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Abstract

This thesis contributes, in essence, four developments to the field of computer
vision. The first two present independent methods of locating and tracking body
parts of the human body, where the main interest is not 3D biometric accuracy,
but rather a sufficient discriminatory representation for visual interaction. Mak-
ing use of a single uncalibrated camera, the first algorithm employs background
suppression and a general approximation to body shape, applied within a particle
filter framework. In order to maintain real-time performance, integral images are
used for rapid computation of particles. The second method presents a proba-
bilistic framework of assembling detected human body parts into a full 2D human
configuration. The face, torso, legs and hands are detected in cluttered scenes
using body part detectors trained by AdaBoost. Coarse heuristics are applied
to eliminate obvious outliers, and body configurations are assembled from the
remaining parts using RANSAC. An a priori mixture model of upper-body con-
figurations is used to provide a pose likelihood for each configuration, after which
a joint-likelihood model is determined by combining the pose, part detector and
corresponding skin model likelihoods; the assembly with the highest likelihood is
selected.

The third development is applied in conjunction with either of the aforementioned
human body part detection and tracking techniques. Once the respective body
parts have been located, the a priori mixture model of upper-body configurations
is used to disambiguate the hands of the subject. Furthermore, the likely elbow
positions are statistically estimated, thereby completing the upper body pose.

A method of estimating the 3D pose of the upper human body from a single
camera is presented in the final development. A database consisting of a variety
of human movements is constructed from human motion capture data. This
motion capture data is then used to animate a generic 3D human model which is
rendered to produce a database of frontal view images. From this image database,
three subsidiary databases consisting of hand positions, silhouettes and edge maps
are extracted. The candidate image is then matched against these databases in
real time. The index corresponding to the subsidiary database triplet that yields
the highest matching score is used to extract the corresponding 3D configuration
from the motion capture data. This motion capture frame is then used to extract
the 3D positions of the hands for use in HCI, or to render a 3D model.
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Nomenclature

GMM Gaussian Mixture Model

HCI Human Computer Interaction

PCA Principal Components Analysis

PDF Probability Density Function

PDM Point Distribution Model

CMYK The Cyan, Magenta, Yellow and Black colour model
used in standard colour printing

HSI Hue, Saturation, Intensity

HSV Hue, Saturation, Value

RGB Red, Green, Blue

YCbCr Luminance and Chrominance

Ground truth The manual marking of interesting features, for example
marking the locations of a subjects hands throughout a
video sequence

A priori model A statistical representation of the ground truth

Real time A software application that processes data greater than
25 frames per second

On line Processes which are actioned while the software appli-
cation is running

Off line Processes which occur prior to the initialisation of the
software application. Typical processes included ground
truthing, training and database construction

SVM Support Vector Machine

RVM Relevance Vector Machine
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Chapter 1

Introduction

Human-computer interaction (HCI) is a discipline concerned with the design,

evaluation and implementation of interactive computing systems for human use

[26]. With the rapid development of fast, inexpensive personal computers, visual

based HCI not only has a place in industrial applications, but also in the home

where users can control electronic equipment or interact with artificially intelli-

gent constructs. HCI utilising video streams is of great benefit to handicapped or

injured people who have limited control of their limbs. In addition, it has the abil-

ity to enhance the usability of cumbersome devices such as virtual reality systems

that are heavily cabled. Aside from HCI, the detection of humans is an important

task in many areas e.g. visual surveillance, motion capture, gait analysis and a

prelude to many biometric measures. The task is particularly difficult due to

the dynamic poses that humans exhibit, varying scales, self occlusions, and the

range of clothing that can be worn. The problem is further compounded by poor

lighting conditions, shadows and self-shadowing, and in particular, ambiguous

background clutter.

The overall objective of this thesis is to explore visual detection and tracking

systems that use an un-calibrated monocular camera system, for example a web
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2 Chapter 1. Introduction

camera, in a cluttered environment. A comparable consumer HCI product is

the Eye Toy [13, 69] developed by Sony Computer Entertainment, where the

input game controller consists primarily of a web camera. Playing action games

where the subject must move around frantically may not be appealing to older

generations who tire easily, but the concept is invaluable to parents whose children

can enjoy modern technology, while still being active.

This research began at approximately the same time as the announcement of the

Eye Toy, however their methodology of tracking had not been disclosed. Recently,

this research has sparked the interest of Sony’s Eye Toy team as they are having

difficulty in detecting hands. Experimentation with their current games suggests

that body parts are not actually being tracked; it seems that generic motion

detection in certain areas of the image dictate an action.

Many underlying processes are required for the development of a robust, real time

HCI application. According to this research, four of the fundamental processes in-

clude background segmentation, human tracking, gesture recognition, and lastly,

visual interaction and representation. This thesis concentrates on the detection

and tracking of key parts of the human body, with a strong focus on the real time

aspect; an interactive system that has noticeable latency is not only frustrating,

but also unpleasant.

This thesis consists of four core chapters, each dedicated to the developments

contributed to the field of computer vision. Chapter 3 employs background sup-

pression and a general approximation to body shape, applied within a particle

filter framework, to detect and track the respective body parts of humans. Track-

ing of the face and hands is primarily achieved using a skin colour model that

is constructed from the user’s face on the fly. Integral images are used for rapid

computation of particles in order to maintain real-time performance, and the final

system is also demonstrated on multiple subjects in a cluttered scene.

Once the key locations of the upper body are extracted, the developments pre-
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sented in Chapter 4 employ an a priori mixture model of upper-body configura-

tions to disambiguate the left and right hands of the subject. Furthermore, the

likely position of elbows are statistically estimated, thereby completing the upper

body pose.

A second method of detection and tracking is presented in Chapter 5 where

detected human body parts are assembled into a full 2D human configuration

within a probabilistic framework. The face, torso, legs and hands are detected

in cluttered scenes using boosted body part detectors trained by AdaBoost. Due

to ambiguities present in natural images, coarse heuristics are applied to elimi-

nate the most obvious outliers, and body configurations are assembled from the

remaining parts using RANSAC. An a priori mixture model of upper-body con-

figurations is used to provide a pose likelihood for each configuration, after which

a joint-likelihood model is determined by combining the pose, part detector and

corresponding skin model likelihoods; the assembly with the highest likelihood is

selected. This technique is initially applied to high resolution images of people

in cluttered scenes, and is then extended to video sequences where a tracking

framework is used to improve overall system performance.

The final contribution of Chapter 6 presents a method of estimating the 3D pose

of the upper human body from a single camera. The objective application lies in

3D Human Computer Interaction (HCI) where hand depth information offers ex-

tended functionality when interacting with a 3D virtual environment. A database

encompassing a variety of human movements is constructed from human motion

capture data. A generic 3D human model is then animated with the motion cap-

ture data, and is rendered to produce a database of frontal view images. From

this image database, a structure consisting of three subsidiary databases, namely

the frontal-view Hand Position (top-level), Silhouette and Edge Map Databases,

is extracted. At run time, these databases are loaded, subsets of which are then

matched to the subject in real-time. Matching is facilitated using shape encoding
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integral images, and chamfer matching. The index corresponding to the sub-

sidiary database triplet that yields the highest matching score is used to extract

the corresponding 3D configuration from the motion capture data. This motion

capture frame is then used to extract the 3D positions of the hands for use in

HCI. Alternatively, it can be used to render a 3D model to produce character

animation directly from video.

Each chapter in turn provides results and conclusions pertaining to the theory

presented in that chapter, while general closing comments, recommendations and

future work are discussed in Chapter 7. Finally, a work-in-progress development

that showcases an interactive cartoon 3D animal, is presented.



Chapter 2

Literature Review

As discussed in the introduction, this thesis has explored several areas of research

that relate to a number of previous works. Many of the selected publications for

this literature review contain multiple contributions, a few of which are irrele-

vant to this thesis. To this end, rather than discussing each reviewed paper in

totality, this chapter has been divided into sections that relate to this thesis.

The two chief sections discuss the modeling of the background and foreground

respectively, where the latter is further subdivided to address view based, model

based and detector based approaches. Furthermore, the reviews are presented in

chronological order to offer a narrative that illustrates the progression of those

fields of research.

2.1 Modelling the Background

With the use of a successful background removal algorithm, researches can fo-

cus their energy on the subject and ignore the background clutter that can cre-

ate many ambiguities. Although this thesis does not progress research in back-

ground/foreground segmentation algorithms, it does however make extensive use

5



6 Chapter 2. Literature Review

of an adaptive background segmentation algorithm. For this purpose, the topic

of background removal deserves a brief review of a few of the popular techniques

that have been developed.

Publicly, the most commonly known technique which was initially called ‘blue-

screening’ was developed in the late 1980’s by the visual effects industry for

the blockbuster films Star Wars and Superman. It is currently referred to as

chroma-keying [112], where an evenly lit blue or green surface represents the

background. This technique is also used in broadcast, and can be applied to

virtual reality applications [70]. Due to the pioneering use of this technique prior

to commercially available low cost PCs, chroma keying was initially performed

using dedicated hardware systems. Since then, software-based solutions have

been developed that exhibit far more accurate separation than hardware [102].

Frame differencing [88] is another relatively straightforward technique used to

identify foreground elements. Here, consecutive images are subtracted, after

which a threshold is applied to the resulting difference image to determine the

pixels that may correspond to motion. There are two understandable problems

with this approach. If regions of the foreground contain similar colours to that of

the background, they will be removed. Secondly, shadows cast on the background

are often detected as foreground.

A further shortcoming of both chroma-keying and frame differencing is that they

can primarily only be used for indoor applications where the background and

lighting conditions are controlled. Background identification and removal for

outdoor activities are far more complex as the physical environment and lighting

conditions can change. The remainder of this section presents algorithms that

overcome these changes.

This thesis employs a background segmentation algorithm that makes use of

per pixel statistical models to represent the background distribution, which are

updated over time to account for slow changes. The background segmentation
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developed for Wren’s [110] Pfinder is the forefather of this adaptive background

segmentation technique, and models a pixel’s history using a single Gaussian in

the YUV colour space. In each frame, pixels have their statistics updated re-

cursively using a simple adaptive filter. Horprasert et al [43] follow the same

basic model, however model a pixel in the RGB colour space, and include the

brightness and colour distortion. The brightness distortion is a scalar value that

brings the observed colour close to the expected chromaticity line, while the

colour distortion is the orthogonal distance between the observed colour and the

expected chromaticity line. Grimson and Stauffer [40, 96] extended the statistical

approached by modelling the pixel history using a mixture of Gaussians (typi-

cally three to five). The weighting of each Gaussian component represents the

probability that the colour of that pixel remains the same, i.e. is part of the back-

ground. Every new pixel value is compared to existing model components and

is updated with the new observation if a match is found. If no match is found,

a new Gaussian component is added, and the weighting parameter is amended.

KaewTraKulPong and Bowden [54, 55] based their system on this method, how-

ever they demonstrate superior performance by deriving the update equations

from expected sufficient statistics and L-recent window formula. This provides

a system which learns the background scene faster and more accurately. For a

more in depth explanation of this adaptive background segmentation technique,

refer to Appendix A.

Like chroma-keying and frame differencing, the predominant problem with Gaussian

Mixture Model (GMM) background segmentation using colour is that if regions

of the foreground contain similar colours as the background, they can be falsely

removed. In an attempt to address this issue, Ivanov et al [51] introduce range,

the measure of depth obtained using two or more camera views. Making use of

both a primary and auxiliary image, image points are classified according to their

‘belonging’ to a known surface rather than to a group of neighboring points of
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similar textures. A disparity map is built by comparing the images taken from

each camera of the empty scene. The introduction of a moving subject violates

this model, allowing for easy foreground/background segmentation. However, the

shortcoming of this method is that invalid results are produced in low contrast

scenes, or in regions that are not visible in both camera views. Difficulties are

also experienced where the subject moves closely against the background e.g. the

walls of a room. Gordon et al [38] therefore presented a method for background

estimation and removal that takes advantage of the strengths of both colour and

range. They show that this combination produces improved results compared to

using either data source individually.

More recently, Kim et al [57] proposed a background modeling and subtraction

algorithm by codebook construction. The codebook algorithm clusters pixel sam-

ples into a set of codewords on a per pixel basis. The technique offers the same

advantages of using a GMM, but also offers unconstrained training that allows

foreground objects to move in the scene during the initial training period. 6.5

codewords are used per pixel, and the algorithm runs at 30 frames/second, which

is considerably faster compared to the GMM method which processes data at

approximately 15 frames/sec.

Background segmentation plays a crucial role in the detection and tracking of

body parts in Chapter 3, and again later in Chapter 6 where the silhouette

of the subject is to be extracted. It is also used in Chapter 5 to reduce the

body part false detection rate, thereby improving system speed and performance.

Initially, due to the research of this thesis placing a primary focus on human

detection and tracking, chroma-keying was used as an easy and fast method

of extracting the foreground subject. However, due to the availability of the

source code kindly provided by KaewTraKulPong and Bowden [55], an adaptive

background segmentation algorithm was used in latter work as it allowed for

research to be conducted in unconstrained cluttered environments. At the cost
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of a relatively noisy segmentation, the algorithm is conducted on sub sampled

images to improve system speed performance. Although this is not ideal, the

detection methods employed in the latter chapters are nonetheless able to cope

with this noisy segmentation.

2.2 Modelling the Foreground

In order to recognise the actions and behaviour of a person, the ability to track

the human body is an important visual task. The techniques discussed in this

section have been separated into three main areas. The first covers 2D appearance

or view based approaches, where coarse body part descriptions are manually

designed to detect body parts using colour, edges, contours and silhouettes etc.

Secondly, 3D human reconstruction can also be performed using an appearance

based approach, where either single, or multiple camera systems are used. The

final method is model based human detection where prior models have been

learned from a selection of images using machine learning techniques such as

boosting, neural networks and Support Vector Machines etc.

2.2.1 View Based 2D Detection and Tracking

Robust detection and tracking of objects in scenes with both cluttered and con-

stant backgrounds is a challenging task. Cluttered scenes obviously pose a greater

problem as background objects can often provide similarities to the foreground

object of interest. A common approach to tracking objects in cluttered scenes

makes use of what has been termed particle filtering. There are several variations

belonging to the same Bayesian [78] framework, a few of which will be discussed

shortly. The basic idea of a particle filter is that the posterior is initially approx-

imated by a set of discrete random samples or particles with associated weights
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[62]. Particles with small weights are discarded in the subsequent iteration, while

those with large weights are duplicated in order to maintain the population size.

Provided that the population is adequately sized, the particle filter will converge

on a hypothesis after several iterations. Section 3.2 provides a graphical example

illustrating the propagation of particle through time as particle filtering forms

the basis of the tracking algorithm presented in Chapter 3.

Under this framework, a common technique for object detection and tracking uses

a contour, which is a predefined outline description of the object to be tracked,

as shown in Figure 2.1. The thick red line represents a head and shoulder shaped

contour in a hypothesised configuration, the purpose of which is to correspond to

a generic upper human torso. To determine how well the contour fits the object,

a one dimensional edge detector is applied along the thin spines or measurement

lines; the data that is of interest is the black dot showing the strong edges exhib-

ited by the detector. A simple method of measuring the fitness is to calculate the

distance of the edges to the contour; the smaller the mean distance, the greater

the fitness.

Figure 2.1: Observation and measurement process of a particle

Contours can be applied to the image space in a Kalman filter framework [37, 41],

which is a recursive linear estimator [31]. Random variations of the contour are

initialised, and improved estimates are calculated as new data is obtained in
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subsequent iterations. Using a single generic contour to estimate the shape of an

object is not very robust, and deformable contours have been employed [99, 5, 81].

Also referred to as snakes or B-splines, these are beneficial in that they can be

deformed to fit the object of interest more closely. The Kalman filter however has

primarily been shown to operate effectively in relatively clutter free environments,

and it offers a further limitation in that it is based on the assumption that the

posterior probability distribution of the moving object is Gaussian. To address

the non-Gaussian movement of objects, Isard and Blake presented CONDENSA-

TION (Conditional Density Propagation) [49, 50, 6], which combines factored

sampling [39] with a dynamic model to propagate a probability distribution over

time. The algorithm is a form of particle filter, and illustrates the use of active,

deformable contours to track the outlines of agile moving objects in substantial

clutter. A limitation of this algorithm is that a large number of particles is re-

quired if the dimensionality of the search space is high. This was addressed by

MacCormick et al [66] by introducing Partitioned sampling to reduce the curse

of dimensionality. This is achieved by using multiple particle filters to track spe-

cific objects, rather than representing the entire complex model as a single entity.

This methodology is highly advantageous in tracking multiple [67] or articulated

objects [60] and is followed in Chapter 3 where four particle filters are used to

track the torso, face and hands rather than a single particle filter. The set of

particles is resampled after the evaluation of each partition, contrary to the stan-

dard approach where the resampling is performed once at each time step for all

model parameters.

Objects like the face and hands that consist of a dominant colour, intuitively sug-

gest that colour should also be used as a cue for tracking. Rasmussen and Hager

[86] do just that, and combine the use of edge information with colour. More re-

cently, several particle filter techniques ignore edge cues, and use a coarse shape

and a colour model to track the object. Pérez et al [80] use a vertically aligned
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rectangular box to describe the shape of the face, and a reference histogram

modelling skin tone in the HSV colour space. Once the filter is initialised, his-

tograms are built from the contents of each rectangular particle. To obtain scores

of fitness, each candidate histogram is then compared to the reference histogram

using a distance metric referred to as the Bhattacharyya similarity coefficient

[3, 1]. Nummiaro et al [74] follow a similar procedure with two additions. An

ellipse, rather than a rectangle, is used to describe the object shape, where can-

didate observations contained within the ellipse are weighted according to their

distance to the centre of the ellipse i.e. the further away from the centre, the

lower the weight. In addition, the colour model of the object is updated slowly

over time in a similar fashion to the adaptive background modelling algorithms

described earlier in Section 2.1. In this case however, thresholds obtained from

the object’s predefined colour model are used such that the model is not updated

if the tracker has lost the object.

