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Abstract

Video indexing is a central component necessary to facilitate efficient content-based retrieval and
browsing of visual information stored in large multimedia databases. This thesis presents work
towards a unified framework for automated video indexing. To create an efficient index, a set
of representative key frames are selected which capture and encapsulate the entire video content.
This is achieved by, firstly, segmenting the video into its constituent shots and, secondly, selecting
an optimal number of frames between the identified shot boundaries. The segmentation algorithm
is designed to detect both abrupt shot transitionsutg and gradual transitions, suchdissolves
andfades This is achieved by means of a two-component frame differencing metric taking both
image structure and colour distributions into account. The application of hierarchical block-based
normalised correlation and local colour histogram differences leads to a method which is both
accurate and robust.

After the segmentation step, the key frames are selected to minimise representational redundancy
whilst still portraying the content in each shot. This is achieved by employing a graph-based
representation of each shot where nodes represent frames and connection weights the amount of
shared content between the frames corresponding to the connected nodes. The key frames are then
selected as those corresponding to nodes present on the least weight path through the graph. As
a final step, the camera motion is characterised to provide an additional layer of video annotation
which may prove useful for indexing.
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Chapter 1

Introduction

1.1 Video Indexing

Indexing and annotating large quantities of film and video material is becoming an increasing
problem throughout the media industry, particularly where archived material is concerned. Man-
ual indexing is currently the most accurate method but it is a very labourious and time consuming
process [42]. To catalogue material an archivist has to view many hours of film on a sequential
basis to locate shot boundaries and textually annotate each individual shot. This means that con-
siderable amounts of archived data remain unindexed. Apart from being slow to generate, the
use of textual annotations for indexing and searching large databases can obviously lead to loss
of information. Unless there is a well defined grammar to follow, it can be unclear to the person
providing the annotation what level of detail the description should be. The drawbacks of existing
facilities suggest an interface is required for browsing and searching video content that is easier
and less time consuming to produce.

For film researchers, probably the most important development of the last few years is the increas-
ing availability of on-line catalogues [21]. Previously, film researchers physically visited many of
the available libraries to conduct their research, or assigned a member of staff to do it on their be-
half [30]. Increasingly, this can be done remotely, thus saving both time and money. For instance,
the on-line catalogue has proved vital for catalogues held abroad. Whilst the storage and delivery
capabilities of computer systems are expanding to meet these demands, on-line catalogues can
only replace an actual visit to a library if they are at least as capable as the old system [21]. To be
a useful resource an on-line catalogue should:
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e contain details of the whole database. Limited catalogues or those that offer a ‘best of” or
‘most popular’ collection might not be useful for all enquiries;

o offer efficient indexing and querying tools. Older card indexes with the added back-up
of staff who really know their collection can sometimes provide faster access, often with
cross-referencing capabilities that put many search engines to shame [21].

One of the important developments of on-line catalogues is the availability of sites such as
FOOTAGE.net which provides access to hundreds of majtwck footagesources worldwide
without having to access them one by one. It provides a facility to search millions of shots in the
combined on-line databases by matching words in the textual description for each shot.

Stock footage is a collection of film images that have been previously shot, and are reused in
commercials, TV shows, corporate productions, etc. For example, if a travel company needs a shot
of a sunset on an empty beach, instead of hiring a crew, renting equipment, travelling, shooting
footage, developing the footage, re-shooting in case it does not turn out right, there probably exists
a shot within a stock footage collection which can be used rather than the production of new film.
One drawback of re-utilising existing material is the difficulty in searching and browsing such
collections to find a suitable shot. The current state of the art for an on-line catalogue is to search
for the keywords in the textual annotation for each shot. Searching for “sunset” and “beach” on
FOOTAGE.net, for example, returns 2785 records in 25 databases. The description of shots can
vary from

‘Honolulu palm treesbeachandsunsetsky’ to

‘Two men galloping orbeactiThree riders irsunsesilhouette’.

Obviously, these descriptions are sufficient to know that the second shot may not be suitable if an
empty beach is required and more words can be added to refine the search. However, there are
many other shots with descriptions such as ‘Two palm treebeathwith tropical sunsetsky’

that might be equally suitable. At this stage, a film researcher cannot view the shots and will have
to pay for a custom viewing cassette which is a compilation of all shots they are interested in.
Although not always cheap it is often less expensive than shooting new film. If a film researcher
was on-site in a library they could view the individual shots but many libraries charge for using
such facilities and it is a time consuming process to locate each shot to view. Hence, the use of
multimedia information, on-line or in a library, is inhibited by the inability to browse and search

the video content efficiently.

*http://www.footage.net
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The predominant approach to automate the video indexing process is to create a video abstract. A
video abstract is defined as a sequence of images extracted from a video, much shorter than the
original yet preserving its essential message [59]. As well as being less time consuming to produce
than a textual annotation, a visual summary to be interpreted by a human user is semantically
much richer than a text. A video abstract can then be used to index video that so far has not been
catalogued, as browsing a shorter sequence of images is quicker than watching a whole film. It can
also be used in conjunction with an existing textual annotation to augment the searching process.
In the example above, searching for a sunset on a beach, a video abstract would give the film
researcher an indication of the visual content of each shot and aid in the process of deciding which
shots would be suitable, resulting in fewer shots being ordered on the custom viewing cassette. In
addition, once a shot has been found that appears to be suitable, the images in the video abstract
can be used to retrieve similar shots (retrieval by example) [1, 5, 12, 75].

The difficulty in composing such an abstract is determining which frames best represent the video
contents. The solution to this problem often depends on the context of the application in which

the abstract is being used. Lienhart et al. [59] concentrated on the generation of trailers for movies
resulting in abstracts that are short and designed to attract the attention of the viewer without
revealing too much of the storyline. In contrast, an abstract for a documentary or a digital video

library should try to represent all the video content [68]. The present work focuses on generating

a video abstract for the purpose of video indexing and retrieval.

In order for a video abstract to be an efficient index, each key frame should represent a video
segment where there is little or no significant change in the scene content. This enables a video
abstract to encapsulate and capture the content of the sequence whilst removing the visual content
redundancy amongst video frames [43, 91]. There exists a hierarchical structure within a video
sequence, as illustrated in Fig. 1.1, which can be exploited in the extraction of such key frames. At
the lowest level it consists of a set of frames. At the next level frames are grouped together to form
shots defined as a sequence of frames that were captured continuously from the same camera
operation. Shots unified by a common locale or event are then grouped togethscents

These scenes then complete the video sequence. Once the video sequence has been broken down
into a set of meaningful and manageable segments (shots), work can be done to characterise the
individual components for indexing and annotation. Therefore, temporal segmentation of a video
sequence is typically the first step towards automatic annotation of digital video sequences [45,
13].
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Shots

Frames and selected
Key Frames

Figure 1.1: Hierarchical structure within a video sequence.

1.2 Shot Transitions

Shot transitions are time between camera shots that lead the viewer from one shot to another and
are added during post-production. The connections between shots are as important as the shots
themselves with all transitions showing a change of time or space [50, 47]. There are two different
types of transitions that can occur between shots: abrupt (discontinuous) shot transitions, also
referred to as cuts; or gradual (continuous) shot transitions, such as fades, dissolves and wipes or
pushes. These transitions can be defined as follows:

e cut an instantaneous change from one shot to another;

fade-in a shot gradually appears from a constant image;

fade-out a shot gradually disappears to a constant image;

dissolve the current shot fades out while the next shot fades in;

wipe the next shot is revealed by a moving boundary in the form of a line or pattern;

push the next shot pushes the previous shot off the screen to the left, right, up or down.

Examples of such shot transitions are shown in Fig. 1.2. There are hundreds of different types
of pushes and wipes, and all are considered to be special effects. A couple of variations of the
wipe transition are illustrated in Fig. 1.3. Detection of all the categorised transitions will segment
a video sequence into its individual shots, each representing a different time or space, ready for
further higher-level processing to characterise it.

Most people have watched innumerable hours of television and/or film during their lifetime and
share an implicit film/video ‘grammar’, particularly when it comes to shot transitions [44]. For
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(a) A shot cut

EEY

(b) A fade in

(c) A fade out

Alhihid

(d) A dissolve

(e) A wipe

(f) A push to the left

Figure 1.2: Examples of different types of shot transitions.

example, a dissolve from one camera shot to another usually means a relatively short amount of
time has passed. Producers use this implicit grammar to help viewers understand the video and
violating the grammar will frustrate the viewer’s expectations. The cut is the simplest, most com-
mon way of moving from one shot to the next. It is considered a ‘smooth cut’ if there is continuity
between the two images, for example, in an interview scene, if the cut moves the observer between
the interviewee and the interviewer. The dissolve (also known as a cross dissolve) influences the
audience’s perception of screen time and the rhythm of events. It suggests a thematic tie between
two shots. For example, a dissolve might be used to shorten a long action such as an air plane
flight and to shift from the take-off location to the destination of the same flight. A fade denotes
the beginning or end of a scene, episode or idea. Fades often imply a more important change of
place or passage of time than a dissolve. Due to this film grammar being used consistently, the
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D I

second shot second shot

(a) corner-to-corner (b) side-to-side
I I
second shot second shot
(c) centre-out (d) boundary-in

Figure 1.3: lllustration of a variety of wipe transitions.

most common edit effects found in video sequences are cuts, fades and dissolves. In fact, the
data set used in this work contains video sequences from several different genres, including sport,
film, documentary, drama and comedy series and in total contaihsuts, 94 dissolves and 04

fades over more tha®000 frames. For this reason, the majority of previous work and the work
presented here focuses on detecting only these types of transitions.

1.3 Aims and Objectives

The considerable amount of video data in multimedia databases requires sophisticated indices for
its effective use [13]. Manual indexing is currently the most effective method to do this, but it

is slow and expensive. For this reason there is a need for automated methods to annotate video
sequences and provide a content description according to the user’s needs, by allowing efficient
access to the video data without viewing the material in its entirety. Users can be interested in a

range of video characteristics ranging from its decomposition into shots and scenes, to the most
representative frames or sequences, the camera work (e.g. panning, tilting, zooming), the identity
of the people that appear in it, and their movements and dialogues [13].

Based on this observation, the work presented here investigates the video indexing task. The ob-
jective is to extract a subset of representative key frames from a video sequence to enable content-
based video browsing and retrieval. The work is performed in the domain of uncompressed video
and aims to detect shot transitions to segment temporally a video sequence into individual shots
before extracting key frames. The motivation for addressing this problem is to establish efficient
authoring and querying tools to promote full exploitation of on-line and archived video data.
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Temporal Key Frame >
% Segmentation Selection -

Media
Y Y
Classification of Feature
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Query Image T

S

Operation

Figure 1.4: A diagram of an automated video indexing system.

1.4 Contributions

The diagram in Fig. 1.4 outlines an automated video indexing system which temporally segments

a video sequence into shots and selects representative key frames. These key frames can then be
used to browse the video content or extracted features can be used to match video content to a
users query to enable shot retrieval. The main contributions are highlighted in blue in Fig. 1.4 and
can be outlined as follows.

1. A novel method for detecting abrupt shot transitions which uses block-based correlation co-
efficients and histogram differences to measure the visual content similarity between frame
pairs. Hierarchical motion compensation is employed to ensure the algorithm is robust in
the presence of camera and object motions. It is shown to achieve a higher recall and preci-
sion compared with five commonly used techniques. This is an extension of the work first
published in [69].

2. A novel method for detecting gradual shot transitions which measures the difference be-
tween the visual content of distant frames using the same features as in the shot cut detection
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algorithm, first reported in [70, 72]. Motion estimates obtained from the shot cut detection
algorithm are used to track regions of interest through the video sequence. This enables
the distinction between content changes caused by gradual transitions and those caused by
camera and object motions.

3. A method which, by taking explicit account of camera motion estimates and adopting a
graph-based approach, extracts representative key frames for each shot identified by the
shot transition detection algorithm. This creates an efficient index into the video data. This
work builds on that originally published in [71].

4. The use of a line simplification algorithm to characterise the apparent camera motions con-
tained within each shot to provide a further level of annotation, originally presented in [73].

1.5 Thesis Outline

The thesis is organised as follows.

Ch. 2 provides a detailed review of previous approaches to shot transition detection and video
indexing. It highlights their relative merits and shortcomings which sets the context for the
present work.

Ch. 3 describes the hierarchical motion and histogram based approach to detecting abrupt tran-
sitions. Correlation coefficients and histogram differences are used to generate a motion
compensated measure of content similarity between two frames.

Ch. 4 describes an extension of the shot cut detection method to detect fades and dissolves.

Ch. 5 describes a method that uses a graph-based approach to extract representative key frames
to create an efficient index into video data. A method is also described to classify different
types of camera motions.

Ch. 6 concludes the thesis with a synopsis of the presented work and a summary of the relative
merits and shortcomings of the approach. Directions are also given as to where future
research effort could be spent to enhance and improve on the work.



