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Abstract

This thesis examines the problem of retrieving images from large image databases by

detecting objects of interest. The approach adopted involves combining model-based

recognition, using Active Appearance Models (AAMs,) with a sophisticated statisti-

cal classifier. An experimental evaluation of two published methods for achieving very

high detection accuracy leads to the choice of a Support Vector Machine (SVM) clas-

sifier with iterated negative-example refinement. The method for training the SVM

is further developed, leading to a fully-automated approach to choosing training pa-

rameters. Similarly, the standard AAM approach is extended, leading to significant

improvements in performance. One contribution is the “Texture AAM,” which re-

places the grey-level values, ordinarily used in the AAM’s shape-normalised patch,

with non-linear descriptors of local edge and corner structure. Another contribu-

tion is to investigate, more fully than previously, the effects of limiting the AAM

parameters during image search—leading to a reappraisal of the optimal approach.

Finally, the improved AAM and SVM are combined to create a novel “AAM-SVM”

system for image retrieval, that is shown to be significantly more effective than either

method alone. Extensive experiments are performed to analyse the behaviour of the

system, demonstrating that detection accuracy is superior to that of a simple patch-

based SVM approach that is among the state-of-the-art methods. The approach is,

however, many times too slow for practical applications. This leads to an initial in-

vestigation of a multi-stage approach, which uses an AdaBoost patch classifier as a

first stage. The speed of this system approaches that necessary for practical image

database search.
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Chapter 1

Introduction

The work described in this thesis attempts to answer the following question: Can

appearance modelling be used for image database retrieval, and if so how?

In recent times, the prevalence of digital multimedia databases has expanded enor-

mously, outstripping our ability to access and manage them efficiently. Recent devel-

opments in modelling the appearance of objects in images, have provided a promising

framework through which computers can automatically understand the contents of

images.

This thesis develops the Active Appearance Model (AAM), one of the more advanced

appearance modelling methods, in conjunction with modern statistical classification

techniques, to detect objects in image databases. This is motivated by the observation

that a large proportion of users’ retrieval requests to image databases can be satisfied

by the accurate detection of relevant objects in the images.

15



Chapter 1. Introduction

1.1 Motivation

This section explores three problems faced by the Interactive Multimedia Services

(IMS) industry. This industry sector is large and growing all over the developed

world. It supplies video, speech, music, text and images to users under their own

detailed control. Currently IMS includes such applications as public information

kiosks, catalogues, encyclopaedias on CD-ROM, and WWW sites with embedded

sound, video, etc. Expected in the future are applications like Video on Demand,

which connect huge on-line video rental libraries direct to the home.

1. Managing a large library at low cost is key to successfully capturing the

Video-on-Demand market. There have been several trials of Video-on-Demand by

companies around the world, including a 2000 customer commercial trial by BT[77].

One of the predominant findings[77, 164]1 from these trials is the large expense in

managing video libraries. Media arrives from distribution companies with, at best,

very little labelling, and, at worst, misleading labels. This uncertainty requires a

librarian to physically watch each item to verify its content and quality. Managing

customer trials, which provide only about 500 hours of video content, was found

to cost many times more than expected. In a real service situation, libraries of

10,000 or more hours of content will be required. Hence, it is imperative that costs

are reduced, otherwise the service will be unprofitable. This requires transferring

the tedious verification and management effort to a computer, thereby making the

librarian more productive.

2. The WWW is another application area. In modern online text libraries, the

ability to search for specific words has proved invaluable in reducing costs and in

transferring search effort from librarians to users. In multimedia libraries the equiv-

alent search is for specific objects or actions in images and video. Such a multimedia

1also via personal communications from BT project managers
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Chapter 1. Introduction

search engine should allow the user to specify video content in a convenient man-

ner. The vast and unorganised library that is the WWW, is a case in point. Here

text-based search engines such as AltaVista[5] have given users direct access without

having to pay for the services of a librarian. In an increasingly multimedia-enabled

WWW, there is a need for a video and image search engine.

3. Liability for the classification of content falls on the supplier. Several years

ago France Telecom, contracted to supply a television feed to Saudi Arabia, made

a technical error at their satellite ground station. An adult channel for European

viewers replaced the intended programming. The company had its contract cancelled

without refund[19]. The loss was not catastrophically expensive for France Telecom,

but the risk is clear—viewers must be correctly supplied with the item they request.

1.1.1 Object Detection, Why and How?

Whilst there are many approaches to attaching semantic labels to images, object de-

tection is one of the most direct. The existence of an object in an image, is something

that we as humans can be unambiguous about. We can also be unambiguous about

why we think something seen in an image is or is not the object we are interested in.

In particular an object can often be identified without reference to the context. An

ordinary photograph of dog, cut out and overlaid on an radiograph, is still identifiable

as a dog even though it is out of place. This ease of reasoning is attractive.

In the time leading up to the initiation of this work, the low-level feature based

approach provided the vast majority of papers in this problem area. Simple functions

of pixel grey-levels, edge positions, etc. were assembled into large feature vectors for

classification. As argued in section 2.2.1, this approach appeared to be a dead-end,

trapped by the lack of semantic relevance of the low-level features employed.

Generative models of object appearance were appearing in the literature, with im-
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Chapter 1. Introduction

pressive claimed abilities [35, 37, 52, 76, 113, 134]. For example, they were supposed

to be able to represent all valid appearances of an object, and only valid appearances

of that object. Nobody at the time was investigating the use of generative appearance

models for searching image databases. BT had sponsored some of the early work on

one of these approaches—Active Appearance Models (AAMs), and supported this

author to investigate using AAMs for image database retrieval.

1.1.2 Object Detection and Computer Vision

The field of object detection in images has evolved with computer vision, and remains

mostly unsolved. Equally, the general computer vision problem of automatically pro-

viding semantic descriptions of scenes remains unsolved. Marr’s early proposal [88]

for a solution to the general computer vision problem included a layer to recognise

objects from their outlines and internal edge structure. Since then, published at-

tempts at object detection have not been explicitly embedded in a wider attempt to

solve the more general scene description problem. It now appears more likely that

solutions to the object detection problem will precede a solution to the more general

problem.

It is still valuable to consider the object detection problem with respect to general

scene description. It allows us to disassociate detection from the closely related

problem of segmentation/location. In the segmentation problem, we want to know

the location of a known object in an image that is assumed to contain that object. In

the detection problem, the object may not exist in some images, and may occur in

multiple locations in others. However, in order to provide a semantic description of

the scene, we would really like to both detect objects, and identify their positions.
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1.2 Overview

The basic approach taken in this work is to use AAMs as a complex feature detectors,

to find potential objects. Then a Support Vector Machine (SVM) is used to make a

final decision about whether the object is real or a hallucination.

The outline of the thesis is as follows:

Chapter 2 reviews previously described approaches to content-based image retrieval

and object detection.

The first experimental part of this thesis compares two state-of-the-art classifiers and

their application to object detection, for use both as a baseline level of performance

and as a suitable classifier in later chapters.

Chapter 3 reviews existing classification/detection techniques, and investigates

Sung and Poggio’s GMM network in detail.

Chapter 4 reviews the SVM classification method, and shows its superiority to

GMM networks. An extension to the SVM method allows optimal parameter

selection with no manual intervention.

The next part of this thesis describes several improvements to AAMs, which are

useful for object detection, but also more generally.

Chapter 5 describes the standard AAM method.

Chapter 6 introduces the Texture AAM which replaces the standard intensity

texture model, with a description of local structure, such as edge and corner

features. This is shown to give greatly improved search performance.
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Chapter 7 compares several additional texture descriptions. Several methods for

determining the statistical significance of AAM improvements are compared,

leading to the development of a powerful bootstrap approach.

Chapter 8 examines the use of limiters in AAM search, and shows that the widely

used box limits on the model parameters of an AAM are much inferior to

elliptically shaped limits.

The final experimental part of this thesis describes using appearance models to search

image databases.

Chapter 9 introduces the combined AAM-SVM and examines its behaviour. The

use of the AAM’s residuals and model parameters, are compared as feature

vectors for the SVM.

Chapter 10 compares existing object detection techniques with the AAM-SVM

showing its superior performance. An analysis of several variations on the

AAM-SVM leads to a multi-stage method with very large improvements in

speed.

After a discussion of the work in this thesis, some significant contributions to a

publicly available computer vision software package are detailed in an appendix.

Chapter 11 contains a general discussion of the work presented in this thesis.
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Literature Review

This review seeks to place object detection as one of three broad approaches to search-

ing image databases. Two of the approaches, based on metadata and on low-level

features are examined first. A range of object detection methods is then examined

in detail.

2.1 Metadata Based Searching

It is perfectly possible to search an image database without looking at any pixels, but

instead using external data about the images, i.e. metadata. Metadata-based search-

ing can involve hand-labelling the images with useful information. Searching is then

performed using standard database and text-based search techniques of the meta-

data. This is the approach taken by commercial picture libraries (e.g. Corbis[43].) It

works because the re-use value of their stock is high, so the human effort in labelling

a picture (e.g. 30 minutes per image) can be commercially justified.

There are a few variations on this method. One of the most relevant is that of

searching for images in large multimedia documents such as web pages by performing

a search on the text parts of the documents which would appear near, or refer to, the
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image. AltaVista[4] were the first (in 1999) to provide a WWW-scale search engine

based on this method. This and the human-labelled metadata techniques have the

advantage that they generalise readily to search for other types of media such as

sound fragments. Where these techniques fail is with large databases where each

item is of low value, and where there is poor or no labelling. It is not hard to see that

any labelling scheme will fail to cover every possible interpretation that a searcher

might place on it.

Although it is a strictly content-based approach, Sivic and Zisserman’s Video-google

technique is relevant here because it uses many of the techniques developed for free-

text database search. By treating vector quantised local region descriptions as words,

they were able to apply techniques such as common word suppression, dot product

distance, relevancy and saliency weighting, and inverted file indexing.

Another variation used in the Four-Eyes system[94], starts off with a poorly labelled

database. A “Society of [texture] Models” is used to produce many overlapping in-

dices into the various textures within the database images. As users make their

queries and retrieve their images, they are asked to describe what they are searching

for and indicate which pictures do or do not satisfy their query. The system contin-

ually learns which photos, textures, and models satisfy which type of queries from

users during use of the system. However, in unpublished observations, Minka has

suggested that the system learns to ignore most of the texture-model driven labelling

in the system, whilst building a direct mapping from query to image.

There are also techniques which combine metadata- and content-based techniques,

where some (e.g. MPEG-7[89]) or all of the metadata is generated automatically.

However, this is mainly done for speed of searching. For the purposes of this thesis,

there is not a big difference between searching automatically-generated metadata,

and searching the image content itself. Rather, the divide is whether a human was

involved in explicitly adding semantic labels to all of the items in the database.
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2.2 Low-Level Feature-Based Search

Along with object detection, low-level feature based search is often referred to as

Content Based Image Retrieval (CBIR). The extreme end of the content-based ap-

proach is searching by example. Here the user presents the search engine with an

example picture, and wants images similar to it. This approach requires some sort of

signal processing to decide what constitutes a similar picture. Another example of a

content-based approach is when the user gives a text and logic based query which is

then used to control a signal-processing based search.

The first attempts at CBIR produced low-level image feature based systems. These

pick some easy-to-calculate low-level feature, such as a colour histogram, and define a

distance metric for the feature, e.g. Euclidean distance. The feature is calculated for

every image in the database, and the images with the closest feature to the query are

returned to the user. Swain and Ballard’s seminal paper[146] on colour histograms

was the first to pose the problem in terms of image retrieval.

Such systems can get quite complex, involving several features, and positional con-

straints. The best known example of these systems is IBM’s Query By Image

Content (QBIC) system[104] which retrieves images that match a user drawn sketch.

The system can be impressively demonstrated by drawing a pink circle on a green

background, upon which the system will retrieve pictures of roses. Given other se-

mantic classes, however, it is hard to devise a suitable sketch.

One problem with the low-level image feature approach is that the meaning of an ob-

ject is often independent of its location in the image. So systems which tie a particular

low-level feature response to a particular image location will never be very success-

ful. One way to avoid this problem is to ignore positional information altogether.

Recognition of objects from a database solely by their colour histogram characteris-

tics can have very high tolerance of viewing angle[146], and with modification, a high

tolerance to varying lighting conditions[59].
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There are a whole range of features that can be used. Adini et al.[1] describe a range

of grey-scale filters for use in the face recognition domain. Viola[160] compares a

set of Gabor-filter like features over various object recognition tasks. Rui et al.[124]

and SmeuldersPAMI2000 et al.[139] provide broad reviews of the low-level feature

approach to CBIR.

2.2.1 Problems with the Low-Level Feature Approach

Before 1999 papers using the low-level feature approach suffered from a number of

problems. Many papers (e.g. [104, 128, 131, 140]) do not attempt to measure perfor-

mance quantitatively, instead just showing some example results. Where qualitative

results were given, a limited size of test database was often used, with little evi-

dence of unbiased selection. For example, many papers (e.g. [123, 150]) used parts

of the Corel Stock Photo Collection. From looking at the image collection, it is un-

clear whether these author’s methods recognised the objects of interest, or rather

the background colour or texture which was common to many of the subject classifi-

cations chosen by Corel. For example, Rubner and Tomasi[123] used Earth Mover’s

Distance (EMD) to match Gabor-like filter responses between unsegmented images of

animals. They used a selection of 500 images, all containing animals, from the Corel

Collection, and achieved high precision when trying to retrieve images of zebras and

big cats. Their paper does not mention any of the other animals they used, so this

author shall unfairly pick two that make the point. If their collection also contained

polar bears, all which are on a flat white background, or deer, which usually include

a flat blue sky background, then just distinguishing between these flat textures and

the cat’s textured savannah background would be easy. Thus any claimed precision

(with respect to the animal class) is suspect.

There is a fundamental argument against this whole approach. By definition, low-

level features are not semantically meaningful, and no simple distance metric is likely

to add semantic meaning. If more complicated distance metrics such as statistical
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classifiers are used, there is no reason to expect the classification regions of feature

space to be compact enough for it to be feasible to train the classifier.

In order to use these approaches for truly recognising objects within an image, rather

than the whole image, it would be first necessary to segment the objects from the

scene. Automatic segmentation methods are far from perfect[2]—indeed, using the

same argument as above, it seems that automatic segmentation is only likely to work

well when it is based on a knowledge of the properties of the objects in the scene. This

implies that object detection needs to precede feature extraction—which is circular.

2.2.2 Recent Results with Low-Level Features

Whilst there was some confidence that these problems would be solved (notably

amongst some of the MPEG-7 participants[89],) prior to 1999 there was no practical

result, or theoretical argument to support this view. More recently however, there

have been several papers on the low-level approach which show promising levels of

performance.

Chapelle et al.[24] used a Support Vector Machine (SVM) to classify 4096-bin colour

histograms. They classified 2670 images into airplanes, birds, boats, buildings, fish,

people, and vehicles, with accuracy rates of about 85%. Tieu and Viola[149] used

AdaBoost[130] to classify 46,875 dimensional feature vectors of simple wavelet-like fil-

ter responses, showing reasonable recall and precision rates when asked to distinguish

between five types of outdoor scenery. Vailaya et al.[155] used Bayesian classification

with Gaussian mixture models to classify features with hundreds of dimensions. The

features consisted of edge direction histograms, and first and second colour moments

in each of a hundred image sub-blocks. For decisions such as city v. landscape,

or forest v. mountain, they obtained approximately 96% accuracy. Koubaroulis et

al.[80] took sparse features of local colour variation, and by carefully modelling the

conditional distributions of those features with discriminative power, were able to

classify random shots from video coverage of the Olympics into 5 categories with

25



Chapter 2. Literature Review

85% accuracy.

MPEG-7 chose to include quite a few low-level feature descriptors[89], including

colour histograms, colour moments, Gabor filter responses, and edge histograms.

To further widen the user’s choice, the features descriptors can be refined, for ex-

ample, by measuring them over a rectangular grid, or by describing their time-series

variation for videos.

2.3 Object Detection

High-level feature detection attempts to directly identify semantically relevant parts

of the image. This thesis treats an object detector as the prototypical, high-level,

semantic, feature detector.

In a small study[55] on the requests made to a commercial photo library, Enser

found that 48% were about identifiable objects without any reference to context—

the domain of object detection.

There are many ways of detecting objects in images, and this overview groups most

of them according to whether the object model is based on a single training image,

multiple images, or a statistical distribution. Special distinction is also made of shape-

and parts-based approaches.

2.3.1 Single Image Matching

In this approach, a single training image is used to represent a class. During use, the

matching algorithm compares each new image to the (possibly processed) training

image.

In Lades et al.[81] a grid was laid over the training image, and a Gabor filter jet

was measured at each grid point. During use, the grid was then placed over each
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new image, and the algorithm attempted to minimise a distance metric based on the

elastic distortion of the grid, and a difference in the Gabor jets. When tested on an

object recognition task with a small database (∼100 images,) it could perfectly reject

all negative test images, while correctly identifying 93% of positive test images.

Sali and Ullman[125] calculated a correspondence between the training image and

the new test image, as in stereo vision. Their matching algorithm was then able to

decide if such a correspondence made geometric sense. This method assumes that

the object is rigid, and that it is possible to segment out the image patch of interest

in order to calculate the correspondence.

A much older attempt by Bajcsy and Kovacic[8] at corresponding two images, rather

than objects, is notable because it introduced the idea of multi-resolution matching.

In this approach a rough elastic match from model to image is made at a very low

resolution. The model parameters are then transferred to a higher resolution model,

which then refines the match. This process is repeated until the model has reached

the resolution of the image. This vastly increases the speed compared to searching

only at the higher resolution. It also reduces the number of false minima to which

the higher resolution models are prey.

There are also many examples in the literature which are effectively variations on the

theme of single image matching where there are multiple training views of a given

object[102, 10, 131, 132, 103] but with these attempts as before, the system is trying

to recognise identical (or at least very similar) instances of the object under different

lighting, or viewing conditions. These approaches make no attempt to deal with

recognising a class of objects, as opposed to a particular instance.

2.3.2 Multiple Image Matching

With multiple image matching, each class of objects is represented by one data struc-

ture, that combines several training images. Wiskott et al.[169] extended the single
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object work of Lades et al.[81] by combining the Gabor jets from all the training

images for a class, into a list of jets at each grid point. Their matching process picked

the best jet at each grid point as it attempted to minimise the distance.

Gavrilla and Philomin[60] used a hierarchical scheme to search car-mounted camera

images for a small number of objects. In this method, each plausible combination

of edge detections is examined by the root node in the hierarchy. At each level in

the hierarchy at least half the remaining plausible models are discarded. Once a leaf

node is reached, a final match/non-match decision is taken.

2.3.3 Statistical Image Matching

Statistical image matching builds a statistical model for each class of objects. Al-

though a refinement of the multiple image method above, the explicit modelling of

a potentially infinite population from a finite training set is very powerful. Here the

archetypal object is the human face, and face detection papers probably outnum-

ber all other statistical object detection papers. The basic approach is simple—the

pixel intensities from a compact image patch are arranged into a feature vector which

is then modelled probabilistically. For any tested patch, a decision is taken about

whether the image patch fits the model. Often the feature vector is first normalised

(e.g. plane and histogram normalisation[108]) to partially remove the effects of light-

ing variation.

The seminal paper in the field by Sirovich and Kirby[138], showed how to compactly

represent the statistical distribution of face images, by using Principal Component

Analysis (PCA)—a method that came to be known as Eigenfaces. Variations on

this theme include using Linear Discriminant Analysis (LDA) to optimise the lin-

ear subspace for discrimination rather than reconstruction[12], non-linear principal

component analysis[96, 119], and modelling the face region with piecewise PCA[99].

One problem with PCA is the indistinct nature of some of the principal components,
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where a set of sharp edges in the training set is represented by the superposition of a

set of blurred components. This requires a large amount of information to be stored

in the model, a bad indication in itself1, and does not provide the best reconstruction

of unseen images. Lanitis et al.[82] solved this problem by warping the images so

that corresponding edges coincided. Using their approach, the representation of the

image texture does not need to represent the variation in edge position. Their method

merges the parameterisation of the warping and of the image texture by using PCA to

identify and model the correlations between the two. A non-probabilistic alternative

involves using linear combinations of the training images, rather than of the principal

components. Jones et al.[159, 76] produced a similar linear model of warping and

texture representation, but used linear combinations of the training images, rather

than of the principal components, and a dense warp field induced by an optical flow

analysis.

Rather than use pixel intensities, from an image patch, it is possible to use a simple

texture filter to provide better feature vectors, more amenable to classification. Rikert

et al.[113] used multi-scale wavelet filters to produce an over-complete feature vector,

which they then classified using a Gaussian mixture model and Bayesian classification.

They reported good results on both face and car finding.

The recent introduction of powerful statistical classification techniques has revolu-

tionised face detection. These classifiers require a training set of positive and negative

examples, i.e. real faces, and image patches that do not contain faces, respectively. To

get good accuracy, these methods require a very large collection of negative examples

to help refine the classification boundary. Most recent works acquire these negative

samples using an iterative refinement process introduced by Sung and Poggio[145].

They trained an initial classifier with a small set of randomly chosen negative exam-

ples, and then scanned a set of face-less images to find negative examples that are

necessary to refine the boundary.

1By appealing to Occam’s Razor, a simpler model should be preferable to a more complex one

if they both model the data equally well. Kolmogorov complexity[84] and Minimum Description

Length (MDL)[115] offer more rigorous treatments of this idea.
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Neural networks were the first of the modern general-purpose classifiers. Recently,

heavily specialised and tuned neural network methods have given excellent results.

Rowley and Kanade[122] used multiple voting Multi-Layer Perceptrons (MLPs) to

achieve excellent results. Sung and Poggio[145] used two Gaussian Mixture Models

(GMM)s to model the positive, and the confounding negative distributions, and used

a small neural network to arbitrate between them. These two papers also intro-

duced the CMU face detection test database which is widely used in face detection

experiments.

Osuna et al.[108] were the first to use a Support Vector Machine (SVM) as the

classifier, gaining significant advantages over neural network users in terms of much

reduced tuning requirements, and consequently easier training. The computational

complexity of using an SVM classifier was hugely cut by Romdhani et al.[121] through

use of a cascade of reduced-set SVM classifiers, to reject non-faces early. They also

avoided the cost of intensity normalisation by repeating examples from the positive

training set with random changes in contrast and lighting direction.

Viola and Jones[161] introduced what is widely regarded as the best face detection

method currently available, in terms of its detection/speed performance tradeoff. By

first calculating the running sum of pixel intensities across the image, their method

can very cheaply calculate the responses to small rectangular filters similar to Haar

wavelets. It then trains a classifier using a cascaded version of AdaBoost, which

rejects most non-faces very quickly. Whilst other methods may be slightly more

accurate, Viola and Jones’ method is many times faster.

2.3.4 Shape-Based Approaches

One approach to dealing with objects in images, whilst reducing computational com-

plexity, is to use only their outlines’ edge information.

There are some image recognition problems where outlines are readily available, for
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instance when comparing a test image to a large database of trademark images[49]. As

in the case of low-level feature based searching (section 2.2) there are many schemes

described in the literature, perhaps because the approach is computationally accessi-

ble. Histogram methods stand out because of their theoretically justifiable χ2-based

distance metric. Thacker et al.’s pairwise geometric histograms[148] measured the

distribution of distances and angles between line segments on a shape, in order to

find multiple shapes in an image, despite overlapping and some clutter. Mori et

al.[101] built log-polar histograms between randomly sampled points on the shapes,

and showed that there was enough information in the histograms such that when

trying to match a new shape to one of a large database of objects, most non-matches

could be discarded early after checking the histograms of only a few points on the

shape.

MPEG-7 performed extensive testing on many shape descriptors, before choosing

two 2D descriptions[17] of shape for their standard. The Angular Radial Transform

decomposes shapes into a set of Fourier-like basis-functions on a polar co-ordinate

system, and then truncates and quantises the responses to produce a 140 bit de-

scriptor. This approach can be thought of as a rotation-invariant lossy compression

of binary images, and is robust to topology changes and speckle noise. For simple

closed contours, MPEG-7 uses a scale-space approach—as the contour is successively

smoothed, the position and scale of the disappearing concave sections is recorded.

The resulting convex contour’s eccentricity and circularity are added, and the whole

representation quantised to produce a descriptor of typically 112 bits. The descrip-

tion, along with a suitable distance metric, provides shape matches similar to human

expectations. However, in an approach common to international technical standards,

MPEG-7 does not define how the contours are extracted or compared.

It should be noted that the shape-based approach is often used in conjunction with

other approaches described earlier. There are several statistical approaches to shape,

such as Cootes et al.’s Active Shape Models (ASMs)[36], and the related Active

Contours of Blake and Isard[15]. Both of these methods learn a subspace model
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(known as a Point Distribution Model (PDM)[31]) of the variation of the position of

control points of a spline that represents the shape outline. They can automatically

fit to an object in a image, by iteratively searching for strong edges along profiles

perpendicular to the shape outline, finding the best fit of the PDM to these edges,

and moving the spline to the best fit.

There remains a fundamental problem with shape in that it ignores the majority of

the information in each image. For this reason, no purely shape-based method has

demonstrated good results on a detection task on textured objects like faces.

2.3.5 Parts-Based Representations

Representing whole objects by parts has a strong appeal. The idea is to have an object

detector respond when some or all of its constituent part detectors fire2. A significant

problem with the parts based approach can be seen in two extremes. At one end,

there is no modelling of the relationship between the parts. Here the detector is

very prone to hallucinate an object, because its component detectors are triggered on

many false positives. At the other extreme, a computational combinatorial explosion

occurs when every possible configuration (over all the desired invariants) is explicitly

listed.

Sali and Ullman[126] attempted to tackle this problem explicitly. Their detectors con-

sisted of image patches taken from the training set (in the multiple-image recognition

fashion above,) and a distance metric that compared intensity ranks and gradients.

The patches, which were manually chosen with varying sizes, overlapped each other.

Enforcing this overlapping between the smaller and larger patch detectors, and the

use of spatial voting (feature-based Hough Transform,) helped to avoid the combina-

torial explosion.

Mel and Fiser[92] suggested that the patches (or at least the distribution of patch

2Such an approach is supported by neurophysiological evidence[162].
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sizes) could be chosen optimally, such that a small number of large detectors serve

to bind together a much larger number of loosely coupled small detectors. However,

they only demonstrated this method in the text search domain.

Non-negative matrix factorisation[83] is another approach to parts based represen-

tation. This method decomposes a set of training images into a basis set composed

of parts of the object. This author’s attempts to reproduce these results, however,

failed to find that basis set was actually localised.

One means of improving the parts-based approach is to discover feature extractors

that are invariant to lighting, distortion, orientation, and scale. Lowe[86] took several

feature extractors that do not have such invariances, and either enforced invariance

(in the case of lighting and orientation) by normalisation, or sparsified the feature

map to record only those locations where the feature detectors were stable (in the

case of scale.) Ohba and Ikeuchi[106] used a PCA analysis of optimally selected

windows from the training set, to provide a dictionary against which windows from

a test image could be matched. Both papers suggest using spatial voting to combine

the detector hits and decide if an object is present. Obdrz̆álek et al.[105] developed

a detector that provides a local affine frame for invariant comparison of raw pixel

intensities, demonstrating excellent performance in an object recognition task.

A more sophisticated version of this approach, and possibly the most interesting of

all the methods considered, is due to Weber et al.[167] Their “constellation” model

is a sparse, generative, model of appearance. A set of positive training images is

scanned using an interest point detector, the small neighbourhoods of which are

approximated using vector quantisation. Those features which are found throughout

the training set become templates. In this way they discover objects without having

to do any marking up. As in an earlier work[22], the probabilities of each template—

matching a positive training image, failing to match a positive training image (i.e.

being occluded,) or matching a false positive—are estimated. The distribution of

relative positions of each template in the training set is modelled using a PDM.
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During a normal search these templates are used as non-maximally suppressed feature

detectors. The PDM’s probability estimate of the shape of each combination of

template responses, the probability of occlusion for any missing templates, and the

probability of a template’s false-positive response, are integrated over all the possible

matches to give a single probability of the image containing the object. Although

this removes the ability to estimate the number of objects in an image, it improves

the quality of the decision about whether an image contains at least one object.

In a development by Fergus et al.[58], the use of fixed templates was replaced by

eigenpatches and a joint probabilistic appearance model over texture and shape. By

also non-maximally suppressing the initial interest detectors in the scale direction,

they were able to model the scale, and make the detectors invariant to it. In a further

development by Fei-Fei et al.[57] they note that humans can learn a new object

class from only a few examples. They suggest that this is because, having learnt

models for thousands of other object classes, we have a prior on the parameters

of any object-class model, and that we use this prior to constrain the estimate of

the new object-class model. Their technique attempts to replicate this feat by first

building a model of several object classes with a large number of examples, using

mixture-models to represent the (now) multi-modal distributions. The covariance

of the parameters of these mixture-models is also estimated. Up to this point, the

process takes several hours. Once this previously learnt mixture model is established

as a prior, a constellation model for a new object class can be learnt from a small

(1-5) number of training images, in less than a minute.

2.4 DBMSs and Complete Systems

In addition to the content analysis algorithms, CBIR also requires a DataBase Man-

agement System (DBMS). On the DBMS side there seems to be little agreement on

suitable database structures. Almost every academic paper on the subject proposes a

new scheme[64, 3]. One concerted effort to come to agreement, was the international
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standardisation process MPEG-7[89]. However, the MPEG-7 standard only defines

interface protocols necessary for inter-operability and thus avoids specifying almost

anything about the DBMS itself.

Complete, publicly-available CBIR systems, are fairly rare. One well-known academic

system is Photobook[97] from the MIT Media Lab. Complete systems are more

evident in the commercial sector. QBIC[104] from IBM was the first system to

achieve any serious commercial recognition. Other companies include Virage[6], and

MATE[90] who once claimed to be able to detect and classify many high-level objects

and events, e.g. faces, explosions, and sky, but have moved out of the IMS market

since 1999.

2.5 Test Databases and Evaluation

Papers in the computer vision field are prone to providing less than rigourous evalu-

ation of proposed techniques. This is due to many factors, including the application

specificity of any possible test. Another common factor is the expense of generat-

ing a properly labelled and representative database. In this field, copyright can also

become a difficulty. Creating a representative database means copying images that

are found on real websites, magazines, television channels, etc. All of these pictures

are implicitly and often explicitly copyrighted in a manner that includes (possibly

unintentionally) banning their use in test databases.

The most comprehensive evaluations have been carried out by organisations wanting

to make an objective decision about purchasing or investing in a technology. For

example the FERET test[109] evaluated several competing face recognition systems,

for the American military in order that they could decide whether to purchase a

Face Recognition system for physical access control. More recently, as governments

have been looking to use image-based biometrics, they have been funding academic

comparative work, e.g. BANCA[7] and U-FACE[33].
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A list of freely available databases is maintained by Carnegie-Mellon University

(CMU) at the Computer Vision Homepage[71]. The typical database is either con-

strained to pictures taken for a specific application, or on a limited range of environ-

ments. For example, FERET has mugshots of faces with plain black backgrounds,

and reasonably consistent scaling, lighting conditions, and other camera and envi-

ronmental factors. The XM2VTS[93], collected by Messer et al. is public database

with high-quality images of “clean” faces—see figure B.1 in the appendix for some

examples. Whilst not ideal for use in evaluating face detection performance, ISBE

does have high-quality labelling and markup for XM2VTS which makes it useful for

testing. One exception to the cleanliness of many existing test databases is the CMU

face database collected by Rowley et al.[122, 145] This contains images from a wide

variety of sources, with faces of varying cleanliness and other attributes, and highly

textured and variable backgrounds. Some examples are shown in figure B.2 in the

appendix.

2.6 Discussion

The above review separated previous work into two broad categories. But, is there

any merit in the distinction between the advanced classification of low-level features

(e.g. Tieu and Viola’s AdaBoost on thousands of primitive image features [149]) and

the relatively simple classification of complex features (e.g. Weber et al.’s constel-

lation model of sparse appearance of objects[167]?) The boundary between feature

extraction and classification is somewhat arbitrary, and both build models that claim

to have semantic meaning. In the past, there has been more of an identification of

the concept of object in the approaches using complex features. In future however,

it may be more fruitful to see a convergence of these two approaches, as the known

limitations of each are addressed. The work in this thesis can be seen in that light—

using a high-level feature detector and modern statistical classification together, to

achieve superior performance.
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Building GMM Network Classifiers

At the start of the work of this thesis, Sung and Poggio’s GMM-based neural network

face detector was the state of the art. It was implemented to use as a baseline against

which to assess new developments, and as a classifier for use in combination with

appearance-model based feature extraction.

3.1 Background

In order for any method to detect an object in an image, there must be a classifier

to decide whether or not the image (or part of the image) contains the object. In

contrast to most classification tasks, reliably detecting objects in images over a wide

variety of positions and scales requires extremely high performance. False positive

rates (the fraction of negative test examples that are incorrectly classified) in the

region of one in a million are required in order to reject the vast majority of image

patches that do not contain the desired object. Fortunately, true positive rates of

nine out of ten are acceptable. Recently, classification methods have been developed

which are capable of achieving this sort of performance. The computer vision field,

and in particular the face detection problem, has been a strong contributor to the
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development of these techniques.

Whilst later chapters will use more complicated appearance models, this chapter will

represent the appearance of an object as a simple image patch. The rigid shape of the

patch is chosen to fit the object, e.g. face images have a vaguely oval shape. Within

the patch, the vector of grey level values sampled on a fixed pixel grid is the model of

appearance. The position of the patch can be moved around to sample the appearance

anywhere in the image. It can be rotated, expanded and shrunk. The patch elements

are sampled from the underlying image, with appropriate interpolation when the

image’s and the patch’s pixel grids do not align. In order to detect faces, the patch

is sampled everywhere on a dense grid of positions and scales, and the vector of pixel

values is passed to the detector’s classifier.

Early work by Pentland et al.[154] implicitly (and later explictly[98]) classified face

from non-face patches by using a multivariate Gaussian Probability Density Function

(PDF). If the probability density of a particular patch was above a learnt threshold,

then the patch was a face. The patch was sampled at all positions and all scales.

However, the hyper-elliptical classification boundary implied by this scheme is not

very accurate. Several variations[69, 38, 99] have been suggested on a theme of using

mixture models to represent the PDF of an appearance model. The advantage of

this approach is that it is possible to remain explicitly in the probability domain and

thus be able to reason convincingly about the behaviour of these systems. The main

disadvantage of the approach is that it does not learn anything about the PDF of

the appearance model on non-face patches. The face/non-face threshold is set at

some fixed probability density, incorrectly assuming a flat PDF for the appearance

of background.

Neural networks, on the other hand, can explicitly model a decision boundary. Rowley

et al.[122] achieved very good face detection performance using a neural network with

a complicated structure. Unfortunately Perceptron-style neural networks have many

problems, making it hard to treat them as anything other than black boxes. In
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particular it is difficult to distinguish any particular problem’s cause such as training

issues, incorrectly structured networks, or poor separation of the data. Selection

of model parameters is also difficult. For example with back-propagation training

of Multi-Layer Perceptrons (MLPs), the learning rate and number of iterations can

greatly affect the performance of the final classifier[114, p.155].

In Sung and Poggio’s[145] work using GMM-based neural networks (henceforth “GMM

networks”) to perform the face detection task, their model is structurally much sim-

pler than the Perceptron-style neural network developed by Rowley et al. The GMM

network had the highest reported performance in the face detection task at the start

of the work of this thesis (jointly with Rowley et al.’s neural network.) For these

reasons, GMM networks were selected for initial investigation, which are described

later in this chapter.

