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Summary

The partial volume effect is an imaging artefact associated with tomographic biomedi-
cal imaging data. Three-dimensional volumetric data points (voxels) enclose finite sized
regions so that they may contain a mixture of signals which are then known as partial
volume voxels. The limited spatial resolution of tomographic biomedical imaging data,
due to the complex biomedical image acquisition processes, often results in large num-
bers of these partial volume voxels. Clinical applications of biomedical imaging data
often require accurate estimates of tissues or metabolic activity, where many voxels in
the data are partial volume voxels. Therefore accurate modelling of the partial volume
effect can be very important for such quantitative applications.

The probabilistic models discussed and presented in this thesis provide a generic math-
ematically consistent framework in which the partial volume effect is modelled. Novel
developments include an improved model of an intensity and gradient magnitude fea-
ture space to model the PV effect; a novel analytically derived formulation of the ground
truth (prior) description of the PV effect; a novel gradient controlled spatially regulated
classifier that utilises Markov Chain Monte Carlo simulations; and a fully automatic
brain isolation technique that identifies brain voxels in neurological MRI data.

Simulated partial volume data and data from anatomical (MRI) and functional (PET)
biomedical imaging modalities are utilized to assess the classification performance of
the partial volume models. The data sets include: an imaged PET/CT phantom pro-
vided by the Royal Marsden Hospital, UK; publicly available simulated MR brain data
together with the associated ground truths from the Montreal Neurological Institute,
McGill University, Canada; and 20 normal MR data sets from the Center for Mor-
phometric Analysis at Massachusetts General Hospital, USA. The performance of the
developed classifiers were found to be competitive and in some cases superior to existing
published quantitative estimation techniques.
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Model
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Chapter 1

Introduction

The practice of medicine throughout the twentieth century has been greatly as-
sisted by advances in biomedical imaging technologies. A biomedical image captures
spatial information displaying some part of a patient’s anatomy or their physiology.
Currently, the information in a biomedical image is commonly used by a clinician to
understand or extract qualitative information about the patient’s condition. It is there-
fore important that the information contained in the image is accurately conveyed to
the clinician in these qualitative diagnostic scenarios.

Increasingly, computers are being used to extract quantitative information, rather than,
or in addition to, the qualitative information pertaining to the diagnosis and quite pos-
sibly the treatment of a patient. Quantitative information can further assist the clini-
cian in the diagnosis of a patient’s condition, where quantities of a tissue of interest or
the amount of physiological activity in relation to the general population and or some
part of the patient’s body may be of particular interest. The move from qualitative
to quantitative information will assist the clinician in the itemisation, designation and
finalisation of a patient’s treatment. It is therefore anticipated that this additional in-
formation will in many cases improve the prognosis of the patient. This thesis therefore
develops probabilistic models that may be used in the extraction of this quantitative
information.

The production life-cycle of a biomedical image typically involves acquisition, re-
construction, communication, storage, possibly further processing and finally presenta-
tion. At every stage accurate well-informed physical models of the processes involved
should be incorporated into any subsequent stage of the life-cycle of a biomedical image.
e.g. The reconstruction stage should possess knowledge about the preceding acquisi-
tion stage; similarly communication of the image data should not utilize compression
algorithms that remove critical information that has been retained by the previous
stages that include acquisition and reconstruction. Despite this, each stage of the
production life-cycle of a biomedical image is rarely perfect. There are limitations in
current knowledge, computational models and technology. These limitations prevent
the accurate portrayal of the true biomedical information. Some of these limitations
may sometimes be referred to as imaging artefacts. These artefacts may be superficial



2 Chapter 1. Introduction

annoyances under some circumstances, but other artefacts may affect the diagnostic
quality of an image. This is particularly true for computer aided diagnostic applica-
tions, where quantitative information is gleaned from the imaging data.

This thesis is primarily concerned with a commonly found artefact known as the Partial
Volume (PV) effect. This is addressed via probabilistic models of imaging data and
subsequent development of appropriate analysis techniques. The PV effect refers to the
possibility that a particular point in a biomedical image may have been sampled from
a mixture of tissues or physiological activity concentrations. If a substantial number
of data samples exhibit this PV effect, then it is important for a model of the imaging
data to incorporate knowledge about such an artefact. This thesis utilizes PV models
in probabilistic classification algorithms which attempt to determine the content of a
particular data sample. Such PV models and the associated classification algorithms
can be used as a means to an end in quantitative applications at the final presentation
stage of the imaging life-cycle.

1.1 Imaging Systems

An imaging system is the term used here to refer to a generic system that acquires
spatial information about some part of a patient’s anatomy or physiology. Exemplar
imaging systems may include Magnetic Resonance Imaging (MRI), Computed X-ray
Tomography (CT), Single Photon Emission Tomography (SPECT) or Positron Emis-
sion Tomography (PET) image acquisition systems.

Some imaging systems initially subject the patient to a process that instigates the
emission of a signal from within the patient (e.g. MRI, PET and SPECT). Other
modalities, such as CT, are considered as transmission type modalities where X-rays are
transmitted through the patient. The X-rays undergo variable amounts of attenuation
dependent on the type of tissues through which they pass.

The emission type modalities can be further divided into two types of imaging system.
Nuclear imaging modalities, such as PET or SPECT usually require the administration
of a radioactive substance so that the subsequent radioactive decay of the substance
can be detected as gamma-rays. MRI on the other hand relies on the external magneti-
sation, excitation and consequent relaxation of magnetic moments inside the patient
that are a property of the nuclei in the atoms of the patient’s tissues. The physics
of the Magnetic Resonance (MR) and PET image acquisition processes are described
further in chapter 2.

Due to the dependence on computing technology and the discrete nature of the signal
acquisition process, most signals from imaging processes are sampled and stored in a
digital format after detection. This process is illustrated in figure 1.1. Each stage of
the image acquisition process has an affect on the resultant signal seen as an image.
Acquiring information about the real world, particularly one which is not spatially
accessible without non-invasive or destructive procedures, is a difficult and complicated
task. This is the problem faced by medical imaging procedures, where the internal
details of the subject are being imaged and minimal effect on the subject’s system is
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Figure 1.1: Illustration of the gross actions of some imaging systems.

desired. The difficulty of the imaging process is therefore reflected in the complexity
of the physics of the devices used to produce the images. These complicated imaging
processes produce clinically useful images but with the result of various compromises,
limitations and assumptions in models of various physical principles and phenomena.
Combining these compromises with limitations in modern technology produces images
that are imperfect. These imperfections are often known as artefacts that the observer
should be aware of, if they are to provide an informed interpretation of the information
in the image. Information regarding exemplar clinical applications of medical imaging
technology can be seen in chapter 2, section 2.4.

1.1.1 The Nature of the Partial Volume Effect

The final stage of an image acquisition process involves the detection and digitisation
of the image signal (illustrated in figure 1.1). A finite number of three-dimensional
(3-D) volumetric data points, (i.e. voxels), are utilised to represent the continuous
information in the true object. The signal representing this information will have been
subjected to a number of processes that predominantly only allow lower frequencies
to pass, thus limiting the amount of higher frequency information. High frequency
spatial information enables accurate portrayal of edges and other fine detailed image
structures. Similarly, the digitisation process has to capture a limited number of voxels
and hence limit the higher spatial frequencies, otherwise infinite amounts of computer
memory would be required to store the images.

A concept known as the Point Spread Function (PSF) is often used to describe imaging
and signal processing systems as it characterises a system’s response to a point source.
Once the PSF is known, responses to any other signal can be determined via mathe-
matical operations such as convolution, see e.g. [46]. A Gaussian function is a typical
imaging system PSF, where the signal at the centre of the PSF has the greatest weight,
whilst signal from the surrounding areas also partially contribute toward the signal at
the centre.

Therefore the PSF can be described as blurring the high frequency information, reduc-
ing the high frequency content and allowing lower frequencies to pass. This spreading in



4 Chapter 1. Introduction

the digital domain typically carries across multiple voxels. The wider the PSF the more
the imaging information about an object will be spread. It is therefore logical to select
a voxel’s dimensions based on the width of a PSF. This helps to reduce redundancy
in representation of the imaging data and to quantify the resolution of the imaging
process. Fewer voxels are required to represent lower resolutions. Indeed, Haacke et
al. [50] (for MRI) state that the optimal size of a voxel can be approximated by the
Full-Width at Half Maximum (FWHM) of the PSF!. The FWHM is also a common
measure of image resolution for other imaging modalities such as PET and SPECT,
see e.g. [130].

The action of a PSF on a step edge is illustrated in figure 1.2. This figure also illustrates
the resultant voxel intensity values, where voxels located over the step edge take values
in between the continuous world ideal values. The result of this process is referred to
as the Partial Volume (PV) effect.

The PV effect is therefore directly related to the amount of spreading induced by the
action of the PSF of the image acquisition process. The PV effect describes an artefact
that is common to all systems that attempt to represent a continuous signal with a finite
number of samples, although it is described by various different terms for different fields
of application. A simplified illustration of the PV effect in an image is given in figure
1.3.

Factors that contribute to more numerous PV voxels include the inherently 3-D nature
of the medical image acquisition processes. A typical modern medical image possesses
what is known as a “slice thickness”, where PV voxels are not only affected by the in-
slice PSF action, but also the inter-slice action of the 3-D PSF. It should be noted that
early attempts at image quantification were limited to two-dimensional (2-D) analysis
as the slice thickness was large (w.r.t. the x,y dimensions) and sometimes the slices
possessed large inter-slice gaps, i.e. the slices were non-contiguous.

The effect that PV voxels have on the statistical properties of imaging data is to
reduce the possible independence of statistical classes of interest and merge them into
(conceptually) a single entity. For example, a statistical class in a neurological MR
imaging application may include a particular range of intensities that might be typical
for White Matter (WM). Similarly, a different range of intensities could be used to
describe the Grey Matter (GM) voxels. If the PV effect was not present (i.e. an
idealistic imaging device), then these classes would possess quite distinct intensities
(ignoring noise). But due to factors such as noise and the PV effect, the boundary
between the GM and WM intensities is usually quite ambiguous. A particular intensity
may then originate from GM, WM or a mixture of the two classes. This is also true of
functional imaging data where biological activity rather than morphological information
is being imaged. For example, radionuclide based functional imaging typically produces
inferior resolution data (larger voxel size, e.g. 4 X 4 x 4mm?) in comparison to MRI
data (e.g. voxel dimensions of 1 x 1 x 2mm?) due in part, to the physical limitations
of the signal measurement process described in section 2.2. In such cases larger voxel
sizes at relatively the same scale produce even greater PV voxel populations.

'FWHM is an alternative measure of the width of a function such as a Gaussian function half way
from the maximum point.
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Figure 1.2: Tlustration of the action of a PSF (dotted-and not to scale) on a step
edge (solid line), producing PV voxels. The convolution result is the smoothed edge
response (dot-dashed line). The sampling process produces the discrete voxel values
which change at regular intervals so that the signal is no longer continuous on the spatial
axis (represented as x). These discrete levels occupy signal intensity values in between
the original true signal levels. i.e. the original 0.0 signal intensity (prior to acquisition)
is now represented by 0.025 intensity for voxel indices 1.0 to 2.0, 0.6 intensity for voxel
indices 2.0 to 2.3 and the original 1.0 signal intensity is now represented by 0.6 intensity
for voxel indices 2.3 to 3.0 and 1.0 for voxel indices 3.0 to 4.0. Therefore voxels with
indices 1.0 to 3.0 can be referred to as PV voxels. Note the original continuous edge
occurs at approximately voxel index 2.3, thus producing PV voxels with indices from

1.0 to 3.0.
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Figure 1.3: Illustration of the PV effect in image data.

The PV effect is therefore a significant factor in medical imaging data and quantita-
tive estimates of tissues or physiological activities may therefore benefit by including
modelling of the PV effect.

1.2 Contribution

The work in this thesis undertaken by the author has contributed to a number of
developments. In particular these include:

e A PV mixing model that explicitly models the per voxel PV mixing as random
vectors has been formulated utilising point estimates based on the expected mix-
ing value for a given intensity. This has been found to be equivalent to an existing
statistical model, [148], derived via an alternative interpretation of the probabili-
ties, [19]. A lower bound on the voxel RMS classification error for intensity based
PV classification has also been established. These developments are mainly pre-
sented in chapter 5 and partially published in [19].

e An existing 2-D PV model utilising intensity and gradient magnitude to iden-
tify likely PV voxels has been extended by improving and reformulating the PV
model, [19], and reformulating the likelihood to model 3-D data, [18, 23]. These
developments are mainly presented in chapter 6 and published in [18, 23, 19].

e The shape of global PV mixing priors has been demonstrated (analytically) to be
invariant to the width of the PSF of the imaging system, [21]. This development
is presented in chapter 7.

e A phenomenological law, known as Benford’s Law has been related to the PV
mixing process, [21, 152, 153]. It was found that this logarithmic law that de-
scribes the frequency of digits in arbitrary sources of information can also be
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observed in the frequency of discretized PV mixing values. These developments
are presented in chapter 7 and published in [21, 152, 153].

e A novel gradient controlled spatially regulated model of the PV effect is also
proposed and found to achieve improved performance over all other models in
this thesis. Comparison with other high performance classifiers via classification
of publicly available MR brain data sets (with expert defined ground truths) was
also undertaken and found to be competitive and in some instances superior to
these alternative classifiers, [20]. These developments are published in [20] and
presented in chapters 7 and 8.

e A fully automatic skull-stripping algorithm has been developed and tested on a
number of MRI neurological data sets, [22, 17]. This technique was found to be
as successful at removing non-Central Nervous System (CNS) tissues from image
data as a commonly used existing skull-stripper (Brain Extraction Tool, BET,
[131]). The automation of the skull-stripping algorithm required coarse estimates
of the brain tissue intensity parameters, which were provided with a novel self-
similarity measure. The measure identifies the dominant sample population (i.e.
neurological tissues) by comparing the global histogram with individual slice his-
tograms. Slice histograms most similar to the global histogram were found to
contain the highest number of neurological tissue voxels. These developments are
presented in chapter 3 and published in [22, 17].

1.3 Thesis Structure

This chapter has introduced the concept of an imaging system. The main topic of this
thesis, namely the PV effect, has also been introduced using this imaging framework.
The next chapter (2) goes on to describe two specific biomedical imaging modalities,
MRI and PET, representative of the two main classes of biomedical imaging techniques:
namely anatomical (morphological) and physiological (functional) imaging. This there-
fore provides an opportunity for a modality specific discussion of the PV effect. These
two modalities provide state of the art morphological and functional information. The
models developed within this thesis have therefore been tested using these two modal-
ities to demonstrate their application across an anatomical and functional imaging
context.

Chapter 3, published in [22, 17], focuses on a novel pre-processing step for neurological
MRI data referred to here as skull-stripping. This represents the first piece of novel
work developed and published by the author. This step is often seen as an essential first
step prior to further processing of neurological MRI data. Skull-stripping is often used
prior to classification or other neurological image processing steps (such as might be
found in PET-based brain studies) to remove irrelevant non-CNS tissues. Therefore the
number of classification classes that have to be incorporated in a subsequent classifier
framework is reduced. A reduction in the number of classification classes relieves part of
the computational burden and reduces uncertainty in the calculation of probabilities for
individual classification classes that may share similar intensity values with non-CNS
tissue classes.
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Chapters 4 presents a review of existing PV classifiers, introducing some of the different
approaches that have been taken to model and thereby quantify imaging data affected
by the PV effect. This leads to the next three chapters, 5, 6, 7 that describe new PV
models, and thus represent the main component of novelty in this thesis.

Chapter 5 focuses on intensity based PV models that utilize global PV mixing prior
densities. Two popular core models that utilize the probabilities as analogous to the
PV content of a voxel are described. A new PV model is then presented which models
the PV mixture content as random vectors that can be explicitly incorporated into a
probabilistic formulation. These three PV models are then used to classify simulated
PV data, thus providing quantitative performance assessment.

The performance of these global mixing prior intensity based PV models is found to
be limited for low Contrast to Noise Ratio (CNR) values. Therefore chapter 6 extends
the intensity based feature space to include gradient magnitude. The first combined
intensity and gradient magnitude PV feature space, [157], previously recommended to
improve PV classifier performance, is described. This existing PV model is limited to a
parametric 2-D gradient magnitude formulation and uses the analogical probability to
PV content model. This chapter therefore introduces two further developments, firstly
to introduce a novel intensity gradient magnitude likelihood, published in [19], and
secondly to extend the parametric gradient magnitude formulation to 3-D, published
in [18, 23]. These three intensity and gradient magnitude feature space PV models
are then used to classify (using global PV mixing priors) simulated two class PV data.
Although somewhat improved over the intensity based classifiers, the performances are
still found to be limited for low CNR values. Therefore a third development is required
to improve the performance of the PV classifiers further.

The PV models of chapters 5 and 6 utilise global PV mixing priors (implicitly for
the analogous models). Chapter 7 extends the PV models to include a local prior
instead of the global mixing prior. This local prior enables the spatial contextual
information to be included in the classification process. The gradient magnitude is used
to dynamically control the amount of regularisation, unlike the previous formulations
that used the gradient magnitude simply to identify likely PV voxels, and is published
in [20]. Performance assessment on the simulated PV data demonstrates this new
formulation possesses improved performance on low CNR data. Therefore it is applied
to further PV data, simulated and real, to assess its performance under more realistic
conditions.

Chapter 8 introduces three sets of experiments. The local PV mixing prior model
of the preceding chapter is assessed along with the most promising PV models from
chapters 5 and 6. These experimental tests include classification of a series of simulated
MRI brain data sets with varying amounts of noise. The simulated MRI brain data is
available on line from McGill University Montreal Neurological Institute, [12]. These
experiments determine the performance of the classifiers under more realistic conditions
with particular reference to the classification of neurological MRI data. Two further
sets of experiments are performed. Image data of a PET/CT phantom were provided,
details of which can be seen in [5]. This PET phantom enables the performance of the
classifiers to be assessed on real experimental PET imaging data. The high resolution
CT data together with the PSF of the PET imaging process is used to derive a ground
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truth representation of the PET imaging data. The PET data is then classified and the
ground truth data is used to assess the performance of the classifiers. These experiments
on real PET imaging data allow the performance of the classifiers to be determined and
therefore implicitly test the validity of the PV model assumptions on real PET imaging
data.

The final set of experiments apply the best performing classifier (using the local mixing
prior) to 20 real neurological MRI data sets, assessed using ground truth image data
available from the Center for Morphometric Analysis at Massachusetts General Hos-
pital, [38]. The classification of these data sets extend the earlier experiments on the
simulated MR brain data to conditions which are difficult to simulate such as severe MR,
imaging artefacts including gradual and sudden changing intensity inhomogeneities.
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Chapter 2

Medical Imaging Background

The preceding chapter discussed the motivation for modelling of the Partial Volume
(PV) effect with regard to a generic imaging system. This chapter presents some further
information about anatomical and functional imaging systems, namely MRI and PET.
This background information then leads on to possible clinical applications of the type
of classifiers and PV models that are discussed in later chapters.

2.1 Anatomical Imaging with Magnetic Resonance

MRI is a popular anatomical imaging modality due to the fact that MR images possess
high specificity and sensitivity to variations in soft tissue. Delineating small differences
between soft tissues in the human body is particularly important for many clinical
applications such as neurology where anatomical abnormalities are often indicators of
particular neurological disorders or diseases. The PV effect is of particular importance
with MRI data due to the complex anatomical structures being imaged and the clinical
applications that require quantitative information to be extracted from these images.
Therefore this thesis considers the PV effect with particular application to the MRI
modality. Further information with regard to clinical applications will be discussed
shortly, but first the physical principles of the MRI acquisition process are presented.

An MRI scanner utilizes electromagnetic subatomic processes to determine properties
of the tissues at finite size volumetric locations (voxels) within the imaging subject. An
explanation of these subatomic processes is now given.

2.1.1 Atomic Structure and External Magnetic Fields

An atom consists of a nucleus and electrons that surround the nucleus, where the
nucleus consists of neutrons and protons. Each proton possesses an electric charge and
is equal in magnitude but opposite in polarity to the charge of an electron. Particles are
often described as possessing spin, an intrinsic property which is a convenient physical
model.

11
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#
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Figure 2.1: Illustration of a proton precessing about an externally applied magnetic
field, By.

The protons also possess an intrinsic magnetic moment. The particles are therefore also
affected by externally applied magnetic fields. A strong externally applied magnetic
field, By, applied by the MRI scanner changes the direction of the spin of the protons
so that they precess about the externally applied field. B is said to align the magnetic
moments of the protons. This is illustrated in figure 2.1.

There are two possible energy states for a proton that is precessing about By, a low
energy state, F7 or a higher energy state, Fy. The lower energy state is said to be
where the protons are parallel with the magnetic field. The higher energy state is said
to be where the protons are anti-parallel with the magnetic field. It is possible for
the lower energy state protons to be excited or kicked into a higher energy state with
the application of a radio-frequency magnetic field, By that provides additional energy
pushing the lower energy state protons into the higher energy state. This is illustrated
in figure 2.2.

The change in energy, AF, is dependent on the frequency of precession of the protons,
w?

AE = h.w, (2.1)

where h is known as Planck’s constant. The frequency of precession is given by
w = By.y. (2.2)

~ is known as the gyromagnetic ratio, the value of which is dependent on the environ-
ment of the protons being excited. For MRI, the human body possesses a large amount
of water, a compound composed of hydrogen and oxygen atoms. Therefore MRI scan-
ners are optimised so that they can easily detect small variations in the amount of
hydrogen. Thus, in equations used to determine imaging parameters, v is optimally
given a value that corresponds to a hydrogen molecular environment.

2.1.2 Relaxation

The precession of the proton can be expressed using two vectors, the longitudinal vector,
M; and the transverse vector, M;. The longitudinal vector corresponds with the axis
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Energy

E,

AE =EE,

Figure 2.2: Tllustration of high (E,/anti-parallel) and low (E;/parallel) energy states
for a proton in a homogeneous externally applied magnetic field, By and an oscillating
magnetic field, B;.

of precession (parallel with Bjy) while the transverse vector is perpendicular to By,
rotating at the frequency of precession. These vectors are illustrated in figure 2.3.

When B; is applied to the object being imaged, the magnitude of the longitudinal mag-
netisation vector, M; decreases due to the subtractive nature of the net magnetisation
of the excited nuclei in combination with the larger applied magnetic field, By. Prior
to the application of By, M; = 0, due to the net magnetisation of the protons spinning
out of phase. When the B; pulse has finished, the vectors return to their prior state at
an exponential rate. The longitudinal relaxation exponential time constant is known
as the T recovery time and the transverse decay exponential time constant is known
as the T5 decay time.

The T} recovery time can be attributed to dependence on interactions with the sur-
rounding molecular structure (the lattice). This longitudinal relaxation is primarily a
result of the exchange of thermal energy with adjacent molecules; hence T relaxation
is due to spin-lattice interaction. With 75 relaxation, the protons de-phase because of
the influence of the surrounding local magnetic fields that are also de-phasing; hence
Ts relaxation is due to spin-spin interactions.

Table 2.1 lists some exemplar relaxation 77 and 75 time constants for a variety of
common tissues imaged with MR.

External field inhomogeneities can also cause additional de-phasing of the transverse
magnetisation vectors. Thus, the term T5* refers to the commonly used time constant
associated with the combined de-phasing from the external field inhomogeneities and
the de-phasing associated with the spin-spin interaction.

The T} and T5 relaxation times characterise the tissues being imaged together with the
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Figure 2.3: Illustration of the magnetisation vectors for an individual magnetic moment.
The Transverse magnetisation vector is M, and the longitudinal magnetisation vector
is Ml.

Table 2.1: Some exemplar MRI T and 75 relaxation time constant values for a variety
of commonly imaged in vivo human tissues. Times quoted in milliseconds (ms) with a
field strength, By = 1.5 Tesla. Values taken from [50].

Tissue Ty (ms) || T5 (ms)
Grey Matter 950 100
White Matter 600 80
Muscle 900 50
Cerebro-Spinal Fluid 4500 2200
Fat 250 60
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density of hydrogen protons. Therefore image acquisition parameters, referred to here
as image sequences are often optimised so that either 77, 75 or the density of protons
become the distinguishing feature of the tissues found in a particular MRI acquisition.
The density of the protons refers to the relative population of protons for a fixed volume
of matter.

2.1.3 A Description of the MRI Signal

The signal for a particular voxel can now be seen to be dependent on the 77, T> and
proton density of the tissue located in a particular voxel, together with the applied
magnetic fields, By and B;. Equations that describe the resulting signal are now
described briefly, the description closely follows that of Liang and Lauterbur [82].

The relaxation processes of the transverse and longitudinal components can be de-
scribed in terms of their magnetisations. For the transverse magnetisation using a
rotating frame of reference denoted by x'y'!.

t
My (t) = M;y/ exp (—E) ; (2.3)

and for the longitudinal magnetisation

Mo () = MO <1 — exp <—Til>> + M exp (-Ti1> , (2.4)

again using a rotating frame of reference, denoted by 2. M ;y’ and MZJ? are the trans-
verse and longitudinal magnetisations respectively immediately after the application of
the oscillating magnetic field, B;. Similarly, M? is the longitudinal magnetisation at
thermal equilibrium. So that My, (t = Tb) ~ 0.37.M$y, and M,/ (t = Ty) ~ 0.63.M7,.

Equations 2.3 and 2.4 describe the relaxation of the magnetisation after an oscillating
magnetic field has been applied. These equations can be used to determine the char-
acteristics of the resulting image signal after the application of a variable number of
variable duration oscillating magnetic fields, (Bj).

There are many different image sequences or combinations of different magnetic pulses
characterised, in part, by an angle known as the flip angle. The flip angle denotes the
angle in the rotating frame of reference to which the net magnetisation vector passes
during the application of B;. The flip angle, 6;;,, can be calculated from the product
of the gyromagnetic ratio, -, the oscillating magnetic field and the amount of time that
the oscillating magnetic field is applied, py1se:

Hflip = 7.B1lpulse- (2.5)

One such image sequence is the Spin Echo imaging sequence. The Spin Echo sequence
is characterised by the application of two pulses, the first being H}ZP = 90° to place

1The rotating frame of reference is used to reduce the complexity of conceiving the magnetisation
vector direction. In the real world frame of reference, the magnetisation vector is continually precessing.
If a frame of reference is used which rotates at the same frequency as the precession, the complexity of
calculations and mentally visualising the position of the magnetisation vector is reduced.



16 Chapter 2. Medical Imaging Background

the protons in a high energy state; and the second being equal to (9]%;; = 180° which
helps to overcome effects from external magnetic field inhomogeneities [55]. The Free
Induction Decay (FID) signal from a Spin Echo sequence can be described by (see e.g.

[82, 88])
Tr Tr
SSE X Pproton- |:1 — eXp <—?1>:| . eXp <—?2> N (26)

where pproton is the proton density. The echo delay time, T, is the time between the
application of a pulse and the measurement of the echo from the signal. The repetition
time, Tr is the time interval between successive pulses. The echo and repetition times
are parameters that are controlled by design of a particular imaging sequence and are
optimised so as to produce improved and desirable image properties.

2.1.4 MRI Signal Localisation

Slice Selection The MRI signal can be localised to an individual slice (any axis) of
the imaging subject by varying the static magnetic field in steps along the slice axis of
the imaging space. The result of this produces variations in the resonant frequency of
each slice, therefore allowing the signal to be localised to individual slices.

Voxel Selection and Signal Detection Localisation of the signal within a slice
requires two additional small gradients that vary along the width and height of the
slice. The z-axis of the slice has a similar graduation of static magnetic field variation
affecting the resultant resonant frequency. While the y-axis receives a graduated field
for a short period of time that encodes phase information by forcing the protons to
de-phase momentarily.

Signal Detection and Transformation of Imaging Data The precessing mag-
netisation is detected either by the same RF coils that create the oscillating magnetic
field, Bi, or separate RF coils are used. Once the frequency encoded data have been
collected, the data are said to exist in frequency space, F(u,v). This frequency space is
also known as ‘k-space’. An inverse Fourier transform converts the data from frequency
space to spatial space, f(x,y). The result of such an operation is a vector with two
elements for each voxel corresponding to the real and imaginary components, a + j.b.
These two components for every voxel can be used to calculate a magnitude image
that corresponds to the magnitude of the signal (v/a? + b2). The magnitude image is
commonly used in clinical application for diagnostic purposes. Similarly a phase image
can also be computed (tan~!(b/a)), although this is not as commonly used in clinical
applications. Different types of phase images are used for imaging movement such as
might be found in angiographic applications (imaging of blood).

2.1.5 MR Imaging Artefacts

The artefacts in the MR imaging process are not limited to PV type artefacts. Here
are a few further artefacts that may be associated with a MRI acquisition process.
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Chemical shift The frequency encode process can produce localisation errors which
are often referred to as a Chemical shift artefact. For example, as fat and water possess
different resonant (Larmor) frequencies, localising their signals in the frequency en-
code direction becomes problematic and therefore the scanner is not able to accurately
identify their positions relative to each other. A second type of chemical shift artefact
sometimes known as a black boundary artefact or chemical shift of the second kind ap-
pears as a black outline. This is due to voxels in the imaging subject being composed of
both fat and water. Under some imaging conditions the variable frequency and hence
decay of the different molecules produces a phase difference that can result, depending
on the echo time, in a reduction of the NMR signal due to the signals from the fat and
water possessing phase differences therefore cancelling each other out.

Gibbs ringing This occurs at high-contrast boundaries and is associated with dif-
ficulties in representing the high frequency information in a digital form. The effect
can be reduced by increasing the resolution or by filtering to reduce the high frequency
information prior to the inverse Fourier transform.

Susceptibility and metal artefacts Metal produces a loss of signal with a high
intensity boundary and sometimes geometric distortions in the region surrounding the
metal. Smaller susceptibility artefacts may occur at the boundary between tissues due
to the different susceptibility of the tissues. This may result in a loss of signal in the
boundary region. Most soft tissues however, such as Grey Matter (GM) and White
Matter (WM) possess similar magnetic susceptibility [88] and would therefore not be
significantly affected by such an artefact.

Field inhomogeneities Variations in the magnetic fields (By and Bj), often pro-
duce variations in the signal intensities across the image. Small variations are difficult
to remove completely at time of manufacture due to physical limitations and nearby
ferromagnetic structures may reduce the homogeneity of the magnetic fields.

Motion artefacts These may be due to patient movement, such as movement of the
head while being scanned, breathing artefacts, or flow effects from blood or other fluid
in the body. Motion artefacts quite often result in ghosting where part of the anatomy
can be (partially) observed in more than one place in the image data.

Other artefacts exist, further details of which can be found in text books such as
[88]. These artefacts are quite often dependent on the patient, the anatomy being
imaged and or the scanner. Careful control of the imaging conditions help to prevent
some of the artefacts from dominating the critical information in the imaging data. For
example, using an alternative scanning sequence for images with susceptibility artefacts
or requesting the patient to limit their movement during the scanning procedure to limit
motion artefacts.
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2.1.6 MRI Resolution, PSF and PV Effect

The MRI data acquisition process produces data that is sampled or digital in form.
As with any real-world digitisation processing of a continuous signal, the MRI image
acquisition process is not capable of recording infinitely small samples, i.e. a finite
volume is associated with each sample. The number of samples or sampling frequency
is also limited. This is equivalent to a bandwidth being associated with the acquisition
process, where frequencies above a certain cut-off point are not faithfully represented
in the resulting digital images.

A sophisticated image acquisition process such as MRI has many contributing factors
to limitations in the size of a voxel (resolution). Most of these factors can be described
by a form of filtering process that reduces the higher-frequency content. These include

e Filtering operations (“artificially”) introduced by design into the scanner such as:

— A Gibbs filter to overcome a Fourier imaging artefact known as Gibbs ring-
ing;

— Analog filters to reduce noise prior to digitisation;

— Cross-talk minimisation procedures (to minimize adjacent slices being ‘ex-

cited’ simultaneously, instead of a single slice, thereby minimising inter-slice
interference).

e Filtering operations inherent to the MR image acquisition process including:

— Transverse or T5 relaxation decay envelope;

— Frequency bandwidth on slice select gradient magnetic fields.

Attempts have been made to derive analytical expressions for various filtering effects.
In particular Haacke et al., [50], derive expressions describing the PSF due to the trans-
verse relaxation decay envelope for gradient echo and spin echo imaging sequences. It is
possible to combine these expressions with other filtering process expressions to produce
a gross PSF estimate. Indeed one could hypothesise a simulation system that would
provide a means to determine the PSF for particular scanners, image sequences, and
conditions. However such a system would require substantial experimental confirmation
of the PSF estimates.

Factors that limit the spatial resolution are not limited to filtering processes of the
acquisition. The amount of noise in relation to the signal increases for smaller voxel
sizes thereby reducing the benefit of higher resolutions. One should also note that the
the amount of noise is highly dependent on imaging parameters that also contribute to
filtering of the MR signal (and consequently the resultant PSF). The amount of noise
in relation to mean signal is usually quantified using Signal to Noise Ratio (SNR),
discussed shortly in section 2.3.

According to Haacke et al., [50], the optimal resolution is

“...the smallest resolvable distance between two different objects, or two dif-
ferent features of the same object.”
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The PSF blurs the high frequency information, reducing the high frequency content.
The action of the PSF carries across a number of voxels, as previously illustrated in
figure 1.2. Therefore the optimal resolution of digital imaging data is dependent on the
width of the PSF. Haacke et al. go on to state that the FWHM of the PSF can be used
as a measure of the optimal resolution.

The PV effect is directly related to the amount of spreading induced by the action
of the PSF of the MR image acquisition process. As discussed in chapter 1, the PV
effect describes an artefact that is common to all systems that attempt to represent a
continuous signal with a finite number of samples. While the gross action of the PSF
in MR imaging is very similar to the PV effect seen in other imaging modalities, there
are particular nuances that might affect the applicability of generic PV models.

On the most elementary level, most clinical MR image data is calculated from the mag-
nitude of complex data values (see section 2.1.4). This does affect the way in which
particular voxel constituents are represented as particular intensities, i.e. in a non-
linear fashion. In particular assuming Gaussianity of the noise signals, the standard
deviations of such mixtures may not be easily predicted. Similarly, the mixing process
inherent to the action of the PSF is highly dependent on not only the proton density,
but also the transverse and longitudinal relaxation times, which vary depending on the
constituents of a voxel. A quick glance at a MR signal equation such as the Spin Echo
expression given in equation 2.6 possibly indicates that the actual intensity and noise
terms for particular voxel constituents would be very difficult to calculate analytically.
Combining these difficulties with the numerous possible imaging conditions (e.g. dif-
ferent tissues) with the numerous different image sequences and imaging parameters
would suggest any rigorous analysis would have to be very specific to a particular MR
imaging application. It should also be noted that previous authors have found a “linear
mixing” assumption to be valid based on phantom experiments, see [159].

Some models of the PV effect do not explicitly incorporate linear or non-linear mixing
of the random variables. They may assume linear changes in intensity, but the variance
terms are ignored, see e.g. [148]. These models appear to possess similar performance
to models that explicitly utilize a linear mixing model, see e.g. chapter 5. It is therefore
assumed that a linear mixing function provides a sufficiently good approximation to
the mixing behaviour observed in MR images in relation to the CNR values that are
found for such images.

2.2 Functional Imaging with PET

The preceding discussion was limited to the physics and signal properties associated
with anatomical MRI, where tissue structures and anatomical detail is imaged. A
functional imaging process, on the other hand, is primarily interested in capturing
information about some sort of physiological activity, e.g. tracking the distribution of
a particular type of molecule in the human body. Functional imaging can be undertaken
with MRI, referred to as fMRI, which attempts to image blood oxygenation levels or the
movement of a contrast medium through the body. Unfortunately fMRI suffers from
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difficult to correct artefacts, large spatial localisation margins and a lack of absolute
quantitative information about the activity being imaged. An alternative functional
imaging technique known as PET provides higher sensitivity due to the use of positron
emitting radioisotopes where pico-molar quantities can be detected. No other in vivo
imaging technique can match this performance. Unfortunately PET images are affected
by the PV effect due to the relatively large PSF associated with the imaging process.
Therefore PET imaging data is also used to illustrate the application of the PV models
developed in this thesis.

Images generated from PET image acquisition processes are generated with a need to
quantify biological activity associated with a particular function in the human body.
PET is a substantially different imaging modality in comparison to MRI. The most obvi-
ous difference is in the origin of the energy or signal measured by the scanner. MRI relies
on exciting protons with an external magnetic field, where as PET requires the imaging
subject to receive a radio-labelled pharmaceutical. A radio-labelled pharmaceutical is
composed of a tracer and a radioisotope or radioactive label. The tracer is a compound
that is either a target molecule to be studied, or an analogous compound (analogue)
which behaves, at least partially, like the target molecule of interest. The radioisotope
is an isotope with an unstable nucleus that, for PET, emits positrons. According to
[130], the most commonly used radio-pharmaceutical is [**F]fluoro-2-deoxy-D-glucose
or F FDG (FDG for short). FDG is a glucose analogue, i.e. it behaves like glucose,
except that it remains trapped in the body’s cells. This trapping is useful for imaging
as the FDG accumulates therefore providing a measurable signal to be imaged. Its
main use is in oncology and cardiology and has a half-life of 1.87 hours.

Once administered, the radioisotope continues to decay from within the physiology of
the patient, emitting positrons. Due to the fact that positrons are the antiparticles
of electrons, the emitted positrons interact with electrons in the surrounding matter
forming a loosely bound state positronium. The positronium has a very short half-life
and this interaction results in energy in the form of a pair of coincident photons or
gamma rays travelling in almost anti-parallel (opposite) directions. This is sometimes
referred to as an annihilation event of a positron and electron pair. This is illustrated
in figure 2.4.

2.2.1 Gamma Ray Detection

The emitted gamma rays are then detected by gamma ray detectors that surround the
patient (illustrated in figure 2.5). As these gamma rays are expected to be emitted in
pairs, in opposite directions, the acquisition system can filter out any that do not occur
in a pair. This helps to provide more accurate information about the spatial location
of the decaying radioisotope from within the patient.

2.2.2 Photon Count Localisation

Many coincident event photons are detected by the crystals in the gamma ray detectors.
Each pair of photons detected contribute toward a photon count that can then be used
to determine the relative amount of activity in particular areas of the patient.
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Figure 2.4: Illustration of the emission of a positron from an unstable nucleus, resulting
in positronium (composed of an electron and a positron). The positronium annihilates
very quickly resulting in two photons that can then be detected.

Figure 2.5: Illustration of the role of the gamma ray detectors used to detect the nearly
coincident photons emitted from an annihilation event that has taken place inside the
patient being imaged.
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Figure 2.6: Illustration of the creation of a Sinogram from a series of projection signals
through the patient.

Transformation of the photon count data is necessary as it is not in image form,
but in a format known as a sinogram. The sinogram creation process is illustrated in
figure 2.6. The sinogram data has to be reconstructed into image form, in order for
a human to understand the data. The activity information collected by the detectors
is in effect a summation of the activity over particular vectors through the imaging
subject. This image reconstruction problem is an inverse problem where the activity
at particular spatial locations is calculated. Various methods exist, some iterative and
some analytical.

An exemplar classic analytical reconstruction technique is known as Filtered Back Pro-
jection (FBP). FBP is often related to the inverse Radon transform, a type of integral
transform. Unfortunately analytical reconstruction methods produce images that are
typically noisy. This is because they typically ignore the inherent randomness of the
PET acquisition process. Also, iterative reconstruction methods can more readily in-
corporate various modelling strategies to overcome various imaging artefacts (described
shortly) associated with the PET acquisition process. Additional steps can be used to
improve the images produced through an analytical reconstruction process, but due to
these limitations, iterative reconstruction techniques have grown in popularity.

Iterative methods are typically computationally expensive but produce better quality
clinically useful image data. One such iterative reconstruction technique is known as
Row-Action Maximum Likelihood Algorithm (RAMLA), [14]. RAMLA subdivides the
data projections into subsets of projections. These subsets are then utilised iteratively
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Figure 2.7: Illustration of random and scattered erroneous annihilation coincident
events. These two erroneous coincident events can be compared with a true coinci-
dent event that is illustrated in figure 2.5.

to reconstruct the image data via a Maximum Likelihood solution of the model.Further
discussion is outside the scope of this thesis, but can be found in [14].

2.2.3 PET Imaging Artefacts

PET images suffer from a number of imaging artefacts, the effect of which can normally
be reduced with various countermeasures.

Attenuation correction is necessary for gamma rays emitted from annihilation
events located in the different tissues of the imaging subject. The tissues present
different attenuating properties along a given ray path, and the amount of attenuation
correction (AC) is dependent on the path that the gamma rays take through these
tissues. Various methods exist but these usually rely on either a rotating scan of the
source exterior to the imaging subject with similar energy or direct measurement of
tissue attenuating properties with x-ray CT.

Random and scattered coincident errors refer to apparent but detected coinci-
dent events that are not true coincident events. These are illustrated in figure 2.7. The
effect on the PET imaging data from scattered coincident errors can be minimised by
various different techniques known as “Scatter Correction”. Scatter correction typically
involves the use of some form of a prior: information such as the scatter response to
a point source or information extracted from coincident events detected outside of the
imaging subject. Correction for random coincident events is often achieved via a simple
subtraction of estimated random events (utilizing a delayed coincidence channel during
the acquisition process).
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2.2.4 PET Resolution, PSF and PV Effect

As can be seen from figure 2.4, a finite distance is associated between the event of the
unstable nucleus emitting the positron and the final annihilation event. The distance
is a function of the amount of time it takes for the positron to reduce its energy to
thermal levels due to its passage through the surrounding tissues. This distance is an
intrinsic limiting factor for the spatial resolution of a PET scanner and is due to the
uncertainty of the location of the unstable molecule that emitted the positron.

The spatial resolution of a PET imaging device is also limited by the fact that the
photons are not necessarily emitted at exactly 180° from each other. This angular
uncertainty is referred to as noncolinearity and produces greater limitations on the
spatial resolution for detectors with larger diameters. The resolution of a PET imaging
device is also limited by the detector resolution limited by the size of the crystals used
to detect the emitted photons.

These limiting factors in the spatial resolution of a PET imaging device also contribute
toward the significant PV effect associated with PET imaging data and the associated
PSF.

The PSF of PET imaging data is often cited to be shift-variant, so that the dimensions
of the PSF vary depending on the location in the imaging data, see e.g. [155]. As can
be seen shortly, chapter 7 analytically derives a prior distribution that describes the
PV mixing probabilistically. The prior distribution is invariant to the size of the PSF
and consequently it is also invariant to a shift-varying PSF.

The PET image acquisition process produces image intensities that possess a linear re-
lationship with the actual activity concentration being imaged. This therefore suggests
that a linear mixing assumption is also valid for PET imaging data, at least for the
underlying image intensities.

2.3 Measures in Biomedical Images

2.3.1 Noise

Noise is a term used to describe the variability of a signal due to imperfect and non-
predictable imaging conditions. The type of noise considered in this work typically
results in a range of possible intensity values that might be associated with a given
signal that would otherwise be represented by a single intensity value in the absence
of noise. This spread of possible intensity values can be described by a function called
a Probability Density Function (PDF) for a continuous random variable or a Proba-
bility Mass Function (PMF) for a discrete random variable. This function is usually
concentrated about the true signal value and tails off for intensities further away.

Sources of noise in a MRI image acquisition process include many factors that affect
the actual signal in a voxel. Examples include thermal noise in the electrical circuits
of the MRI scanner and magnetic field effects of the imaging medium being studied.
Other effects on the expected signal intensity may include natural variations in tissues
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being imaged. For example, tissues possess many structures smaller than the voxel size
that are not necessarily evenly distributed, such as blood vessels, and may therefore
result in variations in the actual signal being imaged. Thus probabilistic modelling of
an MRI signal can be used to reduce the effect of such variational phenomena in the
images. Probability models will be discussed shortly.

Sources of noise in a PET image acquisition process also includes thermal noise in
the electrical circuits, together with natural variation in activity levels particularly
for variations that are difficult to resolve at the coarse PET image resolutions. The
most dominant noise factor in PET imaging is associated with the scanner’s count-rate
capability. This is due to limitations on the maximum allowable radiation dose, along
with limitations imposed at the data acquisition stage.

Measures of Noise

The Signal to Noise Ratio (SNR) and the Contrast to Noise Ratio (CNR) in images
are important measures of image quality. SNR quantifies the amount of a signal in
relation to the amount of noise, while CNR quantifies the dissimilarity of image regions
or structures in the presence of noise.

SNR is given by
SNR = g (2.7)

where ¢ is usually characterised by the standard deviation of the noise term and p
is usually characterised by the signal mean value. The SNR will be very small for
relatively small signal levels or large noise levels. The SNR therefore provides an idea
of the quality of an image, but it does not quantify the image properties that would
allow a person or computer to distinguish individual parts of an image, unlike the CNR
that summarises distinguishing parts of the image with a single value.

CNR is given by
CNR = @ (2.8)

where 4, pup correspond to the mean signal for tissues A and B respectively with
common standard deviation, . The CNR value is greatest for small standard deviation
values and large differences in tissue mean values, so that two tissues become highly
distinguishable. For low CNR values, the tissues become less distinguishable for a
human or a computer. Figure 2.8 illustrates some exemplar image slices from simulated
PV data with various CNR values given in table 2.2.

2.3.2 Probabilistic Description of Biomedical Images

As briefly discussed above, noise results in a range of intensities where one might
otherwise expect a single value. This range of intensities is often described with a
special type of function known as a PDF for continuous measurement values or PMF
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Figure 2.8: Illustration of the effect of different CNR values on the distinguish-ability of
two classes using simulated PV data. Top left slice corresponds to the simulation with
the greatest CNR value (50) and the remaining slices are displayed in CNR descending
order from left to right and from top to bottom with values given in table 2.2. Notice
how the two classes become very difficult to distinguish in the final simulation with
only a CNR value of 3. Notice also that the individual SNR values are not helpful
unless observed together. The image slices were produced with the aid of MRIcro,
[114], where the contrast auto-balance feature was used, which scales the highest and
lowest 1% of image intensities to 255 and 0 grey levels respectively.
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Table 2.2: SNR and CNR values of the simulated PV data in figure 2.8. SNR values
are for the background and spheroid regions of the simulated PV data.

SNR Background || SNR Spheroid || CNR
75.0 25.0 50.0
70.0 30.0 40.0
65.0 35.0 30.0
60.0 40.0 20.0
55.0 45.0 10.0
54.5 45.5 9.0
54.0 46.0 8.0
53.5 46.5 7.0
53.0 47.0 6.0
52.5 47.5 5.0
52.0 48.0 4.0
51.5 48.5 3.0
51.0 49.0 2.0

for measurements that are inherently discrete. For instance, it is common for photons
arriving at the gamma ray detectors in a PET experiment to be described by the
Poisson distribution which is a PMF. The MRI signal is usually described by a PDF
due to the continuous nature of the measured magnetic fields.

Probabilistic Description of MRI Data

For a magnitude MRI image (where the real and imaginary components have been
combined in quadrature), the probability distribution of the measured pixel or voxel
intensities, M, is the Rician distribution and is given by [48]:

m m? + A2 m.A

where A is the signal intensity in the absence of noise, Iy() is the zero order modified
Bessel function of the first kind and o is the standard deviation of the Gaussian noise
in the real and imaginary images.