Chapter 2

Background

The purpose of this chapter is to present a brief review of previous work relating to the problems
of shot cut detection, gradual transition detection and key frame selection. The methods to be
outlined have been chosen as it was felt they were representative of the main approaches that have
been used to tackle these problems so far. This review also motivates and presents a platform for
the current work. Any algorithms that are used for comparative purposes are presented in more
detail in the relevant sections. Furthermore, a summary of the key issues faced when tackling each
problem is given at the beginning of each corresponding chapter.

2.1 Shot Cut Detection

This section summarises previous approaches to shot cut detection. In the case of a shot cut, one
image is immediately replaced by another. Therefore, the aim of any shot cut detection method is
to select some feature related to the visual content of a video such that:

¢ any frames within the same shot exhibit similar properties, and
¢ frames belonging to different shots would have dissimilar feature characteristics.
Most of the existing methods use some inter-frame difference metric. A frame pair where this

difference is greater than a predefined threshold is deemed to contain a shot cut. There have been
many different features and metrics proposed for the purpose of shot cut detection and these have
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been analysed in several comparative studies [8, 61, 96, 58]. These features and metrics have been
subtly modified in a variety of ways. For this reason, only the main approaches are presented here.

Pixel-Level Comparisons

Arguably, the simplest way to quantify the difference between two frames is to compare the in-
tensity values of corresponding pixels. If the mean absolute change in the intensity value of the
pixels is greater than a threshdldyt, a shot cut is deemed to be present between two frames [51].
Given two framegf,,_1 andf,, this can be defined as

2.1)

>plfn-1(P) = fu(P)| [ > Tcur shot cut
w - h < Teyt o shot cut

where f,,(p) is the intensity value of pixeb in f,,. A potential problem with this approach is its
sensitivity to camera and object motion. Using the mean absolute change itis unable to distinguish
between a large change in a small area and a smaller change in a large area. Thus, the presence of
large object motion can lead to the false detection of a shot cut.

An improvement to this approach was proposed by Zhang et al. to determine the percentage of
pixels that have changed considerably between two frames [99]. This approach is known as the
pair-wise pixel comparison. A pixel is deemed to have changed considerably if its difference is
greater than a given threshold. A shot cut is then declared present if the percentage of changed
pixels is greater than a second threshold. Although an improvement, this approach is still sensitive
to object and camera motion. For example, a camera pan could cause the majority of pixels
to appear significantly changed. To reduce further the influence of motion, it was suggested a
smoothing filter should be applied to the images before the comparison.

Global-Level Comparisons

In an attempt to further overcome the problem of camera and object motion, instead of compar-
ing individual pixels alternative approaches were proposed that compare global features of each
frame. The average intensity measure takes the average value for each RGB component in the cur-
rent frame and compares it with the values obtained for the previous and successive frames [39].
Although less sensitive to motion than pixel-level comparisons, two shots with different colour
distributions can have similar average intensity values resulting in a missed detection.
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A different approach is the comparison of global histograms. This method is based on the as-
sumption that two frames with an unchanging background and unchanging objects will show little
difference in their corresponding histograms. This approach should be less sensitive to motion
than the pixel-level comparison as it ignores changes in the spatial distribution within a frame, but
herein also lies its weakness. There can exist two neighbouring shots with similar histograms but
entirely different content, resulting in a difference measure similar to that caused by camera and
object motion. This means that it can be difficult to detect all the shot cuts without also incurring
false detections. However, histogram approaches offer a reasonable trade-off between accuracy
and computational efficiency and are the most commonly used methods in use today.

Nagasaka and Tanaka proposed the comparison of the grey level histograms between two
frames [63]. The histograri/,, (k) is obtained by counting the number of pixels in fraifaewith
grey levelk. The difference between two histograms is then determined using

K
DH, = > [Hyoi(k) — Hy(k)] (2.2)
k=1

where K is the number of grey levels. DH,, is greater than a given threshold a shot cut is de-
clared. In their experiments, Nagasaka and Tanakatsdifferent quantisation levels. However,

they reported that the metric was not robust in the presence of momentary noise, such as camera
flashes and large object motion [63]. A more robust measure was suggested to compare the colour
histograms of two frames. The difference measure was still computed using (2.2) b yith
obtained by counting the number of pixels with the colour cbd&he authors proposed using

a 6 bit colour code obtained by taking the two most significant bits of each RGB component re-
sulting in64 colour codes. To make the difference between two frames containing a shot cut be
more strongly reflected they also proposed using the chi-square statitietfich can be used to
measure the difference between two binned distributions [74].

Many variations in calculating the histogram differences between two frames for the purpose of
shot cut detection have been proposed. The histograms can be obtained using different colour
spaces such as RGB, HSV, YIQ, Lab, Munsell and opponent colour axes, which have been used
previously for image database retrieval by colour. Different comparison metrics have also been
used such as the bin-to-bin difference defined by (2.2)ythstatistic and the histogram intersec-

tion

>k min(Hy 1 (k), Ha (k)

INT, = Y
w.

(2.3)
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wherew - h is the number of pixels in each frame [80]. The difference between two frames is then
defined by

INTD, =1— INT, (2.4)

An extensive comparison of different colour spaces and frame difference measures is given in [33,
61, 8, 22]. However, it has been shown that the simple comparison between RGB or YUV colour
histograms with each colour component quantise?f tdifferent values with usually set to2 or

3, is a simple but effective method for detecting hard cuts [63, 33, 56]. In fact, Lienhart suggested
that there is little performance improvement to be gained by fine-tuning the colour space and
difference measures.

Block-Based Comparisons

A weakness of the global-level comparisons is that they can miss changes in the spatial distribu-
tion between two different shots. Yet, pixel-level comparisons lack robustness in the presence of
camera and object motion. As a trade-off between both of these approaches, Zhang et al. proposed
the comparison of corresponding regions (blocks) in two successive frames [99]. The blocks were
compared on the basis of second-order statistical characteristics of their intensity values using the
likelihood ratio [49]. A shot cut was then detected if the number of blocks with a likelihood ratio
greater tharifyj exceeds a given thresholtyt. The number of blocks required to indicate a
significant change to declare a shot cut obviously depends on how the frame has been partitioned.

Nagasaka and Tanaka also proposed dividing each frame irtd regions and comparing the
colour histograms of corresponding regions [63]. They also suggested that momentary noise such
as camera flashes and motion usually influence less than half the frame. Based on this observa-
tion, the blocks were sorted and tReéblocks with the largest difference values were discarded.

The average of the remaining values was used to detect a shot cut. Ueda et al. proposed an alter-
native approach by increasing the number of block&tand determining the difference measure
between two frames as the total number of blocks with a histogram difference greater than a given
thresholdT ¢yt [86]. This method was found to be more sensitive to detecting shot cuts than the pre-
vious approach [67]. Although removing the largest differences in the latter approach effectively
removed the influence of noise it also reduced the difference between two frames from different
shots. In contrast, Ueda’s approach put the emphasis on the blocks that change the most from one
frame to another. A combination of this and the fact that the blocks were smaller meant it also
became more sensitive to camera and object motion [41]. This highlights the problem of choos-



2.1 Shot Cut Detection 13

ing an appropriate scale for the comparison between features relating to the visual content of two
frames. Using a more local scale increases the susceptibility of an algorithm to object and camera
motion, whilst using a more global scale decreases the sensitivity of an algorithm to changes in
the spatial distribution.

Motion-Based Approaches

To overcome further the problem of object and camera motion several methods have been pro-
posed which attempt to eliminate differences between two frames caused by such motions before
performing a comparison. Methods have been suggested that incorporate a block-matching pro-
cess to obtain an inter-frame similarity measure based on motion [2, 79, 61]. For each block in
framef, 1, the best matching block in a neighbourhood around the corresponding block in frame
fn is sought. Block-matching is performed on the image intensity values and the best matching
block is chosen to be the one that maximises the normalised correlation coefficient. The maximum
correlation coefficient is then used as a measure of similarity between the two blocks.

The main distinction between these approaches is how the measures of all the blocks are combined
to obtain a global match parameter. Akutsu et al. used the average of the maximum correlation
coefficient for each block [2]. This had the disadvantage of combining poor matches with good
ones to obtain a passable match between two frames belonging to the same shot. Shahraray used a
non-linear digital order statistic filter [79]. This allowed the similarity values for each block to be
weighted so more importance could be given to the blocks that have matched well. This improved
its performance for cases when some of the blocks being compared have a high level of mismatch.
The drawback of this approach was that there can exist good matches between two frames from
different shots resulting in a less significant change indicating a shot cut. To overcome this, the
authors suggested that blocks be weighted such that a number of the best matching blocks are also
excluded. This suggests that the coefficients for the non-linear averaging filter must be chosen
carefully when the distribution of similarity values between two frames can vary greatly.

Lupatini et al. summed the motion compensated pixel difference values for each block [61]. If this
sum exceeded a given threshold between two frames a shot cut was declared. On the other hand,
a novel approach was proposed by Vlachos which used phase correlation to obtain a measure of
content similarity between two frames [89]. This method is insensitive to changes in the global
illumination and lends itself to a computationally tractable frequency domain implementation.

Finally, Fernando et al. exploited the fact that motion vectors are random in nature during an abrupt
shot cut [28]. The mean motion vector between two frames was determined and the Euclidean
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distance with respect to the mean vector calculated for all the motion vectors. If there exists a shot
cut, the majority of motion vectors will have a large variance due to the poor correlation between
the two frames. A large increase in the Euclidean distance can then be used to declare a shot cut.
The idea that the two frames on either side of a shot cut are completely uncorrelated, such that
incoherent motion estimates are obtained has also been exploited by others [2, 9].

Feature-Based Approaches

Another feature used for the detection of shot cuts is edge features. Zabih et al. proposed a method
to detect shot cuts by checking the spatial distribution of exiting and entering edge pixels, known
as theedge change rati¢98]. This method exploited the fact that edges of objects in the frame
before a shot cut cannot be found in the same location in the first frame after a shot cut, i.e. new
edges appear far from the locations of disappearing, older edges. A registration technique was used
to compensate for global motion between two frames. To compensate for small object motions,
edge pixels in one frame within a small distance of edge pixels in the other were not considered to
be entering or exiting edges. Thus, any difference between edge pixels should only be the result
of a shot cut. Lef,, be the total number of edge pixels in frarfig andl,, andO,, | the number

of entering and exiting edge pixels in framesandn — 1 respectively. The edge change ratio
betweenf, 1 andf, is then defined as

ECR, = max(I,,/En, On_1/En_1) (2.5)

such that) < ECR, < 1 where0 indicates equality. Although this method illustrated the vi-
ability of edge features to detect a change in the spatial decomposition between two frames, its
performance was disappointing compared with more simple metrics that are less computationally
expensive [22, 61, 57].

2.2 Gradual Transition Detection

There has been much previous work related to the detection of shot cuts. However, less work has
been reported on the detection of gradual transitions and accurate detection can still be considered
an unsolved problem. Lienhart claimed to present the first robust and reliable dissolve detection
algorithm achieving a detection rate 6% whilst reducing the false alarm rate 68% [57].
Although an advancement on previous approaches, this still needs to be improved upon for in-
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tegration in an actual video indexing system and there is much more improvement required to
achieve similar results to those obtained for shot cut detection [41].

Unlike shot cuts, the inter-frame difference during a gradual transition is small. For this reason,

it can be difficult to distinguish between changes caused by camera and object motion and those
caused by a gradual transition. As a result, detecting all of the gradual transitions often results
in many false detections. In fact, Boreczky and Rowe concluded in their comparative study that
algorithms do “a poor job of identifying gradual transitions” [8]. The purpose of this section is to
review previous work related to the detection of fades and dissolves and address some of the key
issues faced when tackling this problem. Useful surveys of previous approaches are also presented
in[41, 58].

Histogram-Based Approach

One of the first attempts for detecting gradual transitions was the twin-comparison technique pro-
posed by Zhang et al. which compares the histogram difference with two thresholds [99]. A lower
thresholdTjq,, was used to detect small differences that occur for the duration of the gradual tran-
sition, while a higher threshol@gh, was used in the detection of shot cuts and gradual transitions.

If the difference value was greater thdy,,, the frame was considered to be the start of a grad-

ual transition. This frame was then compared to subsequent frames, which was referred to as an
accumulated difference, since during a gradual transition this will increase. If this accumulated
difference was higher thafgn the end of the gradual transition was marked when the difference
between frame pairs drops beldijy,, for more than two or three frame pairs.

The authors noted that similar changes can be caused by camera and object motion. An approach
was proposed to distinguish between such motions and edit effects by detecting patterns in the
image motion that are induced by camera movements such as pans, tilts and zooms. If such
motions were detected the candidate gradual transition was ignored. Although this helped reduce
the number of false detections, it also failed to detect transitions with camera motion before, during
or after the transition. Furthermore, it did not handle false positives caused by more complex
camera motions or object motion.

