
REAL-TIME MARKERLESS
3-D HUMAN BODY TRACKING

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

2006

By
Fabrice CAILLETTE

School of Computer Science

Contents

Abstract 11

1 Introduction 18
1.1 Applications of Human Body Tracking 18
1.2 Motivation, Aims and Objectives . 19
1.3 Summary of Contributions . 20
1.4 Thesis Outline . 21

2 Background Segmentation 23
2.1 Introduction . 23
2.2 Related Work . 26
2.3 A Model for Background Pixels . 27

2.3.1 Hypotheses and Formulation 27
2.3.2 Measuring the Noise . 28
2.3.3 Measurements and Interpretation 30
2.3.4 Statistical Model for the Background Pixels 33
2.3.5 How Many Training Frames? 33

2.4 A Metric for Segmentation . 35
2.4.1 Mahalanobis Distance . 36
2.4.2 Segmentation of Individual Pixels 36
2.4.3 Classification of a Set of Samples 39
2.4.4 Hierarchical Silhouette Extraction 44

2.5 Handling Shadows . 46
2.5.1 Related Work . 46
2.5.2 A Gaussian Model for Shadows 47

2

2.5.3 Efficient Distance Computation 48
2.6 Evaluation and Conclusion . 49

2.6.1 Qualitative Results . 49
2.6.2 Performance Considerations 51
2.6.3 Conclusion . 52

3 Volumetric Reconstruction 53
3.1 Background and Basic Principle . 53

3.1.1 Shape-From-Silhouette . 53
3.1.2 The Standard Algorithm and its Limitations 56
3.1.3 Background on Shape-From-Silhouette Methods. 57

3.2 A Novel Hierarchical Reconstruction Approach 61
3.2.1 Aims and Constraints . 61
3.2.2 Algorithm Overview . 63
3.2.3 Flexible Recursive Approach 64

3.3 Voxel Classification . 70
3.3.1 Projection of Voxels and Uniform Sampling 70
3.3.2 Voxel Classification . 71

3.4 Incorporating Colour in the Volumetric Reconstruction 74
3.4.1 Including All Possible Colours into each Voxel 75

3.5 Results . 77
3.6 Discussion and Conclusion . 80

4 Tracking Body Parts with 3-D Blobs 82
4.1 Blobs as Feature Trackers . 82

4.1.1 Appearance Models in the Literature 83
4.1.2 Theoretical Background and Notation 86

4.2 Tracking with Expectation-Maximisation 89
4.2.1 Overview . 89
4.2.2 The EM Algorithm for Tracking 92
4.2.3 Expectation Step . 93
4.2.4 Maximisation Step . 95

4.3 Constraining EM with Learnt Models of Blobs 98
4.3.1 Run-Time Correction of Blobs Parameters 98
4.3.2 Automatic Acquisition of Blobs Models 100
4.3.3 Dynamic Splits . 103

3

4.4 Discussion and Conclusion . 105

5 Hierarchical Tracking with Inverse Kinematics 107
5.1 Kinematic Model . 107

5.1.1 Requirements of a Kinematic Model 108
5.1.2 Kinematic Human Body Models in the Literature 109
5.1.3 Model Description and Parametrisation 111

5.2 Linking the Blobs to the Model . 115
5.2.1 Evaluation of Goal Positions 117
5.2.2 Complete Algorithm . 120

5.3 Inverse Kinematics . 121
5.3.1 Estimation of the Root Position and Orientation 124
5.3.2 Initialisation of the Root Position and Orientation 124
5.3.3 Cyclic-Coordinate Descent 125

5.4 Results . 128
5.5 Discussion and Conclusion . 130

6 Bayesian Tracking with Monte-Carlo Sampling 131
6.1 Introduction . 131

6.1.1 Global Optimisation Techniques 132
6.2 Bayesian Framework and Particle Filter 134

6.2.1 Bayesian Framework . 134
6.2.2 Sequential Monte-Carlo Approach 137
6.2.3 Resampling . 138

6.3 Propagation of the Particles . 140
6.3.1 Theory and Related Work 141
6.3.2 Learning Dynamics . 145
6.3.3 Predicting Using the VLMM 148

6.4 Fast Evaluation of the Likelihood . 151
6.4.1 Introduction . 151
6.4.2 Direct Voxel-Based Particle Evaluation 153
6.4.3 Data Density as a Mixture of Gaussians 154
6.4.4 Fast Particle Evaluation as Cross-Entropy Measure 156

6.5 Discussion and Conclusion . 158

4

7 Overall Evaluation 160
7.1 Hardware Setup and Test Sequences 160

7.1.1 Hardware Setup . 160
7.1.2 The Ballet Dancing Sequences 161
7.1.3 Ground-Truth and Training Data 162

7.2 Tracking Results . 163
7.2.1 Visual Analysis . 163
7.2.2 Quantitative Error Measurements 165

7.3 Performance Considerations . 169
7.4 Discussion on the Scaling Issue . 170
7.5 Conclusion . 172

8 Conclusion and Future Work 173
8.1 Summary of the Thesis . 173
8.2 Summary of Achievements . 174
8.3 Future Work and Possible Extensions 175

Bibliography 177

A Colour Representation 194

B Uniform Pixel Sampling 196

C Spatial Covariance of a Voxel 201

D Fast Computation of the Direction of Blob 203

5

List of Tables

2.1 Confidence intervals for the Gaussian Distribution 34
2.2 Number of training image samples against confidence intervals 35
2.3 Chi-Square probability density function 38
2.4 Computational comparison of segmentation methods 51

3.1 Performance of the volumetric reconstruction. 78

5.1 Parametrisation of the joints of the kinematic model 114

7.1 Description of the dance exercises in standard ballet notation. 162
7.2 Overall performance measurements. 170

6

List of Algorithms

2.1 Basic framework for pixel-based background segmentation. 25
3.1 Standard Visual Hull Algorithm . 57
3.2 Novel reconstruction method. 65
3.3 Partial voxel classification from a single view 72
3.4 Overview of the classification of a voxel 75
4.1 General principle of Expectation-Maximisation 89
4.2 Overview of the use of Expectation-Maximisation for tracking. 92
4.3 Details of the Expectation Step . 95
5.1 Recursive computation of the goal positions 122
6.1 Generic SIR Particle Filter. 139
6.2 Systematic Resampling Algorithm. 140

7

List of Figures

2.1 Noise distribution in RGB colour-space. 30
2.2 Spectral sensitivities . 31
2.3 Noise distribution in YUV colour-space. 32
2.4 Mahalanobis distances, following a χ2 Distribution 38
2.5 Segmentation results with simple Mahalanobis distance 39
2.6 Probability density function of the χ2 distribution 41
2.7 Choice of thresholds with relation to degrees of freedom 43
2.8 Segmentation results using a neighbouring sample set 43
2.9 Segmentation results with edge detection 44
2.10 Hierarchical sample-based silhouette extraction 45
2.11 Segmentation results with shadow treatment 49
2.12 Qualitative evaluation . 50

3.1 Correspondence between individual pixels and 3-D locations. 54
3.2 Shape-From-Silhouette as intersection of projected silhouettes. 55
3.3 Some weaknesses of the Shape-From-Silhouette 56
3.4 Initial subdivision of the tracking area 66
3.5 Re-classification of a unknown voxel 68
3.6 Merging of similar sub-voxels . 69
3.7 Projection of a voxel onto an image plane 71
3.8 Overview of the classification of a voxel 74
3.9 Placement of the cameras . 77
3.10 Pixel samples and corresponding reconstructed volume 79
3.11 Influence of the number of camera views 80
3.12 Contributions of the recursive levels 80

8

4.1 Overview of the blobs fitting process 90
4.2 Notations for the attributes of a blob 99
4.3 Data-flow diagram of blobs parameters 100
4.4 Acquisition of the attach point offset 103
4.5 Splitting of a blobs . 105
4.6 Captures of automatic blobs reconfiguration 106

5.1 The kinematic model . 112
5.2 Parametrisation of a joint . 113
5.3 Axes of rotation and constraints . 115
5.4 Blobs attached to the joints of the kinematic model. 116
5.5 Computation of goal positions from the blobs. 118
5.6 Computation of the direction of a goal position 119
5.7 Translating the goal positions . 121
5.8 Singular and redundant configurations 123
5.9 Initialisation of the root position and orientation of the model 125
5.10 CCD with a single goal position . 126
5.11 CCD with two goal positions . 128
5.12 Goal positions and Inverse Kinematics 129
5.13 Results of the hierarchical tracking method using 4 camera views. . . 129
5.14 Colour is important to disambiguate poses with self-occlusions. . . . 130

6.1 Bayesian framework . 136
6.2 Particles estimating the distribution of the posterior 137
6.3 Examples of clusters of elementary movements 147
6.4 Example of VLMM . 148
6.5 Local dynamics . 150
6.6 Comparison of features for particles evaluation 152
6.7 Blobs fitting process . 155
6.8 Overview of the particle evaluation framework 157

7.1 Tracking of dance exercise 1 . 164
7.2 Tracking of dance exercise 1 (cont.) 165
7.3 Tracking of dance exercise 2 . 166
7.4 Tracking of dance exercise 2 (cont.) 167
7.5 Comparative accuracy measurements with blobs fitting 167
7.6 Comparative accuracy measurements with common likelihood 168

9

7.7 Prediction accuracy for various memory lengths 169

A.1 Colour-spaces representation . 194

B.1 Algorithm for uniform sampling of a voxel’s projected area 198
B.2 Voxels with similar projected area 199

C.1 Voxel covariance . 201

D.1 Finding the main eigenvectors of a blob. 204

10

Abstract

The ability to perform efficient human motion tracking is essential in a wide variety
of applications such as human-computer interfaces, anthropological studies, entertain-
ment, and surveillance. Markerless human body tracking involves recovering the pa-
rameters of a kinematic model from video sequences. This inference problem is made
difficult by the noisy and ambiguous nature of camera images. The high dimension-
ality of the parameter space is also a major challenge, making human-body tracking a
very active research area in the computer-vision community.

This thesis presents algorithms for real-time human body-tracking based on mul-
tiple camera views. A robust volumetric reconstruction technique is first presented,
combining shape and colour from multiple views in an hierarchical scheme. Back-
ground segmentation and volumetric reconstruction are merged into a single process,
with benefits in performance and robustness. The appearance model, used to relate
the kinematic parameters to image observations, is composed of Gaussian blobs. This
blob-based model is automatically acquired from the data, and updated from the recon-
structed volume in an Expectation-Maximisation framework. Our first proposed track-
ing algorithm recovers the pose of the kinematic model directly from the blobs, us-
ing a two-steps inverse kinematics procedure. A second proposed method approaches
tracking as a Bayesian estimation problem. To guide the propagation of samples in
the parameter space, we propose a predictive model based on the combination of lo-
cal dynamics and learnt variable length Markov models of behaviour. The evaluation
of the likelihood of the candidate model configuration is critical for computational
efficiency. We propose a novel evaluation procedure based on the relative entropy be-
tween mixtures of Gaussian blobs. The robustness and performance of our system are
demonstrated on challenging video sequences exhibiting fast and diverse movements.

11

Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree or
qualification of this or any other university or other institu-
tion of learning.

12

Copyright

Copyright in text of this thesis rests with the Author. Copies (by any process) either
in full, or of extracts, may be made only in accordance with instructions given by the
Author and lodged in the John Rylands University Library of Manchester. Details may
be obtained from the Librarian. This page must form part of any such copies made.
Further copies (by any process) of copies made in accordance with such instructions
may not be made without the permission (in writing) of the Author.

The ownership of any intellectual property rights which may be described in this
thesis is vested in the University of Manchester, subject to any prior agreement to the
contrary, and may not be made available for use by third parties without the written
permission of the University, which will prescribe the terms and conditions of any
such agreement.

Further information on the conditions under which disclosures and exploitation
may take place is available from the Head of School of Computer Science.

13

Acknowledgements

Of course I would like to thank my supervisor, Toby Howard, for his support and
encouragements. I wish to acknowledge Aphrodite Galata for giving me the motivation
to achieve more. Thanks are also due to my family, without whom nothing (or not
much) would have been possible. Special mention to Juana for helping me going
through all those years, and for so much more... Finally big thanks to all my friends in
Manchester – Vivek, Gilles, Franck, Nikolay, Lilian, Jun, Gwenn, Bruno, and all the
others – for making the whole experience enjoyable.

14

Publications

Some of the work described in this thesis also appeared in:

• F. Caillette and T. Howard. Real-Time Markerless Human Body Tracking with
Multi-View 3-D Voxel Reconstruction. In A. Hoppe, S. Barman and T. Ellis, ed-
itors, Proceedings of the 15th British Machine Vision Conference (BMVC), volume
2, pages 597–606, Kingston UK, September 2004.

• F. Caillette and T. Howard. Real-Time Markerless Human Body Tracking Using
Colored Voxels and 3-D Blobs. In Proceedings of the 3rd IEEE and ACM Inter-

national Symposium on Mixed and Augmented Reality (ISMAR), pages 266–267,
Arlington VA, November 2004

• F. Caillette, A. Galata and T. Howard. Real-Time 3-D Human Body Tracking us-
ing Variable Length Markov Models. In W. F. Clocksin, A. W. Fitzgibbon and
P. H. S. Torr, editors, Proceedings of the 16th British Machine Vision Conference

(BMVC), volume 1, pages 469–478, Oxford UK, September 2005.

• F. Caillette, A. Galata and T. Howard. Real-Time 3-D Human Body Tracking using
Learnt Models of Behaviour. Submitted to the journal of Computer Vision and

Image Understanding (CVIU).

15

List of Notations

t : index of the current frame (discrete timestep). (N)
u : pixel measurement. (R3)
Nu : number of pixel measurements. (N)
µ : the true colour value of the pixel. (R3)
w : noise associated with a pixel measurement. (R3)
σw : standard deviation of the pixel noise. (R)
Σw : covariance matrix of the noise. (R3×3)
σe : standard deviation of the error in the pixel model. (R)
DM : Mahalanobis Distance to the Gaussian model. (R3→R)
D′

M : Mahalanobis Distance with shadows handling. (R3→R)
Td : classification threshold with d degrees of freedom. (R→R)
s : pixel sample in the current frame. (R3)
Ns : number of pixel samples. (N)
S : set of spatially distributed pixel samples {s1, . . . , sNs}. (R3×Ns)

V : a voxel.
sV : size of the side of the voxel V . (R)
XV : position of the centre of the voxel V . (R3)
D : current recursive depth for the reconstruction. (N)
D+ : maximal recursive depth for the reconstruction. (N)
ci : camera number i. (N)
Nc : number of cameras. (N)
Ci
V : colour of the voxel, as seen from camera ci. (R3)
CV : set of voxel colours, for all cameras {C1

V , . . . , CNc
V }. (R3×Nc)

B : a single Gaussian blob.
µ : full mean vector of a blob B. (R6)
µX : mean position vector of a blob B. (R3)
µC : mean colour vector of a blob B. (R3)
Σ : full covariance matrix of a blob B. (R6×6)
ΣX : spatial covariance matrix of a blob B. (R3×3)
ΣC : colour covariance matrix of a blob B. (R3×3)

16

ΣXC : mixed colour-position covariance matrix of a blob B. (R3×3)
α̂ : offset of attachment along a bone segment. (R)
σ̂x : spatial standard deviation along the main axis. (R)
σ̂y : spatial standard deviation along the second axis. (R)
σ̂z : spatial standard deviation along the third axis. (R)
Nb : number of blobs in the appearance model. (N)
B : set of blobs {B1 . . . BNb

} in the appearance model.

Jti : the ith joint in the kinematic model.
NJ : number of joints in the kinematic model. (N)
li : length of the bone segment associated with joint Jti. (R)
ωi : axis of rotation for the joint Jti. (R3)
θi : rotation angle of the joint Jti around ωi. (R)
θ+

i : maximum rotation angle for the joint Jti. (R)
θ−i : minimum rotation angle for the joint Jti. (R)
θ̇ : first derivative of the joint angle θi with respect to time. (R)
Θ : set of all joint angles {θ1, . . . , θNJ

}. (RNJ)
Θ̇ : set of all joint angles derivatives {θ̇1, . . . , θ̇NJ

}. (RNJ)
Θ : set of all joint angles and their derivatives {Θ, Θ̇}. (R2×NJ)
P0 : global position of the root of the kinematic model. (R3)
Pi : global position of a joint Jti. (R3)
P : vector of global positions of all joints. (R3×NJ)
R0 : global orientation of the root of the kinematic model. (R3×3)
Ri : global orientation of a joint Jti. (R3×3)
Gi : goal position for the joint Jti. (R3)
NG : number of available goal positions. (N)
G : set of all goal positions. (R3×NG)

dz : dimensionality of the observations. (N)
zt : measurement or observation at frame t. (Rdz)
Zt : all available observations up to frame t. (Rt×dz)
d : dimensionality of the parameter space. (N)
Ct : configuration of the model at frame t. (Rd)
Ci

t : configuration of the particle i at frame t. (Rd)
wi : weight associated with the particle i. (R)
Np : number of particles. (N)
k : index of a cluster of elementary movement. (N)
K : set of all the clusters of elementary movement.
q : current state of the particle in the VLMM. (N)
DKL : Kullback-Leibler distance between distributions. (Rdz×Rdz→R)

17

Chapter 1
Introduction

Markerless human-body tracking is a difficult problem which has
been one of the important challenges of the Computer-Vision com-
munity for about 20 years. Since the earliest attempts [OB80,
Hog83], progress have been made in all areas touched by human
body tracking, but despite a great deal of attention in the recent years,
the general problem remains unsolved. With this thesis, we intend
to contribute to the state of the art in specific aspects of this com-
plex problem. We shall particularly focus our efforts on the real-time
tracking of structured motions, using multiple camera views. In this
introductory chapter, we present the applications and motivations of
our research, and then give an outline of the contributions and of the
structure of the thesis.

1.1 Applications of Human Body Tracking

Full human-body tracking has a wide and promising range of applications. The film
industry has been pioneering the need for motion capture since the emergence of re-
alistic computer graphics. The capture and re-targeting of the movements of actors to
animated characters is a very important application, used in films, but also in video
games and in live broadcasts. Alternatively, computer-generated human figures ne-
cessitate realistic animations, which is very hard to achieve manually using modelling
softwares. Using recent developments in statistical learning methods, it is possible to
model and generate stylised motions [BH00]. However, these techniques still require
large amounts of training data, usually acquired though motion capture.

18

CHAPTER 1. INTRODUCTION

The automatic tracking of human motions is important for surveillance and secu-
rity. Computerised systems can detect suspicious patterns of behaviour [DH04] and
trigger some alerts. Computers can also analyse movements for rehabilitative pur-
poses [MPC+05], such as assessing the recovery of patients. Motion analysis can help
sportsmen locate their weaknesses, and improve their performances. For the general
public, computers could become virtual teachers in activities such as dancing or sign-
language, capable of both instructing students and correcting their errors.

Last but not least, motion capture finds exciting applications in smart offices or
households [Coh98, Coh99, BMK+00], where computers try to understand the inten-
tions of humans. Movements and gestures are essential vehicles of communication,
and recognising them is a milestone towards “human-aware” buildings. More gener-
ally, gestures can become an essential way to interact with computers, more natural and
expressive than current computer-centred devices. The whole domain of computer in-
terfaces could be reshaped by gesture-based interactions, which combined with speech,
could allow users to interact freely with virtual objects. Video games are an obvious
example of application that would greatly benefit from body tracking to enhance the
immersion of the player. Likewise, tracking motions can be used to control realistic
avatars in virtual environment. Social interactions would then be possible without the
barrier of distance.

1.2 Motivation, Aims and Objectives

Commercial marker-based motion capture systems [Vic, Met] have been around for a
few years. They can acquire movements at very high frequencies with good accuracy,
which makes them an ideal tool for the film industry. However, these tracking systems
are very invasive, typically requiring special clothing and a very controlled studio-like
environment. Their high price also confines them to very specific applications, and
prevents their wider adoption as a human-computer interaction technique.

By contrast, cameras are low-cost, flexible and non-invasive devices: their use for
motion capture is a natural evolution towards ubiquitous computing. In the last few
years, cameras have become commodity hardware and are increasingly integrated into
various electronic equipment, from computers to mobile phones. Like the human eye,
they can capture much more than the relative positions of the limbs. The information
transmitted by cameras is very rich, and the main challenge in computer vision is to
extract the small sub-set of information that is relevant for a particular application.

19

CHAPTER 1. INTRODUCTION

The non-invasiveness of cameras is probably the most important factor that could
allow a wider adoption of full body-tracking setups. Ideally, the tracker should only
rely on raw camera images, with no specific assumptions about the environment or the
clothing of the subject. However, considering the state of the art, a solution to this
general problem seems currently out of reach. Some constraints have therefore to be
imposed onto the tracking environment. In our case, we assume a static environment
and the availability of multiple camera views. In our opinion, these constraints are
relatively easy to meet for indoor tracking, but restrict nonetheless the scope of possible
applications.

Performance, although neglected by many researches, is a necessary condition for
the system to be usable. Most applications are interactive, and demand a responsive
tracking system. Even relying on the fast increase in computing power, trackers which
currently run several orders of magnitude slower than real-time have little hope of
wide adoption. An important aim of this research is to design a full-body tracker
capable of running in real-time on commodity hardware. Many methodology choices
are made with this efficiency constraint in mind. The notion of “real-time” is subject
to interpretation, but throughout this thesis, we shall target a full system running at
10 Hertz on a single 2 GigaHertz computer. This targeted framerate represents a bare
minimum for many applications, but would nonetheless allow interactive tracking of
human motions.

Tracking people from camera images is difficult because of the high dimensionality
of full body kinematics, the fast movements and frequent self-occlusions. Moreover,
loose clothing, shadows, or camera noise may further complicate the inference prob-
lem. A robust tracker should cope with all these challenges, and provide ways of
recovery whenever it fails. In this thesis, we attempt to develop original answers to
all these issues. We finally demonstrate a full-body tracker running in real-time on a
single computer, and robust enough to track challenging sequences of ballet dancing
as acquired by low-quality webcams.

1.3 Summary of Contributions

Novel and original work presented in this thesis include:

• A fast hierarchical background segmentation technique, with robust classification of
sets of pixel samples and handling of shadows.

20

CHAPTER 1. INTRODUCTION

• A volumetric reconstruction algorithm modelling uncertainty when combining the
classifications from available camera views.

• The efficient inclusion of colour information in the voxel-based representation.

• The dynamic reorganisation of blobs to automatically learn the appearance model.

• An iterative tracking algorithm based on the positions and directions of blobs.

• In the context of Bayesian tracking, a prediction scheme based on variable length
Markov models of behaviour.

• A fast evaluation framework for the particles, based on the cross-entropy between
the blob models.

1.4 Thesis Outline

In this chapter, we briefly introduced the research field of human-body tracking and its
applications.

Chapter 2 takes a statistical approach to the problem of background segmentation.
We propose a model for robust classification of sets of pixels, and detail a hierar-
chical segmentation algorithm with significantly improved performance compared to
per-pixel schemes. Chapter 2 also serves as an introduction to the volumetric recon-
struction method, presented in Chapter 3. The volumetric reconstruction algorithm
exploits multiple views to build hierarchically a voxel-based representation of the sub-
ject of interest, following the shape-from-silhouette paradigm. In Chapter 3, we detail
the original aspects of our algorithm, and conclude with the inclusion of colour and
some results.

Blobs are probabilistic descriptions of data-sets. In Chapter 4, we describe the
use of 3-D Gaussian blobs as trackers for individual body-parts. The Expectation-
Maximisation algorithm is chosen to relate the blobs to the voxels obtained from the
volumetric reconstruction. In order to avoid manual initialisation of the appearance
model, a scheme which automatically acquires the number of blobs and their reparti-
tion on the skeletal model is introduced.

Chapter 5 describes the parametrisation of the kinematic model, and presents a fast
hierarchical tracking algorithm based on Inverse-Kinematics. The chapter concludes
with some results highlighting both the benefits and the limitations of this method.

21

CHAPTER 1. INTRODUCTION

In an attempt to address some problems of the hierarchical approach, Chapter 6
introduces a global optimisation method based on particle filtering. The particles are
propagated using the predictions of a variable length Markov Model, and evaluated
using the blobs description from Chapter 4.

An overall evaluation of the tracking methods presented in this thesis is proposed in
Chapter 7. Challenging sequences of ballet-dancing are used for quantitative and qual-
itative tests. Our method is also compared to other established tracking frameworks.
Finally we conclude in Chapter 8 with a summary of the thesis and some suggestions
of future work.

22

Chapter 2
Background Segmentation

When the cameras are fixed and the environment is relatively static,
silhouettes are appealing visual cues, both robust and fast to extract.
This chapter presents a novel hierarchical scheme for background
segmentation, based on statistical analysis of the camera noise and
robust classification of sets of samples. After a general introduction
to background segmentation and a presentation of the state of the
art, a Gaussian model of background pixels is described. Segmen-
tation is then possible on individual pixels, but also on sets of pixel
samples, leading to a hierarchical scheme. Shadows and changes in
lighting are handled in a computationally efficient way. The chapter
concludes with qualitative results and a performance evaluation.

2.1 Introduction

Segmenting an image means labelling each of its pixels as belonging to zones or classes
of the image. Background segmentation is a sub-case of general segmentation, where
one is only interested in a binary classification of the pixels: either they belong to the
object of interest, or they do not. Different synonymous names can be found in the
literature for “background segmentation”, like “background subtraction”, “foreground
segmentation” or more generally “image segmentation”. The term “background” refers
to every pixel in the image that does not belong to the object of interest.

Background segmentation is used in numerous tracking algorithms (see [MG01]
for a survey) because it discards the background region and isolates the object of in-
terest. Unaffected by irrelevant features, tracking is then simpler and more robust. An

23

CHAPTER 2. BACKGROUND SEGMENTATION

important advantage of background segmentation over most other image cues is its
capacity to handle low-quality and blurry images. Motion-blur is indeed omnipresent
in motion-capture, giving a hard time to edge or texture-based detectors. Background
segmentation, however, is almost unaffected by blurry regions. The resulting silhou-
ettes encode the shape and the pose of the subject in a simple way, and constitute
reliable cues for tracking.

A single silhouette is often too ambiguous to infer the pose of a human sub-
ject, especially considering the frequent self-occlusions characterising human mo-
tions. Multiple views are then frequently used, either through projection and eval-
uation of the fitness of the model [CTMS03, GSD03b, DF99], or 3-D reconstruc-
tion [MTHC03, LSL01, CKBH00]. The need for real-time multiple silhouettes ex-
tractions imposes strong performance constraints on background segmentation tech-
niques. These techniques are usually kept simple enough to run in real-time while
leaving enough spare processing time for subsequent algorithms.

The main inconvenience of background segmentation is the need to build a model
of the background. In most cases this implies capturing the empty scene prior to the
tracking and keeping cameras immobile during the tracking. These constraints are not
too restrictive for an indoor office-like environment but applications such as tracking
from archive video footage are ruled out. Another challenging problem is that back-
grounds do not usually remain totally static during long capture durations because of
changes in lighting or moving objects. A way to update dynamically the background
model during the actual segmentation is needed.

In the literature, classification is often performed independently on each pixel by
comparing the current colour of a pixel with a model of the background. A standard
framework for background segmentation is presented in Algorithm 2.1. In this al-
gorithm, a model for each background pixel is first built from an empty scene, and
the actual segmentation is then performed by comparing current pixel values with the
background model. This scheme is followed by most of the real-time image segmen-
tation methods, despite using more or less complex models of the background. The
choice of the model must be a compromise between an over-simplified one, leaving
many pixels misclassified, and a too complex one where the evaluation of the distance
between the current pixels and the background model would be too complex for real-
time execution.

Image segmentation is often performed on a per-pixel basis, ignoring all higher

24

CHAPTER 2. BACKGROUND SEGMENTATION

Algorithm 2.1: Basic framework for pixel-based background segmentation.
. Background acquisition with an empty scene;
foreach training image of the background do

foreach pixel do
build and update the background model (Section 2.3);

end
end

. Online background Subtraction;
foreach new input frame do

foreach pixel do
compute the distance between the current pixel colour and the
background model (Section 2.4);
if distance > threshold then

pixel is labelled foreground;
else

pixel is labelled background;
update the model with the current pixel;

end
end

end

level structure. A justification is that image segmentation is performed as a pre-
processing step, and classification errors can be recovered from at later stages. Nev-
ertheless, foreground regions are often contiguous, and spatial coherency can be ex-
ploited to improve performance and robustness of background segmentation. When
introducing a spatial prior, one must be careful not to bias the estimation. In this chap-
ter, we shall introduce a novel hierarchical scheme, performing classification on sets
of samples in an unbiased way.

If cameras were perfect noiseless devices, background segmentation would be triv-
ial: any kind of distance between a single image of the background and the current
frame would exhibit the object of interest, and thresholding values above zero would
finish the algorithm. Unfortunately cameras have inherent noise which cannot be ig-
nored. The theoretical way to handle noise is first to measure its distribution, then to
model it and finally to design robust statistical methods dealing with it.

After a presentation of related work on background segmentation, this chapter
starts with the elaboration of a statistical model for the pixels of the background (Sec-
tion 2.3). The statistical tools to perform segmentation on individual pixels and on
sets of pixels are then introduced in Section 2.4, leading to a hierarchical segmentation

25

CHAPTER 2. BACKGROUND SEGMENTATION

scheme. Section 2.5 then presents a simple and efficient shadows removal algorithm.
Finally, a comparative evaluation of our method followed by a discussion concludes
the chapter.

2.2 Related Work

The most basic methods reported in the literature (such as [BL01b, TMSS02, Sze90,
CKBH00]) do not attempt to model noise. A simple subtraction is performed between
the current pixel’s intensity and the corresponding pixel in a reference frame of the
background. The result is then thresholded with an arbitrary chosen value. While this
approach is very fast, it only gives good results if the contrast between the foreground
object and the background is high. The segmentation of human body with standard
clothing in a cluttered environment using this simple scheme is poor.

Wren et al. [WADP97] use a more advanced model of the background, where the
YUV colour of each pixel is modelled by a trivariate Gaussian distribution. The num-
ber of training background samples is arbitrary, but the method is robust and runs in
real-time. A single Gaussian distribution is enough to model static backgrounds, but
applications like road traffic control need to account for more variability in the back-
ground model. A logical extension is then to use more than one component per pixel:
Friedman et al. [FR97] and Stauffer et al. [SG99] both model each background pixel
by a mixture of Gaussians. The Gaussian models are learnt using an Expectation-
Maximisation framework. While this approach is theoretically appealing and gives re-
liable results in difficult cases, it is too general (and hence computationally expensive)
for a simple, mostly static, office environment. The algorithm of Stauffer et al. [SG99]
will be evaluated in Section 2.6.

Another interesting extension was proposed by Javed et al. [JSS02] with a frame-
work for hierarchical segmentation. The segmentation is done successively at 3 levels:
at the pixel level, a standard mixture of Gaussians is used in conjunction with gradients
to classify each pixel as belonging to background or foreground. At a “region” level,
individual misclassifications are recovered from, as a foreground region is assumed to
be continuous and bounded by high-gradient values. Finally, the frame level accounts
for global illumination changes. The whole framework seems particularly well adapted
to outdoor monitoring, but unfortunately no performance evaluation is provided.

When multiple views are available, some researchers thought of including depth
information in the model of the background. Harville et al. [HGW01b, HGW01a] use

26

CHAPTER 2. BACKGROUND SEGMENTATION

a standard mixture of Gaussians in YUV space for colour information, and add depth
collected from disparity in the Gaussian models. The method is targeted at pedestrian
monitoring applications, and the learning rate of the model is modulated by the de-
tected “activity” at the corresponding pixels. Similarly Taycher and Darell [TD02] per-
form background segmentation simultaneously on multiple views using a 3-D model
of the background previously acquired using range scanning lasers. An object is then
classified as foreground if it occludes the background. These methods are very inter-
esting, especially in our case where multiple views are available, but are either too
computationally demanding (computing disparity) or not flexible enough (the need to
acquire a 3-D model of the background).

Using prior knowledge about foreground objects, Zhao and Nevatia [ZN02] pro-
pose a Bayesian framework where each pixel is segmented using both a colour model
and the prior probability that it belongs to an object-level model. This scheme is ap-
plied to human monitoring where the heads of people are first detected, and some
assumptions are then made about the expected position of the body. The facts that
humans stand mostly vertical, and that their size can be bounded by perspective pro-
jection of the head position are exploited. Unfortunately, the same kind of scheme
cannot easily be applied to full human body tracking because the positions of the
limbs are difficult to predict. Using the tracked position from the previous frame as
a model for Bayesian segmentation could be an idea, but since we are in turn using the
segmentation for estimating the body pose, this would lead to a biased estimation.

2.3 A Model for Background Pixels

In this section, we propose a statistical model for pixels belonging to the background.
A formal definition of the noise, and a measurement protocol are first introduced. The
pixels’ colour representations are also discussed before starting the actual experimental
noise measurements. From the obtained results, a model is proposed, along with a
quantitative error estimation based on the number of training images.

2.3.1 Hypotheses and Formulation

Understanding camera noise should be the very first step for designing vision algo-
rithms. In this section, measurements of the camera noise will be used to propose a
statistical model of pixels’ variations. While not demonstrated here, we will assume

27

CHAPTER 2. BACKGROUND SEGMENTATION

that pixels are statistically independent from each other. Indeed, the hardware camera
sensors being independent for each pixel, it is reasonable to assume the same indepen-
dence in the output image. Moreover, the noise associated with a given pixel does not
depend on the previous values of this pixel (in other words, this is uncorrelated noise).
We will also assume that noise properties are not correlated with the position of the
pixel on the image. Some of these assumptions might prove false in certain specific
circumstances, but they constitute a reasonable basis of work for our purpose.

Because each pixel is constantly affected by noise, we need to measure its colour
values over multiple frames to get an estimate of its true (noiseless) value, µ. Let
{u1 . . . uNu} be some measured colour values of the same pixel over Nu time steps,
and {w1 . . . wNu} the noise vectors associated with each measurement.

∀i ∈ [1 . . . Nu], ui = µ + wi (2.1)

We assumed that the noise distribution has a zero-mean, but since we have no ground
truth for the pixel’s value, there is no way to measure a possible bias in the noise.
Actually, even if the noise was biased, we would simply consider the real value plus
the bias as the correct value for the pixel. So, if Nu is a statistically significant number
of samples we write:

E[w] = E[{w1, . . . , wNu}] = 0 (2.2)

where E[•] denotes the expected value of a statistical variable.

2.3.2 Measuring the Noise

Regardless of the underlying processes generating the camera noise at each pixel, the
sum of pixel samples over a sufficient number of frames closely follows a Gaussian
(or Normal) distribution. This powerful result comes from the Central Limit Theo-
rem [Fel45] which states that the sum of a large number of independent, identically
distributed random variables follows asymptotically a Gaussian distribution. In our
case, each sample is a 3-Dimensional vector (dimensionality of the colour-space) so
that the sum of sample values follows a trivariate Gaussian distribution:

Nu∑
i=1

ui ∼ N3(Nu.µ, Nu.Σw) (2.3)

28

CHAPTER 2. BACKGROUND SEGMENTATION

where Σw is the covariance matrix of the noise, which is not known yet. In particular,
it follows from Equation 2.3 that the true value of the pixel, µ, is the expectation of the
mean of the samples:

µ = E[
1

Nu

Nu∑
i=1

ui] (2.4)

Actually, we chose the properties of the noise (null expectation) for this exact purpose.
More interestingly, we are now capable of evaluating the uncertainty, or variance, as-
sociated with the measurement:

Cov[
1

Nu

Nu∑
i=1

ui] =
Σw

Nu

(2.5)

It is worth noticing that the variance of the measurement decreases linearly with the
number of samples. Note that this same result can also be obtained with the Cramer-
Rao lower bound. This result is interesting because it will allow us to obtain a good
estimate of µ with an affordable number of samples. Nevertheless, in order to evaluate
this “sufficient” number of samples, we need to measure the noise covariance (Σw).
This is not a direct and easy measurement, since the true value of each pixel (µ) is
needed to determine the quantity of noise in the samples (Equation 2.1).

As seen in Equation 2.4, the maximum-likelihood estimate of µ over the samples
{u1 . . . uNu} is the mean of the samples, and the uncertainty associated with this esti-
mator is modelled by the covariance matrix from Equation 2.5. Another way to put it
is to see the mean of the samples as a random vector following a trivariate Gaussian
distribution of mean µ and covariance matrix Σw/Nu. The proposed experimental ap-
proximation consists in taking a statistically large number of samples (Nu' 1000), so
that the uncertainty in the measurement is minimal (Equation 2.5), and thus having:

µ ' 1

Nu

Nu∑
i=1

ui (2.6)

From this and Equation 2.1, obtaining the noise vector for each sample is straightfor-
ward:

wi = ui − µ ' ui −
1

Nu

Nu∑
i=1

ui (2.7)

The next sections exploit this equation to study the properties of the noise, and we
propose a model accounting for pixels’ variations.

29

CHAPTER 2. BACKGROUND SEGMENTATION

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

-20 -15 -10 -5 0 5 10 15 20

N
um

be
r

of
 S

am
pl

es

Deviation To the mean

(a) Noise for the Red Channel. Measured stan-
dard deviation σwR = 4.89.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

-20 -15 -10 -5 0 5 10 15 20

N
um

be
r

of
 S

am
pl

es

Deviation To the mean

(b) Noise for the Green Channel. Measured
standard deviation σwG = 3.69.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

-20 -15 -10 -5 0 5 10 15 20

N
um

be
r

of
 S

am
pl

es

Deviation To the mean

(c) Noise for the Blue Channel. Measured
standard deviation σwB = 7.91.

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250

V
ar

ia
nc

e

Intensity of Channel

(d) Correlation between noise variance and
colour intensity for the Red channel

Figure 2.1: Noise distribution in RGB colour-space.

2.3.3 Measurements and Interpretation

The first measurements presented in Figure 2.1 show the characteristics of the noise in
RGB colour-space (see Appendix A for an overview of colour-spaces). The noise on
each colour channel was measured independently as in Equation 2.7. The first graphs
(Figure 2.1(a)–(c)) are cumulative noise values over all the pixels of the image, for
100 image samples (Nu = 100). The resolution of the camera was set to 320×240

for this test, which generated over 7.5 million measurements of the pixel values. The
distribution of the noise can then be deduced for each colour channel.

It can be noticed that the distributions for each colour component have roughly
a Gaussian shape, even if closer inspection tends to reject this assertion. Actually,
these distributions are, at best, sums of Gaussian distributions, all zero-centred but
with different variances: Figure 2.1(d) exhibits the relation between the variance of
the noise and the colour intensity for the Red colour channel. There is a correlation
between colour intensity and noise, darker pixels tending to suffer from more noise

30

CHAPTER 2. BACKGROUND SEGMENTATION

(a) Sony Wfine CCDTM. (b) Sony Super HAD CCDTM.

Figure 2.2: Spectral sensitivity characteristics of some common camera sensors
(reproduced from Sony camera specifications). In order to widen the recovered
spectrum, some sensors use more than 3 input filters, which are combined to form
the output.

than brighter ones.
The motivation for these measurements was to quantify the variance of the noise,

σw
2, and this has been done for each colour channel independently. The covariance

matrix linking the noise variations for each colour channel was measured over 1000

image samples:

Cov(wRGB) =

23.87 1.93 10.30

1.93 13.63 2.91

10.30 2.91 62.51

The diagonal elements are the variances for Red, Green and Blue channels. The other
values represent the dependencies between variations due to the noise on different
channels. We can notice, for example, that the noises on the Red and Blue channels are
strongly interdependent. This is explained by the fact that RGB components are com-
puted as a transformation of an internal hardware colour representation which matches
the camera sensors. For every model of camera, the range of the sensors never matches
exactly the output colour space (Figure 2.2). A correction is then needed, where output
colour components are computed as a non-linear combination of sensor measurements.
Some noise on a camera sensor is then reported to more than one output colour com-
ponent, hence the observed dependencies.

The exact same measurements in YUV colour space are reported in Figure 2.3. It
is very noticeable that noise distributions on YUV channels are narrower than on RGB
channels. The standard deviations are consistently smaller, meaning that the noise is
weaker in YUV colour space. These results should however be taken carefully: an

31

CHAPTER 2. BACKGROUND SEGMENTATION

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

-20 -15 -10 -5 0 5 10 15 20

N
um

be
r

of
 S

am
pl

es

Deviation To the mean

(a) Noise distribution for the Y channel. Mea-
sured standard deviation σwY = 3.07.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

-20 -15 -10 -5 0 5 10 15 20

N
um

be
r

of
 S

am
pl

es

Deviation To the mean

(b) Noise distribution for the U channel. Mea-
sured standard deviation σwU = 3.89.

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

-20 -15 -10 -5 0 5 10 15 20

N
um

be
r

of
 S

am
pl

es

Deviation To the mean

(c) Noise distribution for the V channel. Mea-
sured standard deviation σwV = 2.73.

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250

V
ar

ia
nc

e

Intensity of Channel

(d) Correlation between noise variance and
colour intensity for the Y channel.

Figure 2.3: Noise distribution in YUV colour-space.

important point to consider is that the YUV space is “smaller” than the RGB one. For
example, the value (255, 255, 255) is possible in RGB, but not in YUV. This alone
could explain the narrower noise variances observed in YUV space. The measured
covariance matrix is:

Cov(wY UV) =

9.43 1.42 0.04

1.42 15.15 −0.68

0.04 −0.68 7.48

Dependencies are minimal, which gives an advantage to the YUV colour space with
respect to noise (at least with our model of cameras). There is a small dependency be-
tween noise on Y and U channels (correlation coefficient equal to σwY U√

σwY Y .σwUU
= 0.12),

but still weaker than the dependencies observed in RGB colour space. From these re-
sults, we choose the YUV colour-space, both for of its good performance toward noise
and for the separation of luminance which will prove useful to handle shadows.

32

CHAPTER 2. BACKGROUND SEGMENTATION

2.3.4 Statistical Model for the Background Pixels

The noise distributions measured in Figure 2.3 represent the cumulative noise for all
the pixels in the image. However the properties of the noise depend on the colour value
of the pixel, and also on other parameters such as its position in the image. So, even
if it can provide an overall evaluation of the noise properties, the cumulative noise
distribution for all pixels is inadequate to find a model for the noise for individual
pixels.

