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Abstract

The problem of acquiring surface models of faces is an ingmbrone with potentially
signi cant applications in biometrics, computer games pratiuction graphics. For such
task, the use of shape-from-shading (SFS) is appealing #ileca non-invasive method
that mimics the capabilities of the human visual systemhisithesis, our interest lies on
the recovery of facial shape from single image views. We nialienovel contributions
to this area.

We commence by describing an algorithm for ensuring daiseriess and integrabil-
ity in Shape-from-Shading. The combination of these caists is aimed to overcome
the problem of high dependency on the image irradiance.

Next, we focus on developing a practical scheme for faceyarsalsing SFS. We
describe a local-shape based method for imposing a noveégiiy constraint. We show
how to modify the orientations in the surface gradient elsing critical points on the
surface and local shape indicators.

Then, we explore the use of statistical models that can bé useonjunction with
SFS to reconstruct facial shape. We describe four diffenays of constructing the 3D
statistical models of faces using Cartesian representatibe surface height, the surface
gradient, the surface normal azimuthal angle and nally aleldased on Fourier domain
basis functions. The models can be tted to input imagesgiainlata-driven procedure
which satis es the image irradiance equation as a hard canstand is also integrable.

Finally, we propose a coupled statistical model that carsleel to recover facial shape
from brightness images of faces. We jointly capture vasigiin intensity and surface
shape. The model is constructed by performing principalmaments analysis (PCA) on
sets of parameters describing the contents of the intemsages and the facial shape
representations. By tting the coupled model to intensifgal facial shape is implicitly

recovered from the shape parameters.
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Chapter 1

Introduction

This thesis is about the recovery of three dimensional sarénape from intensity im-
ages of faces. The intensities of an image (shading) pravidery important source of
information for the perception and understanding of 3D coisjeén computer vision (Marr,
1982; Horn and Brooks M, 1986). There is a wide range of pspbiisical experiments
that support the idea that the human visual system can éstrape from shading (Koen-
derink and Van Doorn, 1992a; Erens et al., 1993a; Erens, &t 3b; Koenderink et al.,
1996).

After the publication of Marr's bookision(Marr, 1982), most attention in the litera-
ture was paid to the recovery of an object's three dimens$gimgpe as the main goal for a
computer vision system. This is due to the theory stated by Bfad Nishihara (Marr and
Nishihara, 1978) concerning the way human brains storeeheepved world. They pro-
posed a coordinate system centered on the perceived obfest.theory about perception
is object-centered. In computational terms, this meanmigftthree-dimensional models
of objects that can be later manipulated for the task of rettimyp (Sutherland, 1979).
The impact of the object-centered approach was to focus @ahade for recovering the

three dimensional shape of objects from image cues, nastepe-from-X techniques,



i.e. shape-from-shading, shape-from-texture and shape-fnotion (Trucco and Verri,
1998).

As far as it relates to face shape recovery, the problem afiiang surface mod-
els of faces is an important one with potentially signi caagplications in biometrics,
computer games and production graphics. Some of the waysjtora surface models
include the use of range-scanners (Jarvis, 1983; Besl,;1BI&&, 2003), stereoscopic
cameras (Starks, 1995) and structured light sensors €Battlal., 1998; Scharstein and
Szeliski, 2003). However, one of the most appealing ways isse Shape-from-Shading
(SFS) (Horn and Brooks, 1989), since this is a non-invasigegss which seems to mimic
the capabilities of the human vision system.

Ideally, an automated SFS system takes as input the infensge of an object and
returns as output the shape of that object (see Figure 1diyetkr, the history of SFS has
shown that the original problem setting has to be constdain@rder to obtain feasible
results (Zhang et al., 1999). When the problem is speciliizéace shape recovery, the
bilateral symmetry of faces (Shimshoni et al., 2003; Zhab @hellapa, 2000) as well as
critical points over the intensity image (Prados et al.,&0tave been explored. The use
of these constraints has improved the quality of the resditained. On the other hand,
accuracy can be achieved through the use detailed corstrincerning the recovery
of facial shape. For example, statistical methods have bgplored for the objective of
face shape recovery (Atick et al., 1996; Blanz and Vetted32@rom single image views.
These approaches require a database of accurate suitabheation belonging to objects
of the same class, i.e. a database of three-dimensional face

Among the topics that have been given particular importaheeto the impact they
have in the eld of SFS we can mention: illumination modelsse estimation, estimation
of the re ectance properties, integration techniques astthation of the illumination

direction. In this thesis, we do not directly address thepe&es. Rather, we focus research



Image Intensity

Image plane

Surface normal

Figure 1.1:SFSis an inverse rendering problem. A 2D intensity imageaksr as an input. The
underlying 3D surface producing irradiance of the imagéésdaxpected output.

efforts towards the problem of recovering facial shape feosingle image.

We make four novel contributions to the topic. The rst twontgbutions deal with
traditional SFS approaches. First, we combine integtgiaind image irradiance con-
straints for needle map stabilization. Second, we proposeconvexity constraint that
addresses the problem of imploded facial features in needfes of faces.

The last two contributions are related to the problem of gistatistical models of
faces for face shape recovery. Here we explore the use oé<tamtrepresentations for
creating statistical models of faces that can be tted tgioumage irradiance and integra-
bility constraints. Finally, we relate intensity and 3D faige shape into a coupled model
for face shape recovery. Here the main idea is to use the slogbeients of the intensity
based model in order to directly obtain 3D surface shape fmemsity images of faces.

A summary of the contributions of the thesis is given in thetisection.



1.1 Motivation

The recovery of facial shape through SFS techniques has &depic of research in

the computer vision community (Zhao and Chellapa, 2000mShoni et al., 2003; At-

ick et al., 1996; Dovgard and Basri, 2004; Blanz and Vetté)3). Several problems
have been encountered depending on the approach used ¢otlseha. It is clear that,

from a single image view, a precise height map is dif cult tat@in by integration of the

eld of surface normals delivered by traditional SFS, duddcal errors in the direction

of the surface normals. The most important problem is thagnintegrated, the con-
cave/convex ambiguities in the needle-map can lead to gterton of the topography
of the reconstructed face. One of the most serious instasfadss problem is that the

nose can become imploded (see Figure 1.2). However, this mloeimply that the en-

tire gradient eld is in error. In fact, some regions on theaipe do provide directional
information that is suf ciently faithful for qualitativgl good surface reconstruction. A
convexity-enforcement constraint can be designed to Hedpirhploded facial regions
arise, resulting in overall improvement for the recovereddcure of the face.

On the other hand, the use of statistical models has als@@rovbe useful for facial
shape recovery from brightness images. In the two-dimeasidomain, variations in
facial appearance can be captured using the eigenfacaesdaen(Turk and Pentland,
1991). Here a set of aligned facial intensity images are tsednstruct the eigenmodes.
The image data is usually encoded as a Cartesian long-u@ctmncatenating the rows
or columns of the image. However, if a 3D model is to be comrstéaiin an analogous
manner from range data, then there exist alternative waysefiresenting the training
data. One of the simplest and most commonly used approashesdopt a cylindrical
coordinate representation (Atick et al., 1996; Blanz anitieve2003). This representation
is used since it captures the linear relations between baas. Unfortunately, it can lead

to ambiguity since different data can be tted to the samalh@adel. An alternative is to

4



Figure 1.2:The problem of imploded facial features in SFS. The rst cotushows an intensity
image of a face. The next two columns present needle mapseaghitimaps, respectively. The
upper row shows results obtained using the Worthington arttbick SFS algorithm (Worthington
and Hancock, 1999). The bottom row shows ground truth datate khe problem of imploded
facial features over the upper row gures.

use a Cartesian representation, i.e. height maps (DovgdrBasri, 2004), in which each
surface point is speci ed by itéx; y; z) coordinates, where theaxis is in the direction
of the viewer. A general drawback of Cartesian coordinatgle high spatial variance
caused by face features such as nose, mouth and eyes.

Height maps, however, are not the only way for representihng®rmation in Carte-
sian coordinates. Alternative encodings can be drawn fré&D thformation such as the
partial derivatives of a surface. Although the 2.5D repnéston is less appealing since
it must be integrated to recover a surface, because of thgeinmeadiance equation the
2.5D representation is closer to the raw image brightnetsstan a height surface.

Although statistical approaches have the drawback of reqga database of faces to
train the model, the accuracy of the recovered shapes iggartougenerate novel views
far from the range of the viewer's direction. To this end, amization scheme has to

be carried out in order to nd the optimum set of parameterghde model. This problem



has been addressed by minimizing the distance betweenreshdiews from recovered
surfaces and input images (Atick et al., 1996; Blanz andeve003). Unfortunately,
the minimization of this distance is badly affected by thegence of local minima. This
means that exhaustive search methods must be used, whithesaef ciency and sim-

plicity. This problem suggests that research directiorghbto be focused on exploring

alternative ways to relax this minimization problem.

1.2 Contribution

The contributions of this thesis can be divided into two grgiuthe ones related to tradi-
tional SFS and the ones related to statistical SFS. As fandgional SFS is concerned,

the contributions are:

1 The development of an SFS scheme that combines integrabiliand data close-

ness.

Here the combination of data-closeness and integrabiifstraints aims at over-
coming the problem of high dependency on image irradiancata Bloseness is
ensured by constraining surface normals to fall on an iarack cone, whose axis
points in the light source direction and whose apex anglesavith iteration num-

ber. Integrability is ensured by projecting the non-ingdaje set of surface normals
to the nearest integrable one by globally minimizing theéatise between them in
the Fourier domain. As a result, the new method recoversi@esdps that are

smooth and integrable as well as improving height surfeaeilgiy.



2 The inclusion of a new constraint that enforces convexity ifacial SFS.

Here we aim at developing a practical scheme for face asaly@ng SFS. Tradi-
tional SFS methods have a tendency to recover surfaces chwbnvex features
such as the nose are imploded. This is a result of the facstimke changes in the
elements of the eld of surface normals can cause signi acdr@gnges in the corre-
sponding integrated surface. To overcome this problem,hea s1ow to modify

the orientations in the surface gradient eld using critigaints on the surface and
local shape indicators. This results in greatly improveig/hereconstructions and

more realistic surface re-illuminations.

The contributions that are related to statistical SFS are:

3 The analysis of alternative Cartesian representations foibuilding statistical

models of faces.

Here we describe four different ways of constructing theinexgyl three-dimensional
statistical models of faces using Cartesian representatiolrhe representations
studied are the surface height, the surface gradient, tifi@ceunormal azimuthal
angle and, nally, a model based on Fourier domain basistfans. The models
can be tted to image brightness data using an alternativeexhaustive parameter
adjustment procedure. This procedure ensures that theermbsurface satis es

the image irradiance equation as a hard constraint andasrdaégrable.

4 The development of coupled statistical models for face shagecovery.

Here we aim at generating accurate shape from out-of-trgieample intensity
images in an ef cient way. To this end, we focus on the problendeveloping
a coupled statistical model that can be used to recoverl fsloaggpe from bright-

ness images of faces. We capture variations in both inteasil surface shape



using a coupled statistical model (Cootes et al., 1998)s Tdel is constructed
by performing principal components analysis on sets ofrpatars describing the
contents of the intensity images and the facial shape reptasons. By tting the

coupled model to intensity data, facial shape is impliaidgovered from the shape

parameters.

1.3 Thesis overview

A review of the literature relevant to this thesis is presdnnh Chapter 2. This review
covers classical approaches in SFS as well as recent advantacial shape recovery
from a single image view.

Chapter 3 describes an iterative algorithm that combin&s claseness and integra-
bility in SFS. The aim of this method is to relax the problenmowgérreliance in the im-
age irradiance equation by introducing an integrabilityditon into the geometric SFS
framework.

In Chapter 4, we introduce a procedure to enforce convexitgleS-acquired needle
maps. This can be used to recover shape structure from fiomdges of faces. To do
this, we use local shape indicators to re-direct the eldwface normals.

An exploration of statistical models of faces based on Gatecoordinates is pre-
sented in Chapter 5. Here we experiment with directional lagidht data in order to
build statistical models of faces. We develop data-driveotedure to t the model on
brightness data. We also explore how the integrability tamg can be integrated into
the tting method.

In Chapter 6, we combine statistical models of intensity andace shape into a
coupled statistical model. In this way, we jointly captuegigtions in intensity and the

surface shape representations. The model is constructeerfyrming principal compo-



nents analysis on sets of parameters describing the cerdéttie intensity images and
the facial shape representations. By tting the coupled ehdd intensity data, facial
shape is implicitly recovered from the shape parameters.

Finally, Chapter 7 highlights directions for future workdacomments on ways that

the methods presented here can be extended and improved.



Chapter 2

Literature Review

In SFS, a eld of surface normals and hence the height-mamhefviewed surface is
reconstructed from a single image. The SFS process was @kthy Marr as key in the
computation of the 2.5D sketch (Marr, 1982), and was studieépth by Horn (Horn and
Brooks, 1989). The topic has also been the focus of receaarels in the psychophysics
literature. Over the years, a number of SFS methods have d®exioped by various
researchers (Zhang et al., 1999). The general conclusithraighe solution of the SFS
problem is somewhat elusive when the input image depants f@mbert's law, which is
the case of the majority of real world imagery.

Most recent SFS methods have made efforts towards coriatyaime problem to a
speci ¢ domain. This is the case when exploiting symmetrigd@ and Chellapa, 2000;
Shimshoni et al., 2003) or using critical points (Pradod.e2806) for facial SFS. How-
ever, only when more detailed constraints are applied, atatistical SFS (Atick et al.,
1996; Blanz and Vetter, 2003) or photometric stereo (Geadss et al., 2001; Forsythe
and Ponce, 2001), do the results show the necessary acdaaanded by model-based
face recognition systems. Photometric stereo requiresaat three images of the same

object illuminated from different points while the staitst SFS uses a database of accu-
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rate training information for objects of the same class,d.database of 3D faces.

The literature review in this chapter covers recent advameehe development of
SFS. We start with a brief de nition of the SFS problem in $&ct2.1. We present a
concise survey on psychophysical support for SFS in Se2tdnAn overview of classic
computational SFS methods is presented in Section 2.3llfimaSection 2.5 we review

the state-of-the-art on SFS for facial shape recovery.

2.1 Shape-from-shading

In brief, SFS aims to solve the image irradiance equatid; y) = R(p;q;s), whereE

is the image brightness value of the pixel with positigny), andR is a function referred

to asthe re ectance magHorn, 1997). The re ectance map uses the surface gradients
p= % andq = %X;yy) together with the light source direction vectito compute a
brightness estimate which can be compared with the obsémngltness, using measure
of error.

A Lambertian surface exhibits matte or diffuse re ectant@ough most SFS meth-
ods assume Lambertian re ectance, there are also moresmaited re ectance models
which deal with the issue of specularity (Beckmann and Sghizo, 1963; Torrance and
Sparrow, 1967). For a survey of re ectance models, see ({@¢H994). Recently, some
efforts for handling highlights in SFS schemes have beepgeed (Ragheb and Hancock,
2003).

If the surface normal at the image locatipny) isn = (p;q; 1)7, then under the

Lambertian re ectance model, with a single light sourceadiron, no inter-re ections

and constant albedo, the image irradiance equation becomes
E(x;y)=n s (2.1)
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In other words, the SFS problem is the one of recovering thfacel that, after in-
teraction with the environment (illumination conditiorahjects' re ectance properties,
inter-re ections), produces the radiances perceived bydieyes as intensities. In gen-
eral, though, SFS is an under-constrained problem sincevheegrees of freedom for
surface orientation (slant and tilt) must be recovered feogsingle measured brightness
value. In the following section, we provide a review of psyphysical experiments that

support the use of SFS in living systems.

2.2 Psychophysical support for SFS

There is considerable body of research on psychophysietation to SFS. This is mainly
motivated since the way living systems work can assist tisggdeof arti cial systems.

At the onset in the development of SFS, it was assumed thdiuiman visual sys-
tem is able to perform accurate surface recovery from sigasiimfaces (Horn, 1986).
However, a series of experiments started by Mingolla anaiT@dingolla and T., 1986)
as well as Stevens (Stevens and Brookes, 1987) and contiyugdenderink and his
coworkers (Koenderink and Van Doorn, 1992a) revealed soteeasting features of hu-
man perception pertinent to SFS.

These experiments largely consisted in using gauge gumdsi@onochrome views of
piecewise-smooth objects. Humans were asked to deterfiiivee gures were tangent to
the surface in the picture in order to obtain samples of gradnformation as perceived
by humans. The information obtained from the experimentstnansformed to the slant
and tilt angles of the surface normals estimated by the stfhj#Vith gradient estimates
at hand, a surface integration process was carried out tveethe shape perceived by
the subjects.

The conclusion from (Koenderink and Van Doorn, 1992a) was ttie human visual
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Figure 2.1: Example of the tests realized in Koenderinks experimentsefiderink and
Van Doorn, 1992a). The image in the left corresponds to thugs to be gauged. The image
in the middle shows example of the gauge gure used in themx@ats. The image in the right
shows the nal sampled set of normals as perceived by oneeadubjects in the experiments.

system is not able to accurately recover quantitative heigbrmation from shading,

though qualitative data seemed to be consistent with theusiti This can be explained
due to the considerable degree of variation for the slanteaggfimates among differ-
ent subjects, while the tilt estimation remained consistédth the image. Also, it was

deduced that human observers perceive the silhouette(tews, local surface orienta-
tions) of objects rather than accurate depths.

Ramachandran's research supported these suggestionsmotstrated that the hu-
man visual system recovers depth information using not shiding, but also outlines,
features and prior knowledge about the observed objectm@Blaandran, 1988). Also
in (Barrow and Tanenbaum, 1993) experiments showed thashu®#S is affected by
stereoscopic processing, since the line drawing of theispawhttern seemed to play a
central role in its interpretation. Further experimentsidastrated that the human visual
system cannot recover the shape of objects when only shadimgnation is present,

since humans are not capable of classifying such objeaiamdic groups of shapes, i.e.
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cylinder-like, sphere-like, saddle-like, ellipsoidéiKErens et al., 1993b). The shape in-
dex, a measure proposed in (Koenderink and Van Doorn, 19@2is)used for evaluating
subject performance. Alternative experiments carriedbyu(Koenderink et al., 1996)
showed the importance of edges over shading. By graduatlyngadge cues to objects
similar to the ones used in (Erens et al., 1993b), it was shbatthe subjects were able
to better classify objects than if shading alone was used.

