. Téableshows the frame rate obtained for various
sizes of image and capture modes: ¢ameras are connected to a single interface, all the camielrasr

one frame sequentially, so the maximum interval betweemdtleisition of an image from each camera
is 1/(rc), wherer is the frame-rate. Although the Sony VL500s can be exterrslhchronized, other
cheaper cameras cannot. In practice the speed of movensriticsently small for the time skew to be
tolerable.

Mis-calibration of the cameras, however, is much less abliex;
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Image | YCbC | Max frame| Max. no.
Size Mode | rate (Hz) | cameras

320x240 | 4:2:2 30 3
640x480 | 4:2:2 15 3
640x480 | 4:1:1 30 2

Table 3.1: The maximum frame rate achievable for the givanber of Firewire cameras, image size
and capture mode.

3.2 Camera calibration

The methods of object pose recovery using explicit 3D modekribed in Chaptefd 5 ahH 6 require
cameras whose internal and external parameters are knowrstimate these parameters, a method
based on Section 2.5 df [Tor02] is employed: the radial disto and calibration parameters are esti-
mated iteratively. To ease initialisation, the user clioksthe hinge of the calibration grid (shown in
Figure[3:Bb). Corner features are located using Harrigi@odetector[[CHE8] and the algorithm tries
to fit lines to the un-distorted location of the corner featur The distortion is modelled using Harris’
formulation [Har92b], in which the relation between theptigement of an ideal image point and its

radial distance-, from the centre of distortion is modelled as

1
g =Ty _ 3.1
I («/1—2m1r5> (3.1)
This is the forward distortion equation, whete < 0 models barrelling distortion angl; > 0 models

pin-cushion distortion. The backward equation (belowyetts measured distorted image points back

to their ideal position:
1

\/1_2"&17}%

The matching error between the undistorted image and tte ichege is minimised with Levemberg-

Ty = Td

(3.2)

Marquardt to estimate, which is initialised with zero. An estimate of the calibost is then performed
and the process is iterated until convergence.

The camera calibration step is based on the method desdmjpdthugeras [Fau93] (at least for
the intrinsic parameters as will become clear below). Ga&D pointX represented in homogenous

coordinates in the world coordinate frame, its projectoonto the image plane of a camera (with radial
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distortion corrected for) is taken as

Ax = PX, (3.3)

whereP is the 3x4 projection matrix and\ is a scale factor. IX is in a Euclidean frame® can be

decomposed as two meaningful geometric entities: thenatend external calibration parameters

P=K(Rt) (3.4)

where the external parameters are the rotation and treomsthtat transform points defined in the world
coordinate frame into those defined in the camera frame, &edenthe internal calibration describes the

transformation between an ideal image and the pixel image

5 pa
K=10 af py| . (3.5)
0 0 1

Here f is the focal lengtha is the aspect ratio(p,,p,) defines the principal point, angl= — f,s
describes the often neglible image skew. As there are Gonttand translational DOF and 5 internal
calibration parameters, a minimum of 6 correspondedées«— x;} between known scene points and
measured image point correspondences are required toergeovHowever, a useful rule of thumb
[HZO1]) is that for a good estimation the number of constsasttould exceed the number of unknowns
by a factor of five, suggesting that around 30 correspondgeiscpractical minimum. The set of world
points is defined by the corners of the squares on the ubiggu8D calibration grid (Figurie-3.3), and the
image positions determined to aroutid. 1 pixel by fitting extended straight lines to the edgels coragut
along the edges of the squares, and then intersecting #® lin

Initial values for the elements ®fare found by a direct linear transformation. In practices isafe
enough here to set the scale by fixing = 1 and recovering the other 11 elements, but more generally
one should guard againgts =~ 0 by recovering all 12 using a null space method. These iniihles

are then refined by non-linear minimization
P = arg n;)i/n Z d(x;,P'X;)? (3.6)

whered(x;, P'X;) is the Euclidean distance observation and estimation. therélelder-Mead simplex

method has been used [NM65] but others have used Levenbargulrdt [[Lev44, Mar@3] with equal
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(@) )

Figure 3.3: (a) The Sony VL500 camera, three of which are irsttds work. (b) The calibration grid in
which the corner of the squares are used to comfiife— X;} correspondences. For calibration, best
results are obtained if the grid occupies the whole image.

success. Witle determined, the rotation and internal matrix is found bylgpg QR-decompaosition to

the inverse of the leftmost x 3 block of P
NR K 1=0OR —p, !

so thatR = Q! andk = NR~!, where the scale is fixed so thiag; = 1. (There are also other
sign ambiguities that between rows and columnX @indR that are resolved by requiring the focal
length, aspect ratio and principal point coordinates to &tpe.) The translation is determined by:
t = R(p14,p21,1) .

To generalise the calibration data for any image resoluliged, and to benefit from statistical cen-
tring, a normalised image is employed. For an image with lwidtand heighth, the conversion of

parameters is done as follows:

f=L n=Pa p=leon. 37

w w
3.2.1 Interpolation over zoom

The Sony cameras have controllable zoom lenses and it ien@mnt to be able to adjust these without
performing a full re-calibration.

The process described above was repeated for values of zabon setting 40, 100, 200, 300, .,
1300, 1400 from the accessible range of 40,.41,1432. For each calibration position, ten images of the

grid were acquired (under small variations in lighting) éach of these zoom positions and the internal
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Figure 3.4: Interpolation of calibration parameters afdifrom 10 images at each zoom motor position.
The mean parameter value is shown by a circle and the staddaiation by errorbars. The dotted lines
show interpolation using'5 order Chebyshev polynomials.

parameters recalculated. Since calibration estimates panformed only for one out of fifty odometry
positions, it was found that a more reliable interpolatiaould be obtained if a polynomial fit was used
across the range, rather than local linear interpolati@mebyshev polynomials were chosen due to their
stability, the fitting method described in section C.2[ofrl0Z] was employed. Through experimental
evaluation, it was found that the use of fifth order polyndmgave good interpolations.

The plots in Figuré€-3l4 show the estimated focal length, @spdio and principal points for one of
the cameras throughout the zoom range. The parametersawe $or normalised images. Note that
the principal points are close to the image centre up to otlynpesition 900. The aspect ratio, which
should be constant across the range of odometry positioasepted some small variation explained by
the “mopping up” of errors elsewhere in the system.

The error bars are relatively small for most estimages Isrdioe image data was acquired with
small intervals and small pose changes for each zoom posi#at the obtained polynomials provided
good genaralisations across the zoom range, considerdngdlibration estimates were available from a

very limited set of zoom positions.
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Figure 3.5: Variation of the principal point coordinater(fmrmalised images) with zoom for 3 cameras
of the same model. Continuous curves shgwand dashed curves shgy.
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For other two cameras of the same model the focal length gmettgatio showed all but identical
behaviour, but there was greater variation in the princgmht as shown in Figure—3.5. Again this is
expected depends on the alignment of all the lens elementsnzage plane and would be harder to

control in manufacture than the distance of the lens to ttagerplane.
3.2.2 Re-working the external calibration

In normal use, the internal calibrations of the Sony caménakiding the variation over zoom, have been
found to remain valid over long periods of time. However, éxéernal calibration is much more suscep-

tible to change, by accidental bumping of furniture and so tmavoid having to perform a complete
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recalibration (and, hence, completely wiping out the bésefiinterpolation) a more convenient planar
calibration of the external parameters has been used. Itheaadvantage too of forcing the world’s
Z-axis to be perpendicular to the desk.

Figure[36 shows the planar calibration object in use. Theal object defines the world = 0
plane, and its oriented pattern defines #reandY -axes. The projection equation (Eg.]3.3) is simplified

to that of a plane to plane homography

A yi | =Psxs | Vi (3.8)
1 1

whereP is the homography whose elemeipisan again be estimated linearly, up to scale, as the null
space oft in Ap = 0 where

Xi Y 0 —Xiz; —Yir;
0 1

A=
-Xiyi —Yiyi i

1 0 0
0 X Y (3.9)
for n > 4 points. Again one can refine the initial estimate by nondmeptimization. As the internal

calibration is known, one can recover
H= (h; hy h3) =kK"!P, (3.10)

wherehs is the translation and whele, andh, are the first two columns on the rotation matrix, all
modulo a scale factor. Rotation matrices are orthogonalhawe unit norm, and the actual translation

and rotation matrix rows are first estimated as

2
rirgt) = —————(h; hy hj) . 3.11
( 112 ) ||h1||+||h2||( 1112 3) ( )

The third column of the rotation is first determined@s= r; x ro. However, due to image noise

and discretization problems, these columns will not be @iiytiorthogonal and of unit norm. This is

corrected by means of the singular value decomposition (i8]

UWVT — R:(I'lrgl‘g)

R = UV, (3.12)
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(HereW is the diagonal matrix of singular values fandU andV are both orthonormal matrices. The
columns ofu form a basis in R for the range of and the columns of form the basis of the nullspace
of R. If all the singular values are set to 1, the reconstructettixng is the orthonormal rotation matrix
closest taR in the Frobenius distance sense [PTVIF88].)

The pose estimation methods described both here and esstiarate the rotation and translation
of the observed object in the camera coordinate frame. litatgl be more convenient to describe the

camera position in the world frame. This is simply the ineeEsiclidean transformation

R =R'  tow =RV (-t). (3.13)
3.2.3 Detection and localisation of the calibration object

Some care has been taken to automate the detection andzébicali of the calibration object (Fig-
ure[3¥(a)). The initial detection is based on ring temglgfégure[ 317 (b)), which are rotationally in-
variant but not easily confused with random darkspots initige. To improve the robustness, the
template is generated with a number of registered samplgemabtained with slightly different scales
and perspective.

The template is correlated with the image (Figuré 3.7(g)rttaxima detected, and straightforward
geometric reasoning determines the appropriate correspoe in the scene. The least squares estima-
tion method of Sectioh-3.2.2 (referred to as the linear nktiereinbelow) gives the first estimate of the
transformation which can be refined non-linearly using.,, &glder-Mead simplex method over the sum
of squared distances between the projected and measuceckdises (Equation 3.6). Examples results
are shown in Figure-3.8.

It is of course necessary to improve the calibration by usitage image evidence. This could be
done just as earlier by using a grid to generate points arddird capturing one image, but here a
different approach is taken. The estimate of the transfbomas handed over to a tracker which refines
the rotation and translation to best fit the projection ofikhewn triangular and rectangular objects to the
observed edges in the image, as shown in Fifule 3.9. The Rx&ker is first described in its proper
context in Chaptell4. However, in addition to its using menage data, the tracker makes repeated

estimates allowing an assessment of the error that arisesige of unmodelled variations in lighting,
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Figure 3.7: (a) Calibration pattern used for camera posenaton, showing the origin and axes of
the world coordinate. (b) Template for ring detection afetdi from 15 images of rings; (c) Result of
template match for a view of the scene shown in Figurk 3.8.

image noise, and vibration, and because of the stochadticenaf robust pose and robust collinearity

methods (described in Sectibn412.4).
3.2.4 Calibration results

The accuracy of the camera external parameters was asdgsdeirmining the error in the angles from
the world origin to the camera and the error in the distance.

The arrangement of cameras was as in Figurke 3.6: they wemywseparated, and zoomed out
sufficiently far that the entirety of the 0.5m sided manipiolacube was visible, volume consistent with
that based on biomechanical analysis and used by Metyall [MTMO02]. Figure[3I0 shows a view of
the scene rendered using the information return from thibragibns of the three cameras.

To assess the likely error in the individual camera extecalbrations, and hence the likely error in
the position of an object recovered in three cameras, 21émpgr camera were acquired at different
times (without moving the cameras or target object) and thee pestimation algorithm was applied

1000 times per image. On average, the RAPID tracker used aitt@ot points. Robust pose and robust
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Linear Estimate Non-linear refinement

Figure 3.8: Example View from camera 2 showing the deteat@tufe points as asterisks and the pro-
jection of the corresponding scene points after linear amdlmear estimation.

Camera 2

Figure 3.9: Refinement of the pose estimations obtainedguar€i3.8 using the RAPID 3D rigid object
tracker with edge features.

collinearity (see Sectidn4.2.4) were applied using 20 dhidetations, respectively. The whole process
was iterated 10 times per frame to ensure that startingiératsshad decayed.

Following a procedure suggested by Thompstml. [TRMMO1], the mean translatioty, ¢ from
the world origin to the camera was derived as was the mearmnedtionn of the camera axis in world
coordinate frame. The object pose in the camera coordinateef is expect to be estimated with less
accuracy in translation along the camera axis and rotatiodspth. These translate to camera pose esti-
mates in the world coordinate frame (centred on the caidatbject) as translation errors that are highly

correlated in the three dimenions. Thence, the inaccurathamnslation was computed using a measure-
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Figure 3.10: A view of a 3D model of the cameras, desk and reiidn plane, rendered using the
rotations and translations returned from the calibration.

ment that is suitable for multivariate cases. Assumingttietistribution of the pose estimations can be
modelled by a Gaussian, one can determine the principalmBxaistaining the eigenvalues and eigenvec-
tors of the covariance matrix of the pose estimatibifi§ = Zj [twe j — twelltwe j — twc] . Each
eigenvalue\ corresponds to the variance in the direction of its eigetoreén inaccuracy measurement
can be defined by the volume of the ellipsoid defined by thegmeectors and eigenvalues through this
formula (see Figure311a):

4
V= 577)\1)\2)\3 (3.14)

A more meaningful measurement is obtained if the expectatdiard deviatioa can be used (recall that
o = v/)\). This can be thought of as an expected value of the distagiweskn the pose estimation and

the mean of the estimated pose. This measurement can beddejine

At = 3\/0‘10‘20‘3 (315)
Note that the equality,0903 = \/det(X[t]) simplifies the implementation of the last equation.

The error in rotation was expressed by two angles, which is the standard deviation in the angle
between the individual direction vectors and the maaand A6 the standard deviation in the cyclotor-
sion abouti, as shown in Figure-3:11. Talile B.2 shows the inaccuracyeqgbdlse estimation, computed

with the 21000 trials for each camera.
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Figure 3.11: (a) Ellipsoid defined by the principal standdedliations of the position estimation in the
translation space. (b) Angles used to evaluate the dewmiatiocotation axisx and in rotation anglé.

| Camera] Atmm  A¢°  Aa”° |

0 8.1 0.48 0.12
1 4.6 0.46 0.15
2 9.3 0.85 0.29

Table 3.2: Pose estimation inaccuracy for the position efcdimerag\t, the orientation of their optical
axis Af the rotation about this axid«. Position and orientation are expressed in the world coatdi
frame.

Now it should be noted that these errors are findividual camera’s calibration. If it is assumed that
the camera position is correct, the error can be tranferae#t to a point in the scene. But because the
cameras are close to orthogonal, the error ellipsoids fairet piewed close to the centre of each camera
will intersect orthogonally, and the resulting error caaace is not ellipsoidal, but can be approximated
by a sphere of radius

T
r~ Aa <@) D
whereD is the typical distance from camera to scene. Here: 1000 mm, giving a translational error
in an observed object of between 2 mm and 4 mm. One expects this error to scale propaly with
depth, but inversely with focal length because a fixed errdné image corresponds to a smaller angular
error. For this reason, where zoom lens is available, the pstimate is done by zooming into the
calibration object. Using the interpolation method ddsaxli earlier, once the pose estimate is done, the

cameras can zoom out to increase the field of view for the imgakxperiments.
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3.3 Onthe detection of hands images: a skin colour classifier

The third competence developed to support the researcleirethaining chapters is that of hand de-
tection. Any markerless visual method designed to detegttraick an object without intervention must
confront the question of how in the first instance to assedieatures observed in the image (be they
pixels, edges, corners, etc.) with the object itself. Limgahands is likely to be difficult compared with,
for example, face detection because hands are articulajedts that present both high variation in their
shape and in their degree of self-occlusion. However, tlseaeuseful uniformity in human skin colour
allowing the development of a localization method based irel golour classification. As the review
has indicated, and Chaptéls 4 &hd 7 will show, the resultihguette is sometimes all that is needed for
3D pose estimation. If internal edges are to be used, as they &hapterEl5 arld 6, the silhouette is still

valuable in restricting search for an initial pose.
3.3.1 Eliminating brightness from the colour space

Classification based on colour requires pixels imaged frkim t® form a tight cluster in some colour
space. Although we loosely describe skins as being of diffiecolour, the spectral variability is depen-
dent mainly on the amount, density and distribution of mielgosigment in the skin, not on its colour
[Mar0Z]. Thus, to a large extent it is the brightness of thim $kat varies, not its colouf [YLW98a].
Brightness normalisation involves reducing the dimeradipnof a colour space (typically from three di-
mensions to two) by projecting points into a plane of cortdbaightness in the space. It is inevitable that
un-modelled variations result in some overlap in the 2D sgagtween skin and non-skin clusters, but
the drop in dimensionality substantially cuts the volumdath and time required for training. Moreover,
if the colour space decouples brightness and colour infoomdrom the outset, the task of brightness

normalisation can be achieved by neglect rather than catipat
3.3.2 The choice of a colour space

Researchers into colour science, an important area lorayeoéfie digital era, have proposed a large
number of colour spaces each tailored to a different taskogrcolour spaces that are decoupled, the

most common — and commonly used for skin detection — are tBeGhromatic space (used in, for ex-
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ample, [YLW98D]), the HSV (hue, saturation and value) spacg. [RMG98], [AP96], [ZYWO0D]), and
the YUV/YCbCr space (e.g [ ICbh, Fri99, YLWY98a, FdC00]). &= comparisons of spaces for skin
detection have been carried out, but Martinkauppi’s thfider02] suggests that there is no definitive
conclusion as to which is the best, in part because diffetatabases with different illumination condi-
tions have been used, but principally because the diffeeimcoutput quality are marginal. Explanatory
and exploratory notes about these spaces are given in Apg®hd

Since the goal here is to implement a video-rate methodegsieg time becomes the key criterion
by which to assess methods. Now the decision becomes sfomigard. The conversion to HSV or HSL
requires a non-linear transformation algorithm, makirig the least efficient in terms of computational
cost. Conversion to CIE is linear and fast enough. Howettrns out that many digital colour cameras,
like the Sony VL500 used here, deliver images already ertcbgehardware in the YCbCr space. As
explained in AppendikA, the Y channel holds the luminanderimation, which is to be neglected, and

the Cb and Cr channels hold the chrominance information isito be used for classification.
3.3.3 Classifying pixels for skin detection

Several methods have been applied to the problem of clagsificof skin pixels.[[DHS00]. The simplest
“manually” carve out a portion of colour space to be clasgifie skinl[CnN9B], defining it by thresholds
or a lookup table. More common is to allow different colowave a probability of arising from skin,
and to learn the underlying PDF. Within this approach thegevariations in how the distribution of skin
samples is modelled.

Yang and Waibel[[YW96] (and se& [FdCO00]) argue that a Gand8l@F is good enough for their
small dataset of skin colour samples. However, is not ablactmunt for subtle variations in large
databases. Nor do Yang and Waibel include training data weirtbe background colour distribution.
This is assumed to be uniform, and a simple threshold in thé &f@he skin class defines the decision
boundary. Multi-modal Gaussian mixtures were proposedelmarh [|[JPI7]: indeed any two-class clas-
sifier could be applied to this problem, but doing so wouldstiige point that the feature space has only
three or fewer dimensions and the classes do not need to baletbdnalytically.

Jones and Rehg [JR98, JR0O2] have shown that non-paramettagitam models provide higher

accuracy and lower computational cost than using multigh@hussian mixtures. However, their clas-
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Figure 3.12: Screen shot of the application to train thesdli@s for skin detection: the classification
result is shown in the top left (skin is indicated by red, lmokind by black and unknown by white).
The panel on the bottom left shows the training areas alrsalfcted by the user for skin (dashed) and
background (solid).

sification was done in RGB colour space, which is less rolmudtumination changes. This problem
is largely eliminated in the truncated (Y)CbCr colour spa it is this approach which is developed

here.
Histogram-based classification in the CbCr colour space

Skin colour detection is modelled as a maximarposterioriclassification problem, using histograms
to model discrete PDF5[EP03]. During training histogrameskailt in the colour space for each class
involved — here there are just two, skéhand background. If a pixel with colour(Cy, C;) is known

to be in the class the bin counts[uv] is incremented, where
u = floor (C,/b) v = floor (C;/b) , (3.16)
andb is the bin size. The resulting bin counts are normalized &b th
P(uv|S) = csluv]/Ts (3.17)

whereTs = )" . cs[uv] is the total number of pixels labelled as skin during tragnin

During classification the posterior is determined usingdayule

P(uv|S)P(S)
(uwv|S)P(S) + P(uv|B)P(B)

P(S|uwv) = 7 (3.18)
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where the prior probability i$?(S) = Ts/T andT is the total number of pixels used in training. The
likelihoods and priors involving the background are defiamdlilarly (and as this is a two-class problem
can be derived without storing a second histogram). Thenrticpiar pixel with its colour(u,v) is
labelled as skin if

P(S|uv) > P(Bluv), (3.19)

which can for this two-class problem be simplifieddguv] > cg[uv]. (When there is neither skin
nor background training sample for a given bin, an uncertainty arises, &S|uv) = P(B|uv) = 0.
For the skin detection application, what matters in thidaghat it is known that thisv bin does not

represent a skin value, so it is classified as background.)
Iterative Training Method

The training process consists of selecting skin and backgtroegions of images. This task is performed
manually and can be very tedious for a large training set. den only a few images are enough to
create a good model for classification. To inform the useriaand-classify system was implemented.
Before the user starts segmenting a new image, the systems she classification result for this image
using the current training set. The user then judges whétfenecessary to use this image for training
or not depending on the size of miss-classified areas in thgemFor each image, the software shows
a track of the areas already selected by the user and it dbesld@amples from areas selected before.
This idea is similar to the iterative training method pragabdy Saxe and Foul5 [SH96]. Figure-3.12

shows a screen shot of this software.

3.3.4 Qualitative evaluation

Tuning the generalisation power via the bin size

The training method described in Section3.3.3 was usedpolate the CbCr space with more than 500
thousand skin samples and more than 1.2 million backgroampkes obtained from the image database
described in Sectidn’Al.5. Both Cb and Cr ranges were 0-2%bthanbin size was = 1. Figure[3.1B(a)

shows the histogram of the skin samples in the CbCr colowespnd Figuré-313(b) shows the area

of this colour space populated by skin samples some 1273 @ig&tions. The same is done for the
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Figure 3.13: (a) Skin histogram for unitary bin size and (i® toverhead” view of the occupied region
of CbCr space. (c) and (d) are same for the background. (erfy&d lookup tables using a bin size of 1
and 2 respectively

background in figure parts (c) and (d), where 5144 CbCr lonatiare populated. The skin “area” is
quite large because samples were acquired under difféi@mnination conditions.

Lookup tables were built from these histograms. The firsEigure[3.1B(e), retained the bin size of
1, but it was found to leave gaps in the skin region. Figur&@) shows the result of increasing the bin
size tob = 2. Many of the unknown ChCr classification values are extigiged. The effect of increasing

the bin size on an arbitrary image is shown in Fidure13.14.
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()

Figure 3.14: (a) An arbitrary image, and the effect on insirggthe bin size frond = 1 in (b) tob = 2
in (c) for skin detection. (The original image (a) i€)2006 http://www.palhacomatraca.com.br, reproduced with
permission.)
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Results in uncontrolled conditions

Further results are shown in Figure—3.15. Some of these isnagee obtained with the camera set to
adjust the brightness and contrast automatically. Suabnzatic modes also normalise image colours

to “improve” the appearance to the human eye under vargiiorllumination. Others have cluttered

background and include wooden objects whose colour is oftese to that of skin.

Figure 3.15: Input images and their classification resd@tsne of them present challenging background
with wooden objects whose colour is similar to skin colour.

3.3.5 Sources of noise and dealing with them

Even when the illumination is controlled and the camerarmpatars are static, there are several sources
of noise that lead to miss-classification. Tdbld 3.3 listesof the sources of noise and some possible

methods to reduce their effect.
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Source of noise Alleviated by
Saturated white pixels Adaptive iris
and black shadows
Compression artifacts Interfaces with no compression
Light oscillations Increase generalisation of the classifier
Colour subsampling | Smoothing or morphological operations

Table 3.3: Sources of noise and methods that can be usedurerdukir effect.