Measuring the noise distribution for each pixel, in every condition would be an im-
possible task. A Gaussian model for noise has been widely and successfully used in the
literature. Within this research, we therefore assume a Gaussian model for the camera-
noise, and justify this choice a posteriori by the correspondence of the measurements
to the model. A pixel sample s belonging to the background is then modelled by a
trivariate Gaussian distribution of mean vector µ and covariance matrix Σw:

s ∼ N3(µ, Σw) (2.8)

where, as defined in Equation 2.6:

µ ' 1

Nu

Nu∑
i=1

ui and Σw =
1

Nu

Nu∑
i=1

(ui − µ)(ui − µ)T (2.9)

The probability density function of the trivariate Gaussian distribution is then defined
as:

fN3(s, µ, Σw) =
1

(2π)
3
2

√
|Σw|

e−
1
2
(s−µ)·Σw

−1·(s−µ)T

(2.10)

2.3.5 How Many Training Frames?

Having found an appropriate model for the pixels of the background, we still need
to know how this model should be built. Estimating the mean and covariance matrix
of a Gaussian distribution is straightforward, but these estimations have to be trusted
for subsequent analysis to be meaningful. In this section, we estimate the number of
training frames required in order to derive an accurate model of the background. This
question is not insignificant, since, as we shall see, an inadequate number of training
frames can result in significant errors.

Using the noise covariance matrix previously measured in Section 2.3.3, we can

33

CHAPTER 2. BACKGROUND SEGMENTATION

Confidence level (α): 50% 68% 80% 90% 95% 98% 99% 99.7%
Constant zα: 0.67 1.00 1.28 1.64 1.96 2.33 2.58 3.00

Table 2.1: Values of the constant zα, in number of standard deviations, for two-
sided α confidence intervals with Gaussian distributions [Mit97].

compute its standard deviation:

σw =
√
|Cov(w)| (2.11)

In order to get the maximal error, we are interested in an upper bound of the stan-
dard deviation, and thus of the variance. By definition, the maximal variance of a
distribution lies along the first eigenvector of the covariance matrix. Put another way,
the maximal variance is the greatest eigenvalue of the corresponding covariance ma-
trix. We can then estimate the standard deviation of the noise for our camera in YUV
colour space: σw =

√
15.54 = 3.94. Following Equation 2.5, the standard deviation σe

of the measurement over Nu samples can now be estimated:

σe =

√√√√var[
1

Nu

Nu∑
i=1

ui] =
σw√
Nu

(2.12)

One of the interesting properties of the Gaussian distribution is that confidence
intervals are well known (Table 2.1) and allow straightforward error estimation. In
particular, if we consider the error between the actual measurement and the expected
colour of a pixel:

error =

∣∣∣∣∣ 1

Nu

Nu∑
i=1

ui − E[
1

Nu

Nu∑
i=1

ui]

∣∣∣∣∣ =

∣∣∣∣∣ 1

Nu

Nu∑
i=1

ui − µ

∣∣∣∣∣ (2.13)

then, this error follows a normal distribution of standard deviation σe. For a particular
background pixel, this error has α percent chances of being lower than zα.σe where zα

is the constant defined in Table 2.1. Table 2.2 reports the maximal errors (zα.σe) for
different confidence levels α, and number of background samples Nu.

To analyse Table 2.2, we should keep in mind that the measured standard deviation
of the noise as given by Equation 2.11 was σw = 3.94. Even if the noise itself does
not necessarily follow a Gaussian distribution, it means that measured pixel values are
typically that distant from their expected value, µ. It is very important to minimise the

34

CHAPTER 2. BACKGROUND SEGMENTATION

Samples Nu 1 5 10 25 50 100 1000
α Std dev. σe 3.94 1.76 1.25 0.79 0.56 0.39 0.12

90
% Max. error 6.62 2.96 2.09 1.32 0.94 0.66 0.21

percentage 2.59% 1.16% 0.82% 0.52% 0.37% 0.26% 0.08%

95
% Max. error 7.73 3.45 2.44 1.55 1.09 0.77 0.24

percentage 3.02% 1.35% 0.95% 0.60% 0.43% 0.30% 0.10%

98
% Max. error 9.18 4.11 2.90 1.84 1.30 0.92 0.29

percentage 3.59% 1.60% 1.13% 0.72% 0.51% 0.36% 0.11%

99
.7

% Max. error 11.82 5.29 3.74 2.36 1.67 1.18 0.37
percentage 4.62% 2.07% 1.46% 0.92% 0.65% 0.46% 0.15%

Table 2.2: For a given number of image samples, Nu, this table gives the maximal
error which is expected not to be exceeded α percent of the time. The percentage
rows show how this maximal error relates to the range of possible values for the
colour channel.

error between actual measurements and expected values of the pixels because this error
is additive with the noise itself and introduces bias for each measurement. As a rule of
thumb, considering that the accuracy on each channel is hardly greater than 1/256th of
the intensity range (colours are often encoded with integer values), choosing a maximal
error between 1 and σw/2 is sensible. This maximum of σw/2 is purely indicative, but
reflects the fact that the uncertainty of the mean of the model should be significantly
lower that its variance. The value of α has to be chosen carefully too, considering the
very high number of pixels in an image. Taking α=90% for example means that there
will statistically be 10% of outliers. This could be alright if the subsequent algorithms
are very robust to outliers, but in general, confidence values greater than 98% should
be considered.

Best compromises between accuracy and practical capture duration constraints can
be found for 50 ≤ Nu ≤ 100, where the error in the expected colour of the pixels is
relatively small compared to the noise itself. Such numbers of samples can be reached
quickly in most systems with capture rates being usually greater than 15 frames per
second. Fewer samples can be used if the capture time is very limited, but Nu = 10

sample frames seems a strict minimum for tackling the noise.

2.4 A Metric for Segmentation

In Section 2.3, we have defined a Gaussian model of the background for each pixel of
the image. Our aim is to segment the image into a background and a foreground region.

35

CHAPTER 2. BACKGROUND SEGMENTATION

For this purpose, we need a metric, or “distance” to evaluate how close a given pixel
is to the background model. This section defines such a distance between pixels and
the background models, and shows how thresholds on this distance can be derived.
Segmentation of individual pixels is extended to a set of pixel samples, eventually
leading to a novel hierarchical segmentation scheme.

2.4.1 Mahalanobis Distance

We saw in Section 2.3.4 that a background pixel s is modelled by a trivariate Gaussian
distribution of mean vector µ and covariance matrix Σw. The exponent of the expo-
nential is a quantity that characterises the distance between the current sample and the
mean of the distribution. It is called the Mahalanobis distance, and is denoted as DM():

DM(s, µ, Σw) = (s− µ) · Σw
−1 · (s− µ)T (2.14)

This formulation is relatively similar to a standard Euclidean distance with an addi-
tional normalisation using the covariance matrix of the distribution. In particular, when
the covariance matrix Σw is equal to the identity, the Mahalanobis distance is equal to
the squared Euclidean distance. In practice, it means that the square root of the Ma-
halanobis distance measures the number of standard deviations between a sample and
the mean of the Gaussian distribution. This normalisation is very useful because all the
pixels on the image can now be compared with a similar metric. A common threshold
value can therefore be found based on the Mahalanobis distance. Note that the ma-
halanobis distance can also be defined between two arbitrary points by replacing the
mean of the distribution in Equation 2.14 by the second point of interest.

2.4.2 Segmentation of Individual Pixels

Since each pixel sample is composed of 3 channels (YUV), the distribution of Maha-
lanobis distances naturally accounts for these 3 degrees of freedom. We also use the
fact that the Mahalanobis distances between a Gaussian model and the samples gen-
erated from this model follow a Chi-Square distribution. The Mahalanobis distance
between a background pixel and its model of the background is a random variable
following a Chi-Square distribution with d=3 degrees of freedom (χ2

3).

DM() ∼ χ2
3 (2.15)

36

CHAPTER 2. BACKGROUND SEGMENTATION

The Chi-Square distribution can also be seen as a model for the normalised “strength”
of the noise. The probability density function of a Chi-Square distribution with d

degrees of freedom is given below for x > 0:

fχ2
d
(x) =

1

2
d
2 Γ(d

2
)
x

d
2
−1e−

x
2 (2.16)

where

Γ(z) =

∫ ∞

0

tz−1e−tdt and in particular, for d=3: Γ(3
2
) =

√
π

2

A comparison between the χ2
3 distribution, and the actual measured Mahalanobis

distances for background pixels over 20 frames (over 1.5 million samples) is presented
in Figure 2.4. As we can see, measurements coincide very closely with our theoret-
ical assumptions, which constitutes the a posteriori justification for using Gaussian
distributions to model background pixels.

We can also notice from Figure 2.4 that the probability of measuring a small Ma-
halanobis distance (less than 1) is comparatively small: it is indeed very unlikely to
observe minimal noise on the three channels simultaneously. However, this particular-
ity of the distribution can be ignored for classification purpose because even if samples
with very low Mahalanobis distances are unlikely, they should still be considered as
belonging to the background model.

In order to find the most appropriate threshold, some values of the probability den-
sity function of the Chi-Square distribution are presented in Table 2.3. The last line
shows the values of the cumulative distribution function of χ2

3, highlighting the rel-
atively good “compactness” of the Mahalanobis distance. For example, choosing a
threshold of DM() < 15 means that 99.82% of background pixels should be correctly
classified. Likewise, for any desired confidence level α, we can choose a threshold
Td(α) on the Mahalanobis distance using the cumulative density function of χ2

d:∫ Td(α)

0

fχ2
d
(t)dt = α ⇒ P (DM(s) < Td(α)) = α (2.17)

Of course, this level of statistical misclassifications assumes a perfect (or at least very
good) model of the background, which, as we saw in Section 2.3.5, is hard to achieve.
In practice, using between 50 and 100 training frames increases the rate of misclassifi-
cations by only a few percent.

37

CHAPTER 2. BACKGROUND SEGMENTATION

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 2 4 6 8 10 12 14 16 18 20

P
ro

ba
bi

lit
y

Mahalanobis Distance

Figure 2.4: The dashed line is the probability density function of the χ2 distribu-
tion with 3 degrees of freedom. The solid line represents the measured cumulative
Mahalanobis distances for around 1.5 millions of background pixels.

x 1 3 9 12 15 18
fχ2

3
(x) 0.242 0.154 0.013 0.0034 0.00085 0.00021∫ x

0
fχ2

3
(t)dt 0.199 0.608 0.971 0.9926 0.9982 0.9996

Table 2.3: Some values of the probability density function and cumulative distri-
bution function for the Chi-Square distribution with 3 degrees of freedom.

An example of background segmentation with a threshold of DM() < 18 is pre-
sented in Figure 2.5. Note that the environment is cluttered and the clothing of the
subject is very similar to some elements of the scene. Shadows are obviously the main
difficulty: some methods to reduce their effect will be presented in Section 2.5. The
rest of the segmentation is relatively good considering the quality of the cameras and
the absence of post-processing. A few samples are still misclassified (given our model
and Table 2.3, an average of 31 pixels should be misclassified for a 320×240 image
and a threshold of 18) but this is not really a concern, for two reasons. Firstly, we
are using multiple cameras for 3-D reconstruction, and there is very little chance to
observe these random misclassified samples at coherent positions across the different
views. The misclassifications due to noise will then naturally be discarded during the
reconstruction process (as described in Section 3.3.2). The second reason is that pixels

38

CHAPTER 2. BACKGROUND SEGMENTATION

(a) One of the background images. (b) Input frame for segmentation.

(c) Mahalanobis distances as grey-levels. (d) Binary segmentation at DM () < 18.

Figure 2.5: Segmentation with 100 background “training” images. Note that the
background is not empty during training, which has consequences on the segmen-
tation. Shadows are the main cause of misclassifications, but using a threshold of
18 still leaves a few random samples misclassified.

will not be segmented individually, but a decision will be taken about a set of uniformly
distributed samples instead. This scheme is detailed in the next section, but intuitively
speaking, the probability of misclassifying a set of samples should be lower than with
a single sample because of the spatial incoherence of noise.

2.4.3 Classification of a Set of Samples

Let us now consider a set of pixel samples S = {s1 . . . sNs} spatially distributed in
the current image frame. Our goal is to decide with reasonable confidence whether
the whole set of samples S belongs to the background, the foreground, or an edge.
It is said to belong to an edge if some of its pixels belong to the background while
others belong to the foreground. The classification of a set of samples is an important
problem because it will allow us to take decisions about whole areas of the image

39

CHAPTER 2. BACKGROUND SEGMENTATION

without segmenting each individual pixel in a binary way. We claim that classifying
sets of samples is statistically more robust and more efficient than standard “per-pixel”
classification techniques. This new scheme will be the basis of voxel classification
presented in Section 3.3.2.

The classification has to be done for the whole set of samples, and not indepen-
dently on each individual sample. Indeed, the likelihood that S has been generated by
the background model is the product of the probabilities that each sample si belongs to
the background model. As a simple example of this, let us consider a set of 8 samples,
each having a 60% probability of belonging to the background. Segmenting the sam-
ples independently from each other leads to classify all of them as background, and
consequently to classify the whole set as background. However, the real probability
that the whole set of samples belongs to the background is only (0.6)8' 1.7%, which
does hardly constitute enough evidence to discard the set of samples straight away.

In order to derive probabilities for S, we need to to be able to compare the dis-
tributions of individual samples on a similar basis. The Mahalanobis distance (Equa-
tion 2.14) can be used as a point of comparison, since it has the interesting property of
being normalised with respect to the initial Gaussian distribution. As we saw in Sec-
tion 2.4 the Mahalanobis distance DM(si) between a pixel sample si and a trivariate
Gaussian model follows a Chi-Square distribution with 3 degrees of freedom.

We could threshold these individual Mahalanobis distances, but our goal is to clas-
sify the whole set of samples S. The likelihood that the whole set S has been generated
by the background model is the product of the individual probabilities for each sample.
Looking back at Equation 2.10, we can see that because of the exponential, a product of
Gaussian probabilities corresponds to a sum of Mahalanobis distances. The total “dis-
tance” of S to the background model is then the sum of the individual Mahalanobis
distances at each sample:

DM(S) =
Ns∑
i=1

DM(si) (2.18)

The Chi-Square distribution has the interesting property that the sum of indepen-
dent variables, each following a Chi-Square distribution, follows itself a Chi-Square
distribution with a number of degrees of freedom equal to the total degrees of freedom
in the independent variables. Practically, this means that DM(S) follows a Chi-Square
distribution with 3×Ns degrees of freedom, where Ns is the number of pixel samples
in the set S:

DM(S) ∼ χ2
3.Ns

(2.19)

40

CHAPTER 2. BACKGROUND SEGMENTATION

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 10 20 30 40 50 60 70 80

P
ro

ba
bi

lit
y

Mahalanobis Distance

6 degrees of freedom
15 degrees of freedom
27 degrees of freedom
48 degrees of freedom

Figure 2.6: Chi-Square distribution for 2 trivariate samples (6 degrees of free-
dom), 5 samples (15 dofs), 9 samples (27 dofs) and finally 16 samples (48 dofs).

The probability density function of a general order Chi-Square distribution was
given in Equation 2.16, and a graphical representation of the distribution for various
number of samples is shown in Figure 2.6. The graph shows that the uncertainty in
the measurement (broadness of the distribution) increases with the number of samples.
Nevertheless, by considering the set of samples as a whole, this uncertainty increases
slower than when segmenting each sample independently. In practice, we saw in the
previous section that a threshold of DM()<18 was adapted to threshold single pixels.
One might naively combine these individual thresholds to classify the set, which would
amount to a “virtual threshold” of 18×9 = 162 for a set of 9 samples. By compari-
son, Figure 2.6 reveals that the sum of Mahalanobis distances for Ns = 9 samples (27

degrees of freedom) should not exceed a threshold between 60 and 70, which is 2.5

times lower than the previous one. At the same time, considering the set of samples as
a whole is more tolerant to individual outliers (samples with individual Mahalanobis
distance greater than normal) as long as the total distance is statistically plausible.
By thresholding the sum of distances on samples instead of individual distances, the
condition of belonging to the background model is then both tighter and more robust.

The appropriate threshold for the sum of an arbitrary number of samples has now to
be determined. In a very similar way to that in which the threshold on individual pixels
was defined in Section 2.4.2, the choice of a threshold for a set of samples is based on
the Cumulative Density Function (cdf) of the Chi-Squared distribution. We might want
to find the threshold T that will classify correctly a set of Ns samples α% of the time,
which is equivalent to finding the solution of the equation cdfχ2

3.Ns
(T) = α. We shall

41

CHAPTER 2. BACKGROUND SEGMENTATION

denote as T3.Ns(α) the threshold classifying a set of k samples with a confidence level
α, and which is the solution of:∫ T3.Ns (α)

0

fχ2
3.Ns

(t)dt = α (2.20)

These threshold functions are plotted in Figure 2.7 for confidence levels α =

{95%, 99%, 99.9%} and the number of degrees of freedom d in the range [1 . . . 100].
When the number of degrees of freedom is fixed, the threshold Td(α) can simply be
pre-computed. However the number of pixel samples can be dynamically adjusted as
we shall see in Section 3.3.2. The values of the thresholds can then either be tabu-
lated and used as such, or approximated by a simpler function evaluated in real-time.
Second-order polynomials are appropriate for approximating the threshold functions,
because of their simplicity and the relative smoothness of the functions to approximate.
A simple least-square fitting gives the desired polynomial coefficients:

Td(0.95) ' −0.0013.d2 + 1.3193.d + 4.987

Td(0.99) ' −0.0019.d2 + 1.4491.d + 8.5205

Td(0.999) ' −0.0019.d2 + 1.5094.d + 13.0247

These fitted polynomials are shown as error bars on the curves of Figure 2.7, ex-
hibiting the goodness of the fit in the interval d = 3.Ns ∈ [1, 100]. For higher degrees
of freedom, the polynomial approximations can become inadequate, but for our pur-
pose, this interval is sufficiently wide.

The result of this new segmentation scheme based on sets of 9 samples is pre-
sented in Figure 2.8. Each pixel is segmented in a set including its 8 neighbours, and
the whole set is thresholded at a distance of 70. As expected, the final segmentation is
less sensitive to random noise, and more of the silhouette is recovered. This is partic-
ularly visible on the trousers of the subject, which colour is very close to the floor’s.
On the performance side, there is a slight overhead when adding all the distances to-
gether (Equation 2.18), but without particular optimisation we found the drop in speed
negligible.

With this new segmentation scheme, sets of samples belonging to the background
can be detected and discarded with a better confidence level than previously possi-
ble. The remaining sets of samples are then either part of the foreground, or an edge.
Detecting edges is not necessary for the segmentation itself, but it is done at a very

42

CHAPTER 2. BACKGROUND SEGMENTATION

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 10 20 30 40 50 60 70 80 90 100

T
hr

es
ho

ld
 o

n
M

ah
al

an
ob

is
 D

is
ta

nc
e

Number of Degrees of Freedom

Confidence of 99.9%
Confidence of 99%
Confidence of 95%

Figure 2.7: Values of the Mahalanobis distance giving a particular level of confi-
dence (95%, 99% and 99.9%), with relation to the number of degrees of freedom.
Second-order polynomial fittings are displayed as error bars (very small on the
graph).

(a) Grey-level distances. (b) Thresholding at DM (S) < 70.

Figure 2.8: Segmentation using the centre pixel and its eight neighbours as the
sample set. A few details are blurred compared to the per-pixel segmentation (Fig-
ure 2.5), but the tradeoff is that less noise remains and some parts of the silhouette
that were badly segmented are now recovered. One can notice that shadows are
stronger, but a method to reduce their effect will soon be introduced.

low cost, and it will prove very useful for the hierarchical scheme presented in Sec-
tion 2.4.4.

To differentiate foreground sets from edges, we fall back to per-sample thresholds:
a set of samples is then classified as foreground if first it is not background, and second
a high percentage αf of its samples are individually classified as foreground. The
coefficient αf accounts for possible outliers in the per-sample segmentation. It was

43

CHAPTER 2. BACKGROUND SEGMENTATION

(a) Grey-level distances. (b) Edges and foreground sample sets.

Figure 2.9: Segmentation with foreground and edges classification. The sets of
samples classified as foreground are shown in grey and the edges in white. The
threshold used for discarding background sets of samples was 70 and the individual
samples threshold was 18.

found that a coefficient of αf = 0.9 gave robust results without misclassifying edge
sets into foreground. All the sample sets that are neither background nor foreground
are then classified as edges. Looking at the result of this classification (Figure 2.9),
edges and foreground regions are mostly detected correctly. Extra edges appear in
regions of uncertainty like the trousers or the shadows, but this is not particularly a
problem since edges are eventually integrated into the foreground. Moreover, we shall
devise a scheme to handle shadows in Section 2.5.

2.4.4 Hierarchical Silhouette Extraction

This section is a logical extension of the ideas presented in the previous section: if
a set of pixel samples can be classified with reasonable confidence as background,
foreground or edge, then a simple hierarchical scheme can be devised where edge
regions are recursively subdivided. This makes sense because edges are the regions
where details are needed, while foreground and background areas are advantageously
modelled by large uniform regions. Additionally, this section serves as introduction to
the hierarchical 3-D reconstruction scheme presented in the next chapter.

The only difficulty at this point is to find the right sampling for an area of arbitrary
size. The number of samples, Ns, has to be sufficient to cover the area as uniformly
as possible, and at the same time it should be kept as low as possible for efficiency
reasons. The whole justification of the method is the ability to classify an area with

44

CHAPTER 2. BACKGROUND SEGMENTATION

(a) Intermediate subdivision stopped with 8×8
blocks. Grey areas are already classified as fore-
ground, and white blocks are edges to be subdi-
vided.

(b) Next subdivision step with 4× 4 blocks.
More details appear in edge regions.

(c) Final classification result with resolution of
1 pixel.

(d) Each white dot represents a sample used to
classify image regions. As expected, they con-
centrate on edges.

Figure 2.10: Hierarchical silhouette extraction with initial subdivision into 16×16
areas. Two intermediate steps are shown on top with the final result on the bottom
left. The input frame is the same as for Figures 2.5, 2.8 and 2.9.

a sub-linear number of samples with respect to the number of pixels in the area. For
this reason, we experimented with a number of samples equal to the square-root of
the number of pixels in the area. For an area of 16×16 = 256 pixels, the number of
samples will then be 16. For small areas (less than 3×3pixels), however, this scheme
gives poor results and we fall back to an exhaustive sampling of the area. Uniform
sampling inside rectangular areas is relatively straightforward, and there is no need
to consider more complex areas for simple image segmentation. A generalisation to
polyhedral areas will however be necessary for volumetric reconstruction: the reader
is referred to Appendix B for additional details.

45

CHAPTER 2. BACKGROUND SEGMENTATION

Hierarchical silhouette extraction is demonstrated in Figure 2.10. The total num-
ber of samples used for full classification is 11, 885 which, compared to the 76, 800

pixels of the full image, represents a factor 6.5 of improvement in direct performance.
Figure 2.10(d) shows that samples are mostly distributed on the edges, maintaining
a good overall level of accuracy. The final silhouette is slightly less detailed than in
Figure 2.8, but one can notice that there are also fewer outliers in the background. This
is explained by the fact that classifying large regions with higher number of samples
makes the whole classification less sensitive to individual outliers. More results of hi-
erarchical silhouette extraction including shadow handling are presented later in this
chapter.

2.5 Handling Shadows

Shadows are omnipresent in real-life setups. Detecting and removing them automati-
cally is crucial for the quality of the segmentation. A point of the scene is shadowed
if part of the light it receives in normal circumstances is occluded. The corresponding
pixels on the camera images are therefore still representing the same object, but under
different lighting conditions. Depending on the type of lighting and the physical prop-
erties of the object, the colour of the pixels can be modified in a number of ways. For
example, shadowing an object exhibiting some specular reflection can change drasti-
cally the colour of the corresponding pixels. Coloured light sources, when occluded,
can also change the apparent colour of an object.

2.5.1 Related Work

Most of the recent approaches to background segmentation propose original solutions
for shadows removal. In PFinder [WADP97], the chrominance channels are normalised
by the overall luminance in YUV space. This is claimed to produce a stable illumi-
nation independent colour information. Cheung et al. [CKBH00] compute a colour
“angle” in RGB space for pixels with lower luminosity than the model, and use a
different manually-set threshold for the floor than for the rest of the background. Mix-
tures of Gaussians are used by Stauffer et al. [SG99] and Friedman et al. [FR97] with
the advantage of having shadows automatically modelled by one of the Gaussians, as
long as the shadows appear in the training frames. Unfortunately the generality of the

46

CHAPTER 2. BACKGROUND SEGMENTATION

framework leads to computationally expensive algorithms. Lo and Yang [LY02] pro-
pose a specialised shadow filter based on the combination of four low-level filters into
a neural network classifier. The results are encouraging, even if the method is mostly
aimed at offline full image processing.

2.5.2 A Gaussian Model for Shadows

In order to keep the system simple and fast enough, we only try to tackle the most
usual type of shadows which are characterised by a loss in luminosity. Using the
YUV colour-space, variations of luminosity almost entirely appear on the luminance
(Y) channel only. We carried out measurements under various lighting conditions and
found that the two chrominance channels (UV) are almost unaffected by a moderate
change of luminosity. This observation breaks for important lighting changes, but it is
relatively safe to assume that the shadows cast in a normal office environment belong
to the category of moderate lighting changes: with multiple light sources as well as
a strong diffuse lighting (radiosity), a person can only occlude the total illumination
very partially.

We measured the variations of intensity on the luminance channel when back-
ground pixels got shadowed, and found these variations surprisingly constant for pixels
of different colours and initial luminosities. In the office environment of Figure 2.5, the
average luminosity loss accounted for αL = 5.5%. Of course this coefficient is bound
to differ for other environments and lighting conditions, and could be measured auto-
matically. However, for the sake of simplicity, we treat αL as a manually-set constant
of the system. The idea is to build a Gaussian model of a shadowed pixel by “shifting”
the original Gaussian model by αL on the Y channel. For each pixel, the Mahalanobis
distance DM() is then selectively computed from the original model or from this new
model for shadows.

For a given background pixel, with a Gaussian model of mean µ = (µY , µU , µV)T

and covariance Σw, the new mean µ′ and covariance Σw
′ of the shadowed Gaussian

model are:

µ′ =

(1− αL).µY

µU

µV

 Σw
′ = Σw (2.21)

Note that the covariance matrix is kept the same as in the non-shadowed model, even if

47

CHAPTER 2. BACKGROUND SEGMENTATION

the camera noise can have different properties for different luminosities. This approx-
imation is mostly aimed at saving memory by storing only one covariance matrix for
each pixel, and did not affect the quality of the model for low values of αL. Stronger
shadows, like the ones cast by a single light source, might require a re-evaluation of
Σw

′, but are beyond the scope of this thesis.
This simple model of shadowed pixel can then be computed for all pixels of an

empty scene, without needing to observe the pixels under shadow. Our scheme can
then be used to detect and remove previously unseen shadows.

2.5.3 Efficient Distance Computation

A decisive advantage of our model over a standard Mixture of Gaussians is its effi-
ciency. Indeed, with a standard mixture of Gaussian, the distance to all individual
Gaussian models needs to be computed before selecting the one giving the smallest
distance. In our approach, however, a simple test on the value of the luminance (Y)
component of a pixel reveals the appropriate model. In practice, we can then discard
shadows without any noticeable performance loss.

The statistical advantages of a Mixture of Gaussians are nevertheless retained, and
the theoretical analysis from Section 2.4 remains valid. Whether the pixel is shadowed
or not, we select at runtime the appropriate Gaussian model. Using the “shifted” Gaus-
sian distribution from Equation 2.21, the new distance, D′

M , defined in the following
way:

D′
M(s, αL) =

{
DM(s,N3(µ

′, Σw
′)) if sY < (1− αL

2
).µY

DM(s,N3(µ, Σw)) otherwise
(2.22)

still follows a Chi-Square distribution with 3 degrees of freedom.
As shown with Figure 2.11, replacing DM() with D′

M() on the data from Figure 2.5
allows us to discard most of the shadows without affecting the rest of the silhouette: the
shadow on the floor has been totally removed, and very few shadowed pixels remain
misclassified on the drawers. Unlike most other shadow removal schemes, this result is
achieved without extra memory usage or noticeable performance deterioration. More-
over, the distance D′

M() still has the same properties as the original Mahalanobis dis-
tance, and can be used in the recursive sampling algorithm described in Section 2.4.4.

48

CHAPTER 2. BACKGROUND SEGMENTATION

(a) Without shadows treatment. (b) Shadows as a 5.5% loss in luminosity.

Figure 2.11: Results obtained with the new distance D′
M(). Most of the shadows

are now included in the background model and discarded by thresholding individ-
ual pixels at D′

M() < 18.

2.6 Evaluation and Conclusion

In this final section, we present the final results of our segmentation algorithm and
compare them to another standard method. We conclude with some performance com-
parisons and a summary of the chapter.

2.6.1 Qualitative Results

No ground truth data was available to quantify the robustness of our algorithm. We
therefore had to fall back to visual inspection and limit ourselves to qualitative results.
In Figure 2.12, we compare side by side our hierarchical method, including shad-
ows handling, and the mixture of Gaussians model proposed by Stauffer and Grim-
son [SG99]. This model (which we shall refer to as Grimson’s model) is primarily
aimed at monitoring applications in which the background can change rapidly, such as
tracking pedestrians in a street. Nevertheless, Grimson’s model has also been increas-
ingly popular for various other types of applications, including indoor tracking.

For both algorithms, we used 100 background training frames. Grimson’s algo-
rithm has a mechanism for learning the background model incrementally. In Fig-
ure 2.12(c), we activated this feature with an update coefficient α = 0.003. The part
of the image that was not empty during the acquisition of the model is then correctly
segmented, and shadows are incorporated into the model and discarded. However,

49

CHAPTER 2. BACKGROUND SEGMENTATION

(a) Background (still not empty). (b) Current input image.

(c) Grimson, 5 Gaussians per pixel and incre-
mental update with coefficient α = 0.003

(d) Grimson, 10 Gaussians per pixel. No incre-
mental update.

(e) Our algorithm classifying pixels with a 3× 3
window and handling of shadows.

(f) Hierarchical segmentation with handling of
shadows, starting from 16× 16 blocs.

Figure 2.12: Comparison between our segmentation algorithm, and the mixture
of Gaussians model proposed by Grimson et al. [SG99].

50

CHAPTER 2. BACKGROUND SEGMENTATION

Gaussians Handling of Time Speed
per Pixel Shadows ms/frame fps

Pixel-based Mahalanobis 1 No 16.2 61.6
Pixel-based Mahalanobis 1 Yes 16.8 59.4
Classification with neighbours 1 Yes 18.7 53.4
Hierarchical Seg. Init. 8× 8 1 Yes 12.5 79.6
Hierarchical Seg. Init. 16× 16 1 Yes 10.1 99.2
Grimson 2 No 35.8 27.9
Grimson 5 No 66.2 15.1
Grimson 10 No 106.3 9.4

Table 2.4: Performance comparison on 320×240 input images.

since the subject stands relatively static, he is also partially incorporated into the back-
ground model, leading to an overall poor segmentation. In Figure 2.12(d), we disable
the incremental update of the model, and increase the number of components to 10

Gaussians per pixel. The result is then very similar to the segmentation obtained with
a single Gaussian per pixel (shown in Figure 2.5), which is not surprising since we
experimentally showed in Section 2.3 that the camera noise is Gaussian.

In Figure 2.12(e), we classify each pixel using its 9 neighbours, as described in
Section 2.4.3. Shadows are also handled by using the new distance D′

M() from Sec-
tion 2.5. By combining information from a set of pixels, the overall segmentation looks
substantially better than using individual pixel classification. Finally, in Figure 2.12(f)
we use the hierarchical scheme described in Section 2.4.4, with initial blocs of 16× 16

pixels. Even if some fine details are lost because of the initial coarse sampling, the sub-
ject is almost fully segmented from the background, while the noise and the shadows
have a minimal effect.

2.6.2 Performance Considerations

The comparative performance of the various segmentation schemes described in this
section are gathered in Table 2.4. All performance results were measured on a 2 GHz
Pentium computer. Because of its higher number of Gaussian components, Grimson’s
model is always significantly slower than all the methods presented in this chapter.
With an average processing time of about 10ms, our hierarchical segmentation algo-
rithm is the only one allowing the simultaneous segmentation of more than 3 camera
views in real-time.

51

CHAPTER 2. BACKGROUND SEGMENTATION

2.6.3 Conclusion

In this chapter, we justified experimentally a Gaussian model for background segmen-
tation of static scenes. We then improved the robustness of the standard segmentation
by classifying sets of samples as opposed to individual pixels. A scheme to handle
shadows at very low extra cost was also introduced. Real-time performance for multi-
ple input streams was finally achieved with hierarchical segmentation.

This chapter, while self-contained, can be seen as an introduction to Chapter 3
where multiple camera views will be combined for volumetric reconstruction, using
a hierarchical scheme very similar to the present one. The robustness of the classifi-
cation will be improved by modelling uncertainty, and using other camera views for
disambiguation.

The main weakness of our model is the absence of background update scheme,
where changes in the background could be incorporated incrementally into the model.
While this is not a problem for static backgrounds (frequent in human-body tracking),
other applications may require a more complex (multimodal) model: a model such as
Grimson’s [SG99] could then prove more adapted.

52

Chapter 3
Volumetric Reconstruction

Having defined a way to segment input images, our next step is the
volumetric reconstruction of the object of interest. Such a 3-D recon-
struction is possible because the cameras are fully calibrated, provid-
ing a mapping between 3-D object points and their 2-D projections
on the camera views. This chapter introduces a fast and robust algo-
rithm for 3-D reconstruction based on Shape-From-Silhouette meth-
ods, which, as their name suggests, are concerned with the recon-
struction of an object from a set of its silhouettes. The novelties of
the proposed algorithm include a hierarchical statistical framework
and the inclusion of colour.

3.1 Background and Basic Principle

In this section, we start by introducing the basic concepts of Shape-From-Silhouette,
and define the term “Visual-Hull”. The historical context of these methods and some
current research goals are then briefly presented, before discussing a standard algo-
rithm and its limitations.

3.1.1 Shape-From-Silhouette

Since our cameras are fixed and calibrated, the projection of any 3-D point is uniquely
known through the projection matrix and the non-linear distortions. The inverse map-
ping – from a pixel to 3-D – is more complex and ambiguous since every pixel cor-
responds to an infinity of 3-D points, as illustrated by Figure 3.1(a). However, using

53

CHAPTER 3. VOLUMETRIC RECONSTRUCTION

Camera

Pixels

3-D projections

(a) Each pixel of the image plane cor-
responds to a generalised cone in 3-D
space.

Camera 1

Matching Pixels

Camera 2

Recovered
3-D Position

(b) The intersection of the extruded cones from matching
pixels defines the corresponding 3-D location.

Figure 3.1: Correspondence between individual pixels and 3-D locations.

a minimum of 2 camera views, and assuming a way to find matching pixels in each
view, we can find a finite 3-D location by intersecting the projected volumes, as shown
in Figure 3.1(b).

Following a similar idea, a silhouette is the projection of an object onto an image
plane. The object of interest then lies totally inside the generalised cone extruded from
its silhouette and passing through the camera centre (see Figure 3.2(a)). Intersecting
these generalised cones from multiple camera views is a technique called Shape-From-
Silhouette: using a sufficient number of cameras placed in a way as to cover the widest
possible range of angles, the intersection of these generalised cones can produce a rel-
atively good approximation of the 3-D shape of the object. This approximate volume
is called the Visual-Hull of the object (Figure 3.2(b)). The Visual-Hull is also com-
monly defined as the largest possible volume which exactly explains a set of consistent
silhouette images. This last definition is more formal, but equivalent to the intersection
of generalised cones. In the literature, the Visual-Hull is sometimes referred to as the
optimal convex approximation of an object, therefore assuming an infinite number of
views. Note that for a convex object, the Visual-Hull would then be equal to the object
itself. For practical reasons, however, our definition of the Visual-Hull in this chapter
will be limited to using a finite number of camera views (three to five in practice). We
can then immediately see that the Visual-Hull can become a rough approximation of
the real shape of the object. Keeping in mind that our goal is not photo-realism but
tracking, we will show in the following chapters that the Visual-Hull is sufficient for
our purpose.

54

CHAPTER 3. VOLUMETRIC RECONSTRUCTION

Camera

Extruded
generalised cone

Silhouette

(a) Projection of the silhouette into 3-D
space as a generalised cone originating
from the camera centre.

(b) The Visual-Hull of the object is the intersection of
the generalised cones extruded from its silhouettes (il-
lustration reproduced from [MBR+00]).

Figure 3.2: Shape-From-Silhouette as intersection of projected silhouettes.

A fundamental flaw of the Shape-From-Silhouette methods is that concave parts
are not reconstructed (for the simple reason that they do not appear on silhouettes). A
surface point of the object is considered to be part of a concave patch if there is not a
single tangent line from this point that do not re-intersect the object. More intuitively,
if a point is not reachable by sweeping a long ruler on the surface of the object, then
it belongs to a concave patch. Figure 3.3(a) presents a simple example of object for
which the Shape-From-Silhouette method is inefficient. This limitation is actually a
minor problem when dealing with the human body which can be seen as a set of locally
convex parts. Self-occlusions for some body poses can produce temporary concavities,
but the use of a model can then compensate for the weaknesses of the reconstruction.

Another problem can appear when at least two distinct objects are present in the
field of view of the cameras. Depending on the position and the number of cameras,
some parts of the 3-D space can appear to belong to the Visual-Hulls of the objects,
although they are only artifacts due to occlusions. These wrongly reconstructed parts
are called Ghost Volumes. Figure 3.3(b) illustrates this phenomenon in 2-D. Ghost vol-
umes are normally a manageable problem if there are not too many occlusions between
objects or if the number of viewpoints is sufficiently high, but it is also easy to foresee
how problematic the reconstruction of multiple people can become. Ghost volumes
can also appear with a single subject because of self-occlusions. Once again, the use
of a model will prove necessary to disambiguate these situations.

Other kinds of limitations will be discussed in the rest of this chapter, but the princi-
pal advantage of the Visual-Hull over other reconstruction methods remains its overall

55

CHAPTER 3. VOLUMETRIC RECONSTRUCTION

Concave
part

(a) Concavities cannot be recon-
structed with the Shape-From-
Silhouette method.

Objects
and their
Visual-Hulls

Ghost
Volume

(b) 2-D illustration of “ghost volumes” appearing
with multiple objects and a limited number of views.

Figure 3.3: Some weaknesses of the Shape-From-Silhouette method: Concavities
and Ghost-Volumes.

simplicity and efficiency. Artifacts can be observed in almost every existing recon-
struction method, but silhouette extraction is sufficiently robust to make Shape-From-
Silhouette method a competitive choice on noisy and degraded images.

3.1.2 The Standard Algorithm and its Limitations

In this section we present the standard voxel-based algorithm for Visual-Hull recon-
struction. This algorithm is the basis for the novel reconstruction method introduced
later in the present chapter.

The space of interest is first subdivided into discrete voxels. The idea is to consider
voxels independently from each other, and project them successively onto the image
planes of the available camera views. If a given voxel projects outside the silhouette of
the object in at least one camera view, then it is necessarily outside the intersection of
the visual cones, and can therefore be discarded. The full algorithm is given below.

Despite its simplicity, this algorithm performs well and is still used in recent publi-
cations, for example in [LSL01, TMSS02, MTHC03, KBG05]. Its complexity is linear

56

CHAPTER 3. VOLUMETRIC RECONSTRUCTION

Algorithm 3.1: Standard Visual Hull Algorithm
. The space of interest is divided into discrete voxels;
. Initialise all voxels as inside voxels;
foreach voxel do

foreach camera view do
. project the current voxel on the current camera view;
if the projection of the voxel lies outside the object’s silhouette then

. Classify the current voxel as outside voxel;

. Skip other views, and consider the next voxel;
end

end
end
. The Visual-Hull is the set of all inside voxels;

with the number of voxels, limiting strongly the resolution of the voxel-space. In prac-
tice, the maximal resolution manageable in real-time on a 2 GHz CPU is 128×128×128.
Fortunately, the number of cameras does not have a linear impact on the complexity
since most of the voxels are discarded before testing all the views. The robustness of
the reconstruction depends directly on the quality of the silhouettes.

3.1.3 Background on Shape-From-Silhouette Methods.

Origins and History

The idea of reconstructing the shape of an object from its silhouettes is not new. With
his PhD thesis, back in 1974, Baumgart [Bau74] was the first to use silhouettes to
estimate the shape of a miniature horse, using four camera views. Actually, he used
external contours instead of silhouettes to compute a polyhedral reconstruction of the
object, but the basic idea would still be retained in much subsequent research. Al-
most 10 years later, Martin and Aggarwal [MA83] proposed a volumetric represen-
tation as a collection of “volume segments”. In subsequent papers, Chien and Ag-
garwal et al. [CA86, CA89] adopted an octree-based representation to improve speed
and memory usage, but the reconstruction was still limited to 3 orthographic projec-
tions. This approach was extended to 13 standard orthographic views by Ahura and
Veenstra [AV89]. Shape-From-Silhouette was then known as “volume intersection”.

57

CHAPTER 3. VOLUMETRIC RECONSTRUCTION

Potmesil [Pot87] allowed arbitrary viewpoints and perspective projections, while re-
taining the octree data-structure. Using a single camera, Szelinski [Sze90] recon-
structed static objects on a turntable, achieving real-time performance thanks to op-
timisations such as half-distance transforms and sequential octree refinement. Nobo-
rio et al. [NFA88] proposed a novel octree reconstruction method in 3-space, where
visual cones are computed from a polygonal approximation of the silhouettes, thus
eliminating the need for perspective projection.

In an attempt to give some formalism to the Shape-From-Silhouette methods, Lau-
rentini introduced the term Visual-Hull in a series of articles [Lau94, Lau95]. This
term is now commonly used to refer to the broad result of the Shape-From-Silhouette
algorithms, even if Laurentini originally defined it more restrictively as “the optimal
volume that can be reconstructed from all possible silhouettes”. In addition to enun-
ciating the properties of Visual-Hulls, Laurentini’s work highlights the limitations of
Visual-Hulls for object recognition.

Polyhedral Representation

More recently, real-time polyhedral Visual-Hull methods were introduced by Ma-
tusik et al. [MBM01], Lazebnik et al. [LBP01] and Franco et al. [FB03]. In contrast to
approximate volumetric representations, polyhedral Visual-Hulls have a greater poten-
tial of accuracy, and their rendering benefits from hardware acceleration. Their main
limitations are the overall fragility of the method which relies on a perfect silhouette
segmentation, and the fact that triangle meshes are difficult to exploit for shape recog-
nition or tracking.

Following a more theoretical approach, Brand et al. [BKC04] proposed a way to
compute algebraically the polyhedral Visual-Hull of an object in dual space, result-
ing in an algorithm with linear complexity with respect to the number of observed
contour points. As a logical extension to polyhedral Visual-Hulls, Bottino and Lauren-
tini [BL04] recently proposed a smooth representation using curved patches.