Of the results presented in this brief review of psychoptglsxperiments, the most
important ones suggest that, though the human visual systeat capable of recovering
exact three-dimensional information solely on the basshafling, it does recover broadly
similar surfaces to the ones presented as stimuli. Thisesc#se not only for simple
convex surfaces (Koenderink and Van Doorn, 1992a), but falsonore complicated
surfaces (Koenderink et al., 1996).

If we compare the behavior of the human visual system to the aveomputer vi-
sion system functions, we cannot expect an arti cial SFSgpam to deliver accurate
height information, but rather an approximation of the acef that generates the input
image. However, the performance can be improved using piettec stereo (Forsythe
and Ponce, 2001; Georghiades et al., 2001) and statist&[AStick et al., 1996; Blanz
and Vetter, 1999; Dovgard and Basri, 2004).

2.3 Traditional SFS approaches

Numerous methods for SFS have been proposed in the literafline most common
classi cation of the methods is based on how they specifypttedlem. In the following

subsections we use a classi cation similar to the one ptesen (Zhang et al., 1999).
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Global minimization methods

In global minimization approaches, the problem is minimgzcost functionals (lkeuchi
and Horn, 1981; Brooks and Horn, 1985; Frankot and Chellapp88; Horn, 1989;
Zheng and Chellapa, 1991). The complete set of image iriemnsbntribute to the surface
reconstruction. The minimization of the functional is menmhed usinghe calculus of
variations In fact, between 1981 and 1991, SFS was considered as daaaigroblem
and was frequently posed as that of minimizing cost funeti®ithat capture constraints
on the gradient eld (Horn and Brooks M, 1986). In practice timethod uses iterative
schemes in the discrete domain.

Usually, the cost functionals encapsulated the criterisuoface smoothness, integra-
bility, compliance with the image irradiance and unit nokniasolated, these functionals
are not suf cient to constrain the problem. Therefore, a boration of functionals is of-
ten needed. Once a suitable set of constraints is selebedgekt step is to choose the
method for minimizing them.

The main drawback of the cost functionals associated withvHriational approach
is its dependency on the correct choice of the weightingofaftir each constraint. If
the combination of functionals is placed into a regular@atramework, as proposed
by (Brooks and Horn, 1985), then the method tends to overmtbe recovered needle
map, thus losing surface detail. Also, solving the difféi@requations can be dif cult if
the problem is not discretized correctly.

In (Worthington and Hancock, 1999), a method for more adeunaedle map calcu-
lation was presented. Here the image irradiance equatisrir@ated as a hard constraint
by forcing every recovered surface normal to lie on its n&igvesition on the re ectance
cone. The needle maps delivered by this geometric framehavk proved to be useful
for computing topographic characteristics that can be t@e®D object recognition from

2D brightness images (Worthington and Hancock, 2001).
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Propagation methods

Propagation methods commence with points of known heigtfidsel from which shape
information is extended across the whole surface. The rdethcharacteristic strips (Horn,
1970) is the classic propagation method. A characteristip & a line in the image
from which depth and orientation can be calculated, pravitiat these are known at the
starting point of the line. Horn solved this problem by usangystem of ve ordinary
differential equations.

Later, a solution for the shading differential equationsegaing surface shading ap-
peared in (Rouy and Tourin, 1992). Here the use of viscosiytions and Hamilton-
Jacobi-Bellman equations was proposed. Additionallye@is and Dupuis formulated
SFS as an optimal control problem, which can be solved usimgenical methods, pro-
vided that information about the location and the heightimslar points on the surface
is known (Dupuis and Oliensis, 1994).

Alternatively, Bichsel and Pentland proposed a two-stethote (Bichsel and Pent-
land, 1992), which is a simpli ed version of that of Oliensiad Depuis. First, using
directional derivatives, they determined possible s@fslopes in various directions of
the image (using an 8-neighborhood), by rotating the imagdign the tilt angle of the
light source direction with one of the directions of the 8gmdorhood. The subsequent
reconstruction process iteratively computes a new heigloievby checking which of the
eight calculated slopes most strongly propagates thecutéavards the illumination di-
rection. The maximal slope is used to update the height estidn The nal recovered
surface is rotated back to its original pose.

More recently, Prados and Faugeras (Prados et al., 20060$2d a new method for
the Lambertian SFS problem based on the notion of Crandats_viscosity solution.
This method requires the knowledge of the solution (theeserto be reconstructed) only

on some part of the boundary or of the singular set (the sefhefpbints at maximal
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intensity). Their work draws on the notion of viscosity satas and the work of Dupuis

and Oliensis dealing with classical solutions and valuetions.

Local methods

Local SFS approaches assume local geometry for every plosnitrface of the object un-
der study. These methods only calculate surface orientatibich can be integrated later
to obtain a corresponding height map. In (Lee and Roseni&@5), a method for the
recovery of surface orientation as well as the estimatiahe{light source direction was
proposed. This is based on the work of Pentland (Pentlar@R)19They approximate
local surface regions by spherical patches. For such tas&naformation of system co-
ordinates is needed. First, they calculate the slant ainaf tihe surface based on the light
source direction. Second, they project these directionk tmathe viewer coordinate sys-
tem. The method does not seem to function well when the assaumuf local spherical

surface is violated.

2.4 Surface integration from gradient elds

In SFS and photometric stereo, surface reconstruction fomestimated gradient eld is
required. Unfortunately, the gradient eld is not alwaysegrable, i.e. it has non-zero
curl. This is why the surface integration, or height-fronagdjent problem has received
considerable attention in its own right. Integration teages can be classi ed as being
local or global. Local techniques are based on curve inte@rad can use different inte-
gration paths and neighborhoods (Wu and Li, 1988; Bors £2@03; Robles-Kelly and

Hancock, 2004). Global methods deal with the minimizatiberoor functionals (Horn,

1989; Frankot and Chellappa, 1988). Global approachesttebd more robust to noise

and recover smoother surfaces. An interesting analysisszomg gradient elds integra-
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tion methods is given in (Klette and Schluens, 1996).

2.4.1 Local integration methods

Local integration methods de ne paths of integration alevigch they propagate height
information. One of the rst local integration methods irethterature is the two-point
technique (Coleman and Jain, 1982), which speci es a clikegpath starting in the mid-
dle of the gradient eld. The surface height can be recovérgdonsidering the surface
normal vectors at the two adjacent points of a given locatibynputing the average tan-
gent through the given point, and interpolating the heigit the surface normals. An
extension of this method using eight adjacent points isrileestt in (Healey and Jain,
1984).

In (Wu and Li, 1988), a similar local integration method haei developed. They
start with initial height values, which are propagated agditw to a local approximation
rule (e.g., based on the 4- neighborhood) using the givatiggmadata. This operation can
be repeated using different scan algorithms. The resuiitgight values are determined
by averaging operations. However, initial height valuegehta be provided.

Alternatively, a geometric height recovery approach fartkgtic aperture radar (SAR)
images of terrain has been proposed in (Bors et al., 2003je keown and unknown
height values are rst localized and then the unknown heigthies are calculated using
a gradient updating algorithm. A more sophisticated apgrdar the integration of gra-
dient elds is proposed in (Robles-Kelly and Hancock, 2004¢re spectral-graph theory
is used to nd an integration path using the leading eigetaseaf the transition matrix.
The needle map is characterized by a this matrix, which ispeged from the sectional
curvature for different locations on the surface. The pdtimtegration is nally located
using a graph seriation method. A severe restriction fa theéthod is that it becomes

highly computationally demanding in resources for largages.
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In general, local integration approaches suffer the drawlod unstable error propa-
gation if the gradient eld is noisy. The locality of the commations propagates errors

along the integration path. As a result, these methodsgiralepend on data accuracy.

2.4.2 Global integration methods

Global integration methods minimize an error functionaheTclassic global integration
method is the Frankot and Chellappa's algorithm (Frankot @hellappa, 1988). They
enforce integrability by orthogonally projecting the nimegrable eld onto a vector sub-
space spanning the set of integrable slopes. However,itietinod is dependent on the
choice of basic functions.

Alternatively, the integrability constraint and the sudacurvature and area constraints
have been combined into a single functional, which is theninmized (Wei and Klette,
2002). This enforces changes in the height map to be mordaregio solve the mini-
mization problem, Fourier domain basis functions are eggaoNonetheless, associated
weighting parameters had to be carefully chosen in ordevtadaover-smoothing the
integrated surface.

Recently, Agrawal and Chellappa have proposed an algebmiooach to enforce
integrability in the discrete domain (Agrawal et al., 2009Jhey formulate enforcing
integrability as the solution of a single linear system o image. As this system is
generally undetermined, they provide conditions underctviihe system can be solved
and a method to obtain those conditions based on graph th&bsir approach is non

iterative and possesses the property of local error conergm
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2.5 Face shape recovery using SFS

As noted earlier, in contrast to the human visual systengetrss that computer vision
systems encounter dif culty in estimating the tilt of a sagé from a single image than
its slant (Koenderink and Van Doorn, 1992a). When propabieeatively, these errors
can result in poor recovery of the topography of the recayenerface. For instance,
because of the concave-convex ambiguity (Gregory, 198&jetmay be regions where
the sign of the curvature becomes reversed. Moreover, sinlgea single image is to
hand, there is no additional evidence that can be used teadine resulting shape-
errors. For face analysis, the use of SFS has proved to beuaiveeltask, since the
concave-convex ambiguity can result in the inversion ofontgnt features such as the

nose. To overcome this problem, domain speci ¢ constrdiate been used.

2.5.1 Constraining the problem

Symmetry is an important cue for the recovery of surface shegm images of faces.
Zhao and Chellappa (Zzhao and Chellapa, 2001) have expltitethilateral symmetry

of faces in SFS. Their framework deals with Lambertian sag$awith unknown and po-
tentially varying albedo. The problem of source-from-shgds also addressed. Ortho-
graphic projection and frontal views are also assumed. Taage irradiance equations
are used, one is the standard equation used in SFS and tihésaleelf-ratio image irra-

diance equation. The latter equation relates to the setfiraage which is de ned as the
ratio of two halves of the input image to light source andatefshape. This symmetric
scheme is proved to have a unique global solution. The metiokis well with synthetic

surfaces but does not perform well when tested on imagescegfaith natural albedo
variation. The method has nonetheless been used for gfdatie recognition (Zhao and

Chellapa, 2000).
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Similarly, Shimshoni et al. (Shimshoni et al., 2003) havesented a shape recon-
struction method for bilaterally symmetric surfaces frosirayle image. The basic idea is
that an image taken from a general, non frontal view poirdgumon-frontal illumination
can be regarded as a pair of images. Each image of the paieisalhof the object,
taken from different viewing positions and with differeighting directions. Geometric
and photometric information can be used in order to obtaiaresd correspondence map
between pairs of symmetric points, for the purposes of dehape recovery. Unknown
lighting and viewing parameters are also recovered by theg®s. Lambertian surfaces,
unknown constant albedo and weak perspective projectierassumed. This method
gives results whose quality depends on whether input imageéontal or non-frontal
views. Better results are obtained from non-frontal-viexaraples.

A method for the integration of non-linear holonomic coastts in physics-based
deformable models has been introduced in (Samaras and 820603), where the use of
Lagrange multipliers and a Baumgarte stabilizer allow fer tobust integration of these
constraints. This unifying approach can be used for thelprolof shape and illumination
direction estimation from shading. The method can be agpbeboth Lambertian and
non-Lambertian images and does not require knowledge oflltireination direction.
Although the authors mostly realize experiments over theddard set of SFS images
presented in (Zhang et al., 1999), they also use one exarppled to the recovery of
facial shape from a close-to-frontal intensity image.

The SFS approach of Prados and Faugeras (Prados et al.,l230&s0 been applied
to facial shape recovery. Since their SFS scheme relies @®tlstence of a unique
critical point, the input images has to be acquired undesfoly controled conditions. A
single camera with a basic ash in a dark room is used to agtatethe distance of the
face to the camera and the focal length are suf ciently smahe effect of this setting

is a resulting photograph with the brightest point at a @inglage location. Their SFS
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scheme has proved to work well with symmetric and non-symmsdirfaces, regardless
of facial pose. It gives qualitatively good facial reconstions.

Photometric stereo has also proved to be effective in thevesg of facial shape
for recognition purposes. A generative appearance-baséloah for recognizing human
faces under variations in lighting and view point has beestdieed in (Georghiades et al.,
2001). The method exploits the fact that the set of images algect in xed pose and
under all possible illumination conditions is a convex canthe space of images. Using
at least six training images of each face taken with diffelighting directions, the shape

and albedo of the face can be reconstructed.

2.5.2 The statistical approaches

In the two-dimensional domain, variations in facial appeae can be captured using
the eigenface technique (Turk and Pentland, 1991). Hered aigned facial intensity
images are used to construct the eigenmodes. The imagesdasaally encoded as a
Cartesian long-vector by concatenating the rows or columitise image. Turk and Pent-
land were among the rst to explore the use of principal comgrds analysis for face
recognition (Turk and Pentland, 1991). They used the teglendescribed by Kirby and
Sirovich. (Kirby and Sirovich, 1990) to render the methodieft.

Cootes and Taylor (Cootes et al., 1998) develop a novel maihimterpreting images
using an Active Appearance Model (AAM) that can be used foatmg deformable ob-
jects in images. An AAM contains a statistical model of thaghand grey-level appear-
ance of the object of interest which can generalize to almegtvalid example. During a
training phase, the relationship between model parametpladements and the residual
errors induced between a training image and a synthesizelglnesample is learnt. A
new image is matched by measuring the current residualshenchddel is then used to

predict changes to the current parameters.
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As far as the 3D domain is concerned, Atick et al. (Atick et E996) were the rst to
propose a statistical SFS framework based on a low dimealgp@nametrization of facial
surfaces. Principal components analysis was used to deet of "eigenheads' which
compactly captures 3D facial shape. They minimized therdyedween the rendered
surface and the observed intensity, de ning an irradiameestraint on the low parametric
space. Unfortunately, it is surface orientation and notli&ghich is conveyed by image
intensity. Therefore, tting the model to an image equatea tomputationally expensive
parameter search.

Blanz and Vetter extended the work of Attick et al. and detedisurface texture
from shape by performing principal component analysis antiino components sepa-
rately (Blanz and Vetter, 1999). Using full facial featui@respondences in cylindrical
coordinates, they develop a model that could be tted to iemdgta. Their model can
be used to make reasonable estimates of the full 3D shapecandd of a face even
when only a single picture is available. When applying theéhoeé to several images
of a person, the reconstructions approach the quality cfetluiotained with laser range
scanners. They have also developed a morphable model foréaognition (Blanz and
Vetter, 2003). Their framework can be used regardless af pod illumination changes,
but linear combinations of shape and texture have to be forseparately for the eyes,
nose, mouth and the surrounding area. As a starting poiieintting process, an ini-
tial 3D shape has to be aligned to the input image. The alignpr@cedure starts with a
manually assigned set of ducial points, from which pose glndhination parameters are
calculated. The tting procedure attempts to minimize th@ebetween the input image
and the rendered reconstruction, which is recovered tiiraugector of concatenated pa-
rameters. These parameters represent facial shape andetagtwell as calibration data
such as pose angles, 3D translation, focal length, ambrehtiaected light intensities,

color contrast and offsets of color channels. The resuligated by tting this morphable
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model have proved to be accurate enough to generate pladisticeviews from an input
image, though sacri cing ef ciency and simplicity. In fgcthe approach of Blantz and
Vetter have become a benchmark for current face shape ngceystems.

Nandy and Ben-Arie have proposed a different approach t@sbé problem attempt-
ing to learn the relationship between 3D shape and imagesityefor a number of face
parts (Nandy and Ben-Arie, 1999). They explore the idea apsHrom-recognition, i.e.
the idea that pre-recognized face parts can constrain #mespf possible solutions for
the image irradiance equation, allowing the recovery of3Bestructure of a specic
part. Using back-propagation neural networks, the praocgmmponent coef cients of
the Lambertian images are mapped to a set of principal coemgaef cients that rep-
resent depth information. The recovery of a complete fapeitormed by merging face
parts to minimize the squared error.

More recently, Dogvard and Basri (Dovgard and Basri, 20@4etcombined the sta-
tistical constraint of Atick et al. (Atick et al., 1996) anlget symmetry constraint of Zhao
and Chellappa (Zhao and Chellapa, 2000) into a single Sk&ftark. Here the aim was
to express the surface gradient in terms of a set of defoomabef cients. This allows
shape-from-shading to be transformed into a linear sysfesquations. This system can
be simply solved for the shape coef cients and used to recoctsthe height function for
the face. Although it uses a statistical model, the methasef @ent. However, facial
asymmetry produces signi cant error in the recovered s@sa

Finally, Smith and Hancock have shown how statistical me®deah be constructed in
the surface normal domain using the azimuthal equidistesjegtion (Smith and Han-
cock, 2005a). Problems with the representation of angwdta dre overcome by trans-
forming the surface normals to Cartesian points. The modléactal shape variation
are captured using a point distribution model. The modellmsimply tted to image

brightness data using geometric constraints on the directf the surface normals that
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result from Lambert's law.

2.6 Remarks

From the review of traditional SFS approaches for faciapsh@covery from a single
image, it is clear that the recovered surfaces are seri@ffdgted by factors such as
inaccurately calculated illumination direction and dépees from Lambert's law. Both
of these factors are dif cult to correct when only a singleage is to hand. Moreover,
the restrictions imposed by most SFS schemes on the gradidrismoothness, irradi-
ance, integrability, unit length) are insuf cient to overoe the biases introduced by the
problems mentioned above.

There are a number of interesting differences between thkads reported in Sec-
tion 2.5. Only Prados and Faugeras have proposed a gengricagp and make SFS
a well-posed problem. Zhao and Chellappa and Shimshoni diaale constrained the
problem to the domain of faces. The success of these methiddsepyend on the cor-
rect setting of illumination, pose and albedo, and the tagufacial reconstructions are
only qualitatively accurate. Nonetheless, recognitiom aso be realized using alterna-
tive features such as local shape (Worthington and Han@ékl,) and the quality of this
information can be considerably increased by improved SE®aoals.