Moving away from particle filters, other methods of human detection and tracking

have also been explored. Ju et al [53] define a ‘cardboard person model’ in which

a pair of legs is represented by a set of connected planar patches. A focus is

placed on the constant intensity of each limb rather than the edges, and optical

flow is used to deal with the articulated motion. The method is demonstrated on

cyclic walking motion, where the subjects wear uniformly coloured trousers.

Pfinder [110], mentioned previously for it’s background modelling in Section 2.1,

tracks humans using a blob representation method. It was initially developed by

Pentland [79] to extract compact descriptions of multi-spectral satellite imagery.

In Pfinder, structurally meaningful body parts are segmented by forming feature

vectors at each pixel by adding spatial coordinates to the colour components of

the image. These vectors are then clustered so that similar properties (location

and colour) are combined to form coherent connected regions or ‘blobs’. A pixel-

by-pixel support map is also included that shows the actual occupancy of clusters,
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and divides the segmented regions into spatio-colour classes. The hands and head

are also divided into blobs and are tracked for the analysis of gestures.

As previously mentioned, a deformable contour representing the generic shape

of a relatively simple object can be used for detection and tracking. Although

contours can cope with a certain degree of shape variation, they cannot easily

model a complex object whose appearance changes greatly and rapidly; for ex-

ample, the side profile silhouette of a walking human. Gavrila and Philomin [36]

employ the Chamfer Matching System [2] to detect pedestrians by comparing the

candidate distance transformed image [27] to a database of pedestrian templates.

These templates consist of an outlines of a various pedestrians, and are grouped

according to similarity in order to establish a hierarchy for efficient matching.

This technique of pedestrian detection has recently even been incorporated into

a vehicle driver warning system [35] for accident prevention. The procedure of

Chamfer matching is discussed in more detail later in Chapter 6, where it assists

in determining the 3D pose of the upper human torso.

The last area of research discussed in this section is that of Ioffe and Forsyth [48]

who investigate probabilistic methods for finding people, where they assume that

an image of a human can be decomposed into a set of distinctive segments. A

parallel-edge segment detector is used to locate image regions that could possibly

be body parts; as can be expected, many false segments are also detected. Once

the segments have been detected, they need to be assembled into groups that

could represent a person. These groupings are built incrementally by sequentially

considering groups of increasing size, and adding segments to them. Since the

body is subject to strong physical joint constraints, many ambiguities can be

overcome. The search is also made more manageable by realising impossible

groupings, and ignoring them. A pre-defined top level classifier takes a grouping

of segments and determines whether the grouping corresponds to a person. If it

is decided that no such augmentation is possible, then it, together with all other
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groupings containing it are rejected. Those groupings that are not discarded are

grown as described previously. Should groupings be discarded at an early stage,

the search becomes more efficient. This ideology of searching through the image

space for evidence of human parts, and them assembling them into a ‘body plan’

[33], is adopted in Chapter 5. However, rather than using a simple parallel line

detector to identify random parts, specifically trained detectors are employed to

identify key body parts.

2.2.2 Model Based 3D Human Reconstruction

With an increasing popularity over the past decade, animated 3D human models

feature frequently in the film and games industry. Character animation can be

done laboriously by hand via key framing, however the results often prove to be

unnatural and jerky. Motion capture systems provide a fast method of acquiring

3D motion data, and offer results that are obviously very natural since a human

actor is used. The major drawback however is the high combined cost of a studio

with controlled lighting, a multi-sensor suit, and multiple cameras. The ability to

animate a model directly from video would therefore be an extremely beneficial

tool, especially if this can be done using a single camera. The 3D information

of a human subject can also benefit applications like HCI, where hand depth

information can extend the library of recogniseable gestures, or allow the user of

the HCI interface to engage with a 3D virtual environment. This section discusses

a variety of 3D human reconstruction and pose estimation techniques that use

either single or multiple camera systems.

Relative 3D hand positions can be obtained in a straightforward manner by de-

termining the size of the object i.e. the greater the size of the hand, the closer

it is to the camera. However, this will only work if the size of the hands remain

constant by keeping them in a fixed pose like a fist. Another method would be



2.2. Modelling the Foreground 15

to raise the camera, with it titled down toward the subject. This technique was

employed in Brooks’ intelligent room project[12] to determine the distance of the

subject from the camera. This could also be extended to determine the camera-

to-hand distance, however this would only prove useful if the hands moved in a

plane parallel to the ground, which is clearly limiting.

Alternatively, since the seminal work of Hogg [42], several researchers use artic-

ulated models to track humans and their parts. As discussed earlier, particle

filters offer an efficient and robust method of object tracking in 2D; Deutscher

et al [23] extended this methodology and presented the Annealed Particle Filter

(APF) with an articulated geometric body model to reconstruct a moving human

in 3D. The purpose of the adaptation was to reduce the search time as particle

filters tend to be slow in implementation due to the complexity of the approach

and dimensionally of the search spaces. It also makes use of a likelihood function

based on edge and region measurements, therefore requiring prior knowledge of

the width of the articulated body segments. The approach does however make use

of a calibrated multi-camera system to overcome ambiguities, which limits the ap-

plication to intensive off-line processing and a multi camera studio environment.

The APF was then improved and named ’The Amended APF Algorithm’ [24],

where it bears a great similarity to genetic algorithms.

Sidenbladh [93, 92] overcomes the constraints of multiple cameras by employing

strong motion priors to overcome visual ambiguity. A motion capture system is

used to acquire a set of walking cycles, and a model of the mean walking cycle, as

well as the most common variations, is learned using principle component analy-

sis. Tracking is conducted using particle filters, where the posterior is estimated

using the prior. The main concern with the use of prior data of specific actions

is that it is difficult to extend tracking to more general applications where the

motion of the subject is less well defined.

Using training data of a single motion is clearly limiting, and an a priori Gaussian
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Mixture Model (GMM) constructed from several motions is adopted by Howe [44]

et al to compute prior probabilities of full body 3D motions. A Point Distribution

Model (PDM) [20] is constructed from twenty tracked points of the full human

body in a monocular sequence, and is compared to the GMM to determine the

best fit. Although the method is shown to operate well on several actions, the

sequences on which they are tested are only 11 frames in length.

Methods that track various articulated points of the body are prone to high error,

and the accuracy of the 3D reconstruction is dependent on the robustness of the

tracking algorithm. Rather than relying on the tracking of multiple key points,

Bowden [11] restricts tracking to the face and hands, and constructs a PDM

that includes the positions of these tracked parts, and points extracted from the

subject’s contour.

A different method of acquiring a 3D model of a human is to reconstruct the

shape using 2D Silhouettes, taken from multiple synchronised cameras [71]. The

2D silhouettes define a set of rays from the camera to the object, thereby defining

a cone containing the object. Integration of these provides a volume in the scene in

which the object lies, and the construction of the 3D human shape is determined

using two or more contours and prior geometric models of the human body.

In [61], the reconstruction begins with locating the subject’s hands and elbows

using convex curvature peaks. The knowledge of these positions allows for a

prediction of the shoulder position, after which the head is then detected using

a head-shoulder contour. Finally, the torso is detected by extracting the medial

axis of each 2D silhouette, matching them, and then fitting a line.

In [19], the spine or main axis of the person is detected by extracting the medial

axis of each 2D silhouette. Thereafter, the position of the neck and torso are

extracted. Using the main axis, the height of the subject can be determined,

allowing for a coarse estimation of the neck and torso. The width of the silhouette

is analysed, with the most narrow section indicating the neck. Finally, the limbs
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are detected using a PCA approach on points lying away from the main axis.

Geometric body constraints such as limb ratio are also used. A likelihood function

that focuses attention on the similarities between the body median axes and the

articulated body model is used, thereby eliminating the need for estimation of

body segment widths.

Interestingly, the matching of shape and edge templates has also received at-

tention in hand pose estimation [97] where shape matching follows a cascaded

approach to reduce the number of edge template comparisons. This method

is extended in Chapter 6 to determine a corresponding 3D model of the upper

human body extracted from a frontal view image sequence.

2.2.3 Body Part Detection using Specific Detectors

Object detection using simple image cues like boundaries, edges and colour etc.

has the shortcoming of being highly susceptible to ambiguities. This is also due

to the fact that a coarse depiction of the target is constructed by hand. Machine

learning offers an advantage in that an algorithm constructs a description, derived

from the analysis of a library of images of the same object. The first disadvantage

is that appropriate training images need to be obtained, which can be a long

process, especially since cropping of the object is typically required. Furthermore,

the detector needs to be trained which can be a slow process. The primary

motivation in using such a method is that the positive detection rates offer an

improvement over using a few basic cues alone.

The papers reviewed in this section span over a period of approximately six

years, and employ a variety of machine learning techniques. Due to the radical

improvement of computer hardware during this period, it is difficult to assess

which procedure bears the best real time application.

Neural networks were widely used in engineering applications in the 1990’s, and
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were also applied to face detection [64, 89]. The detection system of Rowley et

al [89] consisted of two neural networks, trained to detect frontal, upright faces

in gray scale images. The first, faster network, performed an initial sweep to

pre-screen candidate regions for the second, slower and more accurate network.

To facilitate the reliability of the training images, and hence the detectors, the

training images were improved using lighting correction and histogram equalisa-

tion.

The face detection system recognised widely for detecting faces in real-time, was

proposed by Viola and Jones [104, 105]. The detection procedure classifies images

based on the value of simple features, reminiscent of Haar basis functions [68].

Training and feature selection was performed by Schapire’s AdaBoost [91, 90],

which is a general method for improving the accuracy of any given learning al-

gorithm. The rapid detection speed was aided by the use of integral images to

compute the values of the square features. In addition, they extended Rowley’s

[89] notion of using multiple networks by constructing the detector with a cascade

of classifiers with increasing complexity. Appendix 5.1 provides an explanation

of object detectors trained by Adaboost.

Section 2.2.1 described the detection of pedestrians by the matching of a contour

to template examples. This was also achieved by Papageorgiou et al [75, 77] who

used a trained detector, where the full human body was regarded as a single

object. Haar wavelets were used to represent the images, and Support Vector

Machines (SVM) [103] classified the patterns. The method however does not

cope well in situations where body parts are occluded.

An alternative method of detecting humans is to detect their constituent parts,

and to assemble them into a human-like configuration. Mohan et al [73] ap-

plied Papageorgiou’s detector construction method to create distinct body part

detectors for the head, legs, left arm and right arm. The detections are then

grouped and classified by a second SVM based classifier to determine ‘person’ or
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‘non-person’ configurations. The results presented do appear promising, however

the examples only contain upright humans, with their arms at their sides. In

terms of assembling detections into intelligent configurations, Felzenszwalb and

Huttenlocher [28] made use of pictorial structures [30], which are collections of

parts arranged in deformable configurations. In their work, each part is repre-

sented using a simple rectangular appearance model constructed from the mean

and variance of the colour estimated from one example of the part to be detected.

The deformable configuration is then represented by spring-like connections be-

tween pairs of parts.

The detection of humans by components was further extended by Ronfard et al

[84] to detect articulated humans. Fifteen rectangular body part detectors were

trained using SVMs, where the feature set consisted of a Gaussian filtered image,

and its first and second derivatives. All detections were then parsed using a body

tree, which was constructed using a Relevance Vector Machine (RVM) [100].

RVMs do not provide significantly lower error rates than SVMs, but they do

however provide similar results using far few training examples. Ronfard places a

large emphasis on the ability to configure the detections into a articulated models,

however the method is only demonstrated on upright humans, again with their

hands at their sides.

Mikolajczyk et al [72] model humans as flexible combinations of boosted face,

torso and leg detectors. Parts are represented by the co-occurrence of orientation

features based on 1st and 2nd derivatives. The procedure is computationally

expensive, and ‘robust part detection is the key to the approach’ [72]. This co-

occurrence ideology is also applied to facial features by Cristinacce et al [21] using

a Pairwise Reinforcement of Feature Responses.

The aforementioned detectors were constructed to identify objects using particu-

lar features in a similar fashion to the way humans do. Rather than using specific

features, Roberts et al [87] created probabilistic region templates for the head,
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torso and limbs, also determined using image databases. Likelihood ratios for

individual parts are learned from the dissimilarity of the foreground and adjacent

background distributions. The process is however computationally expensive, and

the greatest likelihoods occur where the foreground and background hold similar

colour distributions, which is typically not a common property in natural images.

The last object detection methods presented here employ adaptive techniques in

a tracking framework such that the detector updates over time. A Relevance

Vector Machine (RVM) is employed by Williams et al [109] to train the detector

on the fly from a few sample frames. A sparse probabilistic learning algorithm

updates the detector as time passes, and the method has been demonstrated

to track faces and car number plates. Updating the tracker can obviously pose

problems if the incorrect information is contributed to an update cycle. Kang

[56] combine a variety of image cues including foreground-background colour sim-

ilarity, skin colour, head contour and edge density for face/head tracking, applied

within a particle filter framework. As can be expected, their results show great

improvement over using any single cue alone.



Chapter 3

Tracking Human Body Parts

Using Particle Filters

This chapter presents the use of particle filters to track moving objects including

the face, upper torso and hands of single or multiple subjects. The speed at

which the particle filter operates is naturally dependent on the dimensionality of

the search space, and the number of cameras. This chapter makes use of a single

camera, and the search space dimensionality is kept to a minimum, allowing for

the system to operate with above real time performance.

Section 3.1 firstly introduces Bayes’ Theorem which is used to estimate the poste-

rior of each iteration of a particle filter. Section 3.2 in turn explains the operation

of a particle filter with the aid of a graphical example and corresponding calcu-

lations. This methodology is extended in the latter sections to locate and track

the aforementioned body parts of a subject moving in a video sequence. The fi-

nal algorithm employs background suppression to allow for operation in cluttered

scenes, and a general approximation to body shape for body part tracking such

that integral images can be used to improve speed performance.

21
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3.1 Bayes’ Rule

Bayes’ rule is a mathematical formula used for calculating conditional probabili-

ties. A conditional probability is defined as the probability of event A occurring

given that a related event B has occurred. This probability is written as P (A|B),

and is read as ‘the probability of A, given B’. It is referred to as the posterior as

it computed once the information of both events A and B is known.

The definition of conditional probability is given by

P (A|B)P (B) = P (A ∩B) = P (B|A)P (A) (3.1)

where P (A ∩ B) is the joint probability and P (A) is referred to as the prior

probability of A. P (B) in turn is the prior probability of B, and is also referred

to as the normalising constant. Rearranging equation 3.1 yields

P (A|B) =
P (B|A)P (A)

P (B)
(3.2)

which is conventionally known as Bayes’ rule. Computing P (B) is however a

difficult task, and since it is a normalising constant, it can be omitted. This form

is also referred to as factored sampling, and is presented in equation 3.5 where

the posterior is estimated by muliplying the observations of the current iteration

by the weights determined from the previous iteration. Section 3.2 illustrates

how the use of this methodology upgrades each particle’s prior probability to a

posterior probability which assists in converging the system more rapidly.

3.2 Particle Filtering - A Graphical Example

For the purpose of visual simplicity, the particle filter is explained by making use

of Figure 3.1, where Sx represents the parameterisation of an unknown distribu-
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tion whose global maximum is to be determined. The table of Figure 3.2 provides

the corresponding calculations, and is discussed at the end of this section.

At initialisation, N samples or particles, are randomly dispersed across the pa-

rameter space x, the purpose of which is to find the absolute maximum. The

initialisation represents P , the prior probability that Sx exists at time t = 0, and

is represented discretely by

{Ŝ(n) , π(n) , n = 1 . . .N} (3.3)

where Ŝ represents the sample set, with each particle weighted by π. Sx is sampled

accordingly, and the weights are determined by

π
(n)
t = P (ω

(n)
t |Ŝ(n)) (3.4)

Although the posterior is unlikely to stay the same with each iteration, the prior

gives some indication as to what the posterior will be. Any inconsistencies be-

tween the two are dealt with by the repeated iterations of the particle filter,

which gradually filter out any error implicit to the prior. The observations ω
(n)
t

are therefore upgraded to obtain ω
′(n)
t by taking the corresponding prior weights

into account:

ω
′(n)
t = ω

(n)
t × π

(n)
t−1∑N

n=1 π
(n)
t−1

(3.5)

At initialisation, a prior set of weights does not exist, and these are therefore set

to be equal: (∀n)π
(n)
t−1 = 1 at t = 0.

A new set of weights π
(n)
t , which form the estimate to the posterior (and therefore

the prior for the next iteration), is then derived from the normalised updated

observations:

π
(n)
t =

ω
′(n)
t∑N

n=1 ω
′(n)
t

(3.6)

Naturally, the larger the value of the observation, the greater the derived weight.

This weight is then used to determine the number of particles G
(n)
t that are to
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be generated from each parent, for use in the subsequent iteration. This process

serves to duplicate high scoring particles and to discard poor scoring particles:

G
(n)
t = π

(n)
t ×N (3.7)

With the inclusion of dynamics, subsequent iterations disperse the newly gen-

erated particles away from the respective parents, which serves to acquire new

samples along Sx. Using a white Gaussian drift term to represent the system

dynamics, a predictive set of particles for the posterior is then generated:

Ŝ
(n)
t+1 = η(Ŝ

(n)
t , Σnoise) (3.8)

where Σnoise is a constant.