Volumetric Reconstruction using Voxels

Volumetric representations have also benefited from a renewed interest in the last few
years (to date 2005). This is mostly due to advances in computer hardware, opening
the door to the real-time use of Visual-Hulls. Standard voxel-based reconstruction
techniques have been used by Luck et al. [LSL01], Theobalt et al. [TMSS02] and
Mikic et al. [MTHC03] as a basis for human-body tracking. All these approaches

58

CHAPTER 3. VOLUMETRIC RECONSTRUCTION

use a full silhouette segmentation, followed by a standard voxel projection technique
(Algorithm 3.1), and some are reported to work in real-time on a cluster of PCs with
CPUs up to 2 GHz.

Bottino and Laurentini experimented with voxel-based volumetric reconstruction
in [BL01a] and [BL01b], with the interesting detail that boundary voxels are the only
ones kept and used. Cheung et al. [CKBH00] proposed a “Sparse Pixel Occupancy
Test” to classify voxels based on pixel samples. Silhouettes are still fully segmented
on a cluster of PCs, but the reconstruction now runs in real-time on a single machine.
Using the parallel processing capabilities of Graphic Processing Units (GPUs), some
fast reconstruction methods have also been proposed [HLGB03, HLS04]. Unfortu-
nately, the resolution of the reconstructed volume is strongly limited by the memory
of the video card. A more general drawback is the lack of flexibility and robustness of
these techniques, which have to comply with a static programming pipeline.

Hierarchical Approach and Octrees

Even if they are not as widely used as simple voxel spaces, octrees still present com-
pelling advantages in allowing adaptive level of detail with a lower memory consump-
tion. A possible reason for their slow adoption is their relative complexity, especially
regarding the interpretation of the generated volume. Nevertheless, following Szelin-
ski’s reconstruction method [Sze90], Davis et al. [DBC+99] describe a system for
movement acquisition. In subsequent publications [BD02, BSD03] by the same au-
thors, the octree volume is used for coarse-to-fine body pose estimation. In [BSD03],
the reconstruction is performed on a cluster of PCs, and real-time performance is
achieved through various caching techniques. The method itself is very standard, and
only the optimisations and the distribution on a cluster differentiate it from Szelinski’s
early algorithm.

Space Carving and Colour Consistency

Space Carving is a volumetric reconstruction method that uses colour consistency as
well as contours to reconstruct an object. A very broad survey of reconstruction tech-
niques is available from Dyer [Dye01]. The idea is to keep only the voxels that are
photo-consistent across all camera views from which they are visible. Of course the
visibility criterion is a big issue: it is usually solved by making multiple plane-sweep
passes, using each time only the cameras in front of the plane, and iterating until con-
vergence. Unfortunately, the complexity of this method disqualifies Space Carving for

59

CHAPTER 3. VOLUMETRIC RECONSTRUCTION

real-time algorithms, even using hardware acceleration [SBS02a]. The reconstructed
volume contains only the surface voxels of the object, and is commonly called the
Photo-Hull.

Cheung et al. [Che03, CBK03b, CBK05] proposed a very interesting mixed ap-
proach between Visual-Hull and photo-consistency. Using the property that the bound-
ing edge of the Visual-Hull touches the real object at at least one point, a photo-
consistency test along the “bounding edges” of the Visual-Hull allows to refine the
reconstruction at moderate cost. Unfortunately, the reconstruction is then very sparse
and to be practical needs a lot of input data. Other encouraging reconstruction results
have been reported by De Bonnet and Viola [BV99] and Broadhurst et al. [BDC01]
using iterative optimisation techniques for space carving.

Other Extensions

A strong constraint of shape-from-silhouette methods is that the cameras have to be
fully calibrated. Accurate calibration is not an easy task, and some authors have started
to search for alternatives. Bottino et al. [BL03] pose the problem of Visual-Hull re-
construction when the relative position of the cameras is unknown. In their paper, they
derive a number of inequalities to decide whether silhouettes are compatible with one
another. However, their analysis is only a very first step towards automatic calibration
from silhouettes, and is mainly focused on orthographic projections. Another potential
limitation is that the object must exhibit some particular features, such as identifiable
corners, for the silhouettes to be differentiable.

Trying to tackle the problem of robustness in silhouette extraction, Grauman et

al. [GSD03a] propose a Bayesian framework where silhouettes are recognised and
corrected using a training dataset. A generalised Principal Component Analysis is per-
formed on multi-view silhouettes training data to generate a searchable feature space.
When presented with a new set of silhouettes, the closest correspondence in the fea-
ture space is used to correct the silhouette. In [GSD03b], the same authors extend this
approach to tracking, where the feature space is augmented with the parameters of a
kinematic model. The main drawback of the method is that the training dataset has
to be sufficiently large to include all possible body configurations and is dependent on
the placement of the cameras. This scheme is then mostly adapted to tracking on very
structured data, like pedestrians in a street.

In another attempt to improve on robustness, Snow et al. [SVZ00] formulate the
Visual-Hull reconstruction as the minimisation of an energy function. This function

60

CHAPTER 3. VOLUMETRIC RECONSTRUCTION

has a classical data term based on silhouettes data, and a new smoothness term sup-
posed to limit the noise in the generated volume. The voxel-based volume is then
computed using a Graph-Cut algorithm [BVZ01]. The formulation of the reconstruc-
tion process as an energy minimisation problem is very interesting and can probably
be further developed. However, the smoothness term does not appear to be an adequate
answer because it tends to aggregate together nearby body parts and discard finer fea-
tures. Furthermore, the computational cost of the method is reported to be very high.

In summary, Visual-Hulls remain an active area of research because of their effi-
ciency, robustness and overall simplicity. Shape-From-Silhouette methods have also
benefited from a recent (to date 2005) renewal of interest, thanks to advances in com-
puter hardware making them practical in real-time scenarios.

3.2 A Novel Hierarchical Reconstruction Approach

A novel method for real-time 3-D reconstruction is introduced in this section. After
describing the method itself and the associated statistical framework, we discuss some
extensions derived from the use of a model.

3.2.1 Aims and Constraints

Our aim is to present an algorithm for 3-D reconstruction that is best adapted to human-
body tracking. Even though an algorithm using a polyhedral reconstruction and surface
normals for tracking was recently presented by Niskanen et al. [NBH05], polyhedral
meshes are mainly aimed at rendering and remain ill-suited for tracking. Voxel and
octree based techniques, on the contrary, have already proved adaptable to human-
body tracking [CKBH00, MTHC03, TMSS02, BD02]. A volumetric representation is
thus adopted, without yet being bound to a particular data-structure. Design concerns
for the proposed algorithm include:

• Real-time on a single machine: All the previously cited methods are either too slow
for real-time, or require a cluster of PCs. In order to be really usable, our method
should be able to perform the image capture, silhouette segmentation and 3-D recon-
struction in real-time (≥ 10fps) on a single machine. Moreover, enough resources
should be left available for the tracking process. This is a challenge, especially con-
sidering that full silhouette segmentation alone has not yet been achieved in real-time
for multiple high resolution views (see Section 2.6). However, using optimisations

61

CHAPTER 3. VOLUMETRIC RECONSTRUCTION

like per-sample segmentation in a hierarchical framework, we will show that high
framerates are achievable without compromising on accuracy.

• Good maximal accuracy with acceptable memory footprint: When using voxel-
space, the maximal accuracy has a strong impact on the memory footprint of the
data-structure, making it very hard to achieve high resolutions. Octrees, on the other
hand, suffer from a relatively high overhead inherent to the hierarchical structure.
Our aim is to be able to reach an accuracy of the order of one centimetre for a
human-size tracking area. An optimal subdivision level of 1/256th of the tracking
space should then be achieved, but only where it is needed. Indeed, generating too
much data would be detrimental to the performance of the tracking step. The gen-
eral idea is then to retain the best features of both octrees and voxel-spaces, in the
form of a hierarchical voxel reconstruction scheme that does not require a static tree
structure.

• Robustness to errors and noisy data: Robustness is too often overlooked in recon-
struction algorithms which tend to rely on a perfect image segmentation. Unfor-
tunately, camera noise and artifacts like shadows make segmentation unreliable in
real-life environments. Binary silhouette extraction is then bound to contain errors,
and post-processing algorithms tend to work without knowledge about the underly-
ing data. A statistical approach, with “soft thresholds” is then desirable to cope with
local errors.

• Flexibility and adaptation to various tracking space configurations: A very useful
feature for human body tracking is the possibility to follow the subject in relatively
large environments. Restricting the tracking zone to the size of the subject is how-
ever needed to keep accuracy maximal. The solution is to dynamically move the
region of interest in order to follow the movements of the subject. This approach is
all the more appealing because the position of the subject is known through track-
ing. Of course, keeping the space of interest static allows optimisations like lookup
tables, but we shall show that the advantages of a dynamic approach are more desir-
able.

• Inclusion of extra-information such as colour: A minimum amount of information
should be lost during the reconstruction process, and what is lost anyway should be
of minimal significance for the tracking process. Having colour camera images as
input, and assuming that colour information must be valuable for the tracking, we

62

CHAPTER 3. VOLUMETRIC RECONSTRUCTION

will describe a way to include colour in the reconstructed voxels. Once again, this is
done at a minimal cost (no occlusion/visibility test possible), while keeping in mind
the needs of tracking.

3.2.2 Algorithm Overview

The main concept of our proposed algorithm is its hierarchical nature. Just like for an
octree, the idea is to start with a space coarsely subdivided in a few voxels and recur-
sively refine those voxels which need further subdivision. Typically, voxels needing
subdivision are those on the edge of the object of interest. The logic behind this is
that large background regions can be discarded quickly, and foreground regions do not
need subdivision if they belong entirely to the object of interest with reasonable con-
fidence. A voxel is classified as edge if its projection is classified as edge on at least
one view, while the projections on the remaining views are either classified as edge or
foreground. Methods for projecting and classifying voxels will be detailed in the rest
of this section. Classification is mostly based on the ideas discussed in Chapter 2.

The term “voxel” is defined as “the smallest distinguishable cube-shaped part of a
three-dimensional space”, meaning that it could not theoretically be subdivided. How-
ever, in the rest of this thesis, voxels will denote a cube-shaped part of the three-
dimensional space with a discrete size. This liberty is taken for the sake of simplicity,
and also because no other term is totally adequate. The input of the algorithm is then
a voxel V (position and size). The output classification of the voxel is expected to fall
into four categories:

• Background: V is not part of the object of interest. It is then immediately discarded.

• Foreground: V is entirely enclosed inside the visual-hull of the object of interest. It
is then kept and passed to the subsequent tracking process. Note that the voxel is not
necessarily inside the object of interest, since the visual-hull is only an approxima-
tion of the real object.

• Edge: V is on the edge of the Visual-Hull of the object of interest. Because the
voxel is too big to describe the disparities of the underlying data, it is therefore sub-
divided into 8 sub-voxels (octants). The classification algorithm is called recursively
on each of the sub-voxels until either they fall into the two first categories or a max-
imal recursion level is reached. The maximal recursive depth is a tradeoff between
accuracy and speed.

63

CHAPTER 3. VOLUMETRIC RECONSTRUCTION

• Unknown: This category is temporarily used if there is not enough evidence to clas-
sify V into either background, foreground or edge. Spatial continuity is then used to
disambiguate unknown voxels.

3.2.3 Flexible Recursive Approach

The reconstruction algorithm starts with a root voxel which has the size of the subject
(typically 2 metres wide), and is centred on her expected position. At initialisation,
where no tracked position is yet available, the root voxel is simply positioned at the
centre of the tracking area. This root voxel is then recursively subdivided. At each
recursive call, the current voxel is classified according to Algorithm 3.4 (page 75), and
voxels classified as edge are in turn subdivided until a maximal depth D+ is reached.

The general reconstruction algorithm is summarised in Algorithm 3.2, and detailed
in the rest of this section.

Initial Subdivision Depth

Looking at Algorithm 3.2 in more detail, the function MinDepth (line 3.2.1) first
gives the minimal recursive subdivision depth depending on the position of the current
voxel and the model from the last frame. The idea behind this method is that a finer
initial subdivision should be beneficial to regions where the subject is expected to be.
On the contrary, other regions that are relatively far from the expected position of the
subject can be inspected more coarsely. The initial subdivision is important because
the sampling of pixels inside the projected area of the voxels is relatively sparse: if
the initial subdivision is too coarse, it is then possible to miss a small feature like a
finger. By contrast, a coarse subdivision of the empty regions has a beneficial impact
on speed.

A minimal subdivision level is enforced, ensuring that all regions of the tracking
area are decently inspected. Indeed, since the tracking area is only 2 meters wide, a
fast movement can place a body part in an unexpected region within a few frames.
The policy used for initial subdivision is that the closer the voxels are to the model
(expected position of the subject), the finer the initial subdivision becomes. The dis-
tance between a voxel and the model will be formulated in Chapter 4. We denote as
DM(XV , model) the generalised Mahalanobis distance between the position of a voxel

64

CHAPTER 3. VOLUMETRIC RECONSTRUCTION

Algorithm 3.2: Framework for the novel reconstruction method. The recursive
method is first called on a root voxel and then refines on the regions needing it,
depending on the classification of voxels at each level.

. Start with a root voxel;
begin

if recursiveDepth < MinDepth(XV ,model) then3.2.1

TempClass← edge;
else

TempClass← Classification of the current voxel according to3.2.2

Algorithm 3.4;
end
if TempClass = edge then

if recursiveDepth ≥ D+ then
return foreground;3.2.3

else
. recursive call of the method on the octants;3.2.4

. unknown octants take the classification of the majority;3.2.5

if All octants have the same classification then3.2.6

return the common classification of the octants;3.2.7

else
. create the foreground octants as voxels;3.2.8

end
end

end
return TempClass ;

end

V and the appearance model. The function MinDepth is then defined as follows:

MinDepth(XV , model) =

3 if DM(XV , model) > 5

4 if DM(XV , model) ∈ [2, 5]

5 if DM(XV , model) ∈ [0.7, 2[

4 if DM(XV , model) ∈ [0, 0.7[

(3.1)

The chosen thresholds are arbitrary, but have proved to work well in practice. Actu-
ally, since the distance DM() is normalised with respect to the size of the blobs, the
thresholds are defined in terms of standard deviations to the subject. These thresholds
therefore remain constant when the size of the subject or the size of the tracking space
vary. It can be seen that a voxel is less finely subdivided if it is very close to the model:
such a voxel may indeed be entirely enclosed in the subject and be wholly classified

65

CHAPTER 3. VOLUMETRIC RECONSTRUCTION

(a) Model and blobs tracked from the last frame (b) Initial subdivision where each black dot repre-
sents the centre of a voxel.

Figure 3.4: Initial subdivision of the tracking area using a blob model as a prior,
and the function MinDepth from Equation 3.1.

as foreground. The result of this initial subdivision is shown in Figure 3.4. The cost
of testing each voxel against the model is non-negligible, but since this is done only
at low recursive depths, the number of voxels to test is low. This cost is still far lower
than the one of having a finer but uniform initial subdivision, where far more voxels
would have to be classified against the camera images.

Voxel Classification and Recursive Subdivision

Referring to Algorithm 3.2, the actual classification of a voxel occurs at line 3.2.2.
This classification involves projecting the voxel onto the image planes, sampling from
the corresponding areas and finally classifying the whole voxel. These steps will be
detailed in the next section, and summarised in Algorithm 3.4. If the voxel is clas-
sified as either foreground, background or unknown, then this classification result is
passed directly to the higher level voxel, from which the current one was recursively
subdivided. The reason why the actual processing is not done at the recursive level of
the current voxel is that additional post-processing is possible at a higher level, where
knowledge about neighbouring sub-voxels is available.

Processing happens at the current level of recursion only if the current voxel has
been classified as edge. At first (line 3.2.3), if the recursion level is higher than the
maximal depth D+, then the voxel is re-classified as foreground. This is a very simple

66

CHAPTER 3. VOLUMETRIC RECONSTRUCTION

way of limiting the complexity of the reconstruction. These voxels could also be re-
classified as background to limit even more the total number of voxels, but a complete
reconstructed volume is preferred.

If the current voxel is classified as edge and the recursion depth is still below the
maximum D+, then the voxel is divided into 8 sub-voxels. The subdivision is straight-
forward because the size and the centre of the current voxel are known: if the current
voxel has a size sV and position XV = (xV , yV , zV)T , then the octants have a size equal
to sV/2 and are centred on (xV ± sV

4
, yV ± sV

4
, zV ± sV

4
)T . The algorithm is then called

recursively on each of these sub-voxels (line 3.2.4), returning the corresponding clas-
sification results. Once again, the current recursion depth is one less than the one of
the sub-voxels which are going to be processed. This allows neighbouring sub-voxels
to be taken into account for disambiguation. Of course, only 8 sub-voxels are available
and not the rest of the neighbours, but this is sufficient for the basic post-processing
presented here. More complex schemes would necessitate storing the octree structure
and performing multiple passes.

Re-Classification of Unknown Voxels Using Spatial Continuity

The first post-processing task (line 3.2.5) is to decide on a better classification for
the sub-voxels currently classified as unknown. The unknown class is temporary and
should be disambiguated. The approach taken here is to look at the neighbour vox-
els and to re-classify an unknown voxel with the class of the majority. If an unknown

voxel is surrounded by a majority of foreground voxels, there is a high probability that
it should have been classified as foreground in the first place: it is then re-classified as
such. This process is illustrated in Figure 3.5. The same is true for unknown voxels sur-
rounded by background or edge neighbours. In the rare cases when an unknown voxel
is surrounded by a majority of other unknown voxels, then the second most important
representation is considered. An unknown voxel is allowed to keep its classification
only if all its neighbours are also unknown, in which case a later scheme will pass the
information for processing at a lower recursion level.

This approach is justified by the spatial continuity (or smoothness) of the recon-
structed volume. In most other shape-from-silhouette algorithms, smoothness is en-
forced as a 2-D post-processing step on the extracted silhouettes. This has the disad-
vantage of ignoring other camera views, which could disambiguate a voxel in a more
obvious way. Our approach waits until no more image evidence can be exploited to
use the smoothness argument in 3-D.

67

CHAPTER 3. VOLUMETRIC RECONSTRUCTION

Figure 3.5: At the current depth D of the algorithm, a voxel is classified as edge
(a). It is then subdivided (b), and each sub-voxel is independently classified (c) at
the next recursion level. When returning from the recursive calls (d), the sub-voxel
classified as unknown takes the classification of the majority.

Merging Groups of Voxels with Similar Classification

Still following the process flow of Algorithm 3.2, the second post-processing task con-
sists in merging sub-voxels with similar classification into a higher-level voxel. This
is simply done by checking whether all the sub-voxels have the same classification
(line 3.2.6) and, if it is the case, passing the common classification to the previous
recursion level (line 3.2.7). It can seem illogical to expect all sub-voxels to have the
same classification, because the common classification should have been detected at
the previous recursion level. However, the classification of a voxel is based on ran-
domly sampled pixels, making it non-deterministic when voxels are close to a class
boundary. Furthermore, sub-voxels that were first classified as unknown can now con-
tribute to make all the sub-voxels alike. This merging process (illustrated in Figure 3.6)
is quite simple, and still highly beneficial for compactness of the final reconstruction.

Finally, in the last line of Algorithm 3.2 (line 3.2.8), sub-voxels classified as fore-

ground are “physically” created. This only involves passing their position, colour and
recursion level to the next stage. When reaching line 3.2.8, the only possible clas-
sifications of the sub-voxels are foreground, background and edge. The sub-voxels
classified as edge can safely be ignored because they have been dealt with at a lower
recursion level. Only foreground sub-voxels are therefore created, and in all cases, the
classification of the current voxel (necessarily edge) is passed to the previous recursion
level.

68

CHAPTER 3. VOLUMETRIC RECONSTRUCTION

Figure 3.6: The first steps (a-b) are the same as in Figure 3.5. All sub-voxels
are now classified (c) with a compatible type. When returning from the recursive
calls (d), unknown sub-voxels still take the classification of the majority, and ad-
ditionally, if all sub-voxels have the same classification, the voxel at depth D is
re-classified from edge to the common class.

Flexibility of the Reconstruction Algorithm

The recursive nature of the algorithm leads to flexibility. Some basic post-processing
can be done at very small extra cost, and since there is no static data-structure, every
single parameter of the reconstruction process can be adjusted dynamically. For exam-
ple, each of the voxels gets its position and size from its parent, which means that the
initial position and size of the tracking space can be adjusted dynamically at no extra
cost. This allows to track a subject within a relatively large space, without the need to
reconstruct the whole tracking space.

In the same way, the maximal reconstruction depth, D+, is easily adjustable. It
can then be adapted depending on the resources currently available or the need for
accuracy. For a global search (for example at initialisation), the maximal depth of
subdivision can be relatively low (typically 5 or 6). On the contrary, when more ac-
curacy is needed D+ can be increased to up to 8, which would correspond to a static
voxel-space of 256×256×256. Of course, the performance of the reconstruction highly
depends on the choice of D+, but not as much as with standard voxel-based recon-
struction techniques: only the edge voxels are here subdivided until a depth of D+,
which represents a low percentage of the total number of voxels.

69

CHAPTER 3. VOLUMETRIC RECONSTRUCTION

3.3 Voxel Classification

This section presents the steps leading to the classification of an individual voxel from
image evidence. These steps include the projection of the voxel onto the camera image
planes, followed by the sampling of the projected area. An efficient sampling method
using pre-computed patterns is introduced. Finally, the voxel classification scheme is
detailed, largely based on the classification method introduced in Chapter 2.

3.3.1 Projection of Voxels onto Image Planes and Uniform Sampling

As seen in the previous section, the classification of a voxel depends on the nature of
the data it refers to. Projecting a voxel onto an image plane is then equivalent to finding
the image data associated with this voxel. A 3-D point can be projected onto the image
plane of a camera in a straightforward and unique manner. A voxel, however, is a
volumetric 3-D entity and its projection onto the image plane is a polyhedral 2-D area.
The data associated with this voxel are all the pixels lying inside this projected area.

A standard way to project a voxel would be to project its eight corners (or vertices)
and find the area delimited by the corresponding eight 2-D points. Since the projection
of a convex object is itself convex, the projected area of a voxel is the convex hull of
its projected vertices (Figure 3.7), which can be computed very effectively using for
example the Quick-Hull Algorithm [BDH96]. Note that to be completely accurate,
the camera lens distortions should be applied on the contour points of the convex-hull,
instead of only the eight projected vertices.

Among the two steps (projection of the vertices and extraction of the convex-hull),
the projection of voxel vertices can be implemented in an efficient manner: since ad-
jacent voxels share the same vertices, a caching scheme can drastically reduce the
number of projections. Lookup tables are also commonly used to speed up vertex
projection but they imply a static zone of interest and a consequent memory usage.
Moreover, vertex projection can now be achieved very efficiently exploiting the Single
Instruction Multiple Data (SIMD) instruction sets featured in most CPUs. Unfortu-
nately, convex-hull estimation is more computationally demanding.

We describe in Appendix B a novel caching method for real-time pixels sampling
inside the projected area of the voxels. The image plane of each camera is first sub-
divided into small regions onto which voxels project with similar shapes of areas.
For each of these regions, and for each desired number of pixel samples, we pre-
compute offline a pool of patterns. To ensure a good repartition of the samples when

70

CHAPTER 3. VOLUMETRIC RECONSTRUCTION

Voxel

Camera

Image plane

Convex-Hull
of projected
Corners

Figure 3.7: Projection of a voxel onto an image plane: It is computed as the
convex-hull of the eight projected vertices of the voxel.

pre-computing the patterns, we use clustered random sampling with a heuristic max-
imising the spacing between samples. The online computation is then reduced to the
projection of the centre of the voxel, the random selection of a pattern of samples, and
the placement of this pattern onto the image plane.

3.3.2 Voxel Classification

We are now able to obtain sets of pixel-samples uniformly distributed inside the pro-
jected areas of any given voxel. For a given voxel V , and a camera view ci, let us
denote these samples as S i = {si

1 . . . si
Ns
}. Following Section 2.4.3 on image segmen-

tation, S i is classified into either background, foreground or edge categories. As we
have seen, this classification is performed on all samples at once, improving robustness
at no extra cost. Shadows are also handled (Section 2.5) in the classification process.

Re-visiting the Classification of a Set of Samples by Modelling Uncertainty

The classification of S i into 3 categories (background, foreground or edge) is relatively
reliable. However, due to the complexity of the backgrounds, the choice between one
category and another can become uncertain. To keep background segmentation sim-
ple, this uncertainty was not previously taken into account, but since the classification
of a voxel involves multiple views, a more robust scheme is now proposed. An extra
category is then added to the previous set of possible classifications. The new unknown

71

CHAPTER 3. VOLUMETRIC RECONSTRUCTION

category is used to denote a set of samples for which there is no strong evidence jus-
tifying any of the 3 previous ones. It is then used as a fallback category, used in the
last resort in the hope that other camera views will be able to disambiguate the situa-
tion. Indeed, each view brings additional information, leading to a final classification
of the voxel. The unknown category is then mostly used as a temporary classification
denoting uncertainty. However, if all the available camera views are not sufficient to
disambiguate the situation, a voxel can be entirely classified as unknown, using its
neighbours for disambiguation during the recursive reconstruction (see Section 3.2.3).

The new classification process of S i including the unknown category is now de-
tailed. The Mahalanobis distance between S i and the model of the background asso-
ciated with the camera ci is DM(S i). As seen in Section 2.4.3, the threshold on the
Mahalanobis distance DM() is a function of the desired level of confidence α, and the
number of degrees of freedoms (3.Ns) associated with S i. The threshold, T3.Ns(α), can
be approximated with good accuracy by a second order polynomial, allowing a fast
evaluation for any number of samples.

Algorithm 3.3: Classification of a set of samples, including an unknown cate-
gory. This is the partial classification of a voxel from a single camera view.

if DM(S i) < T3.Ns(α1) then
return background;

else if DM(S i) > T3.Ns(α2) then
if ∀si

j ∈ S i, DM(si
j) > T3(α2) then

return foreground;
else

return edge;
end

else return unknown;

Given two confidence levels α1 and α2, such as α1 <α2, the partial classification of
a voxel from the camera view ci is performed according to Algorithm 3.3. The choice
of the confidence levels is still arbitrary, but it is independent of the number of sam-
ples and of the statistical properties of the model of the background. As a reminder,
a confidence level represents the proportion of sample-sets that are truly part of the
foreground when their distance to the model of the background is greater that the cor-
responding threshold. In practice, we chose a relatively low confidence level for the
first threshold (α1 ' 0.98), which has the effect of letting through more sample-sets
than usual, even if they could actually be part of the background. Indeed, since voxels
classified as background in a single view are immediately discarded, this classification

72

CHAPTER 3. VOLUMETRIC RECONSTRUCTION

should be used only for cases exhibiting strong evidence. Similarly, the second con-
fidence level used to decide whether a set of samples or an individual sample are part
of the foreground, is chosen high (α2'0.999) in order to minimise misclassifications.
The large gap between the two thresholds is designed to encourage the use of the un-

known category, which delegates the classification of uncertain cases to other camera
views.

Classification of a Voxel Combining Information from all Views

The full classification of a voxel using all the available camera views is presented in
Algorithm 3.4 and illustrated by Figure 3.8. The algorithm is essentially a combination
of the ideas exposed earlier in this section. Voxels are projected consecutively onto
the available image planes, producing for each view a set of pixel samples. This set
of samples is then classified using Algorithm 3.3, and the partial classifications are
combined to infer the final classification of the voxel using the following rules:

• background classification is chosen if the partial classification on at least one view
is background, independently of the partial classification of other views.

• foreground classification needs at least one partial classifications to be foreground

and the others to be either foreground or unknown.

• edge classification requires at least one partial edge classification with the rest clas-
sified as either edge, foreground or unknown.

• unknown classification is only used when all the available partial classifications are
also unknown.

The position and the size of the zone of tracking are dynamically adjusted to the
subject, which means that some voxels might not be visible at all time from all the
cameras. While voxels are visible from at least one camera view, the classification
occurs normally, and the only possible problem is a poorer classification as the number
of views decreases. In the worst case, when a voxel is not visible from any of the
camera views, it is classified by default as background. This choice is made to avoid
those voxels having an influence on the later tracking process, as it happens relatively
often that corners of the tracking space fall out of view using cameras with narrow
focal.

73

CHAPTER 3. VOLUMETRIC RECONSTRUCTION

Figure 3.8: Overview of the classification process. The current voxel is succes-
sively projected onto the image planes of the available cameras, and a set of pixel
samples is chosen for the corresponding projected area (e). Note that only one
camera-view is represented here. The classification then takes place, falling into
either background (a), edge (b), foreground (c) or unknown (d) categories.

3.4 Incorporating Colour in the Volumetric Reconstruction

The volumetric reconstruction we described only contains information about the shape
of the object of interest. Of course, the colour of individual pixels was implicitly used
to build the reconstructed volume, but this information was lost in the classification
process. Considering that the tracking process relies solely on the generated voxels, it
seems reasonable to recover as much useful information as possible from image data.
Colour, texture or edges are possible sources of information that could help locate and
disambiguate body parts.

Texture can be a powerful cue for tracking, but it is 2-D information which would
be hard to integrate in our voxel-based reconstructed volume. Edges are easier to
obtain, but incorporating them from multiple views remains a difficult problem. It
is also not clear how beneficial edges could be for tracking, if we keep in mind that
external ones are already included in the reconstruction itself.

Colour information has the advantages of being relatively easy to collect and to
represent in 3-D. Even if colour is not volumetric information (only the colour of the
external surface of an object is visible), it can be “spread” so that internal voxels are
also assigned a sensible colour. In the context of human-body tracking, where body
parts need to be differentiated, colour is particularly important. For example, using

74

CHAPTER 3. VOLUMETRIC RECONSTRUCTION

Algorithm 3.4: Overview of the classification of a voxel
Data: Voxel V (position and size)
Result: Classification of V as either foreground, background, edge or unknown
TempClass← unknown ;
NbVisibleViews← 0;
forall Camera Views, ci do

. project V onto the image plane of camera ci (cf. Section 3.3.1);
if V is visible from the camera ci then

NbVisibleViews← NbVisibleViews +1;
. sample uniformly the projected area (cf. Section B);
. classify the set of samples S i (cf. Section 2.4.3 and Algorithm 3.3);
if S i ∈ background then

return background;
else if S i ∈ foreground & TempClass 6= edge then

TempClass← foreground;
else if S i ∈ edge then

TempClass← edge;
end

end
end
if NbVisibleViews > 0 then

return TempClass ;
else

return background;
end

colour helps with localising the hands and the face.
Unlike most existing systems which encourage tight and uni-colour clothing, our

system highly benefits from real-life clothing. No restriction is therefore imposed on
the type or the colour of clothes: the shape and colour of the appearance model are
learnt automatically during the first frames of the tracking process (Section 4.3). Of
course, the more important the colour differences, the more valuable colour becomes
for tracking.

3.4.1 Including All Possible Colours into each Voxel

Extracting the true colour of each voxel would require a visibility test from each cam-
era. Voxels would then be assigned a weighted average of the colours of their projec-
tions onto the cameras from which they are visible. Typically, a bigger weight would
be given to cameras with a view angle closer to the surface normal at the position of

75

CHAPTER 3. VOLUMETRIC RECONSTRUCTION

the voxel. This is clearly impractical for our purpose, not only because internal vox-
els are then omitted or because we do not have surface normals, but mainly for the
computational cost associated with visibility tests.

We assume that pieces of clothing are relatively uniform in colour, so that a given
point of a body part can always be seen with the same colour from at least one camera.
This means that, for example, a voxel on the hand of the subject always projects onto a
skin-coloured patch in at least one camera view. This is not an unreasonably restrictive
constraint, since most clothes are already uniform in colour, and so is the skin. A voxel
placed in the middle of the torso will then be seen with the colour of the shirt from most
cameras, and, even when this point is occluded from a few camera views, it will almost
certainly remain visible with the same colour from at least one view.

If the “correct” colour of each voxel is visible from at least one camera view, then
we simply have to select the camera view giving the best colour (with respect to the
model), and give the corresponding colour to the voxel. There is obviously no such
thing as a correct colour, but since we will have a model with an expected colour
for each body part, the colour closest to the expectation is considered as the correct
one. In practice, this means that the colours from each camera view are included
into the voxels, and the best colour is selected later on, during the tracking process
(Section 4.2).

The colour of a voxel as seen from a camera view is determined by averaging the
pixel samples that were used for classification in the previous section. In theory, vox-
els can overlap areas with different colours, making a simple average of the samples
inaccurate. However, in practice, the patches with uniform colour are relatively large,
so we assume that voxels project onto zones of uniform colour in at least one camera
view. Even when this is not the case, the model is robust enough to incorporate resem-
bling colours. The colour assignment could be made more robust by using the median
instead of the mean colour of the samples, but it would be slower as it involves sorting
the colours associated with the samples.

A voxel V is then fully described by its 3-D position XV , its size sV , and its mean
colours CV ={C1

V , . . . , CNc
V } as seen from the Nc available camera views:

V = {XV , sV , CV} with Ci
V =

1

Ns

Ns∑
j=1

sci
j (3.2)

Storing the colours from all camera views inside each voxel would normally con-
sume too much memory to be practical. However, for tracking purposes, voxels do not

76

CHAPTER 3. VOLUMETRIC RECONSTRUCTION

Figure 3.9: Placement of the cameras. The hatched zone represents the space
where the subject is visible from all cameras.

need to be stored in memory: as we will see in Chapter 4, as soon as a voxel is created
and its colours assigned, it is incorporated into the blobs of the model. The only over-
head is then the test of each colour against the appearance model to determine the most
appropriate colour, but this is minimal compared to the cost of performing visibility
tests.

3.5 Results

The placement of the 5 cameras used for our tests is depicted in Figure 3.9. All cameras
were placed at the height of the ceiling (approximately 2.5 metres), and orientated
towards the same tracking space (hatched on the figure). Note the presence of an
un-captured space, where additional people can stand without being visible from any
camera.

An example of volumetric reconstruction using a maximal recursion depth of 7 and
4 camera views {c1, c2, c3, c4} is shown in Figure 3.10. The pixels sampled during the
reconstruction are superimposed onto the original input images with red spots. It can be
noticed that fewer and fewer samples are taken outside the subject in successive camera
views, making the algorithm efficient and robust to partial changes in the background.
The reconstructed volume is shown from 3 different viewpoints, with voxels displaying

77

CHAPTER 3. VOLUMETRIC RECONSTRUCTION

3 views 4 views 5 views
Max. Depth 6 11.0ms (90.4fps) 11.1ms (90.2fps) 12.8ms (78.2fps)
Max. Depth 7 24.1ms (41.4fps) 22.8ms (43.8fps) 28.1ms (35.6fps)
Max. Depth 8 73.5ms (13.6fps) 66.0ms (15.1fps) 78.6ms (12.7fps)

Table 3.1: Performance of the volumetric reconstruction.

the average of the 4 view-colour.
Evaluating the accuracy and the robustness of the reconstruction is tricky because

no ground truth measurement is available. In Figure 3.11, we compare the total recon-
structed volume across time for different numbers of camera views. The reconstructed
volume should ideally remain stable, at a value approximating the true “volume” of the
subject. A minimum number of 4 camera views seems required to obtain a relatively
stable reconstructed volume. Five or more camera views certainly improve the results,
but in lower proportions. Note that the relative placement of the cameras has a strong
influence on the result, but an optimal placement was not pursued in this thesis.

The benefits of the hierarchical reconstruction scheme are demonstrated in Fig-
ure 3.12, where the contributions of the voxels are aggregated by size. Only half of
the total volume is represented by voxels with maximal subdivision (mainly near the
edges), while the rest of the reconstructed volume is advantageously represented by
higher-level voxels.

Performance measurements of the full reconstruction algorithm for various num-
bers of camera views and maximal recursion depths are presented in Table 3.1. These
measurements were performed on a 2 GHz Pentium computer, and averaged over 1000

frames. Quite remarkably, the number of camera views does not seem to have a strong
influence on the computing cost. Background voxels are indeed more likely to be dis-
carded at an early stage as more views are available. The cost of the projections on
the extra views seems to be compensated by the benefits of a faster classification. We
could not test this hypothesis further because of the limited number of cameras we had
access to, but we could expect the computing cost to grow more slowly as more views
are added.

The performance results from Table 3.1 can also be compared to the cost of back-
ground segmentation on single input images (Table 2.4). Using combined information
from all available views and per-sample segmentation, the cost of the full reconstruc-
tion is lower than for the individual segmentation of all the input views.

78

CHAPTER 3. VOLUMETRIC RECONSTRUCTION

Figure 3.10: The pixel samples used to reconstruct the visual-hull are represented
by red dots in the 4 top input images. In the first camera view, the samples cover
all the tracking area, but quickly concentrate on the foreground sections in the
following views. The corresponding reconstructed volume is shown at the bottom
from 3 different viewpoints.

79

CHAPTER 3. VOLUMETRIC RECONSTRUCTION

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 200 400 600 800 1000 1200 1400

C
um

ul
at

iv
e

V
ol

um
e

(c
ub

e
m

et
re

)

Frame Index

5 camera views
4 camera views
3 camera views

Figure 3.11: Influence of the number of camera views on the reconstructed vol-
ume.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 200 400 600 800 1000 1200 1400

C
um

ul
at

iv
e

V
ol

um
e

(c
ub

e
m

et
re

)

Frame Index

Volume at levels up to 8
Volume at levels up to 7
Volume at levels up to 6
Volume at levels up to 5
Volume at levels up to 4

Figure 3.12: Decomposition of the total reconstructed volume with 5 camera
views into the contribution of the voxels at each recursive level.

3.6 Discussion and Conclusion

In this chapter, we presented a novel shape-from-silhouette reconstruction method.
Original contributions fall into the main categories:

• Efficiency: hierarchical reconstruction framework with minimal memory footprint.

• Flexibility: the zone of tracking can be dynamically adjusted, and the initial voxel
subdivision is defined by the tracked model.

• Robustness: the voxel classification uses the full statistical properties of the sets of
pixel samples. The introduction of a unknown category allows information from all
views to be combined for disambiguation.

80

CHAPTER 3. VOLUMETRIC RECONSTRUCTION

• Colour: inclusion of colour information in the reconstructed volume, at very low
computing cost.

As future work, the statistical framework could be further developed by augment-
ing each voxel with its probability of being correctly classified. Voxels reaching
the maximal subdivision level, which are classified as foreground under the current
scheme, could then contribute to the reconstructed volume in a more nuanced way.

The inclusion of colour information could be made more compact and efficient by
combining similar colours for each voxel. However, in order to compare colours across
different views, cameras should be colour-calibrated. We believe that colour calibra-
tion is an important issue which could greatly improve the performance of the method.
Automatic colour calibration could be achieved, for example, by using the blob-based
appearance model to learn the mean colour of each body part and subsequently define
a colour-correction function for each camera view.

81

Chapter 4
Tracking Body Parts with 3-D Blobs

This chapter presents the use of 3-D blobs for tracking individ-
ual body parts. The blobs are Gaussian models, giving them
a strong statistical predisposition towards robust optimisation al-
gorithms like Expectation-Maximisation. We shall describe the
specifics of the Expectation-Maximisation framework when track-
ing sets of coloured voxels with blobs. We shall finally present a
scheme for automatically acquiring and constraining the attributes
of the blobs.

4.1 Blobs as Feature Trackers

Human body tracking involves finding the global position of the body as well as the
relative position of each body part, for each frame of a video sequence. In order to
recognise and follow these body parts from frame to frame, an appearance model

is necessary. Given that the data available for tracking is the set of coloured voxels
reconstructed in Chapter 3, the appearance model of a body part should also be a
volumetric description of both its shape and colour.

Acknowledging that the human body is articulated as a whole, individual body
parts (thigh, forearm, etc.), on the contrary, remain relatively static in appearance. Of
course, the exact shape of each body part depends on the underlying muscles attached
to the skeleton, so that their shape changes slightly as the body moves. With clothing,
any movement combined with the laws of physics effectively changes the appearance
(shape and illumination) of each part of the body. These considerations, despite be-
ing valid for high-quality models, are currently inapplicable to human body tracking

82

CHAPTER 4. TRACKING BODY PARTS WITH 3-D BLOBS

because of both impractical complexity and the relative coarseness of the 3-D recon-
struction. We neglect these small variations in shape and illumination, and assume
the existence of a manageable number of elementary body parts, whose appearance is
self-coherent (unimodal in space and colour) and remains constant over time.

After a review of some alternative methods, this section introduces a statistical
appearance model for tracking individual body parts directly from voxel data. We
refer to this as the “blob” model. The properties of this blob model is then examined
to pave to way for the tracking process itself, which is presented in Section 4.2.

4.1.1 Appearance Models in the Literature

Various types of model have been described in the literature for identifying body parts.
In the vast majority of cases, the models are purely geometric and attached to an un-
derlying articulated skeleton. When the final purpose is tracking, the models are kept
simple to achieve an acceptable level of performance. For example, Hogg [Hog83]
uses cylinders attached to the bones of a hierarchical kinematic model. Candidate con-
figurations of the model are evaluated in 2-D by comparing the projected cylinders
and edges extracted from the image. Mikic et al. [MTHC03] use a cylinder for the
torso and ellipsoids for the limbs: tracking is then done from 3-D voxels with an error
function accounting for the number of voxels left outside these geometric primitives.
Mitchelson et al. [MH03] use similar primitives, but this time in association with a par-
ticle filtering framework and a combination of image filters. Delamarre et al. [DF99]
have a slightly more complex representation including parallelepipeds, truncated cones
and spheres. The model is then projected onto camera images and compared to edge
information.

These simple geometric primitives have proved sufficient to model the shape of the
limbs with reasonable accuracy. However, in an attempt to improve realism, more com-
plex representations based on polyhedral meshes [YSK+98, BL01b] or superquadrics
[GD96] have been proposed. Pushing further towards realism, Plänkers et al. [PF03]
and Carranza et al. [CTMS03] propose a muscular model using “metaballs”. These
metaballs are in fact Gaussian density distributions, from which the skin is defined as
an iso-surface. The idea is related to the blobs we propose in this chapter, but the pur-
pose of [PF03, CTMS03] is to achieve higher realism as opposed to robustness. Their
underlying idea is that more realistic models should lead to a better evaluation of the
pose. While this is an incontestable statement, one must keep in mind that realism has
always a limit, especially with complex clothing. It is then not clear whether a more

83

CHAPTER 4. TRACKING BODY PARTS WITH 3-D BLOBS

detailed model handles the variability of the data as flexibly as a simple one.
Focusing more on robustness than on accuracy, Borovikov et al. [BD02] devise a

density-based model, where body parts are defined as isosurfaces of customised sta-
tistical distributions. The optimisation process is based on the distances between re-
constructed voxels and these distributions, following gradients of the distributions to
converge towards a solution. This scheme, used in conjunction with hierarchical fit-
ting, seems to have the potential to estimate body poses robustly, even when no prior
estimation is available. As we will see, the blobs we propose have similar desirable
properties, but with the advantage of a simpler statistical description, making them
more suitable for real-time tracking.

