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Abstract

The problem of acquiring surface models of faces is an important one with potentially

signi�cant applications in biometrics, computer games andproduction graphics. For such

task, the use of shape-from-shading (SFS) is appealing since it is a non-invasive method

that mimics the capabilities of the human visual system. In this thesis, our interest lies on

the recovery of facial shape from single image views. We makefour novel contributions

to this area.

We commence by describing an algorithm for ensuring data-closeness and integrabil-

ity in Shape-from-Shading. The combination of these constraints is aimed to overcome

the problem of high dependency on the image irradiance.

Next, we focus on developing a practical scheme for face analysis using SFS. We

describe a local-shape based method for imposing a novel convexity constraint. We show

how to modify the orientations in the surface gradient �eld using critical points on the

surface and local shape indicators.

Then, we explore the use of statistical models that can be used in conjunction with

SFS to reconstruct facial shape. We describe four differentways of constructing the 3D

statistical models of faces using Cartesian representations: the surface height, the surface

gradient, the surface normal azimuthal angle and �nally a model based on Fourier domain

basis functions. The models can be �tted to input images using a data-driven procedure

which satis�es the image irradiance equation as a hard constraint and is also integrable.

Finally, we propose a coupled statistical model that can be used to recover facial shape

from brightness images of faces. We jointly capture variations in intensity and surface

shape. The model is constructed by performing principal components analysis (PCA) on

sets of parameters describing the contents of the intensityimages and the facial shape

representations. By �tting the coupled model to intensity data, facial shape is implicitly

recovered from the shape parameters.
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Chapter 1

Introduction

This thesis is about the recovery of three dimensional surface shape from intensity im-

ages of faces. The intensities of an image (shading) providea very important source of

information for the perception and understanding of 3D objects in computer vision (Marr,

1982; Horn and Brooks M, 1986). There is a wide range of psychophysical experiments

that support the idea that the human visual system can extract shape from shading (Koen-

derink and Van Doorn, 1992a; Erens et al., 1993a; Erens et al., 1993b; Koenderink et al.,

1996).

After the publication of Marr's bookVision(Marr, 1982), most attention in the litera-

ture was paid to the recovery of an object's three dimensional shape as the main goal for a

computer vision system. This is due to the theory stated by Marr and Nishihara (Marr and

Nishihara, 1978) concerning the way human brains store the perceived world. They pro-

posed a coordinate system centered on the perceived object.Their theory about perception

is object-centered. In computational terms, this means storing three-dimensional models

of objects that can be later manipulated for the task of recognition (Sutherland, 1979).

The impact of the object-centered approach was to focus on methods for recovering the

three dimensional shape of objects from image cues, namely,shape-from-X techniques,
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i.e. shape-from-shading, shape-from-texture and shape-from-motion (Trucco and Verri,

1998).

As far as it relates to face shape recovery, the problem of acquiring surface mod-

els of faces is an important one with potentially signi�cantapplications in biometrics,

computer games and production graphics. Some of the ways to acquire surface models

include the use of range-scanners (Jarvis, 1983; Besl, 1989; Blais, 2003), stereoscopic

cameras (Starks, 1995) and structured light sensors (Batlle et al., 1998; Scharstein and

Szeliski, 2003). However, one of the most appealing ways is to use Shape-from-Shading

(SFS) (Horn and Brooks, 1989), since this is a non-invasive process which seems to mimic

the capabilities of the human vision system.

Ideally, an automated SFS system takes as input the intensity image of an object and

returns as output the shape of that object (see Figure 1.1). However, the history of SFS has

shown that the original problem setting has to be constrained in order to obtain feasible

results (Zhang et al., 1999). When the problem is specialized in face shape recovery, the

bilateral symmetry of faces (Shimshoni et al., 2003; Zhao and Chellapa, 2000) as well as

critical points over the intensity image (Prados et al., 2006) have been explored. The use

of these constraints has improved the quality of the resultsobtained. On the other hand,

accuracy can be achieved through the use detailed constraints concerning the recovery

of facial shape. For example, statistical methods have beenexplored for the objective of

face shape recovery (Atick et al., 1996; Blanz and Vetter, 2003) from single image views.

These approaches require a database of accurate suitable information belonging to objects

of the same class, i.e. a database of three-dimensional faces.

Among the topics that have been given particular importancedue to the impact they

have in the �eld of SFS we can mention: illumination models, pose estimation, estimation

of the re�ectance properties, integration techniques and estimation of the illumination

direction. In this thesis, we do not directly address these topics. Rather, we focus research

2



Figure 1.1:SFS is an inverse rendering problem. A 2D intensity image is taken as an input. The
underlying 3D surface producing irradiance of the image is the expected output.

efforts towards the problem of recovering facial shape froma single image.

We make four novel contributions to the topic. The �rst two contributions deal with

traditional SFS approaches. First, we combine integrability and image irradiance con-

straints for needle map stabilization. Second, we propose anew convexity constraint that

addresses the problem of imploded facial features in needlemaps of faces.

The last two contributions are related to the problem of using statistical models of

faces for face shape recovery. Here we explore the use of Cartesian representations for

creating statistical models of faces that can be �tted through image irradiance and integra-

bility constraints. Finally, we relate intensity and 3D surface shape into a coupled model

for face shape recovery. Here the main idea is to use the shapecoef�cients of the intensity

based model in order to directly obtain 3D surface shape fromintensity images of faces.

A summary of the contributions of the thesis is given in the next section.
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1.1 Motivation

The recovery of facial shape through SFS techniques has beena topic of research in

the computer vision community (Zhao and Chellapa, 2000; Shimshoni et al., 2003; At-

ick et al., 1996; Dovgard and Basri, 2004; Blanz and Vetter, 2003). Several problems

have been encountered depending on the approach used to solve them. It is clear that,

from a single image view, a precise height map is dif�cult to obtain by integration of the

�eld of surface normals delivered by traditional SFS, due tolocal errors in the direction

of the surface normals. The most important problem is that when integrated, the con-

cave/convex ambiguities in the needle-map can lead to the distortion of the topography

of the reconstructed face. One of the most serious instancesof this problem is that the

nose can become imploded (see Figure 1.2). However, this does not imply that the en-

tire gradient �eld is in error. In fact, some regions on the image do provide directional

information that is suf�ciently faithful for qualitatively good surface reconstruction. A

convexity-enforcement constraint can be designed to help the imploded facial regions

arise, resulting in overall improvement for the recovered structure of the face.

On the other hand, the use of statistical models has also proved to be useful for facial

shape recovery from brightness images. In the two-dimensional domain, variations in

facial appearance can be captured using the eigenfaces technique (Turk and Pentland,

1991). Here a set of aligned facial intensity images are usedto construct the eigenmodes.

The image data is usually encoded as a Cartesian long-vectorby concatenating the rows

or columns of the image. However, if a 3D model is to be constructed in an analogous

manner from range data, then there exist alternative ways for representing the training

data. One of the simplest and most commonly used approaches is to adopt a cylindrical

coordinate representation (Atick et al., 1996; Blanz and Vetter, 2003). This representation

is used since it captures the linear relations between basisheads. Unfortunately, it can lead

to ambiguity since different data can be �tted to the same head-model. An alternative is to

4



Figure 1.2:The problem of imploded facial features in SFS. The �rst column shows an intensity
image of a face. The next two columns present needle maps and height maps, respectively. The
upper row shows results obtained using the Worthington and Hancock SFS algorithm (Worthington
and Hancock, 1999). The bottom row shows ground truth data. Note the problem of imploded
facial features over the upper row �gures.

use a Cartesian representation, i.e. height maps (Dovgard and Basri, 2004), in which each

surface point is speci�ed by its(x; y; z) coordinates, where thez-axis is in the direction

of the viewer. A general drawback of Cartesian coordinates is the high spatial variance

caused by face features such as nose, mouth and eyes.

Height maps, however, are not the only way for representing 3D information in Carte-

sian coordinates. Alternative encodings can be drawn from 2.5D information such as the

partial derivatives of a surface. Although the 2.5D representation is less appealing since

it must be integrated to recover a surface, because of the image irradiance equation the

2.5D representation is closer to the raw image brightness data than a height surface.

Although statistical approaches have the drawback of requiring a database of faces to

train the model, the accuracy of the recovered shapes is enough to generate novel views

far from the range of the viewer's direction. To this end, a minimization scheme has to

be carried out in order to �nd the optimum set of parameters for the model. This problem
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has been addressed by minimizing the distance between rendered views from recovered

surfaces and input images (Atick et al., 1996; Blanz and Vetter, 2003). Unfortunately,

the minimization of this distance is badly affected by the presence of local minima. This

means that exhaustive search methods must be used, which sacri�ces ef�ciency and sim-

plicity. This problem suggests that research directions ought to be focused on exploring

alternative ways to relax this minimization problem.

1.2 Contribution

The contributions of this thesis can be divided into two groups: the ones related to tradi-

tional SFS and the ones related to statistical SFS. As far as traditional SFS is concerned,

the contributions are:

1 The development of an SFS scheme that combines integrability and data close-

ness.

Here the combination of data-closeness and integrability constraints aims at over-

coming the problem of high dependency on image irradiance. Data closeness is

ensured by constraining surface normals to fall on an irradiance cone, whose axis

points in the light source direction and whose apex angle varies with iteration num-

ber. Integrability is ensured by projecting the non-integrable set of surface normals

to the nearest integrable one by globally minimizing the distance between them in

the Fourier domain. As a result, the new method recovers needle maps that are

smooth and integrable as well as improving height surface stability.
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2 The inclusion of a new constraint that enforces convexity infacial SFS.

Here we aim at developing a practical scheme for face analysis using SFS. Tradi-

tional SFS methods have a tendency to recover surfaces in which convex features

such as the nose are imploded. This is a result of the fact thatsubtle changes in the

elements of the �eld of surface normals can cause signi�cantchanges in the corre-

sponding integrated surface. To overcome this problem, we show how to modify

the orientations in the surface gradient �eld using critical points on the surface and

local shape indicators. This results in greatly improved height reconstructions and

more realistic surface re-illuminations.

The contributions that are related to statistical SFS are:

3 The analysis of alternative Cartesian representations forbuilding statistical

models of faces.

Here we describe four different ways of constructing the required three-dimensional

statistical models of faces using Cartesian representations. The representations

studied are the surface height, the surface gradient, the surface normal azimuthal

angle and, �nally, a model based on Fourier domain basis functions. The models

can be �tted to image brightness data using an alternative non-exhaustive parameter

adjustment procedure. This procedure ensures that the recovered surface satis�es

the image irradiance equation as a hard constraint and is also integrable.

4 The development of coupled statistical models for face shape recovery.

Here we aim at generating accurate shape from out-of-training-sample intensity

images in an ef�cient way. To this end, we focus on the problemof developing

a coupled statistical model that can be used to recover facial shape from bright-

ness images of faces. We capture variations in both intensity and surface shape
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using a coupled statistical model (Cootes et al., 1998). This model is constructed

by performing principal components analysis on sets of parameters describing the

contents of the intensity images and the facial shape representations. By �tting the

coupled model to intensity data, facial shape is implicitlyrecovered from the shape

parameters.

1.3 Thesis overview

A review of the literature relevant to this thesis is presented in Chapter 2. This review

covers classical approaches in SFS as well as recent advances in facial shape recovery

from a single image view.

Chapter 3 describes an iterative algorithm that combines data closeness and integra-

bility in SFS. The aim of this method is to relax the problem ofoverreliance in the im-

age irradiance equation by introducing an integrability condition into the geometric SFS

framework.

In Chapter 4, we introduce a procedure to enforce convexity on SFS-acquired needle

maps. This can be used to recover shape structure from frontal images of faces. To do

this, we use local shape indicators to re-direct the �eld of surface normals.

An exploration of statistical models of faces based on Cartesian coordinates is pre-

sented in Chapter 5. Here we experiment with directional andheight data in order to

build statistical models of faces. We develop data-driven procedure to �t the model on

brightness data. We also explore how the integrability constraint can be integrated into

the �tting method.

In Chapter 6, we combine statistical models of intensity andsurface shape into a

coupled statistical model. In this way, we jointly capture variations in intensity and the

surface shape representations. The model is constructed byperforming principal compo-
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nents analysis on sets of parameters describing the contents of the intensity images and

the facial shape representations. By �tting the coupled model to intensity data, facial

shape is implicitly recovered from the shape parameters.

Finally, Chapter 7 highlights directions for future work and comments on ways that

the methods presented here can be extended and improved.
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Chapter 2

Literature Review

In SFS, a �eld of surface normals and hence the height-map of the viewed surface is

reconstructed from a single image. The SFS process was identi�ed by Marr as key in the

computation of the 2.5D sketch (Marr, 1982), and was studiedin depth by Horn (Horn and

Brooks, 1989). The topic has also been the focus of recent research in the psychophysics

literature. Over the years, a number of SFS methods have beendeveloped by various

researchers (Zhang et al., 1999). The general conclusion isthat the solution of the SFS

problem is somewhat elusive when the input image departs from Lambert's law, which is

the case of the majority of real world imagery.

Most recent SFS methods have made efforts towards constraining the problem to a

speci�c domain. This is the case when exploiting symmetry (Zhao and Chellapa, 2000;

Shimshoni et al., 2003) or using critical points (Prados et al., 2006) for facial SFS. How-

ever, only when more detailed constraints are applied, as instatistical SFS (Atick et al.,

1996; Blanz and Vetter, 2003) or photometric stereo (Georghiades et al., 2001; Forsythe

and Ponce, 2001), do the results show the necessary accuracydemanded by model-based

face recognition systems. Photometric stereo requires at least three images of the same

object illuminated from different points while the statistical SFS uses a database of accu-
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rate training information for objects of the same class, i.e. a database of 3D faces.

The literature review in this chapter covers recent advances in the development of

SFS. We start with a brief de�nition of the SFS problem in Section 2.1. We present a

concise survey on psychophysical support for SFS in Section2.2. An overview of classic

computational SFS methods is presented in Section 2.3. Finally, in Section 2.5 we review

the state-of-the-art on SFS for facial shape recovery.

2.1 Shape-from-shading

In brief, SFS aims to solve the image irradiance equation,E(x; y) = R(p; q;s), whereE

is the image brightness value of the pixel with position(x; y), andR is a function referred

to asthe re�ectance map(Horn, 1997). The re�ectance map uses the surface gradients

p = @Z(x;y )
@x andq = @Z(x;y )

@y together with the light source direction vectors to compute a

brightness estimate which can be compared with the observedbrightness, using measure

of error.

A Lambertian surface exhibits matte or diffuse re�ectance.Though most SFS meth-

ods assume Lambertian re�ectance, there are also more sophisticated re�ectance models

which deal with the issue of specularity (Beckmann and Spizzichino, 1963; Torrance and

Sparrow, 1967). For a survey of re�ectance models, see (Schlick, 1994). Recently, some

efforts for handling highlights in SFS schemes have been proposed (Ragheb and Hancock,

2003).

If the surface normal at the image location(x; y) is n = ( p; q;� 1)T , then under the

Lambertian re�ectance model, with a single light source direction, no inter-re�ections

and constant albedo, the image irradiance equation becomes

E(x; y) = n � s: (2.1)
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In other words, the SFS problem is the one of recovering the surface that, after in-

teraction with the environment (illumination conditions,objects' re�ectance properties,

inter-re�ections), produces the radiances perceived by human eyes as intensities. In gen-

eral, though, SFS is an under-constrained problem since thetwo degrees of freedom for

surface orientation (slant and tilt) must be recovered froma single measured brightness

value. In the following section, we provide a review of psychophysical experiments that

support the use of SFS in living systems.

2.2 Psychophysical support for SFS

There is considerable body of research on psychophysics in relation to SFS. This is mainly

motivated since the way living systems work can assist the design of arti�cial systems.

At the onset in the development of SFS, it was assumed that thehuman visual sys-

tem is able to perform accurate surface recovery from shading surfaces (Horn, 1986).

However, a series of experiments started by Mingolla and Todd (Mingolla and T., 1986)

as well as Stevens (Stevens and Brookes, 1987) and continuedby Koenderink and his

coworkers (Koenderink and Van Doorn, 1992a) revealed some interesting features of hu-

man perception pertinent to SFS.

These experiments largely consisted in using gauge �gures and monochrome views of

piecewise-smooth objects. Humans were asked to determine if the �gures were tangent to

the surface in the picture in order to obtain samples of gradient information as perceived

by humans. The information obtained from the experiments was transformed to the slant

and tilt angles of the surface normals estimated by the subjects. With gradient estimates

at hand, a surface integration process was carried out to recover the shape perceived by

the subjects.

The conclusion from (Koenderink and Van Doorn, 1992a) was that the human visual
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Figure 2.1: Example of the tests realized in Koenderinks experiments (Koenderink and
Van Doorn, 1992a). The image in the left corresponds to the picture to be gauged. The image
in the middle shows example of the gauge �gure used in the experiments. The image in the right
shows the �nal sampled set of normals as perceived by one of the subjects in the experiments.

system is not able to accurately recover quantitative height information from shading,

though qualitative data seemed to be consistent with the stimuli. This can be explained

due to the considerable degree of variation for the slant angle estimates among differ-

ent subjects, while the tilt estimation remained consistent with the image. Also, it was

deduced that human observers perceive the silhouette (i.e contours, local surface orienta-

tions) of objects rather than accurate depths.

Ramachandran's research supported these suggestions and demonstrated that the hu-

man visual system recovers depth information using not onlyshading, but also outlines,

features and prior knowledge about the observed objects (Ramachandran, 1988). Also

in (Barrow and Tanenbaum, 1993) experiments showed that human SFS is affected by

stereoscopic processing, since the line drawing of the shading pattern seemed to play a

central role in its interpretation. Further experiments demonstrated that the human visual

system cannot recover the shape of objects when only shadinginformation is present,

since humans are not capable of classifying such objects into basic groups of shapes, i.e.

13



cylinder-like, sphere-like, saddle-like, ellipsoid-like (Erens et al., 1993b). The shape in-

dex, a measure proposed in (Koenderink and Van Doorn, 1992b), was used for evaluating

subject performance. Alternative experiments carried outby (Koenderink et al., 1996)

showed the importance of edges over shading. By gradually adding edge cues to objects

similar to the ones used in (Erens et al., 1993b), it was shownthat the subjects were able

to better classify objects than if shading alone was used.

Of the results presented in this brief review of psychophysical experiments, the most

important ones suggest that, though the human visual systemis not capable of recovering

exact three-dimensional information solely on the basis ofshading, it does recover broadly

similar surfaces to the ones presented as stimuli. This is the case not only for simple

convex surfaces (Koenderink and Van Doorn, 1992a), but alsofor more complicated

surfaces (Koenderink et al., 1996).

If we compare the behavior of the human visual system to the way a computer vi-

sion system functions, we cannot expect an arti�cial SFS program to deliver accurate

height information, but rather an approximation of the surface that generates the input

image. However, the performance can be improved using photometric stereo (Forsythe

and Ponce, 2001; Georghiades et al., 2001) and statistical SFS (Atick et al., 1996; Blanz

and Vetter, 1999; Dovgard and Basri, 2004).

2.3 Traditional SFS approaches

Numerous methods for SFS have been proposed in the literature. The most common

classi�cation of the methods is based on how they specify theproblem. In the following

subsections we use a classi�cation similar to the one presented in (Zhang et al., 1999).

14



Global minimization methods

In global minimization approaches, the problem is minimizing cost functionals (Ikeuchi

and Horn, 1981; Brooks and Horn, 1985; Frankot and Chellappa, 1988; Horn, 1989;

Zheng and Chellapa, 1991). The complete set of image intensities contribute to the surface

reconstruction. The minimization of the functional is performed usingthe calculus of

variations. In fact, between 1981 and 1991, SFS was considered as a variational problem

and was frequently posed as that of minimizing cost functionals that capture constraints

on the gradient �eld (Horn and Brooks M, 1986). In practice the method uses iterative

schemes in the discrete domain.