Experiments have confirmed that this distribution is a result of a Gaussian noise dis-
tribution in the complex domain being converted into a magnitude image[48]. Figure
2.9 illustrates the Rician distribution for A/o = 1,6.

A special case of the Rician distribution is when A/ = 0 where the Rician distribution
simplifies to a Rayleigh distribution. Therefore, equation 2.9 simplifies to

pu(m) = % exp (—%) : (2.10)
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Figure 2.9: Illustration of the Rician noise distributions (equation 2.9) for magnitude
MRI data for two A/o, (SNR) values and their Gaussian approximations (equation
2.11). When A/o = 1, (left most line), the distribution is not very well approximated
by a Gaussian distribution (<). When A/oc > 3, (right most line, A/c = 6), the
distribution approximates a Gaussian distribution, (x).

This Rayleigh distribution corresponds to the areas in an MRI image where zero or
very low NMR signal is present, (i.e. regions in the image where the SNR is low). For
values of A/o > 3, equation 2.9 approximates to a Gaussian distribution, (i.e. areas in
the image where the SNR is high), as expressed by

(m) 1 (m — VA2 + 02)?
m) ~ ————exp | — .
M V2.m.02 P 2.02

This illustrates that the Gaussian approximation has a mean of v/ A2 + ¢2. This shows

that the Gaussian approximation is always affected by a bias, and only when the SNR
is large does the value of o2 become insignificant in comparison to the value of A.

(2.11)

Probabilistic Description of PET Imaging Data

The emission and counting of photons are represented by a Poisson random process,
described by a Poisson PMF:

P(g) = z—?-exp (=9), (2.12)

where g is the number of photons and g is the mean photon count. This Poisson PMF
is illustrated in figure 2.10.

However, PET data is rarely defined by a simple Poisson process due to various other
processes that affect the imaging data during the acquisition, such as the reconstruction
process and corrections for scatter.
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Figure 2.10: Tllustration of two Poisson distributions (bars) with associated Gaussian
distributions (lines) with same parameter values (g = 10, 30). Notice for the left most
Poisson and Gaussian distributions, the Gaussian distribution is a worse approximation
in comparison to the right most pair.

Despite this, the Poisson process can be approximated by a Gaussian distribution for
large enough mean values. If g is too small (less than 20), then the distribution is
asymmetric, which a Gaussian distribution does not model appropriately. Two Poisson
distributions together with the Gaussian approximations are illustrated in figure 2.10.
Also, a Gaussian distribution has many desirable mathematical properties, that allow
simpler calculations and manipulations to be undertaken. In particular it allows the
models of the PV effect in this thesis to be generalised to PET data as well as MRI
data.

2.4 The PV Effect in Biomedical Images

Post-acquisition computer processing of biomedical images may often only involve sim-
ple 2-D measurements of structures in the 3-D data. A clinician may be responsible for
determining the size of a particular structure in the image. Before the popularisation
of computers for use in “reading” (viewing) medical images, a clinician may simply
have been presented with a hard copy version of the image often produced on film,
and viewed with a light box. The clinician would then have measured the structure
using traditional measuring objects such as a measuring ruler. Today, many biomed-
ical images are viewed directly on a specialised computer workstation with software
specifically designed to take care of communication with a centralised biomedical im-



30 Chapter 2. Medical Imaging Background

age computer database?. This database may be connected to MRI, PET and or other
biomedical imaging systems in a hospital. The radiology software will also usually allow
the clinician to use tools that simulate the real world measuring instruments, perhaps
even in 3-D. Sometimes it may also include semi-automatic tools to segment particular
structures in the image data. These tools often rely on each structure being spatially
contiguous and possessing different ranges of intensities from surrounding structures
and or well defined edges so that the algorithm can determine the bounds of the struc-
ture automatically. Such algorithms could include models of the PV effect which might
improve quantitative volumetric analysis.

The PV effect is of particular interest in applications where quantitative information
is being measured from biomedical image data. Models of the PV effect are quite
different from image models found in typical pattern recognition systems. A typical
pattern recognition or decision theoretic approach may choose to assign the contents
of a voxel to a single categorisation (i.e. a single tissue or functional class):

e An optimal decision - one class is considered the best over all the alternative
options;

e A set of probabilities - each available class is assigned a probability.

Alternatively, assignment to a mixture of categories is also possible and is required in
classification of PV affected image data:

e An optimal decision - one particular mixture of tissues or activities is considered
the best over all the other alternative options;

e A PDF - associated with a continuous range of possible mixture values.

If each voxel is assigned a membership to a single class, then the model is stating
that a voxel may only contain a single type of tissue or activity. This assignment is
common in the broader pattern recognition field, where relatively few data points may
have been generated from a mixture of signals. This approach can be compared to
an approach where an individual voxel is considered to originate from more than one
tissue or activity. This is considered to be more relevant in the biomedical imaging field
due to the resolution effects of the comparatively large PSF in the biomedical image
acquisition systems, as discussed here.

This thesis therefore uses and develops two of the mixture type approaches, namely an
optimal decision on a mixture and a range of probabilities on a mixture.

Some specific application areas are now discussed to illustrate the importance of the
PV effect in a clinical context.

2A biomedical image computer database together with the associated networking is often referred
to by the term “PACS”-Picture Archival and Communication System.
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Figure 2.11: A rough illustration of the human nervous system, consisting of the brain
and spinal cord that are described as the CNS and the peripheral nerves that are
described as the peripheral nervous system.

2.4.1 Anatomical Imaging: Neurology

Neurology “the study of the structure, functioning, and diseases of the
nervous system...”
Oxford’s Concise Colour Dictionary, [86].

This chapter has so far discussed the PV effect in the context of the physical processes
of biomedical imaging modalities. These discussions have taken place independent of
any clinical background, examples of which are now discussed.

Neuro-anatomical imaging with MRI is a prevalent area of clinical importance and
research interest. The diagnosis and staging of neurological disorders and diseases is
often assisted with MRI data due to the high sensitivity and specificity of MRI for
imaging soft tissues, especially as soft tissues are the major components of the human
brain. The brain is part of the nervous system that consists of the CNS (that also
includes the spinal cord) together with the peripheral nervous system (consisting of
nerves not in the CNS). The peripheral and central nervous systems are illustrated in
figure 2.11.

The nervous system consists of neurones that are cells interconnected with each other
via axons and dendrites. A neurone is illustrated in figure 2.12. There are many
different types of neurones. In general one can say that the axons are usually the
output medium for neuronal signals and dendrites are typically the input medium for
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Figure 2.12: Illustration of a neurone together with an axon surrounded by a myelin
sheath acting as an electrical insulating material. This insulating material assists the
conduction of electrical energy which therefore allows more rapid communication of
neural signals along the (particularly variable) length of an axon to other neurones.

neuronal signals. Neurones communicate with each other via neurotransmitters which
are released by relative changes in electrical potential across specialised adjacent cell
membranes known as synapses. Many axons are surrounded by myelin sheaths that
increase the speed at which neuronal signals are communicated between each cell.

These myelin sheaths are quite significant in MR imaging of the human brain due to
their effect on the resultant MR image signal. In particular, if one considers the brain
component of the CNS, then it is quite often grossly divided into two types of tissue,
GM and WM. The WM is typically quite different in appearance from GM due to the
axons of the WM being myelinated in comparison to GM which is considered to have
un-myelinated axons, or at least a considerably lower density of myelination. This is
illustrated using an exemplar MR neurological image slice in figure 2.13.

The volume of space occupied by the brain, Cerebro-Spinal Fluid (CSF), GM and or
WM are sometimes affected by diseases and disorders of the CNS that may affect the
quantity of these tissues. Therefore neurological MR imaging applications sometimes
require accurate estimates of whole brain, CSF, GM and or WM volumes. Diseases
and disorders of the CNS that may affect the GM, WM, CSF and or brain volumes
include, for example, schizophrenia [63, 84], post-traumatic stress disorder [147], Hunt-
ington’s disease [98] and bipolar disorder [124]. The effect of these disorders on the gross
anatomy help to indicate that the diagnosis of patients affected by these disorders may
see benefit from accurate estimates of the anatomical volumes.
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Figure 2.13: Illustration of WM and GM using an exemplar coronal T1 MR image slice
from [38]. The ventricular Cerebro-Spinal Fluid (CSF'), brain and spinal chord are also
labelled within the bounds of the head and neck of the imaging subject.

Different types of cancer such as a vestibular schwannoma also affect the neurology
of the brain and PV modelling of these cancerous growths has helped with diagnosis
[148]. Furthermore, as a model of the PV effect may be applied across different stages of
the biomedical image acquisition process, so can a PV classification strategy be used in
diverse advanced computational imaging strategies. Many biomedical image processing
applications do, or could possibly be improved with accurate estimates of voxel content,
rather than just processing raw image data. This can be seen with algorithms that
attempt to identify individual anatomical sub-structures within the brain (e.g. [89]).
The brain is divided into empirically defined regions and given anatomical labels. These
regions may have one or more cognitive functions [145] and particular regions may be
more adversely affected than others in particular disease states. This means that a
diagnosis may be aided with identifying visually abnormal structures. This is quite
often done “manually” by a clinician, but computationally intensive techniques are
becoming more popular such as techniques reliant on “registering” the MR images of
a patient’s brain to a standard brain space where neuroanatomical structures can be
identified automatically. This technique is quite often criticised due to the natural
variation found in humans, and in particular their brains [143]. Furthermore, human
brains go through several stages of development in the normal duration of a human
life, (see e.g. [49]), and these developments dramatically affect the structures of the
brain and the resultant NMR signal. These changes are most prominent in the first
two years of life and are associated with a process of myelination, where at birth, only
part of the WM to be is myelinated (referred to here as “un-myelinated WM?”). This
myelination process occurs most rapidly during the first two years of life and continues
more slowly until the end of twenty or more years [9, 118, 99, 51, 87, 61].

These facts and observations suggest that accurate per voxel identification and quan-
titation of gross anatomical structures, such as the GM, WM and CSF would assist
in diagnostic research procedures and further computationally intensive neurological
applications.
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Figure 2.14: Illustration of the variability of myelination density of the GM found in
the human brain. An exemplar transverse slice from a T1 MR scan (volunteer from
University of Surrey) is used. Notice the difference in intensities between the GM of
the Basal Ganglia (Putamen and Caudate Nucleus) in comparison to the GM of the
Cerebral Cortex. This difference in intensity is due to the variability of the amount of
myelin in these different regions of the brain.

Peculiarities of the PV Effect in MR Images of the Brain

The PV effect has been considered extensively in computational techniques applied to
biomedical imaging data, in particular to MR images of the brain, see e.g. [3, 24, 101,
122, 157].

The brain is a complex organ that is often grossly defined as being composed of CSF,
GM and WM. These are gross anatomical terms and some parts of the brain may not
be conveniently categorised as such. WM and GM are defined by the density of axon
myelination (high for WM) and density of neuronal cells (high for GM) [105]. However,
the density of myelination is inhomogeneous. Some regions of GM, such as the Basal
Ganglia (located in the centre of the brain - illustrated in figure 2.14) appear to have
a higher density of myelination in comparison to the cortical GM (Cerebral Cortex)
which is located on the surface of the brain. The Basal Ganglia is classed as GM by
the medical literature, (e.g. [31]), but a PV classifier would possibly identify it as a
mixture of GM and WM.

Interestingly, simulated MR images of the brain, described in [72], do in fact simu-
late the Basal Ganglia as PV voxels composed of variable amounts of WM and GM.
Therefore a PV classifier whose classifier performance was quantified using the ground
truth to this simulated MR brain would probably be unaffected by the variable myelin
density. However there are publicly available MR brain data sets, see e.g. [38] whose
ground truth was produced by human operators. Regions of the brains are therefore
assigned to either GM, WM or CSF with no PV voxels. So it would be interesting to
determine the performance of a PV classifier, such as those described in this thesis, on
these two types of data set.
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2.4.2 Functional Imaging: Oncology

Oncology “the study and practise of treating tumours.”
Oxford’s Concise Colour Dictionary, [86].

This chapter has, up until this point, only considered the physical principles of PET
functional imaging. Quantitative functional imaging techniques, including PET and
accurate PET image models, are especially useful in oncology. Cancer is a major
cause of ill-health and premature death in humans and accurate quantitation of a
tumour is essential to the accurate diagnosis and staging of cancer, where well-informed
treatments can be prescribed helping to improve patient quality of life. Therefore a
brief discussion of PET with application to oncology is now given.

A tumour is an unusual growth of tissue that may be benign (not harmful) or malignant
(harmful). A malignant tumour presents a danger to the patient as it may destroy
normal tissue that surrounds it but, often more importantly, its growth interferes with
the normal function of the surrounding tissue. A malignant tumour may also spread
to other parts of the patient’s body.

Imaging of a tumour may occur at many stages of medical diagnosis. It is sometimes
used as part of a preliminary investigation, staging, diagnosis and or treatment plan-
ning.

PET and MRI are important imaging modalities in oncology. MRI is useful to assess
size and location of a tumour. PET is particularly useful prior to radiotherapy and
other oncological treatments as quantitative information about the malignancy of the
tumour can be acquired. PET imaging with the radioisotope FDG is particularly useful
as most types of malignant growth can be detected due to their high metabolic activity
in comparison to normal tissue.

There are principally three types of treatment options for cancer:

e Radiotherapy:

— Targeted ionising radiation is administered to the patient which is used to kill
the cancerous tissue cells. The radiation may be administered via external
beam or via molecular pathways.

e Chemotherapy

— anticancer drugs that target and inhibit particular processes in a cell’s life-
cycle are administered

e Hormonal therapy

— some cancers are under hormonal control and can be controlled by adjusting
the relevant hormone(s).

Imaging plays a vital role in localising and quantifying the cancer in the patient. It
is particularly useful in the radiotherapy treatment planning process where it is often
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required by the radiotherapist to identify the location of the tumour and the location
of other radiation sensitive organs in order to produce a radiotherapy treatment plan.
Imaging is therefore used as an integral part of the treatment process of the oncological
patient.

2.5 In Conclusion

This chapter has discussed a number of background topics pertaining to the topic of
this thesis, namely modelling and classification of PV biomedical imaging data. The
next chapter presents a novel automatic pre-processing step, known as skull-stripping,
often required prior to PV classification of neurological MR data. Skull-stripping may
also be used in PET-based brain studies, where registered skull-stripped MR data may
be used to localise the resulting PET signal. The chapters following then go on to
discuss modelling of the PV effect.



Chapter 3

Pre-processing of Neurological
MRI Data: Skull Stripping

3.1 Introduction

The statistical analysis of neurological Magnetic Resonance Imaging (MRI) data is
often made easier when voxels corresponding to non-Central Nervous System (CNS)
tissue compartments are removed from the MRI data set, as illustrated in figure 3.1.
This figure (3.1) illustrates how the CNS tissue compartments of White Matter (WM),
Grey Matter (GM) and Cerebro-Spinal Fluid (CSF) can be identified in the intensity
histogram of the skull-stripped data volume. It also illustrates how the non-CNS tissue
compartment voxels contribute towards similar ranges of intensities to the CNS tissue
compartment voxels, thereby confounding the identification of individual CNS tissue
compartment voxels when using intensity based analysis.

Skull stripping techniques have previously included the use of surface deformation
techniques [131, 85, 2] which are computationally complex. Others have utilized the
watershed transform [52] or techniques mostly reliant on morphological operations
[135, 79, 127, 91, 15] which are often dependent on the definition of a 3-D brain mask.
The definition of a 3-D brain mask is problematic due to the inherent three dimensional
connectivity of the brain with other anatomical structures in MRI images of the human
head. This has led other researchers to introduce more sophisticated techniques that
combine surface deformation techniques with morphological operations [65, 108, 120];
watershed transforms with surface deformation techniques [126]; and techniques based
on a consensus of publicly available skull-stripping techniques such as [110] that used
the publicly available code associated with [131, 128, 32, 29]. References [128, 10] take
a slightly different approach, both of which use a combination of edge detection and
morphological processing, although [128] introduced a denoising step in the form of
anisotropic diffusion filtering.

Artificial Intelligence techniques, such as the use of multiple software agents have also
been used in [43], where the agents specialize in differing image features including re-
gion, edge and intensity features. Lee et al. in [75] automatically isolate a midsagittal

37
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Figure 3.1: Illustration of the benefits of pre-processing neurological MRI data. The
histograms correspond to an un-processed T1 MRI head scan (), and a skull stripped
T1 MRI head scan (x). The histogram corresponding to the skull-stripped data illus-
trates the benefit of removing the irrelevant information from the data set, where the
peaks corresponding to GM, WM and CSF can be seen more easily. This is due to the
removal of unwanted non-CNS tissue component voxels in an MRI scan of a human
head that share a similar intensity range as CNS tissue compartment voxels.

slice from sagittally acquired data sets utilizing landmarks such as the tip of the nose.
The technique in [75] is extended to skull-strip the entire CNS in 3-D in [59]. The
use of landmarks may be hampered by neurological data sets that do not necessarily
include facial features such as the tip of the nose. A technique by Soltanian Zadeh
and Windham in 1997, [132], was unusual as it used a multi-resolution contour track-
ing algorithm to extract the contours of the human brain in both X-ray Computed
Tomography (CT) and MRI neurological data sets. But contour tracking can be a
computationally complex task for volumetric imaging data and quite dependent on the
quality of the imaging data.

The new work presented here describes a novel fully automatic methodology utiliz-
ing statistical techniques including fitting of probabilistic functions and thresholding.
Further image processing intensive operations include the use of region-growing and
mathematical morphological operations. A fully automatic approach has been devel-
oped because of the need in some studies for unsupervised processing where large
numbers of data sets are utilized, for example, in longitudinal studies of brain atro-
phy [4]. The technique is deemed to be flexible in contrast to other skull-stripping
techniques dominated by mathematical morphological operations due to the use of self-
similarity functions, a 2-D brain mask and non-dependency on landmarks or the plane
of acquisition.

A unique development in the Statistical Morphological Skull-Stripper (SMSS) is the use
of self-similarity functions that utilize volumetric and slice specific image statistics to
identify dominant components in the imaging data. A well known problem with MRI
data is the variability of statistical descriptors such as means and standard deviations
of voxel intensities corresponding to particular tissue classes, such as GM or WM.
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SMSS uniquely identifies these dominant components by acknowledging the fact that
these components will be the most numerous in neurological imaging data. This makes
possible the identification of image slices with these dominant components without
reference to unreliable statistical descriptors, leading to slices that are plausible 2-D
brain masks. The use of a 2-D brain mask for template matching the entire volume is
an approach based on a manually assisted segmentation method previously described
in [112]. The 2-D brain mask enables a variable number of erosions and dilations to be
performed. Thus reducing the dependence of the technique on the relatively smaller
sizes of the anatomical structures of interest (relative to adults for infant data). This
is in contrast to techniques such as [91] that use a fixed number of morphological
operations. Similar work in [135] utilized a variable number of erosions and dilations,
but these were applied to a thresholded 3-D data volume, where the iterations ceased
when a major disconnection event occurred. Our approach differs significantly from
the approach taken in [135] due to the use of self-similarity functions and a 2-D brain
mask.

SMSS has also been designed so as to include CSF voxels. This enables better subse-
quent analysis to be undertaken; for example, probabilistic models of the three main
CNS component classes can be built for the purposes of Partial Volume (PV) modelling,
using techniques such as those described in chapters 5 to 7.

This newly fully automated technique (SMSS) is then applied to a number of neurolog-
ical MRI scans that include infant and adult data sets (T1 and T2 weighted). These
results are then compared with the results of an alternative popular skull stripping
technique known as BET, as discussed in [131]. BET is a simple but effective and
popular deformable surface skull-stripping technique.

As far as the author are aware, no other skull-stripping work has previously investi-
gated the skull-stripping problem of infant MRI data. Infant neurological MRI data is
considered to be quite different from adult MRI data due to the relative difference in
sizes of anatomy, which is often acquired at coarser imaging resolutions. The Nuclear
Magnetic Resonance (NMR) signal from infant neurological data is also quite different
from adult data due to the developing nature of the human brain, see for example
[119, 9]. These factors perhaps suggest that the skull-stripping of infant neurological
data may be more problematic in comparison to the already complicated task of skull-
stripping adult data. SMSS together with BET, is therefore applied to both infant and
adult neurological data sets to determine whether SMSS and BET are as capable of
skull-stripping infant and adult neurological data sets.

3.2 Methodology

Skull stripping techniques based solely on mathematical morphological operations usu-
ally require some user interaction. In contrast, the methodology presented here is
primarily based on mathematical morphological operations with additional statistical
techniques that fully automate the skull stripping process.

The main contribution of this chapter lies in the methodology described below and its
demonstrated application to adult as well as infant brain data.
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Figure 3.2: Diagram of the steps involved in the first part of the skull-stripping algo-
rithm, sections 3.2.1 to 3.2.5. The algorithmic steps are continued in figure 3.6.

In summary the method proceeds as follows: initially, background voxels are removed
via automated region growing using statistical termination criteria; parameter estima-
tion is then undertaken to fit an intensity Gaussian mixture model to the histogram of
a subset of the data defined by a further fitting operation; from this a transverse tar-
get slice is selected which is segmented by automatic thresholding and region growing
to create a 2-D target mask. The entire 3-D volume is then subjected to a series of
3-D morphological operations. The process halts when all the brain voxels have been
disconnected from the unwanted surrounding non-brain voxels in the transverse plane
target slice using the transverse 2-D target mask (initially described in [112]). A set
of further 3-D morphological operations are then undertaken to compensate for the
over-erosion of the brain volume. The methodology is described in more detail in the
sections below (also summarized in figures 3.2 and 3.6).

3.2.1 Background Removal

An initial first step in this skull stripping algorithm is the removal of voxels that
contain zero or very little NMR signal. These voxels usually arise either due to the
air surrounding a patient or from additional voxels that have been added to the data
volume to obtain a convenient set of dimensions for processing with Fourier methods
(zero-padding). Initially, individual slices are considered independently to remove zero-
padded voxels, via a simple region-growing operation. This is automatically initiated
by selecting seed points corresponding to the four corners of each slice, terminated
when no connected zero value voxels remain (using 2-D eight way connectivity).

The second stage is a more complex region-growing operation to remove voxels with
little NMR signal present that correspond to air surrounding the patient. These voxel
intensities are usually considered to possess a Rayleigh Probability Density Function
(PDF) and voxels that correspond to non-air regions with a larger NMR signal can
be approximated with a Gaussian PDF [48]. Therefore, during the background region



3.2. Methodology 41

growing process, the boundary of non-air voxels can be detected when the statistics of
the border region changes. From this, it was decided that a region growing operation
that iteratively grew the background region using a process that increased the intensity
threshold but halted when the standard deviation of the border region goes through
an inflection. This would signal the point at which the surrounding background region
”floods” into the foreground object corresponding to the point at which the statistics
of the background Rayleigh density are affected by the relative increase in brightness
of the Gaussian distributed foreground. Once the termination criterion has been met,
then the values of the voxels defined as background, through being included in the
region grown, are set to a zero intensity value. This enables subsequent operations to
exclude those voxels based solely on their zero intensity value label.

3.2.2 Parameter Estimation

This stage attempts to determine approximate values for the parameters of the PDF's
of the GM and WM CNS tissue component voxels. Approximate values for these
parameters will aid subsequent stages in the skull-stripping algorithm.

Initially, slices in the data volume need to be identified that contain a substantial
number of CNS tissue component voxels. These slices are identified by comparing
the Root Mean Square (RMS) error between the normalized histogram for the entire
data volume following the background removal stage (described previously), and the
normalized histogram for individual image slices. The schema relies on the assumption
that the CNS tissue component voxels are the most populous tissue component voxels
within the data volume. This implies that the RMS error will decrease for image slices
with a substantial population of CNS tissue component voxels.

It was initially proposed that an appropriate populous CNS slice could be found to
be defined by the region where the first RMS histogram error minima occurs (below
the mean error for the entire data volume). In practise, it transpires that further
appropriate slices could be found from this minima and up to where the RMS error
became greater than the mean error as illustrated in figure (3.3).

Once these slices have been identified, a finite Gaussian mixture model is fitted to the
aggregate histogram, fi.:q(g) of these slices. The number of Gaussian components, K
was set to three for adult data and one for infant data. The use of three components for
adult data can be understood from the fact that adult neurological MRI data typically
possesses three distinct ranges of intensities, representative of the intensities associated
with GM, WM and CSF. This is in contrast to the overlapping nature of the intensities
from these same components for infant neurological MRI data where K = 1. This is
because infant GM and WM are not physiologically well differentiated.

The Nelder-Mead downhill simplex algorithm [104] is then used to fit the K class
finite Gaussian mixture model to the histogram (excluding the background voxels) to
estimate the parameters of each major Gaussian component that contributed to the
histogram of the entire set of selected 2-D slices. The Nelder-Mead downhill simplex
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Figure 3.3: Illustration of the process of determining image slices that contain a sub-
stantial population of CNS tissue component voxels. The mean RMS histogram error
is calculated for the entire data volume after the background removal stage, while the
solid black line corresponds to the histogram errors for individual image slices for the
same volume.

algorithm attempts to minimize the mean square error, £(Z) defined by:

9mazx

5(1') = Z (fdata(g) - fmodel(g|z))2> (3'1)

g=1

where g = 1 to gmmae represents the voxel intensity range. Z is the set of parameters of
the K class Gaussian mixture model:

T = {py, 00, P(1p)|1 <v < K}, (3.2)

where p,, 0, and P(7,) are the mean, standard deviation and a priori probability for
the v*" class component of the mixture model respectively. 7, is indicative of the v'"
class component event from a set of possible class component events. 7, is valid for
1 <v < K, so that for adult data, K = 3 resulting in a probability space divided into
3 possible events, with prior probabilities, P(m), P(72) and P(73). Thus the mixture
model, fioder(9]Z), is defined by:

S P (g = )’
fmodel(g|I) = ; (\/ﬁ.exp <—%> . (3'3)

The initial values for the set of parameters in Z were calculated from fgi.:,(g). For each
class component, 7,, empirically determined points in the Cumulative Distribution
Function (CDF) of fiuia(g) were determined and used to initialize the mean values of
each class, u,. To initialize the standard deviation values, o,, the histogram is divided
into K regions of equal intensity width and the values taken by each o, are a third of
the size of each of these regions. Similarly, the a priori probability values, P(7,) are
initialized by determining the total population of non-background voxels, dividing this
value by K and normalizing those values with respect to the total voxel population.
The algorithm is terminated when a minima was found by the optimization algorithm.
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3.2.3 Automated Slice Selection

Following removal of background voxels where no NMR signal is present, a suitable
transverse slice (the target slice) has to be selected utilizing results from the preceding
parameter estimation step. In previous work, [112], this has required manual inter-
vention in the segmentation process, to select the slice, and undertake the required
thresholding. However, following the background isolation and parameter estimation
steps described above, this process can now be achieved automatically. There are some
unique properties associated with a suitable transverse target slice that can be utilized
in the automation of this process: (i) the CNS tissue component voxels represent the
largest group of all the tissue components in the ideal target slice; (ii) the frequency of
occurrence of all tissue component voxels (CNS and non-CNS) are at a local maxima
in the region of the target slice; and (iii) the WM voxels represent the largest CNS
component. Using these observations the formulation will now be discussed in detail.

A data set that corresponds to an MRI scan of the human head, ©, composed of a
number of transverse slices, 0,, ordered consecutively so that the first slice, a = 1,
corresponds to the top most slice (furthest from the feet in the direction of the head)
is represented by the following expression:

O = {01 < a < M}, (3.4)

where M is the number of transverse slices in the data set. An image slice, 6,, is a
mapping from a 2-D point, w = (z y)T, to a scalar intensity value, i.e. 0,(w) =g. A
suitable target slice, 6y, (to be used in subsequent morphological processing steps), is
then defined as the slice that maximizes the accumulated tissue class, 7, probabilities,
Up:

Yy > Yo Va # b, (3.5)

where

Ya =YY P(7)pg = ba(w)|). (3.6)

Vw Vj

p(g|Ty) is the tacitly assumed Gaussian PDF associated with tissue class 7,, the pa-
rameters of which are taken from the preceding parameter estimation step, Z defined
by equation (3.2), except the tissue class priors, P(7,), which were set to empirically
estimated values. The prior values were selected so as to maximize the probability of
finding a slice with a large number of GM and in particular, WM voxels.

3.2.4 Seed Point and Threshold Value Detection

After the 2-D target slice has been identified, a binary 2-D target mask is created
representing the CNS tissue classes using an automated process. This target mask
is used in subsequent steps in the algorithm to determine whether the CNS tissue
component voxels have been successfully disconnected from the extraneous non-CNS
tissue component voxels, e.g. at the optic nerve. To create the mask, the CNS tissue
voxels in the target slice were isolated using region growing operations. Intensity based
region growing operations usually require user-specified initial seed points, and intensity
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values that act as thresholds to terminate the growth of the region. This section
describes how the seed points and threshold values used in this work can be determined
automatically. First, the method used to determine threshold values needed for region
growing is described below.

The CNS tissue component voxels within the target slice represent the largest single
class of voxels. This observation leads to the following formalized approach for identi-
fying suitable values for automatically initializing threshold and seed point intensities:

The target slice, 6, containing intensities, g, can be formally described by a normalized
histogram:
£ (gl0b)| v

(3.7)

where
f(gl6h) = {w|Op(w) = g,Vw}, (3.8)

D,, and Dy, are the width and height, in voxels, of the image slice, 8, and v is the bin
width (usually v = 1).

The histogram is then used to identify the largest cluster of voxel intensities representing
the majority of points in 6p; these possess a limited range of intensity values, which
will correspond to the vast majority of CNS tissue component voxel values. A center-
of-cluster function, X (¢'|0p), is calculated using a moving window over h(g|6;):

'+%
X(g)6) = e gf h(gl6y) for 1< g, 9 < gmas (3.9)
(T2 +%1) g=9'—%1 R

where (T2 + %) is the width of the moving window and is calculated from the distance
between the two means of the GM and WM CNS tissue component classes, puagas and
uw ar respectively, selected from Z. ie. (T2 + 1) = x.|pwm — penml|, where x is a
window width parameter and T = ¥;. The voxel intensity range is the same as given
for equation 3.1. In the experiments that follow, an optimal value of x = 3.0 was
empirically determined. A suitable value for the seed point voxel in 6, is given when
the maximum for (3.9) is found at ¢’ = gpeak-

The region growing operation that follows also requires upper, Ty and lower, T, thresh-
old intensity values to limit region growth. Ty can be determined from h(g|fp): a
suitable value for Ty occurs at the highest intensity knee of the right most CNS tissue
component class in the target slice histogram, h(g|6p). This is illustrated in figure (3.4)
and can be defined when the following becomes true:

h(Zy =g|6) < a.X(¢ = Gpeak|Ob) TOr g > Gpear, (3.10)

where a defines the location of the knee and whose value can be obtained empirically.
In practise a = 0.10 was found to give reliable results.

The lower threshold, T;, can then be assumed to be symmetric about gpeqr, therefore,
%L = 2.9peak — Tu, which will enable the region growing algorithm to include the vast
majority of the population of CNS tissue component voxels in the target slice, 6. Hav-
ing determined appropriate threshold values, a region growing process is automatically
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Figure 3.4: Illustration of the determination of the upper threshold intensity value, €.
The histogram, h(g|6p) (plane line) and the center-of-cluster function, X (¢'|6}), (dotted
line) are illustrated. Ty can be determined close to the knee of the right most peak of
h(g|0y), occurring at approximately a of the peak value of X (¢'|6,). The approximate
means, pgy and pw s are also illustrated. These are used in the calculation of the

window width, (2 + 1) = x.|uwwm — peum|, for equation 3.9.

(a)

Figure 3.5: Illustration of (a) 2-D eight way connectivity and (b) 3-D twenty-six way
connectivity, used by functions Connectedsp() and Connectedsp() in equations 3.11

and 3.16, respectively.

initiated using the following formalism: a 2-D target mask, Iy, (a set of 3-D points
that correspond to a single image slice, b), is defined by:

Ity = ConnectedQD(C, ITS)7 (3.11)

where Connectedap (A1, Az) is a function that takes a set of 3-D seed points in set Ag
and using 2-D eight-neighborhood connectivity (illustrated in figure 3.5(a)), determines
the corresponding connected points in set As. Irg is a set of 3-D points and can be
considered as a binary representation of the target slice:

Irs = {(z y )T|Tp < Op(w) < Ty,Vw = (z y)1}, (3.12)

and C is a set of seed points, defined by points taking a grey level value equal to gpeak,
(as illustrated in figure 3.4 and described by equation 3.10), and located surrounding

the centroid of the points in I7g.
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3.2.5 Morphological Operations

After the target mask has been defined, a set of morphological operations are executed
to disconnect the CNS tissue component voxels from non-CNS tissue component voxels.
These connections arise due to the various anatomical parts of the head such as the optic
nerve and the meninges that possess relatively high NMR signal and are located between
the brain and the surrounding non-CNS tissues. The configuration of morphological
operations used here is similar to the configurations initially suggested in [112], but
with some modifications, primarily to include the majority of the CSF tissue component
voxels.

For this stage of the algorithm, the reader is reminded to refer to figure 3.6 to obtain a
detailed overview of the steps in this latter stage. Symbols used in the various equations
that follow can be cross-referenced with the symbols in figure 3.6. Initially, the entire 3-
D data set, O, is transformed to a binary representation using the previously determined
intensity threshold values, ¥;, and %y, to produce a binary mask volume Lg:

Lo={(z y a)T|%p < 0,(w) < Zp,V a,Yw = (z y)T}. (3.13)

A number of iterations are then performed to disconnect the set of voxels in Ly, that
correspond to CNS tissue compartment voxels from non-CNS voxels. This process starts
with a series of erosion operations to remove small links between major compartments.

First, a 3-D mathematical morphology erosion operation is applied to the binary mask
volume, commencing at iteration r = 1:

tN=1rYeB, (3.14)

where initially,
L= = 1, (3.15)

and B is a cubic morphological structuring element of fixed size, 3 x 3 x 3 voxels. The
next stage in the current iteration utilizes a 26-way connectivity analysis to determine
the set of points that are still connected to the points in the target mask. Essentially,
all the points in Lgr], following the erosion, that are connected to any of the points that
are jointly in the target mask are kept, that is:

L[QT} = Connectedsp (I1ar, L[IT}), (3.16)

where Connectedsp(—,—) is a similar connectivity function to the 2-D connectivity
function as used in equation 3.11, but using 3-D 26-way connectivity instead of 2-D
8-way connectivity (illustrated in figure 3.5(b)).

A test is now performed to determine whether the current iteration should terminate.
If the membership of the current L[{] results in a set of points for the target slice,
I7g, (corresponding to image slice b) that are a subset of the set of points in the target
mask, Iy, then it is deemed that the algorithm has disconnected the entire set of CNS
tissue component voxels from the non-CNS tissue component voxels. This termination
criterion can be formalized as when:

[r=u]

(ITS N L2 ) ClIruy, (317)
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Figure 3.6: Diagram of the steps involved in the second part of the skull-stripping
algorithm, utilizing morphological operations, step E, following on from steps A to D
in figure 3.2.
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becomes true, where the target slice, I7g, is defined in equation 3.12. Otherwise r is
incremented and the steps from equation (3.14) are re-applied.

Once this process has completed, a number of dilations (2.w times) of the resultant

set of points L[;:w] are performed. This recovers voxels corresponding to CNS tissue
component voxels inadvertently lost in the disconnection process including additional
CSF component voxels:

L =rleB w<r<suw (3.18)

After the dilations have been performed at step, r = 3.w, the set of voxels L[;:?"w}, will

still contain a significant number of residual voids. E.g. for T1 MRI data, the CSF
component voxels (such as the ventricles) will usually possess intensity values outside
the threshold range (%1, %) and therefore will not have been included in the target
mask. Some skull-stripping techniques are not concerned with CSF regions, but the
statistical modelling of the entire CNS tissue component volume can benefit from the
inclusion of the CSF tissue component voxels, especially when modelling the PV effect.
Therefore, these voids are filled using the following steps. A set of 3-D points, ®1,

within the image space and not in L[27':3.w] is defined by the following expression:
o, ={(zya)T|@ya) €l,¢ Ly~ va}. (3.19)

This effectively results in an inversion of the segmented binary data volume. The
previously defined background voxels can now be used in a region growing operation
to grow around the outside of the CNS tissue component region. This process avoids
"holes” such as the ventricles.

Therefore a set of points, @9, that are connected to the set of background seed points,
S (as discussed in the first section of this chapter), within ®;, have to be determined:

&, = Connectedsp (P, S). (3.20)

The segmented CNS tissue component voxels, ®3, can then be defined as the inverse
of (132:

P3={w=(zya)l|wel,, ¢ dy,Va}. (3.21)

Finally, a set of erosion operations are then performed. These erosions remove any
non-CNS tissue component voxels that might have been included within the segmented
data volume during the application of equation (3.18):

ol = ol o B, 3w < r < dw; (3.22)
where <I>£f:3'w] = &3 & B. The resulting volume, @Lr:?"w}, then represents the derived

skull-stripped CNS voxels component.
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Table 3.1: Summary of MRI developmental and evaluation test data sets used to assess
the performance of the skull-stripping algorithm. (C), (T) and (S) indicate acquisition
plane i.e. Coronal, Transverse and sagittal respectively.

ID Description Voxel Dimensions mm?
V1,V2 Development, Adult, T1,(S) 1.00x1.50%1.00
V3 Development,Adult,T1,(T) 1.00x1.00x1.00
V4 Development, Infant(10 months),T2,(S) 0.86x6.00x0.86
V5 Development, Infant(10 months),T1,(S) 0.86x6.00x0.86
V6 Development,Infant(10 months),T2,(C) 0.86x6.80x0.86
V7-V9 Development,Adult, T1,(C) 1.00x3.00x1.00
V10 Evaluation,Infant(10 months),T1,(C) 0.86x6.80x0.86
Vi1 Evaluation,Infant(10 months),T2,(T) 0.86x0.86%6.00
Vi2 Evaluation,Infant(10 months),T1,(T) 0.86x0.86%6.00
V13-V20 Evaluation,Adult, T1,(C) 1.00%x3.00x1.00

3.3 Performance Assessment

The methodology presented here was developed using 9 MRI developmental data sets,
V1 to V9. Evaluation test data sets V10 to V20 were used purely for evaluation
purposes, after the complete development of the algorithm. Data sets V1 to V20 have
different dimensions and are of variable quality. These data sets and their properties are
summarized in table 3.1. Adult data set V1 is from a volunteer who was at University
of Surrey, U.K. The infant data set volumes (V4-V6 and V10-V12) are from a single
subject and are illustrated in figure 3.7. The age of the infant was 10 months at the time
of image acquisition. Adult data set volume V3 is publicly available with a copyright
notice!. Adult data set volumes (V7-V9 and V13-V20) are also publicly available?.
Adult data set V2 is part of the Chapel Hill Volume Rendering Test Data Sets.

The performance of the automatic skull stripper was compared with the performance
of BET [131]. BET can be summarized as a skull-stripping technique primarily based
upon a surface deformation algorithm. Initially intensity thresholds for the CNS image
data are estimated from the intensity frequency histogram. Secondly, the center-of-
gravity for voxels with these intensity threshold values is calculated which is then used
to initialize the deformable surface consisting of a spherical triangular tessellation. The
tessellated sphere starts from a point that should be within the CNS spatial limits and
is then allowed to deform with smoothness constraints until the CNS limits have been

V3 copyright notice: ” Courtesy of, and ©by, Mark Bentum, bentum@wsrt00.nfra.nl, Netherlands
Foundation for Research in Astronomy”.

2Data sets V7-V9 and V13-V20 come from a set of 20 normal MR brain data sets and their man-
ual segmentations were provided by the Center for Morphometric Analysis at Massachusetts General
Hospital and are available at http://www.cma.mgh.harvard.edu/ibsr/.
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Figure 3.7: (a) Mid-transverse, (b) mid-sagittal and (¢) mid-coronal exemplar un-
processed image slices taken from approximate mid-data set points in the infant data
set volumes (V4-V6 and V10-V12). The age of the subject at date of acquisition was
10 months. These exemplar slices illustrate the quality of the infant data sets and
the limited available anatomical image information due to the poor resolution in the
various different non-acquisition planes.
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Table 3.2: Arithmetic mean skull stripping results, divided into infant and adult devel-
opmental and evaluation test data sets.

Test SMSS | BET | SMSS | SMSS || BET | BET

Data Sets Dice | Dice FP FN FP FN
Infants (Development) 0.93 0.90 0.10 0.04 0.19 | 0.00
Adults (Development) 0.92 0.83 0.15 0.01 0.29 | 0.00
Infants (Evaluation) 0.89 0.89 0.11 0.08 0.20 | 0.00
Adults (Evaluation) 0.86 0.86 0.22 0.00 0.25 | 0.00

determined. This process is sometimes repeated if pre-defined smoothness constraint
constants of the surface have not been met.

Quantitative assessment of the skull-stripping performance was undertaken with the
use of ground truth masks generated by an expert segmenter using software described
in [39] for data sets V1-V12. Further ground truths utilized for data sets V13 to V20 are
publicly available. The performance metrics included the Dice coefficient, [35, 126, 110]
as this gives a scalar measure [0, 1] for the performance of a segmentation overall (where
1 is representative of a perfect match):

|AN B|

Dice = 2. L
Al + [B|

(3.23)
where A and B are sets containing the segmentation result voxels and the ground
truth voxels respectively, and |A| represents the cardinality of elements in set A. False
Positives (FP) and False Negatives (FN) were also calculated as these give an indication
of the relative amount of under and over segmentation respectively. These metrics were
determined for the BET segmentations and the SMSS segmentations in relation to the
ground truth.

Parameter settings for SMSS included the window width parameter, x = 3.00, and the
knee parameter, & = 0.10 both empirically determined to provide reliable results for
developmental data sets V1 to V9. Default parameter settings were used for BET.

3.4 Results and Discussion

The results of applying the skull stripping methodology to the data sets summarized in
table 3.1 can be seen in figure 3.8 and summarized, using mean values, in table 3.2. Fig-
ures 3.10 and 3.12 show exemplar image slices from each of the resulting skull stripped
data volumes utilizing SMSS, while figures 3.11 and 3.13 show the corresponding results
obtained for BET [131].

Through visual comparison of the segmentation results with the quantitative results,
one can state that the quantitative results reflect well the variable ability of the skull-
stripping techniques to segment the CNS from the non-CNS tissue voxels.

If a segmentation result can be classed as high quality with an arbitrarily high threshold
on the Dice coefficient, such as Dice> 0.90, then SMSS demonstrates good performance
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Figure 3.8: Dice coefficient results for SMSS (grey) and BET (black) skull stripped
test volumes, V1 to V20. SMSS was developed with the aid of developmental data
sets V1 to V9. Evaluation test data sets V10 to V20 were then used to evaluate the
performance of SMSS.

for 6 out of the possible 11 evaluation test data sets. This can be compared with BET
that shows high performance for only 3 evaluation test data sets. The numerical results
obtained for BET are in general agreement with previously published results, e.g. [76].

BET consistently under-segments the CNS from the non-CNS voxels (demonstrated by
a high number of FPs). Under-segmentation is where non-CNS voxels are not removed
from the segmented data volume. SMSS provides segmentation results that tend to
also under-segment, whilst also over-segmenting a small amount (higher number of
FNs). BET provides two parameters that can be adjusted to control the quality of
the segmentation, but it was found that these parameters increased over-segmentation
whilst only reducing the under-segmentation by a small amount.

In contrast to the results obtained for evaluation test data sets V10-V17,V19 and V20,
SMSS has produced poor results for evaluation test data set V18. This can be seen in
the results presented in figure 3.8 and the sagittal, coronal and transverse images of
the segmentation result obtained for V18 in figure 3.12. The primary reason for the
poor segmentation result is due to under-estimation of the GM mean in the parameter
estimation stage (stage (B) in figure 3.2). Therefore, if the window width parameter,
x from equation 3.9 is adjusted to 2.5, then the segmentation result improves from
a Dice coeflicient value of 0.52 to a value of 0.91. Exemplar transverse, coronal and
sagittal image slices of this improved segmentation can be seen in figure 3.9. Improved
parameter estimates could be determined automatically with the use of more advanced
models that take account of PV effects and other imaging artefacts.

Skull stripping of infant data presents its own unique set of challenges because of
the relatively poor voxel dimensions of the structure under study. Another important
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Figure 3.9: Improved segmentation result for evaluation test data set V18 with SMSS.
A modified window width parameter, x = 2.5 was used, in place of the default value
of 3.0, thus improving the segmentation result with a Dice coefficient value of 0.52 to
a value of 0.91.

consideration with infant data is the dramatic changes in the WM and GM CNS tissue
composition that occur in the first 2 years of life. Also, the CNS components of infant
data appear to share very similar ranges of intensities. For this reason, the window
(T2 + ¥71) utilized by equation (3.9) defined by the means of the GM and WM CNS
tissue components could not be determined. This range of intensities was then modelled
as a single component Gaussian during the fitting process and as a result of this, the
window width was derived from the standard deviation of this fitted Gaussian. The
effect of this on the level of automation of the skull stripping algorithm is minimal,
as programmatically, the age of the patient is available as part of the medical imaging
file format data structure. The mean performance quantities for adults and infants in
table 3.2, are presented independently, illustrating that the mean Dice coefficient for
SMSS is approximately equal for both adults and infants. This is similarly so for BET,
suggesting that both BET and SMSS are as capable of overcoming the challenges of
skull-stripping infant neurological data.

As can be seen from table 3.1, the developmental and evaluation data sets consisted
of data acquired in either the coronal, sagittal or transverse planes. SMSS utilizes a
2-D transverse plane brain target mask, Irj; in equation 3.17 to control the number
of morphological operations. The use of a transverse plane target mask may be prob-
lematic when the data has not been acquired in the transverse plane. This is due to
MRI data usually possessing coarser resolutions in the non-acquisition planes. Table
3.3 presents mean performance quantities for the developmental and evaluation test
data sets divided into the three different acquisition planes. The results in table 3.3
appear to suggest that the performance of SMSS is not affected by the plane of acqui-
sition. BET also appears to perform equally well for data that has been acquired in
any acquisition plane. The results in table 3.3 were calculated for all 20 developmental
and evaluation data sets to increase the statistical viability of the mean errors. This
was due to the limited number of data sets acquired in the sagittal (4 data sets) and
transverse (3 data sets) planes.
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Table 3.3: Arithmetic mean skull stripping results, divided into data sets for different
planes of acquisition.

Acquisition || SMSS | BET || SMSS | SMSS || BET | BET
Plane Dice | Dice FP FN FP FN
Transverse 0.91 0.86 0.16 0.00 0.26 0.00
Coronal 0.88 0.86 0.18 0.02 0.24 0.00
Sagittal 0.93 0.86 0.11 0.03 0.24 | 0.00

3.5 In Conclusion

The work in this chapter has demonstrated a newly developed fully automatic skull
stripping methodology, SMSS. The results obtained using SMSS have shown that the
technique could be used as part of a wider neurological tissue analysis framework,
possibly as part of a consensus of skull-strippers, particularly as BET appears to con-
sistently under-segment whereas SMSS under-segments less and over-segments more.
This is confirmed by the quantitative analysis in relation to the expert segmented
ground truth obtained for each of the test data sets. The quantitative performance of
SMSS and BET appear to illustrate that SMSS and BET are adaptable to the various
relative sizes in anatomy found in CNS of the infant in contrast to the usual problem
of skull-stripping of adult MRI T1 weighted data sets. SMSS also appears to perform
consistently regardless of the plane of acquisition. This is despite the use of a transverse
2-D target mask which results in a flexible and effective segmentation algorithm.