One of the less expected of these is a systematic mis-ctadiifi of pixels at the edges of objects,
where the colour appears to belong neither to the objectedrdckground. In digital colour cameras, the
image is acquired on a planar CCD array composed by greypéagbsensors laid behind colour filters.
These colour filters are usually arranged in the Bayer paf&ay /6], as shown in Figule_3116. Each
pixel is composed of four subpixels, one red, one blue,taredgreen. These proportions acknowledge

the human eye’s greater resolving power in green light.

Incoming Light

~—— Filter Layer

Sensor Array

1
]

Resulting Pattern

LI
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=
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-

Figure 3.16: Bayer arrangement of colour filters on the paxedy of an image sensor.

Spatial aliasing occurs at sharp edges since each coloagisrad from a different position. This
is illustrated in Figuré_3:17(a), where pixels on the edge @fhite square on a black background are
assigned to intermediate colour tones. An example fromlameage in 4:1:1 YCbCr format is shown in

Figure[3.1¥ (b), where various tints are visible around the.r



3.3 Onthe detection of hands images: a skin colour classifier 68

g B

Original image CCD array with Bayer Pattern
showing black/white edge
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Figure 3.17: (a) An illustration of colour aliasing due tdsampling for CCD arrays with Bayer filters.

(b) Detail of a YCbCr 4:1:1 image of a black disc on a white lgaokind where colour aliasing is evident
near the edges. Subject to limitations of colour reproductin paper, the enlarge region is tinted yellow.

Aliased image

3.3.6 Noise reduction

A variety of more or less principled methods can be applietktiuce noise, all implementing spatial
low-pass filtering of some sort, and all assuming that thedbare of substantial size in the image.
Routinely used are computing connected regions and thidisgoon their area, followed by median

filtering (e.g.IGWOD]). Figuré_3:18 shows a typical resultapplying both these techniques. Among
other possible alternatives is the successive applicafiopening and closing morphological operations.

Another approach (perhaps one that is acceptable only bethae emphasis of research is elsewhere)

5

BT il I3 FH A

04

(b) (c)

Figure 3.18: Noisy classification results, such as that shiow(b), can be improved using large blob
segmentation followed by the median filter, leading to treailieshown in (c).
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Figure 3.19: Classification under more constrained sitnatfa) skin and background clusters; (b) clas-
sification look up table obtained using bin of size 10. Blagkresents skin colour and grey represents

background.

Figure 3.20: Samples of segmented hand images of a singldrase a simple background (wooden
table). No post-processing was applied to the images.

is to apply the low pass filter to the environment, reducirg\tariability in the lighting, the degree of
clutter, and cameras settings. In this kind of situatior, ¢lusters of skin and background can be very
compact and have little intersection. As an example, Fif8(a) shows the clusters obtained from
a background that consists of a dark wooden table, and frenhdéimds of four subjects under stable
illumination. Note that the clusters are so well separatad & simple threshold in the Cb channel could
classify them. To allow more generalisation and noise irbiekground, the histogram-based classifier
was used with bins of size 10, making the lookup table verymaxhand classification very fast: the
average processing time f640 x 480 images was 10ms using a 1 GHz Pentium 4. The resulting hand

segmentations are shown in Figlire".20, where no postgsimgehas been applied.
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3.3.7 A note on adaptation

Although brightness normalisation provides robustnedgta intensity variations, it will not account
for changes in the colour of the ambient lighting or refledighit. There are two approaches to retaining
the compact skin clusters already computed: first, adaptaheera parameters to the environment, so
that the colour appearances are the same as during tramingecond, adapt the lookup table to the
illumination conditions by using samples of skin colourdygjeats in the image.

The first option is achieved by the processwdfite balance which is usually implemented in the
hardware of video cameras or digital still cameras. Whitarnxing a camera is done by acquiring the
image of a white region of the scene. The camera then showsvtiite as white and adjusts all the other
colors accordingly[[WS00]. The second consists of locasingarea of the image which is known to be
skin coloured. Once such area is located, the maximum anoihnmn values in each channel (CbCr)
in this area can be used to translate and scale clusters tfaiheng set and the lookup table can be
updated. In[[May04], for example, a skin patch is selectedualy in the beginning of acquisition,
and in [SWP98b] part of the user’s face is guaranteed alwaye tvisible in the bottom of the image.
Alternatively, a face detection method that works indeperig of colour such as Viola and Jones’
method[[VJOL] could be used to locate a skin patch. For siagin which the only skin coloured object
are hands, Hamt al. [HASWOE] collect samples of skin from the first frame usingpagh skin colour
model in RGB space. A region grow-based algorithm is appbecbllect more training samples of skin

and these are used to train a SVM classifier.

3.4 Summary

In this chapter, the software tools and apparatus usedghout this thesis have been described.

First, the architecture and software system underlyingitheo-rate tracking of multiple objects with
multiple cameras was outlined. This is a modular systentt, inuhe context of a larger project, that can
distribute tasks over processors and communicates resalkeckets.

The use of calibrated cameras facilitates model-basekitgof objects in 3D using multiple cam-
eras. The second section of the chapter described the twiwodsebf camera calibration. The first

method, based on a 3D calibration grid, was used to recoeentarnal calibrations of the three Sony
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digital cameras over their complete range of zoom settigserder to avoid having to repeat this com-
plete calibration if the cameras were moved, a second mdthsed on a planar tile was used to recover
the external parameters. A method for detecting and detémgithe alignment of the planar object was
described, and the accuracy of recovery when three camerased was assessed.

The last section of the chapter outlined the classificati@thod used to detect initially where the
hand is located in the image. Because skin varies predotiynanbrightness, not colour, brightness
normalisation reduces the dimensionality of the pixel arakes skin colour clusters more compact,
while retaining distinguishability from background pigelResults in AppendikJA confirmed the view
in the literature that there is little difference in termscofour separatation between those colour spaces
that use brightness as one of its axes, so the choice of cepmae was determined by computational
cost.

Classification of colour pixels was achieved by learning ltkelihood of a pixel of some colour
arising from a particular class, and using Bayes’ rule teeine the posterior. This is a simple and
effective method that is able to model classes that haveimudal and discontinuous PDFs, essential
for large datasets of skin colour pixels acquired with défeé cameras under different illumination, and
essential for modelling the background class. The bin sizeehistogram can be set to be inversely
proportional to the number of training samples. The largerdin, the more general is the model and the

faster is the classifier.



Real-time tracking of rigid objects

A method to track known rigid objects in 3D is described. Tikibased on the RAPID
tracker, proposed by Harris_ [Har92a]. A sparse set of edgatdees is used to measure
the observed image movement. An efficient search metho@dsaml the pose update
is computed by solving a linear system. For these reasorssyistem is very fast and a

multiple view implementation can run in real-time.

Due to its speed, this tracker has been chosen as the basigiltban articulated object
tracker, described in later chapters. To give backgroundtfi® next developments, this
chapter describes the RAPID tracker and experiments thiadate the implementation for
multiple view tracking. This is followed by the descriptimina single view application that
associates RAPID with a detection method to locate and teapkinting hand in images.

This system was applied to command the gaze direction of eaideaactive camera.
4.1 Introduction

The use of prior information about an object’s shape is tsemse of model-based vision. This chap-
ter describes a method to track known rigid objects in 3D Wwiécbased on Harris’ RAPID Tracker,
proposed in[[Har92a].

This chapter begins with a description of this method udnegiotation of Thompsoet al. [TRMMO1]
(Section4.R) and follows by describing some experimenevaduate the accuracy of this tracker for a

calibrated multiple view situation (Sectibn¥.3). Seci#bd describes a method that associates colour in-
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formation with the RAPID tracker to estimate the pointingediion of a hand from a wearable camera’s
viewpoint. This chapter finishes with a summary in Sediidh Zhe main contributions of this chapter

have been published in [dMMDOD6].
4.2 RAPID tracker

RAPID (Real-time Attitude and Position Determination) isn@del-based three dimensional tracking
algorithm for a known rigid object executing arbitrary nwoti[Har92&]. The basic assumption of this
tracker is that the change between the current estimatetlgukthe actual pose is small enough (i) to
allow linearisation of the solution and (ii) to make the gesb of matching edges straightforward. It
is also assumed that the cameras are calibrated and the tbfee tracked is specified in a Euclidean
coordinate system.

Deriving and using a linear pose update was not the only ibotiton of Harris’ RAPID tracker. A
number of early model-based trackers (e.9. [Gen92Z, Lolw@®2ZP) recovered image features explicitly,
such as straight lines, throughout each image, and thestadjthe pose of the model so that the dis-
tance between projected and observed features was midimisaris [HS9D| Har92a] made video-rate
tracking possible on meagre general purpose hardware by e more parsimonious with the use of
the image data. He searched perpendicularly from just a éewral points on projected lines to locate
nearby image edges and then adjusted the pose to minimisuth@ed squared-distances, a method
to become the norm in active contours. Although processeedp have since increased a hundredfold,
economy still remains an issue as the the number of contmolgpt handle complex and multiple objects

has increased similarly.
4.2.1 Scene and projected image motion

A 3D object is described in its own coordinate frame 0 as afeputrol pointsX’ = [X° Y0, Z0]T,
These points may be genuine points on the object, but mowmdlydhey are parametrised locations on
fixed crease or albedo edges, or are generated on the fly asaekedges of a curved object, as sketched
in Figurel41. To allow multiple and possibly moving cametaie treated equally, the object’s pose will
be one or other representation of the rotation and translgh{ , toi} that take points in frame 0 into

points in a fixed world framél’. The position of each camera, & defined similarly by{R%, twe bk
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so the pose of the object in a camera coordinate frame issemed byX “* = Rgv XVt tye,.

O

ptic
AXxis

Figure 4.1: Each object is modelled within its own coordinftame 0 as a set of control points lying on
edges, which may be crease, albedo or extremal edgesW and A,, are thek-th camera, the world
andn-th object aligned frames, respectively.

As a matter of convenience, ldtbe a frame that is aligned witly’ but has its origin coincident with
the object frame): X4 = R})’VXO. Then, the pose of an obje® at some instant is described in the
world frame by

XW — RgVXO + tow = XA + tow, 4.1)

The object’s angular and rectilinear velocities are defiimetthe frameA and represented hy andv

respectively. The object’s instantaneous velocity in tlgldvframe is then:

< _ ([_XA]X‘I3X3><:})>

= Hs. (4-2)

The antisymmetric matrifa] . is such thafa] b is the vector produci x b. The velocity in the world

frame is transformed into a camera frame as
X¢ =R Hs. (4.3)

The projection into a normalised image (i.e., one correbtethe intrinsic calibration to have focal

length and aspect ratio unity, and origin at the optic cérisre = X /Z¢, and so the projected motion
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Figure 4.2: The search from the predicted control peifi along a convenient directiath close to the
edge normal. For fast image seardhmay be taken as one of the eight cardinal directions.

x = (1/29X" - xz°)
= (1/2°)[13 — x[001]] R Hs , (4.4)
whereIs is the3 x 3 identity matrix andx[001] is an outer product.

4.2.2 Measurements of edge-normal motion

Full motion vectorsk = (x’ — x) could be used to recover the screwvith three or more point to
point matches. But it is more usual to match control poinisiage lines or curves (with relatively large
curvature radius), and the resulting aperture problemiresjmeasurement of the projectionsobnto a
directionnn normal to the edge on which the control point lies [TRMMO0X,shown in Figur€4]2. The

measurement equation for each control poinécomes

1
FﬁT [I3 — x;[001]] RS His = 0,/ %; (4.5)

2

or f;s = d;,

Harris [Har92a] pointed out that if the pose change is snitadl,predicted and located lines (or curves)
are close to parallel and the perpendicular distaince ~ di'd, whered is the distance between the

x and the located edge along any unit veclorFor fast image searchd is taken as one of the eight

cardinal directions which is closest o

Each edge measurement builds up a row ahd an element ad in this equation:

Fs=d (4.6)
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and each distance measured gives a one-dimensional motisiraint, so it is required to stack at least
six measurements to the equation above before solving seimg variant of least squares (further details
are given in Section5.4).

Note that this system is straightforwardly extended fortipld views. For each came€a, a different
set of projected control pointe{” is created and Equatidn#.5 is computed. The kinematic seeetor
s is specified in the aligned object frarmag so it is the same for all cameras. Thus, each control point

from each camera adds a row to the system of EquBfidn 4.6.
4.2.3 Control points and visibility calculation

To avoid ambiguity, if two or more edges of equal gradienémsity are found along the search path,
the nearest to the prediction is chosen. The control polotggacurves or lines are not fixed in object
coordinates. The spacing between projected control pwititeed in the image, and this is what dictates
the number of control points per line of the object, and tiesrtposition. This avoids making repeated
or overlapping measurements along object lines that ardyngarallel to the camera’s optic axis, a
repetition which would skew the weighting.

Although visibility calculations are performed for renahgy in the hardware of graphics accelerators,
it is not straightforward to match the resulting renderegecbwith the track-able representation of
individual control points — an explicit relation betweerithposition in the imagea and their position in
the 3D objectX is needed. For this reason, visibility calculations arelemgnted as part of the process
to compute control points. Since the number of control goistmuch smaller than the number of pixels

in the object, this process is not too expensive.
Polyhedral objects

For convex polyhedral objects, visibility calculation dascomputed for whole control lines rather than
control points individually. A control line is visible if dieast one of its neighbouring faces has its
outward normal facing the camera.

For concave objects and multiple objects of any shape, saire grocessing has to be done. Each
control point from lines that were considered visible in ep described above has to be tested against

the other faces of the object in order to verify if one of thenoc¢cluding it. This is done by ray tracing:
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if the line that links the control point and the centre of tlenera crosses one of the faces of the object,
this control point is occluded.

To avoid ambiguity caused by lines of the same face that ajeged too close to each other, when
only one of the neighbouring faces of a line faces the cantlieesangle between the normal of this face
and a vector that goes from the control line to the centre eicdmera is verified. If this angle is close
to 9C°this line is not tracked. In the example of Figlirel4.3, theesdof the back lines on the top of the

object were not tracked for this reason

A

Figure 4.3: Tracking a synthetic synthetic cross-shapgeicol_eft: 3D view showing the camera and
the object: the object in blue is at the at the synthesisedgttruth pose, this is superposed by the object
at the estimated pose in rellight. camera view with the projection of the predicted contrahp(pink
crosses), the normals to the lines (green lines), and tladd@ontrol points (red crosses).

Rings, spheres and cones

Planar circles are parametrised by position, radius arghtaiion. The number of control points is
computed according to the size of the projected circle inith@ge and this is used to establish the
angular spacing in which a control point must be created ertiftle. Discs are composed by an inner
and outer circle and a zone in between them that occludeststijehind the disc. To verify if a given
control point is occluded by a disc, first it is verified if thentrol point is behind the disc’s plane. Next,

it is checked if the point is in the “shadow” of the disk. Foaththe angle between the camera centre, the
disk centre and its bounding contour is compared with théeamgtween the control point being tested,

the camera centre and the disc centre. An additional tesirie tb verify if the control point is within

For detailed description of computational geometry mestiadolved in the visibility calculation, seEO’R98].
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the “hole” of the disk.

For spheres, cones and quadric objects, a method to compciigdimg contours is described in
[Ste04]. However this involves factorisation of matrices éach object component. In this thesis, a
simpler method was employed by assuming that the boundintpers are in the intersection between
the object and a plane that crosses the part centre. Foresphiis plane is orthogonal to the camera
axis. This approximation saves some computation at littease in the accuracy if the camera is not
too close to the sphere. The localisation of control poisthén computed in the same process as that
of circles. To check occlusion, three tests are used, thepatationally cheapest is first: (i) Is the point
within the sphere’s radius? (ii) Is it closer to the camemmtthe sphere centre? (iii) Is it further than the
sphere and in the “shadow”?

For truncated cones, a plane on the cone axis is used anduhdibg contours are defined by two
lines and two circles. The control points are created falhguthe normal process for polyhedrals and
circles. Occlusion handling is performed using these te@}df the point is beyond the ends of the
cylinder itis not occluded,; (ii) if the point is within the ligder radius it is definitely occluded; (jii) if the
point is closer to camera than the leading edge of the cylindannot be occluded; (iv) if the ray to the
point passes through the cylinder contour and the distanoe the camera is greater than the cylinders,

it is occluded.
4.2.4 Robust methods

The use of robust methods based on RANSAC (Random Samplinge@eus) [FB&1] to improve the
performance of polyhedral tracking was exploredin [AZO931%8, TRMMO1]. In this thesis, robust
methods are used in two steps of RAPID: to select collineartpdrobust collinearity), and to compute
the whole object’s pose (robust pose). RANSAC requiresttimstandard deviation of measurements
is known a priori to discriminate between inliers and outlieHere, this value is not known, so robust
estimation is performed using Least Median of Squares (L3)J4BL87].

For robust pose, this consists of selecting minimal setsezfsurements (six in the case of estimating
s) chosen randomly to compute model parameters. These paranae then used to compute the
deviation between the fitted estimate and all the measurettat@ointse; = |d; — dzf ”ted|. This is

iterated, and the solution with the smallest median sf used to estimate the standard deviation of the
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Figure 4.4: Robust collinearity: rejecting outliers.

data. This obviously requires that at least 50% of the measents are inliers. The standard deviation
is estimated exploiting the fact thmx/med\eﬂ is an asymptotically consistent estimatoroof
whene; are distributed likeV (0, 02), wheres is the cumulative distribution function for the Gaussian

pdf, thus
1

g = m\/ med|€¢| = 1.48\/ med|ei| (47)

Then the measurements are split between inliers and audlczording tol|[RLE7]:

outliers otherwise (4.8)

{ inliers  if |e;| < 1.960
The final estimate of is obtained using all the inliers. The 1.96 coefficient wasvee in [TRMMO1]
and it is typically of order 0.03 in the ideal image with fogahgth unity. Using the Rousseeuw formula
in reverse, they found that this translatgddg ~ 1.2 pixel in a physical image using cameras with focal
length of around 3000 pixels, which is also a typical valuermst of the experiments presented here.
This is a commensurate with the edge search mechanism, wheshates only ta-1 pixel accuracy.

The expected confidende that a valid minimal set ofn features will be selected aftértrials when

the fraction of valid data ig is estimated by
P=1-(1-y™)! (4.9)

It is desired that” be as close to 1 as possible. The values were chosen enipjrisaéxplained later.
Robust collinearity [[AZ95/_ HM99] aims to avoid edges misohes when locating control lines.

In situations like that shown in Figufe#.4, background eais even other parts of the object being
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tracked can cause mismatches on locating a control lineegedgb and c). The robust collinearity

method consists of picking pairs of points at random to dedifiae, and computing the perpendicular

distance from each edge location to the line. The standasdté® is computed and used to calculate a
threshold on the perpendicular distance that is used tordete the inliers and outliers. In the example

of Figure[4.4, the control points d—h are correctly matcleith¢ image line, but the points a, b and c are
mismatched to another edge. Robust collinearity deteetethontrol points as outliers, and they should
not be considered in the calculation of the change in pose.

The combination of robust collinearity and robust pose ipantant because robust pose requires
more measurements in the minimal set, which means that revegions are needed. If a number of
outliers is eliminated with robust collinearity, the estite of the fraction of valid daté for robust pose
is increased. A sample situation in which robust collintyaalone is not enough occurs when the object
has two lines projected near each other, and one of them ledsedlges in the image. Robust collinearity
may fit all the points to the same line, then robust pose eéitem the mismatching points that should

have matched the weak line. This combination has been ekjpir@etail in [KDO5].
4.2.5 Convergence and filtering

Thompsoret al. [TRMMO1] show that because of the approximate nature ofitiearisation, it is useful
to iterate the solution within each image, allowing the pofte object to converge to a more accurate
results. This approach has been used in some of the expesichetailed later.

During the iterations of robust pose, some minimal sets tedt/potheses o with unrealistically
fast motion. To save computation and avoid unstable mottimates, these hypotheses are eliminated
without being checked against all the measurements. Amalige to improve the stability of the motion

estimate is to damp Equatién¥.6 by modifying it to:

<§I>s:<g>, (4.10)

where) is a damping factor [WL88]. As before, a least squares smiutiethod is applied to estimaie
This formulation assumes regularised entries.in
To deal with fast (but smooth) motions, or low frame ratesyridgHar92a] adopted the Kalman filter

(e.g. [Bro83]) to maintain an estimation of the motion angbiave the tracking results using prediction
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of the pose.

The experiments presented in this chapter are interesteerifiging the accuracy of the pose es-
timation assuming that the frame rate is high enough so-fraere motion is small. For this reason,
damping and filtering have not been used. Another reasorhierchoice is that the intended appli-
cation of tracking hands interacting with objects sharemes¢eatures with teleoperation (e.g. contact
and abrupt motions). In teleoperation, the application biter with a motion model such as constant

velocity has proven less satisfactory [MRT98].
4.3 Multiple view experiments

In this section, experiments with multiple cameras are rilesd. Sectiofi4.3]11 shows experiments with

synthetic images and Sectibn413.2 describe an experiménteal images.
4.3.1 Synthetic images

To evaluate the RAPID tracker it is necessary to comparedse pecovery results with ground truth
data. A convenient way to obtain accurate and reliable gtdwrth data is to build an artificial three
dimensional scene such as that shown in Figude 4.5. In thisesthe object was placed in the centre of
the world coordinate system (positigi 0, 0]), and three cameras were placed in regular intervals of a
circle on the planeX Z, centred in0, 0, 0].

Tracking experiments with six polyhedral objects were gernied: a cube, a parallelepiped, a cross
(shown in Figur&4l3), an L-shaped object, a pointed obgkeiwn in Figur€4]5) and an object composed
of two separated cubes. The background was black and thet®hyjere textured with a uniform colour.
The atrtificial light sources were placed at positions thivakhe appearance of edges in the object’s
surface creases.

The experiments were performed on 50 frames long sequeogessequence per object. In these
sequences, the first pose of the object is known by the traltkeach frame, a rotation af8° about the
axis of vector{1, 1, 1] indicated in Figur€4]5 was applied to the object.

The parameters of the Harris tracker were chosen so thatimealprocessing performed (i.e. each
frame could be processed in less thd}-ous). In a 1.8GHz Pentium 4 machine the following parameters

were adopted: 12 pixels of spacing between control pointeenmages, 21 pixels of search path for
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Figure 4.5:Top: artificial scene showing the cameras, the pointed bloc&atlgind its rotation axis (dark
red line).Bottom: views of the three cameras, with the same symbols used urdffy3.

control points. The robust collinearity method was itetls@dimes and the robust pose 10 times. These
values result from assuming = 80% of inliers andP = 95% of confidence for robust pose. For robust
collinearity, 3 iterations are enough to give= 99% of confidence assuming that= 60% of the data
are inliers (see Equati¢n#.9).

The experiments were performed usiti) x 300 pixel images and cameras with focal length of 700
pixels. The distance between each camera and centre of jge alas 18 metric units, and the diameter
of the objects ranged between 3.46 (cube) and 7.48 (pa@ilkeld) metric units. This means that parts
of the biggest objects exceeded the field of view of some casrfer a range of rotatioAs

For 300 frames, the mean processing time per framel®dasns, with standard deviation éf1ms
and maximum o81.9ms (occurred when 241 control points were used to track theseshaped object).
Since the ground truth motion is the same for all the objdwsevaluation results have been computed
together. The accuracy evaluation quantities of Se€fid@ave been used. The results are shown in
in Figured4.B 417 arld 4.8 for translation, angle of rotatiad axis of rotation, respectively.

Table[Z:1 gives an overview of the results obtained in theszking sequences. Translation error is

Note thatfd/Z + = > h, wheref is the focal lengthd is the diameter of the object, is the position of the object in the
image (in this case, the centre of the image) arid the height of the image. This also happens in the horitaintaction of
the image for the longest objects.
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Figure 4.6: Top: mean of the recovered translations,(Y and Z) for synthetic images (in a metric
unit normalised by distance between the cameras and thetebjgersus set rotation (in degrees), in
comparison with the ground truth daottom: mean of the error (solid line) and inaccuracy (bars).