Body Representation using Blobs

A blob is one of the simplest possible descriptions of a unimodal set of data: it en-
capsulates only the average (or expected) value of the set of data, and the possible
variations of the data around this average value. In statistical terms, a blob can be re-
garded as a Gaussian distribution, so that a mean vector and a covariance matrix fulfil
these roles. With respect to spatial information, a blob is often represented by an el-
lipsoidal shape, which is actually an iso-surface around the mean value. Similarly, the
colour information is modelled by a mean colour and a model of variations in colour-
space. By contrast with previously-described appearance models based on geometrical
primitives, a blob is a statistical entity without hard boundaries. A given voxel has then
a probability of belonging to the blob, based on its position and colour.

Blobs are well-adapted to describe the shape and colour information of body parts.
Indeed, these elementary body parts (the limbs) can all be approximated by ovoid
shapes at a certain level of accuracy: the most complex body parts can always be
modelled by more than one blob. Moreover, as seen in Section 3.4 about voxels and
colour information, the colour of individual body parts is assumed to be uniform. This
means that a single blob should be able to represent both the shape and the colour of
an individual body part.

Blobs in the literature

In the Pfinder algorithm [WADP97], Wren et al. use 2-D blobs to model the limbs. The
blobs are described by mean vectors in position and colour, and block-diagonal covari-
ance matrices. The attributes of the blobs are re-evaluated in each frame from their
support map of pixels. The support map of a blob is the set of data which is believed

84

CHAPTER 4. TRACKING BODY PARTS WITH 3-D BLOBS

to correspond best to the blob model. Since no articulated model is used to constrain
the tracking, the blobs are simply propagated between each frame using linear dynam-
ics. Initialisation relies on the extraction of contours, with the identification of specific
body parts such as the hands and the head. Pfinder remains a crucial reference in the
field of human-body tracking because it was one of the first real-time algorithms that
was sufficiently robust to be really usable. However, the fact that it works only in 2-D,
and the absence of an underlying articulated model leave some areas of improvement,
many of which are addressed in this chapter.

Blobs have also been used more recently to model body parts, but often under
different names and formulations. Aguiar et al. [dATM+04] use an “ellipsoid” for-
mulation, where each 3-D ellipsoid is described by a translation vector, three rotation
coefficients, and three elongation coefficients. This geometrical formulation is roughly
equivalent to the statistical approach which we propose, where a blob is assimilated to
a Gaussian distribution. The statistical formulation, however, is more compact and
lends itself better to formal analysis. Ellipsoid shells have also been used by Che-
ung et al. in [CKBH00, Che03, CBK03a], with once again a geometrical description
preferred to a statistical one. The parameters of the blobs are then estimated using
the three first-order moments of the underlying data, which is equivalent to estimat-
ing the mean and covariance matrix. Bregler et al. [BM98, BMP04] define 3-D blobs
geometrically in the local coordinate system of each body part. They also describe
an Expectation-Maximisation procedure with pixels support maps, used to re-estimate
iteratively the parameters of the kinematic model (as opposed to these of the blobs).

To the best of our knowledge, the only example of 3-D blobs used for human-body
tracking and described with a Gaussian distribution formulation is due to Jojik et

al. [JTH99]. In their paper, the upper-body is tracked from dense disparity maps,
using 3-D Gaussian models for each body part. The tracking itself is performed us-
ing Expectation-Maximisation, and the parameters of an underlying articulated model
are computed in an Extended Kalman Filtering (EKF) framework [Kal60, WB01]. A
scheme is also introduced to detect self-occlusions. The algorithm is reported to run in
real-time. While this work is clearly targeted at narrow-baseline stereo setups, it has a
lot of common ground with the method we describe in this chapter. Nevertheless, we
shall describe in this chapter various extensions to the formulation of the blobs, such
as the inclusion of colour or the automatic acquisition at initialisation. The scope of
our work is also different, as we are interested in full-body tracking from a volumetric
reconstruction, instead of the upper-body from disparity maps as in [JTH99].

85

CHAPTER 4. TRACKING BODY PARTS WITH 3-D BLOBS

The main advantage of Gaussian blobs over geometrical shape primitives is their
natural integration into a statistical framework. Compactness and simplicity are other
decisive advantages of this blob description, which has a minimal amount of free pa-
rameters. Keeping in mind that all voxels have to be tested against the appearance
models of all body parts, the test itself must be simple enough to keep real-time per-
formance. As will be seen in the next sections, computing the probability that a pixel
belongs to a blob is much faster than the corresponding test with most other shape
primitives, such as cylinders or parallelepipeds.

Finally, because of their relatively small number of parameters, blobs are very flex-
ible and can be dynamically modified. This is especially important for body parts
whose shape and colour have to be learnt during tracking. The next section formalises
the description of blobs and explains their use for tracking through a standard tech-
nique called “Expectation-Maximisation” [DLR77]. Another use of blobs for Bayesian
tracking will be presented in Chapter 6.

4.1.2 Theoretical Background and Notation

The data modelled by the blobs are the 3-D locations of the voxels in Euclidean xyz

space, augmented by their colours in YUV colour space: each datum is a 6-dimensional
vector. A blob is formally defined as a 6-dimensional multivariate Gaussian distribu-
tion of mean vector µ and covariance matrix Σ. The voxels (position and colour)
belonging to the blob are assumed to be distributed in a Gaussian way around the
mean vector µ, hence the ellipsoidal shape mentioned earlier. The mean vector µ of a
blob is composed of a mean position µX and a mean colour µC as follows:

µ = (µx µy µz︸ ︷︷ ︸
µX

µY µU µV︸ ︷︷ ︸
µC

)T =

(
µX

µC

)
(4.1)

The vectors µX and µC are different in nature, but due to the normalising effect of the
covariance matrix, they can be associated coherently. The 6×6 covariance matrix, Σ,

86

CHAPTER 4. TRACKING BODY PARTS WITH 3-D BLOBS

is decomposed into semantic blocs in a similar way:

Σ =

σ2
x σxy σxz σxY σxU σxV

σxy σ2
y σyz σyY σyU σyV

σxz σyz σ2
z σzY σzU σzV

σxY σyY σzY σ2
Y σY U σY V

σxU σyU σzU σY U σ2
U σUV

σxV σyV σzV σY V σUV σ2
V

=

(
ΣX ΣXC

ΣXC
T ΣC

)
(4.2)

where ΣX is the spatial covariance matrix, ΣC is the colour covariance matrix, and ΣXC

is a joint covariance, describing the dependencies between position and colour. In the
few previous uses of coloured blobs in the literature [WADP97], this joint covariance
matrix was ignored and set to zero. This was due to the fact that blobs were only in
2-D, leaving the orientation of blobs uncorrelated with colour. In 3-D, however, posi-
tion and colour can be correlated as long as the blobs are kept in the local coordinate
system of the body part that they are tracking. For example, a blob representing a
forearm in global coordinates can be transformed into the local coordinate system of
the forearm, with the x axis always pointing from the elbow to the wrist. In this lo-
cal coordinate system, the first column of the joint covariance matrix ΣXC will always
represent the colour variations between the elbow and the wrist, which can be a very
valuable information for the repartition of the blobs. Note that an underlying kine-
matic model (described in Section 5.1) will be necessary to keep track of the hierarchy
of coordinate systems, and perform the appropriate transformations.

Nevertheless, all dependencies between position and colour are not pertinent, es-
pecially considering the extra cost they generate. Setting ΣXC to zero effectively splits
the matrix Σ into 2 sub-matrices, considerably speeding-up matrix inversion. Further-
more, the 3-D reconstruction is often not detailed enough to account for colour varia-
tions along short axes: for most blobs, the only observable dependence between colour
and position occurs along the main axis only. When such a dependence is observed, we
prefer to reorganise the blobs dynamically in order to minimise this dependence. So,
without disregarding the correlations between position and colour (ΣXC) completely,
we will at this point of the analysis neglect their influence for efficiency reasons. Dy-
namic blob behaviour and the use of ΣXC for re-organising the blobs is detailed in
Section 4.3.

Since blobs are multivariate Gaussians, all the reasoning described in Chapter 2
remains valid. In particular, considering a voxel V at position XV and of colours CV =

87

CHAPTER 4. TRACKING BODY PARTS WITH 3-D BLOBS

{C1
V , . . . , Cm

V , . . . , CNc
V } as seen from the Nc available camera views, the Mahalanobis

distance DM(V , B) between this voxel and a blob B(µ,Σ) is:

DM(V , B) = (V − µ) ·Σ−1 · (V − µ)T (4.3)

we can expand this as:

DM(V , B) =

(
XV − µX

Cm
V − µC

)
·

(
ΣX ΣXC

ΣXC
T ΣC

)
·

(
XV − µX

Cm
V − µC

)T

'

(
XV − µX

Cm
V − µC

)
·

(
ΣX 0

0 ΣC

)
·

(
XV − µX

Cm
V − µC

)T

= (XV − µX) · ΣX
−1 · (XV − µX)T︸ ︷︷ ︸

DM (XV ,B)

+ (Cm
V − µC) · ΣC

−1 · (Cm
V − µC)T︸ ︷︷ ︸

DM (CV ,B)

(4.4)

The decomposition of the 6-dimensional Mahalanobis distance into a sum of distances
on position and colour is only valid if ΣXC = 0, but this approximation is important
for the real-time feasibility of the computation. The other remarkable part of the equa-
tion is the Mahalanobis distance on colours, which uses only the colour vector Cm

V

minimising the distance to the blob model:

m = arg min
i=1...Nc

(Ci
V − µC) · ΣC

−1 · (Ci
V − µC)T (4.5)

Even if this formulation can seem expensive in terms of computational cost, it is ac-
tually efficient and accurate even in cases of severe self-occlusions. The Mahalanobis
distance in 3 dimensions is indeed fast to evaluate.

The distance formulations (Equations 4.4 and 4.5) presented above are very similar
to the ones used for background segmentation. A major difference, however, is that we
are not trying here to decide whether a voxel belongs to a single blob (or Gaussian
model), but rather to assign a voxel to the most probable blob. In the first case we had
only one point of comparison, and had consequently to find a threshold for classifica-
tion. In the current scheme, there is no need for a threshold since a voxel is assigned
to the blob with highest probability P (V|B).

88

CHAPTER 4. TRACKING BODY PARTS WITH 3-D BLOBS

4.2 Tracking with Expectation-Maximisation

This section explains how Expectation-Maximisation (known as EM) can be used for
tracking, first in a general context and then more specifically for the estimation of the
parameters of the blobs from the voxel data. A general overview of the algorithm
brings us to discuss its pitfalls and how they were addressed in the literature. The main
two steps of the algorithm are then detailed.

4.2.1 Overview

Expectation-Maximisation was first introduced by Dempster et al. [DLR77] in 1977,
as a way to compute iteratively the maximum likelihood estimate of the parameters of
a model from incomplete data. This algorithm subsequently became very popular in
many areas of Computer Science, mainly because it can be efficiently implemented as
a loop over two simple steps. The general principle of the method is summarised in
Algorithm 4.1. At each iteration, the parameters of the model are re-evaluated from
the data that were the most likely to corroborate the model in the first place. Figure 4.1
presents a visual overview of the EM algorithm for the fitting of blobs.

Algorithm 4.1: General overview of the Expectation-Maximisation algorithm.
repeat

. Expectation: each datum is assigned with the probability that it has been
generated by the current estimate of the model;
. Maximisation: the model parameters are re-evaluated using the data
weighted by the probabilities;

until convergence;

The problem of Initialisation

In our case, the models are Gaussians distributions (the blobs) and the data are the
reconstructed voxels. A first limitation of the algorithm is that the “structure” of the
model has to be given a priori because only the free parameters of the model are
optimised. Practically, this means that the optimal number of Gaussian blobs is not
estimated by the algorithm, and must be chosen beforehand. Providing a good initial
number of blobs is not an easy task, but using a skeletal model of the human body,
we can have a rough idea of the number of body parts to track. The refinement of this
estimation will be the topic of Section 4.3.

89

CHAPTER 4. TRACKING BODY PARTS WITH 3-D BLOBS

(a) (b) (c)

(d) (e) (f)

Figure 4.1: Overview of the blobs fitting process. (a) One of the input views and
(b) the corresponding volumetric reconstruction with the predicted blobs. (c) The
voxels are assigned to the nearest blob using both position and colour. (d) The sets
of voxels assigned to each blob are exhibited with arbitrarily chosen colours. (e)
The attributes of the blobs are then re-evaluated from the set of voxels that were
assigned to them, (f) giving the new set of blobs.

Another pitfall of EM comes from its iterative nature, where the data are selected
with respect to their agreement with the model. The initial parameters of the model
must then explain the data in a satisfactory way, to avoid wrong data selection and sub-
optimal convergence. So, blobs must then be sufficiently “close” to the data at each
frame. The “closeness” is here understood in the sense of the Mahalanobis distance
(Equation 4.4) between blobs and voxels, hence including colour as well as position.
Since tracking is a continuous process, the pose of the subject at a given frame is
assumed to be sufficiently close to the pose in the previous frame: the initial spatial
parameters are then simply taken from the previous frame. The colour of body parts
is also assumed to remain relatively constant over time, so that the tracked blobs from
the previous frame should provide a sufficient initialisation.

Figueiredo and Jain [FJ02] proposed a few extensions to the standard EM algo-
rithm designed primarily at initialising the algorithm in an unsupervised (automatic)
way. The optimal number of Gaussian models is chosen with a Minimum Description
Length (MDL) criterion, and the problem of the initial placement of the Gaussian mod-
els is solved by first creating a Gaussian model for each data point and then iteratively

90

CHAPTER 4. TRACKING BODY PARTS WITH 3-D BLOBS

discarding those with low support from the data. For an analysis of the required level
of support, based on the MDL, the reader is referred to [FJ02]. These additions can
prove very helpful when no assumption can be made about the data, hence avoiding a
totally arbitrary choice of model. Unfortunately, several numbers of components have
to be tried before selecting the best one, which makes the algorithm computationally
demanding. Furthermore, in our case, the human-body model can provide the expected
number of components (blobs), at a significantly lower cost.

Soft Assignment versus Support Maps

The standard EM algorithm uses soft-assignment of the data with respect to the model
components. Each voxel can then contribute to the re-estimation of the parameters of
all the blobs, with a weight proportional to the probability that it had been generated by
each particular blob. While this approach is theoretically valid and allows the algorithm
to perform well even with a small data set, it can also cause specific issues. The
main problem concerns the overlapping of the blobs, which can be desirable in some
applications, but makes little sense when blobs are supposed to represent solid body-
parts. Soft-assignment tends to favour overlapping in dense regions, making blobs
“fuzzier” than they really should. A standard way to solve this particular problem is to
use hard-assignment or support maps. With hard-assignment, a voxel is assigned only
to the blob that is the most likely to have generated it, hence building a binary support
map for each blob. The parameters of the blobs are re-estimated only from the voxels
belonging to its support map, which prevents overlapping, and improves performance.
Note that with support maps, EM is very similar to the K-Means algorithm. The only
difference is that in EM each cluster is modelled by a full statistical model, while
K-Means uses only the centres (means) of the clusters.

Using support maps also has some drawbacks. Since the assignment of the voxels
is binary with respect to each blob, the support maps do not have real Gaussian distri-
butions. Indeed, the “tails” of the Gaussians would normally be modelled by voxels
with low probabilities, but instead, those voxels have high chances of being allocated
to more likely blobs. This theoretical concern does not seem to be a practical issue as
long as a relatively high number of voxels is available in each support map, allowing
a sufficiently accurate estimation of the blobs’ parameters. Support maps are widely
used to constrain EM, and have successfully been used in the context of human-body
tracking by Wren et al. [WADP97] and Jojic et al. [JTH99].

91

CHAPTER 4. TRACKING BODY PARTS WITH 3-D BLOBS

4.2.2 The EM Algorithm for Tracking

The two steps of the EM algorithm are summarised in Algorithm 4.2. During the Ex-
pectation step, each voxel Vi is assigned to the most probable blob Bj . This involves
computing for all voxels the probability that they have been generated by each blob
P (Vi|Bj), and finally selecting the blob that gave the highest probability (a slightly
more efficient scheme is described in Section 4.2.3). The voxels assigned to a given
blob (support map) are then used to re-evaluate its mean and covariance in the Maximi-
sation step. While the Expectation step is relatively straightforward, a correct Maximi-
sation is critical for the convergence of the algorithm. After each iteration of EM, some
constraints are applied to the parameters of the blobs (more details in Section 4.3).

Algorithm 4.2: Overview of the use of Expectation-Maximisation for tracking.
. Initialise with the blobs tracked from the previous frame, and current voxels;
repeat

. Expectation (Section 4.2.3);
forall voxels Vi do

forall blobs Bj do
Compute the probability
P (Vi|Bj) that Vi was
generated by Bj;

end
Support Map: assign Vi to
the blob Bj that maximises
P (Vi|Bj);

end
. Maximisation (Section 4.2.4);
forall blobs Bj do

Re-evaluate the parameters of
Bj from the set of voxels pre-
viously assigned with Bj;

end
Apply constraints on blobs using
the kinematic model;

until convergence;

Each iteration of the EM algorithm brings the blobs closer to the voxel data. If
the blobs are initially sufficiently close to the data, then each voxel should be assigned
to the most appropriate blob during the first Expectation step, and a single iteration

92

CHAPTER 4. TRACKING BODY PARTS WITH 3-D BLOBS

is therefore sufficient. Multiple iterations are only necessary when some voxels are
assigned to wrong blobs. These wrong assignments can be detected when the re-
evaluated blob parameters are in strong disagreement with the expected values. For
example, if after the Maximisation step, some of the blobs change too radically in size
or in colour, subsequent iterations of EM could converge towards a better solution.

4.2.3 Expectation Step

As we saw in Algorithm 4.2, the main difficulty of the Expectation step is the evalu-
ation of the probability for a given voxel Vi to have been generated by the Gaussian
blob Bj . Voxels are assimilated to 6-dimensional Gaussian vectors. Each blob Bj is
described by a mean vector µj and a covariance matrix Σj . The probability that Vi

was generated by Bj is the probability P (Vi|Bj) of observing Vi knowing Bj for a
multivariate Gaussian distribution:

P (Vi|Bj) =
1

(2.π)3.
√
|Σj|

.e−
1
2
DM (Vi,Bj) (4.6)

where DM(Vi, Bj) is the Mahalanobis distance from Equation 4.4 and |Σj| is the deter-
minant of the covariance matrix of Bj . Considering that the mixed covariance between
position and colour is neglected, |Σj| can be reduced to the product of determinants on
position and colour covariance matrices:

|Σj| =

∣∣∣∣∣ ΣXj ΣXCj

ΣXC
T
j ΣCj

∣∣∣∣∣ = |ΣXj|×|ΣCj−ΣXC
T
j · ΣX

−1
j · ΣXCj︸ ︷︷ ︸

'0

| ' |ΣXj|×|ΣCj| (4.7)

A very standard optimisation is to compare the logarithm of the probabilities instead
of the probabilities themselves. The logarithm function is indeed monotonic, so that a
maximum of probability is also a maximum of log-probability. Taking the logarithm
of both sides of Equation 4.6 gives:

log P (Vi|Bj) = −3. log 2.π − 1

2
. log |Σj| −

1

2
.DM(Vi, Bj) (4.8)

which can be further simplified by discarding the constant terms and constant multi-
plicative factors yielding a function φ(), whose minimisation remains equivalent to the

93

CHAPTER 4. TRACKING BODY PARTS WITH 3-D BLOBS

maximisation of the original probability:

φ(Vi, Bj) = log |Σj|+ DM(Vi, Bj) (4.9)

For a given voxel, minimising φ() with respect to the choice of blob Bj mainly de-
pends on the minimisation of the distance DM() between the blob and a voxel. The
term log |Σj| is constant for a given blob, and acts as a normalising factor, raising the
chances of “smaller” blobs in the sense of the variances encoded in the covariance ma-
trix. It is particularly useful when two blobs are very similar (in position and colour),
because if only DM() was used, the blob with the largest variance would always have
the advantage. This consideration is important for human body tracking, where some
blobs are frequently close to each other, while representing different body parts: for
example, a blob representing an arm which comes close to the one of the torso.

Keeping in mind that in theory the function φ() has to be evaluated for every voxel
against all blobs (see Algorithm 4.2), any way to reduce the number of tests is highly
beneficial for the system performance. The distance function DM() is composed of two
asymmetrical parts in terms of computational cost: the distance on position is indeed
much faster to compute than the distance on colour (Equation 4.5). A simple but very
efficient optimisation is then to compute first the Mahalanobis distance between the
position of a voxel and a blob, and if this distance is obviously too great for the voxel
to belong to the blob, then the blob is disqualified and the next one is considered in
turn. In order to determine an appropriate threshold, the analysis previously done for
background segmentation (Chapter 2) is still valid. The Mahalanobis distance follows
a Chi-Square distribution, and a threshold T3(α) can be defined for the 3 degrees of
freedom of the position. A high level of confidence α' 0.999 is appropriate to detect
virtually all possible candidate voxels for a given blob. This scheme has the additional
advantage of discarding outlier voxels that are too far from all blobs.

Likewise, another simple optimisation is to stop testing other blobs when the total
Mahalanobis distance including colour for a given blob is small. Because of non-
overlapping constraints, it is very unlikely that a voxel could be simultaneously close
to the centre of two blobs. A threshold T6(α

′) with a relatively tight confidence level is
used for the 6 dimensions in colour and position. In practice, taking α′'0.8 means that
we retain the 80% of voxels that are closest to the blob among all possible candidates.

The full process of the Expectation step is detailed in Algorithm 4.3. After selecting
the most appropriate blob, each voxel is passed to the Maximisation process which is
running in parallel. This allows voxels to be “pipelined” without any need to store the

94

CHAPTER 4. TRACKING BODY PARTS WITH 3-D BLOBS

whole set of voxels. Because the full set of voxels does not need to be stored, memory
usage is minimal. The only drawback of this scheme is that multiple iterations of
EM are not possible because they would require subsequent accesses to the voxels.
However, as previously stated, a single iteration of EM is sufficient.

Algorithm 4.3: Details of the Expectation Step
forall blobs Bj do pre-compute log |Σj|;
forall voxels Vi do

ChosenBlob← ∅;
CurrentMin← 0;
forall blobs Bj do

if DM(XV i, Bj) < T3(α ' 0.999) then
if φ(Vi, Bj) < CurrentMin or ChosenBlob=∅ then

ChosenBlob← Bj;
CurrentMin← φ(Vi, Bj);
if CurrentMin < T6(α

′ ' 0.8) then
break loop;

end
end

end
end
if ChosenBlob 6= ∅ then

Add the voxel Vi to the support map of ChosenBlob ;
end

end

It can be noted that no constraint is placed on the blobs during EM itself. All
corrections concerning the expected size of the blobs, their colour, or their movement
take place in a later step using a kinematic model (Section 4.3). Placing constraints
such as a maximal volume of voxels per blob, would only deteriorate the convergence
of EM while being redundant with the later corrections.

4.2.4 Maximisation Step

Following the Expectation step described in Section 4.2.3, the parameters of the blobs
need to be re-evaluated from the assigned set of voxels. The difficulty is that voxels
have different, non-negligible sizes. The computation of the mean and covariance has
to take the shape and volume of voxels into account. Let {V1 . . .VN} be the set of
voxels (support map) from which the new parameters (µ,Σ) of the blob B are to be
evaluated. Additionally, let sV i be the size (side of the cube) of the voxel Vi. The new

95

CHAPTER 4. TRACKING BODY PARTS WITH 3-D BLOBS

mean vector µ of the blob B is the weighted average of the voxel vectors:

µ =

(
µX

µC

)
= E[{V1 . . .VN}] =

1∑N
i=1 sV i

3
.

N∑
i=1

sV i
3.

(
XV i

Cm
V i

)
(4.10)

In this formulation, colour and position are handled simultaneously. Note that at this
point, voxels contain only a single colour Cm

V , which was selected during the Expecta-
tion step (Equation 4.5). The computation of the mean is also appropriate for iterative
evaluation where the weighted sum is updated as new pixels are included, and finally
normalised by the total volume when all voxels have been processed.

In contrast, the computation of the covariance matrix is more delicate. For clarity,
let us decompose the problem into the computation of the sub-matrices ΣX , ΣC and
ΣXC , standing respectively for position, colour and mixed position-colour covariance
matrices. Starting with the computation of ΣC , an important assumption is that the
colour inside each voxel is uniform. This is obviously a simplification of the reality
since the internal colour variance of each voxel exists and could have been computed
during the 3-D reconstruction from the image samples. Nevertheless, a uniform colour
vector CV i for each voxel Vi is sufficient for our purpose because colour tends to be
uniform on large space regions. The standard formula of the variance can then be
applied, weighting the contribution of each voxel with its volume, as follows:

ΣC =
1∑N

i=1 sV i
3
.

N∑
i=1

sV i
3.(CV i − µC) · (CV i − µC)T

=
1∑N

i=1 sV i
3
.(

N∑
i=1

sV i
3.CV i · CVT

i)− µC · µC
T

(4.11)

The second formulation is adapted to iterative computation because the mean vector
µC can be used at the end of the integration of all voxels, when it is finally known.

The covariance matrix on positions, ΣX , is slightly more delicate to evaluate. In-
deed, a given voxel Vi cannot be reduced to the single position of its centre XV i. Since
voxels have non-negligible volumes, the sizes of the voxels themselves should con-
tribute to the total variance of the blob. The step-by-step computation of the covariance
matrix ΣX is detailed in Appendix C, reaching the following formula:

ΣX =
1∑N

i=1 sV i
3
.

 N∑
i=1

1
12

.sV i
5 · I3︸ ︷︷ ︸

Internal cov.

+ sV i
3.XV i ·XV i

T︸ ︷︷ ︸
External cov.

− µX · µX
T (4.12)

96

CHAPTER 4. TRACKING BODY PARTS WITH 3-D BLOBS

where I3 is the identity matrix in 3 dimensions. This formulation is essentially the
same as for the colour covariance of Equation 4.11, except for the addition of an in-
ternal covariance term reflecting the fact that a voxel cannot simply be assimilated to a
weighted point in space.

The last covariance matrix to compute, ΣXC , is the mixed covariance between po-
sition and colour. It reflects the correlations between the variations of colour and the
axis of the blob. These correlations (or dependencies) are normally small because the
blobs are designed to track parts of the body with relatively uniform colour. Actually,
the minimisation of the correlations between colour and position is the main criterion
of efficiency for a blob tracker. The computation of ΣXC has the purpose of evaluating
the strength of these correlations, and consequently adapt the distribution of the blobs
in order to minimise them (this is why ΣXC was neglected during the Expectation step).
The actual computation of ΣXC is very similar to the one of ΣC (Equation 4.11). Since
a uniform colour is assumed for the voxels, the internal variance of voxels plays no
role in this equation.

ΣXC =
1∑N

i=1 sV i
3
.(

N∑
i=1

sV i
3.XV i · CV i

T)− µX · µC
T (4.13)

The covariance matrices ΣX and ΣXC are computed in the global coordinate sys-
tem of the voxels, and not in the local coordinate system of each blob. Efficiency is
the main justification of this approach: it is indeed much faster to transform the few
blobs composing the appearance model after the completion of the maximisation than
to transform all of the voxels beforehand. Interpretation of the parameters of the blobs,
however, necessitates this transformation into the local coordinate systems. In the local
coordinate system of each body part, the blobs have in most cases constant shape and
colour properties, whereas in the global coordinate system, these attributes depend on
the positions and orientations of the blobs. The global to local transformation neces-
sitates the position and orientation of the body parts, which will be made available by
an underlying kinematic model (Section 5.1). The actual transformation of the blobs’
parameters and the use of these parameters to maintain a coherent appearance model
over time are detailed in Section 4.3.

97

CHAPTER 4. TRACKING BODY PARTS WITH 3-D BLOBS

4.3 Constraining EM with Learnt Models of Blobs

Expectation-Maximisation is a powerful optimisation method which finds the max-
imum likelihood estimate of the blobs model given the data. However, EM is not
sufficiently constrained to avoid the gradual degeneration of the blobs when presented
to imperfect data. When left unconstrained, blobs tend to drift from the features they
are supposed to track, and end up loosing track completely. This problem is particu-
larly visible when using the reconstructed voxels as a basis for tracking, because body
parts are prone to change shape depending on the viewpoints of the cameras.

The obvious solution is to constrain some parameters of the blobs between each
iteration of EM, thus avoiding their degeneration. The constraints are learnt directly
from the data during an “acquisition” stage. Likewise, the initial repartition of the blobs
can prove inefficient or simply sub-optimal: a scheme is presented to dynamically re-
organise the blobs during the acquisition stage. The appearance model is then fully
acquired from the data, and subsequently used to constrain EM.

4.3.1 Run-Time Correction of Blobs Parameters

All the parameters of a blob B are encoded into its mean µ and covariance matrix Σ.
While the mean vector µ represents the position and colour of the blob, the covariance
matrix Σ encodes both its rotation and its variations in shape and colour. All these
parameters need to be constrained in different ways because their physical nature is
different. For example, the shape of a blob is expected to remain constant over time,
while its orientation cannot be constrained a priori. In order to formulate the con-
straints, we need at this point to assume that an underlying skeletal model is available,
driven by the blobs which are “attached” onto its bones (Section 5.2). The corrected
positions and orientations of the blobs, satisfying the kinematic constraints, can then
be obtained at each frame from this skeletal model.

Assuming that the blob B is attached at an offset α̂ along a bone of the skeletal
model, let us denote as P the global position of this bone obtained after application
of the kinematic constraints, and R the associated rotation matrix (see Figure 4.2).
The position of the point of attachment of the blob is described in the local coordinate
system of the bone, allowing the offset α̂ to remain constant across time. The corrected
mean position vector µ′X is then computed from the model as a simple conversion from

98

CHAPTER 4. TRACKING BODY PARTS WITH 3-D BLOBS

Figure 4.2: Notations for the attributes of a blob B, attached onto a bone of the
skeletal model.

local to global coordinates:

µ′X = P + R ·

α̂

0

0

 (4.14)

The shape of the blob, encoded in its covariance matrix ΣX , is summarised by
its expected standard deviations {σ̂x, σ̂y, σ̂z} along the 3 axes of the local coordinate
system of the bone segment (Figure 4.2). If we assume that the axes of the bone
segment are approximately aligned with the main directions of the blob, the conversion
from global to local coordinates is equivalent to an eigenvalue decomposition. The
corrected covariance matrix Σ′

X of the blob B is again re-generated from the model:

Σ′
X = R ·

σ̂x
2 0 0

0 σ̂y
2 0

0 0 σ̂z
2

 ·RT (4.15)

The colour usually remains constant during the tracking period. Therefore, as soon
as a model is acquired for the mean colour vector µC and the colour covariance matrix
ΣC , these can simply be re-generated at each frame from the model. If we denote as
µ̂C the acquired model for the mean colour vector, and Σ̂C the corresponding model
for the colour covariance matrix, the correction at each frame is:

µ′C = µ̂C Σ′
C = Σ̂C (4.16)

Finally, the mixed position-colour covariance matrix ΣXC is re-generated as equal
to zero because the blobs are re-distributed (Section 4.3.3) during the acquisition stage
so as to minimise dependencies between position and colour, and thus keep ΣXC as

99

CHAPTER 4. TRACKING BODY PARTS WITH 3-D BLOBS

Figure 4.3: Data-Flow diagram of the parameters of a blob between each frame.
The dashed arrow denotes the fact that the acquisition process is only active during
a preliminary stage of tracking.

close to zero as possible:
Σ′

XC = 0 (4.17)

Once the parameters of the model have been learnt, the run-time correction of the
blobs is integrated into the tracking cycle according to Figure 4.3. The main steps of
this data-flow are:

1. Expectation-Maximisation: The re-generated blobs are used as an initial estimation
for EM, where they are adjusted to fit the voxel data.

2. Kinematic Pose Estimation: The fitted blobs are used to drive a skeletal model
towards a kinematically correct tracked position (see Chapter 5).

3. Blobs Re-Generation: The blobs are re-generated onto the bones of the skeletal
model and converted into global coordinates. The re-generated blobs are the new
initial estimations for EM in the next frame.

4. Acquisition: During an initial acquisition stage, the models for the various attributes
of the blobs are learnt automatically. This acquisition stage is the topic of Sec-
tion 4.3.2.

4.3.2 Automatic Acquisition of Blobs Models

In the previous section, the models for the attributes of the blobs were simply assumed
to be readily available. While using manual settings is a possibility for a few parame-
ters like the expected shape standard deviations {σ̂x, σ̂y, σ̂z}, it becomes impossible for
others such as the expected colour covariance matrix Σ̂C . An automatic scheme for

100

CHAPTER 4. TRACKING BODY PARTS WITH 3-D BLOBS

learning all the models of parameters during an acquisition stage is presented in this
section.

Initial Positioning and Colour Estimation

During the acquisition stage, the subject is asked to adopt a pose generating as few
ambiguities and occlusions as possible, and to remain in this pose, relatively immobile,
during a few seconds. In practice, 2 to 3 seconds representing 50 to 100 frames are
sufficient. The first step of the acquisition consists in positioning the blobs onto the
parts of the body, and learning a first approximation of their colour. This process is
done by disabling the use of colour during Expectation (a prior colour model is rarely
available), and using initial default values for the shape of the blobs.

When no initial model of colour is available for a blob B, the acquisition of the
colour model is based on all visible colours of the voxels belonging to the support
map of B. A simple average of the colours seen from the Nc available cameras gives a
sufficient approximation of the real colour of the body part, as long as the pose adopted
by the subject during initialisation does not generate too many self-occlusions. The
original formulae of the Maximisation step (Equations 4.10 and 4.11) are therefore
modified to include all available colours:

µC =
1

Nc.
∑N

i=1 sV i
3

N∑
i=1

sV i
3.

Nc∑
j=1

Cj
V i

ΣC =
1

Nc.
∑N

i=1 sV i
3

N∑
i=1

sV i
3.

Nc∑
j=1

Cj
V i · C

j
V i

T − µC · µC
T

(4.18)

The colour model is build incrementally as a running average of the values returned by
this Maximisation step. For a given timestep t > 0, the colour models are acquired as
follows:

µ̂Ct =
1

t
.µCt + (1− 1

t
).µ̂Ct−1

Σ̂Ct =
1

t
.ΣCt + (1− 1

t
).Σ̂Ct−1

(4.19)

During the preliminary phase of the acquisition process, only the colour parameters
for which no prior value is available are learnt with this special treatment. The other
models for the blobs attributes are learnt incrementally using at each frame the outputs
of the standard Maximisation formulae.

101

CHAPTER 4. TRACKING BODY PARTS WITH 3-D BLOBS

Occasionally, some blobs can be initialised with a prior knowledge about their
colour. For example, if we create some blobs supposed to track the hands, giving them
an initial model of skin colour helps them focusing on the hands, instead of trying
to learn the colour of another body part. When such a prior model is present, it is
included in the acquired models from Equation 4.19 by starting the running average at
a timestep t′ > 1 depending on the strength of the prior.

Acquisition of the Full Models with EM

After only a few frames, when the blobs are positioned onto the body parts and an ini-
tial colour model has been acquired, the complete acquisition process can start, based
on the actual EM algorithm from Section 4.2. At each frame t, a new mean µt and
covariance matrix Σt of a blob B are obtained from the voxels through the standard
Maximisation formulae (Section 4.2.4). These new values are then incrementally inte-
grated into the blob-models with the running average formulation from Equation 4.19.

The shape models {σ̂x, σ̂y, σ̂z} are updated by converting the spatial covariance ma-
trix ΣXt into the local coordinate system of the body part: RT · ΣXt · R. The diagonal
elements of the transformed covariance matrix are the variances (squared standard de-
viations) along the local axes of the bone:σ̂x

σ̂y

σ̂z

t

=
1

t
.
√

diag(RT
t · ΣXt ·Rt) + (1− 1

t
).

σ̂x

σ̂y

σ̂z

t−1

(4.20)

The last remaining model parameter to acquire is the offset of the point where
the blob is attached onto the bone, α̂. The current offset is computed by projecting
the mean of the blob µX onto the first axis R1 of the rotation matrix of the bone, as
illustrated in Figure 4.4. Like other parameters, α̂ is then incrementally refined with a
running average:

α̂t =
1

t
.(µXt − Pt) ·R1t + (1− 1

t
).α̂t−1 (4.21)

Even if the acquisition process is fully automatic, a series of constraints can be
imposed on the blobs attributes. In order to avoid obvious errors, the shape models
{σ̂x, σ̂y, σ̂z} are bounded by minimal and maximal values. For example, a common
maximal value for σ̂x is half the length of the bone onto which the blob is attached.
Likewise, the offset of the point where the blob is attached, α̂, is clamped between
zero and the length of the bone segment. More advanced constraints are used when

102

CHAPTER 4. TRACKING BODY PARTS WITH 3-D BLOBS

Figure 4.4: The offset α̂ of the attach point of a blob along a bone is acquired by
scalar projection of the mean position µX of the blob onto the bone. The direction
of the bone is the first column of the rotation matrix R.

more than one blob is attached on the same bone segment. For example, we limit
overlapping by keeping the distance between the points of attachment greater that the
sum of their standard deviations.

4.3.3 Dynamic Splits

The acquisition process described so far is able to optimise all the attributes of the
blobs, making them fit the body part they are supposed to track. However, the choice
of the initial number of blobs is still an important open question. A blob is a single
Gaussian distribution, and thus a strongly uni-modal tracker, unadapted to the tracking
of multi-modal data. When confronted to the problem of tracking the human body,
exhibiting non-homogeneous colour and spatial data, the obvious solution is to use as
many blobs as there are self-coherent body parts to track. This is actually the generic
problem of the choice of the number of Gaussian components for EM, mentioned
earlier in Section 4.2.

A constraint to take into consideration, when choosing the number of blobs, is that
each of them has to be attached along a bone of the underlying skeletal model. This
means that the blobs cannot be placed freely in space, but are rather stacked one after
the other along the bones of the kinematic model. This constraint is a consequence
of both the axial symmetry of most limbs, and the fact that colour variations on small
scales are inconclusive. The main consequence of this constraint is that the meaningful
modes (statistical maxima) of the data should be separable along a bone segment to be
modelled by distinct blobs.

The strategy we adopt is to start with the minimal number of blobs, and to itera-
tively split those which are trying to acquire multi-modal data. We are mainly inter-
ested in the modes of the colour information. Indeed, the spatial data for a single body

103

CHAPTER 4. TRACKING BODY PARTS WITH 3-D BLOBS

part is normally relatively compact and self-coherent, regardless of the noise and re-
construction errors. So, if we were not using colour information, the body part around
each bone could be represented by a single Gaussian blob. With colour, however, we
have to take into account the radical changes that can happen along the same bone.
For example, the forearms often exhibit an important change in colour because of the
sleeves.

The main issue is therefore to detect a significant change of colour along the main
axis of a blob. The mixed covariance matrix between position and colour ΣXC was
precisely built during Maximisation (Section 4.2.4, Equation 4.13) for this purpose.
Although not detailed in the previous section, a running average of the matrices ΣXC

is maintained during the acquisition stage. This matrix, denoted as Σ̂XC , encodes the
variations of colour with respect to the spatial variations along the axes of the global
coordinate system. The matrix Λ, which encodes the colour variations along the axes of
the local coordinate system of the bone, is obtained by a change of coordinate system,
followed by a normalisation of each axis by its standard deviation:

Λ = Σ̂XC ·R ·

1bσx

0 0

0 1bσy
0

0 0 1bσz

 (4.22)

The columns {Λ1, Λ2, Λ3} of the matrix Λ are the colour standard deviations along
each axis of the local coordinate system of the blob. For example, Λ1 represents the
variation of colour which is correlated with a shift of one standard deviation along the
axis R1. In order to measure the relative strength of the colour variations along the first
axis, we define λ as the ratio between the norm of the first column and the norm of the
second greatest one:

λ =
|Λ1|

max(|Λ2|, |Λ3|)
(4.23)

For example, λ=2 would mean that the colour variations along the bone segment
are twice as strong as in any other direction. Unfortunately, this does not constitute
a real proof that the colour distribution along the axis of the bone is multi-modal.
Nevertheless, even if distinct modes are not assured, we know that the mean colour
significantly differs at the two poles of the blob. This alone justifies the use of two
blobs instead of one, in the hope of making each tracker more specialised and efficient.

The notations for the splitting procedure of a blob B with a large ratio (λ≥ 2) are
illustrated in Figure 4.5. When splitting the blob, the only important requirement is to

104

CHAPTER 4. TRACKING BODY PARTS WITH 3-D BLOBS

Figure 4.5: Splitting of a blob having a high colour variance along the bone axis.

make the new blobs as distinct from each other as possible. All the attributes of the
new blobs are subsequently re-optimised during the rest of the acquisition stage. The
new colour means, µ̂C1 and µ̂C2 are first defined by shifting the original mean colour
by one standard deviation along both directions of the bone axis:

µ̂C1 = µ̂C − Λ1 µ̂C2 = µ̂C + Λ1 (4.24)

Similarly, the new points of attach α̂1 and α̂2 are shifted apart by a standard deviation
σ̂x along the axis of the bone, while the new standard deviations σ̂x1 and σ̂x2 are simply
half the original one to reflect the split:

α̂1 = α̂− σ̂x

2
α̂1 = α̂ +

σ̂x

2
(4.25)

σ̂x1 =
σ̂x

2
σ̂x2 =

σ̂x

2
(4.26)

The other parameters are left untouched from the original blob. An illustration of
the acquisition and splitting process is presented in Figure 4.6, over 20 frames. As
described in this section, the blobs acquire their colour model in a first step, and the
blobs exhibiting a large colour variance along their main axis are split in a second step.
The appearance model obtained at the end of these two steps is much more accurate
that any prior generic model.

4.4 Discussion and Conclusion

This chapter introduced a framework for using blobs as feature trackers. The blob-
models were first formally described, and a fast fitting procedure based on EM with

105

CHAPTER 4. TRACKING BODY PARTS WITH 3-D BLOBS

Figure 4.6: Automatic reconfiguration of the blobs during 20 frames of the acqui-
sition stage. (Left) the initial repartition of blobs before the start of the acquisition.
(Middle) The blobs have acquired their shape and colour from the voxels, but are
none has yet split. (Right) The blobs with the greatest colour variances have auto-
matically split to reflect the morphology and clothing of the subject.

binary support maps was presented. Automatic acquisition and dynamic optimisation
of the blobs-based appearance model was the subject of the last section. Novel con-
tributions reside in the formulation of EM, based on the hierarchical coloured voxel
reconstruction, and in the automatic reconfiguration of the blob-models using a colour
consistency criterion.