The remainder of this section provides a walk through of particles Ŝ
(n=2)
t and

Ŝ
(n=4)
t in the particle filter diagram of Figure 3.1 and the corresponding table

of calculations in Figure 3.2. At initialisation (t = 0), the distribution Sx is

sampled: ω
(n=2)
t = 22 and ω

(n=4)
t = 96. The observations are then multiplied by

the corresponding weights to produce the updated observations ω
′(n=2)
t = 4.40

and ω
′(n=4)
t = 19.20. These are then normalised by the sum total of the updated

observations to create a new set of weights π
(n=2)
t = 0.07 and π

(n=4)
t = 0.31, which

form the estimate to the posterior and therefore the prior for the next iteration.

In the diagram, the magnitude of these weights is represented graphically by the

size of the ‘dot’. The weights are then multiplied by the population size N to

determine the number of particles to be generated: G
(n=2)
t = 0.4 andG

(n=4)
t = 1.5.

Since only an integer number of particles can be created, these are rounded such

that Ŝ
(n=2)
t and Ŝ

(n=4)
t generate 0 and 2 particles respectively. In large particle

populations, rounding may cause the population size to fluctuate slightly, but

typically not more than five percent from the nominal.

In the diagram, iteration t+1 demonstrates the dispersion of the new particles of

Ŝ
(n)
t+1 from their parent particles. It is also evident that particle Ŝ

(n=2)
t is discarded,
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Figure 3.1: Particles propagating through time
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N = 5 Ŝ
(n=1)
t Ŝ

(n=2)
t Ŝ

(n=3)
t Ŝ

(n=4)
t Ŝ

(n=5)
t

ω 66 22 48 96 82

πt−1 1 1 1 1 1
∑
πt−1 = 5

ω′ = ω.
(

πt−1�
πt−1

)
13.20 4.40 9.60 19.20 16.40

∑
ω′ = 62.80

πt = ω′
�
ω′ 0.21 0.07 0.15 0.31 0.26

t=0

G = πt ×N 1.05 0.35 0.76 1.53 1.31

rounded 1 0 1 2 1

ω 54 27 84 99 66

πt 0.21 0.15 0.31 0.31 0.26
∑
πt = 1.24

ω′ = ω.
(

πt�
πt

)
9.19 3.34 20.78 24.49 13.95

∑
ω′ = 71.75

πt+1 = ω′
�
ω′ 0.13 0.06 0.29 0.34 0.19

t+1

G = πt+1 ×N 0.64 0.28 1.45 1.71 0.97

rounded 1 0 1 2 1

ω 42 90 98 98 53

πt+1 0.13 0.29 0.29 0.34 0.19
∑
πt+1 = 1.24

ω′ = ω.
(

πt+1�
πt+1

)
4.33 20.97 22.83 26.91 8.29

∑
ω′ = 83.33

πt+2 = ω′
�
ω′ 0.05 0.25 0.27 0.32 0.10

t+2

G = πt+2 ×N 0.26 1.26 1.37 1.61 0.55

rounded 0 1 1 2 1

Weighted random sampling implementation of iteration t+2

ω 42 90 98 98 53
∑
ω = 381

πt+2 = ω�
ω

0.13 0.27 0.30 0.30 0.16

G = πt+2 ×N 0.64 1.36 1.48 1.48 0.80
t+2

rounded 1 1 1 1 1

Figure 3.2: Determining the number of newly generated particles of Figure 3.1
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and Ŝ
(n=4)
t generates two particles. The distribution Sx is sampled with the new

set of particles, and the weights and particle generation are computed as before.

The only exception is that weights can now be retrieved from the prior iteration.

From the table, since particles Ŝ
(n=3)
t+1 and Ŝ

(n=4)
t+1 were drawn from Ŝ

(n=4)
t , it

follows that π
(n=3)
t+1 = π

(n=4)
t+1 = π

(n=4)
t . The process is repeated again at t + 2

where it is already apparent how the particles have begun to converge on the

global maximum.

For comparative purposes, the last section of Figure 3.2 demonstrates a weighted

random sampling implementation of the particle filter for iteration t+2 where the

prior is not used, ie. the particle observations are not multiplied by the weights of

their parents. The table indicates that particle Ŝ
(n=1)
t+1 does not perish, and that

particle Ŝ
(n=4)
t+1 is not duplicated. Should this method be applied in subsequent

iterations, it is likely that the particle filter would require many more iterations

to converge. Although this may be acceptable in terms of a stationary object, it

is unlikely that a particle filter with such an implementation would be sufficiently

robust if used to track fast moving objects.

In order for a particle filter to converge correctly, a certain number of particles

is required. This number naturally increases according to the dimensionality of

the configuration space. Being able to determine the minimum population size

is beneficial as a filter with too few particles may converge on a local maximum.

MacCormick and Isard [67] present a method of estimating this minimum by

making use of two quantities, namely the survival diagnostic D and the survival

rate α. D is defined for the particle set as

D =

(
N∑
n=1

π2
t

)−1

(3.9)

The survival rate α is a property of a given prior p(x) and posterior p′(x), and is

given by

α =

(∫
p′(x)2

/
p(x)dx

)−1

(α < 1) (3.10)
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Finally, according to [14, 23], the minimum number of particles required for con-

vergence is determined by

N ≥ D
αd

(3.11)

where d is the number of dimensions. In contrast to a small population, an overly

large population will more than likely converge on the correct solution, however

at the cost of expensive computation. In the simple application discussed in this

section, where only a single maximum is to be determined, an increasing num-

ber of particles could be used without noticeable effect on system performance.

However, in the terms of tracking multiple objects which have several varying pa-

rameters such as translation and scale, the population size for each particle filter

system must be kept at a minimum should real-time performance be required.

3.3 Tracking Human Body Parts - The System

Overview

This approach to tracking of body parts includes various steps which are inter-

dependent. With reference to Figure 3.3, a brief overview of the steps is listed

below:

1. Acquire a colour image of the subject using a single un-calibrated camera.

2. Segment the subject from the background using chroma-keying or adap-

tive background suppression to create a foreground image and a fore-

ground binary mask.

3. Create an integral image (Section 3.6) from the foreground mask. This

serves to improve system performance in terms of speed.

4. Initialise a particle filter system to detect the torso. The posterior is fed

back into step 1 to continue tracking the torso.
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Figure 3.3: System overview

5. Once the torso particle filter has converged, estimate the scale and po-

sition of the subject’s face and hands (Section 3.5.3) based on the torso

parameters of step 4.

6. Build a subject specific skin model from the colour information in the

estimated facial region. A generic prior skin model is used to prevent the

inclusion of unlikely skin pixels.

7. Using the subject specific skin model, segment regions of skin tone from

the foreground image. Create an integral image of this skin-segmented

image.

8. Initialise a particle filter system for the face.

9. Initialise 2 particle filter systems for the left and right hands.
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3.4 Background Suppression

Segmentation of the subject from the background plays a central role in tracking

the torso, and a beneficial role in tracking the face and hands. Segmentation

does not need to be flawless as the particle filter systems only require a coarse

representation of the subject. Two background suppression methods have been

explored, namely chroma-keying and adaptive background suppression.

3.4.1 Chroma-Keying

Chroma-keying is a straightforward and computationally inexpensive technique

that is primarily used in the film industry, where a subject is captured against

a solid coloured blue or green screen. When using a blue screen (as in the early

research of this thesis), segmentation is achieved by computing the chromaticity

of each pixel according to inequality 3.12. Should this value fall below a threshold

T, the pixel is set to black, and white otherwise.

2B − (R +G) < T (3.12)

where R, G and B represent red, green and blue colour channels. This threshold is

adjusted manually and is dependent on the scene lighting and the colour intensity

of the background screen. Relying on chroma-keying limits the tracking algorithm

to controlled indoor studios. A background suppression algorithm that can cope

with cluttered dynamic scenes is therefore highly desirable.

3.4.2 Adaptive Background Suppression

The background removal algorithm employed here (with the permission of Kaew-

TraKulPong and Bowden [55]) was originally developed for exterior visual surveil-

lance and relies upon modelling the colour distribution with a Gaussian mixture
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model on a per pixel basis. This model is built in an on-line fashion, and once the

background has been learned, each pixel is assigned a foreground likelihood which

increases according to sudden intensity variation i.e. moving objects. Appendix

A provides a more elaborative explanation of the algorithm. This likelihood im-

age is later converted to an integral image which is passed to the torso particle

filter for tracking.

To assist with tracking of the face and hands, a threshold is used to accept

foreground pixels to produce a binary mask where white (‘1’) denotes foreground

and black (‘0’) background. This binary mask is then used to create a foreground

image, a colour RGB foreground and black background extracted from the natural

image. The subject specific skin model is learned using this foreground image,

discussed in Section 3.5.3.

3.5 Tracking using manually designed body part

primitives

In this section, a particle is represented by manually designed primitives that

are used to detect and track the respective body parts. Figure 3.4 illustrates

the Renaissance subdivision of the human figure into eight lengths each of which

is equal to the length of the face, measured from the hairline to the chin. For

the purpose of this thesis, this will be referred to as a skeletal unit length. This

length assists in the design of the body part primitives.

Four particle filter systems are used, each dedicated to tracking a specific part,

namely the torso, face, left hand and right hand filters. Assuming independence

reduces the dimensionality of the search space, and therefore the number of par-

ticles required to estimate the posterior. However, each system is applied in a

hierarchical manner such that the gross location of the torso influences the pre-
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Figure 3.4: The Vitruvian man (Figure taken from [76])

dicted priors of the latter filters. In addition to position, the initial scales of the

face and hand primitives are also dependent on that of the torso primitive.

Figure 3.5 shows the torso, face and hand primitives that represent the particles

in the respective particle filter systems. Each has been constructed according to

the proportions of the Vitruvian man. The primitives consist of an inner Region

A (gray) and outer Region B (yellow); Area(A) = Area(B), where A holds

a positive weighting, and B negative. These positive and negative weightings

form the primary step in calculating a fitness score for each particle, shown in

Section 3.5.1. With respect to the torso and hand primitives, the bottom section

of Region A and Region B coincide as to prevent the lower abdomen and neck

from influencing the respective scores. The hands however are self-contained skin

coloured objects, and Region B surrounds Region A completely.

At initialisation, the primitives are constructed using the captured image dimen-

sions whereby a maximum scale of ‘1’ produces a primitive whose height equals
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Figure 3.5: (a) Torso primitive (b) Face primitive (c) Hand primitive

that of the image. Once the torso filter has converged, the nominal scales of

the face and hand distributions are set to one third of that of the representative

torso primitive (the torso primitive spans three skeletal unit lengths). This image

size dependency allows the particle filter systems to function in sequences of any

capture resolution.

3.5.1 Computation of a particle’s fitness

The objective is to find the parameterisation such that Region A envelops the

subject closely. Once a particle is cast onto the foreground binary image, all

non-zero valued pixels are summed for both regions, and with a slight abuse

of notation, are denoted as
∑
A and

∑
B. A net result is then computed by

adding the positively weighted
∑
A to the negatively weighted

∑
B (see Figure

3.5). Situations as per Figure 3.6, yield negative values and are therefore set to

zero to prevent duplication of such unwanted particles.

The net is then normalised by Area(A) to give a fitness score ω in the range [0,1]:

ω =
1

Area(A)
×
⎧⎨
⎩
∑
A−∑B if (

∑
A >

∑
B)

0 otherwise

⎫⎬
⎭ (3.13)
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Figure 3.6: Torso primitive examples producing negative scores

This score is computationally inexpensive to calculate, thereby contributing to

the real-time aspect of the particle filter tracking system.

Figure 3.7 shows three uniquely scaled torso primitives cast onto a half PAL

(384×288) foreground image. For the purpose of demonstrating the functionality

of a particle filter system in a tracking framework, let Figure 3.7 represent a

torso particle filter system whose population consists only of three such particles

at initialisation. The scales of these primitives have been chosen to produce

extremes of the fitness score ω.

(a) (b) (c)

Figure 3.7: (a) Case 1: Low Score (b) Case 2: Low Score (c) Case 3: High Score

The table of Figure 3.8 provides the corresponding observations and calculations

that illustrate the derivation of subsequent particles to estimate the posterior.
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Case 1 of Figure 3.7 (a) shows a primitive where both Region A and Region

B residing within the subject. Since Area(A) = Area(B),
∑
A � ∑

B, i.e.

the number of non-zero valued pixels in Region A approximately equals that of

Region B. Their summation produces a small net value of 1000 (
∑
B is weighted

negatively), which in turn yields a low score of ω � 0. In contrast, the primitive

in Case 2 is over sized, and provides a large value for
∑
A. However, the resulting

ω is reduced substantially due to the normalisation by the large Area(A). The

highest value for ω arises in the situation demonstrated by Case 3 where the

subject occupies the majority of Region A, with little overlap into Region B.

Here
∑
A � Area(A) and

∑
B � 0, which results in the highest score for ω.

Following the same procedure as per Section 3.2, the prior weights π
(n)
t−1 = 1(∀n)

at t = 0. The scores are then updated using these prior weights, and a set of

weights π
(n)
t for the current iteration is obtained. The number of particles that

are to be generated from each particle is then determined by G
(n)
t = π

(n)
t × N .

Again, only an integer number of particles may be produced, and this number

is therefore rounded. The particle of Case 1 perishes, and Case 2 only generates

one particle. The high scoring particle of Case 3 in turn generates two particles,

thereby maintaining the population size of N = 3.

As per the graphical example of Section 3.2, the newly generated particles are

offset from their parent particles by a Gaussian drift term; their scale is altered

in a similar manner allowing the primitives to locate the optimal solution, and

to shift in accordance with any movement.

3.5.2 Tracking the Torso

Following Figure 3.5 (a) and Figure 3.4, Region A of the torso primitive spans

3×2 skeletal unit lengths enveloping the face (Sub-region H) and shoulders, and

extending down to the waist where major spinal rotation occurs. The motivation
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N=3 Case 1 Case 2 Case 3

Area(A) 30 000 120 000 53 200∑
A 30 000 66 000 46 400

−∑B -29 000 0 -7 000

net 1 000 66 000 39400

ω = net
Area(A)

0.03 0.55 0.74

πt−1 1 1 1
∑
πt−1 = 3

ω′ = ω.
(

πt−1�
πt−1

)
0.01 0.18 0.25

∑
ω′ = 0.44

πt = ω′
�
ω′ 0.03 0.42 0.56

G = πt ×N 0.08 1.25 1.68

Generated particles 0 1 2

Figure 3.8: Computing the generation of new particles

behind using a coarse body-shaped primitive is twofold. Firstly, the generic shape

is able to cope with human subjects of different height and mass. Secondly, the

primitive can be subdivided into rectangular shapes, which is a requirement for

the application of integral images (see section 3.6).

To recapitulate, the graphical example of Section 3.2 described a method of deter-

mining the maximum value of an unknown distribution where a series of particles

was distributed randomly across the entire space. In the case of computer vision,

and more specifically, in a HCI application, primary interest lies in locating the

upper torso that occupies the central region of the captured image. A Gaussian

distribution of N torso primitives is therefore cast onto the foreground likelihood

image with its origin at the centre of the image. To account for subjects that

differ in size due to physical mass or distance to camera, the population of torso

primitives covers a range of scales. The optimal distance from camera to subject

requires that the upper torso and free arm movement remain in view – a torso
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length of half the image height is adequate. The torso primitive scales are also

initialised according to a Gaussian distribution, with a nominal scale of 0.5; this

yields a primitive whose length covers half the image height H as per Figure 3.9.

That is, 3lsu = h
2
, where lsu is the skeletal unit length.

Figure 3.9: The nominal scale of the torso primitive

Figure 3.10 shows the initialisation of a torso particle filter which consists of five

hundred particles. The procedure of determining this population size is shown

later in the results of Section 3.7.4. The initialisation at Frame 1 shows the

normal distribution of the particles across the image, centred at the centre of

the image. Once all particle scores have been computed, the parameters of the

top ten percent are averaged to create a representative particle (highlighted here

in red). Since the initialisation nominal scale creates a particle half the length

of the image height (see Section 3.9), the representative particle is undersized.

The nature of the particle filter is inherently noisy as high scoring particles are

duplicated and dispersed. Displaying the mean of the top ten percent therefore

serves to smooth the output.

In the second iteration (Frame 2), the outlying particles of Frame 1 have already

perished, with the majority of the population clustered around the subject. Par-

ticles are however constantly distributed around the perimeter of the subject to

account for any significant movement. The larger the variance of the drift term,



38 Chapter 3. Tracking Human Body Parts Using Particle Filters

the quicker the movement it can overcome. The subsequent iterations illustrate

the scale adjustment of the particles, with the representative particle suggesting

convergence as soon as Frame 30.

Computing
∑
A and

∑
B by the sequential summation of pixels is computation-

ally expensive, especially when dealing with high resolution images, and large

particle population sizes. Section 3.6 shows how the foreground binary image

is converted to an Integral Image, which reduces the computational overhead of∑
A and

∑
B dramatically, thereby contributing significantly to the real-time

objective.

In addition to computing the fitness score for each particle, from [4], an overall

particle filter system efficiency α is also determined for each iteration according

to

α =
1

N

N∑
n=1

(ω′(n))2 0 ≤ α ≤ 1 (3.14)

where ω′ is the updated observation. The greater the number of particles that

provide strong observations, the greater the filter efficiency. Should this efficiency

fall below a pre-defined threshold, the particle filter is re-initialised such that

different subjects moving on and off the camera view can be detected. The same

applies to the hand filters where the hands often move out of view.