Feature-Based Approaches

During a dissolve, the edges of objects gradually disappear while the edges of new objects grad-
ually become apparent. During a fade-out the edges gradually disappear, whilst during a fade-in
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edge features gradually emerge. This is exploited by the edge change ratio used to detect shot cuts,
which was extended to detect gradual transitions as well [98].

During the first half of the dissolve the number of exiting edge pixels dominates whilst during
the second half the number of entering edge pixels is large. Similarly, during a fade-in/out the
number of entering/exiting edge pixels are the most predominant. This results in an increased
value in the edge change ratio for a period of time during the sequence which can be used to detect
the boundaries of gradual transitions. Although, the detection rate of gradual transitions with this
method was reported to be good, the false positive rate was usually unacceptably high [56, 61].
There were several reasons for this. The algorithm compensated only for translational motion,
meaning that zooms are a cause of false detections. Also, the registration technique only computed
the dominant motion, making multiple object motions within the frame another source of false
detections. Moreover, if there are strong motions before or after a cut, the cut was misclassified
as a dissolve and cuts to or from a constant image are misclassified as fades. The method also did
not find the actual boundaries of the transitions well as a result of the edge change ratio values
returning to normal values earlier than the real boundaries are reached [58].

Another feature that exploits the loss of contrast during a dissolve was the edge-based contrast
proposed by Lienhart [56]. This feature captured and amplified the relation between stronger and
weaker edges and proposed to avoid the problem of motion encountered by the edge change ratio.
A Canny edge detector was used to locate the edge pixels within the frame and two thresholds
employed to determine the weaker and stronger edges. The final contrast measure was high during
a shot when there are few weak edges and exhibited a distinct local minima during a dissolve
when the weak edges are predominant. This approach was shown to outperform the edge change
ratio approach resulting in a much lower false alarm rate [58]. However, Lienhart reports that
the average false alarm rate is still too high for most practical purposes [56]. The use of edge
magnitudes was also used by Yu et al. who incorporated an edge count to capture the changing
statistics of a fade and dissolve [94, 93].

Although not strictly a feature-based approach, another method worth mentioning is the detection

of gradual transitions through temporal slice analysis [65, 66]. Here, a video sequence was rep-
resented as a 3-D volume which was viewed as a set of spatio-temporal 2-D slices. These slices
were then used to extract an indicator which can be used to capture the coherency of the video.
Each slice contained regions of uniform colour and texture and the boundaries of these regions
were used to detect the presence of shot transitions.
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Variance-Based Approach

Another method for detecting gradual transitions is to analyse the temporal behaviour of the vari-
ance of the pixel intensities in each frame. This was first proposed by Alattar [3] but has been
modified by many other authors as well [29, 60, 85]. It can be shown that the variance curve of
an ideal dissolve has a parabolic shape. Thus, detecting dissolves becomes a problem of detecting
this pattern within the variance time series. Given an ideal dissolve the first order derivative before
and after a dissolve should be zero and a positive constant during a dissolve. Alattar proposed to
detect the boundaries of a dissolve by detecting two large spikes in the second-order difference of
this curve.

Although these models are reported to perform well, assumptions made about the behaviour of an
ideal transition do not generalise well to real video sequences [64]. The two main assumptions are:
(i) the transition is linear and (ii) there is no motion during the transition. These assumptions do
not always hold for real transitions and as a result of noise and motion in the video sequences the
parabolic curve is not sufficiently pronounced for reliable detection. To overcome this problem,
Nam and Tewfik presented a novel technique to estimate the actual transition curve by using a
B-spline polynomial curve fitting technique [64]. Moreover, Truong et al. noted in their study of
real dissolves that the large spikes are not always obvious and instead exploited the fact that the
first derivative during a dissolve should be monotonically increasing and constrained the length a
potential dissolve can have [84].

Approaches have been proposed specifically for the detection of fade transitions[56, 60, 85]. They
start by locating monochrome images which are identified as frames with little or no variance of
their pixel intensities. The boundaries are then detected by searching for a linear increase in the
standard deviation of the pixel intensities. Lienhart reported accurate detection with this approach
on a large test set [56].

2.3 Key Frame Selection

The main approach to automate the video indexing process is to select representative key frames
from shots or scenes to generate a video abstract (or storyboard). The collection of key frames can
then be employed for further characterisation and subsequent queries on the video data. Itis worth
noting that the choice of key frames is subjective and often application dependent. For effective
video browsing and retrieval, the selected key frames should be able to represent the content of
the entire video sequence [16]. In contrast, Dufaux proposed a technique to automatically extract



2.3 Key Frame Selection 18

a single key from a video sequence designed for a system to search for a video on the World Wide
Web [23]. There has recently been many works related to the problem of key frame selection and
several surveys on the automatic indexing of video data are presented in [13, 45, 6]. In this section,
a brief review of previous approaches is presented.

Two main approaches to key frame selection have been suggested: (i) with the explicit detection
of shot transitions, and (ii) with out such detection. An initial approach was proposed in which
the first frame of each shot was selected as a key frame [38, 17]. The ordered set of key frames
is sometimes referred to adibmstrip [18]. This is not always sufficient as there can exist salient
changes within a shot due to camera or object motion. To increase the number of frames in a
shot Ardizzone and Cascia suggested the number of frames should be related to the length of the
shot [7]. If the shot is shorter than one second, the middle frame was chosen and if the shot is
longer, a key frame for each second was chosen. Once the key frames have been selected they
were characterised by their optical flow field for the purpose of video indexing. This approach can
oversample a sequence, as a shot may be long but contain little content change.

Zhang et al. suggested extracting key frames using similarity measures similar to those used in
shot cut detection [100]. Given a shot, the first frame was always chosen. Following frames in the
shot were compared with the last selected key frame, based on some similarity measure such as
colour histograms or moments. If a significant content change was deemed to have occurred, the
current frame was chosen as an additional key frame. It was proposed that any significant action
would be represented by a key frame whilst static shots resulted in only one key frame. The use
of a cumulative measure between key frames was also proposed by Kim and Park [52]. Once the
key frames have been selected, the similarity between different video sequences is evaluated by
the modified Hausdorff distance between sets of key frames. Chang et al. proposed an interesting
approach to determine the minimum set of key frames for a shot such that the distance between
every frame in the shot and at least one key frame in the set was less than some threshold [16]. They
used examples of colour histograms and correlation as the dissimilarity measure. The minimal
cover of a proximity graph was used to search for the set of optimal key frames.

An alternative approach to find the optimal set of key frames such that the frames are maximally
distinct and individually carry the most information was proposed by Vermaak et al. [88]. The
input video was transformed into a sequence of representative feature vectors. Using this repre-
sentation a utility function was defined and the key frame sequence that maximises this function
was obtained by a non-iterative Dynamic Programming procedure.

Instead of using a distance criterion, Wolf used the optical flow to identify local minima of motion
in a shot to identify key frames [90]. It was proposed key frames are identified by stillness—either
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the camera stops in a new position or the characters hold gestures to emphasise their importance.
The sum of the magnitudes of the components of optical flow at each pixel were computed and
points of local minima in the sequence were used to select key frames.

As mentioned above, there are approaches that do not specifically target individual shots to select
key frames. Typically, the frames are represented in a lower dimensional space using a represen-
tation similar to those used for shot change detection, obtained by global SVD [36] or windowed
PCA [40]. Grouping of frames is typically done by thresholding [36], greedy clustering [92], or
line simplification [92] in the reduced dimensionality space.

2.4 Summary

There have been many algorithms proposed for detection of shot transitions, most of which are
negatively influenced by the presence of camera or object motions. This suggests an algorithm is
required that can distinguish between content changes caused by transitions and those caused by
such motions. A primary focus of the present work is to reduce the false detection rate, particularly
where gradual transition detection is concerned. It has been suggested that the performance of such
algorithms may be improved by employing an adaptive thresholding technique [95]. However,
this work will focus on designing an algorithm to detect all types of shot transitions using a single
technique and the same parameter set, rather than a set of dedicated methods.

The present work is also concerned with the generation of a video abstract for the purpose of
indexing and retrieval. For this reason, the key frame selection algorithm will include the explicit
detection of shot transitions. Inspired by previous approaches to find the optimal set of key frames,
this algorithm will allow the number of key frames to vary depending on the level of content
change contained within each shot. Each key frame must represent the content of each video
segment whilst minimising representational redundancy.
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Chapter 3

Shot Cut Detection

The decomposition of a video sequence into its constituent shots is the first step toward automatic
annotation of digital video sequences. The shot cut is the simplest, most commonly occurring

transition from one shot to the next, and its detection thus represents the natural starting point
when faced with the problem of automated video indexing.

In this chapter a hierarchical block-based motion compensated shot cut detection method is pre-
sented. The proposed method uses correlation coefficients in combination with colour histogram
differences as a measure of content similarity between two consecutive frames. Results are given,
including a comparative analysis against five commonly cited methods.

3.1 Block-Based Motion Compensated Shot Cut Detection

The aim of any shot cut detection algorithm is to detect temporal discontinuities in the visual
content of a video sequence. The key element of such a method is the choice of feature(s) used
to represent the visual content. A feature should be selected that exhibits similar properties for
images belonging to the same shot, but which shows a pronounced change when compared be-
tween images belonging to different shots. Existing algorithms differ in (i) the features used to
represent the visual content of each image and (ii) the difference metrics used to compare them.
By computing a difference metric for consecutive frame pairs a shot cut is deemed to be present if
the difference is greater than some predefined threshold. In addition, a good shot transition detec-
tion algorithm should be able to distinguish visual changes caused by a shot transition from those
caused by camera and object motions.

21
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Global features are less sensitive to changes in the spatial layout of images than pixel-level com-
parisons [96]. For this reason, algorithms based on the comparison of global features have been
proposed to overcome the problem of object and camera motions. However, such methods can
fail to detect transitions between two shots whose global features exhibit similar properties but
have different spatial layouts. To address this issue, block-based methods were proposed which
compare the features of corresponding regions of different images [61].

The difficulty of dealing with camera and object motions motivates the use of a motion-based
algorithm to eliminate differences caused by motion prior to computing a disparity metric between
two frames. Any difference in the visual content should then only be due to a shot cut. Two shots
joined by a transition can have either:

1. different colour distributions, or

2. similar colour distributions but a different spatial layout.

Therefore, a change in the structural layout of an image is usually indicative of a visual discon-
tinuity. Edge features represent much of the intrinsic structure of an image, meaning that the
distribution of edges in the last frame before a transition can be expected to be different to the
layout of edge features in the first frame after a transition. This observation was, for example,
exploited by Zabih et al. who proposed an edge change ratio to detect shot transitions [98]. A
registration technique was used to compute the global motion between two frames before comput-
ing the edge change fraction. Whilst this method illustrated the viability of using edge features
in detecting visual discontinuities, the authors also indicated two of its limitations which may
give rise to false detections. Firstly, the edge detector used does not cope with rapid changes in
overall scene brightness or scenes with little contrast. Secondly, the motion compensation tech-
nigue employed does not handle multiple moving objects or global motions that violate the 2-D
translational model.

Based on the above observations we conclude that future algorithms need to be designed with the
reduction of the number of false detections in the presence of camera and object motion in mind.
This implies using a feature for comparing two images which shows little change in the presence
of camera and object motions, whilst still being able to detect changes in the spatial layout of an
image. We propose a motion-based method which uses the correlation of edge features between
corresponding regions to measure the visual content similarity between two frames, as outlined in
Fig. 3.1. For each frame pair in the video sequence, the first frame is divided into a regular grid of
blocks. A similarity metric for each frame pair can then be derived by comparing the edge features
contained within each block. The next step is to estimate the motion for each block between the
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[ Divide frame n-1 into regular grid }4
Y
[ Determine motion for each block ]
Y
Derive motion compensated similarity measure
for each block using edge features
Y
[ Combine measures into single metric ]
Are the two frames NO
significantly different?
Y
( Shot Cut between frames n-1 and n J [ Frame pair belong to same shot ]
(i 3

Figure 3.1: Method outline for shot cut detection.

two frames to compensate for differences caused by camera and object motions. Any remaining
differences in the visual content should only be the result of a shot cut between the frame pair. For
each block in the first frame, the best matching block in a neighbourhood around the corresponding
block in the second frame is sought. The location of the best matching block can be used to find
the offset of each block between the two frames to then compute a motion compensated similarity
metric. Given that a measure of the similarity of the distribution of the edge features contained
within each block is required, an obvious candidate for such a matching function is normalised
correlation, as a similarity metric can be computed as an integral part of the motion estimation
process [11, 53]. The value of the maximum correlation coefficient can be usegbad@ess-of-

fit measure for each block. Between two frames belonging to the same shot the spatial distribution
of edge features should be similar and the goodness-of-fit for the majority of the blocks should
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indicate a good match. A high number of poor matches should indicate the spatial distribution
of edge features has changed, suggesting the presence of a shot cut. A similarity metric for each
frame pair is derived by combining the goodness-of-fit measures of all the blocks. The final step
is to use this similarity metric to detect the presence of a shot cut.