Alternatively, more detailed constraints can be de nechgs3D statistical models,
which have proved to deliver the most effective results émorering shape from a single
image of a face. However, most of these methods rely on expensuristic searches for
parameter tting which sacri ce ef ciency and ease of imphentation.

In this thesis, we contribute to the literature in two waysrst: we combine and
propose new constraints for the SFS problem. Second, weilnatat in the eld of sta-

tistical shape models of faces by analyzing alternativeesgntations and exploring the
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link between facial shape and intensity using coupled nsdel

To avoid the problem of the high dependency on the imageiarae constraints, we
incorporate the integrability condition into the geomet8FS framework (Worthington
and Hancock, 1999) in Chapter 3. To correct wrongly caledatirections in surface
normals of the facial needle map, in Chapter 4 we propose acoemexity constraint
based on local shape curvature. In Chapter 5, we analyzeocanmplaze different Cartesian
representations for the construction of facial statisticadels. Finally, in Chapter 6 we
explore the relation between these Cartesian represemadind facial intensity by using
coupled statistical models. By coupling facial shape wattidl intensity we can recover

height data from the best t coef cients of the intensity nesd
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Chapter 3

Ensuring Data-Closeness and

Integrabllity in SFS

3.1 Introduction

As it has been explained in the literature review in Chapi¢h& image irradiance equa-
tion is under-constrained, since the family of surface radsnfiall on a re ectance cone
whose apex angle is equal to arc cosine of the normalizeddrbaghtness, and whose
axis points in the light source direction. Several constsahave been used to overcome
the under-constrained nature of the Lambertian SFS proliwever, their main draw-
back is that they have a tendency to over-smooth the reabwemgace slopes and result
in poor data-closeness. The net result is a loss of ne sarfistail.

These problems may be overcome by constraining the surfarceats to lie on the
re ectance cone and allowing them to rotate about the lighiree direction subject to
curvature consistency constraints (Worthington and Helkc©999). Unfortunately, the
needle maps delivered by the method are not guaranteedgty ghe integrability con-

straint, which means that the recovered partial derivatre not independent on the path
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of integration (i.e. the height function may not be recotséa Besides, these needle
maps also suffer the drawback of high dependency on the iinégesities, making the
method prone to noisy data such as specularities, roughnessvershadowed areas.

Some SFS methods calculate directly height informatiamerstdeliver gradient data
while sometimes combining the calculation of height andlgnat data is considered. If
the method only calculates gradient information, a necggsastprocessing integration
step might be required in order to get a height map. There aterder of ways in which
a surface may be recovered from a eld of surface normals. Gfrtbe most elegant
approaches is that described by Frankot and Chellappak&iramd Chellappa, 1988)
which shows how the surface may be reconstructed subjeategrability constraints by
performing a Fourier analysis of the eld of surface normals

The work described in this chapter aims at developing an $kR&wse that can be used
to recover integrable needle maps subject to hard constramLambertian re ectance
as well as relaxing the image intensity dependance drivesublg constraints.

In order to demonstrate how the two techniques can be compime will brie y
explain the geometric approach for SFS (Section 3.2)asasdhe algorithm proposed by
Frankot and Chellappa for enforcing integrability in SF&d$n 3.3). The combination
of these schemes is described in Section 3.4, while expetga®d conclusions are given

in Sections 3.5 and 3.6, respectively.

3.2 Geometric approach for SFS

Shape-from-shading aims to solve the image irradiancetequ& (X;y) = R(p;q;s),
whereE is the brightness value of the pixel with positibry), R is a function referred
to asthe re ectance magHorn, 1997) andg is the light source direction vector.

@

The re ectance map uses the surface gradiprits 25 andq = 2% together
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with the light source direction vectato compute a brightness estimate which can be
compared with the observed one using a measure of errore I§uhface normal at the
image location(x;y) isn = (p;q; 1)7, then under the Lambertian re ectance model

and assuming a normalized surface normal, the image imeeliequation becomes

E(x;y)=n s (3.2)

Worthington and Hancock (Worthington and Hancock, 1999gtadeveloped an SFS
method in which the image irradiance equation is treatednascconstraint by demand-
ing that the recovered surface normals lie on the re ectarre whose axis is the light
source direction and whose opening angle is the inverseeasithe normalized image
brightness. Compliance with Lambert's law is effected atiog an estimated smoothed
surface normal onto the nearest location on the local iarazk cone. The rotated on-cone

surface normal is given by

n%= n ° (3.2)

where is a rotation matrix computed from the cone apex angle andiigée between
the smoothed surface normal directiohand the light source directiom To restore the

surface normal to the irradiance cone, it must be rotatechigngle

0
= arccos(rradiancg cos ! ﬁ (3.3)
about the axi¢x;y;z)" = n® s. Hence, the rotation matrix is
0 1
c+ x2¢ zs+ xyc  ys+ xzc’
= % zs+ xyc ¢+ y2C Xs + yzC E (3.4)

0 0 2 0
ysS+ XzcC XS + yzcC ct+ z°C
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wherec=cos( ),c'=1 cands=sin( ).

Figure 3.1:The geometric shape-from-shading approach. The surfaceahn®is rotated by the
matrix  to obtainn® The resulting normah®is the projection oh onto the re ectance cone,
whose axis is the light source directisrand whose opening angle is the inverse cosine of the
normalized image brightness.

Roughly, the geometric SFS algorithm is described as falow

1. Calculate an initial eld of surface normals (i.e usingdrent initialization).

2. Smooth the obtained surface normal eld. The authors efrttethod proposed a
robust regularization approach to iteratively smooth tiéege normal eld (Wor-

thington and Hancock, 1998).

3. For each pixel, calculate the rotation matrixand use it to rotate each of the
smoothed normals (Equation 3.2). Fix the projected norrel as the current one

and return to the previous step.

Note that the smoothed surface norméidoes not necessarily lie on the irradiance
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cone, therefore, by rotating it using the matrix compliance with the image irradiance

equation is achieved. In Figure 3.1 we illustrate the gedm8FS projection.

3.3 The Frankot and Chellappa integration method

In (Frankot and Chellappa, 1988) a method to project a gnadiéd to the nearest inte-
grable solution was described. They suggested to use ais¢¢gfable basis functions to
represent the surface slopes so as to minimize the distateedn an ideally integrable
gradient eld and a non integrable one.

Suppose thaZ (x;y) denotes the reconstructed height at the image locationagith
ordinategx; y). The integrability condition for the surface demands thatheight func-
tion does not depend on the integration path. This in turnnmeat the surface must

satisfy the condition

Zyy = Zyx, (3.5)
whereZ,, = @é(x’gj andZ,, = @é(yxg)z.

This condition can also be regarded as a smoothness caonstsaice the partial
derivatives of the surface need to be continuous in ordethies can be integrable.

An integrable surfacg, can be represented by the basis expansion

X
Z(x;y) = C() (xy;!) (3.6)

12

where' (x;y;! ) is a set of basis functions which are not necessarily mytoalhogonal
(i.e. Fourier transform), = (!;!,) is a two dimensional index and is a nite set of

indexes. If each (! ) satis es 3.5, then so does. The rst partial derivatives oZ can
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also be expressed in terms of this set of basis functions thus

@axy) _ X
@x

@y) _ X
@y

C(') x(x;y;!) and C() yxy;t);  (38.7)

12 12

where' , = (@'=@xand' y = (@'=@). Since these are the rst partial derivatives of
an integrable surface, they share the same set of coef<@&(lt). In the same way, the

possibly non integrable gradient eld can be represented as

(1) x(xy;!)  and C() y(xy;t)  (3.8)

a@xy) _ X
) -

@xy) _ X
@ y

@

12 12

Since this set of rst partial derivatives is not integrafiteeir corresponding transform
coef cients will differ from each other (i.,e€.(! ) 6 &,(!)). The distance between the
non-integrable and the integrable partial derivatives lmaminimized in the transform
domain by making,(! ) = &,(! ) = C(! ). The goal thenis to nd the set of coef cients

that minimize the quantity

ZZ

n 0 2 2
d (22y):(Zx: Zy) Z, 2+ z, 2, dxdy (3.9)
where the subindexesandy denote rst partial derivatives.

As Frankot and Chellapa proved, the set of coef cie@{d ) minimizing the error

given in the above equation is

Po(1)Ce(1)+ Py (1E().

c()= B (1) + P,(1) :

(3.10)

RR RR
wherePy (! ) = K' «(x;y;! )k?dxdy andPy(! ) = k' y(x;y;! )k?dxdy. By pro-

jecting the set of coef cient€(! ) back from the transform domain into the spatial do-
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main, a height map corresponding to the nearest integraiofece Z(x;y) can be ob-
tained from the input gradient eld.

Equation 3.10 can be separated into two equations

PG oy ey = PG

Pe(!)+ Py(! ) P (1) + Py(! ) (3.11)

()=

whereC(! ) = C*(! )+ CY(! ). As the surfac& is the inverse transform @(! ), then

Z* andZ? are the inverse transforms 6% (! ) andCY(! ) respectively, and

Z=7"+27v (3.12)

Figure 3.2:Different stages in the integration process of the partgivdtives of a sphere. In (a)
and (b) we present the partial derivati@g andZ, respectively, while in (c) and (d) we present

the two recovered Fourier surfacE¥ andZY. The nal integrated surface is shown in (). Note
that we used a nite difference method to approximate theveiéves. The steep changes at the

boundary region in (a) and (b) are a consequence of the eliffer with the background. Some
height values are located in the bounding box and, as a coeseg, the partial derivatives are
approximated with high error.
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In this fashion, we can recover the surfaeip to an unknown scaling factor. In Fig-
ure 3.2 we show the different stages in the integration m®oéthe partial derivatives of
a sphere. In (a) and (b) we show the partial derivat&eandZ, respectively. In (c) and
(d) we show the two recovered Fourier surfaZ&sandZ”. The nal integrated surface
is shown in (e). We highlight the separation between pasiivd negative values with a
bounding rectangle. Note that these values cancel out é¢heh for the two surfaces in

(b). After summingzZ* andZ?, the result is the sphere shown in (c).

3.4 Introducing the integrability condition in the geome-
tric approach for SFS

Although the geometric framework for SFS ensures that tregarirradiance equation is
satis ed as a hard constraint, this makes the method proaedo propagation if the input
image departs from Lambert's law. Real world images arearmitated by inaccurate
data such as highlights and shadowed areas. Since the imagi@mce dictates the apex
angle of the re ectance cone, non-Lambertian images cortaiations where this cone
is not correctly set. A way to relax this problem can be lyihg set of surface normals
on less unstable and more smoothed and continuous surfaces.

The idea underpinning this section is to calculate the rseaméegrable surface from
a needle map using Frankot and Chellappa’'s method. The aqge af the re ectance
cone can be obtained on this surface with each iteratiorhisvtay, we ensure that the
surface normals will lie on re ectance cones whose apexesgbrrespond to integrable
surfaces.

The algorithm can be summarized as follows (see gure 3.3):

1. Calculate an initial estimate of surface nornrals
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2. Fromn obtain the nearest integrable surf@ by minimizing Equation 3.11. From

the integrated surface calculate a new set of surface nemmal

3. Get the apex angle of the irradiance cone using the valuesZgfthat is to say,

= cos 1(2).
4. Smoothn to obtainr®
5. Calculater® by rotatingr® using Equation 3.2.

6. Maken = r%and return to step 2. Repeat until a desired number of iterathas

been reached.

In the above algorithm, the rotation matrix does not reméatisthrough the itera-
tive process, since the changes in the apex angle of thetemee cone depend on the
recovered surface after each iteration. As a consequdreaetv scheme satis es a com-
bination of integrability and data-closeness constraints

Note how the image irradiance equation is still treated asrd lkonstraint, since
at each iteration the surface normals are projected badle tonl the re ectance cone.
However, the hardness of this constraint is relaxed wheringake re ectance cone to
be based on continuous surfaces calculated after eactiateirastead of making them lie
on the irradiance of the image along the whole iterative @sec

It is also important to mention that due to the projectiontd surface normals to
the re ectance cone after each iteration, the z-compongtitenormalr®will always
correspond to the calculated height surface of the nal gnatd eld when using the
Frankot and Chellappa height recovery method. By contiashe original method the
z-component will always be the normalized input intensihage. Therefore, besides

calculating surface gradients, the new algorithm alsoutales height information.

35



Figure 3.3: Graphic representation of the behavior of the new algoritiithe numbers under
the pictures correspond to each step. In step 1, a surfacgahestimatiom is carried out. This
surface normal is not suppose to lie on the re ectance camnstdps 2 and 3, a new integrable set
of surface normals together with its corresponding surfaZeare calculated using a global mini-
mization approach in the Fourier domain. Note how the sertdmanges frork (image intensity)

to Z (nearest integrable surface). Also, the apex angle of tkeetence cone changes. Step 4is a
regularizing step in order to calculate the smoothed senfmemalr® which is projected back to
the updated cone to get the nal set of surface norméfsin steps 5. Both the width of the apex
angle and the surface are just randomly represented in #phigt also the updating behavior of
the surface normals is supposed.
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Figure 3.4:Plot of the squared height differences between the recdwmdace and the ground-
truth. Dotted line: original algorithm, solid line: new algthm.

3.5 Experiments

The algorithm was tested on real world images. The evaloatiteria was based on the
squared height difference and degree of gradient consig{en. the percentage of pixels
of every image whose differencs, Z,4 are less than or equal to a certain threshold
In our experiments we have compared the results obtainddti original geometric
approach and the new integrable-geometric approach.

We used twenty-eight real world images. Ten of these withesponding height data,
taken from the range database of the Signal Analysis and idaéterception Laboratory,
Department of Electrical Engineering, the Ohio State Ursig. The rest of the images
were taken from the Coil database (Nene et al., 1996). Fahaltests, the light source
direction was assumed to be [0,0,1].

Figure 3.4 shows the results for the squared height diftesgnThe original approach

LFor all the experiments this threshold was set to 0.1.
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Figure 3.5: Individual height recovery analysis: (frog, bird and Ilab$t Left column: input
image; middle column: original method; right column: newthuel.

is represented by the dotted line, while the new one is repted by the solid line. The
plot reveals that the new method minimizes the error in aebethly than the original
method. This improvement is not signi cant though.

In a further analysis of the results, Figure 3.5 shows 3Dspdbthe recovered heights
for each method. The left-most column of the gure shows asstibf input images, the
subsequent columns represent the recovered height mageforiginal method (middle
column) and combined method (right-most column). We carengsthat the new algo-
rithm seems to stabilize the surface, avoiding some of tdeesu changes present in the
recovered surface for the original method. Speci callythe cases of the frog and the
bird, the recovered surface appears to be smoother, with ofthe spurious peaks in the
height map which result from the use of the original metholth@ugh the recovered sur-

faces for each method are rather similar, the smoothingteffdorced by the integrability
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Figure 3.6:Cross section plots of the frog, bird and lobster. The sinigitted plot on the left
side corresponds to the ground truth surface for each cémeinferpolated plots on the right side
correspond to the recovered surface for the original mettiotled) and the new method (solid).

condition can explain the slightly better results for thevmeethod, shown in Figure 3.4.
In Figure 3.6, the cross sections of the ground truth andvexea surfaces for each
methods are shown (at row Y = 100, exactly the middle row ofineges). From top to
bottom, frog, bird and lobster. The single dotted plot onldfeside corresponds to the
ground truth surface for each case. The interpolated plothe right side correspond
to the recovered surface for the original method (dotted)tae new method (solid). By
analyzing the interpolated plots we can notice how the nethatetends to stabilize the
recovered surface. In all of the cases, the high peaks orutfecces seem to be regular-

ized and more continuous, which can be interpreted as a goasee of the integrability
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Figure 3.7:Recovered needle maps for each method. Left-most colunpait images, Middle
column: original algorithm. Right-maost column: new algbm.

constraint. We can also note that, despite the high diftereamong the recovered sur-
faces and the ground truth, the new algorithm seems to defieee similar heights than
the original one, this effect is more evident for the caséeflobster (third row).

Figure 3.7 shows the recovered needle maps for each methadu®& examination of
the results suggests that the new method delivers needle timatpare both smoother and
also contain ne topographic detail. The inclusion of intagility constraint leads to a
less dependency on the image irradiance equation, therafoiding biasing the surface
normals to highlighted points, as seen, for example, onittiksthead case.

The results of the experiments for degree of gradient ctarstg are summarized in
Figure 3.8. The gure shows that the combined algorithmislahe) gives better results
than the original one (dotted lined), as the percentageadignt consistency is always

greater and more stable for the new approach, since at96&sof the pixels, in all the
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Figure 3.8:Plot of the gradient consistency degree tests. Dotted bmiginal algorithm, solid
line: new algorithm.

cases, observe integrability. For the original algorittine unstable behavior shown by
the dotted line is evident. This suggests that the new metimeéxpected, is enforcing
integrability in the original method.

Figure 3.9 shows a gradient consistency comparison fordke of the lobster. The
original and new methods are represented by the left antleca@bmns respectively. The
regions in black correspond to those pixels violating thegrability condition according
to different thresholds (the lower the threshold, the hiatbe degree of integrability).
From top to bottom, the applied thresholds were 0.0, 0.0011 @nd 0.1. The gure
reveals that the new method's needle map has more stablstwEnty.

Finally, we experiment with input images of faces. We usedlssst of frontal images
of the Yale B database (Georghiades et al., 2001). In Figli@ \Be present iso-contour
plots of the recovered surfaces for two individuals, i.egigas in the images are color

coded according to height, darker colors correspond todnighlues. From left to right
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Figure 3.9:Visual comparison for the degree of consistency tests. daéftmn: original method,
right column: combined method. From top to bottom, thredhusled: 0.0,0.001,0.01 and 0.1. The
regions in black correspond to those pixels not satisfyimgintegrability condition according to
the applied thresholds.
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Figure 3.10:Height recovery for two individuals of the Yale B databasee pyesent iso-contour
plots of the recovered surfaces. Left column: input image&ldhe column: new method; right
column: original method.

the columns show the input images, the results correspgridithe new method and the
results corresponding to the original method. We can véndy the imposing integrability
results in a bene t on the recovered surface (middle colyrapgcially in the rst row,
where regions tend to be much more symmetric than in ther@lignethod (right-most
column). This effect is not that noticeable in the secondmwi.