A possible extension of the current framework could be to allow more general
distributions than simple Gaussians. While the ellipsoidal shape of the Gaussian blobs
is well adapted to most body parts, and more complex features can always be modelled
by multiple blobs, other “customised” distributions would be interesting to evaluate. A
multimodal colour model, for example, could allow a single blob to represent a wider
range of body parts.

106

Chapter 5
Hierarchical Tracking with Inverse
Kinematics

This chapter presents the direct recovery of the full kinematic pose
in a bottom-up way: the blobs from Chapter 4 are used to guide
a kinematic model towards the tracked pose in a two-step Inverse-
Kinematics process. In the first step, the positions for the joints of
the kinematic model are computed from the blobs. The second step
is then a standard case of inverse kinematics. The kinematic model
itself constrains the possible movements, and allows the interpreta-
tion of the tracking data.

5.1 Kinematic Model

The blobs introduced in Section 4.1 are models describing the properties (shape and
colour) of the body parts. This type of model is commonly called an appearance

model, and is only a partial description of the properties of an object. The appearance
of the object is by no means fully and accurately described just by the blobs, but since
this model is sufficient for our particular application, we use the term appearance

model.
This section focuses on another type of model describing the mechanical relation-

ships between the moving parts of the object of interest. The moving parts of the
human body are, of course, the limbs and bones which are articulated by joints. This
type of model is called a kinematic model. Kinematics is defined as “the branch of
mechanics concerned with motion without reference to force or mass”, which simply

107

CHAPTER 5. HIERARCHICAL TRACKING WITH INVERSE KINEMATICS

means that a kinematic model describes the spatial relationships between body parts
without any actual physical model of motion. A model describing the physical prop-
erties of each part is often called a dynamic model. While a kinematic model can
only describe the relative position of the body parts, a dynamic model can correct and
predict body poses through physical simulation.

After identifying the requirements of a kinematic model in the context of real-time
human body tracking, the next section presents a range of kinematic models which
have been used in the literature. A description of the chosen model parametrisation
follows. The last two sections focus on the links between the appearance model (the
blobs) and the kinematic model, and describe an efficient way to estimate the model
parameters through inverse kinematics.

5.1.1 Requirements of a Kinematic Model

A kinematic model should obviously describe the relationship between each related
moving body part. Less obvious is the level of detail that is most appropriate for real-
time tracking. Regarding the issue of accuracy, the first parameter to consider is the
number of body parts to represent in the kinematic “skeleton”. While the major limbs
(legs, arms) are necessary, other articulated parts like the fingers are not necessarily
compatible with the achievable level of detail. The voxel-based 3-D reconstruction has
indeed a strong limitation in accuracy (typically of the order of one centimetre), making
the tracking of small body parts impossible. Another argument against the inclusion
of hands and fingers is the inherent complexity of hand tracking and modelling, which
in itself, is the subject of much research [SGH05].

A second issue concerns the modelling of the joints themselves: while all relation-
ships between adjacent body parts are rotations, the constraints associated with these
rotations can be relatively complex. For example, the physiologically possible rotation
of the elbow depends on the rotation of the shoulder, which itself depends on the global
pose of the body. In [HUF04] and [HUF05], Herda et al. describe a method for captur-
ing and using implicit joint constraints for tracking. Valid joints configurations are first
captured using a hardware tracker. A hierarchy is then established between the joints,
allowing the valid sub-space of a joint to be recovered from its parents. The constraints
themselves are modelled by implicit surfaces, delimiting the cloud of captured valid
positions. [HUF04] and [HUF05] also show how to interpolate between key positions
to compensate for the missing data, and incorporate the joint constraints in a standard
least squares error minimisation framework for full human-body tracking. Another

108

CHAPTER 5. HIERARCHICAL TRACKING WITH INVERSE KINEMATICS

way to model constraints, based on Support Vector Machines (SVM) classifiers, is
proposed by Demirdjian et al. in [DKD03]. An SVM classifier is trained to differen-
tiate valid and invalid poses, and subsequently to constrain the optimisation process.
Both these types of constraints model appear promising and can make the tracking
process more robust. In this section, we shall devise a simple scheme handling basic
constraints. A more advanced scheme, capable of constraining the full body pose to
learnt configurations, will be described in Chapter 6.

The number of parameters is a determinant criterion in the choice of a good model.
The parameters of the kinematic model are divided into two main groups of variables.
The morphological parameters such as the sizes of the various body parts belong to
the first group that are evaluated prior to the tracking or during an initialisation step,
but which remain constant during the tracking process. By contrast, the rotation angles
of the joints and the global position of the skeleton belong to the second category of
parameters which are evaluated “online” during the tracking process, and for which
no prior value is available. Minimising the number of parameters in both groups is
important to keep the model compact, efficient and robust. The compactness and per-
formance follow naturally from a reduced number of parameters. The increased ro-
bustness comes from the fact that, as the number of parameters is reduced, the space
spanned by those parameters is smaller, therefore imposing more constraints on possi-
ble movements. Naturally, the space of online parameters has to remain big enough to
include all possible body poses.

The remaining details to consider when choosing a model are the ease and cost of
updates. The main operations expected from a kinematic model are forward kinematics

and inverse kinematics. Forward kinematics is the standard way of updating the model
from the online parameters (recovering the global positions of the body parts from
the joint angles). Inverse kinematics works the other way around by recovering the
online parameters of the model from the position (or desired position) of the body
parts. While forward kinematics is usually considered an easy problem, and is handled
efficiently by all types of kinematic models, inverse kinematics is non-trivial and is
often formulated as an optimisation problem. The following section highlights the
advantages and issues of some kinematic models described in the literature.

5.1.2 Kinematic Human Body Models in the Literature

The most common type of kinematic model is a hierarchy of bones (analogy with the
term “skeleton”) and joints. The kinematic model is then a tree with a root usually

109

CHAPTER 5. HIERARCHICAL TRACKING WITH INVERSE KINEMATICS

placed at the pelvis, as illustrated in Figure 5.1. The global positioning of the model is
defined by 6 parameters (3 for rotation and 3 for translation) which refer to the place-
ment of the root of the kinematic tree. The position of each node of the tree is then
defined relatively to its parent, so that computing the global position and orientation of
a leaf of the tree (one hand, for example) requires applying recursively all transforma-
tions along the kinematic chain linking the root to this leaf.

In the literature, complexity varies between 20 and 32 degrees of freedom for the
full body. The most standard type of model includes only the main limbs (torso, legs,
arms and head), already amounting to between 16 and 20 dimensions. When adding
the 6 dimensions of the root of the tree, it is easy to realise that even these basic models
represent a challenge for tracking. Kinematic trees including the main limbs are widely
used in the human body tracking literature [CBK03a, MH03, GD96, BD02, YSK+98,
CTMS03]. The coarseness of the models is often imposed by the quality of input
images: wrists and ankles are indeed impossible to discern from many videos. Some
authors, however, have tried more detailed models including ankle rotations [BL01b]
or wrists [DDR01], but no evaluation is provided regarding their tracking accuracy.

Parametrisation of the Joints

Regarding the formulation of the rotations, Euler angles are still widely used despite a
number of pitfalls. The main problem with Euler angles is that they generate singular-
ities for specific rotation values: individual rotations around the basis axes are applied
consecutively, so that a rotation in one axis could override a rotation in another, effec-
tively loosing a degree of freedom. This phenomenon is called “Gimbal Lock”. It can
be avoided by imposing constraints on the joint angles, hence bounding the rotation
angles to a “safe” zone, but the parametrisation is then tedious. For further details
on Euler angles, and the way to alleviate their weaknesses for forward and inverse
kinematics, the reader is referred to [Wel93].

Unit quaternions [Hor87] are an elegant way to tackle the Gimbal Lock problem
by encoding any arbitrary 3-D rotation as a hyper-sphere in 4-D space. The 3-D ro-
tation encoded by a quaternion is equivalent to a single rotation around an axis which
changes with the quaternion. The absence of fixed rotation axes poses the problem
of data interpretation and constraints enforcement. Herda et al. [HUF04, HUF05] use
quaternions to represent rotations with 3 degrees of freedom, and learn an implicit
valid sub-space from motion capture data. The quaternions are then constrained into
this subspace during the optimisation process.

110

CHAPTER 5. HIERARCHICAL TRACKING WITH INVERSE KINEMATICS

Twists and products of exponential Maps [MSZ94] are another alternative to Euler
angles. Like quaternions, they can encode 3-D rotations without singularities. While
their formulations are slightly more complex than the one of the quaternions, their
derivatives are easier to obtain. This is particularly useful for problems like inverse
kinematics, which rely on the Jacobian matrix for gradient-based optimisation. Twists
and exponential maps were first used in the context of human-body tracking by Bre-
gler et al. [BM98, BMP04], where they permit pose estimation as a linear optimisation
problem. Mikic et al. [MTHC03] also encode the rotations of their kinematic model
with twists and exponential maps, and perform inverse kinematics with the help of a
Kalman Filter. Finally, Demirdjian et al. [DKD03] learn morphological constraints
with Support Vector Machines, and incorporate those in an optimisation framework.

Other Types of Kinematic Models

In an attempt to simplify the inverse kinematics problem, Theobalt et al. [TMSS02]
propose a 2-layer kinematic model. A very coarse and unconstrained layer is first
fitted onto the tracked body parts. The second layer, containing the correct kinematic
constraints, is then adjusted onto the data under constraints from the first layer. More
specifically, in the first layer, an arm is only represented by the vector linking the
shoulder to the hand. The possible positions for the elbow are therefore constrained
to a circle in the second layer, and the best solution is found iteratively. The main
problem with this approach is that it assumes that specific body parts (hands and feet)
can be tracked reliably, which is rarely the case.

5.1.3 Model Description and Parametrisation

We used a classic kinematic tree rooted at the pelvis. The global positioning of the
model is described by three parameters representing the position of the pelvis and
three rotation parameters describing its global orientation. Euler angles were chosen
mainly because of their simplicity, and because other formulations like quaternions
or exponential maps would have required a large amount of motion capture data to
learn useful constraints. A more advanced kinematic model is the topic of future work,
but we shall show that even these simple kinematics are sufficient to demonstrate the
efficiency of our tracking framework.

In order to avoid singularities, joints with 3 degrees of freedom had to be avoided.

111

CHAPTER 5. HIERARCHICAL TRACKING WITH INVERSE KINEMATICS

Figure 5.1: Repartition of the joints in the kinematic tree. To avoid singularities,
most of the body parts have only two degrees of freedom. The complete parametri-
sation of each joint is given in Table 5.1.

The parametrisation of the arms and legs therefore redistributes one degree of free-
dom from the most complex joints (shoulders and hips) to the simpler ones (elbows
and knees). The only drawback of this redistribution is that it modifies the semantics
of the model, which no longer matches the human morphology. This is actually a
minor concern because data classification and interpretation do not rely on a specific
parametrisation. Even in cases where a specific mapping is needed, like for rendering,
a conversion can recover the morphological parametrisation. The repartition of joints,
{Jt1 . . . Jt21}, is illustrated in Figure 5.1.

For the sake of both performance and simplicity, all the joints are implemented with
only one degree of freedom (one rotation around a fixed axis). More complex joints
are then built by putting successively two or three of these 1-dof joints in a kinematic
chain: this is the way Euler angles work. The length of the bone of the first joints
would then be null, giving the illusion of a single joint with more degrees of freedom.
Such a choice simplifies the implementation of update algorithms.

112

CHAPTER 5. HIERARCHICAL TRACKING WITH INVERSE KINEMATICS

Figure 5.2: Parametrisation of a joint Jti with relation to its parent Jti−1. The
transformation is composed of a rotation of angle θi around the axis ωi, and is
followed by a translation of length li.

Notations

In the following, the term “joint” will refer to both the joint itself and the bone attached
to it. Let us now consider a kinematic chain (for example, the chain linking the pelvis
and the right hand) instead of the whole kinematic tree. In such a chain of NJ joints
{Jtπ(1) . . . Jtπ(NJ)}, the function π(.) is a partial mapping from {1 . . . NJ} to {1 . . . 21}
and the parent of a given joint Jtπ(j), j ∈ {1 . . . NJ} is Jtπ(j−1). In order to keep the
notation simple and readable, we shall denote in the rest of this thesis the current joint
in the kinematic chain as Jti and its parent as Jti−1.

Each joint is defined in the coordinate system of its parent, which means that a
joint contains only the transformation needed to compute its position with respect to
its parent’s. Since all joints have only one degree of freedom (one rotation), the trans-
formation between Jti−1 and Jti consists of a rotation of angle θi around the axis ωi.
Note that the rotation axis ωi is defined in the coordinate system of Jti−1. The rota-
tion is followed by a translation of the length of the bone li, which is performed in the
local coordinate system of Jti, so that we can arbitrarily decide that it always happens
along the first axis of the local coordinate system. We finally define the global 3-D
position of the joint Jti as Pi, obtained after rotation and translation. These notations
are summarised in Figure 5.2.

Using the joints as defined in Figure 5.1, and the notations from Figure 5.2, we now
define the actual parametrisation of each individual joint in Table 5.1. The constraints
are enforced under the form of bounding values on the joint angles, θi ∈ [θ−i , θ+

i].
These constraints are very simplistic, missing all dependencies between joints, and
are therefore clearly insufficient to limit the space of possible model configurations to
only the valid ones. Figure 5.3 illustrates the rotation axes and constraints. As stated

113

CHAPTER 5. HIERARCHICAL TRACKING WITH INVERSE KINEMATICS

Joint Id Description ω θ− θ+ l/scale Parent
Jt1 Torso Left/Right Z −π/8 π/8 0 Root
Jt2 Torso Front/Back Y −π/4 π/2 0 Jt1
Jt3 Torso Twist X −π/4 π/4 0.281 Jt2
Jt4 Head Left/Right Z −π/8 π/8 0 Jt3
Jt5 Head Front/Back Y −π/4 π/4 0.179 Jt4
Jt6 Shoulder L. Up/Down X+Z −2π/5 π/2 0 Jt3
Jt7 Shoulder L. Front/Back Y −π/5 7π/10 0.153 Jt6
Jt8 Shoulder R. Up/Down −X−Z −2π/5 π/2 0 Jt3
Jt9 Shoulder R. Front/Back Y −π/5 7π/10 0.153 Jt8
Jt10 Elbow L. 1 2X+Z −3π/4 3π/4 0 Jt7
Jt11 Elbow L. 2 Y 0 4π/5 0.164 Jt10
Jt12 Elbow R. 1 −2X−Z −3π/4 3π/4 0 Jt9
Jt13 Elbow R. 2 Y 0 4π/5 0.164 Jt12
Jt14 Hip L. Left/Right Z π/10 3π/4 0 Root
Jt15 Hip L. Front/Back Y −π/3 2π/5 0.25 Jt14
Jt16 Hip R. Left/Right −Z π/10 3π/4 0 Root
Jt17 Hip R. Front/Back Y −π/3 2π/5 0.25 Jt16
Jt18 Knee L. 1 −X+Z 0 π/2 0 Jt15
Jt19 Knee L. 2 Y −π/2 0 0.235 Jt18
Jt20 Knee R. 1 X−Z 0 π/2 0 Jt17
Jt21 Knee R. 2 Y −π/2 0 0.235 Jt20

Table 5.1: Parametrisation of each joint of the kinematic model, including its
rotation axis ω, its bounding angle values [θ−, θ+] and its relative length.

previously, more accurate constraints would require motion capture data, and are the
subject of future work. The lengths of the bones are reported as ratios of the total size of
the subject, so that different body sizes are produced with a simple scaling factor. It can
also be noticed that some axes of rotation for the right-hand limbs are flipped compared
to the corresponding ones in the left-hand limbs: this allows a symmetry of the joint
angles across each side of the body, which in turn facilitates data interpretation.

Forward Kinematics

Let us denote as (P0, R0) the global position and orientation of the root of the kinematic
tree, ri the local rotation of angle θi around the axis ωi, and ti the translation of length
li along the first axis or the local coordinate system. The global position Pi of a joint
Jti in a kinematic chain {Jt1 . . . JtNJ

} is computed recursively:

Pi = Pi−1 + Ri · ti where Ri = Ri−1 · ri (5.1)

114

CHAPTER 5. HIERARCHICAL TRACKING WITH INVERSE KINEMATICS

Figure 5.3: Screenshots of the model in kinematically valid poses. The blue lines
are the rotation axes of the joints. Notice the inversions between the two sides of
the body, to keep a coherent parametrisation. The green surface patches represent
the allowed movement of a bone with respect to its parent in the kinematic tree.

leading to the standard formulation of forward kinematics:

Pi = P0 + R0 · r1 (t1 + r2 (t2 + (· · ·+ ri−1 (ti−1 + riti)))) (5.2)

The formulation of forward kinematics in the full kinematic tree is exactly the
same, although the intermediate positions are cached to avoid unnecessary re-computations.
Another optimisation, when realising that many of the ti are null, is to implement the
local rotations ri with quaternions which make the composition of rotations faster.

5.2 Linking the Blobs to the Model

The kinematic model described in the previous section is used in conjunction with the
blobs. As we saw in Chapter 4, the actual feature tracking is performed solely by the
blobs during Expectation-Maximisation. The role of the kinematic model with respect
to the blobs is twofold. First, it is used to constrain and correct the movements of
the blobs (as seen in Section 4.3), and second, the kinematic model is necessary to
interpret the data collected from tracking: it gives a semantic meaning to the blobs.

115

CHAPTER 5. HIERARCHICAL TRACKING WITH INVERSE KINEMATICS

Figure 5.4: Two blobs, B1 and B2, attached to a joint Jti. The blobs are attached
by their centres µX1 and µX2 along the main axis of the joint. the actual offset of
the point of attachment is noted by a coefficient (α̂1 and α̂2).

Furthermore, the parameters of the kinematic model are a much more compact repre-
sentation of the tracked subject than the blobs.

Each blob is attached to a bone (a joint with a non-zero length) of the kinematic
model. The “attachment” between a blob and a bone can be pictured as a virtual spring
that would drive the corresponding joint towards the mean position of the blob. When
the blobs have a clear orientation (typically, the greatest eigenvalue being at least twice
the next one), then the virtual spring also drives the bone in alignment with the main
direction of the blob.

The point of attachment of a blob onto the kinematic model is relative to the local
coordinate system of the joint to which it is attached. Considering the relative sym-
metry of the body parts around the bones of the model, we only allow the points of
attachment to lie along the bone itself. For example, a blob representing the hand will
be attached near the extremity of the bone of the forearm. This assumption simplifies
the estimation of the kinematic pose at a reasonably small cost in accuracy. As illus-
trated by Figure 5.4, each blob Bk is attached at its centre µXk to an offset α̂k along
the bone of a joint Jti.

The process of driving the kinematic model to match the position of the blobs is
decomposed into two steps. Firstly, some “goal positions” are computed for the joints,
taking into account the position and orientation of the blobs. Note that these goals are
not necessarily all reachable by the kinematic model because no kinematic constraints
were enforced during the fitting of the blobs. An iterative algorithm for computing the
goal positions is described in the rest of this section. The second step then consists in
finding the kinematically valid configuration of the model that satisfies best the goal
positions. This last problem is a typical case of inverse kinematics, and is dealt with in

116

CHAPTER 5. HIERARCHICAL TRACKING WITH INVERSE KINEMATICS

Section 5.3.

5.2.1 Evaluation of Goal Positions

We are now concerned with the evaluation of goal positions for the joints, using the
blobs obtained after Expectation-Maximisation. Even if these goal positions do not
need to be correct in the sense of kinematic constraints, they should nonetheless be
computed using as much prior knowledge as possible because the subsequent evalua-
tion of the model configuration relies solely on them. In addition to the positions and
directions of the blobs attached to the current joint, the computation of a goal position
should also be influenced by the blobs attached to neighbouring joints in the kinematic
tree. For instance, the position of the knee should be conditioned by both the blobs on
the upper leg and the blobs on the lower leg. Finally, the current position of each joint
is an important hint for the computation of the goals, especially when the orientation
of the blobs is not decisive.

All joints do not need to have a goal position defined because the inverse kine-
matics scheme used to recover the full model configuration is able to interpolate the
position of joints for which no goal is available. Nevertheless, a guess of the goal po-
sition of a joint is preferable to no information at all. Possible errors should indeed
be robustly tackled by the kinematic constraints, but a total lack of information leads
to a wild guess of the position of the joint, which is hardly desirable in the absence
of a dynamic model. With a more elaborate model of dynamics or behaviour, guess-
ing the position of joints with no information would still be possible. For example,
Grochow et al. [GMHP04] describe a style-based inverse kinematics method, where
the optimal body pose is found under learnt constraints of movement-specific styles.
The full pose of the body is then recovered from only a few goal positions, such as the
recovery of the full gait cycle from the positions of the feet only. Such a method would
be highly beneficial to our tracking algorithm, but in order to remain general enough,
a large amount of behaviours would have to be captured and learnt. It is then not
clear whether a method like [GMHP04] can learn all these diverse behaviours without
loosing in efficiency.

For most interactive applications, it is especially important to compute as accu-
rately as possible the goal positions of the end effectors (hands, feet...). The algorithm
used to compute the goal positions of the joints computes first the goal positions at
the leaves of the kinematic tree, and propagates the computation up to the root. Since
several concurrent constraints need to be satisfied for each joint, a general optimisation

117

CHAPTER 5. HIERARCHICAL TRACKING WITH INVERSE KINEMATICS

Figure 5.5: Computation of goal positions from the blobs. From left to right: (a)
After Expectation-Maximisation, the blobs attached to the bones of the kinematic
model have new parameters. (b) The goal position of the tip of each joint is first
computed, followed by the computation of the goal position of the base by firstly
(c) translating to minimise re-projection error, and secondly (d) re-aligning with
the blobs. The estimate from each joint is then (e) merged with the one from its
parent before iterating.

algorithm would be very complex and hence computationally too expensive. We use
instead a simple iterative scheme, which optimises in turn the position of the tip and
the base of each bone, eventually converging to a satisfying solution. This iterative
process is illustrated in Figure 5.5, and includes the following steps:

1. We compute the goal position for the tip of the current joint using the base of the
joint as a fixed rotation point (Figure 5.5b).

2. We translate the goal positions of the base and tip of each joint so as to minimise
the projection error of the mean of the blobs onto the bone (Figure 5.5c).

3. The goal position of the base of the joint is optimised using this time the goal
position of the tip of the joint as a fixed rotation point (Figure 5.5d).

4. The goal position coming from both the current joint and its parent are merged into
a single goal position (Figure 5.5e). The algorithm is then iterated from step 1 using
the newly computed goal positions as basis.

The algorithm typically needs only a few iterations to generate a satisfying solution.
The stopping condition is then simply that the algorithm has converged, meaning that
the sum of the squared distances between the goals from the last iteration and the

118

CHAPTER 5. HIERARCHICAL TRACKING WITH INVERSE KINEMATICS

Figure 5.6: Computation of the direction of a goal position from a fixed point G1

and some blobs {B1, B2, B3}.

current ones is below a pre-defined threshold (manually-set, in our implementation).
The algorithm is kept simple and efficient by optimising only one goal at a time. We
will now look more closely into the steps (b)–(e) of Figure 5.5 before exploiting these
goal positions to recover a correct kinematic pose in Section 5.3.

Aligning a Bone Segment with the Associated Blobs

A non-trivial part of the algorithm from Figure 5.5 occurs twice, at steps (b) and (d)
and involves aligning a moving goal with a fixed rotation point (a previously deter-
mined goal) and a set of blobs. As an illustration of the problem, let us consider
Figure 5.6, where we want to determine the direction of the vector

−−−→
G1G2 pointing to

the moving goal position G2 from the fixed point G1. The blobs {B1, B2, B3} of means
{µX1, µX2, µX3} are attached to the same bone segment at the offsets {α̂1, α̂2, α̂3}. Ad-
ditionally, the blob B2 has an elongated shape so that a direction vector

−−→
V d2 could be

computed.
Let us first deal with the position of the blobs alone and incorporate the possible

intrinsic directions in a second step. A simple sum of vectors
∑

i

−−−→
G1µXi would have the

desirable property that the blobs furthest to G1 have a greater influence. Unfortunately,
it would not be robust to misplaced blobs: the influence of a blob should indeed be
proportional to its real position along the bone segment, instead of its distance to the
goal position, which is not reliable.

The direction of the goal position G2 can then be computed by giving to each blob
Bi, i ∈ [1, . . . , Nb] a contribution proportional to its offset α̂i along the bone segment:

−−−→
G1G2 =

l

‖
−−−→
G1G2‖

Nb∑
i=1

α̂i

−−−→
G1µXi

‖
−−−→
G1µXi‖

(5.3)

119

CHAPTER 5. HIERARCHICAL TRACKING WITH INVERSE KINEMATICS

where l is the length of the current bone segment. The remaining task is to include
the contribution of possible intrinsic direction, such as the vector

−−→
V d2 in Figure 5.6.

A fast algorithm to compute the main direction of a Gaussian blob is described in
Appendix D. The contribution of this intrinsic direction does not depend on the offset
of the blob along the bone segment, but only on the strength of the direction vector.
A strongly elongated blob should contribute with greater strength than a smaller and
rounder one. The ratio between the first and the second eigenvalue of the covariance
matrix ΣX of a blob reflects strength of the elongation. The full computation of the
goal position G2 is performed according to the formula:

−−−→
G1G2 =

l

‖
−−−→
G1G2‖

.

 Nb∑
i=1

α̂i

−−−→
G1µXi

‖
−−−→
G1µXi‖

+
∑

i,
λi,1
λi,2

>2

λi,1

−−→
V di

λi,2

 (5.4)

Translating the Goal Position

At step (c) of the algorithm illustrated in Figure 5.5, the goal positions G1 and G2 are
translated along the current direction of the vector

−−−→
G1G2. With this translation of offset

T , we wish to minimise the square distances between the projected centres of the blobs
and their actual points of attachment (see Figure 5.7). This is a standard least square
optimisation problem:

T =
1

Nb

Nb∑
i=1

(
−−−→
G1µXi ·

−−−→
G1G2

‖
−−−→
G1G2‖

− α̂i

)
(5.5)

5.2.2 Complete Algorithm

The recursive computation of all the goal positions in the kinematic tree is presented
in Algorithm 5.1. This algorithm is applied to the root of the kinematic tree, and
iterated until convergence. The goal position for a given joint is either enabled if
sufficient information can be gathered from the blobs or the children joints, or disabled
otherwise. The joints with zero-length are treated as a special case which transmit
the goal positions but disable it for themselves. The algorithm also takes into account
joints with no blobs attached, for which a goal position is inferred from the children,
when possible.

120

CHAPTER 5. HIERARCHICAL TRACKING WITH INVERSE KINEMATICS

Figure 5.7: Translation of the goal positions G1 and G2 by an offset T along the
direction of

−−−→
G1G2, to minimise the error between the projected centres of the blobs

and their actual point of attachment.

5.3 Inverse Kinematics

Inverse kinematics is concerned with recovering the parameters of the model from the
desired global positions of the joints. In our case, the parameters of the model are
the joint angles Θ = {θ1, . . . , θNJ

} and the global position and orientation (P0, R0) of
the root of the kinematic tree. The desired global positions of the joints are the goal
positions G = {G1, . . . , GNG

} computed in the previous section. Note that the number
of computed goal positions NG is usually smaller than the number of joints NJ : this
makes inverse kinematics an under-constrained problem. The relation between the
parameters of the model and the subset of the joint positions P = {P1, . . . , PNG

}
is given by a set of forwards kinematics functions F = {f1, . . . fNG

} similar to that
defined in Equation 5.1:

P = F (P0, R0, Θ)⇔

P1 = f1(P0, R0, θ1, . . . , θNJ

)

P2 = f2(P0, R0, θ1, . . . , θNJ
)

...
PNG

= fNG
(P0, R0, θ1, . . . , θNJ

)

(5.6)

If F was invertible, one could compute the desired model parameters from the goal
positions as F−1(G). Unfortunately, because of singularities, redundant configurations
(Figure 5.8) and kinematic constraints, the function F is non-invertible. Moreover, the
goal positions G are unlikely to be kinematically valid, and a solution can therefore not
be reached.

121

CHAPTER 5. HIERARCHICAL TRACKING WITH INVERSE KINEMATICS

Algorithm 5.1: Recursive computation of the goal positions
. Get recursively the goal positions from the children;
if at least one blob attached to the current joint then

. Compute the goal positions for the current joint as in Figure 5.5;

. Merge the computed goal position of the tip of the joint with the ones
returned by the children;
. Enable the goal position for the current joint;
return the goal position of the base;

else
if at lest one children returned a goal position then

if the length of the joint is null then
. Disable the goal position for the current joint;
return the average of the goal positions returned by the children;

else
. Enable the current goal as the average of the goal positions
returned by the children;
return nothing;

end
else

. Disable the goal position for the current joint;
return nothing;

end
end

A standard idea is to linearise F about the current configuration of the model. It
should then be possible to invert this linear local approximation of F to get iteratively
closer to the solution. The local linearisation of F is called the Jacobian matrix:

J =
dF (P0, R0, Θ)

d(P0, R0, Θ)
=

∂f1

∂P0

∂f1

∂R0

∂f1

∂θ1
· · · ∂f1

∂θNJ...
...

...
∂fNG

∂P0

∂fNG

∂R0

∂fNG

∂θ1
· · · ∂fNG

∂θNJ

 (5.7)

A small variation of the global positions of the joints ∆P is then propagated to the
model parameters using the inverse of the Jacobian matrix:

∆(P0, R0, Θ) = J−1 ·∆(P1, . . . , PNG
) (5.8)

Unfortunately, the Jacobian matrix is generally not any more invertible than the origi-
nal function F . The Moore-Penrose pseudo-inverse ((JT J)−1JT) can be used instead,

122

CHAPTER 5. HIERARCHICAL TRACKING WITH INVERSE KINEMATICS

Figure 5.8: (left) Singular configuration: no rotation of the joints can move the ef-
fector along the singular direction. The corresponding row of the Jacobian matrix
contains only zeros, and is therefore non-invertible. (right) Redundant configura-
tion: the system is under-constrained. The Jacobian matrix is not square and again
non-invertible.

but singularities and the problem of the unreliable goal positions remain. The com-
putational cost is also high since the Jacobian matrix has to be re-computed at each
iteration, until convergence.

A common variation around the Jacobian method is to integrate the estimation of
parameters in an Extended Kalman Filtering (EKF) framework. This has been done
for human-body tracking [MTHC03, JTH99] with a state transition matrix equal to the
identity matrix, so that the main benefit of the Kalman filter is to smooth the mea-
surement noise. Unfortunately, this measurement noise is rarely evaluated, and the
assumption that it should be zero-mean, white and Gaussian is never tested. Actually,
the goal positions of the body parts are subject to many biases making these assump-
tions unlikely.

Alternatively, inverse kinematics can be formulated as an optimisation problem.
The aim is then to minimise the error between the current positions P of the joints and
their goal positions G. The squared Euclidean distance is often used to define the error
function:

|G − P| = |G − F (P0, R0, Θ)| =
NG∑
i=1

(Gi − fi(P0, R0, Θ))2 (5.9)

Standard optimisation methods like Gauss-Newton of Levenberg-Marquardt can be ap-
plied to compute the set of joint angles minimising the error function. A local deriva-
tive of the error function is often used to get the direction of the gradient, leading to a
convergence similar to that of the Jacobian matrix described earlier. Some constraints
can also be incorporated into the system, leaving to the chosen optimisation algorithm
the care to avoid local minima. Concerns about computational efficiency deter us from
using these general optimisation methods, and a simpler iterative scheme is preferred.

Motivated by the difficulty of obtaining of the gradient of the error and the need to
avoid local minima, Monte-Carlo methods are an interesting way to estimate a set of

123

CHAPTER 5. HIERARCHICAL TRACKING WITH INVERSE KINEMATICS

model parameters minimising the error function. They work by sampling (more or less
randomly) a large number of model configurations in the parameter space, evaluating
each of them, and finally, estimating the mode(s) of the weighted discrete distribution.
We shall present in Chapter 6 an efficient pose estimation method based on discrete
Monte-Carlo sampling.

In the rest of this chapter, we describe a simple direct evaluation scheme, aimed
primarily at computational performance. The position and orientation of the root of the
kinematic tree are first evaluated from the available goal positions of the torso and the
hips. Each of the limbs is subsequently processed with an iterative local optimisation
method called Cyclic-Coordinate Descent (CCD) [Wel93].

5.3.1 Estimation of the Root Position and Orientation

During normal tracking circumstances, the goal positions for the joints of the hips
(Ghip 1 and Ghip 2) and the pelvis (Gpelvis) are available because some blobs are always
attached to the torso and the legs. The global position of the root of the kinematic tree
(the pelvis) can be evaluated as a simple average of the goal positions of the hips and
the pelvis:

P0 =
Ghip 1 + Ghip 2 + Gpelvis

3

The positions of the hips are mainly taken into account for extra robustness. The global
orientation is then computed using the goal position of the neck (Gneck), which can be
computed as the average of the goal positions of the shoulders when not available:

R0x =
Ghip 2 −Ghip 1

‖Ghip 2 −Ghip 1‖

R0y =
(Gneck −Gpelvis)− ((Gneck −Gpelvis) ·R0x).R0x

‖(Gneck −Gpelvis)− ((Gneck −Gpelvis) ·R0x).R0x‖
R0z = R0x ∧R0y

5.3.2 Initialisation of the Root Position and Orientation

At initialisation, the root parameters are estimated using the main axes of the volumet-
ric reconstruction. A root blob is computed from all the voxels, using the Maximisation
procedure described in Section 4.2.4. The eigenvectors, or principal axes, of this root
blobs are obtained using the iterative algorithm described in Appendix D. The principal
axis of the blob defines the vertical orientation of the model, always pointing towards

124

CHAPTER 5. HIERARCHICAL TRACKING WITH INVERSE KINEMATICS

Figure 5.9: Initialisation of the root position and orientation of the model. The
mean and covariance of a root blob are evaluated from all the voxels. The two
greatest eigenvectors define the orientation of the model, while the root position is
found along the greatest eigenvector.

increasing y values. The horizontal orientation is then defined by the second greatest
eigenvector, up to “back-front flipping” ambiguity. We currently assume that the sub-
ject is always facing the same direction at initialisation, but a simple way to recover
the direction faced by the subject would be to keep both hypotheses until a kinematic
constraint is violated when tracking with the incorrect one. The position of the root
of the kinematic tree is found along the main axis, by imposing the constraint that at
least one of the feet should be on the ground. Figure 5.9 illustrates this initialisation
process.

5.3.3 Cyclic-Coordinate Descent

The Cyclic-Coordinate Descent (CCD) is an iterative local optimisation method. Each
joint of the kinematic tree is optimised independently, starting with the leaves (or end-
effectors) and progressing towards the root of the tree. The optimisation at a given joint
consists in minimising the error between both itself and its children in the kinematic
tree, and the corresponding goal positions. Let us denote the current joint as Jti and
its children as {Jti,1, . . . , Jti,n} with global position vectors {Pi, Pi,1, . . . , Pi,n} and
associated goal positions {Gi, Gi,1, . . . , Gi,n}.

Let us first consider the simpler problem of optimising the joint Jti when either
only itself or only one of its children has a goal position to satisfy. The only degree of
freedom of the current joint Jti is a rotation of angle θi about the axis ωi. The joint

125

CHAPTER 5. HIERARCHICAL TRACKING WITH INVERSE KINEMATICS

Figure 5.10: CCD with a single goal position, minimising the error between the
joint of current position Pi,1 and associated goal position Gi,1.

with a goal position to satisfy is arbitrarily denoted as Pi,1 with associated goal position
Gi,1. Our aim is to find the variation of angle ∆θi which minimises the error between
Pi,1 and Gi,1, as illustrated in Figure 5.10.

The position of the base of the joint Jti is Pi−1: let us then denote
−→
P =

−−−−−→
Pi−1Pi,1

and
−→
G =
−−−−−→
Pi−1Gi,1. It can be shown [Wel93] that the variation of angle ∆θi minimising

the distance between Pi,1 and Gi,1 also maximises the scalar product between
−→
P and

−→
G , and has the following closed form expression:

∆θi = arctan
ωi · (
−→
P ∧
−→
G)

−→
G ·
−→
P − (

−→
G · ωi).(

−→
P · ωi)

(5.10)

This formulation only finds a solution in the range ∆θi ∈ [−π
2
, π

2
]. While other so-

lutions can theoretically be found using the periodicity of tan, it is very unlikely in
practice that a variation of more than π

2
radians could occur between two consecutive

frames. The range of the solution is therefore sufficiently wide for our purpose.
The angle constraints defined in Table 5.1 are enforced by clamping the rotation

angle θi to the range [θ−i , θ+
i] after each local optimisation. When constraints associated

with Euler angles are too restrictive, the allowed sub-space of a given joint can be non-
convex. In such a case, independent optimisation of joints is insufficient to bypass the
lock enforced by the constraints. A practical solution is to disable the constraints for
the first few iterations of the CCD, allowing angles to get past possible mutual locks,
and then re-enforce the constraints in a second pass.

To allow a smooth repartition of movement between all the joints in the kinematic

126

CHAPTER 5. HIERARCHICAL TRACKING WITH INVERSE KINEMATICS

tree, an attenuation coefficient η is introduced. This attenuation (or stiffness) coeffi-
cient also limits undesired “oscillations” which tend to happen when optimising simul-
taneously multiple joints with contradictory sub-goals. At each iteration, the rotation
angle θi is updated in the following way:

θi = θi + η.∆θi (5.11)

where the coefficient η controls directly the rate of convergence. We found η =0.3 to
be a good compromise between smoothness and efficiency.

Let us now deal with the full inverse kinematics problem, when more than one
child of the current joint Jti has a goal position to satisfy. Finding analytically the
variation of angle ∆θi which minimises the total error between all the children and
their goal positions would be too complex. Instead, we use an approximate heuristic
which combines the individual optimisations of all the sub-goals. Let us denote as
{∆θi,1, . . . , ∆θi,k} the angle variations computed with Equation 5.10, that optimise
the sub-goals {Gi,1, . . . , Gi,k}. The combined angle variation for the joint Jti is a
weighted sum of the individual ones:

∆θi =
1∑k

j=1 λi,j

.
k∑

j=1

λi,j∆θi,j (5.12)

where {λi,1, . . . , λi,k} are weighting coefficients designed to give more importance to
goals nearer to the root of the kinematic tree. Intuitively speaking, if the weights were
uniform, the goals nearer to the root of the kinematic tree would only be optimised
partially, whereas the goals near the leaves would be advantaged by their more frequent
updates. In practice, we take λi,j equal to the inverse of the number of joints separating
Jti to the joint associated with the goal Gi,j . An illustration of the iterative optimisation
process with two goals is presented in Figure 5.11.

The overall convergence rate of the CCD is difficult to analyse, because changes
at each joint are incrementally taken into account when optimising the next ones.
Welman [Wel93] reported a faster convergence rate with CCD compared to a stan-
dard Jacobian optimisation method. The CCD method has the additional advantages
of behaving well around singular configurations, and of incorporating constraints in
straightforward manner.

127

CHAPTER 5. HIERARCHICAL TRACKING WITH INVERSE KINEMATICS

Figure 5.11: CCD with two goal positions G1 and G2 to satisfy. (left) The al-
gorithm starts by optimising the joint nearest to the end of the kinematic chain.
(middle) The parent joint is then optimised, integrating the optimisations of both
sub-goals. (right) Successive iterations allow the convergence of the method.

5.4 Results

The computation of the goal positions and the fitting of the kinematic model are
demonstrated in Figure 5.12. The kinematic constraints are also shown to illustrate
the fact that some goal positions cannot be fully satisfied, for example at the right foot.
The processing cost for these two steps is in average 0.55ms per frame (' 1800fps)
with 10 iterations of IK, which is clearly within our objectives.

Figure 5.13 presents some tracking results, sampled from sequences of slow move-
ments, captured by 4 cameras at 15 Hertz. These results show the potential of the
approach, faced with noisy images, a cluttered environment and a poor inter-cameras
synchronisation. Overall, we found that the simple hierarchical method presented in
this chapter worked very well, as long as the root of the kinematic tree can be lo-
cated. The inclusion of colour allows to keep track of limbs which would be lost using
reconstructed volume alone, as illustrated by Figure 5.14.

Unfortunately, while locating the torso works well with relatively static sequences
involving limited self-occlusions, more challenging types of motions remain problem-
atic. For example, the hierarchical tracker could not cope with the ballet dancing se-
quences presented in Chapter 7 because of the very fast movements and rotations of
the torso. Additional constraints and a prior knowledge of dynamics would be required
to make the tracking more robust to missing or ambiguous evidences: this idea will be
further developed in Chapter 6.

128

CHAPTER 5. HIERARCHICAL TRACKING WITH INVERSE KINEMATICS

Figure 5.12: (left) The goal positions, illustrated with red dots, are computed
using the previous tracked position and the blobs from the current frame. (right)
The full kinematic pose is then recovered by positioning the root of the kinematic
tree, and optimising the remaining goals with inverse kinematics.

Figure 5.13: Results of the hierarchical tracking method using 4 camera views.

129

CHAPTER 5. HIERARCHICAL TRACKING WITH INVERSE KINEMATICS

Figure 5.14: Colour is important to disambiguate poses with self-occlusions.

5.5 Discussion and Conclusion

We started this chapter with a description of the kinematic model used for tracking, and
a choice of parametrisation. We then introduced an iterative algorithm to compute the
goal positions of the joints of the kinematic model, based on the 3-D blobs. These goal
positions were finally used to optimise the pose of the kinematic model using inverse
kinematics.

Due to its very low computational cost, the hierarchical tracking method presented
in this chapter is a practical solution for many human-computer interaction setups. It
can be used, for example, in conjunction with a hand-tracker to recover gestures and
control virtual interfaces. Hierarchical tracking methods are particularly adapted to
upper-body tracking because the location of the root of the kinematic tree is fixed and
known.

A number of improvements could be brought to the kinematic model and the hier-
archical tracking framework. The kinematic model would benefit from a better joint
parametrisation, like quaternions or exponential maps. Euler angles were chosen for
simplicity, but singularities prevent the definition of joints with 3 degrees of freedom.

The model would also greatly benefit from better kinematic constraints: preventing
inter-penetration between body parts, for example, would make the whole tracking
process more robust. Soft constraints, either based on physical simulation or learnt
from training data could also guide inverse kinematics, even with low evidences from
the blobs. Motion prediction would make the blob-fitting procedure more robust, and
allow the tracking of fast motions. These last issues will be addressed in Chapter 6.

130

Chapter 6
Bayesian Tracking with Monte-Carlo
Sampling

This chapter builds on the volumetric reconstruction and blob-fitting
frameworks, treating tracking as a global optimisation problem. The
parameter space, augmented with first order derivatives, is automati-
cally partitioned into Gaussian clusters each representing an elemen-
tary motion: hypothesis propagation inside each cluster is therefore
accurate and efficient. The transitions between clusters use the pre-
dictions of a Variable Length Markov Model which can explain high-
level behaviours over a long history. Using Monte-Carlo methods,
the evaluation of large numbers of model candidates is critical for
both speed and robustness. We present a new evaluation scheme
based on volumetric reconstruction and blobs-fitting, where appear-
ance models and image evidences are represented by Gaussian mix-
tures.