Usually, the cost functionals encapsulated the criteria ofsurface smoothness, integra-

bility, compliance with the image irradiance and unit normal. If isolated, these functionals

are not suf�cient to constrain the problem. Therefore, a combination of functionals is of-

ten needed. Once a suitable set of constraints is selected, the next step is to choose the

method for minimizing them.

The main drawback of the cost functionals associated with the variational approach

is its dependency on the correct choice of the weighting factor for each constraint. If

the combination of functionals is placed into a regularization framework, as proposed

by (Brooks and Horn, 1985), then the method tends to oversmooth the recovered needle

map, thus losing surface detail. Also, solving the differential equations can be dif�cult if

the problem is not discretized correctly.

In (Worthington and Hancock, 1999), a method for more accurate needle map calcu-

lation was presented. Here the image irradiance equation was treated as a hard constraint

by forcing every recovered surface normal to lie on its nearest position on the re�ectance

cone. The needle maps delivered by this geometric frameworkhave proved to be useful

for computing topographic characteristics that can be usedfor 3D object recognition from

2D brightness images (Worthington and Hancock, 2001).
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Propagation methods

Propagation methods commence with points of known height surface from which shape

information is extended across the whole surface. The method of characteristic strips (Horn,

1970) is the classic propagation method. A characteristic strip is a line in the image

from which depth and orientation can be calculated, provided that these are known at the

starting point of the line. Horn solved this problem by usinga system of �ve ordinary

differential equations.

Later, a solution for the shading differential equations governing surface shading ap-

peared in (Rouy and Tourin, 1992). Here the use of viscosity solutions and Hamilton-

Jacobi-Bellman equations was proposed. Additionally, Oliensis and Dupuis formulated

SFS as an optimal control problem, which can be solved using numerical methods, pro-

vided that information about the location and the height of singular points on the surface

is known (Dupuis and Oliensis, 1994).

Alternatively, Bichsel and Pentland proposed a two-step method (Bichsel and Pent-

land, 1992), which is a simpli�ed version of that of Oliensisand Depuis. First, using

directional derivatives, they determined possible surface slopes in various directions of

the image (using an 8-neighborhood), by rotating the image to align the tilt angle of the

light source direction with one of the directions of the 8-neighborhood. The subsequent

reconstruction process iteratively computes a new height value by checking which of the

eight calculated slopes most strongly propagates the surface towards the illumination di-

rection. The maximal slope is used to update the height estimated. The �nal recovered

surface is rotated back to its original pose.

More recently, Prados and Faugeras (Prados et al., 2006) proposed a new method for

the Lambertian SFS problem based on the notion of Crandall-Lions viscosity solution.

This method requires the knowledge of the solution (the surface to be reconstructed) only

on some part of the boundary or of the singular set (the set of the points at maximal
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intensity). Their work draws on the notion of viscosity solutions and the work of Dupuis

and Oliensis dealing with classical solutions and value functions.

Local methods

Local SFS approaches assume local geometry for every point of surface of the object un-

der study. These methods only calculate surface orientation, which can be integrated later

to obtain a corresponding height map. In (Lee and Rosenfeld,1985), a method for the

recovery of surface orientation as well as the estimation ofthe light source direction was

proposed. This is based on the work of Pentland (Pentland, 1982). They approximate

local surface regions by spherical patches. For such task, atransformation of system co-

ordinates is needed. First, they calculate the slant and tilt of the surface based on the light

source direction. Second, they project these directions back to the viewer coordinate sys-

tem. The method does not seem to function well when the assumption of local spherical

surface is violated.

2.4 Surface integration from gradient �elds

In SFS and photometric stereo, surface reconstruction froman estimated gradient �eld is

required. Unfortunately, the gradient �eld is not always integrable, i.e. it has non-zero

curl. This is why the surface integration, or height-from-gradient problem has received

considerable attention in its own right. Integration techniques can be classi�ed as being

local or global. Local techniques are based on curve integrals and can use different inte-

gration paths and neighborhoods (Wu and Li, 1988; Bors et al., 2003; Robles-Kelly and

Hancock, 2004). Global methods deal with the minimization of error functionals (Horn,

1989; Frankot and Chellappa, 1988). Global approaches tendto be more robust to noise

and recover smoother surfaces. An interesting analysis concerning gradient �elds integra-
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tion methods is given in (Klette and Schluens, 1996).

2.4.1 Local integration methods

Local integration methods de�ne paths of integration alongwhich they propagate height

information. One of the �rst local integration methods in the literature is the two-point

technique (Coleman and Jain, 1982), which speci�es a cross-like path starting in the mid-

dle of the gradient �eld. The surface height can be recoveredby considering the surface

normal vectors at the two adjacent points of a given locality, computing the average tan-

gent through the given point, and interpolating the height and the surface normals. An

extension of this method using eight adjacent points is described in (Healey and Jain,

1984).

In (Wu and Li, 1988), a similar local integration method has been developed. They

start with initial height values, which are propagated according to a local approximation

rule (e.g., based on the 4- neighborhood) using the given gradient data. This operation can

be repeated using different scan algorithms. The resultingheight values are determined

by averaging operations. However, initial height values have to be provided.

Alternatively, a geometric height recovery approach for synthetic aperture radar (SAR)

images of terrain has been proposed in (Bors et al., 2003). Here known and unknown

height values are �rst localized and then the unknown heightvalues are calculated using

a gradient updating algorithm. A more sophisticated approach for the integration of gra-

dient �elds is proposed in (Robles-Kelly and Hancock, 2004). Here spectral-graph theory

is used to �nd an integration path using the leading eigenvector of the transition matrix.

The needle map is characterized by a this matrix, which is computed from the sectional

curvature for different locations on the surface. The path of integration is �nally located

using a graph seriation method. A severe restriction for this method is that it becomes

highly computationally demanding in resources for large images.
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In general, local integration approaches suffer the drawback of unstable error propa-

gation if the gradient �eld is noisy. The locality of the computations propagates errors

along the integration path. As a result, these methods strongly depend on data accuracy.

2.4.2 Global integration methods

Global integration methods minimize an error functional. The classic global integration

method is the Frankot and Chellappa's algorithm (Frankot and Chellappa, 1988). They

enforce integrability by orthogonally projecting the non-integrable �eld onto a vector sub-

space spanning the set of integrable slopes. However, theirmethod is dependent on the

choice of basic functions.

Alternatively, the integrability constraint and the surface curvature and area constraints

have been combined into a single functional, which is then minimized (Wei and Klette,

2002). This enforces changes in the height map to be more regular. To solve the mini-

mization problem, Fourier domain basis functions are employed. Nonetheless, associated

weighting parameters had to be carefully chosen in order to avoid over-smoothing the

integrated surface.

Recently, Agrawal and Chellappa have proposed an algebraicapproach to enforce

integrability in the discrete domain (Agrawal et al., 2005). They formulate enforcing

integrability as the solution of a single linear system overthe image. As this system is

generally undetermined, they provide conditions under which the system can be solved

and a method to obtain those conditions based on graph theory. Their approach is non

iterative and possesses the property of local error con�nement.
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2.5 Face shape recovery using SFS

As noted earlier, in contrast to the human visual system, it seems that computer vision

systems encounter dif�culty in estimating the tilt of a surface from a single image than

its slant (Koenderink and Van Doorn, 1992a). When propagated iteratively, these errors

can result in poor recovery of the topography of the recovered surface. For instance,

because of the concave-convex ambiguity (Gregory, 1997), there may be regions where

the sign of the curvature becomes reversed. Moreover, sinceonly a single image is to

hand, there is no additional evidence that can be used to correct the resulting shape-

errors. For face analysis, the use of SFS has proved to be an elusive task, since the

concave-convex ambiguity can result in the inversion of important features such as the

nose. To overcome this problem, domain speci�c constraintshave been used.

2.5.1 Constraining the problem

Symmetry is an important cue for the recovery of surface shape from images of faces.

Zhao and Chellappa (Zhao and Chellapa, 2001) have exploitedthe bilateral symmetry

of faces in SFS. Their framework deals with Lambertian surfaces with unknown and po-

tentially varying albedo. The problem of source-from-shading is also addressed. Ortho-

graphic projection and frontal views are also assumed. Two image irradiance equations

are used, one is the standard equation used in SFS and the other is a self-ratio image irra-

diance equation. The latter equation relates to the self-ratio image which is de�ned as the

ratio of two halves of the input image to light source and surface shape. This symmetric

scheme is proved to have a unique global solution. The methodworks well with synthetic

surfaces but does not perform well when tested on images of faces with natural albedo

variation. The method has nonetheless been used for effective face recognition (Zhao and

Chellapa, 2000).
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Similarly, Shimshoni et al. (Shimshoni et al., 2003) have presented a shape recon-

struction method for bilaterally symmetric surfaces from asingle image. The basic idea is

that an image taken from a general, non frontal view point, under non-frontal illumination

can be regarded as a pair of images. Each image of the pair is one half of the object,

taken from different viewing positions and with different lighting directions. Geometric

and photometric information can be used in order to obtain a dense correspondence map

between pairs of symmetric points, for the purposes of denseshape recovery. Unknown

lighting and viewing parameters are also recovered by the process. Lambertian surfaces,

unknown constant albedo and weak perspective projection are assumed. This method

gives results whose quality depends on whether input imagesare frontal or non-frontal

views. Better results are obtained from non-frontal-view examples.

A method for the integration of non-linear holonomic constraints in physics-based

deformable models has been introduced in (Samaras and Metaxas, 2003), where the use of

Lagrange multipliers and a Baumgarte stabilizer allow for the robust integration of these

constraints. This unifying approach can be used for the problem of shape and illumination

direction estimation from shading. The method can be applied to both Lambertian and

non-Lambertian images and does not require knowledge of theillumination direction.

Although the authors mostly realize experiments over the standard set of SFS images

presented in (Zhang et al., 1999), they also use one example applied to the recovery of

facial shape from a close-to-frontal intensity image.

The SFS approach of Prados and Faugeras (Prados et al., 2006)has also been applied

to facial shape recovery. Since their SFS scheme relies on the existence of a unique

critical point, the input images has to be acquired under carefully controled conditions. A

single camera with a basic �ash in a dark room is used to assurethat the distance of the

face to the camera and the focal length are suf�ciently small. The effect of this setting

is a resulting photograph with the brightest point at a single image location. Their SFS
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scheme has proved to work well with symmetric and non-symmetric surfaces, regardless

of facial pose. It gives qualitatively good facial reconstructions.

Photometric stereo has also proved to be effective in the recovery of facial shape

for recognition purposes. A generative appearance-based method for recognizing human

faces under variations in lighting and view point has been described in (Georghiades et al.,

2001). The method exploits the fact that the set of images of an object in �xed pose and

under all possible illumination conditions is a convex conein the space of images. Using

at least six training images of each face taken with different lighting directions, the shape

and albedo of the face can be reconstructed.

2.5.2 The statistical approaches

In the two-dimensional domain, variations in facial appearance can be captured using

the eigenface technique (Turk and Pentland, 1991). Here a set of aligned facial intensity

images are used to construct the eigenmodes. The image data is usually encoded as a

Cartesian long-vector by concatenating the rows or columnsof the image. Turk and Pent-

land were among the �rst to explore the use of principal components analysis for face

recognition (Turk and Pentland, 1991). They used the technique described by Kirby and

Sirovich. (Kirby and Sirovich, 1990) to render the method ef�cient.

Cootes and Taylor (Cootes et al., 1998) develop a novel method of interpreting images

using an Active Appearance Model (AAM) that can be used for locating deformable ob-

jects in images. An AAM contains a statistical model of the shape and grey-level appear-

ance of the object of interest which can generalize to almostany valid example. During a

training phase, the relationship between model parameter displacements and the residual

errors induced between a training image and a synthesized model example is learnt. A

new image is matched by measuring the current residuals and the model is then used to

predict changes to the current parameters.
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As far as the 3D domain is concerned, Atick et al. (Atick et al., 1996) were the �rst to

propose a statistical SFS framework based on a low dimensional parametrization of facial

surfaces. Principal components analysis was used to derivea set of `eigenheads' which

compactly captures 3D facial shape. They minimized the error between the rendered

surface and the observed intensity, de�ning an irradiance constraint on the low parametric

space. Unfortunately, it is surface orientation and not depth which is conveyed by image

intensity. Therefore, �tting the model to an image equates to a computationally expensive

parameter search.

Blanz and Vetter extended the work of Attick et al. and decoupled surface texture

from shape by performing principal component analysis on the two components sepa-

rately (Blanz and Vetter, 1999). Using full facial feature correspondences in cylindrical

coordinates, they develop a model that could be �tted to image data. Their model can

be used to make reasonable estimates of the full 3D shape and texture of a face even

when only a single picture is available. When applying the method to several images

of a person, the reconstructions approach the quality of those obtained with laser range

scanners. They have also developed a morphable model for face recognition (Blanz and

Vetter, 2003). Their framework can be used regardless of pose and illumination changes,

but linear combinations of shape and texture have to be formed separately for the eyes,

nose, mouth and the surrounding area. As a starting point in the �tting process, an ini-

tial 3D shape has to be aligned to the input image. The alignment procedure starts with a

manually assigned set of �ducial points, from which pose andillumination parameters are

calculated. The �tting procedure attempts to minimize the error between the input image

and the rendered reconstruction, which is recovered through a vector of concatenated pa-

rameters. These parameters represent facial shape and texture as well as calibration data

such as pose angles, 3D translation, focal length, ambient and directed light intensities,

color contrast and offsets of color channels. The results delivered by �tting this morphable
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model have proved to be accurate enough to generate photo-realistic views from an input

image, though sacri�cing ef�ciency and simplicity. In fact, the approach of Blantz and

Vetter have become a benchmark for current face shape recovery systems.

Nandy and Ben-Arie have proposed a different approach to solve the problem attempt-

ing to learn the relationship between 3D shape and image intensity for a number of face

parts (Nandy and Ben-Arie, 1999). They explore the idea of shape-from-recognition, i.e.

the idea that pre-recognized face parts can constrain the space of possible solutions for

the image irradiance equation, allowing the recovery of the3D structure of a speci�c

part. Using back-propagation neural networks, the principal component coef�cients of

the Lambertian images are mapped to a set of principal component coef�cients that rep-

resent depth information. The recovery of a complete face isperformed by merging face

parts to minimize the squared error.

More recently, Dogvard and Basri (Dovgard and Basri, 2004) have combined the sta-

tistical constraint of Atick et al. (Atick et al., 1996) and the symmetry constraint of Zhao

and Chellappa (Zhao and Chellapa, 2000) into a single SFS framework. Here the aim was

to express the surface gradient in terms of a set of deformation coef�cients. This allows

shape-from-shading to be transformed into a linear system of equations. This system can

be simply solved for the shape coef�cients and used to reconstruct the height function for

the face. Although it uses a statistical model, the method isef�cient. However, facial

asymmetry produces signi�cant error in the recovered surfaces.

Finally, Smith and Hancock have shown how statistical models can be constructed in

the surface normal domain using the azimuthal equidistant projection (Smith and Han-

cock, 2005a). Problems with the representation of angular data are overcome by trans-

forming the surface normals to Cartesian points. The modes of facial shape variation

are captured using a point distribution model. The model canbe simply �tted to image

brightness data using geometric constraints on the direction of the surface normals that
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result from Lambert's law.

2.6 Remarks

From the review of traditional SFS approaches for facial shape recovery from a single

image, it is clear that the recovered surfaces are seriouslyaffected by factors such as

inaccurately calculated illumination direction and departures from Lambert's law. Both

of these factors are dif�cult to correct when only a single image is to hand. Moreover,

the restrictions imposed by most SFS schemes on the gradient�eld (smoothness, irradi-

ance, integrability, unit length) are insuf�cient to overcome the biases introduced by the

problems mentioned above.

There are a number of interesting differences between the methods reported in Sec-

tion 2.5. Only Prados and Faugeras have proposed a generic approach and make SFS

a well-posed problem. Zhao and Chellappa and Shimshoni et al. have constrained the

problem to the domain of faces. The success of these methods will depend on the cor-

rect setting of illumination, pose and albedo, and the resulting facial reconstructions are

only qualitatively accurate. Nonetheless, recognition can also be realized using alterna-

tive features such as local shape (Worthington and Hancock,2001) and the quality of this

information can be considerably increased by improved SFS methods.

Alternatively, more detailed constraints can be de�ned using 3D statistical models,

which have proved to deliver the most effective results for recovering shape from a single

image of a face. However, most of these methods rely on expensive heuristic searches for

parameter �tting which sacri�ce ef�ciency and ease of implementation.

In this thesis, we contribute to the literature in two ways. First, we combine and

propose new constraints for the SFS problem. Second, we contribute in the �eld of sta-

tistical shape models of faces by analyzing alternative representations and exploring the
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link between facial shape and intensity using coupled models.

To avoid the problem of the high dependency on the image irradiance constraints, we

incorporate the integrability condition into the geometric SFS framework (Worthington

and Hancock, 1999) in Chapter 3. To correct wrongly calculated directions in surface

normals of the facial needle map, in Chapter 4 we propose a newconvexity constraint

based on local shape curvature. In Chapter 5, we analyze and compare different Cartesian

representations for the construction of facial statistical models. Finally, in Chapter 6 we

explore the relation between these Cartesian representations and facial intensity by using

coupled statistical models. By coupling facial shape with facial intensity we can recover

height data from the best �t coef�cients of the intensity model.
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Chapter 3

Ensuring Data-Closeness and

Integrability in SFS

3.1 Introduction

As it has been explained in the literature review in Chapter 2, the image irradiance equa-

tion is under-constrained, since the family of surface normals fall on a re�ectance cone

whose apex angle is equal to arc cosine of the normalized image brightness, and whose

axis points in the light source direction. Several constraints have been used to overcome

the under-constrained nature of the Lambertian SFS problem. However, their main draw-

back is that they have a tendency to over-smooth the recovered surface slopes and result

in poor data-closeness. The net result is a loss of �ne surface detail.

These problems may be overcome by constraining the surface normals to lie on the

re�ectance cone and allowing them to rotate about the light source direction subject to

curvature consistency constraints (Worthington and Hancock, 1999). Unfortunately, the

needle maps delivered by the method are not guaranteed to satisfy the integrability con-

straint, which means that the recovered partial derivatives are not independent on the path
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of integration (i.e. the height function may not be recoverable). Besides, these needle

maps also suffer the drawback of high dependency on the imageintensities, making the

method prone to noisy data such as specularities, roughnessand overshadowed areas.

Some SFS methods calculate directly height information, others deliver gradient data

while sometimes combining the calculation of height and gradient data is considered. If

the method only calculates gradient information, a necessary postprocessing integration

step might be required in order to get a height map. There are anumber of ways in which

a surface may be recovered from a �eld of surface normals. Oneof the most elegant

approaches is that described by Frankot and Chellappa (Frankot and Chellappa, 1988)

which shows how the surface may be reconstructed subject to integrability constraints by

performing a Fourier analysis of the �eld of surface normals.

The work described in this chapter aims at developing an SFS scheme that can be used

to recover integrable needle maps subject to hard constraints on Lambertian re�ectance

as well as relaxing the image intensity dependance driven bysuch constraints.

In order to demonstrate how the two techniques can be combined, we will brie�y

explain the geometric approach for SFS (Section 3.2)as wellas the algorithm proposed by

Frankot and Chellappa for enforcing integrability in SFS (Section 3.3). The combination

of these schemes is described in Section 3.4, while experiments and conclusions are given

in Sections 3.5 and 3.6, respectively.

3.2 Geometric approach for SFS

Shape-from-shading aims to solve the image irradiance equation, E(x; y) = R(p; q;s),

whereE is the brightness value of the pixel with position(x; y), R is a function referred

to asthe re�ectance map(Horn, 1997) ands is the light source direction vector.