3.2 Block-Based Motion Estimation

The first step in this method is to estimate the motion for each block between the two frames
to eliminate differences caused by local and global motions. Block-based motion estimation is
founded on the assumption that the image is composed of moving blocks and that the motion
remains unchanged over a particular block of pixels. Theri-theblock z;(£) in frame f,,_; is
modelled as a shifted version of a same-size blogK) in frame f,, as

zi(§) = ;(§ + d) (3.1)

where¢ is the spatial coordinate vector adds the displacement vector determined by searching
for the position of the best matching block in a neighbourhood around the corresponding block in
frame f,,. Block-matching algorithms vary according to the matching criteria and search strategy
used [81].

Many ways of measuring the difference or similarity between the grey-level pattern contained
within z;(£) and a potentially best matching block fip have been proposed [34, 11]. The most
commonly used distance measures are the sum of absolute differences and the sum of squared
differences. Both measures can be modified to consider the effect of global grey-level variations
by setting the average grey level differenc® tr by locally scaling the intensity [34]. Minimising

the sum of squared differences can be replaced by maximising the cross-correlation term which
gives a measure of the degree of similarity between two regions in different images. £3ig&n
andy;(§), where the latter represents a neighbourhood around the corresponding block in frame
fn, the correlation of the two 2-D functions is defined by

p(¢) = (zixyj)(¢) = D wil€ + {)y;(€)- 3.2)
§

Informally, this associates with each possible discrete offsetsimilarity value which rates the
quality of the match obtained when applying the offset correspondigdddhe regiong;. In other
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words, by computing(¢) over all possible translations (all instances wheyandy; overlap),

the correlation field has its peak value at the integer translation closest to the true translation of
betweenf, 1 andf,. In other words, if (3.1) holds for the regian, thenp(¢) has its peak value

at ¢ = d, enabling the translation to be determined. There are, however, several disadvantages
to using (3.2) for motion estimation: the rangemt) is dependent on the size of; and it is

not invariant to changes in image amplitude such as those caused by changing lighting conditions
across the image sequence [55].

A related measure which overcomes these difficulties is the correlation coefficient, referred to as
the normalised cross-correlation, defined as

g (@i(€ +¢) — 2i(€))(y;(€) — 5;(¢))

d 3.3
S e+ 0 —m@) vg (5(8) — 5T &9

Y(¢) =

wherez;(§) is the mean of the block; andy;(¢) is the mean ofj; in the overlap region undaer;.

This statistical measure has the property that it measures correlation on an absolute scale and gives
a linear indication of the similarity between blocks [11]. The value of the maximum correlation
coefficient can then be used as a measure of confidence in a match. In addition, by normalising
the cross-correlation function, the measure becomes invariant to changes in image amplitude [55].

Calculating the normalised correlation in the spatial domain is, however, computationally expen-
sive unless the regions are small. Assumingandy; are square regions of siz€ x N and

M x M respectively, where usually < M, normalised correlation between the two can be
computed more efficiently in the frequency domainNaspproaches/ and with largerN and

M [55]. Frequency domain normalised correlation is defined as

F~H i (w) g5 (w)}

) = (3.4)
I as(w)[? dw - J [3(w)]? duw

where¢ andw are the spatial and spatial frequency coordinate vectors respectiygly) de-

notes the Fourier transform of bloak (&), ! denotes the inverse Fourier operator ansl the
complex conjugate [15]. Although correlation in the frequency domain is computationally effi-
cient, it is equivalent teyclic, or circular correlation, which must be considered when using this
technique in practical motion estimation. Circular correlation results in contributions due to the
‘wraparound’ of blocks which are physically inappropriate for motion estimation since objects
disappearing at one end of the window generally do not reappear at the other end. In addition,
the 2-D DFT assumes periodicity in both directions. Discontinuities from left to right boundaries,
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and from top to bottom, can potentially introduce spurious peaks. Both of these effects can be
counteracted by using a block twice as big as the area of interest and applying a window function
which tapers off outside the region of interest without introducing strong artifacts in the block. In
addition, the resulting displacement estimates need to be centred to accommodate negative dis-
placements. Therefore, for an even size bldd¢kthe range of estimates js-M/2 + 1, M/2].
However, due to the wraparound effect and the application of the window function displacement
estimates are unreliable toward the edge of the correlation field. For this reason, for a bladk size
only motion estimates within the ran§e M /4 + 1, M /4] are considered. To estimate the motion
between an area of interest of size N x N from f,,_; with a corresponding area of interest

of the same size irfi, the method can be described as follows.

1. Extract blocksr; andz’; both of sizeM x M whereM = 2N.
2. Apply window function tar; andz; which tapers off outside the regions of interest.
3. Perform normalised correlation using (3.4).

4. Only search for the correlation peak within the displacement estifafég2 + 1, N/2].

For our application, the use of the frequency domain implementation of normalised correlation
represents a significant efficiency win compared with the direct implementation. A comparative
complexity analysis can be found in Appendix B.

3.3 Correlating High-Pass Features

The use of normalised correlation in the block matching process is based on the assumption that
the distribution of edge features will change during a shot transition. Therefore the correlation of
edge features between two images must be computed and not just the correlation of the grey-level
pattern contained within each block. Since edges represent high-frequency image phenomenon,
a high-pass filter is applied to each image before performing the correlations. This serves to ac-
centuate the contributions from higher spatial frequencies which normally correspond to object
structure. It also suppresses the low frequency information so the correlation is not biased toward
the matching of lower frequency components. A correlation field derived from high-pass regions
will contain more detectable peaks, whereas correlation fields derived from low-pass regions will
result in a flat correlation field leading to inaccurate peak detection as shown in Fig. 3.2. The mo-
tion is estimated more accurately between the first frame pair which have been high-pass filtered
before computing the normalised correlation. A high-pass filter was not applied to the second
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(b) No high-pass filter has been applied prior to correlation between the highlighted blocks.

Figure 3.2: Applying a high-pass filter leads to more accurate motion estimation.

frame pair, leading to a flat correlation field and an inaccurate motion estimate. An additional con-

sequence of applying a high-pass filter is that the local mean of the image intensities is removed,
meaning that the correlation between blocks is invariant to changes in the mean intensity. By nor-
malising the correlation, the method is insensitive to a positive scaling of the image intensities and
invariant to changes in the global illumination across the image sequence.

Given the above, the proposed algorithm can be summarised as follows. For a given frame pair
fn—1 and f,,, a high-pass filter is applied to both images. The first frame is partitioned into a
regular spatial grid of non-overlapping blocks of si¥ex N. Each block in framef,,_; is then
doubled in size and correlated with the corresponding block in frém®e estimate the motion
between them. The value of the of the maximum correlation coefficient is used as a goodness-of-fit
measure for each block. Fig. 3.3 shows the typical output of the normalised correlation between
two blocks from temporarily adjacent frames. The first frame pair are from the same shot and
the second frame pair contain a shot cut. The large, well defined peak in Fig. 3.3(a) suggests a
good match between the block contents. In contrast, the low smooth correlation field in Fig. 3.3(b)
implies poor correlation between the two blocks. Between two frames belonging to the same shot,
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Figure 3.3: The correlation function obtains a measure of content similarity.

the goodness-of-fit for the majority of the blocks can be expected to be large, indicating a good
match.

Figure 3.4 illustrates the complete algorithm for computing a similarity metric for each block be-
tween two frames. A similarity metri&,, for each frame paif,,_; andf,, is derived by combining

the the goodness-of-fit measures of all the blocks. This was initially achieved by calculating the
mean of the goodness-of-fit measures, given by

B
i=1Di
= ZTl (3.5)

wherep; = max(p(§)) for block 7, and B is the total number of blocks. However, the linear
combination of the goodness-of-fit measures has the disadvantage of averaging high match values
with low ones to generate a passable match. This is not a good approach since mismatches can
occur between blocks from two frames that do not contain a shot cut while the majority of blocks
match well. Examples of this are shown by the normalised distribution of goodness-of-fit measures
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Figure 3.4: Obtaining a goodness-of-fit measure and a motion vector for a block between tempo-
rally adjacent frames.

(quantised to 0.05) for the frame pairs in Fig. 3.5. Poor match values can occur between two frames
belonging to the same shot for a number of different reasons.

1. A window does not contain sufficient high-frequency information, such as edges and cor-
ners, to determine the motion accurately, which results in a low flat correlation field (Fig. 3.5(a)).
2. Multiple object motions present within a single window results in several smaller peaks.

3. Occlusion, where object motion results in covered/uncovered background, as illustrated in
Fig. 3.5(b).

4. Datathat does not fit the translational motion model well, e.g. zooms, rotational motion and
local deformations.

5. Motion blur, or out of focus (Fig. 3.5(b)).
6. Motions greater thap-N/2 + 1, N/2].
To prevent these outliers negatively influencing the similarity metric for a frame pair, a more

satisfactory measure can be obtained by using the median of the goodness-of-fit measures. For
example, for the frame pair in Fig. 3.5(a)= 0.78, whilst the median equal$.99 and for the
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Figure 3.5: Poor matches can exist between frames belonging to the same shot.

second frame pair in Fig. 3.5()) = 0.79, yet the median equals94. Therefore, a similarity
metric E,, between the edge distributions in the frame gair; andf, is defined as

E, = mediaip;}. (3.6)

A shot cut is then detected B,, < Ty i.e. if the similarity between a frame pair is less than some
thresholdTz. Figure 3.6 shows the similarity metric for each frame pair for a video sequence
containing6 shot cuts. It can be seen that during a shgtremains high. On the other hand, a

shot cut manifests itself as a sudden decreagg, ifin this example, any value f@rg in the range

[0.3,0.7] would detect all the shot cuts. The most appropriate value for each sequence can vary,
however a robust algorithm should give a good performance with the same valyeasfoss all

video sequences. The dependency of an algorithm’s performance on the chosen value is discussed
further in Sec. 3.7. Figure 3.7 shows two more examples of video sequenceX\aitlal 33 shot

cuts respectively.

3.4 Optimal Block Size

The block size is an important parameter to any block-based motion estimation algorithm. A
common problem encountered in motion estimation is the aperture problem, where motion can
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Figure 3.6: A pronounced change in the similarity metric indicates a shot cut.

only be estimated reliably in a direction parallel to a spatial image gradient. The most appropriate
aperture size will vary with the data—a larger block is more likely to contain sufficient grey-level
variation to estimate the correct motion, but at the same time, the single translational motion per
block model is more likely to be violated. Although the data contained in smaller blocks are more
likely to translate by the same motion vector, smaller blocks are also less likely to contain enough
intensity variation, which makes it impossible to measure the motion accurately. Thus there are
two conflicting problems influencing the block size. This problem is sometimes referred to as the
“Generalised Aperture Problem” [46]. In addition, the block must be sufficiently large to estimate
all sizes of displacements present in the video data.

Initially, a window size of32 x 32 was chosen empirically as it appeared to give an acceptable
trade-off for the sequences used (with approximate image dimer&iéns 256). Although this
method performed well, there were two main sources of false detections.

1. Frames with large regions containing little or no high frequency information, resulting in
poor correlation for the majority of the blocks.

2. Motions outside the range-15, 16], again resulting in poor correlation.

The first item was the main contributing factor and is illustrated by several frames in Fig. 3.8. With
a block size oB2 (white grid) the majority of the blocks contain little high frequency information
resulting in poor correlation with their corresponding blocks in the following frame. This in turn
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Figure 3.8: The optimal block size will vary with the video data: frames with little high frequency
information require larger block sizes. The white grid illustrates the fixed block size of 32 whilst
the optimal block size is illustrated in red.

results in a low similarity metric for each frame pair. Usually this problem can be overcome by
increasing the block size. Next to each frame (with dimensiiits x 256) are the similarity
metrics obtained for each frame pair using various different block sizes rangin@®down to

16 (in each case the second frame is almost identical so they have not been shown). The optimal
block size is shown by a red grid and the similarity metric obtained using this block size is also
highlighted in red. It can be seen that in these cases a larger block size results in an improved
similarity metric.

Increasing the block size can result in poor correlation for other frame pairs if they contain multiple
motions or data that violates the translational only motion model as shown in Fig. 3.9. The first
frame pair contain two objects moving to the right as the background moves to the left and between
the second frame pair the camera zooms out slightly. A smaller block size is preferable in the
presence of such motions. These examples illustrate that the ideal block size varies with the video
data. It is clear from the performed experiments that using a fixed window size is not flexible
enough to cope with real-world data. The method was therefore extended to use hierarchical
motion estimation, described in the next section. As well as improving the motion estimates of the
smaller block sizes, it also allows an adaptive window size to be used to compute the similarity
metric for each frame pair. The window size which is the most appropriate for the underlying data
is then chosen.
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Figure 3.9: The optimal block size will vary with the video data: frames containing multiple
motions or motion that violates the 2-D translational model require smaller block sizes. The red
grid illustrates the optimal block size.