‘ ‘ ‘At/dist (x1073) A#° Aa"‘

mean 1.0 0.7 1.7
Error std 0.6 0.9 2.7
max 4.7 3.7 155

Table 4.1: Synthetic tracking results: mean, standardatiei and maximum error in the estimate of
translationA¢ /dist, angleA#° and axis of rotatiom\a°.

normalised by the distance between the camera and the gbjédhis distance is 1m, the mean error of
the position estimative is- 1mm, and the expected error of the orientation estimative is7°. Since
these synthetic images created for the tests describedba simulate the noise that is usually present
in real images, the error obtained is attributed to the hisaion done and to the pixelation due to the
relatively low resolution used.

The quirk in the estimate of andZ that happens at rotation of §8hown in Figuré416) hapenned
because this is a critical pose for the object models andetha@ering setup used. All these objects are

made predominantly by cubes, and at that pose, some of thdabnd crease edges become invisible
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Figure 4.7:Top: recovered rotationd versus set rotation (in degrees) around the fixed rotataia
comparison with the ground truth datottom: mean error and standard deviation.

due to the lack of contrast caused by the position of the Bghtce. At that pose, some of the planes of
the objects are close to aligned with the the axis of two camerthe set, also reducing the number of

located control points.
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4.3.2 Realimages

To evaluate the tracking performance for real images, wiepeed experiments with a sequence grabbed
from the calibrated cameras in the desktop environment shiowigure[3.6. The tracked object was a
sheet of paper with the pattern described in Sedfioh 3.2qution it. Images of resolutiof40 x 480
were used.

In this 140 frames video sequence, the tracked object igglan the cover of a book thatds 12mm
thick. The sequence starts with the book on the centre ofdbedmnate frame, which means that the
initial position of the tracked object is abddt 0, 12]mm (see FigurE“l9-left). Shortly after, the cover of
this book is opened up to abold® (see Figuré€4]9-centre); then there is a small pause andtiei®
closed, back to the original pose. After that, a rotationuaoe Z axis is applied, followed by a pause
when the angle of rotation was 45° (see Figuré4]9-right), and a new motion combining thistiota
and a translation in boti andY is started just before the end of the sequence.

— oy

[ = \‘ [g“.;-_-::_”?—z \‘ [ r;;j)\é‘
] T

frame 1 frame 34 frame 134

000

Figure 4.9: Key frames viewed from camera 2 (see Fifjufe 3it)tve control points.

The tracker was applied with real-time parameters: theisgdxetween control points was such that
the average number of located control points was of 128 (aditie three views). The mean of the time
per frame wad5ms. The estimated poses shown in Figliresl4.10] 4.1[and ¥udaly agree with the
set rotations above. For a quantitative evaluation, thesats are compared with results obtained using
the more expensive set of parameters that have been useanfiera pose estimation in Section3.2.4,
with the difference that now multiple views are combined.tithose parameters, the average number
of located control points was 698. The results obtained thiése more expensive parameters are taken

as “ground truth”.
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Figure 4.10:Top: recovered translations (continuous lines) for a sequehoeal images in comparison

with the ground truth data (dotted linesy., Y andZ are represented in red, green and blue, respectively.
Bottom: estimation error.

A robustness test regarding to error on initialisation sogdresented in experiment. The tracker was
initialised with the object placed on positigi 0, 0], i.e., as if the sheet of paper was laying on the desk,
and not on a book that is on the desk. This is why the contraitpavere misplaced in the view of the
first frame shown in Figurie4.9. Note (from Figufes 4 [10, ¥aad[4.TP) that only 6 frames were enough
to recover the correct pose of the object. A quirk in the tiagkesult happens at around frame 110 for
the estimate ofX and Z. This was probably caused by change in the cardinal direafahe edges

search paths, but this did not affect subsequent resultsthed DOFs.

\ | Agmm AG° Aa® |
Mean| 2.29 051 8.40

STD| 281 0.68 19.80
Max | 26.19 5.89 125.9(¢

Table 4.2: Tracking error for a sequence of real images, stgptihe mean, the standard deviation and
the maximum error in the estimate of translatityp /dist, angleA§° and axis of rotatiom\a°.

Table[Z42 shows the mean, standard deviation and maximumferrthe whole sequence (including
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Figure 4.11:Top: recovered rotationd) in comparison with the ground truth datBottom: angle @)
estimation error in degrees.

the error in the first frames). These values were computed &aingle tracking attempt. Note that
the estimated axis of rotation (angi¢ sometimes presented a very high error, but the overalt eras
not too large because the estimated angle of rotdtifom the frames where this occurred was not large

(smaller than 7).
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Figure 4.12:Top: recovered axis of rotation (continuous lines) and grouatht(dotted lines)Ax, Ay
and Az are represented by red, gree and blue, respectiBytom: orientation ¢) error in degrees.

The error ina can be very large when the angle of rotatiéhié small.
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4.4 Detection and tracking of pointing hand from a wearable amera

In previous section, it was shown that RAPID was evaluated awethod to track rigid objects using
multiple calibrated cameras in a desktop environment. ig1g8ction, a single-view application of this
method is described. RAPID is combined with an image-bakagdesdetector which uses the skin colour
detector of Chaptdrl 3 to locate and track a specific hand shiapea wearable camera’s viewpoint.
Unlike the experiments described before, the camera isoablyi not static. In fact, the camera is an
active vision system that is worn on the shoulder of the u$&e goal of this work is to aid the user

interface using the localisation and tracking of deictistgees.
4.4.1 Introduction

Recent technology allows the implementation of robotidesys that are light enough to be worn with-
out inconvenience to the user. This leads to a wide rangepifcafions from assistive technologies to
entertainment and portable communication. Wearableectwneras provide views of the environment
which are rich in information about the wearer’s locatiamgractions and intentions. But the images
from them present severe challenges because neither ther @ its underlying “platform” is station-
ary. Compounding these difficulties, most researchers alseias that are more or less rigidly mounted
to one or other body part — head, shoulder, chest and handdiidveen used — making the imagery
highly dependent on posture.

Mayol [May04] developed prototypes for a miniature weagaditive camera, and argued that mount-
ing it at the shoulder gives an optimum location measurethagheld of view, independence from the
wearer’'s movements, and, important in wearable applicafisocial acceptability. The ability to redi-
rect the camera also allows switching between sensing xtsntene context may be focused on the
manipulative space; another may be the horizon, alignell gvavity; and a third may be fixated on an
independently moving object. Such devices require a rafigemsing and perceptual modalities. In
[MTMOQ] inertial and visual cues are used to stabilise gagelétecting user and image motion. In
[TMdMOZ20] slaving the device from head motion is investeght

In the wearable domain, hand gesture recognition is a Haepkcement for keyboard and mouse-

based input. IN[SWP98a], for example, a hat-mounted camearsed for a sign language recognition
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task, and interestingly performs better than a wall mounteg] while in [KOKSOL] a bare hand is used
as a cursor-and-click device for interacting with menupldiged on a head mounted display. Pointing
gestures are the main form of non-verbal communicatiorsgmtng a major complement to speech in
human to human communicatidn [PSH97].

The interest of this section is on using the view from the &bk camera to detect and track pointing
gestures in order to determine the focus of attention andesdhe camera. In order to allow natural
user interface, it is necessary to use real-time algorithifinghat end, a coarse-to-fine method for shape
detection was proposed. This is invariant to translatiodh ration, but retains the ability to identify
position and orientation of the pointing hand. Using a aythite state machine, this detection method
is combined with RAPID to refine the pose estimate and addhdefitrmation about the position and
orientation of the hand. Such parameters enrich the abilithe wearable camera to perform a saccade

to the pointed area in 3D.
4.4.2 The wearable camera system

The wearable active camera consists of a miniature cameuatetat the end of a serial chain of three
motorised axes. As shown in Figure—4.13, the device is mduatea collar and lies just above the
shoulder of the wearer, its location was found optimal agfaamumber of criteria. Full details about the

device’s kinematics and spatial layout are giver] in [May04]

Figure 4.13: Wearable Visual Robot: (1) 2-axis acceleremé®) CMOS colour camera, (3) three mo-
torised axes, (4) wireless video transmitter. The weariégface box containing the data transceiver,
micro-controllers and batteries is worn at the hip.
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Figure 4.14: A finite state machine to combine detection eaxking of pointing hand.

4.4.3 Locating pointing gestures robustly

The hand detection algorithm is a coarse-to-fine matchinthoagethat is able to find the hand and also
to estimate its pointing direction in the image plane withthhe need for scanning all the pixels. This is

combined with the RAPID tracker in a finite state machine showFigure[4.TH.
Preprocessing

The first step in detection consists of skin colour detectighich is done using the method described
in Section3.B. If most of the background captured by the aldarcamera is dark, then the automatic
contrast normalisation of the camera can produce someasadiiolobs in the hand image for Caucasian
users, destroying the colour information in those regidiasfinesse this problem, white saturated pixels
were classified as skin. This reduces the false negativsifitasion rate at a cost of increasing the

false positive rate. But this is not critical because thedndetection method takes the global shape into

account. FigurE415 shows the result of this method for #estging image.

(@) (b) () (d) (€)

Figure 4.15: a) Original colour image, which has saturatedsand video interlacing artifacts; b) skin
detection result; c) threshold result; d) combined (OR)gma) filtered result obtained with the median
filter with a3 x 3 image.
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Since the shape detection and tracking methods are basedtal points, rather than global images,

skin detection and filtering can be applied only to the regioiinterest to reduce the computational cost.

Hand shape detection

Techniques for finding objects of a known shape include tleeofiD correlation, image moments, and
specific spatial filters [dCJ01]. The first two methods workiwen noise is small and when objects do
not vary too much. But several kinds of distortion happeerofh hand images: the hand can appear as
a non-contiguous object due to occlusion and shadows; ibedn different orientations; other objects
with similar colour and size can be present; and small vanatin the hand shape can occur. To cope
with these factors and with image noise generated by thdegsevideo transmission, a robust shape
detector is needed.

Since the camera is located on the user’s shoulder, theigaria the scale of the hand in the image is
not expected to be very large, at least in the first frame efesfce of the pointing gesture sequence. The
detector uses the local shape descriptor presentéd in [MEITMSiven an image locatiom, = 5 rings
with different radii centred at this location evaluate thesclassification valu€ of the imageZ(-) at
everyr /K radians (in this experimenk = 32), as shown in FigurleZ16. A positive valu5Z (i, j)) =
1) in the curve indicates skin, a negative vald@g¢Z(i,j)) = —1) indicates background. For rotation
invariance, the descriptor builds a feature vegiawhere each element consists of a similarity measure

between each possible pair of response curves, i.e.,

p = [h12,h1 3, h14,h15,ha3,hoa, hos, haa, hs s, has) (4.11)

whereh,, ,, is the similarity between th2/K -dimensional curves: andn. Since the values af(Z(-))

are either 1 or -1k, ,, is computed by
| 2K
hmn = 57 kz::l ConkCoe - (4.12)
Note thatp is invariant to rotation since it is a descriptor calculatath the shape itself, and invariant to
column permutations.
A templatep is generated from a training image in which the user clickthermetacarpophalangeal

joint of the index finger and on the index fingeripThis determines the centre and the orientation of

3For the nomenclature of hand bones and joints, see Figdre 1.1
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Figure 4.16: Extracting and matching the shape descrig&routdoor view of the hand; (b) the shape

detector locates the pointing gesture and its directionydtues extracted from the rings, where the 1

indicates skin area and -1 indicates background; tempkitees are showed by dashed blue lines and
solid red lines show the current signal after best alignment (From [MDTMO04], with permission.)

the template, respectively. Upon application, a new sawvgd¢orp is compared with the templajeto

determine the similarity(p, p) to the shape under search, determined by

S
_ 1 _
9(p.P) = 5 ;pmi : (4.13)

whereS = r!/2!(r — 2)!, wherer is the number of rings used (hefe= 10). Note thatg(-) € [0, 1].

Thus, the detector is a function that tries to find the pasitbp’ in the imageZ(-), such that

p =arg mgxg(p,ﬁ) - (4.14)

The spacing between rings and the number of rings was detedneixperimentally. The best trade-
off between accuracy and computational powerlfar x 144 images was obtained using 5 rings spaced
from each other by 4 pixels. The innermost ring has radiuslgfisels.

In order to speed up the detector, a coarse-to-fine seardfotheias used. In the first stage, a gross
search is done and the similarity is evaluated only once ¢h @ pixels in the vertical and horizontal
directions. Next, a fine search is done centred on all skinurgbixels in the neighbourhood of the
best location found in the gross search. Once the positiahnttaximisesy(p, p) is found, the hand
orientation is estimated by searching for the orientatiofthe templatg that maximises the similarities
hw.m between the rings of the template and the located imageiptscr

To save computational time, the matching scglp, p) is evaluated before moving to a finer stage.
If it falls below a threshold, it is considered that no paigtihand has been located in the image and the

system waits for the next frame. The same happens after tb&t Bearch in order to decide whether to
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move to the tracking stage or not. Figlire4.17 shows thatétextbr functions under quite different and

severe image noise.

(a) (b) (c) (d)
9(p,P) = 0.86 9(p,P) = 0.85 g(p,P) =081 9(p,p) = 0.72

Figure 4.17: Challenging images and detector responsesal{a) outdoor noise image where hand
is non-contiguous (finger striped), (b) ghostly finger; (@laor image with change in shape (sleeve
retracted); (d) Non gesturing hand. The video noise in (&) @) is encountered at the limits of the

wireless transmitter’s range.

4.4.4 Hand tracking

The shape detector initialises three degrees of transidtand rotational freedom that most affect image
appearance. The other 3 DOF are set to default values, aare glhssed to an implementation of RAPID.
The idea is that the user tells the robot that (s)he is peff@ra pointing gesture by starting with the
hand at a roughly standard distance from the camera. Nexisérecan adjust the depth of the pointing
direction and this is identified by the tracker.

Since the aim here is to track a single pointing gesture, id ngpdel of the hand is enough. In
order to reduce the computational cost, a simple planar hveae used, so self-occlusion handling is
not necessary. This model comprises straight edges alormipwbntrol pointsX® are distributed in the
model coordinate frame. Since this is a monocular systeenythld coordinate frame can coincide with
the camera coordinate frame, as shown in Figure 4.18.

Since the images are binarised on skin colour, finding edgé®vial. But as the finger is narrow,
some care has to be taken not merely to chose the edge closst tontrol point. In FigurEZ419,
for example, this would be a mismatch. The edge detectorigissthe direction of the edge to be
dependent on the searching direction. The hand model useddse polygon such that all the lines may

lie in between hand and background pixels. Therefore, denisig the clockwise direction, the search
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/

Figure 4.18: The hand and camera coordinate frames.

is performed from right to left. The first value change fromskif) to O (background) is taken as the

located edge. This also prevents the tracker fitting to backgl edges.
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Figure 4.19: The search is made similarly to Fighird 4.2, tmrehhe search is directional and only
considers skin-to-background edges.

The size of path for edge searchi is set to a value that is proportional to the proximity betwee
the hand and the camera, because the speed of the hand iratipe isriikely to be proportional to this
proximity. Thus,L = K/t\; " ., wheret, " is the distance between the camera and the hand in the
previous frame of the video sequence. The constans set toK = 5t ,, wheret70 5 . is the
default translation in depth that is used in the first iteratf the tracker after the detector is executed.

Figure[2.2D shows a skin colour segmented image overlappadojection of the five-line planar

hand model showing the control points. Although the modebudoes not have a realistic appearance,

the experiments have shown that modelling the finger as agtgaincreases the motion constraints
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along the finger axis. This also makes it more robust to mtatin depth. Such additional constraints
compensates the lack of edges on the wrist, which were nhtded to avoid requiring that the user

wears a long-sleeved shirt or a bracelet. The simplicityhisf tnodel speeds up projection calculations.

100 -100

@) (b)

Figure 4.20: (a) Projection of the hand model (black linegrsh paths (segments with a triangle indi-
cating the end of the search), control points (circles) aodted edges (*). (b) Representation in the
camera coordinate frame of the hand model projected in tlagenn (a). The units are in millimetres
and theZ axis is the camera axis.

4.4.5 Monitoring tracking

To monitor the tracking performance, the norm of RAPID’sidaal vector||d|| (before pose update)
could be used. But outliers and unmatched control pointsiaténcluded in the residual which this
means that the value ¢fd|| does not reflect the success of the tracker. Thus, the ch@isemade for

a cost function that depends on the actual distance betvireclodated edges and the projected lines

1 of the model after the pose update. Using homogeneous cabedi each point can be modelled as a
vectorx = (x,y,1)", and the lines are defined by= x,,’ x x,/, which is equivalent to the following

determinant:

A~ A~

1= a!, o, 1], (4.15)
Th Yp 1
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wherex,,," andx,,” are two points that lie in. The distancen,, , between lind, and pointr, can be

computed by:
qulp

2 2
\/ lwp + lyp

The cost function is then defined by the sum of all the distancbetween all the found edges and their

Mpq = (4.16)

respective lines:

1
C=vp > My, (4.17)
Vp,q

where D is the total number of control points in the whole model, a&ds the worst case constant,
defined by = 2L, which is the number of pixels in the path for searching ed¥#sen no edge,, is
located in the search path for a control point, , is set toWV.

The cost function result is employed to determine if thekeadas lost the hand and the detector
needs to be called. The function is also used to verify if theking results are good enough to be used to
perform a camera movement toward the target. A second ¢omddr that is the stability of the hand in

the space. If the change of pdgs| is below a given threshold for 1 second, the camera can beeotekl

to the target direction.
446 Results

The experiments described here were performed on a viderseg of 1104 frames grabbed from the
wearable camera in an office environment with no illuminagontrol and with a cluttered background.
An approximate of the ground truth trajectory was generéitech mouse clicks on three points of the
hand: on the index finger tip, on the index finger MCP knuckled an the middle finger PIP joint
knuckle. The Nelder-Mead simplex algorithm [NM65] was usecthinimise the geometric errdr [HZD1]
between mouse clicks and pose hypotheses to estimate gmotimdFigurdeZ.2ll shows a sample image
with the mouse clicks used to estimate the ground truth adettdlee pose estimation results in comparison
to tracking results.

The plots in figur¢ 222 show the pose estimation resultskthiue curves) with time (in frames) in
comparison with the ground true estimative (thin red curi@sfour degrees of freedom. When the cost
function indicated a bad pose estimate, the hand detec®inwaked. The circles illustrate the frames

where this happened. Cost function results are shown in&ligiZ3.



4.5 Summary and conclusion 99

(@) ) ©)

Figure 4.21: Ground truth data estimation and trackinglte@) Original image with the points used to
estimate ground date; (b) Projection of the model with paaameters obtained with the ground truth
data and with RAPID. (c) Model in the 3D pose estimated by #y@dnd truth” data and by tracking
method. In both (b) and (c), solid blue indicates RAPID reanld dashed red indicates ground truth
estimate.

These results show that the estimates of parameters pacallee image planeX, Y andd,) are
good match to the “ground truth” data, but the same is notrebsefor the depth parameters (e 4).
However the estimate of ground truth data was not reliabtedépth parameters because only three
mouse-clicked points in a single view were used, withoutixkl accuracy. It was difficult to choose
more points to be clicked, as the hand texture is plain. Aebe&istimate of the ground truth would be
obtained if multiple views were available for the same segae The above can be verified in the video
sequence that demonstrate the results.

The same video sequence was used to evaluate the applifmti@directing the wearable camera to
an object of interest. The results are plotted in Figureldach, for clarity, shows only the estimated
pose and the “ground truth” in the frames where the re-domgprocess was called. The wearable
camera’s movement and location of object of interest israssuto take 1s, after which the wearable

camera moves back to the hand detection context.
4.5 Summary and conclusion

This chapter described the RAPID rigid object tracker amdnitplementation for multiple view track-
ing, using the notation of [TRMM01]. Occlusion handling atighamic generation of control points
was discussed for objects made of simple geometric priestlike planes, lines, circles, spheres and

truncated cones. Evaluations with synthetic and real imagee validated the implementation as a real-
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Figure 4.22: Results of the integrated system (thick bluges) showing the detector calls (circles) and
the ground truth estimate (thin red curves). The space isuned in millimetres, angle in radians and
the time in frames. The estimated valuesXafY, Z andf  are plotted against time, in frames.

time tracking method. The merits of this method for realeimultiple views implementation are the
main point of interest and for this reason this method wasehas the basis for the development of an
articulated tracking system, described in next chapter.

An application of RAPID and the skin colour detection methimcribed in the previous chapter
was described. This is method for detecting and trackingegip hand shape — pointing — with
applications of estimating the focus of attention or cdiitrg the gaze direction of a wearable active
camera. This enhances user-robot interaction and endt#a®tognition of an important non-verbal
communication gesture.

This method combined a 2D shape detector and the RAPID 3Rerarsing a finite state machine.

Criterion functions for both the detector and the trackerengsed to automatically monitor their result
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Figure 4.23: Cost function results for the experiment shawrigure[4.2P plotted against time (in
frames). The dashed line is the threshold used to indicattheh the tracker is lost, and the circles
indicate when the hand detector was called.

in order to change the state in the finite state machine. Tteetilen method provides an initial estimate
of the planar pose parameters which are then refined with fbnration by RAPID.
The experiments have shown that a simple rigid planar mddbkedand lead to acceptable tracking

results with low computational cost.
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Figure 4.24: Pose estimations (*') and estimated grountht(‘'c’) when the re-directing process was
called. The estimated values &f, Y, Z andf are plotted against time, in frames.




An articulated RAPID tracker: ART

This chapter describes a novel extension of Harris’ RAPifdriobject tracker to track

articulated objects in 3D. It generates a linear system fosg@update in terms of a minimal
set of variables. A subpart of the object is chosen as itsshaih six degrees of freedom
and the pose of the remaining subparts are described in tefriige joints connecting from
this basis in a kinematic tree. Experimental demonstratiohthis system are given in a

video-rate implementation using imagery from multiple egas.

5.1 Introduction

With the aim of performing full-DOF tracking of hands, thisapter develops a method to track generic
articulated objects in real-time. Hands can be modelledirseeniatic chains, which are assemblage of
links and joints. In roboticdorward kinematicss the process of calculating the position in space of the
end of a linked structure given the angles of all the jointsisprocess is based on performing transfor-
mations from the basis coordinate frame to the end of thencHdiis is what is normally done to update
the pose of an articulated object when a new pose vector ibla In this straightforward process,
only one solution, i.e., position of the end of the chain,btamed (for acyclic kinematic systems).
Inverse kinematicdoes the reverse: given the end point of the structure, thkigito find the joints

angles necessary to reach it [Cra89]. In general, this \&ddby an optimisation process that locates the
parameters that minimise the distance between the tardpoert and its current position. Depending on

the kinematic chain and on the position of the target poiré might be zero, one or multiple solutions.
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Figure 5.1: A simple articulated object to illustrate theiba of ART.

Section[Z.313 presented an overview of inverse kinematiethods applied to 3D hand tracking
using accurate measurements of fingertip locations olatafoeinstance, colour markers. The problem
becomes more challenging for marker-less tracking of@eted objects, as reviewed in Section2.3.4.