The re�ectance map uses the surface gradientsp = @Z(x;y )
@x andq = @Z(x;y )

@y together
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with the light source direction vectors to compute a brightness estimate which can be

compared with the observed one using a measure of error. If the surface normal at the

image location(x; y) is n = ( p; q;� 1)T , then under the Lambertian re�ectance model

and assuming a normalized surface normal, the image irradiance equation becomes

E(x; y) = n � s: (3.1)

Worthington and Hancock (Worthington and Hancock, 1999) have developed an SFS

method in which the image irradiance equation is treated as ahard constraint by demand-

ing that the recovered surface normals lie on the re�ectancecone whose axis is the light

source direction and whose opening angle is the inverse cosine of the normalized image

brightness. Compliance with Lambert's law is effected by rotating an estimated smoothed

surface normal onto the nearest location on the local irradiance cone. The rotated on-cone

surface normal is given by

n00= 	n 0 (3.2)

where	 is a rotation matrix computed from the cone apex angle and theangle between

the smoothed surface normal directionn0 and the light source directions. To restore the

surface normal to the irradiance cone, it must be rotated by an angle

 = arccos(irradiance) � cos� 1

�
n0 � s

kn0k � ksk

�
(3.3)

about the axis(x; y; z)T = n0 � s. Hence, the rotation matrix is

	 =

0

B
B
B
B
@

c + x2c
0

� zs + xyc
0

ys + xzc
0

zs + xyc
0

c + y2c
0

� xs + yzc
0

� ys + xzc
0

xs + yzc
0

c + z2c
0

1

C
C
C
C
A

(3.4)
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wherec = cos( ), c
0
= 1 � c ands = sin(  ).

Figure 3.1:The geometric shape-from-shading approach. The surface normaln0 is rotated by the
matrix 	 to obtainn00. The resulting normaln00is the projection ofn onto the re�ectance cone,
whose axis is the light source directions and whose opening angle is the inverse cosine of the
normalized image brightness.

Roughly, the geometric SFS algorithm is described as follows:

1. Calculate an initial �eld of surface normals (i.e using gradient initialization).

2. Smooth the obtained surface normal �eld. The authors of the method proposed a

robust regularization approach to iteratively smooth the surface normal �eld (Wor-

thington and Hancock, 1998).

3. For each pixel, calculate the rotation matrix	 and use it to rotate each of the

smoothed normals (Equation 3.2). Fix the projected normal �eld as the current one

and return to the previous step.

Note that the smoothed surface normaln0 does not necessarily lie on the irradiance
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cone, therefore, by rotating it using the matrix	 , compliance with the image irradiance

equation is achieved. In Figure 3.1 we illustrate the geometric SFS projection.

3.3 The Frankot and Chellappa integration method

In (Frankot and Chellappa, 1988) a method to project a gradient �eld to the nearest inte-

grable solution was described. They suggested to use a set ofintegrable basis functions to

represent the surface slopes so as to minimize the distance between an ideally integrable

gradient �eld and a non integrable one.

Suppose thatZ (x; y) denotes the reconstructed height at the image location withco-

ordinates(x; y). The integrability condition for the surface demands that the height func-

tion does not depend on the integration path. This in turn means that the surface must

satisfy the condition

Zxy = Zyx ; (3.5)

whereZxy = @2Z (x;y )
@x@y andZyx = @2Z (x;y )

@y@x .

This condition can also be regarded as a smoothness constraint, since the partial

derivatives of the surface need to be continuous in order that they can be integrable.

An integrable surfaceZ , can be represented by the basis expansion

~Z(x; y) =
X

! 2 


~C(! )' (x; y; ! ) (3.6)

where' (x; y; ! ) is a set of basis functions which are not necessarily mutually orthogonal

(i.e. Fourier transform),! = ( ! x ; ! y) is a two dimensional index and
 is a �nite set of

indexes. If each' (! ) satis�es 3.5, then so doesZ . The �rst partial derivatives of~Z can
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also be expressed in terms of this set of basis functions thus

@~Z(x; y)
@x

=
X

! 2 


~C(! )' x(x; y; ! ) and
@~Z(x; y)

@y
=

X

! 2 


~C(! )' y(x; y; ! ); (3.7)

where' x = ( @'=@x) and' y = ( @'=@y). Since these are the �rst partial derivatives of

an integrable surface, they share the same set of coef�cients ~C(! ). In the same way, the

possibly non integrable gradient �eld can be represented as

@̂Z (x; y)
@x

=
X

! 2 


Ĉ1(! )' x(x; y; ! ) and
@̂Z (x; y)

@y
=

X

! 2 


Ĉ2(! )' y(x; y; ! ) (3.8)

Since this set of �rst partial derivatives is not integrable, their corresponding transform

coef�cients will differ from each other (i.e.̂C1(! ) 6= Ĉ2(! )). The distance between the

non-integrable and the integrable partial derivatives canbe minimized in the transform

domain by makinĝC1(! ) = Ĉ2(! ) = ~C(! ). The goal then is to �nd the set of coef�cients

that minimize the quantity

d
n

(Ẑx ; Ẑy); ( ~Zx ; ~Zy)
o

=
Z Z 





 ~Zx � Ẑx








2
+






 ~Zy � Ẑy








2
dxdy (3.9)

where the subindexesx andy denote �rst partial derivatives.

As Frankot and Chellapa proved, the set of coef�cients~C(! ) minimizing the error

given in the above equation is

~C(! ) =
Px (! )Ĉ1(! ) + Py(! )Ĉ2(! )

Px (! ) + Py(! )
; (3.10)

wherePx(! ) =
R R

k' x (x; y; ! )k2dxdy andPy(! ) =
R R

k' y(x; y; ! )k2dxdy. By pro-

jecting the set of coef�cients~C(! ) back from the transform domain into the spatial do-
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main, a height map corresponding to the nearest integrable surface ~Z(x; y) can be ob-

tained from the input gradient �eld.

Equation 3.10 can be separated into two equations

~Cx (! ) =
Px (! )Ĉ1(! )

Px (! ) + Py(! )
and ~Cy(! ) =

Py(! )Ĉ2(! )
Px (! ) + Py(! )

(3.11)

where ~C(! ) = ~Cx (! ) + ~Cy(! ). As the surface~Z is the inverse transform of~C(! ), then

~Z x and ~Z y are the inverse transforms of~Cx (! ) and ~Cy(! ) respectively, and

~Z = ~Z x + ~Z y (3.12)

Figure 3.2:Different stages in the integration process of the partial derivatives of a sphere. In (a)
and (b) we present the partial derivativesZx andZy respectively, while in (c) and (d) we present
the two recovered Fourier surfaces~Z x and ~Z y . The �nal integrated surface is shown in (e). Note
that we used a �nite difference method to approximate the derivatives. The steep changes at the
boundary region in (a) and (b) are a consequence of the difference with the background. Some
height values are located in the bounding box and, as a consequence, the partial derivatives are
approximated with high error.

33



In this fashion, we can recover the surface~Z up to an unknown scaling factor. In Fig-

ure 3.2 we show the different stages in the integration process of the partial derivatives of

a sphere. In (a) and (b) we show the partial derivativesZx andZy respectively. In (c) and

(d) we show the two recovered Fourier surfaces~Z x and ~Z y. The �nal integrated surface

is shown in (e). We highlight the separation between positive and negative values with a

bounding rectangle. Note that these values cancel out each other for the two surfaces in

(b). After summing~Z x and ~Z y, the result is the sphere shown in (c).

3.4 Introducing the integrability condition in the geome-

tric approach for SFS

Although the geometric framework for SFS ensures that the image irradiance equation is

satis�ed as a hard constraint, this makes the method prone toerror propagation if the input

image departs from Lambert's law. Real world images are contaminated by inaccurate

data such as highlights and shadowed areas. Since the image irradiance dictates the apex

angle of the re�ectance cone, non-Lambertian images contain locations where this cone

is not correctly set. A way to relax this problem can be lying the set of surface normals

on less unstable and more smoothed and continuous surfaces.

The idea underpinning this section is to calculate the nearest integrable surface from

a needle map using Frankot and Chellappa's method. The apex angle of the re�ectance

cone can be obtained on this surface with each iteration. In this way, we ensure that the

surface normals will lie on re�ectance cones whose apex angles correspond to integrable

surfaces.

The algorithm can be summarized as follows (see �gure 3.3):

1. Calculate an initial estimate of surface normalsn .
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2. Fromn obtain the nearest integrable surface~Z by minimizing Equation 3.11. From

the integrated surface calculate a new set of surface normals ~n.

3. Get the apex angle� of the irradiance cone using the values of~Z, that is to say,

� = cos� 1( ~Z ).

4. Smooth~n to obtain~n0.

5. Calculate~n00, by rotating~n0, using Equation 3.2.

6. Maken = ~n00and return to step 2. Repeat until a desired number of iterations has

been reached.

In the above algorithm, the rotation matrix does not remain static through the itera-

tive process, since the changes in the apex angle of the re�ectance cone depend on the

recovered surface after each iteration. As a consequence, the new scheme satis�es a com-

bination of integrability and data-closeness constraints.

Note how the image irradiance equation is still treated as a hard constraint, since

at each iteration the surface normals are projected back to lie on the re�ectance cone.

However, the hardness of this constraint is relaxed when making the re�ectance cone to

be based on continuous surfaces calculated after each iteration instead of making them lie

on the irradiance of the image along the whole iterative process.

It is also important to mention that due to the projection of the surface normals to

the re�ectance cone after each iteration, the z-component of the normal~n00will always

correspond to the calculated height surface of the �nal gradient �eld when using the

Frankot and Chellappa height recovery method. By contrast,in the original method the

z-component will always be the normalized input intensity image. Therefore, besides

calculating surface gradients, the new algorithm also calculates height information.
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Figure 3.3:Graphic representation of the behavior of the new algorithm. The numbers under
the pictures correspond to each step. In step 1, a surface normal estimationn is carried out. This
surface normal is not suppose to lie on the re�ectance cone. In steps 2 and 3, a new integrable set
of surface normals~n together with its corresponding surface~Z are calculated using a global mini-
mization approach in the Fourier domain. Note how the surface changes fromE (image intensity)
to ~Z (nearest integrable surface). Also, the apex angle of the re�ectance cone changes. Step 4 is a
regularizing step in order to calculate the smoothed surface normal~n0, which is projected back to
the updated cone to get the �nal set of surface normals~n00, in steps 5. Both the width of the apex
angle and the surface are just randomly represented in the graphic, also the updating behavior of
the surface normals is supposed.
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Figure 3.4:Plot of the squared height differences between the recovered surface and the ground-
truth. Dotted line: original algorithm, solid line: new algorithm.

3.5 Experiments

The algorithm was tested on real world images. The evaluation criteria was based on the

squared height difference and degree of gradient consistency (i.e. the percentage of pixels

of every image whose differencesZxy � Zyx are less than or equal to a certain threshold1).

In our experiments we have compared the results obtained with the original geometric

approach and the new integrable-geometric approach.

We used twenty-eight real world images. Ten of these with corresponding height data,

taken from the range database of the Signal Analysis and Machine Perception Laboratory,

Department of Electrical Engineering, the Ohio State University. The rest of the images

were taken from the Coil database (Nene et al., 1996). For allthe tests, the light source

direction was assumed to be [0,0,1].

Figure 3.4 shows the results for the squared height differences. The original approach

1For all the experiments this threshold was set to 0.1.
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Figure 3.5: Individual height recovery analysis: (frog, bird and lobster). Left column: input
image; middle column: original method; right column: new method.

is represented by the dotted line, while the new one is represented by the solid line. The

plot reveals that the new method minimizes the error in a better way than the original

method. This improvement is not signi�cant though.

In a further analysis of the results, Figure 3.5 shows 3D plots of the recovered heights

for each method. The left-most column of the �gure shows a subset of input images, the

subsequent columns represent the recovered height maps forthe original method (middle

column) and combined method (right-most column). We can observe that the new algo-

rithm seems to stabilize the surface, avoiding some of the sudden changes present in the

recovered surface for the original method. Speci�cally, inthe cases of the frog and the

bird, the recovered surface appears to be smoother, with none of the spurious peaks in the

height map which result from the use of the original method. Although the recovered sur-

faces for each method are rather similar, the smoothing effect enforced by the integrability
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Figure 3.6:Cross section plots of the frog, bird and lobster. The singledotted plot on the left
side corresponds to the ground truth surface for each case. The interpolated plots on the right side
correspond to the recovered surface for the original method(dotted) and the new method (solid).

condition can explain the slightly better results for the new method, shown in Figure 3.4.

In Figure 3.6, the cross sections of the ground truth and recovered surfaces for each

methods are shown (at row Y = 100, exactly the middle row of theimages). From top to

bottom, frog, bird and lobster. The single dotted plot on theleft side corresponds to the

ground truth surface for each case. The interpolated plots on the right side correspond

to the recovered surface for the original method (dotted) and the new method (solid). By

analyzing the interpolated plots we can notice how the new method tends to stabilize the

recovered surface. In all of the cases, the high peaks on the surfaces seem to be regular-

ized and more continuous, which can be interpreted as a consequence of the integrability
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Figure 3.7:Recovered needle maps for each method. Left-most column: input images, Middle
column: original algorithm. Right-most column: new algorithm.

constraint. We can also note that, despite the high difference among the recovered sur-

faces and the ground truth, the new algorithm seems to deliver more similar heights than

the original one, this effect is more evident for the case of the lobster (third row).

Figure 3.7 shows the recovered needle maps for each method. Avisual examination of

the results suggests that the new method delivers needle maps that are both smoother and

also contain �ne topographic detail. The inclusion of integrability constraint leads to a

less dependency on the image irradiance equation, therefore avoiding biasing the surface

normals to highlighted points, as seen, for example, on the bird's head case.

The results of the experiments for degree of gradient consistency are summarized in

Figure 3.8. The �gure shows that the combined algorithm (solid line) gives better results

than the original one (dotted lined), as the percentage of gradient consistency is always

greater and more stable for the new approach, since at least95%of the pixels, in all the
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Figure 3.8:Plot of the gradient consistency degree tests. Dotted line:original algorithm, solid
line: new algorithm.

cases, observe integrability. For the original algorithm,the unstable behavior shown by

the dotted line is evident. This suggests that the new method, as expected, is enforcing

integrability in the original method.

Figure 3.9 shows a gradient consistency comparison for the case of the lobster. The

original and new methods are represented by the left and right columns respectively. The

regions in black correspond to those pixels violating the integrability condition according

to different thresholds (the lower the threshold, the harder the degree of integrability).

From top to bottom, the applied thresholds were 0.0, 0.001, 0.01 and 0.1. The �gure

reveals that the new method's needle map has more stable consistency.

Finally, we experiment with input images of faces. We used a subset of frontal images

of the Yale B database (Georghiades et al., 2001). In Figure 3.10 we present iso-contour

plots of the recovered surfaces for two individuals, i.e. regions in the images are color

coded according to height, darker colors correspond to higher values. From left to right
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Figure 3.9:Visual comparison for the degree of consistency tests. Leftcolumn: original method,
right column: combined method. From top to bottom, threshold used: 0.0,0.001,0.01 and 0.1. The
regions in black correspond to those pixels not satisfying the integrability condition according to
the applied thresholds.
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Figure 3.10:Height recovery for two individuals of the Yale B database. We present iso-contour
plots of the recovered surfaces. Left column: input image; middle column: new method; right
column: original method.

the columns show the input images, the results corresponding to the new method and the

results corresponding to the original method. We can verifythat the imposing integrability

results in a bene�t on the recovered surface (middle column), specially in the �rst row,

where regions tend to be much more symmetric than in the original method (right-most

column). This effect is not that noticeable in the second column.

In Figure 3.11 we present height maps of the recovered surfaces for two individuals.

From left to right the columns show the input images, the results corresponding to the

new method and the results corresponding to the original method. Again, some of the

spurious peaks present in the original method's height mapsseem to be stabilized by the

integrability condition introduced by the new method. Nonetheless, it is clear that face

shape recovery cannot be achieved using either approach, since regions around the nose

and mouth appear imploded. In order to overcome this problem, in the next chapter of

this thesis we propose a method for enforcing convexity on gradient �elds of faces.
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Figure 3.11:Height recovery for two individuals of the Yale B database. We present height maps
of the recovered surfaces. Left column: input image; middlecolumn: new method; right column:
original method.

3.6 Conclusions

In this chapter we have demonstrated how to impose integrability constraints on a geome-

tric approach for SFS. We follow Frankot and Chellappa and impose the constraints in the

Fourier domain. Experiments reveal that the resulting method exhibits improved robust-

ness and gradient consistency. However, although the height difference statistics do not

reveal any systematic improvement in algorithm performance, both the recovered height

surfaces and the needle maps delivered by the new algorithm appear to be better behaved

and also preserve �ne surface detail. It is important to comment that in this new method

the calculation of surface orientations is less constrained by the irradiance of the image,

as the rotation matrix changes through the iterative process. This is a way of relaxing the

original method's problem of hard constraints on data-closeness with the image irradiance

equation.
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Chapter 4

Local Shape Indicators for Face Shape

Recovery

4.1 Introduction

This chapter describes work aimed at developing a practicalscheme for face analysis

using shape-from-shading. As explained in the literature review, existing methods have a

tendency to recover surfaces in which convex features such as the nose are imploded. This

is a result of the fact that subtle changes in the elements of the �eld of surface normals

can cause signi�cant changes in the corresponding integrated surface. To overcome this

problem, in this chapter we describe a local-shape based method for imposing convexity

constraints. We show how to modify the orientations in the surface gradient �eld using

critical points on the surface and local shape indicators. The critical point is located on the

tip of the nose and it is assigned manually. The method is applied to both surface height

recovery and face re-illumination. Experiments show that altering the �eld of surface

normals so as to impose convexity results in greatly improved height reconstructions and

more realistic re-illuminations.
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The outline of this chapter is as follows. Section 4.2 introduces the local shape indi-

cators which we use to characterize the surface topography.In Section 4.3, we describe

our method for reassigning the surface gradient orientations. We provide experiments to

evaluate the method on human faces in Section 6.3. Finally, in Section 4.5 we present

some conclusions and identify directions for future work.

4.2 Local shape indicators

Every solid shape can be approximated locally by a collection of quadric surface patches.

A quadric surface can be expressed by

P(u; v) =
1
2

(� 1u2; � 2v2);

where� 1 and� 2 are the principal curvatures with directionsu andv respectively.

The principal curvatures (minimum and maximum curvatures of the surface patch) are

given by the two eigenvalues of the local Hessian matrix, i.e., the matrix of the second

derivatives. The principal curvatures may be estimated using the surface normal direc-

tions to compute the Hessian matrix, which can be deduced from local changes in the

surface normal directions. Knowing the curvatures, the surrounding of each surface can

be classi�ed as convex, concave or saddle-type. The classi�cation relies on the sign of the

two curvatures.

Curvature-based information has been widely used in shape analysis, especially for

surface segmentation and 3D object recognition. A local shape indicator is a scalar that

conveys information concerning the local topography of a surface using its principal cur-

vatures.

Local shape indicators are usually coupled. For instance, theHK classi�cation (Besl

and Jain, 1986) uses the Gaussian and mean curvatures
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H =
(� 1 + � 2)

2
and K = � 1 � � 2

respectively. By distinguishing between the cases in whichH and K are individually nega-

tive, zero or positive, it is possible on the basis of the joint behavior to assign topographic

labels to points on a surface. A different and slightly more convenient set of attributes

is the curvedness/shape-index representation developed by Koenderink and Von Doorn

(Koenderink and Van Doorn, 1992b). Here the principal curvatures are used to compute

the shape index

S = �
2
�

� arctan(
� 1 + � 2

� 1 � � 2
)

( for � 1 � � 2), and the curvedness,

C =
q

� 2
1 + � 2

2:

The shape index is an angular variable that relates to the local surface topography. It

varies continuously from� 1 to +1 as the surface changes through cup, rut, saddle-rut,

saddle, saddle-ridge, ridge and dome, and cup again. The curvedness relates to the degree

of curvature of the surface.

The curvedness is a convenient indicator of potential surface discontinuity. The reason

for this is the higher the curvedness, the more likely the presence of a rapid variation in

height. A surface with low curvedness corresponds to a highly continuous one, while a

complicated surface will give rise to high curvedness at many locations. For instance, in

the case of faces, the curvedness is large for features such as the boundaries of the nose,

mouth and eyes.