3.5 Hierarchical Motion-Based Shot Cut Detection

The basic idea of hierarchical block matching is to perform motion estimation at some coarse
scale and then use these estimates as initial guesses for estimating the motion at finer scales. The
coarse scales give broad estimates of the visual motion whilst the finer scales serve to fine-tune
the displacement vector estimate. Hierarchical motion estimation techniques come in two slightly
different flavours:multiresolutionandmultigrid. A multiresolution algorithm typically constructs

a pyramid representation of each frame where the full resolution image is at the bottom and images
at the upper levels are obtained by appropriate low-pass filtering and sub-sampling [14]. Motion
estimation is performed at each level successively, starting with the lowest resolution image. The
displacement vector estimated at a lower resolution level is used as a‘rough guess’ at the next
resolution level. In contrast, the multigrid approach is to start at some large window size in the
image, and gradually move down to smaller analysis windows using the ancestral estimates as
a starting point. In this work we adopt a multigrid approach as the multiresolution family can
introduce unwanted spatial aliasing due to the sub-sampling step, and by blurring the image the
structural detail is gradually removed—the very structure that must be correlated between different
images to identify any change in its distribution. Indeed, the same structure must be correlated at
different spatial resolutions.

The technique can be outlined as follows. Starting at some large block size, the displacement
between each corresponding block between frafjes and f,, is estimated. Each block is then
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Figure 3.10: Hierarchical block matching.

subdivided into four smaller ‘child’ blocks and these estimates are used to determine which block
in f,, each child inf,,_; is correlated with, i.e. ip is the position of the child block, then it is
correlated with the block g + d whered is the displacement vector estimated at the parent level.
The search procedure continues until a small block size is reached resulting in a ‘vector train’
describing the displacement of the small size block betwkgen and f,,. This search procedure
using a single parent quad-tree is illustrated in Fig. 3.10.

One problem of a coarse-to-fine approach is that if the coarse-scale estimate is incorrect by a
substantial amount, then the finer scales may be unable to recover from these errors. A region
containing a motion boundary will track one of the two motions which may mean that the other
motion cannot be recovered at smaller region sizes. For example, in Fig. 3.11 assuming block
3 tracks the motion of the red object, if block inherits its parents motion it is unlikely its real
motion can be recovered. It is worth noting that a given region can be better off tracking one
of its parent’s neighbours rather than its direct parent. In this case Bloekuld be better off
tracking the motion of the larger block For this reason, it may be beneficial to use a four
parent quad-tree, where each child block can be correlated with up to four possible corresponding
blocks in the next image. The correlation field with the highest peak value is used to compute the
displacement vector for the child block. This can help to overcome discontinuities in the motion
field e.g. at motion boundaries. However, a four parent quad-tree incurs a significant increase in
computational time. After viewing the test data it is apparent that when a block contains multiple
motions, the most common occurrence is that it contains only two motions. For example, an
object can be moving against a stationary background, or an object can be tracked so it appears
stationary against a moving background. To overcome such situations, each block is correlated
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Figure 3.11: One level of hierarchical block matching using a four parent quad-tree.

twice—once using its parent’s displacement estimate and once without. In Fig. 3.11, assuming
the content of blockB corresponds to stationary background, it would be better for this block
not to track the motion of its parent. In addition, correlating bletkvithout its parent’s motion
increases the likelihood of recovering its real motion. Although this approach doubles the number
of correlations required, the FFT of each blockfin ; is only computed once and all the blocks

in the top level without parents are only correlated with one corresponding block. The increase
in the computational time is approximatelys times that required for the single parent quad-tree.
Although neither algorithm has been implemented optimally, Table 3.1 shows a comparison of the
time required for each algorithm running on a 1.53 GHz AMD Athlon XP 1800+, for a number of
different levels. Employing hierarchical motion estimation in place of the f3&d 32 window

size with the smallest size blocks in the quad-tree equal to this size, improved the motion estimates
in the presence of motions greater thar15, 16] between two frames. As a result the maximum
correlation coefficient for each block increased in value and therefore so did the overall similarity
metric £, computed for the frame pair. This reduced the number of false detections of shot cuts
for the fixed block size algorithm in the presence of large object and camera motions.

The hierarchical method allows the use of an adaptive single window size to obtain a measure
of the content similarity. A similarity metric is computed at each level of the hierarchical search
procedure and the highest value is chosen as the similarity for the current frame pair. This way,
the most appropriate block size is chosen to represent the visual content of each frame pair which
will vary according to the video data. For the frames in Figs 3.8 and 3.9 the selected block sizes
are highlighted in red and even for this small example set this varies ffota 256. For each

frame pair, the first frame is divided into a regular grid of blocks equal to some large block size.
Hierarchical motion estimation continues, splitting each block iftantil a designated smaller
block size is reached which results i levels of blocks. The median correlation coefficiér,

is computed across all the blocks at each lévelherel > k£ > K. That is, M}, represents the
similarity metric for the frame pair using the block size at lekelThe largest of these values is
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Number of levels : [Block sizes] Single parent Double correlation
2:[32,64] 1.822s 2.609s
3:[32,64,128] 2.608s 3.975s
4:[32,64,128,256] 4.145s 5.856s

Table 3.1: An approximate comparison of the computational time required for two different hier-
archical block matching schemes running on an AMD Athlon XP 1800+ processor.

then used to represent the similarity metkig for a frame pairf, ; andf,

E, = max{My}. (3.7)

Figure 3.12(a) shows a comparison of the value obtainefl farsing a fixed block size ¢f2 x 32

(shown in red) with that obtained usiriglevels of hierarchical block matching and using the
optimal block size to determine the valuefgf (shown in green). In addition, Fig. 3.12(b) shows

the variation of the optimal block size used during this sequence varying bet@g8emd32. It

can be seen that allowing an adaptive window size can drastically improve the similarity measure
obtained during a shot. However, there are still some cases where the most appropriate block size
results in a relatively poor similarity metric. If the similarity metric is sufficiently low it can result

in a false shot cut detection. In the next section, we discuss how the correlation measure can be
combined with a colour histogram difference to distinguish between frames belonging to different
shots.

3.6 Block-Based Colour Comparison

Even using the adaptive window size there are cases where correlation is of limited use as a
similarity metric. In some video data there is such little structure in the image that correlating with
a large analysis window still results in a poor match as illustrated by the frame pairs in Fig. 3.13.
Another case where correlation proves unreliable is if there are many objects moving between two
frames such as the frame pairs in Fig. 3.14. A small analysis window may be the most appropriate
but it can still result in poor correlation due to the fact significant local motion causes the contents
of many blocks to change. Other causes of poor correlation, irrespective of the block size used,
are shown in Fig. 3.15. Motion blur and content change at the image boundaries causes poor
correlation between the first frame pair. Between the second frame pair, a large block size results
in poor correlation because of occlusion and multiple motions. Whilst the smaller blocks help to
overcome this, the similarity metric at the lower levels is negatively influenced by many of the
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Figure 3.12: Using an adaptive window size can improve the similarity measure obtained between
two frames but there can still exist relatively poor matches.
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Figure 3.13: Frame pairs containing little structure still result in relatively poor correlation even
with a large optimal block size.
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Figure 3.14: Frame pairs containing significant local motion still result in relatively poor correla-
tion even with a small optimal block size.
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Figure 3.15: Motion blur and occlusion between frame pairs can still result in a poor similarity
metric.
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blocks containing little or no high frequency information. It is notable that there is little change in
the colour distributions of the frame pairs in the examples given. It seems pertinent to exploit this
in order to improve the discriminatory power of the algorithm.

Many studies have highlighted the comparison of colour distributions to detect shot cuts. Histogram-
based methods represent the most common approach to shot cut detection in use today, since they
offer a good trade-off between accuracy and computational efficiency [8, 61]. However, frames
from different shots can have similar colour distributions such that the difference in the global his-
tograms are of the same small magnitude as differences caused by motion or changes in the global
illumination. For example, using a method to compare global colour histograms which results in

a difference measure 6fif the distributions are similar an2lif they are different to compare the

frame pairs in Fig. 3.16, results in a difference measure of 01ily2 and0.061. Consequently,
histogram methods may need to set a low threshold to detect all of the shot cuts, which in turn can
result in a high number of false detections.

Methods based on the comparison of histograms of corresponding local regions are more sensi-
tive to changes in the spatial distribution of the colours. For example, for the first frame pair in
Fig. 3.16, using the median to combine the difference metricsaufrresponding blocks results

in an overall difference measure @21, while using16 blocks equal®.41 and64 blocks results

in a difference measure 6f63. For the second frame pair, usidg16 and64 blocks results in a
difference measure @16, 0.26 and0.55 respectively. Whilst methods based on the comparison

of histograms of corresponding regions are more sensitive to changes in the spatial distribution
of the colours they also become more sensitive to object and camera motion than methods based
on global comparisons. Changes in the global illumination negatively influence any algorithm
based on histogram comparisons, although methods to quantise the colour component have been
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Figure 3.16: Histogram methods based on the comparison of corresponding regions are more
sensitive to changes in the spatial distribution than using a global comparison.

proposed to reduce the effect [63, 61].

Yusoff et al. [97] presented a shot cut detection technique using a combination of multiple “ex-
perts”, where the experts themselves were stand-alone methods to detect shot cuts. They illustrated
that the combination method gives significantly better results than these experts alone by exploit-
ing the fact that the various methods calculate different features of the video sequence. If a shot
cut is undetected by comparing one feature, it may be detected by another. Conversely, a false shot
cut detected by one method might correctly be left undetected by another. This work highlighted
that using a single feature for comparison is unlikely to be sufficient to detect all the shot cuts
without incurring a number of false detections. In fact, the performance of different features can
actually complement each other.

Two shots can have different colour distributions or similar colour distributions but a different spa-
tial structure (such as those in Fig. 3.16). This suggests that two important features for comparison
in detecting shot cuts are (i) colour distributions and (ii) the intrinsic structure. For this reason, our
shot cut detection algorithm was extended to incorporate the comparison of colour distributions, in
order to combat some of the shortcomings indicated earlier. Comparing the colour distributions of
corresponding regions is more sensitive to changes in the spatial distribution of colours, compared
with global colour histograms. Armed with this knowledge, we conclude the shot cut detection
algorithm should incorporate a block-based histogram comparison.

In our shot cut detection algorithm, each block is motion compensated before comparing the his-
tograms of corresponding regions. In other words, the colour histogram of each block in frame
fn_1 is compared with the histogram of the best matching block in frgmelncorporating a

colour histogram comparison with the comparison of edge features results in a similarity vector



3.6 Block-Based Colour Comparison 42

for each frame pair where the two components are:

1. a motion compensated similarity measure of the distribution of edge features in each frame,
and

2. amotion compensated difference measure of the colour distributions of each frame.

This combination is based on the assumption that, ideally, during the same shot consecutive frames
will have the same spatial structure and colour distributions. On the other hand, two frames sep-
arated by a shot cut should have different edge and colour distributions. Indeed, in an ideal case
either metric would be sufficient to distinguish between frame pairs belonging to the same shot
and frame pairs containing a shot cut. The benefit of using both metrics is that when one measure
indicates a potential shot cut, the other measure can be used to verify if this is, in fact, the case.

If two frames contain little high frequency phenomena such that the similarity of edge features
is relatively low (as shown in Fig. 3.13), then the two frames can be expected to have similar
colour distributions. In addition, if there are multiple motions, or motions that invalidate the
motion model even using the smallest block size, resulting in a relatively low median correlation
coefficient (as shown in Fig. 3.14), corresponding blocks will still have similar colour distributions.

In other words, if the similarity measure based on the edge features is relatively low during a shot
such that a frame pair could be mistaken to contain a shot cut, the difference between the colour
distributions should be smaller than that which occurs during a shot cut to prevent a false detection.

If there is a change in the global illumination during a shot such that the colour distributions
between two frames are as different as when there is a shot cut, such as the frame pair in Fig. 3.17
which contains a camera flash, the edge distributions can still be expected to be similar, meaning
that it is not falsely detected as a shot cut. The final situation to consider is if the difference
between the colour histograms of two frames containing a shot cut is of the same small magnitude
as differences caused by motion and illumination changes. Using the histogram difference on its
own could make it difficult to differentiate between the two. However, if there is a shot cut the
correlation will be poor, thus making a correct detection. For example, for the first frame pair in
Fig. 3.16 the correlation measure equat¥) and for the second frame pair equald0. If there

is not a shot cut and the difference is caused by motion or an illumination change the correlation
measure would be higher than it is during a shot cut preventing a false detection. Furthermore, this
final situation is unlikely to occur because the histogram difference uses a block-based comparison
not a global comparison thus increasing the histogram difference across a shot cut and each block is
motion compensated prior to comparison therefore reducing any differences caused by motion. In
other words, a shot cut will only be detected when the correlation isgudbthere is a difference

in the colour distributions as shown in Table 3.2.
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Colour comparison:

Global: 0.51
4 blocks: 0.61
16 blocks: 0.78
64 blocks: 1.03

Optimal correlation measure:
Block size 32: 0.73

Figure 3.17: If there is a global illumination change between a frame pair in the same shot the
similarity of edge features will remain high.