3.5.3 Tracking the face and hands

Using the representative particle of the converged torso filter, the position and

scale of the subject’s upper body are extracted. In Figure 3.11, the face, left hand

and right hand filters are initialised according to normal distributions centred at

H , LH and RH respectively, each with a nominal scale equal to one third of the

torso scale. The dashed circles around these centres represent the variance of

the particle distribution. Seeing that the hands are likely to move considerably

faster than the face, a broader distribution of particles is required to maintain
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Figure 3.10: Torso particle filter initialisation and convergence

successful tracking of these objects. The locations of Regions LH and RH have

been chosen such that hands in a relaxed pose can be detected easily. Following

the Renaissance subdivision, these are found to be 1.5 skeletal unit lengths below

the representative torso primitive.

Robust tracking of the torso requires that the subject be segmented from the
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Figure 3.11: Initialisation locations for the face and hand filters

background. Similarly, tracking of the face and hands requires that they be

isolated from the rest of the image; this is achieved by segmenting skin tone

regions from the foreground image.

Skin colour models have been used in various colour spaces including normalised

RGB [94, 86, 18], YCbCr [46, 82], HSV [101, 16, 80] and HSI [45]. However,

if Lambertian reflectance [108, 32] is assumed, intensity can be separated from

chromaticity as in CbCr [17, 7] and HS [95] such that the observed object in

these colour spaces offers a degree of invariance to lighting conditions. All these

colour spaces are nonetheless particularly useful as skin colour across different

races forms a tight cluster in each of these spaces. A recent colour space study

by Gasparini et al [34] offers a noteworthy set of skin detection results using the

aforementioned colour spaces.

In this research, the HS (Hue, Saturation) colour space has been selected to

represent skin. Appendix B provides a brief explanation of the HSV hex cone,

and the RGB to HS conversion algorithm. Following Figure B.1 of Appendix B,

Hue and Saturation exist in a polar plane, and according to [9], Hue ranges from

approximately 355◦ to 40◦. This ‘wrap around’ is problematic when training a
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statistical skin model, and two solutions are presented. The Hue-Saturation polar

coordinates of each pixel can be projected onto the Cartesian plane following x =

r cos(θ) and y = r sin(θ) where r is the Saturation, and θ the Hue. Alternatively,

to conserve computation time, the skin model can be learned from the HS model

directly by excluding H > 50. Due to the minimal presence of skin pixels with

355◦ < H ≤ 360◦, their exclusion produces a slightly less accurate model that

proves to be adequate for skin detection.

With an estimate of the position and size of the face (determined by Region H of

Figure 3.11), a set of parameters for the subjects’s skin tone can be determined.

Statistical methods have been employed to make use of two bivariate Gaussian

skin models in the Hue-Saturation colour space: a primary generic model S1,

and a secondary subject specific model S2. S1 is created from a selection of

various faces from natural images. N pixels are sampled, each represented by xi,

a two-dimensional feature vector consisting of that pixel’s corresponding Hue and

Saturation value. The mean µ1 of the sampled skin data is then obtained by:

µ1 =
1

N
(x1 + x2 + x3 + . . .+ xN) (3.15)

With xi and µ1 in column vector form, the skin model S1 is determined by the

2 × 2 covariance of the samples:

S1 =
1

N − 1

N∑
i=1

(xi − µ1)(xi − µ1)
T (3.16)

This skin model is obviously far too general for use in robust segmentation, but

it does however exclude pixels that are obvious outliers. Once the torso filter

converges, a subject specific skin model S2 is built from Region H , using the

remaining inliers determined by S1. This is achieved by firstly determining P (Y),

the probability that the feature vector of a newly sampled pixel Y is skin. To

do this, we firstly compute the Mahalanobis distance [85] md(Y, S1) between Y
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and the generic skin model S1. This distance provides the number of standard

deviations that the vector Y lies from the mean of the dataset S1

md(Y, S1) =

√
(Y − µ1)

TS−1
1 (Y − µ1) (3.17)

Again, Y and µ1 are in column vector form, and yield a 1 dimensional (scalar)

md(Y, S1). Using this Mahalonobis distance, P (Y) can now be determined:

P (Y) =
1

2π|S1| 12
e(−

1
2
md2) (3.18)

Should P (Y) provide a high probability, Y is added to the new skin sample set.

Determining the skin probability on a per pixel basis is however computationally

expensive, and a similar model can be built using only the Mahalanobis distances.

Chebyshev’s Theorem [65] states that for k > 1, at least 1 − 1/k2 of the data

set, regardless of shape, will fall within k standard deviations of the mean. For

example, at least 88.8% will fall within ±3 standard deviations. This percentage

can be further increased if a symmetrical bell-shaped distribution is assumed,

where the Empirical Rule [111] states that 99.7% of the data elements are within

±3 standard deviations of the mean. Taking advantage of this knowledge, should

md(Yi, S2) be less than three standard deviations, the pixel is considered to be

skin. Once all appropriate pixels in Region H have been added to the sample set,

the subject specific skin model S2 is created as per equations 3.15 and 3.16.

The rectangular subregions (indicated in Figure 3.11) of the foreground image are

then converted to HSV. Using the subject specific skin model S2, and assuming

that the subject’s skin is the same for the face and hands, all pixels in these

subregions are tested for skin. Three binary images are then created from the

skin pixel tests, where ‘1’ denotes skin. The face and hand filters are finally

initialised on these binary images and operate in exactly the same manner as the

torso filter. As in the case with the foreground likelihood image of the torso, the

face and hand binary images are also converted to Integral Images to improve

speed performance.
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3.6 Integral Images for Real-Time Performance

Rectangular features can be computed quickly using an intermediate representa-

tion called an integral image [104], which is also known as a summed area table

in texture mapping [22]. Figure 3.12 (a) represents an integral image, where the

value of the integral image at point (x, y) is equal to the sum of all the pixels of

the original image, above and to the left of (x, y), inclusive:

II(x, y) =

x∫
i=0

y∫
j=0

I(i, j)dj di (3.19)

where II is the integral image, and I is the original image. In the case of a

discrete image, II(x, y) is approximated by

II(x, y) =
x∑
i=0

y∑
j=0

I(i, j) (3.20)

With a slight abuse of notation, this is expressed in shorthand as II(x, y) =
∑
A.

(a) (b)

Figure 3.12: Integral Image Computation

The entire II can be computed in this manner for all(x,y), however it is more

efficient to determine the integral image incrementally, rather than repeatedly

summing the previous pixels:

∀x, y II(x, y) = I(x, y) + II(x, y − 1) + II(x− 1, y) − II(x− 1, y − 1) (3.21)
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The pixel value sum for Regions B and C are computed as
∑
B = II(x2, y1) −

II(x1, y1), and
∑
C = II(x1, y2) − II(x1, y1).

∑
D can therefore be computed

as

∑
D =

x2∫
i=x1

y2∫
j=y1

I(i, j)dj di ≡ II(x2, y2) − II(x2, y1) − II(x1, y2) + II(x1, y1)

(3.22)

Using an integral image, any rectangular sum can therefore be computed in a

maximum of three mathematical operations. However, due to the large overhead

of creating the integral image, its use is only beneficial if multiple rectangular

features are to be computed. This is clearly the case with the aforementioned

particle filter systems which together extract 2 500 rectangular features per frame.

For ease of visualisation, Figure 3.13 (a) provides examples of foreground binary

images, with a graphical representation of the corresponding integral images in

Figure 3.13 (b).

As previously discussed, the body part primitives of Section 3.5 have been con-

structed from rectangular shapes such that their sums can be computed using

these integral images. Considering the binary image in Figure 3.14(a),
∑
A of

the torso primitive can be computed by sequentially summing all pixel values in

this region. Once this binary image is converted to an integral image however, the

same torso primitive is divided into two rectangular regions, with corresponding

vertices 1 to 4, and 5 to 8. Following the same process outlined in Equation 3.22∑
A can now be computed as:

∑
A = II(3 − 2 − 4 + 1) + II(7 − 6 − 8 + 5) (3.23)

which consists of a mere 7 mathematical operations. The outer Region B is

also divided into rectangular regions, and
∑
B is calculated in the same manner.

This also means that the algorithm is constant time as the scale of a primitive

does not change the complexity of the calculations. Section 3.6.1 provides an
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(a) (b)

Figure 3.13: (a) Binary image (b) Corresponding integral image

illustrative example showing the benefit of using an integral image with large

particle population sizes.

(a) (b)

Figure 3.14: Computation of
∑
A using an integral image
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3.6.1 Integral image benefit

Experimentation has determined that a camera capturing frames sized at half

PAL (384 × 288) contain sufficient information for robust tracking of the upper

body. The subject of Figure 3.14 is sufficiently close to the camera such that all

relevant parts can be tracked. The representative torso particle of this example

occupies approximately 17 400 (120 × 120 + 50 × 60) pixels, a typical size when

the full upper body is in camera view.

The computation of
∑
A in the standard manner therefore requires 17 400 addi-

tion operations. This number is doubled to 34 800 as
∑
B is also to be obtained

for the computation of the particle fitness. For illustrative purposes, it is assumed

that the average particle size is similar to that of the representative particle. The

torso filter population size consists of five hundred particles and therefore requires

a total of 17.4 million (34 800 × 500) operations. Should the subject move closer

to the camera, thereby occupying more of the image space, the computational

cost is further increased.

Making use of the integral image,
∑
A and

∑
B are determined using 7 oper-

ations each. Following Equation 3.21, the binary to integral image conversion

process entails approximately 330 000 (384 × 288 × 3) operations. The initial

overhead is large, but only occurs once per frame. In addition, the computa-

tion of
∑
A and

∑
B is unaffected by the size of the subject. For a popula-

tion of 500 particles, the total number of required operations is approximately

337 000 (330 000 + 500 × 14), 0.02 percent of that of the standard summation

method.

Using both methods, Figure 3.15 shows the total number of operations required

to compute the fitness for an increasing number of particles. The plot of the

sequential summation method offers a steep ramp, while that of the integral

image method is virtually flat. The intersection of the two curves shows the
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break-even point where the benefit of the integral image supersedes the standard

summation method – processing time is already conserved when the population

consists of ten particles.

Figure 3.15: Number of operations using standard summation versus an integral

image

3.7 Results

3.7.1 Chroma-keying

The greatest limitation of chroma-keying is that a controlled studio environment

with special screening is required. Furthermore, the subject cannot wear clothing

of similar colour to the background screen. Doing so will cause those sections of

the subject to be labelled as background, making the tracking algorithm useless.

The threshold T , as presented previously in equation 3.12, can range from 0 to

512, and varies according to different lighting conditions. Experimentation using

the facilities provided at the CVSSP of the University of Surrey has shown that a
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value of T ≈ 50 is the most successful in determining predominantly blue pixels,

i.e. the blue background.

Blue spill is a phenomenon whereby the outer regions of the subject reflects blue

light due to the surrounding screens. It is particularly noticeable around reflective

skin regions due to the oils secreted by the pores. These regions of blue spill are

recognised as background and are removed, thereby altering the size and shape

of the face and hands. A morphological dilation could be performed to reclaim

this information, but skin segmentation still fails due to the influence of the blue

spill.

The blue background offers yet another difficulty when the hands become semi-

transparent due to motion blur. Blue is added to the skin colour, making seg-

mentation poorer. The tracking algorithm is essentially reduced to identifying

skin-like blobs; these detected regions still prove to be of sufficient size for ef-

fective tracking. Figure 3.16(a) shows the segmented arm using chroma-keying;

the presence of blue in the skin due to motion blur is also subtly present. Fig-

ure 3.16(b) highlights the detected skin in yellow, and it is clearly apparent that

there is insufficient information to detect hand shape or rotation. Even if the

segmentation was more robust, detection of hand rotation is only viable if the

subject keeps their hands open which is seldom the case. The square design of the

hand primitive is therefore more than adequate to detect and track the subject’s

hands.

3.7.2 Adaptive background segmentation

Using an adaptive background segmentation offers three main advantages. Firstly,

use of the tracking algorithm can be extended to a variety of indoor and outdoor

environments. Secondly, although the background still affects the colour of the

motion blurred hands, the inclusion of natural world colours, as opposed to those
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(a) (b)

Figure 3.16: (a) Destruction of blue spill and motion blur (b) Resulting detected

skin tone

of a saturated blue screen, have less effect on skin segmentation. This results in

larger segmented skin regions, which increases the tracking robustness. A third

advantage is that the subject is no longer as restricted in terms of clothing.

If not cautious with the learning rate of the adaptive segmentation, the subject

can be included in the background model in a short space of time. Seeing that the

objective application is HCI, this is of special concern as the subject is likely to

stand in front of the camera for an extended period of time. Figure 3.17 provides

a few frames from a sequence with a particularly fast scene learning rate. In frame

120, the black and white image on the left represents the foreground binary image

of the image on the right. Since the video is captured at 30 frames/second with

a USB2 web camera, this corresponds to a duration of four seconds. Due to

the fast learning rate, the scene has been predominantly incorporated into the

background model, with the presence of a little noise (mainly due to the poor

quality of the web camera). At frame 500, the filter systems are initialised, and

detection proves to be successful. Consulting the binary image more closely,

it is evident that the segmentation is not very clean due to the lack of contrast

between the previously learned background model and the new foreground object.

The coarse shaped body primitives are nonetheless able to cope with these ‘gaps’
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in the foreground model. In frame 831 however, the lack of movement of the

subject’s torso causes it to be incorporated into the background model due to the

fast scene learning rate. Frame 859 illustrates the torso and face filters drifting

to the side of the subject, where the arm is still part of the foreground model due

to its movement. Tracking of the torso and face in Frame 1471 has completely

failed, with the torso filter converging on the arm, and the face filter on the hand.

In the final frame, once the subject moves out off camera, the binary image now

indicates the presence of a foreground object. However, seeing that the initial

background model is never destroyed, this residual foreground is re-incorporated

into the background quickly.

The motivation behind learning the scene quickly is that a subject will want to

run the application and begin using it immediately. A slow learning rate obviously

requires that the algorithm be running for a considerable period of time to learn

the scene completely. The obvious compromise makes use of a self-adjusting

learning rate – the application initiates with a fast learning rate, which is then

slowed dramatically when a subject comes into view.

3.7.3 Determining the Optimal Population Size

Determining the optimal particle population size plays an important role in find-

ing a balance between tracking parts robustly/smoothly and tracking in real time.

To illustrate how a particle population size affects tracking, a sequence of a sub-

ject performing rigorous gestures (Figure 3.20) was used for test purposes. The

test focused on the hand filters as they are the most susceptible to the particle

population size; they track the fastest moving body parts. Figure 3.18 shows the

mean pixel error of the left and right hand particle filters versus an increasing

number of particles. From the curve, the system fails to converge when the pop-

ulation size is less than approximately thirty particles, and the respective filters
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Frame 120

Frame 500 Frame 1471

Frame 859

Frame 1650Frame 831

Figure 3.17: The effects of using a high scene learning rate

remain at the hip initialisation point. The error reduces rapidly as the number of

particles increases, when at approximately three hundred particles, the hands are

tracked throughout the sequence. This also corresponds to the point of inflection

of the curve, and has a mean error of 3.17 pixels.

Figures 3.19 (a) to (d) provide the corresponding hand tracking error plots from

the sequence, each generated using a different number of particles. Figure 3.19

(e) in turn shows the mean hand velocity determined using the ground truth,

and indicates fast chaotic motions. Comparing the error against the velocity

validates that high tracking errors co-occur with the faster, frantic actions. The

population of three hundred particles provides a robust tracker as the target is

lost for a maximum of five frames before recovering. This is not particularly

noticeable to the naked eye as this time frame equates to less than one fifth of
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Figure 3.18: Determining the particle population size

a second as the system runs at above real-time. Although the hands are tracked

throughout the sequence with a small mean error, the output is however extremely

noisy. The jitter around each part is noticeable, and proves to be inadequate for

gesture recognition purposes. Four and five hundred particles produce smaller

mean errors of 2.2 and 1.8 pixels respectfully, and have significantly smoother

outputs, with fewer error spikes.

Although particle computation itself is constant time due to the use of the integral

image, the sorting of the lists in which their parameters are stored is not. Further

increases in the population size only provide a slightly smoother output and lower

mean error. For example, a population of one thousand particles produces a mean

error of 1.3 pixels at the cost of a noticeable latency. A population of five hundred

particles has therefore been selected for use in each of the particle filters as the

tracking is sufficiently robust, and the output adequately smooth.

3.7.4 Tracking Robustly in Cluttered Scenes

With respect to the live application of the particle filter tracking system, the scene

is learned within approximately five seconds after initialisation. It is important
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(a) 300 particles
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(b) 400 particles
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(c) 500 particles
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(d) 1000 particles
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Figure 3.19: Hand tracking error through a video sequence using the hand filters
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that no subjects wishing to use the system are present at initialisation as they

will be included in the background model. After the scene has been learned, the

torso particle filter is initialised at the centre of the image. Should a subject not

be in camera view at any time, the resultant particle population efficiency will be

low; should this efficiency fall below a defined threshold, the filter is re-initialised

on each frame until a subject moves onto the scene.

The respective filters of the full system each consist of five hundred particles,

and include a Gaussian white noise drift term to compensate for movement. The

noise variance of the hands is greater than that of the torso and face in order to

detect their faster movement. The mean of the top 10 percent of particles from

each filter is selected to represent the likely position and scale of each body part.