The GMM network uses one GMM to model the distribution of the appearance of

face (or “positive”) patches. An initial GMM PDF of the appearance of background

is built from a small selection of non-face (or “negative”) patches. The GMMs are

trained using classification Expectation Maximisation (EM)[23], which assigns each

training example as a whole to the nearest cluster, rather than the weighted assign-

ment used by Dempster’s original EM[48] method. Also, rather than using Bayes’s

rule, the final face/non-face decision is made by a small MLP. After initial training,

a series of “refinement iterations” take place. In each iteration, the detector is run

over a database of images known to be devoid of faces. Any hits are added to the

training set, and the negative GMM and the MLP are retrained.

The iterative refinement process is very powerful, and is applicable anywhere it is

easy to create a database containing just negative examples, and where the prior

probability of a positive example in the test set is very low. First introduced into this

field by Sung and Poggio with their work on GMM networks, it has been taken up

by other designers of face detectors[108, 121]. It is also used heavily in this thesis.

During the period of the work described in this thesis, Vapnik’s Support Vector
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Machine (SVM)[156] has become extremely popular, replacing the MLP as the black

box classification technique of choice for many problems. In the simple linear case,

the SVM puts the hyperplane boundary equidistant between the closest negative and

positive training examples. Unlike neural networks, the SVM’s training algorithm

has no false minima, and minimises the expected error on unseen test data rather

than the training set. Osuna et al.[108] were the first to use SVMs for face detection.

Further details of the SVM can be found in the next chapter, where they are shown

to be superior in several ways to GMM networks.

More recently, boosted methods that optimally combine many weak classifiers into

a single very high performance one, have been shown to be useful. The cascaded

AdaBoost classifier developed by Viola and Jones[161] can accurately reject a large

fraction of the background patches extremely quickly using a very simple classifier.

The remainder of the background image patches are rejected by ever more compli-

cated but precise classifiers, until only real faces remain.

3.2 Implementing GMM Networks

Sung and Poggio’s algorithm for training a GMM network is shown in detail in

figure 3.1. Since we were unable to acquire Sung and Poggio’s software, the algorithm

was implemented from scratch. In doing so, several significant implementation issues

had to be addressed.

Collecting False Positive Examples It is difficult to handle and store the vari-

able, and sometimes huge, number of false positives, found during each of the refine-

ment iterations. Even after rewriting the software so that the vectors were stored on

disk, there were some occasions when the available 3GB of disk space was not enough.

At every iteration, only a random subset (size nselect) of all the false positives needs

to be added to the training dataset. Storing all the false positives, only to select a
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• Build a sampler that can acquire 283 pixel values spaced on a compact grid, from an
image. The grid can be placed over the image with any desired transform. In particular,
if the grid is zoomed so that the grid points are spaced more widely than the pixels in
the image, the image is appropriately smoothed.

• Given the set of training images, and a list of the positions of every face in them, sample
in the marked positions. Also sample with slight rotations from the marked positions,
and with mirroring, to increase the size of the training set.

• Planar normalise each sample patch. i.e. find the best fit of the equation Iplanar(x, y) =
α(x) + β(y) + γ to the sample patch Isample(x, y), and then remove this planar com-
ponent, Isample(x, y) := Isample(x, y) − Iplanar(x, y).

• Histogram normalise each sample patch, and convert them into vectors. This list of
vectors is referred to as the “positive (training) set.”

• Find a small set of non-face image patches and convert them as above into a list of
vectors, called the “negative (training) set.”

• Repeat the following iterative refinement steps until a suitably performing classifier is
obtained:

– Train two GMMs, one each on the positive and negative training sets.

∗ Perform K-Means with K=6, on the training set.

∗ Use the six clusters to create six Gaussians. Perform PCA on the each
Gaussian, and rebuild them with only 75 principal components. Turn the six
Gaussians into a mixture model.

∗ Repeat:

· Perform expectations-step for each training vector. i.e. Find the
Mahalanobis distance from each Gaussian centre to each data point

· Perform classification-step. i.e. Assign each point to the cluster
with the lowest Mahalanobis distance

· Perform mean-maximisation-step. i.e. Update Gaussian means with
cluster means

· If there have been no changes, or if there have been five consecutive
mean-maximisation-steps, then perform full-maximisation-step,
i.e. Update Gaussian means and covariance with cluster statistics. Per-
form PCA on each Gaussian as before.

∗ Until no more changes with Full-Maximisation Step.

– For each data point in the positive and negative training sets, fill a 24-element
distance vector with the Mahalanobis distance from each Gaussian centre, and
with the Euclidean distance in each Gaussian’s Complementary Space from the
centres.

– Train a 24 input, 24 hidden units, 1 output, 3 layer, MLP using simple back-
propagation.

– Using the sampler, and GMM-network classifier, scan a database of non-face
images extracting every possible image patch at a range of scales (but only one
orientation.) Store those false-positives returned by the classifier, and add them
to the negative training set.

• Done.

Figure 3.1: Summary of Sung and Poggio’s algorithm[145] for training a GMM-based

object detector
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few is very expensive. Instead, a stochastic-array module was developed which

stores just a random selection of all the examples presented. Initially every example

is stored until the array contains nselect examples. Any further examples are then

accepted with probability

p(selecting next example) =
nselect

i
· nselect

nselect + 1

where i is the number of samples presented so far. Selected examples overwrite one of

the existing nselect samples current stored in the array. At any time stochastic-array

can be shown to have an equal probability of containing any of the examples presented

so far. Initially nselect was set to 5000.

Selecting the Number of Principal Components Sung and Poggio described

a means of picking the number of principal components for each mixture model thus:

‘We arrived at our choice of 75 “significant” eigenvectors per cluster using

the following criterion: For each cluster, eliminate as many trailing eigen-

vectors as possible, so that the sum of all the eliminated eigenvectors is

still smaller than the cluster’s largest eigenvalue. This procedure leaves us

with approximately 75 eigenvectors for each cluster, which we standardise

at 75 for simplicity.’ [145]

None of the reasoning behind this method was given, and when performing the same

test, only 25 components were found.

In a mistaken attempt to improve the performance of the algorithm, the above rule

was used during each full-maximisation-step to dynamically choose the number

of principle components. This modified algorithm either broke when one of the Gaus-

sians was starved of any examples, or failed to converge. This failure can be explained

by Dempster et al.’s proof of convergence[48] of the expectation maximisation algo-

rithm. The proof requires that the change in log likelihood during the maximisation

step be continuous with respect to the model parameters. Since the modification
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Training data generators

Fitted GMM

Figure 3.2: Non-global minimum consistently found by the GMM training algorithm,

when the actual distribution of training data has a strong variance in a different direction

to the cluster separations.

to the algorithm makes a change to the number of principle components, the log

likelihood change will necessarily be discontinuous at that point.

Termination of Classifier Refinement Sung and Poggio suggest terminating the

refinement iterations after having found about ten times as many negative examples

as positive ones. During the two initial experiments described below, the algorithm

ran out of false positives from the training set before reaching this limit. In order

to confirm that this was not just a problem with too small a negative database,

some of these experiments were restarted with a completely new negative database.

Invariably, the experiments ran for at most one more iteration before running out of

false positives again.

GMM Initialisation While testing the GMM training algorithm on an artificial

4000 vector, 20-D dataset, the EM method was found under some circumstances

to consistently fall into a local minimum—see figure 3.2. This was despite random

initialisation of the cluster centres, for the first K-Means clustering step. The solution

was to temporarily whiten the data during the K-Means clustering step. This allowed

the K-Means step to ignore directions that had large variances, when those variances

were not caused by cluster separations. It could then correctly identify the cluster

centres, which left the EM algorithm in the region of the best minimum.
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x3 4 1 0 1 +2 > 0—Correct +∞ > 0—Correct

x4 9 4 1 0 +6 6< 0—Wrong −∞ < 0—Correct

Figure 3.3: A linear function (e.g. flinear) of Mahalanobis distances will not produce a

working classifier. The sum of the reciprocals (freciprocal) of the Mahalanobis distances

will work.

Output to Final MLP Sung and Poggio state that they fill the 24-element vector

(that represents the output of the GMM for any example) with Mahalanobis dis-

tances. Whilst testing the scheme on some artificial datasets, it became clear that

the reciprocal of the Mahalanobis distance was superior. Figure 3.3 shows that simply

summing the Mahalanobis distances from each cluster will not produce a classifier ca-

pable of correctly identifying examples at each cluster’s centre, whereas summing the

reciprocal of the Mahalanobis distances will produce a viable classifier. Any mono-

tonically decreasing function can be used instead of the reciprocal. The log likelihood

of the distance is a natural function to use in this case, and it avoids the infinities

created by the reciprocal.
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3.3 Initial Experiments and Results

A GMM network classifier was trained using 4398 positive examples taken from the

507 individual faces in the images of the CMU[122, 145] database (see figure B.2 in

the appendix) and 226 faces from the rotated face database published with the CMU

database. The database of non-face (negative) images was assembled from a random

selection of images taken from the WWW, and consisted of 20 images totalling ∼6.5×
106 patches. The GMMs in the classifier were built with 25 principal components. As

the classifier was built and refined, it was tested on the 144-face webimagesB dataset

(see figure B.5) and 28 non-face images, all obtained randomly from the WWW.

The test set’s characteristics were indistinguishable from the training set. Testing

on the positive database was performed at the just 27 patch positions surrounding

the closest fit of the sampling grid to the labelled eyes. If any of the 27 patches was

classified positive, that was considered a hit. To save time, testing on the negative

database was restricted to approximately 6% of the patches, selected randomly from

the 28 non-face images. This amounted to ∼8.9×105 patches.

3.3.1 Results

The classification results are summarised in figure 3.4. Figure 3.5 shows the Receiver

Operating Characteristic (ROC) curves for the initial classifier before refinement, the

final classifier, and the classifier after 7 refinement iterations (which performed better

than the final one.)

The same experiments were then repeated using GMMs built with 75 principal com-

ponents as suggested by Sung and Poggio. The results are shown in figures 3.6

and 3.7.

In neither experiment does the performance approach that reported by Sung and

Poggio[145]. They claim 80% of faces detected, and 22 false positives, or a false
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Figure 3.4: Various performance measures for the 25-principal-component GMM network

during the refinement process.

positive rate of 1 in 2,000,000 patches, on the CMU database. The closest these exper-

iments came were a false positive rate of 1 in 833 patches for an 80% true positive

rate, or with a different bias, 0 in 890,000 false positives for a true positive rate of

14%.

Why is the algorithm is not working as expected? Looking at the GMM cluster cen-

tres (figure 3.8) they appeared similar to ones Sung and Poggio obtained (figure 3.9,)

especially in the 25-principle-component model. This suggested that the GMM build-

ing process was working well. The rectangular nature of the ROC curve suggested

that the classifier score was quantised to relatively small set of probability values.

Further investigation showed that the GMM distance values for each point were not

obviously quantised in this way. The outputs of the MLP’s hidden layer showed some

signs of quantisation, but not to the same extent as the final output. This suggested

that there was a problem with the training of the neural network.

The neural network module was based on software[87] published by John Manslow.
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Figure 3.5: ROC curve for the 25-principal-component GMM network before refinement

(top,) after 7 refinement iterations (middle,) and after training stopped.
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Figure 3.6: Various performance measures for the 75-principal-component GMM network

during the refinement process
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Figure 3.7: ROC curve for the 75-principal-component GMM network after 6 refinement

iterations (left,) and after training stopped (right.)
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Figure 3.8: The centres of the 25 (top) and 75 (bottom) principal component Gaussian

Mixture models after refinement.

Figure 3.9: The centres of the 75 principal component Gaussian Mixture Models after

refinement, as found by Sung and Poggio[145].

It used a simple downhill optimiser with momentum and weight decay. Multiple

restarts with random weight initialisation were added to the code as it was ported

to work on top of the Vision-X-Libraries (VXL) framework. It had been tested on

some simple 2D and 3D datasets and appeared to work well. The performance might

have been improved by using cross-validation to decide when to stop training, but

Sung and Poggio never mentioned using this (or any other specific detail about MLP

training.) The performance of the classifiers on the training set was no better than on

the test set, suggesting that cross-validation would not help. In fact, the performance

on the negative training set was much worse, because it consisted of images that the

classifier had been unable to correctly classify at some point.
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3.3.2 Confirming the Separability of the Data

The failure to achieve the performance results approaching those of Sung and Pog-

gio, prompted a further search for implementation errors. The test framework in

which the code was developed suggested that every part of the system was behav-

ing as intended and, other than problems in the final stage of the MLP, no specific

problems could be found with the GMM network. Indeed, the whole GMM network

appeared to work reasonably well on artificial datasets, and was doing better than

random on the face detection task. Perhaps there was something wrong with the

feature vector extraction, despite a test framework that sampled from an image, and

then reconstructed the image from the feature vector, checking they were consistent.

Alternatively, perhaps there was a problem with the data.

An attempt was made to see if a flaw somewhere caused the feature vectors to be

non-separable before they were passed to the GMM network for either training or clas-

sification. Sammon[127] describes an algorithm to perform dimensionality reduction

“such that the inherent data ‘structure’ is approximately preserved.” This algorithm

calculates the distances between all the sample points in an original high-dimensional

space and, starting with a random arrangement of the points in a low-dimensional

space, iteratively modifies the arrangement to maximise the similarity of point-to-

point spacing in high and low dimensional spaces.

Sammon mapping was applied to a combined dataset of 500 positive and 500 negative

face samples, selected randomly1 from the final training set of the first experiment

described in section 3.3 . The results (figure 3.10) show that the data appears to be

mostly separated. In addition it also suggests that the positive region is not fully

connected, but instead is divided into a small number of regions surrounded by an

invalid face view region. It is ill-advised to read much more into the results.

1The algorithm’s storage requirements are O(n2) in the number of samples. The

implementation[158] that was used appeared to be somewhat profligate in the use of local memory,

thereby placing a relatively low limit on the number of samples that can mapped.
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True Faces 
False Faces

Figure 3.10: 2D Sammon map of positive and negative examples of faces appearance

vectors.

3.3.3 Speed

The classification was very slow. Scanning a 400x400 pixel image over the full range

of scales (separated by a scaling factor of 1.2 × 1.2 = 1.44) took 433,305 individual

patch classifications. This took a 600MHz Pentium3 processor approximately 1 hour

with a classifier built from GMMs with 25 principal components and 3 hours with

75 principal components. This gives a patch testing rate of ∼50 per second for the

75-principal-component case. This speed was doubled by first using a 20-principal-

component single-mode Gaussian classifier to quickly reject about half the samples,

at the expense of also excluding 0.5% of the true faces.

In relation to the longer term aims of this project, this speed may not be a problem.

It is possible that more complicated appearance models can find less than 100 possible

model view matches per second, then testing the validity of each of those matches

would take another second. Nevertheless, an algorithm which classifies at a speed

that is orders of magnitude faster would be very useful.

The slow classification speed is compounded by slow training. During the one refine-

ment iteration, building the negative GMM and training the neural network can take
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many hours. In the case of a 75 principal component GMM and MLP, with ∼20,000

negative and ∼4400 positive examples, for one iteration the GMM training took ∼15

hours, and the MLP training (with 10 random initialisations) took ∼5 hours.

3.4 Further Experiments

Since the (supposedly simple) MLP in the classifier appeared to be the cause of the

poor performance, it was replaced by a linear classifier. Sung and Poggio describe

experiments where they used a single layer Perceptron—the linear classifier used

here was expected to be roughly equivalent. Since training a linear classifier uses a

simple least squares fitting method, no problems were expected with local minima

and convergence failure.

In an attempt to speed up the refinement process, the selection of false positives was

changed from random, to taking the false positives with the highest classification

score. The idea was that by focussing on the worst false positive examples, the

classifier would more quickly find the true boundary between faces and non-faces.

Alternatively, this would also allow the number of false positives added to the negative

training set at each step to be reduced, so that training would not take so long. So

nselect was set to 500. However, this experiment failed completely. After the second

refinement iteration, the worst false-positives were ones that had been added to the

training set in the previous iterations. Since repeated examples in the training set

should make the classifier more sensitive to those values, and eventually be able to

classify them correctly, the experiment was allowed to continue for another eight

iterations. But each iteration added the same examples, which remained the worst

despite being weighted eight to ten times more important during training than the

others.

As explained previously, finding all the false positives in a test set at each iteration

is expensive in terms of space. It is also expensive in terms of time, especially since
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many of the false positives will be discarded. Instead, it is faster to search for the first

nselect false positives. These might not be very representative of the whole negative

training set, so the performance improvement per refinement iteration would not be

as good. But, the whole iteration is completed much faster, and so the performance

improvement per unit of computer time is much faster. This find the next nselect

false positives strategy was employed in all subsequent experiments, based on GMM

networks and later with other classifiers.

A larger face database, called webimagesC, was acquired for testing—see figure B.6

in the appendix for some examples. Searching the WWW using terms like “team

pictures” and “celebrity photos” made it very easy to acquire a large number of

varying quality face images, leaving more time for the harder task of marking up

the eyes. The negative test database was extended to 44 images containing 1.22×107

patches. To save time, testing on the negative database was restricted to a randomly

selected 2.03×106 patches.

A final experiment using all these changes was run for eight iterations looking for

nselect = 2500 new false positives, before the computer crashed (for unrelated rea-

sons.) After eight iterations, the negative training set had 25,000 items. The positive

set still had the 4398 examples from the CMU database. The performance on the test

database measured on the last iteration gave a sensitivity of 54% for a false positive

rate of one per ∼32,000 patches. As can be seen from the ROC curve (figure 3.11,)

the performance has increased significantly over the previous experiments (figures 3.5

and 3.7.) This is almost certainly due to the replacement of the broken MLP, with

a working linear classifier. Despite the large improvements over the previous ex-

periments, the results still do not compare well with those reported by Sung and

Poggio.
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Figure 3.11: ROC curve of final GMM Network experiment, using 2×6 Gaussians with

35 principal components, and a linear classifier for the final stage.

3.5 Discussion and Conclusions

The work of this (and the next) chapter shows considerable evolution in experimental

design. Since large amounts of data are involved, the training and testing of a classifier

can take weeks. It was simply infeasible to run experiments multiple times merely

to refine the experimental design, or re-run old experiments after the design was

subsequently improved. The lessons learnt at each experiment were applied to the

next ones, and enough lessons were learnt to enable the experimental designs to stay

consistent in later chapters. However, even if results from different experiments could

not be directly matched, the designs are similar enough to reach conclusions.

Although the idea of incremental classifier refinement seems a powerful idea, and

Sung and Poggio reported very encouraging results with their GMM network, my

results suggested that performance was very sensitive to the choice of training data

and parameter settings, making it difficult, in practice to achieve similar results

consistently. This lead to an investigation of more robust methods of classification.
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Building Support Vector Machine

Classifiers

This chapter examines the Support Vector Machine (SVM) as an alternative classi-

fier to the GMM network, and experimental work shows that SVMs are more robust

and more accurate. A novel improvement to the training of SVMs is described,

which automates the selection of a key SVM training parameter—the Radial Basis

Function (RBF) width. Automatic selection of the SVM training parameters is valu-

able because running many experiments with different feature vectors would make

manual intervention very expensive.

Two algorithms for training SVMs, Chunking-QP and Sequential Minimum Opti-

misation (SMO), are compared, after the SMO algorithm was heavily improved to

increase its speed, numerical accuracy, and to calculate values needed for the au-

tomatic selection of the SVM training parameter. Experimental results show that

Chunking-QP was numerically unstable, and unsuitable for use in situations where

little manual intervention is required. However, the improved SMO algorithm was

reliable and usually faster than Chunking-QP, making it most suitable as a classifier

for later use with appearance modelling.
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4.1 Support Vector Machines

Support Vector Machines (SVMs) were first described by Vapnik, in a Russian journal

in 1979, but his first English book[156]1 is the standard reference. Whilst an SVM

can also be used for non-linear regression, only its use as a classifier is examined here.

4.1.1 Introduction to SVMs

In order to understand the methods developed in this and subsequent sections, a

short summary of the SVM derivation is given.

The expected error (or structural risk, Rstruct) for a classifier applied to an unseen test

set was shown by Vapnik[156] to be bounded above by the sum of the empirical error

on the training set, Rtrain, and a function of a positive integer h called the Vapnik

Chervonenkis (VC) dimension and a variable η = [0, 1]:

Rstruct ≤ Rtrain +

√
h(ln 2l

h
+ 1) − ln η

4

l
(4.1)

where Rtrain is the error on the l-example training set, and the inequality holds with

probability 1−η. The VC dimension, h, is a measure of the capacity of the classifier to

learn to fit to any arbitrary dataset, and is entirely independent of the data. h is the

largest number of vectors, for which it is possible to train the classifier correctly for

every possible labelling of the vectors. For example, given three distinct R
2 vectors,

it is easy to place a line so that the three vectors are all on one side of the line, all on

the other side, or any arbitrary combination of sides. This is not possible with four

vectors (the cause of the infamous XOR problem for simple Perceptrons,) and so the

VC dimension of the 2D linear classifier is three.

Equation 4.1 provides an upper bound on the expected test error of any classifier,

and behaves as we might expect—the test error is never smaller than the training

1Vapnik’s work is very dense and theoretically-oriented. Burges published a useful tutorial[21],

and Gunn published a very clear introduction[65] with an easy to understand Matlab toolbox.
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Figure 4.1: A thick hyperplane classifier separating two classes.

error. The second term, the risk of poor generalisation, increases with the capacity

of the classifier to arbitrarily fit larger datasets, and decreases with the number of

training samples.

Given a separating hyperplane of thickness (or margin) M , Vapnik argues that there

is an upper bound on the classifier’s VC dimension:

h ≤ D2

M2
(4.2)

where D is the diameter of a hypersphere enclosing the training data (figure 4.1.) To

keep the upper bound on the expected test error as low as possible, we therefore need

to maximise the margin, M , of the hyperplane.

A (thin) hyperplane classifier operates according to the following rule:

sign f(x) = sign(w · x−b) (4.3)

where w is the hyperplane’s normal, and b is the bias (figure 4.2a.) A thick hyperplane

classifier is created by adjusting w and b so that the edges of the margin are at f(x) =

±1. Maximising the thickness, while modifying the hyperplane position to keep the

training data out of the margin, gives a maximum-margin classifier (figure 4.2b.)

To find the values of w and b, for a training set of n vectors xi and labels yi, we want
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Figure 4.2: (a) A thin hyperplane classifier. (b) A maximum margin hyperplane classifier

to maximise M2

2
= 2

|w|2
, or minimise its inverse. i.e.

min
w

1

2
|w|2 (4.4)

such that the training vectors xi are all on the correct side of the hyperplane and

outside the margin:

∀i : Ei = yi(w · x−b) − 1 ≥ 0

To make this constrained optimisation easier to perform, the Lagrange multiplier

technique2 is used. We form a Lagrangian, Ψ, by introducing a positive Lagrange

multiplier αi for each constraint Ei ≥ 0, and subtracting the products from the cost

function.

min
w,b

[
Ψ =

1

2
|w|2 −

n∑

i=1

αi(yi(w · x−b) − 1)

]

According to the theory of Lagrangians we will get the same parameters as equa-

tion 4.4 if we minimise Ψ, subject to the derivatives of the Lagrangian with respect

to each multiplier going to zero ( ∂Ψ
∂αi

= 0,) and to the multipliers being non-negative.

Another result from Lagrangian theory tells us that if the Lagrangian is a convex

function and the feasible set is convex (both of which are true here,) then there exists

2See any good book on optimisation e.g. Beale[11] for more about Lagrange multipliers.

58



Chapter 4. Building Support Vector Machine Classifiers

a dual formulation. In this dual formulation we maximise Ψ, subject to the deriva-

tives of the Lagrangian with respect to the original parameters (w and b) going to

zero and the Lagrange multipliers being non-negative. i.e.

max
α1,... ,αn

[
Ψ =

1

2
|w|2 −

n∑

i=1

αiyi(w · x−b) +
n∑

i=1

αi

]

subject to ∂Ψ
∂w

= 0, ∂Ψ
∂b

= 0 and ∀i : αi > 0. We can use the constraints of this dual

as follows:

∂Ψ

∂w
= w −

∑

i

αiyi xi = 0

w =
∑

i

αiyi xi

∂Ψ

∂b
=

∑

i

αiyi = 0

Inserting these results back into the Lagrangian gives

max
α1,... ,αn

[
Ψ =

∑

i

αiyi −
1

2

∑

i,j

αiαjyiyj xi ·xj

]
(4.5)

subject to
∑

i αiyi = 0 and ∀i : αi ≥ 0. This quadratic cost function with linear

constraints is known as a Quadratic Programming (QP) problem, for which there are

standard algorithms.

One important generalisation allows the method to be used with non-separable train-

ing sets (e.g. figure 4.3a,) by allowing the vectors to encroach into the margin, with

relative cost C. After extending the derivation to cope with this we get:

max
α1,... ,αn

[
Ψ =

∑

i

αiyi −
1

2

∑

i,j

αiαjyiyj xi ·xj

]

subject to
∑

i αiyi = 0 and ∀i : 0 ≤ αi ≤ C. The only change is an additional set

of simple upper bounds on the Lagrange multipliers. Again this is a straightforward

QP problem. Figure 4.3b shows a example of the optimisation problem with just two

training vectors. In such a case, the two training points lie on the margin.
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Figure 4.3: (a) A hyperplane classifier with non-separable data. Some data points are

inside the margin. (b) The QP problem for a simple two-example training set.

The next stage is to turn this hyperplane classifier into a non-linear classifier. By

mapping the data non-linearly into a higher dimensional space, x→Φ(x), it becomes

easier for the classifier to find a separating hyperplane. The Lagrangian thus becomes

max
α1,... ,αn

[
Ψ =

∑

i

αiyi −
1

2

∑

i,j

αiαjyiyjΦ(xi) · Φ(xj)

]

Note that all the references to the input data, e.g. in the Lagrangian (equation 4.5)

or the decision rule (equation 4.3,) take the form of dot products between two input

vectors. We can therefore roll the dot product and non-linear mapping into a single

kernel function, K.

K(xi, xj) = Φ(xi) · Φ(xj)

The kernel function K() is chosen so that it is cheap to calculate—certainly cheaper

than explicitly mapping the data into a higher dimensional space, and calculating

the dot product. In some cases, it may not even be possible to actually compute the

mapping. For example, with the Gaussian RBF kernel:

KRBF(xi, xj) = ΦRBF(xi) · ΦRBF(xj) = exp−|xi −xj |2
2σ2

The codomain of the mapping is the unit-radius ∞-dimensional hypersphere. Two

input vectors that are close in the input space (i.e. closer than the RBF width, σ)
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are also close on this hypersphere. Two vectors that are far away in the input space,

are up to 90◦ apart on the hypersphere.

Replacing the dot product with the kernel function, K(xi, xj), gives

max
α1,... ,αn

[
Ψ =

∑

i

αiyi −
1

2

∑

i,j

αiαjyiyjK(xi, xj)

]
(4.6)

subject to
∑

i αiyi = 0 and ∀i : 0 ≤ αi ≤ C, which can be solved as before.

It will be useful later in this chapter to be able to calculate the margin width, M ,

from the optimal Lagrange multipliers:

M2 =
4

|w|2 (4.7)

=
4∑

i,j

αiαjyiyjK(xi, xj)
(4.8)

4.1.2 Applications and Extensions

Osuna et al.[108] were the first to use an SVM for the object (face) detection problem.

Their feature extractor, and normalisation was identical to Sung and Poggio’s[145].

The main differences compared to the work in this chapter, were the use of a single

refinement iteration, and the manual choice of a second order polynomial kernel,

K(xi, xj), and soft-margin cost, C, of 200.

Burges[20] showed that the classification boundary of an SVM can be estimated

reasonably accurately by a similarly structured classifier but with many less support

vectors. His Reduced Set method optimises the values of the new classifier’s support

vectors to fit the old decision boundary. Romdhani et al.[121] extended this, turning

the decision into a series of reduced set SVMs. For tasks like object detection, where

the vast majority of test examples are negative, a large fraction of the negative

examples can be rejected by a classifier with a single support vector. A two vector

classifier then goes on to reject a fraction of the remainder, and so on. The biases

are set so that positive test examples will make it through to a 100-vector classifier.
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All examples that make it to that stage are then tested by the full SVM to maintain

specificity. Romdhani et al., like Osuna et al., only used a single refinement stage,

and manually chose their kernel parameter (RBF width.)

Lin et al.[85] showed how different costs can be associated with misclassification of

positive and negative data (similar to the Bayes-risk in biased Bayesian classifiers)

leading to different values of soft-margin cost C for positive and negative training

data.

There have been several alternative functions proposed for estimating the test error on

unseen datasets as the kernel function and parameters (e.g. RBF width) are varied.

Joachims[75] proposed a very efficient estimate of the leave-one-out cross-validation

error. Vapnik and Chapelle[157] proposed a tighter upper bound than equation 4.2

on Rstruct, but were unclear about how to calculate it. Later they proposed[25] an

extension of the method used in this thesis (section 4.3.3) to choose a different RBF

width for each element of the input vector. In this work they showed how to use an

optimiser to find the best kernel parameters, but appear to have used prior knowledge

of the data to manually choose the initial value passed to the optimiser.

4.1.3 Using Chunking to Train SVMs on Large Datasets

Standard quadratic programming implementations, such as the quadprog function in

Matlab’s Optimisation toolbox can be used to solve the SVM training maximisation—

indeed quadprog is the basis of Gunn’s SVM toolbox[65]3. The objective function

is passed to such routines in vector-matrix form, i.e. Φ = gT α + αT Hα. The

constraints are similarly assembled into vectors and matrices. This standard approach

has a problem: When the number of training vectors n is large, it is not possible to

3Gunn’s SVM toolbox for Matlab is a very useful for exploring SVM methods, and performing

simple experiments. This is largely because it is easy to express the SVM optimisation in terms

of vector and matrix products, and because Matlab provides a quadratic programming function.

Unfortunately it is very slow, and does not scale to large datasets.
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fit the entire Hessian H in memory.

H =




y1y1K11 y1y1K12 . . . y1ynK1n

...
...

. . .
...

yny1Kn1 yny1Kn2 . . . ynynKnn




This problem can be dealt with by realising that only a small proportion of the

training vectors, the support vectors, will be touching the margin. All the other

training vectors will have their associated Lagrange multipliers set to zero. This

means that the contribution of the associated elements of the Hessian will also be zero,

and so can be left out. The “Chunking” method introduced by Osuna et al.[108] uses

this observation to reduce the full n2-sized QP problem to a series of n2
sub-sized QP

sub-problems, according to the algorithm in figure 4.4. The terminating condition for

this (or any) convex-constrained optimisation problem is given by the Karush Kuhn

Tucker (KKT) conditions. They can be interpreted as requiring that the Lagrangian

be stationary at the optimal point. For the SVM optimisation this means4:

∀i, αi = 0 ⇒ Ei >= 0

0 < αi < C ⇒ Ei = 0

C = αi ⇒ Ei <= 0 (4.9)

where the KKT errors, Ei, are defined as the amount by which the conditions are

violated:

Ei = yi(f(xi) − yi) (4.10)

A concrete implementation of the Chunking algorithm was published by the Saunders

et al.[129](Royal Holloway, University of London—RHUL) and this code was used for

the SVM experiments in this and the next section (4.3.) The RHUL implementation

uses a constrained version of the conjugate-gradient optimisation method to solve

4Strictly, the KKT conditions[11] also include the constraints already imposed within and upon

the Lagrangian (equation 4.6.)
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• Initialise all Lagrange multipliers to zero

• Randomly choose nsub Lagrange multipliers, and solve QP sub-problem

• Calculate current bias, and test KKT conditions

• While not all KKT conditions hold

– Add any multipliers to the QP sub-problem, for which the associated KKT con-
ditions fail

– Remove similar number of zero-valued multipliers from the QP sub-problem

– Solve QP sub-problem again

– Calculate current bias, and test KKT conditions

Figure 4.4: Summary of the Chunking algorithm.

the QP problem. The inequality constraints are added to the standard conjugate-

gradient algorithm[11], by projecting the conjugate-gradient vector into the subspace

defined by the equality constraints and any active inequality constraints.

SVM training has a single globally optimal solution, which the algorithm is guar-

anteed to find (at least within the limits imposed by numerical rounding.) This is

in distinct contrast to other classifier methods, including Sung and Poggio’s GMM

network classifier, where the optimisation can get stuck in local minima. The SVM’s

theoretical underpinnings are also reassuring, and can be used to track down prob-

lems, or construct extensions to the methods.

4.2 Comparison of SVMs with GMM Networks

Before significant work on SVM classification was undertaken, an initial comparison

was made between SVMs and the full Sung and Poggio GMM network. The training

data from the 25-principal-component GMM network with MLP was extracted and

randomly sampled to produce 250 positive and 250 negative training examples. Using

this data, and the RHUL software, a Gaussian RBF SVM was trained with C = ∞
and the RBF width of 0.71. The SVM was then tested on the same examples as

the 25-principal-component GMM network (see section 3.3.) The SVM’s bias was
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Figure 4.5: Comparing SVM and GMM networks on face detection

GMM Network SVM

Positive training samples 4398 250

Negative training samples 39000 250

Error rate on positive

samples

3.5% 16.7% 61.8% 3.5% 5.2% 26.8%

Error rate on known diffi-

cult negative samples

49.4% 2.2% 0.9% 8.5% 2.2% 0.9%

adjusted (by manually adjusting b in equation 4.3) to three different values to show

the performance over a range of trade-offs between specificity and sensitivity. The

results are shown in figure 4.5 along with three equivalent results for the GMM

network. The SVM achieved much superior performance, with much less training

data. The SVM’s excellent performance out of the box compares very favourably

with the amount of effort needed to get Sung and Poggio’s algorithm to work at all.

Further experiments with SVMs confirmed this initial promise, so further work on

Sung and Poggio’s GMM network was abandoned.

4.3 Choosing the Best SVM Training Parameters

One advantage of SVMs over other classification methods is the very small number

of control parameters. This is valuable, because classifier performance can be quite

sensitive to the choice of parameters. For example, the problems with Sung and Pog-

gio’s GMM network (section 3.3) illustrated this. Similarly, with back-propagation

training of MLPs, the learning rate and number of iterations can greatly affect the

performance of the final classifier[114, p.155]. For a standard non-linear SVM clas-

sifier, the only parameters are the value of the upper bound, C, on the Lagrange

multipliers, the choice of kernel function K(xi, xj), and the parameters of the kernel

function.
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Figure 4.6: After training, the RBF SVM is structurally identical to the simple RBF

neural network. They both have the classification score: y =
∑n

i=1 exp( |x−xi |
2

2σ2 ) − b

By assuming that the positive and negative classes are separable, we can set C = ∞.

This assumption is usually valid with high dimensional data sets—more dimensions

mean more room to find a separating hyperplane. The choice of kernel function is

restricted to those which can be expressed as dot product of some mapping, Φ, of

the data. K(xi, xj) = Φ(xi) · Φ(xj). In the literature, it appears that the choice

of actual kernel function is often irrelevant. As in the choice of function to use in a

neural network, a range of non-linear functions seem to perform roughly equivalently.