In Figure 3.11 we present height maps of the recovered sgfe two individuals.
From left to right the columns show the input images, the Itestorresponding to the
new method and the results corresponding to the originahaaet Again, some of the
spurious peaks present in the original method's height reapm to be stabilized by the
integrability condition introduced by the new method. Nibredess, it is clear that face
shape recovery cannot be achieved using either approack, Iggions around the nose
and mouth appear imploded. In order to overcome this probiertihe next chapter of

this thesis we propose a method for enforcing convexity adignt elds of faces.
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Figure 3.11Height recovery for two individuals of the Yale B databasee pkesent height maps
of the recovered surfaces. Left column: input image; middkemn: new method; right column:
original method.

3.6 Conclusions

In this chapter we have demonstrated how to impose intdgyatmnstraints on a geome-
tric approach for SFS. We follow Frankot and Chellappa angbise the constraints in the
Fourier domain. Experiments reveal that the resulting we#xhibits improved robust-
ness and gradient consistency. However, although the theiffgrence statistics do not
reveal any systematic improvement in algorithm perforneahoth the recovered height
surfaces and the needle maps delivered by the new algorfipeeato be better behaved
and also preserve ne surface detail. It is important to cannthat in this new method
the calculation of surface orientations is less constralmethe irradiance of the image,
as the rotation matrix changes through the iterative pgcEsis is a way of relaxing the
original method's problem of hard constraints on data-@hess with the image irradiance

equation.
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Chapter 4

Local Shape Indicators for Face Shape

Recovery

4.1 Introduction

This chapter describes work aimed at developing a practicaéme for face analysis
using shape-from-shading. As explained in the literatavéemw, existing methods have a
tendency to recover surfaces in which convex features ssittteanose are imploded. This
is a result of the fact that subtle changes in the elementseofeld of surface normals
can cause signi cant changes in the corresponding intedratirface. To overcome this
problem, in this chapter we describe a local-shape basdaoaébdr imposing convexity
constraints. We show how to modify the orientations in théase gradient eld using
critical points on the surface and local shape indicatong dritical point is located on the
tip of the nose and it is assigned manually. The method isegpd both surface height
recovery and face re-illumination. Experiments show thigrimg the eld of surface
normals so as to impose convexity results in greatly impuidweght reconstructions and

more realistic re-illuminations.
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The outline of this chapter is as follows. Section 4.2 introes the local shape indi-
cators which we use to characterize the surface topogrdptfection 4.3, we describe
our method for reassigning the surface gradient orientati®Ve provide experiments to
evaluate the method on human faces in Section 6.3. Finallgection 4.5 we present

some conclusions and identify directions for future work.

4.2 Local shape indicators

Every solid shape can be approximated locally by a colleaticquadric surface patches.

A quadric surface can be expressed by

PUV)= 5( 0% ),

where ; and , are the principal curvatures with directiong&ndv respectively.

The principal curvatures (minimum and maximum curvatufee@surface patch) are
given by the two eigenvalues of the local Hessian matrix, ttee matrix of the second
derivatives. The principal curvatures may be estimatedguie surface normal direc-
tions to compute the Hessian matrix, which can be deduced fozal changes in the
surface normal directions. Knowing the curvatures, theasurding of each surface can
be classi ed as convex, concave or saddle-type. The cleagon relies on the sign of the
two curvatures.

Curvature-based information has been widely used in shaplyss, especially for
surface segmentation and 3D object recognition. A locgbshadicator is a scalar that
conveys information concerning the local topography ofdese using its principal cur-
vatures.

Local shape indicators are usually coupled. For instahed] K classi cation (Besl

and Jain, 1986) uses the Gaussian and mean curvatures
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+
H=7(122)andK=1 2

respectively. By distinguishing between the cases in wHieimd K are individually nega-
tive, zero or positive, it is possible on the basis of thetjbehavior to assign topographic
labels to points on a surface. A different and slightly mosewenient set of attributes
is the curvedness/shape-index representation develop&dédnderink and Von Doorn
(Koenderink and Van Doorn, 1992b). Here the principal ctuwes are used to compute

the shape index

2 +
S= — arctan( L 2)
1 2

(for 1 2), and the curvedness,

The shape index is an angular variable that relates to tlz $ocface topography. It
varies continuously from 1 to +1 as the surface changes through cup, rut, saddle-rut,
saddle, saddle-ridge, ridge and dome, and cup again. Thedngss relates to the degree
of curvature of the surface.

The curvedness is a convenient indicator of potential serféscontinuity. The reason
for this is the higher the curvedness, the more likely thesgmee of a rapid variation in
height. A surface with low curvedness corresponds to a higbhtinuous one, while a
complicated surface will give rise to high curvedness atyraoations. For instance, in
the case of faces, the curvedness is large for features suble doundaries of the nose,
mouth and eyes.

For our experiments, we utilize the local descriptors ofpghendex and curvedness
to characterize the regions on a gradient eld where a charfiggientation should be

performed to enforce convexity.
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4.3 Using local shape indicators to redirect SFS gradient
elds

Inevitably, any surface gradient eld delivered by SFS ve#l inaccurate due to noise or
albedo changes, and these in turn cause variations in thesities of the input image.
SFS works well for objects that are uniformly concave or esmHowever, if the object
under study is more complex, with both concave and convexmsgthen SFS can fail.
In these situations although the recovered surface noriredtabn is consistent with the
measured image brightness, the recovered surface doesexditthe structure of the ob-
ject under study. In particular, there may be inversiongefsign of the surface curvature
with convex regions appearing concave and vice-versa. Menia the case of faces (and
many other objects) the surface under study is largely caonve

Based on this above observation, in this chapter we presaatlzod for enforcing the
convexity of the integrated surface. We use the locatioh@fiiobal height maximum on
the surface to enforce the condition.

Formally stated, suppose tfatis a smooth surface immersedRd. Letp be a critical
point of Z andU, a neighborhood ob. Suppose tha is locally concave oved,. Then,
the new surfac& constructed fronZ by reversing the sign of all its partial derivatives,
Zy andZ,, is locally convex withinJ,. Moreover, a local maximum o will be located
at that point where the function ceases increasing and stacreasiniy Suppose that all
the partial derivatives a® with respect t, Z,, have a negative sign before reaching the
position of the critical poinp along thex axis and have a positive sign after reaching it.
Suppose also that the same occursZpr Under these conditions, then the critical point
p on U, will be the position of the global maximuof 2.

The basic idea underlying this chapter is to enforce the itiondhat the integrated

1Of course 2 will present many local maxima for a face-like surface.
21t might be a maximum or a minimum depending on the integrati@thod.
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Figure 4.1:Applying the method to the derivatives of a concave sphehe. raidius of the sphere
is 75 units. We show transverse plots of the original concawéace (top left corner) and the
recovered surface height after changing the sign of thevaterés. The global height maximum
coordinatega; b are setto (75,75), (50,75) and (20,75) respectively foptneels labeled (b), (c)
and (d). The thresholds, and  are set to zero.

surface has a global height maximum. For the face analystsigm, we select this point
to be at the tip of the nose. By choosing such a point we camelithe surface into
positively and negatively signed areas of the needle mapenforce this condition we

apply the simple rule:
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Figure 4.2: Applying the method to the Mexican hat function. From leftright we show the
original surface and recovered surface after applying tathod taking as the global height max-
imum the center of the surface with = y = 0. Note how the concave parts of the Mexican hat
become convex.

abgZ.(x;y)) ifx aandC(xyy) «

VRN ARRKARAAY 0O

Z(X:y) = abgZ,(x;y)) if x>a andC(x;y) «
© 2 y) otherwise
8
% abgZ,(x;y)) ify bandC(x;y)
Z,(xy) = % abs(fy(X; y)) ify>bandC(x;y)

©2,(x%y) otherwise

whereZ, andZ, are the updated gradients, aﬁ,dandzy are the original gradients. The
desired global height maximum is located at the point wittoodinateqa; b (the tip of
the nose) and this is assigned manually. To decide whetkezlément of the gradient

eld at the location(x;y) will be altered or not, we compare the curvedness indicator,
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C(x;y) to the thresholds, and . Similarly, the shape-index5() can also be utilized

to redirect the surface normals, with the rule:

8
gabs(fx(x;y)) if x aandSI(Xy) «

Zx(Xy) = abgZ,(x;y)) if x>a andSI(X;y) «
©2axy) otherwise
8
% abgZ,(x;y)) ify bandSI(xyy)
Z,(xy) = % abs(fy(X; y)) ify>bandSI(xy)

©2,(xy) otherwise

In this caseS| (x; y) is the shape-index which is compared to the threshgldsd
for deciding whether the element of the gradient eld at thegltion(x; y) will be altered
or not.

The following diagrams show the behavior of the method wippiliad to the deriva-
tives of a sphere and a Mexican hat. Both experiments welieedaising the curvedness
indicator.

To illustrate the global height maximum enforcement praced Figure 4.1 shows
the results of applying the method to the derivatives of ecava sphere with radius 75
units, which is shown at the top left corner of the gure. Wewshtransverse plots of
the recovered surface height in the direction of xhaxis. The global height maximum
coordinatega; b are set to (75,75), (50,75) and (20,75) respectively for(@)and (d).
The thresholds, and , are both set to zero.

The effect on the convexity of the surface is clearer in Feaghi2, where the method
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is applied to the Mexican hat function. Transverse sectadritee recovered surface are
shown, and from left to right they show the original surfacel aecovered surface after

applying the method taking as the global height maximum #dregear of the surface with
x = y = 0. Note how the concave parts of the Mexican hat become convex.

It is evident that the peak-enforcement procedure will seginthe recovered surface
into four quadrants. As a result the curvedness of the reedva&urface will be reduced.
This is not desirable for surface height recovery from a.fad¢es net effect will be to make
the surface structure pyramidal. This problem is overcomeising the thresholding
procedure to either force the normals to change directiorip @llow them to remain
unchanged. This procedure is rather heuristic, and diftafeesholds apply to different
images of faces. Although we have discovered that a uotmabetween 0.2 and 0.3
is generally successful for most of the cases, it is recongsie@nio commence with the
hardest case (all the derivatives change) and graduallyfyrthe thresholds until the best
shape is generated, as suggested in Figure 4.5.

It is worth commenting that the signs of a needle map are modity attributes which
can alter the resulting integrated surface. Modifying theence of thez component of
the surface normal leads to an alteration which affects thdignt and therefore forces
some regions of the height map to be either atter or more edrafter performing the
global integration.

Note that we propose a directional correction which can feel irs conjunction with
already established SFS methods. We focus on face shapergdor the frontal pose
(since the critical point to consider is the tip of the nosdpwever, other assumptions
such as light source direction, albedo, boundary conditenmd inter-re ections are in-
corporated by the SFS method used to compute the derivatingbis chapter we use
the geometric framework (Worthington and Hancock, 1999)imed in Section 3.2. Al-

though this framework assumes constant albedo, we testxperiments with variable
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albedo images of faces.
In the following section some experiments will be preseimeatder to illustrate these

points on an application involving face reconstructiomgssFsS.

4.4 Experiments

This section is organized into two parts. We commence byrdesg experiments fo-
cussed on height recovery, and then proceed to descrildesreltained by re-illuminating
the recovered surfaces.

In rst part of the study, which focusses on height recoverg,show examples of the
effect of the gradient re-direction process on the recal/stefaces. We also present an
analysis of the errors produced by the method on 50 synttestiémages from the Max-

Plank database. Results of using the method over real woddés are also presented.

Figure 4.3:Face for analysis.

In the second part of the study, which focusses on surfad&ineination, we show
the results of using the recovered surface gradients ttegizte new face images. Here,
we investigate the effect of moving the light source dir@tti We compare the results
with ground-truth.

The face database used for our experiments was provideaak-Planck Institute

for Biological Cybernetics in Tuebingen, Germany. As ddwat in (Blanz and Vetter,
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Figure 4.4:lllumination and height analysis. In the left-hand colunuighe gure we show
the result obtained using the un-modi ed needle map, whike tight-hand columns show the
result obtained with the modi ed eld of surface normals wity, = 0:3 and y = 0:4. Each
panel shows re-illuminations obtained when the light seuticection is(0; 0;1)" followed by
recovered height-maps as intensity plots.

1999), this database was constructed using a Cyberwanedeaener. The range im-
ages are of the heads of young adults represented in a dghhdoordinate system. We
have converted the cylindrical coordinates into Cartes@ordinates and recovered the
associated height values. We were also provided with stinttextures corresponding
to each face and these were used to render the range imagessed/érontal pose of
the recovered surface illuminated by a light source at ityr@nd parallel to the viewer
direction. We also utilized real world face images to compat our experiments. We
refer to images from the Max-Planck database unless otkerstated.

Note that we used the geometric SFS framework describeddtioBe3.2 to get the
initial needle maps to be later modi ed using local shape. Wed the framework for
face-analysis since it has been demonstrated to recoveldeofesurface normals that
preserves ne topographic detail. The output of the aldpniis used as an initial estimate
of the eld of surface normals. We show how to use shape-gigics computed from this
eld of surface normals to correct for convex-concave scefanversions, and hence to
improve the quality of the recovered height-map. For gnatdedd integration we utilized

the Frankot and Chellappa global integration algorithmaxed in Section 3.3
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Figure 4.5:Curvedness, surface gradient and surface recovery amallisé rst column shows
the eld of surface normals. The second and third columnswstin@ result of re-illuminating the
surface normals with light-source directiofls 0;0)" and(0; 1;0)". The last three columns
show the curvedness map, together with pro le (side) anddmpn views of the surface wire-
frames. In the top row we show the original case. Here thedsiph of the nose is clear. The
subsequent rows are foy = y =0, y = y =0:2and nally x = 0:3and y = 0:4,
respectively.

4.4.1 Height recovery

The rst series of tests were carried out on the image showkigare 4.3, and serves as
an illustration of the method described in this chapter. dmpute the surface gradients
from the raw image brightness we followed the procedurerisest in Section 3.2. As
noted previously, this construction ensures that the iniagdiance equation is satis ed
as a hard constraint. For the surface integration step wethsgglobal method proposed
by Frankot and Chellappa (Frankot and Chellappa, 1988) medssed in Section 4. This

method recovers surface height using the inverse Fouaesfiorm of the eld of surface

55



normal directions.
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Figure 4.6: Convexity enforcement using shape index. Scatter plot enisgn between the
original and modi ed shape-indexes (the shape-index seae normalized from 0 to 1). The
x-axis corresponds to the shape index of the input eld of rdenThey-axis corresponds to the
shape index of that input needle map after redirecting figisi = , = 0:4 case

In Figure 4.5, we illustrate the effects of using our methodredirecting the eld
of surface normals. The rst column shows the needle map. Jdwond and third
columns show the result of re-illuminating the surface raewith light-source direc-
tions (1;0;0)" and(0; 1;0)". The top row shows the result obtained with the initial
eld of surface normals. Notice how the re-illuminationsggest that the nose is im-
ploded, since the region surrounding it is shadowed. Theesylent rows show the re-
covered surface illuminations after applying the methothwj = =0, , = ,=0:2
and nally y =0:3and y = 0:4, respectively. For the hardest case (second row), where
no data is Itered by the thresholds, the four-quadrantatffe very marked. However,

the effect diminishes when the thresholds are increase@. h@inder the threshold, the
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Figure 4.7:Height maps and cross plots comparison. We compare witmgdrtruth the recov-
ered height maps obtained with (right column) and withoeft @¢olumn) redirection of the normal
eld. The top row gure shows the recovered height maps sitpposed on the image from which
they were generated. In the bottom row we show longitudindlteansverse sections of the recov-
ered height maps. The left-hand diagram corresponds totigitlidinal section along the x-axis
and the right-hand diagram shows the transverse sectiog éhe y-axis. In both plots, the thick
solid line represents the ground-truth surface, the ddittedllustrates the recovered surface using
our method, and the dashed line shows the height data iteelguaing the original eld of surface
normals.

stronger the in uence of the face features. It is importamaote the differences between
the needle maps appearing in the top and bottom rows of thiee.glihe change of signs
in the surface normals suggests that the new surface noraetate more strongly to the
underlying shape of the face. This is a consequence of ingetfte originally concave
regions (the ones around the nose, eyes and mouth) to beamwexaones, causing the
imploded facial areas to “pop back” so that a better face slsap be recovered.

We take this analysis one step further in the last three cotuaf Figure 4.5 where
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Figure 4.8:1so-contour comparison. Regions in the images are coloedtadcording to height.
Discarding the background, the darkest regions correspmhgyhest values. The leftmost panel
corresponds to the ground-truth surface, the middle paeskpts the case when our method was
applied, while the rightmost gure represents the recodemarface without gradient redirection.

Figure 4.9:Recovered surface for a smiling face.

from left to right we show the curvedness map, together withi@ (side) and top-down
views of the surface wire-frames. Note in the top row how thevedness is increased,
as well as the poor quality of the recovered surface in teesemblance to a face. The
curvedness is of course minimized when no threshold is takeraccount (second row),
but the four-quadrant effect again becomes obvious. Byementing x and , the ne
features of the face seem to be preserved and the overaligiof the face is still sound.
By choosing an appropriate threshold we are able to enhdrecealient features of a
particular face while maintaining the overall face composi It is worth commenting

on the manual assignment procedure for selecting the totafithe critical point. The
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procedure consists of clicking on the tip of the nose usintaadard computer mouse.
The resulting height maps do not greatly vary from one amaftide critical point is
moved to a location inside the area surrounding the tip ohtiee. However, the method
is subjective and further improvement is needed to autaalftiselect the location of the
critical point.

The correction of the directions of the normals is cleareFigure 4.4. In the rst
two columns we show the result obtained using the un-modneddle map, while the
last two columns show the result obtained with the modi edd ef surface normals
with , = 0:3and y = 0:4. Each panel shows re-illuminations obtained when the light
source direction i$0; 0; 1)" followed by recovered height-maps as intensity plots. &her
are several features that deserve comment. For instare@ténsities around the nose
produce the appearance of a convex surface, making it apparnatural.