Based on the success of the RAPID tracker for real-time imngchf rigid objects, this chapter de-
scribes an extension of this method for articulated objaliibbed ART. Sectioh 3.2 develops this ex-
tension with a simple two parts example and extrapolatestaptete chains. Sectidn$.3 describes the
algorithm used to implement this method for kinematic tr@ed discusses the case of closed loop kine-
matic graphs. Sectidn 3.4 evaluates some methods to snbar Isystems in order to compute the pose
update. Details of a hand model and occlusion handling @septed in Sectidn3.5. Experiments are

described in Sectidn3.6 and the chapter ends with a summ&wgdtior 5.17.
5.2 Extending RAPID to articulated objects

Consider two subparts labelled 0 and 1, connected by a puotute joint with joint angled; located
at £y in subpart 0’s frame, as shown in Figl.1. A point PXdt referred to the local frame attached to

subpart 1 of the articulated mechanism is at

X0 — 10X — ( R(()@ Klo ) X! (5.1)

in part O’s frame. For generic rotations, the matiixs composed from the angleand axisa using

Rodrigues’ formulal[Cra&9]:

R = I3xs + sinf[a]x + (cosf — 1)(Igxs — ad ), (5.2)
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where[a] is the cross product matrix formed from
As point P is stationary in frame 1, differentiation withpest to time gives
. . , .
X0 =6, < R((ﬁl) g ) X! = g,u9x! | (5.3)
whereR’ is the element-by-element derivativeRofvith respect t@#,. For a generic rotation matrig, is

computed by differentiatind_(3.2):
R’ = cosf[a)y — sinf(Isxs — aa ) (5.4)
Similarly for purely prismatic joints
Iz 4o+ 0610 03 1
Tg:<0$ 0 111>,U9:<0$ 01> (5.5)

where1i; is a unit vector and paramet@y is now a length, not an angle.

This is straightforwardly extended to a point on subpadf a mechanism

X = T9(61)TL(02)..TF H(0)X, (5.6)

X0 — (9’1D91 + 0900, + ...+ H'JD?,J> X7 (5.7)

whereDY, = U9T}...T7%; DY, = T{UL...T7~%; and so on. For a mechanism with + 1) parts, this

expression can be written as a linear sum oveiNajbint velocitiesd = (6, ...0x)"
X0 = (atlas| ... [as|04x(v—)) 0 =Aunb (5.8)

wherea; = DOJ].XJ. As X! is a direction vector, its fourth component is always zerelo® a is used

as a 3-vector, and @ x N) matrix A is written asAsx v = (I3]0) Agx -

If the pose of base part (0) is given by}, tow } referred to the world frame, then the instantaneous

velocity in the world frame is (returning to non-homogenggoordinates)

X" = RVXO4+wxRVX" 4w

= RgVAngé—l—wxXA—l—v, (5.9)

wherev andw are the instantaneous global velocity and angular motiarsed in Chaptdr 4.
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The key observation is that, just as in Hg.14.2), the vejanithe world frame can be written linearly

as
X" — s (5.10)
but nowH hasNV extra columns at the right
H=( [-X4)« ‘ I3x3 ‘ RY Asxn ) (5.11)
ands is augmented with the joint velocities
w
s=| v . (5.12)

Like in RAPID, edge features sought along near-orthogoimas| are used to reduce the cost of
matching. Therefore the construction of the pose updatategufrom the measurements follows exactly

as given in Eqs[{415) anfi{4.6), i.e., the motion parameterestimated by solving
Fs=d, (5.13)
with control points and measuremeitsre obtained from all the parts of the articulated body.

5.3 ART algorithm

The articulated RAPID tracker has been implemented as avite (30Hz) process for multiple artic-
ulated objects viewed by one or more cameras. The articlifzigect is represented as a graph (e.g. a
tree) where each node stores data about the position andatiie of each joint, the type of the joints
(revolute or prismatic) and the nodes that this node is attedeto. Joints with more than one DOF are
implicitly represented as a combination of 1 DOF joints. sI¢an could lead to gimbal lock for rotations
near90°, but this has not been a problem in our experiments becaedeattked objects (specially the
hand) do not move to this range in joints with more than 1 DO&cHenode has a representation of a
rigid object which is the same as in RAPID. Algorittith 1 sumises the tracking method, and certain
of its steps are fleshed out below.

For kinematic chains with branches (i.e. kinematic tret®) coupling of subparts with joints can be

represented as a tree. To gather the information to comgéete pose update, the tree is explored depth
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Algorithm 1 Articulated RAPID tracker (ART) for kinematic trees — onerétion of the pose update.
1: Atthe base part set cumulative transformatin= 1.
2: for each subpart in a depth-first expansioto
3. Setpto bej’s parent

4 Compute and store cumulati®d = T)T/

5:  Compute and store); = T)U”

6: for eachjointj’ = j — 1 back toj’ = 1 do

7: Compute and storg);, = D), T/

8. endfor

9: for each camerdo

10: for each visible control pointon subpary do
11: Constructa;, H; and thenced;

12: Search for image edge, compute

13: Append rowf; to matrixF, andd; to vectord
14: end for

15:  end for

16: end for

17: Derives from Fs = d (Eq.[5I3B).
18: Update pose and joint angles

first. This reduces the amount of computation required toutale the coordinate frame transformations.
Denoting the root and current subparts as nddasdj, respectively, and the parent of the current node
asp, the cumulative transformation (Hg.b.6) at the currentenisdound as*? = Tngj and stored at the
node. To populate Eq(3.7), the dependency on the joineafagllength) between parent and current
nodes is determined a@j = TgUf, and the dependencies on joint angles (or lengthsgarlier than the
current node’s parent found a%., = ng,T§? . TheD matrices are again stored at the node.

Further computational saving is made on computing the mati5.8) when there is a prismatic
joint. As shown in Equatior {5 5), with exception of the fitlstee elements of the rightmost column of
U/, all other elements are zero. This means Hat T/, /15 --- 77~ = %™, so there is no need to
computeTy_ , for k further down the kinematic chain in the caIcuIatiorD@E..

Kinematic chains with closed loops are represented fotigvd standard solution for inverse kine-
matics. In [GA90], the pose change of the end effector (ormyf éhosen link in or after the loop) is
represented following two paths from the base, i.e., usiggXacobian matricesandB. Given the two
sets of joint parametei, and@,, the inverse kinematics solution is obtained by makifig— B, = 0.

In the example of Figured.2(af), = [fo1, 012, 002] " and@, = [X¢2]. For this simple example, andB

can be derived analytically (see e.lg. [GA90]).
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Figure 5.2: Examples of closed loop kinematic chain: (a)plamar RRRP mechanism, where circles
represent revolute joints and the square represents aatitsjoint. Link O is the basis and the position
of the prismatic joint is the end effector. (b) A more compkéxematic chain with a loop, where each
block represents a link and lines represent joints.

To apply the same idea using ART’s representation, eachatgruint from links inside a loop adds
two rowsf for the same measuremefjteachf following a different path in the loop. For the example of
Fig. [52(b), control points in the link 7 have two possiblpressentation in the coordinate frame of link

0:

X% = T9(001)T5(012)T2(02,3)T3(05,6)TS(06.7) X", (5.14)

= T0(001)TE(01.5)T2(05,6)TS(06,7)X" . (5.15)

Each measurement of links 2—7 adds two rdwm® F and the system can be solved as before. The
number of DOFs of the system of EG.{3.13) remains the santbgstomputational complexity of pose
estimation is not affected by the presence of loops. Notsttsanecessary to use weighted least squares
to avoid erroneously increasing the importance of nodes lrelmw a loop. For generic chains (specially
long or non-planar mechanisms), it is troublesome to deteritine set of singular poses analytically, so
it is necessary to do rank monitoring to solve Equation {6.M®te that the flow control of Algorithrial 1

needs to be modified in order to detect and deal with loop rofpsi
5.4 Solving the linear system

A critical step of the tracking method is to determine theepupdate by solving the linear system of

Equatior 5.1, specially when robust pose is used. Althdtigtknown that all methods to solve linear
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systems have asymptotic complexity@{N?), whereN is the number of variable5 [PTVF88], different
methods have different coefficients in the polynomials éxgiress their time complexity. This can imply
significant differences for the range f that usually occurs for articulated objects tracking.

In ART, the number of unknowns is smaller than or equal to tivalper of equations. The robust pose
calculations are done using minimal sets of measurememtfiesnumber of equations and unknowns

are always the same, which means that the system d can be solved by
s=F"!d (5.16)

For the final optimisation using all inliers, there are moreasurements than degrees of freedommand
is a rectangular matrix. The system can then be solved usmd/ibore-Penrose pseudo-inverserof
That is,

s=(F F)'F'd. (5.17)

However, linear systems do not need to be solved necesaarity{5.16) ol(5.17). A matrix decomposi-
tion method that does not require full matrix inversion carubed. A usual way of solving these systems
is by means of singular value decomposition (SVD), as itvedldo diagnose how close to degenerate
(or how close to singular) is the linear system [PTVIF88]. BMD is not the most efficient method to
solve linear systems. If a singularity check is not perfaliregher matrix decomposition methods can be
applied, providing faster computations. The processimg tbf the following methods have been eval-
uated: SVD, QR, Cholesky and Eigendecomposition (see [BE8Yfor details about these methods).
Another point that was considered is that siF¢& is symmetric, a significant computational saving can
be achieved by avoiding redundant multiplications to corapalf of the matrix.

To evaluate our implementation of these variations, sestd test were written and the result shown
in Figures[5.B[[5)4 and 3.5, the lines labelledoasimisedshow the results using a modified matrix
multiplication method that avoids redundant computatiofke lines labelled afull show the results
obtained using the matrix decomposition method to solvegdreric systen{{5.13). The lines labelled
ason FtF are those that used{5]17) to solve the system by invertiagdhare matrig ' F. The graphs
show the average time (in milliseconds) after 1000 repetitiof each experiment. For each matrix

dimension, a linear system is created from random Real nisvdoed all the methods are applied to
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Figure 5.3: Results for a typical situation for robust pabe: number of unknowns (DOF) is equals the
number of equations (measurementsgft: full graph showing all the methodsight: zoom on the 4
fastest methods for dimensions between 6 and 30 (more typioge for hand tracking).

solve the same system. These computations were performadld#GHz Pentium 4 machine. The
numbers were represented using 64bits double precision.

The results show that Cholesky decomposition (usingoittemisedF ' F calculation) provides the
best results, specially when there are more equations thiemowns. The gap between the optimised
and non-optimised versions is very large for Cholesky beedhis method assumes that the matrix is
symmetric and simply does not check elements above themihgBo the upper part of tie’ F matrix
is not even copied from the bottom part, saving time with mgnaccess. Note that, in Figure B3l
QRperformed better thaQR optimisedThis is possibly because of the fact that if the matrix isadty
square, there is no benefit of using thetimisedF ' F calculation for pseudo-inverse for QR. Apart
from that, theoptimisedversions gave faster results than the other versions of #thods. Therefore,
Cholesky decomposition with treptimisedr ' F calculation was chosen as the standard for the tracking
experiments.

If the precision of the results is not critical, a 32 bits implentation can be considered for machines
with 32 bits processors (which is the case of the machine irséitese experiments). By comparing

the graphs of Figure3.6 with those of Figlirel 5.5, one can thate in some cases (e.full SVD) the

The graphs show some recurring quirks in processing timetwdnie probably due to due to system’s memory management
issues, because the machine used was running as a singlérusewith the X interface switched off, so cpu time sharingsw
not an issue. But these quirks do not affect the comparatiatysis.
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Figure 5.4: Results for 500 equations, an average situsdiamacking with three cameras.

computation time drops down to around 50% of the time takeloufble accuracy is used. The deviation
among the linear system solutions obtained by differenhous is< 1.1 x 10~7. Note that there are
two issues with single precision number. The first is thauaudated roundoff errors in the solution
process can swamp the true solution. The second is that fst AaMSI C compilers, float variables are
automatically converted to double before any operationt@&ygpted. Therefore, for some compiler and
library versions, the overhead of float to double (and vieesa) conversions can make processing 32

bits variables take more time than processing 64 bits iesdPTVESS].
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Figure 5.5: Results for a situation that occurs when thekimgcaccuracy is prioritised using a large
number of measurements: 1500 equations.
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Figure 5.6: Same experiment of Figlirel 5.5 but using singdeipion float numbers (32 bits).
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5.5 A 3D hand model

For the hand tracking experiments, a hand model was builddirg palm, thumb, fingers and, for some

experiments, the forearm. The proportions of this hand ina@ebased on measurements taken from a
single subject, but as in the implementation of RAPID, all garameters are set in an XML-based text
file, so they can be easily changed if measurements from sthgects are available. The model uses a

combination of 20 truncated cones, 21 spheres and 6 plamebhpan in FigureS 5.7 abhd®.8.

o=

Figure 5.7: Hand model used in the tracking experiments.mogel has 22 DOF of internal joint angles
and 6 DOF of global pose parameters.

() (b)

Figure 5.8: (a) Wire frame projection of the hand model onrdhienage. (b) Projected control points to
be used for pose update.
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The palm is rigid, and each finger is modelled as a planar rmésrimawith 3 DOF for flexion and 1
DOF for abduction and adduction with the palm. The same miededed for the thumb, but its plane is
not parallel to the fingers’ planes. This gives a total of 2@nmal DOF plus 2 DOF for the wrist, and 6

DOF of global pose parameters. Thus the hand motion vedt28 dimensional.
5.5.1 Occlusion handling

Self-occlusion handling is a critical task for complex eutated objects. Rehg and Kanade |[RK954a]
deal with it through a top-down approach using knowledgehef model to verify the registration of
templates. A state space partitioned into regions of fixeibwnity order of fingers is used. It is assumed
that a finger can not occlude another and be occluded by ieaaime time, which complies with the fact
that fingers are modelled as planar kinematic chains and #rertight limits on adduction/abduction. A
window function attached to each finger segment masks thigilmation of segments that are occluded.
This method saves computation, but it fails for poses suc¢hrassed fingers”.

In ART, each control point is first checked against its owndrigody first, as described in Sec-
tion LZ3. Next, the resulting visible control points ateecked against other parts of the kinematic
graph. Some computation is saved by not checking occlusjamst object parts that are behind the
control point. Figur€5l9 shows an example of hand pose wsigraficant amount of self-occlusion and

the control points generated for that pose.

(@) (b)

Figure 5.9: Hand at a pose with significant amount of selftmion (a), and projected control points
generated at that pose (b).
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A few tens to few hundreds of control points contribute rowghe measurement system. When
using multiple cameras, the measurement equations arergdtinto a single system to solve for the

pose, as in Chapt&t 4 and in [BM98, TRMMO1].
5.6 Experiments

To demonstrate ART, output from video rate (30 Hz) experit®iem increasingly complex objects
is shown in Figurd 5. 11=515. The imagery was captured fiomet calibrated cameras viewing a
0.5 x 0.5 m? working area on a desk from near orthogonal directions asslio Figure[3.b. Videos
demonstrating these tracking results are available at/tpw.robots.ox.ac.ukéteo/art/

In the experiments of Figur€s 5113 dnd%.15, mismatchingdsaed using robust methods. Least me-
dian of squares is used to remove non-collinear outliersngstaneasured control points which should
belong to the same liné JTTRMM01], and guided MLESAC TTMOZIMU5] is used to select control
points in the robust generation of the solution to EqQ. {6.1®) improve the confidence of the method,
the implementation tries to select at least one controltgmen visible object part. To illustrate the im-
portance of robust pose for tracking, Figlire .10 shows #hstinc sequence in which tracking fails if

no outlier rejection method is used and succeeds otherwise.same figure also illustrates that if this

articulated object is tracked as two single unconstrairigelots, tracking fails.

Figure 5.10: Tracking a synthetic articulated object madevo blocks linked by a 2 DOF revolute joint.
In this sequence, the object rotates around an axis centrétedarge block and the joint is kept static.
The three panels show intermediate tracking results addaby: tracking the two parts individually
(left); tracking both parts as a single articulated objeenfre); and also using robust pose (right).

Figure[5. 11 shows three frames cut from a sequence wherekanmdelled with three planes (front,

back and spine), two hinges, and eight DOF is tracked. Thée¢ewdndosses show the projection of the
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Frame 1 Frame 264 Frame 686

Figure 5.11: Tracking a book using an 8 degrees of freedonemo@RT. The images (top) are all from

the same camera of the three. The white crosses are thetpedantrol point positions, and the red are
the corresponding measured image positions. The grapbitput in the bottom shows the fitted pose
in the world coordinate frame, generated from a viewpoimtagite to that of the camera of the top row.

model’s control points in the image, and the red crosses shewocated edges. Here, two iterations of
the linear update were used per frame. Tracking continutsgipresence of potential distraction caused
by the presence of occlusions, texture in the object, angritweémity of model and image edges.

Although articulation has been described above in termingfes objects with subparts, the method
can be more generally used to apply motion constraints legtwbjects. For example, to track a ball
while it rolls on a moving table, one can model the table asbdme part, and the ball as connected to
it using two 1-DOF prismatic joints. Figur€s5l12 dnd b.18veimore complicated examples. In Fig-
urel5. 12, two entities: a plane and an articulated objecensétivo cylinders are tracked. In Figure 3.13,
four entities, a plane, a mug, a ball, and two articulateéhdglrs, are tracked. In both cases, the set is
tracked a®nearticulated object, with 10 DOF and 14 DOF, respectively.

In Figure[5.IR, the 3D pose of the basis object (the planepi26F, the 2D pose of the articulated
object with respect to the planar object is represented vibl©F, and 1 DOF represents the joint of the
articulated object. In Figufe 5113, the 14 DOF comprises & the planar object, 2 each for ball and

mug with respect to the plane, and 4 for jointed cylinders.
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Figure 5.12: Two objects being tracked simultaneously: amgr object and an articulated object that
rests on the planar object. The first three images show thes\eé the three cameras used with super-
imposed control points and the bottom right image is a 3Dldysphowing the world coordinate frame
and the object model in the pose that matches the acquiragksna

Figures[5.I4 anf 515 show hand tracking experiments. Irfaimeer, the hand is kept flat and
performs abduction movements. The latter figure shows asegLof tracking a hand and a box, the hand
with a single articulation for the fingers. The hand and thede modelled as a single 7 DOF kinematic
tree (3 for the hand, plus 1 for the fingers and 3 for the box va#ipect to the hand), constrained to the
table plane. When the hand grasps the box, the degrees dbfreketween hand and box are switched
off and the whole set is tracked as a rigid object, reduciegdilnensionality of the problem. To switch

off DOFs, elements of and columns of are removed from linear systefs = d before computing.
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Frame 3 Frame 2518 Frame 4106

Figure 5.13: Tracking four objects as a 14-DOF articulatedmotion-constrained”, object. Also shown
are graphical views generated from the corresponding oguieary object poses.

Figure 5.14: Three views of a hand with predicted and locateurol points superimposed, and the
synthesised hand at the position estimated using thesegmhging a tracking sequence.
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Frame 4 Frame 301 Frame 463

Figure 5.15: Tracking a hand grasping a box. The graphicagas show the view from above.
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5.7 Summary

With the aim of building a real-time method to track artidelh objects, this chapter examined how
to extend a rigid object tracker that has proven successfal @al-time multi-view method (RAPID).
Although rigid and articulated objects are different imterof how image measurements are associated
to motion parameters, the articulated version of RAPiDnesies motion parameters maintaining the
same formulation as the original method. The control paaméssought in the image in the same way
and a linear system is used to estimate the motion parametitrshe same formulation as that of the
original method.

The articulated RAPID tracker (ART) is able to track genardilculated objects including branched
kinematic trees and closed loop kinematic graphs. Detagisdontributed to enable a real-time imple-
mentation were given. These include: a method to procesartiveillated trees which uses information
computed for previous nodes, preventing redundant cdionfa and the choice of a method to solve
systems of linear equations efficiently.

Satisfactory tracking results have been achieved for madenobjects like books and tools. It was
also shown that multiple objects can be tracked as a singtlkated object with phantom joints that
can represent motion restrictions that may happen, foamest, due to contact.

A 3D hand model has been implemented and tracking expersmeate described with the hand
moving on its own and in interaction with another object. bitbcases, some constraints have been
applied to the finger movements. Despite the demonstrateckss, the inaccuracy of the model has
caused difficulty to track all DOFs of the hand reliably. Tb&n be improved by means of data-driven
dimensionality reduction methods as discussed in Seciifd.2

Next chapter describes an alternative representationtiotiated objects for tracking and presents
comparisons with ART. Further details about robustnesscangputational complexity are also exam-

ined.



Linear recovery of articulated pose
change: comparing pre- and post-imposed
constraints

This chapter contrasts two methods of imposing constralnting the tracking of articu-
lated objects. The first method develops constraints usiegonventional kinematical ap-
proach described in ChaptEl 5. The second method is thatwiibrond and Cipollel[DC02],
which tracks the subparts of an articulated object indialliy and hence uses the maximal

set of variables, but then imposes the motion constraintgusagrange multipliers.

This chapter shows that these methods, despite their vieyeait formulations, are func-

tionally equivalent in terms of the pose results recovefagdther comparisons between the
methods are drawn in terms of computational speed and dhguoit simplicity and robust-

ness, and it is the last area which is the most telling. Thepaative results suggest that
using built-in constraints is well-suited to tracking in@ual articulated objects, whereas
applying constraints afterwards is most suited to problémslving contact and breakage
between articulated (or rigid) objects, where the abilityiakly to test tracking performance

with constraints turned on or off is desirable.

6.1 Introduction

The ability to track multiple and articulated modelled altgeis an important one, not least in the areas of

autonomous and teleoperated robotics, visual survedland human motion analysis. Itis an area which
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(6DOFs) (6DOFs) (6DOFs)

5 constraints

Figure 6.1: Two representations to track articulated dbjgitistrated with an object with two links and
a revolute joint: post- and pre-imposition of constraints.

is still proving challenging more than twenty years aftergggHog83] demonstrated visual tracking of
a walking person, modelled using 3D cylinders a la Marr anshMara [MN78]. The taxing issues
remain those of how to represent the objects and their catedogose, how to associate observable
image data with the correct part of the object, by what cowrjrtal means economically to adjust the
high dimensional state vector to improve the fit to currergestations, and, lastly, how to overcome
fundamental ambiguities in the observations.

As discussed in Chaptef$ 1 ad 2, a large variety of ways afeadihg these issues have been
proposed. The work reported in this chapter is motivated #gsire to understand better the interaction
of the human hand with objects at the transition betweeawdatied, independent motion and constrained,
possibly rigid, combined motion. An issue of especial conds how to represent articulated pose to
detect a transition from articulated to rigid motion andewiersa. Perhaps each link or subpart should be
tracked independently, thereby introducing redundantesegof freedom, and constraints imposed later
in a lower dimensional subspace. Alternatively the av#ldiinematic constraints might be imposed
up-front within the tracking process. In support of thedatipproach, Rehgt al. [RMKO3] note that
the kinematics define the state of the scene and define theimgafppm scene to image. Figufe'b.1
illustrates the two approaches.

Exemplars of both classes of method have been reported imbetuof application areas. In the
former class, and applied to tracking a number of mechanisrbke work of Drummond and Cipolla
[DCOQ,IDCO2]. They track subparts independently and theryagonstraints using Lagrange multipli-
ers. A similar approach based on kinematic sets is deschp&bmportet al [CMC04,[CMCO06]. The
object parts parameters and articulated constraints dmispd using an iterative method. In the area of

hand tracking is the work of Wat al. WHY03] who impose constraints on independent subpagsvi
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Markov network. Hel-Or and Wermah [HOWO96] fuse constraenisl measurements using an extended
Kalman filter (EKF) by treating constraints as measuremefitszero uncertainty. The kinematic chain
approach is applied to tracking a robotic arm by Nickels amtichinson [[NHOI], who use an EKF to
recover a state vector of arm joint angles and velocitiemfpoint measurements; however they simplify
matters by assuming a fixed and known base pose. In handrigadRehg and Kanadé [RK95b] put
joint angles and pose into a Newton non-linear minimizatimfull body tracking, Bregler and Malik
[BM98] develop a linear relationship between instantasaootion and pose change; and Sidenbledh
al. [SBEQOOQ] use the kinematics in a generative model of imageamnce. In each case, however, the
surrounding observation and computation methodologiessafficiently different to make immediate
comparison difficult, and no detailed comparison is avélabthe literature.

Two works in the different classes that appear most simil@ther respects are those of Bregler and
Malik [BM98] and Drummond and Cipolla [DC02]. Both develapdar expressions for the pose updates
of articulated objects using exponential representatadmsotion and Lie algebra. The differences — in
addition of course to the way that articulation constraars imposed — are the use of different image
measures, viz. warped image patches and edges, respecneithe use of different image projections,
viz. scaled orthography and full perspective.