However, in the absence of a good reason to choose any other, the Gaussian RBF

KRBF(xi, xj) = exp− |xi −xj |2

2σ2 , and the polynomial Kpoly(xi, xj) = [(xi ·xj) + 1]p ap-

pear to be most popular in much of the literature (e.g. [44, p.149].) One advantage of

the Gaussian RBF is its familiarity—the final SVM looks just like the well-known[14,

pp.167-169] single-output-node RBF neural network (figure 4.6.) RBF kernel SVMs

also appear to behave more intuitively in regions with no data, with the classification

boundary being close to that of a K-Nearest Neighbour classifier. As can be seen

in the classification boundaries calculated by Gunn[65], this is not so often true of

polynomial kernel SVM classifiers. In the absence of any evidence that the RBF is a

poor choice of kernel, the work of this thesis examined no others.
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This leaves the RBF kernel width as the only remaining parameter choice. The

standard method of automatically adjusting such parameters in any trained statistical

model is to try several different values of the parameter, and pick the one with the best

performance. The performance of the algorithm is assessed using cross-validation, by

splitting the training set, and using one part for training, and the other part for testing

(or cross-validation.) Splitting the training set equally, unfortunately gives the best

estimate of the parameter for a training set half the size of the whole set. This problem

can be dealt with by using leave-one-out cross-validation. Here the dataset is split into

a large training set and a singleton test set. After training and performance testing

on the one example, the process is repeated with examples selected in turn for testing.

The average of all the single example performance values gives an almost unbiased

estimate of performance given the full size training set. Leave-one-out cross validation

is a well-understood, accurate method and is recommended in several introductions

to SVMs[65, 44, p.149] but is very computationally expensive. If it takes 1 hour to

train an SVM on a 2000 vector training set, it will take about 2000 hours to provide

an estimate of the performance of one parameter value.

An alternative approach was suggested briefly by Vapnik[156], using the structural

risk minimisation principle that underpins SVMs. Using equations 4.1 and 4.2, it is

possible to estimate (an upper bound on) the expected test error for an SVM with

any given value of RBF width, σ. By finding the RBF width, σ, that gives the lowest

value of (the upper bound on) expected test error, Rstruct, we might expect that this

would also give the lowest actual test error. It is important to recognise the caveats in

the preceding sentence—all that can be minimised is a function that 100.(1− η)% of

the time will be no less than the desired cost function. However, a simple experiment

on digit recognition by Burges[21] showed that the minimum in the actual test error

occurred for similar values of the RBF width as that predicted by the upper bound.

Vapnik[156, pp.147-149] found similar behaviour when picking the exponent for a

polynomial kernel SVM on the same database. Early experiments (see section 4.3.2)

with faces tentatively confirmed this result.
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4.3.1 Diameter of the Minimum Enclosing Hypersphere

Equations 4.1 and 4.2 show that to calculate (and so minimise) the upper bound on

the expected test error, Rstruct, it is necessary to calculate the diameter of the training

data’s Minimum Enclosing Hypersphere (MEH).

It is known in the SVM literature (e.g. [21]) that the MEH can be found using an

optimisation similar to the SVM’s training algorithm, and the derivation is briefly

described here. Given a set of l-dimensional vectors (x1, x2, . . . , xn), we want the

smallest hypersphere:

min
a,D

D2 (4.11)

such that the distances to each data point from the centre a of the hypersphere, is

no larger than the radius D/2.

∀i : Ei = D2 − 4|xi −a|2 ≥ 0 (4.12)

We choose D2 for the objective function rather than D to make the maths easier later.

We can form a Lagrangian ΨMEH by introducing a positive Lagrange multiplier αi

for each constraint Ei ≥ 0, and subtracting the products from the objective function.

min
a,D

[
ΨMEH = D2 −

∑

i

αi(D
2 − 4|xi −a|2)

]

According to the theory of Lagrangians we will get the same parameters as equa-

tion 4.11 if we minimise ΨMEH subject to the derivatives of the Lagrangian (with

respect to each multiplier) going to zero, and the multipliers being non-negative. As

before, a dual formulation exists where we maximise ΨMEH subject to the derivatives

of the Lagrangian with respect to the parameters (D and a) going to zero, and the

Lagrange multipliers being non-negative. i.e.

max
α1,... ,αn

[
ΨMEH = D2 −

∑

i

αi(D
2 − 4|xi −a|2)

]

subject to ∂ΨMEH

∂D
= 0 and ∂ΨMEH

∂a
= 0
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We can use the constraints of this dual as follows

∂ΨMEH

∂D
= 2D − 2D

∑

i

αi = 0

∑

i

αi = 1

∂ΨMEH

∂a
= 4

∑

i

αi(2 xi −2a) = 0

a =
∑

i

αi xi

Inserting these results back into the Lagrangian gives:

max
α1,... ,αn

[
ΨMEH =

∑

i

αi xi ·xi −
∑

i,j

αiαj xi ·xj

]

subject to
∑

i αi = 1 and ∀i : αi ≥ 0.

The dual formulation has n parameters, 1 linear equality constraint, and n very simple

linear inequality constraints. This compares favourably with the primal formulation

which had l + 1 parameters (a has l dimensions,) and n quadratic constraints. The

other advantage of the dual formulation is that the problem is expressed in terms of

dot products of the training vectors. This allows us to apply the same kernel trick as is

used in SVM training to perform non-linear mapping into the same high-dimensional

in which the maximum margin hyperplane is determined.

max
α1,... ,αn

[
ΨMEH =

∑

i

αiK(xi, xi) −
∑

i,j

αiαjK(xi, xj)

]
(4.13)

subject to
∑

i αi = 1 and ∀i : αi ≥ 0.

To find the actual diameter, D, one can measure the distance from the hypersphere’s

centre a to any of the support vectors (which will be on the boundary.) To make the
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result robust, it is better to use the Root Mean Square (RMS) of all the distances.

To make the maths neater, the mean is biased by the Lagrange multipliers αi rather

than 1/#(support vectors). This is valid due to the constraint
∑

i αi = 1.

D2 = 4
∑

i

αi|xi −a|2

= 4
∑

i

αiK(xi, xi) − 4
∑

i,j

αiαjK(xi, xj)

= 4 max
α1,... ,αn

ΨMEH

subject to
∑

i αi = 1 and ∀i : αi ≥ 0.

Comparing the MEH Lagrangian (equation 4.13) to the SVM Lagrangian (equa-

tion 4.6) shows that the two equations are quite similar, and that it should be rela-

tively straightforward to modify almost any SVM training algorithm to perform the

MEH diameter calculation. In particular, just setting C = ∞, and ∀i : yi = 1 does

much of the work. For an intuitive justification of why the same equations can repre-

sent both a hypersphere and a hyperplane, think of the quadratic Lagrangian as some

kind of generalised hyper-cone. When intersected by the linear equality constraint

this gives a generalised conic section. For linear constraints through the origin (point

of the hyper-cone,) we get a hyperplane. For linear constraints perpendicular to the

axis of the cone, we get a hypersphere.

In RHUL’s Chunking code, dealing with—the extra K(xi, xj) factors on the linear

part of the cost function, the different constant factor on the quadratic part, and

the slightly different linear constraint—can be devolved to the gradient calculation

performed during the conjugate gradient routine (section 4.1.3.) One can no longer

initialise all the multipliers to 0, since that would be outside the feasible region due

to the constraint
∑

i αi = 1. So instead, the first multiplier is initialised to 1.
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Figure 4.7: The upper bound on the VC dimension predicts the minimum test error of an

SVM. The right hand graph is identical to the left hand one, but has the y-axis magnified

30 times.

4.3.2 Validation of Predicted Test Error

To test the validity of choosing the RBF width on the basis of predicted test error,

the SVM training experiment in section 4.2 was repeated with 120 different RBF

widths geometrically spaced between 100 and 10,000. In each case, the SVM could

perfectly separate the training set. This meant that the upper bound on the expect

test error is controlled solely by the VC dimension. For each trained SVM, the margin

width was calculated using equation 4.7, and the MEH-diameter calculated using the

MEH-modified code. The upper bound on the VC dimension was calculated using

equation 4.2.

A test set of 250 positive examples and 500 known difficult negative samples was

randomly selected from the 25-principal-component GMM network training sets in

section 3.3. (The test set did not include any examples from the training set.) The

results (figure 4.7) show that the minimum in the (upper bound of the) VC dimension

predicts the best value of RBF width (of about 530) reasonably accurately. The

prediction gives 24 test errors instead of the optimal 22. This is much better than

the 210 test errors that picking an RBF width of 100 would give.
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Figure 4.8: Artificial n-dimensional test-set generator for SVM tests. Positive data is

sampled randomly from the green GMM, and negative data from the red GMM. The

principal variance for each Gaussian is always ten times larger than the non-principal

variance, although the size of all the variances can be scaled up to make the classification

harder. All the Gaussians have zero mean and the same non-principle variance in directions

x3–xn.

4.3.3 Automating the Search for RBF Width

Since it was intended to perform many experiments using classifier training, having

the RBF width picked completely automatically would be very useful. Using the

artificial data generator described in figure 4.8, 200 × 2D vector training sets, and

1000 vector test sets, were generated with varying levels of difficulty. The easiest test

set had the principle variance set to 0.15. This principle variance was then increased

in factors of 1.5 to push the training data closer and closer together until they were

overlapping significantly. For each dataset, the SVM optimisation was run at different

values of C, the multiplier upper bound. Finally, SVM optimisation was repeated

for different values of RBF width σ. Two notable issues arose whilst attempting to

perform these experiments:

1. For large values of RBF width, some of the training vectors would fail to be

classified correctly by the SVM. Despite this, the minimum training error

would sometimes also be found at large RBF widths. To deal with this, rather

than just use the upper bound on the VC dimension as previously, the full

upper bound on Rstruct was used (equation 4.1.) However, for values of VC

dimension greater than twice the number of training vectors, the bound starts

72



Chapter 4. Building Support Vector Machine Classifiers

to fall—and will become complex eventually. This is presumably outside the

range of equation 4.1’s derivation, but no reference to this could be found in

the literature. Since an RBF width finding algorithm might venture into this

territory, equation 4.1 was replaced with a function that is monotonic in VC

dimension:

Rstruct ≤ Rupper bound
struct = Rtrain +





√
h(ln 2l

h
+1)−1

l
: h ≤ 2l

√
2 lnh

ln 2l
: h > 2l

2. Many of the SVM training runs failed to optimise with the QP code declaring

that the optimisation suffered from “Numerical instability,” meaning that it

had spent many iterations getting nowhere. In order to get a sufficient fraction

of the experiments to return useful results, a small (ι = 1×10−9) value was added

to the diagonal of the Hessian. This regularisation of the optimisation problem,

slightly increased the slope of the Lagrangian away from the minimum, at the

expense of shifting it slightly.

Using the above solutions, the experiments were then repeated, many of which either

completed correctly, or did some useful work before stalling. Only a few of the MEH

calculations failed to get anywhere, leaving a diameter estimate of zero. All the

results are shown in figure 4.9, apart from the gaps in Rupper bound
struct due to failures

of the MEH algorithm. The graphs also contain a first guess at a bracket on the

minimum in Rupper bound
struct . These were calculated by ranking all of the Euclidean

distances between training points. For large datasets, a random subset of training

vector pairs was used to save time. The lowest decile was used for the lower bracket,

and the maximum separation used as the upper bracket.

Several further experiments with other artificial datasets showed similar results. For

easy to separate datasets (i.e. where the data generator’s variances are low,) the

left hand minimum in Rupper bound
struct is a good predictor of the lowest test error. For

difficult to separate datasets, the left hand minimum in Rupper bound
struct can disappear.

In these harder to separate datasets, the maximum data vector separation (the right
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hand dashed line) appears to often provide a better estimate of test error, than the

minimum in Rupper bound
struct . This suggests an algorithm that starts searching around

the lower guessed bracket for a minimum in Rstruct and if it fails to find a minimum,

uses the upper guessed bracket.

The fact that Rupper bound
struct appears to be useless at higher values of RBF width, appears

to be connected with the emergence of non-zero training errors. Theoretically at least,

the RBF SVM should be able to perfectly classify any training set, whatever the RBF

width. Further investigation of this problem showed that the KKT conditions were

not being accurately satisfied for these cases. This was obviously true for the SVM’s

which had failed to converge, but also in some cases where the RHUL implementation

had completed normally.

For large values of RBF width, when K(xi, xj) ' 1, all the data is close together in

the kernel’s mapping space. This makes it hard for the numerical conjugate gradient

algorithm to find a true uphill direction, and calculations involving the direction are

swamped by rounding error. Another problem which was found with larger datasets

is that the Chunking algorithm keeps on growing the sub-problem until it contains

every non-zero Lagrange multiplier, or runs out of memory. Whilst an algorithm to

find the correct minimum in Rupper bound
struct was developed, and which worked on some

datasets, the numerical problems with the RHUL software led to a search for a more

robust SVM training algorithm.

4.3.4 Summary

In summary, this section has shown that an upper bound on the test error can be

predicted directly from the training data, and that there is typically a local mini-

mum in this value, as a function of the RBF width, close to the true minimum in

test error. Experiments showed that it is generally possible to find this local mini-

mum automatically, allowing an optimal value of RBF width to be selected without

manual intervention. This promised the ability to run large numbers of SVM exper-
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Optimisation-step direction is 
not restricted.

Optimisation-step direction is 
restricted parallel to axes.

Figure 4.10: Restrictions on the step direction during optimisation are generally a dis-

advantage.

iments without having to choose any arbitrary parameters, but problems with the

Chunking/QP algorithm for difficult-to-separate data sets, suggested the need for a

more robust approach to training.

4.4 Sequential Minimal Optimisation

Sequential Minimum Optimisation (SMO) was developed by Platt[110] to solve the

optimisation problem required when training an SVM. Until then, all proposed so-

lutions to this optimisation required a numerical QP implementation, which can be

difficult to obtain and use. Platt discovered that instead of optimising hundreds or

thousands of Lagrange multipliers at once, it was possible and efficient to perform the

optimisation by sequentially optimising the smallest number of multipliers necessary

to maintain the constraints. In the case of the SVM optimisation, with one equality

constraint, this minimum number of multipliers is just two.

One might expect a high cost due to this heavy restriction in the allowed direction

at each step, such that the optimisation would be very slow. An appropriate two

dimensional analogy would be optimisation of a function with a strong diagonal

principal direction when restricting optimisation step direction to be parallel to one

of the axes (figure 4.10.) With SMO this disadvantage appears to be irrelevant for

two reasons. First, the heuristics, which choose the pair of parameters to optimise,
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rarely result in the optimisation getting stuck in troughs whose principal direction is

at a strong angle to all the allowed step directions. Second, since the optimisation

is only performed on two parameters at each step, it is possible to analytically and

very accurately calculate the optimal point along each step. This is in comparison

to numerical QP, where numerical accuracy problems often lead to very inaccurate

estimates of the optimal point at each step, which hinders fast convergence, and can

prevent the minimum being found at all.

The original SMO algorithm is shown in figure 4.11—there are several features that

warrant additional comment.

1. A KKT violation (see equations 4.9 and 4.10,) and the magnitude and sign of

the relevant KKT error, Ei, allows the SMO heuristics to decide which pair of

multipliers to optimise next.

2. For efficiency, the values of Ei are cached for all unbound multipliers,

i.e. ∀i : 0 < αi < C. They are then cheaply updated every time a pair of mul-

tipliers is changed. There is no cheap update of Ei for bound multipliers, they

need to be completely recalculated each time multipliers change.

3. The optimal value with respect to a pair of Lagrange multipliers, is derived

from the full Lagrangian (equation 4.6.) First, the terms in αi and αj (i 6= j,)

are pulled out while keeping the rest constant:

Ψ(αi, αj) = αi + αj −
1

2
Kiiα

2
i −

1

2
Kjjα

2
j − sKijαiαj

−yiαivi − yjαjvj + Ψconst (4.14)

where

Kij = K(xi, xj)

vk =
∑

q 6=i,j

yqαqKkq

= f old(xk) + bold − yiα
old
i Kik − yjα

old
j Kjk

s = yiyj ∈ −1, 1
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Main Function:
Repeatedly choose first of pair of Lagrange multipliers to jointly optimise.

• For every Lagrange multiplier i:

– Call examine-example(i)

• Do:
– Do:

∗ For every non-bound Lagrange multiplier i:

· Call examine-example(i)

– Until no more changes
– For every Lagrange multiplier i:

∗ Call examine-example(i)

• Until all Lagrange multipliers satisfy KKT conditions, equation 4.9

Function: examine-example i:

Repeatedly choose second of pair of Lagrange multipliers to jointly optimise.

• If KKT condition error Ei does not exceed tolerance: return no change

• Find the multiplier, j, whose KKT condition is maximally broken in the op-
posite direction to the i th multiplier. i.e. argmaxj |Ei − Ej |

• Call take-step(i, j)

• If successful: return changed

• Else:
– For every other Lagrange multiplier j:

∗ Call take-step(i, j)

– If successful: return changed

• Return no change

Function: take-step i j:

Attempt to analytically find jointly optimal position of pair of Lagrange multipli-
ers (αi, αj).

• Since there is a joint equality constraint on αi and αj, calculate everything in
terms of αj

• Find limits of αj due to inequality constraints—see figure 4.12a

• If limits allow no movement: return failed
• Find optimal value of αj w.r.t. objective function, Ψ

• Apply limits to αj

• If αj has not moved much: return failed

• Calculate αi from αj

• Update bias b, and cached KKT condition values Ei

Figure 4.11: Summary of Platt’s[110] original SMO algorithm.
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From the equality constraint, αi + sαj = αold
i + sαold

j = constant, equation 4.14

can be rewritten in terms of just αj. Setting the derivative,
dΨ(αj )

dαj
= 0, finds

the stationary point, giving the optimal new position of αj :

αj = αold
j − yj(Ei − Ej)

2Kij − Kii − Kjj
(4.15)

where Ek = f old(xk) − yk are the cached or calculated KKT errors.

αj and implicit value of αi are then checked against the inequality constraints

(see figure 4.12a) to give the optimal result.

4. For further details, such as the update of the bias b, and the cached error values

Ei, see Platt’s chapter[110] in Kearns et al.

4.4.1 Implementation of the SMO algorithm

An implementation of the SMO algorithm was published by Xianping Ge[61] and he

kindly put the code in the public domain, at this author’s request. As well as the

whole algorithm being easier to understand, Ge’s implementation was much simpler

than the RHUL code—simple enough to easily port the code to VXL, rather than

just writing a wrapper API as was done for the RHUL code. As well as porting the

code, a series of technical improvements were made as follows:

Code Efficiency The code was rearranged to avoid some unnecessary calculations.

Shrinking the Active Set A shrinking heuristic proposed by Joachims[74], and

tested by Platt[111], was added to the code. After each full run through every

Lagrange multiplier, any multipliers whose equivalent KKT condition are satisfied

by a margin, Ei, greater than that by which the worst multiplier violates its KKT

condition, are moved out of the active set. The inactive set is then ignored until the

very end, when at least one iteration though every multiplier takes place.
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Improved Treatment of Numerical Precision The optimisation can often in-

volve intermediate multiplier values very close to, but not at the bounds. Subsequent

steps involving such a multiplier, that might otherwise move the value exactly to the

bound, are rejected because the movement is very small. Now the code allows very

small movements if they result in the multiplier reaching the bound.

In addition, the ratio of a pair of optimised multipliers can be greater than precision

of the floating point representation. In this case, the smaller number is numerically

indistinguishable from zero and can profitably be set to zero. The profit comes both

during training where bound multipliers need to be considered less often, and during

classification, where zero-valued multipliers are no longer support vectors and can be

ignored completely.

Recalculating the Error Cache As mentioned above, the values of Ei are cached

for all unbound multipliers. For multipliers which have not been directly modified

recently, the related cached error values can accumulate small numerical rounding

errors. This drift is enough to give false results for the optimal Lagrange multipli-

ers. Worse, since the accumulated rounding errors depend on the path through the

optimisation problem, the final erroneous position varies depending on the initial

values of the multipliers. To deal with this problem, the cached errors are explicitly

calculated afresh once per outermost iteration of the SMO algorithm.

Margin Encroachment Weights The upper bound, C, on the multipliers comes

from the weighting given to the encroachment of data examples into the SVM’s sepa-

rating margin. There is no reason why this has to be the same for every example. In

order to experiment with biasing an SVM such that positive examples could encroach

upon the margin, but negative ones could not, it is necessary to have different upper

bounds for positive and negative training data. In terms of programming, it is as

easy to generalise this further and allow a different upper bound on each multiplier.

In order to do this, the four cases Platt considered when deriving the bounds on
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the multiplier αj during joint optimisation (with respect to αi and αj) need to be

extended to eight—see figure 4.12.

Adding Support for MEH Calculation See section 4.4.2 below.

Caching Kernel Values See section 4.4.3 below.

4.4.2 Adding Support for MEH Calculation

Due to SMO’s use of cached KKT errors, and its use of an analytical inner optimising

step, it appears at first to be more complicated to modify SMO than the RHUL code

to perform the MEH calculation. Following the derivation in equations 4.14 and 4.15

the optimal value of one of a pair of varying multipliers in the MEH calculations is:

αj = αold
j − Kjj − Kii + 2(Ei − Ej)

4Kij − 2Kii − 2Kjj

where Ek = f old(xk) are the cached or calculated MEH KKT errors. For the Gaus-

sian RBF kernel only, Kii = Kjj = 1, so this becomes identical to the SVM case

(equation 4.15.) Again for the RBF kernel only, the update step for the cached er-

rors, turns out to be identical to that already implemented for the SVM optimisation.

For the unbound multipliers, the KKT errors are calculated afresh after each step,

from equation 4.12. In terms of the Lagrange multipliers, this becomes

Ei = 8
∑

j

αjKij − 4Kkk + D2 − 4|a|2

The value of D2 − 4|a|2 is analogous to the bias term, b, in the original SVM SMO

algorithm. It is updated so that the KKT conditions are satisfied for the recently

optimised pair of multipliers. Thus, very little effort is required to convert the original

SVM SMO into the new MEH SMO algorithm. The detailed derivation of these

results is straightforward but tedious, and has thus been omitted.
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Figure 4.12: Calculating the bounds on αj. (a) the four original cases when there is

a single upper bounds. (b) the eight cases when each Lagrange multiplier can have a

different bound.
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Since this derivation is only valid for RBF kernels (or others where K(x, x) = Kconst,)

testing the algorithm’s correctness was difficult. It was not possible, for example, to

use a linear kernel, and test the method on a constructed dataset with known radius.

Instead, several easy datasets were tested on a modified version of the RHUL code,

and the results were compared with the SMO implementation, and with a simple

Matlab implementation based on Gunn’s toolbox[65]. The results were found to be

similar. For extra confirmation, three known vectors were constructed in the infinite

dimensional mapped space (see section 4.1.) By setting the RBF width to a very

small number, the mapped vectors should all be mutually separated by 90◦ on the

∞-dimensional unit-radius hypersphere, thus forming an equilateral triangle of known

size.

∀xi, xj : xi 6= xj : (ΦRBF(xi) · ΦRBF(xj)) = 0

All three implementations agreed with the analytically calculated value of
√

6/3.

Several numerical rounding problems became evident while testing the MEH SMO

algorithm, resulting in some of the above numerical precision improvements.

4.4.3 Adding Kernel Value Caching to SMO

The majority of the computation time in the SMO algorithm is spent calculating

kernel function values. The proportion of time increases with the dimensionality of

the training vectors. Since these kernel values are functions of the training vectors

only, and do not change during the calculation, they are a perfect candidate for

caching. Unfortunately there are very many of them: 1
2
n(n − 1). A computer with

128MiB of available memory can only store the kernel values for a training set of just

under 5800 vectors.
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Cache Structure and Algorithm

If the training set is so large that only a proportion of all the kernel values can be

stored at any one time, then it is necessary to decide which values to cache, and how

to structure the storage. An attempt was made to analyse the kernel value access

patterns, but apart from showing that some values are used more than others, it was

difficult to infer any useful pattern.

A most recently used cache (or least-recently used expiration) was considered. This

is a common caching algorithm that gives fairly good average case performance under

the assumption that a more recently used piece of information is more likely to be

needed next, than a less recently used piece of data. To store the kernel values Kij

for fast lookup, requires storing the index pair (i, j), and the overhead of a binary

tree. To store the most recently used order, requires a linked list of index pairs,

pointers in each element of the binary tree back into the linked list, and the overhead

of a linked list. Assuming 64-bit storage of the kernel values themselves, and 32-bit

wide pointers and indices, the total overhead is five times the actual memory devoted

to kernel values. With careful use of other data structures such as heaps and hash

tables, it might be possible to reduce the overhead to 300%. But this would still

require a very good cache hit rate to make it worthwhile, and so was not attempted.

Rather than make the decision of what to cache or discard at every access of a kernel

value, it might be more efficient to just attempt to discard items from the cache after

every outer-most iteration of the SMO algorithm. Since it is not efficient to store

any useful information about individual kernel values, it makes more sense to base a

caching strategy on the rows or columns of the kernel matrix, K. This is the matrix

of kernel function values:

K =




K11 K12 . . . K1n

...
...

. . .
...

Kn1 Kn2 . . . Knn




A new column brought into the matrix would at first contain null-value markers, and
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slowly be filled with values as they were next required. A further possible refinement

comes from the realisation that if column i is not needed in the cache, then likely

neither is row i. The cache therefore stores the same rows as it does columns. (Of

course, it only needs to store one triangle from this symmetric matrix.) This approach

was adopted, but a means of predicting which kernel values, and hence columns of

the kernel matrix, are likely to be in demand, was still required.

Each multiplier’s KKT condition error, Ei, was considered as a predictor of the

demand for related kernel values. In order to test this, the sum of the KKT errors,

Ei biased by the number of relevant kernel lookups, was compared with the same

sum, but of unbiased Ei. i.e. compare the biased sum:

∑

i∈active set

Ei(at start of iteration) · #(Lookups of K·,i)(during iteration)

with the unbiased sum:

∑

i∈active set

Ei(at start of iteration) · #(Lookups of K·,i)(during iteration)

Over all the iterations these two sums were -4341.114 and -4341.211 respectively.

The lack of a substantial difference, shows that multipliers that strongly violate their

KKT conditions are no more likely to have their associated kernel values looked up

than others.

At each outer-most iteration, the use of the shrinking heuristic to separate the data

into the active and inactive sets is an excellent predictor of kernel lookups—if a

multiplier is not in the active set, then no associated kernels are looked up. This

predictor was therefore chosen for the implementation. The cache was set to discard

any kernel column that has been added to the inactive set. If the active set contained

more kernel columns than could be stored in the cache, then the uncached columns

were selected at random to enter the cache.

86



Chapter 4. Building Support Vector Machine Classifiers

0 2

2

1

-2

-1

-2 -1 1

+ve data

1 s.d.

2 s.d.

-ne data

Figure 4.13: Artificial test-set generator for various SVM optimisation tests and experi-

ments. Positive data is sampled randomly from the green GMM, and negative data from

the red GMM. To produce data with more than two dimensions, the distributions were

extended with zero means, and variances of 0.05 (the same as the minor variances in the

first two dimensions,) in the third and subsequent dimensions.

Caching Both SVM and MEH Kernel Values

When the RBF width estimation method is used, each call to the SMO routine will

be with a different RBF width, σ. This means that the kernel values K(xi, xj) =

exp− |xi −xj |
2

2σ2 are different each time. If there has been an small change in σ, there

is no reason to expect that the pattern of kernel values needed will change a large

amount. For anything but the lowest dimensional training vectors this kernel calcula-

tion is dominated by the calculation of Euclidean distances between the two vectors.

Therefore, the cache stores the Euclidean distances and calculates the full kernel value

on the fly from the current value of the kernel width. The speed effects of this were

tested on 1000 200-D vectors from the artificial dataset illustrated in figure 4.13. The

RBF width estimating, SMO optimisation, algorithm was run with the cache pre-

served between calls to the SMO routines, and with the cache cleared between calls.

The effects of re-using the previous iteration’s best Lagrange multiplier estimates was

also tested. The times for each iteration of the RBF width estimator’s call to the

SMO routine are shown in figure 4.14. They show that keeping the cache values has

a small but consistent effect in reducing the computational times, adding up to a

overall improvement in speed of about 15%. Keeping the best Lagrange multiplier

estimates has an even bigger effect, resulting in an overall improvement of about 30%.
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Figure 4.14: Time for each iteration of the RBF width estimating algorithm, comparing

the effects of preserving the cache, and the Lagrange multipliers between iterations.

Future Improvements to Caching

Now, with a working and reasonably fast SVM optimiser, no further work was at-

tempted to improve the speed of the SMO method. There are still, however, two

obvious improvements that could be made, however.

The first would be to test most recently used caching on the rows and columns of the

cached kernel matrix. i.e. discard a whole row/column when a new kernel value is

needed. The cache’s data structure overhead would not be significant when applied

to k row/columns rather than 1
2
k(k − 1) kernel entries.

The second is to use SMO as the quadratic programming module in another SVM

method. Joachims’s SVMlight[74] method chooses a fixed number of Lagrange multi-

pliers to be optimised using a general-purpose quadratic programming module, with

the other Lagrange multipliers staying fixed. The multipliers are chosen according

to an approximate estimation of the steepest ascent direction. Normally the fixed

size of problems passed to the quadratic programming module is kept small (e.g.
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10) to avoid numerical accuracy problems. Since SMO is not as prone to numerical

accuracy problems, the number of multipliers jointly optimised can be much larger.

This number would be set to use the available memory for storing the entire kernel

matrix for the subproblem. In this way the SVMlight algorithm would be improved

by being able to jointly optimise more parameters at a time, and the SMO algorithm

could effectively defer caching decisions to SVMlight’s heuristics.

4.4.4 Calculation of Best RBF Width

Several artificial datasets were created for examining SVM training behaviour. In

contrast to the RHUL software, wide RBF kernels did not lead SMO to produce

non-optimal solutions. Instead the speed of the optimisation slows down, sometimes

considerably. The calculation became intractable for very large values of RBF width,

and so the experiments were carried out without testing those larger values. For

comparison with the RHUL code, a subset of the experiments that provided the data

for figure 4.9, were repeated, with only the SVM optimiser being different. The SMO

results are shown in figure 4.15.

In general, SMO was able to build good classifiers without the use of a regularisation

term added to the Hessian’s diagonal. The curves of Rupper bound
struct were less noisy

than with the RHUL experiments. Since the aim of these experiments was to find

an algorithm that would find the minimum in Rupper bound
struct , two extra graphs that

represent (along with figure 4.15) the range of its behaviour, are shown in figures 4.16

and 4.17. The training database for the former consisted of a pair of elongated four-

dimensional Gaussians arranged in an L shape. Their principle variances were 1, and

other variances 0.05. The negative dataset was generated from a spherical Gaussian

that enclosed the positive Gaussians. Negative data items were then rejected if they

had too high a probability with respect to the positive distribution. The rejection

threshold could be altered to make the dataset easier or harder. The training set

consisted of 1000 samples, approximately equally split between positive and negative.
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Figure 4.15: Test errors, Training errors, Rupper bound
struct , for different difficulties of test

set (PVar—Principle variance of each mode of data generator—see figure 4.8—harder

left-to-right,) different weights on training vectors encroaching into margin (C—less en-

croachment allowed top-to-bottom,) and different RBF widths (x-axis of each graph.)

Same experiment as first half of figure 4.9 but trained using SMO.
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The test set had 5000 samples. The graph shows the results for no upper bound on

the Lagrange multipliers (i.e. C = ∞,) and negative samples rejected if they were

closer to the positive Gaussians than 7.9% of the positive distribution. The graph in

figure 4.17 was created using 500 ten-dimensional training samples generated by ten

positive Gaussians distributed on different axes close to the origin. A single negative

Gaussian enclosed all the positive distributions, and negative samples were again

rejected if they were too close to the positive distribution. In this case they were

rejected if they were closer than 50% of the positive distribution.

When all these graphs are considered, it can be seen that the Rupper bound
struct minimum

is usually reasonably close to the lower bracket value, which is the 10%-ile of the

Euclidean distance between all pairs of the training samples. The upper bracket is

the maximum Euclidean distance between any pair of training examples. (N.B. The

minimum distance would be inadvisable to use as a lower bracket, since two training

vectors could be arbitrarily close.) Several experiments found (e.g. figure 4.16) min-

ima outside the initial guessed brackets. However, these initial guessed brackets do

give a starting point from which to find a true bracket, and a step size for moving

around the RBF width scale.

Standard minimum bracketing algorithms work by moving down the gradient in ex-

ponentially increasing step size until the gradient changes direction. That approach

will not work here for several reasons. Rupper bound
struct is flat for low values of RBF width,

so determining a direction to move initially would be difficult. Choosing large step

sizes while looking for the right hand side of the minimum in Rupper bound
struct here would

risk trying too large a value of RBF width—since SMO slows down considerably, as

the RBF width is increased much past optimal value, a lot of time could easily be

wasted. Finally, sometimes the minimum is barely detectable, or even completely

missing. In that case, the best that can be done is to bracket the right-hand end of

the flat region of Rupper bound
struct . An algorithm for finding a true bracket on the mini-

mum of Rupper bound
struct is given in figure 4.18. This bracket is then passed to a standard

Brent optimiser, which finds the minimum to within a thousandth of the width of the
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for an SVM as the RBF kernel width is varied, using for an artificial 4-D dataset. The

right-hand graph is a magnified version of the left-hand one.
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struct , training error, and number of support vectors

for an SVM as the RBF kernel width is varied, using for an artificial 10-D dataset. The

right-hand graph is a magnified version of the left-hand one.
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initial guess at the bracket. The implementation keeps track of already calculated

values of Rupper bound
struct (σ) to avoid recalculating the same value again. The algorithm

was successfully tested on several of the datasets described above, where it was always

able to find the expected minimum of Rupper bound
struct .

4.5 Comparison of Chunking and SMO Methods

To compare the speed of the RHUL and SMO implementations, several artificial

datasets were generated from the distributions described figure 4.13. The RHUL

and SMO implementations were timed both for a preset value for RBF width, and

using the RBF width finding algorithm. The results (figure 4.19) show that SMO was

usually faster than Chunking. Chunking was occasionally faster in a fixed RBF width

experiment, however with large datasets, the Chunking experiments were aborted

after over 1500 times as long as the SMO algorithm took to converge. In a much

smaller dataset experiment, the RBF width finder failed to converge using Chunking.

These speed results were the final reason to abandon use of RHUL’s Chunking

method. The very restrictive license conditions, and severe code complexity, make it

hard to use from an engineering point of view. The numerical stability of the SVM

optimisation, and, in particular, the quality of the estimates of VC dimension, are

greatly improved by using the SMO code.

4.6 An SVM-Based Face Detector

As a final validation of the SVM methods described above, a face patch classifier was

trained using a very large positive and negative training set.

The standard patch feature extractor with plane and histogram normalisation (de-

scribed in figure 3.1) was used to extract 3563 faces, including some from the pub-
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Get initial guess to minimum, and useful step size:

• If less than 200 training vectors:

– Find distances between all pairs of training vectors

• If more than 200 training vectors:

– Find distances between a random selection of 10000 pairs of training
vectors

• lower guess = 10%-ile of distances

• upper guess = maximum distance

• Step size s = 3
√

upper guess/lower guess

• Bracket [a, b, c] = [lower guess/s2, lower guess/s, lowerguess]

Find left hand side of minimum, or the flat region to the left of that:

• Define Rupper bound
struct (σ) to be the value of Rupper bound

struct after training an SVM
with RBF width σ

• While gradient is positive (i.e. Rupper bound
struct (a) < Rupper bound

struct (b)):

– Move whole bracket left one step. [a, b, c] = [a/s, a, b]

– If we have gone too far left: Give up and set RBF width to lower guess

Find right hand side of minimum:

• Reduce step size, s = 10
√

upper guess/lower guess

• While gradient is non-positive (i.e. Rupper bound
struct (b) >= Rupper bound

struct (c)):

– Move whole bracket right one step. [a, b, c] = [b, c, c×s]

Bracket now surrounds minimum if it exists:

• Call Brent minimiser with bracket [a, b, c]

Figure 4.18: The RBF Width Finding Algorithm.