This chapter has developed an automatic methodology for isolating the entire brain
component from neurological MR data. However imaging artefacts such as the Partial
Volume (PV) effect have not been explicitly modelled in this skull-stripping methodol-
ogy. Such modelling may improve the segmentation results. Furthermore many quan-
titative neurological applications require accurate estimates of the volume of individual
neurological tissues, namely GM, WM or CSF. Therefore the remaining chapters of
this thesis investigate models of the PV effect. These models are then used to classify
neurological MR data in chapter 8 using a brain mask which excludes non-neurological
tissue voxels. A brain mask could be obtained with the methodology developed in this
chapter. The absence of non-neurological tissues reduces the number of classification
components that have to be included in the classification procedure thus potentially
reducing the classification error.
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Figure 3.10: (a) Mid-transverse, (b) mid-sagittal and (¢) mid-coronal image slices taken
from the results of SMSS for evaluation test data sets V10 to V15. Each row represents
a different data set, starting from V10 for row one and finishing with V15 for the final
row (see table 3.1 for further details). Data sets V10 to V12 correspond to MRI scans
of an infant.
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Figure 3.11: (a) Mid-transverse, (b) mid-sagittal and (c¢) mid-coronal image slices taken
from the results of BET for evaluation test data sets V10 to V15. Each row represents
a different data set, starting from V10 for row one and finishing with V15 for the final
row (see table 3.1 for further details). Data sets V10 to V12 correspond to MRI scans
of an infant.
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Figure 3.12: (a) Mid-transverse, (b) mid-sagittal and (¢) mid-coronal image slices taken
from the results of SMSS for evaluation test data sets V16 to V20. Each row represents
a different data set, starting from V16 for row one and finishing with V20 for the final
row (see table 3.1 for further details).
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Figure 3.13: (a) Mid-transverse, (b) mid-sagittal and (c¢) mid-coronal image slices taken
from the results of BET for evaluation test data sets V16 to V20. Each row represents
a different data set, starting from V16 for row one and finishing with V20 for the final
row (see table 3.1 for further details).



Chapter 4

Current Techniques in
Probabilistic Partial Volume
Modelling

Many people have investigated the Partial Volume (PV) effect with variable levels of
rigour and or practicality. This chapter attempts to review some of the essential or
seminal developments of modelling of the PV effect in probabilistic formulations. The
chapter has been divided into three main topics: PV likelihood models, contextual
information and estimation and inference. These topics have many inter-dependencies,
but it is felt that their division helps to provide a cognate overview of modelling of the
PV effect.

Likelihood models are often the central focus of modelling the PV effect, describing the
probable range of frequencies of the measured information such as image intensity or
image localised gradient magnitude information. Likelihood models make inference and
estimation possible, where the tissue or material content of a voxel and the parameters
of the likelihood models can be estimated or inferred upon using various different meth-
ods. Contextual information models such as Markov Random Fields (MRFs) enable
the spatial information in an image to be utilized, often constraining an impossibly
ill-posed problem to one that is well regulated.

Much classification work based on probabilistic techniques attempt to divide the imag-
ing data into distinct regions each possessing distinct properties. These image regions
are often described using likelihood models, with each distinct image region possess-
ing different parameters such as mean intensities and standard deviations for Gaussian
likelihoods. Such a model is often described by finite mixture theory, where individual
likelihood components describe the statistical properties of each unique image region.
A finite mixture model can be understood via Bayes theory. Bayes theorem provides
a method for calculating the posterior probability, P(7,|x) of a particular image re-
gion, 7,, i.e. an event, occurring given a particular voxel measurement, x, such as an
intensity:

p(x|7a).P(7a)

Pk =

: (4.1)

59



60 Chapter 4. Current Techniques in Probabilistic Partial Volume Modelling

where p(x|7,) is the likelihood of a particular voxel measurement, x given an event 7,.
Intuitively, an image composed of a number of regions, one of which is denoted by the
event 7, will have a range of voxel measurements, x. P(7,) is a scalar prior probability
of the event 7, occurring, which can be understood as the probability that the image
modeller assigns to voxels in the image space being part of a particular image region,
Ta- The denominator, p(g) is known as the marginal distribution because it can be
calculated by marginalising out unwanted variables, like so:

P(r,[x) = LXIT)-P(Ta) (4.2)

Yo p(x|m).P(m)
%

The marginal distribution, p(g), provides a specification of the finite mixture model,
where each likelihood, p(x|7), is scaled by the prior probabilities, P().

Much finite mixture theory is not directly applicable to PV affected imaging data.
Chapters 1 and 2 illustrated that the classification classes in PV affected data are not
distinct entities and therefore simple finite mixture models do not accurately model PV
affected data. Similarly, classical decision functions that assign a voxel to a particular
classification class, e.g. 7,, based on the the maximum posterior probability do not
accurately model the continuous nature of PV affected data. Nevertheless, this has not
prevented some authors from using the popular and well developed techniques of finite
mixture theory in application to the PV effect problem. These approaches are discussed
in a subsequent section, (4.1.2). But first, seminal work on probabilistic models of the
PV effect are discussed, where the PV effect is modelled as a continuous classification
problem.

4.1 Partial Volume Likelihood Models

4.1.1 Seminal Work

The seminal work on probabilistic classification of data that contains PV voxels was
published by Choi et al. in 1991, [24]. This work presented a likelihood that could be
used to model multi-channel Magnetic Resonance Imaging (MRI) data. The likelihood
modelled the probability density of an m element vector of intensity levels, x, given the
set of parameters, 6 and a mixing vector, a (‘label’ vector):

1 1 T -1 T
p(x|0, ) = W exp (—5 x-Ma)e ' (x—M a)) (4.3)
The set of parameters, = {M o} contains the multivariate mean matrix, M, contain-
ing means for each image channel and tissue classification class and the noise co-variance
matrix, o. Choi et al. assume o arises purely from scanner noise and does not vary
with the material being imaged (ie. o is not influenced by such factors as tissue het-
erogeneity). Therefore o is not tissue dependent, only image channel dependent. Also,
this model is a multivariate Gaussian, and is therefore limited to applications where
one assumes Gaussian distributed noise sources are applicable.

This model and all the following likelihood PV models assume what is known as linear
mixing of the classification classes in the PV voxels. This assumption is now discussed.
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The Linear Mixing Assumption in Biomedical Imaging Data

The assumption of linear mixing in PV likelihood models assumes that if a voxel is com-
posed of a particular mixture or fraction of tissue or material classification classes, then
the resultant signal detected by the image acquisition device will reflect this proportion
linearly. Mathematically, the result of the linear combination of two independently
distributed random variables or signals, X, and Xj, is:

Xa,b = a1.Xy + 2. X, (44)

so that the PV distributed random variable, X, ; is a linear mixture of the pure com-
ponents, X, and Xj, where a1 € [0,1] and ag = 1 — a;.

Windham et al. in 1988, [159], performed an experiment to determine whether the
assumption of linear mixing is correct for their Principal Components Analysis (PCA)
of the PV effect. Windham et al. provided the following explanation:

“If it is assumed that the magnetic resonance signal from a voxel containing more than
one material is given by the volume weighted summation of the individual signals from
the different materials, then the gray level of the corresponding pizel is the summation
of the volume weighted gray levels of the different materials that would be obtained for
vozels containing pure samples of the different materials. This is a reasonable assump-
tion since the signal from a voxel is directly proportional to the net magnetization; the
net magnetization is the sum of all of the individual magnetic moments provided that
the frequency bandwidth across the voxel is larger than the chemical shift of the different
materials in the vozel.”

The NMR signal seen in a magnitude MR image has undergone a number of complicated
physical processes, (see e.g. section 2.1). These physical processes together with the
fact that MR images are usually calculated with a magnitude operation suggest that the
actual functional relation between the random variables may not be linear. Indeed, as
quoted above, Windham et al. do not refer to random variables. Despite this, even the
grey level may not have a linear functional relationship with the voxel’s constituents,
dependent on the tissues being imaged and the image acquisition protocol.

4.1.2 Further Partial Volume Likelihood Models

An alternative probabilistic likelihood model of the PV effect was offered by Santago
and Gage in 1993 [122]. Initially Santago and Gage’s PV model was for PV voxels
composed of a maximum of two Gaussian distributed classification classes [122]. This
was then developed further in 1995 for multiple tissue PV voxels from Gaussian or
Poisson noise sources [123]. The premise of this work was that the PV effect contributed
an additional classification class to a finite mixture model, thus taking advantage of
established finite mixture pattern recognition theory, (see e.g. [142]).

In [122, 123], pure tissue classes are described by the pure tissue distribution such
as a Gaussian or a Poisson distribution. Mixture distributions can be thought of as
consisting of an infinite number of these pure class distributions stretched over a uniform
distribution that represents the range of intensities existing between the class means.
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Thus, mixture distributions are determined via an integral of the product of a likelihood
similar to equation 4.3 but for a single tissue class and a uniform distribution:

1
palias(os ) = [ plals = upta + (1= ) ps). o (4.5)
0

This result is in fact equivalent to a convolution type operation, see e.g. [134]. Exemplar
results of this operation are shown in figure 4.1.

This equation is conditioned on discrete events, unlike the phenomena that the equation
is attempting to model and in contrast to equation 4.3 which is conditioned on a
continuous event space.

A second observation that can be made with regards to equation 4.5, is that the in-
dividual classification classes possess co-dependency between the parameters. i.e. the
pure classification classes, p(x|uq) and p(x|up) possess independent parameters, but the
mixture class, p(x|ftq,p(ftas 1)) is dependent on the parameters from both pure classes,
indicating that these classes should not really be treated as separate entities. At this
stage in the discussion this might not seem to be particularly important, but many
algorithms and techniques, especially of the finite mixture model nature assume the
classes are independent entities.

A third observation can be made with regards to the formulation suggested by [122, 123]
relates the convolution in equation 4.5 to Bayesian probability theory. The convolution
is over a uniform function of . This, as will be seen later (chapter 7), is very similar
to the concept of an improper prior where the probability of obtaining a particular
mixture at any particular intensity level is constant. An improper prior is one which
does not specify any information about the expected mixture configurations that might
occur as a result of the PV effect.

A further observation with regard to the approach taken by Santago and Gage is
that the PV distribution between the two pure components requires a common width
parameter for the two pure components. This therefore prevents accurate modelling of
PV distributions that may arise from pure distributions with unequal width parameters.

Vokurka et al. in 2002, [148], presented an interesting development of equations 4.5 and
4.3. The formulation suggested in [148] replaced the explicit modelling of the probability
density of the PV mixture value, «, or the probability of a voxel being from either a
pure classification class or a PV mixture classification class with a probability analogy.
In [148] the mixture content of a voxel is assumed to be equivalent to the probabilities
of each of the classification classes for that voxel. A further novel feature of this model
replaced the uniform prior convolved with Gaussians as used in 4.5 with two triangle
priors convolved with Gaussians for each class. These are illustrated in figure 4.2. Each
triangular function is convolved with each pure tissue Gaussian class individually to
create two new mixture Gauss-triangle classification densities, ppy (x|, ty, 0a) and
pev(T|pty, fa; Op):
b
pov(alias i 02) = [ plo = 7ln = 0,00 45" (@ = Tl pu)dr, (16)

Ha
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Figure 4.1: Scaled PV PDF classification classes used by Santago and Gage in [122, 123]
to model the distribution of intensities that occur as a result of the PV effect. Each
figure illustrates two scaled pure distributions, the corresponding scaled PV distribution
and the (normalised, i.e. unscaled) overall distribution (solid line). The mean values
and the common standard deviation are given in each sub-figures’ caption (a-c) and
were used to obtain the PV distributions as a result of the convolution in equation 4.5.
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Figure 4.2: Pure functions (Gaussians), PV functions (rounded Triangular functions)
and overall two class PDF (solid line). The PV functions are the results of the convo-
lution with the Gaussian pure classification classes. These functions are used for the
classification of volumetric data with the PV effect, as suggested in [148].

similarly:
o
ppv (T|pp, fas o) = /p(ﬂﬁ — 7l = 0,00).p5" (& = 7|, p1a)-dT. (4.7)
Ha

Using equations 4.6 and 4.7 and pure classification class likelihoods, p(x|uqe,0,) and
p(z|p, o), it is possible to calculate the expected PV mixture composition via (for
classification class a):
p(a|x, Hay Kby Oa, Ub) =
P(a).p(z|pa, 0a) + Ppv(a,b).ppv (|tta; i, 0a)
P(a).p(x|pia, 0a) + P(b).p(x| i, 0p) + Ppv(a,b).(ppv (z|ps, tta, o) + prv (2| tta; po, ?a)))
4.8

This equation represents the topic of inference which is described in more detail for the
other models in a later section of this chapter (section 4.3).

In common with the models proposed by Santago and Gage, [122, 123], the convolution
in equations 4.6 and 4.7 is analogous to an uniform PV prior density where the two
equal but opposite triangular functions reflected about the point ug + (up — pig)/2 is
equivalent to a flat PV prior density.

4.1.3 Partial Volume Mixture Prior Densities

PV mixture prior densities are used to describe the probability densities of PV mixtures
in the absence of noise sources such as Gaussian or Poisson noise that might be found
as a result of the medical image acquisition process. As has already been discussed, a
number of people have assumed that this PV mixture prior density is or can at least be
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assumed to be uniform (including, but not limited to [74, 3, 117, 128, 95]). In contrast
to this approach a number of other researchers have used non-uniform mixture PV
prior densities [6, 67, 78].

Bello et al. in 1998, [6] utilized Monte Carlo simulations of geometric shapes similar
to Multiple Sclerosis lesions found in the human brain. These semi-ideal shapes were
placed in a discretized space, representative of the sampling space that might be en-
countered in the MRI acquisition process. A distribution function was then simulated
by counting the degrees of filling of the shapes’ boundary voxels. No attempt was made
to parameterize this PV mixture distribution function. The discretized sampling space
was also uniform, which is not representative of the typical Point Spread Function
(PSF) encountered in medical imaging modalities such as MRI [50].

Links et al. in 1998, [83] performed a number of simulations of the PV effect with
respect to MRI neurological data and found, for their particular simulations, that the
assumption of a boxcar PSF instead of one characterised by a sinc PSF might not be of
particular importance in classification algorithms. This statement was a result of obser-
vations made on the appearance of difference images between the various simulations
of the brain data. One might choose to investigate this topic further so as to deter-
mine whether accurate modelling of the PSF and consequently the PV mixture prior
distribution might improve classifier performance of PV mixture voxels. A companion
paper by Reiss et al., [109], utilize the software phantom as described in [83], with the
measured PSF of the scanner. However, comparative classification performance with
the two different PSFs within the simulated phantom is not investigated.

Related Mixture Prior Densities in Alternative Application Areas

Kitamoto and Takagi in 1999, [67], investigated the mixture prior density with appli-
cation to remotely sensed imagery. Similar to [6], Kitamoto and Takagi assumed a
uniform sampling space. Kitamoto and Takagi utilized statistical geometry to derive
many different formulae for the various scenarios that they thought were relevant to
their imaging domain. Kitamoto and Takagi found that the numerous formulae were
impractical in real modelling applications, where a number of the formulae might be
equally applicable for different regions of the image data. For example, one of the for-
mula might describe a rectangular image pixel (boxcar PSF) with a size that is smaller
than the rectangular object being imaged, thus creating edge effect mixed pixels. An-
other area of the image might be affected by mixed pixels that arose because the image
pixel was larger than the object of interest. Therefore Kitamoto and Takagi decided
to utilize the Beta distribution as they found that this distribution could approximate
the variety of mixture distributions that their derived formulae might model. The Beta
distribution is often used in probabilistic applications where a variable is the fraction
of two other variables, which is the case for mixed pixel and PV problems [62]. The
Beta distribution is given by:

1

(u1=1) (1 _ o) (u2—1) 4.9
. . « , .
Bluy. 1) ( ) (4.9)

plaluy,uz) =

where B(uq,us) is the Beta function. The parameters, u; and uy control the shape of
this function. If u; = uy = 1, the result is a uniform distribution. If u; = ugs = 0.5, the
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Figure 4.3: Typical exemplar shapes of the Beta distribution for various parameter
values (in captions for (a-d)). The Beta distribution was used by Kitamoto and Takagi
in 1999, [67] to model various mixed pixel prior distributions in satellite imagery.

result is a concave distribution, similar to the mixture distributions given by Kitamoto
and Takagi. Typical exemplar shapes of the Beta distribution for various parameter
values can be seen in figure 4.3.

Kitamoto and Takagi provided no assessment of the impact of providing an improved
modelling schema for the mixture prior distribution. The emphasis of their work was
on providing a methodology for determining the formulae as a result of different sized
(square) uniformly sampled pixels and regular shaped imaging objects of interest (such
as squares or crosses). The PSF of the image acquisition process was not modelled.

Further Biomedical Imaging Prior Models

Van Leemput et al. in 2003, [78], compared classification performances of classifiers with
uniform and non-uniform prior distributions. The non-uniform prior distribution has no
functional constraint, taking values from what is estimated from the discretized data.
This estimation step is described in a later section, 4.3. Figure 4.4 illustrates two pure
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Figure 4.4: The Pure and PV distributions obtained by Van Leemput et al. in 2003,
[78], by simulating the PV effect by down-sampling synthetically generated images. As
can be seen from this figure, the centre distribution corresponding to PV voxels is not
the result of a convolution with a flat distribution as used by other authors, (e.g. [123],
compare with figure 4.1).

distributions and a single PV distribution obtained by Van Leemput by simulating the
PV effect by down-sampling synthetically generated images (using a uniform sampling
space-similar to [67] and [6]). The result is a non-uniform PV prior distribution.

Van Leemput et al. found that the use of a non-uniform PV prior distribution improves
the classification performance when the overlap of the two pure distributions is small.
The converse was found when the two pure distributions overlapped each other signifi-
cantly. This could possibly be a result of the estimation step used by Van Leemput that
imposed no prior functional constraint on the shape of this distribution, so that when
the two pure distributions overlapped significantly, the estimation step was unable to
determine the true shape of the underlying PV prior distribution.

An interesting conference paper by Joshi and Brady in 2005, [64], presented a method-
ology that attempts to model the down-sampling procedure inherent in any image or
signal acquisition process, similar to the approach taken by Van Leemput et al. The
methodology is formulated so as to allow for the high resolution data to be composed of
random variables of any PDF. The down-sampling process is modelled as a uniformly
weighted convolution of these basis PDFs, therefore implicitly assuming a uniform im-
age acquisition PSF. Despite this the equivalent underlying prior distribution from a
uniform PSF is not uniform and probably more closely approximates the true mixture
prior distribution in biomedical imaging data in comparison to a uniform distribution,
(see e.g. [78, 67]).

The Joshi and Brady methodology also utilizes a finite number of these basis PDFs, in
contrast to the continuous nature of the underlying possible mixture configurations in
any individual PV voxel. The argument being that the image data is discretized and
therefore only a finite number of mixtures are inherently possible. Training is performed
on user selected regions of pure classification class in the image data, but the suggested
application is on MRI neurological data that has been found to be composed of 50%
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voxels that might be affected by the PV effect (e.g. [102]).

4.1.4 Localised Image Gradient Magnitude Likelihood Models

In the preceding sections, all of the models discussed only utilized first order intensity
information. Some models of the PV effect incorporate further information such as
second order information in the likelihood models. An extension of the work in [148],
by Williamson et al. in 2002, [157] utilized an approximation of the two-dimensional
gradient magnitude of the image intensity data. The MRI data was assumed to possess
voxels that have Gaussian distributed noise, thereby allowing the result of Rice in 1938,
[111] to describe the probabilistic localised image gradient magnitude data. Rice found
that the sum of two random variables that are governed by Gaussian PDF's results in a
Rice PDF !. This density was introduced in section 2.1 as MRI data is often considered
to possess a Rician PDF. The Rician density approaches a Gaussian density for high
signal to noise ratios and a Rayleigh density for low signal to noise ratios.

Williamson et al. found that it was useful to incorporate extra probabilistic second
order information in the form of the intensity gradient magnitude into their likelihood
equation describing pure and PV distributed voxels. Pure material or tissue regions
were deemed to possess a Gaussian distributed intensity PDF and a Rayleigh dis-
tributed intensity gradient magnitude PDF. For voxels that are considered to be PV
voxels, the PV Gauss-Triangle densities as described in [148] (see equation 4.6) are
also used by Williamson et al. However, Williamson et al. also utilize the gradient
magnitude information. Voxels that possess relatively higher gradient magnitudes are
deemed to more likely contain a mixture of tissues, i.e. PV voxels. The justification
for this is that PV voxels are often located on boundary regions. In terms of the math-
ematics, the joint intensity, g and intensity gradient magnitude, z, likelihood for PV
voxels is given by:

ppv(9,2) = prv(9).prv(zl9), (4.10)

or by making explicit some of the parameters required by both PDFs:

prv (9, 2|thas oy 0a) = PPV (9ltas e, 0a) PPV (2|12 = A(g|pta, 1), 02 = As(0a, 0p)),
(4.11)
where A(g|pa, pp) is given as a half-circular function by Williamson et al. pg, pp and
04, 0p are the means and standard deviations for classification classes a and b. p, is a
centering parameter for p(z|u,,o0,) which is a complicated function, especially due to
its dependence on A, (g|pa, ) and Ay (o, 0p):

z 22 4 2 Z
ppv(2|pz,02) = ;-GXP <— MZ) zo (”;2 ) ) (4.12)

2
P 2.0% P

where Iy(z) is the modified Bessel function of the first kind, order zero.
An idealised plot of the pure and PV equations can be seen in figure 4.5.

Critical points about this method can be made that were also made about the methods
of Santago and Gage [122, 123] and separately about the methodology of Vokurka et

!The Rice PDF is named after S.0. Rice. Another name for this density is a Rician PDF
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Figure 4.5: Exemplar plot of the intensity and intensity gradient magnitude feature
space. The central arc, whose mean value is given by A(g|pq,its), describes likely
PV values while the rounded regions with lower intensity gradient magnitude values
correspond to pure classification class voxel data.

al., [148]. Each of these methods create separate classification classes for the PV voxels,
but the PV classification classes are not really separate classification classes because
the PV classification classes share parameters with the pure voxel classification classes.
These methods also implicitly assume uniform PV prior distributions, a fact that is
obscured by their analogical forms.

The work in [157] was extended from singular acquired MRI image sequences to multiple
image sequence data by Thacker et al. in 2004 in [139]. They use a heuristically defined
density to describe the joint intensity gradient magnitude for multiple image sequences,
given by:
, 27 22
prv (2 |p.) = W-GXP 9.2 (4.13)
Hz Tz

where 2’ is the sum of the 2-D gradient magnitudes calculated for each image sequence.

In [157] and [139], both methods utilize localised image gradient magnitude likelihoods
that are dependent on the localised image intensity to calculate u,. The localised
gradient magnitude could be dependent upon the true PV mixture composition of
the voxel rather than a noise affected voxel intensity. Another factor not considered
in the models in [157] or [139] is the data is inherently three dimensional, but both
models only utilize 2-D gradient magnitude information. In [139], the authors suggest
that relatively larger inter-slice distances relative to in-plane voxel distances present
difficulties in determining a theoretical description of the PDF that might arise, despite
[139] utilizing a heuristically defined density.

4.2 Contextual Information

Contextual information in pattern recognition might refer to any number sources of
available information, but in the imaging domain it often refers to the fact that pixels
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or voxels are inherently spatially located and any neighbouring voxels can aid in the
classification process of the individual voxel in question.

As discussed in the previous section, the localised gradient magnitude likelihood does
indeed incorporate some contextual information, in the form of the localised magnitude
of the gradient. This allows it to determine if a voxel might be more likely to be from a
PV voxel but not if a voxel has been correctly classified by comparing its classification
assignment with the classification assignments of its neighbouring voxels. Thus, it does
not impose explicitly modelled spatial regularisation on the aforementioned likelihood
models.

4.2.1 Voxel Local Histograms

An interesting methodology in a paper by Laidlaw et al. in 1998, [74], incorporates
spatial information into the classification of individual voxels affected by the PV effect
through the creation of localised image histograms. Some similarity can be found
with this work and the work of Joshi and Brady, [64]. Both methods derive types of
histogram basis functions, except Laidlaw et al. fit their basis functions to histograms
of a neighbourhood of voxels rather than Joshi and Brady who calculate the probability
of a point measurement coming from their different basis functions.

The work of Laidlaw et al. attempts to reconstruct localised image histogram functions
by taking voxel measurements from a cubic region in the image data and up-sampling
this cubic region using tricubic B-splines. Laidlaw et al. then fit their pure and PV
basis functions to this up-sampled region. A possible problem that is not discussed in
this work could possibly arise from the high sensitivity of the localised image histograms
to particularly high levels of voxel intensity noise. Therefore this might often prevent
accurate localised image histograms from being created, and therefore preventing the
correct basis functions from being fitted.

Laidlaw et al. also assume the image acquisition process can be characterised by a
boxcar PSF. They state that this is sufficiently accurate in practise in comparison
to other unpublished calculations and results obtained with other PSFs. Their chosen
application is volume rendering and they evaluated their methodology on simulated PV
data, although no information was given about how the data was simulated, such as, for
example, the PSF used to perform the down-sampling of the high resolution data. Their
performance assessment utilizes multiple simulated image channels, therefore reducing
the sensitivity of the methodology to individual image channel voxels with high levels
of image intensity noise.

4.2.2 Markov Random Fields

The work of Laidlaw et al., [74], is interesting as it creates a probabilistic framework that
takes account of the inherent spatial information available in imaging data. Probability
theory does however have an established theory to take into account contextual spatial
information, namely MRFs.
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Figure 4.6: Cliques, M,,., utilized by Choi et al. [24]. (a) illustrates first order neigh-
bourhood system (top) and cliques (bottom). (b) illustrates second order neighbour-
hood system (top) and cliques (bottom). Cliques illustrated are first and second order
pair-wise neighbourhood interaction cliques as utilized by Choi et al.

As with the likelihood models of the previous section, the seminal paper by Choi et
al. in 1991 not only treated the likelihood aspects of the PV effect but also combined
MREF theory into the classification framework [24]. The MRF approach taken by Choi
et al. utilized second order pair-wise neighbourhood interaction. This neighbourhood
action produces pairs of pixels known as cliques, Ny, = {w;|where w; is a neighbour of
point w; }. These cliques help to define what is known as a MRF, where the conditional
probabilities are defined over these neighbouring regions, this is discussed in more detail
shortly. The cliques utilized by Choi et al. can be seen in figure 4.6.

Only two dimensional contextual information was taken into account despite Choi et al.
utilizing inherently three dimensional data. One must note however, that the theory
developed by Choi et al. was seminal and at the time, the distance between individual
slices in the MRI data that Choi et al. chose to apply their methodology was probably
significantly greater than the inter-pixel distances in plane. This was corrected in 1997
when Choi et al. extended the two-dimensional MRF to three dimensions [25], thus
improving the segmentation.

In MRF theory, each clique possesses what is known as a clique potential. This clique
potential attempts to quantify the dissimilarity between the voxel in question in com-
parison to the other voxels in the clique, i.e. neighbouring voxels in this case. Choi et
al. opted for a very simple clique potential:

Ve(wi) = Vi w; = Ko, [0, — s, |17, (4.14)

where ke, = % when pixel w; is a diagonal neighbour of pixel w; or ky; = 1 when
pixel w; is an orthogonal neighbour to pixel w; and c is a clique, from a set of available

cliques, c € C.

A MREF is a type of random field with probabilities that are only conditionally depen-
dent on the neighbouring pixels or voxels, not on the pixels or voxels outside of these
neighbouring points or region. This property is known as the dependence Markov prop-
erty. The locally defined conditional probabilities and the full probability of the entire
field also have to conform to a positivity condition in order to be classed as Markovian.
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This positivity condition states that all the configurations have to possess non-zero
probability, i.e. to be possible. These two conditions, positivity and dependence, are
sufficient for a random field to be classed as Markovian. The dependency property
is especially useful as it allows the probability of individual voxels to be calculated
without having to utilize the state of the entire random field.

The Gibbs Distribution

The Gibbs distribution from statistical physics, [44], is usually cited as fulfilling these
Markovian conditions, where the Gibbs distribution for a particular state, 7, is given
by:

1 E,
P(E,T) = - OXP <— kB.nT> , (4.15)

where E,, is the energy of the system at state 7, kp is known as Boltzmann’s constant
and T is the absolute temperature (i.e. in degrees kelvin). Z is the normalisation
factor, sometimes referred to as the partition function,

Z = zﬂ: exp (- kf”j,) ; (4.16)

so that
> P(E,|T) =1. (4.17)
n

The Gibbs distribution is used in statistical physics to determine the probability that
a system is in a particular state, with energy, I, for a given temperature, T'. Intu-
itively, a system at high temperature is likely to possess greater energy, whereas at
lower temperatures, such a high energy state is not as likely. The Gibbs distribution
can be used to describe the probability of the underlying voxel states of an image or
data volume where the states may refer to tissues or activities. If the image is highly
disordered (i.e. many voxels have different states from each other) then the image can
be considered to possess high energy. But if the temperature is relatively low, then
such a state of disorder is not as likely. Optimization of the system parameters may
reduce the disorder of the system by altering the states of individual voxels so that
they become more similar to each other. This optimization will therefore lead to a less
disordered system and thereby a more probable state.

The more common form of the Gibbs distribution as used in computational imaging

science is given by:
1
P(z) = - OXP (—H(x)), (4.18)

where H(z) is sometimes referred to as the energy function, see e.g. [160]. The Boltz-
mann constant and absolute temperature parameter are usually replaced by other pa-
rameters that can be directly related to the imaging problem. Imaging science typically
defines these energy functions in terms of clique potentials, such as the clique potential
used by Choi et al., [24], described earlier (equation 4.14). These clique potentials
measure the dissimilarity of a voxel’s state with the state of the neighbouring voxels.



4.2. Contextual Information 73

A Gibbs distribution can be shown to be equivalent to a MRF with the following
argument (similar to an example given by Won and Gray in [161]).

The conditional probability of the state of voxel w; given the state of all the other
voxels is given by:

Pz, ¥k Zexp (—H (2w, ¥V k
P(2e; |70, ¥ j # 1) = @ Y F) 1ZeXp( (Zar, VK) (4.19)
Plow, Vi# 1) Lexp(~H(za, ¥ #1))
where the energy functions take the form, e.g.
H(zw, ¥V wi) =Y H(zy,). (4.20)

vV k

Cancelling the common factors and noting that the denominator can be found by
marginalising over all values for voxel w;:

exp (—H (zw, YV k))
> exp (—H (2w, V k)

wai

P2 |rw, ¥ j #1) = (4.21)

The denominator and numerator can then be split into two, the first terms referring to
the energy functionals not dependent on z,,,, so that:

exp (—H(x, ¥ j # 1)) oxp (—H (z.,))
exp (_H(ij Vi 7é Z)) : Z exp (_H(Q:wz))

wai

P(J:wi|ij Vj#i)=

 exp (- H(zw)
= e (H(rw) (4.22)

wai

This states that the conditional probability of voxel w; is only dependent on the energy
functionals that utilize w;. So that for the clique potential used by Choi et al. in 1991,
described earlier (equation 4.14) allows for the conditional probability of a voxel’s state
to be fully specified from itself and over the neighbouring voxels. This greatly simplifies
any calculation of image ‘roughness’ or other dissimilarity measure that might otherwise
be conditionally dependent on the states of the voxels from the entire data volume.

The preceding argument has illustrated that the Gibbs distribution possesses the de-
pendency Markovian property. Further evidence is usually required by the contextual
probability theory community as to the suitability of this approach and to provide fur-
ther details of the relationship between the probabilistic description of the entire data
and how it relates to the probabilistic description on a per voxel, i.e. conditional basis.
A number of approaches are given in the literature, see e.g. [8, 26, 160, 161], which
typically reference what is commonly known as the Hammersley and Clifford theorem,
after an unpublished document in 1971, [53]. There appears to be a number of inter-
pretations of this theorem. For example, in [8, 30], the theorem is stated in terms of the
cliques and how these govern the resulting global probability distribution. But [161]
state the theorem in terms of the Gibbs distribution being the only valid statistical
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description of a MRF. [8, 26] state this was the problem that Hammersley and Clif-
ford originally set out to solve, i.e. what is the most general form for the probabilistic
description of a MRF.

In any case, most of these texts utilise a similar set of theorems, corollaries and lemmas
surrounding the Hammersley Clifford theorem to establish a probabilistic form that
implements the MRF conditions. The conclusion of which is that the Gibbs distribution
is the most general form that implements the Markovian properties.

Choi et al., [24], therefore assume that the clique potential in equation 4.14 is gov-
erned by a Gibbs distribution that can be used to implement a MRF, (letting H(x) =

2. Ve(wi)):

ceC

1 1
Plaw,) = 7 oxp |~ Z Velwy) | = 7 eXP —p. Z Ko, ||, —aul? ],

wi c€Cu; wi Ve, €N,
(4.23)
where Z is a normalizing factor known as the partition function and
Ny, = {wj|where w; is a neighbour of point w;}. (4.24)

Choi et al. also assumed that the MRF is isotropic and homogeneous, so that the
clique regularisation parameter, (3, is independent of location w; and cliques, ¢ € C,,,
respectively [80]. These assumptions simplify the model but one could argue that the
model might be improved (depending on the data) by not considering the data to be
isotropic or homogeneous. Neurological MRI data may not be isotropic if one considers
some regions of the brain to be composed of a variety of densities of WM and GM such
as the Putamen in relation to other regions of the brain composed of GM or WM [31].

In terms of the homogeneous property of the MRF| it is clear that at boundary regions
in image data, this homogeneity criterion is not valid.

Inhomogeneous MRF (Allowing for Edge or Transition Regions in the Image
Data)

The work of Wang et al. in 2001 introduced an inhomogeneous MRF applied to MRI
data [150], therefore allowing for variable spatial regularisation to be applied to the
imaging data. The inhomogeneous MRF was modelled using discrete classification
class labels, [, with the following Gibbs distribution:

1
Pllw,) = —exp | —fu- Y, Velwi) |, (4.25)
@i c€Cu,;

where
1 if I, = le

0 if lo, # lw,
The value of the Gibbs regularisation parameter, (,, for voxel w; was determined
using a locally defined entropy rate, an information theoretic concept that attempts

ch(“’z) = Vwi,wj = { (426)
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to measure local changes in entropy. Boundary regions are defined as more likely
to occur when the entropy rate is greater than surrounding regions. The entropy
rate was calculated over an initial labelling of the data without the use of the MRF
(equations 4.25 and 4.26). 3, was then calculated using this entropy rate measure in
conjunction with some empirically defined parameters. Therefore the calculation of 3,
is based partially on theoretically sound principles, while the use of empirically defined
parameters might cause problems in the application of the methodology to previously
un-seen MRI data sets.

Another problem with equations 4.25 and 4.26 is the use of discrete pixel or voxel labels,
lo, € {I' 12 ... 1%} (for K classification classes) in comparison to the continuous pixel
labels of equations 4.14 and 4.23, v, = ((@w,1 € [0,1]) (w2 € [0,1]) ... (Qw, Kk €
[0,1]))T (which more accurately models the true nature of the PV effect). Wang et al.
utilize Gaussian representations of classification classes that represent both pure and
PV classification classes. The use of a Gaussian for the PV classification classes vastly
simplifies the development of the model, especially with regards to the optimization
and estimation process, but is rather inaccurate with regards to the true distribution
of the PV voxels (e.g. see figures 4.1, 4.2 and 4.4). Also the continuous nature of the
PV effect can not be accurately represented by discrete classification classes.

Bias Field Modelling in MRI Data

Many methods utilizing MRF theory that have been applied to medical data published
since the seminal work of Choi et al. in 1991 have not explicitly modelled the PV effect.
A popular example is the work of Held et al. [57]. Held et al. built on the work of Wells
et al. [154]. Both methods utilize a type of kernel density estimation, often known as
Parzen window estimation ([151, 97]). The work of Wells et al. and Held et al. was
motivated by the effect of magnetic field inhomogeneities resulting in non-stationary
image statistics across the data (known as the bias field from here). This was also the
motivation of the work of another popular paper by Zhang et al., [163]. Zhang et al.
utilized a Hidden Markov Random Field (HMRF) to model the underlying bias field
in the MRI data. It could be argued that if explicit modelling of the PV effect was
used within the models of these papers then it could result in particularly complicated
models. These complicated models could prove to be difficult to perform parameter
estimation of the true parameters particularly as both the bias field and the PV effect
produce a continuum between otherwise discrete tissue labels (e.g. GM and WM for
neurological MRI data).

Additional Regularisation Terms

Ruan et al. in 2000 [117] used a similar model to that used by Wang et al. in 2001
[150], except Ruan et al. assumed a semi-homogeneous MRF, so that the MRF regu-
larisation parameter, B, = ., was constant for all voxels, w;, for a particular image
classification class label, [, at voxel w;, (see equations 4.25 and 4.26). Even though
Ruan et al. assumed a semi-homogeneous MRF (when considering edge regions), they
included a further regularisation term to measure the amount of spatial variations in



76 Chapter 4. Current Techniques in Probabilistic Partial Volume Modelling

intensity. This was primarily provided to model the within image class cluster varia-
tions rather than variation in the amount of required spatial regularisation that occurs
along image class cluster borders (edge regions) - as with the work of Wang et al. The
additional regularisation term was based on a fractal measure called the Holder expo-
nent. This fractal regularisation term provided additional distinct features for various
regions in the image data, enabling the PV voxels to be differentiated from pure voxels
even though they might share the same grey level value. This therefore allows for a
form of inhomogeneous spatial regularisation.

While the inclusion of an additional regularisation parameter is interesting, particularly
one based on a fractal measure, this additional complexity moves the statistical or
probabilistic modelling of the image data further towards a heuristic formulation and
therefore possibly further away from a framework that allows for wider understanding
and generalisation improving applicability to new and previously un-seen problems. In
addition to this, if a formulation is based on consistent rules based on easily verifiable
assumptions it becomes easier to understand why performance is not optimal given
further new and previously un-seen problems.

Automatic Determination of Partition Function, Z

An interesting paper by Woolrich et al. in 2005 [162] utilised a number of PV model
formulations, one of which explicitly modelled the continuous nature of the PV effect,
similar to the formulation used by Choi et al. in 1991, [24] (see equations 4.14 and
4.23). Woolrich et al., however, proposed a novel way of analytically determining the
partition function. The Gibbs distribution for the joint likelihood over the entire label
space, A with the clique potential was given by Woolrich et al. as:

p(A‘ﬂ):Z(lﬂ).eXp _gzz Z (O‘wi,v_aw]‘,v)Z ) (4'27)

VYw; Yv ij‘nui

where [ is again the spatial regularisation parameter and v is indicative of each clas-
sification class. For other models that utilize discrete classification classes, [, it was
not immediately obvious how Z could be determined analytically, but for equation 4.27
its form can be determined because:

2(8) = / P(A|B).dA, (4.28)

A
which due to the Gaussian form of equation 4.27 has the convenient and simple form:

Z(B) o ﬁN% (4.29)

where N is the number of voxels in the data space and K is the number of classification
classes. Thus, a simple formulation is provided to determine the regularisation param-
eter, # and the partition function, Z(3). The elegance in this solution could possibly
prevent the reader from being reminded that, for this model, § is not dependent on the
voxel location, w;.
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4.2.3 Related Contextual Classification Work - Probabilistic Relax-
ation

Probabilistic relaxation has also been extensively used in the image analysis field to
incorporate contextual information into a probabilistic formulation, see e.g. [115, 70,
68, 69, 54]. Probabilistic relaxation applied to images aims to improve the pixel or voxel
labelling by optimising or improving a quality measure of the pixel or voxel labels.

Authors have found that probabilistic relaxation can be used to improve the labelling
of the data, especially over the first few iterations. However after a number of iterations
the quality of the labelling often degrades, see e.g. [133]. Poole in 1990, [103] noted this
and proposed an alternative formulation that utilised a “tailored sequence of updating
functions”. These updating functions were learnt via training on test images using a
graph based tree pruning approach, so that after the optimal number of iterations the
data labelling quality ceased to improve but would also not degrade.

The probabilistic relaxation algorithm discussed by Poole is different from many MRF
approaches as the probabilistic relaxation only utilises the original data values at the
start of the algorithm. The relaxation of these posterior probabilities is repeatedly
applied without reference to the original data. This is quite different from an MRF ap-
proach which will often explicitly incorporate the original data into every iteration, see
e.g. [24, 162]. Probabilistic relaxation and a MRF approach are conceptually very dif-
ferent. The framework proposed by Poole requires prior training to learn the geometric
changes in the posterior probabilities after every iteration. Such prior knowledge may
not be desirable for much medical data. However, if once such a formulation has been
found and learnt, then this information can possibly be thought of as an alternative
route to adaptive and hopefully optimal relaxation steps.

The approach proposed by Poole implicitly incorporates estimation and inference into
the contextual classification schema known as probabilistic relaxation. This is also true
for many of the MRF formulations. However estimation and inference often requires
some sort of dedicated step, some of which are discussed below.

4.3 Estimation & Inference

The preceding discussions were primarily limited to the likelihoods that have been
used to describe PV distributions. A likelihood or PDF is typically utilized within a
conditional probability formula, usually referred to as Bayes theorem, see e.g. [77],
resulting in a posterior density for the continuous form of Bayes or a probability for
the discrete case (see equation 4.1).

The likelihoods utilize parameters such as means and standard deviations. These pa-
rameters are usually unknown for biomedical imaging data, where prior training on
different data sets is usually inappropriate due to the innate variability of the data
from person to person, scanner to scanner and even image to image.

FEach data point or voxel in the image data will typically have an associated poste-
rior density, p(a|x) or probability, P(7,|x), associated with it. The product of these
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densities or probabilities can then form a further density or probability:

p(A|X) = H p(olx); (4.30)
Yo,z
or for the discrete case
P(7,]X) HP Ta|). (4.31)

This single probability or density for the entire data can then be used in algorithms
to determine the relative correctness of the current parameter estimates in relation to
further estimated values. These newly estimated values may come from a deterministic
methodology that is defined analytically or via a stochastic procedure (i.e. a random
but possibly well informed guess). These parameter estimates are usually designed to
maximize the posterior probabilities and may sometimes attempt to model correlations
that might exist between each data point or voxel.

4.3.1 Deterministic Strategies

Deterministic parameter estimation and inference techniques applied to non-PV related
statistical fields can sometimes utilize a convenient solution or even, in some instances,
an analytical result. However, this is not usually the case for medical imaging data
due, in part, to the added complexity that PV voxels contribute to image models.

Seminal Work

The seminal work on probabilistic modelling of the PV effect by Choi et al. in 1991,
[24], also provided appropriate techniques for estimation and inference using the PV
model likelihood previously described in equation 4.3. Choi et al. chose to utilize an
algorithm that iteratively estimates the mode of the posterior distribution for each
voxel, often known as the Iterated Conditional Modes (ICM) algorithm, described in
algorithm 1.

Algorithm 1 (Iterated Conditional Modes Algorithm: Mixture Images)

1.Given an initial vozel labelling, o, Yw;.
2.For each w; in the data space:
a.Find mazimum of p(aw,|am, ), w.rt. o,
b.Return to (a) if every w; not visited.
3.Check for convergence, i.e. no changes in o, Yw;.
4.If not converged return to (2).

The posterior distribution for each voxel, p(cw,|g, am, ) was then maximised by re-
ducing the problem to a quadratic optimization procedure. This was made possible by
a number of simplifying steps. Firstly, noting that

plew,lg, am,, ) < plglaw,) plaw,lan,,) (4.32)
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. Secondly, it is well known that a monotonically increasing function that is to be max-
imised can also be maximised indirectly by minimising its (negative) natural logarithm.
So that taking the negative logarithm of the r.h.s. (recalling the definitions given for
equations 4.3 and 4.14):

—In [p(glawi)-p(awi‘a%)] B

(Xw; — MT.oz‘,,i)TO']_\,1 (Xw; — MT.awi) + Z BFew,||0tw; — o | (4.33)
w]'E{ﬁwi

1
2

This can then be minimised via quadratic minimisation procedures, see e.g. [104]. Un-
fortunately, this limits the number of possible mixtures to one more than there are
image channels, i.e. multivariate data is required for more than two possible mixture
constituents. Choi et al. do however go on to describe a method that takes advantage
of the fact that neurological MR data may usually only be expected to have PV voxels
composed of a maximum of two tissues. The technique identifies the most likely tissues
based on their posterior probabilities using mixture values from the preceding estima-
tion step. These most likely tissues can then be used in the minimisation procedure
thereby limiting the classification component count.

The noise covariance matrix is estimated interactively by a user during the initialisation
process, where the mean matrix is initialised also interactively by a user. The mean
matrix is then updated via a further optimization process, but the covariance matrix is
not. The assumption of negligible inter-tissue variation in the covariance together with
only allowing for it to be initialised and not updated could reduce the accuracy of the
model for estimation of PV mixtures in imaging data.

The mean matrix is estimated by calculating the pure component means based on
voxels that have been labelled as almost pure voxels. This may also present difficulties
due to the possibility of the lack of pure voxels for some data sets. Also, the thresholds
are set in order to include approximately equal numbers from each of the classification
components which may also be sub-optimal for some images.

The model of Choi et al. also requires the estimation of the spatial regularisation
parameter, 8. This regularisation parameter was estimated by maximising the loga-
rithm of the conditional posterior distribution conditioned on 3. Choi et al. made
the important observation that the Gibbs distribution in combination with the clique
potential defined in equation 4.14 results in a Gaussian distribution. This observation
was used in combination with simulations with various numbers of mixel constituents
to determine optimal values of 8 under these different conditions. Unfortunately, this
approach does not allow for variation of § within the image data. This is not optimal
for images that are composed of more than a single classification component or perhaps
even regions of mixtures that occur in neurological MR images of the brain, (previously
discussed in chapter 2).

The Expectation-Maximisation Algorithm

The EM algorithm is a well-known iterative technique used to estimate missing data
by finding the modes of the posterior distribution. The algorithm was popularised
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by Dempster et al. in 1977, [33]. It has been applied quite extensively to medical
image analysis problems where the pixel or voxel labels form the missing data, see e.g.
[13, 78, 81, 121, 125, 144, 154, 163].

The EM algorithm consists of iterating over two main steps: the expectation step; and
the maximisation step. The expectation step refers to the calculation of the expectation
of the complete likelihood, i.e. the likelihood using the previously estimated voxel
labels and parameter values. The maximisation step refers to the maximisation of
the likelihood given the data which results in new estimates that can be used in the
expectation step again, until convergence. Algorithm 2 summarises the EM steps.

Algorithm 2 (EM Algorithm)

1.Given an initial vozel labelling, o, Yw; and other conventional parameter values.
2.Calculate the conditional expectation of the complete data log-likelihood.
3.Calculate new parameter values by mazimising the complete data log-likelihood.
4.Check for convergence

5.If not converged return to (2).

Quite often optimal parameter or voxel label estimates are not available analytically
and a combination of analytical maximisation parameter estimation calculations are
combined with stochastic estimation techniques, see e.g. [78]. Alternatively [163] used
the ICM algorithm to find optimal voxel labels and the EM algorithm to calculate the
optimal parameter estimates.