Figure 3.20 shows the same sequence used in Section 3.7.2 where a fast scene

learning rate caused tracking to fail; here however, the tracking is more robust

due to the variable learning rate. This sequence offers a good example of the

type of data likely to be used for HCI where only the upper body is of concern.

In frame 336, there is still no evidence of a representative torso particle, however

as the subject moves closer to the centre in frame 378, the filter offers sufficient

efficiency to provide the first representative particle. The system then quickly

converges onto the subject in less than one second. At this point, the subject

specific skin model from the face region is learned, and the face and hand filters

are initialised in the locations described in Section 3.5.3. Due to the reasonably

accurate initial estimates, the hand filters converge in less than ten frames.

It is evident how tracking of the hands remains robust even when when they are in

close proximity (frame 1125), and when distorted with motion blur (frame 1437).

From frame 1595, the subject begins to move off scene, and the filters continue

to track the subject as far as the image border. If the subject is standing less

than half a skeletal unit length from the image border, it is assumed that the

corresponding hand is out of view. At this point, the associated hand filter is
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Figure 3.20: Tracking a subject in a complex, cluttered scene

disabled to prevent multiple filters from attempting to track the same object.

The same applies when the subject is standing very close to the camera – both
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hand filters are disabled. If the subject moves back into view, the respective hand

filters are initialised as before.

The hierarchical link between the torso and face filters restricts the distribution

of face particles to exist within one skeletal unit length of the head region (Region

H) of the representative torso particle. This restriction assists in preventing face

particles from drifting onto the hands, yet is lenient enough to ensure that face

tracking continues when the subject is bending forward as in frame 1603, or when

tilting to the side. In frame 1624, the face filter has been re-initialised, while in

frame 1630 the torso filter returns to a state of continuous re-initialisation. The

subject specific skin model is discarded, and will be re-learned when a new subject

moves into the scene.

The same methodology of tracking a single subject can be extended to detect

and track multiple subjects. Figure 3.21 shows two subjects moving in a clut-

tered scene, with separate particle filter systems governing each. Following back-

ground segmentation, a k-means clustering of the foreground pixels is performed

to extract an initial estimate and size for the position of each subject. In this

particular example, K was selected by hand to be the number of subjects to

track. Alternatively, a connected component analysis of the binary foreground

image can be used to estimate the number of moving objects.

K distinct particle filters are run concurrently, each initialised with Gaussian

distributions from the K component estimations. In terms of modelling the

posterior, this makes little difference but it provides a convenient partitioning

of the population samples for monitoring and re-initialisation. In order to cope

with subject occlusions, a minimum separation between targets is enforced [86]

by comparing the distributions of each torso particle system to detect when more

than one particle filter has converged upon a single solution – at this point,

k-means is conducted again, and the filter is re-initialised according to the K

estimations. From the image sequence, it is also apparent how the torso filter of
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(a) (b) (c)

(d) (e) (f)

Figure 3.21: Tracking multiple subjects in a complex, cluttered scene

each system contends with the two differently sized subjects, and their forward

movement with respect to the camera.

3.8 Conclusions

Basic knowledge of a human figure schematic has allowed for the design of body

part primitives to coarsely estimate body part shape and locations. These esti-

mates, combined with the invaluable speed benefits of integral images, have made

a real-time particle filter system achievable. Tracking has proven to be even more

robust as the particle population sizes can be increased significantly with minimal

influence on system performance. Aside from the initial overhead of the integral

image computation, the system is not inhibited by image resolution – a higher

quality capture would also allow for the analysis of face and hand shape which
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could further the capabilities of the HCI system.

The current implementation of the integral image precludes detection and track-

ing of a tilted torso or face. This is however acceptable as the objective appli-

cation lies in gesture recognition, and we assume the subject remains upright.

Identifying face rotation however could prove useful in gesture recognition where

a tilt of the head may be used to suggest a question. Later sections introduce

alternative methods which can overcome this while still employing the benefits

of the integral image. This encodes the shape of the object such that a template

used to detect the object can be rotated. Determining the fitness of each rotated

template is however more expensive as the fitness of each row of the template has

to be computed and averaged.

The major shortcoming of the system is that a static background is required

for background/foreground segmentation. A need therefore exists for a more ro-

bust method of detecting body parts in cluttered scenes. Section 5.2 describes

the detection of body parts using trained body part detectors. These are then

intelligently assembled into human configurations, and can operate without back-

ground/foreground segmentation as the approach focuses on modelling the fore-

ground object rather than the background.



Chapter 4

Prior Data for Pose Estimation

This chapter presents the use of an a priori Gaussian Mixture Model (GMM) of

frontal view upper body configurations to disambiguate the hands of the subject

and to predict the likely position of the elbows. The same model is used again

later in Chapter 5 to acquire a pose likelihood of an upper body configuration

consisting of body part detections.

4.1 Gaussian Mixture Model Construction

Although the human body has a high number of degrees of freedom, the relative

position of body parts are predictable to some extent. Furthermore, when body

parts move, there is some dependency upon this relative position. If a model

of this dependency were to be constructed then it could be used to both disam-

biguate hand detections as well as infer unseen structures from the image. To this

end, two prior models φ (∈ R16) and ψ (∈ R20) of body configurations have been

built from 4600 representative examples of humans in image sequences performing

deaf sign language and a variety of upper body movements. An example frame

from a training sequence is shown in Figure 4.1. The parts of interest include

59
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the shoulders (labels 2 and 3), hips (1 and 4), chin (5), hairline (6) , left hand

(10), right hand (7), left elbow (9) and right elbow (8). Blue and yellow coloured

gloves, green elbow markers and a black background were used to facilitate the

ground truth labelling. A modified version of the particle filter system of Chapter

3 was used to record the body part positions rather than doing so meticulously

by hand. The constituent 16D feature vectors of φi are formed by concatenating

the x, y co-ordinates of eight parts, namely the shoulders, hips, chin, hairline and

hands. Once constructed, φ is used to disambiguate the elbows. The 20D feature

vectors of ψi are formed in the same manner, with the addition of the elbow

positions. ψ in turn, assists in estimating the elbow positions.

Figure 4.1: Ground truth labelling of body parts using a particle filter system

Assuming that the set of feature vectors can be described using a single Gaussian,

ψ is represented by the covariance of its constituent feature vectors:

Covψ =
1

N − 1

N∑
i=1

(ψi − µψ)(ψi − µψ)T (4.1)

where N is the number of examples, ψi is a single feature vector of the set, and

µψ is the mean of that set. Once Principal Component Analysis (PCA) [52] has

been performed on Covψ, the projection of data onto the primary eigenvectors
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(corresponding to the largest eigenvalues) provides a useful visualisation of the

dataset, as shown in Figure 4.2. From the complexity of this figure, it is apparent

that the manifold on which the data set lies is not represented well by a single

Gaussian. It is therefore intuitive to represent the training set using a Gaussian

Mixture Model (GMM); the optimal number of components must however be

selected.
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Figure 4.2: Dataset ψ projected onto the first three eigenvectors

Following [9], the cost function from K-means can be used to estimate the optimal

number of components, K . The natural number of components to be selected

is said to be the number for which further increases do not produce significant

benefits in reducing the overall cost. From the corresponding cost function of

Figure 4.3, this corresponds to the point of inflection on the curve, and K is

estimated to be in the region of 100 components.

Dataset ψ is clustered accordingly, and K 20×20 covariance matrices Covψ,k are

formed from the examples in the corresponding clusters:
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Figure 4.3: Cost versus number of components

Covψ,k =
1

N − 1

Nk∑
i=1

(ψi,k − µψ,k)(ψi,k − µψ,k)T (k = 1, . . . , K) (4.2)

each of which is weighted according to the number of examples Nk in the respec-

tive clusters. ψi,k represents the feature vectors and µψ,k the mean of the kth

cluster. Figure 4.4 provides the resultant clustering of data set ψ.

Similarly, φ also proves to be non Gaussian, and is best represented by a GMM.

Covφ,k is created in the same manner as per Covψ,k, the main difference being

that the constituent feature vectors are 16D as the elbow positions are excluded.

With these two a priori data sets, the left and right hands can be disambiguated,

and the undetermined elbow positions of the tracked subject can be inferred.

4.2 Disambiguating the Hands

Using Covφ,k ∈ R16 , the hands of the subject can be disambiguated in the

event that the hands overlap temporarily, or if tracking mistakenly switches to

the opposing hand.
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Figure 4.4: K-means clustering of ψ with K = 100

Once the eight (x, y) co-ordinates of the subject’s body parts are determined, they

are concatenated to form a pair of feature vectors (y′
j ∈ R

16, j = {1, 2}), where

the co-ordinates of the hands are deliberately swapped in vector y′
2. Here, the

Mahalanobis distances, mdφ,k(y
′
j), (initially show in Equation 3.17) are defined

as the measurements between vector y′
j and each component of the GMM. The

correct configuration is that which minimises its distance to the model.

mdj =
K

min
i=1

(
mdφ,i(y

′
j)
)

j = {1, 2} (4.3)

Awkward poses, for example arms crossed over each other, yield a larger md,

thereby indicating that the pose is unnatural. Should y′
2 yield the smaller md,

the hand filters are switched in order to correct the pose.
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4.3 Estimation of Elbow Positions

Image cues for the detection of elbow positions are not apparent, and predic-

tive methods need to be employed in order to offer a starting point with which

to search the image space. Inverse kinematics prove to be cumbersome in 2D

applications, and also offer multiple solutions as the arm length ‘changes’ due

to perspective. This approach makes use of the aforementioned Covψ,k (created

from feature vectors ∈ R20), and offers a relatively accurate starting point for

each elbow.

Eigen decomposition of Covψ,k yields eigenvector matrices Pψ,k and corresponding

eigenvalues bψ,k. With y′ as the hand-disambiguated 16D model of the tracked

subject, the objective is to construct the vector yr ∈ R
20 which includes estimates

for the elbow positions. As per Section 4.2, mdψ,k(y
′) is calculated, and the nth

component in the GMM that yields the minimum distance is selected. The elbow

information is then removed from Pψ,n, giving a 16x20 matrix P′
ψ,n. Similarly, the

elbow positions are removed from the mean of the nth component µψ,n, giving

µ′
ψ,n ∈ R

16.

In matrix form, a body configuration yr can be reconstructed from the data set

mean µ plus the weighted sum of the eigenvectors:

yr = µ+ Pb (yr,b ∈ R
20) where − 3

√
bi < b < 3

√
bi (4.4)

A new set of projection weights bnew ∈ R
20 can therefore be determined by re-

arranging Equation 4.4, and making use of the dimensionally reduced µ′
ψ,n (16×1

column vector) and P′
ψ,n (16 × 20 matrix):

bnew = P
′T
ψ,n(y

′ − µ′
ψ,n) (bnew ∈ R

20) (4.5)

With this new set of weights, the model yr ∈ R
20 is constructed, and therefore

provides estimates for the elbow positions.

yr = µψ,n + Pψ,nbnew (4.6)
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4.4 Results

As per the acquisition of ground truth data, colour coded body parts were used to

measure the accuracy of the hand disambiguation and elbow estimation methods.

A data set of 7600 representative body configurations was extracted from a video

sequence of a deaf signer. This data set was then separated into 4600 training

examples and 3000 unseen test examples. K-means was conducted on the training

set with K ∈ {1, 2000}, and PCA was performed upon corresponding clustered

data. For each iteration of K, the test data set was then used to estimate the

elbow positions as detailed in Section 4.3, and the test data ground truth was

used to measure the pixel error between each elbow and its estimate. Figure 4.5

shows the mean and standard deviation error for the estimation of the left and

right elbow positions. The higher error of the right elbow is due to the increased

movement of the right arm as the signer in the sequences is right hand dominant.

Again, the highest benefit in terms of error minimisation is in the region of 100

Gaussians, and corresponds to the cost function of Figure 4.3. Further increases

reduce the generalisation of the model as it will eventually regress to a nearest

neighbour approach [9].
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Figure 4.5: Error of the left and right elbow estimations
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Figure 4.6 shows a test subject performing deaf sign language, with the torso, head

and hands tracked as per Chapter 3. Using a GMM of one hundred components

as previously determined, the hands were correctly disambiguated in 98 percent

of the test examples using the hand disambiguation method (Section 4.2). The

left and right elbows were estimated from the a priori model, the positions of

which are indicated by PL and PR respectively. The elbow markers were used

as a reference with which to measure the elbow estimation error; these were not

used in the estimation.

(a) (b) (c)

Figure 4.6: Error calculation of estimated elbow positions using elbow markers

Figure 4.7 shows the elbow estimates of another subject that is not wearing elbow

markers.

4.5 Conclusions

Relatively accurate elbow positions have been estimated using an a prior mix-

ture model on body configurations, thereby completing the upper body pose.

Furthermore, in terms of gesture recognition and sign language recognition, it

offers another reference point in terms of recognising gestures, and also allows for

additional gestures in the vocabulary.

This chapter presented subjects wearing coloured gloves and a clean background
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Figure 4.7: Estimation of elbow positions

to emphasise the elbow estimation. In Chapter 5 however, the elbow positions

are estimated from natural images with cluttered scenes.
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Chapter 5

Detection and Tracking of

Humans by Probabilistic Body

Part Assembly

The objective of this chapter is to robustly estimate the location and approximate

2D pose of humans in real world cluttered scenes. This is a challenging task as

the shape and appearance of the human figure is highly variable. The problem

is further compounded as people wear a variety of clothes, and skin tone varies

with race.

Using an implementation of the Adaboost face detection method initially pro-

posed by Viola and Jones [104], body part detectors for the face, torso, legs and

hands have been created. The solution presented here makes use of a probabilistic

framework to assemble the individual body part detections into a full 2D human

configuration. A coarse heuristic is applied to eliminate obvious false detections,

and body configurations are assembled from the remainder using RANSAC. The a

priori mixture model of upper-body configurations created in Chapter 4 is used to

provide a pose likelihood for each configuration. A joint-likelihood model is then

69
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determined by combining the pose, part detector and corresponding skin model

likelihoods. The assembly with the highest likelihood is selected by RANSAC

[29], and estimates of the elbow positions are inferred.

5.1 Object Detection

Boosting is a general method that can be used for improving the accuracy of

a given learning algorithm [91]. More specifically, it is based on the principle

that a highly accurate or ‘strong’ classifier can be produced through the linear

combination of many inaccurate or ‘weak’ classifiers. The efficiency of the final

classifier is increased further by organising the weak classifiers into a collection

of cascaded layers. This design consists of a set of layers with an increasing

number of weak classifiers, where each layer acts as a non-body-part rejector

with increasing complexity. A candidate subregion of an image is first passed to

the simplest top layer for consideration, and is only moved to the next layer if it

is classified as true by the current layer.

The object detector described in this section was initially proposed by Viola and

Jones [104] and extended by Lienhart and Maydt [63] for Intel’s computer vision

library, OpenCV [47]. The reader is directed to Schapire’s workshop paper [90]

for an overview of the boosting approach to machine learning and to Viola and

Jones’ journal paper [106] for a full discussion of object detection using trained

feature detectors.

5.1.1 Features

The object detection methodology employed here classifies images based on simple

features. The features were derived from the Haar-like features used by Papa-

georgiou et al [77] and Mohan et al [73]. Viola made use of three forms of upright
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rectangle features, indicated by Figure 5.1 (a), (c) and (e), where white regions

have a positive weighting, and the black negative. Lienhart and Maydt extended

this set by including ±45◦ rotated versions of the upright features (Figure 5.1

(b) and (d)), and by adding a ’centre-surround’ feature (Figure 5.1 (f)). Lien-

hart demonstrates that improved detection rates are achieved by including these

additional features. For the remainder of this Appendix, a feature type refers to

any one of the aforementioned unique feature shapes, while a feature is a variant

of that feature type in terms of location and scale within a bounding box.

Figure 5.1: Examples of the rectangle features used for object detection

The value of a feature is computed by superimposing it onto an image, summing

the pixels in the respective regions, and computing their difference. For example,

a two region feature detector placed on the forehead with intense reflection will

have a small value. Since the features are comprised of rectangular regions,

integral images (see Section 3.6) can be exploited to compute their summations

efficiently. In the case of the Lienhart’s rotated ±45◦ features, two rotated integral

images are computed by summing the original image diagonally, from top left to

bottom right, and top right to bottom left.

With the aforementioned set feature types, a classifier is trained with a set of
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sample views of a particular object, referred to as positive examples, each of

which have a labeling of ‘1’. A set of arbitrary images that do not contain

the object are also used for training purposes such that non objects can also be

identified in order to resolve ambiguities. These training images are referred to as

negative examples, and have a labeling of ‘0’. Generally, there are twice as many

positive examples as negative examples, where the number of positive examples

is typically between one and two thousand. The objects of the positive examples

are cropped such that each example contains a similar view of the object. For

example, the frontal view of the face is cropped with a square which extends from

the top of the eyebrows to the lower lip. Including images that exhibit a slight

rotated view of the object is however advised as this allows for a level of leniency

when attempting to detect an object. All positive and negative examples are

then scaled to the same size, typically 20 × 20 pixels. Larger training images do

improve detection performance, however at the cost of hardware resources and

time requirements during training.

5.1.2 Training the Classifier

The hypothesis of a boosted detector is that a small number of features can be

combined to form an effective classifier. Selecting the appropriate features is the

main challenge, and AdaBoost is used to select these features, and to train the

classifier. The AdaBoost learning algorithm is used to boost the classification

of a simple learning algorithm or weak learner, and it does this by combining a

collection of weak classification functions into a single, stronger classifier. The

weak learner is restricted to using a single feature and is designed to select the

single rectangle feature that best separates the positive and negative examples.