94



Chapter 4. Building Support Vector Machine Classifiers

Figure 4.19: Comparing SVM optimisation times using SMO and Chunking method.

Dataset Data dimen- RBF Time to optimise (seconds)

size sionality width SMO Chunking

200 2 Fixed 0.08 0.23

200 2 Optimised 1.45 2.68

200 200 Fixed 1.32 0.84

200 200 Optimised 14.25 Failed after 16.17 †
1000 2 Fixed 1.32 58.94

1000 2 Optimised 24.45 1283.94

2000 200 Fixed 552.33 102.74

2000 200 Optimised 5579.62 5644.10

10000 200 Fixed 3591.40 Aborted after ∼223,000 ‡
† The RBF width finding method failed to bracket the minimum.

‡ Experiment was manually aborted.

licly available XM2VTS and BioID databases. Also included were faces from ISBE’s

expression, webimageB and webimagesC databases—see appendix B for some exam-

ples. Although some of the databases included full face markup, only the eye centres

were used. The CMU database was not used for training so that it could be used for

testing, and allowing comparison with other published results. The training patches

were rotated and mirrored as before to create 21,378 examples for the SVM’s positive

training set.

The negative training set was initialised with 10,000 examples selected at random

from the UWash database used for non-face examples. After the training of the initial

SVM, the UWash database was searched sequentially until nselect = 200 new false

positives were found. These were added to the negative database, and the SVM

retrained. This was repeated for 16 refinement iterations with an SVM kernel cache

of ∼1.3GiB, which is only enough to store just over half the kernel values. The

behaviour of during training is shown in figure 4.20.
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The final face detector was then tested on the positive CMU database. As before,

searching for true positives was restricted to small regions around the labelled faces

for speed. Testing for false positives was done using the full 1.22×107 patches of the

same negative database used in the final experiment of section 3.4. The experiment

found 63.9% of the faces with 98 false positives (1 in ∼124,000—see the neutral bias

point on the ROC curve in figure 4.22.) Some of the false positives are shown in

figure 4.21.

4.7 Discussion and Conclusions

4.7.1 Comparison with Previously Published Results

The best results of this and the previous chapter are tabulated in figure 4.23, together

with those reported by Sung and Poggio[145] with their GMM network, and by

Osuna et al.[108] with an SVM. It is clear that, although a reasonably high level of

performance has been, the experimental results in this thesis are not as good as those

reported previously. There are several possible explanations for this:

1. There may still be a problem with the GMM network implementation used here.

However, extensive testing suggests each component is working as intended.

2. Neither Sung and Poggio nor Osuna et al. describe their training set beyond

stating its size. It could be that they had a particularly good training set that

included a great deal of normal variation. They used a positive training set

of 4150 examples, generated from 1067 real face images. (They did not apply

rotations and mirroring to all of their database.) The experiments on GMM

networks here only used 733 original faces images. Later, Gong reported[62]

that to achieve the published level of performance using the approach of Sung

and Poggio, a positive training set of about 3000 original faces was required.
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Figure 4.20: Training behaviour over each refinement iteration during the training of a

patch-based SVM face detector on very large face database. (a) The number of additional

negative patches searched to acquire 200 false positives, the number of support vectors,
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Figure 4.21: Some of the false positives found by the patch-based SVM detector.
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Figure 4.22: ROC curve of the patch-based SVM detector after 16 refinement iterations.

The right hand graph is a magnified version of the left hand one.
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Figure 4.23: The best face detection results and comparison with published figures.

Classifer Implementation True positive rate False positive rate

GMM Section 4.6 54.3% 1 in ∼32,000

Sung and Poggio[145] 98.3% 1 in ∼1,257,000

SVM Section 3.4 63.9% 1 in ∼124,000

Osuna et al.[108] 89.3% 1 in ∼419,000

The experiments on SVMs here used 3563 faces, but most of them were high-

quality posed portraits. Getting a better, more variable database would improve

the detector performance, particularly the sensitivity.

3. The CMU positive test set used in these experiments does not coincide completely

with that of Sung and Poggio and Osuna et al. CMU contains the harder 155-

face test set B used by Sung and Poggio and Osuna et al., plus another 342

similar quality faces used by Rowley et al.[122] On their test set B alone using

a GMM network with a single layer Perceptron, Sung and Poggio reported a

true positive rate of 84.6% for a false positive rate of 1 in ∼414,000, and Osuna

et al. reported a true positive rate of 74.2% for a false positive rate of 1 in

∼269,000.

4. Sung and Poggio acquired ∼43,200 negative training vectors compared to the

25,000 that were used in section 4.6. Osuna et al. acquired 50,000 negative

training vectors compared to the ∼13,200 that were used in section 4.6. Run-

ning the experiments for longer, and acquiring more examples would probably

improve the specificity.

5. One false positive (or true positive) patch is likely to have positively classified

neighbours. Neither Sung and Poggio, nor Osuna et al. describe a method for

reducing multiple hits to a single one. (Rowley et al. described a module for

their neural network based face detector, which suppresses overlapping hits so

that only the best candidate is detected.) However, both Sung and Poggio’s
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and Osuna et al.’s systems indicated hits by marking the detected face with a

rectangle. They then manually checked the images for hits and false positives.

It could be that they only reported distinct false positives. In view of this, the

results of the final SVM experiment (section 4.6) were examined. Of the 98 false

positives, 52 could easily have been considered to be marking the same face.

If potentially overlapping faces were suppressed as per Rowley et al.[122], then

there would have been 35 false positives. This would bring the false positive rate

to 1 in ∼348,000, which compares very favourably with that reported by Osuna

et al. Assuming that the clustering of the GMM network’s false positives is

similar to that of the SVM’s, this would also account for some of the difference

between the results of section 3.4 and those of Sung and Poggio.

4.7.2 Further Work

The optimal value of RBF width behaves very predictably, from one refinement it-

eration to the next. Judging by figure 4.20b, up to half of the 12 RBF width values

that were typically tested could be ignored after the first few refinement iterations.

The field of statistical classifiers is still evolving rapidly. Some other techniques such

as cascaded-SVM[121] and cascaded-AdaBoost[161] have been shown to be much

faster than the full SVM on the face detection problem. This author’s initial attempts

to reproduce Romdhani et al.’s cascaded-SVM suggested that picking the bias term

for each level of the cascade is harder than their paper might lead one to believe.

However the promised speed improvements would be valuable.

4.7.3 Discussion

The main purpose of the work described in this chapter was to provide a baseline

for object detection performance, and develop a classifier that could be used in a

completely automated way in later experiments with more sophisticated appearance
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models. SMO-trained SVMs with optimal RBF width finding were chosen for this

role due to their classification performance, reliability and ease of use.

This author has been unable to find any other published descriptions of the difficulties

in choosing the RBF width automatically. It could be that other authors have not

found it necessary to avoid manually investigating the behaviour of their SVMs with

each new training set. Indeed it is generally considered a good idea to experiment with

any new dataset in order to check for problems such as missing data. It may also be

the case that the difficulties found here are mainly due to some pathological aspect of

the artificial datasets used in producing figures 4.15, etc. However, experience with

real datasets confirmed that choosing too large an RBF width led to numerically

inaccurate results with the RHUL code, or very slow optimisation with the SMO

code.

The initial assumption that the boundary between valid and invalid appearances

of a face is necessarily complicated, bears closer scrutiny. That assumption is the

motivation for the various mixture model PDF methods, including the GMM network

investigated in the previous chapter. However, the optimal SVM has a large RBF

width of 481.5. Since the pixel samples in the vector are histogram normalised to

[0, 256) this suggests that the boundary is not particularly lumpy, and that if the

manifold of pixel values was sliced perpendicular to the axes, the intersection would

normally be a circle. However, the mean of the distances between all the positive

data is ∼1274, with a standard deviation of ∼246. The RBF width is thus small

compared to the total variation, and so the boundary may not be spherical on a large

scale.
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Chapter 5

Introduction to Appearance

Modelling

This short chapter reviews Cootes’s et al.[32, 52] work on constructing statistical

appearance models and matching them to new images using the Active Appearance

Model (AAM) search algorithm. The AAM can represent both the shape and texture

variability seen in a training set. Despite there being no negative training set, the

AAM attempts to learn a model of an object class that is both specific and general.

That is, it can only model the appearances of objects from the class, and it can model

all possible appearances of objects from the class. The AAM search algorithm is a

fast local optimisation for accurately adjusting the appearance model’s shape and

texture to fit a previously unseen image.

This review serves as a background to subsequent chapters, which describe significant

improvements to the AAM method. Together with these improvements, the AAM’s

ability to locate objects accurately and extract a precise description of the object is

key to the performance of the combined AAM-SVM method described later in this

thesis.
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5.1 Constructing Active Appearance Models

The AAM’s training set consists of labelled images, where key landmark points are

marked on each example object. The training set is usually labelled manually, though

automatic methods are being developed (e.g. by Baker et al.[9]) AAMs can be thought

of as generalisations of Eigen-patches or Eigen-faces[99, 153] in which, rather than

representing a rigid region, the region’s shape is allowed to deform according to a

model.

The numbered label points from each training example constitute an example shape,

and they correspond between examples. A shape model is built from these shape ex-

amples. First, the mean shape, s, and best pose transform from each training image

to the mean, are iteratively re-estimated until convergence. The pose transforms usu-

ally allow for rigid rotation and translation, and isotropic scaling, and the parameters

of the ith example’s pose are represented in a pose vector, vi. The example shapes are

then transformed by the best fit pose estimates, and their point positions (s→, s↑)j

are arranged into a shape vector: s = (s→1, s↑1, s→2, . . . ) Next, PCA is applied to the

shape vectors. Typically, enough principle components are kept to represent 99% of

the variation in the training set. This produces a linear shape model:

s = s + Qsbs + rs

where rs is the shape residual, and bs are the shape parameters. Qs is a matrix

whose columns are the unit-length orthogonal eigenvectors of the PCA analysis. The

points, reconstituted from s, and now called the control points.

The shape parameters bs can be constrained to values near to the mean. A “limiter”

applies these constraints during AAM search, but not during AAM training. The

limiter records the size of the eigenvalues for each component during the PCA calcu-

lation, and typically restricts each parameter to ±3 standard deviations. Chapter 8

describes these limiters in more detail.

The shape model (plus pose transform) is fitted to the label points from each training
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image. The shape residual is explicitly fixed at zero, constraining the fit to the learnt

subspace. A triangulation mesh between the points of the shape model allows the

object on each image to be divided up into triangles. Each triangular image segment

is then affine warped, so that the three control points defining the triangle are in

their mean positions. The process of warping all the segments, warps the whole

image patch to the mean shape.

The pixels from each training image, now warped to the mean shape, are in correspon-

dence with the pixels in the other training images. The pixel values are arranged into

a texture vector ti. Optionally, the grey-level pose (otherwise known as brightness

and contrast) can be taken out in a similar manner to the shape pose, above.

PCA is used again to produce a linear model of the texture variation:

t = t + Qtbt + r

where bt are the texture model parameters, etc. The texture residual, r, is often

called the AAM residual. Again, the PCA is stopped when the model can explain

99% of variation in the training set. Another limiter is also created for the texture

model.

To build a combined model of shape and texture, or appearance model, the best fit

shape and texture parameters for each example are concatenated into a combined

vector, bi = (ωbt,1, ωbt,2, . . . ωbt,kt
, bs,1, . . . ). The weighting, ω, on the shape parame-

ters is to account for the shape and texture being non-commensurate. Typically, ω

is set so that the shape and texture variation make equal contribution to the total

variation in the combined vectors. In order to account for correlation between the

shape and texture variation (e.g. due to self-shading), another PCA is applied to the

combined vectors, to produce the final combined appearance model:

b = b + Qbp + rb

where, p, are the appearance parameters, etc. The PCA stops after 99%, and a final

limiter is created.
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p1 = −3 p1 = 0 p1 = +3 p2 = −3 p2 = 0 p2 = +3

Figure 5.1: Effect of varying first two parameters (p1 and p2) of a spinal X-ray AAM,

by ±3 standard deviations from the mean. Each image is a reconstruction with all but

the specified parameters set to zero. The AAM was built from side views of the human

spine, (see figure 6.7a for an original.)

This model can be applied forward to find the parameters, p, and pose, v, for given

label points and image. The model can also be applied backwards, synthesising an

image for a given p, by generating a texture image from the vector t and warping

it using the control points described by s, and the transform described by v. See

figure 5.1 for examples of reconstructed images from an AAM of X-ray images of

human spines.

5.2 Fitting Active Appearance Models

In order to fit an image, when there are no label points, another algorithm is needed—

AAM search. Treating the problem as a standard function fitting, our aim is to get

the model reconstruction looking as much as possible like the object in the test image.

Thus the texture residual’s squared magnitude, E(p + δp) = |r(p + δp)|2, should be

pushed towards zero, by manipulating the model parameters p+δp, and pose (which

we ignore here for clarity.) Using Taylor expansion about the current state of the

model, p, we explicitly set the next measurement of E to be zero.
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E(p + δp) = E(p) + δp
∂E

∂p
+ O(|δp|2)

0 = E(p) + δp
∂E

∂p
+ O(|δp|2)

= rT (p) r(p) + 2 δpr(p)
∂r

∂p
+ O(|δp|2)

δp = −1

2
rT ∂r

∂p

T (
∂r

∂p

∂r

∂p

T )−1

+ O(|δp|2)

Setting the error to zero gives us the estimate:

δ̂p = −1

2
rT ∂r

∂p

T (
∂r

∂p

∂r

∂p

T )−1

(5.1)

Thus, given the current model, we need to adjust the parameters by δ̂p to set the

error, E, to zero. Due to the second-order errors (from the expansion truncation,

and the pseudo-inverse of ∂r

∂p
) a single step is unlikely to be enough. So the model

is updated, the residual re-estimated, and δ̂p recalculated. This process is iterated

until convergence, which usually takes less than 8 steps when starting from the mean

position p = 0.

In normal optimisation situations, the down-hill direction, − ∂r

∂p
, needs to be re-

estimated each iteration. The key insight that led to the AAM algorithm, was that

each AAM search is solving largely the same optimisation problem. Therefore ∂r

∂p
(or

preferably its pre-calculated pseudo-inverse) can be learnt.

The AAM method uses a linear model for the optimisation’s update step. Given a

combined appearance model, fitted to some labelled training images, we can perturb

the parameters by small amounts, δp and δv. The control points of the shape model,

are therefore moved slightly. We then warp the training image to the mean shape,

using these modified control points, and sample the pixels into an texture vector.

The difference δt between this sampled texture vector and the texture predicted

by the slightly modified model, is the texture residual, r, for this perturbed case.
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Using regression, we can finally learn a linear relationship, R, between lots of model

perturbations, and the resulting texture differences.

δp = R δt

where RT = −1
2

∂r

∂p

T
(

∂r

∂p

∂r

∂p

T
)−1

from equation 5.1 above. We can now simply calcu-

late the AAM-search update step as simple matrix-vector multiplication:

δ̂p = R r(p)

The search and regression can be trivially extended to adjust the pose parameters at

the same time. One important detail deals with the case where the estimated change,

δ̂p, leads to increasing error, E. This can happen because the linear relationship, R,

breaks down, with an increasing likelihood of failure as |δ̂p| increases. So, when the

error increases, the step α δ̂p is tried instead, with α = 1
2
. If the error is still worse,

α is halved again. This line search stops after a few iterations, at which point the

AAM can be assumed to have converged.

It is straight-forward to build different resolution AAMs from the same training data.

A multi-resolution AAM search can then start at a coarse scale first, where it quickly

and robustly finds an optimal if imprecise fit. A few iterations at each of the higher

resolution layers (usually separated by a scale factor of two) can then refine the fit.

5.3 Related Work

The AAM approach is similar to the Active Blobs of Sclaroff and Isidoro[134]. Built

from a single image, the Active Blob’s shape model is based on elastic vibration

modes, and its texture model on planar lighting changes. However, the projection

into a fixed shape space and using the residual to drive the model parameters was

performed similarly to AAMs.

One other closely related work is Jones et al.’s Morphable Models[159, 76]. Their
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shape model is a dense warp field, trained using correspondences estimated from an

optical flow analysis. The texture model is a rectangular image based on either linear

combinations of training examples, or a PCA model of the training images. The multi-

resolution update algorithm uses a general stochastic gradient descent algorithm to

minimise the residual norm (in the image frame) by modifying the shape and texture

parameters.

Appearance models and AAMs have been shown to be powerful tools for medical

image interpretation[95, 18] and face image interpretation[32].

5.4 Summary

The AAM is a statistical model of the appearance of objects in a training set. It

represents the appearance variation as the non-linear composition of linear models of

shape, texture, and of the correlations between the shape and texture. AAM search

fits a model to the object in an unseen image using a small number of iterations of

fast, pre-computed, update step.

Further details of the AAM method can be found in Cootes’s technical report[30].
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Chapter 6

Improving AAM Performance

Using Local Image Structure

This chapter builds on the AAM method described in the previous chapter, introduc-

ing the “Texture AAM.” Rather than just recording the intensities at each pixel, a

local structure tuple is recorded. A new representation of texture, based on the Harris

corner detector[68], is included in the local structure tuple, leading to a significant

improvement in the accuracy and robustness of AAM search. Two different objects

are used for experimentation in this chapter, images of faces, and X-ray images of

the spine.

The work of this chapter was published at IPMI 2003[135] and at MIUA 2003[136].

6.1 Introduction and Motivation

It is known[33] that in AAM face recognition tasks, poor AAM search convergence is

the single most significant source of poor overall recognition performance. Similarly,

it is reasonable to expect poorly converged AAM searches to undermine any AAM-

based object detection scheme.
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Previous work by Cootes and Taylor[41] suggested that there was a significant im-

provement to be made in AAM search performance, by going beyond the modelling

of texture as a vector of pixel intensities, and using non-linear gradients instead.

This and the next chapter examine several image-feature based models of texture,

including corners, edges, and Cartesian Differential Invariants (CDI). In particular,

features that can be sparsely identified using non-maximal suppression were inter-

esting, in the initial hope that sparse feature detection might lead to fast hypothesis

generation and rejection of negatives.

When building models of the appearance of objects it is advantageous to choose a

representation of the image structure which can capture the features of interest in

a way that allows a reliable comparison between model and image, and is invariant

to the sorts of global transformation that may occur. For instance, when building

statistical appearance models[32, 153] it is common to represent the image texture by

a vector of intensity values sampled from the image, normalised by a linear transform

so as to be invariant to global changes in brightness and contrast. By sampling across

the whole region, all image structures are represented and all pixels treated equally

(though the statistical analysis will then typically favour pixels in some regions over

others, as dictated by the data.) However, models based on raw intensity tend to

be sensitive to changes in conditions such as imaging parameters or lighting. Thus,

models built on one database may not perform well on images taken under different

conditions. Also, intensity models do not explicitly distinguish between areas of noisy

flat texture and real structure, and thus may not lead to accurate fitting in AAM

search.

Edge based representations tend to be less sensitive to imaging conditions than raw

intensity measures. Therefore, an obvious alternative to modelling the intensity val-

ues directly is to record the local image gradient in each direction at each pixel.

Although this yields more information at each pixel, and at first glance might seem

to favour edge regions over flatter regions, it is only a linear transformation of the

original intensity data. Since AAM building involves applying a linear PCA to the
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samples, the resulting model will be almost identical to one built from raw intensities,

apart from some effects around the border where computing the gradients includes

some background information into the model.

It is useful to think about the rest of this chapter as using texture preprocessors which

take an input image, and produce an image of tuples representing various aspects of

local structure. This local structure tuple can include such things as edge orientation,

corner strength, etc. When sampling the image to produce a texture vector for a

model, instead of sampling n image intensity values from the original image, this

approach samples all the values from each m-tuple at n sample locations, to produce

a texture vector of length nm. This evolution from intensity AAM through single

descriptor local structure AAM to multi-descriptor local-structure (or “Texture”)

AAM is illustrated in figure 6.1.

6.2 Related Work

Active Shape Models and Active Appearance Models were developed in this lab and

have been widely used. However, almost all of that work has been on normalised

intensity or (for ASM profile models) linearly normalised gradient models.

Eigen-faces[153] model the statistics of the intensities in a region of an image, and have

been widely used for object recognition. Eigen-faces attempt to model shape variation

as a change in texture, usually resulting in a smearing of destinctive texture. Moghad-

dam and Pentland preprocessed images to build Eigen-faces of smoothed Canny

edges[99]. In the image registration community, edge maps are widely used[152].

However, they tend to use either linearly normalised gradients, squared gradients or

non-maximally suppressed edges (all pixels other than those thought to be exactly

on the edge are set to zero.)

Hond and Spacek[70] used edge orientation histogram images for face localisation and
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Figure 6.1: The evolution of intensity to texture AAMs as used in this chapter.
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recognition. One of the structure descriptors described in this chapter can be thought

of as a weighted version of edge orientation, in which strong edges are given more

weight than weak edges. Rather than use a histogram of large blocks of the image as

in Hond and Spacek’s work, here the edge structure is modelled at every pixel.

Bosch et al.[18] used non-linear image normalisation to deal with the strongly non-

symmetric pixel-intensity distribution of ultrasound images of the heart. Converting

the intensities from an exponentially-decaying distribution to a Gaussian gave signif-

icantly improved AAM matching results.

Several authors have attached feature detectors to points on a PDM. This PDM can

been automatically generated created using elastic variation of a single image[81].

A manually trained, but statistically learnt PDM can be used with profiles[36], and

Gabor jets[91]. In all these approaches there is no dense model of texture. More

importantly, the feature detector locations, and effect on the shape model, has been

set by humans rather than learnt.

Kittler et al.[79] demonstrated that the choice of pixel-value normalisation could

have a significant effect on a face verification task. Overall, histogram normalisation

tended to perform well.

Stegmann and Larsen[142], developed a multiple-descriptor AAM (using the adjec-

tive “multi-band” instead.) Starting with RGB images, they reduced these to hue

and value descriptors. In this limited sense, multi-descriptor AAMs were first re-

ported with the some of the original AAM experiments[51] which used RGB models.

Stegmann and Larsen, also added a grey-level gradient-magnitude descriptor, but did

not attempt to normalise the relative scales of the three descriptors. Overall they

report an improvement over normal grey-scale and RGB AAMs.
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6.3 Local Structure Detectors

6.3.1 Non-linear Transforms

As noted earlier, the texture preprocessor needs to be non-linear to make a significant

difference to a linear PCA-based model. If one restricts the choice of preprocessor to

those whose magnitude reflects the strength of response of a local feature detector,

then it would be useful to transform this magnitude m into a reliability measure.

Initially a sigmoid function is used as this non-linear transform:

f(m) =
m

m + m
(6.1)

where m is the mean of the feature response magnitudes m over all samples. This

function has the effect of limiting very large responses, preventing them from dom-

inating the image. Any response significantly above the mean gives similar output.

Also, any response significantly below the mean gives approximately zero output.

This output behaves like the probability of there being a real local structure feature

at that location.

6.3.2 Gradient Structure

The first local structure descriptor to be experimented on is gradient orientation.

Early work on non-linear gradient orientation was described by Cootes and Taylor[41].

They used an image gradient g = (gx gy)
T , calculated at each point, giving a

2-tuple texture image for 2D input images. The magnitude |g| can be transformed

using equation 6.1, while preserving the direction. This is followed by the non-linear

normalisation step to give

gn =
(gx gy)

T

|g| + |g|
(6.2)
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6.3.3 Corner and Edge Structure

This author had observed that corners of the eyes and mouth were sometimes badly

matched by gradient and intensity AAMs. Corners are well known as reliable fea-

tures for corresponding multiple images[152] and, in applications such as medical

morphometry[107], accurate corner location is important in diagnosis.

Harris and Stephens[68] describe how to build a corner detector, extending work by

Moravec[100]. They construct a local structure descriptor by calculating the sum of

square differences between an image patch and itself as one is scanned over the other.

This local image energy E is zero at the patch origin, and rises faster for stronger

textures.

E(x, y) =
∑

u,v

[I(u + x, v + y) − I(u, v)]2

To enforce locality and the consideration of only small shifts, they added a Gaussian

window w(u, v), and then made a first order approximation:

E(x, y) =
∑

u,v

w(u, v)

[
x

∂I

∂u
(x, y) + y

∂I

∂v
(x, y) + O(x2, y2)

]2

Expanding the square-term gives

E(x, y) = Ax2 + 2Cxy + By2 = (x y)M(x y)T (6.3)

where M = ( A C
C B ), A(x, y) =

[
∂I
∂u

]2 ⊗ w, B(x, y) =
[

∂I
∂v

]2 ⊗ w, C(x, y) = ∂I
∂u

∂I
∂v

⊗ w,

and w(u, v) = exp−(u2 − v2)/2σ2.

The eigenvalues α,β of M characterise the rate of change of the sum of squared

differences function as its moves from the origin. It is also possible to think about

α and β as the principal curvatures of the local image autocorrelation function—

see figure 6.2. Since α and β are the principal rates of change, they are invariant

to rotation. Without loss of generality, the eigenvalues can be rearranged so that

α >= β. The local structure at each point in the image can be described by these

two values. As shown in figure 6.3, low values of α and β imply a flat image region.
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Figure 6.2: α and β measures the strength of the principal local variations in texture.

A high value of α and low value of β imply an image region flat in one direction, but

changing in another, i.e. an edge. High values of both α and β imply a region that

is not flat in any direction, i.e. a corner. (Perhaps it is more precise to axiomatically

denote areas with high α and β to be a “corner,” as this avoids the semantic problem

that image corners may not correspond to actual corners in the subject but, for

example, to points of high intensity in a low intensity background such as specular

reflections.)

At this point Harris and Stephens identified individual points of interest by looking

for local maxima in det M − k[tr M ]2. We leave their approach here, except to note

that useful measures derived from α and β can be found without actually performing

an eigenvector decomposition.

tr(M) = A + B det(M) = AB − C2

6.3.4 Developing Measures of Cornerness and Edgeness

It would be useful to have independent descriptors of edgeness and cornerness. To

force α and β into an independent form, one can take the vector (α β)T and double

the angle from the α axis, as in figure 6.4.

115



Chapter 6. Improving AAM Performance Using Local Image Structure

αααα

ββββ

strong
edges

strong
corners

flat
areas

Figure 6.3: How α and β
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Figure 6.4: Making cornerness independent of edge-

ness by doubling angle from axis.

It is possible to calculate the cornerness, r, and edgeness, e, defined this way, without

explicitly having to calculate an eigenvector decomposition:

tan θ =
β

α
⇒ sin θ =

β√
α2 + β2

and cos θ =
α√

α2 + β2

sin 2θ = 2 sin θ cos θ

=
2αβ

α2 + β2

=
2 detM

tr2 M − 2 det M

r = (α2 + β2) sin 2θ

= 2 detM

= 2AB − 2C2 (6.4)

cos 2θ = 2 cos2 θ − 1

=
2α2

α2 + β2
− 1

=

√
(tr2 M − 4 det M) tr2 M

tr2 M − 2 det M

e = (α2 + β2) cos 2θ

= trM
√

tr2 M − 4 detM

= (A + B)
√

(A − B)2 + 4C2 (6.5)

Figure 6.5 shows some spinal images after being preprocessing to produce a sigmoid-

ally-normalised corner image, edge image, and x- and y-gradient images. Note that

this edgeness measure is different from the gradient measure, by being independent

of edge direction. Nor is edgeness e merely the magnitude of some directional edge

vector. It is not in general possible to give a direction to the edge data. For example,

there is a strong edgeness on a straight white line on a black background, but of what

direction? The image gradient on the line is 0 in all directions.

As with the gradient structure descriptors, the edgeness and cornerness descriptors
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Corner Edge x-Grad y-Grad

Figure 6.5: Images of the spines after processing by the feature detectors. (See fig-

ure 6.7a for an original spine image.)

are sigmoidally normalised before being placed in the AAM texture vector.

6.3.5 Implementation Issues

This description of this work as texture preprocessors for AAMs is slightly oversim-

plified. Ideally, the texture processing has to happen after an input image has been

warped to the mean shape (figure 6.6.a) so that the effects of any pixel on the re-

sulting texture vector are consistent. AAMs currently use the triangulation between

the points of a PDM to warp faces to the shape-free space. This triangulation is

not defined outside the boundary of the PDM and so none of the background can be

warped into the shape-free space. Therefore, it is necessary instead to perform the

inverse warp on the sampling grid, and sample in the original image.

Cootes and Taylor’s first implementation of gradient AAMs explicitly warped the

gradient sampler from the shape free space into the original image. Their gradient

sampler was unsmoothed, and each direction of each sample consisted of a central
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Figure 6.6: How the texture preprocessing and warping interact in the (a) ideal case,

(b) actual experiments, and (c) a possibly better design.
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difference estimate between two points. These two points were warped into the orig-

inal image where sampling occurs, accordingly. The warping of the gradient sampler

points makes this scheme very close to the ideal category of figure 6.6a, but for the

sampling of the gradient just outside the triangulation. This approach is appropriate

for raw gradient samples, but does not scale when using any more advanced image

processing. When a separable convolution operation (e.g. Gaussian smoothing) is

involved, warping the sample point for each pixel in a sample’s support region is

very wasteful, since the temporary values found after applying the first pass of the

convolution cannot be reused in the normal way for other samples.

The solution used here is to do all the image processing in the original image space,

making use of the efficiencies provided by regular spacing, separability, etc. of a

rectangular image. To do this correctly, the parameters of the image processing

functions must be adjusted to compensate for difference between the shape-free frame

and original-image frame (figure 6.6.b)

The corner and edge estimator starts with a derivative calculation, which is performed

using central differences. Standard central differences performed on the input image

will use the existing pixel widths. Since one needs to emulate the derivatives being

calculated in the shape-free image space, the central differences are approximated in

this space. This can be done by multiplying the central differences result by the scale

factor between the input image and the shape-free image. The loss of higher order

effects are not important because the warping uses bi-linear interpolation anyway.

Another problem is also due to this scale factor. The Gaussian smoothing should

take place in the shape-free image. So the width of the Gaussian window has to be

multiplied by the scale factor. Both of these simplifications assume that the scale

factor is isotropic and constant over the image, which may be unrealistic in some

places. So the warp-compensated image processing, is really only an approximation

of the ideal case.

Rotation of model patches can be dealt with by simply rotating the feature detec-
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tor. This is computationally cheap in the case of gradient measurements, where the

two sample points of the central difference are rotated appropriately. In the case

of more complicated feature detectors, this rotation would be computationally ex-

pensive. Instead, only complex feature detectors that are rotationally invariant have

been used.

Other Possible Approaches

One approach is to use some warping scheme other than triangulation, one that is

defined outside the control points. Unfortunately a better warping scheme is the

subject of as yet unresolved research.

Sticking with triangulation-based warps, there is an alternative (see figure 6.6.c) to the

above approach. Each individual facet in the triangulation defines an affine warp from

original image into the shape-free space. Each affine warp can be extended outside its

triangular facet, to include a margin for the smoothing and gradient operations. This

alternative approach would involve affine warping the unprocessed raw image into a

box in the shape-free space. The sampling would be based on the affine field defined

for the single triangle contained in the box. Image processing operations could then

work efficiently on the box, followed by simple pixel-sampling of the results inside

the triangle. This would avoid the need for any fudging of the image processing

parameters, and would remove most restrictions on the type of image processing

(only finite support restrictions would remain.) There would be a cost overhead, over

the existing scheme, to account for the overlapping bounding boxes. But this would

be limited to a factor two or three, for most normal triangulations. There is also

a theoretical problem that the sample pixel in the original image would contribute

inconsistently to samples from neighbouring facets, so reducing correlations that could

be picked up by the AAM. This is no worse (and could well be much better) than

the current implementation’s complete inability to deal with shear in the warp field.
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6.4 Experiment with Spinal X-Rays

For the spinal X-ray experiments, the DXAspineA database (described by Smyth et

al.[141]) of low-dose Dual X-ray Absorptiometry (DXA) lateral scans of the spines

of 47 normal women was used. The vertebrae from Thoracic 7 (T7) to Lumbar 4

(L4) were marked up under the supervision of an experienced radiologist. Figure 6.7

shows an example of an original image (a), and with markup (b). The images are

8-bit greyscale and roughly 140×400 pixels in size. Each vertebra is about 20-25

pixels tall.

Since the database was not large, leave-one-out experiments were performed, by re-

peatedly training an AAM on 46 of the images and testing it on the remaining image.

For each test image 9 AAM searches were performed, starting with the mean shape

learnt during training, displaced by all combinations of [−10, 0, +10] pixels in x and

y. After the AAM search had converged, the error was measured from each con-

trol point on the AAM to the nearest point on the curve through the equivalent

marked-up points, called the point-to-curve error (see figure 6.13.) Because of the

even spacing of control points around each vertebra, this mean error per search will

be approximately proportional to the total pixel overlap error, commonly used in

segmentation performance experiments.

This whole experiment was run for each of the following texture preprocessors:

Intensity: Original AAM.

Sigmoidal gradient: 2-tuple output gn of sigmoidally normalised directed gradient

(equation 6.2.)

Sigmoidal edge: Sigmoidally normalised undirected edgeness e (equation 6.5.)

Sigmoidal corner: Sigmoidally normalised cornerness r (equation 6.4.)

Sigmoidal corner and edge: 2-tuple of the sigmoidally normalised cornerness

and edgeness (r, e). (equations 6.4 and 6.5.)
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a b

Figure 6.7: (a) A spinal DXA image. (b) The same image with markup.
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Figure 6.8: Error spread between spinal AAM control points and the marked-up curves.

Sigmoidal corner and gradient: 3-tuple of the sigmoidally normalised cornerness

and directed gradient (r, gnx, gny).

Sigmoidal edge and gradient: 3-tuple of the sigmoidally normalised edgeness and

directed gradient (e, gnx, gny).

Sigmoidal corner, edge, and gradient: 4-tuple of the sigmoidally normalised ver-

sions of (r, e, gx, gy).

6.4.1 Results with Spinal X-Rays

Each search was considered a success if the mean point-to-curve error for that search

was less than 2 pixels. (The estimated repeatability of expert annotation is 1 to 1.5

pixels on this data.) Figure 6.9 summarises the results for all of the preprocessors.

Texture AAMs with more descriptors show a clear trend towards better performance.
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The overall mean error is a mixture of the accuracy of the good matches, and the

reliability of the search. The distribution of mean errors for the 47×9 = 423 searches

of the normal database for three of the preprocessors is shown in figure 6.8. The

error distributions of the two Texture AAMs show a large shift of results to the left,

compared to the intensity AAM. The peak on the left could be thought to represent

“successful” fits, and so the Texture AAMs have a large reduction in “failed” fits.

This shift is responsible for the majority of the improvement in the overall mean

error. If we consider the mean errors for the 423 searches, the 90th percentile is useful

to indicate how much of the overall mean error is due to accuracy and how much due

to reliability. However, it is valuable to improve both the accuracy and to reduce the

number of failed searches, so the overall mean error will remain the primary measure

of performance.

Figure 6.9: Comparing point-to-curve errors (in pixels) for different spinal AAM texture

preprocessors.