6.1 Introduction

Tracking is a global optimisation process: because of kinematic constraints, body parts
are all linked to each other, and cannot be optimised individually without affecting the
whole body configuration. So, when a set of detected image features is available (such
as the blobs discussed in Chapter 4) limbs must “compete” with each other to fit onto
their own detected features. The global solution is likely to be a compromise between
the optimal placement of each body part and the enforcement of kinematic constraints.

131

CHAPTER 6. BAYESIAN TRACKING WITH MONTE-CARLO SAMPLING

6.1.1 Global Optimisation Techniques

One approach to tracking as a global optimisation problem is to start from image data,
trying to detect features independently in each frame, and to search for a kinematically
valid pose optimally satisfying the detected features. The configuration of the model
is then recovered from the “bottom-up” [RF03], that is, from detected body part lo-
cations (features) to model parameters (joint angles). The feature detection stage is
purely image-based, as no kinematic constraints or prior knowledge about the relative
arrangement of the body parts are used. This has the important advantages of solving
the hard problems of initialisation and recovery after failure, but the detectors are also
weaker and the detected features are considered highly unreliable, typically producing
many false-positives. The most likely model configuration must therefore be found
robustly, and belief propagation techniques [SISB04, SBR+04] are a way to address
this problem. A global solution is iteratively reached by message-passing between the
nodes of an interconnected graph. The graph itself encodes the relationships between
body parts in a probabilistic manner, with strong priors about human kinematics ac-
quired from training examples. Sigal et al. [SBR+04] extend this graph to include
relationships between body configurations at the previous, current and next time-steps,
resulting in a potentially robust tracker. Ramanan et al. [RFZ05] include a collection of
characteristic poses into the model, which can then automatically start tracking people
striking these poses.

While bottom-up belief propagation techniques are theoretically appealing, they
rely on the detection of specific features. This can become an issue for the exact same
reasons that played against hierarchical methods: detecting individual body parts is
not always possible because of occlusions or loose clothing. In the context of 3-D
tracking, the problem is worsened by the difficulty of locating and matching 3-D fea-
tures. Another important issue with the method is its computational complexity, which
is currently too high for real-time applications.

Alternatively, one can use the body configuration in the current frame and a dy-
namic model to predict the next configuration candidates. These candidates are then
tested against image data to find the most likely configuration. As opposed to the previ-
ous approach, we now start with estimations of the model parameters and test those hy-
potheses against image evidence: this is a top-down approach. In 1983, Hogg [Hog83]
proposed a framework to evaluate model configurations of a walking person with ex-
tracted image features (edges). Tracking with particle filters works along those lines,

132

CHAPTER 6. BAYESIAN TRACKING WITH MONTE-CARLO SAMPLING

approximating the posterior distribution by a set of representative elements, and updat-
ing these particles with the Monte Carlo importance sampling rule [GSS94]. A more
in-depth description of particle filters is presented in Section 6.2.

Particle filtering has a number of advantages over hierarchical and bottom-up ap-
proaches. Firstly, the evaluation of particles does not pre-suppose any particular feature
detection: this is important because it potentially makes the optimisation process very
general. Any criterion or combination of criteria [MH03] can be used as objective func-
tion. Secondly, particle filters are simpler, and more flexible than most optimisation
techniques. The number of particles and the complexity of their model of propagation
can be adjusted for the application’s needs. It can also be argued that particle filters are
more robust than most standard optimisation methods, in the sense that they do not get
trapped in local minima, and can track multiple hypothesis simultaneously.

Of course, particle filters also suffer from a number of drawbacks, the most obvious
being the high number of particles required. In full body tracking problems, the dimen-
sionality of the parameter space is far too high to accurately represent the probability
distribution of the parameters given the image evidences (posterior) across the whole
parameter space. In practice, a maximum of a few thousand particles can be managed
in real-time, which is definitely too little to populate a parameter space with d = 27

dimensions. Particles then tend to concentrate in only a few of the most significant
modes, leading to possible failures when too few particles are propagated to represent
a new peak in the posterior. Since the particles cannot cover the whole space, they
must be guided toward the portions of the parameter space that are the most likely to
contain the solutions. Using the previous tracked configuration as a predictive basis
is a strong advantage, but more advanced schemes have to be used when dealing with
fast movements. In Section 6.3 of this chapter, we shall describe a predictive method
capable of capturing the high-level behaviour of the subject.

The second drawback of particle filters comes as a direct consequence of the po-
tentially large number of required particles, the main performance bottleneck being the
evaluation of the likelihood function. Evaluating the likelihood of each particle usually
involves generating a 3-D appearance model from the particle state, projecting this ap-
pearance model onto the available image planes, and finally comparing it with some
extracted image features such as silhouettes or edges. Various simplifications or op-
timisations [CTMS03] have been attempted, but none of them were able to make full
use of image information in real-time. Building upon the volumetric reconstruction
technique from Chapter 3 and the blobs framework from Chapter 4, we shall propose

133

CHAPTER 6. BAYESIAN TRACKING WITH MONTE-CARLO SAMPLING

in Section 6.4 a fast evaluation method enabling real-time use of our particle filter.

6.2 Bayesian Framework and Particle Filter

Image evidence is noisy and unreliable. Belief about the current configuration of the
model should therefore be built incrementally from all available observations, up to
the current one. At each time step, the probability of the model given all observa-
tions follows a distribution called the posterior. The estimation of the distribution of
the posterior is the purpose of Bayesian tracking. The tracked position is the global
maximum of the distribution of the posterior.

6.2.1 Bayesian Framework

We start by defining the evolution of the model as the discrete sequence of configura-
tion vectors {Ct, t ∈ N} which consist of the joint angles, and the global positions and
orientations of the root of the kinematic tree. In the case of human-body tracking, each
state Ct is then a d=27 dimensional vector (although we shall see in Section 6.3 that
the configuration vector can be augmented with the first derivatives of the joint angles,
reaching a total of 44 dimensions). The evolution of the state vector is modelled as a
discrete process:

Ct = ft(Ct−1, vt−1) (6.1)

where ft : Rd → Rd is a non-linear function describing the evolution of the model
at time t, and {vt, t ∈ N} is the process noise. The model process function ft is
unknown, and impossible to observe directly. Being able to evaluate ft would enable us
to estimate the model state at each frame, consequently solving the tracking problem.
The objective of tracking is to recursively estimate the state vector Ct from a series of
measurements:

zt = ht(Ct, wt) (6.2)

where ht : Rd×Rd → Rdz is the non-linear observation function, and {wt, t ∈ N}
is the measurement noise. We seek filtered estimates of Ct based on the set of all
available measurements Zt = {z1, z2, . . . , zt} up to time t. The sum of these estimates
form the distribution of the posterior. To estimate the posterior, we use the “Bayes’
rule”. Considering two hypothesis A and B, the Bayes’ rule relates their conditional

134

CHAPTER 6. BAYESIAN TRACKING WITH MONTE-CARLO SAMPLING

probabilities as follows:

P (A|B).P (B) = P (A, B)

P (B|A).P (A) = P (A, B)

}
⇒ P (A|B) =

P (B|A).P (A)

P (B)
(6.3)

Despite its simplicity, the Bayes’ rule is a powerful tool which allows the estima-
tion of a range of functions which are not directly evaluable. It is frequently the case
that a conditional probability is easier to evaluate by transposing the problem. The
probability P (Ct|Zt) of a model configuration Ct given all previous measurements
Zt is a typical example of function which is hard to evaluate directly. However, we
can evaluate the probability of the current observation zt given a model configuration:
P (zt|Ct). This is called the likelihood. We therefore apply the Bayes’ rule to trans-
form the expression of the posterior into an evaluable formulation depending on the
likelihood:

P (Ct|Zt) =
P (Zt|Ct).P (Ct)

P (Zt)

=
P (zt,Zt−1|Ct).P (Ct)

P (zt,Zt−1)

(6.4)

The current observation zt is not independent of the previous observations Zt−1, but
using Equations 6.2 and 6.1, we can show that given a model configuration Ct, all
observations become functions of the Gaussian noise. We can therefore de-correlate
the current observation from the previous ones:

P (Ct|Zt) =
P (zt|Ct).P (Zt−1|Ct).P (Ct)

P (zt|Zt−1).P (Zt−1)
(6.5)

We can again apply the Bayes’ rule on the expression P (Zt−1|Ct):

P (Ct|Zt) =
P (zt|Ct).P (Ct|Zt−1).P (Zt−1).P (Ct)

P (zt|Zt−1).P (Zt−1).P (Ct)

=
1

P (zt|Zt−1)
.P (zt|Ct).P (Ct|Zt−1)

(6.6)

In order to exploit the incremental nature of the tracking process, we marginalise
P (Ct|Zt−1) over the previous tracked configurations of the model Ct−1, leading to

135

CHAPTER 6. BAYESIAN TRACKING WITH MONTE-CARLO SAMPLING

Figure 6.1: Tracking in the Bayesian framework. The previous posterior is used
as a basis to estimate the distribution of the posterior for the current frame. It
is first composed with the motion prior (a), giving the expected distribution of
the posterior. This expected distribution is finally evaluated against the likelihood
from the observations (b) to produce the final estimation of the posterior (c).

the formulation of the posterior:

P (Ct|Zt)︸ ︷︷ ︸
Posterior

= κ.P (zt|Ct)︸ ︷︷ ︸
Likelihood

.

∫
P (Ct|Ct−1)︸ ︷︷ ︸
Motion Prior

.P (Ct−1|Zt−1)︸ ︷︷ ︸
Previous posterior

dCt−1 (6.7)

where κ = 1
P (zt|Zt−1)

is a normalising constant. At initialisation (t=0) no observation
is available, so that the initial distribution of the posterior is equal to the initial distri-
bution of the state vector: P (C0|Z0) ≡ P (C0), also known as the prior. The Bayesian
tracking framework of Equation 6.7 is illustrated in Figure 6.1.

136

CHAPTER 6. BAYESIAN TRACKING WITH MONTE-CARLO SAMPLING

Figure 6.2: Sets of 1000 particles locally populating the parameter space of the
model configurations, and weighted so as to estimate the distribution of the poste-
rior.

6.2.2 Sequential Monte-Carlo Approach

Particle filters estimate the probability density function (pdf) of the posterior with dis-
crete samples (particles). Each particle is a possible configuration Ct of the model
in the parameter space. The general idea of the particle filter is then to “throw” an
important number of these particles to populate the parameter space, and to estimate
the posterior for each particle using the Bayesian framework described in the previ-
ous section. Figure 6.2 illustrates the particles (model configurations) populating the
parameter space around the expected peaks of the posterior.

Particle filters also belong to the more general class of Monte Carlo methods, which
all share a “random” component. Various names are used in the literature to denote par-
ticle filtering: it is also known as Sequential Monte Carlo, bootstrap filtering, CON-

DENSATION algorithm [IB98a, IB98b] and survival of the fittest.
The posterior distribution is approximated by a set of discrete weighted parti-

cles, each representing a body configuration in the parameter space. Let us denote as
{{C1

t ,w
1
t }, . . . , {C

Np

t ,w
Np

t }} the set of Np weighted particles representing the proba-
bility density function of P (Ct|Zt). The weight are normalised such that

∑Np

i=1 wi
t = 1.

A set of particles is a random measure of the posterior, which can then be approxi-
mated as:

P (Ct|Zt) ≈
Np∑
i=1

wi
t.δ(Ct −Ci

t) (6.8)

137

CHAPTER 6. BAYESIAN TRACKING WITH MONTE-CARLO SAMPLING

where δ() is the Dirac delta function. The approximation from Equation 6.8 ap-
proaches the true posterior as Np →∞.

The Sampling Importance Resampling (SIR) particle filter follows the iterative for-
mulation of the posterior from Equation 6.7. At the current timestep t, the particles
are assumed to approximate the previous posterior. We propagate each particle using a
dynamic model (motion prior) approximating the process function ft(Ct−1, vt) defined
in Equation 6.1. In Section 6.3, we shall introduce a novel scheme to learn high level
behaviours and approximate the true dynamic model. After propagation, the updated
set of particles is a discrete approximation of the previous posterior combined with the
motion prior (the right hand side of Equation 6.7).

In the next step, called “evaluation”, the weights of the particles are re-assigned
according to the likelihood of the observation zt given the current particle. The eval-
uation of the likelihood function is critical for both robustness and performance: we
shall present in Section 6.4 a novel evaluation method based on the 3-D blobs. After
evaluation, the set of particles approximates the distribution of the posterior. The par-
ticles with highest weights can then be used to find the most likely configuration of the
model (mode of the distribution).

The remaining step of the algorithm is called “resampling”. It optimises the distri-
bution of the particles, and is discussed in Section 6.2.3. These three steps, common
to most particle filters, are illustrated in Algorithm 6.1.

6.2.3 Resampling

Resampling is designed to match the density of the distribution of the particles with
the probability density function of the posterior. Practically, this is equivalent to elim-
inating the particles with small weights in order to concentrate on the particles with
significant weights. The rationale behind resampling is that, since the total number of
particles is limited, accuracy is mostly needed in regions where the expectation for true
model configuration is high.

It has been shown [AMGC02] that without resampling, the variance of the weights
can only increase over time. This degeneracy problem implies that only a few particles
gain a high weight, while the vast majority contribute very little to the approximation of
the posterior. This situation is obviously undesirable because computational resources
are then wasted updating unimportant particles, while the peaks of the posterior are not
accurately represented.

An estimate of degeneracy for a set of weighted particles is the effective sample

138

CHAPTER 6. BAYESIAN TRACKING WITH MONTE-CARLO SAMPLING

Algorithm 6.1: Generic SIR Particle Filter.
repeat

. Resampling (Section 6.2.3);
for i = 1 to Np do

Draw Ci
t ∼ P (Ct−1|Zt−1);

Reset weights as wi
t ← 1

Np
;

end

. Propagation using the
motion prior (Section 6.3);

. Evaluation (Section 6.4);
for i = 1 to Np do

wi
t ← P (zt|Ci

t);
end
for i = 1 to Np do

wi
t ←

wi
tPNp

k=1 wk
t

;

end

t← t + 1;
until end tracking;

size N̂eff , introduced by Liu et al. [LC98], and defined as:

N̂eff =
1∑Np

i=1 (wi
t)

2
(6.9)

Small values of the effective sample size N̂eff indicate severe degeneracy, and
in many implementations [AMGC02], trigger the resampling of the set of particles.
However, the SIR implementation (Algorithm 6.1) resamples systematically the set of
particles at each frame: the effective sample size is then unnecessary but can still be
used as a performance indicator of the filter.

The resampling step involves generating a new set of particles, sampled from the
approximate discrete approximation of the posterior (Equation 6.8). The Systematic

Resampling [Kit96] algorithm was chosen because of its linear complexity in the num-
ber of particles: O(Np). The principle of Systematic Resampling is described and
illustrated in Algorithm 6.2. The resulting set of particles is a random sample from the
discrete approximation of the posterior, which explains that all weights are reset to 1

Np
.

139

CHAPTER 6. BAYESIAN TRACKING WITH MONTE-CARLO SAMPLING

Algorithm 6.2: Systematic Resampling Algorithm.
cdf1 ← w1

t ;
for i = 2 to Np do

cdfi ← cdfi−1 + wi
t;

end
Draw r ∼ U[0, Np

−1];
i← 1;
for j = 1 to Np do

uj = r + j−1
Np

;
while cdfi < uj do

i← i + 1;
end
{Cj

t ,w
j
t} ← {Ci

t, Np
−1};

end

A particularity of Systematic Resampling is that existing particles are used as sup-
ports to initialise the new ones: the particles that have high weights are therefore sta-
tistically selected and replicated many times in the new set. This phenomenon, called
sample impoverishment characterises itself by a loss of diversity among the particles
as the resultant sample will contain many repeated points. This problem is usually
harmless when the process noise is strong enough, allowing particles to differentiate
from each other during the propagation step. In presence of smaller noise however, al-
ternative techniques such as regularisation [AMGC02] have to be used, with an impact
on performance.

6.3 Propagation of the Particles

In this section, we introduce a novel method for propagating particles in an efficient
way. The dynamics of the subject are learnt at two levels of granularity: local dynamics
are encoded with second-order Gaussian models, while higher level behaviours are
represented by a Variable Length Markov Model (VLMM).

140

CHAPTER 6. BAYESIAN TRACKING WITH MONTE-CARLO SAMPLING

6.3.1 Theory and Related Work

In the context of particle filtering, the role of the motion prior is to propagate the
particles using a dynamic model, so that the distribution of the particles after the prop-
agation step approximates the expected distribution of the likelihood. Ideally, the eval-
uation of the likelihood has then the sole role of correcting wrong predictions, which
are bound to be frequent because of the necessary simplifications of the motion model.
General-purpose prediction of human movements is very complex because of the high
dimensionality of the parameter space combined with the highly non-linear nature of
most motions. Unfortunately, the literature on motion prediction is too vast to be fully
reviewed in this thesis. We shall therefore focus on some of the most pertinent contri-
butions. The reader is invited to refer to some relatively recent surveys [Gav99, MG01]
for further details.

In the CONDENSATION algorithm [IB98a], Isard et al. model the dynamics of
the system with a single second order Auto-Regressive Process (ARP) in the full pa-
rameter space. When the number of particles is sufficient with respect to the size of
the parameter space, enough particles are assumed to be propagated in the direction of
the true motion. In practice, since the number of manageable particles is limited, prob-
lems start occurring when too few particles are propagated to represent peaks in the
distribution of the likelihood. In the ICONDENSATION framework [IB98b], Isard et

al. propagate the particles either using the same scheme as in the standard CONDEN-
SATION algorithm, or guide them towards the most relevant regions of the parameter
space using an auxiliary measurement obtained directly from the image data. More
specifically, in [IB98b], Isard et al. use some colour blobs to track the hands and prop-
agate a predefined proportion of the particles towards the corresponding image regions.
This scheme compensates for the prediction errors of the dynamic model, but neces-
sitates a reliable auxiliary measurement, which can become difficult to obtain in high
dimensionality problems.

Annealing [DBR00] was introduced by Deutscher et al. as a coarse to fine ap-
proach that can help focus the particles on the global maxima of the likelihood, at the
price of multiple iterations per frame. A smoothing function is used to “broaden” the
peaks of the likelihood, hence increasing their chances of being initially represented
by a sufficient number of particles. In subsequent iterations, the smoothing decreases
simultaneously with the propagation noise, so that the particles are resampled nearer
and nearer to the maxima of the likelihood. Due to the complexity of human dynamics,
no dynamic model is learnt and the particles are propagated using solely the Gaussian

141

CHAPTER 6. BAYESIAN TRACKING WITH MONTE-CARLO SAMPLING

process noise. The tracking process therefore relies mostly on the evaluation of the
likelihood. Of course, as the dimensionality of the parameter space increases, more
and more particles are needed to explore all possible directions, which can be very
wasteful in computational resources. Compared with CONDENSATION, the extra
cost generated by the multiple iterations per frame is compensated by the lower num-
ber of required particles. However, problems still occur when either the number of
particles is too small, or when the movements are too fast, placing the new peaks of
the likelihood out of reach by the random propagation.

In [DDR01], Deutscher et al. propose two new methods to help focus particles
on the relevant parts of the parameter space. Hierarchical partitioning (also known as
“scaled sampling”) adjusts the propagation noise to the variance of the set of particles
after resampling. The dimensions of the parameter space with the greatest influence
on the evaluation of the likelihood have a lower variance than the less influential di-
mensions. For example, the global position of the kinematic model is more influential
than the joint angle of a hand, so that its variance after the first evaluation and resam-
pling should be lower. By iteratively adjusting the propagation noise to the variance of
each dimension, the most influential dimensions are fitted first, making the algorithm
behave like an automatic hierarchical method. Another extension is the crossover oper-
ator, which exchanges subset of parameters between high-weighted particles, borrow-
ing the idea from genetic algorithms. The convergence rate using these techniques is
reported in [DDR01] to be four times better than with standard annealing, but remains
too high for real-time processing.

While the previously-mentioned schemes are general enough to track all types of
motion, their robustness fully depends on the estimation of the likelihood. When ob-
servations become too noisy or ambiguous, these methods unavoidably fail, and have
no means of recovery. Human-body tracking is a typical example of application where
the observations are unreliable (self-occlusions, camera noise, motion blur, and so on),
and more robust schemes must therefore be employed.

Prediction

Using a good predictive model, inconclusive observations can be recovered from. Par-
ticles are indeed propagated only in plausible directions, which means that even in the
absence of strong evidence, the tracking can hold for a while by relying mostly on the
motion prior. Outliers are also automatically discarded since no particles are propa-
gated towards them. Another advantage of a good prediction scheme is that the limited

142

CHAPTER 6. BAYESIAN TRACKING WITH MONTE-CARLO SAMPLING

number of particles is used much more efficiently than with random propagation: full
body tracking becomes practical in real-time. Of course, since motion prediction is
itself very complex and sometimes unreliable, wrong predictions are bound to happen,
possibly resulting in a loss of tracking. When possible, recovery schemes should then
be implemented.

Extending incrementally the CONDENSATION framework, Isard and Blake pro-
pose in [IB99] a mixed state dynamic model for tracking. A set of second order ARPs
is learnt from manually segmented data, and the transitions between these dynamic
models is performed at runtime according to a manually-set transition matrix (first or-
der Markov model). Tests validate the benefits of the approach on simple dynamics
composed of only 2 or 3 classes. In [BNI99], the same authors devise a scheme for
learning automatically the transition matrix from the data. The number of dynamic
models is still manually set and the models themselves are very constrained (only two
free parameters in their example), but this method represents a first step towards the
automatic learning of complex motions.

Using a Bayesian tracking framework, Sidenbladh et al. [SBF00] propose a varia-
tional model for simple activities such as walking and running. The parameters (joint
angles and global position) are first projected into a lower dimensionality space using a
standard Principal Component Analysis (PCA), and their distributions are modelled by
a single Gaussian. The motion prior is therefore evaluated using this Gaussian model
of variations between the previous frame and the current one. Despite the relative sim-
plicity of the dynamic model, results suggest that the motion prior improves greatly
the accuracy and robustness of the tracking. However, the number of required particles
is still very high (10,000), and the dynamic model remains limited to very simple types
of motion, such as the walking cycle.

Agarwal et al. [AT04] extend the work of Sidenbladh et al. [SBF00] by first clus-
tering the parameter space using K-Means. Each cluster then represents a simpler
activity which is easier to learn than trying to learn dynamics over the whole param-
eter space. This clustering allows the learning of complex activities, provided that
elementary sub-activities can be identified. Inside each cluster, the dimensionality of
the parameter space is reduced with a PCA, and dynamics are learnt using a second
order Auto-Regressive Process. Transitions between clusters are based on the current
configurations of the particle, the conditional probability of each cluster being mod-
elled by a Gaussian distribution. In the absence of a higher level model of behaviour to
guide the transitions between clusters, it is not clear how Agarwal’s system copes with

143

CHAPTER 6. BAYESIAN TRACKING WITH MONTE-CARLO SAMPLING

tracking failures. A limited evaluation is also suggesting the success of the method on
short activities, but more challenging and diverse sequences remain untested.

Urtasun et al. [UF04] learn separately the dynamics of various walking and run-
ning rhythms under PCA projection. The variations (derivatives) of the joint angles
are stored in a database, and retrieved during tracking. The switching between the dy-
namic models (for example, walking to running) seems to be implemented by testing a
posteriori the likelihood of each model. The method also necessitates manual segmen-
tation of various activities, which is impractical for complex sequences. In [UFF05],
the same method is applied to the tracking of the golf swing, with more details on the
least square optimisation framework that optimises the selection of the dynamic model
along with the other model parameters. Unfortunately, the optimisation necessitates
the computation of the gradients from the objective function, which is both costly and
not always possible. Finally, in [UFHF05], the PCA is replaced by Scaled Gaussian
Latent Variable Models (SGPLVMs) [Law04] which perform better for non-linear mo-
tions, and for small training sets.

In Style Machines [BH00], Brand and Hertzmann learn the general structure of the
training data at the same time as the stylistic variations exhibited by individual sub-
jects. To achieve this, specific models learning the training data of individual subject
interact with a general model supposed to learn the common structure of all the se-
quences. Both specific and general models are Hidden Markov Models with Gaussian
emission probabilities. During learning, the interactions between the specific models
and the general one are formulated as a sum of entropies, including a cross-entropy
term. The full objective function is designed to maximise overlapping between the
specific models and the general one, while keeping the specific models specialised and
the general model simple. A modified Expectation-Maximisation loop is used to fit
the Gaussian models on the joint angles data, previously summarised by a PCA. Once
both the general and the specific HMMs are learnt, the stylistic variations are recovered
as the parameters allowing the transition between specific Gaussian emission models
inside the general one. In practice, under PCA, only a few parameters are sufficient
to explain the variability between specific models. While they were mainly designed
for retargeting applications, stylistic models can be an interesting way to learn ac-
curate motion priors once the stylistic parameters for the tracked subject have been
discovered. For prediction, it is possible to follow a smooth path between Gaussian
distributions, as detailed in [Bra99].

In [SBS02b], Sidenbladh et al. take a different approach to particles propagation:

144

CHAPTER 6. BAYESIAN TRACKING WITH MONTE-CARLO SAMPLING

instead of trying to learn a predictive model, they build a database of model configu-
rations from a large amount of training data. An efficient search algorithm, based on
a PCA and a binary tree, allows the lookup of a particular pose. More interestingly, a
“heat” coefficient controls a probabilistic perturbation of the search algorithm, so that
similar body configurations can be sampled from. Using a standard particle filtering
framework, the propagation of the particles is therefore strongly constrained by the
poses included in the database. When the target motions are very similar to the train-
ing examples included in the database, this scheme has the potential to be very robust
and efficient. However, this data-based approach does not readily generalise to new
motions, and as the size of the training data grows, storage can become an issue.

Other proposed methods include the unscented particle filter [vdMDdFW00] which
utilises the predictions of an Extended Kalman filter. The dynamic model is then learnt
online, with no need for training data. The accuracy of this method is however ques-
tionable, especially since the Kalman cannot capture the non-linear variations of the
parameters. Another propagation scheme proposed by Choo et al. [CF01] utilises the
gradient of the likelihood to guide the particles. The method assumes that the gradient
can be computed, and also takes the risk of attracting particles towards local maxima.

Many other predictive methods are borrowed from the field of Artificial Intelli-
gence, with a strong emphasis on movement classification and recognition. For ex-
ample, Hong et al. [HTH00] use finite state machines to classify gestures. Brand et

al. [BOP97] introduce coupled hidden Markov models to model interactions between
limbs.

6.3.2 Learning Dynamics

We now describe the learning of our dynamic model. The parameter space is clustered
into Gaussian states, over which high-level behaviour is modelled by a variable length
Markov model.

Description and Pre-Processing of the Training Data

The training data consists of the joint angles Θ = {θ1, . . . , θ19} of the kinematic model
augmented by their first derivatives Θ̇ = {θ̇1, . . . , θ̇19}, amounting to 38 dimensions.
Note that the degrees of freedom of the head were not included in the model because
the corresponding training data was unavailable. The global position P0 and orienta-
tion R0 of the kinematic model are also not included in the training data to keep the

145

CHAPTER 6. BAYESIAN TRACKING WITH MONTE-CARLO SAMPLING

dynamics invariant to the placement of the subject. For convenience, let us denote as
Θ = {Θ, Θ̇} the feature vector composed of the joint angles and their derivatives.
The full configuration of a kinematic model at time t is therefore described by the
configuration vector Ct = {P0t, R0t,Θt} with a total of 44 dimensions.

A first part of our training data is acquired from a Vicon tracking system, which
returns accurate and smooth estimates of the 3-D positions of the body parts. The rest
of the training data is obtained from manually annotated video sequences, producing
sparse and noisy 3-D positions for the body parts. In both cases, the values of the
joint angles are recovered using inverse kinematics (Section 5.3). The joint angles
corresponding to manually annotated sequences are then smoothed using a Gaussian
kernelN (0, 1), and the data is completed by interpolating between annotated positions
with Cubic Splines.

The first derivatives (velocity) of the joint angles are computed in a discrete man-
ner as Θ̇t = Θt −Θt−r, where r is the number of interpolated configurations between
two keyframes taken at the original framerate. A Gaussian noise (with a variance of
typically 1/100 of the total variance of each dimension) is finally added to all the pa-
rameters to ensure a good generality of the learnt model and avoid overfitting.

Clustering the Parameter Space

Due to the complexity of human dynamics, we break down complex behaviours into
elementary movements for which local dynamic models are easier to infer. The prob-
lem is then to automatically find, isolate and model these elementary movements from
the training data. We achieve this by clustering the feature space into Gaussian clus-
ters using the EM algorithm proposed by Figueiredo and Jain [FJ02]. Their proposed
method automatically addresses the main pitfalls of traditional EM, that is, the delicate
initialisation, the arbitrary choice of the number of components, and the possibility of
singularities. Body configurations sampled from a few clusters on ballet-dancing data
are shown in Figure 6.3.

Learning Transitions between Clusters with a VLMM

Complex human activities such as dancing (or even simpler ones such as walking), can
be viewed as a sequence of primitive movements with a high level structure controlling
the temporal ordering. A suitable way to obtain probabilistic knowledge of the under-
lying behavioural structure is variable length Markov models (VLMMs) [RST96].

146

CHAPTER 6. BAYESIAN TRACKING WITH MONTE-CARLO SAMPLING

Figure 6.3: Model configurations sampled from various Gaussian clusters. The
mean values of the derivatives are represented at each end effectors by a green
arrow with a size proportional to the absolute value of the derivatives.

Variable length Markov models deal with a class of random processes in which the
memory length varies, in contrast to n-th order Markov models. They have been previ-
ously used in the data compression [CH87] and language modelling domains [RST96,
GP95]. More recently, they have been successfully introduced in the computer vision
domain for learning stochastic models of human activities with applications to be-
haviour recognition and behaviour synthesis [GJH99a, GJH99b, GJH01, GCMH02].
Their advantage over a fixed memory Markov model is their ability to locally optimise
the length of memory required for prediction. This results in a more flexible and effi-
cient representation which is particularly attractive in cases where we need to capture
higher-order temporal dependencies in some parts of the behaviour and lower-order de-
pendencies elsewhere. A detailed description on building and training variable-length
Markov models is given by Ron et al. [RST96].

A VLMM can be thought of as a probabilistic finite state automaton (PFSA)M =

(Q,K, τ, γ, s), where K is a set of tokens that represent the finite alphabet of the
VLMM, and Q is a finite set of model states. Each state corresponds to a string in

147

CHAPTER 6. BAYESIAN TRACKING WITH MONTE-CARLO SAMPLING

Figure 6.4: Synthetic VLMM with alphabet K = {k1, k2, k3}, and 7 states. The
thickness of the arcs represent the output probabilities γ, and the thickness of the
state ellipses stands for the probability distribution s over the start state.

K of length at most NM (NM ≥ 0), representing the memory for a conditional transi-
tion of the VLMM. The transition function τ , the output probability function γ for a
particular state, and the probability distribution s over the start states are defined as:

τ :Q×K → Q

γ :Q×K → [0, 1] , ∀q ∈ Q,
∑
k∈Σ

γ (q, k) = 1

s :Q→ [0, 1] ,
∑
q∈Q

s (q) = 1

(6.10)

The VLMM is a generative probabilistic model: by traversing the model’s automa-
ton M we can generate sequences of the tokens in K. By using the set of Gaussian
clusters as the alphabet, we can capture the temporal ordering and space constraints
associated with the primitive movements. Consequently, traversing M will generate
statistically plausible examples of the behaviour.

6.3.3 Predicting Using the VLMM

In this section, we describe the way particles are propagated (motion prior). The
VLMM guides the transitions between clusters of elementary movements. For each
particle, the joint angles are propagated with local dynamics encoded by the current
Gaussian cluster, while the global parameters are propagated stochastically.

148

CHAPTER 6. BAYESIAN TRACKING WITH MONTE-CARLO SAMPLING

Transitions Between Clusters with the VLMM

The particles are augmented with their current VLMM state qt, from which the clus-
ter kt to which they belong may be easily deduced. Transitions (or jumps) between
clusters are conditional on the particle’s feature vector Θt as well as the transition
probabilities γ(·, ·) in the VLMM. The probability of transition towards a new Gaus-
sian cluster kt+1 of mean µkt+1 and covariance Σkt+1 is derived using the Bayes’ rule:

P (kt+1 | Θt, qt) =
P (Θt|kt+1).P (qt|kt+1).P (kt+1)

P (Θt).P (qt)

=
P (Θt|kt+1).P (kt+1|qt).P (qt).P (kt+1)

P (Θt).P (qt).P (kt+1)

∝ P (Θt | kt+1).P (kt+1 | qt)

=
1√

(2π)d
∣∣Σkt+1

∣∣ .e− 1
2
.(Θt−µkt+1

)T ·Σ−1
kt+1

·(Θt−µkt+1
)
.γ(qt, kt+1)

(6.11)

At each frame, the state transition is chosen according to the above probabilities for
each neighbouring cluster. In practice, only a few transitions are encoded in the
VLMM, making the evaluation efficient. If the same cluster is chosen (kt+1 = kt),
the particle is propagated using local dynamics, as formulated in the next section. If a
new cluster is selected, the particle’s parameters are re-sampled from the new Gaussian
cluster.

Local Dynamics Inside Each Cluster

Inside each Gaussian cluster, a new model configuration can be stochastically predicted
from the previous feature vector Θt−1. Since the Gaussian clusters include derivatives,
the prediction effectively behaves like a second-order model. Let us consider a Gaus-
sian cluster of mean µΘ = (

µΘ
µΘ̇

) and covariance matrix ΣΘ =
(

ΣΘΘ ΣΘΘ̇

ΣT
ΘΘ̇

ΣΘ̇Θ̇

)
. The noise

vector is directly sampled from the cluster’s covariance matrix with an attenuation co-
efficient λ, leading to the formulation:

Θ̇t = Θ̇t−1 + λ.dΘ̇t

Θt = Θt−1 + Θt + λ.dΘt

with

(
dΘt

dΘ̇t

)
∼ N (0, ΣΘ) (6.12)

The random noise vector is drawn as (dΘt dΘ̇t)
T =

√
ΣΘ · X with X ∼ N (0, I).

The square-root of the covariance matrix is computed by performing the eigenvalue

149

CHAPTER 6. BAYESIAN TRACKING WITH MONTE-CARLO SAMPLING

Figure 6.5: Probabilistic propagation of the particles using local dynamics from
the Gaussian clusters {k1, k2, k3}. The ellipsoidal shape of the clusters represents
the covariances ΣΘΘ of the joint angles. The mean values of the derivatives of the
joint angles µΘ̇ are represented by green arrows.

decomposition, ΣΘ = V ·D · V T , and taking the square root of the eigenvalues on the
diagonal of D, so that

√
ΣΘ = V ·

√
D · V T .

This predictive model has to be understood in the context of Monte-Carlo sampling,
where noise is introduced to model uncertainty in the prediction: the properties of the
noise vector are therefore almost as important as the dynamics themselves. The covari-
ance matrix of the current cluster provides a good approximation of this uncertainty,
and sampling the noise vector from the cluster itself makes propagation of uncertainty
much closer to the training data than uniform Gaussian noise.

Random Propagation of the Global Parameters

The six parameters describing the global position P0 and orientation R0 of the model
are not included in the dynamic model. They are therefore propagated with Gaussian
noise, in a similar way to the CONDENSATION algorithm [IB98a]. The amplitude
of the Gaussian noise has to be sufficient to follow fast motions. We therefore define
some scaling coefficients ρg and λg, respectively for the global position and the global
orientation of the kinematic tree. These coefficients depend on the type of motion and
the framerate of the cameras capture. In our experiments, we set ρg = 60 millimetres
and λg = 0.1 radians. The global parameters are stochastically propagated according
to:

P0t = P0t−1 + ρg.X

R0t = R0t−1 + λg.X
with X ∼ N (0, I3) (6.13)

150

CHAPTER 6. BAYESIAN TRACKING WITH MONTE-CARLO SAMPLING

6.4 Fast Evaluation of the Likelihood

In this section we present a fast evaluation technique for the particles. Because of its
good compactness, the 3-D blobs representation introduced in Chapter 4 provides an
ideal basis for the evaluation of the likelihood function. We shall see how the blob
description can be integrated into the particle filtering framework, alleviating most of
the pitfalls of the hierarchical tracking.

6.4.1 Introduction

The distribution of the likelihood is approximated at timestep t by a set of Np weighted
particles {{C1

t ,w
1
t }, . . . , {C

Np

t ,w
Np

t }}. The evaluation stage consists in weighting
each particle proportionally to the probability of the current measurement zt given
the model configuration encoded by the particle: ∀i ∈ [1 . . . Np],w

i
t
∝← P (zt | Ci

t).
To estimate the probability of the observations given a model configuration, an

appearance model is first generated from the model parameters, and is subsequently
evaluated against the observations. The goal of appearance models is to encode in a
compact way all the pertinent information about the subject, that can be extracted from
the current observation. The evaluation of the appearance model therefore occurs at
a “middle ground” between raw observations (image inputs) and the parameter space
of the model. The choice of this “middle ground”, or feature space, is critical for the
overall performance of the system because an appearance model must be generated
and evaluated for each particle at each frame.

A variety of features are used in the literature to characterise the configuration
of the subject. Silhouettes, extracted using background segmentation techniques (see
Chapter 2), are very popular [MH03, CTMS03, DBR00, DDR01] because of their
simplicity and good overall robustness. The appearance model is often projected onto
all available image planes, and the number of matching pixels defines the objective
function. More or less complex appearance models, ranging from a set of cylinders
to deformable mesh models, have been used for evaluation: the reader is invited to
refer to Section 4.1.1 for a short review of appearance models. The intrinsic limita-
tions of silhouettes include the loss of internal features, the absence of colour and the
need for a static background. Moreover, in presence of strong camera noise, silhouette
extraction can generate outliers, thus requiring costly post-processing. Figure 6.6(b)
demonstrates the overall robustness of silhouette extraction, even in extreme condi-
tions, but also exhibits the numerous outliers which are a consequence of processing

151

CHAPTER 6. BAYESIAN TRACKING WITH MONTE-CARLO SAMPLING

(a) Input image. Note the presence of strong mo-
tion blur and camera noise.

(b) Silhouette extraction using Grimson et
al. [SG99]’s method (10 Gaussians per pixel).

(c) Canny [Can86] edge detection. (d) Volumetric reconstruction using all 5 available
camera views.

Figure 6.6: Comparison of image-based features for particles evaluation.

each pixel independently.
Edges can also be exploited, with, for example, the distance to the closest edge

pixel as objective function. The result of applying the Canny [Can86] edge detection
algorithm is shown in Figure 6.6(c). Even if, once again, the results are rather good
considering the challenging input image, some important features such as the right
hand are missing because of the motion blur. The cluttered background is also prob-
lematic as it can distract the objective function from the subject, and lead to a loss of
tracking.

When multiple camera views are available, evaluating model configurations based
on a volumetric reconstruction becomes an interesting option. In recent years, the vi-
sual hull has been exploited [TMSS02, CBK03a, CBHK04, MTHC03, KBG05] to de-
fine various objective functions for human-body tracking. However, to our knowledge,

152

CHAPTER 6. BAYESIAN TRACKING WITH MONTE-CARLO SAMPLING

volumetric reconstructions have not yet been used in the context of discrete Bayesian
tracking. The advantages of the 3-D reconstruction over other image cues have already
been advocated throughout this thesis: let us just insist on the increased robustness,
the good compactness of the data, and the inclusion of colour. The result of our 3-D
reconstruction method (Chapter 3) using all 5 available camera views is shown in Fig-
ure 6.6(d).

Various other image cues have been used in the literature. For example, Stefanov et

al. [SGH05] perform a Hough transform on the silhouettes of the hands to detect the
round shape of the fingertips. The particles are then evaluated in the Hough space
instead of the image space. Let us finally mention the widely used boosting [MR03]
framework, which combines the outputs of a collection of specialised detectors to pro-
ducing a more robust classifier.

The full literature on feature detection extends far beyond the scope of this thesis.
However, the area of human-body tracking is relatively conservative regarding image
features. Silhouettes, edges, and occasionally disparity maps are indeed the basis of
the vast majority of trackers. This short overview, although not exhaustive, is there-
fore representative of the common current evaluation schemes used for human-body
tracking.

The next sections describe how the volumetric reconstruction from Chapter 3 can
be used as a basis for the efficient evaluation of the likelihood. We start in Section 6.4.2
by introducing a direct voxel-based evaluation scheme, and improve its efficiency in
Sections 6.4.3 and 6.4.4 by exploiting the blob-fitting procedure from Chapter 4 into a
fast blob-to-blob evaluation scheme.

6.4.2 Direct Voxel-Based Particle Evaluation

The appearance model associated with a given configuration Ct of the model is a
set of blobs B = {B1, . . . , BNb

}. As we saw in Section 4.3, the attributes of the
blobs are automatically acquired from the data, and new sets of blobs B can be readily
generated for any model configuration Ct. In other words, the the configuration vector
Ct conditions fully the set of blobs B. The evaluation of the likelihood distribution at

153

CHAPTER 6. BAYESIAN TRACKING WITH MONTE-CARLO SAMPLING

a given configuration vector Ct is as follows:

P (zt | Ct) ∝ P (Voxels | B)

=
∏

Vi∈Voxels

sV
3
i .P (Vi | B)

=
∏

Vi∈Voxels

sV
3
i .

Nb∑
j=1

P (Vi | Bj)

(6.14)

Using the formulation of P (Vi | Bj) from Equation 4.6 (Section 4.2.3), and taking the
logarithm of the expression gives:

log P (zt | Ct) ∝
∑

Vi∈Voxels

sV
3
i . log

(
Nb∑

j=1

1

(2.π)3.
√
|Σj|

.e−
1
2
DM (Vi,Bj)

)
(6.15)

This expression can be further simplified by exploiting the fact that blobs are not over-
lapping. The likelihood of each voxel is then computed exclusively with respect to the
most probable Gaussian blob:

log P (zt | Ct)
∝'

∑
Vi∈Voxels

sV
3
i . max

j=1..Nb

(− log |Σj| −DM(Vi, Bj)) (6.16)

Even with a low number of blobs, and exploiting the hierarchical nature of the
voxel space, it is easy to see how this formulation remains far too computationally
expensive for the online evaluation of a full set of particles. One must keep in mind
that this scheme is nonetheless much more efficient than most image-based evaluation
methods, that would require testing all the pixels for all the camera views. In the next
sections, we propose a far more efficient evaluation scheme exploiting the blob fitting
procedure from Chapter 4.