There are essentially two main variants of the constructed strong classifier. The

first form consists of a single or monolithic classifier that is highly complex and
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consists of a large number of feature detectors. The application of such a classi-

fier will however prove to be computationally expensive as all features must be

evaluated for all subregions of the candidate image.

The second form of classifier is comprised of a cascade of simple (top level) to

complex (bottom level) classifiers. In terms of training, the error rate of this

approach converges less rapidly that of the monolithic approach, and requires

a longer training time. However, in terms of application to a candidate image,

the cascade approach improves speed performance substantially as the expensive

complex classifiers are only invoked if the simpler classifiers provide a positive

detection. The disadvantage of this approach is that a simple upper level classifier

may incorrectly reject a candidate region, and more complex layers that may have

correctly classified that region will not be applied; this leads to a lower detection

rate of true occurrences. Since the objective application of this chapter is real-

time object detection, this variant was implemented even though it yields a lower

detection performance.

Considering the cascaded classifier, each cascade layer consists of a weighted

combination of a certain number of weak classification functions, each consisting

of a single feature. In this thesis, the number of features per layer ranges from

2 to 150 features from top to bottom in the cascade. The training process is

therefore resource intensive and time consuming in that it must repeat the same

learning algorithm for all feature variants for each layer of the cascade. For

example, the face detector, whose training images are sized at 20 × 20 pixels,

utilises approximately 1.2GB of RAM and takes approximately 36 hours to train

using a server comprised of eight 900MHz processors. The leg detector with its

20 × 40 training images requires 3.6GB of RAM, and approximately 72 hours

training time.

Considering the training of the first layer in the cascade which consists of two

features, a single feature type is firstly selected, and is then scaled and super-
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imposed onto the training images at a fixed location. The weak learner records

the value of the feature for each training image, while taking the labeling of the

training image into account. The accuracy of the newly trained weak classifi-

cation function is then evaluated using the same training set, where a correct

detection likelihood is determined for each image. The error is measured by de-

termining the number of test images that are correctly classified as positive or

negative examples. Since a detection likelihood is provided, an important design

choice includes the selection of a threshold that will best separate positive and

false positive detections. Too low a threshold will yield a classifier that produces

a large number of false positives, while a high threshold may produce a classifier

that fails to detect well defined objects.

The training examples are then re-weighted in order to emphasize those which

were incorrectly classified, i.e. the weights of examples that are misclassified

are more heavily weighted, while the weights of correctly classified examples are

lowered. This process is repeated for all locations and scales of that feature type,

which produces hundreds of weak classifiers.

Once training of the first feature type is completed, a second feature type is se-

lected, and weak classifiers are built for all variants of that feature type as before;

the procedure continues until all weak classifiers have been built for all feature

types and their variants. From the resultant large set of weak classifiers, the two

that yielded the lowest error are selected, and a strong classifier is derived from

their weighted combination. The remaining layers of the cascade are similarly

constructed, however a different set of negative training examples is used in order

to increase the generalisation capability of the detector. The weightings of the

training images are also re-initialised after the addition of every layer. Layers are

continually added to the cascade until a target false positive rate is met.
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5.1.3 Applying the Trained Detector

When the trained object detector is applied at run time, the top end simplest

classifier consisting of two features is first swept (with a range of scales) across

the candidate image in order to reject the majority of sub windows that do not

even contain the most obvious target features. The second, and slightly more

complex classifier is then applied to the sub windows that remain, which rejects

outliers further. The detector continues to invoke the more complex classifiers

until the end of the cascade is reached, and only sub windows that contain the

target remain. As indicated in Section 5.4.1, the greater the number of layers in

the cascade, the more stringent the object detection, and the lower the detection

rate.

5.2 Boosted Body Parts Detectors

Using the object detection method presented in Section 5.1, four different body

part detectors were separately trained using their respective image databases.

The face, torso and hand training images were sized at 20x20 pixels, and the legs

at 20x40 pixels. The face database consists of frontal view and side profile images.

The faces used for the frontal view database offer approximately 10 degrees of

rotation in multiple directions such that faces looking just off the camera centre

can still be detected. Variability is obtained from faces looking left and right, and

tilting left, right, forward and back. Example images of the respective databases

are shown in Figure 5.2.

Definitions of the different body part detectors are provided, each of which takes

the form of a cascaded strong classifier. In order to detect a specific body part

in a bounding box, all the weak classifiers belonging to the detector are offset to

that location. A positive or negative detection is then computed by combining
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Figure 5.2: Example images of the face, torso, leg and hand databases

weak classifier outputs in strong-classifier layers. Each detector returns a score

for part detection, which is then normalised to produce a detection likelihood,

defined as LF , LT , LL and LH respectively. Use of this notation can be found in

Section 5.3.3. The performance of the detectors is shown in Figure 5.6.

5.2.1 Exploiting Colour Cues for Reduced False Detec-

tions

Since detections are performed in grey-scale, it would be advantageous to exploit

colour cues to act as a priori constraints to initially reduce the most obvious

false detections. This is especially useful if the colour is fairly consistent across

different instances of the objects. Here, the hands and face benefit from this

constraint.

As mentioned previously in Chapter 3.5.3, a weak skin colour model consisting

of a single Gaussian in the Hue-Saturation colour space has been created from a

large selection of natural images. Given a novel image, a skin colour likelihood

map can be generated using this Gaussian model. As previously mentioned, face

detection/tracking on colour images has received considerable attention - a large

difference however is that they first segment skin colour regions, and conduct

face-like feature searches in these segmented regions. The approach presented

here is the reverse: The hand and face detectors are applied across the entire

image, and provide a bounding box for each detection. The skin probability



5.2. Boosted Body Parts Detectors 77

map is used to determine the median skin colour likelihood for each bounding

box. Should this probability fall below a weak threshold (ie. 3 standard devia-

tions), the detection is rejected. Our motivation is twofold: firstly, skin-colour

segmentation can be unreliable, possibly leaving blank areas in the skin-coloured

regions. Furthermore, facial cavities are ignored, and fingers are thinned. Such

partially segmented body parts would fail to meet the detection requirements

of the associated part detectors, as the training images are cropped from larger

natural images. Secondly, even if the segmentation were clean, restricting the

search space to these regions is naive as a generic skin filter is not guaranteed to

segment all skin-like objects.

Figure 5.3 demonstrates the method of exploiting colour cues with the use of the

face detector. Figure 5.3 (a) shows all face detections – it is evident that several

false detections occur over ambiguous textures. With the aid of the generic skin

model, many of these false detections can be eliminated, as shown in Figure

5.3 (b). The resulting detection/skin joint-likelihood image for all detections is

provided in Figure 5.3 (c) – these likelihoods come into play when determining

the joint-likelihood model in Section 5.3.3.

(a) (b) (c)

Figure 5.3: Illustration of reduction of false detections using colour cues

The improved detection performance due to the inclusion of colour is illustrated

in Figure 5.4. The curves are created by repeatedly running the face detector

on the test database, while decreasing the number of layers in the cascade. The
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inclusion of all layers minimises the false detection of face. However, this also

leads to the failure to detect faces that should be detected.
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Figure 5.4: Face detector performance using colour. The increased true positive

rate is obtained by reducing the number of layers in the cascade.

Later, in Section 5.3.3, in an attempt to associate a pair of hands with a face, a

subject specific skin model is built from each face detection in a similar manner

described previously in Section 3.5.3.

5.3 Human Body Assembly

As mentioned above, the removal of layers in the detector cascade results in an

increased positive detection rate. This naturally comes with the trade-off of an

increased number of false detections. In order to cope with the false detections,

and to determine a final body configuration, a six step process is administered.

The details of each process are discussed in the subsequent sections.
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1. A weak heuristic is applied to all detections to eliminate obvious outliers

(Section 5.3.1).

2. RANSAC is then used to assemble the remaining detections into random

body configurations, each consisting of a head, a torso, a pair of legs,

and a pair of hands.

3. Each configuration is compared to an a priori mixture model of upper-

body configurations, yielding a likelihood for the upper body pose (Sec-

tion 5.3.2).

4. From each configuration, a skin model is learned from the face detector

and is used to derive an associated skin colour likelihood for the hands.

5. A resultant joint-likelihood for each configuration is obtained by com-

bining the pose likelihood determined by the prior model, the body part

detectors likelihoods and the skin colour likelihood for the hands. The

configuration with the highest likelihood is voted for by RANSAC to

represent the detected human (Section 5.3.3).

6. With a selected body configuration, the elbow positions estimated and

then inferred (Section 4.3) to complete the upper body pose.

5.3.1 False Part Elimination using Coarse Heuristics

An image with several human figures and a dense background clutter can easily

produce up to a hundred detections for each body part, yielding up to 1010 pos-

sible configurations. Determining a joint-likelihood for each and every possible

configuration would clearly be prohibitive, and discarding the most unlikely de-

tections is essential. Several false face and hand detections can be eliminated by

exploiting colour as described in 5.2.1. The total number of detections can be

reduced further by employing a set of coarse heuristics.

The heuristics have been designed according to a generic human model, and make
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A

B

C

Figure 5.5: Estimating the skeletal unit length from a face detection

reference to the skeletal unit length, described previously in Section 3.5, however

here this length is estimated in an alternative manner. The detector performance

curves shown later in Section 5.4.1 indicate that the face detector is the most

robust. The parameters of the face detections are therefore used to determine

the skeletal unit length for each body configuration. Referring to the Vitruvian

man of Figure 5.5, the head can be subdivided into 3 lengths, A, B and C. A

typical face detection occupies B and C, thereby allowing the skeletal unit length

to be approximated.

Having selected a face, the skeletal unit length and face centre position are de-

termined, and form the parameters of the heuristics that assist in constructing a

body configuration. The heuristic rules are set out in the following order, with x

and y referring to horizontal and vertical directions:

1. A torso is retained if its centre x position lies within the face width, and if

its scale is approximately 3 × face scale (± 0.5).

2. A face is retained if its centre lies within one of the resultant torso detec-

tions.

3. A leg detection is retained if its centre x position lies within the face width,

and if its top y position lies at 4 × skeletal unit lengths below the face(±
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0.5), and if the leg scale is approximately 2 × face scale (± 0.5).

4. A pair of hands are retained if both hands are less that 4 × skeletal unit

lengths from the face, and if the hand scale ≈ face scale (± 0.2).

False hand detections form the bottleneck in the system as a large number are

retained by the fourth heuristic. The configurations that pass the set of heuristics

are then compared to an a priori mixture model of upper-body configurations to

obtain a likelihood for the upper body pose (Equation 5.1). This step plays an

important role as awkward hand configurations, which are most likely to be false

detections, yield a low pose likelihood.

5.3.2 Determining a Pose Likelihood

In this step, body configurations are firstly assembled using RANSAC, where

supporting evidence is provided by the clustered detections that occur around

true occurrences of the object. Should a selected detection not have additional

neighbouring detections, it is rejected.

The a priori data set of body configurations φ (without elbow positions) from

Chapter 4 is used to determine a pose likelihood for each upper body configura-

tion. An assembled body configuration provides the position of 8 points, namely

the four corners of the torso detector, the chin and brow of the face detector,

and the hands. After calculating the skeletal unit length, the corner positions

of the detected torso are offset accordingly to provide positions for the shoulders

and hips, and the brow is offset to provide a position for the top of the head.

These 8 x, y coordinates are concatenated to form a feature vector y′ ∈ R
16 as

per Chapter 4.

A measure of how well y′ fits the prior data set can now be determined. Firstly,

the Mahalanobis distances mdφ,k from y′ to each component of the GMM are
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determined. The final pose likelihood LP is then be obtained from the weighted

sum of likelihoods of each component:

LP =

K∑
k=1

Nk

N

[(
2π

d
2 |Covφ,k| 12

)−1

exp(−1

2
md2

φ,k)

]
(5.1)

5.3.3 Final Configuration Selection

At this point in the algorithm, a coarse skin model with a low threshold was

used to reduce obvious false face and hand detections (Section 5.2.1). For each

assembled configuration, a new subject specific skin model is learned as per Sec-

tion 3.5.3 from the skin inliers contained within the bounding box of the selected

face as in Section 3.5.3. A skin colour likelihood for the hands is then deter-

mined using this model – it is intuitive that a subject’s hands will yield a high

likelihood when correctly associated with a face. These right and left hand skin

likelihoods (LLHSand LRHS)contribute to the body joint-likelihood model for a

body configuration.

The eight determined likelihoods, namely the pose (LP ), face (LF ), torso (LT ),

legs (LL), left hand (LLH), left hand skin (LLHS), right hand (LRH) and right

hand skin (LRHS) are combined to provide an overall body configuration likeli-

hood, LBC . Although the assembled configuration is tied together using a set of

heuristics, the individual detectors that produced the respective likelihoods are

treated as independent. The likelihoods are therefore multiplied together:

LBCi = (LPi).(LF i).(LT i).(LLi).(LLHi.LLHSi).(LRHi.LRHSi) (5.2)

The configuration that yields the greatest likelihood is selected to represent the

final configuration.
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5.3.4 Estimation of Elbow Positions

Once the final configuration has been selected, its corresponding feature vector

y′ ∈ R
16 is used to estimate the elbow positions as previously described in Section

4.3. The human skeleton is then overlaid onto the image to conclude the upper

body pose.

5.3.5 Detection in Sequences with a Static Background

Extending this work to video sequences with a static background allows for the

use of adaptive background segmentation and the application of the detectors in

a tracking framework.

Using the background segmentation algorithm of Section 3.4.2, each pixel of the

frame is assigned a foreground likelihood. The detectors however, are applied to

the full natural frame without segmentation. The mean foreground likelihood LFG

of a detection’s bounding box is determined by considering the pixel foreground

likelihood of the underlying segmented frame. The body configuration likelihood

Equation 5.2 is amended to take the foreground likelihood into account:

LBCi
= (LPi).(LF i.LFGF i

).(LT i.LFGTi
)

.(LLHi.LLHSi.LFGLHi
).(LRHi.LRHSi.LFGRHi

) (5.3)

The chief advantage of detection in a video sequence lies in the tracking framework

where the search space is localised in subsequent frames, thereby reducing the

number of false detections, the number of hypotheses to be assessed by RANSAC,

and therefore improving speed performance. An initial face detection is conducted

as before, with consequent body part detections limited by the heuristic proximity

rules as defined in Section 5.3.1. Subsequent position and scale variations of each
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detector are governed by prior detections. Should a body part fail to be detected,

the search region for the corresponding detector is increased and the scale is

adjusted by a Gaussian drift term until the detector recovers.

5.3.6 Overcoming Occlusions

It is extremely unlikely that images or sequences of people will contain all the

constituent body parts at all times. When a body configuration is being assem-

bled, should zero detections of a certain body part be passed by the heuristics, a

new body part is synthesised according to the skeletal unit length derived from

the selected face. This newly synthesised part is also given a small nominal de-

tection likelihood such that Equation 5.2 does not produce a body configuration

likelihood of zero. This is equivalent to adding a wide Gaussian distribution to

the detection likelihoods; this is justifiable as in probabilistic terms, a zero de-

tection likelihood should never occur. The nominal likelihood of the synthesised

part is set such that any true detection likelihood will surpass it.

As previously mentioned, the hand detector produces a large number of detec-

tions, even when no hands are present. The generic skin model and elimination

heuristics may discard many false detections, but several always remain. The

subject specific skin model learned from the selected face is therefore considered;

should the median skin likelihood of a hand detection fall below a low threshold,

the hand is re-synthesised. Using the selected skeletal unit length and torso de-

tection as reference, the new hand is positioned at the hips. It is fair to assume

that a subject’s hands are most likely to be occluded due to them being behind

the back or in the trouser pockets. The synthesised hand is also given a nominal

skin likelihood.
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5.4 Results

5.4.1 Body Part Detector Performance

Comparison of the different part detectors is a difficult task. The most obvious

problem is that each part is of different scale; the number of false detections for the

hands can be expected to be larger than that of the torso. In addition, a fair test

would make use of an image database in which all the aforementioned body parts

exist simultaneously; however, obtaining such a database has not been possible,

and three independent test databases have been used. An in-house face database

has been assembled, and consists of colour images containing 500 faces. This is of

comparable size to the MIT-CMU [98, 89] face database which has 507 faces. The

torso and leg detectors were tested on 460 (of 900) images of the MIT pedestrian

database [75], while the hand detector was tested on an in-house colour image

database containing 400 hands. Figure 5.6 shows the detection performance of the

detectors applied to their respective test datasets, where layers from the classifier

were removed to increase the number of detections. In this research, a detection

is considered true if no less than 75 percent of its bounding box encloses the

ground truth body part. In addition, overlapping false detections are not merged

as in [89].

From this set of performance curves, the face detector proves to be the most robust

This is an intuitive result as the face is a self contained region, while the other

body parts are disguised with background clutter and have a greater variability in

appearance. In the case of the torso and legs, a colour model can not be used to

reduce the false detection rate as there are virtually no similarities in the subjects’

clothing. It is evident from the torso and leg detector performance curves that

the torso is the poorer detector of the two. Referring back to Figure 5.2, the torso

training images contain a larger percentage of background clutter. Furthermore,

the texture of the torso can be erratic, as a subject may be wearing a multi-
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Figure 5.6: Detector performance on the test databases

coloured top, or an opened jacket. Due to the high variability of hand shape, the

hand detector can be expected to offer the poorest performance. Owing to the

fact that boosting makes use of structured summed area comparisons, it is not

surprising that the body part detectors offer a large number of false detections.