This chapter attempts to make a fair comparison of the twatcaimt approaches. First, edge data
and perspective projection are used for both. Second, bethads are re-implemented using Harris’
earlier RAPID tracker as a common base. In RAHID [HS90, Halk98arris proposed an object pose
update which is linear in the elements of the kinematic sctdere it is shown that RAPID, described
in Chaptei!, is entirely equivalent to Drummond and Cipsliaid body tracker based on Lie algebra
[DC99], which forms the basis of their articulated trackBC02]. The screw is synonymous with the
exponential twist, and so for articulated tracking witheamatic constraints it was not needed to slavishly
to re-implement Bregler and Malik, but instead the extem&ibRAPID to articulated objects described
in Chaptef®b is used (here referred to as ART). The implentientatherefore share much of their code.

Section[&.P reviews the way in which scene and image motiendascribed in Drummond and
Cipolla’s tracker (here referred to as DCT), and shows thratifjid objects this method is entirely equiv-

alent to RAPID tracker. Sectidn .3 reviews how constraamesimposed in DCT and, for comparison
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with ART, gives detail of the solution for both kinematic @sand branching trees. Sectlonl6.4 gives a
comparison of the two approaches in terms of accuracy, efiigi and robustness. Finally, Section 6.5
of this chapter draws conclusions on the applicability ef pine-constrained and post-constrained meth-
ods in the light of the earlier findings. The main contribnsadescribed here have been published in

[dTMO8].
6.2 Scene and projected image motion

RAPID was originally formulated using inhomogeneous cowtes, whereas DCT used homogeneous
coordinates. To provide continuity with previous work stishapter must move between both, but will
do so mostly without comment. In both RAPID and DCT, a singggdrobject (or rigid subpart of an
articulated object) is described in an object frame 0 by dwdinatesX of each of a set of control points
— points which may be genuine points on the object, but whiochenusually are parametrized locations
on fixed crease or albedo edges, or are generated on the flyramakedges of a curved object, as
described in Chaptél 4.

In DCT the aim is to recover the 6-vectorof coefficients of the generators of SE(3) describing the
change of homogeneous transformation between object andraa To draw proper comparison with
RAPID, this change is specified in the aligned frame, and &otlie4 x 4 transformation from object
to world frames that is updated after movement, frofnT{' to T'VMTZ, whereM = exp (3, c;G;).

To conform with the conventional screw order, the first ared three generators of the Lie group from
[DCOZ] were switched; in turn they are associated with aaguélocities about th& -, Y- andZ- axes,

and with translational velocities in th€-, Y- and Z-directions

0000 0010 0-100
00-10 0000 1000
“=lo100l% | 21000]% 0000
0000 0000 0000

(6.1)
0001 0000 0000
0000 0001 0000
%=1 0000|% [ 0000]|% | 0001
0000 0000 0000

As the change in pose is small,is approximated byl ~ I + >, «;G;, and the velocity in world
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coordinates can be written

W I tow " RgVO X
X = <0T 1 ><ZQG> <0T1 1
0 —Q3 Qg Oy
. I tow as 0 —ajas X4
— \o'" 1 —a9 a1 0 ag 1
0O 0 0 O
= < [—XA]X ‘ Is«3 )a . (6.2)

Comparison of E({8]2) with Eq{4.2) shows that recoverni identical with recovering the scresv
The equivalence is maintained whichever frame is used tcifgpaotion.

DCT similarly recoversx from image motion, and for completeness it is shown that teagurable
image motion derived from the homogeneous expressions GOHD is identical with Eq. [[4]4). In

normalized image coordinatels [DC02] has

U U
v | =RGXW =XC, and | o | =rGX" (6.3)
w w

from which the inhomogeneous image motion is derived as

1 U — %u') 1 U
0 w
1 - W
= 7o [I3 — x[001]] R, X . (6.4)

InsertingXW from Eq. [4.2) into Eq.[{6]4) again yields ER_{4.4).

Thus, for rigid objects, the two methods are functionallyiealent. (Note however that i [DCD2]
a is recovered for each object in tlobject'sframe. The screw recovered,, is then within a linear
transformation of that in the aligned frame? = 7' XaA, as clarified later.)

The edge-normal motion is thus related to the state veetgust as it is for the state vectay,

described in Sectidn4.2.2.
6.3 Enforcing constraints after measurement

This section reviews Drummond and Cipolla’'s method of aimgiymotion constraints to articulated

objectsafter making measurements on independent subparts. Their abpi®#o adjust the optimum
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screws (now denoted hy) obtained for each individual subpart so that the condsaine satisfied and

the overall fitting cost is minimized. The solution is reaghising Lagrange multipliers.
6.3.1 The cost of (mis-)fitting single object data

For each individual subpart, the measurement system
Fa=d (6.5)

in [DCOZ] is similar to that developed in E_{#.6) but the @asljustment takes place in the object frame,
not the aligned frame. The measuremadi@re identical with those derived earlier, but the rdnef F

are generated now using

x" = ( %XTV t01W > (Z aiGi> ( }io > . 6.6)

Without constraints, the optimal least squares solutioneizh subpart would be used to update that
subpart’s pose. However, when the constraints are apmich value ofx is modified to3, and it is
necessary to know the additional cost of fitting. For amjividually suboptimal solutior3, the sum-
squared fitting cost i3 = (F3 —d) " (F3 — d) whose minimum isS,, = (Fa —d) " (Fa — d). A little

manipulation gives the well-known quadratic form for théraxcost

S —Sa=(8-a) [F'FI(B-a). 6.7)
6.3.2 Developing and imposing constraints

Consider first a simple example of two parts with translatiomlocities given by vectors of coefficients
B, andg, defined in their local Cartesian framgandg. (That s, the first's velocity i), X, + 8,y ¥, +

Bp-2p, and similarly for the second.) The constraint that the ymeelocities are equal can be written as

0

0

where the superscript denotes a value referred to theh frame, and absence of superscript denotes
a value referred the native object frame given by the sytiscBbrummond and Cipolla observed that

exactly the same can be done using Gamatrix basis, again provided th# values refer to the same
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frame. So, to impose constraints between two subpeatsdq, they wrote

Tk —
(IBp - IBZq)) cp7q =0 (69)
where, to constrain the associated quantity, edichk = 1,..., K, , is a 6-vector drawn from the Set
We Wy Wy Vg Vy Vz
1 0 0 0 0 0
0 1 0 0 0 0
e | © 0 1 0 0 0 (6.10)
oo’ fo’frrjof’fo
0 0 0 0 1 0
0 0 0 0 0 1
As framesp andq are related byX? = T) XY, the screw3? is given by
Bh = Ad(T})8, . (6.11)

The adjoint transformation, abbreviated belowZid = Ad(T}), is derived in AppendikB. The reason
for considering the pose update in each subpart’s own frarttéd method now becomes clear: it is that
the vectors: become easy to specify and they are independent of pose ¢&irgonstraints).

Drummond and Cipolla’s method seeks the optimum solutiothie articulated object as that which
minimizes the additional cost of sub-optimally fitting thedividual subparts, subject to all relevant
constraints being satisfied. Writiig= F ' F, they consider the problem as one minimizing the sum over

all parts

min_[(8, - @) "C,(8, — @) + (8] — o) ch(B] — )| (6.12)
ﬁp ) ﬁg

subject to the constraint set

18, — B Tcpg P =0 (6.13)

The relationship betweetf andc, is detailed in AppendikIB. However, we note that the second tef
the minimization is actually invariant to changes in framueg the problem is more efficiently written in

terms of the3’s in their native frames, so that the second cost term besome

(Bq — O‘q)TCq(IBq —ay) (6.14)

The constraints are not restricted to this set. If the jaista pivot that is not at the origin, its contraint vector vabié
different.
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Figure 6.2: A general branching model.

and the constraints are modified to
k=1..Kp,q
B, — T8, cpg =0 (6.15)

Depending on the physical constraints, each set contaings,, , < 6 individual constraint equations,
where the lower and upper equalities indicate, respegtimplete freedom and complete rigidity

between the two subparts.
6.3.3 Handling general articulated graphs in DCT

In [DCOZ], Drummond and Cipolla describe the solution fobtsubparts connected by a hinge, and in
[DCO1] they sketch a solution for a chain of subparts whichl$® demonstrated with a kinematic tree
(human body). However, for comparison with the articula®dPiD tracker, it is necessary properly
to understand how DCT might handle branching in the kinernettain. A solution that handles both
non-branching chains and branching trees is developed here

ConsiderN + 1 subparts arranged in an articulated tree. The DCT problerarbes one of finding

Aﬁ?%lq q (Bg — ag) " C(B, — ag) (6.16)

subject to sets of motion constraint equations. Each stbpeith children generates one constraint set

for each of its childrem™:
1By = TiBy+) ek =0 1<k<Kgg. (6.17)

Now consider the subpagtas shown in Fig_612, with ancestgrsy—, etc, and with possible multiple

lines of descendants, o™, etc,b, b+ etc. The constraint sets referencifig involve the parent of and
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each of its children, if they exist. That is,

If parentp exists: 18, T”Bq} ck,=0 (6.18)
If 1st child a exists: 18, Tqﬂa} 5a=0 (6.19)
If 2nd child b exists: 18, Tqﬂb] b =0 (6.20)

and so on ify has further children.

That part of the Lagrange system depending of differeotiatv.r.t. 3, is therefore

Kp,q Kg,a K
T
2C,( E M T4 el E /\g}a 1o +§ AgbCab - | =06, (6.21)
m=1

where the first term derives from the cost, and the remainden the constraints, and where this
are the Lagrange multipliers. The first summation is omiifegl has no parent, the secondgithas
no children, and further terms of the sort shown in bracket¢saamlded if there are further children.
Rearranging,

Kp,q Kq,a
m 1 T m m
= oy + Zquicq ''c quaicq m ZA%% . 622

Similar expressions can be written for the otj#s, and replacing all th@'s in the (p, ¢) constraint set

(Eq.[EI8) gives

qu
c-1 p= T E T [p-1 Pa—17D T
Z)‘ L 2% p% Comp Z)‘Zlqpq [Cp +75C 1 | epy
an q,b
k Pr—1 Pr—1
+Z)‘qma Cp.q IYCq Coa +Z)‘qbcpq 14°Cq Cp + -
= 2c’;,qT TPy — o) k=1,...,K,,. (6.23)
Replacing all those in thgy, a) constraint set gives
Ko T T & T T
> Macha G TF e = D0 Aucha | |07 + T T <,
m=1 m=1
aa+
+ Z A ek T TIe e +Z/\qbcqa Jlem 4
- 2c§7aT [Tio — o) k=1,..., Ky (6.24)
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If there are multiple childrer and so on, expressions similar to Eq.(6.24) can be writtethf®(q, b)
constraint set by swapping«< b, and so on.

These expressions are more compactly expressed as

PP,QAP7,P + vaquﬂ + RZ,qu’a (+Rg7qAQ7b + R;,qu’c + o ) = lpvq (625)
Pq,aAp,q + Qq,aAq,a + R‘Z,aAaﬂ“' (+Sg,a}‘q7b + Sg,aAq,C +.. ) = ll]ﬂ : (626)
Again, the bracketed terms are used for additional childeex a further equation of the form of Eq.

(&28) generated for each additional child, witk- b, a < ¢, etc.

The k-th row andm-th column of the various quantities are

.
Lq(k) = 2C];7q [T{ g — ] (6.27)

P (kym) — cf TcolgP em (6.28)

P,g\™ p,g “p P p~.,p .
T _ _ T m

Qpglksm) = —cby' |G+ TP T e, (6.29)
T —1.m

Re, (k,m) = ¢, TC 'l (6.30)

Sg,a(k’m) = C’;,acglc% (6.31)

6.3.4 Specific cases of graphs

Now consider specific cases through examples shown in[Ef§. Below we detail the implications
of each of these types of topographies in the solution witifD&eneral graphs can be modelled by

combining elements of each of these cases.
Non-branching kinematic chains

When the subparts are arranged as a linear chain, labelledrbm0 to IV, as illustrated in Figure@.3(a),

the system to be solved for tiés becomes block tridiagonal,

Qo R3;, O 0 ... 0 o1 lo1
P12 Q2 R}, 0 - 0 A2 lio
0 Pa3 Qog R%g ... 0 A3 Io3
0 0 ... Pvoaon-1 Qn_2nN-1 R’%_Q,N_l AN—2,N-1 Iy 2 n-1
0 0 - 0 Pyv_oin QN—LN )\N—LN lN—l,N

(6.32)
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Figure 6.3: Examples of special cases of kinematic cha@)sa §ingle kinematic chain; (b) a branching
kinematic tree; and (c) a closed loop kinematic chain — theesas in FiguréX5l2(b).

for which a standard method) (V) in the number of links, exists to recover thevalues without explic-
itly building or inverting the matrix (e.gLIPTVE88]). Ontee A, .1 are known, the constrained screws
B, are derived for each subpart from Hg. {8.22). Since the cainsd screwg, are expressed individu-
ally in each object part coordinate frame, there is a riskrinanding errors lead to small breakage in the
articulated constraints. These can be corrected by remftire constraints by running down the kine-
matic chain and updating the poses using the adjoint tramsfiions [DCOL]. Algorithni2 summarizes

this method of pose updater a kinematic tree
Kinematic trees

When branching occurs, the system loses its block tridiagfmmm, and its structure depends of course

on the object’s structure. By way of example, the structargig.[6.3(b) generates the following system

for solution.
Qg R3 0 O R}, O O Aot 101
P, Q2 R, 0 8}, 0 0 Al2 L1
0O Pyy Qg R33 O 0 O Ao3 lo3
0 0 P3s Q3g 0 0 0 A34 = I34 (633)
Pi5 S35 0 0 Qs RY; O Als li5
0 0 0 0 Ps Qs Rl As6 56
0O 0 0 0 0 Pgr Qer Ae7 lg7

The structure is block symmetric, and is likely to remainrspabut this system can no longer use a

generalO(n) solver. However, in([DC01], Drummond and Cipolla use a sta propagation method
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Algorithm 2 One iteration of the D&C'’s Tracker, with modifications foeés.

1: for each subpaig =0--- N do

2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

3
4
5
6:
7
8
9

for each camerdo

for each visible control pointdo
Constructd; and thencd;
Search for image edge, compulte
Add row f; to measurement matri,

end for
end for

Derivea, fromF,a;, = d,, (EQE.5)

Computec, !, from¢, = F, 'F,
ComputeAd(TZ+) from Eq. [B.9) (except leaves)

end for

for each constraint sefo
Computep, Q, R, S andl, from Eqs [621=6.31)

end for

Solve tridiagonal (EJ_6.32) or block symmetric (e.g. EE3).system for ali\

for each subparg do

Derive 3, from Equation[[6.22) and update part poses.

end for

and a breadth first search to compute the Lagrange coeficieneach joint sequentialy, and thus in

O(n).

Closed loop kinematic chains

The general solution of Equatioris{8.25) and (.26) canlkzsemployed to build the constraint system

for closed loop kinematic chains. In the example of Hig. €.30e constraints\3;, and A3 can be

described as links to brother nodes. The same happens Imedyg@and \g; for the other side of the

branch. Therefore, the constraint system becomes:

Qo1 R

Pra Q2
0 Pos
0 0
0 0

P15 S
0 0
0 0

Again, the constraints

0

Q23

P34

Psg
0
0
0

0
0
R33
Q34
S36
0
0
0

0

R
S
0
0
0
Q15

P56
0

o O O

0
7
R3g
0
7
Rs6
Q67

(6.34)

system loses its block tridiagonaifand becomes less sparse. Similarly

to the ART representation (see Secfiod 5.3), an additiasale is that extra constraints added by loops

introduce singularities into the constraints system, dudimey rank monitoring to avoid noise imposing
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spurious rigidity. The iterative solution df [DCO1] is anexhative that does not require rank monitoring.
Note that the flow control of DCT (Algorithrdl 2) needs to be niiedi in order to detect and deal with

loop closing.

6.4 Experimental comparison of ART and DCT

6.4.1 Similarity of results

Despite their very different constraint formulations, libéte articulated RAPID tracker developed in
Chaptefb and the Drummond and Cipolla tracker reviewed ai@¥6.3 are single-shot linear methods,
and, given that relationships between scene and image resre ghown to be identical, one should
expect them to give the same results. To verify this againstvk ground truth, a CAD model of two
hinged subparts was generated, and both trackers deployteé cesulting imagery as the hinged opened
between successive frames. In each experiment increasiogras of zero-mean Gaussian noise were
added to the image displacements measured between coaointé @nd image edges. Figurel6.4(a)
shows a typical view and match set. The lower trace in Figué$shows the deviation in degrees from
the veridical hinge angle recovered using ART. The upperetrshows the rising standard deviation.
Figure[6.3(c) shows the same when the individual subpaetsacked without imposition of constraints.
Figure[6.2(d) shows that as soon as the constraints areedpplDCT the modified angle becomes all
but identical with that recovered using kinematic constsin (b). Indeed, the results from ART and

DCT differed by at most parts in0®, effectively at the limits of expected numerical accuracy.
6.4.2 Computational cost

Figure[&5 shows comparisons of the times for a single updatie of the core operations of ART and
DCT, run on a 1.8 GHz Pentium 4. Times were accumulated overyrtréals, with each data point
taking at least 20 s to collect, giving each datum the sanutidrzal error of orded0~2%. Also, in both
cases, similar care was taken to avoid unnecessary cabculathe object is taken to have subparts
with p control points per subpart, and is made up of a single aaiiedlchain. Subfigure (a) shows that
with up to 10 subparts there is negligible difference betwie methods, and that at 30 subparts the
time taken by ART is about twice that by DCT. Up to 100 partsdbst in ART is still dominated by

O(N?), but beyond (not shown) it does becorf®N?3) as expected for the Cholesky decomposition
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Figure 6.4: Comparison of the numerical performance of thieclated RAPID tracker with the DC
tracker for two subparts connected by a single revolutd gsrincreasing Gaussian noise is added to the
measured displacements for the object shown in part (aghwkiCAD-generated, so exact ground truth
is available. Results from: (b) the articulated RAPID Tragkc) unconstrained subpart tracking; (d)
after adding the constraints in the DC tracker. In each gthelsolid curve is the deviation from ground
truth, and the dashed curve is the standard deviation.
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Figure 6.5: Times (in ms) for update cycles of the cores of ARt DCT compared. The comparisons
are: (a) As a function of number of subpaftswith a fixed number of six control points per part; and
(b) as a function of the number of control poiptper subpart, with a fixed number of five subparts. In
this region ART is predominantl{p(N?) (but is expected to become ord@f N?3) for higher values of
N), while DCT remaing?(N). For fixed N both methods exhibit an ordgrdependence.
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Figure 6.6: (a) Times (in ms) for the shared operations (mich testing, image search and measurement,
and related OS overhead) in one cycle of ART and DCT, as aiamof the average number of visible
control points in the whole body. (b,c) show the “4 blockstd&hand” models related to the upper two
traces in part (a).

()

of the (n 4 5)% matrix F'F that occurs in the least squares solutiorFef= d. (Recalls contains
the six screw componenend n + 1 joint parameters.) Figurle6.5(b) shows that both methodte sc
predominantly linearly with the number of control poiptper link. (Exploration of the apparently noisy
results at highp suggests these are a reproducible and uninteresting dumkmory management in the
matrix library used.)

Figure[6.6(a) shows, for the same CPU, the computationa tifnoperations that are shared by
both trackers, including occlusion handling, projectidrcontrol points, image operations, and related
operating system overhead. Three objects of increasinglexity were used: a single part box with 6
DOF, an object with 4 parts and 9 DOF (Figlirel 6.6b), and a hatidfarearm model with 17 parts and
28 DOF (Figurd6J6c). The tests used 320 images acquired from three cameras. The search range
from control points was-10 pixels. The number of potential control points was inseekin steps but,
because of occlusion, not all the control points are alwasible, and so the average visible number for
a sequence is used as the abscissa. The time increase isatkrby a linear dependence on the number
of visible control points.

For all but small problems, DCT is faster than ART and itsdinbehaviour with number of parts
demands its use on large problems, say involving more th@rsdBparts. However, for modest numbers
of subpatrts, the timing differences are insignificant coragavith the equally shared costs. As examples,

the different cores of DCT and ART took 0.45ms and 0.41mseespely, to run on the four-block object
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Figure 6.7: The hand model (a), and the block structuressafdtresponding matrix and subscripts

(b).

with 100 control points, but shared operations took some; @mghe hand model with some 170 control

215
o @
3 6
o @
411 7

points ART’s time was 2.5ms, but the shared operations teek D3 ms.

The core times given for DCT are so far those for simple chaihere the tridiagonal system is
solved. On a chain with the same number of parts as the handgaih, 170 control points, DCT took
some 1.2 ms, but solving the actual branched system showigin@4 took some 2.5 times longer,
and hence taking a little longer than ART. It was found thateoany branching occurs, general matrix
solvers give a solution time dependent mostly on the numbsulgparts, not the degree of branching:
for example, with 16 parts, two chains of eight takes the stime as four chains of four. However, it
was not investigated to what extent careful hand-tuninchefdode to a specific object would change

this.
6.4.3 Algorithmic robustness

In general, tracking unconstrained subparts is certairdyenfragile than tracking subparts collectively
in a constrained system. The more degrees of freedom, tlategrihe likelihood of fitting to noise.
Breakage might occur when, for example, the available obptints do not provide sufficient constraint
— a cylinder with points only along its extremal boundariesan example (Figurle—8.8) — or when a
subpart moves quickly at the end of a long linkage (Figurf. 6.9

On first consideration this seems to make DCT inherently felsgst than ART, but this is not the
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Figure 6.8: A synthetic two-cylinders articulated objeéthna cluttered background. Since no control
points are located on the ends of the cylinders, it is notiptesso track the two cylinders without
articulated constraints.

case. Assume that, at the start of an update cycle, bothetrsatlave placed their subparts in the same
location. They will generate the same control points andefloee generate the same measurements.

Suppose first that there are enough measurements to degetineirpose of each subpart, but that
the measurements belonging to a particular subpart are guibneous. Using ART, the costs are im-
mediately shared and the pose updates of all the subpattsendisturbed somewhat, whereas in DCT
the initial pose updates) will all be better, except that for the erroneous one. Hmvewhen the
constraints are imposed, the costs of (mis-)fitting with #healues areall correctly accounted for and
minimized. Because the measurements are the same, thiessltust be same.

Suppose now that there are insufficient measurements tomde&ethe pose update of a particular
subpart. It is important not to discard those measureméatsare available, but instead invent a pose
updatecx for that subpart against which the change in cost when usinge 8 instead may be measured,
a change which could easily now be a decrease rather tharsttad increase. This tactic extends to
zero measurements, where the cost change when moving this paro. However, what is lost in this
case is the ability to separate the recovery of the Lagrangéphiers and the3 values. Insufficient
measurements means titat= F'F is rank deficient, and so cannot be inverted for [EQ._{6.22)er&h
appears no generalizable alternative to solving the lisgsiem in its entirety, with a stacked vector of
B's andX’s as the unknowns. Alternatively, weak regularisation loamused to compute an approximate

of C.
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Constrained

Figure 6.9: An example showing (top) tracking failure whembarts completely unconstrained, con-
trasted with (bottom) successful tracking the same paets@nstrained. The failure arises here because
of scene rotation giving rise to rapid motion at the end ofdhain of parts. (As the text explains, this is
not a comparison between DCT and ART.)
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6.4.4 Data robustness

To consider the likely cost of computing the solutions to A&Td DCT in a robust manner using a
random sampler such as RANSAC [FB81] or LMelS [RL87], theakrelationship already mentioned
in SectiorT4.ZH is used:

P=1—(1—¢m), (6.35)

whereP is the confidence that a valid minimal setefmeasurements will be selected afferials when
the fraction of valid data ig. Although, for a range of problems, experiment indicates this should
be regarded as an underestimate of the number of friattually required, the comparative results will

be less affected. FQ¥ subparts with N — 1) 1 DOF joints, the trials required are

log(1 — P)

' log(1 — P)

Inor = N— - —
bet log(1 — ¢%)

IarT = (6.36)

Multiplying these expressions by the different time coss iferation of each method, gives the pairs
of curves in Figuré 8.0 for 10, 20 and 30 subparts, derivell at 95% confidence, and each plotted
as a function of the percentage of outlying or invalid dat&(1 — «). Also shown is the locus of the
crossover point, as the number of parts is varied. For a modesber of parts and quite low values of
corruption, ART’s requirements undercut DCT’s, but momaaekable is how rapidly a certain fraction

of outliers becomes intolerable as the number of subpaes.ri
6.5 Discussion and conclusions

This chapter contrasted two different methods of trackinigw@ated objects in a video sequence. The
first method is the straightforward, but novel, extensiofafris’ RAPID tracker to handle articulation
(dubbed ART) by explicitly including the kinematics in thiedarized pose update equation, described in
Chaptefb. The second is the articulated tracker of DrumnaowdCipolla (dubbed DCT) which imposes
motion constraints on subparts after they have been traokiegppendently.