For our experiments, we utilize the local descriptors of shape-index and curvedness

to characterize the regions on a gradient �eld where a changeof orientation should be

performed to enforce convexity.
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4.3 Using local shape indicators to redirect SFS gradient

�elds

Inevitably, any surface gradient �eld delivered by SFS willbe inaccurate due to noise or

albedo changes, and these in turn cause variations in the intensities of the input image.

SFS works well for objects that are uniformly concave or convex. However, if the object

under study is more complex, with both concave and convex regions, then SFS can fail.

In these situations although the recovered surface normal direction is consistent with the

measured image brightness, the recovered surface does not re�ect the structure of the ob-

ject under study. In particular, there may be inversions of the sign of the surface curvature

with convex regions appearing concave and vice-versa. However, in the case of faces (and

many other objects) the surface under study is largely convex.

Based on this above observation, in this chapter we present amethod for enforcing the

convexity of the integrated surface. We use the location of the global height maximum on

the surface to enforce the condition.

Formally stated, suppose thatZ is a smooth surface immersed inR3. Letp be a critical

point ofZ andUp a neighborhood ofp. Suppose thatZ is locally concave overUp. Then,

the new surfaceeZ constructed fromZ by reversing the sign of all its partial derivatives,

Zx andZy, is locally convex withinUp. Moreover, a local maximum oneZ will be located

at that point where the function ceases increasing and starts decreasing1. Suppose that all

the partial derivatives ofeZ with respect tox, eZx , have a negative sign before reaching the

position of the critical pointp along thex axis and have a positive sign after reaching it.

Suppose also that the same occurs foreZy. Under these conditions, then the critical point

p on Up will be the position of the global maximum2 of eZ .

The basic idea underlying this chapter is to enforce the condition that the integrated

1Of course,eZ will present many local maxima for a face-like surface.
2It might be a maximum or a minimum depending on the integration method.
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Figure 4.1:Applying the method to the derivatives of a concave sphere. The radius of the sphere
is 75 units. We show transverse plots of the original concavesurface (top left corner) and the
recovered surface height after changing the sign of the derivatives. The global height maximum
coordinates(a; b) are set to (75,75), (50,75) and (20,75) respectively for thepanels labeled (b), (c)
and (d). The thresholds� x and� y are set to zero.

surface has a global height maximum. For the face analysis problem, we select this point

to be at the tip of the nose. By choosing such a point we can divide the surface into

positively and negatively signed areas of the needle map. Toenforce this condition we

apply the simple rule:
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Figure 4.2:Applying the method to the Mexican hat function. From left toright we show the
original surface and recovered surface after applying the method taking as the global height max-
imum the center of the surface with� x = � y = 0 . Note how the concave parts of the Mexican hat
become convex.

�Zx (x; y) =

8
>>>>>>>>>><

>>>>>>>>>>:

abs(Ẑx (x; y)) if x � a andC(x; y) � � x

� abs(Ẑx (x; y)) if x > a andC(x; y) � � x

Ẑx (x; y) otherwise

�Zy(x; y) =

8
>>>>>>>>>><

>>>>>>>>>>:

abs(Ẑy(x; y)) if y � bandC(x; y) � � y

abs(Ẑy(x; y)) if y > b andC(x; y) � � y

Ẑy(x; y) otherwise

where �Zx and �Zy are the updated gradients, andẐx andẐy are the original gradients. The

desired global height maximum is located at the point with co-ordinates(a; b) (the tip of

the nose) and this is assigned manually. To decide whether the element of the gradient

�eld at the location(x; y) will be altered or not, we compare the curvedness indicator,
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C(x; y) to the thresholds� x and� y . Similarly, the shape-index (SI ) can also be utilized

to redirect the surface normals, with the rule:

�Zx (x; y) =

8
>>>>>>>>>><

>>>>>>>>>>:

abs(Ẑx (x; y)) if x � a andSI (x; y) � � x

� abs(Ẑx (x; y)) if x > a andSI (x; y) � � x

Ẑx (x; y) otherwise

�Zy(x; y) =

8
>>>>>>>>>><

>>>>>>>>>>:

abs(Ẑy(x; y)) if y � bandSI (x; y) � � y

abs(Ẑy(x; y)) if y > b andSI (x; y) � � y

Ẑy(x; y) otherwise

In this case,SI (x; y) is the shape-index which is compared to the thresholds� x and� y

for deciding whether the element of the gradient �eld at the location(x; y) will be altered

or not.

The following diagrams show the behavior of the method when applied to the deriva-

tives of a sphere and a Mexican hat. Both experiments were realized using the curvedness

indicator.

To illustrate the global height maximum enforcement procedure, Figure 4.1 shows

the results of applying the method to the derivatives of a concave sphere with radius 75

units, which is shown at the top left corner of the �gure. We show transverse plots of

the recovered surface height in the direction of thex axis. The global height maximum

coordinates(a; b) are set to (75,75), (50,75) and (20,75) respectively for (b), (c) and (d).

The thresholds� x and� y are both set to zero.

The effect on the convexity of the surface is clearer in Figure 4.2, where the method
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is applied to the Mexican hat function. Transverse sectionsof the recovered surface are

shown, and from left to right they show the original surface and recovered surface after

applying the method taking as the global height maximum the center of the surface with

� x = � y = 0. Note how the concave parts of the Mexican hat become convex.

It is evident that the peak-enforcement procedure will segment the recovered surface

into four quadrants. As a result the curvedness of the recovered surface will be reduced.

This is not desirable for surface height recovery from a face. The net effect will be to make

the surface structure pyramidal. This problem is overcome by using the thresholding

procedure to either force the normals to change direction, or to allow them to remain

unchanged. This procedure is rather heuristic, and different thresholds apply to different

images of faces. Although we have discovered that a �uctuation between 0.2 and 0.3

is generally successful for most of the cases, it is recommended to commence with the

hardest case (all the derivatives change) and gradually modify the thresholds until the best

shape is generated, as suggested in Figure 4.5.

It is worth commenting that the signs of a needle map are not the only attributes which

can alter the resulting integrated surface. Modifying the in�uence of thez component of

the surface normal leads to an alteration which affects the gradient and therefore forces

some regions of the height map to be either �atter or more curved after performing the

global integration.

Note that we propose a directional correction which can be used in conjunction with

already established SFS methods. We focus on face shape recovery for the frontal pose

(since the critical point to consider is the tip of the nose).However, other assumptions

such as light source direction, albedo, boundary conditions and inter-re�ections are in-

corporated by the SFS method used to compute the derivatives. In this chapter we use

the geometric framework (Worthington and Hancock, 1999) outlined in Section 3.2. Al-

though this framework assumes constant albedo, we test our experiments with variable
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albedo images of faces.

In the following section some experiments will be presentedin order to illustrate these

points on an application involving face reconstruction using SFS.

4.4 Experiments

This section is organized into two parts. We commence by describing experiments fo-

cussed on height recovery, and then proceed to describe results obtained by re-illuminating

the recovered surfaces.

In �rst part of the study, which focusses on height recovery,we show examples of the

effect of the gradient re-direction process on the recovered surfaces. We also present an

analysis of the errors produced by the method on 50 synthetictest images from the Max-

Plank database. Results of using the method over real world images are also presented.

Figure 4.3:Face for analysis.

In the second part of the study, which focusses on surface re-illumination, we show

the results of using the recovered surface gradients to synthesize new face images. Here,

we investigate the effect of moving the light source direction. We compare the results

with ground-truth.

The face database used for our experiments was provided by the Max-Planck Institute

for Biological Cybernetics in Tuebingen, Germany. As described in (Blanz and Vetter,
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Figure 4.4: Illumination and height analysis. In the left-hand columnsof the �gure we show
the result obtained using the un-modi�ed needle map, while the right-hand columns show the
result obtained with the modi�ed �eld of surface normals with � x = 0 :3 and � y = 0 :4. Each
panel shows re-illuminations obtained when the light source direction is(0; 0; 1)T followed by
recovered height-maps as intensity plots.

1999), this database was constructed using a Cyberware laser scanner. The range im-

ages are of the heads of young adults represented in a cylindrical coordinate system. We

have converted the cylindrical coordinates into Cartesiancoordinates and recovered the

associated height values. We were also provided with synthetic textures corresponding

to each face and these were used to render the range images. Weused frontal pose of

the recovered surface illuminated by a light source at in�nity and parallel to the viewer

direction. We also utilized real world face images to complement our experiments. We

refer to images from the Max-Planck database unless otherwise stated.

Note that we used the geometric SFS framework described in Section 3.2 to get the

initial needle maps to be later modi�ed using local shape. Weused the framework for

face-analysis since it has been demonstrated to recover a �eld of surface normals that

preserves �ne topographic detail. The output of the algorithm is used as an initial estimate

of the �eld of surface normals. We show how to use shape-indicators computed from this

�eld of surface normals to correct for convex-concave surface inversions, and hence to

improve the quality of the recovered height-map. For gradient �eld integration we utilized

the Frankot and Chellappa global integration algorithm explained in Section 3.3
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Figure 4.5:Curvedness, surface gradient and surface recovery analysis. The �rst column shows
the �eld of surface normals. The second and third columns show the result of re-illuminating the
surface normals with light-source directions(1; 0; 0)T and(0; � 1; 0)T . The last three columns
show the curvedness map, together with pro�le (side) and top-down views of the surface wire-
frames. In the top row we show the original case. Here the implosion of the nose is clear. The
subsequent rows are for� x = � y = 0 , � x = � y = 0 :2 and �nally � x = 0 :3 and � y = 0 :4,
respectively.

4.4.1 Height recovery

The �rst series of tests were carried out on the image shown inFigure 4.3, and serves as

an illustration of the method described in this chapter. To compute the surface gradients

from the raw image brightness we followed the procedure described in Section 3.2. As

noted previously, this construction ensures that the imageirradiance equation is satis�ed

as a hard constraint. For the surface integration step we used the global method proposed

by Frankot and Chellappa (Frankot and Chellappa, 1988) and discussed in Section 4. This

method recovers surface height using the inverse Fourier transform of the �eld of surface
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Figure 4.6: Convexity enforcement using shape index. Scatter plot comparison between the
original and modi�ed shape-indexes (the shape-index scalewas normalized from 0 to 1). The
x-axis corresponds to the shape index of the input �eld of normals. They-axis corresponds to the
shape index of that input needle map after redirecting it using � x = � y = 0 :4 case

In Figure 4.5, we illustrate the effects of using our method for redirecting the �eld

of surface normals. The �rst column shows the needle map. Thesecond and third

columns show the result of re-illuminating the surface normals with light-source direc-

tions (1; 0; 0)T and(0; � 1; 0)T . The top row shows the result obtained with the initial

�eld of surface normals. Notice how the re-illuminations suggest that the nose is im-

ploded, since the region surrounding it is shadowed. The subsequent rows show the re-

covered surface illuminations after applying the method with � x = � y = 0, � x = � y = 0:2

and �nally � x = 0:3 and� y = 0:4, respectively. For the hardest case (second row), where

no data is �ltered by the thresholds, the four-quadrant effect is very marked. However,

the effect diminishes when the thresholds are increased. The harder the threshold, the
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Figure 4.7:Height maps and cross plots comparison. We compare with ground truth the recov-
ered height maps obtained with (right column) and without (left column) redirection of the normal
�eld. The top row �gure shows the recovered height maps superimposed on the image from which
they were generated. In the bottom row we show longitudinal and transverse sections of the recov-
ered height maps. The left-hand diagram corresponds to the longitudinal section along the x-axis
and the right-hand diagram shows the transverse section along the y-axis. In both plots, the thick
solid line represents the ground-truth surface, the dottedline illustrates the recovered surface using
our method, and the dashed line shows the height data integrated using the original �eld of surface
normals.

stronger the in�uence of the face features. It is important to note the differences between

the needle maps appearing in the top and bottom rows of the �gure. The change of signs

in the surface normals suggests that the new surface normalsrelate more strongly to the

underlying shape of the face. This is a consequence of inverting the originally concave

regions (the ones around the nose, eyes and mouth) to become convex ones, causing the

imploded facial areas to “pop back” so that a better face shape can be recovered.

We take this analysis one step further in the last three columns of Figure 4.5 where
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Figure 4.8:Iso-contour comparison. Regions in the images are color coded according to height.
Discarding the background, the darkest regions correspondto highest values. The leftmost panel
corresponds to the ground-truth surface, the middle panel presents the case when our method was
applied, while the rightmost �gure represents the recovered surface without gradient redirection.

Figure 4.9:Recovered surface for a smiling face.

from left to right we show the curvedness map, together with pro�le (side) and top-down

views of the surface wire-frames. Note in the top row how the curvedness is increased,

as well as the poor quality of the recovered surface in terms resemblance to a face. The

curvedness is of course minimized when no threshold is takeninto account (second row),

but the four-quadrant effect again becomes obvious. By incrementing� x and� y the �ne

features of the face seem to be preserved and the overall structure of the face is still sound.

By choosing an appropriate threshold we are able to enhance the salient features of a

particular face while maintaining the overall face composition. It is worth commenting

on the manual assignment procedure for selecting the location of the critical point. The

58



procedure consists of clicking on the tip of the nose using a standard computer mouse.

The resulting height maps do not greatly vary from one another if the critical point is

moved to a location inside the area surrounding the tip of thenose. However, the method

is subjective and further improvement is needed to automatically select the location of the

critical point.

The correction of the directions of the normals is clearer inFigure 4.4. In the �rst

two columns we show the result obtained using the un-modi�edneedle map, while the

last two columns show the result obtained with the modi�ed �eld of surface normals

with � x = 0:3 and� y = 0:4. Each panel shows re-illuminations obtained when the light

source direction is(0; 0; 1)T followed by recovered height-maps as intensity plots. There

are several features that deserve comment. For instance, the intensities around the nose

produce the appearance of a convex surface, making it appearmore natural.

As far as the reconstruction using shape-index is concerned, the height data recov-

ered is very similar to that obtained using curvedness. Figure 4.6 shows a scatter plot

comparison between the original and modi�ed shape-indexes3: the x-axis corresponds to

the original case while the y-axis corresponds to the� x = � y = 0:4 case. This diagram

presents only those pixels in the original gradient �eld with a shape index lower or equal

to 0.4 (x-axis), therefore we can analyze the new value of such pixelsin the redirected

�eld of surface normals (y-axis). Note how the majority of the points are distributed

above the linex = y, which shows how the original shape index turned into a grater

one, suggesting that the concave regions changed to convex.Such pixels belong to the

regions surrounding the nose, mouth and eyes. The small cloud of points below the line,

representing the pixels where the shape index remained lower than the threshold is mainly

related to the pixels surrounding the face boundary.

We found that for most experiments good qualitative resultswere obtained with� x

3The shape-index scale was normalized from 0 to 1.
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and� y varying between0:3 and0:4. A further analysis is shown by Figure 4.7. Here we

compare with ground truth the recovered height maps obtained with (right column) and

without (left column) redirection of the normal �eld. The top row �gure shows the recov-

ered height maps superimposed on the image from which they were generated. Note how

the imploded features (left image) of the face, such as nose and mouth, become visible

after the method is applied (right image). In the bottom row we show longitudinal and

transverse sections of the recovered height maps. The left-hand diagram corresponds to

the longitudinal section along the x-axis and the right-hand diagram shows the transverse

section along the y-axis. In both plots, the thick solid linerepresents the ground-truth

surface, the dotted line illustrates the recovered surfaceusing our method, and the dashed

line shows the height data integrated using the original �eld of surface normals. There is

a clear improvement of the recovered height map once the re-direction operation is ap-

plied to the surface normals. Although some errors still remain, the recti�cation of the

implosion problem is suf�cient to reveal plausible facial shape.

An iso-contour comparison is shown in Figure 4.8. Here, regions in the images are

color coded according to height. Discarding the background, the darkest regions corre-

spond to highest values. The leftmost panel corresponds to the ground-truth surface, the

middle panel presents the case when our method was applied, while the rightmost �gure

represents the recovered surface without gradient redirection. Note the similarities be-

tween the ground-truth and the recovered surface after changing the gradient orientations.

It is evident that, in the height maps generated by both the ground-truth and re-directed

gradients, the peak region is located in the area of the nose,with some discrepancies in

the mouth and chin areas though. The un-modi�ed gradient generated height contains

equal peak regions over the entire image, i.e., cheeks, chin, front and a tiny one on the tip

of the nose.

The images shown in Figure 4.10 provide an absolute height difference analysis. Here

60



we realize comparisons using pro�le images. The left-most column shows the raw input

image. The middle and right-most columns show superimposedplots of the recovered

height maps after applying our method on the pro�le views (i.e. side) of the images from

which the original gradient �elds were calculated. From thesuperimposed surfaces, it is

clear that the major differences in the recovered height maps and the ground-truth surfaces

are near the nose, the cheeks and the mouth area.

To provide a detailed analysis of our method, a more exhaustive set of tests was carried

out on �fty images of faces from the database. The average percentage of height differ-

ence comparison plot4 is shown in Figure 4.11. We calculated the percentage of height

difference errorkGround truth � Recoveredsurfacek=Ground truth as an average

over all points of the 50 surfaces. The diagram shows a scatter plot comparing the aver-

age percentage of height difference from the original gradient integrated surface (x-axis)

against the redirected gradient integrated surface (y-axis). Observe how when the origi-

nal gradient is used, the error is concentrated between 8% and 12%. The error, however,

when the redirected gradient is used, is concentrated between 2% and 4%.

Figure 4.12 illustrates how pre-processing operations might improve the recovery of

height maps from images. The left-most panel shows the calculated height map of the

image of the face in Figure 4.16 after removing the eyes and eyebrows by setting their

pixel brightness values to be that of the average over the skin. The right-most image shows

the calculated height map on the un-edited face image. Note how this pre-processing step

generates more accurate height maps in the eye-region when our re-direction method is

used.

However, some regions present a higher degree of error for the new surfaces. This

is illustrated by the analysis given by Figure 4.13. The �rstcolumn shows the longitudi-

4For these experiments, the ground-truth surface was generated by integrating the known ground-truth
gradient from each image, using the Frankot and Chellappa method. This was done so that all the sur-
faces were generated on the same basis for comparison purposes. This reduces the biases involved in the
integration method.
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nal sections along the face for the recovered surfaces both before (dotted line) and after

(dashed line) redirection of surface normals. The recovered height map after integration

of the ground-truth normals is shown as a solid line. The second and third columns re-

spectively show the iso-contour representations of the absolute height differences before

and after re-directing the surface normals. From these pictures it is clear that the absolute

height difference is reduced after changing the direction of the surface normals. How-

ever, there are still errors and these occur mainly in the proximity of the chin and eyes

areas. These problems can be attributed to changes of albedo(eye area) and instabilities

produced by the boundaries of the chin and neck . It is also interesting to note how the

separation between the lips tends to disappear after redirection. This can be explained as

a consequence of erroneously enforcing convexity.

Finally, Figure 4.9 presents some wire-frame views of the recovered surface obtained

from an image of a smiling face (leftmost). Here we have used areal world (non-

synthetic) image which was taken with a digital camera. Thisis a challenging example

since the face is in a non-frontal pose. The overall structure of the face was well recovered,

however there is again some error in the area of the chin and eyes.

4.4.2 Re-illumination

Dealing with variation in illumination direction is a topicof central concern in face recog-

nition. The reason for this is that light-source effects areresponsible for more variability

in the appearance of face images than changes in identity (Moses et al., 1994). In this

section we investigate how the surfaces recovered using ourmethod can be used for syn-

thesizing new facial images under different lighting conditions. Here we use a simple

Lambertian re-illumination model using albedo maps derived from the input images.

Figure 4.14 presents re-illumination experiments for two example faces. The �rst

column corresponds to the input image. The remaining columns show the generated re-
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illuminations after applying our method. For the second andthird columns, the light

source vector is nearly parallel to thex axis in both negative and positive directions,

while nearly parallel to they axis for the fourth and �fth columns.