There have been many different methods to calculate the difference between colour and intensity
histograms proposed for shot cut detection. These vary from using bin-wise differences, the chi-
square statistic or histogram intersections combined with different colour spaces such as RGB,
HSV, YIQ, Lab, Luv, Munsell and opponent colours [58]. There has also been many compar-
ative studies characterising the various histogram-based shot cut detection algorithms, although
Lienhart suggests that the performance improvements gained by choosing the right algorithm to
classify the discontinuity far exceeds any improvement that can be gained by fine-tuning the colour
space and difference metric [58]. For this reason, we have not focused our efforts on characterising
the performance of different colour spaces and metrics ourselves but have chosen a 6-bit colour
code to represent each RGB component and the chi-square statistic to compare the two binned
data sets [74]. LeH;(k) be the number of events in binfor block z; in the first framef,,_; and

H (k) the number of events in the same Birfor the corresponding block; in frame f,,. Then

the chi-square statistic is

(3.8)

where both distributions are normalised @nd x? < 2 where0 indicates equality. Nagasaka

and Tanaka [63] used the chi-square statistic to reflect more strongly the difference between two
colour distributions. Experiments performed by Zhang et al. [99] showed that while this metric
enhances the difference between a frame pair containing a shot cut, is also increases the difference
between frames representing small changes due to camera or object movements. Therefore, the
authors concluded the overall performance was not necessarily better than that achieved by using
the sum of absolute differences. However, Sethi and Patel [78] found this measure to perform best
compared with two other tests. In addition, in our shot cut detection method differences caused by
motion should be eliminated. We therefore found the performance of the chi-square statistic to be
preferable.
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Edge Features Colour Distributions Shot Cut?

Similar Smaller Difference No

Similar Larger Difference No
Poor Smaller Difference No
Poor Larger Difference Yes

Table 3.2: A shot cut will only be detected when the correlation is poor and there is a difference
in the colour distributions.

For each blocle; in f,, 1 the motion estimate determined from the normalised correlation is used
to find its corresponding block iff,,. Theny? is computed between the colour distributions of
each block. Colour histograms are obtained by representing each pixel by a colour code. The
colour code is determined by merging the two most significant bits of each RGB colour compo-
nent resulting inb4 bins. The colour code is used to reduce the effect of luminance changes. A
difference measure based on the colour distributions of all the blocks is then defined as

C,, = mediar{x?}. (3.9)

Thus, we obtain two valuesy,, and C,, which can then be used to detect any change in the
visual content. A shot cut is detected if the correlation between edge features is poor and there
is a difference between the colour distributions. To achieve this we use two thre§hpkaisd

T to detect shot cuts. IE,, < Tg andC,, > T¢ a shot cut is detected. We can visualise

the classification of shot cuts in this 2-D metric space as shown in Fig. 3.18. It can be seen that
frame pairs from the same shot with a large histogram difference, but a high similarity value or
with a poor similarity value and a small histogram difference (in the blue shaded areas), will not
be detected as shot cuts. It is worthy of note that in both these cases, the frame pairs would be
considered to contain a shot cut if only a single metric was used.

For each frame paif,,_; and f,, the optimal block size for the similarity measuktky between

the edge distributions of each frame is determined by the block size that returns the highest value
for £, i.e. the block size that returns the highest overall correlation measure. It is clear that a
block-based comparison is more sensitive to changes in the spatial distribution of colours than
a global histogram comparison. The examples shown so far suggest that the smaller the block
size used, the more sensitive to shot cuts the method becomes. Figure 3.19 shows the histogram
difference computed during a sequence using a block siz@8k 128 (4 blocks) and32 x 32

(64 blocks) with the latter shifted to the right by frames to enable a comparison. It can be
seen that as the number of blocks is increased the difference during a shot cut is also increased.
In fact, a method based on region histogram differences was proposed by Nagasaka and Tanaka
which usedl6 blocks and an alternative approach was proposed by Ueda et al. which increased



3.6 Block-Based Colour Comparison 45

Te
A 2 :
® o o Framepair belongto
° | the same shot.
[ ) 1
1 . . .
Increasing o ® : o Framepair contain
i Cn ashot cut.
Difference P :
] ® Frame pair would be considered
______ ® e . T to contain a shot cut if asingle
| % ¢ metric was used.
° 0 $g® o: g%
0 o ' o °Pe%0
0 1
En

Increasing Similarity

Figure 3.18: Classification of shot cuts using two metrics.

the number of blocks td8 [63, 86]. This latter approach was found to be more sensitive to shot
cuts [67]. Since emphasis was put on the blocks which changed most from one frame to the next
it was also reported to be highly sensitive to motion [41]. In our approach, motion compensation
is employed prior to each comparison thus reducing the sensitivity of smaller blocks to object and
camera motion. Therefore, during a shot the histogram differences obtained at each block size are
approximately equivalent.

The above observations imply that always comparing the histograms of the blocks at the lowest
level of the hierarchical block matching will help improve the discriminatory power of the algo-
rithm. However, it is possible that two shots can have similar colour distributions and for the
spatial distribution of the colours to be similar even though the visual content is different. In such
cases, using a larger block size can return a larger difference than a small block size. For each
frame pair in Fig. 3.20, using a small block size results in the majority of the blocks having similar
colour distributions. The difference is almost doubled by using a larger block size.

If there is a large difference between the colour distributions of two frames belonging to the same
shot caused by a global illumination change, this is reflected in the difference metric obtained
at every level. Therefore, the preferable block size for determining the histogram difference is
actually that which returns the largest difference between two frames containing a shot cut and, as
we have shown, this can vary. For this reason, we propose that for each frame pair the histogram
difference at each block size is computed and the block size that results in the largest difference
should be chosen. In reality, this is indeed the smallest block size for the majority of cases.
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Figure 3.19: Using a smaller block size in the region-based histogram comparison can increase
the colour difference between frame pairs containing a shot cut.

Global comparison 0.23
4 blocks 0.24

16 blocks 0.08

64 blocks 0.06

Global comparison  0.31
4 blocks 0.38

16 blocks 0.35

64 blocks 0.17

%

Figure 3.20: Histogram methods based on the comparison of small block sizes can result in the
majority of the blocks having similar colour distributions if the spatial distribution of the colours
is similar.
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To summarise, hierarchical block-based motion estimation is employed between two frames to
obtain a motion compensated similarity measure between the edge features contained in each
frame. This measure can then be used to declare if there exists a shot cut between the two frames
or whether the the frame pair belong to the same shot. The main drawback of this metric is that
a relatively low measure can be obtained between two frames belonging to the same shot if an
unsuitable block size is used due to the generalised aperture problem. For this reason, a similarity
measure is acquired at each level of the hierarchical motion estimation and the block size which
returns the largest similarity measure is used. The use of a flexible aperture size can substantially
increase the similarity measure obtained during the same shot, thus helping to reduce the number
of false shot cut detections. During a shot cut the similarity of edge feaffdsetween two

frames will be poor therefore itZ,, is less than a thresholdz the frame pair is marked as a
candidate shot cut.

The use of an adaptive block size helps to overcome the generalised aperture problem. However,
there can still exist relatively poor measures between two frames belonging to the same shot.
Therefore, given a candidate shot cut, a measure of the histogram diffetgnbetween two
frames is used to verify if this is a shot cut or not. The main drawback of using a histogram
comparison is that two frames from different shots can have similar colour distributions. For this
reason, a block-wise histogram difference at each level of the motion compensation is computed
and the block size which returns the largest difference is used to confirm whether the candidate
shot cut is a correct or not. Using the largest histogram difference helps reduce the number of
missed shot cuts between two frames belonging to shots with similar colour distributions. Thus, if
C), is greater than a thresholg: the candidate shot cut is declared to be correct.

Figure 3.21 shows a plot df,, and C,, for a video sequence that contaishot cuts. It can be

seen that there is a large decreasé&’jnand a large increase ifl,, for each shot cut. In fact, for

this sequence either measure alone would be sufficient to detect all of the shot cuts correctly. Fig-
ure 3.22(a) illustrates both metrics 2§ frame pairs during which there is an illumination change
between two frame pairs. This would resultirialse detections if only the histogram difference

was being used. However, it can be seen fiatemains high so they are correctly not detected.
Conversely, Fig. 3.22(b) illustrates the metrics for the fifgt frames of an underwater sequence

with 1 shot cut. Six evenly distributed frames from this sequence are shown in Fig. 3.23. It can be
seen that in some cases there is little high frequency image phenomena and in addition there are
shoals of fish which move very swiftly between frame pairs causing significant local motion and
content change. The correlation of edge features is an unsuitable metric for measuring changes
in the visual content of this sequence and using it alone would result in many false detections.
Combining this metric with the histogram difference results in a correct detection of the shot cut
and no false detections.
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(a) Using onlyC’,, would result in2 false detections. (b) Using onlyE;, would result in many false detections.

Figure 3.22: Combining the two metrics results in no false detections.

Figure 3.23: The similarity of edge features is an unsuitable metric for shots containing either little
high frequency phenomena or significant local motion.
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3.7 Results and Comparative Study

In this section, the performance of the proposed shot cut detection method is evaluated and com-
pared with five alternative methods. These methods vary according to the scale of comparison
used i.e. pixel-level, region-based or global-level and the features being compared. Firstly, we
present in more detail the previous algorithms used for comparisons.

Pair-Wise Pixel Comparison (PC)

Arguably the simplest of the shot cut detection methods is the pair-wise pixel comparison of
pixel intensities [99]. This method compares the intensity of each pixel in frgme with its
corresponding pixel in framg,. If the difference in the intensity values of two pix&$C, (p)

is greater than some threshdlgis the pixel is considered to have changed. This is defined as

L if |fn1(p) — fu(p)| > Tyit

] (3.10)
0 otherwise

DPC,(p) = {

wheref,_1(p) and f,,(p) are the pixel intensities at poiptin framesf,_; and f,, respectively.
Then, if the percentage of changed pixels is greater than some thré&&hettie frame pair are
considered to contain a shot cut. The detection of a shot cut can be represented by:

(3.11)

>.pDPC,(p) 100 > Teut Shot cut
w-h < Teut Nno shot cut

wherew - h is the total number of pixels in each frame.

Block-Based Histogram Comparison (BH)

Instead of comparing individual pixels the block-based histogram method compares the colour dis-
tributions of corresponding regions [63, 86]. For this comparison we have used Ueda’s approach
which was found to be more sensitive to shot cuts and can be described as follows [86, 67, 41].
First, a frame is divided intd8 blocks. For each block; in frame f,,_1, the chi-square statistic

x? is computed between the colour histogramsgdnd its corresponding block; in frame f,, as
defined in (3.8). Similarly, & bit colour code is used to represent each RGB component, resulting
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in 64 binned histograms. The discontinuity value is then defined as the number of blocks with a
histogram difference greater than a threshtig, that is

48
> T, shot cut

3" DBH, (i) out (3.12)

i1 < Teut No shot cut

with

1 if y2 > Ty

DBH, (i) = Xi >' diff 3.13)
0 otherwise

Likelihood Ratio (LR)

Instead of comparing the colour distributions of corresponding blocks, the block-wise comparison
used in the LR approach is based on the second-order statistical characteristics of their intensity
values [99, 49]. Given a block; in the framef,_; and its corresponding block; at the same
position in framef,, let u; and u; represent the mean intensity of each block respectively and
let o; ando; denote the corresponding variances. The likelihood ratio betwgandz; is then
defined as

i+0j i~
[U 2”] 4 (# 2#] )2]2

Ihr; = (3.14)

0; - 0j

A shot cut is declared if the number of blocks whose likelihood ratio exceeds a thregfgld
is greater than some predefined threshfiigi. The decision whether a shot cut has occurred is
determined by

48
T h
Z DLRn(Z) > Teyt  Shot cut (315)
i—1 < Teut no shot cut
where
1 if lhr; > Ty
DLR, (i) = 1 hri > Tt 516
0 otherwise
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and each frame divided into a regular griddgfblocks. For each block, if its corresponding block
is similar the likelihood ratio is approximately equalitolf they are different, the likelihood ratio
is greater than.