As far as the reconstruction using shape-index is concethedheight data recov-
ered is very similar to that obtained using curvedness. rEigué shows a scatter plot
comparison between the original and modi ed shape-indexas x-axis corresponds to
the original case while the y-axis corresponds to the = 0:4 case. This diagram
presents only those pixels in the original gradient eldiwat shape index lower or equal
to 0.4 k-axis), therefore we can analyze the new value of such piralse redirected
eld of surface normals y-axis). Note how the majority of the points are distributed
above the linex = y, which shows how the original shape index turned into a grate
one, suggesting that the concave regions changed to coSueh pixels belong to the
regions surrounding the nose, mouth and eyes. The smatl dbpoints below the line,
representing the pixels where the shape index remained tbae the threshold is mainly
related to the pixels surrounding the face boundary.

We found that for most experiments good qualitative resukise obtained with

3The shape-index scale was normalized from 0 to 1.
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and y varying betweer®:3 and0:4. A further analysis is shown by Figure 4.7. Here we
compare with ground truth the recovered height maps oldaiith (right column) and
without (left column) redirection of the normal eld. Thegoow gure shows the recov-
ered height maps superimposed on the image from which they gemerated. Note how
the imploded features (left image) of the face, such as nodeveuth, become visible
after the method is applied (right image). In the bottom rog/show longitudinal and
transverse sections of the recovered height maps. Thadefi-diagram corresponds to
the longitudinal section along the x-axis and the rightéhdiagram shows the transverse
section along the y-axis. In both plots, the thick solid Inepresents the ground-truth
surface, the dotted line illustrates the recovered sutiao®y our method, and the dashed
line shows the height data integrated using the original @l surface normals. There is
a clear improvement of the recovered height map once thé&eetin operation is ap-
plied to the surface normals. Although some errors stillaemthe recti cation of the
implosion problem is suf cient to reveal plausible facilape.

An iso-contour comparison is shown in Figure 4.8. Here,aegiin the images are
color coded according to height. Discarding the backgrotimel darkest regions corre-
spond to highest values. The leftmost panel correspondsetground-truth surface, the
middle panel presents the case when our method was applé, thve rightmost gure
represents the recovered surface without gradient reairecNote the similarities be-
tween the ground-truth and the recovered surface aftergih@ithe gradient orientations.
It is evident that, in the height maps generated by both tbargi-truth and re-directed
gradients, the peak region is located in the area of the ma#ie some discrepancies in
the mouth and chin areas though. The un-modi ed gradieneggad height contains
equal peak regions over the entire image, i.e., cheeks, fthint and a tiny one on the tip
of the nose.

The images shown in Figure 4.10 provide an absolute heiffeteince analysis. Here
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we realize comparisons using pro le images. The left-madtimin shows the raw input
image. The middle and right-most columns show superimppsed of the recovered
height maps after applying our method on the pro le views.(side) of the images from
which the original gradient elds were calculated. From superimposed surfaces, it is
clear that the major differences in the recovered heightsaag the ground-truth surfaces
are near the nose, the cheeks and the mouth area.

To provide a detailed analysis of our method, a more exhausét of tests was carried
out on fty images of faces from the database. The averagegmeage of height differ-
ence comparison plbis shown in Figure 4.11. We calculated the percentage othheig
difference errokGround_truth  Recoveredsurfacek=Ground_truth as an average
over all points of the 50 surfaces. The diagram shows a sqatiecomparing the aver-
age percentage of height difference from the original gnatdintegrated surface-{axis)
against the redirected gradient integrated surfgeax(s). Observe how when the origi-
nal gradient is used, the error is concentrated between 842%. The error, however,
when the redirected gradient is used, is concentrated bet2% and 4%.

Figure 4.12 illustrates how pre-processing operationshivilgprove the recovery of
height maps from images. The left-most panel shows the leadmiheight map of the
image of the face in Figure 4.16 after removing the eyes aetireyvs by setting their
pixel brightness values to be that of the average over time Skie right-most image shows
the calculated height map on the un-edited face image. Notetlis pre-processing step
generates more accurate height maps in the eye-region whiae-direction method is
used.

However, some regions present a higher degree of error éonéfwv surfaces. This

is illustrated by the analysis given by Figure 4.13. The estumn shows the longitudi-

4For these experiments, the ground-truth surface was gyt integrating the known ground-truth
gradient from each image, using the Frankot and Chellapghade This was done so that all the sur-
faces were generated on the same basis for comparison parpbsis reduces the biases involved in the
integration method.
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nal sections along the face for the recovered surfaces laftneb(dotted line) and after
(dashed line) redirection of surface normals. The recal/Beght map after integration
of the ground-truth normals is shown as a solid line. Thesé@nd third columns re-

spectively show the iso-contour representations of thelatisheight differences before
and after re-directing the surface normals. From thesengstit is clear that the absolute
height difference is reduced after changing the directibthe surface normals. How-

ever, there are still errors and these occur mainly in theiprby of the chin and eyes

areas. These problems can be attributed to changes of alegelarea) and instabilities
produced by the boundaries of the chin and neck . It is alsyasting to note how the

separation between the lips tends to disappear after otidine This can be explained as
a consequence of erroneously enforcing convexity.

Finally, Figure 4.9 presents some wire-frame views of tloevered surface obtained
from an image of a smiling face (leftmost). Here we have usedah world (non-
synthetic) image which was taken with a digital camera. T$is challenging example
since the face is in a non-frontal pose. The overall streadfithe face was well recovered,

however there is again some error in the area of the chin agsl ey

4.4.2 Re-illumination

Dealing with variation in illumination direction is a topad central concern in face recog-
nition. The reason for this is that light-source effectsrasgponsible for more variability
in the appearance of face images than changes in identitg€Met al., 1994). In this
section we investigate how the surfaces recovered usingethrod can be used for syn-
thesizing new facial images under different lighting cdimis. Here we use a simple
Lambertian re-illumination model using albedo maps detivem the input images.
Figure 4.14 presents re-illumination experiments for twareple faces. The rst

column corresponds to the input image. The remaining cotusow the generated re-
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illuminations after applying our method. For the second #ndd columns, the light
source vector is nearly parallel to tixeaxis in both negative and positive directions,
while nearly parallel to thg axis for the fourth and fth columns.

A more exhaustive analysis is shown in Figure 4.16. For beth ef images, the
top row represents the re-illumination results obtainedguthe ground-truth normals,
the middle row shows those obtained using the unalteredagraictld and the bottom
row those obtained using the re-directed surface normaism Reft to right, the light
source direction makes an angle o5, 25, 25and+45 degrees to the image normal
in the horizontal X) direction for the upper set of images. In the lower set ofges the
light source is moved in the same manner in the vertigpatl{rection. It is interesting to
note the similarities between the ground-truth and reeti@ gradient re-illuminations.
Although the recovered surface does not accurately représeshape of the image from
which it was acquired, the overall shape is suf ciently aata to create realistic re-
illuminations provided that the light source is not movedrbgre thard5’. The results
are best when the light source is moved in the horizontattioe. This is a consequence
of the vertical symmetry of human faces. On the other harerehillumination results
for the un-modi ed gradient elds show artifacts of implasi in the area around the nose
and mouth. This becomes more severe when the light sourcesviokther away from
the viewer direction.

A second analysis is shown in gure 4.15, where an unprockgsage of a face
(single image in between two rows) was used for the expetisnerhis image is a real
world one, taken by a digital camera. The rst row presentsrésults for the modi ed
gradient eld while second shows those obtained with thgiogl gradient eld. Note
how in the top row the quality of the re-illuminations is ingped. This contrasts with the
imploded features presented in the second row. Itis impbttenote, however, that errors

appear in some areas of the face, i.e. those surroundingdabthmrhis can be explained
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as the consequence of the change in re ectance propertiggdips. Of course, the eyes
and the mustache area also present different re ectangeepies. This suggests that

more attention should be paid to the re ectance model usecefdlumination.

4.5 Conclusions

We have presented a method for correcting a gradient eldfata. The aims in doing
this are twofold. First, we wish to generate a height map wigtobal maximum located at
a critical point located at the tip of the nose. Second, wetaifarce the recovered surface
to be convex in accordance with evidence provided by locapshindicators. We have
proved that the simple idea of modifying the surface nornrakadions so as to restore the
convexity of imploded features using the constraints @efrifrom the location of a point
of global maximum height seems to work well with the recovefyace surfaces. After
integration, the recovered shape preserves most of thens#dicial features, including
the nose lips and eye-sockets. As the accuracy of the reaotieh will depend on the
gradient data, pre-processing steps for correcting iftteagi.e. removing specularities
and areas of albedo variation such as the eye areas) wouldigyoimprove the quality
of the results, if a more accurate height map is required.

Although the method reported here is effective in correcteature implosion when
the surface gradient is computed using a geometric SFS agprthere clearly remains
scope for further improvement in computing accurate serfgradients. The improved
height recovery from single images of faces also suggestpadssibility of generating
coarse extrapolation for rendering novel views with fewreeg of rotation. Considering
that our only input information is a single frontal image ofaae, the raw height maps
resulting from our algorithm can help as a starting point ddrer re nements aimed

at generating more precise information. Of course, theigrignaximum constraint is
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natural for faces, since the tip of the nose is a global heagé&atimum. However, the
constraint could be used for more general surfaces in a lneaher for surface height

recovery and where there are local regions of implosion.
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Figure 4.10:Height map analysis. The left-most column shows the raw e@naghe middle
and right-most columns show superimposed plots of the exeovheight maps after applying our
method on the pro le views (i.e. side) of the images from vihibe original gradient elds were

calculated.
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Figure 4.11:Average percentage of height difference. The diagram skoseatter plot com-
paring the average percentage of height difference fronothgnal gradient integrated surface
(x-axis) against the redirected gradient integrated suiffigexis).

Figure 4.12:Results on an edited image. The left-most panel shows tlcalagéd height map
of the image of the face in Figure 4.16 after removing the eyas$ eyebrows by setting their
pixel brightness values to be that of the average over the skne right-most image shows the
calculated height map on the un-edited face image.
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Figure 4.13:Height difference cross sections and iso-contour plot® Tt column shows the
longitudinal sections along the face for the recoveredasas both before (dotted line) and after
(dashed line) redirection of surface normals. The recavéeight map after integration of the
ground-truth normals is shown as a solid line. The secondtlaindl columns respectively show
the iso-contour representations of the absolute heigfdrdiices before and after re-directing the

surface normals.
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Figure 4.14:Re-illumination tests for two different images. The rstlamn corresponds to
the input image. The remaining columns show the generatdihim@nations after applying our
method. For the second and third columns, the light sourctorés nearly parallel to the axis
in both negative and positive directions, while nearly par#o they axis for the fourth and fth
columns.

Figure 4.15:Comparison of re-illuminations using an unprocessed invdigeface (single image
in between two rows). The rst row presents the results fa thodi ed gradient eld while
second shows those obtained with the original gradient. eld
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Figure 4.16:Comparison for re-illumination tests. For both sets of iemdhe top row represents
the re-illumination results from the ground-truth normate middle row shows those obtained
from the unaltered gradient eld and the bottom row thoseawtatd from the re-directed surface

normals.
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Chapter 5

Building Cartesian Coordinate-based

Models of Faces

5.1 Introduction

In the two-dimensional domain, variations in facial appeae can be captured using the
eigenfaces technique (Turk and Pentland, 1991). Here af sdigoed facial intensity
images are used to construct the eigenmodes. The imagesdasaally encoded as a
Cartesian long-vector by concatenating the rows or coluafrike image. However, if
a 3D model is to be constructed in an analogous manner frogerdata, then there
exist alternative ways for representing the training d&dsme of the simplest and most
commonly used approaches is to adopt a cylindrical cooteingpresentation. Using
cylindrical coordinates, the surface of a human face (odhean be parameterized by
the functionrad( ;" ), whererad is the radius and and’ are respectively the height
and angular coordinates. This representation is used ginaptures the linear relations
between basis heads. Unfortunately, it can lead to amlyiguite different data can be

tted to the same head-model.
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An alternative is to use a Cartesian representation, in hwkaxch surface point is
speci ed by its(x;y; z) coordinates, where theaxis is in the direction of the viewer.

The Cartesian coordinates are related to the cylindrioaldinates through

(X;y;2)=(Xo+ r(; )sin;yo+ ;zo+r(; )cos ); (5.1)

for some reference shifko; Yo; Zo).

A face depth map in cylindrical coordinates can be thoughsafn unwrapped version
of a depth map expressed in Cartesian coordinates. In Figliya cylindrical coordinate
depth map (left) is shown together with its corresponding&an coordinate depth map

(right).

Figure 5.1:Cylindrical and Cartesian coordinate depth maps.

A general drawback of Cartesian coordinates is the highapatriance caused by
face features such as nose, mouth and eye. Moreover, thesigarcan be exaggerated if
the training data is misaligned. If this is the case, adddla-variance (height variability)
is introduced in areas with high spatial variance due tonatignt error. As a result,
Cartesian coordinates have not been used for generatinga8Btisal models of faces.
However, Cartesian coordinates were recently used by Ddgwad Basri (Dovgard and
Basri, 2004) to construct a statistical model of faces usyimmetry constraints. To

overcome the problem of alignment errors they expressedutface gradient in terms
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of a set of deformation coef cients. This allows shape-frehading to be transformed
into a linear system of equations that can be simply solvethi®shape coef cients, and
then used to reconstruct the surface height function fofahe. Although accuracy is
sacri ced, the method is computationally ef cient.

Height maps, however, are not the only way to representingqi8®mation in Carte-
sian coordinates. Alternative encodings can be drawn fr&D thformation such as the
partial derivatives of a surface. Although the 2.5D repnéton is less appealing since
it must be integrated to recover a surface, because of thgeinmeadiance equation the
2.5D representation is closer to the raw image brightnetsstan a height surface.

In this chapter we explore and experiment with alternatiagt€sian representations
for constructing 3D statistical models of faces. We exptare different routes. The rst
of these is based on height, while the second is based ortiditatinformation. In the
case of the directional models, we investigate how surfatEgrability can be enforced.
Finally, we show how the models can be tted to image brighthdata using geome-
tric constraints on surface normal direction provided bynbart's law (Worthington and
Hancock, 1999) subject to integrability (Frankot and Chygtla, 1988).

The chapter is organized as follows. In Section 5.2 we peuaithrief explanation of
the different Cartesian representations explored. Thstoaction of the statistical models
using each representation is explained in Section 5.3. Tthg procedure used to test the
performance of the models is described in Section 5.4. Exgetal results and analytic
comparison of the models is given in Section 6.3. Finally,paesent conclusions and

suggest some possible lines for future work in Section 5.6.
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5.2 The Cartesian representations

We have explored the use of four Cartesian coordinate reptatsons to construct statis-
tical models of facial shape. Two of these are based on dreitinformation, while the
remaining two are based on height information. We work udirographic projections,
i.e, the viewed surface is assumed to have been projecte@itspace of the image
plane such that the direction of the projection axis is ofipds that of the viewer. Every

visible point on the surface is then projected to the imageel

5.2.1 Cartesian representations based on directional infmation

Information about a surface that is intermediate betweeail 8D representation and a 2D
projection onto a plane is often referred to as a 2.5D sum@geesentation (Marr, 1982).
Surface orientation is one of the most important 2.5D repregions. For every visible
point on a surface, there exists a corresponding oriemtatiuch is usually represented
by either surface normal, surface gradient or the azimuthzanith angles of the surface
normal.

In contrast to height data, directional information canbetused to generate novel
views in a straightforward way. However, given the illuntioa direction and the sur-
face albedo properties, then surface normal directioraaigpthe central role the surface
radiance generation process. This is of particular intéreface analysis since light-
source effects are responsible for more variability in thgesmrance of facial images than
changes in shape or identity (Moses et al., 1994).

In this chapter we explore two Cartesian representatiosean directional infor-

mation, namely the surface gradient and the surface normmalghal angle.
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Surface gradient

The Surface Gradientepresentation is based on the directional partial devesbf the
height functiorp = €2%) andq = @ny) . The set of rst partial derivatives of a surface
is also known as the gradient space. This is a 2D represemtatithe orientation of

visible points on the surface.

Figure 5.2:Intensity plots of the surface gradients wxr.fleft) and w.r.t.y (right) of a face.

In Figure 5.2 we show the gradient space of a face. The leftrigid hand panels
respectively show the slope parametprand g represented as intensity images. Here
we have calculated the surface normals by tting bicubicchas to the surface height

functionZ(x;y).

Azimuth angle

Directional information can also be expressed using thélzéslant) and azimuthal (tilt)
angles of the surface normals. In terms of the slope paraméebe zenith angle is =
arctan P p? + ¢? and the azimuth angle is= arctan g (see Figure 5.3). Here we use the
four quadrant arc-tangent function and therefore . In contrast to the human
visual system (Erens et al., 1993b), it seems that compidi@nsystems encounter more
dif culty in estimating the tilt of a surface from a single age than its slant (see Figure

5.4).
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Figure 5.3:The azimuth () and zenith () angles of a surface normal (left) and the visual inter-
pretation of the slant and the tilt (right).

Angular data is more dif cult to model than Cartesian dateheTeason for this is
angle wrap around. Hence, small differences in distance gphare can correspond to
large differences in the angles latitude or longitude. Tlaesical example here is a short
walk across one of the poles of a sphere, when large diffegeimclongitude correspond
to small differences traveled across the pole. In shape-Bbading, since the surface
normal is determined by the azimuth and zenith angles, wiesdrface is illuminated in
the direction of the viewer and when the surface re ectasdeaimbertian, then the arc-
cosine of the zenith angle is determined by the image bregsnThe azimuth angle, on
the other hand, must be determined using additional canttnarovided by smoothness

or the occluding boundary.

5.2.2 Cartesian representations based on height informain

Surface height recovery through the integration of surfamenal data can be prone to
error (Wu and Li, 1988; Klette and Schluens, 1996). Hencenthen advantage in the
direct use of height over direction is that height does netrte be integrated and is not

prone to these errors. Here we study one representatiod bagaw height data and one
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Figure 5.4: Effect of incorrectly calculated azimuth and zenith angld€ace shape recovery:

(a) orthogonal Lambertian (constant albedo) image, (I8 imadiance (non-constant albedo) im-
age, (c) ground-truth surface, (d) surface preserving daiuth angle but with its zenith angle

estimated through SFS and (e) surface preserving truehzangle, but with its azimuth angle

estimated through SFS. Note how the effect of wrongly egeohélt angle cause a severe deteri-
oration on the recovered surface.

based on the representation of height using Fourier bascsifuns.