The hand detector was put through the same accuracy test as per the hand filter

of Section 3.7.3 and the same video sequence of Figure 3.20 was used. Figure

5.7 provides the pixel error of the hand filter (with a population of five hundred

particles) and the boosted hand detector.

It is clearly evident that the accuracy of the particle filter is superior. Since the

hand detector functions by responding to particular features, motion blur caused

by the vigorous movements destroys the necessary features, making the presence

of the hand impossible to detect. The particle filter however relies predominantly

on colour and is able to cope better with motion blur as the colour information is

not entirely destroyed. The mean error of the hand detector is 10.2 pixels, which is

comparable to a hand filter with a population of 180 particles. The disadvantage

of the particle filter is that it relies heavily on background segmentation to prevent

it from converging on random skin coloured objects. In cluttered scenes, once
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Figure 5.7: Hand tracking error through a video sequence using the hand detector

skin like areas have been identified, the boosted hand detector reduces the more

obvious false detections.

5.4.2 Body Part Detection and Assembly in Images

Making use of the performance curves plotted for each detector in Figure 5.6,

the desired number of layers was chosen such that the probability of detecting

all objects was no less than eighty percent. This decision naturally came with

the trade-off of an increased number of false detections. Figure 5.8 (a) shows all

detections from the body part detectors applied to a set of images sized at 1024×
768 pixels. In this set of images, all body parts are visible. The false detections

are easily eliminated by applying the heuristics, as shown in Figure 5.8 (b). Figure

5.8 (c) highlights the greatest body configuration likelihood as determined by the

joint-likelihood model, and also overlays the final body pose with the estimated

elbow positions. The total number of detections is indicated beneath each image,

and is naturally dependent on the complexity of the image. In the examples

shown, the correct body configurations were obtained by including approximately

25% of the total number of possible configurations.
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(a) All detections (b) Reduced detections (c) Final assembly

Figure 5.8: Human assembly with all body parts present

Figure 5.9 presents images of people where various body parts are occluded. The

legs of the subject in the first image are not present, yet ambiguities in the

background lead to multiple leg detections; these false detections are however

eliminated by the heuristics, and a leg detection is synthesised. It is interesting

to point out the large number of false torso detections clustered around the store’s

display window located on the left hand side of the image. Upon closer inspection,

it is evident that the display window contains suit jackets. In the second image,

the subject’s hands are occluded. Use of the user specific skin model fails to

associate a pair of hands with the face, and the hands are re-synthesised. The

entire process from detection to assembly takes approximately 5 seconds on a P4.

The detection process is the most expensive, and can be improved upon by using

lower resolution images and sampling less frequently. This can be easily justified

as the images used to train the detectors have a resolution of 20 × 20 pixels.
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Figure 5.9: Human assembly with occluded body parts

5.4.3 Detection and Assembly in Video Sequences

Figure 5.10 illustrates the final body part configuration and elbow estimation of

a subject walking into an office and performing hand gestures. Although static,

the background is particularly complex, with wood furniture and cork pin boards

that have a similar colour to skin. Furthermore, the subject is wearing beige

trousers, offering very little contrast to the background of a cream wall and filing

cabinets, making background segmentation unfavourable. The assembly system

overcomes these difficulties, and with the use of temporal information, operates

at 8 frames/sec (frames sized at 640 × 480). This is a considerable improvement
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compared to the static image case.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.10: Body part assembly and elbow prediction on a video sequence

A corresponding performance curve for this sequence is provided in Figure 5.11.

To maintain consistency with the performance curves of Figure 5.6, each frame of

this sequence was treated as a discrete image, with the search space encompassing

the entire natural frame. Here, only the hand detector makes use of a foreground

likelihood and offers similar performance to the torso and leg detectors. The

purpose of using a sequence was to offer a full subject such that the performance
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of the assembly method could be evaluated. As expected, the assembly curve su-

persedes the others, illustrating the robust false part elimination by the assembly

methodology.
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Figure 5.11: Detector and assembly performance on a video sequence

Figure 5.12 makes use of the same sequence of Figure 3.20 that was used pre-

viously to demonstrate the particle filter system. Here, the final selected body

configuration of the subject presents similar results. Seeing that the sequence is

used for HCI purposes, the camera is focused on the upper body, and the leg

detector has been omitted from the process. The background is also static, and

the foreground likelihood can be included.

Figure 5.13 shows the upper body part detection and assembly of a subject taken

from a children’s television show. Although the background is not complex, the

camera angle changes frequently, as expected in broadcast television. The static

camera assumption and motion used in tracking, as per the previous two exam-

ples, are therefore no longer valid. Figures 5.13 (b) and (c) offer two consecutive

frames where the camera angle changes. This sequence has therefore been treated

as a series of still, unrelated images, thereby omitting the foreground likelihood

and tracking framework. The reduction in background clutter and the PAL res-
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Figure 5.12: Upper body part detection and assembly on a video sequence

olution results in each frame being processed in approximately 2 seconds unlike

the 1024x768 photographs in Figures 5.8 and 5.9.

5.4.4 Detection of Rotated Faces

As previously mentioned, the face detector has been trained from face images

that have approximately 10◦ of rotation in multiple directions. In a controlled

lighting environment, rotations slightly greater than 10◦ can be detected, as in
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Figure 5.13: Upper body part detection and assembly on a video sequence from

broadcast television

the broadcast television sequence of Figure 5.13. Detection of a greater rotation

however requires a additional detectors.

The publicly available Intel OpenCV [47] Viola-Jones face detector consists of

an interleaved cascade trained from both frontal and side profile images. Images

sized at a 24 × 24 pixels were used, with the facial region extending from the

hairline to the chin. Figure 5.14 evaluates the performance of this rotated face

detector on a sequence of a subject looking to the side. The subject starts by

facing the camera (0◦), and moves until a side profile is reached at 90◦. It is
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apparent that detection fails between 45◦ and 60◦, which is to be expected as

the detector was trained using frontal and side profile images. A third cascade

trained with faces angled at approximately 50◦ should address this problem.

45 Degrees30 Degrees0 Degrees

60 Degrees55 Degrees50 Degrees

90 Degrees75 Degrees

Figure 5.14: Face rotation evaluation of the face detector

Use of the OpenCV face detector now allows for the detection of more natural

poses where the subject is not forced to look directly at the camera. Examples of

a subject performing random movements in a sequence are shown in Figure 5.15.
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(a) (b) (c)

Figure 5.15: Upper body part detection with rotated and side profile face

5.5 Conclusions

An existing boosting technique for face detection has been extended to create

three additional body part detectors. However, due to the variability of these

additional body parts, their corresponding detectors offer a lower performance.

Using basic knowledge of the human figure, a set of heuristics was created to

eliminate the most obvious false detections. By combining these heuristics with

RANSAC and the a priori mixture model of upper-body configurations, detec-

tions are assembled into accurate human configurations. When this approach is

applied to a video sequence, temporal data allows for the use of a foreground

likelihood and a tracking framework to further reduce false detections, thereby

improving speed performance dramatically.

As previously indicated, the hand detector, trained from a variety of hand poses,

limits the speed performance of the assembly method due to it producing a large

number of false detections. To address this, Kölsch and Turk [58] propose the

use of multiple, independent hand detectors, each trained with a unique hand

pose. Eight hand postures were selected, and offer a considerable discriminatory

difference in appearance. They also illustrate how training a detector with im-

ages of higher resolution can improve the detection rate. This method would

clearly not be beneficial in detecting people acting naturally, but is automatically
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geared toward a HCI application where the recognition of specific hand shapes

is invaluable. Applying all eight detectors on an image simultaneously will most

likely prove to be even more prohibitive; a solution to the whole problem would

be to apply the ’generic’ hand detector, skin colour test and heuristics as before.

Subsequently, the pose specific detectors can be applied in the detections that

remain.



Chapter 6

Real-time Upper Body 3D Pose

Estimation

The objective of this Chapter is to estimate the upper body 3D pose of a subject

facing a single uncalibrated camera. The intended application lies in 3D Human

Computer Interaction where hand depth information offers extended functionality

when interacting with a 3D virtual environment. However, it is equally suited

to animation and motion capture. To do this, a 3D human model is animated

by motion capture data consisting of a variety of upper body movements. A

database consisting of three subsidiary databases, namely the frontal-view Hand

Position (top-level), Silhouette and Edge Map Databases is then created off-line

from the frontal view of each animation frame.

Similarly, at run-time, the frontal view hand positions, silhouette and edge in-

formation of the subject are extracted, which are then simultaneously compared

to each of the three subsidiary database examples to obtain a matching score.

The database example that yields the highest matching score is selected, and the

index to the original 3D configuration of the motion capture data is retrieved.

From this motion capture frame, the 3D position of each joint can be determined,

97
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or alternatively, the representative 3D model can even be rendered.

6.1 Data Acquisition

With the aid of 3D Studio Max [25], a generic human mesh is constructed to

resemble a person wearing loose fitting clothing, presented here in Figure 6.1.

3D Studio Max provides a 3D human skeleton or biped (pronounced bi-ped), on

which the human mesh is to be fitted. The biped is a hierarchical model with

physical joint constraints, and allows for realistic human animation. Once the

mesh is aligned with the biped, the mesh vertices are assigned to the respective

bones of the biped. These assignments are weighted according to the influence

a bone should play on that vertex. The weighting can be done on a per vertex

basis, or through the use of of envelopes. Either method however still requires a

visual trial-and-error manipulation to ensure that vertices are correctly assigned.

For example, the hands bones should not influence mesh vertices in the vicinity

of the upper arm. Once the mesh is correctly fitted and weighted, animating the

underlying biped, either by key framing or motion capture, results in a controlled

deformation of the mesh, offering a realistic animated human model.

Since only the upper body is of interest, a transparent material is assigned to the

mesh from the waist down. Rendering of this model provides an upper human

body, against a constant background as in Figure 6.2 (a). Using the Sobel edge

detector [83], the edge image corresponding to the rendered model with a standard

material is highly cluttered due to shadowing. A model with a uniform material is

therefore used to create an accurate edge image without artifacts. This is achieved

by employing cell shading [107], which provides a flat, cartoon-like effect, where

the number of colour levels can be controlled. The remaining images of Figure

6.2 show the same model using a cell shaded material, with a decreasing number

of colour levels. This reduces false edges, but at the cost of discarding valuable
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Figure 6.1: Generic 3D human model

edge information. As seen from the figure, one colour level produces an accurate

edge detection, but the edges of the arms are lost when occluding the torso.

In order to preserve this valuable edge information, each body part is assigned a

different material colour, as shown in Figure 6.3 (a). The adjacent figure shows

the correct, even detection of all the edges. The left and right hands are coloured

blue and yellow respectively, thereby resembling a subject wearing gloves. As per

Chapter 4, this facilitates the ground truth labelling, and the construction of the

hand position database of Section 6.2.

A single target camera (a camera whereby the camera-to-target distance remains

fixed) is then attached to the top of the biped chest bone. The roll and pitch

of the camera is also dependent on that of the chest bone, such that a frontal,

upright view of the model is always viewed. A motion capture database of human

movement, consisting of a wide variety of activities such as athletics, dancing, and

acrobatics, is used to animate the multi-coloured model. Figure 6.4 (a) presents

the original perspective view of the 3D model performing a few actions, with the

target camera moving in accordance with it. Figure 6.4 (b) in turn shows the

corresponding images rendered from the target camera view: an upright upper
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Standard material

Cell shading - 3 colour levels

Cell shading - 2 colour levels

Cell shading - 1 colour levels

(a) Rendered model (b) Corresponding edge image

Figure 6.2: Adjusting mesh materials
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(a) (b)

Figure 6.3: (a) Independent colouring of body parts (b) Resultant edge image

body of fixed scale, centred at position P (the camera target). The actions

of the database include a significant amount of upper body movement, thereby

generating a large number of 3D upper body configurations. This sequence,

consisting of approximately 5000 frames, is rendered from the target camera view

to produce the Frontal View Database.

6.2 Subsidiary Databases

The images of the Frontal View Database are then used to produce three sub-

sidiary databases. These are pre-computed off-line, and are used later in real

time matching. From parent down, these are:

1. Hand Position Database. This consists of the 2D positions of the left

and right hands. As independent primary colours are used, these positions

are determined by the respective centroids of the blue and yellow regions

of each frame.

2. Silhouette Database. Owing to the contrasting, constant background,

extraction of the silhouette image is straightforward. However, due to the
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P

P

P

(a) Original 3D model (b) Extracted frontal view

Figure 6.4: Extraction of frontal view images from motion capture

size of the dataset, storing a silhouette image for each frame is unrealistic

as the entire dataset would occupy several Gigabytes in raw format. It is

therefore more efficient to represent each silhouette image in terms of its

boundary, as shown in Figure 6.5 (b). Each row of the silhouette consists

of an entry and exit pair along a scan line, indicated here in red and black.
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This representation not only minimises storage requirements, but offers a

fast and efficient method of comparison to the human subject’s silhouette,

which is represented as a shape encoding integral image (see Section 6.3.4).

3. Edge Map Database. As mentioned previously, conducting an edge de-

tection on the rendered cell shaded, multi-coloured model, provides a clean

edge image as in Figure 6.5 (c). Again, to reduce storage requirements, only

non zero edge locations are stored, not the edge image.

P
H

(a) (b) (c)

Figure 6.5: (a) Frontal view of the 3D model (b) Boundary (c) Edge map

For the purpose of this chapter, any three corresponding examples taken from

each of the respective databases is referred to as a triplet. Each triplet is indexed

according to the Frontal View Database, and hence the 3D body configuration

database (motion capture data) that generated it.

6.3 Model Matching

The sections below discuss the processes that occur at run-time, where the can-

didate image is compared to the precomputed subsidiary frontal view databases.
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6.3.1 Background Suppression and Tracking

In this chapter, the input image refers to the image captured at run time, and

consists of a cluttered scene and a subject facing the camera. The input silhou-

ette and input edge image refer to the corresponding silhouette and edge images

derived from the input image. Segmenting the subject from the input image plays

an important role in determining a matching score of the input silhouette against

the Silhouette Database examples. Naturally, background segmentation also as-

sists with tracking the various body parts by discarding ambiguous background

information. The background segmentation algorithm of Chapter 3 is employed

to extract the silhouette of the subject, and the body parts can be tracked using

either the particle filter of Chapter 3, or the body part detection and assembly

methodology of Chapter 5.

6.3.2 Scale Adjustment of the Input Image

Referring back to the example of the Frontal View Database of Figure 6.5 (a),

the ‘head’ length H is measured from the top of the head to the neckline. H̄ is

therefore the mean head length of the entire Frontal View Database, and is used

as the reference length with which to scale the input image. Position P represents

the target of the camera, and remains constant throughout.

Comparing the input image to the subsidiary Frontal View Databases requires

that the input image foreground occupies the same spatial domain as that of

the examples. To achieve this, IP , the top of the chest bone of the subject and

the head length IH must be determined (see Figure 6.6 (a)). The particle filter

tracking system of Chapter 3 provides the positions and dimensions of the torso

and hands. IP is approximated to be the same as the shoulder height, and IH

is therefore the length from the top of the head to IP .
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(a) (b)

Figure 6.6: (a) Input image (b) Segmented, adjusted input image

The input image adjustment scale factor is determined by

S =
IH

H̄
(6.1)

and the offset δ from P to IP is determined by

δ = P − IP

S
(6.2)

Once the subject is segmented, the input image is scaled and translated in a

single pass, creating the adjusted input image (AdjIm) of Figure 6.6 (b), such

that IP = P and IH = H :

∀x, y AdjIm(x, y) = inputImage(x, y)/S + δ; (6.3)

From this adjusted input image, the input silhouette IS and input edge map are

extracted.

6.3.3 Extracting Subsets of the Subsidiary Databases

Comparing the input silhouette and input edge map to each and every example

of the Silhouette and Edge Map Databases would be exhaustive and unnecessary.
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A subset of the Silhouette Database is therefore initially extracted by making use

of the Hand Position Database and the subject’s hand positions. The bounding

box parameters of the subject’s left and right hands (provided by the tracking

algorithm) are used to search through the Hand Position Database for hand posi-

tions that are simultaneously contained by these bounding boxes. The indices of

successful examples are then used to extract the corresponding Silhouette Data-

base examples. The input silhouette is then compared to this subset of silhouette

examples.

6.3.4 Silhouette Matching using Integral Images

Since it is likely that several example silhouettes corresponding to the subject’s

hand configuration will be identified, a matching score is determined for each

comparison.

A set of matching scores for the Silhouette Database subset is determined by

computing the percentage pixel overlap between the input silhouette and each

silhouette example. A straightforward method would be to reconstruct the sil-

houette image from the boundary information stored in the Silhouette Database,

and to compute the difference between the input and the example on a per pixel

basis. However, doing so would be prohibitive as a reconstructed silhouette con-

tains thousands of non-zero valued pixels. The matching procedure is therefore

made more efficient by using an intermediate representation of the input silhou-

ette IS, the integral image II.