Some techniques appear to derive the EM algorithm so that it is consistent with the
assumptions of the original paper by Dempster et al in 1977 [33], see e.g. [78]. The
PV problem requires careful consideration of the assumptions used in the formulation
of the EM algorithm in order to provide a theoretical explanation of the convergence
properties of the algorithm. Other authors have applied the EM algorithm to data
containing PV voxels, see e.g. [95]. The EM algorithm is a popular iterative technique
and prior to 1977 there were many iterative EM like algorithms without theoretical
justification. Dempster et al. provided a theoretical framework to which many of the
previously existing EM like algorithms could find explanation, see e.g. the peer-group
discussion at the end of [33].

4.3.2 Stochastic Techniques

A stochastic estimation and inference technique can be thought of as one that relies on
random guesses to estimate a parameter or to simulate a distribution of interest. In
the general literature such techniques include general Monte-Carlo simulation [3, 78],
Gibbs sampling [42, 116, 162] and full Markov Chain Monte Carlo (MCMC) simulations
[162, 90, 113].

In simple terms a general Monte Carlo simulation utilizes random samples drawn from
a particular distribution. These random samples are often used to evaluate an integral
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numerically. Various techniques exist to reduce the number of samples required while
still achieving an accurate result. Gonzalez Ballester et al. in 2002, [3], however only
utilized direct sampling of the posterior distribution of a collection of PV affected voxels
to simulate the collective posterior distribution of those voxels combined. This proved
to be computationally effective as otherwise the tissue volume (and confidence bounds)
of each voxel would have to have been estimated individually thereby reducing the
computational burden.

Other techniques utilizing similar concepts as the simple Monte Carlo simulation tech-
nique include Gibbs sampling which is a particular type of a MCMC simulation tech-
nique. Gibbs sampling was originally applied to image data by Geman and Geman in
1984, [42], although they did not include any modelling of the PV effect. The essential
idea with Gibbs sampling is that the posterior density of an entire image (or any other
object consisting of multiple parameters such as voxel labels) can sometimes be divided
into per-voxel conditional densities. These individual conditional densities can then be
simulated individually rather than attempting to simulate samples for the entire image
(or system) with a huge number of free parameters such as the voxel labels. These
conditional densities are often parameterized in a form that can be easily sampled, see
e.g. [116, 162].

Sometimes, however, particularly with Bayesian problems, the posterior density may
not be available analytically. If this is the case, as is often found with the continuous
form of Bayes, then a full MCMC simulation may be used, [113, 80, 162], such as the
Metropolis-Hastings algorithm. For example, the posterior density is calculated via
Bayes theorem, i.e.:

p(y[x).p(x)

p(y)

where y might represent the data such as the voxel intensities and x might represent a
parameter(s) of interest. The denominator, often referred to as the marginal density,
is calculated via a marginalisation integral, i.e.

p(xly) = (4.34)

py) = / p(yIx)-p(x) dx. (4.35)

X

In many situations the result of this integral may not be available, leaving the posterior
density only partially available:

p(xly) o< p(y[x).p(x). (4.36)

The Metropolis-Hastings algorithm utilizes the ratio of the posterior distributions, so
that the denominator is no longer required. This therefore means that the posterior
density can be easily simulated despite the marginal density being unknown.

The result of these stochastic simulation type strategies is often a series of samples of the
posterior of interest, such as the posterior density of parameter that is being estimated.
When the simulation has converged (Woolrich et al., [162] run the simulation for a fixed
number of samples) the parameter can be estimated from the Maximum a posteriori
(MAP) value, the expected value or some other representative point or interval estimate,
see e.g. [77].
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4.4 In Conclusion

This chapter has discussed many of the existing approaches to probabilistic modelling
of the PV effect. The two seminal approaches included modelling of the PV effect
using a continuous mixture random variable, [24] and a technique that categorises
the PV voxels as additional classification classes, [122, 123]. Many of the techniques
derived from these seminal works have improved on the formulations, accuracy and
introduced additional, sometimes ad hoc image measures in an attempt to improve
classifier performance and or reduce computational complexity. Many of the techniques
utilize spatial contextual information by modelling the neighbourhood information as
a discrete MRF. This however is not really appropriate for a model of the PV effect,
especially when using a continuous mixture random variable. Many of the techniques
also assume homogeneous spatial regularisation, this is also not appropriate due to
the edge information and other inhomogeneous voxel labelling usually associated with
imaging data. Many of the techniques assume a uniform PSF and or PV prior mixing
distributions. These assumptions are probably not representative of the true physical
image model.

The importance of accurate modelling of the PV effect was discussed in the earlier
chapters 1 and 2. It would therefore appear that improved modelling of the PV ef-
fect, resulting in improved PV classifier performance and a greater understanding of
the underlying PV physical process would be useful. This information together with
the apparent possibilities to improvement of the existing PV models that have been
discussed here provide ample opportunity for further PV model investigations. This is
the topic of the remainder of this thesis.



Chapter 5

Intensity Based Finite PV
Mixture Models

This chapter compares a number of likelihood models that have been used to model
data that have been affected by the PV effect. The models are first described and then
their respective performances are assessed with the use of simulated data. The models
are proposed as different refinements of modelling the PV mixing process. This provides
a novel presentation of the inter-relationship of relevant PV models. In particular the
final model described here is found to be approximately equivalent to an alternative
PV model that utilizes analogy of the probabilities as mixture constituents of the
voxels. This alternative model is found to be approximately equivalent under particular
conditions relating to the data and model configuration as will be seen shortly.

Finally, it is intended that this chapter will provide a systematic description of intensity
PV models that underpin the developments in PV modelling described in subsequent
chapters 6, 7 and 8.

5.1 Methodology

Biomedical volumetric imaging data is usually considered to be composed of a number
of classification classes, which are referred to in this thesis by the symbol 7, where
the subscript v is indicative of the particular classification class. Classification classes
most often correspond to a particular tissue or object type. In probability theory, the
symbol, 7, represents a classification class specific event.

Classification classes for neurological MR data may include, for example, GM or WM.
For oncological PET data the classification classes may include statistical descriptions
of areas of high physiological activity in contrast to areas of low activity, such as a
classification class corresponding to tumour metabolic activity that is surrounded by
a second classification class indicative of normal biological metabolic activity. For a
more in depth discussion of the PV effect and the origin of the PV effect see chapter
2, sections 2.1 and 2.2.

83
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5.1.1 Model A: Finite Gaussian Mixture Model

For a statistical model to describe PET or MR image data, it should consist of a num-
ber of classification classes. Mixture models provide a convenient framework that can
accommodate statistical descriptions of a number of classification classes. A classifi-
cation class can be described by a PDF, pg(g|T,) and a prior probability P(7,). The
PDF provides a method to calculate the probability of obtaining a particular grey level,
g given the classification class 7, being true. The prior probability, P(r,) provides a
probability associated with classification class 7, being true, independent of any other
variables such as the grey level.

Thus, the mixture model can be formulated via a weighted summation of the PDFs,
where the weights are the prior probabilities:

p(g) = ZPG(9|Tv)'P(Tv)> (5'1)
Yv

where > P(7,) = 1 and g is a grey level associated with the imaging data. p(g)
Yv

is known as a marginal density because the summation over the classification class
events, 7, produces p(g) which expresses the PDF of g irrespective of the classification
class events, hence the class events are marginalised.

Notice how the prior probabilities, P(7,) act as scaling parameters to the individual
classification class PDFs, pg(g|7,). This can be related to imaging data where the prior
probabilities describe the relative amounts of the different classification classes present
in the imaging data. The PDFs describe the variation of the intensities associated
with an individual classification class due to effects such as thermal noise in the image
acquisition device and or natural variations in a particular class. An example of natural
variations in tissue classification classes in anatomical MR imaging data may include
small blood vessels or variations in myelination density of WM in the human brain.
For functional PET data, natural variations in tracer uptake are often associated with
variation in physiological activity.

pc(g|my) is often known as a likelihood model, and for a Finite Gaussian Mixture Model
(FGMM) it is governed by a Gaussian PDF:

1

(g - ﬂv)Q
pG(g‘Tu) = m-exp <—W ) (5.2)

where u, and o, are the mean and standard deviation for classification class 7, respec-
tively. An exemplar FGMM is illustrated in figure 5.1.

Bayes formula can be used to calculate the probability that an individual voxel, w with
grey level, g,, belongs to a particular classification class, 7,:

P(gewlT0)-P(10)

Prolge) = == 00

, (5.3)

where p(g.,) is the marginal density given by equation 5.1.
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Figure 5.1: Example of a Finite Gaussian Mixture Model (FGMM) with 3 Gaussian
likelihood classification classes.

Often in the decision theoretic field a decision as to whether a pixel belongs to one of
the discrete classification classes has to be made and is often based on the classification
class with the highest posterior probability [34, 151]. This approach is not taken here
as this model is concerned with PV voxels where a single volume element may contain
signals from more than a single classification class. Therefore, for the finite Gaussian
mixture model, an analogy is taken with the probability for a particular classification
class as being representative of the amount of that particular classification class present
in a voxel. The use of the probabilities in this way is consistent with empirical proba-
bility, e.g. Collins Dictionary of Mathematics, [11], provide the following definition for
empirical probability:

“..the proportion observed in a sample...”.

Thus, as a simple example, given a two classification class mixture model, with clas-
sification classes 7, and 7, and a voxel with grey level, g,, where P(7,|g.) = 0.5 and
P(7p|g9w) = 0.5 then the voxel, w, will be classified as being composed of 50% of each
classification class.

Assumption of Gaussian Likelihood for MR and PET Imaging Data

Finite Gaussian mixture models have previously been used to describe PET and MR
imaging data, e.g. [81, 121, 125]. The following discussion helps to justify the use of
Gaussian PDFs.

Gudbjartsson and Patz in 1995, [48] considered the theoretical density of magnitude MR
data (most MR data is calculated from the magnitude of the two Fourier components
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frequency
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Figure 5.2: Histogram of fully corrected RAMLA reconstruction PET data (e) with
Gaussian model (line) superimposed. This figure illustrates the empirical relevance of
a Gaussian model choice to describe PET data statistically. The PET frequency data
is from a PET phantom, described in chapter 8.

as the reconstruction process is based on the Fourier transform) and found it to be
Rician distributed. A Rician density tends towards a Gaussian density at high SNRs.
Most MR imaging data of human anatomy possess SNRs high enough so that they can
be described as a Gaussian density. This fact therefore validates, in part, the use of
Gaussian PDFs to describe the classification classes found in MR imaging data.

PET projection data are intrinsically Poisson distributed. However once the data has
been subjected to a reconstruction process and various other processes, the Poisson
distribution is usually no longer a valid choice for a statistical description of the data.
Gaussians are often applied empirically when there is no theoretical basis for a partic-
ular statistical model selection. Also, a Poisson distribution is well approximated by
a Gaussian distribution for large enough mean values details of which can be seen in
chapter 2, section 2.3. A histogram of PET data can be observed to be approximately
Gaussian in shape, see for example figure 5.2.

For further information about the MR and PET image formation processes see chapter
2, sections 2.1, 2.2 and 2.3.

5.1.2 Model B: Finite Gaussian Mixture Model with PV Distribu-
tions

A well known problem with using a finite Gaussian mixture models for the description
of data that has voxels affected by the PV effect (PV voxels) is that it does not take into
account the PV effect on the resulting mixture model. The PV effect produces voxels
that consist of signals originating from more than a single classification class. These
mixture or PV voxels can be considered to come from an additional classification class
in a Finite Mixture Model (FMM). An example from such a PV FMM is illustrated in
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Figure 5.3: Example of a PV finite mixture model with 3 pure and 3 PV classification
classes. With reference to equation 5.4: dotted lines indicate pure tissue distributions,
p(g|7).P(7y); dashed lines indicate PV tissue distributions, p(g|7y,q).P(7v.q); solid line
represents distribution for the entire data, p(g).

figure 5.3 and this can be compared with the PV data densities for real clinical imaging
data presented and discussed in more detail in chapter 2, sections 2.1 and 2.2.

The PV finite mixture model is composed of pure and PV components where each
PV component is modelled from a mixture of two pure components. The possibility
of three components in a PV voxel is considered insignificant as most PV voxels will
be limited to mixtures of two components. Also the worst case volumetric error for
the case of three components misrepresented with a two component model is 33.3%.
Furthermore, despite the PV models explicitly modelling only two component mixtures,
the PV models described shortly do not preclude the posterior probabilities taking
values representative of mixtures for more than two components. Thus the PV finite
mixture model is given by the following formulation:

K K-1 K
p(g) = ZP(Q‘TU)~P(Tv) + Z Z P(9l7v,0)-P(Tv,0); (5.4)
v=1 v=1 a=v+1

where P(7,,) is the PV prior probability of classification classes 7, and 7,. The PV
distributions for this model, p(g|7, ) are often modelled as the convolution of a Gaus-
sian with a uniform prior distribution, (see e.g. [128]), resulting in functions of the
form that can be seen in figure 5.3. The PV events, 7,, and 7,, are equivalent, i.e.
Tv,a = Taw, and the sum of all the unique events sum to 1:

K

K-1 K
ZP(T”) + Z Z P(1y0) = 1, (5.5)

v=1 v=1 a=v+1
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Figure 5.4: Example of a PV finite mixture model with 2 pure and 2 PV classification
classes. The same parameters have been used as were used for the mixture model in
figure 5.3, but one of the pure classification classes has been removed so as not to
complicate the illustration. Note that only a single PV intensity density between the
two pure classes was used in figure 5.3. Now each PV class has been split into two PV
classification classes so as to allow the posterior probability to be calculated for each
classification class instead of an additional, somewhat artificial PV density.

where K is the number of classification classes. This formulation allows the posterior
probability via Bayes to be calculated for individual pure voxel classification classes,
Tv, or PV voxel classification classes, 7,,. Variants of this type of PV model can be
seen in [122, 123], which were previously discussed in chapter 4.

An improvement to equation 5.4 is possible that allows for the posterior probability to
be calculated for individual pure and PV voxel classification classes combined. This
improvement was proposed by Vokurka et al. in 2002, [148] and consists of separating
the PV PDF's or PDF components into two separate components, corresponding to the
two pure components from whence they came. This is illustrated in figure 5.4. The
PV PDF is now separated into two classification classes. In this case these mixture
classes were modelled as triangular PDFs, pT(g\TfaT ) convolved with the respective
pure classification class Gaussian PDF, pg(g|7,). i.e. The convolution of a triangle
or ramp with a Gaussian from the pure classification (tissue or activity) class with
characteristic width o,. This results in pGT(g|TEg ), where GT is indicative of the
Gaussian-Triangle convolution. This convolution is discussed shortly.

The mixture model for such a PV finite mixture model is given by:

K K-1 K
p(9) =Y _plgln)P(r)+ Y > Apar(glris)-Per(ria) + par(glrey )-Por(rgy )}
v=1 v=1 a=v+1
(5.6)
where Tng is not equivalent to Tff . i.e. These PV events are seen as distinct, TfaT x
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7ET unlike the PV events for equation 5.4, 707 = TaG;;F . It should also be noted that,

a,v ) ,a

K

K-1 K
D P+ Y Y (Por(rid) + Par(rgl) = 1. (5.7)

v=1 v=1 a=v+1

This results in the posterior probability using Bayes theorem for an individual classifi-
cation class, 7, to be given by:

p(glm).P(7y) + VZ; par(glr&T) Par(v8F)
a+v

p(g)

p(rolg) = (5.8)

The composition of a particular voxel is then given by analogy of the computed posterior
probability, as previously described for the finite Gaussian mixture model with equation
5.3.

Gaussian-Triangle Convolution Density

As has already been discussed and originally suggested by Vokurka et al. in 2002
[148], the PDF for a PV classification class, pGT(g|ng ) in equation 5.8 is given by the
convolution of a triangular PDF, pr(g|7, ) with the respective pure Gaussian density
p(g|Ty). This section discusses the convolution, its evaluation and its form. For a
complete evaluation of the convolution see appendix B.

The equation for the triangle can be formulated in terms of the formula for a straight
line, y = M.x + C:

oM.g+C) for p,<g<p,

5.9
0 for elsewhere (5.9)

pr(aira) = {
where 1, and u, are the mean values for classification classes 7, and 7, respectively,
from which the PV density belongs. @ is a normalising parameter, M is the slope
and C' is the intercept of the straight line. @ is easily calculated from the integral of
this function (see appendix B) and M = —1 or +1 and C' = pu, or —pu, depending on
whether 7, , is being considered or 7, .

Now consider the pure classification class PDF:

_ g’ 5.10
pG(Q\Tu)—Tﬂg-eXP —m s ( )

v

where g, has been dropped because this PDF is now convolved with pr(g|7y,,) which
is defined between the two means of the two classification classes, 7, and 7,:

pGT(g\TfaT) = pa(g|m) * pT(QVSaT)
Hv

= /pa(g — 7)) pr (Y75 dy, (5.11)

Ha
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Figure 5.5: Illustration of exemplar Gaussian-Triangle PV density plots given by
pGT(g|T§aT ) and pGT(g|T(fUT ), (see equation 5.12). Dotted lines are the original tri-
angular densities, pr(g|7v.q), P7(9|7a,v) and the solid lines correspond to pGT(g\TEaT),
pGT(g|TfUT ). The parameters used to generate these example densities were p, = 50,
e = 200 and o, 0, = 4.

where « is the variable of the convolution integral. For more information about convo-
lution see for example [134]. The result of this integral is given by:

GT (M.g+C) g — My g — Ua
=7 “{erf —erf

—M.oy (g - Nv)2 (g - ,ua)2
— = — =l I 5.12
T oVan {eXp ( 2.02 P\ 902 (5.12)
Figure 5.5 illustrates a pair of example Gaussian-triangle PV densities from equation
5.12.

5.1.3 Model C: Continuous PV Mixture Model

The posterior probabilities of models A and B are representative of the composition
of individual voxels, utilising discrete classification classes. The use of Bayes formula
in this way is very convenient and computationally efficient but it also obscures some
of the more subtle aspects of the PV problem. Chapters 1 and 2 illustrated that the
effect of the action of the PSF was to merge the independent classification classes into
a single entity. An explicit model of PV composition of individual voxels is therefore
proposed and in this way a more mathematically consistent model of the PV effect
can be realised. This is the approach taken for model C, described shortly. It is then
compared to models A and B.
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Model C incorporates the voxel content explicitly as a random vector of continuous
random mixture variables (in the range of 0 to 1-where 1 is total pure voxel content
and 0 is zero voxel content). Each element in this mixture vector represent the content
of the voxels as random variables. This mixture vector can then be used explicitly
in Bayes theorem as variables of conditional densities, together with other variables
such as image intensity. Thus, to clarify the change in reasoning, Models A and B
described in this thesis utilised discrete PV voxel label assignments, but model C utilises
continuous voxel label assignments. The use of continuous voxel labels to model the
PV effect is akin to the approach taken by, for example [24, 162]. These PV models
often incorporate a spatial smoothness constraint (see chapter 7 for more information
on spatial smoothness). But they do not necessarily model the global likelihood of
the possible mixture configurations which is in contrast to the approach taken in this
chapter, similar to that also taken in [162, 3, 78]. Classification with a global mixture
likelihood can be used as a pre-cursor to the application of a model that incorporates
a smoothness constraint which will be addressed in chapter 7.

An important distinction between the work in this chapter, described by model C
and the work in the existing literature that emphasises the use of a global mixture
likelihood prior is the method of inference. Many techniques infer utilising the mode
of the posterior, i.e. the most probable mixture configuration of a voxel. This includes
techniques that rely on the EM algorithm, [78, 95] or Monte Carlo techniques that have
been designed to find the mode [3]. Model C of this section utilises the posterior mean,
i.e. the expected mixture configuration given the data and the model, which has also
been used in [162] via a fully Bayesian technique utilising Gibbs sampling. As noted
in texts on Bayesian techniques such as [77], the expected posterior value is equivalent
to a point estimation with a minimum squared error loss. This is the quantity that
many authors attempt to minimise as part of performance characterisation of their
techniques, see e.g. [74, 128] and the work in this thesis.

Related work, such as might be found in the remote sensing literature, have used
the posterior mean, for example Kitamoto and Takagi 2000, [66]. There are subtle
differences between the work here and in [66], notably where Kitamoto and Takagi
make hard decisions about whether their satellite imagery pixels are either pure or
mixed. If a decision is made about a particular pixel being mixed, then the pixel’s
constituents are then estimated via the posterior mean. This strategy appears to be
rather inconsistent, combining optimal mixture estimates from posterior modes and
posterior means. This is in contrast to model C (and all subsequent models in this
thesis) where the optimal posterior point estimate is given by the posterior mean.

The importance of the posterior mean for model B is also highlighted through an
analytical comparison of model B with the model of this section, model C.

Voxel Labels

For this model each voxel, w, is composed of signals from a number of classification
classes, a o, € [0, 1] where v is indicative of the classification class, as for 7,.. If then, for
example, a,,, = 1 then that voxel is considered to be composed of only classification
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Figure 5.6: Sketch of the model space described by equation 5.15 for two pure compo-
nents.

class 7,. If there are K classification classes then:
K
D awy =1V w. (5.13)
v=1

A PV vector for each voxel is then composed of these individual PV components:

Ay = (OQ,_,J Q.2 -e- ava)T' (5.14)

The probability density of obtaining a particular mixture vector when a particular
intensity measurement occurs is given by p(a,|gw). This probability density is known
as the posterior probability density of the mixture vector and can be determined using
Bayes theorem:

_ P(Jwlow) plaw)
Plowlgn) = == )

where p(ay,) is the prior probability density for the mixture vector; p(gw|ow) is the
grey level likelihood or PDF given a particular mixture vector and p(g,,) is known as
the marginal grey level density. Each of these terms are sketched in figure 5.6 and will
now be discussed.

(5.15)

Grey Level Likelihood

The grey level likelihood that was central to the previous models, and is also here, can
be considered. But now it is dependent on the mixture vector, «, (dropping the point

specific notation):
(9 — #a)2>

2
2.0

1
plala) = .o -
Ua

5— (5.16)
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where o, = al.p is the mixture mean, 02 = Y (ay.0,)? is the mixture variance

v=1
calculated by taking the product of each class mixture variable (squared) with the

respective class variance, and p = (uy po ... px)? is a vector of the classification class
means. Equation 5.16 and the calculation of the mixture parameters effectively assumes
linear uncorrelated mixing of the individual classification components. This signifies
that each classification class signal is uncorrelated and Gaussian distributed, as has
been used in many other models of the PV effect, e.g. [24, 74, 158, 64, 162]. There are
some potentially open questions about the validity of assuming linear mixing, especially
for MR imaging data for particular tissue type combinations. This was discussed in
the review of existing work, chapter 4 and is also examined in more detail in chapter
2. The mixture parameters, y, and o2 can be calculated in this way due to the result
of the sum of K Gaussian distributed random variables as demonstrated in appendix
C. The assumption of Gaussianity has already been discussed in section 5.1.1.

The Mixture Vector Prior Probability

The prior density, or global mixture likelihood, p(c), takes a similar form to the mixture
combinations utilised in models A and B although the prior densities were not explicitly
defined for these previous models. The prior density limits the PV model to possibilities
of PV mixtures containing a maximum of two classification classes (as for model B),
thus ignoring the very small possibility of a voxel containing more than a single mixing
component:

K
pla) = plow).P(r) + > plow, aq).P(7y0)- (5.17)
This simplifies for the case of K = 2, i.e. two classification classes, so that:

pla) = p(a1).P(11) + paz).P(r2) + pla1, az).P(112). (5.18)

The continuous prior probability density for each pure classification class is given by,

play) = 0(1 — ap). f(ay). (5.19)

The Dirac delta function, () is used to limit the pure terms in equation 5.17 to partic-
ular mixture vector values that are representative of a single component being present,
i.e. when «, = 1.0. This is due to the sifting property of the Dirac delta function, d(),
as will be seen shortly. f(«,) is a prior mixing density discussed below.

The PV prior probability densities are given by,

plaw, ag) = Ulay, ag). f(ay, ag) (5.20)

where the indicator function, U(a,, aq) = 1iff 0 < ay, g < 1, otherwise U (o, aq) = 0,
thus limiting each PV term to be valid when only two mixture components are present
(i.e. non-zero) and all other mixture components are zero in value.

For this particular model, a very simple approach is adopted to address the mixing prior
functions. These are, in this case, assumed to be given by uniform densities, f(a,) =1
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for ay, € [0,1] and f(ay,q) = 1 for ay, oy € (0,1). Uniform prior mixing densities
have been used in most models of the PV effect (either implied or explicitly assumed),
see for example [3, 117, 122]. A uniform density implies that all PV combinations are
considered to be equally likely, but this simplifying assumption is not strictly true as
will be seen shortly. The topic of PV mixture densities is investigated in chapter 7
where more informative forms of the two classification class mixing prior functions,
f (o, ay) are investigated.

Marginal Grey Level Density

The marginal grey level density as used in equation 5.15 as a normalisation term is
defined for this model as:

plg) = / plgler) ple) dex, (5.21)

[0

so that the mixture vector is integrated out of the expression (or marginalised) resulting
in a density that describes the marginal grey level density, i.e. irrespective of the values
that the mixture vector may take.

Expanding out the definitions for the grey level likelihood, p(g|a) (from equation 5.16)
and the PV prior density, p(a), (from equation 5.17) the argument of the integrand in
equation 5.21 becomes:

=

-1

K
p(gla).p Zp gla).p )+ > > plyla)play, 0a) P(rua).  (5.22)
a=v+1

I
—

v

So that equation 5.21 results in:

K— K
/{mea (o). P(7) ZZ (glcr). (av,aa)P(Tva)}da (5.23)

[0

The mixture model is limited to PV voxels composed of two components and pure
voxels. As a result of this, the marginalisation process consists of integrating with
respect to a for each PV component where each PV component consists of two PV
variables, a, and «a,. As noted by Santago and Gage in 1995 [123], these two PV
variables are equivalent to a single random variable because, for a two class problem,
ay = 1 — ag, so that the marginalisation of each PV component results in

/p(g|a).p(av,aa).P(TU,a).da = /p(g|av,aa =1—oy).p(ay, aq = 1—0y).P(Tyq).day

[e% Oy
So that the marginal density is given by

K

Z/ (9lat).p(ay).P(1y).doy, + Z Z /p gla).play, o). P(Ty,q).doy,.

v=1 a= v+1au

(5.24)
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Noting that, for an arbitrary function, f():

[e.o]

[ 8= . f@yda = f0), (5.25)

where §(0) = oo and [ §(x).dz = 1, then the integration over the pure mixture
components takes advantage of the sifting property of the Dirac delta function in the
pure classification class priors so that

K K-1 K
p(g) = Zp(gh—v)'P(Tv) + Z Z P(Tv,a)~/p(g|a)'p(avaaa)'dava (5.26)
v=1

v=1 a=v+1 aw

remembering that p(g|a) is the grey level likelihood, a Gaussian distribution defined
in equation 5.16 which is a function of the means, p and standard deviations, o. This
demonstrates that the marginal density is now composed of the sum of the scaled pure

components
K

S plgln)-P(r) (5.27)
v=1

and the sum of the scaled PV components

K-1 K
S Y Plra). / p(g]e) plar, aa).-deve. (5.28)

v=1 a=v+1 o

The integral in this marginal distribution is evaluated in the experiments that follow
shortly using numerical integration methods. As will be seen in chapter 7, evaluation
of the marginal distribution is often not required.

Inference from the Continuous PV Mixture Model

A different approach is required to make a decision as to the composition of a PV voxel
for the model of this section, model C. In the previous models, A and B, voxel compo-
sition inference was performed by analogy with the probabilities obtained from those
mixture model posterior probabilities for the discrete classification class memberships.
In contrast to this, model C, the continuous PV mixture model explicitly describes
the continuous mixture composition of the individual voxels. So now it is possible to
make PV inferences without analogy from the posterior density, p(ca|g) given by Bayes
theorem previously described by equation 5.15. The posterior density results in a con-
tinuously defined range of probabilities for any combination of PV mixture values for
any particular grey level. Figure 5.7 illustrates three possible posterior densities for a
particular exemplar mixture model.

Usually some instance of the PV mixture vector, & has to be inferred from the range
of possible mixture values, resulting in a decision as to the PV composition of a voxel.
Two approaches are often cited in the Bayesian literature, the posterior mode or the
posterior mean, [116]. The mode is often used (e.g. [3, 24, 128, 95]) to infer the most
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Figure 5.7: Comparison of three posterior densities, for a mixture density with param-
eters, p, = 75,y = 100 and o,,0, = 5. The feature space is sketched in the earlier
figure 5.6 which helps to explain the sharp peaks at & = 1 or 0 in the sub-figures
illustrated here. The posterior density may have more than a single mode (‘00" in (b)),
where the lowest probability mode corresponds to the appropriate mixture value. The
relative parameter values are similar to what might be found in MR imaging data of
the human brain.
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likely PV mixture, usually when neighbourhood information is also being modelled,
(e.g. [24, 128, 95]).

For this particular formulation where neighbourhood information is not modelled, it is
clear that the mode is not a suitable choice due to the possible multi-modality of the
posterior density (see figure 5.7). Therefore the mean, or expected posterior value is a
more reasonable choice:

E [ |p(cg)] ay-p(elg).dovy, (5.29)

O\H

so that (abbreviating the conditional expectation notation, E [y, |p(ag)] to E [aw|g])

E [a1]ge)]
o, = E [O‘2|gw]
E axg.]

Where each expectation takes the form, following on from equations 5.29 and 5.15:

1
o/
Elaylg] = — [ av.p(gla Ay, 5.30
9] ) J o) .p(a) (5.30)

this results in, (utilising equation 5.22):

1
1
E[alg] = — | p(glm).P(70) + Z /av-p(g|a)'p(avaaa)-P(Tv,a)'dav ., (5.31)
p(9) s
0

where ag = 1 — «p.
The integrals are calculated with numerical methods for the experiments that follow
shortly.

Comparison of the Continuous PV density with the Gaussian-Triangle PV
density of model B

It is insightful to make comparisons between this expression and equation 5.8, the
posterior for model B that utilises the Gaussian-Triangle PV densities as illustrated
in figures 5.5. The result of each integration in equation 5.31 can be thought of as
approximately equivalent to the Gaussian-Triangle PV densities in 5.8:

1
per(glrST) Par(r6T) = / o p(9]02) p(atr, )P (7.0)-deve. (5.32)
0

Remembering that 2.PGT(TfaT) = P(7y,4) and from equation 5.11:

o
por(rST) = / P9 — Am) pr(IrST).dv, (5.33)

Ha
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which means:
Hov
pe(g — ) pr(Y|TET).dy =
Ha

N —

1
/ay.p(g\a).p(ozv, ag).do,. (5.34)
0

Expanding out the function definitions yields (using p(ay,, 0 = 1 — ) = 1, from
equation 5.17):

exp <— v~ W) 5 ! (v — pa)-dy

1
S
&~ | ap————.exp | ————5" | .day. (5.35)
2 2 1.02 2.02
) V202

Due to the two class mixing and the direct correspondence between the mixing of
the mean values and the mixing parameter, ., the mean values can be thought to
correspond to pure and zero content of classification class 7,. Therefore a change of
variables is performed on the right hand side, using

to = iy + (1 — ) pas (5.36)
so that p
uav _ _
doy, Mo — Ha, (5.37)

resulting in (assuming o, is not dependent on ay,):

Mo
1 (9 — 7)2> 1
Somoz AT : — f1a)-d
/ \/m P < 2.012) 2'(,UU _ ,ua)Q (’7 ,ua) 8l
Pa
Ho
1 - 1 _ 2 d
E_/Ma e z'eXP<—(g to) > Fo_ (5.38)
2 Hy — Ha 2.7T.Ua 2,0'01 Ly — fla
Ha

This simplifies to:

(9—7)2> .2'(7—%) i

Hov
[ o

2.m.02 2.03
Ha

(Mv - Ma)Q‘
[ (9= 10)”\ (0 — )
g — Ha Mo — Ha
~ —.eX — . .d 5.39
/ V202 P < 2.0% ) 2.(po — pa)? fo (5.39)
Ha

Clearly they would be equivalent except for the fact that o, # o, and o is not constant
because o, varies according to:

o2 =as.00+ (1 —ay)?.ol.

(5.40)
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Figure 5.8: Comparisons of posterior mean point estimates of model C (complete higher
lines) with the Gaussian Triangle convolution PV densities of model B (dotted lower
lines) for increasing difference between the standard deviations of each of the pure
classes. These plots (see also overleaf) illustrate that for equal standard deviations,
the posterior mean of model C is approximately equivalent to the Gaussian Triangle
Convolution PV densities of model B. When the standard deviations are quite different
then the two models diverge. Parameters used were, p, = 50, pu, = 200 and (a)
oy, 04 = 10; (b) 0, = 10,0, = 20; (¢) 0, = 10,0, = 30; and (d) o, = 10,0, = 40.
Continued on next page.



100 Chapter 5. Intensity Based Finite PV Mixture Models

0.006

0.005

0.004+

PDF

0.003+

0.002+

0.001+

grey level, g

(c)

0.007

0.006+

0.0054

0.004+

PDF

0.003

0.002+

0.001+

grey level, g

(d)

Figure 5.8: Continued.
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Figure 5.8 illustrates the similarity of these two functions for exemplar sets of pa-
rameters. For equal standard deviations the two models appear to be approximately
equivalent but when the standard deviations are not equal the two models diverge.
This would also appear to be the case for the model found in [102] which also uses a
linear combination of variances, similar to Vokurka et al. in [148].

So the result of equation 5.39 shows that models B and C are approximately equivalent
for equal standard deviations. Model B was previously described in [140] as

“...an estimate of the mean volumetric contribution to the formation of a voxel with
grey level g.”

However this statement was made without further justification. The result of equation
5.39 now provides evidence to show that model B does provide an estimate of the mean
volumetric contribution when the standard deviations are very similar, but when the
standard deviations are quite different then the models are not equivalent.

This result is interesting and experiments that are discussed shortly will also compare
the performances of the classifiers based on models B and C.

5.2 Experiments, Results and Discussions

The procedures for a series of experiments are now discussed and their results are also
presented in this section.

5.2.1 Classification of Two Class Simulated Data

This experiment utilises the Gaussian mixture model (A), the Gauss-Triangle PV model
(B), and the explicit mixture model (C) to classify two classification class simulated
PV data. The results of each classification are then quantified by comparison with the
simulated ground truth.

These simulations and their respective classifications with PV models A, B and C allow
the performance of each of the PV classifiers to be assessed under controlled conditions
where the parameters of the simulated data are known a priori. The simulated data is
generated with a range of CNRs that might be realistically found to occur in medical
imaging data.

Experimental Procedure

Two class simulated PV data with a series of ellipsoid bands or concentric spheroids
were generated. These concentric spheroids maximize the surface area thereby max-
imising the number of PV voxels that are generated after convolution with the PSF.
Table 5.1 lists the simulations and the respective parameters used by the software simu-
lator to create the simulated data. Exemplar central transverse image slices can be seen
in figure 5.9. Each simulation was downsampled from a high resolution 512 x 512 x 512
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Figure 5.9: Exemplar middle transverse image slices from each two class simulated
data volume (details in table 5.1). Top left slice corresponds to the simulation with the
greatest mean distance (1000) and the remaining slices are displayed in CNR descending
order from left to right and from top to bottom corresponding to table 5.1. Notice how
the contrast to noise ratio gradually becomes worse until the two classes become very
difficult to distinguish in the final simulation with only a mean distance of 40. These
image slices were produced with the aid of MRIcro, [114], where the contrast auto-
balance feature was used, which scales the highest and lowest 1% of image intensities
to 255 and 0 grey levels respectively.
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Table 5.1: Summary of the two class simulations’ parameters.

Mean Stan. Stan. No

CNR || Distance || Mean 1 | Mean 2 || Dev. 1 || Dev. 2 || Bands
50 1000 500 1500 20 20 2
40 800 600 1400 20 20 2
30 600 700 1300 20 20 2
20 400 800 1200 20 20 2
10 200 900 1100 20 20 2
9 180 910 1090 20 20 2
8 160 920 1080 20 20 2
7 140 930 1070 20 20 2
6 120 940 1060 20 20 2
5 100 950 1050 20 20 2
4 80 960 1040 20 20 2
3 60 970 1030 20 20 2
2 40 980 1020 20 20 2

sized volume. A symmetric Gaussian PSF was selected so that the FWHM of the PSF
corresponded to voxel sizes that would produce a 128 x 128 x 128 size downsampled.

Each simulation was then classified with a PV classifier utilising each of the models
described thus far, models A, B and C. The parameters for each model were obtained
from either the simulation parameters or for the case of the prior terms, P(7,) and
P(Ty,q), these were estimated utilising the ground truth associated with each simulation.
Knowledge of the true parameter values allowed for the performance of the classifier
with the respective model to be assessed, independent of any parameter estimation
algorithm.

Performance assessment was undertaken with the voxel Root Mean Square (RMS) error
metric, in common with the quantitative assessments previously undertaken in the
literature on PV classifier performances, (see e.g. [74, 128]). Each voxel of the classifier
output is compared with the noiseless ground truth data that has been convolved with
the PSF. The mean of the squared differences for all the voxels in the data volumes is
calculated and the square root is taken.

Results and Discussion

The voxel RMS error results for the classification of the two class PV simulations can
be seen in figures 5.10 and 5.11 for PV classifiers utilising models A, B and C.

The voxel RMS error measures the disagreement between the classifier PV estimate and
the ground truth for every voxel that has been classified in the imaging data. These
figures appear to demonstrate that the classifiers utilising models B and C possess
similar PV classification performances. This is consistent with findings in section 5.1.3,
equation 5.39 when the standard deviations for the two pure classes are equal, which
is true for these simulations.
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Figure 5.10: Plot of RMS PV voxel errors obtained for the classification of two class
simulated data. o correspond to data points obtained for the finite Gaussian mixture
model (model A); > correspond to data points obtained for the Gaussian-Triangle
convolution formulation (model B); and * correspond to data points obtained for the
explicitly modelled mixture values (model C). Notice the approximate reciprocal rela-
tionship between the RMS voxel error and the CNR value.
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Figure 5.11: Plot of RMS pure voxel errors obtained for the classification of two class
simulated data. o correspond to data points obtained for the finite Gaussian mixture
model (model A); > correspond to data points obtained for the Gaussian-Triangle
convolution formulation (model B); and * correspond to data points obtained for the
explicitly modelled mixture value model (model C).
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Each of the PV classifiers’ performances appear to degrade as the mean distance de-
creases, as expected, especially when one considers the especially low CNR for some of
the simulations as illustrated by figure 5.9.

The finite Gaussian mixture model, described by model A, where the PV effect was
not modelled by additional mixture components has the worst PV voxel classification
performance for the majority of the simulations displayed in figure 5.10. But figure 5.11
illustrates that the finite Gaussian mixture model actually performs slightly better on
classifying pure voxels in some of the simulated data volumes when compared with the
two models that do model the PV effect. One might argue that the differences between
inter-classifiers’ performance presented in figure 5.11 is slight. This is especially true
given that for the lower CNRs (CNR< 6), the RMS voxel error is very much worse.

Furthermore, the pure voxels are identified exactly for this simulated PV data with
the simulation parameter information. For real imaging data the true or underlying
parameter values will not be known. Also the PV simulation process described here
is a simplification of the true data acquisition process. Real imaging data will have
many other minor artefacts or deviations from an expected model thus complicating
the somewhat artificial notion of being able to identify a voxel as consisting of a single
component or a mixture of components.

Reciprocal PV RMS Error Rule

The degradation of the PV RMS error appears to follow the reciprocal of the CNR. This
observation is consistent with other similar intensity based classifiers and simulations,

see [153]. This can be understood by inspection and comparison of the formulae for
the CNR and the voxel RMS error. Recall that the CNR is defined as:

CONR,,, — I = ral (5.41)

Ov,a

and the intensity normalised RMS error is defined as:

# >z, = Mo, )’
RMS = d : (5.42)

1o — thall

where pr, is the ground truth value for voxel w and pq, is the classifier estimate for
voxel w. If the CNR and RMS error do possess a reciprocal relationship, then

LS (uny = ta)’
Yw

Ov,a
’ = , (5.43)
[0 = tall [0 = tall
which simplifies to
1
Ooa =72 (1 — o)’ (5.44)
Yw

The r.h.s. is clearly a variance measure which helps to illustrate why the CNR value
appears to share a reciprocal relationship with the PV RMS voxel error.
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Table 5.2: Summary of the two class simulations’ parameters with unequal standard
deviations.

Stan. Stan.
CNR || Mean 1 || Mean 2 | Dev. 1 || Dev. 2
20.0 900 1100 10 10
15.0 900 1050 10 10
12.6 900 1100 10 20
10.0 900 1000 10 10
9.5 900 1050 10 20
8.9 900 1100 10 30
6.9 900 1100 10 40
6.7 900 1050 10 30
6.3 900 1000 10 20
5.5 900 1100 10 50
5.1 900 1050 10 40
4.5 900 1000 10 30
4.2 900 1050 10 50
3.4 900 1000 10 40
2.8 900 1000 10 50

5.2.2 Classification of Two Class Simulated PV Data with Unequal
Standard Deviations

At the end of section 5.1.3, models B and C were compared analytically. It was shown
that model B approximates model C when the data possesses equal standard deviations
for all the classification classes. Figure 5.8 illustrated that for greater differences in
the standard deviations of the classes being classified, the further model B diverges
away from a linear mixture PV model. The previous section presented experiments
on simulated PV data with equal standard deviations, which confirmed that models B
and C possess approximately equal classification performance. Therefore a further set
of simulated PV data was generated but with unequal standard deviations for the two
classification classes.

Experimental Procedure

The parameters of the simulated PV data with unequal variances can be seen in table
5.2.

The parameters were selected so as to concentrate on the CNR values most likely to
be applicable to real medical imaging data and where greatest change was found for
the voxel RMS error in the preceding set of experiments, i.e. for CNR values between
0 and 20. This was undertaken by selecting three mean distances (900,1050; 900,
1100; and 900, 1150). The standard deviation for the lower mean intensity class (900)
was kept constant with a value of 10 and the high mean intensity classes, utilized
standard deviation values of 10,20,30,40 and 50. These simulations therefore produced
a reasonable number of data points to enable the comparative assessment of models



108 Chapter 5. Intensity Based Finite PV Mixture Models

40%
Tl
30%
#* O
N_ *
B QO
S -
a,
w 0% WD
:é': | ey |
Ry
— 3 .
N BB
%)
B
]
10% ol
m
#
0%
[} 5 10 15 20
CNR

Figure 5.12: Comparison of Models B and C for classifying two class simulated PV data
with unequal standard deviations. RMS PV voxel errors are shown. < correspond to
data points obtained for the Gaussian-Triangle convolution formulation (model B); and
« correspond to data points obtained for the explicitly modelled mixture values (model
C). Also shown is the reciprocal of the CNR, o, illustrating the reciprocal relationship
of the PV error in relation to the CNR value.

B and C PV classifiers for a variety of CNR values resulting from unequal standard
deviations. The CNR for unequal standard deviations is calculated here using the mean

variance, i.e.

CNR,, = ko — pall (5.45)

02402
2

Performance assessment was again undertaken with the voxel RMS error between the
true ground truth values (noiseless) and the output of the classifiers.

Results and Discussion

The voxel RMS errors for the PV, pure and gross (PV and pure) voxels can be seen in
figures 5.12, 5.13 and 5.14 respectively. Figure 5.12 also includes points plotted from
the reciprocal of the CNR value and can therefore be compared with the PV voxel RMS

values in this figure.
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Figure 5.13: Comparison of Models B and C for classifying two class simulated PV data
with unequal standard deviations. RMS pure voxel errors are shown. <1 correspond
to data points obtained for the Gaussian-Triangle convolution formulation (model B);
and * correspond to data points obtained for the explicitly modelled mixture values
(model C).
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Figure 5.14: Comparison of Models B and C for classifying two class simulated PV data
with unequal standard deviations. RMS gross voxel errors are shown. < correspond
to data points obtained for the Gaussian-Triangle convolution formulation (model B);
and * correspond to data points obtained for the explicitly modelled mixture values
(model C).
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Each of the figures demonstrate generally good agreement between the performance of
the PV classifier utilizing model B and the performance of the PV classifier utilizing
model C. This is especially true for the voxel RMS error for the pure and PV voxels
combined (gross, see figure 5.14). The difference in the PV error for models B and
C appears to decrease for higher CNR values (> 10). This is due to the data points
with CNR values of 15.0 and 20.0 possessing equal standard deviations. The PV voxel
RMS error disparities appear to complement the pure voxel RMS error disparities,
which result in the almost equivalent gross voxel RMS error. These disparities are
likely to have arisen from the differences in the distributions, previously illustrated in
figure 5.8. For larger differences in standard deviation value, the spread of the PV
distribution for model B is wider in comparison to the spread of what would be the
PV distributions for model C. For model B, this reduces the relative weight of the
pure components for the intensities surrounding the (pure component) mean values.
This has the effect of reducing the classifier performance for pure components, unless
the CNR is particularly low, i.e. where the pure distribution components start to
overlap each other. This can be observed in figure 5.13. The wider spread of the PV
components for model B also increases the probability that some PV voxels may possess
increased posterior probabilities for model B in relation to the usually dominating effect
of the pure components. The effect on the gross error is therefore small due to this
complementary behaviour.

The theoretical CNR-reciprocal PV error also illustrated in figure 5.12 demonstrates
reasonably good agreement with the experimental values. This is especially true for
CNR values > 6. For the very low CNR values, the effect of the overlap of the pure
components would result in this theoretical PV error no longer being valid. This is due
to dominating effect of the pure components and dominating effect of the error from
the overlap of the pure distributions. This observation is supported with the following
argument.

If there is some imaging data that can be described with a two class mixture model with
Gaussian distributed components, with means p1, ps and equal standard deviations o,
then it is desired that the two distributions have zero overlap which occurs at some
multiple, x of the standard deviation. This can be expressed by (where ug > p1):

(o — k.0) — (u1 + k.0) = 0. (5.46)
Solving for multiples of x reveals:

gp = P2 =) (5.47)

o
which is now expressed in terms of the CNR value for this imaging data. Consider
the fact that Gaussian distributions possess very little distribution at a distance of 3.0
or greater from the mean value. Then this would also suggest (from equation 5.47)
that CNR values greater than 6, i.e. where x = 3, would result in imaging data with
non-overlapping intensity distributions. This therefore helps to explain the greater
disparities, seen in figure 5.12, between the theoretical PV error and the PV errors
obtained for PV models B and C for CNR values smaller than 6. This is further
illustrated with exemplar Gaussian component plots in figure 5.15.



112 Chapter 5. Intensity Based Finite PV Mixture Models

0.00

0.0074

0.0064

0.005+

0.004+

PDF

0.0034

0.0024

0.001+

0.000 . ; : :

Voxel Intensity

(a) CNR=4

0.012

0.0104

0.008+

0.0064

FDF

0.004+

0.0024

0.000 T T T T T T T T T
200 40 60 80 10D 120 140 160 180 200

Voxel Intensity

(b) CNR=6

0.016

0.014+

0.0124

0.0104

0.0084

PDF

0.006+

0.004+

0.0024

0.000 T T T T T T T T T
0 20 40 B0 B0 100 120 140 160 180 200

Vaxel Intensity

(c) CNR=8

Figure 5.15: Illustration of the amount of overlap for different CNR values. Two
Gaussian components, mean values of 50 and 150 and equal standard deviations, are
illustrated in each sub-figure. The CNR value is adjusted by varying the standard
deviations. Notice for CNR< 6 the overlap becomes significant.
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5.3 In Conclusion

This chapter has described two PV models that infer the constituency of a PV voxel
by analogy of probability to the contents (A and B). It has also described a PV model
(C) that has been found to be approximately equivalent to one of the analogous PV
models (B). The performance of the classifiers were limited for smaller CNR values.
Observations from real imaging data suggest that clinical CNR values are usually below
10, (for example some neurological MR imaging data). If a contrast medium is being
imaged within the patient, or a longer acquisition time is used or larger voxels are
imaged, then higher CNR values might be found.