Texture preprocessor Searches Point to curve error

<2 pixels mean std 90%-ile

Intensity 35% 5.4 3.8 11.0

Sigmoidal gradient 40% 5.1 4.0 10.8

Sigmoidal edge 82% 2.4 3.1 6.5

Sigmoidal corner 75% 2.6 2.7 7.5

Sigmoidal corner and edge 81% 2.2 2.6 4.8

Sigmoidal corner and gradient 80% 2.1 2.2 1.9

Sigmoidal edge and gradient 85% 1.9 2.1 4.6

Sigmoidal corner, edge, and gradient 92% 1.5 1.4 1.8

6.4.2 Simulated Multi-modal Experiments

The medical image community often has to deal with images, taken under different

imaging conditions. Sometimes the images come from completely different modalities,
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Figure 6.10: A spinal DXA image (left,) and after multi-modal simulation (right.)

e.g. X-ray and Magnetic Resonance Imaging (MRI). One might expect texture

AAMs to be less sensitive than intensity AAMs to the changes in contrast, etc. that

characterise different modalities. So, an experiment was devised to demonstrate this

improvement. Roughly half of the set of spinal images were transformed by applying

a bitonic pixel-value transfer function (figure 6.11.) This function was chosen by a

colleague to produce an image (figure 6.10) that appeared similar to an MRI slice. The

two groups were then merged, to give a set of 47 images. A leave-one-out experiment,

similar to the previously described one, was then performed on this simulated multi-

modal database.

The results for the original “Intensity” and the “Sigmoidal corner, edge and gradient”

AAMs are summarised in figure 6.12. The results show that the Texture AAM deals

with the corruption of multi-modality much better that the intensity AAM.
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Figure 6.11: Pixel value transfer funtion applied to spinal DXA images to produce

simulated other modality of multi-modal database.

Figure 6.12: Comparing point-to-curve errors (in pixels) for simulated multi-modal spinal

images

Texture preprocessor Searches Point-to-curve error

<2 pixels mean std 90%-ile

Intensity 7% 9.5 6.1 16.0

Sigmoidal corner, edge, and gradient 60% 3.4 3.8 9.3

6.4.3 Results with Faces

The experiments were repeated with a much larger image database of faces. A face

AAM was built using 100 images from ISBE’s expression database (figure B.4,) and

then tested on the independently collected XM2VTS[93] database (figure B.1.) This

test set consists of 1817 good images of 295 distinct subjects from this database. A

few remaining images in the database suffer from extreme motion blur and interlace

artifacts, and so cannot be marked up.

The raw “intensity”, and “sigmoidal gradient” are repetitions respectively, of the NI

and ES cases described by Cootes and Taylor’s paper[41]. That paper only used a

100-image subset of XM2VTS for testing, and did no statistical analysis of the results.

The results are tabulated in figure 6.14. The 90th percentile of the mean error per

search is given for all experiments. A search was considered successful when the
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Figure 6.13: A marked-up face and model points, showing the point-to-curve error

(white arrows) between converged model points (blue) and the marked up curve (yellow.)

The error measurement ignores polarity with respect to the curve.

Figure 6.14: Comparing point-to-curve errors for different facial AAM texture prepro-

cessors.

Texture Preprocessor Searches Point to curve error

<5 pixels mean std 90%-ile

Intensity 55.8% 5.4 2.9 9.0

Sigmoidal gradient 72.5% 4.5 2.0 7.2

Sigmoidal edge 68.8% 4.8 2.5 8.1

Sigmoidal corner 68.0% 4.8 2.3 7.8

Sigmoidal corner and edge 73.9% 4.5 2.3 7.6

Sigmoidal corner and gradient 83.6% 3.9 1.4 5.7

Sigmoidal edge and gradient 80.3% 4.1 1.7 6.2

Sigmoidal corner, edge, and gradient 83.7% 3.9 1.7 5.8
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mean absolute point to curve error fell below 5 pixels. This is about 5% of the

mean inter-ocular distance in the XM2VTS database. All the Texture AAMs show a

strong improvement in mean error and fraction of successful searches. As with the

spinal results there is a trend that Texture AAMs with more descriptors give better

performance.

6.5 Discussion and Conclusions

The local structure descriptors are less dependent than ordinary pixel intensities on

the global or sub-global contrast effects caused by differing imaging parameters. The

simulated multi-modal spinal image experiment shows that the intensity AAM needs

to devote so much variance to its texture model to cope, that it fails to learn any

useful information about the images. Comparing the results for the sigmoidal corner,

edge and gradient preprocessor in figures 6.9 and 6.12 shows that the severe image

corruption has a relatively small effect on a Texture AAM.

This chapter has described the Texture AAM, a novel extension of the intensity-based

AAM. The use of descriptions of local structure for the texture model of an AAM

significantly improves the performance of the AAM search, and this can be expected

to improve object recognition performance.
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Further Experiments with Texture

AAMs

This chapter further develops and analyses the Texture AAM. First, the statistical

significance of the previous chapter’s results is examined, leading to the develop-

ment of a powerful hierarchical bootstrap technique that can cope with the lack of

independence and normality in the test data. The role of the sigmoidal normaliser

is examined, and compared to the more theoretically-justified histogram normaliser.

Experiments with additional texture features show that extra descriptors can, in some

cases, further improve performance. Also, analysis of the behaviour of the worst pos-

sible descriptors, places a tight bound on any increased error when picking additional

descriptors.

The binomial-statistics based analysis of the previous chapter’s results in section 7.1.1

7.1.1 was published in papers at IPMI2003[135] and MIUA2003[136].
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7.1 Statistics

It has been a common failing of many papers comparing various AAM methods

(and often in the wider computer vision literature) of not verifying the statistical

significance of an improvement. Often this was due to a perceived lack of need, but

also due to a lack of tools capable of dealing with the data. This section details several

statistical methods which were applied to the data, with the joint aim of proving the

value of the texture preprocessors, and providing a statistical method for future work

on AAMs.

7.1.1 Binomial Statistics

It is not possible to show that the improvement is significant by simply comparing

the means and standard deviations in figure 6.9, because the data is not normally

distributed. Instead, the percentage of successful results was used. If the results

are classified as successes or failures according to the above test (section 6.4,) and

the number of successes counted, one should expect the result to be a binomially

distributed random variable. When comparing two experiments, one needs to show

that any improvement in the percentage of successful results is statistically significant.

To do this one must assume that there is an underlying distribution based on a

probability of a single success of θ. After performing an experiment with n trials there

are ny successes, and so we estimate a probability of success y. Performing another

experiment of m trials and gives a probability of success x. We are interested in the

probability of x being from the same distribution as y, having already measured y.

p(x|y) =
p(x ∩ y)

p(y)

Each of these probabilities depends on the parameter of the underlying binomial

distribution p(x|θ), so we must marginalise θ away.

p(x|y) =

∫ 1

0
p(x ∩ y|θ)dθ

∫ 1

0
p(y|θ)dθ

=

∫ 1

0
p(x|θ)p(y|θ)dθ
∫ 1

0
p(y|θ)dθ
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Figure 7.1: Binomial-statistics based log probabilities (p-values) that an experiment

could be a random result of a worse performing spinal experiment. Any individual result

with a confidence lower than 98% (log10 p < −1.7) is marked fail.

Texture Preprocessor Result − log10 p-value given base result

35% 40% 75% 80% 81% 82% 85%

Intensity 35%

Sigmoidal gradient 40% 0.5

Sigmoidal corner 75% 4.7 3.9

Sigmoidal corner and

gradient
80% 5.6 4.8 0.6

Sigmoidal corner and

edge † 81% 6.1 5.3 0.8 0.5

Sigmoidal edge † 82% 6.1 5.3 0.8 0.5 0.4

Sigmoidal edge and

gradient
85% 6.7 5.8 0.9 0.6 0.5 0.5

Sigmoidal corner, edge,

and gradient
92% 9.5 8.5 2.2 1.7 1.4 1.4 1.2

† Note that the fraction of successful results is rounded down to the next lowest

multiple of 1/n for p-value calculation, causing two rows with slightly dissimilar

success rates to have identical p-values.

where the binomial distribution is

p(x|θ) =


 n

x


 θx (1 − θ)n−x

It does not appear to be possible to find an analytic solution to these integrals.

However, one can use numeric integration. Figure 7.1 gives the p-values for each

spinal AAM result, given a null hypothesis that a poorer performing experiment could

have produced that result. It should be noted that because the 9 search tests per

image can not be considered independent of each other, the significance calculation

was based on a conservative value of n = 47.

We can see that the large improvements between the intensity AAM and the vari-

ous texture preprocessor AAMs are certainly significant. With the exception of the
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sigmoidal gradient preprocessor, the differences between the various texture prepro-

cessors are mostly not significant at the α = 0.02 level. In the simulated multi-modal

experiment, the improvement of the sigmoidal corner, edge, and gradient preprocessor

over the intensity AAM, is significant with p = 5×10−7.

The same analysis can be performed on the facial data. As described before, the

measurements cannot all be used because they are not independent. This is especially

unfortunate with the faces experiments because there is a lot of data for which the

tests should be largely if not completely independent. In particular, AAM searches

of different images of the same person should be mostly independent.

• There are 1062945 individual measurements

• which consist of 16353 search results with 65 measurements each

• which consist of 1817 images each searched 9 times

• which consist of ∼ 950 sessions mostly containing 2 images

• which consist of 295 people who sat up to 4 sessions each.

However, n = 295 was chosen as the number of strictly independent measurements.

7.1.2 Linear Modelling of Errors

In order to use the binomial statistical analysis, it was necessary to choose the method

to measure success. The thresholds were chosen by asking domain experts, but these

values could flatter the results. Avoiding chosen thresholds would be preferable.

The single biggest problem of the binomial approach is that most of the data must be

thrown away. This is done for good reasons, to ignore non-normal data distributions,

and to deal with the lack of independence. However, by throwing away this data, the

experiments are deprived of statistical power to detect improvements that actually
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Figure 7.2: Binomial-statistics based log probabilities (p-values) that an experiment

could be a random result of a worse performing facial experiment. Any individual result

with a confidence lower than 98% (log10 p < −1.7) is marked fail.

Texture Preprocessor Result − log10 p-value given base % rate

55.8 68.0 68.8 72.5 73.9 80.3 83.6

Intensity 55.8%

Sigmoidal corner 68.0% 3.0

Sigmoidal edge 68.8% 3.2 0.4

Sigmoidal gradient 72.5% 5.0 1.0 0.8

Sigmoidal corner and edge 73.9% 5.7 1.2 1.1 0.5

Sigmoidal edge and

gradient
80.3% 10.3 3.6 3.3 2.0 1.6

Sigmoidal corner and

gradient† 83.6% 13.5 5.5 5.1 3.4 2.9 0.9

Sigmoidal corner, edge,

and gradient† 83.7% 13.5 5.5 5.1 3.4 2.9 0.9 0.3

† See note in figure 7.1.

exist. Another, related issue is that the datasets are matched, and not taking account

of this further reduces the experiments’ potential power.

The non-normality problems can be minimised by transforming the absolute point-

to-curve errors xtrans = log y. Two preprocessors are compared by subtracting the

results in one set of results (e.g. yintensity) from the other, i.e.

ydiff = log yintensity − log ycorner

When tested on some real error measurements, the results looked approximately

normal, but had too high a kurtosis and failed a Jarque-Bera normality test.

In order to try and use more of the data, the lack of independence can be over-

come using linear modelling. In the spine data we have 695 measurements made at

each search. Each of those measurements is conditionally independent of each other,

conditioned on the search result. Each search was performed 9 times from different

starting positions. Each search was conditionally independent of the other 8, but
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dependent on the patient. Turning this conditionality structure into a linear model,

an individual measurement on the i th patient, j th search start, and k th measure-

ment position has contributions from the mean difference µ, any unmodelled error

p(ξ) = N(0, θ2), and from the 3 controlling factors: the patient αi, the search start

sj, and the individual measurement error mk.

y = µ + αi + sj + mk + ξ

The equation is rearranged to make calculation easier, by using dummy variables x,

which switches each individual contribution on or off. All unknown factor contribu-

tion variables are placed in a vector β, with β0 the linear intercept, and equivalent

to the mean in the previous formulation. (x0 always equals 1.) β1–β46 are the un-

known patient factor contributions, β46–β53 the search start contributions, etc. The

equations for each measurement are then stacked, to give the matrix equation

y = Xβ (7.1)

The usual practice at this point is to feed the y and X values into a standard statistics

package e.g. R[112], which then estimates β, and various statistics for hypothesis

testing. Unfortunately the size of the full matrix X (∼ 210 million elements) was

beyond the computer’s memory. However, there is no reason to calculate the full

matrix, since most of its elements are zero. Hence it was necessary to reimplement the

algorithms using Matlab’s sparse matrices. The algorithm [56] finds the least squares

estimate β̂, and calculates several statistics measuring confidence in the estimate.

In order to perform hypothesis testing, it is necessary to create an estimate β̂null that

represents the null hypothesis. This is the least-squares fit to the data, constrained

so that the mean is zero. This turns out to be identical to the original estimate, with

β0 reduced by ȳ.

The ANOVA method using the F -ratio is appropriate to compare the two models

β̂null and β̂. This method tests whether two group means are equivalent given knowl-

edge of the inter- and intra-group variances. Full details can be found in Faraway’s

tutorial[56].
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Comparing the intensity AAM and the corner-edge-gradient AAM gives an F -ratio

of 1.58×106 (for 1 and 293236 d.o.f.) The p-value for this is smaller than 10−308 and

underflows on double precision. It appears possible to reject the null hypothesis with

confidence. A little further investigation, however, reveals a problem. The R-squared

statistic for the regression estimate is 0.00217. The linear sum of error factor con-

tributions (eqtn. 7.1) models less than 0.2% of all the variance in the measurement.

The ultra-high confidence that the two linear model means are different fails to trans-

late to confidence that the AAM performances are significantly different because the

linear models themselves are worthless.

The possible reasons for the poor performance of the linear model are many, but are

all likely to involve the assumptions made during the model building.

• The data has already been shown to be non-normal. Perhaps further transfor-

mations of the data could deal with this.

• The model assumes that the residuals ξ are independent, identically-normally

distributed. It would be possible to deal with this problem using the techniques

of generalised linear modelling.

• The most likely source of error is the linear assumption. This implies that, for

example, the contribution of first start position is consistent, and is independent

of the contribution of the patient. Attacking this problem would require making

other less general assumptions about the data.

7.1.3 Bootstrap Statistics

The bootstrap is a method for estimating the properties of a statistic directly from

the data, while making very few assumptions. A statistic θ = s(x) is estimated from

a sample X of the population. Bootstrap samples XB are drawn from the sample

with replacement, and bootstrap statistic estimate found θ̂B = s(XB). Repeating the
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bootstrap sampling and bootstrap statistic estimates gives an empirical distribution

{θ̂B
i }, i = 1..m which was shown to be be an estimate of the statistic’s true sampling

distribution Fθ by Efron [54, 53]. The statistic’s confidence intervals and standard

error can be read directly from the statistic’s bootstrap distribution. In cases such as

the mean, where we might expect a statistic’s bootstrap distribution to be Gaussian,

then the p-value of the null hypothesis can be also estimated.

The sampling approach described above requires that the original data be indepen-

dent and identically distributed, which is not true of the AAM comparison data. The

conditionally-independent hierarchical structure of the data implies that a hierarchi-

cally structured bootstrap is required. So, for example in the face data case, the first

factor, the person id, is sampled with replacement 295 times. Then for each sampled

person, the sitting id is sampled between 1 and 4 times, depending on for how many

sittings that person sat. Then for each sampled sitting, the image id is sampled once

or twice, depending on how many images were clean enough to markup. Finally the

65 values per AAM search result, are sampled with replacement 65 times.

The aim of these statistics is to test whether one AAM preprocessor produces bet-

ter results than another. As with the linear modelling approach above, the data

is matched. However, the bootstrap does not require the data to be normally dis-

tributed. This allows a simple test; is the mean matched difference significantly

different from zero? So the values sampled in the last stage of the hierarchical boot-

strap are the difference values, and it is the mean statistic that is applied to each

bootstrap population of 295 × {1..4} × {1..2} × 9 × 65 ≈ 1.38×106 samples.

A two factor version of this hierarchical approach is discussed by Davison and Hinkley

[47, p.100], but they admit later that little has been written about the hierarchical

bootstrap. Standard bootstrap confidence intervals are known to suffer from a set of

problems due to potential bias, and acceleration (which is the change of the standard

error of θ̂ with respect to the true value of θ.) These can be accounted for using

methods such as the BCa, and ABC [53, Ch. 14]. The bias can be trivially estimated
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as the difference between the mean of the bootstrap statistics and the mean of the

samples θ̂B−X. Calculating the acceleration however is more difficult, and it does not

appear to be easy to extend the theoretical underpinnings (or the empirical methods)

to a hierarchical bootstrap.

It is useful here to understand the purpose of these bootstrap corrections. ABC and

BCa have been shown to be second-order accurate—errors in estimating the confi-

dence interval go to zero at a rate O(1/n), where n is the original data sample size.

The confidence estimates of the basic bootstrap method are only first-order accurate,

with errors going to zero at a rate O(1/
√

n). Since one purpose of the bootstrap here

is to use many more data samples that would otherwise be available, one may instead

assume that these extra samples compensates for the loss in asymptotic performance.

Simulation of Hierarchical Bootstrap Method

To supplement the above justification of the hierarchical bootstrap method, it is useful

to provide a simulation-style verification. One thousand datasets of 8 × 8 × 8 = 512

items yi,j,k were generated using the following model

yi,j,k = 3 + 4ai + 3bi,j + 2ci,j,k, i, j, k = 1..8

where a, b and c are independent samples from the normal distribution. 100 boot-

strap estimates of each dataset’s mean were then calculated. Each set of 100 boot-

strap means was examined to give the non-parametric 80% confidence intervals. The

distribution of these confidence limits is shown in figure 7.3. In this simulation we

should expect the lower confidence limits of about 100 of the 1000 datasets to be

on the wrong side of 3.0. The actual number was 77, and for the upper limit, the

number was 80, again instead of an expected 100. So the hierarchical bootstrap

non-parametric confidence limit method appears to generally correct if slightly con-

servative.

137



Chapter 7. Further Experiments with Texture AAMs

−1 0 1 2 3 4 5 6 7
0

50

100

150

200

250

confidence limit

co
un

t
10%−iles normal fit
90%−iles normal fit
10%−iles histogram
90%−iles histogram

Figure 7.3: Simulated error distribution of hierarchical bootstrap confidence limits on

the mean. The true mean is 3.0

Bootstrap Statistics for Facial and Spinal AAM Experiments

Using this bootstrap approach the results from the spinal and facial experiments were

tested. The results can be found in figures 7.4 and 7.5. It is clear from the reduction

in red ink compared to figures 7.1 and 7.2 that the bootstrap statistics are more

statistically powerful. The new statistics confirm the general trend that AAMs with

more individual texture descriptors have better performance. The AAM with the

most descriptors has either the best performance, or a performance not significantly

different from the best.

As well as comparing matched data, the same bootstrap method can be used to put

reliable confidence bounds on the mean error for a single database. See the left-

most column of the two graphs in figure 7.6 for an example of the mean error with

confidence bounds. (The 90%-ile of the mean error per search is also shown.)

7.2 A Better Non-linear Normaliser

The non-linear normaliser is a core part of the texture preprocessor. Its original pur-

pose was to break the linear chain in the first linear preprocessors. In this role it can

be thought of as similar to the hidden transfer function in an SVM, transforming the
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Figure 7.4: Bootstrap hypothesis test (confidence limits pass/fail and estimated p-

values) that an experiment could not be a random result of a worse performing spinal

experiment. The experiments have been listed in order of decreasing mean error.

Texture Preprocessor Mean − log10 p-value, and Pass or Fail

Error I G C E CE CG EG

Intensity (I) 5.4

Sigmoidal gradient (G) 5.1 1.4

Sigmoidal corner (C) 2.6 24 21

Sigmoidal edge (E) 2.4 30 23 0.1

Sigmoidal corner and edge (CE) 2.2 43 30 1.3 0.6

Sigmoidal corner and gradient (CG) 2.1 48 44 1.6 0.8 0.4

Sigmoidal edge, and gradient (EG) 1.9 49 50 2.6 1.6 1.2 0.8

Sigmoidal corner, edge, and gradient 1.5 62 48 7.0 4.2 4.8 3.3 2.2

Figure 7.5: Bootstrap hypothesis test (confidence limits pass/fail and estimated p-

values) that an experiment could not be a random result of a worse performing facial

experiment. The experiments have been listed in order of decreasing mean error.

Texture Preprocessor Mean − log10 p-value, and Pass or Fail

Error I E C CE G EG CEG

Intensity (I) 5.4

Sigmoidal edge (E) 4.8 8.3

Sigmoidal corner (C) 4.8 8.8 0.1

Sigmoidal corner and edge (CE) 4.5 17 19 6.5

Sigmoidal gradient (G) 4.5 27 4 3.5 0.2

Sigmoidal edge and gradient (EG) 4.1 48 30 28 14 20

Sigmoidal corner, edge, and

gradient (CEG)
3.9 60 58 51 35 28 19

Sigmoidal corner and gradient 3.9 60 40 46 23 42 11 0.7
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inputs for which there is no linear correlation, into a space in which the data fits a

good linear model. When merging multiple texture descriptors the non-linear nor-

maliser also serves another purpose, that of making the descriptor values compatible.

At the very least, compatibility requires having similar ranges so that larger-valued

descriptors do not swamp smaller ones. Taking compatibility to its logical conclusion

would suggest that two descriptors should have similar statistical distributions.

The non-linear normaliser used so far has been the sigmoid nsig(x) = x
x+x

. Whilst

this will do a fine job of fixing the range of any input data, it will not force different

distributions into the same shape. There are several target distributions one could

choose, however if we want a range between zero and one, then the box distribution

is an obvious and simple choice. Forcing data to fit the box distribution is better

known as histogram equalisation. It does not have a simple transfer function, but

can also be thought of as replacing x by its rank.

The corner, edge and gradient AAM is used to compare sigmoid and histogram nor-

malisation1 with the results shown in the second column of the graphs in figure 7.6.

Although the face experiment with a sigmoidally-normalised corner, edge and gra-

dient AAM shows significantly worse performance than the equivalent histogram

normalised AAM, later experiments will show both the opposite and no significant

difference. We must therefore accept that the optimal choice of normaliser is depen-

dent on the actual data and the details of the AAM. Nevertheless, one might consider

the histogram normaliser to be simpler and using Occam’s razor, recommend its use

when building an AAM on new data.

1After the completion of all the experimental and analysis work for this and the previous chapter,

a small mistake was found whereby all the non-linear texture normalisation was erroneously followed

by a further step of linear texture normalisation. Given that both the non-linear transforms produce

a texture vector with a fixed range [0, 1], there should not have been any significant effect. Rerunning

all the experiments would have taken a significant amount of setup and computing time. Instead, a

representative set of six AAM build and test experiments (out of ∼ 50,) were rerun with the mistake

corrected. The mean difference in point-to-curve error was compared between the original mistaken

and correct results. The mean differences in error ranged ranged from 0.001 to 0.05 pixels. These

were much smaller that the confidence intervals on those differences. And importantly, they were

an order of magnitude smaller than the differences upon which any conclusions relied.
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7.2.1 Future Work on Normalisers

There are several possible directions to improve the theoretical validity of the proba-

bilistic interpretation of the normaliser, which might lead to improved performance.

As discussed previously, the output of the normaliser can be thought of as the prob-

ability of there being real structure in the object, rather than noise. Currently the

noise distribution is estimated as the sampled values from the image, which is in

contradiction to the AAM’s core assumption that the sampled pixel values represent

some real underlying object appearance. It may be worth attempting to estimate

the noise distribution from the whole image, or from just outside the currently sam-

pled region. Alternatively, the noise distribution could be explicitly learnt from the

training set.

There is a further problem in attaching probabilistic semantics to output of the nor-

maliser. When the AAM compares the measured descriptor to the values predicted

by the model, this comparison takes the form of a difference operator between the

measurements and the model. But what is the difference between two probabilities?

The update equation for the AAM search predicts a change in the model parameters

given the descriptor difference, so maybe it would be preferable to have a probability

of difference between the model and the descriptor measurements. There is no obvi-

ous relationship between the difference of two probabilities and the probability of a

difference. One obvious way forward would be to perform another normalisation on

the difference, but then the whole approach starts to look like a series of hacks. It

would be beneficial to solve this problem, if only so that an AAM could be treated

as a Bayesian graphical model, and benefit from the knowledge in that field.

7.3 More Feature Descriptors

One hypothesis raised by the results so far is that it is possible to keep adding ever

more descriptors without loss in performance. The mechanism for performance loss
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is that additional descriptors will code for information that has already been learnt

by the model, but that these additional descriptors might code for that information

non-linearly. Therefore the model would be forced to expend more variance coping

with similar information that it is unable to model linearly. The mechanism for

overcoming this performance loss, is that the learning abilities of the PCA will ignore

excess correlations that are of no use, and treat them as noise.

To examine this hypothesis, a large set of additional descriptors is needed. A set

of parameterised filters, or filter bank is the most obvious way to find large num-

bers of descriptors. Potentially interesting families include the Cartesian Differential

Invariants (CDI) (which have been shown[163] to have high saliency in shape mod-

elling applications) and complex wavelets[78]. Due to the implementation issues

described earlier (section 6.3.5,) it is easier to write a texture preprocessor when the

descriptors are rotationally invariant, so the CDI were chosen.

7.3.1 Cartesian Differential Invariant Texture AAMs

The CDI[147] are a set of image operators that are simple functions of Gaussian

derivative filter (Gxnym) responses to the image intensities. In two dimensions, there

is one first-order invariant, three second-order invariants, and four third-order invari-

ants. As an example, one of the second-order invariants is

I3 = GxxGyGy − 2GxyGxGy + GyyGxGx, where Gx =
d

dx

1

2πσ2
exp

−I2

2σ2
, etc.

Including all the first, second and third order invariants gives eight individual descrip-

tors. The width of the Gaussian was set to one pixel. An AAM was built using these

eight descriptors with sigmoidal normalisation, and another built using these CDI

descriptors and the corner, edge, and gradient descriptors from before, again with

sigmoidal normalisation. These AAMs were tested on the spine and face databases

as before. The experiments were then repeated using histogram normalisers.
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Figure 7.6: Comparison of AAM performance with and without Cartesian differential

invariants in the descriptor mix. The original intensity AAM and the previously best

performing corner, edge and gradient AAM are shown for comparison. The performance

of the Texture AAMs with both sigmoidal and histogram normalisation is also compared.

The results (figure 7.6) show that the 8 Cartesian differential invariants perform

worse than the corner, edge and gradient descriptors. However, even using matched

differences, it was not possible to find a significant difference between the best corner,

edge, and gradient AAM (sigmoid normalised) and the best corner,edge, gradient and

CDI AAM (histogram normalised.) These results are consistent with the hypothesis

than it is always worth adding new texture descriptors to the mix.

Walker et al.[163] used CDI at multiple scales to get more information about image

texture, and a similar approach could work with AAMs. Starting with the histogram-

normalised 8-descriptor CDI AAMs, another 8 CDI descriptors with Gaussian widths

of 2 pixels were added to give a 16-descriptor AAM. The face and spine experiments

were run as before, and then repeated after adding another 8 descriptors with Gaus-

sian widths of 4 pixels, and then again with 8 Gaussian widths of 8 pixels. The

results (figure 7.7) show that the extra information helped in the case of the spines.

In particular the number of outliers is heavily reduced. Against the face data, the

extra information caused harm, with the point-to-curve fitting error getting slowly,

but eventually significantly, worse.
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Figure 7.7: Performance of CDI AAMs with one, two, three and four different scales.

7.3.2 Random Output Texture Descriptors

The results with CDI show that one cannot keep adding more descriptors to Texture

AAMs and expect performance to improve. For any situation, there exists a structure

description which is optimal in terms of AAM performance. Since this optimum may

be difficult to find, it is worth examining the cost of not finding the optimum.

It is possible to put a worst case bound on the ability of truly bad local structure de-

scriptors to damage the performance of a multi-descriptor AAM. The worst possible

descriptor is one that produces completely random data. In a simple experiment, the

preprocessor of the histogram normalised, corner edge and gradient face AAM was

burdened with more and more random samples. The random texture preprocessor

consisted of a set of numbers evenly distributed between zero and one, which were

randomly shuffled between every sampling of the texture. Figure 7.8 shows that the

error rises surprisingly slowly. The performance of the modified AAM only falls to
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Figure 7.8: How adding random numbers as texture descriptors slowly reduces the

performance of a facial corner, edge and gradient AAM.

that of the original intensity AAM, when there is more than twice as much random

as real data.

7.4 Discussion and Conclusions

This chapter has shown that the improvements found in the pervious chapter due

to the use of the Texture AAM over the intensity AAM are statistically significant.

The hierarchical bootstrap method introduced in this chapter can use the large num-

ber of individual error measurements to find statistical significance in small mean

differences, despite the measurements lack of normality or independence. These im-

provements in fitting error can be expected to lead to improved object detection

performance.

“Texture AAMs” are now being used by other researchers in ISBE because of their
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improved accuracy. Some have also found the hierarchical bootstrap technique to be

useful when confirming the significance of small improvements.

The best AAM found for both the spine and face data was the sigmoidally-normalised

corner, edge and gradient AAM. CDI were examined as feature descriptors, and

found to be less suitable, especially given the extra expense in computation time

and space. It is not clear that the sigmoidally-normalised corner, edge and gradient

AAM would be best for other situations, and the strictly small loss in performance in

any specific circumstance may well be worth the increased generality of having some

extra descriptors in the mix. It might be worth examining other descriptors, e.g. the

complex wavelets[78] or even other simple corner-, or edge-like descriptors. It is clear

from the slow increase in error in figure 7.8 that the AAM’s learning algorithm will

mostly ignore one or two poor descriptors, in favour of useful ones.

7.4.1 Future Work

The work of this and the previous chapter has revealed several promising extensions

to Texture AAMs.

Current work in this lab, is looking at separating the peaks in the feature response

from the troughs into two image planes, and then smoothing the two planes sepa-

rately2. The aim is to widen the effect of features in the image, so that the AAM can

feel the feature from further away, and so widen the radius of convergence. Initial

results show a small but statistically significant improvement.

One idea from the start of this work, was that it should be possible to look at the

influence of each feature detector response for each pixel of the input images. By

stripping out all but the most influential, leaving a very sparse AAM, it should be

possible to vastly speed up AAM search. Definitely failed searches could be aban-

doned immediately, with equivocal cases subjected to a less sparse version of the

2P. Kittipanya-ngam, private communication
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AAM. If some of the feature detectors of the very sparse AAM had locally maximal

response in the training images, it may even be possible to directly guess potential

locations of AAM fits, in the manner of Weber et al.[167]

In theory, this work should extend straightforwardly to 3D images, with the joint

calculation of the corner-edge pair in 2D extending to an analogous calculation of

a plane-edge-corner triplet in 3D. However, an initial attempt to derive these de-

scriptors found that the some of the tricks used in 2D cannot be applied in 3D. In

particular, explicit calculation of the eigenvalues of the matrix of gradient products

(M—equation 6.3) appears to be unavoidable in 3D. The cost of this calculation,

combined with the sheer size of 3D AAMs, has hindered the author’s collaborative

efforts with Dr. Kevin de Souza to complete a fully-fledged 3D Texture AAM ex-

periment. To reduce computational cost it would be possible to use some cheaper

3D texture descriptors—see Rohr [117] for various options. One very early result on

a 27-image hippocampal MRI database3 shows a reduction in the point-to-surface

error of 40% over the standard intensity AAM when using the 3D plane-edge-corner

triplet. This is encouraging, but requires further investigation.

3The database was kindly provided by G. Gerig et al. from the University of North Carolina,

Chapel Hill. It was based on a schizophrenia study supported by the Stanley Foundation, and is

described further in Styner et al.[143]
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Chapter 8

Improving AAM Performance

Using Elliptical Limits

During AAM search, constraints are applied to the model parameters to improve the

optimisation’s robustness. Although previously assumed to be benign, this chapter

shows that choice of the shape and size of these constraints has a significant effect on

the AAM fitting error. After examining the previously used box-shaped limits, the

more theoretically justifiable ellipsoidally-shaped limits are developed, and the two

are compared experimentally, showing that ellipsoidally-shaped limits can produce

significantly better fitting error. Finally, this chapter discusses a previously unknown

systematic error in the estimation of the PDF of an AAM’s parameters.

8.1 Model Limits for AAM Search

During the AAM search process, which is in effect an optimisation process, there

are several constraints applied to (or freedoms for) the texture, shape, and combined

models:
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1. Complete freedom to vary in a highly restricted subspace that is equivalent to

pose in the shape model, and normalisation in the texture model. This subspace

is explicitly designed rather than learnt.

2. Restriction to a learnt principal-component subspace. This is achieved by pro-

jecting each model into this principal-component space, setting the values of

secondary components to zero.

3. Restriction to regions of the principal-component subspace, that have been

learnt to be likely.

It is the latter constraint against implausible regions of the prior-PDF on the models

that is being investigated in this chapter. The valid region within the principal-

component subspace can be thought of as being defined by a “limiter.” During each

step of the AAM search, the limiter takes the parameters of the shape model, and

if they are outside the valid region, moves them to the nearest point on the edge

of the valid region. Another two limiters do the same to the texture and combined

models. The purpose of these constraints is to prevent the AAM search process being

dominated by a poor current interpretation of the data.

Previous descriptions of the AAM have used a box limiter to enforce these plausibility

constraints within the principal-component subspace. This clips each parameter in

the model to within some range of the mean. The natural measure of the size of these

limits (for implementation purposes anyway) is the number of standard deviations.

Previous work from this lab has used ±3 standard deviations. So, for example, the

first principal component of the model can move as far as three standard deviations

from the mean (as measured on a learnt prior.) The value of the first component

has no effect on the limiting value of the second or any other component. These box

limits are cheap and easy to implement, but mean that the model can achieve very low

prior probabilities in some directions (on the hyper-diagonals,) but not on others (on

the principal axes.) If an AAM-based classifier were to use the parameter values to

decide on valid or invalid fits, this arbitrary bias to the diagonals could have a strong

149



Chapter 8. Improving AAM Performance Using Elliptical Limits

negative effect on the classifier’s performance. This work of this chapter attempts to

remove that bias, by using ellipsoidal limits as an alternative to the box limits.

AAMs were originally designed using these box limits, and understanding of their

performance is based on them. Before switching to another limiter for the reasons

above, it is necessary to show that the new limiter does not adversely affect AAM

performance. In particular, is there a quantitative change in AAM search performance

when changing from a box-shaped to an ellipsoidally-shaped limiter? The effects of

different width limiters are also investigated.

8.2 Background and Related Work

There is a large literature on AAMs. But (to the author’s knowledge) no-one has

reported large performance differences due to the shape of the constraint.

Cootes and Taylor[40] have previously compared soft limits, in the form of a Gaussian

prior in the AAM’s objective function, with hard box limits. They found a general

improvement in point-to-curve error performance, but nevertheless remain dubious

about the prior overriding the data. In particular, it may reduce the number of

completely failed matches at the expense of an increase in the error of successful

matches. Ellipsoidal limits have also been used by Cootes et al.[34] in ASMs.

Charters[26] compared both ellipsoidal and box limits for a Point Distribution Model

(PDM) of chromosome shape in microscopy. He found that box and ellipsoidal limits

gave similar performance in terms of rejecting incorrect hypothecated fits of the PDM

to the images. The intersection of box and ellipsoidal limits gave better performance.
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8.3 Ellipsoidal Limits

If the purpose of limits on the model parameters is to prevent the model entering an

implausible state, then the conceptually simplest constraint is a constant probability

density surface. The usual PDF to be associated with the model parameters is a

Gaussian, with separate variances for each of the principal components. The constant

density surface for a Gaussian is an ellipsoid. The natural measure of the size of this

probability-based constraint is the acceptance probability. This is the integral of the

learnt PDF inside the ellipsoidal constraints.