To motivate the comparison, it was shown that Harris's aagmethod for recovering the kinematic
screw of a single rigid object (described in Chapler 4) isrelytequivalent to Drummond and Cipolla’s
later formalism based on Lie algebra. It was noted that Bregihd Malik had also described the the-

ory of a kinematics-based tracker using Lie algebra, anda# woncluded that ART is equivalent to
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Figure 6.10: Pairs of curves showing the times required mete the required random sampling trials
as the percentage of invalid, outlying, data varies. Thespaicurves are for 30 (left), 20 (centre), and
10 (right) subparts, and in each pair the solid and dottextlare from ART and DCT, respectively. Also
shown is the locus of curve pair intersections.

their formulation, but one suited explicitly to perspeetprojection. Drummond and Cipolla’s method
was reviewed, and methods for solving the constraints systebranching kinematic trees and loopy
kinematic graphs were given.

Comparative experiments on both methods showed, firstthieatesults for the pose updates are
identical, notwithstanding the constraints being appine¢ery different ways. Both are done performing
linear least squares in a single shot, and so their equisalsrexpected.

Second, it was shown empirically that the computationah&eof DCT retainsO(N) complexity
in the number of subpartd’, whereas ART rises fron®(N) for low numbers, toO(N?) for, say,

30 < N < 100 before eventually succumbing @(N?3). For largeN, DCT’s behaviour is characterized
in the best case by inversions of a fixed sizé x 6 matrix and, at least for a non-branching chain, a
O(N) recovery of Lagrange multipliers, whereas ART has to inggft + (N — 1))? matrix. However,
for tens of subparts the absolute difference in core costbistantially outweighed by the commonly
shared costs of model projection, image search, and so on.

Where DCT appears less satisfactory than ART is in the aredgofithmic robustness. One dif-
ficulty occurs when, rather than a simple chain of parts,etheranching into a tree structure. The

description of the ART algorithm shows it to be, de facto,rae tree-based method. But in DCT, as
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noted earlier, at a branch a subpart has more than two setstimimconstraints to satisfy, and the matrix
to be solved in Eq[{6.33) no longer has a tridiagonal strectinstead it acquires a block-symmetric
structure dependent on the model’s structure, but no gefastasolution methods exists for the solution
of such systems. Indeed, in. [DC01], Drummond and Cipollgoadostatistics propagation method to
compute the Lagrange coefficients for each joint sequéntiégain, when there is insufficient informa-
tion to solve for the initial pose update of a particular p#re tridiagonal method cannot work, unless
regularisation is used.

A more general curiosity in DCT is that thesscomplicated the object’s kinematics, threcom-
putation has to be done to impose the constraints. This,lengsues raised in the previous paragraph,
are outcomes of allowing the degrees of freedom to grow tiw thaximum and then having to prune
them back when those freedoms are not required. While thia effort is rather neatly tamed if the
problem is a well-behaved chain of subparts, exceptionsh(as kinematic loops) become hard to man-
age.

Hands are articulated objects where the motion of each pdiighly constrained by the motion of
neighbouring parts. These are not simple punctual artedilaonstraints, they also include dynamic
constraints and the motion of each part is also influenceddnis ghat are not directly adjacent to it
(see Sectiof 2.3.7). It is difficult to code such constrafotowing DCT’s model. If a data-driven
dimensionality reduction model is to be used, it is moreighriforard to code the constraints using
minimal representations.

An attempt has been made to characterize the time requitsroEhoth methods to complete trials
of a random sampler. Here it does seem that ART has an adeamwag DCT, but for both methods the
time required for trials increases sharply with rising nembf parts, suggesting that it is more prudent
to improve the quality of measurement than to rely on randampding to “clean up” afterwards.

The most significant aspect of Drummond and Cipolla’s meihddat it makes comparatively easy
the switching on and off of constraints, after, and sepbrdtem, the expensive process of making
image measurements. It appears to provide exactly the mischaequired to account for the motion
of objects which make contact and later break apart. As coatgproaches between two parts, tracking

performance with and without the relevant constraints aatebted, to decide whether the motion was
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constrained or was still independent.

While the application of constraint hypothesis-and-testigid objects is straightforward, a more
significant challenge is to apply it to separate articulaibjgcts. The approach favoured by the conclu-
sions of this chapter would be to track the joined articdagastities using ART, and employ DCT at the

contact.



Regression-based hand pose estimation
from multiple cameras

In this chapter an RVM-based learning method is developetidod pose recovery. The
method is based on that proposed by Agarwal and Triggs fodevhody pose recovery.
However, hand pose recovery appears a more challenginglgmrolthan whole body pose
estimation due to the greater degree of actual occlusionl, the greater degree of appar-
ent occlusion where finger bounding contours are lost. Farrtifficulties arises from the
acyclic character of usual hand motions that tend to be fast sudden in images. Also,
no a priori positions can be assumed for hands. But we canheséatts that bare hands’
textures are fairly uniform and their colour has a relatiyedmall variance in comparison
to clothing. The key development proposed here is a comdmat multiple views. Such
method allows the use a new modification of shape contextstédion invariance, reducing
the number of required training samples for pose estimatfm experimental comparison
of the pose recovery performance using single versus reuipws is reported for syn-
thetic and real imagery. The effects of the number of imagesaorements and the number

of training samples on performance are also taken into antéar the comparison.

7.1 Introduction

As mentioned earlier in this thesis, two quite different rgghes to the problem of pose estimation

of articulated objects are apparent in the literature. Tie, fand more traditional, is thgenerative
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approach, in which an estimate of the pose is used to updatadkel that predicts the appearance, e.g.
by projecting a 3D model into the image. Measurements of éwation between prediction and reality
are used to estimate the pose update. The tracking methatisdstn chapterSl4] 5 ahdl 6 are generative
trackers. Such trackers can achieve good qualitative isaates at high frame rate, but they need to
rely on models that give a good approximation of the trackgdaet. Furthermore, these trackers need a
good estimate of the initial state, and at any time, if itsdjpreon is not a good match to the true state,
tracking will fail.

The approach ofliscriminativealgorithms has recently been more widely explored for aldied
objects [ASOR2, AASK04, TSTC08, STTCO3, Braf9, SVD03, ATPAte idea is to recover a direct, but
non-physically based, mapping between a (robust) repiats@m of appearance and the model parame-
ters such as joint angles. Inter alia, the approach explst&Vuet al. [WLHOT] note, the fact that the
range of typically explored poses of hands is much smalkan the entire range.

As mentioned in Chaptéf 2, two main approaches to relatimg@measurements qualitatively to 3D
poses: classification-based and mapping-based. The fasmmemputationally expensive and can only
output pose estimations that are in the training set. Thergkis fast and is able to output estimates in a
continuous manifold of the parameters space. The key fa¢tmapping-based approaches is the model
used to build the map.

In this chapter, a mapping-based approach is developedhéoprioblem of hand pose estimation.
This is based on a multivariate regression method thatvisllim part Agarwal and Triggs’ work on
whole body pose estimation. However, the hand pose recaesenygeneral a more difficult problem,
not least because of the far greater degree of actual ooolumnd of “apparent occlusion” where finger
bounding contours are lost. For this reason this chaptgrgses an extension of the single view method
to multiple cameras, an approach which Egbkl. [EBN™05] points out has not been widely explored
for this problem. An experimental comparison of single andtiple view performance is presented,
taking into account variation in the number of image measerds and training samples needed.

A framework of the method described in this chapter is ifatgtd in Figurd—7]1. Once the images
are acquired, a pre-processing step is to extract imageipkess is performed on both the training and

testing phase. This step, described in Sedfioh 7.2, preda@mmpact description of appearance, for
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Figure 7.1: Framework showing the combination of the meshemiployed in the training phase. For
each image, first the shape contexts of the silhouette coateucalculated. Next, vector quantisation
is performed to produce a compact global image descriptbe multiple view data are combined by
concatenation and an RVM-based regressor is trained usng poses.

which we use, as did Agarwal and Triggs, shape contextsigéss. A novel modification is introduced
for rotation invariance without loss of information abohetshape. A compact global image descriptor
is obtained though vector quantisation, and multiple vief@rimation is combined by concatenation. To
train the regressor, it is necessary to gather a set oftigaipairs of multiple view images and 3D poses,
sectionZB describes the acquisition of training andrigstiata. The regression method used to learn
the mapping between appearance and 3D poses is describedtionEZ.%. Sectioh 7.5 describes the

experiments and results. A summary and the conclusionsranendn Sectiofi 716.
7.2 Extracting Multiple View Image Descriptors

The initial step of the method (both in training and applmaphases) is the conversion of each image of
a hand into a silhouette contour, and thence into a compactiggon using shape contexts. Because of
the wide variation in scale and orientation of hands in innggeis important to incorporate invariance

to these transformations within the context. A novel modifin for rotation invariance is proposed. Its
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description is followed by the description of our methoddombination of multiple view information.
7.2.1 Shape Contexts

Shape contexts, proposed by Belongteal. [BMPOZ], are rich shape descriptors that are usualy com-
puted for points on the silhouette contours. They encodal information about each point relative to
its neighbours, and they can be made scale and rotationantar

Among modifications of shape contexts found in the litemtare (i) that of Ohashi and Shimodaira
[OS03al0S03h, FTRD4], which is simpler than Belongigt al.’s method, but the final image descriptor
is similar to that obtained after vector quantisation (asedby Agarwal and Triggs); and (ii) that of
Thayananthart al. [TSTCO03], who used edge orientation and a continuity cairgtfor shape context
matching, so neighbouring pixels in the image have to mageghtouring pixels in the shape contexts
space), but the basic image descriptor is the same. The thptiesented here aims to obtain a robust

global image descriptor, rather than to provide a match éetwsets of object points.

(b)

Figure 7.2: An example of a hand image with a cluttered bamkgd (a) and its pixel-wise silhouette
countour extracted by skin detection followed by edge detedb).

Recovery of the silhouette of the hand, assumed un-glogeahieved using the histogram-based
classifier presented in Chaplér 3. This is applied to subkahtp90 x 120 pixels to reduce computation
cost. In our database, hands occupied about 266®2(: STD) of the image pixels. The shape contexts
are computed only from positions on the silhouette conteiich is easily derived by edge detection
in the resulting binary skin/not-skin image. Figlrel 7.2whdhe extraction of silhouette contour points
from a hand image with clutter in the background. Note thdy arfew points are located outside the
contour of the silhouette of the hand.

At any point on the contour, neighbouring contour points areumulated in 60 bins arranged in
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Figure 7.3: The shape context of a point at the tip of the irithger: (a) the regions taken into account for
computation; (b) the obtained context. The column ordeh@tistogram follows a counter-clockwise
scan starting from fiduciald®” dashed line, and the row order follows from outer to innatges.

log-polar fashion, five along the radial direction and tveebround the polar angle, spaced equally in
log-distance and angle, respectively. To provide a firstlaf scale invariance, the inner radius is set
proportional to the meap of the distances between all the pairs of points in the sétteu In our
implementation, the inner radius ig'8, and radius increases in octave=2fq typically covering all of
the hand silhouette. Figure¥.3 illustrates the conswnatif a shape context for a point in the silhouette
of the hand shown in Figute].2. The resulting 60-bin histogis normalised, providing again for scale
invariance. For imageéthe complete image description is generated as the set@@-bin histograms
computed at; points along the silhouette contour.

Figure[Z#% shows the complete set of shape contexts for oné $ithuette. The: points in 60
dimensions are projected onto the first two principal congmts® Because the individual shape contexts
computed at neighbouring points do not change drasticatigl, the primary principal components pick
out a principal plane, it is possible, even in this featuracsp to discern the characteristic four fingers

and thumb.
7.2.2 Rotation Invariance

As mentioned before, the orientation of hands in naturébastcan largely vary. This can be a challenge
for discriminative methods if each different orientaticequires a new set of training samples. The

solution present in this chapter is to use rotation invaimage descriptors and multiple view. Therefore
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Figure 7.4: The 60-d shape context manifold obtained fromrallsilhouette, visualised via a projection
onto the first two principal components.

the pose estimation can be focused on internal parametgns §ngles), and the global pose can be
estimated with the use of triangulation. Another benefibtdtion invariance is that it aleviates the need
for the cameras setup consistence between training anmutestases.

Essentially, rotation invariance is achieved by orientimgfiducial line of the shape contexts accord-
ing to some local feature of the shape. For instance, FIgirshbws the shape contexts of a point at the
tip of the middle finger for different images. In this examptee fiducial line is oriented by the tangent
of the local contour. Note that the difference between tlagpsitontexts of that point in a synthetic hand
image (panel a), areal image (panel b), and the same imageddpanel c) is very small in comprarison
to the shape context of that point in a hand at a differentpjimgspose (panel d).

Belongieet al. ensured rotational invariance by aligning the fiducial™lne with the tangent to the
silhouette contour at each point. While this works well & tontour is smooth, which in our experience
requires either large images or using proper linked edgectieh, the result in low resolution images,
and using pixel contour points, was found to be noisy. A moleist alternative was found to be to use
the geometric centre of the silhouette and to set the fidlio@lto be orthogonal to the line from the
centre to the contour point.

The rotation invariance of both tangent-based and cenbraggtd methods is obtained at the cost of
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(@ (b) (d)

Figure 7.5: The silhouettes, log-polar bins, and the regukhape context vectors obtained from the
tip of the middle finger in four different images using tangenented rotation invariant shape contexts.
Context (a) is from a synthetic training image. Its simthamvith real images is shown in panel (b), and
(c) illustrates rotation invariance. The shape contexnfeodifferent hand pose is shown in (d).

reducing the amount of global information about the shapm@filhouettes. This can be visualised in
the projection of the 60 dimensional shape contexts spamsrsin FigureLZb(b, d, and f) — note that
these shape context manifolds do not present discerningj ¢fsaracteristics — and through the nearest
neighbour classification results shown in Figs] 7.7 [anH. 7e solution that we adopt in this chapter
is to orient the shape context with the axis that links thestito the tip of the hand. For simplicity, we
assume that two points of the silhouette contour lie on thegerborders, and these points are taken to
be either side of the forearm. This is more robust than, fstaimce, using the principal axis obtained
through PCA, as it can vary abruptly depending on the hand.pbke illustrations of Figure1.6(g and
h) and the results in FigE._T.7 andl7.8 show that this maisthie discrimination power of non-rotation

invariant shape contexts and adds robustness to planéionsta

1The results in Fig§—717 afid¥.8 were obtained through diestion using global multiple view descriptors for the ineag
as described later, in Sefs—712.3 Bnd¥.2.4.
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Figure 7.6: Methods to orient the shape contexts for ratatiwariance (left) and their respective de-
scriptors in the 60 dimensional space of shape contexteqiag in 2 dimensions using PCA: (a and b)
without rotation invariance, i.e., using a fixed orientatfor the whole image; (c and d) using tangents
obtained with &8 x 3 window (as suggested in [BMPO02]); (e and f) using the origotaorthogonal to
the ray from the mass centre (indicated by the blue ciratednd h) aligning the shape contexts with the
hand’s axis.
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Figure 7.7: Nearest-neighbour classification resultsgusinltiple view descriptors obtained from the
silhouettes on the first column, using (i) not invariant shapntexts and three methods of rotation
invariance: (ii) tangent-based, (iii) centroid-orientaxad (iv) hand axis-oriented shape contexts. Note

that using the hand axis (iv), the ‘fingers ambiguity’ is @le.

camera input image (i) not invariant (i) tangent (iii) cemdl (iv) hand axis
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Figure 7.8: Same as FigUurelr.7 for another set of testingesagere, even though the hand is roughly
aligned with the training data, tangent-based and handasged rotation invariant shape contexts pro-

vided better results than the shape contexts without ootativariance.
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7.2.3 Encoding a Global Image Descriptor

In order to reduce the dimensionality needed to describerage, a coding method is used. In this
chapter, we adopt the same method as Agarwal and Tiiggs BYT@dctor quantisation. In the training
phase, a codebook is created in a similar fashon to that tufgneam, with bins being calculated using
a clustering method. From a training set bimages all Ele n;) 60-d shape context vectors are
clustered intoK centroids using thé{-means algorithm [DH73]. Each individual shape contgxt
image: becomes re-expressed ag<adimensional vectok,; with K — 1 zero elements and a single
unit element. In both training and application phases, timeplete image descriptot; is generated by

summing these and normalising hy

;
X; = E Xij /TLZ .
j=1

To soften the effects of spatial quantisation, the desmnsypre built allowing context vectors to vote with
Gaussian weights into the few centres nearest to them [AT04a
Figure[Z.9 shows the centroids obtained from 546 traininggies with a total of 128659 shape

context descriptors.
7.2.4 Combining Multiple View Information

Some possibilities have been considered to combine mauliplv information. IN[UMKR96], the view
which is most perpendicular to the hand palm is selectedl@dther are discarded. However, in many
cases it is difficult to estimate the orientation of the hdrehch view is analised individually.

The low level approach is to group all the shape contexts fatirthe images together before per-
forming clustering to build the codebook. The problem of tgpproach is that the improvement obtained
by using multiple views may not be very significant, as oneoc$eheasurements can be associated to
more than one global orientation.

An alternative is to estimate the pose from each view indiaily and combine the results at a high
level using, for example, a graphical model [Mur02]. If ghblpose parameters can be estimated using
triangulation and if regressors can be trained with a s¢islmmprehensive in terms of the internal pose

parameters and orientations, then the same regressorlw®ualpplied for all the cameras, and the setup
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Figure 7.9: K-means of all the shape contexts of a particular trainingaeeshown as stars. The shape
contexts of two samples, one with the fingers stretched anthanwith the hand in a fist pose, are
plotted to aid visualisation (differentiated here by greed blue dots).

of cameras would not need to be the same as in training. Hoyaveiscussed later, it is not realistic to
use very large training sets.

In [HSSO02], it was demonstrated that the discrimination @ois proportional to a measure of the
complexity of the curvature of the contour. Thus, for eadwyithe matching score is weighted by this
measure and they are added up to the final score. In the apppoaposed here, it is not necessary
to employ a shape complexity measure to weight each viewreiipessor does that implicitly if linear
kernels are used. For that, the information is combined imemmediate level, by generating vectors
x for each camera individually and concatenating them inta@hdr dimensional vector that describes
the current measurements from all the cameras. The regriesben trained using these concatenated
vectors, as illustrated in figufe¥.1. The advantage of th@ach is that the images drescriptor en-
code information from all the views separately, reducing tiamber of traning data needed to use the
additional pose constraints that multiple views offer. Tnawback is the need for an agreement of the

cameras poses between training and application phasesghtiibe descriptor is robust to rotations on
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the cameras planes and to variation in scale, i.e., the pitgxbetween the cameras and the hand can
vary, as well as the internal camera parameters (e.g. fength).

In the present implementatiof is set to 30 for each view, so the image descriptors of a thiees
data set are represented in a 90-dimensional manifold aensimoFigure[ZID. For comparison, 90-d
single view image descriptors were also obtained from thees@aining set by using’ = 90.

Note that, for multiple views, the first and second principainponents are roughly aligned with
the variation indz, and with the overall degree of flexion of the fingers, redpelst whered, is the
rotation around the forearm axis, as detailed in Eet. 7.& HAihts that this dataset of hand appearances
can roughly be represented with two degrees of freedom. &ifést cannot be observed for single view
descriptors. In that case, the manifold seems to need at least three tionsto show more separability

between hands poses.
7.3 Obtaining and testing the training data

So far, we have described the generation of a possibly newtiimage descriptok. An essential input
to the later regression process is, of course, the asswtiatieachx with a set of known joint angleg.

For this chapter we use a subset of the hand trajectory dag@pared by Thayananthan and
Stenger[ISTTC03] at Cambridge University’s DepartmentmfiBeering, using an Immersion Corpora-
tion’s CyberGlove. The database contains the trajecto®0gbint angles of the hand of two users. The
28 DOF hand model described in Secfiod 5.5 was used to syrghesages at the poses of this database,
soy € R%, Since the CyberGlove used does not include sensors betiveéorearm and the palm, the

two degrees of freedom of this joint were set to constanteslu
7.3.1 Training Sets

We demonstrate experiments using two training sets. Thedirbbedpen-closeconsists of a trajectory
that starts with all the fingers stretched after which a graspgesture is performed in 78 frames. The
glove used to generate this data did not have a global positid orientation sensor, so the trajectory was
duplicated seven times fab° spaced value8® < 6, < 90°, giving a total of 546 poses, some of which
are shown in FigureZ11. For desktop tasks the variatioheobther orientation parametets(andfy-)

is usually small enough to enable us to rely on the invarigmoperties of the modified shape contexts.
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Figure 7.10: 90-d manifolds of vectors obtained from a training data visualised usinggmt@n onto
the first two principal components. The silhouettes of thedhat some key poses (6 poses for each
0z angle) are shown in their location in the manifold. Panelstaws the manifold for single view
vectors, and panel (b) shows the same for multiple wew
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Figure 7.11: Images rendered in camera 2 (top view) for 3 afgles and 5 of 78 grasp strengths from
the open-closdraining set. The number above each image is its index indghe s

239

Figure 7.12: Some images from tbemplextraining set rendered in camera 2 gy = 0°.

148

A more accurate global orientation can be obtained by triktgpn when multiple views are used. For
a fair comparison between single and multiple viéw, andfy are not taken into account. For multi-
camera application, the hands were rendered from thresreliff viewpoints. These viewpoints have the
same camera calibration parameters as those used on thsittmywf real images for recognition.

The second training set, dubbedmplex has fingers moving individually, as shown in Figlre¥.12.
This sequence has 239 internal poses that, as before, aoeluepd for15° spaced valueg® < 6, <

90°, giving a total of 1673 three-dimensional poses.



7.3 Obtaining and testing the training data 157

Distance map for image descriptors x

Distance map for pose vectors y

Distance
Distance

@
Output class

Output class

w
3
S

IS
>
@

@
£
)

78 156 234 312 390 468 546
Input test image Input test image

(a) (b)

Figure 7.13: The distances between vectors describingpke-closeraining set of 546 images for a
single view. (a) Distances of the image descriptoend (b) distances of the 28-d poses vecgarblote
the repetition of a pattern in this map, because at each 7glearie same trajectory is reproduced, with
an addition ofl5° to 6.

7.3.2 Assessing the training set

Figure[Z.IB(a) shows the dissimilaritybetween thex image descriptors in matrix form. The natural

dissimilarity measure for histograms is thé test statistic[BMP02]:

Dz‘,j = D(XZ',Xj) =

K
(k) — x5 ()
2 S T ) @

N =

wherei and;j are sample (i.e., image) indexes &nid the descriptors’ dimension indexThe dissimilar-
ity between 28 dimensional vectors of pose is shown in Figure_7.13(b), obtained usiegiixclidean
distance. The reduced number of low values in the off-diagetements ob(x;,x;) shows the dis-
crimination power of the image descriptor. Due to the sintjfeof the silhouettes, there remains more
confusion amongst vectors as the fingers are closed up.