Height

TheHeightrepresentation is based on the surface height fungtiony), i.e. the relation
between every visible point of a surface with a unique heigiie. In Figure 5.5 we
illustrate the use of the height function. In panel (a) wergshalose-to-pro le view of the
reconstruction of a face using cylindrical coordinatesné®db) shows the projection of
the surface height function onto the image plane. In pan&écshow the close-to-pro le
view from the Cartesian height map. Panel (d) shows the Slartheight map with the
boundaries of the face removed. Unlike the Cartesian reptagon, in the cylindrical
reconstruction it is possible to de ne regions near the wditig boundary of the frontal
view (ears and sides of the neck). Nonetheless, the sadielal features such as the eyes,

nose and mouth can be easily represented in Cartesian nategslj as shown in panel (d).
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Figure 5.5:Cylindrical and Cartesian reconstructions. We show a elog®o le view of the
reconstruction of a face from cylindrical coordinates {&,projection to the image plane as a
height function (b), the same close-to-pro le view from t@artesian height map (c) and without
the surrounding region close to the boundaries of the face.

Fourier basis

TheFourier Basisrepresentation draws on the concept of Fourier domainiabeigy for
surface height recovery from surface gradient. The reptaien builds on the Fourier
basis introduced by Frankot and Chellappa (Frankot andl&pe, 1988). This method
has been previously explained in Section 3.3.

In Figure 5.6 we show the Fourier surfaces of a face. The wst gures correspond
to the height map and surface plot of tkeeomponentZ*). Similarly, the right-most

gures represent thg-componentZ?).

5.3 Principal component analysis

In this section we describe how eigenspace models are cotetr for Cartesian data.
Here we follow the approach adopted by Turk and Pentland wéi@ \v@among the rst
to explore the use of principal components analysis for facegnition (Turk and Pent-

land, 1991). We make use of the technique described by KinlySarovich. (Kirby and
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Figure 5.6:Fourier basis representation for faces. The rsttwo gucesrespond to the height
map and surface plot of the-component of the Fourier domain representation. Simyildhe
right-most gures represent thecomponent.

Sirovich, 1990) to render the method ef cient.

5.3.1 The intensity model

The image data is vectorized by stacking the image columfeitolong column vectors
i. If the K training images contaiM columns andN rows, then the pixel with column
indexj. and row indeX, corresponds to the element indexed (N  1)j.+ j, of the
long column vector. The training set data-mattixz [i1jio] jik] is then formed by
using the long vectorg as columns. The differences from the average face imgtjee

sample mean) are used to construct the centered trainiagratix

1°=[(i Diiz i PGk DI=LG%  jigl: (5.2)

Principal Component Analysis (PCA) seeks a s& of1 orthogonal vectors which, in
aleast squares sense, best describe the distribution@siilh@ns of © The solution to the
least squares problem is found by calculating the eigeavedf theexplicit covariance
matrix

2t %07 = 190" (5.3)
k=1

Unfortunately, due to its siz&é{/N  MN ), computing the eigenvalues and eigenvec-
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tors of ' becomes intractable for large sets of data. However, theerigaily ef cient
method proposed in (Kirby and Sirovich, 1990) can be used/¢émomme these dif cul-
ties. According to this method there are oily 1 non zero eigenvalues from' and
these can be computed from the K sampledcovariance matrid®' = 191° The
eigen-vector equations for the explicit and sampled cavae matrices, ' and bi are

ul = Ul and bigi = " al; (5.4)

whereul, 0i and |, "} are the eigenvectors and eigenvalues band P, respectively.

To demonstrate the relationship between the two sets ofegg#ors, we note that

blal = “a; (5.5)
1M1% = "o (5.6)
19 1% = "% (5.7)
1%) = "9: (5.8)
As a resultul = 1% and | = "i. This means that the eigenvectors of the ex-

plicit covariance matrix can be calculated by multiplyiihg tcentered training set by the
eigenvectors of the sampled covariance matrix. Likewlseion-zero eigenvalues of the
explicit covariance matrix are equal to the eigenvaluesiefsampled covariance matrix.

The eigenfaces are then the eigenvectors'adind are constructed by multiplying the
centered training-set data-mattikby the eigenvectors of the sampled covariance matrix
bi je.

M= 19 (5.9)

whereQ' =[aijobj jai].
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An out-of-training-sample faciecan be tted to the eigenfacéd ' by calculating the

parameter vectdn' = [b;b,; ;b ] that minimizes the squared error. The solution to

this least-squares estimation problem is

b=M"(@L i) (5.10)

The vector of parametels measures the contributions from each eigenface to the

recovered approximation of the out-of-training facand is given by

L i+M'b" (5.11)

In order to be valid examples of the class represented bydherig set, the values of

the vectom' should be constrained to fall in the interigl2 | 3 % 43" il

5.3.2 The surface shape statistical models

The face database used for building the models was provigdtetiViax-Planck Institute
for Biological Cybernetics in Tuebingen, Germany. As ddwt in (Blanz and Vetter,
1999), this database was collected using laser scans of @iifstof young adults. The
data is stored in a cylindrical representation. For comsing the height based model, we
converted the cylindrical coordinates to Cartesian cowmigis and solved for the values
of Z(x;y). We were also provided with the ground truth surface norrf@lsach of
the faces. We used this ground truth data to construct tifacgugradient, azimuthal
angle and Fourier domain statistical models. We used 15tpebes for constructing
each of the four models. The remaining 50 out-of-trainiagiple example were used for
performance tests.

To explain how the surface models were constructed, we coroen&ith the height

representation. Each of th€ surfaces in the training set may be represented by long
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vectors of height valuels. The mean height vectdr is given by

1 X

h =
K

hy: (5.12)
k=1

In a similar manner to Equation 5.2, we form thielN K matrix of centered long
vectorsH®=[(h; h)j(h, h)j j(hk h)]. We calculate the eigenvecta8 of the

matrix H% H%and construct the height statistical model (as in Equatiéh 5

MP=HAO"; (5.13)

where@" = [ahjabj  jalk]. An out-of-training-sample centered long-vector of heigh
valuesh. h, can be projected onto the model and represented using ¢ther v coef-

cients

b"= MM (h h): (5.14)

Let us now extend the above notation to the surface gradiehFaurier basis repre-
sentations. We need two separate models fox tuedy components of the representation.
We usep andqto refer to the surface gradient w.ndand w.r.ty, respectively. Likewise,
we usef andg for thex andy components of the Fourier surface basis, Z&.andZY
(see Equation 3.12). Using this notation, the statisticatlebs for surface gradient and

the Fourier surfaces basis are respectively

MP= PP, M= QA (5.15)

Mf=FBf:M9= g (5.16)
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Figure 5.7:1n the top row, different arguments for one training set eplana® are shown as
intensity maps. From left to right, ; (@), ( +; 37] (b), (0;2 ] (c) and(%; 5] (d). The
mean direction’ (e) and the mean resultant lengdtf) are presented in the bottom row, from left
to right, as intensity plots. Note hofvdemonstrates that the directions of the angles are widely
dispersed through the regions where the zenith angle is ¢08, i.e. tip of the nose, centers of
the eyes and mouth, and forehead.

A statistical model for azimuthal angles

In the case of the azimuthal angle representation, the sucgle not be used directly to
construct statistical models. The reason for this is thattstical calculations performed
on angular data can be biased by the amgiepoint (see Figure 5.7). To illustrate this
problem consider two points on a unit circle placed just &®owd just below the cut-line.
Although the two points are close to one another on the uralssiwhen the difference in
angles is computed then this may be clos2 to

We overcome the above problem by working with a complex numdggresentation
of the azimuth angles for the surface normals. Since we willi&aling with Lambertian
images of faces, it is not necessary to construct a statistiodel for the surface normal
zenith angles since they be directly recovered from thecasine of the measured image

brightness. For they, pixel of theky, training example in the database, we encode the
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azimuth angle using the complex number

k

a K+ isin K (5.17)

=exp(i [)=cos | 5

wherei = P ~ 1. The azimuth angle can be recovered from the real (Re) andinaey
(Im) components of the complex number using

Im a
Real’

k —
j = arctan (5.18)

The azimuth anglejk is therefore the principal argument (a unique angle valomfr
to ) of a}‘. At the image location indexgd the mean complex number (center of

mass) over the training set is given by

X
al' (5.19)

1
o=
Kk:l

The azimuth angle associated with this complex number (rdaation) and its mod-

uli are, respectively

q
and A= (Im4)?+(Ref) (5.20)

The Cartesian coordinates of the pointsépfon the complex plane are de ned by
the average of the cosines (x-axis) and sines (y-axis) affdhle observationsjk of the

training set. As a result

X X

1
k — in N —
cos { and Img =% sin’; = K

k=1 k=1

1 :
Re& =4 cos’j = e sin ¥ (5.21)
Unfortunately, although this allows us to overcome the [@wis of representing the

azimuth angle statistics, it yields complex numbers thatamger have unit modulus.
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In fact r; can uctuate between 0 and 1. Howevey,is an important measure of the
concentration of the azimuth angles in the training datahdfdirections of the azimuth
angles in the training set are strongly clustered, themill tend to be 1. If, on the other
hand, they are scattered thgrwill tend to O.

Although the mean resultant lengthis an important measure of dispersion, for the
purposes of comparison with data on the line we should censitasures of dispersion
based on circular data. A useful measure is the sample areariancev; = 1 Ay,

0 1. Following (Mardia, 1972), ifL  cos( ») IS a measure of distance
between two angles; and », then the dispersion of the angles 7;:::; [ abouta
given angle is

1 X

D( )= e f1 cos(f o (5.22)
k=1

For any set of angular data, the dispersion of its mean dweciver the set is equal
to its circular variance, i.eD(A,-) = Vv, =1 rj. InFigure 5.7(e) and (f), the mean
arguments' and the moduli of the center of ma&sre shown as intensity maps.

Repeating the construction outlined in Equations 5.15 ahé,%he complex-number

based statistical model is

Ma= A% (5.23)

whereA Cis the centered complex training set data-matrix BAds the eigenvector matrix
for the sampled covariance matrix. Note that the complemath angle representation
leads to a Hermitian covariance matx?A © wherey denotes the transpose of the com-
plex conjugate matrix. Sinc& YA is Hermitian, its eigenvector matri8 2 is complex,

while its eigenvalues{ are real.
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5.4 The parameter tting procedure

In this section we explain the method used to t the paransetéthe models to image
brightness data so that the irradiance equation is satiga algorithm is similar to that
proposed by Smith and Hancock (Smith and Hancock, 2005bileawds ideas from the
geometric shape-from-shading framework of Worthingtashldancock (Worthington and
Hancock, 1999). However, here we add an integrability exdiorent step to the parameter
tting procedure. This is done using the method of Frankad &mellappa (Frankot and
Chellappa, 1988) which we have outlined in Section 3.3.

According to the geometric approach to SFS developed by Avmgyton and Han-
cock (Worthington and Hancock, 1999), the image irradiatpgation is treated as a hard
constraint. Lambert's law is enforced by demanding theveped surface normals to fall
on the re ectance cone whose axis is the light source doweand whose opening angle
is the inverse cosine of the normalized image brightnesmlance with Lambert's law
is effected by rotating an estimated surface normal ontméaest location on the local
irradiance cone.

We have used this technique to t the Cartesian models tdhbmigss images of faces.
If we have a eld of initial surface normals estimated from from the brightness data

then the iterative steps in the tting process are de neda®ivs:

1. Transform the eld of normal® into each of the four Cartesian representations.
From the surface gradient, the complex azimuth angle camtaned using Equa-
tion 5.17. Likewise, the height and Fourier basis repregents are obtained by

integrating the eld of surface normals using Equation 3.12

2. For each representation, subtract the mean shape andatalthe corresponding

1We used a standard image gradient initialization.
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set of shape parameters using one of the following

b"=M" (b h); (5.24)
bd= M3 (a a); (5.25)
bP=MP(p p) and b%= M9 (g q); (5.26)
b' =M (£ f) and b¥=M9I(g Q) (5.27)

depending on the relevant representation.

3. Recover the surface shape from the best- t parameteng usie of the following

h h+ M"b" (5.28)
a a+ M?* (5.29)
p p+MPb? and q g+ M9%bY; (5.30)
£ f+M'b" and g g+ M%S: (5.31)

4. Apply the integrability constraint. This is done by geaterg a surface from the
best t parameters of the surface gradient and azimuthalkargpresentationg,

g anda.

5. From the reconstructed surfaces we calculate a eld diasarnormals. This is
done by performing a bicubic patch t to the surface heightadaMe enforce the
irradiance constraint by rotating the recovered surfacenats onto the irradiance

cone using Equation 3.2. We then return to step 1.

Instead of searching for valid linear eigenmode combimattbat minimize the bright-
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ness error using exhaustive search, the parameter ttingguure attempts to minimize
the brightness error using simple geometric operations ghtisfy the irradiance con-
straint provided by Lambert's law. The method hence pravigie intuitive and straight-

forward way for adjusting the shape coef cients to imagebthess data.

5.5 Experiments

Our experimental evaluation is divided into two parts. fwge provide an experimental
comparison for the four Cartesian representations. Secaadfbcus on the performance

of each representation when tted to image brightness data.

5.5.1 Comparing the models

The generalization of the models, or their ability to capttire features of the database
from which they were built, is illustrated in Figure 5.8. Weosv the generalization as
a function of the number of modes used. The required numberooles was calculated
through the formulag |t:1 . fy Vg, where | are the eigenvalues of the sampled co-
variance matrixy/r is the total variance (i.e. the sum of all the eigenvalued)farle nes
the proportion of the total variation to be conserved by tloelel. Both(M ;M 9) (dot-
ted lines) andM " (dashed-dotted line) achieve more than 90% when using st &a
modes. By contrasM 2 (dashed line) an@M ?; M 9) (solid lines) required a considerably
larger number of modes to achieve the 90% level. Interdstifay both (M ;M 9) and
(MP; M 9) the x-related model shows a slightly better generalization tiheny-related
model. This may be attributable to the left-to-right symmetf human faces. It is im-
portant to remark that the similarities between the rethivaiances shown by " and

(MT:M?9) can be regarded as a consequence of both models being baseigjlotinfor-

mation, one (the height surface) being the sum of two comptosirfaces (the Fourier
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basis surfaces).

Figure 5.9 shows the percentage of error for out-of-trgjretases when the num-
ber of eigenmodes is varied. The plot shows the height eéiffee errorkH 2t
H eigenmode —pjactual computed as a function of the number of modes used in the-repre
sentation, for the 50 out-of-sample faces. For the modél% M 9) andM 2, the Frankot
and Chellappa's integrability method(Frankot and Chglel988) was used to recover
surface from surface gradient. For recovering the surféoes the model(M ;M 9),
Equation 3.12 was used. As we assume Lambertian re ectédimeeenith angle was cal-
culated directly from the albedo-free images and then be umseonjunction with the re-
covered azimuth angle to obtain a surface normal estimatbamce recover a height map
through surface integration. The gure shows the average the 50 surfaces and over
all the points on the surface. Hefl ' ; M 9) (dotted line) achieves the lowest percentage
of error (up to around 0.3%), followed Y " (around 0.5%)M 2 (around 0.8%), and
(MP; M 9) (solid line, around 0.9%) with full number of eigenmodesdisehis behavior
could be explained from the results in Figure 5.8, where désr that botHM P; M 9)
andM @ require a larger number of modes for characterizing mogt@htodel features.
On the other hand, from its original error (zero modes: thamshape), 1.91%, a steep
error change occurs after using 10 modes for the three mdtiedsmportant to mention
that, visually the effect of errors less than 1% is close iadpaegligible.

In Figure 5.10 we show the rst six modes of variation for thedels described above.
The different rows in the gure correspond to different eigeodes. For each eigenmode,
we have two rows in the gure. The top and bottom row in eachr phow the result of
varying the eigenmode by 3 standard deviations from the mean. The columns of the
gure have been divided into four groups of images, labeléthwhe letters (a), (b), (c)
and (d). Each group gives the results obtained with one ofépeesentation used for

constructing the statistical models. Group (a) shows thiatirans for the intensity model
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Figure 5.8:Generalization of the models. The gure presents the rethirariance of each model
as a function of the number of modes used. Both moltetsand(M f ; M 9) tend to encapsulate
most of the variance of the training set in the rst few modesjle (M P; M 9) andM 2 clearly
need a bigger number of modes to achieve at least a %90 of tieeajiezation.

M'. In group (b), from left to right, we show the modes tdr®, M 9 and the frontal
illumination of their integrated surface. The frontal ithination of variations irM " are
shown in group (c). Finally, frontal illuminations of therace variations corresponding
to M’ andM 9 are shown in group (d). The right-most illumination in groil) is the
result of summing the two Fourier surfaces (i.e. using Eque.12).

In Figure 5.11 we compare the eigen-modes obtained using@iséat the azimuthal
angle. Here we compare the results of using a model basedrmpleo numbers and
one based on real numbers. The columns of the gure show tbtesix eigen-modes. In
the top two rows we show the results obtained by using the mpodel, and in the
bottom two rows the results for the real model. For each mtdetwo rows show the
result of varying the different eigenmodes by standard deviations from the mean. In

general, both models seem to encapsulate the same fadialefgathough the complex
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Figure 5.9: Out-of-training best-t tests. The gure shows the percage of error for out-of-
training cases while varying the number of modes.

model shows less noise than the real model. These errors@seavident wherd, is
near zero. This suggests that the complex representatinga gdvantage from using the
center of masg;, which might be sacri ced by being projected onto the unitie while
calculating the mean direction .

We compare the performance of the real and complex azimuggle amodels by tting
them to out-of-sample data (i.e. data not used in trainifigjese results are shown in
Figure 5.12. In the top row the model has been tted to a mabgesit and the bottom row
shows the result of tting the model to a female subject. Wevsltwo panels of results.
In the left panel we present the ground truth data, the resuiting the complex model
and the result of tting the real model. The main feature téenfrom the panel is that
the complex model achieves more accuracy for regions wiherednith angle is small.