Model positions that exceed the limits, are moved to the nearest point on the con-

straint boundary. Finding the shortest Euclidean distance to an ellipsoid is non-

trivial. However, the model space has a Gaussian PDF defined on it, and hence also

a Mahalanobis distance. The Mahalanobis nearest point on an ellipsoid is simply the

intersection of the ellipsoid and a line between the current point and the centre of the

ellipsoid. This calculation is only about twice as expensive as applying box limits,

which is an insignificant part of the AAM search’s computational cost.

8.4 Experiments

The performance of AAM search using different sized and shaped limits was com-

pared. The XM2VTS database of marked up faces was split in half (with no people

shared over the two sets.) An AAM was trained on the first half, and tested on the

second. For each image, the model was initialised to the default pose, and placed

at each of 9 grid points spaced at 10 pixels in a three by three grid. The grid was

centred on the image’s labelled points. From each starting position, the model ran

to completion.

The performance was measured using the distance from the model control points of

the completed search to the nearest point on the labelled curve. The mean error
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is reported, with confidence limits on the mean. Confidence limits on each mean

were calculated using the bootstrap method (see section 7.1.3) taking account of the

structure of the data (repeated subjects, multiple measurements per image, etc.)

Different sized limits were tested with each shape. The results are in figure 8.1.

Note that the x-axes of the plots for the two different limiters are both measured in

standard deviations, but with different offsets. As stated above, the natural control

of the size of the ellipsoidal limits, is the included fraction of the distribution. For

the face AAM experiments, this value was varied from a fraction as low as 0.2% to

fraction as high as 99.999% of the distribution. On the highest resolution level of

the AAM, which had a 225 parameter combined model, varying the included fraction

caused the ellipsoidal limit radius to vary from 13.1 to 18.2. In order to fit both

these results, and the box limiter results on the same graph, the two curves are given

different arbitrary x-axes. The results show that the AAM with ellipsoidal limits

never has a significantly lower mean fitting error than the AAM with the box limits,

whatever the size of the valid region.

The purpose of the limiters is to prevent the AAM search diverging due to a poor

initial estimate of the fit. In order to judge the effect of the choice of limiter when

the start of the AAM search is further from the correct position, the experiment was

repeated with the grid spacing raised to 25 pixels (figure 8.2.) Again, the ellipsoidal

limiter has a lower error over most choices of valid region size.

For further verification, box and ellipsoidal limiters were also compared using a

leave-one-out experiment on the spinal data described previously, with a complex

Texture AAM (histogram-normalised with CDI, corner, edge and gradient preproces-

sors.) Again different size limits were tested, and the AAM matching performance

compared—see figure 8.3. With this Texture AAM there is much less difference

caused by the choice of limiters. However, the ellipsoidal limiter is still less sensitive

to the choice of valid region size.
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Figure 8.1: Comparing AAM search errors between box and ellipsoidal limits, using

an intensity AAM tested on half the XM2VTS database. Starting search from 10 pixels

displacement. Both curves’ x-axes are in standard deviations, but on arbitrarily offset

positions. The acceptance probability of selected ellipsoidal limits is also given beneath

the data points. 98% confidence intervals are shown on the data points.
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Figure 8.3: Comparing search errors between box and ellipsoidal limits, using a cor-

ner, edge, gradient and CDI spinal AAM. Starting search from 10 pixels displacement.

Both curves’ x-axes are in standard deviations, but on arbitrarily offset positions. The

acceptance probability of the ellipsoidal limits is also given beneath the data points. 98%

confidence intervals are shown on the data points.
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8.5 Discussion and Conclusions

These results suggest that AAMs should use ellipsoidal limits by default. However,

they also raise several questions. It has been observed that if a high resolution AAM

model is moved from the mean along the axis of the first mode of variation, the model

stops being a valid face somewhere after 3 standard deviations. From discussions with

Cootes and Taylor, this observation reinforced the 1-D distribution assumption (i.e. 3

s.d. includes about 99% of all normal variation) that appears to have been the origin

of the 3 s.d. box limits in the original formulations of AAMs. However, in a 200-D

space (which is normal for a 5000-pixel face AAM,) the probability of being less than

three standard deviations from the mean is 2.6×10−95.

Explicitly changing the parameters of a high resolution face AAM (trained on half

the XM2VTS database,) gives the images shown in figure 8.4. We can see that when

varying the first parameter, the model does indeed stop representing a real face at

about 3 s.d. However for the higher-numbered modes we can go much further from

the mean before the model obviously becomes invalid. In particular we can move to

the sort of radius that includes a significant proportion of probability distribution,

e.g. 15 s.d. radius includes 89% of a 200-D Gaussian.

It is clear that this aspect of AAM behaviour is not well understood, and deserves

further study. One possible explanation is that, for large AAMs, the documented

3 s.d. limit is an artefact of sampling error. Figure 8.5 shows what happens when

1000 samples are taken from a 200-D unit Gaussian, and then used to re-estimate the

shape of the distribution. The first principal variances are overestimated, and the

last components underestimated. If this is happening with AAMs, then correcting

for it might enable the first principal parameter of the model to move to a radius (e.g.

15 s.d.) which includes a more sensible proportion of the probability distribution.

One possible approach to estimating unbiased variances would be to take the initial

PCA estimate of the variances, generate many examples with those statistics, and
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then re-estimate the variances using PCA on the generated examples. Then, adjust

the initial estimate of the variances in proportion to the discrepancy between the

initial and second estimate, and repeat until the re-estimate of variances gives values

close enough to the very original estimate. An alternative approach would be to

do PCA analysis on part of the training set to find the principle subspace. Then,

use the remainder of the training set to independently estimate the variances within

the subspace. To make more use of the training set, this could be repeated with

multiple permutations of the training set, and the results combined using eigenspace

arithmetic[66].

Whether or not the PCA correctly estimates the principle variances, the Gaussian

assumption could be wrong. A multi-variate rectangular PDF with smoothed sides

would be a plausible alternative. The iso-probability surface of the this PDF could be

similar to the intersection of a hyper-box with a hyper-ellipsoid, which might explain

the superior experimental performance of this shape in Charters work[26]. Further

work studying alternative PDFs on the AAM parameters may result in improved

AAM search performance.

Finally, the experiments described in this chapter confirm the hypothesis that switch-

ing from box to ellipsoidal limits does not reduce AAM search performance. The final

AAM fitting error is never significantly worse with ellipsoidal limits, than with box-

limits. Further, with an ellipsoidal limiter, the choice of limiter size has much less

effect on the AAM fitting error. This is very useful, because there are few theoretical

guidelines upon which to base a choice of the correct size.
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Chapter 9

Object Detection Using Combined

AAMs and SVMs

This chapter introduces the combined AAM-SVM method, for searching image data-

bases. The discrimination abilities of the SVM are shown to improve the object

detection capabilities of the AAM. The converse hypothesis is also confirmed: The

AAM improves the object detection capabilities of the SVM. In order to create a

combined AAM-SVM, there must be a feature vector extracted from the fitted AAM

and passed to the SVM for classification. The obvious feature vector is the texture

residual, r, of the fitted AAM. The parameters, p, of the fitted AAM are also

examined as a feature vector. Unsurprisingly the residual gives better performance.

Several variations on the residual and parameters are examined, in particular the

spatial resolution of the residual is varied.

9.1 Background and Relationship to Existing Work

There are three broad mental models for the advances embodied in the combined

AAM-SVM:
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• Using an AAM as a better feature detector for a modern statistical classification

technique

• Using a statistical classifier as a better quality of fit measure for an AAM

• Using both a high-level feature detector and an advanced statistical classifier

This section examines the AAM-SVM’s relationship to existing work under these

classifications.

9.1.1 An AAM as Better Normaliser or Feature Detector for

a Statistical Classifier

The AAM can be thought of as just another feature extractor for passing to a sta-

tistical classifiers. Whilst a pure-classifier based method can in theory learn every

possible variation of an object within an image, it is hard to assemble a representative

training set that can cover the entire classification boundary. Instead, all classifier-

based object-detection methods view the image through a window, with the classifier

being independent of the position of the window. Grey-scale normalisation is also

applied during feature extraction. Some object detection methods (e.g. Sung and

Poggio’s[145] and Osuna et al.’s[108]) explicitly remove planar variation in grey level,

in order to normalise away strong directional lighting. Without these normalisations,

the classifiers would need to learn which variations are due to these invariances, and

which are not. In this sense, it is possible to think of the AAM as an extremely good

normaliser. The AAM implicitly learns and models changes due to lighting, pose,

intra-class variation, object deformation, etc. Thus AAMs should reduce the com-

plexity of the classification boundary to be learnt. A less complex boundary should

require a much smaller training set, for a given performance.

To generalise the concept of AAM as normaliser, it is possible to view the work of

this chapter through the classical approach to pattern recognition. In this approach,
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a vector is created by a feature extractor, and that extractor is then fed to the

statistical classifier. Under this view, the AAM is a feature extractor that is superior

to a vector of simple intensity-normalised pixels. Unlike the patch, the AAM can

(by means of its search algorithm) pass only the locally most likely feature vectors

to the classifier, reducing the computational and learning burden on the classifier.

The AAM can extract those features with full sub-pixel accuracy, whereas the patch

extractor is limited to unit-pixel accuracy. Use of the AAM as a feature extractor

will therefore prevent the classifier from having to learn some of the sub-pixel shift

invariances that a patch-based feature extractor would need to learn.

9.1.2 An SVM as Better Quality of Fit Measure for an AAM

Romdhani et al. have used Kernel Principle Component Analysis (KPCA) for the

shape and texture models of Active Shape Model (ASM)s[119] and AAMs[120]. This

was mostly to deal with very large facial pose changes, without having to resort

to a collection of normal AAMs as used by Cootes et al.[42] Later, Romdhani et

al.[118] replaced the KPCA models, with linear PCA models of 3D shape and texture

variation, and physics-based models of 3D to 2D projection, lighting, occlusion, etc.

Blanz et al.[16] have used an SVM classifier to produce a quality of fit measure. The

3D morphable model above[118] was fitted to a database of faces. The fits were man-

ually categorised into successes and failures, and used to train an SVM classifier. The

feature vector consisted of the residual magnitude, and the parameters of the shape

and texture parts of the fitted model. They did not test their quality of fit mea-

sure, but instead used the classifier score to show that there is a correlation between

whether the fit was good (the SVM score) and performance of a face recogniser. The

face recogniser itself did not use an SVM, but a modified Mahalanobis distance from

the fitted model parameters to the database of known identities.

Edwards, Cootes and Taylor[51] used the AAM to locate a face within a single image.

In their approach, a set of AAM hypotheses are started on a grid on the image. All
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the AAMs are put through one search iteration. Then, hypotheses with a residual

magnitude E = |r|2 of greater than a learnt threshold are discarded. This is repeated,

until only hypotheses with E less than another learnt threshold are left, and accepted

as being matches. They were able to reject about half of the hypotheses at each

iteration. Unfortunately, later unpublished results (by Cootes) strongly suggested

that the published performance did not generalise to other test sets, even those known

to contain one face with bounded size and position. The residual magnitude E was

not a reliable enough indicator of good matches even after convergence, let alone

one iteration. Cootes found that using various simple cost functions of the residual

and parameter values, rather than E, did not make any significant difference. The

work in this chapter can be seen as a better estimate of AAM quality of fit, than the

residual magnitude E.

9.1.3 Combining High-level Feature Detectors, and Advanced

Statistical Classifiers

The general approach preferred by this author is to use both a high-level feature

detector, and a modern statistical classifier, in order to detect objects. A similar

approach was adopted by Hamouz et al.[67] They used a Gabor-filter map of the

image and a GMM to find the most likely candidates for three features from the

face. These three features then induced an affine shape model of the pose variation

of the face, with implausible poses being discarded. For each hypothesised face,

they transformed the original image, using the affine shape model, into a shape free

image. A box of pixels around the face was treated as the feature vector, and tested

for face/non-face by an SVM. Since they were trying to find single faces in an image

for a face verification task, they did not have to make a final decision about each

hypothesis, but were able to choose the one with the highest classification score.
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9.2 AAM-SVM Searching and Training

The basic algorithm used in this chapter is a straightforward extension of the patch-

based statistical classifier. An AAM is initialised in the top left hand-corner of an

image. AAM search is used to find a face in the immediate vicinity. The parameters

or residuals of the converged AAM are then passed to an SVM classifier. The classifier

decides if the fitted AAM is indeed a real match. The AAM is then moved a few

pixels to the right, and the process is repeated.

Training the AAM-SVM is again an extension of the patch-based approach. First an

AAM is trained on a set of marked up example images. An AAM is explicitly fitted

to each marked object in the positive training set, and the feature extracted. Here,

the AAM itself was trained on only half the training set, so as to allow the SVM to

learn about the AAM’s performance on unseen images.

A set of negative examples is generated by randomly selecting some starting positions

for an AAM in a training set known to contain no examples of the object. AAM

search is performed from each starting point, and the feature vectors extracted after

convergence. These positive and negative examples are used to train an SVM. The

AAM-SVM object detection algorithm is then run over the training set to acquire

new negative examples, which are added to the training set, and the SVM re-trained.

This refinement iterations are repeated several times, to produce a fully trained AAM-

SVM.

9.3 Building the AAM

This and following sections (9.3–9.5) cover the details of training an AAM specifically

for detecting objects. The object to be examined in this chapter is the face. There

are more marked up databases for faces that any other object. It is also useful to use

the face so that it can be compared to other methods.
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a b

Figure 9.1: Markup according to (a) the 68-point scheme, and (b) the 22-point scheme.

The standard face AAM markup used in ISBE has 68 points (see figure 9.1a.) This

is used to produce reasonably high resolution models for face recognition, reconstruc-

tion, etc. For the purposes of face detection, there is little point in having an AAM

with a higher resolution that the faces we want to detect. The CMU [122, 145] face

detection database has faces ranging in interocular distance from 7 to 229 pixels. 95%

of the faces are larger than 10 pixels interocular distance. Accurately marking up

such small faces, either for testing or training purposes, with the full 68-points would

be very difficult. It would also leave only a few pixels per triangle in the shape-model,

which would be wasteful in terms of the amount of computational effort needed to

warp each pixel. So, a 22-point markup scheme was chosen instead—see figure 9.1b.

These points were chosen because either they were easy to identify, or they were

useful in expanding the convex-hull within which the AAM is defined.

To train the AAM-SVM, several ISBE databases of marked-up faces were used. These

included the expression database, and others devoted to identity variation and pose

variation, and were already marked up to at least the 68 point scheme. The relevant 22

points were extracted to produce the required markup. Unfortunately these were all

collected under very controlled circumstances, fixed backgrounds, etc.—see figure B.7

in the appendix. To augment this database, the publicly available BioID dataset[73]

was also used. The BioID consists of a limited range of people taken under an

office computer identity-verification scenario. 20-point markup was available for the
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BioID database, of which 18 points were shared with the 22-point scheme needed.

Using the constrained AAM search method1 the known 18 points were used to fit an

AAM to both the existing markup and the image data. The four new points found

by the AAM were added to the existing 18 points, and were then manually checked.

Anecdotally, when using the original intensity AAM trained on other databases above,

about 70% of the faces needed some adjustments to at least one point. Using the

Texture AAM reduced the number of images that needed any adjustments to about

50%, and also reduced the distance that the points needed to be moved. This latter

improvement does have quite a noticeable effect on the required manual effort, and

the two improvements together lead to more than a halving in required markup time.

Together, these databases produced a training set of 3970 faces, varying in size with

interocular distances from 34 to 420 pixels. These were randomly shuffled to produce

a database called all22r. The first half (half-all22r) was used to train the AAM,

and whole set (all22r) was used to train the SVM.

Regarding test sets, the XM2VTS database is really quite easy, given its flat back-

grounds. The CMU database, is very demanding—the variation in faces here is much

greater than in the training set. For example, some of the faces are quite dishevelled.

For the purposes of detecting good hits of the face detector, 22-point markup for ev-

ery face is needed. ISBE already has markup for the XM2VTS set. 6-point markup is

provided with the CMU database, of which five are common with the 22-point scheme.

Using the constrained AAM method above, the other 17 points were found, and

manually checked. The original markup and the manually checked additions were

not very accurate (e.g. eye centres were often out by up to 20% of the interocular

separation.) However, since this markup will only be used to confirm an AAM’s hit

or miss, the lack of accuracy is not important.

1Developed by Cootes and Taylor[40], the constrained AAM search method modifies standard

AAM search, constraining some of the control-points to preset values. This is done by expanding

the error term to include the difference between the control-points and their desired positions. The

various error terms are made commensurate by reformulating the error into a probabilistic value.

The variance of the texture residual is learnt during training, and the variances of the known control

points are explicitly set to be tight, with the unknown control-point variances set to infinity.
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Choosing the size of the AAM is not straightforward. It is believed within ISBE that

100 pixels is the smallest size of an AAM layer required for the update regression to

work reliably. A 283-pixel patch introduced by Sung and Poggio has been successfully

used by others[108, 121]. This suggests an AAM larger than 100 pixels would be

useful. In order to get the optimal speed and efficiency out of the AAM, two-layer

multi-resolution AAM search was used here. Standard multi-resolution AAM design

has a two-fold increase in linear resolution at each layer, leading to a four-fold increase

in the number of pixels in the texture model of each layer. Therefore, the AAM was

designed with 400 pixels in the highest resolution layer (called layer 0.) (Due to

approximations in the triangulation code, this layer actually had 399 pixels.) AAM

search would be started in layer 1, which had 97 pixels. AAM building was extended

into layer 2 with 22 pixels, and layer 3 with 6 pixels, but these were not used for

search.

During training, the Principal Component Analysis (PCA) was set to chop off the

secondary modes after 99% of the variation in the training set could be modelled.

This lead in the highest resolution layer, to 18, 203, and 88† modes in the shape,

texture, and combined appearance models respectively. The results described in

chapters 6–8 imply that the AAM should be built with the corner-edge-gradient

texture preprocessors, histogram texture normalisation and ellipsoidal valid-region

limiters. The valid region was set to 99% of the acceptance probability, despite the

results of chapter 8 suggesting that a lower value may improve performance (see

figures 8.1 and 8.2.) The lack of a convincing explanation of those results, means

that those results should not trump the straightforward goal of being able to match

99% of all positive faces.

†It is reasonable for the combined model to have many less modes than either of the shape or

texture model. The final PCA for the combined appearance model only keeps 99% of the 99% of

the variation that was not thrown away previously. 98% of the original texture variation can be

described in 81 modes.
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9.4 Radius of Convergence of AAMs

Unlike pure feature-classification based object detection systems, the AAM feature

detector does not need to be evaluated at every possible position in the image. An

AAM can converge onto the correct position from some distance away. One would

expect this radius of convergence to be approximately the radius of the smoothing

kernel applied during texture preprocessing of the lowest resolution level of the multi-

level AAM. However, the intrinsic width of the features in the image and noise levels

also affect the radius. Rather than estimate the ideal value, it is better to measure

it.

For faces, the previously described half-all22r AAM was tested against the other

half of the all22r database. 100 times for each test image, the mean model was

randomly displaced, search performed, and the final Root Mean Square (RMS) point-

to-curve error measured. The random displacements (x-translation, y-translation,

and isotropic scale) were chosen so that the overall length of the displacement was

approximately evenly distributed. Displacements of the isotropic scale parameter

were made commensurate with the pixel measurements of translation, by multiplying

the scaling displacement by the RMS radius, RRMS, of the control points. Initial

displacements off the edge of the image were excluded. Since the database contained

images of greatly varying sizes, (ranging from 3500 to 550,000 pixels) the initial

displacement and final error were normalised by RRMS. (For the 22-point face model,

RRMS is 10-20% less than the interocular distance, or about 2.5 times smaller than

the face width.) Figure 9.2 shows the results. We can see that error is approximately

flat up to relative displacement of 0.2. That is the displacement that will be used

later as the radius of convergence for the AAM.

166



Chapter 9. Object Detection Using Combined AAMs and SVMs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

Normalised starting displacement

N
or

m
al

is
ed

 R
M

S
 p

oi
nt

−
cu

rv
e 

er
ro

r

Distribution of displacement−error results
Mean RMS point−curve error
90%−ile RMS point−curve error

Figure 9.2: Search error of the half-all22r AAM as a function of initial displacement.

Only a random selection of 10,000 result points is shown to avoid saturation. All the

results were placed into 100 evenly spaced bins according to initial displacement and the

mean and 90%-ile RMS error plotted for each bin.

9.4.1 Effect of AAM Improvements on Radius of Conver-

gence

In previous chapters, the radius of convergence was never directly measured, and was

not an objective of the improvements made to the AAMs. Whilst it is reasonable to

expect the measured reduction in mean error to have included an increased radius

of convergence, an experimental validation is preferable. Figure 9.3 shows the same

experiment performed on the original intensity AAM with box limits, compared to

the fully improved AAM used in this chapter. The AAMs were trained on half of

the XM2VTS database[93], and tested on the other half, with 50 displacements and

searches for each of the 908 test images.
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Figure 9.3: Search error of the original intensity (left) and ellipsoidally-limited, corner-

edge-gradient (right) AAM as a function of initial displacement. Only a random selection

of 10,000 result points is shown to avoid saturation. All the results were placed into 100

evenly spaced bins according to initial displacement and the mean and 90%-ile RMS error

plotted for each bin.

9.5 AAM Search

This section describes how the AAM search process is configured for object detection.

9.5.1 Starting Grid

In order to give the AAM at least one chance to find a face within its radius of

convergence, AAM search is started from a square grid of initial positions at 2-pixels

spacing. The grid extends up to a small margin around the edge. In the scale

direction, the grid is spaced at a ratio of 1.2. The pixel separation and margin width

are increased with the increase in scale. The initial scale is selected so that the

resolution of layer 0 of the AAM matches the resolution of the image. This design

gives the AAM the opportunity to match the smallest faces in the CMU database.
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9.5.2 Measuring Fitting Error

It will be useful later to have a means of distinguishing a few qualities of fit, namely

a definitely failed fit, and a definitely successful fit. The RMS point-to-point error

between the AAM control points and test database label points is used as the basic

measure of closeness of fit. The point-to-point was chosen over the point-to-curve

error used extensively in previous chapters because the point-to-point error is much

cheaper to calculate. The RMS error is used over the mean absolute error, because

it penalises partial fits where only a few of the control points are far from the labels.

In the radius of convergence experiment (section 9.4 above,) the point-to-point error

was normalised by the RMS radius, RRMS, of the control points. For symmetry

reasons, it was decided, this time, to normalise the error using the geometric mean

of the RRMS of the control points and the RRMS of the label points.

In order to decide what might constitute a successful or failed hit, the radius of con-

vergence experiment on the XM2VTS database described in section 9.4.1 was repeated

on just the first one hundred faces in the database, with just one displacement and

search per face. The fits were ranked according to the normalised point-to-point

error, and displayed. The maximum error of 0.1 for “definitely successful” fits was

manually chosen, so that intuitively good fits were inside it. A “definite fail” mini-

mum error of 0.8 was chosen so that intuitively completely failed fits were outside it.

Some images from the experiments along with their normalised point-to-point errors

are shown in figure 9.4.

Whilst there was not time to investigate an automatic approach, the choosing of

these decision boundaries could be done without manual intervention. By running

a radius of convergence experiment, the horizontal section of the results distribution

that defines the radius of convergence (e.g. in figure 9.2,) could be identified. The

definite fail boundary could be marked so that a suitably small proportion of fits were

outside the boundary, and the definite fit boundary so that some proportion of the

fits were inside.
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Normalised error:

0.083 0.119 0.662 2.09

Figure 9.4: Several images from the XM2VTS training set, after AAM searches of varying

degrees of success. The control points of the fitted AAMs are shown, but the label points

for the images are hidden. The normalised RMS point-to-point error is shown below each

fit.

9.5.3 Dealing with Exceptional Events During AAM Search

Whilst AAMs have been used to search whole images before, the previous implemen-

tation used in ISBE did not explicitly deal with certain exceptional events. The AAM

can wander completely off the edge of the image, or become too small or large such

that the resolution of the AAM and image are too mismatched. Ordinary intensity

AAMs can deal with these problems by virtually extending the edge of images while

sampling outside, and just ignoring the resolution mismatches. With Texture AAMs

these exceptions become difficult to handle. For example, the Gaussian smoothing

code cannot handle the empty intersection of the image and current model position.

Another example is the inability of the histogram normalisation code to deal with a

vector full of zeros, resulting from sampling the gradient off the corner of the image,

where all the virtual pixels are identical. Rather than alter substantial volumes of

code to deal implicitly with these situations, it was easier to explicitly detect them,

and terminate the AAM search.

This requires a decision of what to do about these obviously failed searches (previously

they would have been outliers in any error distribution.) While using AAMs for object

detection, the ideal solution is to handle search failure explicitly. Unfortunately, the

software written for the patch classifier experiments of chapters 3 and 4, and which
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Figure 9.5: A normal intensity AAM with model parameters set to the mean value (left,)

and to the specific value indicating a failed search (right.)

was being re-used to build the AAM-SVM for this chapter, could not handle the

concept of search failure. The ideal solution would have been to modify the framework

to handle search failure, but this would have required too much programming effort.

Instead of modifying the entire framework, the following method was implemented.

The failed search is intercepted, and a specific “failed feature’ vector is emitted in

place of the normal AAM feature vector. One immediately appealing choice for a

failed feature vector, where all the elements are set to a very large number, is not

suitable. Such a vector would grossly affect initial guesses of the SVM’s RBF kernel

width, massively increasing the number of iterations required to find the optimal

result. It would also have an effect on diameter of the data’s Minimum Enclosing

Hypersphere (MEH) skewing the final optimal value of the RBF kernel width. Instead

we want to pick a value that is not too far from all the other data, but is far enough

away not to be confused too easily with real faces. Using the known variances of the

parameters or residuals, each component of the failed feature is set to one standard

deviation. This vector is then scaled, so that it is less probable than 99.99% of the

learnt PDF. If this process is applied to an intensity AAM, on the model parameters,

the reconstruction (figure 9.5) looks a bit like a face, but certainly not like the optimal

fit on any real face. This failed feature is explicitly inserted into the negative training

set with the randomly chosen negative examples.

A different strategy of dealing with failed searches is used for local AAM search

performance testing. Here, the control points of failed AAMs are set to the search’s

initial positions. (N.B. This rule was not used in previous chapters because the

problem did not occur. The rule was needed for the experiments in section 9.4.)
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9.6 Building the SVM

Following the work of chapters 3 and 4, the SVM training method will here use an

iterative training method. The initial SVM training set consists of all the positive

data, and a small negative training set. The positive data is obtained by fitting3

the trained AAM directly to the known control points of the all22r database. No

search is performed. The all22r database includes both the images seen by the AAM

during training and the other, as yet unseen, images.

A negative UWash database of natural and city scenes, was originally taken from the

publicly available U.Washington image database[137]—see figure B.8 in the appendix.

There is no point burdening the SVM learning algorithm with a lot of obviously false

examples, that will mostly be superseded by more useful negative examples later in

the training process. Therefore 2000 negative examples, (about half the size of the

positive training set) are initially selected at random from the UWash database. In

obtaining negative examples, full AAM search from the starting grid is used.

After initial training of the SVM on this dataset, the iterative refinement process

begins. The negative image database is searched exhaustively for faces. Any AAM

searches that the SVM deems to be hits are added to the negative training set. The

search stops after a fixed number, nselect, of new training examples have been found,

and the SVM. Stopping after a small number of examples is useful in order to observe

the changing behaviour of the classifier during training. However, too few, and the

whole process will be dominated by the time to retrain the SVM. nselect = 200 was

chosen as a useful number of new negative examples to retrain after. In early tests,

it was enough to have a significant effect on classification performance.

3The fitting process consists of finding a good fit of the AAM’s shape model to the label points.

Then the texture is sampled, using the fitted control points, and the best fit of texture model found.

The best fit of the combined model is then found from the parameters of the shape and texture

model, followed by checking of the constraints imposed by the AAM limiter. Strictly speaking, this

process should be iterated in an Expectation Maximisation (EM) manner, since the combined model

projection will have affected the position of the control points of the shape model. The effect of any

further iterations is thought to be insignificant and so they are not performed.
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9.7 Measuring Performance

Rather than find a single final data-point for the final classification performance,

more insight into the experiment could be achieved by following the performance of

the AAM-SVM as it was trained. For every AAM-SVM experiment, five performance

measurements were plotted for each refinement iteration. See figure 9.6 for an arti-

ficial example of the five graphs, each showing a particular performance measure for

two different AAM-SVMs as a function of the number of negative training examples

scanned. The rest of this section describes the five measures. All of the graphs have

the same x-axis showing, on a log scale, the number of negative training examples

considered thus far during the refinement iterations. The computational time in-

creases approximately proportionally with this value. Each graph has been arranged

so that detection performance improves down the y-axis, and so that the axes’ scales

can remain consistent from one figure to the next.

9.7.1 False Positive Rate

During each iteration’s search for new false positives, the classifier was effectively

being tested on unseen data. This measurement may not be perfectly consistent

between iterations or across experiments, but it nevertheless provides a cheap unbi-

ased estimate of the current false positive rate. To have consistently measured the

false positive rate on a separate test database would have required many times the

computational effort. For example, a single experimental run might have taken 4

months, not 3 weeks, on the computers available. The false positive rate is shown in

figure 9.6a.
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Figure 9.6: An example graph comparing the performance of 2 variations on the AAM-

SVM method during training. The red AAM-SVM performs better that the blue one in

all the graphs. The axes have been arranged so that closer to 0 (down) is better. The

top three graphs describe performance with the neutral bias chosen by the SVM training

algorithm. The bottom two graphs describe the performance of the classifier, independent

of the bias. See section 9.7 for an detailed explanation of each graph.
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9.7.2 False Negative Rate

After each training iteration, the AAM-SVM is tested on the CMU and XM2VTS positive

test databases to obtain the false negative rate (1− sensitivity). The two results are

shown on figures 9.6b and 9.6c. For speed of testing, the search grid was restricted

to starting positions within 2 grid separations of the known face. The starting points

remain aligned with the overall image, to avoid bias. For example, if the restricted

section of grid’s central point was centred on the test data’s label points, one might

find unrealistically good fitting.

In order to avoid lucky false negatives in this test, the final control points were

compared against the label points in the database. If the normalised point-to-point

distance was greater than 0.8, the match was automatically failed, ignoring the SVM

score.

9.7.3 Area Above the ROC Curve (AARC)

The bias chosen by the SVM training may not be the ideal value. However, there are

an infinite number of values it could take. Commonly in classification experiments,

the area under the ROC curve is used as a single measure of the classification per-

formance, that is independent of the bias. Despite the popularity of area under the

ROC curve as a measure of classifier performance, it has a number of problems when

describing very good classifiers. It is not possible to use logarithmic scale graphs

to help accurately convey the relative performance of different classifiers with areas

under the ROC curve of, for example, 0.99, 0.999, and 0.9999. These example values,

suggests that Area Above the ROC Curve (AARC) (but within the [0, 1]2 box) is a

preferable statistic. The AARC graph is shown in figure 9.6d.
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9.7.4 PFPR/TPR—an Overall Statistic for Database Re-

trieval Performance

The biggest problem with the area above (or under) the ROC curve is that for this

application area, only a small section of the curve is interesting—the part of the curve

near the y-axis. The performance away from the perfect-specificity end of the curve, is

simply not targeted by the vast quantity of negative training data. So whilst better

AARC results are welcome and have been calculated, they should not be used to

discriminate between variations in the AAM-SVM method. Another commonly-used

scalar measure of classifier performance, is the equal error rate. This is the point on

the curve where specificity and sensitivity are equal. Again, this is not particularly

illuminating in this application. If the detector misses 10 out of 1000 real faces, but

returns 107 false positives out of 109 tested image locations, it will not be of much

use.

A more relevant statistic from the ROC curve is the best sensitivity value, for a

perfect specificity. This is the highest point where the curve still touches the y-axis.

Unfortunately, it is very sensitive to the size of the negative test set. The statistic is

calculated as the fraction of positive test examples with a higher classification score

than the single negative example with the highest (i.e. most wrong) score. Increasing

the number of negative examples increases the likelihood of finding a new highest

scoring negative example.

A statistic, named “Perfect False Positive Rate to True Positive Rate ratio”

(PFPR/TPR), was created to account for this effect. The perfect false positive

rate is (by definition) zero. However that is strictly a biased estimate of the true,

underlying, false positive rate. If there were twice as much negative test data, we

might expect to find one worse example. So the ‘perfect ’ false positive rate is defined

to be the false positive rate one would get if there twice as much negative data and

one false positive. The PFPR/TPR is thus the ratio of the perfect false positive rate
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to the true positive rate:

PFPR/TPR =
1

TPRat perfect FPR
· 1

2 #(negative examples)

The PFPR/TPR measure has a useful interpretation in an image retrieval context.

Assuming a very large database, and unlimited computing power, this statistic mea-

sures the fraction of all the negative examples in the database that are falsely returned

for every real positive hit that is returned. Often used in the general database re-

trieval field, the precision is the number of true positive results returned by a search,

as a fraction of the number of all true and false positives returned. The PFPR/TPR

is the inverse of the product of the precision and density of positive examples in the

test set. Figure 9.6e shows an artificial example of a PFPR/TPR graph.

9.8 What to Use for a Feature Vector?

The most interesting option in the design of AAM-SVMs is the choice of feature vec-

tor to use for the SVM. There are two obvious sources of information regarding the

quality of fit of an AAM—the residual and parameters. The residual (the difference

between the best fit of the AAM and the test image) by definition contains a sub-

stantial amount of information about the success or otherwise of the fit. However,

it is quite large, with four elements for every pixel (the corner, edge and two gra-

dient components.) In the highest resolution layer of the multi-resolution AAM the

residual vector r0 has 1596 dimensions. Even with very good statistical classification

methods, having unnecessary dimensions that just contain noise on top of no extra

discriminatory information, will lead to lower classification performance, as well as

lower speed. In order to obtain a smaller vector, a lower resolution layer of the multi-

resolution AAM can be fitted directly to the control points of the best-fit solution

from the full multi-layer search. Lower resolution residuals can then be obtained from

layer 1, r1 with 388 dimensions, or layer 2, r2 with 88 dimensions.

The AAM parameters at the end of AAM search are another candidate for the feature

177



Chapter 9. Object Detection Using Combined AAMs and SVMs

vector. Although they contain less information, there is no reason to expect the ellip-

soidal constraints imposed by the AAM limiter to be a true classification boundary

between valid and invalid faces. So the parameter values (of the final, high-resolution

layer) should contain some information regarding the validity of the face it has fit to.

This should be especially true when the constraints are relatively loose.

9.8.1 Results with Residuals as the Feature Vector

As described before, the AAM residuals are the most obvious features. Figure 9.7

shows the performance of the AAM-SVMs for each of the three different resolutions

of residual. The experiments were halted manually, invariably during the search for

new negative examples. Sometimes they were halted when it became clear that it

was going to be many weeks before the end of that iteration, and sometimes after

enough data had been obtained to make an inference.

The r2 area above the ROC curve has been marked with 98% confidence limits.

The confidence limits were calculated using the bootstrap resampling method, as

described in section 7.1.3. As before, no second-order adjustments were used. But this

time, no complicated hierarchical sampling was needed, just simple resampling from

the positive and negative test results. Calculating these limits was computationally

expensive, and so it was only performed once to give an indication of the reliability of

that statistic. One would expect the bounds to be tighter on the better performing

AAM-SVMs.