In order to assess the discriminatory power of the imagerigisrs x, a nearest neighbour classifi-
cation experiment was performed with 36 hand images — 9 hasdsptaken from 4 orientations. The
results, shown in Figurés7]14 dnd1.15, suggest that thgeimescriptor is robust enough to provide a
good qualitative description of the hand shape from imalgatdre not in the training set, even though

the hand model is not accurate. Figlire ¥.15 also shows teatsth of multiple views can improve the

2Since shape contexts are histograms, this measure was sadopreviously in the criterion function of the clustering
algorithm for vector quantisation — Section 712.3.
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nearest neighbour classification result.
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Figure 7.14: (a) Distance map between the 36 testing sar(fpiesages with 4 different rotations) and
the 546 training samples and a single view. The repetitiothénpattern at each 9 samples confirms
rotation invariance. (b) Nearest-neighbour classificat&sults for nine samples of the same orientation.

Figure 7.15:1% row: sample images from camera 2 with modifications in odtan, translation and
scale. The nearest-neighbour classification results usitgle view with scale and rotation invariant
descriptors are shown in t&< row. The3™@ row shows the same, using multiple views.

An improvement is expected to be achieved with regressi@aus® a neighbourhood of training
samples is taken into account in the parameters space, agheearest-neighbour simply returns the
sample with highest score. Another obvious advantage isttigaformulation of a regression-based

method and its sparsity make it much faster than neareshineig classification.
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7.4 Learning to Relate Descriptors to 3D Poses

To relate the image descriptatsto the 3D joint angles and pose settingsAgarwal and Triggs |AT04a]
proposed the use of a regression method that learns theonelsttween/ pairs of vectorgx;,y,) by
estimating the coefficients or weights of a linear comboraif basis functiong,. The problem is

described as:

p
Y= Zak(bk‘(xl) + €= Af(Xi) + € (72)
k=1
wheree is a residual error vectoy;; € R™ (i = 1,2,--- ,I), anday € R™ (k = 1,2,--- ,p). For

compactness, the weight vectors can be gathered inte arp matrixA = (a; ag --- a,) and the basis
functions into a R-valued functionf (x) = (¢1(x) ¢2(x) -~ ¢,(x)) . As discussed latep = K for
linear kernel, angp = I for Gaussian kernel. In order to estimate the bias of the k=ip the state
space, one can ugéx) = (1 ¢1(x) ¢2(x) - ¢,(x)) " and add a weight parameter to be estimated, but
this is unnecessary if the data is standardized to have zeam and unit standard deviation.
For I training pairs, the estimation problem takes this formineste A such that
I

A= argmin {g 1A (xi) =il P + R(A)} (7.3

whereR(-) is a regulariser on. Gathering the training vectors into anx I matrixY = (y, ys -+ ¥;)

and ap x [ feature matrixF = (f(x;) f(x2) --- f(xr)), equation[[ZI3) can be rewritten as:
A= argmAin {||AF — Y||* + R(A)} (7.4)

7.4.1 Regression with Relevance Vector Machines

For unidimensional signalg, Tipping [Tip01] proposed the use of Relevance Vector Maehi{RVM),

a method based on sparse Bayesian learning to estimatertfjcana ., with large sparsity. Each
weight parameter is associated with an independent noisielmaand there is a prior fotv parameters
(hyperpriors), which are modelled as Gamma functions, ey bave a high probability near zero, en-
forcing sparsity in the estimate of the weights. Upon mization, the regularization parameters push
the weightsa of the less relevant basis functions to zero, thus produaisgarce model. This sparsity

can save computational time and space.
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Figure 7.16: Map of non-zero elements of matkix, .,y resulting from RVM regression of individual
parameters separately, using a threshold to select argavefd 0 relevance vectors per DOF.

A straightforward adaptation of this method for multidinsemal state vector¥ can be achieved by
regressing input vectossagainst each of the: individual elementg; of y separately and concatenating
the obtained row vectors of weights into mattix,,  ,,)-

An experiment with thepen-closedata set was performed usidg = 90 (i.e. K = 30 for each
view) and linear kernel function€(x) = x). During the optimization, weight valuesthat were smaller
than a threshold, where set to zerdZ, was set to a value that give an average of 10 non-zero weights
for each dimensiom;. The resulting non-zero elements/ofatrix are represented in Figure—4.16. The
application of the obtained regressor on samples from #igitig set resulted on the mean absolute érror
of 3.1°, and mean standard deviation8°. The worst result was obtained with the interphalarfyeal
joint of the thumb, which is occluded in many of the trainimgaiges. For that joint angle, the average
error was9.5° and the standard deviation wé.9°.

A problem with regressing parameters independently istbigly data potentially provide impossible
output poses. For example, a regressor trained to recovpo8®of walking humans might output poses

having both legs to the front.
7.4.2 Agarwal and Triggs’ Regression Method

The pose of each DOF of the hand in natural motion withoutreatgorces is clearly not independent
from the pose of the others. In]JAT06b], Agarwal and Triggsade an adaptation of Tipping’s method

that estimate the whole matrix in a single process, creating a linear combination of retetiwith

SComputed by> ! [Af(x;) — y,|/1
4For hand joints nomenclature, see Fidurd 1.1 And [$tu92].
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multi-dimensional output. This regressor is estimated ibgotl optimisation of the weights keeping the
hyperprior parameters fixed.

The first step of this algorithm is to initialigewith ridge regressionThe regulariser is chosen to be
R(A) = \||A]|?, where) is a regularisation parameter. The problem can be descaibtte minimisation
of

[IAF — Y| = ||AF — Y[[* + X[[A]|?, (7.5)

whereF = (F A\I) and¥ = (Y 0). A can be estimated by solving the linear systein= ¥ in least
squares, i.eA «— [(FFT)—lﬁ?T]T. Ridge solutions are not equivariant under scaling of igpsib both
x andy vectors are scaled to have zero mean and unit variance ksftviag. The mean and standard
deviation of the components afandy are kept for application on testing data.

The next step is to apply a modification of Tipping’s RVM reggi®n method. Instead of modelling
p(«a) (the hyperpriors of the weights) as Gamma functions, Agarwal and Triggs uge) ~ ||a||~",
which is a simple case of Gamma function with constant pararseTheir method is a maximum a priori
type and directly optimises the weight parametersvhile Tipping’s is a type-1l maximum likelihood
approach that integrates out the parameters and optinfieds/perparameters.

In order to reduce the risk of premature trapping of weighapeeters to zero and overfitting, Agar-
wal and Triggs proposed to successively approximate thalyeterms with quadratic “bridges”. There-
fore, witha an element of,, the regularisergz(a) = v log ||a|| are approximated b¥ (||a||/ascac)? +
const, Wherea.q. IS @ constant that is updated at each iter&tiofihe approximation has the same
gradient as the original function at= a.q;., and ifconst is set tov(log||ascae || — %), the same values
ata = aseqe, @S Shown in Figure Z17.

Agarwal and Triggs proposed the use of column-wise set ofgin the regulariseR(A): with a a
column ofA, R(a) ~ %(||al|/ascaic)® + const, implying that the estimated matrixhas some columns
tending to zero as the method iterateg,~ 0. Depending on the kernel function used, two different

aspects of cost reduction for pose estimation can be achieve

e If linear basis functionsre used, i.ef(x) = x, the zero vectors,, indicate which components

®In [AT044] and [AT04t], the authors have missed the dividigriwo in the approximation of the regularizeR§a), but
this has been corrected In[AT04b] and [ATD6b].
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Figure 7.17: Quadratic “bridges” approximations to thieg ||a|| regularisers, introduced by Agarwal

and Triggs [[AT04A] to prevent weight parameters from premey becoming trapped at zero in the
minimization process, which can cause overfitting.

of vectorsx can be removed without compromising the regression reJiiierefore, RVM can

be used as geature selectiomethod, resulting in a reduction in the number of shape gd#scs

needed.

e Alternatively,kernel basis functionsan be used. They are expressedlk) = K£(x, x;), making
f(x) = [K(x,x1),K(x,%2),---,K(x,%,)] T, whereK(x,x;) is a function that relates with
the training samplex;. For example (as used in this chapter), one can use a Gaussiael
K(x,x;) = e?IX=Xill* with 3 estimated from the scatter matrix of the training data. is tase

the column-wise sparsity df acts as a method &elect relevant training samples

The estimation of is then performed in a similar fashion as to Equalion 7.5 ténatively solving

the linear system:
A(FR)=(YO0) (7.6)

where0 is am x p matrix of zeros and is ap x p matrix whose rows are defined by a.q., and

ascale 1S the norm||a|| of each column vector df from the previous iteration. To reinforce sparsity, the

columns ofA whose norms are small are set to zero. This process is relpaatieA converges.
Figure[ZIB shows th& matrix obtained by this method using linear kernel functiam theopen-

closedata set, with multiple view 90-d descriptoxs The thresholdZy on the norm of the column
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Figure 7.18: Map of non-zero elements of mattjx,,,) resulting from linear regression using Agarwal
and Triggs’ method, selecting 10 relevance vectors in {@fal The result obtained with RVM of indi-
vidual parameters shown in Figure_4.16 is reproduced inqlshbw that some agreement between the
two methods is obtained on the selection of columns. of
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vectors||a|| was tuned to select 10 relevant features, resulting in teetien of 5 features from camera
1 (side view), 3 features from camera 2 (top view), and 2 featfrom camera 3 (another side view).
For samples in the training set, regression with this magsulted in a mean absolute error27°,
and a mean standard deviation206°. The worst average error and standard deviation W& and
8.2° respectively, both for the interphalangeal joint of thentftu This represents an improvement in
comparison to the results obtained by regressing the DQlnddiially. As discussed later, the column-
wise sparsity of matri, allows the application of this method for feature selettio sample selection.
It is interesting to note that many of the vectors selectadgu$ipping’s method coincide with rows

selected by Agarwal and Trigg’s method, confirming the comtheoretical basis of both.
7.4.3 Applying the Regressor with Feature and Samples Selemn

It has been observed that Gaussian kernel functions candproetter results at the expense of being
slower than linear kernel functioris [ATC4a]. Indeed, treuts showed later suggest that linear functions
are less stable to noise than Gaussian kernel functionsalldraative proposed here is to combine both
by first reducing the dimensionality of the image descrgptorwith feature selection and then using
regression with Gaussian kernel functions to select the mete/ant samples. Since the dimension of
the vectorsx is reduced in the first stage, all the distance calculatieqsired to computé(x) with
Gaussian kernels is sped up.

After the training process has been performed to obtainixnatand the sets of selected features
and samples, the algoritm shown in Algoritiin 3 is appliedstineate the hand pose given a new (set
of multiple view) image(s). Note that, although the inits¢ps are not affected by feature selection and
sample selection, these have a large impact on steps 6 t@&8ighly 11). Thus a trade-off between

speed and robustness can be achieved.
7.5 Experiments and Results

This section presents experiments on applying regressiofeéiture selection, samples selection and
both combined. Aiming to perform a fair comparison, for bethgle-view and three-views data, 90-
dimensionalx descriptors were used, with the difference that, for thenfar all the elements of were

obtained from the same view, and, for three-views, each waw/described by a 30-dimensional vector,
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Algorithm 3 Pose Estimation with Selected Features and Samples (ajptigphase)
Require: lists of selected features, selected sampigsshape contexts centroids, meahsandy,
std(x), std(y), and matrixa
1: for each camerado
2. if there are selected centroids from this viggn
3 Extract the hand silhouette using skin detection and edggetien
4 Compute all the shape context vectors from all the silheusintour points
5
6

Calculate their distances to all the centroids of this view
Soft histogramming: create the image descriptdrtaking into account only bins related to the
selected centroids

7. endif

8: end for

9: Concatenate the vectox$’ into a single vectok’

10: Standardise it using the me&mandstd(x) from the training set

11: Evaluate function®;(x’) to build f(x’), wherei is the index of kernel functions related only to the

selected training samples
12: Apply y < Af(x’) with the selected columns afonly
13: ‘De-standardisey, using the meafr andstd(y) from the training set

and they were concatenated to buddThe parametera andv were both set t@.3, which, in most of
the experiments in this chapter, lead to convergence #itee iterations for linear kernel functions, and

after five iterations for Gaussian kernel functions.
7.5.1 Number of Relevance Vectors

The graphs of Figure_Z.119 show the number of selected retevaectors as a function of the threshold
7a. Note that the same threshold leads to the selection of nateeance vectors for a single view. This
hints that even though the same number of training samphesaithe same dimensionality) is used in
both cases, fewer relevance vectors are selected for mewiigws, indicating that their measurements
are more discriminative. Fewers samples and fewer feaareeseeded to achieve the same relevance

for multiple views. A similar behaviour has been observeadlie complextraining set.
7.5.2 Synthetic Images

For the experiments with synthetic images, ground truttvaslable. The data set was evenly split in a
training set and a testing set (with no intersection) fromsame sequence of movements. Although this
practice makes training and testing data very similar,@nisugh to distinguish the performance between

single and multiple view methods.
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Figure 7.19: Number of selected relevance vectors for tinad Gaussian kernels for single and multiple
views as a function of the threshdlg, evaluated for both thepen-closeandcomplextraining sets.
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Figure 7.20: Silhouettes obtained from a sample pose iméirerig set from camera 1 and 2, highlighting
(with red *") the points whose shape context is taken intocaot after the selection of two relevant
features.

Open-Close Data Set

The sequence of movements in thgen-closalataset can roughly be described by two degrees of free-
dom: flexion of the all joints and twisting movement of the tiabout the forearm axi®£). In order

to verify the ability of the regressor to identify this, a fieilee selection experiment was performed, i.e.,
a regressor with linear kernel functions was trained withttiresholdZa on ||a|| tuned to select only
two relevance vectors. But for a single-view, three feauvere selected, because any greater threshold
resulted on only one feature. For three-views, one vecton ihe top view and another vector from one
of the side views (camera 1) were selected, as shown in HigHfBeand 7. 21.

The points of the silhouette shown by red **’ in Figlire 4.26 #rose whose shape contexts (SC) have
the selected centroids among their four nearest centmoii€ispace (the soft histograming implemeded
considers a neighbourhood of four centroids). Note thathbéwh views the centroids selected are close
to the wrist rather than the finger tips. A possible reasonHat is that features closer to the finger tips
present too much variation between samples and they areessm for some of the samples, like those
with the hand in fist pose. This was also observed for single.vi

Figure[Z.2P illustrates the result by showing the estimategle of the interphalangeal joint of the
index finger and the results fg. Recall that at each 78 frames the images were generatediféerant
value off; (global hand orientation). Note that the pose of the handestimated individually for each

frame, which explains the jittering motion.
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Figure 7.21: Shape contexts manifold with the centroid efgblected cluster from camera 2 indicated
by a blue circle.
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Figure 7.22: Regression results using only three (for singw) and two (for multiple views) relevance
vectors (out of 90), with a linear kernel and synthetic ingada) estimated angle of the interphalangeal
joint of the index finger; (b) estimated andlg of global rotation about the forearm axis.
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Figure 7.23: Regression results using only 10 samples (®i3), with Gaussian kernel functions and
synthetic images: (a) estimated angle of the interphakdrjgmt of the index finger; (b) estimated angle
0z of global rotation about the forearm axis.

These results show that the regressor is able to give a ropgitoxamation of the pose using a
minimal set of selected vectors (in this case, image festurEven using fewer features for multiple
views it is possible to achieve higher accuracy than witmaglsiview. Also, the results fat; with a
single view seem to have no correlation with the ground tratirthermore, for single view, #s; grows,
the estimate for other angles gets poorer because the wplaes not offer enough distinct features on
its own when the fingers get nearly aligned to the camera axis.

When using Gaussian kernels, it is harder to intuit the méiset of samples needed to estimate the
pose. 75 was chosen so that 10 relevant samples were selected frotrathiag set. The trajectories
obtained from single and multiple views are shown in FiguBs7n comparison with the ground truth.

Both for single and multiple views, the selected samplesrargtly from “near-fist” hand poses. This
may seem odd, but it is not usual in RVM for the the most relesamples to be distant from the obtained
pose estimates, and for them not to be the most comprehesaiveles in terms of the variability of state
(poses)|[TipOL].

Figure[Z.Z1 reports the application of feature selectidlovieed by samples selection to combine

speed and performance. Note that the superiority obtamechdltiple views is more evident fary.
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Figure 7.24: Regression results combining both featuerteh and samples selection for the interpha-
langeal joint of the index finger (a) and the an@}e(b). The parameters were tuned to select 13 or 12
features for single and multiple view, respectively; andamples.

Complex Data Set and Quantitative Results

Thecomplexdata set incorporates a large range of hand poses, so itésdiffdcult to illustrate the results
with graphs as shown for thepen-closedata set. FigurE_ZP5 shows the mean and standard deviation
of the error for each parameter (DOF) of the hand fordbmplexdata set, using half the samples for
training and half for testing with both feature selectionl amples selection. In this case, 36 relevance
vectors with 35 dimensions were selected for both singlenanltiple view. For a comparison, the STD
of the training trajectory is also shown. Note that both theatest variation in angle and the greatest
average error occur in the proximal interphalangeal jointhe fingers. In this database, the use of
multiple views reduces the error in a roughly uniform mareleng the pose parameters.

Table[71 shows a quantitative evaluation of the resultbdtin data sets using synthetic images. The
columns ‘ftrs.” and ‘spls.’ indicate how many relevance tees were selected with linear and Gaussian
kernel, respectively. The column ‘worst result’ shows thierage error for the parameter (DOF) whose
estimate was the worst, indicated in the column ‘which DQHe abbreviation T IP refers to thumb’s
inter-phalangeal joint, and M DIP to the distal inter-pimgjaal joint of the middle finger.

As expected, the worst estimates occurred in two casesor(ipOFs related to parts of the hand

whose contour was occluded in many of the images, and (ijh@rotationf; when a single view is
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Figure 7.25: Panel (a) shows the standard deviation (STiheo¥alue of each hand parameter along
the trajectory of thecomplexdata set. Parameter 1-6 are absolute pose, 7 and 8 are vgiesaf is
abduction of the little finger and 10-12 are flexion anglese $ame pattern repeats for each of the other
fingers and thumb. Panel (b) shows the mean error and STD dbrggaameter using a single top view.

Panel (c) shows the same for multiple views.
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# Data Avg. Worst ~ Which
Views Set Kemel  Ftrs. Spls. Errgr STD Result DOF
Linear 3 273 8.6 6.9 23.2 0z
Open-Close| Gaussian 90 10 56 4.3 14.5 TIP
1 Both 13 29 23 20 6.0° 0z
Linear 31 839 3.0 27 11.# MDIP
Complex | Gaussian 90 42 29 25 9.9 MDIP
Both 35 36 29 26 10.7 MDIP
Linear 2 273 54 AR 17.¢ TIP
Open-Close| Gaussian 90 10 3.6 27 14.9 TIP
3 both 12 29 16 12 7.0 TIP
Linear 31 839 25 2r 8.9 MDIP
Complex | Gaussian 90 41 24 20¢ 8.3 MDIP
Both 34 36 24 20 9.0 MDIP

Table 7.1: Results with synthetic data obtained using 27B&39 training samples fapen-closeand
complexdata sets, respectively. The same amount of samples wadarsedting, though there is no
intersection between the sets. For both data sets, thentotaber of features used is 90.

used, as this is not a rotation parallel to the top view imdgee

In general, the improvement obtained by using multiple giémevident, particularly when the num-
ber of features used is small. However the improvement ig-dependent, and if a single view captures
the most meaningful silhouette the improvement is dimigish A further reduction in improvement
arises because the synthetic images used so far are n@séfshown in next section, improvement is

restored when using real images.
7.5.3 Real Images

For real images, whole training sets were used, giving 56itrg pairs for thepen-closalata set and
1679 for thecomplexdata set. For testing, images of the right hand of a singlgsutvere used. Since
there is no ground truth available for the real images, ooblitative results are shown.

Figurd Z.Zb, shows the estimated index PIP joint@ndngles obtained by training the regressor with
theopen-closalata set and applying it to the nine images shown in Figurg. Tt 1s intuitive to visualise
the correctness of these results, as both the estimatex iBgoint andd; angles are expected to grow
with time. In this case, the use of multiple views does notrs&zshow an improvement in relation to
single view.

However, Figuré 727 shows that multiple views provide aificant improvement for images with
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Figure 7.26: Regression results obtained usingtien-closalata set, combining linear kernel functions
to select 30 features (out of 90) and Gaussian kernel fumtio select 46 and 47 samples (out of 546)
for single and multiple view data, respectively. (a) shoasuiits for the interphalangeal joint of the index
finger, and (b) fof 5.

more complex movements, using the regressor trained witltamplexdata set. This improvement
becomes more evident when a small selection of featuresamglss is used, as shown in Figlire 7.28.
Note that, for a single camera, the regressor seems to béeuatecover some of the poses, probably

because the measurements generate poses that extrapelspate of trained poses.
7.5.4 Computational Cost

As the aim is to use this system for (re-)initialisation ofideo-rate hand tracker, the computational
cost is evaluated in this section. Although most componehtsis system were implemented using an
interpreted language (MatLab 6.5, except where indicatbd)time measurements presented here give
a good clue of the computational complexity of each part efdlgorithm. These experiments were
performed using a computer with two 2.4GHz Pentium 4 CPUs7&04/1B of RAM running Red Hat 9

Linux (though the algorithm was not parallelised).
Feature Extraction

This is the first step to obtain image descriptors, both fmining and testing samples. For 5037 images
of 120 x 90 pixels, the average time for skin colour detection was 2.88u3g a compiled C++ imple-

mentation. To extract subsampled silhouette contour p@nt calculate their shape contexts it takes
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Figure 7.27: Results obtained from real images (top row)sfogle view (middle row) and multiple
views (bottom row), using Gaussian kernel with all the sas@ind all the features.

Figure 7.28: Results obtained from real images (top row)sfogle view (middle row) and multiple
views (bottom row), using combined linear kernel to seléteéatures (out of 90) and Gaussian kernel
to select 38 samples (out of 1679)).
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Kernel Input Selected lters _ Total
Dim. RVs "~ Time (s)
Linear 90 32 4 6.7
Gaussian 90 38 4 327.7
Both 32 38 5 305.4

Table 7.2: Training time for theomplexdata set (1679 samples) for linear, Gaussian and the cothbine
kernels to select 32 features and 38 samples.

further 141.7ms per image in MatLab. Next, to calculate thantised vector&, it takes 26.4ms per
image. Therefore, the average time for this pre-processiage is 170.9ms and this is the only stage
where the use of multiple view can represent a lin€4({), whereC'is the number of cameras) increase

in the amount of time required by the algorithm.
Training Phase

The most demanding step of the training phase is the clagtésiobtain the centres for vector quantisa-
tion. With thecomplexdata set the algorithm did not converge until the maximum lmemof iterations
(30) was reached. For thig -means can take between one and ten days, depending on hgwteran
ations of the second phase were performed, and this is datandant[[Seb84]. For th@pen-closadata
set, a result was obtained between 30 mins and 2 days, agpending on the view and the number of
second phase iterations performed. No convergence wasegaathin 30 iterations, but experiments
have shown that the quality of the centroids for vector gsatibn does not affect the discrimination
power of the obtained vectols [JT05].

Given the training samples represented by the (conca®nqtmntised vectorg, to train Agarwal
and Trigg’s regressor is a much faster process, as showbléifa. Note an improvement in speed using
the linear kernel functions followed by Gaussian kernelkcfioms poth) in relation to using Gaussian

kernel functions only.
Application

As shown in tabld—7]3, the actual pose estimation processtieneely fast (note that the scalars are
in microseconds). For both for training and applicatiorg tlifference between using both kernels and
Gaussian kernel functions only is not very significative amparison with the difference between these

and the use of linear kernel functions only. However, conmigirboth methods give the robustness of
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Kernel Features Training ~ Time
Samples  £S)
Linear 32 1679 7.2
Gaussian 90 38 35.7
Both 32 38 25.4

Table 7.3: Average time over 1679 trials for the applicatbthe regressor to theomplexdata set using
linear, Gaussian and the combined kernels. Note that thegaale is in microsecondgs).