Average Intensity Measure (AIM)

This method uses the average intensities over the entire image in each RGB colour channel to
detect shot cuts [39]. Consider a colour frajfjewhere each pixel hascolour components such

that f,,(p) = (R, G, B)". Let the average of each RGB component of a frafpevith width w

and heighth be defined as follows

A, = (3.17)

In the implementation proposed by Hampapur et al. [39], after the averaging the absolute differ-
ence between the current frame and the next frame is divided by the absolute difference between
the current frame and the previous frame, defined by

o |An - An+1|

D, =
|An71 - An|

(3.18)

To obtain the discontinuity value the difference in the average intensity of each colour channel is
summed. A shot cut is then detected using

(3.19)

> Teut  Shot cut
> D
< Teyt  ho shot cut

In other words, if the sum of absolute differences is greater than a threshold a shot cut is declared.
We initially used this implementation. However, if during a shot there was a relatively small
change between the current frame the next frame but little or no change between the current frame
and the previous frame (i.e. the denominator in (3&8)), then>" D,, would frequently be large.

This resulted in many false detections. Conversely, if there was a difference between the frame
pair before a shot cut the discontinuity value indicating a shot cut could be relatively small. For



3.7 Results and Comparative Study 52

this reason, we redefined (3.18) as simply

D, =|A, 1 — A, (3.20)

After comparing the performance of both implementations we found that using (3.20) improved
the precision of the algorithm.

Global Histogram Comparison (GH)

Like the AIM the GH approach uses a global comparison and compares the colour histograms
of successive frames [99, 63]. Again, this method uses the chi-square statistic to compare the
difference between the global colour histograms of fraifjes and f,,. It is defined as

(3.21)

whereH,,_; (k) is the number of events in bitafor frame f,,_;, H, (k) the number of events in
bin k for frame f,,, both distributions are normalised afdd y2 < 2. Each RGB component is
represented using@bit colour code resulting i64 binned histograms. If this difference is greater
than a threshol@t a shot cut is detected i.e.

) { > Teut  Shot cut (3.22)

Xn < Teut no shot cut

Motion-Based Method (MB)

This is the shot cut detection method proposed in this thesis. So far, we have shown examples
using5 levels of hierarchical motion compensation. In this method, there is a trade-off between the
precision gained by using many levels of motion compensation and the computational efficiency.
In most cases, we have fouidevels sufficient and present results in this thesis using a top block
size of 128 and a bottom block size &2. For this implementation each frame is scaled to have
dimension256 x 256.
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Sequence No. of frames No. of shot cuts Genre

1 17558 143 Film

2 9038 80 Documentary
3 4877 57 Documentary
4 3086 51 Sport

5 2633 34 Comedy series
6 3995 33 Comedy series
7 3573 22 Documentary
8 5986 19 Drama series
9 214 14 Advert

10 500 12 Cartoon

11 6463 12 Promotional Video
12 425 11 Film

13 500 6 Film

14 561 5 Documentary
15 500 5 Chat show

16 625 4 Documentary
17 478 4 News

18 500 2 Sport

Table 3.3: Test data used to compare shot cut algorithms.

Test Data

To test these methods we usidifferent video sequences totallisg512 frames. All sequences
contained only shot cuts amounting id4 transitions. The work in this thesis has not targeted

an application for any particular category of media such as a digital video library containing only
wildlife footage or historic news footage. For this reason, the sequences were chosen to include
different genres, varying from film, documentary, drama and comedy series, cartoon, sport and
news. The number of frames, shot cuts and the category of each sequence is summarised in Ta-
ble 3.3. The locations of these transitions were hand labelled to obtain a ground truth to evaluate
the performance of each algorithm. Two parameters often used to evaluate and compare the per-
formance of shot cut detection algorithms are recall and precision [61, 8, 33]. These evaluation
criteria are commonly used in the field of information retrieval [87]. When searching and retriev-
ing documents from a large collection, intuitively a good information retrieval system should try to
maximise the retrieval of relevant documents, and minimise the retrieval of irrelevant documents.
Likewise, a good shot cut detection algorithm should try to maximise the number of actual shot
cuts detected, whilst minimising the number of false detections. When detecting shot cuts in a se-
quence, there are four types of detections an algorithm can make, summarised in Table 3.4. Recall
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| Shot Cut  Non Shot Cut
Detected as ShotCut C F
Not Detected M N

Table 3.4: Four types of detection an algorithm can make.

and Precision can then be defined by

C
Recall = 3.23
eca C+M ( )

- C
P = 3.24
recision CiF ( )

In other words, recall is the percentage of true transitions detected and precision is the percentage
of detected transitions that are actually correct (precision defines the level of “noise” in the transi-
tions detected by the algorithm). In an ideal world, recall and precision would both be edual to
However, it is usually difficult to achieve a high level of recall without sacrificing precision. For
example, it would be trivial to achieve a recall equal 1o by detecting all frame pairs as shot cuts,
although the precision would be poor. Conversely, a precision equald twould be achieved by
detecting just one shot cut, resulting in a poor recall. In reality, an algorithm attempts to maximise
both recall and precision simultaneously. It is worth noting, that the lowest precision obtainable
is defined by the percentage of total frame pairs that are shot cuts. A common property amongst
all of these algorithms is that they involve at least one thresholding operation to declare a shot cut.
Consequently, the performance of these algorithms is dependent on the values chosen for any pa-
rameters used. With this in mind, a recall/precision curve (RP curve) can be constructed for each
sequence by varying the value of one or more thresholds between its extremes, which then illus-
trates the performance trade-offs available for a given algorithm on that data. RP curves for each
of the six algorithms over sequent@nd2 are shown in Fig. 3.24 and Fig. 3.25 respectively. RP
curves can also be used to obtain the parameter set which resulted in a particular operating point.
For example, to guarantee a recallodd on sequencé the RP curves for each algorithm can be
compared to decide which algorithm resulted in a higher precision at that recall value. Then, for
the chosen algorithm the parameter set used to obtain that performance can be determined.

We are not concerned with the performance of an algorithm on one particular genre of media.
More importantly, the performance evaluation of these methods should reflect how well they could
potentially perform on unseen data. In other words, it must be evaluated if the performance of a
parameter set for an algorithm generalises well to other sequences. For example, the parameter set
that resulted in a recall and precision equal #on sequence for the MB algorithm may have
returned a similar recall for sequentéut with a much lower precision, i.e. if the performance of
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Figure 3.25: RP curves for each algorithm on sequénce
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a parameter set generalises well, then its corresponding recall-precision pair should always appear
in a similar position on the recall/precision graph.

Based on this observation, we do not want to evaluate the performance of each algorithm on
one particular sequence, but rather the performance over the complete data set. To achieve this,
for each different parameter set for an algorithm, the total number of correctly detected, falsely
detected and missed shot cuts over all the sequences are determined. These values can then be
used to produce a RP curve showing the performance trade-off available with each algorithm on
the complete data set. Fig. 3.26 shows the RP curve for each of the six algorithms over all the
sequences. It can be seen that for any recall value the proposed method (MB) results in a higher
precision value and dominates over the entire performance space. Consequently, on this data set
the proposed method resulted in a better performance than the alternative algorithms.

It is worth noting that an alternative approach to evaluate the performance of each algorithm over
all the sequences could be to compute the average recall and precision value obtained by each pa-
rameter set (this is known as micro-evaluation when evaluating information retrieval systems [87]).
For example, give sequences with the number of shot cuts shown in Table 3.5, two thresholds
T4 andT'p detect the number of shot cuts shown in colurirend 5 respectively. The corre-
sponding recall values are shown in columdrend6. Using the average recall value to evaluate

the performance of each threshold would result in a recall valy@.6f+ 0.9 + 0.9)/3 = 0.76

for T4 and (0.9 + 0.5 + 0.5)/3 = 0.63 for T5. Conversely, using the total number of cor-
rectly detected and missed shot cuts to compute a recall value for each threshold would result in
518/(518 + 502) = 0.51 for T'4 and910/(910 + 110) = 0.89 for T'z. Assuming this resulted in

no false detections for each threshold, the optimal performance would be achieved by the thresh-
old which detects the most shot cuts i.e. the threshold which results in the maximum recall value.
Using the average recall value this wouldBg and using the total number of correct detections
would indicateT’s resulted in the best performance.

If the performance of an algorithm on each sequence is considered equally important, then the
average recall should be used. In other words, if the sequences contain a different number of shot
cuts and are of different lengths but every shot cut detected is equally important then threshold
T4 would be chosen as it returned a higher recall. However, if the performance over the whole
data set is important and the performance on each sequence should be weighted then computing
the recall over all the sequences should be used as it is weighted by the number of shots cuts in
each sequence. For example, detectifi¢f of the shot cuts contained in sequericerould be
preferable to detectin§0% of those in sequencesand3. Thus, threshold’s would result in

the optimal performance. In this work, the total number of correctly detected, falsely detected and
missed shot cuts were used to determine the recall and precision values to evaluate the performance
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Sequence Total no. of No. of shot cuts de- Recall No. of shot cuts de- Recall
shot cuts tected usingl’s for T'4 tected usind’'s for T
S 1000 500 0.5 900 0.9
So 10 9 0.9 5 0.5
Ss3 10 9 0.9 5 0.5

Table 3.5: Assumed number of detected shot cuts for an algorithm using two different threshold
values.

of the shot cut detection methods. If there is not one algorithm that can be declared better than the
others, RP graphs can be used to aid in the choice of algorithm. The algorithm chosen as the best
often depends upon the performance requirements. For example, considering the two methods LR
and AIM between the recall valués) and approximately).7, AIM returns the highest precision.
However, if an application required a recall greater thanthen LR results in a higher precision

value and would be most preferable. One measure of performance that takes into account both
recall and precision is the F-measure, defined as

P-R

Fp=—" "
(1-a)P+aR

(3.25)

where P equals precisionk equals recall and: defines the importance of recall and precision in
the performance [87]. Wham — 0, F;, — R which corresponds to no importance being attached
to precision. Alternatively, whenr — 1, F, — P which corresponds to no importance being
attached to recall. Finally, whem = 0.5, F,, corresponds to equal importance being attached to
recall and precision. This measur, 5 is most commonly used and is known as the harmonic
mean of recall and precision

2PR
P+ R

Fos = (3.26)

Both recall and precision need to be high for the harmonic mean to be high. Consequently, if
the harmonic mean is computed for each operating point on a RP curve, the maximum value
is a good indication of the best recall/precision compromise. Table 3.6 ranks the performance
of each algorithm with respect to the maximum harmonic mean value. It can be seen that the
proposed algorithm achieves the optimal performance Witi1% recall and98.65% precision.

If there were no specified performance requirements for an algorithm, i.e. recall and precision
are considered equally important, the algorithm which returns the maximum compromise between
recall and precision could be chosen as the “best” algorithm.
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Figure 3.26: RP curves for each algorithm on the complete data set.

However, in real world applications this is rarely the case and specific performance criteria are
required. For example, shot cut detection algorithms could be used to assist a user in labelling the
shot cut boundaries. In such a scenario, it may be preferable to detect all of the shot cuts at the
cost of detecting false transitions. It would be quicker and easier for the user to browse potential
shot cuts and label the correct transitions than to observe an entire video sequence to detect missed
shot cuts i.e. the consequence of missing a shot cut is more severe than returning a false detection.
Based on this observation the performance of each algorithm can be compared with respect to
the maximum precision value obtained when the recall value edualsTable 3.7 presents the
performances of each algorithm represented as precision with redalllt can be seen that the
proposed algorithm can detect all of the shot cuts whilst detectinglarflise positives—a better
performance than the other algorithms. Finally, for any shot cut detection algorithm that uses a
global threshold to work well it is important that the difference (or similarity) values obtained for

cut and non-cut frame pairs are clearly separated for all video sequences. The distributijpn of

and (), values used in the MB method for cut and non-cut frame pairs over all the sequences are
shown in Fig. 3.27. It can be seen that there is little overlap between the two distributions and
that the threshold values used to maximise the harmonic mean separate the two distributions well
resulting in a high recall and precision value.
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Algorithm

Threshold values C M F R P Fy 5

BHXS Tagifr =036 Ty = 30 490 24 22 0.9533 0.9570 0.9552
PC Taigr = 15 To =070 468 46 28 0.9105 0.9435 0.9267

GH Tt =0.12 474 40 77 0.9222 0.8603 0.8901
LR Typr=1512 Ty =30 472 42 170 09183 0.7352 0.8166
AIM T, =27 370 144 86 0.7198 0.8114 0.7629

Table 3.6: Evaluation based on the harmonic mean—equal importance is attached to recall and
precision.

Algorithm Threshold values C M F R P

BH  Tus;=025 Tpu=20 514 0 218 1.0000 0.7022
LR Tyfr=1064 T, =37 514 0 479 1.0000 0.5176
PC Ty =5 T.,=0.73 514 0 1870 1.0000 0.2156
GH T.,=001 514 0 2818 1.0000 0.1543
AIM T.,=3 514 0 10883 1.0000 0.0451

Table 3.7: Performance evaluation based on the detection of all the shot cuts—maximum precision
whenR = 1.