These observations together with the observed performances of the classifiers in this
chapter suggest that models B and C might be immediately suitable for application
to some types of clinical data. Except, in clinical practise, one should also remember
that other sources of error, such as issues of parameter estimation and limited num-
bers of voxel data samples may produce inferior results to those shown. Similarly, for
quantifying the performance of real imaging data, the separation of the PV and pure
components is a somewhat artificial step due to a number of reasons. These reasons
include the difficulty in knowing whether to assign a ground truth voxel to pure or a
PV mixture, due to an inherent error in any ground truth creation process; and the
number of discretization steps used to divide the possibly continuous intensity scale
of the imaging data may further confuse or complicate the division into pure and PV
voxels. Thus the performance characterisation of real imaging data requires a gross
RMS voxel error that combines the pure and PV errors.

Interestingly the PV RMS voxel error obtained for models B and C was found to be
approximately equal to the reciprocal of the CNR for values greater than 6. This was
not the case for the simpler finite Gaussian mixture model (A), which does not model
the PV effect.

The framework used in model C is to be preferred for further development as it will pro-
vide for the inclusion of new model developments using techniques that are consistent
with conventional probability theory. As will be seen in the chapters that follow, these
developments produce improvements to the classification performance of the models
discussed in this chapter.
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Chapter 6

Feature Space Enhancement with
Image Gradient Magnitude

Chapter 5 found that the classification performance of intensity based PV classifiers was
limited for low CNR values. This can be attributed to the large amount of overlap of
the individual class densities on the single intensity axis, especially when one considers
the PV components of the model and how these overlap with the other components.
This means that given a particular intensity value, if the data has low CNR, then that
intensity value could equally likely have been generated by either of the pure signal
components in the mixture model or by the PV component in between the two classes.

Even if the data has a high CNR(> 6) other sources of error may arise. For example,
if there are three or more pure components the classification process may become even
harder. An intensity located at a position close to the mean value of the central pure
or PV components could have been generated from the central pure component or from
the PV components of the exterior pure components. This situation is illustrated in
figure 6.1

Many PV models of MR imaging data have incorporated multiple image sequences.
These models extend the single intensity feature space to a multiple intensity feature
space (e.g. [24, 74, 138]). These multiple channels allow the vectorial mean distance
between individual pure components to be increased and allow unique vectorial intensi-
ties to be associated with the individual PV components. Sometimes however multiple
image channels may not be available and additional alternative features may be sought
to extend the limited feature space.

6.1 Methodology

6.1.1 Model D: 2-D Gradient Magnitude PV Classifier

One such possible feature for biomedical imaging data is a localised image gradient
magnitude measure, or edge strength as suggested by Williamson et al. in 2002, [157].

115
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Figure 6.1: Hlustration of the dilemma that may occur when attempting to classify
single-channel imaging data with more than two classification class components. The
central pure component shares intensity values from the PV components that are shared
between itself and the adjacent pure components. In addition a third PV component
also shares the same range of intensity values and is generated from the two adjacent
pure components.

intensity

In [157] regions of PV voxels are assumed to be associated with higher values of gradient
magnitude. Conversely, regions of pure voxels are assumed to be associated with lower
values of gradient magnitude.

To understand these assertions, one might like to consider the scenario where PV
voxels are created at the boundary between two classification classes; these PV voxels
will be associated with higher levels of gradient magnitude in comparison to the pure
voxel regions. Clearly not all pure voxels will have low gradient magnitude due to
the inherent noise of the imaging data and not all PV voxels will have high gradient
magnitude values, but on average these assumptions will be true.

Therefore a two dimensional feature space can be created, combining intensity and
gradient magnitude measurements or features from data consisting of pure and PV
component voxels. An exemplar feature space for PV simulated data can be seen in
figure 6.2.

To model this feature space, Williamson et al. chose to incorporate a probabilistic
description for 2-D gradient magnitude within a PV mixture model formulation that
was previously utilised by the same research group [148], already described in this work,
in the preceding chapter, section 5.1.2.

Williamson et al. continued to assume that pure classification classes for MR data are
governed by Gaussian PDFs. With this assumption a result for the combination of two
Gaussian distributed random variables combined in quadrature was taken, originally
given by Rice in 1938, [111]. The result is known as the Rice or Rician density after Rice.
This density is also used to describe magnitude MR imaging data, [48]. As discussed
in chapter 2, at high SNR values, the Rician density tends towards a Gaussian density,
while at low SNR values it tends towards a Rayleigh density.

Initially a probabilistic description of the gradient magnitude applied to PV affected
imaging data will be evaluated and then in the following section this probabilistic
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Figure 6.2: Tllustrative example of (a) intensity vs localised image gradient magnitude
scatter plot or feature space and (b) image slice from simulated PV data from which
the scatter plot was generated. A 3-D gradient magnitude kernel was used to calcu-
late the gradient magnitude. Notice how the gradient magnitude is larger for the PV
points located between the mean values (mean 1 and mean 2) of the two pure mixture
components.

description will be incorporated into the PV mixture model of [148], thus reviewing the
methodology presented in [157].

Derivation of a Gradient Magnitude Random Variable

The process of calculating the 2-D gradient magnitude of imaging data consists of the
following steps:

1. Convolve imaging data, I, with gradient masks, M, and M, for the x and y data
dimensions, creating gradient channels, Z, and Z,:

Zy = I  M,, (6.1)

and
Zy=1xM,. (6.2)

2. Calculate magnitude, Z>p of the two gradient channels, Z, and Z,:

Zop =\ 72+ 72. (6.3)

Convolving the Image Data
For the first step, an important idea and one that was made apparent by the third
model, model C, in the preceding chapter is that every voxel,w, in the imaging data, I,
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results in an intensity, I(w) = g, drawn from a Gaussian distributed random variable
so that (for 2-D):

X(o,o)T = 900,007 X(l,o)T = 901,07 X(nz,o)T = Y(n,,0)T
I = Xo,nT = g7 Xayr =g9anr - Xupe)T = I, 17
Xom)T = 90n)" Xan)T = 91my)” = X(neiny)? = I(nomy)T

where n, and n, are the dimensions of the image and each voxel intensity is an instance
of a Gaussian distributed random variable, i.e.

Xo : Npia,05,)- (6.4)

The convolution masks, M, and M, are ordered sets or matrices of real valued kernel
weights, for example:

+1
My=| 0 |, My=(+1 0 —-1);
—-1

whose elements are indexed by 2-D points, wy,, and wy,,.
These definitions allow for the convolutions in equations 6.1 and 6.2 to be further

defined as:
Zow) = 3 1@h) Ma(wm,): (6.5)
Vwm,,
and
Zy(w) = Y I(w)).My(wm,); (6.6)
Vwmy
where vector arithmetic is used to calculate the points at which the image data is
convolved, i.e. W), = w + wp, — W, and Wy = W + Wy, — W, W, and w,, are the
central points of each of the kernel masks.

»
As can be seen from equations 6.5, 6.6 and 6.4, the elements of Z,(w) = 23 and

Zy(w) = z, . are the results of sums of weighted Gaussian distributed random variables.

The sum of weighted Gaussian distributed random variables are also Gaussian dis-
tributed (see appendix C), therefore:

S:B’(O’O)T = Z:B’(O’O)T Sx’(l’O)T = Z:B’(l’o)T Sx,(nz,O)T = Z$,(nz70)

7 | Senr =20yt Seant =Zant o Seme)? = Za(ng )7
S2,0m)T = Z0,0n,)T Oz, (Lny)T = Zo,(1ny)T S (nany)T T Za(nang)T
where
Spw : N (Mo, 0o 0)- (6.7)

Similarly:

Sy007 = 2,007 Sy107 = 21,07 v Sy ne,0T T Zy,(ne,0)7
Z — Syv(ovl)T = Zyv(ovl)T Syv(lvl)T = zy’(l’l)T Syﬂ(nz’l)T = Zyv(nzvl)T

=

Sy)(o?ny)T = Zyﬂ(ovny)T Sy’(l’ny)T = Zy)(l’ny)T Sy,(nzﬂny)T = Zyﬂ(nzvny)T
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where

Syv“-’ : N(#y,w» 0—@2/,44.:)' (68)

Magnitude Calculation

Now that the results of the convolutions, Z, and Z, have been determined as Gaussian
distributed random variables, it is possible together with equation 6.3 to define the
Cumulative Distribution Function (CDF) of the gradient magnitude random variable,
Pz, (22p) in terms of the PDFs for the two convolution results, pz, (z,) and pz, (z,)*:

Pz, (z2p) = // PZ,,2, (%2, 2y)-A2e . dzy; (6.9)
22D >/ 22+2

and assuming that z, and z, are independent results in?:

Pz, (#2D) // Pz, (22) -z, (2y).dzy.dzy. (6.10)

Z2D> 2+22

To perform this calculation Williamson et al. in [157] suggested that the result due
to Rice in [111] was applicable. Rice derived the gradient magnitude of two Gaussian
distributed random variables for application to modelling of noise characteristics in

electrical circuits and utilised the following parameter values: p; o, = 0 and ag,w = O'g’w.

Relating these parameter values to modelling of the image gradient magnitude allows
for the z gradient mask being located in a homogeneous region of the image data under
which all elements of I have approximately the same parameter values®, while the y
gradient mask is located either:

e Over a boundary or heterogeneous image region, fi, o, 7# 0;

e Over a homogeneous image region , fi, ., = 0.

Figure 6.3 helps to illustrate these conditions further. In all cases, a%w and in are
assumed to be equal. For homogeneous image regions this assumption is true, but for
heterogeneous image regions it might not be true. The assumption of equal variances
greatly simplifies and makes possible the derivation of the approximate image gradient
magnitude PDF.

Therefore:

Py (200) = // L .exp(—#(zg—i—(zy—uzy)) depdz, (611

2
2.m.o .0

2ap>4/22+22

'For detailed information about functions of random variables see for example [134]

2The two gradient convolution results, Z, and Z,, are probably not independently distributed par-
ticularly if large gradient convolution masks are used, but for the purposes of this work this assumption
is deemed to be acceptable.

3Recall from the sum of a number of Gaussian distributed random variables (appendix C) that the
resultant mean is given by the weighted sum of each of the means of the random variables. Also, each
gradient mask has weights that sum to zero, thus reducing the mean of the resultant Gaussian to zero.
This is not the case if the mask is over a heterogeneous region, resulting in non-zero mean values.
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(a) Heterogeneous Case (b) Homogeneous Case

Figure 6.3: Illustration of the two possible conditions of the location of the gradient
masks, M, and M,.

1 L o o 2
= oEy=t // exp (_Tag(zw + 2y = 22y s + ) | dzpdzy. (6.12)
2D >/ 22 +22
where p, = py o and 0, = 0, o, = 0yw. A change of variables is necessary to remove
the double integrals on the single function. Taking advantage of the circular symmetry
of the function, where Z%D =22+ zg, 2y = 2zop.sin(f), zy, = zop.cos(f) and dz,.dzy =
zop.df.dzep, (for further information see for example [136]), so that:

zZop 2.7
22— 2.29p.c08(0). 1y + 12
PZQD(ZQD 27‘(‘0‘2 / /exp( 2D 2D2 0_2( )MZ Mz) .z2D.d0.dz2D, (6.13)
vz
1 9 29D 2.7 (9)
—m.exp (—2.%) /exp( g> ZQD/G ( ) .df.dzop.
—00 0

(6.14)
As the inner integral is of the same form as a special function, known as the modified
Bessel function of the first kind, order zero, the inner integral can be replaced by using,

[47],
2.7

exp 220801z Gy o g (222202 (6.15)
o2 o2

0
the CDF then becomes:

22D

1 2 22 Z292D-
Pz, (z2p) = ;.exp (—QM(;Q) / exp (—22(;:;) Iy (Tﬂz> .zap.dzep.  (6.16)
z ° vz

z z

This CDF, Pgz,, (z2p) is now described in terms of the PDF of Zyp:

22D

PZ?D(ZQD) = /pZQD(ZQD)-dZ2Da (6.17)

—00
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so the PDF of Zsp can be obtained from the CDF by removing the integral:

2, .2
Z + z 29D
Pz, (22D) = EQD.exp <—'LL2722D> Ao < 21;2'uz> . (6.18)

< 2.0 z

This PDF is known as the Rician PDF after Rice, [111], and is an approximate descrip-
tion of the behaviour of the gradient magnitude, Zsp, of the image data, I.

For homogeneous image regions where p, = 0, equation 6.18 reduces to:

22D Z%D
pZQDpure(ZQD) = ? exp | — 92 0_2 . (619)

z Uz
which is known as a Rayleigh PDF.

Equations 6.18 and 6.19 are valid for when Z, : N'(0,02) and Z, : N(uy,0?), where
p> = fy. Clearly other situations may occur, in particular when Z, : N (> 02).
Appendix D demonstrates that when p, # 0, equations 6.18 and 6.19 are still valid,

where p, = \/p2 + p.

Incorporation of the Gradient Magnitude into a PV Mixture Formulation

Initially abstract likelihood terms are considered for the intensity and gradient magni-
tude. Once these abstract likelihoods are considered, it will become possible to incor-
porate the gradient magnitude of equation 6.18 into the PV mixture model formulation
that Williamson et al. utilised in [157].

If a joint intensity, g, and gradient magnitude, zop), likelihood, p(g, z2p) is considered
then from conditional dependence:

p(9,22p) = p(22p|9)-p(9)- (6.20)

So this states that the intensity likelihood formulation can be incorporated without
modification or inclusion of a gradient magnitude variable. But the gradient magnitude
likelihood must be made dependent on an intensity variable.

Once Williamson et al. had established a suitable likelihood for the 2-D localised
image gradient magnitude, (as given by equation 6.18), and the dependencies of the
likelihoods, they adapted the mixture model of Vokurka et al., [148], to include the gra-
dient magnitude likelihood. The intensity based mixture model from [148] has already
been discussed in chapter 5, section 5.1.2 and is referred to here as model B.

For convenience, the equation for the mixture model is repeated here (from equation
5.6):

K K-1 K
p(9) = _p(glm)-P(r) + Y > Apar(gltea)-Por(tua) + par(9l7as)-Por (Tan)}
v=1 v=1 a=v+1

(6.21)
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Figure 6.4: Illustration of the half ellipse function, A(g|7,4) or A(aT, ) used in the
gradient magnitude likelihoods of models D, E and F. This illustration can be compared
with the scatter plot given in figure 6.2 as A() is used to describe the location of the
gradient magnitude as the PV mixtures vary from composition of one class to another.

Upaz is the maximum mean gradient magnitude and determines the height of the half
ellipse.

Incorporating the gradient magnitude likelihood:

K
p(9,220) = > p(22p19,70)-p(g]70)- P(7)
v=1

K-1 K
+ Z Z {p(ZZD‘.%Tv,a)~pGT(g|Tv,a)-PGT(TU,a)

v=1 a=v+1
+p(Z2D|97 Ta,v)'pGT(g‘Ta,v)-PGT(Ta,v)} . (6'22)

Williamson et al. chose to modify the gradient magnitude likelihood by setting the
gradient magnitude mean, p, = A(g|7y,q), where A(g|7y,q) is a half ellipsoid function
defined between the means, u, and pg, (see figure 6.4 and compare to figure 6.2) so
that equation 6.18 becomes:

22D (_ A(glTo.a)® + ng) 1o <Z2D-A(9|Tv,a)) ‘

P(22019: To0) = =5 exp 2.07 o

(6.23)

Clearly, for pure classification class regions of the image data, A(g|7y,q) — 0as g — p,
or i, and as seen by equation 6.19, the 2-D gradient magnitude for pure classification
class image regions where p, = 0, the gradient magnitude PDF is Rayleigh distributed.
Therefore the gradient magnitude term of the first summation term in equation 6.22
corresponds to the Rayleigh PDF (equation 6.19) which is no longer dependent on g,
so that:

ppure(g7 ZZD) = ppure(g)~ppure (ZQD)7 (6'24)
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resulting in:

g, ZQD Zp ZQD‘TU |7_v) (Tv)

K-1 K
+ Z Z {p(ZQD‘gaTv,a)-pGT(g‘TU,a)-PGT(Tv,a)
v=1 a=v+1
+p(22019, Ta,0) -PG1 (9] Taw)-Por (Taw) } - (6.25)

So this is now a PV mixture model incorporating a localised intensity based gradient
magnitude feature. From this, the posterior probability for a particular classification
class can be formulated, following the similar formulation of equation 5.8 of model B
(i.e. using Bayes theorem):

p(g|7o)-p(22D|m0).P(10) + 32 par(9IT0,0)-P(22D19, Tv,0)-Per (Tv,a)
Viji#i
p(g> ZQD)

p(Tolg; 22p) =

(6.26)
This equation expresses the probability of obtaining a particular classification class, 7,
given an intensity value and a gradient magnitude value. As for model B, the voxel
mixture composition is again taken by analogy to the probabilities obtained from these
posterior probabilities.

6.1.2 Model E: Reformulated 2-D Gradient Magnitude PV Classifier

Following the model progressions discussed in the previous chapter, 5, it became ap-
parent that model B was in fact approximately equivalent to model C. However, the
formulation in model C explicitly modelled the PV composition, rather than by analogy
as in models B and D. The same progression in model development is now proposed
for model D to create model E. Model E is mixture model C incorporating a localised
image based gradient magnitude feature.

Recall from section 5.1.3, equation 5.16 described the variation of intensities, g, given
a particular mixture vector, «, repeated here for convenience:

— 1 o (g - NQ)Q
p(gla) = 5 -eXP< 7> (6.27)

2
.05, 2.0'a

[\

Also recall from this chapter the conditional dependence of the intensity and gradi-
ent magnitudes in equation 6.20, but they are now modified to include the mixing
parameter, o

(9, z2p|@) = p(z2p|9, @)-p(gler)- (6.28)

The intensity likelihood is again not dependent on the gradient magnitude. But for
this formulation, the gradient magnitude likelihood is dependent on the intensity and
the mixing vector, a. However, the mixing parameter can now take the role that ¢
took in the half ellipsoid function, A(g|7y,,). This can be understood from the fact that
the half ellipsoid was initially proposed as a model of the gradient magnitude centering
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parameter, u,. The dependence on the intensity to determine this parameter results
in a direct dependence on the noise that is also associated with the voxel intensities.
This direct dependence is removed with the use of the mixing parameter vector, o,
thus modifying equation 6.23 to:

A v,a 2 2 A a
p(z2p|o, Tyq) = ?—D.exp <— (@]70)” + ZQD) o (M) . (6.29)

2 2 2
z 2.0’Z o

The gradient magnitude is therefore no longer dependent on the intensity feature, g:

p(9, 22p|e) = p(gler).p(22p|ev). (6.30)

The introduction of the mixing vector, a thus provides a further useful role. It not
only incorporates a conceptually useful variable which can be related to the actual
underlying physical processes, such as voxel content, but it also removes the conditional
dependence of the likelihood terms. This therefore reduces the direct dependence on
the intensity variable, g and consequently the effect of system noise in this gradient
magnitude term.

Inference from the posterior, p(a|g, z2p), follows the same formulation and prior, p(a),
as for model C (see chapter 5), utilising the expected posterior:

E [Oéﬂg, ZQD] -

m'p(9|7v)-p(zzpITv).P(Tv)

1

1
+M’ Z}/O‘v-P(9|a)-P(22D|Of,Tv,a).p(av,aa).P(TU,a).dav, (6.31)

Vi#i

The use of A(g) in the preceding formulation results in the gradient feature being
directly dependent on the intensity feature, g. This dependency affects the inference
of the PV content. A(a) removes this dependency, therefore allowing the posterior
mean to be (correctly) evaluated over . Possible alternatives may have included A(g),
where g is a locally calculated mean intensity value, but this would be attempting to
estimate the appropriate value of uq. In short, g is a crude estimate of g, which is
also a crude estimate of the optimal value of pg. Neither g nor g is a function of
the mixing parameter, a. Therefore, this new reformulation of the intensity gradient
magnitude model is not approximately equivalent to the preceding formulation (model
D). This is in contrast to the approximate equivalence of the intensity based models
(under particular model and data conditions), previously discussed in chapter 5, for
models B and C.

Qualitative Model Based Feature Space Examination

The significance of this new formulation at first may not seem to be of particular im-
portance. Figure 6.5 illustrates exemplar feature spaces and decision surfaces described
by model D and the new model E. As can be seen from these two illustrations, the two
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) Model D: Feature Space (b) Model E: Feature Spdce

) Model D: Decision Surface ) Model E: Decision Surface

Figure 6.5: Comparison of feature spaces and their associated decision surfaces for in-
tensity and localised image gradient magnitude PV models D and E. For each space or
surface the horizontal axes represents intensity and the vertical axes represent localised
image gradient magnitude. For the feature spaces, the brightness of a point in pic-
tures (a) and (b) represents the relative strength of the combined marginal probability,
p(g, z2p). For the decision surfaces, the brightness of a point in pictures (c¢) and (d)
represents the posterior probabilities for the left most classification class, where white
represents probability 1 and black, probability 0
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Figure 6.6: Illustration of benefit of using 3-D gradient magnitude over 2-D gradient
magnitude for the detection of PV voxels whose component lie mainly in the z direction.
The first image corresponds to an exemplar slice through a simulated 3-D PV data
set, while the second image corresponds to the same slice but through a data volume
consisting of the result of a 2-D gradient magnitude operation over the data in the first
slice. Similarly for the third image slice, except a 3-D gradient operator was used. The
third and second image slices illustrate for the central region how the partially clipped
spheroid in the z direction has been detected using a 3-D gradient magnitude kernel,
where as the result of using a 2-D gradient magnitude kernel has failed to detect this
partially clipped spheroid.

feature spaces and consequently the decision surfaces for the same exemplar parame-
ters are quite different. The new formulation appears to provide a smoother decision
surface, where no hard borders differentiate between a PV voxel and a pure voxel for
particular pairs of intensity and gradient magnitude values. Both models provide a
rapid mid-point change between pure classification classes for low gradient magnitude
measurements; this is similarly so for the transition between pure and PV voxels for
model D at greater gradient magnitude values. But for model E, if a voxel has a
higher gradient magnitude value then it gradually becomes more and more likely to be
generated by a PV classification class.

6.1.3 Model F: 3-D Gradient Magnitude PV Classifier

Williamson et al. in 2002, [157], developed their PV classifier utilising a 2-D gradient
magnitude measure and consequently a probabilistic description of 2-D gradient mag-
nitude was utilised in their likelihood model. An improvement to this model can be
made by observing that voxels are inherently 3-D structures due to the image acquisi-
tion processes of the biomedical imaging devices and the domain from which the data
is acquired. Therefore, it was thought that a 3-D gradient magnitude measure would
model the data more accurately. The result of a 2-D gradient magnitude filtering op-
eration is compared with a 3-D gradient magnitude filtering operation, both over 3-D
simulated data in figure 6.6.

Model F takes the reformulated gradient magnitude PV classifier (model E) and re-
places the 2-D gradient magnitude likelihood with a 3-D gradient magnitude likelihood.
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It should be noted that biomedical imaging data, particularly MRI data, is often ac-
quired with slice thicknesses and inter-slice gaps that may be greater than the in-plane
voxel dimensions. The 3-D model described here may therefore become less valid if the
distance between each slice is very much greater than the in-plane voxel dimensions,
particularly if the interslice gap occupies the majority of the inter-plane distance. Nev-
ertheless, the classification performance should become no worse than the performance
of the intensity only models of the previous chapter (5).

Derivation of a 3-D Gradient Magnitude Likelihood

The process of calculating the 3-D gradient magnitude of imaging data consists of the
following steps (compare to section 6.1.1, equations 6.1, 6.2 and 6.3):

1. Convolve imaging data, I, with gradient masks, M, M, and M, for the z, y and
z data dimensions, creating gradient channels, Z,, Z, and Z.:

Zy =T % My; (6.32)
Z, =1 My; (6.33)
Z, = 1% M,. (6.34)

2. Calculate magnitude, Z3p of the three gradient channels, Z,, Z, and Z:
Z3sp = ,/Z%—FZg—i—Zf. (6.35)
Convolving the 3-D Image Data

Similar to section 6.1.1, the result of the convolutions, Z;,, Z, and Z, are 3-D image
matrices whose elements, S; o, Sy and S, o, are sums of Gaussian distributed random
variables which are also Gaussian distributed (from appendix C), so that:

S:v,w :N(M:B,wv Ug,w)?

z

Sy, (ﬂy,w’ zw)
Sz w :N(uz,w, in).
3-D Magnitude Calculation

This section presents a derivation of the PDF, pz, (23p), of the 3-D gradient magnitude
random variable, Z3p (equation 6.35).

The CDF of Zsp, Pz, (23p) is given by

Pz, (23p) /// PZy,2,,2. (2, 2ys 22) - A2g.dzy.d2; (6.36)
23p2/72 422422
and assuming independence of each gradient magnitude component
Pz, (23p) /// Pz, (22)-pz,(2y) Pz.(22).d2z.dzy.d2. . (6.37)
23p>/22 422422
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Now consider the case where Z,, Z, : N'(0,02) and Z, : N(u.,02), this signifies the
situation where the kernel masks M, and M, are covering homogeneous regions of the
volumetric data and M, covers a heterogeneous region of the volumetric data. This is
very similar to the scenario described in section 6.1.1 for model D, and illustrated in
figure 6.3, except model E is applicable to 3-D volumetric data.

For these parameter values, the 3-D gradient magnitude CDF in equation 6.37 becomes

2, .2 2
zg + 2 + (2 — )
Pz, (23D) /// @ 3/2 exp (— . 5 022 z > dzp.dz,.dz,
Yz

z3p>y/22+22+22
(6.38)

2.2, .2 2
2yt a2+ — 22y +
/// (2.m) 3/2 .03 P <_ — z2 o2 S Z) dzy.dzy.dz,.
Z3DZ\/m z

Utilising a change of variables, from a Cartesian coordinate system to a spherical
coordinate system where ng =22+ 25 + 22, 2, = z3p.cos(¢) and dzy.dzy.dz, —
22 5. sin(¢).df.dg.dzsp (see for example [136]):

1

Pz, (23p) = m
zZ3pD T 2.
2.0,.23D. 2
/ / / exp( Zp =24 Z3§QC°S(¢) +“Z> 22, sin().df.de.dz3p. (6.39)
z
—oo 0

The variables of integration have now been separated out. Rearranging for the depen-
dent and non-dependent variables

2
W
exp (— 45 )

PZSD (Z3D) = (2‘7_(_)3/2‘0_:2
23D T 2.
22 — 2.4,.23D. COS .
//exp( 3D M2.J§D ((b)) .ng.sm(qﬁ)./.dﬁ.dgb.ng,D (6.40)
—oo 0 0

2
exp <_ P )
(2.m)3/2.03

Z3D ™ 2.

2
/exp <— 223;32) .ng/exp (M) .sin(¢) /d@.dqb.dz;»,D,
0 0

thus simplifying the integrands. Consider the inner most integral which can be evalu-

2.
ated as [ .df = 2., resulting in:
0

p2 ) 3D 5 ™

2.mexp | —5%
| 2me p( 2.07 / exp (_’223_D> .ng/exp <w> sin(¢).dé.dzsp

(2.7)3/2.03 o3
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< _u_ﬁQ 23D m
o (-4) [ on (=38 o [ o (27220 st

(2.m)1/2.03 2.02 o2
—00 0
(6.41)
Now if the next inner most integral is considered
/ exp <%2COSW) sin(¢)do, (6.42)
0 z
then a result from Gradshteyn and Ryzhik [47] can be utilised:
I(a) = &) +a. sin®(¢).d 4
@) = T | e @) QA (64
0

where I'() is the Gamma function and I,(a) is a modified Bessel function of order v,
where v maybe non-integer. Letting v = 1/2, a = u,.23p/0? and ¢ = ¢, for equation
6.42 results in:

[ow (“Z{‘IZ‘”’D . cos<¢>> sin(@).d = %J; <“Z(‘;3D) L (e
0 % ’ N

and as I'(1) = 1 and I'(1/2) = /=

e 2 %
/ exp <’“‘Z(‘7Z23D.cos(¢)> sin(¢).dp = <%> Az (’“‘Z;?’D) . (6.45)
9 z Z- >

Placing this result into the 3-D gradient magnitude CDF, of equation 6.41:

exp( 2 ) b 2 9 2\ 3

T 2.02 z .oz 2 Wz-23D

Pz, (23p) = m / exp (—%) 25D <72> ,I% < Z02 > .dz3p
. .03 .

z Hz-Z23D

. u? ) 23D

o exp( 2.02 Zap 3/2; (H=23D )

=02 exp —5 g2 zap 11 5 .dz3p.
2/ Nop: 2 loF

This equation now describes the CDF, Pz, (23p) in terms of the PDF, pz, (23p):

23D

PZBD(Z?)D): /pZ3D(Z3D)'dZ3D) (647)

—00
so the PDF of Zsp can be obtained from the CDF by removing the integral:

p?

v (—4%) o2
szD(Z3D) =—F—F" eXp <_ 3D> 'Zg/DQI% <lu 23D> . (6.48)

2 2
05/ iz 2.0% (o
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This equation describes the PDF of the 3-D gradient magnitude for Gaussian dis-
tributed data for heterogeneous volumetric image regions. This PDF can be extended
to the scenario where each gradient kernel is covering a heterogeneous region, (as is done
for the 2-D case in appendix D), by replacing p, with U = /u2 + p2 + p2, resulting

m:

U2
exp <_2.a§) ZZ%D 3/2 U.z3p
PZsp (Z3D) = W exXp <—2—02) 'Z3D I% < 0-2 > . (649)

This is confirmed by the results obtained by different authors with different derivations
for disparate applications in [1, 164].

Equation 6.49 and the 2-D gradient magnitude Rician density (equation 6.18) are plot-
ted with data points from simulated PV data in figure 6.8.

The 2-D gradient magnitude density of equation 6.18 for homogeneous image regions,
Ll[imo Pz, (2), tends towards a Rayleigh density (equation 6.19). However, for the 3-D

gradient magnitude, equation 6.49, the limiting density as [ljimo PzZsp (23D) is not quite

as obvious. If U = 0, then following a similar set of steps outlined by equations 6.37 to
6.48 results in the Maxwell density:

2.Z§ D Zg D
pZ3Dpure(Z3D) - 0_3 N eXp <_ﬁ * (6'50)
This Maxwell density together with a Rayleigh density (equation 6.19) and data points
from simulated PV data are illustrated in figure 6.7.

Incorporation of the Gradient Magnitude into a PV Mixture Formulation

The 3-D gradient magnitude density described by equation 6.49 can now be incorpo-
rated into a model of the PV effect. The formulation described by model E is adapted
to create a new 3-D formulation. Little adaptation is required, except to replace the
2-D gradient magnitude likelihoods with 3-D gradient magnitude likelihoods.

The same arguments that were used to adapt the 2-D gradient magnitude likelihood
to utilise the mixture vector, a resulting in equation 6.29 can be similarly used for the
3-D gradient magnitude likelihood. So that the 3-D gradient magnitude PV likelihood
(from equation 6.49) is given by

3/2 2 2
Z3n Ala|Tyq)® + z3D> (A(a\v'v a).2’3D>
z3plo, Tye) = ——=—=——exp | — Ty | ———————— .
P3p(23D |, Ty.0) NG p< 207 1 =

(6.51)
and using the arguments given in section 6.1.2, the inference from the posterior,
psp(alg, z3p), (see equation 6.31), follows the same formulation and utilises the same
prior, p(a), as for model C (see chapter 5). Thus, the point estimate, utilising the
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posterior mean for the 3-D gradient magnitude model is given by:

E [av|gv Z3D] =

1
_. . P
p(g’ ng) p(g‘TU) p3Dpure(z3D‘7—U) (Tv)

1

1
+m- Z /Oév-p(g‘a)-p3D(z3D‘aaTv,a)-p(av,Oéa)-P(Tv,a)-dOév- (6.52)

Vi

So this PV model, model F, should provide improved modelling of the PV effect as
it not only utilises the 3-D gradient magnitude (in comparison to the 2-D gradient
magnitude of model D), but it also utilises the amended feature space of model E. It
is hoped that these developments will provide improved classification performance over
the PV intensity models of chapter 5.

6.2 Experiments, Results and Discussions

This chapter has described possible improvements to the basic intensity based PV
models of the previous chapter. These improvements utilise gradient magnitude to
identify voxels that are more likely to be a mixture of two components. This section
presents a series of experiments utilising simulated data as was done for the previous
chapter in order to assess the performances of the novel model developments utilising
gradient magnitude under controlled conditions.

The first set of experiments applies the models to isotropic simulated PV data, where
the inter-slice spacing is the same as the inter-voxel spacing in plane.The second set of
experiments applies the models to anisotropic simulated PV data, where the inter-slice
spacing is greater than the inter-voxel spacing in plane. These two sets of experiments
imitate the scenarios that are often encountered with biomedical imaging data. Some
biomedical imaging data is acquired in an isotropic format but it is often acquired in
an anisotropic format. Anisotropic data helps to increase the SNR without reducing
the in-plane resolution, which unfortunately decreases the inter-plane resolution.

6.2.1 Classification of Isotropic Simulated PV Data

The experiments in this section utilise the intensity and localised gradient magnitude
models (D, E and F) within PV classifiers to classify two classification class simulated
PV data.

These simulations and their respective classifications with the PV classifiers utilising
models D, E and F allow the performances of the PV classifiers to be assessed under
controlled conditions where the parameters of the simulated data are known a priori.
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Table 6.1: Summary of the two class simulations’ parameters.

Mean Stan. Stan. No
CNR || Distance | Mean 1 | Mean 2 || Dev. 1 || Dev. 2 || Bands

50 1000 500 1500 20 20 2
40 800 600 1400 20 20 2
30 600 700 1300 20 20 2
20 400 800 1200 20 20 2
10 200 900 1100 20 20 2
9 180 910 1090 20 20 2
8 160 920 1080 20 20 2
7 140 930 1070 20 20 2
6 120 940 1060 20 20 2
5 100 950 1050 20 20 2
4 80 960 1040 20 20 2
3 60 970 1030 20 20 2
2 40 980 1020 20 20 2

Experimental Procedure

The simulated PV data that was generated for the experiments in the previous chapter
(5) utilised a symmetric 3-D Gaussian PSF, i.e. the width of the PSF was the same
in all directions. The data was subsequently isotropically sampled so that each voxel
possessed isotropic sampling ratios (1:1:1). This means that the simulated PV data
could again be used in this set of experiments to assess the performances of the classifiers
for isotropically sampled simulated PV data. The use of the same simulated PV data
will also enable the performances of the basic intensity based models of chapter 5 to be
compared with the models of this chapter under the same controlled conditions.

The respective parameters are repeated for convenience in table 6.1.

The intensity based parameters for each simulation were previously determined from
either the simulation parameters or for the case of the prior terms, P(7,) and P(7,)
from the ground truth data. The parameters of the gradient magnitude models, i.e.

e The maximum gradient magnitude centralisation parameter, U,,q,, that is used
in the calculation of A() in equations 6.23, 6.29 and 6.51 (for models D,E and F
respectively). Upq, determines the maximum height of the half ellipse function,
calculated with A() as illustrated in figure 6.4;

e The width parameters for pure, 02" and PV, 02" regions, used in the calculation

of equations 6.19 (2-D pure) and 6.23 (2-D PV).

The maximum gradient magnitude centralisation parameter, Uyq; can be determined
by calculating the mean gradient magnitude for voxels composed of exactly 50% of each
classification component.

Exemplar plots of the PV gradient magnitude equations, given by equations 6.18, (2-D)
and 6.49, (3-D) can be seen in figures 6.8(a) and 6.8(b). These figures illustrate that
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Figure 6.7: 2-D (o) and 3-D (x) gradient magnitude histogram data points from simu-
lated data for pure voxels plotted along with the model PDFs of equations 6.19 (2-D)
and 6.50 (3-D).

the densities are located correctly across the gradient magnitude data points with the
calculated value of U,,q,. The width of these densities are discussed shortly.

The width parameter for pure gradient magnitude regions, o2""¢ is available analyt-

ically. For this, the gradient mask calculation is calculated over pure image regions,
where each voxels’ intensity value is generated from an identically and independently
distributed Gaussian random variable with known and equal standard deviations. Also,
as the gradient mask elements are also known, the elements form weights in the calcu-
lation of the gradient magnitude for each direction and can be used in the calculation
of "¢ (see appendix C). Equations 6.19 (2-D) and 6.50 (3-D) are plotted using the
analytically calculated width parameter along with exemplar data profiles from the
mixture gradient magnitude scatter plot in figure 6.7. The 2-D model and 3-D model
curves appear to follow the respective data points with good proximity. Also the 2-D
model and 3-D model curves appear to share very similar shapes. The small dissimilar-
ity would present very little difference in a resultant posterior probability calculation if
one function were used in the place of the other. If this were the case then the gradient
magnitude parameters would have to be estimated rather than being derived directly
from the intensity domain parameters.

The width parameter for PV gradient magnitude regions could not be calculated an-
alytically due to the discrete nature of the data and the large number of possible PV
configurations that the gradient mask may cover. However, this does not prevent the
width parameter of the high gradient magnitude densities described by equations 6.18
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Figure 6.8: 2-D (o) and 3-D (x) gradient magnitude data points from simulated data
for a given mean value plotted along with the model PDFs of equations 6.18 and 6.49.
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(a) 2-D Gradient Magnitude Feature Space

(b) 3-D Gradient Magnitude Feature Space

Figure 6.9: Comparison of intensity (x-axis) versus (a)2-D and (b)3-D gradient magni-
tude feature spaces of 3-D simulated PV data. These scatter plots help to illustrate the
benefit of using a 3-D gradient magnitude kernel over a 2-D gradient magnitude kernel
for 3-D simulated PV data. The 2-D feature space has many low gradient magnitude
PV data points located between the two pure components. This can be compared with
the 3-D feature space where PV data points between the two pure components have
high gradient magnitude values, consistent with the proposed model E.
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and 6.49 from being calculated using the ground truth data. Equations 6.18 and 6.49
both tend towards Gaussian densities for high SNR values, as noted in [1]. The stan-
dard deviation of gradient magnitude data points for particular mixture combinations
were calculated. These standard deviations were then used as the width parameters
for equations 6.18 and 6.49. As can be seen from figures 6.8(a) and 6.8(b), these fig-
ures illustrate that the 3-D mixture gradient magnitude data points fit the 3-D model
very well using this method. However the 2-D mixture gradient magnitude data points
do not fit the 2-D model quite so well. This high-lights the potential inadequacies of
modelling 3-D PV data with a 2-D feature and probabilistic description.

Exemplar scatter plots are given in figure 6.9. The 2-D scatter plot appears to illustrate
that there are many data points that do not conform to either of the theoretical models
D and E illustrated in figure 6.5. This is in contrast to the 3-D scatter plot that
does appear to conform to the feature space of model E. This can be understood from
the 2-D gradient magnitude calculation. This calculation may result in low gradient
magnitude data points from volumetric image regions even with PV voxels. Such PV
voxels would have been generated from the PSF filtering action in the z-axis. This also
helps to explain why the 2-D model in figure 6.8(a) does not appear to fit the data
points as well as the 3-D model for the 3-D data in figure 6.8(b).

A simple gradient kernel was used for all the experiments that follow and the calcula-
tions that have been discussed, for 2-D

+1
My=| 0 |, My=(+1 0 —1);
~1
and for 3-D
+1
My=| 0 |, My=(+41 0 —-1), M.=(+1 0 —1).
-1

where the M, kernel has elements defined on the z-axis.

Performance assessment was undertaken with the voxel RMS error metric, as defined
in chapter 5.

Results and Discussion

The voxel RMS errors for each of the simulations in table 6.1 and each of the models
(C,D,E and F) can be seen in figures 6.10 (pure voxels) and 6.11 (PV voxels).

The results for the classifier based on model C, the non-gradient magnitude based
classifier defined in chapter 5 are also plotted along side the gradient magnitude classifier
results. As can be seen from figures 6.10 and 6.11, the intensity based classifier has the
highest classification error. So the inclusion of gradient magnitude in the likelihood
model of the PV effect appears to improve the classification performance of simulated
PV data.
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Figure 6.10: Pure voxel RMS errors obtained for classifying isotropic simulated PV
data with classifier models C (x),D (A),E (#) and F (o). (a) is for CNR values from 2
to 50; (b) is for CNR values from 5 to 10. Continued on next page.

Also, one can observe that model E has slightly better performance over model D for
many of the pure and PV data points. This suggests that the improved feature space
modelling (see figure 6.5), even with the use of 2-D gradient magnitude, improves the
classification performance.

Additionally, the errors given in figures 6.10 and 6.11 appear to suggest that the use of
a 3-D gradient magnitude model in the improved feature space described by model F,
helps to improve the classification performance for all of the data points.

These results are interesting and help to justify the methodology and theory described
in this chapter. As briefly mentioned earlier, these experiments have involved the
classification of isotropically sampled simulated PV data volumes. The inventors of
model D, using 2-D gradient magnitude have suggested that there is no benefit in
the use of 3-D gradient magnitude. They suggested this was due to the prevalence
of anisotropic volumetric imaging data [139]. The next set of experiments attempt to
illustrate that there is some benefit in the utilisation of 3-D gradient magnitude on
anisotropically sampled data.
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Figure 6.10: continued
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6.2.2 Classification of Anisotropic Simulated PV Data

As shown in the previous set of experiments, the utilisation of a 3-D gradient mag-
nitude model improves the performance of the classification of PV data over a model
utilising only 2-D gradient magnitude. The simulated PV data of the previous set of
experiments was isotropic and while some medical imaging data is sometimes found to
be isotropic, most MRI data is anisotropic. The experiments in this section involve
the classification of anisotropic simulated PV data to determine whether the use of a
3-D gradient magnitude model still provides improved classification over a 2-D gradient
magnitude model of 3-D simulated PV data.

Experimental Procedure

For this set of experiments new simulated PV data was generated to simulate anisotropic
slice sampling. This involved modifying the PSF. In the preceding set of experiments,
a symmetric Gaussian PSF was utilised to filter the high-resolution data prior to down-
sampling. For the anisotropic simulations of this set of experiments, the anisotropic
slices are assumed to possess a greater slice thickness. A greater slice thickness is often
associated with biomedical imaging data to reduce the SNR, without reducing the in-
plane resolution. To simulate the greater slice thickness, the PSF is modified to have
a greater width in the z-axis. Table 6.2 provides a list of the simulations together with
their associated sampling ratios.

As can be seen from table 6.2, the same parameters that were used for the experiments
in chapter 5 and the isotropic gradient magnitude simulations of this chapter are again
used here. The only modifications are the simulated slice thicknesses, which result in
sampling ratios of 1:1:2 and 1:1:4, in effect doubling the slice thickness for each set
of simulations. These slice thicknesses simulate possible sampling ratios that may be
encountered with biomedical imaging data and can be thought as representative of
other similar sampling ratios.

The calculation of the 3-D gradient magnitude has to be modified slightly. In the
preceding sets of experiments, the 3-D gradient magnitude was calculated according to
equation 6.35 and repeated here for convenience:

Z3p =\ Z2+ Z2+ 72 (6.53)

where Z,, Z, and Z, are the results of the gradient mask convolutions with the image
data for the z, y and z axes respectively.

The gradient masks, M,, M, and M, assume the data points in each axis exist on
an isotropic grid but the data is anisotropically sampled for these experiments. The
isotropic grid has to be estimated. As each 2-D plane forms an isotropic 2-D grid, the
only affected data points are on the 2z axis and consequently only affect the z gradient
mask.

The gradient mask for the z axis is given by

M,=(+1 0 -1).
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Table 6.2: Summary of anisotropic simulations’ parameters.

Mean Stan. Stan. Sampling
CNR || Distance || Mean 1 || Mean 2 || Dev. 1 || Dev. 2 Ratio
50 1000 500 1500 20 20 1:1:2
40 800 600 1400 20 20 1:1:2
30 600 700 1300 20 20 1:1:2
20 400 800 1200 20 20 1:1:2
10 200 900 1100 20 20 1:1:2
9 180 910 1090 20 20 1:1:2
8 160 920 1080 20 20 1:1:2
7 140 930 1070 20 20 1:1:2
6 120 940 1060 20 20 1:1:2
5 100 950 1050 20 20 1:1:2
4 80 960 1040 20 20 1:1:2
3 60 970 1030 20 20 1:1:2
2 40 980 1020 20 20 1:1:2
50 1000 500 1500 20 20 1:1:4
40 800 600 1400 20 20 1:1:4
30 600 700 1300 20 20 1:1:4
20 400 800 1200 20 20 1:1:4
10 200 900 1100 20 20 1:1:4
9 180 910 1090 20 20 1:1:4
8 160 920 1080 20 20 1:1:4
7 140 930 1070 20 20 1:1:4
6 120 940 1060 20 20 1:1:4
5 100 950 1050 20 20 1:1:4
4 80 960 1040 20 20 1:1:4
3 60 970 1030 20 20 1:1:4
2 40 980 1020 20 20 1:1:4
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Figure 6.12: Illustration of the assumption of linear variation in intensities when per-
forming linear interpolation to calculate an isotropically located sample, w1, located
between two anisotropically sampled points, w and w_,,.

The gradient mask only requires data points either side of the x-y plane in question.
Using linear interpolation, a data point either side of this x-y plane can be calculated
for a sampling ratio of 1:1:1. Linear interpolation assumes the intensity values vary
linearly as a function of distance. For an anisotropic sampling ratio of 1 : 1 : w,, the
intensity value of the data at an isotropic z axis distance, I(w1) away from a particular
voxel, w is given by
1
Hwi1) = ([(wiw,) — I(w)).— + I(w)

Wy

— Isn) s + 1) (215, (6.54)

Wy

where w_,,, is the value of the image data on the anisotropic grid. This situation is
illustrated in figure 6.12.

The result of convolution with the simple gradient mask is therefore given by:
Zz(w) = I(w+1) — I(w_l) (6.55)
where w_; is the point on the isotropic grid in the opposite direction to w1, so that:

) = oo~ 1), (). 050)

Wy

1—w,

2:(0) = 1wy -+ 1)

resulting with
1
2.(@) = - (1@ ) ~ I 0.)). (6.57)
z
This illustrates that the calculation of the z axis gradient for anisotropic data is a
weighted version of the usual z axis gradient calculation. From earlier discussions about
model F in this chapter and the content of appendix C, this result does not appear to
alter any of the assumptions about Gaussianity of the gradient components. It does

however alter the standard deviation of the z axis convolutions, by a scaling factor of w,.
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It remains to be seen whether this will have an impact on the classification performance
of the 3-D classifier. It is expected that due to the presence of two other gradient
components for each calculation, the standard deviations of these two components
will dominate the width of the resulting gradient magnitude density of equation 6.49.
Therefore model F will be applied unaltered for classification of the anisotropic imaging
data experiments that follow shortly.