In the rightmost panel we show the absolute angular difteeeaveraged over 50 out-of-

2The angular difference between the anglgsnd », inradians, canbede nedask k 1  okk.
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Figure 5.10:First six modes of variation for the intensity (a), surfacadient (b), height (c) and
Fourier basis (d) models.
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Figure 5.11:From left to right, the rst six eigen-modes of the complexraath model (a)
and the real azimuth model (b). The two rst rows represeespectively, +3 and -3 standard
deviations from the mean. Likewise, these variations apgvshn the two rows of (b).

training examples as a function of the number of eigenmoded tor the complex and
real models. From the plot it is clear that the complex modgberforms the real model.
The behavior of both models is similar, and the gap betweetliries can be explained as
a consequence of the poorly recovered regions for the edakd model.

In Figure 5.13 we present the results obtained by varyingntimeber of eigenmodes
for an out-of-training case. From the example shown in thpertaw of the gure, we
calculated shape parameters and projected them back taeaesentation domain by
adding the corresponding mean shape. We repeated thisspra@eying the number of
eigenmodes from 10 to 150 modes. This experiment is illtesdran the columns of the
gure, which show frontal re-illuminations with the diffent number of eigenmodes. A
nal recovered surface is shown in the right-most columne @ifferent rows in the gure

are for the model ", (MP; M 9), (M7:M9) andM 2. Only for the height and Fourier
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Figure 5.12:0ut-of-sample recovery analysis. From left to right: thet three columns show
the ground truth azimuth angle, recovered azimuth anglegbtie complex and real models. The
rightmost diagram shows the angular difference averaged5f¥out-of-sample data as a function
of number of eigenmodes used for the complex (solid line)thndeal (dashed line) models.

basis models does setting the number of modes to more thawtr@8uce spatial artifacts.

This is noticeable over facial regions such as the nose, menud eye-sockets. The rst
25 eigenmodes seem to be suf cient to encapsulate the miestistacial features. The

remaining eigenmodes appear to capture noise rather theafacial details, as expected
from the results shown by Figure 5.8.

The models behavior on bo{tM P; M 9) andM 2 shows a rather different behavior.
Here apparently little change occurs while increasing tmalmer of eigenmodes. These
results support those in Figure 5.9 and the smooth variatidhe descent of the solid
and dashed lines in Figure 5.8. Note how the surfaces gexkebgt(M P; M 9) andM 2

suggest a smoothed version of those recoverdd Byand(M ;M 9).

5.5.2 Fitting the model from brightness images

Equation 5.10 shows how to determine the shape coef ciegnts fa long-vector of data

in the appropriate representation. However here we wokidtt t the different models
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Figure 5.13:Varying the number of eigenmodes for an out-of-trainingeca&he top row shows
frontal illuminations and ground truth pro le of the exareplised for the experiment. The follow-
ing rows present the results usikb”, (M P; M 9), (M : M 9) andM 2, respectively. From the rst
to the fth column we present frontal re-illuminations arftet nal recovered surface is shown at
the right-most column. The number of modes used (from 10 @) ESindicated at the top of the
panel. Note how the nal recovered surface usfivj®; M 9) andM 2 suggest to be smoother than
the best ts usingVl " andE.
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to long-vectors elicited from image data using shape-fedrading. When the iterative
tting procedure described in Section 5.4 is applied, thienever converges to a feasi-
ble solution for the models based on height informatidr, and(M f; M 9). However,
the surface gradient and complex azimuth angle based md¢tiefs M 9) andM 2 work
better.

To overcome this problem we rede ned the starting state &hM " and(M ;M 9),
applying geometric SFS over the surface normals of the meaghtsurface. In this
manner we forced the mean surface normals to satisfy theéiamee cone constraints.
The resulting height maps using this initialization resdlin an error of around 1.4%.

Figure 5.14 (top) shows the percentage of error as a funofitime number of itera-
tions for the tting procedure for each of the four represgiuns. From the diagram it is
clear that only the complex azimuth angle (dashed line) anwite noticeably, the surface
gradient (solid line) based model behave well with the gtiprocedure. On the other
hand, the height based model (dash-dotted line) improvekitureaches the third itera-
tion. From this point the error increases. This effect isenmonounced for the Fourier
basis model (dotted line), which improves only in the rsdriition. Note how the initial
state is different for the models derived from directiomdbrmation, i.e.(M P; M 9) and
M2, and the ones based on height dat! and(M ;M 9). The average error for the
initial state for bottM " and(M ' ; M 9) is around 1.4%. For clarity, we omitted the initial
state of(M P; M 9) andM 2 on the diagram, since it was of about 15% (approximately ten
times less accurate than that\f® and(M ;M 9)).

In their few rstiterations bottM " and(M ' ; M 9) seem to slightly outperforigM P; M 9)
andM 2 in its nal iteration. This does not mean that the method gitetter surface ts,
but that the method of coupling the model to intensity datsdwt give an accurate mea-
sure of error. In other words, models that are based on higiffitmation are not suitable

for the tting technique adopted here. However, the appno&ca natural one for the
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Figure 5.14:The above gure presents the percentage of error as a funcfimumber of it-
erations. Note how only the models based on directionakimédion, (M P; M 9) andM 2 seem

to be favored by the tting procedure. On bottom gure showe tbehavior of the tting pro-
cedure with (asterisk markers) and without (circular meskéhe integrability enforcement step
are shown fo{M P; M 9) (solid line) andM @ (dashed line). The results suggest that enforcing
integrability bene ts the tting method.
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models(M ?; M %) andM 2 which are based on surface orientation and not surface theigh
since it is surface orientation that is responsible to thregieed image brightness.

We also testedM P; M 9) and M 2 starting with the same initial state &" and
(Mf;M?9), but the nal result did not show a signi cant difference taet one presented
in Figure 5.14 (top).

In Figure 5.14 (bottom), we show the behavior of the origatabased modelgvi *; M 9)
(solid line) andM 2 (dashed line) omitting the integrability enforcement stefhe tting
procedure. The asterisks indicate integrability enforeetmwhilst the circles indicate
omission of the integrability step. The diagram shows pesuits when integrability is
not enforced. This is most marked in the case of the complexwuth angle representa-
tion, where the error goes from 1.09% to almost 2%.

A more detailed analysis is presented in Figure 5.15. Theegs divided into two
panels. Each panel presents the results for an out-ofirigpexample, whose frontal re-
illumination and ground-truth pro le view are shown at tleptrow of the gure. For each
panel, the columns contain the recovered surface afterea givumber of iterations (from
0 to 10). The results obtained usidy", (MP;M 9 and(M ;M 9) andM 2 are shown
from second to bottom row. Note how the initial state is muocbner for(M P; M 9) and
M 2, and how after each iteration the integrated surfaces nwwgser to the ground truth.

Finally, we present experiments with a number of real woalckfimages. These im-
ages are drawn from the Yale B database (Georghiades ed@l.) and are disjoint from
the data used to train the statistical model. In the imadesfdces are in the frontal
pose and were illuminated by a point light source situatggt@pmately in the viewer
direction. We aligned each image with the mean intensitypstso that the eyes, nose
tip and mouth center were in the same position. We then paddra Lambertian cor-
rection (Smith et al., 2004) over the aligned images. Théasarrecovery results after

twenty iterations are shown in Figure 5.16. From left to tigle show the corrected
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Figure 5.15:Individual analysis for the tting procedure. The gure isvitled into two panels.
Each panel contains the results of applying the tting phge to the brightness images shown
at the top row of the gure. In the top row, the ground-trutto pe view is shown along with
the brightness input image. The columns of each panel pgrésemnecovered surface after certain
number of iterations (from 0 to 10). From second to bottom vesvpresent the results fod ",
(MP:M 9, (MF;M9) andM 2.
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Lambertian input image, frontal re-illumination of the o@ered surface followed by two
rotated views. We used the surface gradient representaiibnenforced integrability.

Although the method struggled to recover the shape of thesegkets, the overall struc-
ture of the face is well reconstructed, On the other handgykerow location, nose length
and width of the face clearly match those of the input imagesn when there is facial

hair present.

5.6 Conclusions

We have presented an analysis of four Cartesian repremergtdbr constructing three-
dimensional statistical models of faces. We also showedtbowthe models to bright-
ness images of faces using irradiance equation and intétyraonstraints. All of the
models work well when used to t data in the same form. Howefar tting to image
brightness data to recover facial shape, only the modeksdoas directional representa-
tions, i.e. surface gradient and complex azimuthal angbequ robust. Hence we have
demonstrated that 3D statistical models of faces based desian representations of
orientation data can work accurately without special etias. As future work we are
planning to explore the behavior of the Cartesian represients with alternative meth-

ods for shape coef cient adjustment as well as dealing witedo changes.
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Figure 5.16:Applying the method on four real images of faces. From lefigbt we show the
corrected Lambertian input image, frontal re-illuminatiof the recovered surface and two views
of the recovered surface.
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Chapter 6

Coupled Statistical Models of Intensity

and Shape

6.1 Introduction

In this chapter, our aim is to explore whether the altermatepresentations for surface
shape described in Chapter 5 can be coupled to variationsage intensity using a cou-
pled statistical model. The method described in the lasptemgerformed well under
Lambertian conditions, however, errors were spread ifingrglbedo images were used.
Here we aim to overcome this problem by using a statisticalehto learn the link be-
tween image brightness variations and surface shape.

The coupled model is inspired by the active appearance niedeloped by Cootes,
Edwards and Taylor (Cootes et al., 1998), which simultasouodels 2D shape and tex-
ture. Here however, we model joint variations in image hingiss and surface shape. We
explore three different surface shape representationsselare the surface height func-
tion, the surface gradient and a Fourier basis representaiihe model is trained using

corresponding pairs of range images and brightness im&ges the range images, we
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extract the shape-attributes. We construct separatesgpgeas for the image brightness
variation and the surface shape variation from the coveeiamatrices of the training data.
The coupled model links the two eigenspaces. By tting thag®a brightness model to
input images, we are able to recover the corresponding feessof surface shape. From
the surface model parameters we recover facial shape.

Let us analyze again Figure 5.10, where the different eigela® for each surface
shape representation are rendered. An important featuretéois that different models
tend to encapsulate different shape characteristics. ifttésesting to note that the in-
tensity model and the surface models exhibit different nscafevariation. This means
that the information encoded by the intensity shape parmsidt’, is of limited use in
directly recovering surface shape from intensity imagdss problem has been circum-
vented by minimizing the distance between rendered viears frecovered surfaces and
input images, as in the work of Atick (Atick et al., 1996) anthi®& and Vetter (Blanz
and Vetter, 2003). Unfortunately, the minimization of thistance is badly affected by
the presence of local minima. This means that exhaustivels@aethods must be used,
and this sacri ces ef ciency. We overcome this problem byngsa coupled statistical
model to relate 2D intensity variations and variations infate shape. Once tted to
data, the coupled model allows us to infer the shape-pasaskbm the best- t intensity
parameters, rather than using the distance between inmgfeisnand rendered views of

the recovered surfaces.

6.2 The coupled models

In this section we focus on how to relate the modes of varmatibthe intensity and
surface shape models. To this end, we develop a coupledtstaitimodel that links the

coef cients of the intensity and shape-models for a setahing data. Here the training
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Figure 6.1:We used a database of intensities and a database of heigimatfon. As shown in
the gure, there is a direct (pixel to pixel) relation betvmelhe members of each database. From
the height database we generated the Surface Gradient arnidHeasis databases.

data consists of aligned pairs of intensity and surfaceeshmpges of the faces of different
subjects. By tting the intensity model to out-of-trainirggmple images of faces, we can
use the coupled model to recover the corresponding surfeqeegparameters.

To construct the coupled model, we draw on the intensity anfdise representations
described in Sections 5.3.1 and 5.3.2 respectively. Eaghiig example i.e. pair of
intensity image and surface representation extracted &aorresponding aligned range
image (see Figure 6.1). can be summarized by the parametiarsb' andb*, where
X represents the surface model (either height, surface egvadr Fourier basis) of the
sample. In both models, we assume that the lower eigenmegessent small scale
noise variation. Hence, if they, eigenvalue for the intensity model i§, we need onlys

: . P i
eigenmodes to retaiercpercent of the model variance. We choSso that [, |

P C :
Fere II<<:1 - Similarly, for the 3D models we retaifi eigenmodes to captufeerc

percent of the variance.
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It is important to mention that, unlike the experiments preged in Chapter 5, in this
chapter we use a mask to cut off the regions of the face nearetieand ears (i.e. the
ones with the highest spatial variance). This binary masisists of calculating the total
variance of the height training set and setting the highavene pixels to zero. The mask
is then applied to every example in the training sets. Thecefif the masking functions
is to avoid the high spatial variability introduced by thersunding regions of the face in

each training sample.

6.2.1 Eigenmode concatenation

For theky, training sample we can generate the concatenated paraveeter of length
S+ T:

0 1 0 1

. %)Wb Lg B E@W(l\/l”(tik i))g_ 6.)
c = = : .
b MXT(tX  X)

whereW is a diagonal matrix of weights for each intensity model pseter, allowing for
the different relative weighting of the intensity and seegfanodels. As the elementslof
andb* represent different classes of data (grayscale and susfeaqee), they can not be
compared directly. We follow Cootes and Taylor (Cootes gt1#198) and setV = rl ,
wherer? is the ratio of the total shape variance to the total intgnaitiance and is the
identity matrix . The coupled model data matrix jbsj::;jbg ).

By applying PCA to the concatenated intensity-shape paemvectors, we obtain
the coupled model:

0 1

Ci
b’=Cc= o Xc: 6.2)
CX
whereC are the eigenvectors ands a vector of coupled parameters controlling the inten-
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sity and surface shape models simultaneously. The m@trbasS rows, and represents
the rst S eigenvectors, corresponding to the intensity subspackeofmodel. The ma-
trix C* hasT rows, and represents the ndl eigenvectors, corresponding to the surface
shape subspace of the model.

We may express the vectors of projected intensity and 3Degatlirectly in terms of

the parameter vectar.

t! i+ M'W ICic: (6.3)

t* X+ M*C*c: (6.4)

For compactness we writ€@' = W 1C'.

A plot of cumulative variance versus number of eigenmodes iis shown in Fig-
ure 6.2. The surface shape, intensity and coupled modelepresented by the dashed,
solid and dotted lines respectively. It is evident that fesigenmodes are required to the
capture variance in facial depth (i.e. the height and Fobasis models) than in facial in-
tensity. This is because the intensity model has to dealwaitiations caused by changes
in both facial shape and illumination. The depth-based nspd® the other hand, need
only accommodate changes in facial shape. We retained 93P ofairiance for each of

the models.

6.2.2 Fitting the models to intensity data

Fitting the model to intensity data involves estimating pla@ameter vectar from input
images of faces. To do this we seek the coupled model paresngkéch minimize the
error between the best t parametdrsand the recovered paramet€sc. In doing so,

we implicitly recover the surface shape represented bydleled model parameters.
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Figure 6.2:Plot of cumulative variance versus number of eigenmodes fas@ach surface shape
model (dashed line), intensity model (solid line) and fallpled models (dotted line).
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Suppose that is a centered vector of lengit N that represents an intensity image
of a face. Its best t parameter vectdr, is calculated using Equation 5.10. We t the

model to data seeking the vectof lengthS + T that satis es the condition

c=argminf(b' Q'c)T(b' Q'c)g (6.5)

The corresponding best t vector of surface shape values/engoy

X x+ M*C*c (6.6)

We used a Matlab implementation of the quasi-Newton miratidn procedure to
solve Equation 6.5. The t was constrained such that eaclpleoyparameter lies within
3 standard deviations from the mean. One input image tooknaraicouple of seconds

to converge to the best solution.

6.3 EXxperiments

In this section we report experiments focused on using &ttaming-sample images to
evaluate the ability of the coupled model to recover aceusatface information.

We constructed our models using 90 examples. We used 90f-drahaing-sample
examples for surface reconstruction tests. We calculdtedractional height difference
errorkGround_truth  Recoveredsurfacek=Ground_truth as an average over the 90
surfaces and over all points on the surfaces. For the puspafsanalysis, we ordered
the out-of-training-samples examples according to thistadce from the mean intensity
imagei. We used the sum of the rst ten valueshof(to account for at least 50% of the
variability), i.e.,P 1121 q as a similarity measure.

We commence by analyzing the shape recovery results oltaisiag the coupled
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Figure 6.3:Surface recovery results for four cases using the heigtitiatensity coupled model.
The gure is divided in four panels. The rst panel shows timput image together with frontal
ground-truth re-illumination and pro le view. The secondrnel presents the best- t intensity
recovery. The third panel presents results on surface eegosing the coupled model. We present
frontal re-illumination and pro le view followed by the iehsity map of the height difference
between ground-truth and recovered surface. The fourtimaolpresents the intensity map of the
height difference between ground-truth and the best- fame from height input (i.e. the surface
in panel 1 was used as an input for the single m&i&). Note that the height different plots have
been normalized for presentation purposes (the brighbestsprepresent a 10% difference).
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Figure 6.4:Plot of the fractional height difference between groundktrand recovered surface
when using the 90 out-of-training intensity images as inpie results were ordered in an as-
cending way for the purposes of comparison. The solid, dhsinel dotted lines represent the
height, Fourier basis and surface gradient coupled models.
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Figure 6.5: Experiments with frontal images of 10 individuals of the &d@ database. The
gure is divided into two panels, each of which contains vétbe ten subjects in the database.
In the gure, the rows are labeled with numbers and preseatdifferent subjects. The input
image, intensity best- t recovery, frontal illuminatioff the recovered height and pro le view with
warped input image are shown column-wise, for each panelpMsent the recovered surfaces
using the intensity and height coupled model.

Figure 6.6:Two views of the recovered surfaces of the ten examples ofdledatabase. These
views have been rendered with no warped texture. The nuntenganying the surfaces corre-
sponds to the input images presented in gure 6.5.
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Figure 6.7:Experiments with frontal images of individuals of the CMlgRiatabase of faces.
Different rows represent different subjects. The rst threolumns of the gure present input
image, intensity best- t recovery and frontal illuminati@f the recovered height. The rest of the
columns show actual views of the individuals along with $#miendered novel views.
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Figure 6.8:Two views of the recovered surfaces of the seven exampléedMU Pie database.
These views have been rendered with no warped texture. Thbaeraccompanying the surfaces
corresponds to the input images presented in gure 6.7.