A more exhaustive analysis is shown in Figure 4.16. For both sets of images, the

top row represents the re-illumination results obtained using the ground-truth normals,

the middle row shows those obtained using the unaltered gradient �eld and the bottom

row those obtained using the re-directed surface normals. From left to right, the light

source direction makes an angle of� 45, � 25, 25 and+45 degrees to the image normal

in the horizontal (x) direction for the upper set of images. In the lower set of images, the

light source is moved in the same manner in the vertical (y) direction. It is interesting to

note the similarities between the ground-truth and re-directed gradient re-illuminations.

Although the recovered surface does not accurately represent the shape of the image from

which it was acquired, the overall shape is suf�ciently accurate to create realistic re-

illuminations provided that the light source is not moved bymore than45o. The results

are best when the light source is moved in the horizontal direction. This is a consequence

of the vertical symmetry of human faces. On the other hand, the re-illumination results

for the un-modi�ed gradient �elds show artifacts of implosion in the area around the nose

and mouth. This becomes more severe when the light source moves further away from

the viewer direction.

A second analysis is shown in �gure 4.15, where an unprocessed image of a face

(single image in between two rows) was used for the experiments. This image is a real

world one, taken by a digital camera. The �rst row presents the results for the modi�ed

gradient �eld while second shows those obtained with the original gradient �eld. Note

how in the top row the quality of the re-illuminations is improved. This contrasts with the

imploded features presented in the second row. It is important to note, however, that errors

appear in some areas of the face, i.e. those surrounding the mouth. This can be explained
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as the consequence of the change in re�ectance properties onthe lips. Of course, the eyes

and the mustache area also present different re�ectance properties. This suggests that

more attention should be paid to the re�ectance model used for re-illumination.

4.5 Conclusions

We have presented a method for correcting a gradient �eld of aface. The aims in doing

this are twofold. First, we wish to generate a height map witha global maximum located at

a critical point located at the tip of the nose. Second, we aimto force the recovered surface

to be convex in accordance with evidence provided by local shape indicators. We have

proved that the simple idea of modifying the surface normal directions so as to restore the

convexity of imploded features using the constraints derived from the location of a point

of global maximum height seems to work well with the recoveryof face surfaces. After

integration, the recovered shape preserves most of the salient facial features, including

the nose lips and eye-sockets. As the accuracy of the reconstruction will depend on the

gradient data, pre-processing steps for correcting intensities (i.e. removing specularities

and areas of albedo variation such as the eye areas) would probably improve the quality

of the results, if a more accurate height map is required.

Although the method reported here is effective in correcting feature implosion when

the surface gradient is computed using a geometric SFS approach, there clearly remains

scope for further improvement in computing accurate surface gradients. The improved

height recovery from single images of faces also suggests the possibility of generating

coarse extrapolation for rendering novel views with few degrees of rotation. Considering

that our only input information is a single frontal image of aface, the raw height maps

resulting from our algorithm can help as a starting point forother re�nements aimed

at generating more precise information. Of course, the gradient maximum constraint is
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natural for faces, since the tip of the nose is a global heightmaximum. However, the

constraint could be used for more general surfaces in a localmanner for surface height

recovery and where there are local regions of implosion.
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Figure 4.10:Height map analysis. The left-most column shows the raw image. The middle
and right-most columns show superimposed plots of the recovered height maps after applying our
method on the pro�le views (i.e. side) of the images from which the original gradient �elds were
calculated.
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Figure 4.11:Average percentage of height difference. The diagram showsa scatter plot com-
paring the average percentage of height difference from theoriginal gradient integrated surface
(x-axis) against the redirected gradient integrated surface(y-axis).

Figure 4.12:Results on an edited image. The left-most panel shows the calculated height map
of the image of the face in Figure 4.16 after removing the eyesand eyebrows by setting their
pixel brightness values to be that of the average over the skin. The right-most image shows the
calculated height map on the un-edited face image.
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Figure 4.13:Height difference cross sections and iso-contour plots. The �rst column shows the
longitudinal sections along the face for the recovered surfaces both before (dotted line) and after
(dashed line) redirection of surface normals. The recovered height map after integration of the
ground-truth normals is shown as a solid line. The second andthird columns respectively show
the iso-contour representations of the absolute height differences before and after re-directing the
surface normals.
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Figure 4.14:Re-illumination tests for two different images. The �rst column corresponds to
the input image. The remaining columns show the generated re-illuminations after applying our
method. For the second and third columns, the light source vector is nearly parallel to thex axis
in both negative and positive directions, while nearly parallel to they axis for the fourth and �fth
columns.

Figure 4.15:Comparison of re-illuminations using an unprocessed imageof a face (single image
in between two rows). The �rst row presents the results for the modi�ed gradient �eld while
second shows those obtained with the original gradient �eld.
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Figure 4.16:Comparison for re-illumination tests. For both sets of images, the top row represents
the re-illumination results from the ground-truth normals, the middle row shows those obtained
from the unaltered gradient �eld and the bottom row those obtained from the re-directed surface
normals.
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Chapter 5

Building Cartesian Coordinate-based

Models of Faces

5.1 Introduction

In the two-dimensional domain, variations in facial appearance can be captured using the

eigenfaces technique (Turk and Pentland, 1991). Here a set of aligned facial intensity

images are used to construct the eigenmodes. The image data is usually encoded as a

Cartesian long-vector by concatenating the rows or columnsof the image. However, if

a 3D model is to be constructed in an analogous manner from range data, then there

exist alternative ways for representing the training data.One of the simplest and most

commonly used approaches is to adopt a cylindrical coordinate representation. Using

cylindrical coordinates, the surface of a human face (or head) can be parameterized by

the functionrad(�; ` ), whererad is the radius and� and` are respectively the height

and angular coordinates. This representation is used sinceit captures the linear relations

between basis heads. Unfortunately, it can lead to ambiguity since different data can be

�tted to the same head-model.
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An alternative is to use a Cartesian representation, in which each surface point is

speci�ed by its(x; y; z) coordinates, where thez-axis is in the direction of the viewer.

The Cartesian coordinates are related to the cylindrical coordinates through

(x; y; z) = ( x0 + r (�; ` ) sin �; y 0 + `; z0 + r (�; ` ) cos� ); (5.1)

for some reference shift(x0; y0; z0).

A face depth map in cylindrical coordinates can be thought ofas an unwrapped version

of a depth map expressed in Cartesian coordinates. In Figure5.1, a cylindrical coordinate

depth map (left) is shown together with its corresponding Cartesian coordinate depth map

(right).

Figure 5.1:Cylindrical and Cartesian coordinate depth maps.

A general drawback of Cartesian coordinates is the high spatial variance caused by

face features such as nose, mouth and eye. Moreover, this variance can be exaggerated if

the training data is misaligned. If this is the case, additionalz-variance (height variability)

is introduced in areas with high spatial variance due to alignment error. As a result,

Cartesian coordinates have not been used for generating 3D statistical models of faces.

However, Cartesian coordinates were recently used by Dogvard and Basri (Dovgard and

Basri, 2004) to construct a statistical model of faces usingsymmetry constraints. To

overcome the problem of alignment errors they expressed thesurface gradient in terms
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of a set of deformation coef�cients. This allows shape-from-shading to be transformed

into a linear system of equations that can be simply solved for the shape coef�cients, and

then used to reconstruct the surface height function for theface. Although accuracy is

sacri�ced, the method is computationally ef�cient.

Height maps, however, are not the only way to representing 3Dinformation in Carte-

sian coordinates. Alternative encodings can be drawn from 2.5D information such as the

partial derivatives of a surface. Although the 2.5D representation is less appealing since

it must be integrated to recover a surface, because of the image irradiance equation the

2.5D representation is closer to the raw image brightness data than a height surface.

In this chapter we explore and experiment with alternative Cartesian representations

for constructing 3D statistical models of faces. We exploretwo different routes. The �rst

of these is based on height, while the second is based on directional information. In the

case of the directional models, we investigate how surface integrability can be enforced.

Finally, we show how the models can be �tted to image brightness data using geome-

tric constraints on surface normal direction provided by Lambert's law (Worthington and

Hancock, 1999) subject to integrability (Frankot and Chellappa, 1988).

The chapter is organized as follows. In Section 5.2 we provide a brief explanation of

the different Cartesian representations explored. The construction of the statistical models

using each representation is explained in Section 5.3. The �tting procedure used to test the

performance of the models is described in Section 5.4. Experimental results and analytic

comparison of the models is given in Section 6.3. Finally, wepresent conclusions and

suggest some possible lines for future work in Section 5.6.
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5.2 The Cartesian representations

We have explored the use of four Cartesian coordinate representations to construct statis-

tical models of facial shape. Two of these are based on directional information, while the

remaining two are based on height information. We work underorthographic projections,

i.e, the viewed surface is assumed to have been projected into 2D space of the image

plane such that the direction of the projection axis is opposite to that of the viewer. Every

visible point on the surface is then projected to the image plane.

5.2.1 Cartesian representations based on directional information

Information about a surface that is intermediate between a full 3D representation and a 2D

projection onto a plane is often referred to as a 2.5D surfacerepresentation (Marr, 1982).

Surface orientation is one of the most important 2.5D representations. For every visible

point on a surface, there exists a corresponding orientation which is usually represented

by either surface normal, surface gradient or the azimuth and zenith angles of the surface

normal.

In contrast to height data, directional information cannotbe used to generate novel

views in a straightforward way. However, given the illumination direction and the sur-

face albedo properties, then surface normal directional plays the central role the surface

radiance generation process. This is of particular interest in face analysis since light-

source effects are responsible for more variability in the appearance of facial images than

changes in shape or identity (Moses et al., 1994).

In this chapter we explore two Cartesian representations based on directional infor-

mation, namely the surface gradient and the surface normal azimuthal angle.
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Surface gradient

TheSurface Gradientrepresentation is based on the directional partial derivatives of the

height functionp = @Z(x;y )
@x andq = @Z(x;y )

@y . The set of �rst partial derivatives of a surface

is also known as the gradient space. This is a 2D representation of the orientation of

visible points on the surface.

Figure 5.2:Intensity plots of the surface gradients w.r.tx (left) and w.r.t.y (right) of a face.

In Figure 5.2 we show the gradient space of a face. The left andright hand panels

respectively show the slope parametersp and q represented as intensity images. Here

we have calculated the surface normals by �tting bicubic patches to the surface height

functionZ(x; y).

Azimuth angle

Directional information can also be expressed using the zenith (slant) and azimuthal (tilt)

angles of the surface normals. In terms of the slope parameters, the zenith angle is� =

arctan
p

p2 + q2 and the azimuth angle is� = arctan q
p (see Figure 5.3). Here we use the

four quadrant arc-tangent function and therefore� � � � � � . In contrast to the human

visual system (Erens et al., 1993b), it seems that computer vision systems encounter more

dif�culty in estimating the tilt of a surface from a single image than its slant (see Figure

5.4).
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Figure 5.3:The azimuth (� ) and zenith (� ) angles of a surface normal (left) and the visual inter-
pretation of the slant and the tilt (right).

Angular data is more dif�cult to model than Cartesian data. The reason for this is

angle wrap around. Hence, small differences in distance on asphere can correspond to

large differences in the angles latitude or longitude. The classical example here is a short

walk across one of the poles of a sphere, when large differences in longitude correspond

to small differences traveled across the pole. In shape-from-shading, since the surface

normal is determined by the azimuth and zenith angles, when the surface is illuminated in

the direction of the viewer and when the surface re�ectance is Lambertian, then the arc-

cosine of the zenith angle is determined by the image brightness. The azimuth angle, on

the other hand, must be determined using additional constraints provided by smoothness

or the occluding boundary.

5.2.2 Cartesian representations based on height information

Surface height recovery through the integration of surfacenormal data can be prone to

error (Wu and Li, 1988; Klette and Schluens, 1996). Hence themain advantage in the

direct use of height over direction is that height does not need to be integrated and is not

prone to these errors. Here we study one representation based on raw height data and one
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Figure 5.4: Effect of incorrectly calculated azimuth and zenith angle in face shape recovery:
(a) orthogonal Lambertian (constant albedo) image, (b) true irradiance (non-constant albedo) im-
age, (c) ground-truth surface, (d) surface preserving trueazimuth angle but with its zenith angle
estimated through SFS and (e) surface preserving true zenith angle, but with its azimuth angle
estimated through SFS. Note how the effect of wrongly estimated tilt angle cause a severe deteri-
oration on the recovered surface.

based on the representation of height using Fourier basis functions.

Height

TheHeightrepresentation is based on the surface height functionZ(x; y), i.e. the relation

between every visible point of a surface with a unique heightvalue. In Figure 5.5 we

illustrate the use of the height function. In panel (a) we show a close-to-pro�le view of the

reconstruction of a face using cylindrical coordinates. Panel (b) shows the projection of

the surface height function onto the image plane. In panel (c) we show the close-to-pro�le

view from the Cartesian height map. Panel (d) shows the Cartesian height map with the

boundaries of the face removed. Unlike the Cartesian representation, in the cylindrical

reconstruction it is possible to de�ne regions near the occluding boundary of the frontal

view (ears and sides of the neck). Nonetheless, the salient facial features such as the eyes,

nose and mouth can be easily represented in Cartesian coordinates, as shown in panel (d).
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Figure 5.5:Cylindrical and Cartesian reconstructions. We show a close-to-pro�le view of the
reconstruction of a face from cylindrical coordinates (a),its projection to the image plane as a
height function (b), the same close-to-pro�le view from theCartesian height map (c) and without
the surrounding region close to the boundaries of the face.

Fourier basis

TheFourier Basisrepresentation draws on the concept of Fourier domain integrability for

surface height recovery from surface gradient. The representation builds on the Fourier

basis introduced by Frankot and Chellappa (Frankot and Chellappa, 1988). This method

has been previously explained in Section 3.3.

In Figure 5.6 we show the Fourier surfaces of a face. The �rst two �gures correspond

to the height map and surface plot of thex-component (~Z x ). Similarly, the right-most

�gures represent they-component (~Z y).

5.3 Principal component analysis

In this section we describe how eigenspace models are constructed for Cartesian data.

Here we follow the approach adopted by Turk and Pentland who were among the �rst

to explore the use of principal components analysis for facerecognition (Turk and Pent-

land, 1991). We make use of the technique described by Kirby and Sirovich. (Kirby and
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Figure 5.6:Fourier basis representation for faces. The �rst two �gurescorrespond to the height
map and surface plot of thex-component of the Fourier domain representation. Similarly, the
right-most �gures represent they-component.

Sirovich, 1990) to render the method ef�cient.

5.3.1 The intensity model

The image data is vectorized by stacking the image columns toform long column vectors

i. If the K training images containM columns andN rows, then the pixel with column

indexj c and row indexj r corresponds to the element indexedj = ( N � 1)j c + j r of the

long column vector. The training set data-matrix,I = [ i1ji2j � � � j iK ] is then formed by

using the long vectorsik as columns. The differences from the average face image,�i (the

sample mean) are used to construct the centered training data matrix

I 0 = [( i1 � �i )j(i2 � �i )j � � � j (iK � �i )] = [ i0
1ji0

2j � � � j i0
K ]: (5.2)

Principal Component Analysis (PCA) seeks a set ofK � 1orthogonal vectors which, in

a least squares sense, best describe the distribution of thecolumns ofI 0. The solution to the

least squares problem is found by calculating the eigenvectors of theexplicit covariance

matrix

� i =
KX

k=1

i0
k i0

k
T = I 0I 0T : (5.3)

Unfortunately, due to its size (MN � MN ), computing the eigenvalues and eigenvec-
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tors of � i becomes intractable for large sets of data. However, the numerically ef�cient

method proposed in (Kirby and Sirovich, 1990) can be used to overcome these dif�cul-

ties. According to this method there are onlyK � 1 non zero eigenvalues from� i and

these can be computed from theK � K sampledcovariance matrixb� i = I 0T I 0. The

eigen-vector equations for the explicit and sampled covariance matrices,� i and b� i , are

� i u i
k = � ku i

k and b� i û i
k = �̂ i

k û i
k ; (5.4)

whereu i
k , û i

k and� i
k , �̂ i

k are the eigenvectors and eigenvalues of� i and b� i , respectively.

To demonstrate the relationship between the two sets of eigenvectors, we note that

b� i û i
k = �̂ i

k û i
k ; (5.5)

I 0T I 0û i
k = �̂ i

k û i
k ; (5.6)

I 0I 0T I 0û i
k = �̂ i

k I 0û i
k ; (5.7)

� i (I 0û i
k) = �̂ i

k(I 0û i
k): (5.8)

As a resultu i
k = I 0̂u i

k and � i
k = �̂ i

k . This means that the eigenvectors of the ex-

plicit covariance matrix can be calculated by multiplying the centered training set by the

eigenvectors of the sampled covariance matrix. Likewise, the non-zero eigenvalues of the

explicit covariance matrix are equal to the eigenvalues of the sampled covariance matrix.

The eigenfaces are then the eigenvectors of� i and are constructed by multiplying the

centered training-set data-matrixI 0 by the eigenvectors of the sampled covariance matrix

b� i , i.e.

M i = I 0bU i ; (5.9)

wherebU i = [ û i
1jû i

2j � � � j û i
K ].
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An out-of-training-sample face_i can be �tted to the eigenfacesM i by calculating the

parameter vectorb i = [ bi
1; bi

2; � � � ; bi
k ] that minimizes the squared error. The solution to

this least-squares estimation problem is

b i = M i T
(_i � �i ): (5.10)

The vector of parametersb i measures the contributions from each eigenface to the

recovered approximation of the out-of-training face_i, and is given by

_i � �i + M i b i : (5.11)

In order to be valid examples of the class represented by the training set, the values of

the vectorb i should be constrained to fall in the intervalbk 2 [� 3
p

� i
k ; +3

p
� i

k ].

5.3.2 The surface shape statistical models

The face database used for building the models was provided by the Max-Planck Institute

for Biological Cybernetics in Tuebingen, Germany. As described in (Blanz and Vetter,

1999), this database was collected using laser scans of 200 heads of young adults. The

data is stored in a cylindrical representation. For constructing the height based model, we

converted the cylindrical coordinates to Cartesian coordinates and solved for the values

of Z (x; y). We were also provided with the ground truth surface normalsfor each of

the faces. We used this ground truth data to construct the surface gradient, azimuthal

angle and Fourier domain statistical models. We used 150 examples for constructing

each of the four models. The remaining 50 out-of-training-sample example were used for

performance tests.

To explain how the surface models were constructed, we commence with the height

representation. Each of theK surfaces in the training set may be represented by long
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vectors of height valuesh. The mean height vector�h is given by

�h =
1
K

KX

k=1

hk : (5.12)

In a similar manner to Equation 5.2, we form theMN � K matrix of centered long

vectorsH 0 = [( h1 � �h)j(h2 � �h)j � � � j (hK � �h)]. We calculate the eigenvectorsûh
k of the

matrixH 0T H 0and construct the height statistical model (as in Equation 5.9)

M h = H 0bU h; (5.13)

where bU h = [ ûh
1 jûh

2 j � � � j ûh
K ]. An out-of-training-sample centered long-vector of height

values,_h � �h, can be projected onto the model and represented using the vector of coef-

�cients

bh = M hT
( _h � �h): (5.14)

Let us now extend the above notation to the surface gradient and Fourier basis repre-

sentations. We need two separate models for thex andy components of the representation.

We usep andq to refer to the surface gradient w.r.t.x and w.r.ty, respectively. Likewise,

we usef andg for thex andy components of the Fourier surface basis, i.e.~Z x and ~Z y

(see Equation 3.12). Using this notation, the statistical models for surface gradient and

the Fourier surfaces basis are respectively

M p = P0bU p; M q = Q0bU q: (5.15)

M f = F0bU f ; M g = G0bU g: (5.16)
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Figure 5.7: In the top row, different arguments for one training set example ak are shown as
intensity maps. From left to right,(� �; � ](a), (� �

2 ; 3�
2 ] (b), (0; 2� ] (c) and( � 3�

2 ; �
2 ] (d). The

mean direction̂� (e) and the mean resultant lengthr̂ (f) are presented in the bottom row, from left
to right, as intensity plots. Note hoŵr demonstrates that the directions of the angles are widely
dispersed through the regions where the zenith angle is close to 0, i.e. tip of the nose, centers of
the eyes and mouth, and forehead.