As with the preceding sets of experiments, the intensity domain parameters were known
a priori and the same techniques as described in section 6.2.1 were used to determine
the gradient magnitude domain parameters from the simulations and the ground truth
data volumes.

The gradient magnitude for the 2-D models and the 3-D models were also calculated
using the methods described in section 6.2.1.

Results and Discussion

The results of classifying the anisotropic simulated PV data as shown in table 6.2 with
models D,E and F can be seen in figures 6.13 to 6.16. Each figure is divided into more
than one sub-figure, one of which plots the entire results for a particular sampling ratio
and the second and perhaps third sub-figures display the results for a limited range
of CNR values, so as to high-light differences between the performances of each of the
classifiers.

Figures 6.13 and 6.14 display the pure and PV errors respectively for classifiers using
models D, E and F for the simulations displayed in table 6.2 with a sampling ratio of
1:1:2. These figures illustrate that the errors obtained for the 3-D classifier (model
F) are superior to the errors obtained for the 2-D models D and E, particularly for the
pure RMS voxel errors for CNR values between 5 and 20. The PV RMS voxel errors
appear to be very similar for models E and F, both of which appear to have superior
performance over the former 2-D classifier, (model D described in [157]).

Figures 6.15 and 6.16 display the pure and PV errors respectively for classifiers using
models D,E and F for the simulations displayed in table 6.2 with a sampling ratio of 1 :
1: 4. These figures also illustrate that the errors obtained for the 3-D classifier (model
F) are superior for the classification of pure voxels (figure 6.15). For the classification
of PV voxels, all the models appear to possess similar classification performances. For
CNR values over 10, the 3-D classifier (model F) appears to be somewhat superior.
For CNR values smaller than 8, the former 2-D classifier (model D) appears to possess
slightly better classification performance over the two new classifiers.

These results appear to suggest that the inclusion of the gradient magnitude from
the third dimension and correct modelling of the gradient magnitude improves the
classification rate. In situations where performance has not been improved (such as for
PV voxels on anisotropic data with sampling ratios of 1 : 1 : 4), the classification rate
for all the models appear to be very similar. These two observations from the results
of these experiments seem to indicate that 3-D gradient magnitude is a useful feature
over 2-D gradient magnitude when classifying data with anisotropic PV voxels.
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Figure 6.13: Pure voxel RMS errors obtained for classifier models D (A),E (#) and F
(e) for anisotropic simulated PV data with sampling ratios of 1:1:2. (a) is for CNR
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Figure 6.14: PV voxel RMS errors obtained for classifier models D (A),E (#) and F
(e) for anisotropic simulated PV data with sampling ratios of 1:1:2. (a) is for CNR
values from 2 to 50; (b) is for CNR values from 4 to 10. Continued on next page.
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6.3 In Conclusion

Improvements to the basic intensity models presented in chapter 5 have been investi-
gated. These improvements have involved modelling of 2-D and 3-D gradient magnitude
and the effect on the combined intensity and gradient magnitude feature spaces.

An initial model based on an intensity and 2-D gradient magnitude feature space,
initially suggested by Williamson et al. in [157] has been modified in this chapter.
Firstly, an improved and refined feature space was modelled, utilising an alternative
formulation. The results obtained from classifying simulated two class PV data suggest
that the improved feature space model improves the classifiers ability to distinguish the
composition of voxels. In addition to this feature space improvement, it was recognised
that the 2-D gradient magnitude description of inherently 3-D data could be improved
with the correct modelling of 3-D gradient magnitude. This further development was
also demonstrated to improve the classifier’s performance.

Classification performance for pure voxels in the simulated PV data for CNR values
above 5 possessed RMS errors below 5%. For PV voxels, the RMS error fell below
5% for CNR above 15. As discussed in chapter 5, biomedical imaging data usually
has CNR values below 10, so if a data volume possessed a large number of PV voxels,
the classifiers’ performance may not be adequate for clinical application. Also, these
performances are under controlled conditions where all parameters are known a priori,
due to the availability of the ground truth. Clearly, further improvements and experi-
ments are required to (i) improve the classification performance and (ii) determine the
performance of the classifiers where parameters are not known a priori. These are the
topics of the next two chapters.



Chapter 7

Informative Partial Volume Prior
Models

The preceding chapters have presented PV models some of which have been developed
as part of this thesis. Part of the new developments has included the proposal of a
formulation that explicitly models the PV mixing via a per voxel PV random vector,
a. Each PV random vector corresponds to an individual voxel with vector elements
representative of the amount of a particular tissue or activity in that particular voxel,
a1, 2, ...,ar. This random vector can therefore be directly included in the proba-
bilistic formulation. In the previous chapters the PV random vector was assigned a
uniform prior, p(a) = 1, (when K = 2), for the PV values, i.e. « € (0,1). As will be
seen, this uniform prior distribution is not, in fact, representative of the true PV prior
distribution. However, Bayesian models benefit from well informed prior distributions
and the development of this global PV prior distribution is the topic of the first part
of this chapter. The global PV prior is then used as the basis for a proposal distri-
bution in a more sophisticated and better performing probabilistic formulation of the
PV effect where the PV posterior distribution is conditionally dependent on a locally
defined prior PV distribution. It will be seen that this locally defined prior distribution
enables the Bayesian formulation to adapt to local PV behaviour and thereby improve
the classification performance.

7.1 Global PV Priors

7.1.1 Introduction

This section of the work is concerned with the estimation of global prior mixture dis-
tributions, p(a), as used in the PV models of the preceding chapters. The global prior
mixture distribution describes the distribution of intensities in the absence of noise
and can therefore be analysed also in the absence of a noise component, which is the
approach taken here. An assumption used here, is that the PV effect predominantly
arises from signals that have been significantly affected by a low-pass filtering process.
This filtering process was discussed in chapters 1 and 2. The filtering action is a natural

155
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effect in limitations of the image acquisition process and further processes that are used
to condition the image signal prior and post acquisition.

A new method for modelling the global PV prior density given a system PSF is pre-
sented. Similarly an old phenomenological observation, namely Benford’s Law is also
related to the global PV mixing distribution.

Linear mixing is also assumed, where, for two classes, a and b, a, = 1 — oy, (as was also
assumed in chapter 5). Thus for two PV mixing components, a can be fully specified
as a scalar value, a, resulting in a single-variate prior probability, p(«). Initially p(«) is
estimated analytically. The result of this analysis is then compared with the proposed
application of Benford’s Law, and a third related distribution proposed by Kitamoto
and Takagi, [66], previously used to describe the mixing processes that occur in remotely
sensed satellite image data. The applicability of these new results are then tested on
synthetic volumetric image data, where the true prior densities are known.

7.1.2 Theory
Gaussian Based Derivation of the Prior Density

If one considers an idealised bimodal signal to be characterised by a step edge composed
of an infinite number of frequencies, then the result of a band-limited signal acquisition
process with a low-pass frequency response will smooth the step-edge, thus reducing
the higher-frequency components in the signal. To illustrate this, an idealised noiseless
edge with intensity values arbitrarily assigned to values of 0 and 1, illustrated in figure
7.1(a) can be described by:

0 for z<0°

f($):{1 for >0 (7.1)

The low-pass response of the signal acquisition process can sometimes be characterised
by a Gaussian PSF, h(zx), as is often found in image or signal acquisition systems,
illustrated in figure 7.1(b). In instances where the PSF is not Gaussian, a Gaussian
PSF is still a better approximation to most real PSFs of imaging systems in comparison
to a boxcar type PSF that has been used in models of the PV effect, see e.g. [74, 83]:

h(z) = ﬁ.exp <_2”“"—;> . (7.2)

where o2 is the variance or measure of width of the PSF. The idealised step edge in
equation 7.1 can then be convolved with this kernel to obtain the idealised noiseless
representation of the signal post-acquisition:

y(z) = f(z) * h(z)
= / f(r).h(x —1).dr

- /OO\/% exp (—%) dr. (7.3)
0
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Noting that (z—7)? = (7—2)? and letting u = (1 —x)/V2.02 so that du/dr = 1/v2.02:

_ i 2 2
y(z) = NoEvh / exp (—u?) .du.V2.0

—z/V2.02
) 0o
= NG / exp (—u?) .du. (7.4)
—z/V2.02

This integral has no closed form solution so a special function known as the Gaussian
error function, erf(t) = % fot exp (—u?) .du can be used:

y(z) = \/LE\/TE <erf(oo) — erf (— \/;?» , (7.5)

resulting in, 7.3 is given by:

y(z) = % (1 +erf <%>) . (7.6)

This convolution result is illustrated in figure 7.1(c). It is now desirable to obtain
a continuous histogram model of the signal represented by equation 7.6. This can
be considered as a function that describes the proportion of the signal that occupies
finite ranges of y(z). It can be determined by initially finding the inverse of y(x),
z(y) = y~!(x), thus:

z(y) = V2.02.erf 1 (2.y — 1), (7.7)

where erf~1(t) is the inverse error function, so that erf(erf~!(¢)) = t. Due to the
global monotonicity of y(x), the frequency histogram information of y(x) can be found
by determining the distance x(y) travels in a small interval, represented by D(y) =

x(y + dy) — x(y), and taking the limit of dy — 0 results in the first derivative of z(y),

D(y) = dé—(yy) Utilizing the result of Carlitz [16], the first derivative of the inverse error

. derf '(2) & —1/.\2 : _ .
function is taken to be — =7 exPp (erf (2) ), and letting o = y so that:
dz(y)
au = = C. .
yue; ss(a y) Gap dy o

=Cag,,-V2.m.0% exp (erf_1 (2.c0 — 1)2) ) (7.8)

where Cg, , is a normalizing term for the above Gaussian based model. This result
illustrates that the standard deviation of the original convolution PSF, o, has no ef-
fect on the shape of the resulting mixture density other than to contribute a scaling
parameter. This Inverse Cumulative Gaussian (ICG) density is illustrated in figure 7.2.

Benford’s Law

A phenomenological law, known as Benford’s Law, has previously been used to describe
the natural ordering of frequency data. It was originally discovered by Newcomb in 1888
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Figure 7.2: Comparison of the three theoretical prior mixing densities, Benford mixing
density (gray line), Kitamoto and Takagi mixing density (dotted line) and the ICG
mixing density (black line). Exemplar data points are also shown (squares) for simu-
lated PV data. These exemplar data points are typical of the data points produced via
a PV filtering process.

[93], but it was popularised by Frank Benford who re-discovered the phenomenological
law in 1938. Both authors discovered it by observing that books of logarithm tables
contained pages that were more warn at the beginning. They discovered that it could
be related to the frequency of the leading numerical digits in other sources of data
such as newspapers, atomic weights and black body radiation. The digit 1 was found
to be more likely than all the other digits as the leading digit, resulting in, quite
un-intuitively, a non-uniform distribution for this data. The following equation was
suggested to describe the leading digits, [7]:

1
P(p) = logyg <1 + B) ) (7.9)
where 3 € {b:0<b <10, b € ZT}, and Z" is the set of positive integers. Equation
7.9 is illustrated in figure 7.3. This law can be extended to any number of significant
digits, 8 = {1, ..., B}, with specific order, by the following [7, 58]:

0 -1

P(B) =logig |1+ (D 6410979 . (7.10)
q=1

e.g. given a number, 134, then 8 = {1,3,4} and P(B) = log;o(1 + 1/134), but if the
number has a different decimal place, such as 1.34, then P(3) = logo(1 + 1/134) also.

Hill in 1996 [58], provided an explanation of Benford’s Law by showing that if data
comes from many different distributions and is scale and base invariant then the overall
distribution will tend towards this Benford distribution-like behaviour.

Similarly, the result of the filtering process on noiseless data produces data points that
are governed by many different distributions due to the large number of different edge or
boundary configurations and the result of their convolutions with the PSF. The result
of this filtering operation also produces data with a histogram that is scale invariant.
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Figure 7.3: Illustration of Benford’s Law for a single digit, described by equation 7.9.

This can be understood from the shape of the histogram which is not dependent on the
size of the pixels or voxels, demonstrated by the earlier derivation of the ICG density,
the result of which is given by equation 7.8. The histogram of this filtered data is also
base invariant, where the histogram’s shape is independent of the number of signal
levels between the signal components j and k.

As a result, one can consider the prior mixing density to be composed of two equal,
but symmetrically opposite, ordered, frequency components that are not independently
directly observable. Also note that Benford’s law provides a discrete probability dis-
tribution, i.e. a PMF which describes the random distribution of a discrete random
variable or vector, in comparison to a PDF that describes the random distribution of
a continuous random variable. See chapter 2 for further information regarding dis-
tribution functions of discrete and continuous random variables. Therefore the prior
mixing density, using Benford’s law is actually described by a PMF, composed of two
Benford distributions, thus describing a prior mixing distribution not density. This will
be explained shortly, but first let us consider the general form of this PMF, composed
of two Benford distributions:

P(Ca, ) = Cp, ,- [loglo (1 + %) + logyg (1 + %)] (7.11)

a

where (, and (; are variables, referred to here as Benford variables, that have to be
related via some sort of mapping to the continuous mixing variables, a, and «y, re-
spectively. a,b are indicative of particular classification components or classes under
consideration and Cp, , is a normalizing factor. The Benford variables, ¢, and (; can
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be observed in equation 7.10 as taking values according to

Q
> 810979, (7.12)

g=1

where [, is the q'" significant digit in the observation. This therefore implies a type of
precision invariance, where () may take any value, with greater values providing greater
precision. Noting that the mixing variables, referred to here as, a can also be quoted
to any number of significant digits or precision, therefore a mapping between o and the
Benford variable, v can be found with the use of an integerisation type function, int().
ie.

v = int(a.109). (7.13)

This therefore provides a means to describing the continuous random variable in the
discrete domain, where the PMF of the prior mixing is given by

1 1
P(aa,ab) = Cme. |:10g10 <1 + m) + loglo <1 + m)} . (714)
This result is similar to the previously defined ICG density in equation 7.8, in that
equation 7.14 is scale invariant, i.e. there is no parameter to control the shape. This
Benford prior distribution is also illustrated in figure 7.2.

7.1.3 Experimental Methodology

As with the preceding chapters, the models proposed here are assessed using simulated
PV data. The simulated data consists of concentric spheroids with alternating intensi-
ties, uq and pp. This has then been filtered under a variety of conditions, ranging from
boxcar-like to Gaussian-like PSFs. These filters have been designed using the Kaiser
window method [71].

A x? Goodness-of-Fit (GoF) test of the two prior mixing models described thus far,
PGauss(@), the ICG prior density and ppenford(cr), the Benford prior density and a
further density given in [66] is performed on histograms produced from this simulated
PV data.

Simulated Filter Design

The Kaiser window method calculates the signal domain filter coefficients, wg by:

ws(n) = ﬁlo (5. 1- T2f1> (7.15)

where n = [—%, %] is the co-efficient index. T is the window size and ¢§ is used to
express the maximal ripple or side lobe magnitude as a fraction of the maximal pass
band gain. Ip(u) is the modified Bessel function of the first kind, order 0. Y and J are
calculated according to a well known algorithm (given in algorithm 3, see for example




162 Chapter 7. Informative Partial Volume Prior Models

Q
[7)]
C
(@]
o
(7]
o
> |7~~~ - 2 1+ 0
[ N T R B frequency response
L i . I 1
g v ripples
o - (N \ [
O J4------- ~'--1-0 !
S |
—>: ------ e
\ |
: D \ I
| v
I Vool
| vl
| vl
| Ve + 0
I \ / “‘ SN _
| / / \ ™~ e
0 <_I—‘> \\‘ I,I ' ' 1\‘ ',/ ~— =
ow-pass | T frequency
0 frequencies-------"=---“"-----------"----- -0

Figure 7.4: Illustration of the Kaiser window design method parameters, transition
width D and ripple magnitude, § in the frequency domain.

[37]), where a further parameter, the transition width, D, is required. These parameters
are illustrated in figure 7.4. A compromise has to be made between transition width
and ripple size. If a narrow transition width is required then it becomes more difficult to
realise a filter with smaller ripples, i.e. a smoother frequency response. These properties
are of particular interest to designers of systems where the theoretical frequency domain
properties are important properties of their work. However, these frequency domain
properties are not of particular interest here, except as a means to an end in the flexible
design of a variety of spatial domain window shapes.

Algorithm 3 (Kaiser Filter Design Algorithm)
1.Define mazimum pass band and stop band ripple sizes, rp, and rs;

2.Determine r =min(ry, rs);
3.Convert to decibels by calculating, A = —20.log(r);

0.1102.(A — 8.7) if A>50
4.Calculate: a = { 0.5842.(A —21)%% 4 0.07886.(A —21) if 21 < A< 50 ;
0 if A<21

5.Define a transition width, D;

6.Calculate the window width, Y > 548.7772'%’.

This algorithm therefore enables design of a low-pass filter with a variety of frequency
and signal domain properties. The parameters of the windows that were designed for
this work can be seen in table 7.1, where the transition width, D, is expressed as a
fraction of the sampling rate.
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Table 7.1: Kaiser Window Parameter Values: Window Widths, T for a given ripple
value, § (fraction of maximum pass band gain) and transition width, D,(fraction of
sample rate).

Ripple Transition Widths, D

1) 0.100 || 0.125 || 0.156 || 0.195 | 0.244 || 0.305
9.0E-02 9 7 6 5 4 3
3.0E-02 16 13 10 8 6 5
1.0E-02 22 18 14 11 9 7
3.3E-03 29 23 19 15 12 9

1.1E-03 36 28 23 18 15 12
3.7E-03 42 34 27 22 17 14
1.2E-04 49 39 31 25 20 16
4.1E-05 56 44 36 28 23 18
1.4E-05 62 20 40 32 25 20

For the first row in table 7.1, i.e. 6 = 9.0E—02, the filter function is equivalent to a
boxcar [37]. A boxcar filter is often used in synthetic data, such as computer graphics or
simulation of the PV effect [83]. The fifth row in table 7.1, i.e. § = 1.1E—03, is closest
to a Hamming window, w(n) = 0.54 + 0.46.cos(m.n/Y), [37]. For the filter functions
in rows 6 to 9 (6 > 1.1E — 03), the Kaiser window can be thought to approximate
a Gaussian window, which is a commonly assumed PSF in many imaging and signal
processing applications. Figure 7.5 illustrates the Kaiser window function in the signal
intensity domain, for the above three examples representing the boxcar, Hamming and
Gaussian window functions.

Prior Density Evaluation

The densities evaluated were the ICG mixture prior density given by equation 7.8; the
Benford mixture prior density given by equation 7.14; and for comparison, a density
derived by Kitamoto and Takagi [66] referred to here as the Kitamoto and Takagi
density. Kitamoto and Takagi reasoned that the pixels in satellite images could be
described by squares, without any consideration of the PSF of the imaging system.
The authors then commenced with a derivation based on the area occupied by the
pixels over possible border regions (for this particular density). The Kitamoto and
Takagi density is given by:

prcia (e o) = —— 25 (log(ag) + log(ap)) (7.16)

(b+c)?’
where Kitamoto and Takagi defined ¢ as the size of a pixel and b as the size of the
foreground object that has been subjected to a smoothing process. Note that this
density also models the mixing variable as an explicit random vector in the same manner
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Figure 7.5: Three window functions (lines) and their approximations using the Kaiser
window design method (points superimposed). The Boxcar window is given by the
line joining the triangles; the Hamming window is given by the smooth line joining the
squares; and a Gaussian window joining the crosses.

as has been proposed for the Benford and ICG densities. For this particular density,
Kitamoto and Takagi asserted that the pixel size should be smaller than the foreground
object size, i.e. b > c¢. An observation with regard to this density is the fact that the
shape of the density is not affected by the parameters of the imaging process, i.e. ¢ and
b, similar to the densities proposed in this work (equations 7.8 and 7.14). However, as
can be seen from figure 7.2, the densities possess different shapes in the tail regions and
consequently different probabilities in the center region of each density, when fitted to
filtered data. For the Kitamoto and Takagi density, this can be attributed to the fact
that the density was derived without reference to a PSF that is intrinsic to the action
of the image acquisition process.

7.1.4 Results

An exemplar set of data points drawn from histogram data smoothed by a Kaiser
window with a transition width, D = 0.305 and maximum ripple size, § = 1.4E — 05,
can be seen in figure 7.2. This figure also plots the three theoretical densities. The
x? GoF results seen in figure 7.6, illustrate that the ICG prior density possesses the
lowest x? errors with respect to the Kaiser filtered data for the majority of cases. One
can also observe that the ICG error decreases as the filter functions tend towards a
Gaussian window function, characteristic of the ICG density.

The Benford prior density also results in smaller x? error terms when compared with the
Kitamoto and Takagi prior density and appears to closely follow the ICG prior density
x? term, although every Benford error for the particular test data used is greater than
the corresponding ICG error.

The GoF error for all three prior models significantly increases under two circumstances.
The first circumstance being when the window filter function is significantly larger than
the objects of interest in the data. The concentric spheroid bands in the simulated data
have a finite width (30 voxels), and for particular sets of parameters for the Kaiser
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window method, the window size is significantly larger than the widths of the bands
(up to window widths of 62). These occur from the lower left of the windows in table
7.1, thus for these cases, the error is significantly greater.

The second circumstance for large GoF errors for all three models is when the window
filter function becomes very small (less than 3 voxels wide). The result of a very small
window is to cause digitisation effects on the resulting densities where a large number
of the bins in the digital histograms are empty, thus contributing to a larger error.

7.1.5 Discussion

A methodology for modelling a density from the signal intensity domain PSF has been
presented. This has been illustrated with a Gaussian PSF model resulting in improved
x? GoF for PSFs that approach a Gaussian over two other approaches. This investiga-
tion has also demonstrated that the Benford prior density can be used as a plausible
description of the mixing that results from a signal acquisition process characterised by
a finite window width. FEach of the theoretical prior mixing densities possess functional
shape invariance given different sized window functions.

This investigation into theoretical prior densities for the PV effect has explicitly exam-
ined cases where: the width of the kernel for the acquisition process is smaller than the
objects of interest affected by the mixing process; and the PSF can be approximated
by one of the window filters designed using the Kaiser window method.

This new information about the form of the global prior distribution will now be used
in the simulation of a PV model together with a locally defined PV mixing prior.
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Figure 7.6: x? GoF results for Benford (gray), Kitamoto and Takagi (white) and ICG
(black) prior mixture densities when compared with the experimental mixture densities
obtained by convolving simulated volumetric data sets with window functions designed
using the Kaiser window design methodology with parameters given in table 7.1. (a) is
for transition width, D=0.100, (a Boxcar function); (b) is for transition width, D=0.125;
(c) is for transition width, D=0.156; (d) is for transition width, D=0.195; (e) is for
transition width, D=0.244, similar to a Hamming window; and (f) is for transition
width, D=0.305, similar to a Gaussian function.



7.2. A Contextual PV Prior 167

7.2 A Contextual PV Prior

Often data samples may have what is often known as context. For spatially located
data samples this context is space. Intuitively, if a data sample in a particular location
is classified with a particular class label then any data samples located near to that
data sample are likely to have a similar class label. This prior knowledge is often useful
in improving the classification performance of otherwise ambiguous data samples. Also,
if the joint likelihood for a number of data samples is calculated, then the value of this
joint likelihood may not be fully specified if the contextual information is not included.

As discussed in the conclusions of chapter 6, further model developments are required
to improve the classification performance of the PV classifier that has been developed
thus far. The available spatially derived contextual information is one possible type of
information that could be harnessed to improve classification performance and this is
the topic of this part of the thesis.

This work demonstrates that the contextual information can be correctly modelled and
incorporated into the classifier developments described in chapters 5 and 6.

7.3 Model G: Methodology

In chapter 6 a probabilistic description using Bayes theorem of the PV content of a
voxel, a, for an intensity value, g and locally calculated gradient magnitude, z, was
given by:

_ plglar).p(z|ar).p(cx)

plalg, ) = PHET TP, (717

where it was assumed that g and z are independent. This formulation was used to

determine the expected mixture content for a particular intensity level, g and local
gradient magnitude, z in equations 6.31 (2-D) and 6.52 (3-D).

A further variable, oy, is also now considered that models the mixing in the neigh-
bourhood of a particulazr voxel, w;. Instead of adapting equation 7.17, the posterior
density of the mixing vector, «, (ignoring the voxel specific notation), is derived by
re-considering the basic Bayesian formulation. i.e. The posterior density of the mixing
for a particular voxel, a via Bayes theorem is given by

p(g‘a7z7am)'p(a7z7am)7 (7.18)
p(g; 2, am)

pladlg, z, an) =

where the reader should note, p(g, «, z, ay) is equal to p(gla, z, am).p(a, z, an) or
p(ag, z, am).p(g, z, as). Assuming little direct conditional dependence of g on z and
g on auy due to the indicating mixing vector, o

plgla).planlz, a).p(z, o)
p(9)-p(z, am)

p(alg, z, an) =

)

_ plgla).plag|z, a).pla)
B p(9).p(am|2) ’ (7.19)
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so that the probability of the mixing for a particular voxel with contextual information
no longer requires the gradient magnitude densities discussed in chapter 6.

The only unknown term in the numerator of equation 7.19 is the localised prior mixing
term, p(aum|z, @), which, as will be seen shortly, is well described by a Gaussian form
and thus possesses symmetry where p(an|z, &) = p(a|z, am). So that p(a|z, ag) can
be used interchangeably with p(aun|z, o). Conveniently, p(c|z, ag) is dependent on
the neighbourhood information and the gradient magnitude.

7.3.1 Form of the Localised Mixing Prior

The neighbourhood information may be succinctly described by the vectorial mean of
the mixture values of the neighbouring voxels to point w;:

1
v, = Z Q; (7.20)

where |N,,,| is the cardinality of the set of neighbours to point w;:
Ny, = {w;|V w; that are neighbours of voxel w;} (7.21)

ie. M, is a set of points located within a certain distance, Cp, of w;. The squared
difference between this mean and the actual voxel’s label is equivalent to the sum over
what is known as the clique potentials, Vi, w,:

Z Vs, = Z Kj (O, — a,,)? = Cla, — amwi)2, (7.22)
wjegt“’i w]‘E%i

where C'is a constant. A similar clique potential, V,,, «,; was previously seen in chapter
4, equation 4.14 (using notation, V;;), where the seminal paper on probabilistic PV
modelling was described, published by Choi et al. in 1991, [24]. The clique potential
used here is the same as the clique potential used by Woolrich et al. in 2005, [162],
which was also previously described in chapter 4, on page 76.

PV models incorporating local mixture information using this clique potential or similar
have previously utilized a Gaussian distribution, [24, 162] as the PV mixing prior
distribution. The Gaussian distribution can be seen as a specific instance of the Gibbs
distribution when using this particular clique potential. The Gibbs distribution was

given in chapter 4 by:
1
P(x) = - €XP (—H(x)) (7.23)

where H(x) is known as the energy function, x refers to the state of the voxels, which
for PV voxels, will be given by the mixing vectors, a and Z normalises the Gibbs dis-
tribution and is known as the partition function. The energy function, H(x) measures
the amount of disparity of the state of the voxels, . So that if the PV mixing prior
density is locally defined as:

1 1
2 2
p(aw,|an, o0, )= ————>5.exp| ——5— E (Qw 0 — Oy, 0)° |, (7.24)
w i N, (2'7&0%{‘0.)[(/2 2'(7423% o w;,v iV

(3
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where o, = (Qw;1 W, 2 - awi,K)T and agy,, = (a‘ﬁui,l an,. 2 - amu“K)T, SO
that there are n classification classes and v in equation 7.24 is therefore limited to
1 <wv<n. oN,, is the standard deviation of the distribution that can be used to
control the amount of spatial regularisation. Most authors, such as Choi et al., [24],

utilize a regularisation parameter, which takes the form of (for the entire data)

1

o —
[T o5
Yw; Mo,

p (7.25)

but for the Gaussian form of the Gibbs distribution, a standard deviation parameter
is more appropriate. Assuming this Gaussian form, the prior distribution would then
result in a Gaussian instance of the Gibbs distribution for the entire data, given by:

p(A[Zx) = [ plawlan,, . o5, ), (7.26)

Vwi

where A = {ay,|lw; € @}, ¥n = {on, |wi € @} and 2 is the set of all points in
the image space. The conditional independence of the mixture vectors from all other
mixture vectors in the image space, except the mixture vectors of the neighbouring
voxels is a property of the Gibbs distribution. This was illustrated earlier, in chapter
4.

As previously stated, Choi et al. [24] noted the Gaussian like distribution of the data
with respect to the clique potential described in equation 4.14. Choi et al. also con-
firmed this observation experimentally with a Quantile-Quantile (QQ) plot. A QQ
plot is a scatter plot of frequency components of two Cumulative Distribution Func-
tions (CDF)s, thus enabling the similarity of the two CDFs to be observed graphically.
The Quantile refers to a fraction of the CDF probability and a series of these quan-
tiles for the two CDF's (theoretical and experimental) should therefore present a linear
relationship if the two distributions are equivalent.

Woolrich et al. [162] also observed that their neighbourhood measure can also be
approximated with what is known as a conditionally specified Gaussian model, as de-
scribed in, for example, [8, 30].

To confirm the Gaussian nature of the measure in equation 7.20, an exemplar scatter
plot of the various values of a for particular values of ag can be seen in figure 7.7(c).
Following the procedure adopted by Choi et al. in 1991, a QQ plot is also produced for
the data in the scatter plot also given in figure 7.7(d). The QQ plot illustrates a good
agreement between a Gaussian form for the locality measure in equation 7.20.

Choi et al., [24], determined the optimal value of their variance measure by the value
that maximizes the log-likelihood function of their image model. Woolrich et al., [162],
assigned a prior density to describe their variance measure that was subsequently incor-
porated into the image model, therefore enabling the variance measure to be adapted
to the data. One should note however, the heuristic manner in which Woolrich et al.
selected their prior density, apparently based on conjugacy rather than observation. A
conjugate density in Bayesian type methods relies on selecting a density that results in
a convenient form of the posterior, to assist in sampling or analytical point estimation
methods, e.g. see [77].
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Figure 7.7: (a)Exemplar slice through simulated PV data, with mean values 960 and
1040; (b) Exemplar slice through the volume consisting of mean values of neighbouring
voxel intensities of the volume illustrated in (a); (c) Scatter plot of (a) versus (b),

i.e.

ground truth voxel intensities versus mean of neighbouring ground truth voxel

intensities; (d) A Quantile to Quantile plot for simulated PV data (y-axis) versus
Gaussian functions (x-axis). (d) helps to illustrate that a Gaussian function is a good
description of the variation of ground truth intensities as a function of the mean of the

neighbouring ground truth intensities.
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Choi et al., [24], set their variance measure to be constant for the entire image data.
This is equivalent to asserting that there should be an equal amount of spatial reg-
ularisation through out the image data, i.e. homogeneity of the imaging space. At
the boundaries of classification components such a condition is not optimal. Equation
7.24 describes the variation of the mixture mean as a function of the mean of the local
mixture means, without the gradient magnitude measure as required by p(a|am, z)
in equation 7.19. As the homogeneity assumption is less valid at classification compo-
nent boundaries, together with the idea that gradient magnitude varies at a boundary, a
scatter plot was created to determine whether there is a functional relationship between
om and z. This is illustrated in figure 7.8(e) using simulated PV data.

Figure 7.8(e) illustrates that there is a functional relationship between oy and z. Inter-
estingly many data points with high gradient magnitude values actually possess smaller
standard deviation values. This can be confirmed with close inspection of the exemplar
standard deviation image slice. This is due to the form of the locality measure. The
locality measure, equation 7.20, is an averaging operation that results in little varia-
tion for a voxel that is located in the middle of a slope such as a boundary between
classification classes, composed of PV voxels. This situation is depicted in figure 7.9.

Therefore, the probability of obtaining a particular mixture, «, is a function of the
local variation measure, cusy and the variance of this measure, om(2)? is now a function
of the gradient magnitude. This results in equation 7.24 being modified to

Z(awi,v - a%lfv)Q

1
2\ LY
p(aw1|a%170%l (Z) ) - (Q.W.U%i(Z)Q)K/Q.eXP 20_%1 (2)2 ’ (727)

which satisfies the form of the local mixing prior as used by equation 7.19. on(z) was
found to be well modelled by a Beta density function, details of which can be seen in
section 7.4.

The posterior density of o can now be defined, taking the form from equation 7.19

_ plgle)-p(ajom, on(2)?)

plalg, z, am, om(2)?) = @) (7.28)
where ) (o )2
p(g|la) = Tﬂ?x.exp <—%> , (7.29)

and recall from chapter 5, sub-section 5.1.3, the mixture mean is given by g = Y fty- iy
Yv

and the mixture variance is given by 02, = Y 02.a2, where v is indicative of a particular
Yov
classification class. Thus, the optimal mixture vector (for a particular voxel, w;) can

also be determined using the expected mixture values w.r.t. the posterior distribution
given in equation 7.28:

E awi,l ‘gwiy Zwi7 O“ﬁwl

Py _ E awi,Q‘gw“ZwNa%i
w;,opt — - -

E awi,3‘gwi7 Zwi7 O“ﬁwl
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Figure 7.8: (a & b) are an exemplar slice and section of the 3-D gradient magnitude
volume calculated from simulated PV data; (¢ & d) are an exemplar slice and section
of the standard deviation data volume, where each pixel corresponds to a local value
of oy in equation 7.24; (e) is a gradient magnitude versus standard deviation scatter
plot of the data shown in (a) and (c), illustrating that oy varies as a function of z.
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Figure 7.9: Ilustration of the occurrence and location of high gradient (Hz) but low
variance (Lv) voxels (Hz Lv). High Variation (Hv) voxels occur at the boundary of
classification class components that are characterised by Low gradient (Lz) and Lv
measurements. This figure helps to explain the gradient magnitude versus standard
deviation scatter plot in figure 7.8 where for very high gradient magnitude measure-
ments, many voxels tend to have low variation.

where the mixture content, ay,, ., for voxel w; and classification class v is given by:

1
E awi,v‘gwwzwwami] :/awi,v'p(awi,v‘gwwwaa%i)'do‘wi,v- (7.30)
0

7.3.2 Simulation of the Posterior Distribution

A method known as Riemann sums (see e.g. [113]) was utilized to evaluate the expecta-
tion integrals of the models in chapters 5 and 6. The method of Riemann sums divides
the region of the integrand into a finite number of bins. For each bin, the function be-
ing integrated is evaluated and then used to approximate the integral. Riemann sums
and other similar numerical integration type techniques can be slow and the results of
which may be inaccurate, especially for integrations across many dimensions, as would
be the case for multiple tissue or activity classes. Therefore an alternative technique
is used that utilises Markov Chain Monte Carlo (MCMC) to simulate the posterior
distribution from which expected values may be calculated numerically.

MCMC methods are different in that they rely on random samples being generated, so
that many of the samples are generated in regions where the function being simulated
is concentrated, therefore simulating a density of interest. This results in fewer samples
having to be generated and can lead to more accurate integration results (when utilizing
the simulation for integration) in comparison to the Riemann sums method which
entails evaluating the function at regular intervals. MCMC methods are therefore
suitable for high-dimensional sampling problems, such as is required for the evaluation
of the conditional expectation in equation 7.30.
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A type of particularly useful MCMC algorithm in Bayesian problems is known as the In-
dependent Metropolis-Hastings (IMH) algorithm (see e.g. [41, 45, 113]). The algorithm
can be stated as follows:

Algorithm 4 (Simulation via Independent Metropolis-Hastings (IMH))

1. Given the previous simulated value, zt=1)
Generate a new sample from the proposal density, X* ~ g(x)

Calculate the acceptance ratio, R(z*~D, X*) = ];((;; ::)ié)jgﬁ;jz;j))

If the acceptance ratio, R > 1 then let R =1

Generate an instance of a uniform random variable, i.e. U ~ Uniform(0,1)
If R < U then accept the new sample, t = X*, otherwise ® = ¢t~

L Sett=1t+1

8. Return to step 1.

NS T W e

The algorithm samples from a density known as the proposal (or instrumental) density,
g(x). These samples, X* have to then be evaluated as possibly coming from the target
density that is being simulated, f(z). The evaluation is performed with an acceptance
ratio, R(,). If the acceptance ratio produces a value greater than 1, then the new sample
is deemed to be a valid sample from the target density. If its value is less than 1 then
a uniform random number, U is generated and this is used to determine whether the
sample is accepted or not. The accepted samples form what is known as a Markov Chain
(MC) and converge to the target density. This algorithm can be understood intuitively
from the idea that a sample is generated from a proposal density that resembles the
target density. If that sample has a higher probability than the earlier accepted sample
then it is highly likely that it could equally have been directly sampled from the target
density. For a more theoretical coverage of MCMC algorithms, see texts such as [113].

7.3.3 Choice of Proposal Distribution

The proposal distribution should reflect the shape of the posterior distribution that
is being simulated. As already mentioned this enables samples to be concentrated in
regions where the density is most likely to possess higher probabilities.

Therefore recall that the global two class mixture prior probability was found to be
well described by equation 7.8, repeated here for convenience,

pGauss(aa,b) = C.exp (elrfqL (2.aa,b — 1)2> ,

where C' is a normalizing constant. A number of observations and suggestions are now
made.

e The Beta density for particular parameter values can provide a reasonable fit to
the global mixture prior density (equation 7.8), as has previously been found by
other authors for mixture distributions in non-medical images [56, 66, 156]. See
figure 7.10 for an illustrative fit of a Beta density to the analytically derived prior
density given by equation 7.8;
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Figure 7.10: Ilustration of fitting a Beta density (light dashed line) to the analytically
derived mixture density of equation 7.8 (heavy line). Also illustrated are some exemplar
data points (circles) from ground truth simulated PV data.

e The Beta density possesses a multi-variate extension, known as the Dirichlet
density, thus providing a means for modelling more than two component mixtures,
as was also used for non-medical images in [56];

e Computationally efficient methods exist that enable sampling from the Dirichlet
density. These therefore enable more advanced numerical Bayesian techniques,
such as MCMC algorithms to be implemented.

The Beta and Dirichlet densities also offer the advantage of possessing a property that
constrains the random variable to pre-defined intervals. This is a requirement of the PV
mixing variables, where the interval is [0, 1] for all classification class mixing variables.

7.4 Model G: Implementation

7.4.1 The Form of the Neighbourhood Variance as a Function of Gra-
dient Magnitude

Recall that the neighbourhood variance or standard deviation of equation 7.27 is well
modelled by a Beta density function. The exact form and selection of parameters is
now discussed. By calculating the mean neighbourhood standard deviation for a given
value of gradient magnitude, data points such as the ones illustrated in figure 7.11 were
obtained. With these data points a Beta density function was fitted using the Nelder-
Mead Simplex algorithm, [92], (described in appendix E). The Beta density function
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is defined as (also illustrated in figure 7.11)

_ ¥5-L'(71 +72) =l yya—1

oniz) = L(y1).L(v2)-(va — yg)n 2t (=3 = 2) (7:31)
where 4 and 73 define the extent of the function, so v3 = 0 and 74 is given by the
maximum gradient magnitude. -5 is a scaling parameter and can be calculated from
the area under the data points. The only remaining parameters to be estimated were
~1 and 7o which define the shape of the Beta density (see figure 4.3 for a set of exemplar
possible Beta density shapes). Using the Nelder-Mead Simplex optimisation algorithm
it was found v; = 2.4 and v = 1.5, so that equation 7.31 reduces to

4.814.75
= Tzl'li.\/fm —z (7.32)
4

om(z)

where the scale, v5 and extent, y4 are approximated from the maximum ideal gradient
magnitude in the data and the distance between the two most populous means in a
region of interest surrounding the voxel of interest. In practise, for reasons of stability,
the gradient magnitude has to be calculated from the noisy data. It was found that
calculating the gradient magnitude from the estimated mixture values prevented the
algorithm from converging due to the way in which the gradient magnitude was used
to regulate the amount of spatial smoothness. Therefore z calculated from the noisy
data may become greater than 4. To avoid this the actual equation used is given by:

4.814.75
om(z) = TZM-V |74 — 2], (7.33)
1

where ||z|| represents the absolute value of the arbitrary variable x. Improved perfor-
mance was also found with a Sobel gradient magnitude kernel due to the additional
smoothing provided by the Sobel kernel, (see e.g. [94]).

7.4.2 Classifier Algorithm

The classification procedure is outlined in figure 7.12. The algorithm continues until
nearly as few changes in the mixture means occur from one iteration to the next. This
was measured by a RMS measure

D — \/ o3 (e, - ey’ (7.34)

Yw;

where N is the number of voxels being classified and ugfll is the mixture mean given

by > piy.cu, (see page 171), at iteration (a) and voxel w;. The iterations cease at an
Yu

iteration (a’) when (’D(“,) - CD(a/_l)> < € where € was set to 1, although other more

rigorously defined values may also be selected.

For each voxel, the mixture value is calculated over 60 successful (accepted) samples. At
the time of implementation, this condition was found to be programmatically simpler
instead of the usual MCMC approach where the length of the chain is defined on the
number of accepted and unaccepted iterations.
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Figure 7.11: Exemplar illustration of mean standard deviation as a function of gradient
magnitude data points (%) with a Beta density (equation 7.31) used to approximate
the functional relationship between the mean standard deviation and the gradient mag-
nitude (line). A Sobel gradient magnitude kernel was used to calculate the gradient
magnitude values, (see e.g. [94]).



178 Chapter 7. Informative Partial Volume Prior Models

Intensities

9

gy L

Calculate Gradient Magnitudes

Initial Non—Spatial Classification

p(alg

I

Spatial Classification - Calculate Smoothness

p(algzapy) !

yes

a
no

Data Classified

Figure 7.12: Illustration of the steps involved in the classification of data with classi-
fication class parameters known a priori. Convergence is tested with a RMS measure
defined by equation 7.34.

7.5 Experiments, Results and Discussion

7.5.1 Classification of two Class Simulated PV Data
Experimental Procedure

Simulated PV data that was initially prepared for the classification experiments in
chapter 5 is again used here to determine the classification performance of model G,
of this chapter. As before, these simulations allow the classification performance of
the PV classifier to be assessed under controlled conditions where the parameters are
known a priori. Details of the parameters of the simulated PV data can be seen in table
5.1. The results of the classification of each data set by model G were then compared
with the ground truth data (also prepared for chapter 5). This comparison enabled the
RMS voxel error to be calculated, therefore providing a quantitative measure of the
PV classification performance of model G which is compared with the PV models of
the preceding chapters.

Results and Discussion

The voxel RMS error results of classifying the simulated PV data with parameters given
in table 5.1 on page 103 with the PV classifier using model G can be seen in figures
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7.13 and 7.14. For comparison, these figures also plot the results previously obtained
for model F in chapter 6, the classifier using the reformulated 3-D gradient magnitude
and intensity feature space.

The errors illustrated in figures 7.13 and 7.14 demonstrate quite superior performance
for model G over model F. The pure voxel errors obtained for model G are superior
for most of the simulated PV data sets with CNR values below 10. The pure voxel
RMS error for model G is never greater than 5.0% for any CNR equal or greater than
2. The PV voxel RMS errors for model G are similarly quite superior for CNR, values
below 9. However, model F does demonstrate slightly superior performance for CNR
values greater than 6, although for most CNR values, the performance difference is not
greater than 0.75%. This could be due to the limited benefit of including the gradient
magnitude in the direct inference of the mixture values for model F. This is in contrast
to the use of the gradient magnitude to control the amount of regulation imposed by
model G. The use of the gradient magnitude for low CNR values in the direct mixture
inference appears to offer no particular advantage.

The gradient magnitude in model F (as well as models D and E) is used as an immediate
indication that a voxel is likely to contain a mixture of tissues or activities. Model G
on the other hand utilizes the gradient magnitude to indicate the amount of spatial
regularisation and this therefore does not impose the condition that a high gradient
magnitude is highly likely to be caused by a PV voxel. It does however incorporate
into the model the inclination that if there is a high gradient magnitude then less
information can be drawn from the neighbouring voxels. These facets are of little
importance when classifying these simple two class PV simulated data sets, but they
are important when classifying PV data with more complex morphological structures
such as might be found in the human brain. After a strategy for parameter estimation
is considered in the next section of this chapter, the subsequent chapter presents the
application of models F and G to emulated MR brain data that provides a more realistic
simulation of the type of PV artefacts seen in clinical MRI data.
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Figure 7.13: Pure voxel RMS errors obtained for models G (A) and F (H). (a) is for
CNR values from 2 to 50; (b) is for CNR values from 2 to 10. Continued on next page.
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Figure 7.14: PV voxel RMS errors obtained for models G (A) and F (H). (a) is for
CNR values from 2 to 50; (b) is for CNR values from 2 to 10. Continued on next page.
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7.6 Parameter Estimation

In all the preceding experiments, simulated PV data was utilized to determine the
performance of the PV classifiers for a variety of different parameter values. In each
of these experiments the exact parameter values used to simulate the data were also
passed to the classifier in order to determine the intrinsic (best case) performance of
the classifier under controlled conditions, without effects from incorrectly estimated
parameters. Although this allows for systematic comparison of intrinsic performance,
it is however, not a realistic scenario. Parameter values are not usually known a priori
and have to be estimated during a classification process of biomedical data such as MRI
or PET imaging data. The parameter estimation schema proposed here is based on
Bayesian techniques, very similar to the technique described in section 7.3.2 to estimate
the mixture values. Indeed, the class memberships of each pixel (voxel in this case) are
often considered parameters in themselves (see e.g. [80, 160]).

7.6.1 Formalisation

Consider the parameters of the image data to be denoted by, § = {p o}, where p =
(p1 p2 ... pn)? is a vector of the N class means and similarly, o = (o1 03 ... 0,)7 is
the vector of the standard deviations. The parameters should be estimated over all
the data. The imaging data consists of voxel intensities, G = {g.,, |w; € 2}, and voxel
mixture values, A = {a,,|w; € 2} where © is the set of all data points or voxels in
the imaging data. Therefore, the probability of these parameters, 6, given the data, G
and the mixture values, A can therefore be described by

p(GlA,0).p(A,0)

0|G,A) = 7.35
(ol 4) = PO (7.35)
Noting the independence A and 6, results in
A, 0).p(A).p(0 A, 0).p(0

p(GlA).p(4) p(GlA)

The normalising term or marginal, p(G|A), is difficult to realise. This is a common
problem in many Bayesian problems, see e.g. [41]. Fortunately, the IMH algorithm
described in algorithm 4, page 174, does not require realisation of the denominator.
Therefore only the numerator has to be considered,

p(0|G, A) x p(G|A,0).p(0). (7.37)

This leaves the two terms, p(G|A, 6), the joint likelihood over all the data and p(#) the
prior PDF for the parameters. The joint likelihood over all the data can be calculated
as

G|A 9 Hp gw‘awa 5 (7.38)

where it is assumed that individual intensity values are i.i.d. Spatial correlations of the
voxel labels have already been considered through the voxel label estimation procedure
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in the preceding section. Also, the voxel labels are the dependent terms not the variable
being considered.