Figure 6.9:Novel view synthesis analysis. The gure is divided into tpanels. For each panel,

different rows represent different subjects of the CMUPaatase. In the rst two columns

of both panels we show the close-to-pro le novel views gatest using the nearest in-training
surface and the recovered surface using the coupled moldelthird column presents the height
difference error between these two surfaces as an intdnsiye.
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model with the surface height representation. In Figurewe3show surface recovery
results for four examples. The different rows are for ddfgrindividuals. As we go
from top to bottom, the intensity images are increasingfiecent from the mean inten-
sity model. In each row the results are organized into 4 gsoup the rst group, the
three columns show the input image together with its growatih re-illumination and
pro le view. The second group contains the recovered bésgttensity image. The third
group shows the results obtained using the coupled modek, lttee columns show the
frontal re-illumination, a pro le view and an intensity mapthe fractional error between
ground-truth and recovered surface height. The fourthgsihows the error-map if the
height data for the surface in group 1 was used as an inpuhéosingle modeM ". As
expected, the results shown in the third group (i.e. the lsslmodel) seem to match
the best- t intensity image in the second group rather tHandriginal data in the rst
group. However, even for the input images that differ sigantly from the mean inten-
sity model, there is a good resemblance to the original datethe other hand, the error
plots in group 3 suggest a degree of similarity with the inpege. This feature is not as
strong in group 4. This may be a consequence of basing swéaogery on the best- t
parameters directly from an intensity image.

Next, we turn now our attention to the quantitative perfangeof each of the cou-
pled models. We test how well the different representatpmréorm using the 90 out-of-
training-sample intensity images as input. We compare ¢bevered surfaces with the
ground truth surface height data. In Figure 6.4 we plot thetfonal height difference.
The results were ordered according to ascending error & efvisual comparison. The
solid, dashed and dotted lines represent the height, Fooaigis and surface gradient
coupled models. There seems to be no signi cant differeretevéen the behavior of
the models. The average surface recovery error was 1.192%9% and 1.168% for the

height, Fourier basis and surface gradient coupled moWésalso calculated the average
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error from every out-of-training example to the mean hegitatpe, which was 1.71%.

Finally, we turn out our attention to real world images. Thet set of images used
is drawn from the Yale B database (Georghiades et al., 206d )sadisjoint from the
data used to train the statistical models. In the imagesfaites are in frontal pose and
were illuminated by a point light source situated approxehain the viewer direction.
We aligned each image with the mean intensity shape so thatyis, nose tip and mouth
center were in the same position. The surface recoverytsassihg the coupled model for
the height representations are shown in Figure 6.5. Thee gaidivided into two panels,
with ve subjects on the left and ve on the right. The resutirfthe different subjects
are shown in different rows. From left-to-right in each row show the input image, the
best- t recovered intensity image, a frontal illuminatiohthe recovered surface height
and a pro le view of texture mapping the input input imagemtite recovered surface.
There are a number of features to note from the gure. Fitet, reconstructed images
agree well with the input. Second, the overall shape of tlidewriew is subjectively
convincing.

In Figure 6.6, we show two views of the recovered surfacegé&mh of the ten Yale
subjects. The number attached to the surface views comdgpdhat used in Figure 6.5.
There are a number of features to note from these surface viavst, the most noticeable
problems with the recovery of ne surface detail occur in greximity of the mouth
and the eyes. This is a consequence basing the surface mequgeess on the best- t
parameters from the intensity model. The quality of the nstaction will depend on
the delity with which the intensity best- t parameters aable to characterize an input
image. Note that even when the best- t recovered intengityge is of lower quality than
those in Figure 6.3, the surface reconstructions from tlsé béntensity parameters are
suf ciently good to render novel facial views.

In Figure 6.7 we present a second set of real world expersgrfensubjects from the
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CMUPIe database (Sim et al., 2003). In this set of experiswptexplore the robustness
to inaccurate alignment. We did not perform alignment to rii@an intensity image.
In the gure, the rows are labeled with numbers to identife thifferent subjects. The
rst three columns of the gure show the input image, the ireagconstructed from the
best- t intensity model, and the frontal illumination ofealrecovered facial height. The
remainder of the columns show actual views of the individ\igft) together with views
of the reconstructed surface texture mapped with the inpage. As consequence of not
performing alignment operations, the surface recovemnylt®seem to be slightly noisier
than those obtained using the Yale database. This occuesialip around the mouth
and nose regions of the face. This effect may be suf cientistodt the close-to-pro le
synthetic views. This is particularly noticeable for suitge6 and 7, where noise in the
proximity of the nose area generates incorrect nose pro les

In Figure 6.8 we present two views of the recovered surfamethé CMU Pie database
subjects. These surfaces exhibit more variations in ndse and mouth shape than those
recovered from the Yale database.

Finally, we calculated the height difference between thangXes in the training
database and the recovered surfaces for the CMUPie datdmassach recovered surface,
we located the surface from the training sample that mireshihe height difference. We
then texture-mapped the input image onto the surface torgetenovel close-to-pro le
views. This experiment aims to demonstrate that new sugihapes are being generated
by the best- t intensity model parameters. In other words, aim to demonstrate that
the coupled model is not simply a table look-up procedurestds of surface parame-
ters. The results of this experiment are shown in Figure Gt different rows are for
different subjects in the CMUPie database. In the rst catuaf both panels we show
the close-to-pro le views generated using the nearestaming surface and the second

column shows that obtained using the surface recovered tisencoupled model. The
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third column shows the height difference error betweendhe® surfaces displayed as
an intensity image. These error plots show that the maierdiffces are located in the

nose and eye regions.

6.3.1 Discussion

There are some additional observations to make concernéepperiments with the Yale
and CMUPie databases. It has been previously noted thatctheary with which the
coupled models recover 3D shape depends on how well thethettnsity parameters
are able to reconstruct the input intensity image. We cam@ethis effect by consider-
ing the quality of the best- tintensity reconstructionssolumn (b) of Figures 6.5and 6.7.
If we compare these reconstructions with their correspanaiput images in column (a)
of the gures it is clear that the Yale database examples batéer reconstructions than
those in the CMUPIe data-base. In particular, in the fornasecthere are less instabil-
ities around the eyes, nose and mouth. This can be explaynadibmber of different
factors. For example, unlike the Yale images, the CMUPigg@savere not aligned to the
mean intensity image. Also, the light source direction mYale images is frontal, and all
areas of the face are well illuminated. In the case of the CMUiRages, some areas of
the face are in shadow. The quality of the reconstructionsbearegarded as an effect of
the linear nature of Equation 5.11. Clearly, as the bestté¢nsity parameters are used to
recover 3D shape through the coupled models, informaticndaed in these parameters
is “inherited” to their 3D counterparts. This informatioragninclude errors due to mis-
alignment and poor illumination settings. The resultings3lape improves in accuracy in
accordance with the best- t intensity recovery. Hence,doccessful 3D shape recovery
using coupled models, the input images must be well illuteidand aligned.

It has also been pointed-out (Atick et al., 1996) that the&aan representations used

to construct the models give rise to more spatial varigbilian cylindrical coordinates.
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However, the errors on the estimated surfaces are moregbgnatated to the illumination
and alignment factors mentioned above than to the repratsams themselves. Suppose
that to avoid problems with the Cartesian representatities3D shape models had been
constructed under cylindrical representations. In thsecahe correlation between the
Cartesian intensity and the cylindrical 3D shape would phdfpnot be suf ciently strong
to approximate 3D shape from intensity images using coupiedels. To exploit cor-
relation in cylindrical coordinates, both intensity and 8Bape models would have to
be expressed in the appropriate coordinate system. Mareibve Cartesian input im-
ages would need to be transformed into cylindrical cootéimand that would introduce
further alignment errors.

Finally, it is worth commenting in more detail on the diffaces between the method
studied in this paper and Blanz and Vetter's morphable m(8lahz and Vetter, 1999),
which has become a benchmark in the eld of face shape regoUdre two approaches
are compared in Table 6.1. At the conceptual level, they @epnd contrast in the fol-
lowing ways. Firstly, Blanz and Vetter's method aims to gate photo-realistic render-
ings of faces which are compared to the input image througixhaustive tting process
that minimizes a relatively complex error criterion. Posd dlumination information is
also encoded in the model. This makes their framework rdbugdtanges in illumination
and pose. Also, separate models for 3D shape and intensityeated in cylindrical co-
ordinates. The examples used to training the model havedalespondence with each
other. The generation of photo-realistic views is greatipioved by the construction
of independent models for different facial regions in theximity of the eyes, nose and
mouth. On the other hand, with our coupled approach we atteanpodel the relation-
ship between Cartesian intensity images and 3D shape byaecg the height surface
of a face directly from the information encoded by the bdsttensity parameters. This

means that the coupled model only works on frontal or neadytél views and is sensi-
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Comparison of Face Reconstruction Methods \

Constraints on input | Blanz and Vetter Coupled statistical models

image

[llumination: Unknown, single point Unknown, single point (fronta

or nearly frontal)

Pose: Arbitrary Frontal

Minimum number of| 1 1

images:

Albedo: Linear Statistical Constraint Linear Statistical Constraint

Alignment: Manually initialized with sparse Not required, but manual align-
feature points, tting improves | ment improves results

Approximate shape re-4.5 minutes 2 - 5 seconds

covery time:

Table 6.1: Comparison between the morphable model of BladX/atter and the coupled
statistical model.

tive to changes in illumination. However, the computatiowslved in the recovery of 3D
shape are straightforward and this offers the possibifigpproximating face shape in a
computationally ef cient way. The results presented in éixperimental section suggest
that there exists a correlation between the Cartesiangitfgmage and 3D shape that can
be further studied to obtain improved reconstruction usiogpled models. Generating
independent models for different face regions and expjottie outcome of using differ-
ent basis functions for PCA (such as 2D-PCA (Yang et al., 208 possible routes to

achieve improvements in future work.

6.4 Conclusions

We have explored a way for coupling intensity and 3D shapetsituct statistical mod-
els of facial shape that can be used to recover shape fromsityeémages of faces. We
have explored the performance of the statistical models thwee representations: the

surface height function, the surface gradient and a Fobasis representation. For each
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representation, the coupled model strongly links the lestef cients for intensity and
3D shape data into a single statistical model. To recovep#ntameters of the coupled
model, and hence reconstruct 3D shape, requires an optiamzaethod whose objec-
tive function relies on the best- t intensity parametersheTcoupled models proved to
be good enough to generate accurate surfaces from real wbelaksity imagery in an

ef cient way.
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Chapter 7

Conclusions and Future Work

In this chapter, the main contributions of this thesis in #ild of face shape recovery
from a single image view are summarized. These are the dawelot of a novel con-
vexity constraint using local shape indicators, the camsion of statistical models of
faces based on Cartesian coordinates, and the de nitioowbled statistical models of
3D shape and intensity. Suggestions for future work in tlea arill also be made in this

chapter.

7.1 Summary of contributions

The objective of this thesis has been to propose and explays W solve the problem of
face shape recovery from a single image view. To this end,ave hddressed the problem
of improving traditional SFS schemes (Chapters 3 and 4)uaifiding statistical models
of faces (Chapters 5 and 6).

In Chapter 3 we combined two constraints that can be usednatite SFS methods.
We proposed an extension of a geometric SFS algorithm thatistthe image irradiance
equation as a hard constraint. Our approach overcomesdabé&pr of high dependency

on the image irradiance equation, which is a weakness of¢bengtric SFS approach.
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This dependency can be relaxed through integrability caimgs. Also, we have shown
how the spurious peaks present in integrated height map®dd by the original method
can be stabilized if the integrability condition is intrauhal.

It is important to note that the inclusion of the integralilconstraint has normally
been used as a regularizing tool for needle maps in iter&®® algorithms (Frankot
and Chellappa, 1988). Instead, we use integrability toleeque the image irradiance,
and the effect of this is to allow the opening angle of the otegce cone to vary with
each iteration. Although the algorithm improves the recpwd the shape of piece-wise
smooth objects, it fails when applied to images of faces.atlogiess, the results described
in Chapter 3 support those in Chapter 5, where we show tregriability can improve the
recovery of surfaces from single images of faces.

In Chapter 4, we have shown that problems in facial SFS carveeome through
the modi cation of the surface normal direction using caxitye constraints. Here local
shape indicators can be used to decide whether regions ofaeesare concave or convex.
The modi cation of the direction of the surface overcomes finoblem of facial features
implosion.

There are some differences between our proposed convexistraint and other at-
tempts at facial SFS. For example, Zhao and Chellappa'saddtiled when tested on
varying albedo images (Zhao and Chellapa, 2000). The robasof Prados and Faugeras
can recover height regardless of facial pose (Prados €t(flg), but input images must
be such that the brightest point is encountered at the dpecder of the camera. On the
other hand, our method works on frontal pose images withingrglbedo.

In Chapter 5 we provide a comparative study of the behavidowf Cartesian rep-
resentations for constructing statistical models of fadédee representations studied are
the surface height, the surface gradient, the surface n@zimauthal angle and nally a

model based on Fourier domain basis functions. We analyzewsll the models per-
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formed if a parameter tting procedure (subject to irradiamnd integrability conditions)
is used to calculate the models parameters. The resultstbladwinlike the models based
on height data, those based on directional data work weti thi¢ tting procedure. This
feature can be explained by the smooth transitions betwembdels eigenmodes, i.e.
the variability of the training data is not concentratedistjsome few components (which
is the case of the models based on height information). Memeave propose the use of
complex numbers for building the azimuthal angle based tsod€his representation
offers the advantages over models based on real numbemdegeees or radians.

In Chapter 6, we show how to learn the statistical relatiamvben the image irradi-
ance and three of the above mentioned Cartesian reprasastato this end, we jointly
capture variations in intensity and the surface shape septations using coupled statis-
tical models. In order to build the coupled models, we penf®CA on sets of parameters
describing the contents of the intensity images and thalfabiape representations. The
best t coef cients from the intensity based model can bediseminimize an objective
function to calculate the couple models coef cients. Scefshape can be then directly
recovered from the coupled model coef cients. Our experiteglemonstrated that the
coupled models are able to generate good shape approxnsdtimm out-of-training-
sample intensity images.

Interestingly, and in contrast to the results obtained iagiér 5, there seemed to be
no major difference in the performance of the coupled molated on height data and
the coupled models based on directional data. Note that tim Gbapters 5 and 6 we
used tting procedures that are guided by the image irracbamquation. However, the
coupled model allows us to use the image irradiance in andatctorm represented by
the intensity models best t parameters. This means thatgare not propagated locally
across the surface after each iteration. This is in contoatite iterative method used

in Chapter 5 where only the surface gradient and azimutheabgsed models proved
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to be robust to these errors. On the other hand, the errotsined in the intensity
model best t parameters are transferred to the estimatadesmodel parameters. This
results in some instabilities in the recovered facial strreg mainly due to misalignment,
uncontrolled lighting conditions and poor resolution of thput images.

It is important to note that the coupled models describedhapfer 6 were inspired
by the active appearance model developed by Cootes, EdaaddEaylor (Cootes et al.,
1998), which simultaneously models 2D shape and texturewpl@w intensity and sur-
face shape in this fashion had not been explored in the titexdoefore. The importance
of coupled statistical models of intensity and surface sHegs on the direct usability of
the intensity model best- t parameters. We have shown theté parameters can assist
in addressing the problem of expensive computational dppesawhen tting the model

to intensity data.

7.2 Future work

There are several obvious shortcomings of the methods peapm this thesis which
require further research effort.

A problem with the convexity constraint of Chapter 4 is howctmose appropriate
values for the thresholds. This drawback may be address#tebyinimization of some
cost functional, for example, the sum of curvedness actessa¢edle-map, to choose an
optimal value for the threshold. Also, the convexity coastt has only been used as a
corrective step for needle maps that have been previoutdylated. Experiments are
needed to analyze how this constraint can be introducedmiterative SFS framework
for the recovery of needle maps.

The Cartesian models described in Chapter 5 suffer fromrdgluhck that they prop-

agate errors when the images studied exhibit non-Lambemti@ctance. To overcome
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this problem, we could explore ways of applying the constri the re ectance map of
Horn (Horn, 1997). We could also apply methods for removipecsilar points (Ragheb
and Hancock, 2003) in order to improve the quality of the inmages.

In Chapter 6, although quantitatively good results areead by coupling inten-
sity and 3D surface shape, the main drawback of the method @verreliance on the
best t parameters of the intensity-based model. Even thabg coupled models have
been tested over both aligned and non-aligned images, édsssary to conduct a more
thorough analysis on the outcome of different alignmentedures applied on the in-
put intensity images. Also, experiments on the sensitiwftthe method to effects such
as illumination changes, image resolution and facial esgio; can be used to under-
stand the quality of the output reconstructed face. Theperarents would also help to
determine whether an input image needs pre-processingtopes before applying the
coupled models.

Another important line of investigation is to perform expaents on the robustness of
both the coupled and the single Cartesian models built @nreltive basis functions such
as 2D-PCA (Yang et al., 2004). These experiments would loalptierstand the behavior
of the models when they are constructed on inputs other titansity eigenfaces. More-
over, it would be interesting to investigate the effect ofigled models of intensity and
3D surface shape on separate facial features. In other wordenerate coupled models
independently for eyes, mouth and nose, as done previoys{iléndy and Ben-Arie,
1999) and (Blanz and Vetter, 2003).

Furthermore, it would be interesting to study the relatiopdetween image intensity
and its Lambertian component, i.e. the albedo-free fromtidilmination of a 3D face.
Using coupled statistical models might offer a way of reecowgefacial albedo from non-
Lambertian faces. This seems an obvious approach sinceotlmet! components are

both based on 2D images. This is similar to the work of (Tang)\&fang., 2004), who
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showed how to couple images of faces and sketches. KnowlHde facial albedo of
an image would result in improved usability of the Cartesigpresentations using the
data-driven procedure described in Chapter 5.

Finally, it would be worthwhile to investigate how the prgeal methods in this thesis
can be used for face recognition purposes. In practice, wlqerform experiments
where changes in pose and illumination are signi ed in oridetake advantage of the

recovered facial shapes.
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