A statistical model for azimuthal angles

In the case of the azimuthal angle representation, the angles can not be used directly to

construct statistical models. The reason for this is that statistical calculations performed

on angular data can be biased by the anglecut point (see Figure 5.7). To illustrate this

problem consider two points on a unit circle placed just above and just below the cut-line.

Although the two points are close to one another on the unit circle, when the difference in

angles is computed then this may be close to2� .

We overcome the above problem by working with a complex number representation

of the azimuth angles for the surface normals. Since we will be dealing with Lambertian

images of faces, it is not necessary to construct a statistical model for the surface normal

zenith angles since they be directly recovered from the arc-cosine of the measured image

brightness. For thej th pixel of thekth training example in the database, we encode the

83



azimuth angle using the complex number

ak
j = exp( i� k

j ) = cos � k
j + i sin� k

j ; (5.17)

wherei =
p

� 1. The azimuth angle can be recovered from the real (Re) and imaginary

(Im) components of the complex number using

� k
j = arctan

Im ak
j

Reak
j

: (5.18)

The azimuth angle� k
j is therefore the principal argument (a unique angle value from

� � to � ) of ak
j . At the image location indexedj , the mean complex number (center of

mass) over the training set is given by

âj =
1
K

KX

k=1

ak
j : (5.19)

The azimuth angle associated with this complex number (meandirection) and its mod-

uli are, respectively

�̂ j = arctan
Im âj

Reâj
and r̂ j =

q
(Im âj )2 + ( Reâj )2: (5.20)

The Cartesian coordinates of the points ofâj on the complex plane are de�ned by

the average of the cosines (x-axis) and sines (y-axis) of allof the observations� k
j of the

training set. As a result

Reâj = r̂ j cos�̂ j =
1
K

KX

k=1

cos� k
j and Imâj = r̂ j sin �̂ j =

1
K

KX

k=1

sin� k
j : (5.21)

Unfortunately, although this allows us to overcome the problems of representing the

azimuth angle statistics, it yields complex numbers that nolonger have unit modulus.

84



In fact r j can �uctuate between 0 and 1. However,r j is an important measure of the

concentration of the azimuth angles in the training data. Ifthe directions of the azimuth

angles in the training set are strongly clustered, thenr j will tend to be 1. If, on the other

hand, they are scattered thenr j will tend to 0.

Although the mean resultant lengthr̂ j is an important measure of dispersion, for the

purposes of comparison with data on the line we should consider measures of dispersion

based on circular data. A useful measure is the sample circular variancevj = 1 � r̂ j ,

0 � vj � 1. Following (Mardia, 1972), if1 � cos(� 1 � � 2) is a measure of distance

between two angles� 1 and� 2, then the dispersion of the angles� 1
j ; � 2

j ; : : : ; � K
j about a

given angle� is

D(� ) =
1
K

KX

k=1

f 1 � cos(� k
j � � )g: (5.22)

For any set of angular data, the dispersion of its mean direction over the set is equal

to its circular variance, i.e.,D(�̂ j ) = vj = 1 � r j . In Figure 5.7(e) and (f), the mean

argumentŝ� and the moduli of the center of massâ are shown as intensity maps.

Repeating the construction outlined in Equations 5.15 and 5.16, the complex-number

based statistical model is

M a = A 0bU a; (5.23)

whereA 0is the centered complex training set data-matrix andbU a is the eigenvector matrix

for the sampled covariance matrix. Note that the complex azimuth angle representation

leads to a Hermitian covariance matrix,A 0yA 0, wherey denotes the transpose of the com-

plex conjugate matrix. SinceA 0yA 0 is Hermitian, its eigenvector matrixbU a is complex,

while its eigenvalues� a
k are real.
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5.4 The parameter �tting procedure

In this section we explain the method used to �t the parameters of the models to image

brightness data so that the irradiance equation is satis�ed. This algorithm is similar to that

proposed by Smith and Hancock (Smith and Hancock, 2005b) anddraws ideas from the

geometric shape-from-shading framework of Worthington and Hancock (Worthington and

Hancock, 1999). However, here we add an integrability enforcement step to the parameter

�tting procedure. This is done using the method of Frankot and Chellappa (Frankot and

Chellappa, 1988) which we have outlined in Section 3.3.

According to the geometric approach to SFS developed by Worthington and Han-

cock (Worthington and Hancock, 1999), the image irradianceequation is treated as a hard

constraint. Lambert's law is enforced by demanding the recovered surface normals to fall

on the re�ectance cone whose axis is the light source direction and whose opening angle

is the inverse cosine of the normalized image brightness. Compliance with Lambert's law

is effected by rotating an estimated surface normal onto thenearest location on the local

irradiance cone.

We have used this technique to �t the Cartesian models to brightness images of faces.

If we have a �eld of initial surface normalsn estimated from from the brightness data1,

then the iterative steps in the �tting process are de�ned as follows:

1. Transform the �eld of normalsn into each of the four Cartesian representations.

From the surface gradient, the complex azimuth angle can be obtained using Equa-

tion 5.17. Likewise, the height and Fourier basis representations are obtained by

integrating the �eld of surface normals using Equation 3.12.

2. For each representation, subtract the mean shape and calculate the corresponding

1We used a standard image gradient initialization.
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set of shape parameters using one of the following

bh = M hT
( _h � �h); (5.24)

ba = M aT ( _a � �a); (5.25)

bp = M pT ( _p � �p) and bq = M qT ( _q � �q); (5.26)

b f = M f T
( _f � �f ) and bg = M gT ( _g � �g); (5.27)

depending on the relevant representation.

3. Recover the surface shape from the best-�t parameters using one of the following

_h � �h + M hbh; (5.28)

_a � �a + M aba; (5.29)

_p � �p + M pbp and _q � �q + M qbq; (5.30)

_f � �f + M f b f and _g � �g + M gbg: (5.31)

4. Apply the integrability constraint. This is done by generating a surface from the

best �t parameters of the surface gradient and azimuthal angle representations,_p,

_q and _a.

5. From the reconstructed surfaces we calculate a �eld of surface normals. This is

done by performing a bicubic patch �t to the surface height data. We enforce the

irradiance constraint by rotating the recovered surface normals onto the irradiance

cone using Equation 3.2. We then return to step 1.

Instead of searching for valid linear eigenmode combinations that minimize the bright-
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ness error using exhaustive search, the parameter �tting procedure attempts to minimize

the brightness error using simple geometric operations that satisfy the irradiance con-

straint provided by Lambert's law. The method hence provides an intuitive and straight-

forward way for adjusting the shape coef�cients to image brightness data.

5.5 Experiments

Our experimental evaluation is divided into two parts. First, we provide an experimental

comparison for the four Cartesian representations. Second, we focus on the performance

of each representation when �tted to image brightness data.

5.5.1 Comparing the models

The generalization of the models, or their ability to capture the features of the database

from which they were built, is illustrated in Figure 5.8. We show the generalization as

a function of the number of modes used. The required number ofmodes was calculated

through the formulae
P t

l=1 � L � f vVT , where� l are the eigenvalues of the sampled co-

variance matrix,VT is the total variance (i.e. the sum of all the eigenvalues) and f v de�nes

the proportion of the total variation to be conserved by the model. Both(M f ; M g) (dot-

ted lines) andM h (dashed-dotted line) achieve more than 90% when using at least 20

modes. By contrast,M a (dashed line) and(M p; M q) (solid lines) required a considerably

larger number of modes to achieve the 90% level. Interestingly, for both (M f ; M g) and

(M p; M q) the x-related model shows a slightly better generalization thanthe y-related

model. This may be attributable to the left-to-right symmetry of human faces. It is im-

portant to remark that the similarities between the retained variances shown byM h and

(M f ; M g) can be regarded as a consequence of both models being based onheight infor-

mation, one (the height surface) being the sum of two component surfaces (the Fourier
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basis surfaces).

Figure 5.9 shows the percentage of error for out-of-training cases when the num-

ber of eigenmodes is varied. The plot shows the height difference errorkH actual �

H eigenmodek=Hactual computed as a function of the number of modes used in the repre-

sentation, for the 50 out-of-sample faces. For the models(M p; M q) andM a, the Frankot

and Chellappa's integrability method(Frankot and Chellappa, 1988) was used to recover

surface from surface gradient. For recovering the surfacesfrom the model(M f ; M g),

Equation 3.12 was used. As we assume Lambertian re�ectance,the zenith angle was cal-

culated directly from the albedo-free images and then be used in conjunction with the re-

covered azimuth angle to obtain a surface normal estimate and hence recover a height map

through surface integration. The �gure shows the average over the 50 surfaces and over

all the points on the surface. Here(M f ; M g) (dotted line) achieves the lowest percentage

of error (up to around 0.3%), followed byM h (around 0.5%),M a (around 0.8%), and

(M p; M q) (solid line, around 0.9%) with full number of eigenmodes used. This behavior

could be explained from the results in Figure 5.8, where it isclear that both(M p; M q)

andM a require a larger number of modes for characterizing most of the model features.

On the other hand, from its original error (zero modes: the mean shape), 1.91%, a steep

error change occurs after using 10 modes for the three models. It is important to mention

that, visually the effect of errors less than 1% is close to being negligible.

In Figure 5.10 we show the �rst six modes of variation for the models described above.

The different rows in the �gure correspond to different eigenmodes. For each eigenmode,

we have two rows in the �gure. The top and bottom row in each pair show the result of

varying the eigenmode by� 3 standard deviations from the mean. The columns of the

�gure have been divided into four groups of images, labeled with the letters (a), (b), (c)

and (d). Each group gives the results obtained with one of therepresentation used for

constructing the statistical models. Group (a) shows the variations for the intensity model
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Figure 5.8:Generalization of the models. The �gure presents the retained variance of each model
as a function of the number of modes used. Both modelsM h and(M f ; M g) tend to encapsulate
most of the variance of the training set in the �rst few modes,while (M p; M q) andM a clearly
need a bigger number of modes to achieve at least a %90 of the generalization.

M i . In group (b), from left to right, we show the modes forM p, M q and the frontal

illumination of their integrated surface. The frontal illumination of variations inM h are

shown in group (c). Finally, frontal illuminations of the surface variations corresponding

to M f andM g are shown in group (d). The right-most illumination in group(d) is the

result of summing the two Fourier surfaces (i.e. using Equation 3.12).

In Figure 5.11 we compare the eigen-modes obtained using models for the azimuthal

angle. Here we compare the results of using a model based on complex numbers and

one based on real numbers. The columns of the �gure show the �rst six eigen-modes. In

the top two rows we show the results obtained by using the complex model, and in the

bottom two rows the results for the real model. For each modelthe two rows show the

result of varying the different eigenmodes by� 3 standard deviations from the mean. In

general, both models seem to encapsulate the same facial features, though the complex
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Figure 5.9:Out-of-training best-�t tests. The �gure shows the percentage of error for out-of-
training cases while varying the number of modes.

model shows less noise than the real model. These errors are most evident wherêr j is

near zero. This suggests that the complex representation gains advantage from using the

center of masŝaj , which might be sacri�ced by being projected onto the unit circle while

calculating the mean direction̂� j .

We compare the performance of the real and complex azimuth angle models by �tting

them to out-of-sample data (i.e. data not used in training).These results are shown in

Figure 5.12. In the top row the model has been �tted to a male subject and the bottom row

shows the result of �tting the model to a female subject. We show two panels of results.

In the left panel we present the ground truth data, the resultof �tting the complex model

and the result of �tting the real model. The main feature to note from the panel is that

the complex model achieves more accuracy for regions where the zenith angle is small.

In the rightmost panel we show the absolute angular difference2 averaged over 50 out-of-

2The angular difference between the angles� 1 and� 2, in radians, can be de�ned as� �k � �k � 1 � � 2kk.
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Figure 5.10:First six modes of variation for the intensity (a), surface gradient (b), height (c) and
Fourier basis (d) models.
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Figure 5.11: From left to right, the �rst six eigen-modes of the complex azimuth model (a)
and the real azimuth model (b). The two �rst rows represent, respectively, +3 and -3 standard
deviations from the mean. Likewise, these variations are shown in the two rows of (b).

training examples as a function of the number of eigenmodes used for the complex and

real models. From the plot it is clear that the complex model outperforms the real model.

The behavior of both models is similar, and the gap between the lines can be explained as

a consequence of the poorly recovered regions for the real-valued model.

In Figure 5.13 we present the results obtained by varying thenumber of eigenmodes

for an out-of-training case. From the example shown in the top row of the �gure, we

calculated shape parameters and projected them back to eachrepresentation domain by

adding the corresponding mean shape. We repeated this process, varying the number of

eigenmodes from 10 to 150 modes. This experiment is illustrated in the columns of the

�gure, which show frontal re-illuminations with the different number of eigenmodes. A

�nal recovered surface is shown in the right-most column. The different rows in the �gure

are for the modelsM h, (M p; M q), (M f ; M g) andM a. Only for the height and Fourier

93



Figure 5.12:Out-of-sample recovery analysis. From left to right: the �rst three columns show
the ground truth azimuth angle, recovered azimuth angle using the complex and real models. The
rightmost diagram shows the angular difference averaged over 50 out-of-sample data as a function
of number of eigenmodes used for the complex (solid line) andthe real (dashed line) models.

basis models does setting the number of modes to more than 25 introduce spatial artifacts.

This is noticeable over facial regions such as the nose, mouth and eye-sockets. The �rst

25 eigenmodes seem to be suf�cient to encapsulate the most salient facial features. The

remaining eigenmodes appear to capture noise rather than �ne facial details, as expected

from the results shown by Figure 5.8.

The models behavior on both(M p; M q) andM a shows a rather different behavior.

Here apparently little change occurs while increasing the number of eigenmodes. These

results support those in Figure 5.9 and the smooth variationin the descent of the solid

and dashed lines in Figure 5.8. Note how the surfaces generated by(M p; M q) andM a

suggest a smoothed version of those recovered byM h and(M f ; M g).

5.5.2 Fitting the model from brightness images

Equation 5.10 shows how to determine the shape coef�cients from a long-vector of data

in the appropriate representation. However here we would like to �t the different models
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Figure 5.13:Varying the number of eigenmodes for an out-of-training case. The top row shows
frontal illuminations and ground truth pro�le of the example used for the experiment. The follow-
ing rows present the results usingM h , (M p; M q), (M f ; M g) andM a, respectively. From the �rst
to the �fth column we present frontal re-illuminations and the �nal recovered surface is shown at
the right-most column. The number of modes used (from 10 to 150) is indicated at the top of the
panel. Note how the �nal recovered surface using(M p; M q) andM a suggest to be smoother than
the best �ts usingM h andeF.
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to long-vectors elicited from image data using shape-from-shading. When the iterative

�tting procedure described in Section 5.4 is applied, then it never converges to a feasi-

ble solution for the models based on height information,M h and(M f ; M g). However,

the surface gradient and complex azimuth angle based models, (M p; M q) andM a work

better.

To overcome this problem we rede�ned the starting state for bothM h and(M f ; M g),

applying geometric SFS over the surface normals of the mean height surface. In this

manner we forced the mean surface normals to satisfy the irradiance cone constraints.

The resulting height maps using this initialization resulted in an error of around 1.4%.

Figure 5.14 (top) shows the percentage of error as a functionof the number of itera-

tions for the �tting procedure for each of the four representations. From the diagram it is

clear that only the complex azimuth angle (dashed line) and,more noticeably, the surface

gradient (solid line) based model behave well with the �tting procedure. On the other

hand, the height based model (dash-dotted line) improves until it reaches the third itera-

tion. From this point the error increases. This effect is more pronounced for the Fourier

basis model (dotted line), which improves only in the �rst iteration. Note how the initial

state is different for the models derived from directional information, i.e.(M p; M q) and

M a, and the ones based on height data,M h and(M f ; M g). The average error for the

initial state for bothM h and(M f ; M g) is around 1.4%. For clarity, we omitted the initial

state of(M p; M q) andM a on the diagram, since it was of about 15% (approximately ten

times less accurate than that ofM h and(M f ; M g)).

In their few �rst iterations bothM h and(M f ; M g) seem to slightly outperform(M p; M q)

andM a in its �nal iteration. This does not mean that the method gives better surface �ts,

but that the method of coupling the model to intensity data does not give an accurate mea-

sure of error. In other words, models that are based on heightinformation are not suitable

for the �tting technique adopted here. However, the approach is a natural one for the
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Figure 5.14:The above �gure presents the percentage of error as a function of number of it-
erations. Note how only the models based on directional information,(M p; M q) andM a seem
to be favored by the �tting procedure. On bottom �gure shows the behavior of the �tting pro-
cedure with (asterisk markers) and without (circular markers) the integrability enforcement step
are shown for(M p; M q) (solid line) andM a (dashed line). The results suggest that enforcing
integrability bene�ts the �tting method.
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models(M p; M q) andM a which are based on surface orientation and not surface height,

since it is surface orientation that is responsible to the perceived image brightness.

We also tested(M p; M q) and M a starting with the same initial state asM h and

(M f ; M g), but the �nal result did not show a signi�cant difference to the one presented

in Figure 5.14 (top).

In Figure 5.14 (bottom), we show the behavior of the orientation-based models(M p; M q)

(solid line) andM a (dashed line) omitting the integrability enforcement stepin the �tting

procedure. The asterisks indicate integrability enforcement, whilst the circles indicate

omission of the integrability step. The diagram shows poor results when integrability is

not enforced. This is most marked in the case of the complex azimuth angle representa-

tion, where the error goes from 1.09% to almost 2%.

A more detailed analysis is presented in Figure 5.15. The �gure is divided into two

panels. Each panel presents the results for an out-of-training example, whose frontal re-

illumination and ground-truth pro�le view are shown at the top row of the �gure. For each

panel, the columns contain the recovered surface after a given number of iterations (from

0 to 10). The results obtained usingM h, (M p; M q) and(M f ; M g) andM a are shown

from second to bottom row. Note how the initial state is much poorer for(M p; M q) and

M a, and how after each iteration the integrated surfaces movescloser to the ground truth.

Finally, we present experiments with a number of real world face images. These im-

ages are drawn from the Yale B database (Georghiades et al., 2001) and are disjoint from

the data used to train the statistical model. In the images, the faces are in the frontal

pose and were illuminated by a point light source situated approximately in the viewer

direction. We aligned each image with the mean intensity shape so that the eyes, nose

tip and mouth center were in the same position. We then performed a Lambertian cor-

rection (Smith et al., 2004) over the aligned images. The surface recovery results after

twenty iterations are shown in Figure 5.16. From left to right we show the corrected
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Figure 5.15:Individual analysis for the �tting procedure. The �gure is divided into two panels.
Each panel contains the results of applying the �tting procedure to the brightness images shown
at the top row of the �gure. In the top row, the ground-truth pro�le view is shown along with
the brightness input image. The columns of each panel present the recovered surface after certain
number of iterations (from 0 to 10). From second to bottom rowwe present the results forM h ,
(M p; M q), (M f ; M g) andM a.
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Lambertian input image, frontal re-illumination of the recovered surface followed by two

rotated views. We used the surface gradient representationwith enforced integrability.

Although the method struggled to recover the shape of the eyesockets, the overall struc-

ture of the face is well reconstructed, On the other hand, theeyebrow location, nose length

and width of the face clearly match those of the input images,even when there is facial

hair present.