The prior PDF for the parameters are divided into two PDF's for the mean and standard
deviation vectors as they are considered here to be independent, so that they are given
the following form,

p(0) = p(p).p(o). (7.39)
The standard deviations of the classification class noise distributions, o, are unlikely
to be very small or zero. The standard deviations are also less likely to be very much
greater than the initial estimated values (to be discussed shortly). A right skewed
density that is not defined below zero would fulfil these constraints. One such density
is the Gamma distribution which is also easily sampled, thus making it a suitable choice
for use in the IMH algorithm. Thus, the standard deviation prior distribution is given
by a multi-variate Gamma distribution,

n 0.7‘—1 T
= —. - 7.40
v =11 exp< Av>, (7.40)
where the hyper-parameter )\, controls the shape of the density and the hyper-parameter,
r controls the scale of the density!. Exemplar plots of equation 7.40 for n = 1 and
r = 2 and 3 can be seen in figure 7.15

No particular constraints should be placed on the mean vector prior distribution, p(u),
other than it being likely to have been generated from a symmetrically defined area
surrounding the initialisation mean vector. Therefore the prior distribution for the
mean vector is specified by a multivariate Gaussian distribution,

N !
o) =TT sy o (L5 ) (7.41)

(2.m)N/2.0! 2.012

where p and o} are the hyper-parameter mean and standard deviation for classification
class 1.

These two prior distributions can now be used in an IMH MCMC algorithm as described
in algorithm 4, (page 174), where the prior densities are used as the proposal density
to form possible samples. The samples are then used to calculate the acceptance ratio
which determines whether the sample is likely to have come from the target density, i.e.
the posterior, p(6|G, A). Once chains of these samples have been built, they are then
used to estimate the true values of the parameters, again via their expected values,
E[0|G, Al

7.6.2 Parameter Initialisation

Initial parameter estimates are required to initiate the algorithm. A popular method
of initialising parameters of a parametric unsupervised segmentation or classification

LA hyper-parameter is a type of parameter that is often associated with prior distributions in
Bayesian problems where constraints can be placed on the hyper-parameters. Sometimes hyper-
parameters possess prior distributions themselves, but in this work, they are assigned fixed values
through empirical methods.
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Figure 7.15: Illustration of the various shapes of the single variate Gamma density used
as the prior density for the standard deviations (see equation 7.40). From left to right
on both sub-figures, A = 5,15, 25, 35,45, resulting in modes of 5,15, 25, 35,45 for r = 2
and 10, 30, 50,70,90 for r = 3.
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procedure is with the use of a non-parametric technique such as one of the many
clustering algorithms, e.g. k-means and fuzzy c-mean algorithms (see e.g. [133, 151]).

A simple minimum distance clustering algorithm which also includes spatial context is
adopted here, details of which can be found in algorithm 5.

Algorithm 5 (Simple Clustering Algorithm)

Given the imaging data and the number of desired data clusters, C,
Divide the CDF of the imaging intensities into C' equally spaced values.
Let cluster intensities, p, equal the centre intensities of these units.
Perform an initial clustering by:

a. For each voxel:

B o e =

1. Calculate distance between voxel’s intensity, go, and pi,.
b. Assign voxel w to the cluster with the smallest distance.
c. Update cluster centre value with g,.
5. Perform smoothing cluster:
a. Iterate through all vozels, w.
b. Calculate local voxel intensity mean, fie,.
c. Calculate distance between p., and p, V i.
d. Re-assign voxel w to cluster with smallest distance.
Go back to (5) until no change can be seen in cluster intensities, fu,.
Calculate standard deviations and priors for each cluster.
End.

o N>

This algorithm is initialised by dividing the Cumulative Distribution Function (CDF)
of the imaging data into C' equal divisions. The centres of these divisions on the
intensity axis are then used as the initial cluster intensities, or centroids. Clustering
is then commenced. An initial clustering procedure is performed using just the voxels’
intensities. After this the intensities of the neighbouring voxels to each voxel in the
data volume are inspected. Each voxel is assigned to a particular classification class
if the mean of the neighbouring voxels’ intensities is the least distance away from the
centroid of that classification class in relation to all the other centroid mean values. The
centroid value is updated with the intensity of the voxel in question, not the mean of
the neighbouring voxels’ intensities. This process is repeated for every voxel in the data
volume until no further changes occur in the cluster intensities. Using the neighbouring
voxels’ intensities in this way enables the algorithm to retain the spatial context that is
inherent in the imaging data. Furthermore, only updating the centroid values with the
individual voxel intensities reduces the smoothing effect that arises from the calculation
of the mean values from the neighbouring voxel intensities.

7.6.3 Implementation

Some minor modifications were made to the overall classification algorithm described
in section 7.4, (page 178), and illustrated in figure 7.12. These modifications included
the simulation of the mean and standard deviation posterior distributions.
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For each iteration of the classification algorithm, the parameters were estimated after
the “Spatial Classification” stage illustrated in figure 7.12. At this point in the algo-
rithm, the expected PV mixing values were known, so that equations 7.40 and 7.41
could be determined. Once the parameters were estimated, they were then used to-
gether with the expected mixture values to perform another iteration of the estimation
step or were used to inform the algorithm user if enough iterations had executed. Five
iterations in this case were found to be sufficient for the termination criteria to be ful-
filled, but the algorithm was run for 10 iterations to confirm this was true by observing
the values calculated by equation 7.34.

Each parameter estimation step generated 70 successful (accepted) samples before the
expected parameter value was calculated. Similarly for each voxel, the mixture value
was calculated over 60 successful (accepted) samples (as was previously used in the
known parameter value experiments of the previous section). These conditions were
found to be programmatically simpler at the time of implementation instead of the
usual MCMC approach where the length of the chain is defined on the number of
accepted and unaccepted iterations.

7.7 Further Experiments, Results and Discussion

7.7.1 Experimental Procedure

The simulated PV two class data used in the previous experiments is again used here
(further details given in table 5.1). Instead of the known parameter values that were
used to generate the simulated data, initial preliminary parameter values were estimated
with the unsupervised clustering algorithm previously described in algorithm 5. These
parameter estimates were then used to initialise the full PV classification and parameter
estimation procedure.

7.7.2 Results and Discussion

The preliminary mean and standard deviation parameter estimates from algorithm 5,
page 187, can be seen in tables 7.2 and 7.3 respectively.

Tables 7.2 and 7.3 illustrate that the PV parameter estimation algorithm is capable
of improving the initial parameter estimates provided by the simpler non-parametric
clustering algorithm. The absolute errors between the initial parameter estimates and
the actual parameter values together with the PV estimated parameters are illustrated
in figures 7.16 and 7.17. The errors for the mean parameters were normalised according
to the distance between the two actual class means, in order to provide a fractional
measure. The errors for the standard deviation errors were also normalised to the actual
standard deviation values. These figures help to illustrate the benefit of incorporating
knowledge about the PV effect into the parameter estimation schema, particularly for
larger CNR values. When there are two classification classes, any non-PV parameter
estimation schema will not be fully aware of the PV voxels with intensities between
the two classes. This usually results in biased estimated mean values that are placed
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Table 7.2: Estimates for the Mean Parameters. First two columns represent initial estimates
determined via the the simple clustering algorithm on page 187. Third and fourth columns are parame-
ters obtained using the Bayes IMH simulation. Final two columns are the ground truth values that the
algorithms were estimating.

Clustering Bayes IMH Ground Truth

Estimates Estimates Actual Values
Class 1 | Class 2 || Class 1 | Class 2 || Class 1 | Class 2

H1 H2 H1 H2 M1 K2
512.0 1476.1 497.8 1501.7 500.0 1500.0
608.8 1381.9 597.5 1401.8 600.0 1400.0
707.4 1285.0 698.9 1301.7 700.0 1300.0
804.6 1191.4 798.7 1201.2 800.0 1200.0
901.6 1094.6 900.1 1100.9 900.0 1100.0
910.2 1085.5 908.7 1092.6 910.0 1090.0
919.9 1076.5 919.4 1081.5 920.0 1080.0
930.4 1067.3 929.9 1072.4 930.0 1070.0
941.1 1057.7 939.1 1062.6 940.0 1060.0
951.2 1047.8 949.5 1051.3 950.0 1050.0
961.0 1037.7 958.6 1041.1 960.0 1040.0
970.9 1028.4 968.9 1031.1 970.0 1030.0
981.6 1019.4 979.5 1022.6 980.0 1020.0

Table 7.3: Estimates for the Standard Deviation Parameters. First two columns represent
initial estimates determined via the the simple clustering algorithm on page 187. Third and fourth
columns are parameters obtained using the Bayes IMH simulation. Final two columns are the ground
truth values that the algorithms were estimating.

Clustering Bayes IMH Ground Truth

Estimates Estimates Actual Values

Class 1 | Class 2 || Class 1 | Class 2 || Class 1 | Class 2
g1 g2 01 02 01 02
60.1 82.8 18.1 16.9 20.0 20.0
49.4 67.4 18.8 18.0 20.0 20.0
39.2 52.4 19.0 19.3 20.0 20.0
30.2 37.8 19.7 18.6 20.0 20.0
22.8 25.9 20.2 18.9 20.0 20.0
22.2 25.1 19.3 19.6 20.0 20.0
21.8 24.1 20.2 19.8 20.0 20.0
21.5 23.0 19.3 19.5 20.0 20.0
21.2 21.9 19.2 20.0 20.0 20.0
21.0 21.1 19.9 19.7 20.0 20.0
20.5 20.8 20.1 19.5 20.0 20.0
20.2 20.5 20.8 19.9 20.0 20.0
20.1 20.1 20.3 20.4 20.0 20.0
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Figure 7.16: Absolute fractional errors of the estimates of the mean parameters with
values given in 7.2, that include the initial estimates (grey) via the simple clustering al-
gorithm and the PV estimates (black) via the expected value of the simulated posterior
distribution. The errors are relative to the distance between the actual class means.

somewhere between the two class means. The effect on the variance is somewhat more
significant, as can be seen from figure 7.17. The non-PV incorrectly estimated standard
deviations are usually much greater than the true standard deviation values, partly due
to the incorrectly estimated mean values and the larger apparent variation in per-class
intensities.

As the CNR decreases, fewer intensities exist between the two classes, thereby reducing
the error seen by the estimated non-PV standard deviations. This is in contrast to the
PV aware estimation schema which provides similar errors for each standard deviation
estimate for any value of CNR, confirming that the PV model possesses improved
precision over the non-PV aware estimation schema. The fractional errors for the non-
PV mean estimates remain very similar for most of the CNR values (see figure 7.16),
increasing slightly for smaller CNR values. The PV aware mean estimates also increase
for smaller CNR values, although it should be observed that the relative error of 6.5%
of the smaller CNR values represents very few actual differences in intensities as can
be seen from the values in table 7.2.
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Figure 7.17: Absolute fractional errors of the estimates of the standard deviation pa-
rameters with values given in 7.3, that include the initial estimates (grey) via the
simple clustering algorithm and the PV estimates (black) via the expected value of the
simulated posterior distribution. The errors are relative to the actual class standard
deviation values.
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7.7.3 Classification Errors with Estimated Parameter Values

It might be expected that errors in the parameter values might affect the PV classi-
fication performance of the classifier. Therefore the pure and PV voxel RMS errors
obtained for the classifications using the estimated parameter values together with the
results obtained using the parameter values known a priori can be seen in figures 7.18
and 7.19 respectively. As might be expected, the pure voxel RMS errors are gener-
ally worse for the estimated parameter values (figure 7.18), but somewhat surprisingly
the PV errors are improved with the estimated parameter values. The pure and PV
errors also demonstrate somewhat erratic error values, this can be attributed to pa-
rameter values that have been incorrectly estimated. The pure results for data sets
with CNR values of 3 and 4 are considerably better than the results for the data sets
with CNR= 2,5. This is because the distance between the two estimated mean values
for CNR= 3,4 are very close to the true distances between the mean values, (refer to
the values in table 7.2). The data set with CNR= 7 has a mean value (929.9) that
is very close to the true mean value (930), resulting in a smaller pure error (refer to
figure 7.16). It is not clear as to why the data set with CNR= 9 also has reduced pure
error, except perhaps a combination of these effects. The pure and PV errors appear to
follow either of two trends, one of which is most likely the true trend (PV or pure) and
the other is most likely a gross voxel RMS type error that is the pure and PV errors
combined. This is now discussed.

The improvement in classification for the PV voxels is most likely due to the arbitrary
division of voxels into pure and PV. When a significant number of pure voxels have
been misclassified, then it is quite possible that the PV voxels will have improved
classification due to the probabilistic nature of the problem. This is confirmed by
observing the gross voxel RMS errors, as seen in figure 7.20. The gross voxel RMS
error does not distinguish between a PV or a pure voxel, thereby removing this arbitrary
division. The division is however useful when the true parameter values are known and
the ratio of pure to PV voxels may change due to differing simulation parameters,
such as anisotropy which was studied in chapter 6. Figure 7.20 illustrates that the
performance of the classifier using estimated parameter values is in fact very similar
to the classifier using actual simulation parameter values. The knowledge that the
classifier can estimate parameters together with providing a classification performance
that is very similar to one using actual parameter values is useful as it provides further
validation to its applicability and inspires confidence for use with clinical data.

7.8 In Conclusion

The PV model developments described in this chapter, culminating in a seventh model
of the PV effect, model G, have lead to superior classification performances over all the
previous PV models (A to F). The first part of this chapter presented novel PV prior
distributions. These included a PV prior distribution that was derived analytically via
a physical model of the PV effect and the second using a phenomenological observation,
relating a commonly found phenomenological law known as Benford’s Law to the PV
effect.
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Figure 7.18: Pure voxel RMS errors obtained for model G using actual simulation
parameters (A) compared to model G using estimated parameter values (x).
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Figure 7.19: PV voxel RMS errors obtained for model G using actual simulation pa-
rameters (A) compared to model G using estimated parameter values (x).
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Figure 7.20: Gross voxel RMS errors obtained for model G using actual simulation
parameters (A) compared to model G using estimated parameter values (x).
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The developments in this thesis prior to this chapter provided an insight into the nature
of the PV effect, but neglected to include any form of spatial context except for the
second order information provided by the gradient magnitude of models D-F' in chapter
6. This gradient magnitude information was also included in the model of this chapter
(G), but it was found that the inclusion of a spatial smoothness constraint removed
the direct dependency on the gradient magnitude feature. The gradient magnitude
was therefore re-introduced to control the amount of spatial regularisation. The use
of gradient magnitude to control the spatial regularisation advances its use in PV
classification by avoiding the deduction that only high gradient regions may result in
PV voxels. This yields a more realistic model of possible PV instances that may occur
together with extremely promising classification results for simulated PV data.



Chapter 8

Application to Biomedical Images

The preceding chapter (7), presented a method for estimating parameters of a PV
model that included neighbourhood information in the form of a vectorial mean of the
neighbouring mixture values. Improved classification performance was seen using this
novel formulation over other PV classifiers in this thesis. However, the PV classifiers in
this thesis, up until this point, have only been assessed in terms of their classification
performance on simple two class simulated PV data consisting of bands of concentric
spheroids. Other sources of data are available that can assist in the performance as-
sessment of the PV classifiers under more realistic conditions. This is the topic of
this chapter, where three classifiers have been selected and are now assessed utilising
medical imaging data in the form of: simulated MR brain data sets containing vari-
able amounts of noise, where PV ground truth templates are available for classification
assessment; a PET phantom with a PV ground truth template derived from high res-
olution CT data; and 20 normal volunteer MRI brain data sets with expertly defined
discrete ground truth maps. Each of these biomedical data sets are introduced below,
in their respective sections.

A PV classifier from each chapter was selected based on their representative properties
for each chapter. A PV classifier using the analogous Gaussian-Triangle model (B),
from [148] was selected due to the approximate equivalence that was found with the
explicit PV model (C); each both possessing superior PV classification performance
over the simpler finite Gaussian mixture model (A). A PV classifier using the intensity
and 3-D gradient magnitude reformulated (i.e. non-analogous) feature space (model F)
was also selected based on the superior performance over the other intensity and gra-
dient magnitude feature space classifiers from chapter 6. Also, the Gradient controlled
Spatial Regularisation (GSR) PV classifier of chapter 7 was selected representing a
PV model that includes PV neighbourhood contextual information. Therefore these
three classifiers, using PV models B, F and G are utilised through out the work in this
chapter.

197
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8.1 Classification of McGill Simulated MRI Brain Data

The McGill simulated MRI brain phantom data [27, 28, 72, 73] is used here to assess
the performance of the PV classifiers presented in this thesis. The simulated brain
phantom is obtained from BrainWeb, provided by the Brain Imaging Center at the
Montreal Neurological Institute, McGill University, Canada [12]. The simulated brain
data consists of a morphological structure that is very similar to that found in actual
MR images of the human brain. This data can therefore assess the performance of
the PV classifiers under clinically realistic imaging conditions, where the PV artefact
is affected by the complex brain morphology that are otherwise difficult to create with
regular geometric structures. This is in comparison to the conditions provided by the
simple two class simulated PV data that has so far been used. The simple two class
simulated PV data provided a carefully controlled set of simulations that produced PV
voxels and pure voxels with exact parameter values known a priori combined with a
well-defined geometric structure. The simulated McGill brain data is also not created
in the same manner, where parameter values of the PV models do not possess direct
correspondence with the parameter values of the MR simulation process utilised to
produce the simulated brain data.

8.1.1 Description of the Simulated MRI Brain Data

The process of creating the simulated MRI brain data is described in detail in [73],
details of which are briefly summarised here.

Twenty-seven MRI T1 weighted scans of a single subject were acquired, registered and
then averaged. This averaged data set was then classified with a fuzzy minimum dis-
tance classifier and manually corrected by a neuroanatomist. As noted by Kwan et al.,
[73], (members of the Montreal Neurological Institute at McGill University), the most
important factor of the result of this classification process is that it is representative
of a “plausible” brain anatomy. The corrections applied by the neuroanatomist assure
that this is the case.

Spin-models of the different tissues are then constructed that are combined with a
particular pulse-sequence. This enables signal intensities for different tissues to be
evaluated via equations such as the Spin-Echo imaging sequence signal equation (2.6),
(see page 16). Kwan et al. also describe a simulation process in situations where
convenient signal equations are not available. The signal intensities are then mapped
to the 3-D anatomical templates derived from the classified averaged data volume. This
anatomical template is then convolved in the spatial domain by an inter-slice 1-D PSF
to simulate slice selection and then in the Fourier domain by a 2-D PSF to simulate the
with-in slice PV effect. Zero mean additive Gaussian noise is then applied to the real
and imaginary components to simulate the noise processes of MRI acquisition physics.
Magnitude images are then calculated from these imaginary components which results
in Rician distributed noise with pre-calculable parameters.
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8.1.2 Experimental Methodology
A number of default MR T1 simulations together with their fuzzy tissue templates

available from [12], were downloaded, details of which can be seen in table 8.1 and a
set of single exemplar slices from each data set are illustrated in figure 8.1.

Table 8.1: Simulated Brain Data Set Details

Noise || Voxel Dimensions || Inhomogeneity
1% 1x1x1mm? 0%
3% 1x1x1mm? 0%
5% 1x1x1mm? 0%
7% 1x1x1mm? 0%
9% 1x1x1mm? 0%

The simulated McGill brain data is also available with variable amounts of inhomo-
geneity artefact that is a common imaging artefact associated with the MRI acquisition
process. This was previously discussed in chapter 2. However, the downloaded data
sets were limited to 0% inhomogeneity to simplify performance assessment with this
realistic simulated brain data because none of the classifiers in this thesis model the
inhomogeneity artefact. The result of classifying data with the inhomogeneity artefact
will be seen for real MR data in the last set of experiments in this chapter. Each
simulated brain data set is described by a single percentage noise value, 1% to 9%.
The percentage values represent the ratio of the standard deviation of the noise to the
signal for a reference tissue, which for the pre-computed T1 simulations, (used here),
is the WM tissue. Therefore a CNR value can be estimated using these noise values in
conjunction with the noiseless signal levels of the 0% noise simulated MR brain data
set. These calculated CNR values are given in table 8.2. These CNR values illustrate
that the two-class simpler simulated PV data of the preceding chapters utilised a range
of CNR values that are representative of the simulated brain data. These CNR values
may therefore be considered as guides to classifier performance and may also be used
to assess the quality of the estimated parameter values.

Table 8.2: Simulated Brain Data Set CNR Values

Noise || CSF-GM | GM-WM | CSF-WM
1% 44 26 70
3% 15 9 23
5% 9 5 14
7% 6 4 10
9% 5 3 8

PV classifiers using models B, F and G were applied to the five brain web data sets.
Model G together with the parameter estimation detailed in chapter 7 was used to
estimate the parameters from which the classifiers using models B and F were able to
classify the data as no parameter estimation technique has been investigated for these
two models. Model G classifier utilise the same classification process as was followed in
chapter 7 including the non-supervised spatially aware minimum distance classification
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(e) 9% noise

Figure 8.1: Exemplar image slices from the simulated brain data sets [73], details given
in table 8.1. Notice the visual increase in the amount of noise as might be expected
with the increase in the percentage of noise.
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algorithm to initialise the process. The classifiers were set to classify for three classes,
corresponding to the CSF, GM and WM CNS components. The remaining components
were automatically excluded via a GM, WM and CSF brain mask created from the
fuzzy GM, WM and CSF tissue templates, illustrated in figure 8.2. In practise these
components could be excluded via a skull-stripping algorithm, e.g. see chapter 3.

Figure 8.2: Exemplar slice from brain mask with voxels composed of more than 87%
GM, WM and CSF components from the fuzzy tissue templates (illustrated shortly in
figure 8.4). White represents voxel to be classified, black is not classified. Notice some
holes many of which correspond to WM PV voxels with PV content below 87%.

The gradient magnitude feature space parameters for model F were inferred from a
manual regression of the parameters found for the simple two class simulated PV data
in the previous chapters. Previously these were calculated directly from the ground
truth, but simple straight line relationships were found to exist between the maximum
gradient magnitude mean for PV voxels, (maximum of A(a|r, ) — see page 130) and
the distance between the pure class intensity means, (i.e. PV class event 7,, implies
||ty — pall). A similar relationship was also found between the width of the gradient
magnitude distribution for PV voxels, (02 — see page 130) and the distance between

the pure class intensity means, (i.e. ||y, — a]|). The results of these regressions can
be seen in figure 8.3 for the gradient magnitude mean and width parameters.

8.1.3 Results and Discussion

Exemplar image slices for the classification results for each classifier model B,F and
G can be seen in figures 8.5, 8.6 and 8.7, respectively. Sub-figures 8.5(a-c), 8.6(a-c)
and 8.7(a-c) repeat the corresponding fuzzy tissue templates (from figure 8.4) for visual
comparison with the results in sub-figures 8.5(d-r), 8.6(d-r) and 8.7(d-r).

The exemplar image slices enable qualitative analysis of the results of the classification
process. It is difficult to produce any conclusions with regard to the quality of the
classification process except to say that the classifier utilizing model G has produced
smoother looking results for the noisier data sets (5%,7% and 9% noise) in comparison to
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Figure 8.3: Straight line approximations to the gradient magnitude feature parameters
(squares), quantifying location (grad mag mean, (a), A(a|7yq) = ||t — fa]| X 0.6283)
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models B and F. This is despite the classifiers B and F utilizing parameters estimated
from the parameter estimation of classifier G. The CNR values calculated from the
estimated parameters can be seen in table 8.3, which help to illustrate the quality of
the estimated parameters on this simulated MR brain data.

Table 8.3: Simulated Brain Data Set Estimated CNR Values

Noise || CSF-GM | GM-WM | CSF-WM
1% 22 17 56
3% 13 8 25
5% 9 5 17
7% 6 4 11
9% 5 3 8

The estimated CNR values appear to be very similar to the CNR values calculated from
the percentage noise values, given earlier, in table 8.2, page 199. The 1% simulated
brain data set possesses the greatest difference between actual and estimated CNR
values. This is probably due, in part, to the way in which the CNR is calculated. Small
differences in a small estimated standard deviation in relation to the true standard
deviation will result in large differences in the estimated CNR value in relation to the
actual CNR value.

The results of classifying the simple two class simulated PV data in chapters 5 and 6
together utilising similar CNR values as those in table 8.3 suggest that the classifiers
utilizing models B and F might be expected to exhibit poor performance in relation
to model G, particularly for the 7% and 9% noise data sets. This is confirmed by the
RMS errors for these simulated brain data sets which can be seen in figure 8.8.

For the smaller CNR value (greater percentage of noise) simulated data sets, the errors
increase quite considerably. Unsurprisingly, little improvement is seen for the classifier
using model G over the classifiers using models B and F for the data sets with noise
values smaller than 5%. This was also seen in the previous chapters, for simulated
data sets with CNR values greater than 10 (see table 8.3). Model G offers the best
performance improvement over the other models for the 7% and 9% simulated brain
data sets. Model F, which utilized a gradient magnitude model to identify PV voxels
does not appear to offer any classifier performance benefit over the other models. This
is to be expected as the PV model used by the gradient magnitude models (D-F) of
chapter 6 identify PV voxels as voxels with high gradient magnitude. This is not strictly
valid for MR images of the brain, as was previously seen in chapter 2. The brain is
composed of regions of PV voxels that are not necessarily associated with particularly
high gradient magnitude values. This is illustrated in figure 8.9, where some PV voxel
regions are associated with relatively low gradient magnitude in comparison to other
PV voxels that arise from the edge regions. Whilst this effect may not fundamentally
limit classifier performance, it does appear to be a contributory factor in the relatively
poor performance of PV classifier for model F in relation to the performance of the
intensity only classifier, model B. It should also be noted that qualitative comparison
of the classifier output for models B and F (see figures 8.5 and 8.6) appear to illustrate
fewer mis-classified voxels for model F (using the 3-D intensity and gradient magnitude
feature space), particularly for large regions of contiguous WM.
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(b) GM fuzzy template

(c) CSF fuzzy template

Figure 8.4: Exemplar image slices from fuzzy tissue templates used as the quantitative
ground truth for performance assessment of the PV classifiers. White (voxel intensity=
255) represents 100% content and black (voxel intensity= 0) represents 0% content.
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Figure 8.5: Exemplar slices from the WM, GM and CSF fuzzy tissue templates (a-c)
and results obtained for classifier using model B (d-r), continued on next page. (d-f)
WM, GM and CSF results for 1% noise; (g-i) WM, GM and CSF results for 3% noise;
(3-1) WM, GM and CSF results for 5% noise; (m-o) WM, GM and CSF results for 7%
noise; (p-r) WM, GM and CSF results for 9% noise. Note holes in WM classification
are due to holes in the brain mask, illustrated in figure 8.2.
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(a)

Figure 8.5: continued.
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Figure 8.6: Exemplar slices from the WM, GM and CSF fuzzy tissue templates (a-c)
and results obtained for classifier using model F (d-r), continued on next page. (d-f)
WM, GM and CSF results for 1% noise; (g-i) WM, GM and CSF results for 3% noise;
(3-1) WM, GM and CSF results for 5% noise; (m-o) WM, GM and CSF results for 7%
noise; (p-r) WM, GM and CSF results for 9% noise. Note holes in WM classification
are due to holes in the brain mask, illustrated in figure 8.2.
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Figure 8.6: continued.
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Figure 8.7: Exemplar slices from the WM, GM and CSF fuzzy tissue templates (a-c)
and results obtained for classifier using model G (d-r), continued on next page. (d-f)
WM, GM and CSF results for 1% noise; (g-i) WM, GM and CSF results for 3% noise;
(3-1) WM, GM and CSF results for 5% noise; (m-o) WM, GM and CSF results for 7%
noise; (p-r) WM, GM and CSF results for 9% noise. Note holes in WM classification
are due to holes in the brain mask, illustrated in figure 8.2.
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Figure 8.7: continued.
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Figure 8.8: Gross, pure and PV voxel RMS error results for the simulated brain data
sets, details of which can be seen in table 8.1. Voxel RMS errors are shown for the
analogous intensity based PV model (B), in white; the intensity and 3-D gradient
magnitude reformulated PV model (F), in grey; and the GSR PV model (G), in black.
Note that for any model, GM appears to be the most challenging class for classification.
This may be because it lies between the extremal WM and CSF intensity classes.
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Figure 8.9: Illustration of relatively low gradient magnitude brain regions composed of
a large population of PV voxels (marked by arrows) with an exemplar slice from the 0%
noise simulated McGill brain data (a,c) and the result of a Sobel gradient magnitude
convolution operation (b,d) both with different window widths and centres to emphasise
the PV voxels. Window centres and widths are: (a) 1843.5, 3687; (b) 652.5, 1305; (c)

1709, 1400;(d) 133.5, 267.
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Comparison with Further Classification Results

The comparison of results obtained with models B, F and G has helped to illustrate
the different properties of these three classifiers and their suitability with regard to
classifying MR neurological data. It is now instructive to compare the results of the
best performing PV classifiers (B and G) with other classifiers that have previously
been assessed using the McGill simulated brain data.

To aid identification the classifier utilizing model B is referred to here as TRI, short for
Gaussian Triangle Convolution. Similarly, the classifier utilizing model G is referred to
here as GSR, short for Gradient Spatial Regularisation.

Shattuck et al. in 2001, [128], tested brain segmentation techniques that modelled the
pure tissue components as Gaussian distributions and the PV components as a con-
volution of these Gaussian distributions with a uniform distribution. Two techniques
were tested, one in which no spatial prior was modelled and the other in which a dis-
crete spatial prior was used. Both techniques relied upon the maximisation of the joint
probability over all the voxels. These two techniques are referred to here as Shattuck
Maximum A Posteriori (SMAP) and Shattuck Maximum Likelihood (SML) techniques.
See table 8.4 for a summary.

Table 8.4: Classifiers previously used to classify simulated brain data

Acronym || Refs Note

TRI [148];[here,ch.5] || Gaussian Triangle Convolution

GSR [here,ch.7] Gradient Spatial Regularisation

FCM (36, 101] Fuzzy ‘C’ means

AGEM || [100, 101, 137] || Generalised Expectation Maximisation
SETS1 [101] Statistical Estimation of Tissue Spread
SETS2 [101] Statistical Estimation of Tissue Spread
SMAP [128] Shattuck Maximum A Posteriori

SML [128] Shattuck Maximum Likelihood

Pham and Prince in 2000, [101], published the results of testing a number of classifica-
tion techniques applied to the simulated brain data. The primary models in their paper,
referred to here as Statistical Estimation of Tissue Spread 1 and 2 (SETS1 and SETS2),
relate the tissue proportion random variables to the spreading of the image data as a
result of the image PSF. These spread coefficients are limited to two class mixtures
(as was done for the models in chapters 5 and 6) but also incorporate a spatial prior
which applies homogeneous spatial regularisation. Similar to [128], Pham and Prince
also chose to maximise their posterior probabilities. SETS1 and SETS2 differ only
by the value of a stationary prior used to manipulate likely pairs of tissue mixtures.
They compare the results of applying SETS1 and SETS2 with two other previously
published techniques: Fuzzy ‘C’ Means (FCM) which is a clustering algorithm that in-
cludes proportional class membership parameters, where a voxel may have multiple (in
different proportions) class membership to model the variable voxel content [36]; and
a Gaussian based Generalised Expectation Maximisation Algorithm (AGEM) which
models only pure tissue types which are modelled as Gaussian distributions, but they
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Figure 8.10: GM (grey) and WM (white) gross voxel RMS errors obtained for the PV
classifiers on the simulated brain data set with 3% noise. See table 8.4 for a summary
of the classifiers.

also incorporate a discrete based spatial smoothness constraint. These four methods
are also summarised in table 8.4.

Pham and Prince limit their analyses to the 3% noise simulated brain data. Therefore,
the first comparative assessment combines the results obtained by Pham and Prince,
[101], and Shattuck et al. [128] for the simulated brain data with 3% noise, see figure
8.10 and table 8.5. The results illustrate that TRI has the best performance overall
and GSR also has very good performance in comparison to the other classifiers. TRI
has good performance because of the high contrast in the 3% simulated brain data
set (see figure 8.1 and table 8.3). As was seen in chapter 7, little benefit is seen from
incorporating spatial information at high CNR values, due to the intensity informa-
tion in the voxel being more useful over the neighbourhood information at high CNR
values. Most of the classifiers seem to have similar classification performances, except
perhaps AGEM and FCM. AGEM does not even model the PV effect, so this result
is not surprising. Similarly, FCM is based on proportional membership functions not
a probabilistic formulation of the PV effect, although it does demonstrate somewhat
better performance over AGEM. This is probably due to similarities between the con-
tinuous membership function of the FCM algorithm and the continuous nature of the
PV effect.

Table 8.5: Gross voxel RMS errors obtained for the PV classifiers on the simulated
brain data set with 3% noise, 0% inhomogeneity.
| Tissue | AGEM | FCM | SETS1 | SETS2 | SMAP | SML | GSR | TRI |

GM 19% 14% 15% 12% 14% 14% | 12% | 10%
wM 16% 13% 11% 11% 9% 10% 9% 8%

The classification performance of classifiers GSR and TRI were then compared with
the remaining results of classifiers SMAP and SML for the simulated brain data sets
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with 5%, 7% and 9% noise values, given in [128]. The results can be seen in figure 8.11
and table 8.6.

Notice the consistently poorer performance of SMAP and SML in relation to GSR and
TRI for the WM in comparison to the GM results. The trend of the results for GSR
and TRI appear to be consistent with the increased difficulty of correctly classifying
GM voxels due to GM intensities taking values between CSF and WM intensities. It
is not apparent as to why SMAP and SML perform worse for the WM voxels.

Table 8.6: Gross voxel RMS errors obtained for the PV classifiers on the simulated
brain data sets with different noise values.
‘ Data Set H Tissue H SMAP ‘ SML ‘ GSR ‘ TRI ‘

3% GM 9% 10% | 12% | 10%
WM 14% 14% 9% 8%
5% GM 13% 16% | 15% | 15%
wM 18% 21% | 12% | 13%
% GM 17% 26% | 18% | 21%
WM 22% 30% | 13% | 18%
9% GM 36% 35% | 20% | 26%
WM 38% 2% | 15% | 23%

The comparison with SML and SMAP illustrate superior performance for GSR over
SML and SMAP. SML does not incorporate any spatial information and therefore would
not be expected to possess better performance over a model that does such as SMAP,
particularly for data with small CNR values. This is illustrated by the somewhat
least optimal performance of SML over all the other models. Quite surprisingly, TRI
performs better than both SMAP and SML. TRI is similar to SML in that no spatial
information is included in the model, but TRI does divide the PV distribution into
two equal but opposite triangular distributions. This division enables individual class
memberships to be determined and is in fact approximately equivalent to computing the
expected tissue content per voxel, as demonstrated in chapter 5. In contrast, SMAP
and SML treat all PV voxels as a single classification class, unlike GSR and TRI,
which is probably another reason for their relatively poor performance. Other reasons
for the poor performance of SMAP and SML might be due to the method in [128]
incorporating an intensity inhomogeneity correction step. This step may in fact distort
the true intensity values of this homogeneous data, thereby reducing the validity of their
PV models. Similarly they utilized a brain mask that was derived from a separate skull-
stripping procedure so that erroneous voxels were probably included and contributed
toward a poor result for the final stage entailing PV classification. However, one can
observe the differences between the exemplar classification result images presented in
[128] and the results obtained for GSR illustrated in figure 8.7. There appears to be
significant differences in classification quality that are difficult to attribute to a poor
brain mask from the preceding skull-stripping algorithm.
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8.2 Classification of PET Phantom Data

The McGill simulated MR brain phantom simulates the MR imaging process. As
discussed in chapters 1 and 2, the PV effect is not limited to MRI data. Nuclear
imaging data, such as PET imaging data, is also affected by the PV effect. In fact the
relatively small sizes of voxels in functional PET data (e.g. 4 x 4x 4mm?) in comparison
to a structural modality such as MRI (e.g. 1x 1x 1mm?) produces proportionally more
PV voxels.

The previous section utilized a MR simulation of the brain to assess the performance
of the classifiers under more realistic conditions. This section takes a step further
by utilising lower resolution real functional PET imaging data in combination with a
noiseless ground truth derived from structural high resolution CT imaging data. CT
also utilizes ionising radiation, in the form of X-rays rather than the gamma rays that
are used in PET imaging. The X-rays do not originate from inside the patient, instead
they are generated external to the patient and then the amount of X-ray attenuation
is measured by sensors on the opposing side of the patient. The amount of attenuation
is dependent on the variable density of the tissue found along vectors through the
patient. The data collected by the CT scanner are then in a similar format to the
PET data, in that the information are in the form of integrals over different vectors
through the patient. This information is then reconstructed into the spatial domain
to produce images that are comprehensible by a clinician. A CT scanner produces
higher resolution images in comparison to PET and can therefore be used to determine
the ‘ground truth’ image information at the relatively lower PET imaging resolution,
particularly for a carefully designed phantom structure.

The imaging data used in this section to assess the performance of the PV classifiers
was obtained from a combined PET/CT scanner that acquires the CT images simul-
taneously to the PET images. This is particularly useful as the issue of registering the
PET images to the same origin as the CT images is already solved.

8.2.1 Experimental Methodology: Ground Truth Parameters

Experimental work was undertaken at the Royal Marsden Hospital, Sutton, UK using a
Phillips Gemini PET/CT scanner to acquire registered PET/CT images of a phantom
suitable for assessing the classification performance of PV classifiers. Some preliminary
classifier assessment was undertaken in [5], but was limited to a classifier using model D
in conjunction with non-uniform global PV prior distributions, such as those described
in chapter 7, section 7.1. The classifier and assessment software used to carry out the
performance assessment by Barry was created by the author. The analysis was also
limited to two class manually defined Region of Interests (ROI)s.

The assessment here is developed further to compare the performance of PV classifiers
using neighbourhood information, GSR (chapter 7, model G), the global PV prior
intensity based analogous PV classifier (chapter 5, model B) and the reformulated 3-D
gradient magnitude classifier (chapter 6). This selection of classifiers is the same as for
the preceding set of experiments on the simulated brain data. Each classifier represents
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Figure 8.12: Illustration of PET phantom with exemplar transverse and sagittal image
slices from the high resolution CT data.

either the best performing or is representative for that type of classifier.The ROI is also
extended to include three classes, excluding only the air based background that does
not constitute part of the imaging phantom.

Data Acquisition

A National Electric Manufacturers Association (NEMA) phantom was used. This
NEMA phantom is a plastic (polytetrafluoroethene-PTFE) cylinder (diameter 190mm
x 200mm) containing three inserts (diameter 49mm) one of which was removed. One
of the two remaining inserts contained air and the other insert together with the main
body of the phantom were filled with different (but homogeneous) concentrations of
Gallium-68. A 5:1 activity concentration was ensured between the main phantom body
background medium (Bkgrnd) and the warmer insert by adjusting the concentration
of Gallium-68 in relation to the amount of water. The NEMA phantom was placed at
a 30° angle on the scanner bed to produce a higher count of PV voxels. The use of
Gallium-68, compared to the more common FDG (see chapter 2, section 2.2), was used
to generate a larger proportion of PV voxels for the relatively large inserts used. Figure
8.12 illustrates the phantom geometry using a cross-section of the high resolution CT
image data.

PET imaging data is usually processed prior to clinical presentation and quantitative
analysis. Chapter 2 described various artefacts that affect PET imaging data and
mentioned correction schemes employed to improve the visual and quantitative accuracy
of the final image data. Therefore three different sets of data were produced, each
utilising the Row-Action Maximum Likelihood Algorithm (RAMLA), [14], which is an
iterative image reconstruction technique, previously described in chapter 2:

e Completely uncorrected RAMLA data (RAMLA no correction, RAMLAnc), il-
lustrated in figure 8.13(a);

e CT attenuation corrected RAMLA data (RAMLActac), illustrated in figure 8.13(b);
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(a) RAMLAnc (b) RAMLACctac (¢) RAMLAfc

Figure 8.13: Exemplar image slices from each of the error corrected data volumes.
Notice the intensity variations in the uncorrected data volume, (a) RAMLAnc. These
image slices were produced with the aid of MRIcro, [114], where the contrast auto-
balance was used, which scales the highest and lowest 1% of image intensities to 255
and 0 grey levels respectively.

e CT attenuation corrected and Random and Scatter correction (RAMLA fully
corrected, RAMLAfc), illustrated in figure 8.13(c).

It was thought that each correction step would change the classification performance
of each of the PV classifiers.

Ground Truth Preparation

A ground truth representation of the imaging data was required in order to assess the
quality of the output of the PV classifiers. As discussed earlier, the CT data is a higher
resolution representation of the information represented by the PET imaging data!. A
number of steps have to be carried out to prepare the information in the CT data so
that it can be used as a ground truth to the PET imaging data which are described
below and are also illustrated in figure 8.14.

Firstly, a simple threshold based manually initialised seeded region growing operation
on the high resolution CT data was performed to define the space occupied by the
cold insert. For the hot insert, the CT intensities between the hot insert contents and
the surrounding warm background of the phantom were the same and the thin insert
wall (Imm) did not present a great enough barrier to the growth of the region using
intensities alone. Instead a seeded region growth on the hot insert wall was undertaken,
where very little growth into the non-wall voxels occurred. Once the insert wall was
defined, the inside to the insert was defined via a further region growing operation
undertaken on each individual slice.

Tt should be noted that the PET imaging data represents activity information where as the CT
imaging represents structural information. This can be seen with the different appearance of the
hot insert for the PET imaging data in comparison to the similar appearance of the hot insert in
relation to the warm background for the CT imaging data. Nonetheless, for phantom data, there is
a direct correspondence with the observed studies, used here for ground truth comparison. Such a
correspondence can not always be assured for clinical applications.



220 Chapter 8. Application to Biomedical Images

CT Data
V V
Hot Insert Wall Cold Insert
Seeded Region Growing Seeded Region Growing
Y Y
Hot Insert Cold Insert
Definition Definition
E_)\ Y Y
= | Convolution with PSF Convolution with PSF
il
5
SR T RS
3
o Y Y
= PET Data
? 2 Sub-Sampling Sub-Sampling : |
E ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, . v
¢ a Phantom Background
S Seeded Region Growin
-% Invert g )
° e [ Mask
& Invert YV ¥
= .
S Combine
Y Y \
Hot Insert Cold Insert Background
Ground Truth Ground Truth Ground Truth

Figure 8.14: Ground truth creation process from the high resolution CT imaging data
and PET PSF to the low resolution of the PET imaging data.
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Figure 8.15: Illustration of Gaussian fitted (line) to experimental PSF measured points
(squares)

After optimising both these strategies by manually adjusting the intensity range of
the growing regions, the volumetric error of the segmented regions in relation to the
volume calculated from the actual dimensions of the imaging phantom inserts were
found to be 1.5% for the hot insert and 5.9% for the cold insert. The output of the
region growing operations were then assigned to a 0 to 255 linear scale intensity range,
where 0 represented an empty voxel and 255 100% voxel content. These were then
convolved with a PSF that was measured from an experimental Ga-68 line spread
function using the Phillips Gemini PET/CT imaging system for the PET modality.
The PSF is illustrated in figure 8.15.

These PSF convolved noiseless data volumes can then be referred to as “ground truth”
representations of the noisy PET data but sampled at the higher CT resolution. The
CT data were acquired at resolution: 1.17 x 1.17 x 5.00mm? in comparison to the PET
data, acquired at 4.00 x 4.00 x 4.00mm?. The output of the classifiers would, however,
be at the lower PET resolution. To enable comparison, the ground truth data were
sub-sampled (using linear interpolation for non-integer sub-samples) to create the lower
resolution ground truth data volumes. These are illustrated in figure 8.16.

The groundtruth for the background region of the image data was created by combin-
ing the two insert ground truths (hot and cold) into a single volume then inverting
the intensities (i.e. 0,255 — 255,0) and limiting this inversion to the bounds of the
phantom. The bounds of the phantom was also defined via a simple seeded region
growing process but on the PET imaging data as the ground truths were, at this stage,
at the lower PET resolution. The bounds of the phantom were eroded to limit any PV
effect from the boundary between the air background and the phantom background.
The ground truth to the phantom background can also be seen in figure 8.16.

The means, standard deviations and prior probabilities were then calculated from a
combination of these ground truth volumes and the PET image data.



222 Chapter 8. Application to Biomedical Images

(a) Hot Insert (b) Cold Insert (¢) Background

Figure 8.16: Exemplar image slices from each of the ground truth data volumes. White
(voxel intensity= 255) represents 100% content and black (voxel intensity= 0) repre-
sents 0% content.

8.2.2 Results

The results of classifying the PET phantom data with the various levels of error correc-
tion can be seen in figure 8.17 for each of the three classifiers (PV models B,F and G),
using the ground truth calculated parameter values. These result illustrate that the
most significant reduction in error is seen between the PET data without any correction
and with the CT attenuation correction. The correction for random and scatter errors
also appears to produce improved PV classifier performances as well, although these
latter correction schemes appear to have a less significant effect on classification.

Model F, the classifier utilizing both intensity and localised image gradient magnitude
information appears to possess better performance over models B and G for some of the
PET phantom data. This was predicted by the simulated PV data results of chapter
6. This contrasts with the results obtained in the previous section of this chapter,
where the performance of these classifiers were compared on simulated MR brain data.
Simulated or real MR brain data is quite different from this PET imaging data in a
number of ways. The simple geometry of the PET phantom is very similar to the simple
geometry of the simulated PV data that was used in chapters 5,6 and 7. This is in
contrast to the complex non-boundary type PV artefacts that are associated with MR
images of the brain, which were discussed in chapter 2, section 2.4.

The gradient controlled spatial regulated PV classifier (model G) has not performed
any better than models B or F. This can be understood from the fact that this PET
phantom data possesses high CNR values for the hot and cold inserts in relation to the
warm background of the phantom (see table 8.7). As was predicted by the experiments
in chapter 7, model G did not offer any significant performance benefits for sufficiently
high CNR values. Recall that this is probably due to the fact that neighbourhood
information can not offer any additional useful information for high CNR data.

The PV voxel RMS error results illustrated in figure 8.17 are also higher than might
be expected for the PV data possessing high CNR values. The pure voxel RMS errors
appear to be quite acceptable. The larger PV errors are probably due to minor inac-
curacies in the preparation of the ground truth data. In particular, the exact content
of each of the PV voxels depends on a good approximation of the PSF of the scanner.
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Figure 8.17: Voxel RMS errors for classifiers using PV models B (black), F (grey) and G
(white) using parameters calculated from the ground truth data. Key to abbreviations:
NC, not corrected; COLD, cold insert; BKGRND, background; HOT, hot insert; CTAC,
CT attenuation corrected; FC, fully corrected for attenuation and randoms and scatter.
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Table 8.7: PET phantom data CNR values, calculated from the CT based ground truth

data.

Data Hot/Bkgrnd || Cold/Bkgrnd
RAMLAnc 11 2
RAMLActac 51 21
RAMLAfc 63 22

(a) RAMLAfc window centre,width=1397,2790 (b) RAMLAfc window centre,width=517,130

Figure 8.18: Ilustration of inhomogeneities still present in the fully corrected PET
imaging data. Notice in (b) light and dark regions in the warm background. Due to
the high contrast between the hot insert and warm background these inhomogeneities
are not apparent for a window centre/width automatically calculated with MRIcro
(98% intensities scaled to 0 to 255). The inhomogeneities are small in relation to the
CNR but they are not quite so small in relation to the SNR.

The volumetric error between the segmented inserts and the volume calculated from
the actual insert dimensions were greater for the cold insert (5.9% in comparison to
1.5%). This difference in error helps, in part, to explain the greater errors seen for the
classifications, where greater voxel RMS errors are consistently seen for the cold insert
in comparison to the voxel RMS errors for the hot insert.