6.4.3 Data Density as a Mixture of Gaussians

In Section 4.2, we showed how to fit a mixture of Gaussian blobs onto the 3-D voxels
in real-time using an EM-like procedure. Provided that this blob-fitting procedure
is reliable enough, the resulting set of blobs constitutes an ideal basis for efficient
evaluation of particles. Each set of blobs can be assimilated to a mixture of Gaussians,
for which we can derive an efficient measure of similitude based on the cross-entropy.

As with every EM-based algorithm, the reliability of blob-fitting strongly depends

154

CHAPTER 6. BAYESIAN TRACKING WITH MONTE-CARLO SAMPLING

Figure 6.7: Blobs fitting process. (left) The reconstructed volume for the current
frame, and the mode of the posterior corresponding to the last tracked position.
(middle) The particles approximating the posterior are propagated using local dy-
namics and the VLMM. (right) The blob-fitting is performed from the centres of
the clusters with high support (displayed in blue), and the maximum-likelihood set
of blobs is retained.

on initialisation. The number of blobs and their attributes are known from the appear-
ance model, but their actual positions depend on the pose of the underlying kinematic
model. Initialising EM from the tracked position in the last frame can prove insufficient
for fast movements. Fortunately, the VLMM can predict the next possible clusters by
traversing the automaton from the last tracked positions. EM is then performed from
the means of these clusters, and the maximum-likelihood result is retained.

A strength of the particle filter is the ability to track multiple hypotheses at once.
Different states in the VLMM can therefore be represented by meaningful numbers of
particles. In order to avoid biasing the evaluation process, EM should be performed
from every predicted maximum of the posterior. To achieve this, we count the num-
ber of particles corresponding to each cluster after resampling and prediction. If this
number is greater that a given ratio of the total number of particles, then the corre-
sponding cluster maps to significant values of the predicted posterior, and EM must
be performed from the centre of the cluster (illustration in Figure 6.7). In practice,
we take the threshold ratio to be 1/10 of the total number of particles, which allows
simultaneous tracking of multiple hypothesis and prevents unnecessary computations
from clusters with low support.

The likelihood of each set of blobs obtained after performing EM from the clusters
with high support is evaluated using Equation 6.16. Even though this formulation is
too expensive for real-time evaluation of all particles, its performance is sufficient to
evaluate the small number of candidates resulting from EM. Let us denote as B̂ =

155

CHAPTER 6. BAYESIAN TRACKING WITH MONTE-CARLO SAMPLING

{B̂1 . . . , B̂Nb
} the set of blobs with the greatest likelihood.

This blobs-fitting procedure has the important advantage of detecting tracking fail-
ures: if the best mixture B̂ has a low likelihood, the tracker is lost and needs re-
initialisation. Unlike most other trackers, automatic recovery from failures is then
possible because the parameter space is clustered in motion prototypes. Performing
EM from all clusters might provoke a noticeable lag, depending on the total number
of prototypes, but is bound to return a good result. The VLMM state of all particles
is then reset, which has the effect of spreading them across the clusters. To ensure a
quick recovery, a bias towards the clusters that returned the best mixtures is introduced
for the first state transition.

6.4.4 Fast Particle Evaluation as Cross-Entropy Measure

A model configuration (particle) is evaluated by first generating an appearance model
from the particle state, and then comparing the produced set of blobs with the maxi-
mum likelihood set of blobs B̂ obtained after EM. Figure 6.8 illustrates the evaluation
framework. Let us denote as B = {B1, . . . , BNb

} the set of blobs generated from
a given particle of configuration Ct (the generation of the appearance model is per-
formed according to Section 4.3.1). In the following, we shall assimilate the sets of
blobs B̂ and B to mixtures of Gaussians, which assumes equal priors for each Gaussian
blob:

∀x ∈ R6 P (x|B̂) =

Nb∑
i=1

1

Nb

P (x|B̂i) P (x|B) =

Nb∑
i=1

1

Nb

P (x|Bi) (6.17)

The cross-entropy between two statistical distributions reflects the “energy” that
is required to transform one distribution into the other. By contrast to some simpler
metrics (comparing only the means and the variances between two distributions), the
cross-entropy compares all the moments of the statistical distributions simultaneously.
The distance corresponding to the measure of cross-entropy is often referred to as the
Kullback-Leibler (KL) divergence, and defined as:

DKL(B‖B̂) =

∫
R6

P (x|B) ln
P (x|B)

P (x|B̂)
dx (6.18)

where d = 6 is the dimensionality of the Gaussian blobs. For a mixture of Gaussians,

156

CHAPTER 6. BAYESIAN TRACKING WITH MONTE-CARLO SAMPLING

VLMM Image Data

Evaluation

Appearance
Model
Candidate

Initialisations
for Blobs Fitting

Local
Dynamics

Volumetric
Reconstruction

Blobs
Fitting

k 2

Bias for the choice
of Gaussian cluster

k5

k5

k3

k 2

k 4

k 2k 3 k2

k3 k 4

k 2k 3

Figure 6.8: Overview of the particle evaluation framework. The visual hull is first
reconstructed (a) from the input images. The maximum-likelihood set of blobs
B̂ is then found (b) by performing EM from the centres of the clusters with high
support (c). The particles are evaluated by generating a blob-model (d) from their
configuration vector, and measuring the cross-entropy (e) between the two sets of
blobs.

this formulation can be expanded as:

DKL(B‖B̂) =

Nb∑
i=1

1

Nb

∫
R6

P (x|Bi) ln P (x|B)dx−
Nb∑
i=1

1

Nb

∫
R6

P (x|Bi) ln P (x|B̂)dx

This formulation is simplified by exploiting the fact that the blobs are well separated
(minimal overlapping). The mixture B was generated including non-overlapping con-
straints, and B̂ was computed with binary support maps, limiting overlapping during
EM. Using the approximation proposed by [GGG03], we approximate the sum over

157

CHAPTER 6. BAYESIAN TRACKING WITH MONTE-CARLO SAMPLING

the mixture B̂ by the contribution of the closest blob only:

DKL(B‖B̂) ' 1

Nb

(
Nb∑
i=1

∫
R6

P (x|Bi) ln
1

Nb

P (x|Bi)dx

−
Nb∑
i=1

max
j∈[1..Nb]

∫
R6

P (x|Bi) ln
1

Nb

P (x|B̂j)dx

)

=
1

Nb

Nb∑
i=1

min
j∈[1..Nb]

DKL(Bi‖B̂j)

Moreover, correspondence between blobs is maintained under the form Bi ↔ B̂π(i),
so that the complexity of the run-time evaluation function becomes linear with respect
to the number of blobs:

DKL(B‖B̂) ' 1

Nb

Nb∑
i=1

DKL(Bi‖B̂π(i)) (6.19)

This last formulation can be efficiently computed using the closed form solution of the
KL divergence between two Gaussian blobs B ∼ N (µB,ΣB) and B̂ ∼ N (µ bB,Σ bB):

DKL(B‖B̂) =

∫
R6

P (x | B) ln
P (x | B)

P (x | B̂)
dx

=
1

2

(
ln
|ΣB|
|Σ bB| − 6 + tr(Σ−1

B Σ bB) + (µ bB − µB)TΣ−1
B (µ bB − µB)

)
(6.20)

The weighting of a particle is proportional to the inverse of the relative entropy
DKL(B‖B̂) between the particle and the set of blobs corresponding to image evidence.
The proportionality factor is unimportant since the weights are re-normalised before
resampling.

6.5 Discussion and Conclusion

This chapter started with a general introduction to Bayesian tracking and Monte-Carlo
approaches, where the need of a good prediction scheme for both performance and
robustness was highlighted. We then introduced a novel prediction scheme, based on
the automatic decomposition of the parameter space into clusters of elementary move-
ments, and the learning of the transitions between these clusters with a VLMM. The

158

CHAPTER 6. BAYESIAN TRACKING WITH MONTE-CARLO SAMPLING

second part of the chapter focused on the evaluation of the likelihood. We presented
a fast evaluation technique based on the relative entropy between sets of blobs. An
extensive evaluation of this tracking framework will be the topic of Chapter 7.

The extension of the dynamic model to include the first derivatives of the global
parameters is the subject of future work. We feel that this relatively straightforward
extension could improve greatly the accuracy of the propagation scheme. Another
potentially important extension could be the learning of stylistic variations between
subjects, as proposed by Brand [BH00]. Predictions could then become more accurate
for a specific subject, while extrapolation to unseen styles would be possible.

Another worthwhile research topic would be the projection of the parameter space
onto a lower dimensionality manifold, where dynamics could be easier to learn and
correlations between the parameters implicitly encoded. Recent developments in this
area, based on Scaled Gaussian Process Latent Variable Models [Law04, GMHP04,
UFHF05], suggest the clear benefits of the method, particularly when a limited amount
of training data is available. To date, SGPLVMs have still not been used in the context
of Monte-Carlo Bayesian tracking.

159

Chapter 7
Overall Evaluation

This chapter presents the evaluation of our Bayesian tracking algo-
rithm on challenging sequences of ballet dancing. We start by de-
scribing the hardware setup used to capture the video streams. We
then detail the content of the video sequences and the acquisition of
the ground-truth data. The evaluation consists of a visual inspection,
followed by quantitative error measurements. We also compare our
algorithm to other standard methods. After some performance re-
sults, a discussion about the scalability of the system concludes the
chapter.

7.1 Hardware Setup and Test Sequences

This section describes the acquisition of the test sequences, and the training of the
dynamic model from Section 6.3 on the training data.

7.1.1 Hardware Setup

All video sequences presented in this thesis were captured using commodity hardware.
We used 5 webcams capturing video sequences at 30 frames per second, in 320×
240 resolution. The images were acquired in YUV:422 format, which means that the
chrominance components were sub-sampled, reducing the quality of the image. The
videos were acquired by a single computer to which all cameras were linked through
an IEEE1394 (also known as “firewire”) bus.

160

CHAPTER 7. OVERALL EVALUATION

No external triggering being available, the synchronisation between multiple views
is approximate. At full framerate (30fps), the maximal delay between frames is quite
small, so that the level of synchronisation is sufficient for most applications. The
reconstruction of fast movements (more than 10cm per frame), however, suffers from
this lack of accurate synchronisation.

The cameras also exhibit a high level of noise (analysed in Chapter 2). The speed
of the shutter was kept at the minimum to limit motion blur, but the problem with
short exposure times is that a strong lighting is required. Since we could not reach a
sufficient level of lighting, we had to increase the gamma correction, which has the
undesirable effect of accentuating the noise.

The calibration of both intrinsic and extrinsic camera parameters was performed
using Bouguet’s Matlab Toolbox [Bou]. This toolkit implements the calibration proce-
dure described by Zhang [Zha00]. A chessboard pattern was used to acquire coplanar
points, and perform the full calibration. The placement of the cameras was limited to
arrangements where all views had a full coverage of the chessboard pattern.

Finally, even though the tracking space was emptied to allow the dancers to perform
safely, no particular effort was made to facilitate the background segmentation. It can
be noticed on the video sequences that the background is still cluttered, and that the
clothing of the dancers is very similar in colour to some elements in the background.

7.1.2 The Ballet Dancing Sequences

Ballet dancing is an interesting application for the evaluation of human-body tracking
algorithms because of its diverse body postures, and its fast and challenging move-
ments. The speed of execution is a key challenge and represents an important test for
human-body tracking algorithms. Finally, ballet dancing is a structured activity, al-
lowing some predictability in the succession of the movements, therefore making the
learning of behaviour patterns possible.

We evaluated our tracking algorithms on ballet dancing sequences, captured with
students of Kate Simmons Dance Ltd. Our dancers were not professional ballet dancers
and as a consequence, the choreographies were only reproduced approximately. We
insist on this point because it makes the learning of dynamics and the generalisation
from examples particularly challenging.

The dancers performed a complex sequence composed of 2 exercises, amounting to
approximately 1500 frames (750 frames for each exercise). The choreography of each
exercise is given in standard ballet notations in Table 7.1. The test sequences feature

161

CHAPTER 7. OVERALL EVALUATION

Exercise 1 Exercise 2
1. Glissade derrière

2. Jeté derrière

3. Coupé

4. Assemblé dessous

5. Sissonne fermée devant

6. Sissonne fermée derrière

7. Sissonne fermée de côté

1. Deux Balancés

2. Pas de côté droit soutenu

3. Dégagé de côté droit

4. Préparation pour la Pirouette

5. Double Pirouette fermée
derrière

Table 7.1: Description of the dance exercises in standard ballet notation.

the full choreography (both dance exercises), while the training sequences consist of 3

repetitions of each dance exercise.

7.1.3 Ground-Truth and Training Data

The data used respectively for training and quantitative evaluation were obtained by
manual annotation of the video sequences. The 2-D locations of 12 body parts were
first annotated for each frame of the sequence, and for all camera views. The 3-D
locations of the body parts were then computed as a linear optimisation problem, min-
imising the reprojection error. The trajectories of the body parts were then smoothed
and interpolated from, as described in Section 6.3.2. The joint angles were finally re-
covered using inverse kinematics. We obtained a total of 13000 frames for training by
oversampling and varying the amount of smoothing for each training sequence.

For each dance exercise, we automatically clustered the training data using our own
implementation of the EM algorithm proposed by Figueiredo et al. [FJ02], as described
in Section 6.3.2. A total of 122 clusters were found for the full choreography (both
dance exercises), which can seem high but actually reflects the underlying complexity
of the motions. As a comparison, the same clustering on a simpler “arms pointing”
sequence returned only 5 clusters.

The data-path of the parameters across the Gaussian clusters was used to train a
variable length Markov model with various maximal history lengths. Using a maximal
memory length of 10, the VLMM learnt 948 distinct states. This number of states
rose to 2262 with a maximal length of 20 and 2890 with a maximal memory length of
30. All VLMMs were trained with a threshold on the Kullback-Leibler divergence of

162

CHAPTER 7. OVERALL EVALUATION

ε = 0.0001 (see [RST96] for details).

7.2 Tracking Results

In this section, we present the results of the tracking of the ballet-dancing sequences
using our algorithm. We then compare accuracy and robustness against other standard
techniques.

7.2.1 Visual Analysis

Figures 7.1 and 7.2 show the tracked model pose, superimposed on one of the 5 input
views used to capture the first dancing exercise. We used for this sequence a VLMM
with maximal history of 20 frames and 1000 particles. The tracking is successful over
the whole sequence, but it can be noticed that on a few frames, the tracked position does
not match exactly the subject. Poor image evidences are mainly to blame, especially
in presence of fast movements generating motion blur. A second explanation is the
relatively small amount of training data (3 repetitions of the exercise), making the
generalisation of the motions difficult. Finally, as for all Monte-Carlo techniques, the
true mode of the posterior is difficult to reach, so that the displayed pose does not
necessarily reflect the underlying distribution of the particles.

Despite these shortcomings, and even if the tracked position is sometimes approx-
imate, the overall pose of the body remains coherent with both the training sequences
and image evidence. The dynamic model propagates particles only in plausible direc-
tions, so that the model never falls into obviously impossible poses. The consistency of
the pose is enforced, even when image evidence is very poor. These results appear very
promising for the future, as we could expect tracking accuracy to improve substantially
using cameras with better resolution and synchronisation.

A subject performing the second dance exercise is tracked in Figures 7.3 and 7.4.
More particles (2000) had to be used for this sequence because of the fast rotation of
the root of the kinematic tree, for which no dynamic model is currently learnt. We
expect the number of required particles to be significantly reduced with the inclusion
of the derivatives of the global parameters into the dynamic model.

Once again, despite occasional inexact positionings, tracking was successful over
the whole sequence. This second dance exercise is particularly challenging because the
limbs tend to stay close to the body during fast rotations (pirouette). In these cases of

163

CHAPTER 7. OVERALL EVALUATION

Figure 7.1: Tracking the first dancing exercise, with a VLMM history of 20
frames, and 1000 particles. The video sequence is sampled every 5 frames, corre-
sponding to 167ms (continued in Figure 7.2).

164

CHAPTER 7. OVERALL EVALUATION

Figure 7.2: End of the tracking of dance exercise 1 (continued from Figure 7.1).

important self-occlusions combined with motion blur, the reconstructed volume pro-
vides very poor image evidence. The motion prior is then fully exploited, constraining
the poses of the model to the learnt configurations. The ability of the particle filter to
keep track of multiple hypothesis is also important for automatic recovery after periods
of ambiguous likelihood function.

7.2.2 Quantitative Error Measurements

We now present comparative error measurements between our algorithm, and other
standard approaches based on particle filters. The CONDENSATION [IB98a] algo-
rithm propagates particles using the predictions of an auto-regressive process (ARP).
Due to the complexity of human dynamics in full parameter space, a single ARP could
not be learnt, and the particles are instead propagated using the process noise. Anneal-
ing [DBR00] iterates a propagation-evaluation loop over multiple layers, in a “coarse
to fine” manner. Having no informed (as opposed to random) predictive model, these

165

CHAPTER 7. OVERALL EVALUATION

Figure 7.3: Tracking the first dancing exercise, with a VLMM history of 20
frames, and 2000 particles. The video sequence is sampled every 5 frames, corre-
sponding to 167ms (continued in Figure 7.4).

166

CHAPTER 7. OVERALL EVALUATION

Figure 7.4: End of the tracking of dance exercise 2 (continued from Figure 7.3).

 0

 10

 20

 30

 40

 50

 60

 70

 250 300 350 400 450 500 550

R
M

S
 p

os
iti

on
 e

rr
or

 (
m

ill
im

et
re

s)

Frame index

VLMM History 20, 1000 particles
CONDENSATION, 5000 particles

Annealing, 5x1000 particles

Figure 7.5: Accuracy comparison between the particles propagation schemes of
CONDENSATION, annealing, and our method. The RMS joint position error with
the manually annotated ground truth is shown for the first dance exercise.

two methods are unable to provide a good initialisation for the blob-fitting procedure,
and quickly fail in normal tracking conditions. Even with 5000 particles evaluations,
they both quickly lose track when used in our “blobs evaluation” framework, as illus-
trated in Figure 7.5. Our algorithm, however, maintains a good overall accuracy with
only 1000 particles. A momentary tracking failure around frame 420 is automatically
detected and recovered from by reinitialising the VLMM.

To keep the comparison focused on the dynamic models, we use the same like-
lihood distribution for all three algorithms (CONDENSATION, annealing and our
method). At each frame, the blob-fitting procedure is initialised from the annotated
ground-truth pose of the model. This provides a good, but also realistically noisy,
likelihood function for all three algorithms. Results are reported in Figure 7.6. Even
using 5000 particles, CONDENSATION is unable to explore the parameter-space in
all appropriate directions, resulting in a poor overall accuracy. The Annealed particle

167

CHAPTER 7. OVERALL EVALUATION

 0

 2

 4

 6

 8

 10

 12

 250 300 350 400 450 500 550

R
M

S
 jo

in
t a

ng
le

 e
rr

or
 (

de
gr

ee
s)

Frame index

VLMM History 20, 200 particles
Annealing, 5x1000 particles

CONDENSATION, 5000 particles

Figure 7.6: Accuracy comparison between the particles propagation schemes of
CONDENSATION, annealing, and our method. All three algorithms are evalu-
ated against a common likelihood function, in which the blob-fitting procedure is
initialised from the annotated ground-truth.

filter uses only 1000 particles, but because of the 5 layers of annealing, the compu-
tational cost remains equivalent to CONDENSATION. Annealing produces relatively
accurate results in most of the test sequence, although it is still distracted by the noisy
likelihood function. Annealing also tends to focus particles on a single mode of the
posterior, limiting the ability of the tracker to recover from ambiguous situations. We
tested our propagation method with only 200 particles. Despite having 25 times less
particle-evaluations than the two other methods, accuracy and robustness were main-
tained throughout the sequence.

Figure 7.7 compares the accuracy of predictions using various memory lengths for
the VLMM and only 200 particles. A memory of 1 frame (first order Markov model)
is insufficient to capture the complexity of the succession of movements, and wastes
particles by propagating them to the wrong clusters. Accuracy is therefore penalised
by the smaller number of particles tracking the right pose. With a longer memory,
the propagation of the particles is more focused, and the overall accuracy is improved.
The accuracy of the prediction is slightly improved by increasing the maximal memory
length of the VLMM from 10 frames to 20 frames.

The optimal memory length of the VLMM can be experimentally determined by
measuring the relative entropy between the predictions of the trained VLMM and test
sequences. Unfortunately, we could not carry out this these types of experimentations,
mainly because of the limited amount of training data. A maximal memory length of
20 currently seems to give the best results, but a more systematic testing is needed. For
more details about optimising the parameters of variable length Markov Models, the

168

CHAPTER 7. OVERALL EVALUATION

 0

 2

 4

 6

 8

 10

 12

 250 300 350 400 450 500 550

R
M

S
 jo

in
t a

ng
le

 e
rr

or
 (

de
gr

ee
s)

Frame index

VLMM with Max. History 20
VLMM with Max. History 10

First order Markov Model

Figure 7.7: Prediction accuracy for various history lengths of the Markov model,
using 200 particles.

reader is referred to [Gal01].

7.3 Performance Considerations

Table 7.2 reports performance measurements on a 2 GHz Pentium 4. The timings of the
volumetric reconstruction are similar to these presented in Section 3.5. As mentioned
earlier, the maximal recursive depth of the 3-D reconstruction is the main parameter
which conditions both performance and accuracy. A maximal depth of 6 (64×64×
64 voxels) produces a coarse reconstruction, but is nevertheless sufficient for some
tracking requirements. All the results presented in this section were obtained with a
maximal recursive depth of 7 (128×128×128 voxels), which gives a good compromise
between efficiency and accuracy. Also, the low resolutions of our cameras (320×
240) made finer reconstructed volumes meaningless. However, when using higher
resolution cameras, a maximal recursive depth of 8 (256×256×256 voxels) can be
envisaged, still running with a competitive level of performance.

Because of the linear complexity of EM with respect to the data, the cost of the
blob-fitting procedure is strongly influenced by the number of reconstructed voxels.
The timings are reported in Table 7.2 for a single blob-fitting procedure, and should
therefore to be multiplied by the number of actual blob-fittings performed at each
frame. The number of candidate clusters for the blobs-fitting highly depends on the
predictions of the VLMM. As the predictions are more accurate, less particles are
propagated to the wrong clusters, and the effective number of blob-fittings is decreased.
When using a VLMM with a maximal history of 20 frames, the number of candidate

169

CHAPTER 7. OVERALL EVALUATION

3-D Reconstruction Blobs Particle Filter
Max. Depth 3 views 4 views 5 views Fitting 500 1000
D+ =6 11.0ms 11.1ms 12.8ms 3.1ms
D+ =7 24.1ms 22.8ms 28.1ms 14.8ms 20.7ms 45.3ms
D+ =8 73.5ms 66.0ms 78.6ms 74.1ms

Table 7.2: Overall performance measurements.

clusters was below 5 in most of the dance sequence, corresponding to a total time
below 74ms per frame. When a re-initialisation of the tracker is needed, however, it
implies fitting the blobs from all the clusters. With 122 clusters, each re-initialisation
provokes a lag or nearly 2 seconds.

The performance of the particle filter including resampling, propagation and eval-
uation is also reported for 500 and 1000 particles in Table 7.2. These timings are
independent of the maximal recursive depth of the 3-D reconstruction because the
evaluation of the particles is only based on the fitted blobs. All algorithms composing
the particle filter have a linear complexity with respect to the number of particles. The
framework can therefore scale to large numbers of particles, which can be managed in
real-time, thanks to the fast evaluation procedure.

The full tracker with a reconstruction depth of 7 and 1000 particles ran at an average
of 8.5fps over the dance sequence. While special care has been given to the algorithms,
we believe that the efficiency of the implementation could be improved by a significant
margin with low-level optimisations. Considering the extra overheads, such as disk
accesses or displays, this final performance result satisfies our original objective of
running in real-time on a single computer. Let us finally mention the great potential
for parallelisation of the whole system. Not only all modules can run concurrently on
a multi-processor system, but also each individual module can be parallelised in a very
straightforward manner.

7.4 Discussion on the Scaling Issue

Even if our test sequences exhibited diverse and challenging movements, more tests
would be needed to confirm the applicability of the method to other types of behaviour.
Because of their simple dynamics, atomic and cyclic activities, such as walking, should
be straightforward to learn. The main challenge, however, would be to try learning
large amounts of diverse activities altogether. Unfortunately, this type of large-scale

170

CHAPTER 7. OVERALL EVALUATION

evaluation could not be performed in the scope of the work described in this thesis be-
cause it would have required a readily available motion capture setup. We can nonethe-
less extrapolate on the potential issues and benefits of our predictive framework, when
confronted with larger sets of motions.

Clustering the parameter space into atomic behaviours should not suffer from a
larger database of movements. No dimensionality reduction method was employed, so
that clustering is performed in the full parameter space in which different motions are
naturally separated out. Of course, we expect some atomic movements to be recurrent
in diverse types of behaviour, but this is actually a benefit as the number of clusters
would not grow linearly with the size of the dataset.

The process of learning transitions between clusters should also scale naturally to
a larger dataset. The variable length Markov models are designed to optimise locally
their memory length, so that the size of the VLMM should remain manageable. The
computational cost of the predictions would remain unaffected by a more complex
VLMM because of the finite state automaton structure.

With the increased number of clusters, the advantage of VLMMs over lower or-
der models should however become more prominent A long history should allow be-
haviours to be differentiated, and predictions to be performed accordingly. For exam-
ple, even if the walking cycle shares some clusters of atomic movements with other
types of behaviours, the VLMM would associate these common clusters with the cur-
rent behaviour based on contextual history. When a subject is walking, the predictions
of the VLMM would then be unaffected by other types of behaviours sharing common
atomic motions, but different from their context.

Of course, problems will still appear for movements previously unseen in the train-
ing data. In the current implementation of the system, nothing is done to handle these
cases, and the tracker has to be reinitialised. As long as the total number of clusters
remains significantly lower than the number of particles, this simple reinitialisation of
the VLMM works well. However, for larger pools of diverse movements, a simple
reinitialisation can prove both computationally expensive and inefficient. Unfortu-
nately, switching back to a stochastic propagation method is not a viable option, as we
demonstrated in this chapter that such methods are incapable of exploring the whole
parameter space. This difficult problem is left open for future research.

171

CHAPTER 7. OVERALL EVALUATION

7.5 Conclusion

In this chapter, we evaluated our Bayesian tracking algorithm on challenging sequences
of ballet dancing. The visual results exhibited the complexity of the sequences, and
the poor image evidence that the tracker had to handle. A series of quantitative error
measurements allowed us to evaluate our method against other standard algorithms.
We demonstrated the benefits of our predictive scheme for both increased robustness
and accuracy. Finally, we evaluated the performance of the system and its suitability
for real-time applications with some benchmarks.

172

Chapter 8
Conclusion and Future Work

We now review the key points of the work presented in this thesis,
followed by a summary of achievements, and suggestions of possible
extensions and future work.

8.1 Summary of the Thesis

In this thesis, we have introduced two algorithms for real-time full human body track-
ing. Both techniques are based on the prior volumetric reconstruction of the subject
of interest, and the fitting of 3-D Gaussian blobs. An important design constraint is to
keep all algorithms efficient enough to reach real-time performance. This is achieved
in various ways without compromising on robustness.

Our hierarchical volumetric reconstruction algorithm is based on the more general
shape-from-silhouette paradigm, using background segmentation on each input view.
Unlike other approaches, the extraction of the silhouettes is not artificially separated
from the reconstruction process, which allows the classification of voxels using robust
discriminative statistics. Performance is improved by segmenting only the required
pixel samples, and robustness benefits from the combination of multiple views for
ambiguous cases. We also include colour information into the reconstructed volume,
in a fast and straightforward manner.

The blob-fitting procedure is designed to exploit the hierarchical structure of the
reconstructed volume. We have detailed the two steps of an EM-like procedure which
fits blobs onto reconstructed body parts using both position and colour. We have also
introduced an automatic procedure to acquire the number of blobs and their disposition
onto the kinematic model.

173

CHAPTER 8. CONCLUSION AND FUTURE WORK

Our first tracking technique uses direct inference to recover the pose of the kine-
matic model from the set of fitted blobs. A set of goal positions is computed from
the blobs, and the pose of the model is recovered as an inverse kinematics problem.
This bottom-up approach has the clear advantage of simplicity and performance, and
is adapted to many practical scenarios like human-computer interactions or upper-body
tracking.

Our second approach to tracking estimates the distribution of the posterior with
a set of discrete samples. The propagation of the particles is based on a relatively
complex prediction scheme, decomposing the parameter space into clusters of elemen-
tary movements, and predicting the transitions between these clusters with a VLMM.
Real-time performance is achieved with an evaluation scheme based on the relative en-
tropy between two sets of blobs. Tests show the good robustness of the method, even
confronted with challenging movements such as those found in ballet dancing.

8.2 Summary of Achievements

The final, and most important achievement of the work described in this thesis is the
successful tracking of the ballet-dancing sequences presented in Chapter 7. To our
knowledge, tracking such fast and complex motions in real-time is presently unique.
The novel prediction and evaluation schemes that we developed for this purpose enable
robust tracking at a greatly reduced cost when compared to the standard Bayesian
Monte-Carlo framework.

With the hierarchical tracking technique, we demonstrate a low cost algorithm ca-
pable of handling non-critical motions. While the method is arguably less robust than
the Bayesian one, it is also more general in the sense that no motion model has to be
learnt.

Although they are not the direct aim of this thesis, the volumetric reconstruction
and the blob framework, on which both tracking methods are built, constitute worthy
contributions by themselves. The full volumetric reconstruction runs in real-time on
a single computer while being robust enough to cope with noisy input images and
cluttered backgrounds. Colour is incorporated at a very low extra-cost, making the full
reconstruction algorithm very competitive, both in terms of features and performance.
The appearance model based on 3-D blobs is acquired automatically and is efficiently
fitted to the voxels.

174

CHAPTER 8. CONCLUSION AND FUTURE WORK

8.3 Future Work and Possible Extensions

While usable and potentially useful for real applications, the work presented in this
thesis is not a general solution to the human-body tracking problem. A number of sim-
plifications and shortcuts had to be employed to obtain a running system, but we could
expect most of these to disappear in the future. Our background segmentation scheme,
for example, currently necessitates an empty scene at start-up and cannot cope with
changing environments. An automatic acquisition and update scheme would be very
useful, and would make the system more practical. A possible idea for such a scheme
would be to update incrementally the models of the pixels which we know (from the
tracked model) belong to the background. Other constraints that could be dealt with in
a foreseeable future include automatic camera calibration and synchronisation.

Another type of improvement concerns the modelling of the subject, which is quite
crude in our current system. The appearance model, composed of blobs, represents
efficiently the body parts but is incapable of modelling accurately finer features such as
the face or the hands. Experimenting with more complex statistical distributions could
lead to more accurate results, but would also involve more processing. Nevertheless,
this step might become unavoidable in the ambition of recovering the pose of more
body parts, such as the feet or the hands. For these comparatively small parts of the
body, learnt motion models are likely to play a major role when image evidence is
insufficient.

As mentioned in Chapter 5, the kinematic model would benefit from a parametrisa-
tion without singularities. Replacing Euler angles with quaternions should be relatively
straightforward and integrate well into the Bayesian framework. Another practical ex-
tension would be the automatic acquisition of the kinematic structure. Although we
believe that some kind of prior knowledge about the kinematics of the target is neces-
sary, learning automatically the relative sizes of the limbs could help adapt to different
morphologies. This process could be coupled with the dynamic learning of the appear-
ance model.

In the current scheme, the blobs-fitting procedure requires a good initialisation to
be able to “snap” blobs to the correct voxels. This bias from the predictive model
towards the image evidence is an important limitation of our approach. When a cor-
rect initialisation cannot be provided, the blobs used as image evidence can become a
wrong interpretation of the image data, and generate tracking failures. Breaking this
link from tracking (even with a good prediction scheme) to image evidence is a future
research goal. Some EM algorithms which alleviate the need for a good initialisation

175

have been proposed [FJ02], but additional experiments are needed to evaluate the com-
putational efficiency of these methods, and how they would maintain consistency when
presented with noisy and incomplete voxel data.

Simultaneous tracking of multiple subjects would open a new range of applica-
tions. It is still not clear how robustly our system would perform when presented with
multiple subjects. The shape-from-silhouette algorithm used for reconstruction is the
main potential problem, as multiple subjects would generate an important number of
occlusions. The number of cameras and their dispositions would then play a crucial
role, which remains to evaluate. The rest of the tracking process should generalise
painlessly.

A final research area is the learning of the dynamic and behaviour models. A num-
ber of significant improvements could be made in this area, with the common objective
of modelling more accurately a wider range of activities. Dimensionality reduction
methods, such as SGPLVMs, are a promising direction worth investigating. An impor-
tant part of human dynamics could be encoded on a lower dimensionality manifold,
hence increasing the power of expression of the Gaussian clusters. Modelling stylistic
variations would also make it easier to generalise from a simpler model, and provide
more accurate predictions. Online learning, where unseen sequences are incrementally
integrated into the behaviour model, would also represent a worthy contribution.

Learnt predictions could finally be assisted with physical priors. As a general rule,
incorporating more prior knowledge into the model can only help in tracking (as long
as this knowledge proves to be valid) and in cutting down the size of the required
training dataset. Kinematic constraints can obviously be incorporated into the model
to avoid impossible poses. Other priors based on the laws of physics, such as the overall
balance of the subject, could also make predictions more accurate, even confronted to
movements unseen in the training data.

176

Bibliography

[AMGC02] Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim
Clapp. A tutorial on particle filters for online nonlinear/non-gaussian
bayesian tracking. IEEE Transactions on Signal Processing, 50:174–
188, February 2002. (Cited on pages 138, 139, and 140).

[AT04] Ankur Agarwal and Bill Triggs. Tracking articulated motion using
a mixture of autoregressive models. In 8th European Conference on

Computer Vision (ECCV 2004), Prague, Czech Republic, May 11-

14, 2004. Proceedings, Part III, volume 3023 of Lecture Notes in

Computer Science, pages 54–65. Springer, 2004. (Cited on page 143).

[AV89] Narendra Ahuja and Jack E. Veenstra. Generating octrees from ob-
ject silhouettes in orthographic views. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 11(2):137–149, 1989. (Cited on
page 57).

[Bau74] Bruce Guenther Baumgart. Geometric modeling for computer vision.

PhD thesis, Stanford University, 1974. (Cited on page 57).

[BD02] Eugene Borovikov and Larry Davis. 3D shape estimation on den-
sity driven model fitting. In Proceedings of the 1st International

Symposium on 3D Data Processing Visualization and Transmission

(3DPVT’02), pages 116–126, 2002. (Cited on pages 59, 61, 84,
and 110).

[BDC01] Adrian Broadhurst, Tom W. Drummond, and Roberto Cipolla. A
probabilistic framework for space carving. In Proceedings of the

177

BIBLIOGRAPHY

8th International Conference in Computer Vision (ICCV), pages 388–
393, Vancouver, Canada, July 2001. IEEE Computer Society Press.
(Cited on page 60).

[BDH96] C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. The
quickhull algorithm for convex hulls. ACM Transactions on Mathe-

matical Software, 22(4):469–483, 1996. (Cited on page 70).

[BH00] Matthew Brand and Aaron Hertzmann. Style machines. In Kurt Ake-
ley, editor, Siggraph 2000, Computer Graphics Proceedings, pages
183–192. ACM Press / ACM SIGGRAPH / Addison Wesley Long-
man, 2000. (Cited on pages 18, 144, and 159).

[BKC04] Matthiew Brand, Kongbin Kang, and David B. Cooper. Algebraic
solution for the visual hull. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR’04), volume 1,
pages 30–35, June 2004. (Cited on page 58).

[BL01a] Andrea Bottino and Aldo Laurentini. Experimenting with motion
capture in a virtual environment. The Visual Computer Journal,
17(1):14–29, 2001. (Cited on page 59).

[BL01b] Andrea Bottino and Aldo Laurentini. A silhouette based technique for
the reconstruction of human movement. Computer Vision and Image

Understanding, 83(1):79–95, July 2001. (Cited on pages 26, 59, 83,
110, and 195).

[BL03] Andrea Bottino and Aldo Laurentini. Introducing a new problem:
Shape-from-silhouette when the relative positions of the viewpoints
is unknown. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 25(11):1484–1493, November 2003. (Cited on page 60).

[BL04] Andrea Bottino and Aldo Laurentini. The visual hull of smooth
curved objects. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 26(12):1622–1632, December 2004. (Cited on page 58).

[BM98] Christoph Bregler and Jitendra Malik. Tracking people with twists
and exponential maps. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR’98), pages 8–15.
IEEE Computer Society, 1998. (Cited on pages 85 and 111).

178

BIBLIOGRAPHY

[BMK+00] Barry Brumitt, Brian Meyers, John Krumm, Amanda Kern, and Steve
Shafer. Easyliving: Technologies for intelligent environments. In Sec-

ond International Symposium on Handheld and Ubiquitous Comput-

ing (HUC 2000), pages 12–27, September 2000. (Cited on page 19).

[BMP04] Christoph Bregler, Jitendra Malik, and Katherine Pullen. Twist based
acquisition and tracking of animal and human kinematics. Inter-

national Journal of Computer Vision (IJCV), 56(3):179–194, March
2004. (Cited on pages 85 and 111).

[BNI99] Andrew Blake, Ben North, and Michael Isard. Learning multi-class
dynamics. In Advances in Neural Information Processing Systems

(NIPS), pages 389–395, Cambridge, MA, USA, 1999. MIT Press.
(Cited on page 143).

[BOP97] Matthew Brand, Nuria Oliver, and Alex Pentland. Coupled hid-
den markov models for complex action recognition. In In Proceed-

ings of Computer Vision and Pattern Recognition (CVPR), page 994,
Washington, DC, USA, 1997. IEEE Computer Society. (Cited on
page 145).

[Bou] Matlab Camera Calibration Toolbox (Y. Bouguet) http://www.
vision.caltech.edu/bouguetj. (Cited on page 161).

[Bra99] Matthew Brand. Shadow puppetry. In Proceedings of the Interna-

tional Conference on Computer Vision (ICCV ’99), volume 2, page
1237, Washington, DC, USA, 1999. IEEE Computer Society. (Cited
on page 144).

[BSD03] Eugene Borovikov, Alan Sussman, and Larry Davis. A high perfor-
mance multi-perspective vision studio. In Proceedings of the 17th

Annual ACM International Conference on Supercomputing (ICS’03),
June 2003. (Cited on page 59).

[BV99] Jeremy S. De Bonet and Paul Viola. Roxels: Responsibility weighted
3D volume reconstruction. In Proceedings of the 7th IEEE Inter-

national Conference on Computer Vision (ICCV), volume 1, pages
418–425. IEEE Computer Society Press, September 1999. (Cited on
page 60).

179

http://www.vision.caltech.edu/bouguetj
http://www.vision.caltech.edu/bouguetj

BIBLIOGRAPHY

[BVZ01] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate
energy minimization via graph cuts. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 23(11):1222–1239, 2001. (Cited
on page 61).

[CA86] C. H. Chien and J. K. Aggarwal. Volume/surface octrees for the rep-
resentation of 3D objects. Computer Vision, Graphics, and Image

Processing, 36(1):100–113, 1986. (Cited on page 57).

[CA89] C. H. Chien and J. K. Aggarwal. Model construction and shape
recognition from occluding contours. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 11(4):372–389, 1989. (Cited on
page 57).

[Can86] John F. Canny. A computational approach to edge detection. IEEE

Transactions on Pattern Analysis and Machine Intelligence (PAMI),
pages 679–698, 1986. (Cited on page 152).

[CBHK04] Kong Man Cheung, Simon Baker, Jessica K Hodgins, and Takeo
Kanade. Markerless human motion transfer. In Proceedings of the

2nd International Symposium on 3D Data Processing, Visualization

and Transmission, September 2004. (Cited on page 152).

[CBK03a] Kong Man Cheung, Simon Baker, and Takeo Kanade. Shape-from-
silhouette of articulated objects and its use for human body kinemat-
ics estimation and motion capture. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR’03), vol-
ume 1, pages 77–84, June 2003. (Cited on pages 85, 110, and 152).

[CBK03b] Kong Man Cheung, Simon Baker, and Takeo Kanade. Visual hull
alignment and refinement across time: A 3D reconstruction algo-
rithm combining shape-from-silhouette with stereo. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR’03), volume 2, pages 375–382, June 2003. (Cited on page 60).

[CBK05] Kong Man Cheung, Simon Baker, and Takeo Kanade. Shape-from-
silhouette across time part i: Theory and algorithms. International

Journal of Computer Vision (IJCV), 2005. (Cited on page 60).

180

BIBLIOGRAPHY

[CF01] Kiam Choo and David J. Fleet. People tracking with hybrid monte
carlo. In IEEE International Conference on Computer Vision (ICCV),
volume 2, pages 321–328, 2001. (Cited on page 145).

[CH87] G. Cormack and R. Horspool. Data Compression using Dynamic
Markov Modelling. Computer Journal, 30(6):541–550, 1987. (Cited
on page 147).

[Che03] Kong Man Cheung. Visual Hull Construction, Alignment and Refin-

ment for Human Kinematic Modeling, Motion Tracking and Render-

ing. PhD thesis, Carnegie Mellon University, June 2003. (Cited on
pages 60, 85, and 196).

[CKBH00] Kong Man Cheung, Takeo Kanade, Jean-Yves Bouguet, and Mark
Holler. A real time system for robust 3D voxel reconstruction of hu-
man motions. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR ’00), volume 2, pages 714–
720, June 2000. (Cited on pages 24, 26, 46, 59, 61, 85, and 196).

[Coh98] Michael Cohen. Design principles for intelligent environments. In
Proceedings of the Fifteenth National Conference on Artificial Intel-

ligence (AAAI’98), Madison, WI, 1998. (Cited on page 19).

[Coh99] Michael Cohen. The future of human-computer interaction or how i
learned to stop worrying and love my intelligent room. IEEE Intelli-

gent Systems, March 1999. (Cited on page 19).

[CTMS03] Joel Carranza, Christian Theobalt, Marcus Magnor, and Hans-Peter
Seidel. Free-viewpoint video of human actors. In Proceedings

of ACM SIGGRAPH, San Diego, pages 569–577, 2003. (Cited on
pages 24, 83, 110, 133, and 151).

[dATM+04] Edilson de Aguiar, Christian Theobalt, Marcus Magnor, Holger
Theisel, and Hans-Peter Seidel. M3: Marker-free model reconstruc-
tion and motion tracking from 3D voxel data. In Proceedings of Pa-

cific Graphics, 2004. (Cited on page 85).