The first thing to say about the results is that the AAM-SVM training is working.

As more negative training examples are added, the false positive rate (figure 9.7a)

falls much faster than the false negative rate (figures 9.7b–c) rises.

Comparing the three AAM-SVMs shows that the lowest resolution residual r2 was

worst performing on all measures (r2 on figure 9.7.) There is simply not enough

information in the 22 pixels (×4 = 88 dimensions) to reliably discriminate faces. The
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Figure 9.7: Comparing the performance of three different residual resolution AAM-SVMs

during training. r0 (r0 on the key) is the residual from the highest-resolution layer of

the multi-resolution AAM with 1596 dimensions. r1 from the next lower-resolution layer

with 388 dimensions, and r2 from the lowest resolution layer with 88 dimensions. The

r1 AARC statistic has been marked with 98% confidence limits. (See figure 9.6 and

section 9.7 for a description of the layout.)
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r0 AAM-SVM. ROC curves of iterations 3 and 4 of the r1 AAM-SVM are shown for

comparison at a similar stage of training. The points on each curve for the neutral bias,

and best sensitivity for perfect specificity are also marked.

performance of the two higher resolution residuals is more interesting. Whilst it is

clear that the highest resolution residual, r0 (r0 on the graphs,) is performing slightly

better overall, there appears to be enough information in the 97 pixels× 4 = 388D of

the r1 residual to make almost as good a detector.

It is unclear why the last SVM training iteration for the r0 feature AAM-SVM gives

such a small area above the ROC curve (figures 9.7d.) As has been stated before, the

training regime is not intended to produce significantly better performance of this

statistic. As can been seen from figure 9.8 the false negative rate of that detector at

neutral bias is not very high. No obvious explanation can be found for this very high

performance except a lucky training set.
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Due to the lack of explanation of the performance of the final iteration of the r0 AAM-

SVM, and the relatively good performance of the r1 AAM-SVM, the r1 was used in-

stead as baseline for further experiments, and is sometimes labelled ceg-AAM-SVM-r1.

9.8.2 Results with AAM Parameters as the Feature Vector

As an alternative to the residual, the fitted AAM parameters are obvious candidate

features. Whilst the limiter (as discussed in chapter 8) provides a crude boundary on

the valid parameter values, there is no reason to believe that an elliptical limit with

an arbitrarily chosen radius is a true classification boundary between valid and invalid

faces. Providing the parameter values to the SVM will allow this true boundary to be

determined. The existing experimental setup was changed to use the 88 parameters of

the fitted high-resolution layer of the AAM. This was designated the p AAM-SVM.

Between them, the parameters and residual contain all the information the AAM has

about the underlying image patch. However, they do not contain the same informa-

tion. Therefore, it might be be valuable to have both the residual and parameters

values available to the classifier. The experiment was rerun with this pr1 feature

vector.

One potential problem with using the parameter values is the interaction with the

limiters. After all, the size of the limiters is set (in theory at at least) to produce

plausible faces, and the SVM is being used to find invalid faces. The AAM could

be run with no limits, so that invalid faces are well modelled by the AAM, but then

rejected by the SVM. However, there is a reason for the use of limiters in AAMs—

search on real faces usually fails without them. The initial state of the AAM needs

to be close to the optimal value not to diverge. This suggests a solution. First, run

the AAM with the (now standard) ellipsoidal limiters, to fit the image patch, and

then remove the limits, and continue the search to get a better fit to invalid faces.

The vast majority of the work of AAM fitting is done by the lower resolution layer.
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The higher resolution layer mostly adjusts the control points within a pixel or two (in

the higher resolution.) So, one alternative is to run the multi-resolution search with

the lower-resolution layer controlled by the normal limiters, and the higher-resolution

layer unconstrained. This approach was easier to fit into existing implementation, and

so was chosen instead of the one described in the previous paragraph. One implemen-

tation consideration was ceded—because the multi-resolution AAM implementation

shares the shape model between layers, it was left constrained as normal. Only the

texture and combined models were unconstrained. This detector was named ploose.

The three regimes p, pr1, and ploose are compared against the previous r1 result in

figure 9.9. We can see that it is possible to use fitted parameters p to discriminate

faces from non-faces, but with worse performance that when using the residual r1.

The broadly similar performance of the residual r1 AAM-SVM and the combined

residual/parameters, pr1, AAM-SVM suggests that the parameters contain no addi-

tional information to the residual, to help distinguish faces from non-faces. The use

of an AAM with no limiter in the high-resolution level appears to be an improvement

upon the normal AAM when using the parameters as a feature vector, but only at

the expense of substantially worse false negative rate. This is almost certainly due

to the loose AAM’s poorer ability to accurately converge on the real faces.

When the AAM parameters are used for classification, the best sensitivity for perfect

specificity is not very good. The best value for the p AAM-SVM was 45%, and this

fell to 29% at the end of the refinement iterations. This compares to typical values for

the residual-based classifiers of 85%–95%. The value for the ploose and pr1 variants

of the parameter-based AAM-SVM were 68% and 53% respective at the end of the

refinement iterations.
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Figure 9.9: AAM-SVM performance using various versions of the AAM parameters for

the SVM’s feature vector; the normal AAM parameters, p; the concatenated AAM param-

eters and medium resolution residual, pr1; and the parameters, ploose, of an AAM with

no limiter in the final high resolution level. The r1 results from the previous experiment

are included here for comparison. (See figure 9.6 and section 9.7 for a description of the

layout.)
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9.9 Conclusions

This chapter has described the AAM-SVM, a novel method of object detection, which

uses an AAM as a high-level feature detector and an SVM to accurately discriminate

faces from non-faces.

The AAM residual has been shown to be useful as a feature vector. The residual from

the medium-resolution layer of the AAM gives almost as good detection performance

as the high-resolution residual. Either way, the residual is more useful, as a feature

vector, than the AAM parameters. Nevertheless, there is enough information in the

AAM parameters to discriminate faces from non-faces.

A key limitation of the AAM-SVM at this stage is its slow speed, due to its exhaustive

search for potential hits.
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Further Experiments with

AAM-SVMs

Having introduced the AAM-SVM previously, this chapter investigates several vari-

ations, and compares its performance to related object detection techniques. It is

shown that the AAM-SVM is more accurate than the Osuna et al.-style patch-SVM

face detector, given the same training set. The improvements to the AAM described

in chapters 6–8 are shown to have a large positive effect on the AAM-SVM’s detection

rate. Further investigation of the r1 residual as a feature vector leads to conclusion

that a face can be reliably detected at a much lower resolution than others have

reported. The use of lower resolution leads to a large increase in speed. In order to

achieve a very large increase in speed, a multistage approach to object detection is

developed. This uses a fast patch-based detector to find potential hits, and an AAM

to refine those guesses. Finally, there is a statistical and qualitative analysis of the

AAM-SVM method.

A paper on the multistage face-detection work described in section 10.4 has been

accepted for publication at BMVC 2004[45].
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10.1 Comparison with Existing Methods

This section shows that the AAM is a superior feature extractor/normaliser for an

SVM-based detector, over the patch-based feature extractor used by Osuna et al.[108]

It also confirms the complementary hypothesis that the SVM is a superior classifier

between valid and invalid AAM fits than the natural error of the AAM.

10.1.1 Comparison with the Patch SVM Detector

In order to compare the AAM-SVM to alternative approaches, the SVM-based im-

age patch detector described in section 4.6 (similar to other published SVM face

detectors[108, 121]) was tested on the same database. The full all22r database was

used to train the classifier. With the reflections, and small rotations applied to the

positive examples, this creates an initial positive training set of 23,820 examples.

The negative sample training regime was similar to that used above for the AAM-

SVM experiments. 2000 negative samples were selected initially at random from the

UWash database, and the SVM trained to produce an initial detector. The SVM

used the optimal-width RBF kernel (described in section 4.6) rather than the fixed-

degree quadratic kernel used by Osuna et al.[108] (An RBF kernel was also used by

Romdhani et al.’s[121] SVM-based face detector but, like Osuna et al., the kernel

parameter was fixed.) This detector was then run over the UWash database to find

false positives for the negative training set. The SVM was retrained after each new

set of nselect = 200 false positives had been found. The false negative rate, etc., were

measured after each iteration as before. The results are shown (labelled patch-SVM)

in figure 10.1.

Because of the need to test the detector on a 1×1 pixel grid in this experiment,

the patch SVM detector needs to scan four times as many patches per image as in

the AAM-SVM experiments. This is approximately 1.2×106 patches for each of the

756×504-pixel images in the UWash database. So, to compare the progress of the
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Figure 10.1: Comparing the performance of: the medium-resolution residual, corner-

edge-gradient AAM-SVMs (marked ceg-AAM-SVM-r1 here, it is the r1 AAM-SVM else-

where); the Osuna et al.-style patch feature vector SVM detector (patch-SVM); the

medium-resolution residual, original intensity AAM-SVM (int-AAM-SVM-r1.) The first

iterations of the patch SVM had a perfect false negative rate on the XM2VTS database,

and so are off the bottom of the graph. (See figure 9.6 for a description of the layout.)
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patch SVM with the AAM-SVMs in terms of number of negative training images

used, the blue patch SVM curves should be shifted right by a factor of four.

The spikes in the false positive curve (figure 10.1) for the patch SVM were inves-

tigated. The spike at 1.14×106 patches corresponded to the end of the first image

(figure B.8a in the appendix) in the UWash database. The next two spikes (at 1.43×106

and 2.18×106 patches) occur part way through the second image (figure B.8b.) The

next spike at 5.57×106 patches was in the forth image (figure B.8d.) The most likely

explanation is the that these spikes represent new texture areas that the classifier

training has not encountered before. A similar explanation can be made for the

single spike near the end of the r1 AAM-SVM experiment.

Osuna et al.[108] reported their sensitivity on a subset of the CMU database to be

89.5%, with a false positive rate of 2.39×10−6 on the same CMU database. This

experiment has not reached that absolute performance, almost certainly due to a

lack of representative variability in the all22r training set. This experiment has

compared the AAM-SVM with the Osuna et al.-style classifier on identical training

and test databases and the r1 AAM-SVM considerably outperforms the patch SVM.

10.1.2 Comparison of the Original and Improved AAMs in

an AAM-SVM

The original intensity AAM only has a single residual per pixel. Since most classifi-

cation algorithms (including the SVM) benefit from a more compact representation

of the same information, it is important to confirm that this effect does not override

the other benefits of using the improved corner-edge-gradient Texture AAM with

ellipsoidal limiters. The standard r1 AAM-SVM experiment was repeated with the

original intensity AAM. No other details were changed, e.g. the starting grid separa-

tion was not re-estimated. The results are shown in figure 10.1, with the corner-edge-

gradient AAM-SVM marked ceg-AAM-SVM-r1, and the original intensity AAM-SVM
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marked int-AAM-SVM-r1.

The performance of the original intensity r1 AAM-SVM is slightly, worse than the

now standard, improved, corner-edge-gradient AAM-SVM. The improvement is par-

ticularly clear in the false negative rate measured on the XM2VTS set (figure 10.1c.)

The much better false negative rate of the improved AAM in the XM2VTS database

is most likely due to its better fitting ability. This is not reflected in the much more

difficult CMU database, suggesting that the AAM may need to be further improved to

work well on this database.

The hypothesis that using an AAM to extract feature vectors improves the perfor-

mance of SVMs has a complement—that using an SVM improves the discrimination

performance on AAMs. To examine relative behaviour of the AAM and AAM-SVM,

the ceg-AAM-SVM-r1 detector (built just before the training had examined 1×107

negative patches) was retested on 2×106 unseen patches (from patch numbers 1×107

to 1.2×107.) The residual magnitude E of the final high-resolution layer of the AAM

was recorded during this search for false positives. The detector was also retested on

the CMU and XM2VTS databases, and E recorded. This whole experiment was further

repeated with the int-AAM-SVM-r1 detector.

The performance of the AAM residual-magnitude based detectors (marked ceg-AAM-E

and int-AAM-E) is compared to the performance of the full AAM-SVM-based detec-

tors in figures 10.2 and 10.3. Of particular interest are the best sensitivity for perfect

specificity points on the curves. As can be seen, the SVM makes a very large con-

tribution to the overall performance of either AAM. As could have been expected

from the results of previous chapters, the corner-edge-gradient AAM residual magni-

tude was much better at discriminating faces from non-faces than the intensity AAM

residual magnitude.

The patch SVM built by the final training iteration was tested on 2×106 patches

spread evenly over the same unseen images as the examples tested in the previous

experiment. The results are also shown in figures 10.2 and 10.3. As could be expected

189



Chapter 10. Further Experiments with AAM-SVMs

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(1 − Specificity)  or  False positive rate

S
en

si
tiv

ity
 o

r 
T

ru
e 

po
si

tiv
e 

ra
te

0 0.05 0.1 0.15 0.2
0.8

0.85

0.9

0.95

1

(1 − Specificity)  or  False positive rate

S
en

si
tiv

ity
 o

r 
T

ru
e 

po
si

tiv
e 

ra
te

ceg−AAM−SVM−r1
ceg−AAM−E
int−AAM−SVM−r1
int−AAM−E
patch−SVM
Perfect Specificity Bias

Figure 10.2: The ROC curves of the corner-edge-gradient r1 AAM-SVM

(ceg-AAM-SVM-r1,) the intensity r1 AAM-SVM (int-AAM-SVM-r1,) and of the residual

magnitudes alone (ceg-AAM-E and int-AAM-SVM-E respectively.) The performance of

the Osuna et al.-style patch classifier (patch-SVM) is also included. The biases giving

perfect specificity for each experiment are marked. The right-hand graph is a magnified

version of the left-hand graph.

Figure 10.3: Specific values from the ROC curves in figure 10.2.

Detector method Area Above Equal Best Sensitivity

ROC Curve Error Rate for perfect specificity

ceg-AAM-SVM-r1 0.0028 0.013 0.90

ceg-AAM-E 0.019 0.059 0.32

int-AAM-SVM-r1 0.0049 0.017 0.46

int-AAM-E 0.061 0.14 0.0013

patch-SVM 0.0025 0.0215 0.039
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the patch SVM generally outperforms the AAM residual-magnitude based classifiers.

The patch SVM’s low sensitivity at perfect specificity is surprisingly bad. Whilst

the patch SVM saw as many negative training examples as the AAM-SVMs, that is

only about a quarter the number of images, and may be the cause of this low result.

However, that makes the ceg-AAM-E detector’s sensitivity at perfect specificity very

impressive, since the AAM training involves no negative examples.

It is interesting how much improvement in performance the SVM adds to the ordinary

intensity AAM. Presumably the SVM is learning to distinguish faces, even when the

intensity AAM has not fitted particularly well to the face. By switching from the in-

tensity AAM with box limits to the corner-edge-gradient AAM with ellipsoidal limits,

the experiments of previous chapters strongly suggest that the AAM should fit better.

To confirm that this is actually happening on the database, the lowest point-to-point

error for each face in the XM2VTS and CMU databases was recorded for both AAMs.

Figure 10.4 shows that the ceg-AAM-SVM-r1 detector had the benefit of significantly

lower AAM fitting errors over the int-AAM-SVM-r1. The mean of the normalised

error distribution has fallen by 21%, and the fraction of results with a normalised

error worse than 0.1 has fallen by 63%. These are of the same order of magnitude as

the improvement between the int-AAM-SVM-r1 and the ceg-AAM-SVM-r1 detector.

Finally, figure 10.5 shows the direct correlation between the AAM’s best fit point-

to-point error for each face in the XM2VTS and CMU databases, and the final SVM

classification score. (These results are from the same classifiers as above, each having

examined slightly less than 1×107 patches during training.) The scatter plot clearly

shows that a lower fitting error leads to higher classification score. A simple linear

relationship against the point-to-point error explains slightly more 30% of the total

variation in classification score for each AAM. It is not possible to strictly separate the

effects of a particular face’s innate difficulty on the ability of the AAM to accurately

fit it, from the ability of the SVM to accurately classify the fit. (A gold standard

measure of a face’s difficulty would be required for that.) However, the general

trend in figure 10.5, and the overall improvement from the int-AAM-SVM-r1 to the
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Figure 10.6: Two of the four faces from the CMU databases that both the original and

the improved AAM failed to fit accurately. The two best attempts by the improved AAM

are shown.

ceg-AAM-SVM-r1 detector, lead to the conclusion that improvement of the AAM fit

causes improvement in the overall AAM-SVM detector performance.

The SVM score improves even as the point-to-point error falls well below a single pixel.

This sub-pixel accuracy is therefore one of the reasons why AAM-SVMs perform

better than simple patch SVMs.

There are some faces (e.g. figure 10.6) that the AAM is currently incapable of fitting

at all accurately . In these cases, if the fitting performance is improved such that the

faces can be fit accurately, then overall detector performance will definitely improve.

10.2 Can Faces be Detected in 100 Pixels?

There is strong evidence from figure 9.7 that r1, the residual from the 100-pixel layer

of the AAM, is adequate to test for the existence of the face. Therefore it is interesting

to consider if a single-level AAM of 100 pixels would be sufficient overall. The lowest

resolution layer of AAM search does most of the work to move the control points to

their optimal position, with each subsequent layer only providing further accuracy.

This further accuracy should be mostly less than a pixel as measured in the initial

layer. Since the actual pixel values are sampled using linear interpolation, there
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should not be a substantial amount of extra information provided by the roughly

half-pixel improvement in accuracy. The speed advantage in not having to do any

AAM calculations at the higher resolution would be significant.

To test this idea, the previous experiment was repeated but the AAM search took

place only in the 100-pixel layer of the AAM. The results of this experiment (ceg-

l1-AAM-SVM-r1) are compared with the standard (ceg-AAM-SVM-r1) experiment in

figure 10.7. We can see that, even though the sensitivity (figures 10.7b and 10.7c) is

a little lower, there is very little difference in overall performance.

Whilst the ceg-l1-AAM-SVM-r1 detector is only sampling the texture maps at 100

pixels, those texture maps are generated using a 5×5-tap filter. So really, ∼ 180 pixels

are being used to detect the face1. This is still smaller than others have reported. The

widely used mask introduced by Sung and Poggio[145] is 283 pixels. The cascading

AdaBoost classifier of Viola and Jones[161] has a base resolution of 24×24 pixels, of

which the face takes up about 400. The ability to detect a face in such a small number

of pixels, surely depends on the AAM-SVM’s ability to choose the right pixels.

10.2.1 Algorithm Speed

One of the main benefits of using the ceg-l1-AAM-SVM-r1 over the ceg-AAM-SVM-r1

detector is speed. If the AAM does not have to go into the high-resolution layer 0,

or fit the control-points found in layer 0 back into layer 1, this is all time saved.

With this in mind, the speed of several AAM-SVMs was measured. The results are

compared in figure 10.8. The speeds of the AAM-SVMs did not vary much during

the course of training, simply because the size of the training set, and number of

support vectors did not have the opportunity to grow significantly. The speed of

the patch-based SVMs slowed by a factor of four, as the number of support vectors

increased from 3847 before refinement to 12,193 after 31 refinement iterations.

1The outermost pixels have less than 10% of the total influence on any sample, so the system

could probably get away with only ∼ 140 pixels.
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Figure 10.7: Comparing the AAM-SVM face detection performance between the normal

two-level multi-resolution AAM search (ceg-AAM-SVM-r1) and just using the 100-pixel

single-level during AAM search (ceg-l1-AAM-SVM-r1.) The r1 residual is used as the

SVM’s feature vector in both cases, but in the former (original) case, the control points’

position is determined by the optimal fit for the AAM with respect to the 400-pixel residual

r0. (See figure 9.6 and section 9.7 for a description of the layout.)
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Figure 10.8: The speed of various detectors, and the time taken to train the SVM each

refinement iteration. The speeds were measured on 1.7GHz Pentium4 after each classifier

was at a similar stage in training—at ∼107 negative samples searched.

Detector Detector speed SVM training time

(patches per minute) (minutes)

ceg-AAM-SVM-r1 ∼650 ∼55

ceg-AAM-SVM-r0 ∼480 ∼35

ceg-AAM-E ∼770

int-AAM-SVM-r1 ∼5000 ∼55

patch-SVM† ∼2200 ∼1650

ceg-l1-AAM-SVM-r1 ∼2300 ∼45

† The patch-based SVM has to test four times as many patches per image

as the AAM-SVMs so the equivalent speed is really about 550 patches per

minute. Since the patch-based SVM’s training could not fit all the kernel

values into the cache, the training time would be very dependent on the

cache size. It was set to 512MiB for these experiments.

One unexpected result is that the extra support vectors needed by the patch SVM

pushed its computational costs well above the computational costs of the AAM-SVM.

The availability of much faster cascade version of SVM (and AdaBoost,) unfortu-

nately undermines the value of this result. Given the much greater time needed to

run the SVM training for the patch-based SVM classifier—it would more efficient

in future work to search for more than nselect = 200 false-positives per refinement

iteration.

10.3 Iterative Refinement with Positive Data

The idea of iterative refinement of the classifier, introduced to this field by Sung

and Poggio[145], has so far only been used on the negative examples. This section

examines two ways of using it with positive examples.
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10.3.1 Starting with a Small Positive Database

If a good enough detector existed, which could find some true positives in the search

of a database, then these could be added to the training set and the whole detector

rebuilt. This should lead, in turn, to a better classifier which could find more true

positives. In order to examine the viability of this approach, the r1 AAM-SVM was

rebuilt using two much smaller databases. One, named 10th-22r, contained a 10 th

of the original all22r database. The other, named 100th-22r, contained a 100 th.

As in previous experiments, half of each training database was used to train the AAM

so that the SVM could learn about the AAM’s response to unseen images.

With the described changes, the standard AAM-SVM experiment was repeated. The

results are shown in figure 10.9. The smallest training database 100th-all22r had

only 40 faces in it, and this does not appear to be enough to allow the SVM to

accurately set the SVM’s bias. The false positive rate was so high (figure 10.9a,) that

the AAM-SVM found no false positives in the first four million tests of the negative

training database.

Looking at the point-to-point error distribution of the AAMs (in figure 10.10) the 20

examples of half the 100th-22r database does appear to be enough to produce a good

AAM for face location purposes. This means that it should be possible, in future

work with a larger database, to increase the proportion of SVM training examples

(currently 50%) that are unseen during AAM training, which should improve the

detection performance.

The inability to use a small database to build an AAM-SVM classifier capable of

refinement need not be a problem. They are capable of detecting some faces. The

100th-all22r AAM-SVM built from 40 faces was able to find another 56 faces even

in the difficult CMU database. The very high specificity, a problem for refinement

training, is now an advantage. When run over a large database, the detector will be

able to find some faces, without returning any false positives. A human could, at

this stage correctly label the results, and add the real faces to the positive training
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Figure 10.9: The performance of the standard ceg-AAM-SVM-r1 during training

on the original all22r database, and on two smaller subsets—10th-all22r and

100th-all22r. (See figure 9.6 and section 9.7 for a description of the layout.)
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Figure 10.10: Distribution of normalised fitting errors on the 2123 known faces of the

XM2VTS and CMU databases. (For scale: the interocular distance is about 1.2 normalised

units; the pixel width at level 1 of the multi-resolution AAM is about 0.25 units.)

database, and the false positives to the negative database. This would improve the

AAM-SVM’s performance, and allow it to find more true examples in the database.

More work would be needed to understand when this iterative process would converge.

It may well converge very quickly without having found a lot of the object examples

that do not look enough like the original training database. The results from the 398-

example 10th-all22r database, where after 2 refinement iterations, the AAM-SVM

could find about half of the faces in the CMU database are also encouraging.

10.3.2 Increasing the Size of the Positive Training Set With-

out a Larger Database

In any of the AAM-SVM experiments, the initial positive training set passed to the

SVM consists of examples obtained by fitting the AAM to the known points of its

labels. This is not strictly relevant training data since, during test, the SVM will

only see examples that the AAM has (locally) optimally fitted. Even accounting

for this, figure 9.2 shows that AAM search does find local minima away from the
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labelled points. By finding these local minima on the training database, and adding

them to the training set for the SVM, the overall classification performance should

be improved.

The minima can be found by starting the AAM from different initial positions near

to the labelled faces, and running AAM search. The pose displacements were selected

randomly from a box distribution 50% larger than the search grid, and also included

a ±20◦ rotation. After AAM search, the point-to-point error can be measured. If the

error is close enough to represent a possible fit, it is added to the SVM training set.

Close enough is defined (as per section 9.5.2) to be a point-to-point error of less than

0.1. The reason not to use fits that were classified as “not definitely unsuccessful” (i.e.

error of less than 0.8,) is because it is unclear whether fits with point-to-point errors

between 0.1 and 0.8 should be considered good fits. Some of them look intuitively to

be reasonable fits, but some do not. It is important to avoid poisoning the SVM’s

positive training set with bad examples, so only fits with very low point-to-point error

are added.

To test this idea, the final ceg-l1-AAM-SVM-r1 detector from section 10.2 was put

though several more refinement iterations. In each of these nine new iterations, the

positive training database was searched 10 times per face. On average, 40% of the

searches had too high a point-to-point error. The remainder were tested by the SVM,

and any false negatives added to the positive training set. In the first additional

refinement iteration, 725 false negatives were found, out of the ∼24,000 successful

searches. This fell to 12 new false negatives in the next iteration. The remaining

iterations found a total of 17 new false negatives.

During each refinement iteration, the negative database was also searched, in order

to estimate the effect of the false negatives on the false positive rate. For all but

the last iteration, the search for false positives was stopped after nselect = 10 had

been found. For the final iteration, the search was not stopped until the more usual

nselect = 200 false positive examples had been found.
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Figure 10.11: The standard ceg-l1-AAM-SVM-r1 detector trained with additional

false negatives from the positive training set. The original ceg-l1-AAM-SVM-r1 and

ceg-AAM-SVM-r1 results are shown for comparison. (See figure 9.6 and section 9.7 for a

description of the layout.)
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The results (along with the previous ceg-l1-AAM-SVM-r1 and the original ceg-

AAM-SVM-r1 results) are shown in figure 10.11. The PFPR/TPR measurements (fig-

ure 10.11e) are not easily comparable here, due to the reduction in nselect and hence

the reduction the potential number of negatives that could be successfully classified

with the bias set for a perfect false positive rate. Nevertheless, it appears that the

addition of the false negatives has not improved the detection performance. This is

perhaps due to the false negatives not being added to the training set early enough

in the refinement process to be useful. Given more time, this experiment should be

repeated but with the extra false negatives added every iteration.

10.4 Multistage Approach to Object Detection

One obvious method of speeding up the AAM-SVM as a face detector is to use one of

the fast face detection methods as an initial guess. In some experiments performed

mainly by David Cristinacce (a fellow Ph.D. student in ISBE,) but with my collabo-

ration, a 400-pixel improved corner-edge-gradient AAM was used as the final fitter in

a face localisation context. Initially, the cascaded-AdaBoost face detector[161] was

used to find the most likely face position in an image. Next, a set of pre-learnt re-

gions around the face were searched with AdaBoost detectors trained on small patches

around each labelled point of the training set, and the most likely three candidate

positions located. To find the maximum likelihood locations of the label points, his-

togram models of the distributions of each label point given each candidate location

were combined over all the candidate locations. This combination of feature detectors

and pairwise histograms is called a “Pairwise Reinforcement of Feature Responses”

(PRFR) model. Finally a corner-edge-gradient AAM with ellipsoidal limiters was

initialised on the optimal candidate locations, and normal AAM search was run.

The face detector, PRFR model and AAM were trained on a 1055 face webcam2

database collected within the lab, and marked-up with 17 points. It was tested on

the BioID database—see figure B.3. Figure 10.12 shows the cumulative distribution of
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Figure 10.12: The cumulative distribution of point-to-point errors for several combina-

tions of stages of the multi-stage face localisation method.

point-to-point errors found by the complete system. The errors have been normalised

by dividing through by the interocular distance. The complete system clearly gives

the most accurate face location.

Figure 10.12 also shows that the average control point locations for the best face

candidate, found by the Viola and Jones-style face detector, are not very accurate.

The best face candidate is also completely wrong for 3% of the test set. Since the rest

of the system currently depends on the single best face candidate, the whole system

has at least this amount of error. Future work will investigate using several of the

top face candidates, and the AAM-SVM to make the final decision.

On a 500MHz Pentium2 computer, the global search takes ∼ 300ms, PRFR takes

∼ 800ms, and AAM search takes another ∼ 300ms, for a single image. Taking account
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of the differences in resolution of the faces being searched for, this is about 700 times

faster than the ceg-l1-AAM-SVM-r1 detector could search the same image.

10.5 Statistical Significance

It is useful to quantify the statistical significance of the differences between the var-

ious AAM-SVM methods. Without over-generalising, one can see that the Perfect

False Positive Rate to True Positive Rate ratio (PFPR/TPR) graphs of all the dif-

ferent AAM-SVMs are approximately straight (figures 9.7e, 9.9e, 10.1e, 10.7e, 10.9e

and 10.11e.) That is, the graphs could be represented by a straight line, plus some

short-term deviations from the long-term trend. Note that there is not enough evi-

dence (i.e. long enough experimental runs) to make this statement confidently, but it

is a very simple model that the results do not contradict. The model has a simple in-

terpretation. A particular AAM-SVM has a given performance for any fixed number

of scanned negative training examples, which is related to the intercept of the line.

Increasing the number of negative samples scanned n-fold, reduces the PFPR/TPR,

ξn-fold, where (−ξ) can be thought of as a marginal efficiency, and is equal to the

negative slope of the line.

log PFPR/TPR = ξlog NN + C0

PFPR/TPR = C1NN
ξ

where C0 and C1 are constants, and NN is the number of negative examples scanned.

The (negative) y-axis intercept, −C0, could be seen as an theoretical initial perfor-

mance when given no negative training examples, and short of orders of magnitude

difference, it is probably unwise to read too much into it.

Using simple linear regression (the single variable case of the methods described in

section 7.1.2,) straight lines were fitted to the PFPR/TPR graphs. The estimates

and 95% confidence intervals for the slope and intercept of the fits are shown in
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Figure 10.13: The initial performance, and marginal efficiency of face detectors, includ-

ing the patch-SVM and various AAM-SVMs. The confidence intervals are at 95%.

figure 10.13. It shows that in the long run, there is not be any statistically significantly

differences in asymptotic performance between the various AAM-SVMs. Although, if

we consider the AAM-SVMs as a whole, there may be a significant difference between

the AAM-SVM’s and the patch-SVM’s asymptotic efficiency. The R2 values for all of

the AAM-SVM linear fits were between 0.83 and 0.98. The Osuna et al.-style patch

SVM had a much less confident straight line fit, with an R2 value of 0.10, putting

some doubt on the reliability of any inferences.

The wide confidence interval on the slope and intercept of the r0 AAM-SVM is due

largely to the very few number of data points. However, due to the r0 AAM-SVM’s

superior performance, many more samples were tested to get each of those data points

than in other AAM-SVMs, and so the error on those data points should be lower. No

consideration was taken of the intrinsic error on those data-points in the statistics

reported above. Measuring and using these errors with generalised linear modelling

is likely to weight the fit to the data points on the right of the five graphs (in each of

figures 9.7, 9.9, 10.1, 10.7, 10.9 and 10.11,) where more samples per data point will

have reduced the error. Such an improvement in the statistics may have a large effect
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on the slope estimates as well as the confidence widths, but this will be the subject

of future work.

10.6 Discussion and Conclusions

This section discusses whether AAM-SVMs could be used for image database search,

as well as the broader implications of the results of this and the previous chapter.

Potential variations on the AAM-SVM and possibilities for future work are also ex-

amined.

10.6.1 Implications of the AAM-SVM Results for Appear-

ance Modelling

The fact that the small training database AAMs work so well (figure 10.10) may be

related to the evidence in section 8.5 that the PCA is poorly estimating the true

distribution. There is evidence[39] that restricting the number of modes to well

below the number necessary to explain 99% of the total variation, can improve model

matching performance. 20 training examples effectively restricts the number of learnt

model parameters to no more than 20. Either 20 modes really is enough for good

AAM search, or there is good use to be made of more than 20 training examples.

Either way the PCA’s estimate of the principle variances, and of the dimensionality

of the principle manifold, is suspect.

Further evidence that too many modes are being included in the principle compo-

nent space comes from the surprisingly accurate ability of the p AAM-SVM’s (sec-

tion 9.8.2) to distinguish faces from non-faces. One explanation for this is that some

of the modes are modelling noise as well as the variation of valid faces. The SVM

could thus be learning to discriminate on the basis of these noise modes.
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The number of modes for optimal search can be picked using cross-validation. How-

ever, this author is always reluctant to use cross-validation during training. Doing

1-out-of-n cross-validation is very slow, but using any coarser grain will often result in

a biased estimate of optimal model parameters. For example, figure 4.20 shows that

decreasing the SVM training set size, would significantly inflate the estimate of the

optimal RBF width. More importantly, the use of cross-validation during training

implies a lack of knowledge of the behaviour of that system, and this author would

prefer to obtain that knowledge. Of course, cross-validation’s ability to work with no

assumptions makes it invaluable—particularly for testing, when as few assumptions

as possible should be made. However, the best way to deal with the poor estimates

of the number of model parameters (and their variance) will come from investigating

their cause.

Similar to the results in section 4.6, the RBF width of the optimal SVM was larger

than the range of each element from the feature vector. The typical RBF width was

∼ 2.5 compared to texture samples that were normalised to [0, 1]. This suggests that

a distribution, like the Gaussian, that has a smooth iso-probability surface is still the

correct choice for the appearance model’s PDF.

10.6.2 Future Improvements to the AAM-SVM

There are several aspects of the design of the AAM-SVM configuration that could

probably be improved in future.

AAM Starting Grid

Before explicitly thinking about the size (in pixels) of the AAM that would be required

for the work in this and the previous chapter, the author had implicitly assumed that

the radius of convergence of the AAM would be ten or a hundred times bigger than

a single pixel. The extra cost of performing AAM search over patch-based methods
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would be largely offset, by the need to search much less frequently than once per pixel.

Unfortunately, the measured radius is two pixels, leading to only a four fold decrease

in searches. Rolling the scale and displacement into one commensurate measure of

radius of convergence was crude, and separately measuring the scale radius might

allow for a larger step between AAM starting scales. Much more than another two-

fold improvement is unlikely however. The lack of significant numbers of outliers

in the face fitting error of the original intensity AAM (figure 10.4,) implies that the

starting grid was closely enough spaced for the intensity AAM. Therefore the starting

grid may be more dense than necessary for the improved corner-edge-gradient (ceg)

AAM. Increasing the grid spacing to 3×3 pixels would more than double the speed

of the AAM.

Reducing the AAM or Feature Vector Size

The belief within ISBE that the minimum workable size of an AAM is about 100

pixels, might not be true of the improved AAM. It is also likely to be based on more

complicated shape-models that the 22-point versions used here.

Anecdotal results showed that a 22-pixel improved AAM trained on the half-all22r

data was able to converge on the majority of the faces in the CMU database. (Unsur-

prisingly the 6-pixel layer was completely unable to converge on even easy faces, such

as are in the XM2VTS database.) Every pixel removed from the model will improve

the speed of the method.

The most likely reason why the higher resolution feature is not always unambiguously

better (see figure 9.7,) is that the r0 feature vector is too long. Whilst SVM classifiers

can cope with very long feature vectors, if the feature vector could be reduced whilst

still keeping the same information accessible, the performance might be increased. As

with the suggestion to reduce the AAM’s size, stripping out the unnecessary elements

from the SVM’s feature vector should have a significant effect on the speed of the

system.
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Better AAM Search

The results from section 10.4 imply that the AAM search could be getting stuck in

non-optimal solutions. By initialising the AAM with control points better than their

mean position, AAM search finds a closer fit. This has implications for the ordinary

AAM search algorithm, suggesting that it could still be significantly improved.