Also, the RAMLA constructed PET imaging data on close inspection appears to pos-
sess correlation of the noise and even for the fully corrected images (RAMLAfc), non-
homogeneities exist between the two inserts (illustrated in figure 8.18). These imper-
fections that are not included in the PV models may also contribute to a degradation
in the expected performance of the classifiers.
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(a) Air insert initialisation (b) Hot insert initialisation (¢) Warm background ini-
ROI ROI tialisation ROI

Figure 8.19: Illustration of ROIs used to initialise the clustering algorithms. Fach image
is the same exemplar transverse image slice through the RAMLAfc PET imaging data.

8.2.3 Experimental Methodology: Automatic Parameter Estimation

The classifier using PV model G in the previous section utilized parameters determined
from the CT based ground truth. A framework has already been presented that allows
classifier model G to estimate the parameters automatically (see chapter 7). There-
fore it was interesting to see whether the parameter estimation scheme could operate
successfully for the PET phantom data and also produce classified data volumes with
similar results to those already presented.

Alternative Initialisation Previously the parameter estimation step described in
chapter 7 was initialised via an unsupervised minimum distance spatially aware clus-
tering algorithm, described in algorithm 5, on page 187. The clustering algorithm was
itself initialised by dividing the CDF of the data into C' equally spaced clusters. It was
found for the PET phantom data of this set of experiments, that this initialisation step
was not suitable. This was due to the relatively large distance between the hot insert
and the warm background in comparison to the smaller distance between the warm
background and the cold air insert. Therefore ROIs were manually defined to select
realistic initialisation values for each of the inserts and the warm background. Three
ROIs are illustrated in figure 8.19.

The mean intensities from these ROIs were calculated and used in place of steps 2 and
3 in the clustering algorithm, algorithm 5, (page 187).

Parameter estimated classification results The voxel RMS errors for the esti-
mated parameter classification together with the ground truth estimated parameter
classification are illustrated for comparison in figure 8.20. Tables containing numerical
values of these errors together with the results obtained for models B and F of the
previous section can be seen in tables 8.8, 8.9 and 8.10.

The CNR values calculated using the parameter estimation scheme of chapter 7 can be
seen in table 8.11. These CNR values appear to be quite similar to the CNR values
calculated from the CT based ground truth, (table 8.7).
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Figure 8.20: Voxel RMS errors comparing the performance of GSR PV classifier (model
G), using ground truth estimated parameters (white) and automatically estimated
parameters (grey). Key to abbreviations: NC, not corrected; COLD, cold insert;
BKGRND, background; HOT, hot insert; CTAC, CT attenuation corrected; FC, fully
corrected for attenuation and randoms and scatter.
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Table 8.8: PET Results, gross Vxl RMS Errors. Model G(i) ground truth parameters;
model G(ii) automatically estimated parameters.

Classifier

Data Region B ‘ F ‘ G(i) ‘ G(ii)
RAMLAnc Cold 19% | 15% | 20% | 50%
Bkgrnd | 20% | 16% | 21% | 50%
Hot % | % | "% 6%
RAMLActac | Cold 9% | 8% | 10% | 12%
Bkegrnd | 10% | 9% | 11% | 13%
Hot 2% | 2% | 2% 3%
RAMLAfc Cold 6% 7% 7% 6%
Bkgrnd | 7% | % | % | ™%
Hot 2% 2% 2% 2%

Table 8.9: PET Results, PV Vxl RMS Errors. Model G(i) ground truth parameters;
model G(ii) automatically estimated parameters.

Classifier

Data Region B ‘ F ‘ G(i) ‘ G(ii)
RAMLAnNc Cold 40% | 30% | 51% | 3%
Bkegrnd | 30% | 26% | 37% | 45%
Hot 17% | 20% | 19% | 17%
RAMLActac | Cold 26% | 24% | 29% | 35%
Bkgrnd | 19% | 17% | 21% | 26%
Hot 6% | 7% | 6% 7%
RAMLAfc Cold 17% | 19% | 18% | 18%
Bkegrnd | 13% | 14% | 14% | 14%
Hot 5% | 6% | 5% 6%

Table 8.10: PET Results, pure VxI RMS Errors. Model G(i) ground truth parameters;
model G(ii) automatically estimated parameters.

Classifier

Data Region B ‘ F ‘ G(i) ‘ G(ii)
RAMLAnRc Cold 13% | 11% | 9% | 51%
Bkgrnd | 15% | 11% | 10% | 52%
Hot 2% 0% 2% 1%
RAMLActac | Cold 1% | 0% | 2% 2%
Bkegrnd | 1% | 0% | 2% | 2%
Hot 0% | 0% | 0% 1%
RAMLAfc Cold 2% | 1% | 2% 1%
Bkgrnd | 2% | 0% | 1% | 1%
Hot 0% | 0% | 0% 0%
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The results in figure 8.20 appear to illustrate reasonable agreement between the clas-
sifier performances of model G with and without the automatic parameter estimation.
The difference between the two is greatest for the uncorrected data volume, (RAM-
LAnc). This is probably due to the iterative nature of the estimation procedure which
attempts to adjust the parameters and voxel content depending on the amount of reg-
ularisation in the vicinity of a voxel. The quite significant inhomogeneities, (see fig.
8.13(a)), in this uncorrected data due to the attenuation of the photons presents data
points that do not conform to the PV model. This is not the case for the corrected
data volumes that appear to be implicitly well-modelled by model G.

Table 8.11: PET phantom data automatically estimated CNR values, calculated using
the parameter estimation described in chapter 7.

Data Hot/Bkgrnd || Cold/Bkgrnd
RAMLAnc 12 7
RAMLActac 31 18
RAMLAfc 70 31

8.3 Classification of Neurological MRI Data

The classification of PV data has been limited to the concentric spheroids in chapters
5, 6 and 7; the simulated MR brain data in section 8.1; and a PET phantom in section
8.2. This section attempts to assess the performance of the gradient spatially regulated
(GSR), model G, PV classifier on twenty neurological MR data sets obtained from a
publicly accessible resource made available by the Center for Morphometric Analysis
at Massachusetts General Hospital, USA [38]. Ground truth is available in the form of
manual segmentations. The human operators who manually segmented the data sets
could not (for obvious reasons) attempt to estimate the PV content for every voxel.
They therefore assigned the voxels in a discrete manner, i.e. into either GM, WM or
CSF. This therefore precludes any PV assessment. It does not, however, prevent some
form of assessment based on greatest voxel quantity of the output of the PV classifier,
in common with other PV classifiers, see e.g. [60, 107, 128|.

An advantage of a publicly available resource such as [38] is that detailed quantitative
analysis of the segmentation results can be published. These results can be compared
not only with the publicly available ground truth but also with other segmentation
algorithms whose results have also been published.

8.3.1 Experimental Methodology

The 20 real MR data sets with ground truth were downloaded from [38], two of which
are illustrated in figure 8.21 via exemplar image slices. The data sets were all acquired
in the coronal axis with voxel dimensions of 1.0 x 1.0x 3.0mm?. Linear interpolation was
used to determine isotropic voxel values for the purposes of the spatial regularisation
and gradient magnitude calculations.
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(¢) 100-23 ground truth (d) 11-3 ground truth

Figure 8.21: Exemplar coronal image slices from the 20 normal MR brain data sets
together with the corresponding ground truth image slices for the same data sets.
These data are available from [38].
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The model G PV classifier, referred to here as GSR was then initialized and applied
in the same manner as detailed in chapter 7. Initialisation was performed with the
unsupervised minimum distance spatially aware classifier described in algorithm 5 on
page 187.

The PV classifier was then initialised with the output of this algorithm. The PV
classifier iterations were terminated with the criteria as described previously in section
7.4.2 on page 176.

The discrete voxel performance metric used by other authors to assess the performance
of their algorithms on classifying the 20 normal MR brain data sets was the Jaccard
similarity metric:

o ‘QGT N Qest|

J(Qar|Qest) = Q01 U Qo]

(8.1)

where Qa7 is the set of voxels identified by the ground truth data as belonging to
a particular classification class; and s is the set of voxels identified as belonging
to a particular classification class from the output of the discretization process post-
PV classification. The numerator is the cardinality (number of set elements) of the
intersection of these two sets and the denominator is the cardinality of the union of
these two sets. This metric tends to 1.0 for perfect segmentations and 0.0 for imperfect
segmentations. This was also adopted here for comparison purposes.

The discretized points were calculated by determining the largest individual tissue
content for each voxel from the output of the PV classifier and assigning the voxel to
that particular tissue class.

The combined GM,WM and CSF data volume were used as a brain mask, similar to the
approach taken earlier in section 8.1. In practise these components could be excluded
via a skull-stripping algorithm, see chapter 3.

8.3.2 Results and Discussion

The GSR classifier and discretization process was applied to the data as described
above. The PV and discretized results for the exemplar data sets previously illustrated
in figure 8.21 can be seen in figure 8.22. An initial visual inspection of these exemplar
slices appears to reveal moderately good agreement between the ground truth illus-
trated in sub-figures 8.21(c,d) and the results in figure 8.22. The discretization process
appears to reduce the similarity of the classifier output when compared with what
might be expected should there have been a PV ground truth for this real MR data.

The Jaccard similarity measure given by equation 8.1 was applied to the ground truth
and discretized classifier output. The results of which can be seen in figure 8.23. The
performance appears to be fairly consistent for 13 out of the 20 data sets, but then
there are 7 other data sets that do not have such good performance. Visual inspection
of these 7 particular data sets revealed that they were affected by severe inhomogeneity
artefacts (see e.g. figure 8.24).

Due to the prevalence of the severe inhomogeneity artefacts in a number of the data sets
the mean Jaccard similarity metric of the better classifier results was calculated. This
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(a) 100-23 Classified PV result (b) 11-3 Classified PV result

(c) 100-23 Classified discretized result (d) 11-3 Classified discretized result

Figure 8.22: Exemplar coronal classification results for the MR data sets previously
illustrated in figure 8.21.
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Figure 8.23: Jaccard similarity results for PV classifier GSR (model G) on GM (in
grey) and WM (in white) classification of the 20 normal MR brain data sets. The
overall mean Jaccard value is given by the solid line and the dotted line corresponds to
the mean of the data volumes with less severe intensity inhomogeneities.
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(a) Transverse mid-volume slice  (b) Sagittal mid-volume (¢) Coronal mid-volume slice
slice

Figure 8.24: Illustration of one of the worst inhomogeneity artefacts in the 20 normal
data sets [38]. This particular data set is the 6-10 data set. The artefact is also
not only limited to the sudden change in intensity but also to more slowly varying
inhomogeneities from slice to slice.

is also illustrated in figure 8.23, (dotted line). This illustrates a mean Jaccard similarity
performance metric of 0.689 for GM and 0.684 for WM. This can be compared with
the manual segmentation values of 0.876 for GM and 0.832 for WM. These manual
segmentation values were determined by two human experts rated over segmenting the
same (4) data sets and the similarity of their results was then calculated for these
particular data sets. It is interesting to note that the GSR PV classifier does not model
the intensity inhomogeneities usually associated with MR imaging data and even the
better classified data sets still possess intensity inhomogeneities, but not as striking
as those illustrated in figure 8.24. Intensity inhomogeneity correction algorithms exist
and could be applied prior to classification to improve the classifier performance, see
e.g. [141, 149, 129].

Peculiarities of PV Classification in MR Images of the Brain

Chapter 2, (page 34), introduced the idea that parts of the human brain were composed
of regions that may not be conveniently identified as only GM or WM, such as the Basal
Ganglia which includes the Globus Pallidus, Putamen and Caudate Nucleus, illustrated
in figure 8.25. However, medically these regions are classed as GM. This is the case
for the ground truth segmentations of the 20 normal brain data sets used to assess
the PV classifier. This can be seen via the illustrative exemplar image slices in figure
8.21(a),(b), where despite the noise in the original images, the intensity of the Basal
Ganglia GM is noticeably brighter than the GM in the surrounding Cerebral Cortex
that envelopes the brain. Visual inspection of the PV classified data in figure 8.22(a),(b)
illustrates that the PV classifier has mostly identified these regions as a mixture of both
GM and WM. However, when the threshold of greatest PV component is applied to
produce the discrete classified result, (fig. 8.22(c),(d)), the output is quite different
from the discrete ground truth for the Basal Ganglia regions, (fig. 8.21(c),(d)). This,
quite obviously, reduces the classification performance. This was not the case for the
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(a) 100-23 data volume. Putamen (left) and (b) 11-3 data volume. Globus Pallidus (left)
Globus Pallidus (right) are annotated, (each and Caudate Nucleus (right) are annotated,
part of the Basal Ganglia). (each part of the Basal Ganglia).

Figure 8.25: Annotated anatomical GM regions classed as PV voxels for the exemplar
image slices previously illustrated in figure 8.21 with PV and discrete classification
results in figure 8.22. These GM regions are characterised by a higher than usual
myelin density for GM, (compared to Cerebral Cortex GM).

simulated PV brain data that was classified in section 8.1, where PV ground truth
maps identify the Basal Ganglia as a mixture of GM and WM.

Comparison with other Classifiers

The availability of the results of other classifier and segmentation algorithms allows
for a comparison of the performances of these algorithms with the results obtained
for GSR. Table 8.12 summarises the algorithms to which GSR is compared. A brief
discussion of these competing methodologies is now given.

Many of the methodologies were applied but not necessarily originated by Rajapakse
and Kruggel in 1998 [107] to the 20 normal MR brain data sets. Rajapakse and Kruggel
made their quantitative results available to the owners of the data sets so that they
could be used for easy comparison, i.e. available for download on the website of [38]. Ra-
japkse and Kruggel’s paper in 1998 was centred around two methods called AMAP and
BMAP. These methods used additional classification classes to describe the PV compo-
nents (as was initially proposed by Santago and Gage, 1995 in [123]) but also include a
model for the intensity inhomogeneities and a MRF to improve spatial consistency. The
differences between the BMAP and AMAP algorithms are that BMAP models the in-
homogeneity as a multiplicative intensity where as the AMAP spatially varies the class
parameters. Rajapakse and Kruggel explain that their methods would be equivalent to
a MAP technique [42] without the inhomogeneity sections of their models. Similarly
if AMAP/BMAP techniques did not also include the MRF then AMAP/BMAP would
be equivalent to a ML technique, see e.g. [142]. They also include a comparison with
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the fuzzy ‘C’ means clustering algorithm that includes proportional class membership
parameters, where a voxel may have multiple (in different proportions) class member-
ship to model the variable voxel content [36]. A further method which was also used
to initialise all the algorithms was the tree-structure k-means algorithm (7;-means,
[40]) which is a spatially aware k-means algorithm that utilizes a tree-structure, similar
to other segmentation type techniques that have been designed specifically for image
data, see e.g. [133].

Other notable methods include: a method by Noe and Gee in 2001, [95] that also
utilizes additional classification classes to represent the PV content in combination with
limiting their mixture model to only allow two tissue mixtures. Noe and Gee utilize
an independent inhomogeneity correction step to reduce the effect of the intensity
inhomogeneities, [129]. Ibrahim et al. in 2006, [60] utilize hidden Markov models
(HMMs) to model the likely spatial configurations of tissues in the MRI data.

The results of applying the methods detailed above and summarized in table 8.12 can
be seen in figures 8.26 and 8.27.

Table 8.12: Classifiers previously used to classify the 20 normals data sets. The legend
column presents the symbols used to represent the results the plots in figures 8.26 and
8.27.

Acronym Refs Note Legend
AMAP (107, 38] adaptive-MAP O
BMAP [106, 107, 38] || biased-MAP A
FCM [36, 107, 38] || fuzzy ‘C’ means D
MAP [38, 107, 42] || Mazimum A Posterior <
MLC (38, 107] Maximum Likelihood >
Ts-means || [40, 38, 107] tree structure means +
NoeGee [95] mixture model clustering v
Ib-cont [60] continuous HMM O
Ib-dist [60] discrete HMM o
GSR [here,ch.7] Gradient Spatially Regulated *

The results demonstrate that GSR performs moderately well in comparison to all the
other techniques. The greatest difference can be seen for the data volumes with the
most serious artefacts (to the left of the plots). Even so, GSR appears to perform
closest to the HMM type classifiers for most of the data volumes. This is despite the
HMM techniques (Ib-cont and Ib-dist) utilizing supervised training details of which
were not given. Similarly, most of the techniques (including AMAP [107], BMAP [106],
NoeGee [95], Ib-disc and Ib-cont [60]) all utilise pre-processing or incorporate explicit
models of the intensity inhomogeneities prevalent in these test data sets.

These observations together with the results obtained for the simulated brain data
indicate that GSR provides a suitable framework for further development. Further
development that should improve the discrete classification performance on these 20
normal brain data sets might include extension of the model to include intensity inho-
mogeneities. A further important development might include prior knowledge of the
peculiarities of the PV effect when considering regions such as the Basal Ganglia.
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Figure 8.26: Jaccard WM similarity results for the 20 normals data sets using the
classifiers summarised in table 8.12 (including the symbols). Classifier using PV model
G, GSR, is shown by the line.
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classifiers summarised in table 8.12 (including the symbols). Classifier using PV model
G, GSR, is shown by the line.
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8.4 In Conclusion

The PV model developments of the global prior based intensity classification schemes
in chapter 5, the global prior based intensity and gradient magnitude models of chapter
6 and the gradient magnitude spatially regulated intensity model of chapter 7 have now
been compared on various types of PET and MRI data. The global prior based intensity
models of chapter 5 appear to possess relatively good performance in comparison to
other existing techniques when assessed using the simulated MR brain data from McGill
University [12]. But overall the gradient magnitude spatially regulated intensity model
appeared to perform the best on this intensity inhomogeneity free simulated data.

Application of the classifiers to the PET image phantom with hot and cold inserts
illustrated the benefit of the gradient magnitude based global prior classifier (model
F) of chapter 6. The relatively poor performance of GSR was probably due to the
spatial regularisation at high CNR values providing relatively little useful additional
information. This was found to be in agreement with the results obtained for the
simple simulated PV data used to assess the development of the classifiers in the earlier
chapters.

The final set of performance assessment was undertaken with the aid of 20 normal
MR brain data sets provided by [38]. The ground truth of these real MRI data sets
was provided by human experts consisting of discrete voxel allocations to individual
tissues. The gradient magnitude spatially regulated PV classifier (GSR, model G) was
applied to this data and the output of the classifier was discretized. The performance of
GSR was then compared with other published results on these test data sets and found
to have comparable and in some cases superior performance to many of the existing
PV classifiers exhibiting high performance. This was made more remarkable as the
classification process with GSR did not model or pre-process the image data to remove
prevalent MR artefacts that manifest as severe intensity inhomogeneities particularly
on some of the data sets. GSR also does not utilize supervised training, ad hoc rules or
arbitrarily selected parameter values due to its probabilistic mathematically consistent
formulation. The highly competitive performance, and the rigorous underlying theory
therefore make it an attractive proposition for brain classification.



Chapter 9

Conclusions and Further Work

9.1 Summary of Results and Conclusions

The work in this thesis was primarily motivated by the need to improve models of the
PV effect and, as a result, improved classification performance of PV affected images.

Chapters 1 and 2 introduced the concept of a medical image. These chapters also in-
troduced the fact that medical images are imperfect pictorial representations of human
anatomy or physiology. These chapters also defined the nature of one such artefact
known as the PV effect. Exemplars from MRI and PET modalities were selected be-
cause these modalities represent the state of the art in imaging technology due to the
excellent soft tissue delineating properties of MRI and the excellent sensitivity of PET
to physiological activity.

The PV effect in neurological MRI and PET imaging data is of particular importance
due to the need to accurately identify brain tissue quantities or activity concentra-
tions for global (entire brain) and local (clusters of voxels) volumes. Pre-processing of
neurological data is often required to remove extraneous non-brain voxels so that clas-
sification algorithms do not have to incorporate numerous additional non-CNS classifi-
cation classes. Therefore chapter 3 introduced an improved method for skull-stripping
neurological MRI data. This was also adapted to include CSF voxels in the final
segmentation. This unique method automatically identifies transverse image slices in
which the majority of the NMR voxel signal could be identified as corresponding to
GM, WM and CSF. The technique was then assessed on adult and for the first time on
infant neurological MR data, and found to be comparable and in some cases superior
to the well known BET, [131].

A review of the existing PV literature was given in chapter 4, introducing the current
state of the art.

Chapter 5 described in detail two existing intensity based PV models (A - a finite
Gaussian mixture model and B, a PV finite mixture model, [148]) that use the posterior
probabilities obtained from Bayes theorem as analogies to actual voxel content. A
third model (C) was then defined that explicitly incorporated a voxel content (mixture)
random vector. This novel third model was in fact found to be approximately equivalent
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to the second analogous model via appropriate analysis of the underlying formulations.
Simple two class simulated PV data sets were then generated with various CNR values.
PV models B and C were found to possess similar PV classification performance, over
and above model A, which did not include any attempt to correctly model the PV effect.
The intrinsic performance of the global PV prior intensity based classifiers (models B
and C) for PV RMS voxel error was found to be equal to the reciprocal of the CNR. It
was therefore decided that further information should be included into the PV models
in order to improve classification performance.

Therefore chapter 6 looked at PV models that incorporated locally calculated image
gradient magnitude measures together with the raw image intensities. The first model
(D) was based on a technique found in the literature [157] and utilized a parametric
model for the 2-D gradient magnitude. This model built on the analogous concepts
introduced by the intensity only models (A and B) of chapter 5. The novel inten-
sity formulation of model C, where the PV mixing was modelled explicitly rather by
analogy was then combined with a novel intensity and gradient magnitude likelihood
(model E). This resulted in an alternative intensity and gradient magnitude PV feature
space that was smoother in appearance. A further development was also provided that
extended the parametric 2-D gradient magnitude description of the feature space to
a 3-D formulation. This provided improved PV classifier performance when assessed
with simulated PV data, reducing the PV voxel RMS error by up to 1.5% for CNR
values between 4 and 10. This model therefore provided decreased classification error
over all the preceding models, such as the intensity only based classifiers (models B
and C), reducing the PV voxel RMS errors by up to 5% to 7% for simulated PV data
with CNR values between 4 and 10. Chapter 6 helped to illustrate that improvements
to the PV classifier performance were possible by improving and extending the PV
models.The improvements described in chapter 6 still did not improve classifier per-
formance sufficiently for the classification of low-CNR PV data (< 10 with voxel RMS
classifier errors of over 25% for CNR values below 5).

The developments of chapters 5 and 6 did not explicitly incorporate spatial contextual
information that many other PV models in the literature provide. It was expected
that spatial information would be particularly useful for low CNR imaging data. Es-
pecially as medical image data quite often possess moderately low CNR values and the
PV classifiers of chapters 5 and 6 possessed relatively high errors for low CNR values.
Therefore chapter 7 reformulated the PV models to include spatial contextual infor-
mation. Initially global prior mixing densities were proposed. The first was derived
analytically and the second was derived from observation using a phenomenological law
known as Benford’s law. These two prior distributions were found to possess better x?
fits to simulated PV prior distributions in comparison to a mixing prior distribution
proposed elsewhere.

Manipulation of the appropriate PDF's was then undertaken to achieve a realisable for-
mulation that included spatial information, intensity and gradient magnitude random
variables. It was found that the gradient magnitude PDF introduced in chapter 6 was
cancelled out of the formulation due to the additional, newly included, spatial prior.
However, a gradient magnitude random variable was still included in the form of a de-
pendent term of the spatial prior. This spatial prior was then formulated so as to take
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advantage of the gradient magnitude to control the amount of spatial regularisation,
i.e. how much information should be drawn from the neighbouring voxels for particular
values of gradient magnitude. This new model formulation was then implemented via
simulation using MCMC. This was due to the fact that no closed form solutions of the
integrals in the model could be found. The sampling density was conveniently based
on the Dirichlet PDF due to its similarity to the analytically derived prior distribution
that was determined in the first part of chapter 7. This sampling and proposal Dirichlet
distribution also fully implements the PV random variable constraints, i.e. no voxel
should have more than 100% of a single tissue or activity concentration.

Assessment with the simple two class PV simulated data found this gradient spatially
regulated (GSR-model G) formulation to possess superior performance for low CNR
value data.The principal improvement was due to improved classification performance
of low gradient voxels which for this simple simulated PV data consisted of only pure
voxels. Equally, contiguous regions of PV voxels found in some PV imaging data, such
as the Basal Ganglia regions in MR neurological images would also benefit from the
contextual classification process offered by this classifier.

The PV models of chapter 5, 6 and 7 were assessed by determining their performance
on classifying simple two class simulated PV data consisting of concentric spheroids.
Therefore the final chapter, 8 applied exemplar PV models B (the Gaussian-Triangle PV
intensity based classifier), F (the best performing 3-D gradient magnitude and intensity
based classifier) and G (the gradient control spatially regulated classifier-GSR) to more
rigorous assessment. This included simulated MR brain data from McGill University,
Canada; a PET phantom with ground truth derived from high resolution structural
CT data from Royal Marsden Hospital, UK; and 20 normal MR brain data sets from
Massachusetts General Hospital, USA. Each of these data sets had ground truth to
which the output of the classifiers could be compared to provide objective quantitative
measures of their performance.

The results of these analyses illustrated that some of the broad conclusions drawn from
the experiments performed in the earlier chapters were equally demonstrable on these
more realistic data sets. Most notably that GSR provided improved classification results
for smaller CNR value data, whilst not utilizing any supervised training, ad hoc rules
or arbitrarily defined parameter values. Unfortunately model F, utilising a combined
gradient magnitude and intensity likelihood, did not provide improved classification
performance (over model B) on the simulated brain data, in contrast to the improved
performance demonstrated on the simpler two class simulated PV data. This was most
likely due to the different types of PV effect that model F was designed to detect:
the human brain consists of different types of PV effect, not only PV voxels arising
from simple boundary configurations but also larger volumetric expanses of PV voxels
consisting of both GM and WM, as illustrated in chapter 2.

9.2 Future Work

Most of the developments in PV modelling described in this thesis do not have an-
alytical solutions and therefore rely on numerical integration or simulation (MCMC)
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techniques to determine not only improved estimates of model parameter values but
also to determine individual voxel constituents. This is in contrast to the simpler anal-
ogous models (A,B and D) which provided closed form solutions to the appropriate
calculation of voxel constituents. The reliance on computationally expensive simula-
tion techniques most likely reduces the appeal to a wider audience than one to which
accurate estimates of PV content are the primary interest. Therefore future work could
include attempts to provide analytic (possibly approximate) solutions to the develop-
ments proposed in this thesis. However, simulation techniques such as MCMC are,
say computational scientists, convenient and simple to code. These are becoming ever
more popular due to their power in realising multi-dimensional Bayesian type problems.
This popularity and the rise again in popularity of the parallel computing architectures
(circa 2006) that enable parallel implementation of these computationally intensive
simulation algorithms may not diminish any potential advances in a computational
science that requires such simulations.

The application of the models to real imaging data also illustrated that the PV effect
is not the only imaging artefact that should be included in a comprehensive model of
the imaging data. In particular, the application to the 20 normal brain data sets [38]
demonstrated the performance limiting intensity inhomogeneities that are prevalent in
the MR image acquisition process. These intensity inhomogeneities should be included
in any imaging model to improve PV classification performance of MR data. The
Bayesian approach is an ideal framework for such a task and direct extension of the
developments in this thesis would be possible. These developments could include hyper
priors (further hidden random variables) that model the variability or non-stationarity
of the class parameters. These developments may be equally valid for other tomographic
imaging modalities, such as the scatter imaging artefact in PET and SPECT (see
chapter 2), although careful development of modality specific prior information would
probably have to be taken.

Further a priori information could also be included to improve segmentation perfor-
mance of the brain. As noted in chapter 2, the brain consists of large expanses of
GM-WM PV voxels. Some of these regions are known anatomically as the Basal Gan-
glia of the human brain and are usually classed medically as GM. This is despite the
Basal Ganglia regions possessing greater myelin density in comparison to other GM
regions such as the surface of the cerebral cortex. This a priori information could
be incorporated into the Bayesian PV model or perhaps as part of the discretization
process using a HMM formulation.

It is thought that these two improvements alone would produce improved discrete clas-
sification performance that would be competitive with the supervised training utilized
by other existing techniques [60].

Other open questions that this thesis identified included the validity of the assumption
of linear mixing, especially when considering quantitative PV estimation of MR imaging
data. The MR image acquisition process and post processing are potentially non-linear
for some image acquisition sequences and tissue combinations. Therefore any algorithm
that attempted to estimate the quantity of a particular tissue, in a particular voxel
utilizing the linearity assumption (used here), may introduce systematic errors into the
estimation process. Whether these errors would be greater than the lower bound error
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of the classification process due to the intrinsic noise properties of the data is another
question that would have to be answered in order to warrant further investigation.

The skull-stripping technique that was developed in chapter 3 provided good brain
isolation performance in some cases, over another existing skull stripping technique
known as BET. This complementary performance could be utilized by combining the
output of the two algorithms to obtain the best performance of each. A supervised
training approach could be used but this would require access to a large number of MR
brain data sets. Alternative techniques could possibly utilize self-diagnostic criteria that
would attempt to quantify the quality of the result based on some objective measures.
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Appendix A

Abbreviations and Acronyms

e 2-D two dimensional

e 3-D three dimensional

e AC attenuation correction

e a.k.a. also known as

e BET brain extraction tool

e Bkgrnd background

e CDF cumulative distribution function
e ch. chapter

e cm centimetre

e CNS central nervous system

e CSF cerebrospinal fluid

e CT computed tomography

e ECT emission computed tomography

e EM expectation maximization

e Err error

e FBP filtered back projection

e FGMM finite gaussian mixture model
e FID free induction decay

e FIR finite impulse response

e FM finite mixture
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Appendix A.

Abbreviations and Acronyms

FMM finite mixture model

fMRI functional magnetic resonance imaging
FOV field of view

FWHM full width at half maximum
GM grey matter or gradient magnitude
GSR gradient spatial regularisation
HDR high density region

HMM hidden markov model

HMRF hidden markov random field
Hv high variance

Hz high gradient

ICG inverse cumulative gaussian

ICM iterated conditional modes

iid independent and identically distributed
IMH independent metropolis hastings
Lh.s. left hand side

Lv low variance

Lz low gradient

MAP maximum a posteriori

MC markov chain

MCMC markov chain monte carlo
ML maximum likelihood

mm millimetre

MR magnetic resonance

MRF markov random field

MRI magnetic resonance imaging

NEMA national electric manufacturers association

PACS picture archival and communication system

PDF probability density function
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PET positron emission tomography

PMF probability mass function

PSF point spread function

PTFE polytetrafluoroethene

PV partial volume

PVE partial volume effect

RAMLA iterative reconstruction technique
RAMLActac RAMLA computed tomography attenuation correction
RAMLAfc RAMLA fully corrected
RAMLAnc RAMLA no correction

refs references

RF radiofrequency or random field

r.h.s. right hand side

RMS root mean square

ROI region of interest

SMSS statistical morphological skull stripper
SNR signal to noise ratio

SPECT single photon emission computed tomography
TRI triangle

Vx1 voxel

WM white matter

w.r.t. with respect to
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Appendix B

Gauss-Triangle Convolution
Evaluation

! The Gaussian Triangle Convolution used as the Partial Volume (PV) distribution in
the intensity PV model is derived in this appendix. A number of authors have suggested
using a PV distribution to model the voxel intensities that are generated by a mixture of
two or more pure classification classes. The form of this distribution is usually suggested
to be of the form of a uniform distribution between the two pure class mean values,
but also convolved with the pure class Probability Density Functions (PDFs) usually
considered to be Gaussian distributed. Vokurka et al suggested an alternative form
that consisted of two triangle distributions convolved with the pure class distributions
so that mixtures arising from a single class could be considered independently [148].

B.1 Triangle Distribution

The equation for a triangle is the same as that for a straight line, except with constraints
of a specific slope and two limits:

M.g+C for p <g< s

0 for elsewhere (B.1)

ftriangle(g|M7 C) = {

where M and C are the slope and intercept respectively. pq and po are the limits of the
triangle’s extent. Suitable values for M and C' can be derived using trigonometrical
principles and the fact that when the triangular PDF is scaled, then any slope can
be achieved. Therefore M = +1 or —1, depending on whether the PV distribution
belongs to pure distributions with mean puy (M = —1) or pure distribution with mean
pa (M = +1). A second observation can lead to values for C. The triangle can now be
considered to be an equilateral triangle (i.e. a right angle triangle with slope +/ — 1).
If M = —1 then from trigonometry the negative slope will result in a positive intercept

YA great deal of this derivation is due, in part, to Barbara Podda of the University of Cagliari,
Sardinia who performed a version of the derivation when she was on placement at the University of
Surrey in 2003.
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so that C = +pus. If M = +1 then from trigonometry the positive slope will result in
a negative intercept, so that C = —pu;.

Hence, there are two forms of the triangle distribution, but for the purposes of the
convolution (to be derived shortly), M and C will be retained in the equation so that
only a single derivation has to be performed.

PDF's should be normalized, i.e.:

+oo
/ptriangle(g)'dg =1 (B'Q)

—00

This constraint can be determined by performing the integration:

p2
1
/é (M.g+C).dg=1 (B.3)
1
As Q) does not depend on g:
2
[arg+0)d9-a (B.4)
K1
which results in:
M M
7l + Clolit = 5-(u3 — i) + Culp = ) = Q. (B.5)

where o > pg.

We therefore have a specific form for the PDF of the triangle distribution:

1
S(M.g+C) for p,<g<up
_ Q( g a b B.6
Pr9i7as) { 0 for elsewhere (B-6)
where M = —1, C' = p or
1
S(M.g+C) for p,<g<up
_ Q( g a b B
Pr(9im.a) { 0 for elsewhere (B-7)
where M =1, C' = —p, and where 7, are order dependent indicators for classification
classes 7, and 7.
B.2 (Gaussian Distribution
The Gaussian distribution takes the form:
1 g°
=, — B.8
poloir) = e (555 ). (B

where o, is the standard deviation of the Gaussian distribution for class a.



B.3. The Convolution 251

B.3 The Convolution

The PV distribution for classes a and b is given by the convolution of the Gaussian
distribution with the triangular distribution:

pc1(9|7an) = P (9|7a) * pT(9|Tap)
—+o0

= /pG(g = Y7a)-pr (V|70 p)-dv. (B.9)

—00

Remembering that pr(g|7,) =0 for g > 7, and g < 7,:

Hb
par(glras) = [ pala = 2lm) pr(r1mas) v
Ha
) ty ( 2
g—7
=—— [exp| —TF—— | M~y +C).d
Q.\/2.7.02 / p( 2.05 > M Vb
Ha
Hb ( 2
= K. /exp (—%) AM.y).dy +
Nep
Ha
o ( 2
K. / exp (-%) (C).dn, (B.10)
2.05
Ha
_ 1 . .
where K1 = oot These two integrals can then be evaluated independently.
Setting:
o ( 2
Ky(g) = M. /’y. exp (—%) .d, (B.11)
.02
Ha
and
Hb ( 2
Ks3(g) = C./exp (—%) .dry. (B.12)
Nop:
Ha
Considering K3(g) first, if we change the variable being integrated to v = -I=L so
\/2.02
v _ 1 - _ 2 . 3 3 9—Fb
that iy oyt dy = —dv.,/2.0% and the limits of integration change to oxs and
9—Ha .
V202"
9—1p
\/203
Ks(g) = —C.\/2.02. / exp (—v?) .dv. (B.13)
9g—Ha

\/203
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Using the definition of the error function:

orf(z) = % / exp(—t2).dt, (B.14)
0

K3(g) becomes

Ks(g) = —C’.?.\/Zag. {erf (9 _ “’;) — erf (9 _ ’“‘a> } . (B.15)

2.0% 2.03

9=

2.02

Now to consider K5(g). Again letting v = and therefore v = g — v.y/2.02.

V. exp (—1/2) .dv. (B.16)

The first part of the equation can be deduced almost directly from the result obtained
for K3(g), so that:

:—\/2.03.M.g.ﬁ. orf [ L2 | —opf [ L ta
2 2.02 2.02

a

—V/2.02.M.(—+/2.02). / v.exp (—v?) .dv. (B.17)
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To consider the final integral, let:

9=ty
2.03
Ky(g) = / V. exp (—V2) .dv (B.18)
9g—Ha
\/2.02
To evaluate, let « = —1?, so that dv = —;—;:
_(g=mp)? (g—mp)?
2.0‘3 2.0(%
du 1
Ky(g) = v.exp(L). 5, — 3 exp(t).d. (B.19)
—2.v
_ (9—pa)? _ (9—ma)?
2.04 2.0§

The integral can then be evaluated resulting in:

Ki(g) = (~1).= {exp <—M> — exp <—M>} (B.20)

2 2.02 2.02

Substituting K4(g) into K»(g):

Ky(g) = —+/2.02. M.

o2 2.02
= —\/2.02.M.

o {(38) ()]
() (Y e

Then substituting the expressions for Ky(g) and K3(g) into the Gaussian Traingle PDF":

par(9lTap) = K1{K2(g) + Ks(g)}

= K. {—C’.?.VZU&. {erf (g _ Hg) —erf (g _2 Mg) } + — \/2.02.M.
b i (2) - (225

2 2.02 2.02

Vol (g — ) (g — ta)®
o o (0 87) e (0350) )
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VT g — Hb 9~ Ha
2 — +
Ki.\/2.02 {C’. 5 " erf 207 erf 707 M.

+ M. \/\/%_3 {eXp <—%> — exp <_%> }}

Therefore the PDF for a PV distribution for a particular class, 7,, sharing intensity
values with 7, is given by:

p (g|7‘ ): M erf g — _orf g — g

GT a,b 2.0 m m

—M.o, _M e _M
ToEn {eXp < 2.02 ) P ( 2,07 )} (B.22)

Note This is now a PDF. A pair of these PV PDFs, defined by pgr(9|7.) and
par(9|Th,q) should have equal prior values within a mixture model framework.




Appendix C

Sum of Gaussian Distributed
Random Variables

This appendix demonstrates that the result of the sum of @ Gaussian distributed
random variables is also governed by a Gaussian PDF. It also provides a means to
calculate the parameters of the resulting Gaussian distributed random variable.

Consider @) random variables, X, that are normally distributed, i.e. X : N (g, 02)
and the weighted sum of of these random variables is given by:

Q
s = qu.a:q, (C.1)
qg=1

where wy is the weight of the ¢ random variable instance, x4 which is an instantiation
of the random variable, X,, i.e. X,(w) = x4, but to simplify presentation w will not
be used.

The characteristic function® of X, is given by [134]:

+oo
D, (v) = Ele’" %] = /pxq(fcq)-eXp(j-w-wq)-d% (C.2)

—00

LA useful tool in the manipulation of functions of random variables is the characteristic function
(see for example [96]). The result of a Fourier transform applied to a PDF, pz,(za), of an arbitrary
random variable, Zg, is known as the characteristic function, ®z, (1)) of the random variable Z,.

[e'e]

B, (Ya) = / P74 (2a)- xp(jtba.2).dza,

where j = v/—1. The characteristic function is often given as:

q:'Za, Wa) =E [exp(jwa.Za)] 5

and the inverse Fourier transform of the characteristic function is given by:

pralzn) = 5= [ @2 exp(=iibzo) dbi.

—o0
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where px, (z4) is the PDF of X,. Scaling of a random variable can also be performed
via a small modification to the above formula [146]:

+oo
®,,.x,0) = E[ej'w'wq'xq] = /qu (zq)- exp(j.t).zq.wy).dxg, (C.3)

—00

It is well known that the summation of ) independently and identically distributed
(ii.d.) random variables can be performed via the product of their characteristic func-
tions [134]. Hence, if S = s:

Q
®5(¢) = | [ Buyx,(®), (C4)
q=1
so that:
a
ps(s) = 5= [ Bs(w).cxp(—jib.s).du. (€5)

where pg(s) is the PDF of the result of the weighted sum of ) Gaussian distributed
random variables.

The individual characteristic functions of each scaled random variable are first evalu-
ated:

D, x,(Y) = / #.exp (-%) exp (j..gw,) -dg, (C.6)

which results in:

7 (g = pta)? = 2.9.j.1q .02
@wq-Xq(¢) Y / - €Xp <_ 1 1 q) d97

2
2.0q

+oo .
1 9> —2.g.uq + ug — 2.g.j.wq.¢.02
= — .exp | — 5 o7 .dg,
Nep

+oo .
1 g% —2.9(pg + j.wq.@b.ag) + ug
=— [ .exp| - 5 .dg.
2 2.Jq

(C.7)
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Completing the square:

+o0 . .
o [0 g+ jwg.09))° = (pg + jwg0g)® T4\
D 307 dg,

2
2.0q

1 ((uq + jwgap.o2)? — Mg)
exp .

7° < <g—<uq+j.wq.w.ag>>2> ;
exp | — .dg.

2
2.0q

(C.8)

This can then be simplified by relying upon the symmetry of a Gaussian function
integral, i.e.:

+oo .
1 ) / exp <— (9 — (uq +j.wq.¢.gg))2> dg = 1. (C.9)

\/2.m.02 2‘03
e —o

So that:

. N2 2
@wq-Xq (1/}) = exp <(Mq +j'wq.1/}'O-Q) Mq) 9

2
2.0q

Q.Mq.j.wq.lb.ag — 1/12.0;1
= exp 53 :
Nop

1/1?103.03
— |-

= exp (uq.j.wq.1) . €xp <_

(C.10)

Therefore the characteristic function for the sum of ) Gaussian distributed random
variables, ®g(v)), is given by the product of the individual characteristic functions:

Q 2
Ps(v) = H P,x, (V) =exp | jY. Z Wq.ftg | -€xXp —%. ng.ag . (C.11)
q=1 Vq Vg
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The PDF of Xg can then be determined (letting ps = 3y, wq.pq and o > g w2.o3):

+oo
ps(s) = 5 [ Bs(w).exp(-jiavs)dv
1 7 202
=5 / exp (j.1.us) . exp <— 5 5) .exp(—j.1.s).dy
_ i +OOeX (2]¢(MS B 8) B ¢2-03> dl/}
T or P 2 '
B L JrooeX (_Q/)?'Ug —2.j.4.(s — ,Us)> )
“or P 2 '
(C.12)
Completing the square:
+oo
1 ¢ — 7. — Ms g 2 B s g 2
Syt eXp(_( j-(s /~t)/02;0g (J-(s = ps)/0%) )-d@b
+o0
1 — 115)? W — ji(s — ps)/o2)?
S e e G - e K
(C.13)

Similarly, the symmetry of the Gaussian can be used to simplify the expression, i.e.:

+/°°exp (~mst e o Vo -

2/0’3 Os

—0o0

So that: . )
ps(s) = — = €Xp (—w> (C.15)

2.m.0 2-03

This shows that the result of the sum of @) weighted Gaussian distributed random

variables also results in a Gaussian distributed random variable with parameters given

by: fis =)y, Wq-fq and o2 = > g wl.og.



Appendix D

Alternative Derivation of Rician
Distribution

In chapter 6, the Rician distribution was derived utilizing the parameters used by Rice
in 1938, [111]. For the derivation in chapter 6, the gradient magnitude distribution was
derived for Z, : N'(uz,02) and Z, : N'(uy, 02). However, these parameter values do not
realistically model the situation where the gradient kernels (M, and M,) will both be
covering a heterogeneous image region (see figure 6.3). If both kernels are covering a
heterogeneous image region, then Z, : N(piz,02) and Z, : N'(u,,0%), so that the CDF
of the 2-D gradient magnitude becomes (compare to equation 6.11):

1 1
P =] Q_W.Ug.exp(—2.02«%—Mx>2+<zy—uy>2>> dzpdzy (D)
224 /22+22 : :

L 1 2 2 2 2
- // 2.m.02 xp <_ 2.02 (2 = 2.2zl + pg + 2y — 2.1y.2y + p) | -d2z.dzy
22> /22+22

A change of variables is necessary to remove the double integrals on the single function.
Taking advantage of the circular symmetry of the function, where 22 = 22 + zg, Zy =
z.sin(0), z, = 2.cos(#) and dz,.dz, = 2.df.dz, so that (also letting U? = p2 + /,Lz):

z 2w

1 ' 1
Py(z) = SEpE / /exp (—2.02 (2% — 2.2.(ptz- sin(0) + gy cos(0)) + U2)) z.df.dz,

—o0 0

(D.2)

2 2.
1 U 22 2. (- sin(6) + puy. cos(6))
= 2'mag.exp <— 202) / exp (—2‘02> .z/exp < o) ) .df.dz.
0

z z z

The trigonometric terms for the argument of the exponential in the inner integral, given
by (g sin(@) + p. cos(#)) maybe reexpressed as U. cos(f — ) where v is a phase shift,
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so that:

z 2.
1 U? 22 z.U.cos(0 —~
Py(z2) = 5 o2 OXP <— 202) / exp <— 202) .z/eXp (%) .df.dz.
0

(D.3)
As the inner integral is of the same form as a special function, known as the modified
Bessel function of the first kind, order zero, the inner integral can be replaced by using,

2.7
[47), [ exp (M) df =271 (‘Za—gj) , the CDF then becomes:
0 zZ

2
oz

z
1 U? 22 z.U
Pz(z) = U—g.exp <—2'02> / exp <_T(72> do ( -2 > z.dz. (D.4)

This CDF, Pz(z) is now described in terms of the PDF of Z:

z

Poo) = [ pal)d

—00
so the PDF of Z can be obtained from the CDF by removing the integral in equation

D.4: ) )
z U+ =z z.U
pz(z) = -3 OXP <— 5 2 ) do ( = ) . (D.5)

z Uz z

Comparison of this equation with equation 6.18, suggests that the two equations are
equivalent, where U = , /u2 + '“3217 so that if y1; = 0 then U = p,, (where p,, was given

as {1, in equation 6.18).



Appendix E

The Nelder-Mead Simplex
Optimization Algorithm

Nelder and Mead in 1965 developed the Nelder-Mead Simplex optimization algorithm to
minimize any arbitrary error function with respect to some data and a model describing
the data [92]. A central concept to this simple optimization algorithm is a geometric
figure known as a Simplex. A Simplex is defined by Borowski and Borwein in Collins
Dictionary of Mathematics as [11]

“...the most elementary geometric figure of a given dimension: the line in
one dimension, the triangle in two dimensions, the tretrahedron in three,
ete.”

The Nelder-Mead Simplex algorithm utilizes a Simplex in the parameter-error space
of the model that is being compared with some data. For every individual parameter
of the data model there is a corresponding dimension in the parameter-error space.
Therefore a Simplex is composed of N + 1 data points, where N corresponds to the
number of dimensions or parameters for a particular data model. For every Simplex
point, y,;, the model, f(y,) can be evaluated yielding a result that can be quantitatively
compared with some corresponding data. The result is a set of points in the parameter-
error space that the algorithm can determine error values. These error values can then
be compared with each other and therefore determine which point (or set of particular
parameter values) is least optimal.

The point with the greatest error between the model and the data for a particular set
of parameter values (defining its location in the parameter-error space) is then reflected
about the remaining points in the Simplex. A number of these reflections usually moves
the Simplex to towards a minimal error for all of the points in the Simplex. If a new
reflected point produces an error that is not lower than the previous position, then the
reflection distance is reduced. This produces a focusing effect where the size of the
Simplex reduces when it approaches a local minima.

A simple example is illustrated in figure E.1.
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data-model error

>

I parameter axis
minima

Figure E.1: An illustration of a simple example of the Simplex Nelder-Mead algorithm
for a single parameter data model. Six Simplices are illustrated (numbers 1 to 6) where
points for each Simplex move along the line of error for various values of the single
parameter, until the final Simplex straddles the minima.

The algorithm may be terminated when the points of the Simplex are all approximately
equal.
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