Gaussian kernel functions and the additional reductionhenrisk of overfitting if all the features are
used.

Summing up all the steps give, in the worst case (three carard Gaussian kernel functions)
651.69ms per frame, which is a very good result for a globtaer with no prior information of the
hand pose, implemented mostly in an interpreted languaggteBresults are expected in a compiled
version, but the use of this method for detection only to){nétalise a generative tracker is still the best

option for better results at lower computational cost.
Memory Usage
For application, this algorithm is not very memory demagdiBelow is the list of required data:

e list of selected feature€?(K), K is the dimension ok;

selected samples;: O(K x I), I is the number of training samples;

shape context centroid€?(K);

mean and standard deviation for vectarandy: O(K) andO(m), wherem is the dimension of

the state vectorg;

matrix A: O(m x K) for linear kernel functions o (m x I) for Gaussian kernel functions.

For a new image, in order to get (steps 4 to 6 of Algorithnil3), first it is necessary to obtain al
the shape contexts from the silhouette contour. Thes®are< a x n), wherer anda is the number
of radial and angular bins of the shape contexts. In thistenap = 5 anda = 12; n is the number
of points in the silhouette contour. For themplexdata set the average number of points per image is

2549.1 per image in the experiments of this chapter, which is noga kalue for today’s computers.
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However, the training phase can be particularly demandipeggially in the clustering step, where it
is convenient to keep all the shape context of all the trgimmages in the memon®(r x a x n x I).
With thecomplexdata set, 750MB of memory was enough for all the experimémttufling training and
clustering), in a MatLab implementation. But, for trainjngwas necessary process views individually
and store data from the other views in the HD. Obviously, aiigant amount of memory could be
saved in a C or C++ implementation, in which numbers wouldnesd to be represented with double

precision for the calculations.
7.6 Conclusions

This chapter presented a regression-based method foragisimof hand pose in 3D from global image
descriptors, advancing the single-view method of Agarwal &riggs [AT04a] proposed for human pose
estimation.

Skin silhouettes were extracted from colour imagery, ami ttontour points described using the
shape contexts of Belonget al. [BMPOZ]. The considerable variation in hand pose typjcalbserved
in imagery requires care to be taken to ensure scale andraihinvariance in the contexts. The use of
contexts aligned with the axis of the forearm was found tohieeltest. By ensuring rotational and scale
invariance, the number of training samples needed was eedpcovided triangulation was first used to
recover the global pose parameters.

A global image descriptor for each view was obtained by aptlire manifold of shape contexts using
vector quantisation, and the descriptors combined at annm@tiate level into multiview descriptors by
concatenation. The mapping between multiview descripgos 3D poses was learned using Agarwal
and Triggs’ [AT044a] extension of Tipping’'s Relevance Vediachine [TipO1l].

Our experiments have, inter alia, examined the effectsatfife selection (linear kernel functions)
and sample selection (Gaussian kernel functions) both emjtiality of pose determination and on the
computational time, using both synthetic and real imagevg. have found that linear kernel functions
have the advantage of computational cost independent antbant of training data used. However, we
have found Gaussian kernel functions to be more robust, dueme performed experiments combining

both linear and Gaussian kernels for speed and robustnassexperiments have also shown that, for
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general views, fewer relevance vectors are needed in theplawiew case. Their measurements are
more discriminative, allowing correct pose estimates togoevered in cases where a single view all but
fails.

An obvious modification to the current image descriptor widog the use of a more sophisticated
coding method, like Gaussian mixtures or Jurie and Triggsshod [JT05]. Another possibility is to
explore the extension of RVM for multidimensional targeaisgs of Thayananthagt al. [TNST06]
which, like the original RVM, optimises the hyperparamstdBut the main thrust of future work should
be to evaluate how relevant is the use of multiple hypothédsesiltiple views are employed. A more
application-oriented direction of this work is the intetipa with a generative tracker for real-time results,

as done In[JATO0B],[[EZ05], and [RSD6].



Conclusions

This thesis concludes with a brief overview of the topicd tteve been discussed. The
main contributions are listed and some suggestions arengiweinteresting areas of future

research.

8.1 Summary of this thesis and conclusions

After an introduction to the motivation for the work in theearof visual human-computer interaction,
this thesis presented a review of the literature focusedamu racking and human motion capture.
Two main approaches for 3D articulated object pose estimdtave been identified: generative and
discriminative. Generative methods are the more traditiapproach to tracking in which a model of
the object is rendered at a predicted pose and image meaieavaluate the agreement between this
model and the observed image. These are then used to compate @rediction of the pose and the
tracking cycle repeats.

The discriminative approach is a natural way of estimatiogepfrom a single image, but it has also
been extended to “tracking-by-detection” frameworks.sThethod relies on extensive prior knowledge
of appearances and poses of the object in order to build etdivap between image observation and 3D
pose.

This thesis has developed methods in both categories. rtedthy revising a generative method
first proposed in the early 1990’s by Harris_[HarR2a] for kiag rigid objects in real-time. RAPID

tracker uses sparse edge measurements to compute the gase lypsolving a linear system. As a test
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of the combined use of calibration, hand detection usingumpland tracking at video-rate using edge
following, an application was developed in which a pointhrand controlled the direction of gaze of a
wearable active camera.

By analysing the motion of kinematic chains, it was shown tha formalism developed in RAPID
could be transferred to articulated objects. The artiedl®APiD Tracker (ART) was tested with syn-
thetic and real images, including a video sequence of thd beasping a box, where both hand and box
are tracked.

Acquiring information about the interaction between olgesas one of the original motivations of
this thesis. For this reason, an alternative method to septearticulated objects was studied. This
method, proposed by Drummond and Cipolla IDIC02], is basedstimating an initial motion screw
for each object part individually and then imposing coristeafterwards. Although this is clearly
different from ART’s approach, which encode all the constsain a single system, it was shown that
these methods provide equivalent results. However, thisrdn terms of simplicity, robustness and
asymptotic speed in relation to the number of object partsvas shown that ART is more suited to
articulated objects with highly constrained parts (e.gnd%, and Drummond and Cipolla’s tracker
(DCT) is more appropriate for problems in which the constsabetween parts are low and where the
ability to switch on and off the constraints is desired.

Although the bone linkage of hands can clearly be modelled kisematic tree, skin tissue chal-
lenges generative methods if its complex dynamics is notathed] but modelling such tissues can be
computationally expensive. Furthermore, the reportedesgof generative methods for hand tracking
is usually restricted to predictable movements, but suddetions are very usual for hands. For these
reasons, a discriminative method was implemented.

This method is based on building a map between a global sheseriptor and 3D poses. Hand
images are described using shape contexts measured atnfoeircof the silhouette of skin coloured
blobs. This description is encoded using a quantisatiom@fshape context space which gives a high
dimensional vector for each image. A multiple view desanips obtained by concatenation of these
measurements. To create an efficient map between image masesus and 3D poses, a multivariate

regression method based on Relevance Vector Machines vwadsniranted. Experiments have shown
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accurate pose estimation results on synthetic data arsfesatiry results on real images. Comparisons
between single and multiple view versions of this methodastbthat the extension to multiple views

proposed in this thesis improves the results and reducesutheer of relevance vectors required.

8.2 Contributions

Although a vast literature was found in this field, the problef 3D hand locating and tracking in real-
time remains very challenging and it is still open for cdmitions. This thesis has achieved significant

contributions in the following areas:

e Tracking articulated objects

A novel articulated object tracker described with the saorenélism as RAPID was proposed
in Chapte’b. This method can track articulated objects it type of joints and topology.
A qualitative evaluation of this method was presented foarege of objects, including a hand

interacting with a box.

An alternative method (DCT) was investigated in Chaplem@hls method, constraints are post-
imposed after an initial estimate of the motion of each dijjact is computed. A novel compara-
tive study between this approach and the pre-imposed eamstiapproach of ART was presented.
This study took into account equivalences in their formafgttracking results, simplicity, robust-

ness and speed of the methods varying a number of parametésssomparison was published in

[ATMOB] and [dTMO35].

e Estimating 3D hand pose from multiple view

A new regression-based method for 3D hand pose estimaterfroitiple view images was pro-
posed in Chaptdll 7. The experiments showed that this mettindvas better performance in
comparison to using a single privileged view. Not only aecyris improved, but complexity can

be reduced. Results of this work have been published in [M06
8.2.1 Secondary contributions

e Literature survey
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Despite not presenting new technical advances in the fi¢ldp@I[P tries to attend to the current
demand for a survey of the literature. A lack of comprehensiwrveys focused on hand tracking
has been identified, since the last comprehensive reviehigrfield was published ten years ago

[PSHIT).

e Skin detection

One of the apparatus building methods presented in CHapster skin colour detector that is based
on a histogram-based classifier applied to the YCbCr colpaces. Its novelty lies on the particular
combination of colour space and classification method. Trreghod is an important component

of the systems published in [TMdMO2bl, [dMMD6], [MTd®3] and [dMO6].

e Guiding a wearable active camera using pointing gestures

Chapte ¥ presented a new system that combines a fast shisotodsvith the RAPID tracker

in order to detect and track pointing gestures. A cost fonctliagnoses the result to evaluate if
the detector should be fired to re-start tracking. This syst&as applied to command the gaze
direction of a wearable active camera mounted on the udesidder. Parts of this work have been

published in[[dMMO0B] and [MTdC03].

8.3 Future directions

Some of the work developed contemporaneously to this tigesclues of future directions. Below, key
points are listed.

In the field of image features for 3D tracking, results can hieamced if other image features are
combined with the edge features used in this thesis. Farnnstedges can be combined with optical flow
and shading information in ]LMSOD3]. A combination framewas that of Tordofet al. [TMdMO020]
can also be evaluated for this application.

To reduce the complexity of ART and improve robustness,niehand motion data can be used.
A method such as Lawrence’s SGPLM_ |Law04] can provide aniefficdata-driven dimensionality
reduction of the state space incorporating learnt comgsrai

This thesis concentrated on pose update assuming thatatime-rate is high enough. To improve



8.3 Future directions 183

the results for fast (but smooth) motions, a motion filter bamused. Alternatively, a particle filter-based
method such as that df [BKMV04], can be applied to improveustbess and avoid local minima, but
this may increase the computational cost.

Although shape contexts are strong descriptors, they melgamd silhouette or edge segmentation
results, which is not always possible for cluttered backgds. An alternative is the use of SIFT features,
as done in[[ATO6a]. In that work, the appearance of humamliarts is learnt in order to suppress
background features, so no segmentation is required. Taikad is likely to be very successful for
hands, because bare hands texture is much simpler tharxtheetef people wearing different clothes.

For the global image descriptor, it can be relevant to evaloading methods that are better than the
simple vector quantisation employed in Chapler 7. An exarngihe method of Jurie and Trigds [JT05].

Even though the use of multiple views virtually eliminatestaguities in pose estimation, the amount
of self-occlusion in hands still make some different handgschave similar appearances (e.g. afist). A
study of the importance of multiple regressors (e.g. [THE]) for pose estimation should be considered
as future work.

This thesis advocates that hands should be located aneétraskng the combination of a discrimi-
native and generative methods. This has been done in Clfpierited to pointing hand detection and
tracking. The combination of the approaches of ChaplersiBamill extend the range of possible poses,
but this has not been attempted in this thesis.

The methods developed in this thesis are yet to be integvetbdther systems that watch humans
to perform action and intention recognition. Methods fomé&ination of temporal information shall
be applied, and the research on behaviour understandiriglesddh to the ultimate goal of developing
smart human—machine interfaces. Current methods demainthg and some effort that, despite being
subtle, in the long term can lead to chronic damages of R$hdmdeal interface, the training and effort
should be transferred to machines: they should observe maiarad be able to adapt themselves for the
optimal communication — but the poor researchers that dpviilem will all suffer from RSI before

such interfaces become available.



Colour spaces

This appendix describes the colour spaces that are most enlypmsed for brightness normalisation in
order to detect skin colour. A large set of skin and backgdosmmples is used to show their spread in

the different colour spaces.
A.1 The RGB colour space

Extensive experiments in the human visual system have shtiwa the cones — sensors in the eye
responsible for colour vision — can be divided into threenpipal sensing categories, corresponding
roughly to red (R), green (G) and blue (B) [W$00]. Therefamours are seen as combinations of these
so-called primary colours [GWO0O0]. For this reason, mosthef tameras and emissive colour displays
represent pixels as a triple of intensities of the primatpais in the RGB colour spacéR, G, B] € R3.
This is also the reason why the RGB space is very commonly ysélge computer graphics and image
processing community.

A disadvantage of the RGB representation is that the chararel very correlated, as all of them
include a representation of brightness. This is illustdateFigure[A andCAL, in which the brightness
information can be recognised from R, G and B channels sheparately.

True colour 24 bits RGB images have the trifie G, B] represented by 256 discrete values (ranging
from 0 to 255) [JacO1], thus the range of RGB colour values forms the ciilie®?® possible values as
shown in Figur€AR. The high correlation between lightrezss RGB channels can be noted by the line

of the grey values, wherB = G = B. In fact, if the corresponding elements in two poirif3;, G, Bi]
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(b)

Figure A.1: Sample colour image (a); and its grey level wrgb).

Figure A.2: RGB channels of image in Figlre A.1(a) shown sapdy.

and[Rqy, G2, Bs|, are proportional, i.e.,

R Gi B

they have the same colour, but different brightnéss TYWBifferences in brightness are often dis-
regarded by humans, as our visual system is capable of agagtidifferent brightness and various
illumination sources such that the perception of a colomstancy is maintained within a range of envi-

ronmental lighting conditions TWS0O0].
A.2 The CIE chromatic space

The CIE chromatic space is a standard proposed in 1931 byaimer@ssion Internationale de I'Eclairage

— the International Commission on lllumination. Some madifions have been proposed later, but this
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Figure A.3: The RGB colour cube.

section is restricted to the 1931 standard. It has been nsaVeral colour processing tasks [GWO00] and
it is used to define the colour gamut, i.e., the range of ptessitlour values that a device can represent.
This two dimensional space has thendy axes respectively defined by the pure chromatic colours

red and greelfr, g), defined by this normalisation process:

R

T = RiGrB A2)
_ G '
9 = TR¥GTB

which is, in fact, a R — R? map. Pure bluebj is redundant after the normalisation becausg+b = 1
[WS0a.
The use of this colour space for skin detection has becamelgrogpecially after the work on face

tracking developed at SCS, Carnegie Mellon University | YSNGLWI8K].
A.3 The perceptual colour space

The perceptual colour spaces were designed by Smith.in Bjnm7rder to provide a more “intuitive”
way of describing colours and lightness. Three quantitresuged to define them: hue, saturation and
brightness. Brightness embodies the achromatic notiontehsity. Hue is an attribute associated with
the dominant wavelength in a mixture of light waves. It reger@s colour as perceived by an observer.
Thus, when we call an object blue, yellow or red, we are spegfits hue. Saturation refers to the
relative purity or the amount of white light (or grey of equatensity) mixed with a hue. Primary
colours (pure red, green and blue) are fully saturated, @dsecolours such as pink (red and white) and
lavender (violet and white) are less saturated. The dedrsatoration is inversely proportional to the
amount of white light added IGW0O0].

Basically, there are two distinct perceptual colour spadéSL (hue, saturation, lightness); and
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Figure A.4: HSV and HSL colour spaces.

HSV (hue, saturation, value). Both are defined with polardimate systems. HSV is represented by a
hexcone where Hue is the angle around the vertical axis, I®idistance from the central axis and V
is the distance along the vertical axis. Primary and seaynulare colours are fully saturated (= 1).

As illustrated in Figur€AM, starting froff = 0° (which represents pure red), a secondary or primary
colour is located at eadbn® of hue. Complementary colours ar&0° opposite one another measured
by H. Colours along the vertical axis have zero saturatien, grey scale values. Note that whes= 0,

the value of H is irrelevani [JacD1], [Smi78].

HSL colour space is a double hexcone and can be thought ofefemrthtion of the HSV space. The
distinction between HSV and HSL lays in the representatidrightness information, which determines
the distribution and dynamic range of both the brightnessr(l) and saturation (S). In practice, the
HSL colour space is best for grey level image processing &ulfar representing objects in such a
way that colour images can be distinguished even in monawhiinages (e.g. to show colour cartoons

on black-and-white TV receivers), whereas the HSV imageesim a better representation for colour

processingllJac01].
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As described in[[RMGS8],[IAP96], and [ZYWDO0], on performirgin detection, the brightness
channel is discarded and the HS space is used instead. dtegréiere is no significant difference

between HSV and HSL in this applicatidn [Bow99].

S

Figure A.5: HSV channels from FigufeA.1(a) shown sepayatel

Figure[AD shows the H, S and V channels obtained from imama figurd’/A1(a).
A.4 The YUV and YCDbCr colour spaces

The YUV image space was created in order to make colour ttgvbroadcasts backwards-compatible
with black and white TV receivers. The colour signal alsodeekto conserve bandwidth because three
channels of RGB data would not fit into the limited broadcagha bandwidth. The Y channel de-
scribes Luma, the range of value between dark and light, wisithe signal shown in black and white
televisions. The U and V chrominance channels subtract timihance values from Red (U) and Blue
(V) to represent the colour only information (without brigass) [MalOR]. Thence, the basic conversion

equation from RGB to YUV is:

Y = 03R+0.6G+0.1B
U = B-Y (A.3)
V = R-Y

The coefficients used to obtain luma are the same as thosdarsi® NTSC standard conversion
from RGB to grey level image$§ [Poy96]. These coefficientsbased on psychovisual experiments that
estimated the proportion of red, green and blue that we perck is shown that approximately 65% of
all the cones in the human eye are sensitive to green light, &2 sensitive to red light and only about

2% are sensitive to blue, but the blue cones are the mostigerf8/S00].
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The YCDbCr colour space was developed as part of ITU-R BT.30ihd the development of a world-
wide digital component video standard. This colour space exéensively used in the development of
the JPEG standard, and was used for skin colour detectioevsrad research projects, including the
Pfinder [WADP9Y].

As shown in equatiofi_Al4, YCbCr is a scaled and zero-shifteion of the YUV, so that the

chrominance values are always positive [PIM93]:

Cb = 5405
(A.4)
Cr = 1%+05,

for U ranging betweern—0.9,0.9] and V' ranging between—0.7,0.7], which are the ranges obtained
from the conversion from RGE: [0,1]. So the range ofb and Cr are (0.05,0.95) (0.06,0.94),
respectively. For digital 8-bits values of U and V, a 128 tsisiemployed, rather than 0.5.

Figure[A® shows the RGB colour cube in the YCbCr colour splchows that not all the possible
values in the tripldY, C'b, C'r] represent possible RGB colours. Therefore, special cast beutaken to
about overflow or underflow in RGB, when converted from YCHightness normalisation is done by

discarding the Y channel.

Y=255
Cb=128
Cr=128
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Figure A.6: The RGB colour cube in the YCbCr colour spaceigi§i bit representation of values.
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A.5 Visualising the colour spaces

To illustrate the effect of brightness normalisation udimg above colour spaces, each method has been
applied to the image of FigufeA.1(a). An intermediate gesel (127) was chosen and the resulting

images are shown in FigureA.7. Note that skin areas appdarmrand that shading information is lost

for all the three methods.

@) (b) (©)
CIE Pure Colours HSV CbCr

Figure A.7: Resulting images after brightness normabsatif the image in FigufeZAl 1(a) using the CIE
colour space (a), the HSV without the V channel (b), and th&QGwithout the Y channel (c).

In order to illustrate the distribution of skin samples i ttolour spaces, a database with images
from 141 different people was used. This database is cordpmgdnand images grabbed from seven
volunteers, and the AR face detection database of the Wiiyaf Purdue[[MB9B]. The Purdue database
contains 134 people (men and women) from several ethnigograBackground samples were obtained
from the background regions in the images (e.g. peoplethiclg and other objects) and other images
grabbed in the laboratory, as shown by some samples in Hig8teThe camera used in the acquisition
had the automatic colour and brightness balance.

Skin and background regions of the images in this databasemanually selected in order to obtain
the data set. After the training process, more than 0.5anibiamples of skin and more than 1.2 million
samples of background were obtained. Fidurd A.9 shows iheaskl background samples in the RGB
colour space.

Figure[AI0(a) shows the plot of only skin samples in the R@Bur space. Note that the samples
are more spread in the direction of the brightness variafitie directions of global variation of the sam-

ple data can be evaluated by performing Principal CompoAgatysis in this spacé [dCJD1[, [Mar02].
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(b)

Figure A.8: Database samples: (a) hand images from locaht@trs; (b) faces from the AR database;
(c) background.

The eigenvector of the covariance matrix of the sampleswisiassociated to the largest eigenvalue is
oriented according to the largest variation of the datalet. second eigenvectors points to the direction
that is perpendicular to the first, and has the second lavgeisition of the data, and so on. The eigen-
vectors of the skin colour database are shown in FigurelA)10he angle between the first eigenvector
and the vector that points to the direction of the brightnesgation is only 3.35 degrees. This confirms
that it is necessary to use a normalised colour space or ebrightness information in order to get a
more compact cluster of skin samples.

To illustrate the compression of the skin colour cluster amnmalised colour spaces, FigufesA.11,
[AT2,[AT3 show the skin and background samples in the CIE/ B#® YUV chromatic spaces, respec-
tively.

In comparison to the plots of the skin and background saniplée full colour spaces, the plots in
normalised planes illustrate that such projections leddwer dimensional spaces with more compact

skin colour samples, improving the separability betweemttand background samples.
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Figure A.9: Colour samples in the RGB space: skin (red agyaad background (blue crosses) samples

plot together.
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Figure A.10: Variation of skin samples: (a) Skin colour s#mspn the RGB space; (b) Eigenvectors
of the skin samples in the RGB space in their respective meaitign. The first, the second and the
third eigenvectors are indicated by a star, a square andla @irits end, respectively. The dashed line

indicates the grey level (brightness) direction.
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Figure A.11: Skin (red circles) and background (blue cressethe CIE chromatic space.
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Figure A.12: Skin (red circles) and background (blue crgssbown in the HSV colour space (a); and
their projection into the HS plane (b).
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Figure A.13: Skin (red circles) and background (blue cresshown in the YCbCr colour space (a); and
their projection into the CbCr plane (b).




Adjoint transformation in DCT

This appendix complements information of Chajller 6 aboaitattijoint transformation used by Drum-
mond and Cipolla.

Consider two framea andb where points are related by the homogeneous transformation

Xb — TOX® — ( RZ tab > X (B 1)
— *a - OT 1 . '

To derive the effect of changing frame on the screw veetgrconsider writing the scene velocity in

frameb in two different ways
o b a a
X )= bapd [ X ) o ag. [ X
(%) - () (3
indicating that
> alG =T8> afG Ty (B.3)
Recalling thai = (w v ") T, and the earlier expressions & Eq. [B23) is just
b b b a a a _ npa
[w ‘I]'X CRR R% tab [w_llx v R%)_ Ritap 7 (B.4)
0 0 0 1 0 0 0 1
where|w]« is the antisymmetric matrix such thiat] xr = w x r. Hence
WP = RY[w®] < RY (B.5)

which is equivalent to

wl =Rbwe . (B.6)
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Also

v = —RC[W Rt ap + ROV = [tap] xROw? + REvY . (B.7)
The relationship between the screws is defined as
o’ = Ad(T?)a” (B.8)

and hence using Eq$_{B.5,B.7) the adjoint is given by

b
samh) = (0w ) ©9

Eq. (BX9) agrees with Drummond and Cipolla, given that trepvera = (v’ w')T. Though a minus
sign appears missing from the definition of their antisyminenatrix [t].

As the measurement vectdris an invariantF’a® = F*a® and so
F* = F® Ad(T?) ! (B.10)

which gives
cb =Fb Fb = Ad(T?)~Tco Ad(T?) . (B.11)
This differs from the equivalent in Drummond and Cipolla,iieslence which may arise because

equation (29) in ref[DCO2] statei G; (T,) " = > Ad(T});;G;, in contradiction with the later (agreed)

statement in equation (32) in réf [DC02] that = Ad(T%)a®.
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