[DBC+99] Larry Davis, Eugene Borovikov, Ross Cutler, David Harwood, and
Thanarat Horprasert. Multi-perspective analysis of human action. In

181

BIBLIOGRAPHY

Proceedings of Third International Workshop on Cooperative Dis-

tributed Vision, November 1999. (Cited on page 59).

[DBR00] Jonathan Deutscher, Andrew Blake, and Ian D. Reid. Articulated
body motion capture by annealed particle filtering. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition,
volume 2, pages 126–133. IEEE Computer Society Press, June 2000.
(Cited on pages 141, 151, and 165).

[DDR01] Jonathan Deutscher, Andrew J. Davison, and Ian D. Reid. Automatic
partitioning of high dimensional search spaces associated with articu-
lated body motion capture. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, volume 2, pages 669–676.
IEEE Computer Society Press, December 2001. (Cited on pages 110,
142, and 151).

[DF99] Quentin Delamarre and Olivier Faugeras. 3D articulated models and
multi-view tracking with silhouettes. In Proceedings of International

Conference in Computer Vision (ICCV’99), volume 2, pages 716–
721, 1999. (Cited on pages 24 and 83).

[DH04] Hannah Dee and David Hogg. Detecting inexplicable behaviour.
In Proceedings of the British Machine Vision Conference (BMVC),
Kingston, UK, Steptember 2004. (Cited on page 19).

[DKD03] David Demirdjian, T. Ko, and Trevor Darrell. Constraining human
body tracking. In Proceedings of the Ninth IEEE International Con-

ference on Computer Vision (ICCV’03), page 1071. IEEE Computer
Society, 2003. (Cited on pages 109 and 111).

[DLR77] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal

Statistical Society Series B, 39(1):1–38, November 1977. (Cited on
pages 86 and 89).

[Dye01] Charles R. Dyer. Volumetric scene reconstruction from multiple
views. In L. S. Davis, editor, Foundations of Image Understanding,
pages 469–489. Kluwer, 2001. (Cited on page 59).

182

BIBLIOGRAPHY

[FB03] Jean-Sébastien Franco and Edmond Boyer. Exact polyhedral visual
hulls. In Fourteenth British Machine Vision Conference (BMVC’03),
pages 329–338, September 2003. Norwich, UK. (Cited on page 58).

[Fel45] W. Feller. The fundamental limit theorems in probability. Bull. Amer.

Math. Soc., 51:800–832, 1945. (Cited on page 28).

[FJ02] Mario A. T. Figueiredo and Anil K. Jain. Unsupervised learning of
finite mixture models. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 24(3):381–396, 2002. (Cited on pages 90, 91,
146, 162, and 176).

[FR97] Nir Friedman and Stuart Russel. Image segmentation in video se-
quences: A probabilistic approach. In Proceedings of the Thirteenth

Conference on Uncertainty in Artificial Intelligence (UAI 97), 1997.
(Cited on pages 26, 46, and 194).

[Gal01] Aphrodite Galata. Learning Variable Length Markov Models of Be-

haviour. PhD thesis, School of Computing, University of Leeds,
2001. (Cited on page 169).

[Gav99] Dariu M. Gavrila. The visual analysis of human movement: A sur-
vey. Computer Vision and Image Understanding: CVIU, 73(1):82–
98, 1999. (Cited on page 141).

[GCMH02] Aphrodite Galata, Anthony G. Cohn, Derek Magee, and David Hogg.
Modeling interaction using learnt qualitative spatio-temporal rela-
tions and variable length markov models. In Proceedings of the Eu-

ropean Conference on Artificial Intelligence (ECAI’02), pages 741–
745, 2002. (Cited on page 147).

[GD96] Dariu Gavrila and Larry Davis. 3D model-based tracking of humans
in action: a multi-view approach. In Proceedings of IEEE Conference

on Computer Vision and Pattern Recognition (CVPR’96), pages 73–
80, 1996. (Cited on pages 83 and 110).

[GGG03] Jacob Goldberger, Shiri Gordon, and Hayit Greenspan. An efficient
image similarity measure based on approximations of kl-divergence

183

BIBLIOGRAPHY

between two gaussian mixtures. In Proceedings of International Con-

ference on Computer Vision (ICCV), pages 487–493, 2003. (Cited on
page 157).

[GJH99a] Aphrodite Galata, Neil Johnson, and David Hogg. Learning Be-
haviour Models of Human Activities. In Procedings of the British

Machine Vision Conference (BMVC), pages 12–22, 1999. (Cited on
page 147).

[GJH99b] Aphrodite Galata, Neil Johnson, and David Hogg. Learning struc-
tured behaviour models using variable length markov models. In
In IEEE Workshop on Modelling People, Corfu, Greece, September
1999. (Cited on page 147).

[GJH01] Aphrodite Galata, Neil Johnson, and David Hogg. Learning Variable
Length Markov Models of Behaviour. Computer Vision and Image

Understanding, 81(3):398–413, 2001. (Cited on page 147).

[GMHP04] Keith Grochow, Steven L. Martin, Aaron Hertzmann, and Zoran
Popovic. Style-based inverse kinematics. ACM Trans. Graph. (Pro-

ceedings of the 2004 SIGGRAPH Conference), 23(3):522–531, 2004.
(Cited on pages 117 and 159).

[GP95] I. Guyon and F. Pereira. Design of a Linguistic Postprocessor using
Variable Memory Length Markov Models. In ICDAR, pages 454–
457, 1995. (Cited on page 147).

[GSD03a] Kristen Grauman, Gregory Shakhnarovich, and Trevor Darrell. A
Bayesian approach to image-based visual hull reconstruction. In Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR’03), volume 1, pages 187–194, June 2003. (Cited
on page 60).

[GSD03b] Kristen Grauman, Gregory Shakhnarovich, and Trevor Darrell. In-
ferring 3D structure with a statistical image-based shape model. In
Proceedings of the IEEE International Conference on Computer Vi-

sion (ICCV’03), volume 1, pages 641–649, October 2003. (Cited on
pages 24 and 60).

184

BIBLIOGRAPHY

[GSS94] N. Gordon, J. Salmond, and A. Smith. Novel approach to non-
linear/non-gaussian bayesian state estimation. In IEE Proceedings

of Radar and Signal Processing, volume 140, pages 107–113, April
1994. (Cited on page 133).

[HGW01a] Michael Harville, Gaile Gordon, and John Woodfill. Adaptive video
background modeling using color and depth. In Proceedings of the

IEEE International Conference on Image Processing (Thessoloniki,

Greece), October 2001. (Cited on pages 26 and 195).

[HGW01b] Michael Harville, Gaile Gordon, and John Woodfill. Foreground
segmentation using adaptive mixture models in color and depth. In
Proceedings of the IEEE Workshop on Detection and Recognition of

Events in Video (Vancouver, Canada), July 2001. (Cited on pages 26
and 195).

[HLGB03] Jean-Marc Hasenfratz, Marc Lapierre, Jean-Dominique Gascuel, and
Edmond Boyer. Real-time capture, reconstruction and insertion into
virtual world of human actors. In Vision, Video and Graphics, pages
49–56. Eurographics, Elsevier, 2003. (Cited on page 59).

[HLS04] Jean-Marc Hasenfratz, Marc Lapierre, and François Sillion. A real-
time system for full body interaction. Virtual Environments, pages
147–156, 2004. (Cited on page 59).

[Hog83] David Hogg. Model-based vision: a program to see a walking person.
Image and Vision Computing, 1(1):5–20, February 1983. (Cited on
pages 18, 83, and 132).

[Hor87] Berthold Klaus Paul Horn. Closed-form solution of absolute orienta-
tion using unit quaternions. Journal of the Optical Society of America,
4:629, April 1987. (Cited on page 110).

[HTH00] Pengyu Hong, Matthew Turk, and Thomas S. Huang. Gesture mod-
eling and recognition using finite state machines. In Proceedings of

the Fourth International Conference on Automatic Face and Gesture

Recognition, pages 410–415, March 2000. (Cited on page 145).

185

BIBLIOGRAPHY

[HUF04] Lorna Herda, Raquel Urtasun, and Pascal Fua. Hierarchical implicit
surface joint limits to constrain video-based motion capture. In Tomás
Pajdla and Jiri Matas, editors, Proceedings of the European Con-

ference on Computer Vision (ECCV’04), volume 2, pages 405–418.
Springer, May 2004. (Cited on pages 108 and 110).

[HUF05] Lorna Herda, Raquel Urtasun, and Pascal Fua. Hierarchical im-
plicit surface joint limits for human body tracking. Computer Vision

and Image Understanding, 99(2):189–209, August 2005. (Cited on
pages 108 and 110).

[IB98a] Michael Isard and Andrew Blake. CONDENSATION – conditional
density propagation for visual tracking. International Journal of

Computer Vision, 29(1):5–28, 1998. (Cited on pages 137, 141, 150,
and 165).

[IB98b] Michael Isard and Andrew Blake. ICONDENSATION: Unifying low-
level and high-level tracking in a stochastic framework. In Proceed-

ings of the 5th European Conference in Computer Vision (ECCV),
volume 1, pages 893–908, 1998. (Cited on pages 137 and 141).

[IB99] Michael Isard and Andrew Blake. A mixed-state condensation tracker
with automatic model-switching. In Proceedings of the 6th Interna-

tional Conference in Computer Vision (ICCV), pages 107–112, 1999.
(Cited on page 143).

[JSS02] Omar Javed, Khurram Shafique, and Mubarak Shah. A hierarchical
approach to robust background subtraction using color and gradient
information. In Proceedings of Workshop on Motion and Video Com-

puting, pages 22–27, December 2002. (Cited on pages 26 and 194).

[JTH99] Nebojsa Jojic, Matthew Turk, and Thomas S. Huang. Tracking self-
occluding articulated objects in dense disparity maps. In International

Conference on Computer Vision (ICCV), pages 123–130, September
1999. (Cited on pages 85, 91, and 123).

[Kal60] R. E. Kalman. A new approach to linear filtering and prediction prob-
lems. In Transaction of the ASME - Journal of Basic Engineering,
volume 82(Series D), pages 35–45, 1960. (Cited on page 85).

186

BIBLIOGRAPHY

[KBG05] Roland Kehl, Matthew Bray, and Luc Van Gool. Full body tracking
from multiple views using stochastic sampling. In Proceedings of

the Conference on Computer Vision and Pattern Recognition (CVPR),
pages 129–136, June 2005. (Cited on pages 56 and 152).

[Kit96] K. Kitagawa. Monte carlo filter and smoother for non-gaussian non-
linear state space models. Journal of Computational and Graphical

Statistics, 5:1–25, 1996. (Cited on page 139).

[Lau94] Aldo Laurentini. The visual hull concept for silhouette-based image
understanding. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 16(2):150–162, February 1994. (Cited on page 58).

[Lau95] Aldo Laurentini. How far 3D shapes can be understood from 2d sil-
houettes. IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, 17(2):188–195, February 1995. (Cited on page 58).

[Law04] Neil Lawrence. Gaussian process models for visualisation of high
dimensional data. In L. Saul S. Thrun and B. Schlkopf, editors,
Advances in Neural Information Processing Systems (NIPS), 2004.
(Cited on pages 144 and 159).

[LBP01] Svetlana Lazebnik, Edmond Boyer, and Jean Ponce. On computing
exact visual hulls of solids bounded by smooth surfaces. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR’01), volume 1, pages 156–161, December 2001. (Cited
on page 58).

[LC98] Jun S. Liu and Rong Chen. Sequential Monte Carlo methods for
dynamic systems. Journal of the American Statistical Association,
93(443):1032–1044, 1998. (Cited on page 139).

[LSL01] Jason P. Luck, Daniel E. Small, and Charles Q. Little. Real-
time tracking of articulated human models using a 3D shape-from-
silhouette method. In Proceedings of the International Workshop

on Robot Vision, pages 19–26. Springer-Verlag, 2001. (Cited on
pages 24, 56, and 58).

187

BIBLIOGRAPHY

[LY02] Benny P. L. Lo and Guang-Zhong Yang. Neuro-fuzzy shadow filter.
In Proceedings of the 7th European Conference on Computer Vision,
pages 381–392. Springer-Verlag, May 2002. (Cited on page 47).

[MA83] W. N. Martin and J. K. Aggarwal. Volumetric descriptions of ob-
jects from multiple views. IEEE Transactions on Pattern Analysis

and Machine Intelligence, PAMI-5(2):150–158, March 1983. (Cited
on page 57).

[MBM01] Wojciech Matusik, Chris Buehler, and Leonard McMillan. Polyhe-
dral visual hulls for real-time rendering. In Proceedings of the 12th

Eurographics Workshop on Rendering, pages 115–125, June 2001.
(Cited on page 58).

[MBR+00] Wojciech Matusik, Chris Buehler, Ramesh Raskar, Steven J. Gortler,
and Leonard McMillan. Image-based visual hulls. In Proceedings of

ACM SIGGRAPH, pages 369–374. ACM Press / ACM SIGGRAPH /
Addison Wesley Longman, 2000. (Cited on page 55).

[Met] MetaMotionTM http://www.metamotion.com. (Cited on
page 19).

[MG01] Thomas B. Moeslund and Erik Granum. A survey of computer vision-
based human motion capture. Computer Vision and Image Under-

standing (CVIU), 81(3):231–268, 2001. (Cited on pages 23 and 141).

[MH03] Joel Mitchelson and Adian Hilton. Simultaneous pose estimation of
multiple people using multiple-view cues with hierarchical sampling.
In Proceedings of the British Machine Vision Conference (BMVC),
September 2003. (Cited on pages 83, 110, 133, and 151).

[Mit97] Tom M. Mitchell. Machine Learning. Computer Science. McGraw-
Hill, 1997. (Cited on page 34).

[MPC+05] Craig D. Murray, Steve Pettifer, Fabrice Caillette, Emma Patchick,
and Toby Howard. Immersive virtual reality as a rehabilitative tech-
nology for phantom limb experience. In Proceedings of the 4th Inter-

national Workshop on Virtual Rehabilitation, September 2005. (Cited
on page 19).

188

http://www.metamotion.com

BIBLIOGRAPHY

[MR03] R. Meir and G. Rtsch. An introduction to boosting and leveraging. In
S. Mendelson and A. Smola, editors, Advanced Lectures on Machine

Learning, pages 119–184. Springer, 2003. (Cited on page 153).

[MSZ94] Richard M. Murray, S. Shankar Sastry, and Li Zexiang. A Mathemat-

ical Introduction to Robotic Manipulation, chapter 2, pages 22–34.
CRC Press, Inc., Boca Raton, FL, USA, 1994. (Cited on page 111).

[MTHC03] Ivana Mikic, Mohan Trivedi, Edward Hunter, and Pamela Cos-
man. Human body model acquisition and tracking using voxel data.
International Journal of Computer Vision (IJCV), 53(3):199–223,
July/August 2003. (Cited on pages 24, 56, 58, 61, 83, 111, 123,
and 152).

[NBH05] Matti Niskanen, Edmond Boyer, and Radu Horaud. Articulated
motion capture from 3-D points and normals. In A. W. Fitzgib-
bon W. F. Clocksin and P. H. S. Torr, editors, Proceedings of the

British Machine Vision Conference (BMVC), volume 1, pages 439–
448, September 2005. (Cited on page 61).

[NFA88] Hiroshi Noborio, Shozo Fukuda, and Suguru Arimoto. Construction
of the octree approximating a three-dimensional object by using mul-
tiple views. IEEE Transactions on Pattern Analysis and Machine In-

telligence, 10(6):769–782, 1988. (Cited on page 58).

[OB80] J. O’Rourke and N. I. Badler. Model-based image analysis of human
motion using constraint propagation. In IEEE Trans. Pattern Anal-

ysis and Machine Intelligence (PAMI), volume 2(6), pages 522–536,
November 1980. (Cited on page 18).

[PF03] Ralf Plänkers and Pascal Fua. Articulated soft objects for multiview
shape and motion capture. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 25(9):1182–1187, September 2003. (Cited
on page 83).

[Pot87] Michael Potmesil. Generating octree models of 3D objects from their
silhouettes in a sequence of images. Computer Vision, Graphics, and

Image Processing, 40(1):1–29, 1987. (Cited on page 58).

189

BIBLIOGRAPHY

[RF03] Deva Ramanan and D. A. Forsyth. Finding and tracking people
from the bottom up. In Computer Vision and Pattern Recogni-

tion (CVPR’03), volume 2, pages 467–475, June 2003. (Cited on
page 132).

[RFZ05] Deva Ramanan, D. A. Forsyth, and Andrew Zisserman. Strike a pose:
Tracking people by finding stylized poses. In Computer Vision and

Pattern Recognition (CVPR’05), 2005. (Cited on page 132).

[RST96] Dana Ron, Yoram Singer, and Naftali Tishby. The power of amnesia:
Learning probabilistic automata with variable memory length. Ma-

chine Learning, 25(2-3):117–149, 1996. (Cited on pages 146, 147,
and 163).

[SBF00] Hedvig Sidenbladh, Michael J. Black, and David J. Fleet. Stochastic
tracking of 3D human figures using 2d image motion. In Proceedings

of the 6th European Conference on Computer Vision, volume 2, pages
702–718, London, UK, 2000. Springer-Verlag. (Cited on page 143).

[SBR+04] Leonid Sigal, Sidharth Bhatia, Stefan Roth, Michael J. Black, and
Michal Isard. Tracking loose-limbed people. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, vol-
ume 1, pages 421–428. IEEE Computer Society Press, July 2004.
(Cited on page 132).

[SBS02a] Miguel Sainz, Nader Bagherzadeh, and Antonio Susin. Hardware
accelerated voxel carving. In X. Pueyo M.P. dos Santos, L. Velho,
editor, Proceedings of the 1st Iberoamerican Symposium in Computer

Graphics (SIACG’2002), pages 289–297, Guimarães, Portugal, 2002.
(Cited on page 60).

[SBS02b] Hedvig Sidenbladh, Michael J. Black, and Leonid Sigal. Implicit
probabilistic models of human motion for synthesis and tracking. In
Proceedings of the 7th European Conference on Computer Vision,
volume 1, pages 784–800, 2002. (Cited on page 144).

[SG99] Chris Stauffer and W. E. L. Grimson. Adaptive background mixture
models for real-time tracking. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR’99), volume 2,

190

BIBLIOGRAPHY

pages 252–259, June 1999. (Cited on pages 26, 46, 49, 50, 52, 152,
and 194).

[SGH05] Nikolay Stefanov, Aphrodite Galata, and Roger Hubbold. Real-time
hand tracking with variable-length markov models of behaviour. In
Workshop on Vision for Human-Computer Interaction (V4HCI), June
2005. (Cited on pages 108 and 153).

[SISB04] Leonid Sigal, Michael Isard, Benjamin H. Sigelman, and Michael J.
Black. Attractive people: Assembling loose-limbed models using
non-parametric belief propagation. In Sebastian Thrun, Lawrence
Saul, and Bernhard Schölkopf, editors, Advances in Neural Infor-

mation Processing Systems 16. MIT Press, Cambridge, MA, 2004.
(Cited on page 132).

[SVZ00] Dan Snow, Paul Viola, and Ramin Zabih. Exact voxel occupancy with
graph cuts. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR’00), volume 1, pages 345–
353, June 2000. (Cited on page 60).

[Sze90] Richard Szeliski. Real-time octree generation from rotating objects.
Technical Report 90/12, Digital Equipment Corporation, Cambridge
Research Lab, December 1990. (Cited on pages 26, 58, and 59).

[TD02] Leonid Taycher and Trevor Darrell. Range segmentation using visi-
bility constraints. International Journal of Computer Vision (IJCV),
2002. (Cited on page 27).

[TMSS02] Christian Theobalt, Marcus Magnor, Pascal Schüler, and Hans-Peter
Seidel. Combining 2D feature tracking and volume reconstruction for
online video-based human motion capture. In Proceedings of Pacific

Graphics, Beijing, China, pages 96–103, 2002. (Cited on pages 26,
56, 58, 61, 111, and 152).

[UF04] Raquel Urtasun and Pascal Fua. 3D human body tracking using de-
terministic motion models. In European Conference on Computer

Vision, May 2004. (Cited on page 144).

191

BIBLIOGRAPHY

[UFF05] Raquel Urtasun, David J. Fleet, and Pascal Fua. Monocular 3D track-
ing of the golf swing. In Conference on Computer Vision and Pattern

Recognition (CVPR), volume 1, pages 932–939, June 2005. (Cited on
page 144).

[UFHF05] Raquel Urtasun, David J. Fleet, A. Hertzmann, and Pascal Fua. Priors
for people tracking from small training sets. In International Confer-

ence in Computer Vision (ICCV), October 2005. (Cited on pages 144
and 159).

[vdMDdFW00] R van der Merwe, A Doucet, Nando de Freitas, and E Wan. The un-
scented particle filter. In T.G. Dietterich T.K. Leen and V. Tresp, ed-
itors, Advances in Neural Information Processing Systems (NIPS13),
2000. (Cited on page 145).

[Vic] Vicon PeakTM http://www.vicon.com. (Cited on page 19).

[WADP97] Christopher Wren, Ali Azarbayejani, Trevor Darrell, and Alex Pent-
land. Pfinder: Real-time tracking of the human body. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 19(7):780–785,
1997. (Cited on pages 26, 46, 84, 87, 91, and 195).

[WB01] Greg Welch and Gary Bishop. An introduction to the kalman filter.
In Course 8 of SIGGRAPH 2001, 2001. (Cited on page 85).

[Wel93] C. Welman. Inverse kinematics and geometric constraints for articu-
lated figure manipulation. Master’s thesis, Simon Fraser University,
1993. (Cited on pages 110, 124, 126, and 127).

[YSK+98] Masanobu Yamamoto, Akitsugu Sato, Satoshi Kawada, Takuya
Kondo, and Yoshihiko Osaki. Incremental tracking of human ac-
tions from multiple views. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR’98), pages 2–7.
IEEE Computer Society, 1998. (Cited on pages 83 and 110).

[Zha00] Zhengyou Zhang. A flexible new technique for camera calibration.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
22(11):1330–1334, 2000. (Cited on page 161).

192

http://www.vicon.com

BIBLIOGRAPHY BIBLIOGRAPHY

[ZN02] Tao Zhao and Ram Nevatia. Stochastic human segmentation from
a static camera. In Proceedings of Workshop on Motion and Video

Computing, pages 9–14, December 2002. (Cited on page 27).

193

Appendix A
Colour Representation

Most background segmentation techniques rely solely on the colour of the pixels for
classification. The position of the pixels in the image is usually not considered because
that would require a prohibitively complex model of the object of interest. The colour
of a pixel is usually encoded with discrete values in a given a number of channels.
Monochrome pixels are represented by a single intensity value whereas colour pixels
have 3 to 4 components. While the coding of monochrome pixels is straightforward,
there are various ways to code the colour of a pixel on 3 or 4 channels.

RGB (Red-Green-Blue) encoding is the most common way of defining a pixel
colour. Each of the 3 channels has a value (usually an integer) representing the intensity
of the corresponding base colour. This representation has the advantages of simplicity
as well as a direct mapping with hardware pixel format. RGB colour-space has been
used in various image segmentation techniques (for example [JSS02, SG99, FR97]).
However the human perception of colours is very different from the one of the machine
(the human eye is more than 5 times more sensitive to green than blue), and RGB
encoding is not necessarily the most appropriate format for colour comparison.

(a) RGB (b) UV plane, Y=0.5 (c) HSV “wheel” (d) HLS

Figure A.1: Graphical representation of RGB, YUV, HSV and HLS colour-spaces.

194

APPENDIX A. COLOUR REPRESENTATION

YUV (Luminance-Chrominance) colour space is used mainly for video broadcast-
ing: it is part of the PAL television standard. The luminance (Y component) represents
the intensity or brightness of the colour. The other two channels (U and V) define the
colour itself for a given brightness, as illustrated by Figure A.1(b). The YUV colour
space is an affine transformation of RGB which has the advantage of being closer to
human perception:Y

U

V

 =

 0.299 0.587 0.114

−0.169 −0.332 0.5

0.5 −0.419 −0.0813

 ·
R

G

B

+

 0

128.0

128.0

 (A.1)

The human eye is indeed far more sensitive to brightness changes than to colour
changes. This leads to interesting applications: as a compression method (JPEG com-
pression), the chrominance channels are often sub-sampled while keeping an accurate
luminance. In computer vision and background segmentation, it is interesting to sepa-
rate luminance from chrominance information because illumination artifacts (shadows)
are then easier to discard. Just like RGB, YUV colour-space has been widely used for
segmentation and tracking [HGW01b, HGW01a, WADP97, BL01b].

HSV (Hue-Saturation-Value) is another common colour space. The Hue is an an-
gular value on a virtual colour wheel representing the chrominance of the colour, the
Saturation can be seen as the “purity” of the colour and finally the Value is its bright-
ness (Figure A.1(c)). The HSV colour-space is mainly used in computer graphics
because of its convenience, but the transformation from RGB and YUV is non-linear,
leading to singularities. This is particularly problematic in presence of random noise,
where small perturbations in RGB or YUV colour-spaces can lead to big jumps in HSV
space. Moreover, the conversion is inconsistent for some colours – like greys – where
the Hue or the Saturation are undefined. There has been some rare examples of use of
HSV in computer vision, but it is mostly inappropriate for our purpose, especially in
the context of a coherent statistical framework.

195

Appendix B
Uniform Pixel Sampling

All pixels lying inside the projected area of a voxel should theoretically be inspected
to decide on the classification of this voxel. However, an approximation has to be used
to maintain the performance of the system. Following a method similar to Cheung et

al. [CKBH00, Che03], the projected area of a voxel is sampled uniformly, and the
classification is based on these samples alone. This approach makes sense in our case
because the distances to the background model are then computed per-sample, and
not for the whole image as when background segmentation is performed as a pre-
processing step of the reconstruction.

The optimal number of samples is a critical parameter for robust classification. In
the so-called SPOT (Sparse Pixel Occupancy Test) algorithm, Cheung et al. [CKBH00,
Che03] use only 2 samples out of an average of 10 pixels in the projected area of each
voxel. This number is derived from measured error rates in silhouette extraction. The
total misclassification probability per voxel is then reported to be below 1%. Unfor-
tunately, the same kind of reasoning cannot be applied to our case because we do not
perform any binary segmentation of the silhouette pixels, and consequently misclassi-
fications cannot be measured on a per-pixel basis.

Instead of sampling from the irregular shape of the projected area, one could sam-
ple uniformly inside voxels in 3-D space, and then use the projection of these 3-D
samples. However, depending on the angle of view, these 3-D samples often project
onto the same pixels or fail to uniformly cover the area. Alternatively, picking some
pixels randomly from a 2-D area is straightforward, but for small numbers the result-
ing distribution can be uneven. A bad distribution of the samples can be damaging
to the 3-D reconstruction considering that voxels are discarded from a single view. A
small image feature or an edge can easily be missed if samples leave some part of the

196

APPENDIX B. UNIFORM PIXEL SAMPLING

projected area uncovered. Samples should then be chosen so as to cover a maximum
of space inside the projected area of the voxel. Several standard techniques exist to
achieve this goal:

• Systematic sampling: There is no random element in this method. Pixels are linearly
sampled at a regular interval, determined by dividing the total number of pixels in the
area by the number of wanted samples. This method has the advantage of simplicity
but can result in an uneven 2-D distribution, especially if the shape of the area is
irregular. Moreover, the random aspect is important if we want all pixels to be
sampled with equal probability.

• Random sampling with heuristic: The desired number of pixels is sampled randomly
from the area. A heuristic measuring the goodness of the repartition is then evaluated
and the samples are re-chosen iteratively until a criterion is satisfied. Depending on
the heuristic used, the final repartition can be relatively uniform. Unfortunately,
there is no guarantee of convergence, especially as the number of samples increase.

• Clustered random sampling: The area is first divided into as many clusters as desired
samples. This clustering can be done in a number of ways, but using a regular grid
is one of the easiest. In a second step, a single pixel is chosen randomly from each
cluster. This technique is relatively simple and samples cover most of the area.

The “random sampling with heuristic” approach is very appealing from a statistical
point of view, but its convergence problems make it hardly usable in practice. We
choose to use a hybrid approach where, initially, the projected area is coarsely divided
in equal clusters. The number of clusters is proportional to the number of desired
samples, a practical ratio of 3 to 4 samples per cluster being sensible. The desired
number of samples is then randomly picked from each of the clusters, insuring both
maximal covering of space and randomness.

To avoid cases where the overall distribution of samples is still poor, a global
heuristic is used to choose the most uniform distributions among a number of tries.
The heuristic is chosen as an energy function H maximising the spacing (Euclidean
distance) between all samples {s1 . . . sNs}:

H(s1 . . . sNs) =
Ns∑
i=1

Ns∑
j=1

distance(si, sj)
2 (B.1)

197

APPENDIX B. UNIFORM PIXEL SAMPLING

Figure B.1: From left to right: The pixels lying totally inside the projected voxel
area are selected, and depending on their number and the desired number of sam-
ples, they are divided into clusters of equal size. Pixels are then randomly sampled
inside each cluster, the goodness of the distribution being evaluated for the whole
area using a heuristic function. Finally, distributions satisfying the heuristic are
retained.

Figure B.1 shows a step-by-step illustration of the sampling process for a fairly large
voxel projected area. For smaller projected areas, the clustering step can be unneces-
sary and pixels are then sampled randomly from the whole area. The heuristic function
is still used to ensure a good repartition of samples.

Unfortunately, this type of sampling is still far too complex for real-time use. Actu-
ally, even the simplest sampling schemes would be too demanding for real-time imple-
mentation because they all require convex-hull computation and numerous tests. We
have to pre-compute patterns of samples instead. The underlying assumption is that
for a given camera, all voxels projecting on a relatively small part of the image plane
are seen from a similar view angle. If we divide the image plane Π into such regions
{Π1 . . . ΠNr}, the projections of all voxels falling into the same region Πi will have a
similar shape. We can then approximate these projections by the same pre-computed
area SΠi

(see Figure B.2 for an illustration). A single projection area needs to be
computed for all voxels projecting onto the same image region: different voxel sizes
or distances to the camera are just matters of real-time scaling. Using the sampling
method described earlier, patterns are pre-computed for different numbers of samples.
The two steps below detail the offline computation of patterns of samples:

1. Pre-compute the projected areas: For each camera-view, divide the image plane
Π into Nr regions {Π1 . . . ΠNr} (in our implementation, Nr = 9). For each region
Πi, pre-compute the approximated shape of the projected area of voxels falling into
these regions. This is done by projecting (without applying lens distortions) all eight
vertices of a voxel of unitary size, situated at a unitary distance from the camera,

198

APPENDIX B. UNIFORM PIXEL SAMPLING

Figure B.2: Voxels projecting onto a same image region (Πi) have a similar pro-
jected area. These projected areas can therefore be approximated by pre-computed
mean shapes SΠi

.

and which projects at the centre of region Πi. The actual size of the projected area
depends on the focal length of the camera, but is always big enough so that pixel
discretisation is not a problem. The convex-hull of the eight projected vertices is
then computed and the corresponding area is denoted as SΠi

. The centre of SΠi
is

the projection of the centre of the voxel.

2. Pre-compute patterns of samples: For each projected area SΠi
and desired number

of sample Ns, pre-compute patterns of samples using the clustered random sampling
with heuristic method (Figure B.1). For each projected area SΠi

and desired number
of samples, a large number of patterns are first generated without using the heuristic
function H. Only a fraction of these patterns which maximise H is retained (in
practice, we retained the best 10 out of 100 patterns). The position of each sample
inside the pattern is stored relatively to centre of SΠi

. Patterns of samples can
subsequently be retrieved depending on image-plane region Πi, number of samples
Ns and index of random pattern j.

Using these pre-computed patterns in real-time is now relatively straightforward,
but in order to understand the different phases of voxel projection, let us first decom-
pose the camera projection matrix. For a given calibrated camera ci, i ∈ [1..Nc] of
focal length fli, principal point ppi, orientation matrix Ri and position vector Ti, we

199

APPENDIX B. UNIFORM PIXEL SAMPLING

define:

Ki =

fli,x 0 ppi,x

0 fli,y ppi,y

0 0 1

 KRi = Ki ·Ri KT i = Ki · Ti (B.2)

The matrices KRi and KT i are pre-computed for each camera. Also using the non-
linear function kki() : R2→R2 which applies camera distortions to a 2-D point, the
complete projection of a 3-D vertex X onto the corresponding pixel (x

y) can be written
as: (

x

y

)
= kki

(
u
w
v
w

)
where

u

v

w

 = KRi ·X + KT i (B.3)

This is a standard technique which would not be worth mentioning if we did not need
to use intermediate results to place the pattern of samples on the image (for example,
the distance of X to the camera is w). The few steps below detail the online process
for a voxel V of size sV and 3-D position XV :

1. Voxel projection: Using Equation B.3 on XV gives the distance from the voxel to
the camera (w) and the image coordinates of the projection of XV before applying
distortions (x = u/w and y = v/w). Note that only the centre of the voxel is
projected, which represents a significant speedup as compared to the projection of
the eight vertices of the same voxel.

2. Pattern selection: The 2-D coordinates (x, y) of the projected centre designate the
region Πi, while the scaling factor of the pattern is the size of the voxel divided by
its distance to the principal point (sV/w). The number of samples is then computed
as a function of the scale factor (typically, Ns = constant × (sV/w)). Finally, a
random number j is drawn to select the pattern that will be applied.

3. Pattern positioning and scaling: Since the coordinates of the samples in the patterns
are normalised and relative to the projection of the centre, they need to be scaled by
sV/w and translated by (x, y).

4. Apply distortions: The function kki() applies camera distortions to the 2-D coordi-
nates of the samples. The distortions have to be applied at the end of the process
because they depend on the positions of samples on the image, which are only
known when placing the pattern. To speedup the evaluation of kki(), we build a
lookup table for the whole image in a pre-processing step.

200

Appendix C
Spatial Covariance of a Voxel

Let us consider a voxel V of centre XV and size sV . We aim at computing the spatial
contribution of this voxel to the covariance matrix of a Gaussian distribution centred
on µX , as illustrated in Figure C.1. The partial covariance matrix dΣX contributed by
the voxel V is defined as:

dΣX =

∫∫∫
V
(X − µX) · (X − µX)T dX (C.1)

Figure C.1: We wish to compute the contribution of the voxel V to the covariance
matrix of a Gaussian distribution of mean µX . The main axes of the voxels are
aligned with the axes of the coordinate system.

201

APPENDIX C. SPATIAL COVARIANCE OF A VOXEL

A closed form solution can be obtained by introducing the centre of the voxel XV , and
integrating over the volume:

dΣX =

∫∫∫
V
(X − µX) · (X − µX)T dX

=

∫∫∫
V

((X −XV) + (XV − µX)) · ((X −XV) + (XV − µX))T dX

=

∫∫∫
V
(X −XV) · (X −XV)T + 2.(X −XV) · (XV − µX)T

+ (XV − µX) · (XV − µX)T dX

=

∫∫∫
V
(X −XV) · (X −XV)T dX + 2.

∫
V
(X −XV) · (XV − µX)T dX

+ sV
3.(XV − µX) · (XV − µX)T

=

∫ sV
2

− sV
2

∫ sV
2

− sV
2

∫ sV
2

− sV
2

 x2 x.y x.z

x.y y2 y.z

x.z y.z z2

 dx dy dz + sV
3.(XV − µX) · (XV − µX)T

= sV
2.

∫ sV

2

− sV
2

x2dx 0 0

0
∫ sV

2

− sV
2

y2dy 0

0 0
∫ sV

2

− sV
2

z2dz

+ sV
3.(XV − µX) · (XV − µX)T

=
1

12
.sV

5.I3 + sV
3.(XV − µX) · (XV − µX)T

It can be noticed that this internal covariance appears only on the diagonal of the
covariance matrix: it is intuitively explained by the fact that a voxel is a cube which
sides are aligned with the axis of the coordinate system. It follows that the internal
distribution is the same on each axis, with no dependencies on other axes.

202

Appendix D
Fast Computation of the Direction of Blob

When tracking the human body, one must notice that most of the trackable features
have a clearly defined direction. The torso, the legs and the arms all have an elongated
shape that necessarily reflects on the blobs, giving them a clear main direction. Ex-
tracting the main direction from blobs proves useful to drive the underlying kinematic
model to an accurate position estimate. Of course, this scheme cannot apply to some
features (head, hands, etc.) because of their rounder shape, and the system should be
able to handle these special cases.

The main axis of a Gaussian blob is the eigenvector of the covariance matrix ΣX

associated with the greatest eigenvalue. The eigenvalues are first found by solving
the characteristic polynomial PC(λ) = det(ΣX − λ.I3). The eigenvectors can then be
computed as the vectors X satisfying ΣX · X = λ.X . The characteristic polynomial
is a cubic which admits general analytical solutions, but at a high computational cost.
Also, even with the eigenvalues computed, finding the eigenvectors is still a relatively
expensive optimisation problem. A faster scheme is needed, at the possible price of a
sacrifice in accuracy. Our accuracy requirements are relatively low since the directions
of the blob are rather unstable with respect to noisy data.

The main axis of each blob from the last frame is also available, constituting a
good first order approximation of the new main axis. Convergence is ensured by the
fact that the main eigenvector is the only local maximum close to the approximate
previous direction. Actually, the multiplication of any vector by the covariance ma-
trix converges towards the main eigenvector, so that multiplying a sufficient number of
times the initial estimate by ΣX should converge towards the solution. Unfortunately,
the convergence of this method is very slow, typically needing hundreds of iterations

203

APPENDIX D. FAST COMPUTATION OF THE DIRECTION OF BLOB

Figure D.1: Iterative gradient descent converging towards the main eigenvector
of the blob (from left to right). At each step, the current estimate (red arrow) is
rotated around the axis y and z, and the sample with the minimal distance (blue
arrow) is retained for the next step. It can be noticed that from the second iteration,
only 3 samples are drawn since there is no need to re-evaluate the previous guess.

to produce a good result. Another method for simple iterative gradient descent is pro-
posed to achieve faster convergence.

For convenience, the above problem of maximisation of the eigenvalue is trans-
posed into the equivalent problem of minimisation of the Mahalanobis distance be-
tween the unitary direction vector X and the blob of spatial covariance matrix ΣX .
The solution of the problem is then the vector X minimising the distance DM(X, B) =

X · ΣX
−1 · XT under the constraint ‖X‖ = 1. The inversion of ΣX is not a penalty

since it is also used during the Expectation step of the blob fitting process.
Starting with the direction estimate from the last frame, the distance DM() is eval-

uated on 4 direction vectors, sampled by rotating the initial estimate around the two
main rotation axis. If we represent the direction vectors with quaternions, then the 4

samples mentioned above are easily obtained by multiplying the current estimate with
pre-computed quaternions representing rotations around the axis y and z. For each of
the 4 samples, the distance DM() is evaluated and the algorithm is iterated using the
best sample as new initial guess. A schematic illustration of this process is presented
in Figure D.1.

The chosen angle of rotation has a direct influence on the convergence rate. In prac-
tice, an angle equal to π

36
gives a good constant convergence rate. However, to improve

even more on accuracy and performance, the angle of rotation is chosen hierarchically
in a coarse to fine scheme. In practice, 2 levels of accuracy with rotation angles taken
successively at π

12
and π

50
give a very good final result in only a few iterations.

Once the main direction is computed, it can be useful to find the remaining axes

204

APPENDIX D. FAST COMPUTATION OF THE DIRECTION OF BLOB

of the blob. The second axis is computed in a similar way than the main one. The
problem is however more constrained since the second axis is perpendicular to the
main direction: convergence is even faster. The third axis is immediate to compute as
the cross product of the first two.

205

	Abstract
	Introduction
	Applications of Human Body Tracking
	Motivation, Aims and Objectives
	Summary of Contributions
	Thesis Outline

	Background Segmentation
	Introduction
	Related Work
	A Model for Background Pixels
	Hypotheses and Formulation
	Measuring the Noise
	Measurements and Interpretation
	Statistical Model for the Background Pixels
	How Many Training Frames?

	A Metric for Segmentation
	Mahalanobis Distance
	Segmentation of Individual Pixels
	Classification of a Set of Samples
	Hierarchical Silhouette Extraction

	Handling Shadows
	Related Work
	A Gaussian Model for Shadows
	Efficient Distance Computation

	Evaluation and Conclusion
	Qualitative Results
	Performance Considerations
	Conclusion

	Volumetric Reconstruction
	Background and Basic Principle
	Shape-From-Silhouette
	The Standard Algorithm and its Limitations
	Background on Shape-From-Silhouette Methods.

	A Novel Hierarchical Reconstruction Approach
	Aims and Constraints
	Algorithm Overview
	Flexible Recursive Approach

	Voxel Classification
	Projection of Voxels and Uniform Sampling
	Voxel Classification

	Incorporating Colour in the Volumetric Reconstruction
	Including All Possible Colours into each Voxel

	Results
	Discussion and Conclusion

	Tracking Body Parts with 3-D Blobs
	Blobs as Feature Trackers
	Appearance Models in the Literature
	Theoretical Background and Notation

	Tracking with Expectation-Maximisation
	Overview
	The EM Algorithm for Tracking
	Expectation Step
	Maximisation Step

	Constraining EM with Learnt Models of Blobs
	Run-Time Correction of Blobs Parameters
	Automatic Acquisition of Blobs Models
	Dynamic Splits

	Discussion and Conclusion

	Hierarchical Tracking with Inverse Kinematics
	Kinematic Model
	Requirements of a Kinematic Model
	Kinematic Human Body Models in the Literature
	Model Description and Parametrisation

	Linking the Blobs to the Model
	Evaluation of Goal Positions
	Complete Algorithm

	Inverse Kinematics
	Estimation of the Root Position and Orientation
	Initialisation of the Root Position and Orientation
	Cyclic-Coordinate Descent

	Results
	Discussion and Conclusion

	Bayesian Tracking with Monte-Carlo Sampling
	Introduction
	Global Optimisation Techniques

	Bayesian Framework and Particle Filter
	Bayesian Framework
	Sequential Monte-Carlo Approach
	Resampling

	Propagation of the Particles
	Theory and Related Work
	Learning Dynamics
	Predicting Using the VLMM

	Fast Evaluation of the Likelihood
	Introduction
	Direct Voxel-Based Particle Evaluation
	Data Density as a Mixture of Gaussians
	Fast Particle Evaluation as Cross-Entropy Measure

	Discussion and Conclusion

	Overall Evaluation
	Hardware Setup and Test Sequences
	Hardware Setup
	The Ballet Dancing Sequences
	Ground-Truth and Training Data

	Tracking Results
	Visual Analysis
	Quantitative Error Measurements

	Performance Considerations
	Discussion on the Scaling Issue
	Conclusion

	Conclusion and Future Work
	Summary of the Thesis
	Summary of Achievements
	Future Work and Possible Extensions

	Bibliography
	Colour Representation
	Uniform Pixel Sampling
	Spatial Covariance of a Voxel
	Fast Computation of the Direction of Blob