5.6 Conclusions

We have presented an analysis of four Cartesian representations for constructing three-

dimensional statistical models of faces. We also showed howto �t the models to bright-

ness images of faces using irradiance equation and integrability constraints. All of the

models work well when used to �t data in the same form. However, for �tting to image

brightness data to recover facial shape, only the models based on directional representa-

tions, i.e. surface gradient and complex azimuthal angle proved robust. Hence we have

demonstrated that 3D statistical models of faces based on Cartesian representations of

orientation data can work accurately without special heuristics. As future work we are

planning to explore the behavior of the Cartesian representations with alternative meth-

ods for shape coef�cient adjustment as well as dealing with albedo changes.
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Figure 5.16:Applying the method on four real images of faces. From left toright we show the
corrected Lambertian input image, frontal re-illumination of the recovered surface and two views
of the recovered surface.
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Chapter 6

Coupled Statistical Models of Intensity

and Shape

6.1 Introduction

In this chapter, our aim is to explore whether the alternative representations for surface

shape described in Chapter 5 can be coupled to variations in image intensity using a cou-

pled statistical model. The method described in the last chapter performed well under

Lambertian conditions, however, errors were spread if varying albedo images were used.

Here we aim to overcome this problem by using a statistical model to learn the link be-

tween image brightness variations and surface shape.

The coupled model is inspired by the active appearance modeldeveloped by Cootes,

Edwards and Taylor (Cootes et al., 1998), which simultaneously models 2D shape and tex-

ture. Here however, we model joint variations in image brightness and surface shape. We

explore three different surface shape representations. These are the surface height func-

tion, the surface gradient and a Fourier basis representation. The model is trained using

corresponding pairs of range images and brightness images.From the range images, we
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extract the shape-attributes. We construct separate eigenspaces for the image brightness

variation and the surface shape variation from the covariance matrices of the training data.

The coupled model links the two eigenspaces. By �tting the image brightness model to

input images, we are able to recover the corresponding parameters of surface shape. From

the surface model parameters we recover facial shape.

Let us analyze again Figure 5.10, where the different eigenmodes for each surface

shape representation are rendered. An important feature tonote is that different models

tend to encapsulate different shape characteristics. It isinteresting to note that the in-

tensity model and the surface models exhibit different modes of variation. This means

that the information encoded by the intensity shape parameters,b i , is of limited use in

directly recovering surface shape from intensity images. This problem has been circum-

vented by minimizing the distance between rendered views from recovered surfaces and

input images, as in the work of Atick (Atick et al., 1996) and Blanz and Vetter (Blanz

and Vetter, 2003). Unfortunately, the minimization of thisdistance is badly affected by

the presence of local minima. This means that exhaustive search methods must be used,

and this sacri�ces ef�ciency. We overcome this problem by using a coupled statistical

model to relate 2D intensity variations and variations in surface shape. Once �tted to

data, the coupled model allows us to infer the shape-parameters from the best-�t intensity

parameters, rather than using the distance between input images and rendered views of

the recovered surfaces.

6.2 The coupled models

In this section we focus on how to relate the modes of variation of the intensity and

surface shape models. To this end, we develop a coupled statistical model that links the

coef�cients of the intensity and shape-models for a set of training data. Here the training
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Figure 6.1:We used a database of intensities and a database of height information. As shown in
the �gure, there is a direct (pixel to pixel) relation between the members of each database. From
the height database we generated the Surface Gradient and Fourier basis databases.

data consists of aligned pairs of intensity and surface shape images of the faces of different

subjects. By �tting the intensity model to out-of-training-sample images of faces, we can

use the coupled model to recover the corresponding surface shape parameters.

To construct the coupled model, we draw on the intensity and surface representations

described in Sections 5.3.1 and 5.3.2 respectively. Each training example i.e. pair of

intensity image and surface representation extracted froma corresponding aligned range

image (see Figure 6.1). can be summarized by the parameter vectorsb i andbx , where

x represents the surface model (either height, surface gradient or Fourier basis) of the

sample. In both models, we assume that the lower eigenmodes represent small scale

noise variation. Hence, if thekth eigenvalue for the intensity model is� i
k , we need onlyS

eigenmodes to retainP ercpercent of the model variance. We chooseS so that
P S

k=1 � i
k �

P erc
100

P K
k=1 � i

k . Similarly, for the 3D models we retainT eigenmodes to captureP erc

percent of the variance.
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It is important to mention that, unlike the experiments presented in Chapter 5, in this

chapter we use a mask to cut off the regions of the face near theneck and ears (i.e. the

ones with the highest spatial variance). This binary mask consists of calculating the total

variance of the height training set and setting the high variance pixels to zero. The mask

is then applied to every example in the training sets. The effect of the masking functions

is to avoid the high spatial variability introduced by the surrounding regions of the face in

each training sample.

6.2.1 Eigenmode concatenation

For thekth training sample we can generate the concatenated parametervector of length

S + T:

bc
k =

0

B
@

Wb i
k

bx
k

1

C
A =

0

B
@

W (M i T (t i
k � �i ))

M x T (t x
k � �x)

1

C
A ; (6.1)

whereW is a diagonal matrix of weights for each intensity model parameter, allowing for

the different relative weighting of the intensity and surface models. As the elements ofb i

andbx represent different classes of data (grayscale and surfaceshape), they can not be

compared directly. We follow Cootes and Taylor (Cootes et al., 1998) and setW = rI ,

wherer 2 is the ratio of the total shape variance to the total intensity variance andI is the

identity matrix . The coupled model data matrix is(bc
1jbc

2j:::jb
c
K ).

By applying PCA to the concatenated intensity-shape parameter vectors, we obtain

the coupled model:

bc = Cc =

0

B
@

C i

Cx

1

C
A c; (6.2)

whereC are the eigenvectors andc is a vector of coupled parameters controlling the inten-
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sity and surface shape models simultaneously. The matrixC i hasS rows, and represents

the �rst S eigenvectors, corresponding to the intensity subspace of the model. The ma-

trix Cx hasT rows, and represents the �nalT eigenvectors, corresponding to the surface

shape subspace of the model.

We may express the vectors of projected intensity and 3D values directly in terms of

the parameter vectorc:

t i = �i + M i W � 1C i c: (6.3)

t x = �x + M xCxc: (6.4)

For compactness we write:Q i = W � 1C i .

A plot of cumulative variance versus number of eigenmodes used is shown in Fig-

ure 6.2. The surface shape, intensity and coupled models arerepresented by the dashed,

solid and dotted lines respectively. It is evident that fewer eigenmodes are required to the

capture variance in facial depth (i.e. the height and Fourier basis models) than in facial in-

tensity. This is because the intensity model has to deal withvariations caused by changes

in both facial shape and illumination. The depth-based models, on the other hand, need

only accommodate changes in facial shape. We retained 95% ofthe variance for each of

the models.

6.2.2 Fitting the models to intensity data

Fitting the model to intensity data involves estimating theparameter vectorc from input

images of faces. To do this we seek the coupled model parameters which minimize the

error between the best �t parametersb i and the recovered parametersQ i c. In doing so,

we implicitly recover the surface shape represented by the coupled model parameters.
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Figure 6.2:Plot of cumulative variance versus number of eigenmodes used for each surface shape
model (dashed line), intensity model (solid line) and full coupled models (dotted line).
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Suppose thatt i is a centered vector of lengthM � N that represents an intensity image

of a face. Its best �t parameter vector,b i , is calculated using Equation 5.10. We �t the

model to data seeking the vectorc of lengthS + T that satis�es the condition

c = arg min
c

f (b i � Q i c)T (b i � Q i c)g (6.5)

The corresponding best �t vector of surface shape values is given by

t x � �x + M x Cxc (6.6)

We used a Matlab implementation of the quasi-Newton minimization procedure to

solve Equation 6.5. The �t was constrained such that each coupled parameter lies within

� 3 standard deviations from the mean. One input image took around a couple of seconds

to converge to the best solution.

6.3 Experiments

In this section we report experiments focused on using out-of-training-sample images to

evaluate the ability of the coupled model to recover accurate surface information.

We constructed our models using 90 examples. We used 90 out-of-training-sample

examples for surface reconstruction tests. We calculated the fractional height difference

errorkGround truth � Recoveredsurfacek=Ground truth as an average over the 90

surfaces and over all points on the surfaces. For the purposes of analysis, we ordered

the out-of-training-samples examples according to their distance from the mean intensity

image�i . We used the sum of the �rst ten values ofb i (to account for at least 50% of the

variability), i.e.,
P 10

j =1 bi
j as a similarity measure.

We commence by analyzing the shape recovery results obtained using the coupled
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Figure 6.3:Surface recovery results for four cases using the height-and-intensity coupled model.
The �gure is divided in four panels. The �rst panel shows the input image together with frontal
ground-truth re-illumination and pro�le view. The second panel presents the best-�t intensity
recovery. The third panel presents results on surface recovery using the coupled model. We present
frontal re-illumination and pro�le view followed by the intensity map of the height difference
between ground-truth and recovered surface. The fourth column presents the intensity map of the
height difference between ground-truth and the best-�t surface from height input (i.e. the surface
in panel 1 was used as an input for the single modelM h). Note that the height different plots have
been normalized for presentation purposes (the brightest pixels represent a 10% difference).
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Figure 6.4:Plot of the fractional height difference between ground-truth and recovered surface
when using the 90 out-of-training intensity images as input. The results were ordered in an as-
cending way for the purposes of comparison. The solid, dashed and dotted lines represent the
height, Fourier basis and surface gradient coupled models.
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Figure 6.5: Experiments with frontal images of 10 individuals of the Yale B database. The
�gure is divided into two panels, each of which contains �ve of the ten subjects in the database.
In the �gure, the rows are labeled with numbers and present the different subjects. The input
image, intensity best-�t recovery, frontal illumination of the recovered height and pro�le view with
warped input image are shown column-wise, for each panel. Wepresent the recovered surfaces
using the intensity and height coupled model.

Figure 6.6:Two views of the recovered surfaces of the ten examples of theYale database. These
views have been rendered with no warped texture. The number accompanying the surfaces corre-
sponds to the input images presented in �gure 6.5.
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Figure 6.7:Experiments with frontal images of individuals of the CMUPie database of faces.
Different rows represent different subjects. The �rst three columns of the �gure present input
image, intensity best-�t recovery and frontal illumination of the recovered height. The rest of the
columns show actual views of the individuals along with similar rendered novel views.

111



Figure 6.8:Two views of the recovered surfaces of the seven examples of the CMU Pie database.
These views have been rendered with no warped texture. The number accompanying the surfaces
corresponds to the input images presented in �gure 6.7.

Figure 6.9:Novel view synthesis analysis. The �gure is divided into twopanels. For each panel,
different rows represent different subjects of the CMUPie database. In the �rst two columns
of both panels we show the close-to-pro�le novel views generated using the nearest in-training
surface and the recovered surface using the coupled model. The third column presents the height
difference error between these two surfaces as an intensityimage.
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model with the surface height representation. In Figure 6.3we show surface recovery

results for four examples. The different rows are for different individuals. As we go

from top to bottom, the intensity images are increasingly different from the mean inten-

sity model. In each row the results are organized into 4 groups. In the �rst group, the

three columns show the input image together with its ground-truth re-illumination and

pro�le view. The second group contains the recovered best-�t intensity image. The third

group shows the results obtained using the coupled model. Here, the columns show the

frontal re-illumination, a pro�le view and an intensity mapof the fractional error between

ground-truth and recovered surface height. The fourth group shows the error-map if the

height data for the surface in group 1 was used as an input for the single modelM h. As

expected, the results shown in the third group (i.e. the coupled model) seem to match

the best-�t intensity image in the second group rather than the original data in the �rst

group. However, even for the input images that differ signi�cantly from the mean inten-

sity model, there is a good resemblance to the original data.On the other hand, the error

plots in group 3 suggest a degree of similarity with the inputimage. This feature is not as

strong in group 4. This may be a consequence of basing surfacerecovery on the best-�t

parameters directly from an intensity image.

Next, we turn now our attention to the quantitative performance of each of the cou-

pled models. We test how well the different representationsperform using the 90 out-of-

training-sample intensity images as input. We compare the recovered surfaces with the

ground truth surface height data. In Figure 6.4 we plot the fractional height difference.

The results were ordered according to ascending error for ease of visual comparison. The

solid, dashed and dotted lines represent the height, Fourier basis and surface gradient

coupled models. There seems to be no signi�cant difference between the behavior of

the models. The average surface recovery error was 1.194%, 1.249% and 1.168% for the

height, Fourier basis and surface gradient coupled models.We also calculated the average
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error from every out-of-training example to the mean heightshape, which was 1.71%.

Finally, we turn out our attention to real world images. The �rst set of images used

is drawn from the Yale B database (Georghiades et al., 2001) and is disjoint from the

data used to train the statistical models. In the images, thefaces are in frontal pose and

were illuminated by a point light source situated approximately in the viewer direction.

We aligned each image with the mean intensity shape so that the eyes, nose tip and mouth

center were in the same position. The surface recovery results using the coupled model for

the height representations are shown in Figure 6.5. The �gure is divided into two panels,

with �ve subjects on the left and �ve on the right. The result for the different subjects

are shown in different rows. From left-to-right in each row we show the input image, the

best-�t recovered intensity image, a frontal illuminationof the recovered surface height

and a pro�le view of texture mapping the input input image onto the recovered surface.

There are a number of features to note from the �gure. First, the reconstructed images

agree well with the input. Second, the overall shape of the pro�le view is subjectively

convincing.

In Figure 6.6, we show two views of the recovered surfaces foreach of the ten Yale

subjects. The number attached to the surface views correspond to that used in Figure 6.5.

There are a number of features to note from these surface views. First, the most noticeable

problems with the recovery of �ne surface detail occur in theproximity of the mouth

and the eyes. This is a consequence basing the surface recovery process on the best-�t

parameters from the intensity model. The quality of the reconstruction will depend on

the �delity with which the intensity best-�t parameters areable to characterize an input

image. Note that even when the best-�t recovered intensity image is of lower quality than

those in Figure 6.3, the surface reconstructions from the best-�t intensity parameters are

suf�ciently good to render novel facial views.

In Figure 6.7 we present a second set of real world experiments for subjects from the
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CMUPie database (Sim et al., 2003). In this set of experiments we explore the robustness

to inaccurate alignment. We did not perform alignment to themean intensity image.

In the �gure, the rows are labeled with numbers to identify the different subjects. The

�rst three columns of the �gure show the input image, the image reconstructed from the

best-�t intensity model, and the frontal illumination of the recovered facial height. The

remainder of the columns show actual views of the individuals (left) together with views

of the reconstructed surface texture mapped with the input image. As consequence of not

performing alignment operations, the surface recovery results seem to be slightly noisier

than those obtained using the Yale database. This occurs especially around the mouth

and nose regions of the face. This effect may be suf�cient to distort the close-to-pro�le

synthetic views. This is particularly noticeable for subjects 6 and 7, where noise in the

proximity of the nose area generates incorrect nose pro�les.

In Figure 6.8 we present two views of the recovered surfaces for the CMU Pie database

subjects. These surfaces exhibit more variations in nose, chin and mouth shape than those

recovered from the Yale database.

Finally, we calculated the height difference between the examples in the training

database and the recovered surfaces for the CMUPie database. For each recovered surface,

we located the surface from the training sample that minimized the height difference. We

then texture-mapped the input image onto the surface to generated novel close-to-pro�le

views. This experiment aims to demonstrate that new surfaceshapes are being generated

by the best-�t intensity model parameters. In other words, we aim to demonstrate that

the coupled model is not simply a table look-up procedure forsets of surface parame-

ters. The results of this experiment are shown in Figure 6.9.The different rows are for

different subjects in the CMUPie database. In the �rst column of both panels we show

the close-to-pro�le views generated using the nearest in-training surface and the second

column shows that obtained using the surface recovered using the coupled model. The
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third column shows the height difference error between these two surfaces displayed as

an intensity image. These error plots show that the main differences are located in the

nose and eye regions.

6.3.1 Discussion

There are some additional observations to make concerning the experiments with the Yale

and CMUPie databases. It has been previously noted that the accuracy with which the

coupled models recover 3D shape depends on how well the best-�t intensity parameters

are able to reconstruct the input intensity image. We can examine this effect by consider-

ing the quality of the best-�t intensity reconstructions incolumn (b) of Figures 6.5 and 6.7.

If we compare these reconstructions with their corresponding input images in column (a)

of the �gures it is clear that the Yale database examples givebetter reconstructions than

those in the CMUPie data-base. In particular, in the former case, there are less instabil-

ities around the eyes, nose and mouth. This can be explained by a number of different

factors. For example, unlike the Yale images, the CMUPie images were not aligned to the

mean intensity image. Also, the light source direction in the Yale images is frontal, and all

areas of the face are well illuminated. In the case of the CMUPie images, some areas of

the face are in shadow. The quality of the reconstructions can be regarded as an effect of

the linear nature of Equation 5.11. Clearly, as the best-�t intensity parameters are used to

recover 3D shape through the coupled models, information encoded in these parameters

is “inherited” to their 3D counterparts. This information may include errors due to mis-

alignment and poor illumination settings. The resulting 3Dshape improves in accuracy in

accordance with the best-�t intensity recovery. Hence, forsuccessful 3D shape recovery

using coupled models, the input images must be well illuminated and aligned.

It has also been pointed-out (Atick et al., 1996) that the Cartesian representations used

to construct the models give rise to more spatial variability than cylindrical coordinates.
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However, the errors on the estimated surfaces are more strongly related to the illumination

and alignment factors mentioned above than to the representations themselves. Suppose

that to avoid problems with the Cartesian representations,the 3D shape models had been

constructed under cylindrical representations. In this case, the correlation between the

Cartesian intensity and the cylindrical 3D shape would probably not be suf�ciently strong

to approximate 3D shape from intensity images using coupledmodels. To exploit cor-

relation in cylindrical coordinates, both intensity and 3Dshape models would have to

be expressed in the appropriate coordinate system. Moreover, the Cartesian input im-

ages would need to be transformed into cylindrical coordinates and that would introduce

further alignment errors.

Finally, it is worth commenting in more detail on the differences between the method

studied in this paper and Blanz and Vetter's morphable model(Blanz and Vetter, 1999),

which has become a benchmark in the �eld of face shape recovery. The two approaches

are compared in Table 6.1. At the conceptual level, they compare and contrast in the fol-

lowing ways. Firstly, Blanz and Vetter's method aims to generate photo-realistic render-

ings of faces which are compared to the input image through anexhaustive �tting process

that minimizes a relatively complex error criterion. Pose and illumination information is

also encoded in the model. This makes their framework robustto changes in illumination

and pose. Also, separate models for 3D shape and intensity are created in cylindrical co-

ordinates. The examples used to training the model have fullcorrespondence with each

other. The generation of photo-realistic views is greatly improved by the construction

of independent models for different facial regions in the proximity of the eyes, nose and

mouth. On the other hand, with our coupled approach we attempt to model the relation-

ship between Cartesian intensity images and 3D shape by recovering the height surface

of a face directly from the information encoded by the best-�t intensity parameters. This

means that the coupled model only works on frontal or nearly frontal views and is sensi-
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Comparison of Face Reconstruction Methods

Constraints on input
image

Blanz and Vetter Coupled statistical models

Illumination: Unknown, single point Unknown, single point (frontal
or nearly frontal)

Pose: Arbitrary Frontal
Minimum number of
images:

1 1

Albedo: Linear Statistical Constraint Linear Statistical Constraint
Alignment: Manually initialized with sparse

feature points, �tting improves
Not required, but manual align-
ment improves results

Approximate shape re-
covery time:

4.5 minutes 2 - 5 seconds

Table 6.1: Comparison between the morphable model of Blanz and Vetter and the coupled
statistical model.

tive to changes in illumination. However, the computationsinvolved in the recovery of 3D

shape are straightforward and this offers the possibility of approximating face shape in a

computationally ef�cient way. The results presented in theexperimental section suggest

that there exists a correlation between the Cartesian intensity image and 3D shape that can

be further studied to obtain improved reconstruction usingcoupled models. Generating

independent models for different face regions and exploring the outcome of using differ-

ent basis functions for PCA (such as 2D-PCA (Yang et al., 2004)) are possible routes to

achieve improvements in future work.