Further work is needed to find out if the closer fit has a lower AAM residual error, or

is really just a local minimum. If the latter, then investigation of better cost functions

would be warranted. If this closer fit really does have a lower residual error, then

better texture descriptors, may smooth out the cost function surface, and allow AAM

search to find the optimal minimum. Alternatively, every use of AAM search could

be preceded by PRFR point location to get a more accurate fit.

10.6.3 Better SVM training

There is a connection between the iterative refinement used for classifier training

and the SMO decomposition for SVM training. In an ideal world every single AAM

search result from the negative image database would be added to the SVM’s training

set, and the optimisation would make use of every vector to find the ideal classifi-

cation boundary. Unfortunately, in the real world it is not possible to store this

entire training set in a computer’s memory (let alone the Hessian required by sim-

ple SVM training algorithms.) The refinement iterations are an approximation to

the SMO’s heuristics for choosing the next pair of training vectors to examine. The

approximation is that some training vectors may not be considered at all.

Can the iterative refinement method be modified to improve the approximation?

Currently, false positive examples (and the false negatives in section 10.3.2) are added

to the SVM’s training set if they are on the wrong side of the classification boundary.

In a perfect SVM algorithm, they would be considered if they were inside the margin,

i.e. if there classification score was on the wrong side of ±1.
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Figure 10.14: The distribution of SVM classification scores on unseen data from the

final iteration of the ceg-l1-AAM-SVM-r1 detector.

Figure 10.14 shows the distribution of SVM classification scores on unseen data from

the final iteration of the ceg-l1-AAM-SVM-r1 detector extended with false negatives

from the positive database (section 10.3.2.) Most of the negative test data, and a

significant fraction of the positive test data is inside the margin. Training might

thus be expected to proceed more slowly, simply because it is much easier to find

examples from the negative database inside the margin, rather than on the wrong

side of the classification boundary. Further investigation would be necessary to see if

this reduction in speed was compensated for by improved classification performance

per iteration.

The SVM training method currently assumes that the face and non-face classes are

strictly separable, and so the relative cost of margin encroachment, C, is set to infinity.

This produces a classification boundary at the so-called neutral bias. During the

analysis of the experimental results in this and the previous chapter, the biases are

then adjusted, to calculate the AARC and PFPR/TPR statistics. However, Lin et

al.[85] point out that this is not the ideal way to adjust the bias, because the adjusted

margin position takes no account of any training vectors it may encounter as it moves.

Instead, the relative cost of margin encroachment (which becomes the upper bound,

210



Chapter 10. Further Experiments with AAM-SVMs

C, on the Lagrange multipliers in the SVM optimisation) should be split into Cneg and

Cpos. As Cpos is reduced, the classifier bias would move against false positives. Further

investigation would be needed to determine how much improvement in biased classifier

performance would be obtained using this method, rather than simply adjusting the

bias term in the final classification rule.

10.6.4 Variations on the AAM-SVM Method

This section discusses two, structurally very different, variations on the AAM-SVM.

Virtual Support-Vector Method

When treating the AAM as a very good form of patch normaliser, before normal

statistical classification, it is possible to see an alternative arrangement. Schölkopf

et al.[133] introduced the method of virtual support vectors for SVM classifiers. In

this method, SVM is trained on an un-normalised training set. Then the normaliser

is inverted, and applied to the learnt support vectors, to generate a set of examples

to which the classifier should be invariant. These virtual support vectors are then

added to the training set, and the SVM retrained. This method was employed by

Romdhani et al.[121] to avoid having to normalise for lighting variation.

Instead of using an AAM to normalise every input patch, one could build a normal

patch SVM detector from a limited, un-normalised, training set. After building an

AAM from the same data, take each support vector, fit an AAM, and then randomly

perturb the AAM parameters. In order for this to work with negative support vectors,

one would need to record the texture residuals during fitting, and add them to the

perturbed model to give the virtual negative support vector. This approach would

then acquire the rest of the advantages and disadvantages of the patch SVM method,

but with a significantly reduced training-set size requirement.
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Cascade Methods

The cascade method of combining multiple classifiers in sequence from cheapest/lowest

performance to slowest/highest quality, rejecting definite failures along the way, is well

known as a method of speeding up algorithms. Indeed this is the basis for Viola and

Jones[161], and Romdhani et al.[121]

Section 10.4 covers one obvious multi-stage approach. Although more work is needed

to add a final classifier onto the end of the process, section 10.4 does give an insight

into the expected performance of a future experiment. If the algorithm were working

as a face detector, and checked at most 10 potential fits per image, compared to the

100,000 that the existing AAM-SVM detector has to check, then there is the potential

for more than a thousand-fold increase in speed.

Given the large improvement (figure 10.2) in the discriminatory power of the residual

magnitude E when using improved AAMs, it should improve the performance of the

hierarchical search method of Edwards et al.[51] (see section 9.1.2.) Further, a full

SVM classification could be applied after the convergence of each level of the AAM.

A more powerful approach would be to use interest point detectors to suggest a small

set of initial hypotheses, which could then be refined by AAM search. Indeed, this

was one of the motivations for using the corner detector described in chapter 6. This

might lead to a scheme similar to first using Weber et al.’s constellation model[165, 58]

to quickly locate some hypothesis, followed by full fitting and selection using the

AAM-SVM method.

10.6.5 Could the AAM-SVM be Used for Image Retrieval?

The classification performance found by the best AAM-SVM used here (the ceg-

l1-AAM-SVM-r1 detector—see section 10.2) is not yet good enough to be used for

image database retrieval. Assuming approximately 105 starting positions tested per
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image, and that a given object is found on 500 images within a million image database,

a false positive rate of 4.5×10−9 at a reasonable true positive rate of 0.9, would be

needed to find the objects while still returning a 50% precision to the user. The best

result from the ceg-l1-AAM-SVM-r1 detector has a false positive rate of 6.2×10−6 for

a true positive rate of 0.9. That is not good enough by more than three orders of

magnitude.

Can these results be extrapolated, to the point where the classification performance

would be good enough for retrieval purposes? One reason for doubting the validity

of any extrapolation can be found in figure 4.20, where we can see the number of

support vectors growing faster than the number of examples added to the SVM’s

training set. These trends cannot go on for ever.

Even assuming that the straight line fits to performance curves will extend, there is

still a problem. It is unlikely that any of the true straight-line fits has slope, ξ, lower

than -1.0. This implies that the asymptotic efficiency of the detectors are all worse

than unity, or that to get a ten-fold improvement in classification performance will

need ever more training examples as the performance improves. In other words—any

detection method with n training examples that gives a excellent PFPR/TPR such

as 10−6n on a small scale experiment, may still need a training set bigger than the

test set for very large databases.

Obviously, the AAM-SVM is not currently fast enough to be used as a image database

retrieval method, by several orders of magnitude. The single-level ceg-l1-AAM-SVM-r1

detector could maybe search 5000 patches per minute on a modern CPU. To index a

new million-image database would take about 40 years. Using the speed of the multi-

stage face locator as an indicator, this time could be reduced to only a few weeks by

a method that does not need to exhaustively search every possible face location.
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10.6.6 Conclusions

It has been shown that the use of the AAM as an advanced feature detector improves

the performance of a statistical-classifier based object detector. The use of the statis-

tical classifier massively improves upon the AAM’s easily-available measures as means

of deciding whether the current fit really is an object, or merely a hallucination.

The success of the single-level 100-pixel AAM-SVM (cegl1-AAM-SVM-r1, section 10.2)

shows that the resolution of detectable faces is significantly lower that previously

demonstrated by others.

The AAM-SVM does not yet have a high enough specificity to be used as an object

detector for image database search. A statistical analysis suggests that the AAM-

SVM, and potentially other object-detection methods, may need negative training

databases at least as large as the intended test database in order to achieve the

necessary precision or specificity.
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Discussion

This chapter summarises the work described in this thesis, and highlights important

directions for future research, to reach the goal of detecting objects for Content Based

Image Retrieval.

11.1 Summary of Original Work and Results

11.1.1 Building Statistical Classifiers

Whilst harder to understand than the GMM network, the SVM was found to be

a generally better performing classifier. It was also much easier to train (no local

minima) and had fewer tunable training parameters.

No-one has previously reported adapting SMO to calculate the diameter on the MEH.

Whilst the maths involved in this modification was simple, there are several numeri-

cal precision issues which needed to be dealt with for successful convergence. Several

authors have suggested selecting the best RBF width (or other classifier parame-

ters) on the basis of the VC dimension of the data, or other simple cost functions.

However, these selections have all been described as manual processes. Whilst the

final search for the minimum is straightforward, bracketing the correct minimum
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successfully, efficiently and completely automatically is nontrivial and has not been

described elsewhere. This eliminates the effort and potential errors introduced by

manual intervention.

11.1.2 Improving the Accuracy of AAMs

AAMs (which were developed in this lab) have been widely studied and used. Whilst

it was expected that there existed room for improvement, it was assumed that that

this would be as a series of small steps. The addition of multiple texture descriptors

to create the Texture AAM, and the use of more theoretically justifiable limiters, as

described in this thesis, resulted in large reductions in search error, with improve-

ments in mean accuracy of 30%–70%. Others have reported large improvements for

image databases on which the original AAM does not work well, and where modifi-

cations to the AAM have been aimed at the requirements of a particular modality.

The use of multiple texture descriptors, and their combination through probabilistic

methods, means that the AAM can learn the best combination of the descriptors

given the data. So, as well as improving search performance on normal face images,

the method improves AAM performance on completely different modalities, such as

medical X-rays.

The examination of experimental results for statistical significance is not very pop-

ular in the computer vision field. However, it is essential when deciding whether a

particular theoretical improvement actually reduces error. One of the reasons (or

excuses) is that we know that our databases and results lack qualities that are as-

sumed by standard statistical methods, e.g. independence and normality. This thesis

introduces a bootstrap method for analysing the statistical significance of any im-

provements in AAM search error. Since any further improvements to the AAM are

expected to result in smaller reductions in search error, the superior statistical power

of the proposed bootstrap method over standard statistical methods will be valuable

for engineering further improvements in AAM performance.
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Whilst the use of limiters to constrain a statistical shape or appearance model is well

known, with both box and ellipsoidal limiters having been used in the past, this thesis

presents evidence for the first time that the choice has a significant effect on AAM

performance. All AAM work in this lab now uses ellipsoidal limiters by default.

11.1.3 Combined AAM-SVM Object Detection

This is the first time complicated appearance models like AAMs have been used with

statistical classifiers for object detection. A detailed study of the choice of feature

vector was undertaken. The residual outperformed the AAM parameters, and the

100-pixel residual was the best choice of resolution on the tasks examined. This

means that the AAM-SVM is detecting faces with about half the number of pixels

needed by other described methods.

The classification performance of the AAM-SVM detector was shown to improve

upon the patch SVM detector at the expense of a considerably lower speed than

is achieved by more recent patch-based detection methods. Initial work to bring

multi-stage techniques to the AAM-SVM suggests that this difference in speed can

be reduced without significant loss of detection accuracy.

11.2 Summary of Further Work

Directions for future work have been discussed at several points within this thesis.

The most salient of these are drawn together and discussed below.

This thesis introduced the Texture AAM. Further experiments on 3D and multi-

modal appearance modelling are in progress to further validate the Texture AAM,

and possibly refine the current set of texture descriptors.

The problem of the grossly incorrect estimates of the principal variances of the PDF
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of AAM model parameters (section 8.5,) are in obvious need of further investigation.

It might be possible to use the decision boundary of the SVM to estimate the best

Gaussian fit to the valid face manifold. This would improve the theoretical validity

of the AAM and should lead to better performance.

There are several additional fundamental improvements to AAMs that would be

valuable to an AAM-based image search engine. Currently it requires many hours of

human effort to manually mark up the AAM training images with the label points.

Possible methods of acquiring the first guess at the markup include the discriminating

eigenpatches method used by Perona et al.[166, 58], and the salient points method of

Walker et al.[163] Further optimisation of the label points, to create a good AAM,

may be possible with an appearance-model version of the automatic optimisation of

shape models due to Davies et al.[46]

In order to acquire enough false positives to train an AAM-SVM to the performance

levels required for database retrieval, the system will need to get much faster. The

obvious way of doing this, and a sensible target for future work, would be a means of

quickly guessing the most likely object locations in a given image. By only having to

check a few locations in each image, rather than a few hundred thousand, the system

could be fast enough to be potentially useful. Section 10.4 considered one approach

using multiple stages to quickly search for potential locations, rejecting implausible

hypotheses early, and refining the accuracy of plausible hypotheses. Another intended

approach that partially motivated the AAM texture preprocessor work in chapter 6

was to match a sparse non-maximally suppressed version of the multiple-texture

descriptor AAM, to interest point detectors run over the current image.

Further work is necessary to show that the AAM-SVM combination works for object

classes other than faces. Appearance models have been built and tested on other

classes such as cars, hands, eyes, and rats[29]. It is reasonable to expect the AAM-

SVM method to work on these. It had originally been hoped to test the AAM-SVM

on more object classes, e.g. horses, cars. However, after the poor initial results in
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section 10.3 it did not appear worth attempting the work on the small databases

that could be easily acquired. More rigorous experimentation should be attempted

with a more comprehensive database, or after acquiring evidence to suggest that the

AAM-SVM can learn from small databases.

The standard AAM method does not fit very well to partially occluded objects, and

so the AAM-SVM could not be expected to perform well in the presence of occlusion.

Several methods have been proposed to make appearance model search robust to

occlusion. Rogers[116] added structure variables to the AAM alongside the existing

shape and appearance parameters. When these structure variables were close to zero,

a section of the texture vector was not sampled from the image, but implied by the

texture PDF instead. Since the structure variables were correlated with the shape

and appearance in the combined model, the AAM learnt when to ignore parts that

were self-occluded. Gross et al.[63] have shown how to use a robust kernel during

AAM search to deal with occlusion. Spatial consistency of the occlusion is enforced

by using the same robust kernel scale over each triangle in the shape mesh. With

either of these methods, it is possible to mark as missing the residuals for occluded

pixels, hopefully allowing the SVM to learn to ignore the occlusion. Alternatively

the SVM classifier could be split into sections, and only the sections for non-occluded

pixels used to decide the current patch.

Stegmann and Larsen[142] have shown that using colour information improves AAM

search. Edwards et al.[50] showed better estimation of identity when tracking a

face through a video sequence, compared to just using a single frame. It would

be straightforward to extend the AAM-SVM to benefit from colour, and with some

effort, also from video.

11.3 Final Conclusions

The initial question posed in this thesis:
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Can Appearance Modelling be used for image database retrieval, and if

so how?

can be answered by stating that with further work to speed up the process, the

combined AAM-SVM could be used for image database retrieval.
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Contributions to VXL

A.1 Introduction

Almost all of the software written for this thesis, was written in C++ using VXL

(Vision-X-Libraries)[28] to provide numeric and image primitives and standard pro-

cessing functions. As well as using VXL, significant contributions were made to

these public libraries, including code, documentation, and maintenance. Two major

contributions to the public core VXL libraries are described in this appendix.

Also of note, is VXL’s coding environment[28]. Whilst the testing, documentation

methods, cross-platform coding and maintenance methods of VXL can be ignored by

users, they are nevertheless extremely valuable to adopt. Adding code level comments

which are automatically extracted to produce comprehensive API documentation,

makes it easier to remember and understand one’s old code. Writing software at the

same time as, or even after, writing the testing framework, gives a degree of confidence

not often warranted in research software. And by using software repositories and

automatic test systems, new bugs are caught, and cross-platform issues are exposed,

before they can affect experimental results.
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A.2 Background

“VXL (the Vision-something-Libraries) is a collection of C++ libraries

designed for computer vision research and implementation. It was created

from TargetJr and the Image Understanding Environment (IUE) with

the aim of making a lighter, faster and more consistent system. VXL

is written in ANSI/ISO C++ and is designed to be portable over many

platforms.”[28]

The research group I was involved within ISBE decided to adopt VXL soon after I

started working here. We contributed two large libraries to the core of VXL as part of

this adoption. I was joint designer and implementer of both of these contributions, as

well as being responsible for their successful proposal to the VXL consortium. Most

design decisions were taken in consultation with my co-designer Dr. Tim Cootes, and

often with the VXL consortium. However the design decisions described here were

primarily my responsibility.

A.3 vsl—VXL’s Binary IO Library

The one missing piece of functionality that prevented ISBE from using being able

to use VXL initially, was fast binary Input/Output (IO). ISBE’s existing libraries

expected to be able to read and write themselves quickly to and from a file stream.

They also expected to be able to read and write all C++ and base library primitives

(e.g. numbers, numeric vectors, geometric points, and arrays.) The IO file format in

ISBE’s existing libraries was supported both Intel and Sun 32-bit platforms.

There were several constraints imposed by the VXL consortium that prevented a

straight port of ISBE’s existing IO code. The most interesting three are:

• The various libraries of primitives (e.g. vnl which includes numeric vectors, and
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vgl which includes geometric points) could not share any common code beyond

what was provided by the standard C++ library. The modular design of VXL

also forbade the inclusion of the IO code for numeric vector in the same file or

even the same library as the rest of the code for the vector.

• There was a need to support a wider range of platforms including ones with 64

bit words.

• In ISBE’s original libraries ownership of data on the heap was made explicit—

each heap object always had exactly one other object responsible for its deletion,

and IO. VXL used a lot of shared-ownership smart pointers, and this causes

problems during IO.

A.3.1 Dependency Issues and Errors

In our experience, IO is prone to subtle errors, and separating the IO from the rest

of the code for a class is especially problematic. (This is mostly due to one source file

being modified without the other.) However there was no other way to meet VXL’s

dependecy requirements. Instead, errors have been avoided by adopting VXL’s self-

testing mechanisms, and rigourously testing each class’s IO behaviour. The IO system

was split into a library that could deal with C++ standard types and classes, and an

add-on IO library for each core VXL library.

A.3.2 IO for Shared Pointers.

Shared pointers are objects that behave like ordinary pointers or references. Several of

them can point to the same object, and they are said to share ownership. This means

that you cannot make one pointer responsible for the objects deletion or IO. The

problem of deleting a shared object too early, is dealt with using reference counting.

With IO, the problem is more subtle. If two objects A and B each have a shared
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pointer to the same object C, then normal IO will not work correctly. During the

output, both A and B will be saved along with two copies of C (one each for A and

B) in the file. There will therefore be two copies of C when the file is loaded back

into memory. Since we are using IO to save the state of a data structure, this is not

satisfactory.

The standard solution to this problem is called serialisation[168]. This gives each

object a serial number when it is written to disk. If the object already has a serial

number, it is assumed to have already been output and instead a record of that serial

number is written to disk. During input a record of each object’s location and serial

number are stored, and whenever a record is found indicating that something has

been stored twice, the loaded value is set to point to the existing object.

I looked at several implementations: Microsoft Foundation Classes[13], Qt[151], the

Image Understand Environment DEX[72] , and Java[144]. The first two implemen-

tations suffered from needing to use macros in the class declaration to add a variable

to the class which would record its serial number. Java also has special requirements

of the class definition to perform serialisation. This general approach could not be

used by VXL, which needed an entirely external record connecting serial numbers to

objects. These implementations also suffer from requiring serial numbers for every

object undergoing IO whether they are shared or not—a significant space overhead.

The IUE’s DEX protocol used the explicit instantiation of external helper objects by

the programmer, with one helper object per object to be serialised. This required a

large coding overhead for the programmer.

Discarding these previous approaches, a better solution was to use a mapping from

an object’s memory address to serial number. The extra space overhead of map

management would be exceeded by wasted space of the implementations above, for

most applications. Whilst not every object has a unique memory address (if A is

the first member of B both will have identical addresses) every object that might

need a serial number does have a unique address. The map is filled with entries
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each time an object that needs a serial number is written to disk. During input,

the map is from serial number to memory address. By storing a unique map with

each stream, this mechanism requires no coding overhead for programmers, and also

allows simultaneous IO to multiple streams without any threading conflict.

A.3.3 Cross Platform Binary IO

To be acceptable to the VXL consortium is was necessary to use an IO format that

would be compatible on the widest possible range of platforms that might be used in

computer vision research. One possible solution was to use text rather than binary

IO. However, testing showed this to be many times slower than our existing binary

IO solution.

Almost all platforms use IEEE standard 754 floating point representations, so byte

swapping to a fixed endian format works for these. The most interesting problem is

in saving integers. Since it is not possible to take a integer variable over 232 saved

from a 64 bit platform, and load it in meaningfully on a 32-bit platform, a useful set

of constraints are as follows:

1. A platform must be able to save and load correctly every integer it is capable

of representing.

2. A platform must be capable of loading any number that it can represent, even

if that number was saved by a platform with a larger machine word.

Two solutions are

1. Record the size of the various types in the file header during saving, and then

output in native format. This has the advantage of being very quick.

2. Save integers in a single fixed format that can cope with any word length. This

has the advantage of having the number of possible file/machine configura-
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tions increase linearly with the number of platforms as opposed to a quadratic

increase as required by the first solution.

I implemented an instance of the second solution. Each integer was saved as an ar-

bitrary length set of bytes. The first seven bits represented the next most significant

bits of the number. The eighth bit was used to mark the last byte. Timing experi-

ments showed that the conversion times were much smaller than text conversion or

the disk IO time.

A.4 vil2—A Replacement Image Library

VXL’s original imaging library vil1, was not capable of providing many of ISBE’s

requirements. We needed support for arithmetic indexing, planes, an easy-to-use

default image class, and compatibility with 3d. A VXL-compatible Manchester Image

Library was written which had these features, and used vil1 for image loading and

saving. Over the next 18 months it became clear that we were duplicating large

amounts of image processing code, and did not have access to some of the more

speculative work published by other members of the VXL consortium. We decided

to try and merge the two imaging libraries to everyone’s satisfaction.

vil1 had (and its users required) good support for very large images. It did this

by having a single image class hierarchy for users. At the base was a general repre-

sentation of an image somewhere (on disk or in memory.) More specialised classes

provided abilities to read and write particular image file formats, or in the case of

in-memory images, manipulate the pixels. Unfortunately, the forcing of in-memory

images into the same tree without significant loss of efficiency, resulted in a great

deal of confusion for users, without making it that easy to manipulate very large

images on disk. The only common access to pixel values across all image types was

by getting and putting sections—packed buffers of raw image data.
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The rewrite solved this complexity by separating the generalised-image-somewhere

concept from the in-memory image. The in-memory image concept was copied from

the Manchester imaging library after extensive simplification.

I found through several code writing experiments that the generalised image concept

could be made similar to the existing generalised image type in vnl, only much easier

to use, if the common API allowed users to get and put an in-memory image object.

This separates the design of algorithms which run efficiently over large images into

an efficient in-memory implementations followed by the stitching of sections of in-

memory results together.

A.5 Discussion

Whilst the work in this appendix was not research, it is published and used by the

VXL community. It would be very difficult to tell if the designs are optimal in any

useful sense. However, it is worth noting that a section on IO added to the C++

FAQ[27] made very similar recommendations to, but two years later than, the above

design of VXL’s IO library.
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Database Descriptions

b

a

Figure B.1: Examples from Messer et al.’s[93] XM2VTS database. There are 1816 images

of 720×576 pixels. They were labelled by ISBE with 68 points.
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b

a

Figure B.2: Examples from Rowley et al.’s[122, 145] CMU database—the heads on the

playing cards are included, the bear is not. There are 507 faces in 117 images of varying

resolutions. The non-upright part of the published database was ignored. They are pub-

lished at http://vasc.ri.cmu.edu//idb/html/face/frontal images/index.html

with rough 6 point markup, which was extended to 22 points by this author.

Figure B.3: Examples from Jesorsky et al.’s[73] BioID database, available from http:

//www.humanscan.de/support/downloads/facedb.php. There are 1518 images of

384×286 pixels. They are published with 20-point markup, which was extended to 22

points by this author.
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Figure B.4: Examples from ISBE’s expression database. There are 399 images of

247×365 pixels, and they are labelled with 68 points.

Figure B.5: Examples from the author’s webimagesB database. There are 144 faces in

43 images of varying resolutions. The two eye centres of each face are labelled.
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Figure B.6: Examples from the author’s webimagesC database. There are 991 faces

in 623 images, with the faces varying in resolution from 4.5 to 373 pixels interocular

separation. The two eye centres of each face are labelled. Faces where the two eyes

cannot be seen are ignored.
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Figure B.7: Examples from some of ISBE’s additional databases which were used in the

all22r database. The images are labelled with at least 68 points.

a b

c d

Figure B.8: The first four images from Shapiro’s [137] UWash database. It consists of

282 images containing no faces, downloaded from http://www.cs.washington.edu/

research/imagedatabase/groundtruth/. The images are all 756×504 pixels.
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[105] S. Obdrz̆álek and J. Matas. Local affine frames for image retrieval. In Interna-

tional Conference on Image and Video Retrieval, pages 318–27, 2002.

[106] K. Ohba and K. Ikeuchi. Detectability, uniqueness, and reliability of eigen

windows for stable verification of partially occluded objects. IEEE Transactions

on Pattern Matching and Machine Intelligence, 19(9):1043–8, 1997.

[107] National Osteoporosis Foundation Working Group on Vertebral Fractures. As-

sessing vertebral fractures. Journal of Bone and Mineral Research, 10(4):518–

23, 1995.

[108] E. Osuna, R. Freund, and F. Girosi. Training support vector machines: An ap-

plication to face detection. In IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, pages 130–6, 1997.

[109] P. J. Phillips, H. Wechsler, J. Huang, and P. J. Rauss. The FERET database

and evaluation procedure for face-recognition. Image and Vision Computing,

16(5):295–306, 1998.

[110] J. C. Platt. Fast training of support vector machines using sequential minimal

optimisation. In B. Schölkopf, C. Burges, and A. Smola, editors, Advances in

kernel methods—support vector learning, pages 185–208. MIT Press, 1998.

[111] J. C. Platt. Using sparseness and analytic QP to speed training of support

vector machines. In M. S. Kearns, S. A. Solla, and D. A. Cohn, editors, Advances

in Neural Information Processing Systems. MIT Press, 1998.

[112] The R Project. R. http://www.r-project.org/, 2003.

242



Bibliography

[113] T. D. Rikert, M. J. Jones, and P. Viola. A cluster-based statistical model

for object detection. In International Conference on Computer Vision, pages

1046–53, 1999.

[114] B. D. Ripley. Pattern recognition and neural networks. Cambridge University

Press, 1996.

[115] J. Rissanen. Modeling by shortest data description. Automatica, 14:465–71,

1978.

[116] M. Rogers. Exploiting weak constraints on object structure and appearance for

segmentation of 2-D images. PhD thesis, University of Manchester, 2001.

[117] K. Rohr. On 3D differential operators for detecting point landmarks. Image

and Vision Computing, 15:219–33, 1997.

[118] S. Romdhani, B. Blanz, and T. Vetter. Face identification by fitting a 3D

morphable model using linear shape and texture error functions. In European

Conference on Computer Vision, volume 4, pages 3–19, 2002.

[119] S. Romdhani, S. Gong, and A. Psarrou. A multi-view nonlinear active shape

model using kernel PCA. In British Machine Vision Conference, 1999.

[120] S. Romdhani, A. Psarrou, and S. Gong. On utilising template and feature-based

correspondence in multi-view appearance models. In European Conference on

Computer Vision, volume 1, pages 299–813, 2000.

[121] S. Romdhani, P. Torr, B. Scholkopf, and A. Blake. Computationally efficient

face detection. In International Conference on Computer Vision, volume 2,

pages 695–700, Vancouver, 2001.

[122] H. A. Rowley, S. Baluja, and T. Kanade. Rotation invariant neural network-

based face detection. IEEE Transactions on Pattern Matching and Machine

Intelligence, 20(1):23–38, 1998.

[123] Y. Rubner and C. Tomasi. Texture-based image retrieval without segmentation.

In International Conference on Computer Vision, pages 1018–24, 1999.

[124] Y. Rui, T. S. Huang, and S. F. Chang. Image retrieval: Current techniques,

promising directions and open issues. Journal of Visual Communication and

Image Representation, 10:39–62, 1999.

243



Bibliography

[125] E. Sali and S. Ullman. Recognizing novel 3-D objects under new illumination

and viewing position using a small number of example views or even a single

view. In International Conference on Computer Vision, pages 153–61. IEEE,

1998.

[126] E. Sali and S. Ullman. Combining class specific fragments for object classifica-

tion. British Machine Vision Conference, pages 203–13, 1999.

[127] J. W. Sammon. A nonlinear mapping for data structure analysis. IEEE Trans-

actions on Computers, 18(5):401–9, 1969.

[128] S. Santini and R. Jain. Similarity queries in image databases. In IEEIEEE

Computer Society Conference on Computer Vision and Pattern Recognition,

pages 646–51, 1996.

[129] C. Saunders, M. O. Stitson, J. Weston, L. Bottou, B. Schölkopf, and A. Smola.

Support vector machine—reference manual. Technical Report CSD-TR-98-03,

Computer Science, Royal Holloway, University of London, 1998.

[130] R. E. Schapire. The boosting approach to machine learning: An overview. In

MSRI Workshop on Nonlinear Estimation and Classification, 2002.

[131] B. Schiele and J. L. Crowley. Object recognition using multidimensional recep-

tive field histograms. In European Conference on Computer Vision, page 6109,

1996.

[132] B. Schiele and A. Pentland. Probabilistic object recognition and localization.

In International Conference on Computer Vision, pages 177–82, 1999.

[133] B. Schölkopf, C. Burges, and V. Vapnik. Incorporating invariances in support

vector learning machines. In Int. Conf. Artificial Neural Networks, pages 47–52.

Springer, 1996.

[134] S. Sclaroff and J. Isidoro. Active blobs. In International Conference on Com-

puter Vision, pages 1146–53, 1998.

[135] I. M. Scott, T. F. Cootes, and C. J. Taylor. Improving appearance model

matching using local image structure. In Information Processing in Medical

Imaging, pages 258–69, 2003.

244



Bibliography

[136] I. M. Scott, T. F. Cootes, and C. J. Taylor. Improving appearance model

matching using local structure. In Medical Image Understanding and Analysis,

pages 5–9, 2003.

[137] L. Shapiro. University of Washington image database. http://www.cs.

washington.edu/research/imagedatabase/groundtruth/.

[138] L. Sirovich and M. Kirby. Low-dimensional procedure for the characterization

of human faces. Journal of the Optical Society of America A, 4(3):519–24, 1987.

[139] A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain. Content-

based image retrieval at the end of the early years. IEEE Transactions on

Pattern Matching and Machine Intelligence, 22(12):1349–80, 2000.

[140] J. R. Smith and S.-F. Chang. Visually searching the web for content. IEEE

Multimedia, 4(3):12–20, 1997.

[141] P. P. Smyth, C. J. Taylor, and J. E. Adams. Vertebral shape: Automatic

measurement with active shape models. Radiology, 211:571–8, 1999.

[142] M. B. Stegmann and R. Larsen. Multi-band modelling of appearance. Image

and Vision Computing, 21(1):61–7, 2003.

[143] M. Styner, J. A. Lieberman, and G. Gerig. Boundary and medial shape analysis

of the hippocampus in schizophrenia. Medical Image Analysis, page To appear,

2004.

[144] Sun. Java documentation. http://java.sun.com/.

[145] K. K. Sung and T. Poggio. Example-based learning for view-based human face

detection. IEEE Transactions on Pattern Matching and Machine Intelligence,

20(1):39–51, 1998.

[146] M. J. Swain and D. H. Ballard. Color indexing. International Journal of

Computer Vision, 7(1):11–32, 1991.

[147] B. M. t. H. Romeny, L. M. J. Florak, A. H. Salden, and M. A. Viergever.

Higher order differential structure of images. In Information Processsing in

Medical Imaging, LNCS, pages 77–93, 1993.

245



Bibliography

[148] N. Thacker, P. Riocreux, and R. Yates. Assessing the completeness properties

of pairwise geometric histograms. Image and Vision Computing, 13(5):423–9,

1995.

[149] K. Tieu and P. Viola. Boosting image retrieval. In IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, volume 1, pages 228–

35, 2000.

[150] A. B. Torralba and A. Oliva. Semantic organization of scenes using discriminant

structural templates. In International Conference on Computer Vision, pages

1068–75, 1999.

[151] Trolltech. QT documentation. http://doc.trolltech.com/2.3/index.html,

2001.

[152] E. Trucco and A. Verri. Introductory techniques for 3-D computer vision.

Prentice-Hall, 1998.

[153] M. Turk and A. Pentland. Eigenfaces for recognition. Journal of Cognitive

Neuroscience, 3(1):71–86, 1991.

[154] M. Turk and A. Pentland. Face recognition using eigenfaces. In IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, pages 586–91,

1991.

[155] A. Vailaya, M. A. T. Figueiredo, A. K. Jain, and H.-J. Zhang. Image classi-

fication for content-based indexing. IEEE Transactions on Image Processing,

10(1):117–30, 2001.

[156] V. Vapnik. The nature of statistical learning theory. Springer-Verlag, New York,

1995.

[157] V. Vapnik and O. Chapelle. Bounds on error expectation for support vector

machines. Neural Computation, 12(9), 2000.

[158] J. Vesanto, J. Himberg, E. Alhoniemi, and J. Parhankangas. SOM toolbox for

Matlab 5. Manual A57, Helsinki University of Technology, Neural Networks

Research Centre, 2000.

246



Bibliography

[159] T. Vetter, M. J. Jones, and T. Poggio. A bootstrapping algorithm for learning

linear models of object classes. In IEEE Conference on Computer Vision and

Pattern Recognition, pages 40–6, 1997.

[160] P. Viola. Complex feature recognition: A Bayesian approach for learning to

recognize objects. Technical report, AI Lab., MIT, 1996.

[161] P. Viola and M. Jones. Rapid object detection using a boosted cascade of

simple features. In IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, volume 1, pages 511–18, 2001.

[162] E. Wachsmuth, M. W. Oram, and D. I. Perrett. Recognition of objects and

their component parts—responses of single units in the temporal cortex of the

macaque. Cerebral Cortex, 4(5):509–22, 1994.

[163] K. Walker, T. F. Cootes, and C. J. Taylor. Locating salient object features. In

British Machine Vision Conference, pages 463–72, 1998.

[164] R. Walker, P. Foster, and S. Banthorpe. Content production and delivery

for interactive multimedia services—a new approach. BT Technology Journal,

15(2):74–82, 1997.

[165] M. Weber, W. Einhuser, M. Welling, and P. Perona. Viewpoint-invariant learn-

ing and detection of human heads. In International Conference on Automatic

Face and Gesture Recognition, pages 20–7. IEEE Computer Soc., 2000.

[166] M. Weber, M. Welling, and P. Perona. Towards automatic discovery of object

categories. In IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, volume 2, pages 101–8, 2000.

[167] M. Weber, M. Welling, and P. Perona. Unsupervised learning of models for

recognition. In European Conference on Computer Vision, pages 18–32, 2000.

[168] D. Wiebe. A distributed repository for immutable persistent objects. SIGPLAN

Notices, 21(11):453–65, 1986.

[169] L. Wiskott, J. M. Fellous, N. Kruger, and C. Malsburg. Face recognition by

elastic bunch graph matching. IEEE Transactions on Pattern Matching and

Machine Intelligence, 19(7):775–9, 1997.

247