The integral image employed here however differs subtly from that discussed in

Chapter 3, where only rectangular features could be computed. Here the shape

of the object is encoded by computing the summation of pixels on a row by row

basis, i.e. the value of the II(x, y) equals the sum of all the non-zero pixels to



6.3. Model Matching 107

the left of, and including IS(x, y) for that row only:

II(x, y) =

x∫
i=0

IS(i, y)di (6.4)

The entire integral image can be computed in this manner for all (x, y), but this

is done incrementally as before for efficiency:

∀x, y II(x, y) = IS(x, y) + II(x− 1, y) (6.5)

Figure 6.7 (a) shows the input silhouette derived from the segmented input image

of Figure 6.6 (b). A visualisation of the corresponding integral image, with a sil-

houette boundary example of the Silhouette Database superimposed, is presented

in Figure 6.7(b).

(a) (b)

Figure 6.7: (a) Input silhouette (b) Corresponding integral image

In Figure 6.7 (b), NBP (y) is the number of pixels between boundary pair (x1, y)

and (x2, y), and is computed as

NBP (y) = x2 − x1 + 1 (6.6)

Making use of the integral image, NIS(y), the number of pixels of the input

silhouette for the corresponding range of (x1, y) to (x2, y) is therefore computed
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as

NIS(y) = II(y, x2) − II(y, x1) + 1 (6.7)

NBP (y) is computed and summed for all boundary pairs, and is denoted as∑
NBP ; this is pre-computed off-line for all silhouette examples, and is then

loaded at run-time. NIS(y) is computed and summed at run time (∀y), and is

denoted
∑
NIS.

Since
∑
NBP ≥∑NIS, the matching score S, or percentage overlap between the

input silhouette and the silhouette boundary example, is computed as:

S =

∑
NIS∑
NBP

0 ≤ S ≤ 1 (6.8)

Figure 6.8 provides a comparison of the matching score computation using stan-

dard per pixel subtraction and an integral image. A typical silhouette recon-

structed from the Silhouette Database typically contains approximately 17 000

non-zero valued pixels. Computing the difference between the input silhouette

and the reconstructed silhouette example would therefore require 17 000 subtrac-

tion operations.

In contrast, the input silhouette can be converted to a shape encoded integral

image in 110 000 (384× 288) operations, one third of that required previously in

Section 3.6 which required three operations per pixel. Analysis of the Silhouette

Database examples indicates that the mean number of boundary pairs lies at

approximately 200.
∑
NIS therefore requires approximately 400 operations: the

computation of NIS(y) (y = 1, . . . , 200), and 200 operations to sum them.

The matching score is therefore computed in a few hundred operations, which is

again considerably less than tens of thousands of pixel-to-pixel comparisons. The

intersection of the curves indicates that computation time is already saved when

seven examples are compared.
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Figure 6.8: Number of operations using standard summation versus an integral

image

Once matching scores are computed for the examples of the Silhouette Database

subset, the top 10 percent are then used to extract a subset of the Edge Map

Database.

6.3.5 Chamfer Matching and Final Selection

Poses with the arms partially occluding the torso may produce similar silhou-

ettes, which suggests that silhouette matching alone is insufficient. The edge

information is therefore also considered to offer further support, and to resolve

ambiguities. Once a subset of the Edge Map Database is extracted using the

results of silhouette matching, each edge map example is compared to the input

edge map to compute a second matching score.

Since humans vary in physique, it is unlikely that the edges of the input and the

examples will overlap exactly. A distance transform [27] is therefore applied to

the input edge image to ‘blur’ the edges. The distance transform specifies the

Euclidean distance of each pixel to the nearest edge i.e. the lower the value of a

pixel, the closer it is to an edge. The transform operates by selecting a non-edge
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pixel as the centre, and searches with an increasing radius for the nearest edge

pixel. This is repeated for all non edge pixels of the candidate image. Figure

6.9 (a) provides an input edge image, with the corresponding distance image in

Figure 6.9 (b).

(a) (b)

Figure 6.9: (a) Edge image (b) Distance image

Each example edge map is then superimposed as per Figure 6.10 onto the distance

image in order to determine the edge distance [8]. This is computed by taking

the mean of the distance image pixel values that co-occur with the example edge

locations. The example that yields the shortest distance is selected to represent

the best match. This method of matching edge images is referred to as Chamfer

matching [2].

Using the index of the selected edge map example, the original motion capture

frame is retrieved. This data provides all the body part lengths and joint angles,

allowing for the 3D position computation of all body parts, including the hands.

Alternatively, the motion capture frame can be used to pose the 3D model which

can subsequently be rendered to create part of an animation.
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Figure 6.10: Chamfer matching

6.4 Results

The images of Figure 6.11 (i) and Figure 6.12 (i) present the body part detection

and tracking of subjects in various scenes. Following the model matching tech-

niques of Section 6.3, the final selected edge map from the Edge Map Database

is shown in Figure (ii). A representative 3D human model, corresponding to the

best triplet example match, is shown in Figure (iii). The perspective view of this

model indicates that forward movement of the hands has been identified. The

model illustrated here is the same as that used to generate the example data-

bases, and can be easily replaced with another 3D human model. The current

implementation consisting of particle filter tracking and model matching, oper-

ates at 16 frames/second. Since the small motion capture database consists of

5000 examples, a linear search for the corresponding hand positions is conducted;

clustering or binary search trees would allow for considerably larger databases.

The body part detection method used is irrelevant to the reconstruction, provided

that an estimate of the subject’s scale can be determined. This information is used

to adjust the captured subject’s scale such that it matches that of the example

databases. The subjects of Figure 6.12 (c) and (d) have been detected using

the detection and assembly methodology of Chapter 5. The edge map selection

process is conducted as normal, and the representative 3D model is rendered.
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(a)

(b)

(c)

(d)

Figure 6.11: Frontal pose with corresponding 3D model
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(a)

(b)

(c)

(d)

Figure 6.12: Frontal pose with corresponding 3D model
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6.5 Conclusions

A method of matching a 3D model to the frontal view of a subject in a cluttered

scene has been developed. The 3D hand positions can be extracted for HCI, or

the computer generated model itself can be used for animation purposes.

Using loose fitting clothing and a generic model naturally inhibits the accuracy

of extracting the exact hand positions. For HCI in uncontrolled environments,

the relative backward-forward hand movements alone allow for the expansion of

the gesture library. Furthermore, the perception of depth allows for interaction

with 3D virtual environments. In terms of animation where a higher accuracy

is required, a more controlled setting would obviously offer an improvement. A

performer with tight fitting attire, and a 3D model that resembles that performer,

would facilitate a more accurate matching process. Even with such enhancements,

it is unlikely that the technique will ever produce millimetre accuracy like a

motion capture system. This should be acceptable when the cost difference is

realised: an inexpensive web camera versus a multiple camera motion capture

system.

Since the extraction of of the subject’s silhouette is required, the technique can-

not however be applied to static images with cluttered scenes where subject seg-

mentation is not possible. The use of coloured screens for chroma-keying would

obviously circumvent this difficulty.

Finally, matching by example requires a large example dataset, and it is therefore

imperative to store the databases in their simplest forms. Not only can these

simple representations be accessed quickly, but they also contribute to the fast

matching methods employed. Furthermore, the structure restricts analysis to

subsets of the subsidiary databases, thereby contributing to the real-time aspect

of the approach.



Chapter 7

Closing Discussion

7.1 Summary

Detection and tracking using the particle filter method of Chapter 3 offers a fast

and robust tool for use in Human Computer Interaction (HCI). Its major limi-

tation is that it requires a constant coloured background, or a static background

that can exploit a form of background subtraction. With the omission of back-

ground segmentation, a generic skin colour model to detect and track the face

and hands could be used, but this would naturally be susceptible to background

clutter like wood furniture. The torso on the other hand is even more difficult

as people wear different styles and colours of clothing. If the texture of the torso

was known however, its detection could be included in the fitness computation of

the torso particles.

The current implementation of the respective body part filters precludes rotation

due to the use of the standard integral image. However, should the shape encoded

integral image presented in Chapter 6 be used, rotations could be detected. Tilt-

ing of the head and torso would allow for the extension of recogniseable gestures.

With respect to tracking multiple people, a difficulty arises when they are stand-

115
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ing close to each other. In terms of generic tracking where subjects are walking

past each other, re-initialisation is acceptable. However, should the application

be a HCI system with a single user (and several observers in the background),

it is essential that the user’s hands be correctly associated. Even if a single par-

ticle filter system is used, it is possible for one of the hand filters to converge

on an observer’s face or hands. The subject specific skin model does offer assis-

tance, however non-studio lighting conditions warrant the need to lower the skin

detection sensitivity. The observers could hide their hands behind their backs,

however this would clearly be limiting and unreliable. The difficulty of isolating

the hands from the face is somewhat easier in that the face detector could be

used to identify all faces; knowledge of the face locations could be used to forbid

hand particles from entering those regions.

The boosted body part detectors of Chapter 5 prove useful in addressing the

issues of tracking a person in a cluttered scene. As previously indicated, ap-

plying the detectors independently produces a large number of false detections.

The heuristics and prior model assist in extracting a final configuration, but the

entire process proves to be a little too slow for real time HCI, even when ap-

plied within a tracking framework. However, with the continuous development

of faster personal computers, one could argue that this method could operate in

real time within a year. The primary difficulty is detecting the required object,

and since the torso and leg detectors are trained using low resolution images,

the poor detection performance is not surprising since the target resolution is

approximately ten times the size of the training images. The hands themselves

are the most difficult to detect; the problem is further compounded due to the

loss of feature information caused by motion blur. Perhaps a balance could be

found by tracking via detection when the movements are small, and tracking via

particle filters when the movements are large. Another possibility would be to

construct a colour hand detector, however the hardware requirements to train it
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would be greater, and the detection process longer. Again, should the application

be HCI, associating body parts with the correct subject is still a challenging task

worthy of attention.

Extracting the 3D positional information of the subject has also been investi-

gated. The methodology proposed here matches the silhouettes and edge maps

derived from an animated 3D human model to those of a subject. Using an ex-

emplar approach naturally presents the dilemma of insufficient data to produce

an accurate estimation of the subject. Based on the Vitruvian human model,

each hand can occupy approximately one hundred discrete locations (i.e. with-

out overlapping) around the body without crossing over. This produces at least

forty thousand possible configurations (100 + 100)2. Should an adequately sized

database be constructed, efficient search trees would need to be implemented to

extract the appropriate data in real time. It would be intuitive to build the mo-

tion capture database from choreographed movements designed according to the

type of movement that is to be matched. For example, it is unlikely that the

movements of a subject playing a game of virtual chess on a plasma screen are

going to make use of poses extracted from aerobics. Another option would be to

treat the left and right hand side of the subject independently. This would require

a smaller dataset, and would be an acceptable option if only the hand positions

were required. If however a 3D model was required, the two selected half meshes

could not merely be joined. Each half of the underlying skeletons would have to

be extracted and aligned to allow for the 3D model to be regenerated.

Matching the frontal view of a subject to a 3D model not only provides the hand

positions, but the elbow positions too; this offers an alternative to the statistical

elbow prediction method presented in Chapter 4. In contrast, the animated 3D

model that generated the frontal view databases can also be used to generate prior

motion models for statistical elbow prediction and pose likelihoods (Chapter 5).

Treating the poses obtained from the motion capture data as feature vectors



118 Chapter 7. Closing Discussion

would also allow the data set to be represented by a GMM. The feature vector

extracted from the subject could then be compared to each Gaussian to determine

which set of silhouettes and edge maps it should be compared to. This would

provide a more sound search method than using the hand positions to crudely

search through the hand position database.

7.2 Future Work

The research presented throughout this thesis has focused on detecting and track-

ing humans for HCI. This section presents work in progress that will allow a

subject to interact with an intelligent agent rendered on a screen, with a cam-

era mounted above it to represent its vision system. The concept was inspired

by Jeremiah [10] where a 3D human head is projected on a screen, and follows

the most significant object in its field of view. Its vision system uses the same

adaptive background segmentation algorithm used throughout this thesis, but the

foreground objects are grouped using connected components. The largest blob

represents the region of greatest interest, to which Jeremiah is attracted.

Figure 7.1: Finn the fish, an interactive artificial intelligent agent

The artificial agent in the proposed project is a cartoon fish named Finn, illus-

trated in Figure 7.1. The chosen environment is the ocean, with atmospheric
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effects including underwater lighting and bubbles. The inclusion of other envi-

ronmental objects including vegetation and other animal life is currently under

development.

(a) Happy (b) Interested

(c) Angry (d) Confused

Figure 7.2: Finn’s facial expressions

Finn’s vision system will utilise the particle filter system of Chapter 3 to track the

respective body parts of a subject, while his emotions and facial expressions will

be determined by the actions performed by the subject. The exhibited expressions

illustrated in Figure 7.2 will initially be ‘hard coded’ according to the performance

of specific gestures. This is obviously limiting in that it will not have a long lasting

appeal to a new user. The long term objective is to allow users to influence how

Finn responds to certain actions i.e. the user performing the gesture will specify

what the expected response should be. This bears similar light to a game called

Creatures [59] where the player rewards or punishes his artificial pet if they

behaved well or poorly. The more subjects that interact with Finn, the more
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varied his responses will be, especially so if expressions are combined to formulate

new facial expressions. Another advantage of using unconstrained gestures is that

it circumvents the need for associating a pair of hands with a subject. As long

Finn is able to identify moving hands, he will be able to respond.

Since Finn is a cartoon-like character, allowing him to speak would also contribute

to the entertainment aspect. Again, rather than having fixed responses, self-

understanding conversation could provide comical answers like Jabberwacky [15],

a text based conversational construct.

The system could be extended in a variety of ways, making it an exciting and

rewarding concept to be involved in. The idea has generated significant interest,

and market research is currently being conducted to determine where in industry

such a novelty could be placed.



Appendix A

Adaptive Background

Suppression

This appendix offers a brief explanation of the adaptive background suppression

algorithm used in Chapters 3, 5 and 6. The reader is directed to the corresponding

papers of [96, 55] for a more elaborative guide.

The values of a pixel over time are considered as a time series of vectors (RGB)

{x1, . . . ,xt}, modelled as a mixture of K Gaussian distributions. A large value of

K provides more robust segmentation, but at the cost of slow system performance.

Using current-day PCs, 3 to 5 Gaussians have been found to provide sufficiently

robust segmentation, while still maintaining real-time performance. At time t,

µk,t is the mean of the kth Gaussian in the GMM, and Σk,t is the covariance. The

Gaussian probability density function η is given by

η(xt,µt,Σt) =
1

2π
n
2 |Σt| 12

e−
1
2
(xt−µt)

T Σ−1
t (xt−µt) (A.1)

The probability that a pixel xt fits this Gaussian is therefore

P (xt) =
K∑
k=1

ωk,t × η(xt,µk,t,Σk,t) (A.2)
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where ωk,t is the weight estimate, which is set to 1/K at initialisation.

An on-line expectation maximisation approximation is then used to update the

mixture model as time progresses. A new pixel value xt is checked against the

existing K Gaussian distributions until a match is found. A match is considered

true if the pixel value lies within 2.5 standard deviations of a distribution. If no

match is found, the least probable distribution is replaced with a new distribution:

the mean as the current pixel value, a high variance, and a low weight.

The mean and variance of the matched Gaussian j are updated as follows:

µj,t = (1 − α)µj,t−1 + αxj,t (A.3)

σ2
j,t = (1 − α)σ2

j,t−1 + α(xj,t − µj,t)T (xj,t − µj,t) (A.4)

where α is the learning rate, the inverse of which defines the time constant at

which the distribution parameters change. The mean and variance of the remain-

ing Gaussians are not changed.

The prior weights for each of the K distributions at time t are then adjusted

according to

ωk,t = (1 − α)ωk,t−1 + α(Mk,t) (A.5)

where Mk,t is 1 for model which matched, and 0 for the remaining models. Once

all K weights have been computed, they are re-normalised.

With the newly determined weights and updated Gaussians, the probability that

a pixel is background is determined as per Equation A.2. 1 − P (xt), in turn

gives the probability that a pixel is foreground; the foreground probability image

is created accordingly and facilitates with the object detection and tracking as

discussed in previous chapters.

The significant advantage of this background segmentation method is that when

a new object is placed in the scene, it only becomes part of the background if it
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is stationary for a long time; it does not however destroy the existing background

model. If the object is moved, the distribution describing the previous background

still exists (with a lower weighting), and will be quickly re-incorporated into the

model.
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Appendix B

The HSV Colour Model

Figure B.1: The HSV hex cone

Figure B.1 provides an illustration of the HSV hexcone [32]. The hue component

is an angular measurement, and increases in value in a counter-clockwise direction.

A value of 0 indicates the colour red, 120 indicates green, and 240 indicates blue.

The primary and secondary colours red, yellow, green, cyan, blue, and magenta

occur at the vertices of the hexagons. The saturation component describes colour

intensity where a value of 0 (on the vertical axis) indicates that the colour is

gray, while a value of 1 (at the outer edge of a hexagon) specifies that the colour
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is saturated. The value component describes the brightness where value of 0

represents black, while a maximum value of 1 indicates that the colour is at its

brightest.

Treating the HSV colour space as a hexcone, the pseudo code for converting a

RGB pixel to a HSV pixel is presented in Algorithm 1. This thesis conducts skin

detection in the HS plane, and V is not included in the skin model.

Algorithm 1 Conversion of RGB to HSV

max = max(R,G,B)

min = min(R,G,B)

δ = max−min

Hue

if (max == R) then

H = G−B
δ

(between magenta and yellow)

else if (max == G) then

H = B−R
δ

(between yellow and cyan)

else if (max == B) then

H = R−G
δ

(between cyan and magenta)

end if

Convert to Degrees

H = H × 60 (H is represented by a hexagon i.e. 6 × 60◦)

if (H < 0) then

H = H + 360

end if

Saturation

S = δ/max

Value

V = max
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