6.4 Conclusions

We have explored a way for coupling intensity and 3D shape to construct statistical mod-

els of facial shape that can be used to recover shape from intensity images of faces. We

have explored the performance of the statistical models over three representations: the

surface height function, the surface gradient and a Fourierbasis representation. For each
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representation, the coupled model strongly links the best-�t coef�cients for intensity and

3D shape data into a single statistical model. To recover theparameters of the coupled

model, and hence reconstruct 3D shape, requires an optimization method whose objec-

tive function relies on the best-�t intensity parameters. The coupled models proved to

be good enough to generate accurate surfaces from real worldintensity imagery in an

ef�cient way.
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Chapter 7

Conclusions and Future Work

In this chapter, the main contributions of this thesis in the�eld of face shape recovery

from a single image view are summarized. These are the development of a novel con-

vexity constraint using local shape indicators, the construction of statistical models of

faces based on Cartesian coordinates, and the de�nition of coupled statistical models of

3D shape and intensity. Suggestions for future work in the area will also be made in this

chapter.

7.1 Summary of contributions

The objective of this thesis has been to propose and explore ways to solve the problem of

face shape recovery from a single image view. To this end, we have addressed the problem

of improving traditional SFS schemes (Chapters 3 and 4), andutilizing statistical models

of faces (Chapters 5 and 6).

In Chapter 3 we combined two constraints that can be used in iterative SFS methods.

We proposed an extension of a geometric SFS algorithm that treats the image irradiance

equation as a hard constraint. Our approach overcomes the problem of high dependency

on the image irradiance equation, which is a weakness of the geometric SFS approach.
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This dependency can be relaxed through integrability constraints. Also, we have shown

how the spurious peaks present in integrated height maps delivered by the original method

can be stabilized if the integrability condition is introduced.

It is important to note that the inclusion of the integrability constraint has normally

been used as a regularizing tool for needle maps in iterativeSFS algorithms (Frankot

and Chellappa, 1988). Instead, we use integrability to regularize the image irradiance,

and the effect of this is to allow the opening angle of the re�ectance cone to vary with

each iteration. Although the algorithm improves the recovery of the shape of piece-wise

smooth objects, it fails when applied to images of faces. Nonetheless, the results described

in Chapter 3 support those in Chapter 5, where we show that integrability can improve the

recovery of surfaces from single images of faces.

In Chapter 4, we have shown that problems in facial SFS can be overcome through

the modi�cation of the surface normal direction using convexity constraints. Here local

shape indicators can be used to decide whether regions on a surface are concave or convex.

The modi�cation of the direction of the surface overcomes the problem of facial features

implosion.

There are some differences between our proposed convexity constraint and other at-

tempts at facial SFS. For example, Zhao and Chellappa's method failed when tested on

varying albedo images (Zhao and Chellapa, 2000). The robustness of Prados and Faugeras

can recover height regardless of facial pose (Prados et al.,2006), but input images must

be such that the brightest point is encountered at the optical center of the camera. On the

other hand, our method works on frontal pose images with varying albedo.

In Chapter 5 we provide a comparative study of the behavior offour Cartesian rep-

resentations for constructing statistical models of faces. The representations studied are

the surface height, the surface gradient, the surface normal azimuthal angle and �nally a

model based on Fourier domain basis functions. We analyze how well the models per-
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formed if a parameter �tting procedure (subject to irradiance and integrability conditions)

is used to calculate the models parameters. The results showthat, unlike the models based

on height data, those based on directional data work well with the �tting procedure. This

feature can be explained by the smooth transitions between the models eigenmodes, i.e.

the variability of the training data is not concentrated in just some few components (which

is the case of the models based on height information). Moreover, we propose the use of

complex numbers for building the azimuthal angle based models. This representation

offers the advantages over models based on real numbers, i.e. degrees or radians.

In Chapter 6, we show how to learn the statistical relation between the image irradi-

ance and three of the above mentioned Cartesian representations. To this end, we jointly

capture variations in intensity and the surface shape representations using coupled statis-

tical models. In order to build the coupled models, we perform PCA on sets of parameters

describing the contents of the intensity images and the facial shape representations. The

best �t coef�cients from the intensity based model can be used to minimize an objective

function to calculate the couple models coef�cients. Surface shape can be then directly

recovered from the coupled model coef�cients. Our experiments demonstrated that the

coupled models are able to generate good shape approximations from out-of-training-

sample intensity images.

Interestingly, and in contrast to the results obtained in Chapter 5, there seemed to be

no major difference in the performance of the coupled modelsbased on height data and

the coupled models based on directional data. Note that in both Chapters 5 and 6 we

used �tting procedures that are guided by the image irradiance equation. However, the

coupled model allows us to use the image irradiance in an encoded form represented by

the intensity models best �t parameters. This means that errors are not propagated locally

across the surface after each iteration. This is in contrastto the iterative method used

in Chapter 5 where only the surface gradient and azimuth angle based models proved
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to be robust to these errors. On the other hand, the errors contained in the intensity

model best �t parameters are transferred to the estimated shape model parameters. This

results in some instabilities in the recovered facial structure, mainly due to misalignment,

uncontrolled lighting conditions and poor resolution of the input images.

It is important to note that the coupled models described in Chapter 6 were inspired

by the active appearance model developed by Cootes, Edwardsand Taylor (Cootes et al.,

1998), which simultaneously models 2D shape and texture. Coupling intensity and sur-

face shape in this fashion had not been explored in the literature before. The importance

of coupled statistical models of intensity and surface shape lies on the direct usability of

the intensity model best-�t parameters. We have shown that these parameters can assist

in addressing the problem of expensive computational operations when �tting the model

to intensity data.

7.2 Future work

There are several obvious shortcomings of the methods proposed in this thesis which

require further research effort.

A problem with the convexity constraint of Chapter 4 is how tochoose appropriate

values for the thresholds. This drawback may be addressed bythe minimization of some

cost functional, for example, the sum of curvedness across the needle-map, to choose an

optimal value for the threshold. Also, the convexity constraint has only been used as a

corrective step for needle maps that have been previously calculated. Experiments are

needed to analyze how this constraint can be introduced intoan iterative SFS framework

for the recovery of needle maps.

The Cartesian models described in Chapter 5 suffer from the drawback that they prop-

agate errors when the images studied exhibit non-Lambertian re�ectance. To overcome
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this problem, we could explore ways of applying the constraint to the re�ectance map of

Horn (Horn, 1997). We could also apply methods for removing specular points (Ragheb

and Hancock, 2003) in order to improve the quality of the input images.

In Chapter 6, although quantitatively good results are achieved by coupling inten-

sity and 3D surface shape, the main drawback of the method is an overreliance on the

best �t parameters of the intensity-based model. Even though the coupled models have

been tested over both aligned and non-aligned images, it is necessary to conduct a more

thorough analysis on the outcome of different alignment procedures applied on the in-

put intensity images. Also, experiments on the sensitivityof the method to effects such

as illumination changes, image resolution and facial expression can be used to under-

stand the quality of the output reconstructed face. These experiments would also help to

determine whether an input image needs pre-processing operations before applying the

coupled models.

Another important line of investigation is to perform experiments on the robustness of

both the coupled and the single Cartesian models built on alternative basis functions such

as 2D-PCA (Yang et al., 2004). These experiments would help to understand the behavior

of the models when they are constructed on inputs other than intensity eigenfaces. More-

over, it would be interesting to investigate the effect of coupled models of intensity and

3D surface shape on separate facial features. In other words, to generate coupled models

independently for eyes, mouth and nose, as done previously by (Nandy and Ben-Arie,

1999) and (Blanz and Vetter, 2003).

Furthermore, it would be interesting to study the relationship between image intensity

and its Lambertian component, i.e. the albedo-free frontalreillumination of a 3D face.

Using coupled statistical models might offer a way of recovering facial albedo from non-

Lambertian faces. This seems an obvious approach since the coupled components are

both based on 2D images. This is similar to the work of (Tang and Wang., 2004), who
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showed how to couple images of faces and sketches. Knowledgeof the facial albedo of

an image would result in improved usability of the Cartesianrepresentations using the

data-driven procedure described in Chapter 5.

Finally, it would be worthwhile to investigate how the proposed methods in this thesis

can be used for face recognition purposes. In practice, we could perform experiments

where changes in pose and illumination are signi�ed in orderto take advantage of the

recovered facial shapes.

125



Bibliography

Agrawal, A., Raskar, R., and Chellappa, R. (2005). An algebraic approach to surface

reconstruction from gradient �elds. InIEEE International Conference in Computer

Vision.

Atick, J., Grif�n, P., and Redlich, N. (1996). Statistical approach to shape from shad-

ing: Reconstruction of three-dimensional face surfaces from single two-dimensional

images.Neural Computation, 8:1321–1340.

Barrow, H. and Tanenbaum, H. K. (1993). Retrospective on interpreting line drawings as

three-dimensional surfaces.Arti�cial Intelligence, 59:71–80.

Batlle, J., Mouaddib, E., and Salvi, J. (1998). Recent progress in coded structured light

as a technique to solve the correspondence problem: a survey. Patter Recognition,

31:963–982.

Beckmann, P. and Spizzichino, A. (1963).The Scattering of Electromagnetic Waves from

Rough Surfaces. Pergamon Press.

Besl, P. (1989). Active optical range imaging sensors. InAdvances in Machine Vision,

pages 1–63.

Besl, P. and Jain, R. C. (1986). Invariant surface characteristics for 3d object recognition

in range images.Comput. Vision Graph. Image Process., 33(1):33–80.

126



Bichsel, M. and Pentland, A. (1992). A simple algorithm for shape from shading. In

IEEE Proceedings of Computer Vision and Pattern Recognition, pages 459–465.

Blais, F. (2003). A review of 20 years of range sensor development. InProc. Videometrics

VII, SPIE, pages 62–76.

Blanz, V. and Vetter, T. (1999). A morphable model for the synthesis of 3d faces. InSIG-

GRAPH '99: Proceedings of the 26th annual conference on Computer graphics and

interactive techniques, pages 187–194, New York, NY, USA. ACM Press/Addison-

Wesley Publishing Co.

Blanz, V. and Vetter, T. (2003). Face recognition based on �tting a 3d morphable model.

IEEE Trans. Pattern Anal. Mach. Intell., 25(9):1063–1074.

Bors, A., Hancock, E., and Wilson, R. (2003). Terrain analysis using radar shape-from-

shading.IEEE Trans, on Pattern Analysis and Machine Intelligence, 25(5).

Brooks, M. and Horn, B. (1985). Shape and source from shading. In Proceedings of

International Joint Conference in Arti�cial Intelligence, pages 932–936.

Coleman, J. and Jain, R. (1982). Obtaining 3-dimensional shape of textured and specular

surfaces using four-source photometry. InCGIP, volume 18, pages 309–328.

Cootes, T., Edwards, G., and Taylor, C. (1998). Active appearance models. InProc.

European Conference in Computer Vision, pages 484–498.

Dovgard, R. and Basri, R. (2004). Statistical symmetric shape from shading for 3d struc-

ture recovery of faces. InProc. European Conference on Computer Vision, pages

99–113.

Dupuis, P. and Oliensis, J. (1994). An optimal control formulation and related numerical

127



methods for a problem in shape reconstruction. InThe Annals of Applied Probability,

volume 4, pages 287–346.

Erens, R., Kappers, A., and Koenderink, J. (1993a). Estimating local shape from shading

in the presence of global shading.Perception and Psychophysics, 54(3):334–342.

Erens, R., Kappers, A., and Koenderink, J. (1993b). Perception of local shape from

shading.Perception and Psychophysics, 54(2):145–156.

Forsythe, D. and Ponce, J. (2001).Computer Vision: a Modern Approach. Prentice-Hall.

Frankot, R. and Chellappa, R. (1988). A method for enforcingintegrability in shape from

shading algorithms.IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 10:438–451.

Georghiades, A., Belhumeur, D., and Kriegman, D. (2001). From few to many: Illu-

mination cone models for face recognition under variable lighting and pose.IEEE

Transactions on Pattern Analysis and Machine Intelligence, pages 634–660.

Gregory, R. (1997). Knowledge in perception and illusion.Transactions of the Royal

Society of London. B 352, pages 1121–1128.

Healey, G. and Jain, R. (1984). Depth recovery from surface normals. InICPR '84, pages

= 894–896.

Horn, B. (1970).Shape from Shading: A Method for Obtaining the Shape of a Smooth

Opaque Object from One View, PhD Thesis, MIT.

Horn, B. (1986).Robot Vision.MIT Press, Cambridge, MA.

Horn, B. (1989). Height and gradient from shading.International Journal of Computer

Vision, 5(1):37–75.

128



Horn, B. (1997). Understanding image intensities.Arti�cial Intelligence, 8:201–231.

Horn, B. and Brooks, M. (1989).Shape from Shading. MIT Press, Cambridge, MA.

Horn, B. and Brooks M, J. (1986). The variational approach toshape-from-shading.

Computer Vision and Image Processing, 33:174–208.

Ikeuchi, K. and Horn, B. (1981). Numerical shape from shading and occluding bound-

aries.Arti�cial Intelligence, 17:141–184.

Jarvis, R. (1983). A perspective on range �nding techiques fro computer vision.IEEE

Transactions on Pattern Analysis and Machine Intelligence, 5(2):122–139.

Kirby, M. and Sirovich, L. (1990). Appliction of the karhumen-loeve procedure for the

characterization of human faces.IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 12(1):103–108.

Klette, R. and Schluens, K. (1996). Height Data from Gradient Maps. InProc. SPIE

Vol. 2908, p. 204-215, Machine Vision Applications, Architectures, and Systems In-

tegration V, Susan S. Solomon; Bruce G. Batchelor; Frederick M. Waltz; Eds., pages

204–215.

Koenderink, J. and Van Doorn, A. (1992a). Surface perception in pictures. Perception

and Psychophysics, 52(5):487–496.

Koenderink, J. and Van Doorn, A. (1992b). Surface shape and curvature scales.Image en

Vision Computing, 10:557–565.

Koenderink, J., Van Doorn, A., Christou, C., and Lappin, J. (1996). Perturbation study of

shading in pictures.Perception, 25(9):1009–1026.

Lee, C. and Rosenfeld, A. (1985). Improved methods of estimating shape from shading

using light source coordinate system.Arti�cial Intelligence, 26:125–143.

129



Mardia, K. V. (1972).Statistics of Directional Data. Academic Press London and New

York.

Marr, D. (1982).Vision: A Computational Investigation into the Human Representation

and Processing of the Visual information. Freeman.

Marr, D. and Nishihara, H. K. (1978). Representation and recognition of the spatial

organization of three dimensional shapes. InProc. Royal Society of London, B,

volume 200.

Mingolla, E. and T., T. J. (1986). Perception of solid shape from shading.Biological

Cybernetics, 53:137–151.

Moses, Y., Adini, Y., and Ullman, S. (1994). Face recognition: the problem of com-

pensating for changes in illumination direction. InProc. European Conference on

Computer Vision, pages 286–296.

Nandy, D. and Ben-Arie, J. (1999). Shape from recognition and learning: Recovery of 3-d

face shapes. InIEEE Computer Society Conference on Computer Vision and Pattern

Recognition, volume 2.

Nene, S. A., Nayar, S. K., and Murase, H. (1996). Columbia object image library: Coil-

100. Technical Report CUCS-006-96, Columbia University.

Pentland, A. (1982). The visual inference of shape: Computation from local features.

PhD Dissertation, Dep. Pshychology, MIT, Cambridge, MA.

Prados, E., Camilli, F., and Faugeras, O. (2006). A unifyingand rigorous shape from

shading method adapted to realistic data and applications.Journal of Mathematical

Imaging and Vision.

130



Ragheb, H. and Hancock, E. (2003). A probabilistic framework for specular shape-from-

shading.Pattern Recognition, 36:407–427.

Ramachandran, V. (1988). Perceiving shape from shading.Scienti�c American, 129:76–

83.

Robles-Kelly, A. and Hancock, E. R. (2004). A graph-spectral approach to shape-from-

shading.IEEE Transactions on Image Processing, 13(7):912–926.

Rouy, E. and Tourin, A. (1992). A viscosity solutions approach to shape from shading.

SIAM Journal of Numerical Analysis, 29(3):867–884.

Samaras, D. and Metaxas, D. (2003). Incorporating illumination constraints in deformable

models for shape and light direction estimation.IEEE Trans. PAMI, 25(2):247–264.

Scharstein, D. and Szeliski, R. (2003). High-accuracy stereo depth maps using structured

light. In IEEE Proceedings on International Conference on Computer Vision and

Pattern Recognition.

Schlick, C. (1994). A survey of shading and re�ectance models. Computer Graphics

Forum, 13(2):121–131.

Shimshoni, I., Mose, Y., and Lindenbaum, M. (2003). Shape reconstruction of 3d bilater-

ally symmetryc surfaces.The International Journal of Computer Vision, 2:1–15.

Sim, T., S., B., and Bsat, M. (2003). The cmu pose, illumination, and expression database.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(12):1615–

1618.

Smith, W. and Hancock, E. (2005a). Face recognition using a surface normal model. In

Proc. International Conference on Image Analysis and Processing, pages 423–430.

131



Smith, W. and Hancock, E. R. (2005b). Recovering facial shape and albedo using a

statistical model of surface normal direction. InProc. Tenth IEEE International

Conference on Computer Vision (ICCV'05), pages 588–595.

Smith, W., Robles-Kelly, A., and Hancock, E. R. (2004). Re�ectance correction for

perspiring faces. InProc. ICIP, pages 1389–1392.

Starks, M. (1995). Stereoscopic imaging technology: Review of patents and literature.

International Journal of Virtual Reality, 1(2):2–25.

Stevens, K. and Brookes, A. (1987). Probing depth in monocular images. Biological

Cybernetics, 56:355–366.

Sutherland, N. (1979). The representation of three-dimensional objects. Nature,

(278):395–398.

Tang, X. and Wang., X. (2004). Face sketch recognition.IEEE Transactions on Circuits

and Systems for Video Technology, 14(1):50–57.

Torrance, K. and Sparrow, E. (1967). Theory for off-specular re�ection from roughened

surfaces.Journal of the Optican Society of America, 57(9):1105–1114.

Trucco, E. and Verri, A. (1998).Introductory Techniques for 3-D Computer Vision.

Prentice-Hall, San Francisco.

Turk, M. and Pentland, A. (1991). Face recognition using eigenfaces. InProc. IEEE

Conference on Computer Vision and Pattern Recognition, pages 586–591.

Wei, T. and Klette, R. (2002). Height from gradient using surface curvature and area

constraints. InProc. ICVGIP.

Worthington, P. L. and Hancock, E. R. (1998). Needle map recovery using robust regu-

larizers.Image and Vision Computing, 17(8):545–559.

132



Worthington, P. L. and Hancock, E. R. (1999). New constraints on data-closeness and

needle map consistency for shape-from-shading.IEEE Trans. on Pattern Analysis

and Machine Intelligence, 21(12):1250–1267.

Worthington, P. L. and Hancock, E. R. (2001). Object recognition using shape-from-

shading.IEEE Trans. on Pattern Analysis and Machine Intelligence, 23(5):535–542.

Wu, Z. and Li, L. (1988). A line integration based method for depth recovery from surface

normals.CVGIP, 43(1):53–66.

Yang, J., Zhang, D., Frangi, A., and Yang, J. (2004). Two-dimensional pca: a new ap-

proach to appearance-based face representation and recognition. IEEE Trans. on

Pattern Analysis and Machine Intelligence, 26(1):131–137.

Zhang, R., Tsai, P., Cryer, J., and Shah, M. (1999). Shape from shading: A survey.IEEE

Trans. on Pattern Analysis and Machine Intelligence, 21(8):690–706.

Zhao, W. and Chellapa, R. (2000). Illumination-insensitive face recognition using sym-

metric shape-from-shading. InProc. Conference on Computer Vision and Pattern

Recognition, pages 286–293.

Zhao, W. and Chellapa, R. (2001). Symmetric shape-from-shading using self-ratio image.

International Journal of Computer Vision, 45(1):55–75.

Zheng, Q. and Chellapa, R. (1991). Estimation of illumination direction, albedo and

shape from shading.IEEE Trans. on Pattern Analysis and Machine Intelligence,

13(7):680–702.

133