% Shot Cut
+ Non Shot Cuts

Figure 3.27: There is little overlap between the distributions for cut and non-cut frame pairs.
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3.8 Summary

A method for detecting shot cuts was presented, employing hierarchical motion compensation
using a normalised correlation measure in conjunction with local colour histogram differences.
The correlation metric matches image features corresponding to high-frequency phenomena, such
as edges, corners and certain types of textures. The use of this measure was motivated by the
observation that the distribution of edges differ between frames separated by a shot cut. However,
although effective in the majority of cases, correlation alone is not suitable in every situation.
Occasionally, images may lack the necessary level of high frequency information in order to enable
reliable correlations to be obtained. This may be due to a general lack of edges, soft focus, motion
blur or significant local motions. In order to deal with such situations a local colour histogram
difference metric was introduced, based on the observation that frames within a shot typically
have similar local colour distributions. These two metrics were found to complement each other.
The chapter concluded with a comparative study of the performance of the proposed algorithm
and a number of existing techniques. The proposed algorithm was found to perform the best over
the data used for the experiments.



Chapter 4

Gradual Shot Transition Detection

Shots unified by a common event, locale and time are grouped together into scenes. Gradual
transitions are often used at scene boundaries to emphasise the change in content of the video
sequence [8]. Hence, detecting gradual transitions is particularly important for the identification
of key frames to provide an efficient index. A comparison of recent algorithms shows that the
false positive rate when detecting dissolves is usually unacceptably high, indicating that reliable
dissolve detection is still an unsolved problem [56]. In this chapter we extend our shot cut detection
method for the detection and classification of the most commonly used gradual transitions: fades
and dissolves.

4.1 Motion-Based Gradual Transition Detection

In the case of shot cuts, the content change occurs between two consecutive frames and can be
detected by comparing the difference between image features that represent the visual content, as
described in the previous chapter. During a shot cut the inter-frame difference is usually large and a
shot cut is detected when the difference exceeds a predefined threshold. However, during a gradual
transition the inter-frame difference is much smaller than that which occurs during a shot cut. For
this reason, it is difficult to detect gradual transitions by comparing consecutive frame pairs alone.
The4 frames shown in Fig. 4.1(a) come from a dissolve which has been used to indicate a passage
of time between the tennis player winning the match and later receiving the trophy. A plot of
the similarity of edge featureg,, and the colour histogram differen¢g, during this dissolve is

shown in Fig. 4.1(b). The dissolve occurs between fra2®2$ and2860 and it can be seen that

there is little indication of any change. In addition, the inter-frame difference during a gradual

61
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(a) Four frames illustrating a dissolve.
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(b) The inter-frame difference during a gradual transition is usually small.

E, =0.2904
C, =1.1151

(c) Comparing the the visual content between the two frames at the start and end of the
transition results in a difference comparable to a shot cut.

Figure 4.1: It is difficult to detect gradual transitions by comparing consecutive frame pairs.

transition can be of the same magnitude as differences caused by camera and object motion. This
makes it difficult to distinguish between changes caused by a gradual transition from those caused
by such motions. Simply lowering the shot cut threshold to detect these small changes would
result in a large number of false detections.

Nevertheless, it can be seen in Fig. 4.1(c) that if the visual content of each shot connected by the
dissolve was compared directly the difference would be large; comparable to that which occurs

during a shot cut. This suggests that gradual transitions can be detected by measuring the differ-
ence between the visual content of temporally distant frames using metrics similar to those used
in shot cut detection. If the difference between two frames far apart is greater than some threshold
there could potentially be a gradual transition between them. This concept was first proposed by
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Zhang et al. who used a “twin comparison” technique which compares the histogram difference
with two thresholds, a high and a low one [99]. Whenever the histogram difference between two
consecutive frames is greater than the higher threshold, a shot cut is detected. If the difference lies
between the two thresholds the frame is marked as a potential start of a gradual transition. Succes-
sive frames are then compared with the first frame of the transition and if the difference exceeds
the high threshold, a gradual transition is detected. The end of the gradual transition is marked
once the difference between frame pairs drops below the low threshold for two frame pairs.

Zhang et al.'s method addressed the fact that if there exists a gradual transition between two shots
then the difference between the first frame of the transition and the last should be of the same
magnitude as if a shot cut existed between them. However, this approach can fail when camera
operations, such as pans, generate a change in the colour distribution similar to that caused by
a gradual transition. To overcome this, they suggested analysing the motion between frames to
identify camera operations such as pans, tilts and zooms. Where this type of motion is identified,
the gradual transition is assumed to be false to reduce the number of false positives. However, this
means that gradual transitions containing camera motion will not be detected. In addition, this
method depends on a small change between consecutive frames to trigger the comparison between
frame pairs that are further apart. As shown in Fig. 4.1(b), sometimes the difference is so small it
never exceeds the lower threshold and the transition is missed.

In summary, methods that detect gradual transitions by locating a sustained increase in the differ-
ence metric used for shot cut detection are susceptible to two different factors.

1. Small changes caused by camera and object motion can result in false detections.

2. The difference during a gradual transition is not sufficient for the change to be detected.

To address these issues, motion-based algorithms have been proposed which aim to eliminate any
differences between frame pairs caused by camera and object motion so that any change must
be the result of an edit effect. Shahraray used a weighted sum of the motion-compensated pixel
differences as the disparity metric to detect shot cuts and detected gradual transitions if there
existed a sustained small increase [79]. The method proposed by Zabih et al. to detect shot
cuts was also extended to detect gradual transitions by examining the relative values of entering
and exiting edge percentages [98]. However, despite the motion compensation employed in both
these methods, changes caused by a gradual transition were still difficult to distinguish from those
caused by motion resulting in a large number of false detections [56, 58].

In an attempt to overcome the problem of motion, other methods detect fades and dissolves by
examining the temporal behaviour of the variance of the pixel intensities. This approach was first
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proposed by Alattar [3, 4] but has been used and modified by other authors as well [29, 84, 60, 62,
64]. Such methods model a dissolve between two sequeraedh as

ft(p) = Q- gt(p) + (]. — Oét) . ht(p) for 0 <t< T (41)

whereT is the length of the transition ang is a decreasing function from; = 1 at the start

of the transition ton; = 0 at the end. A fade transition or ‘dip to colour’ can be defined as

a special case when eithgror h contains only solid colour frames. Fades and dissolves can,
therefore, be represented by the same model. The majority of these methods also depend on two
assumptions [64].

1. Thata; decreases linearly.

2. There is little or no motion in the sequengeandh, i.e. g andh are ergodic processes.

Given this ideal model it can be shown that the variance of the pixel intensities in each frame
follows a parabolic pattern during a dissolve [41]. Detecting a dissolve then becomes a problem of
detecting the parabolic pattern in the variance sequence. Although these assumptions in the model
result in a computationally efficient detection algorithm, actual dissolves are not that simple [64].
During many gradual transitions; does not decrease linearly [64, 60]. Particularly during artistic
transitions, there may be a pause, a long lead-in time or some other non-lineadity[48].
Creating transitions is an art form in itself. Indeed, the connections between shots are often as
important as the shots themselves as they give rhythm and style to the film [50]. In addition,

if o, does decrease linearly, the linearity is often distorted by a wide variety of post-processing
operations such as compression coding and filtering [64].

There can also exist camera and object motion before, during and after a gradual transition. It is
most important that any gradual transition appears smooth. However, if for example two different
shots contain similar camera motion a dissolve can be used to connect them thus resulting in a
continuous motion throughout the transition. A further problem is that large object and camera
motion during a shot can introduce similar parabola shape in the variance sequence [60]. As a
result the parabolic pattern is not sufficiently pronounced and many algorithms lack robustness
when detecting gradual transitions in real video sequences [41, 64]. For example, Fig. 4.2 shows
a plot of the variance of the pixel intensities for each frame over a sequence which contains one
dissolve and a fade-out. The temporal bounds of each transition are shown and even by human
eye the parabolic pattern relating to the dissolve is difficult to extricate.

It is noticeable that the end of the fade-out is marked by at least one frame with variance approxi-
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Figure 4.2: The parabolic pattern relating to a dissolve can be difficult to extricate due to noise
and motion.

mately equal to zero. Lu et al. noted that this is an important feature that can be used to detect the
start of a fade-in and the end of a fade-out [60]. Moreover, the frame variance distinctly decreases
during the fade-out and increases during a fade-in, i.e. the transition is monotonic. We describe
an approach to detect fade transitions that starts by locating frames with pixel intensity variation
close to zero. The shot cut detection method is then used to distinguish between fades and cuts
to/from a constant frame. If the frames are declared to mark the start of a fade-in, the end of the
transition is detected by analysing the mean and standard deviation of the pixel intensities in the
following frames. A similar comparison is used to detect the start of a fade-out.

The majority of the existing methods for detecting gradual transitions, particularly dissolves, are
weakened by camera and object motion. Based on the above observations it seems clear that it is
not sufficient to consider only the difference between consecutive frame pairs to detect dissolves.
Frames that are further apart must be compared to detect a change in the visual content analogous
to that of a shot cut. In addition, this comparison must be performed continuously not only when
there exists small local changes. However, the visual content between two frames that are far
apart can potentially be very different if there exists camera and object motion between them.
For example, Fig. 4.3 illustrates four frames from a shot during which the camera pans right and
zooms-in and another character enters the setting. It can be seen the contents in the first frame are
incomparable with those in the last. Therefore, we conclude that an algorithm to detect dissolves

must compare frames that are temporally distant whilst still eliminating differences between them
caused by camera and object motion.
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Figure 4.3: Camera and object motion can cause the visual content of a shot to change significantly.

Ideally, the contents of a frame (potentially the first frame in the shot) should be compared with
every successive frame to detect a dissolve. If there exists no camera or object motion until the
occurrence of a gradual transition, the contents between the first frame and the current frame will
start to differ as the transition starts and will be significantly different by the end. However, in
reality there does exist camera and object motion during a shot. Therefore, an algorithm must be
able to adapt which content from previous frames is being compared with the current frame. In
the presence of camera or object motion only content from a previous frame that is still present
in the current frame should be compared. Hence the content will not appear to have changed
significantly.

To achieve this we extend our shot cut detection method to track blocks through the video se-
guence. It monitors which blocks from previous frames are still present in the current frame and
have not been removed due to camera or object motion. It then compares the difference between
each block’s contents in the frame it was selected from and the current frame at its new position. If
the difference is significantly large for the majority of the blocks being tracked a gradual transition

is detected. Moreover, this method does not rely on an ideal model to detect dissolve transitions.
Therefore, it can also detect the less common type of dissolve known as an additive dissolve.
Many previous approaches are restricted to detecting the most common dissolve type which are
cross-dissolves [58]. This method to detect dissolves is outlined in Fig. 4.4.

The proposed method for detecting gradual transitions3ltstinct stages:

1. Detect fade transitions.

(a) Detect frames with zero variance to mark the start of a fade-in or the end of a fade-out.

(b) Use the shot cut detection method to differentiate between fades and shot cuts to/from
blank images.

(c) If declared a fade, determine the start of a fade-out or the end of a fade-in.
2. Detect shot cuts.

(a) Apply the shot cut detection algorithm between fade boundaries to detect shot cuts.
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Figure 4.4: Method outline to detect dissolves.

3. Detect dissolves.
(@) Assume the only possible transitions in the sub-sequences between shot cut and fade
transition boundaries are dissolves.
(b) Track blocks through sub-sequence.

(c) Ifthe content of the majority of the blocks changes significantly, a dissolve is detected.

In the following sections, we discuss in more detail how the boundaries of fade and dissolve
transitions are detected to complete the segmentation of a video sequence into its individual shots.
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Figure 4.5: During a fade transition the colour histogram indicates little change.

4.2 Fade Detection

The first step in this method is to detect fade transitions. The end of a fade-out and the start of
a fade-in is marked by a blank image. However, simply detecting such images is not sufficient
to declare a fade transition as there can also exist shot cuts to or from a constant image. If a
shot transition detection algorithm is to be used as the initial step in creating a video index it is
important that it can detect the boundaries of gradual transitions accurately. A key frame selected
from the middle of a gradual transition will not convey the contents of either of the adjoining shots
properly. Therefore, the algorithm must be able to distinguish between fades and shot cuts to/from
a constant image for the boundaries of the fade transition to be detected properly.

Let o,, define the standard deviation of the pixel intensities in fraimdf f,, is a constant colour

on, = 0. In practises,, = 0 due to the presence of noise in the image. Hence a frame is marked
to be a blank image i#,, < Tsg. In our approaci’sq was constant and equal to Once a blank
frame has been detected there must have either been a fade-out or a cut to a blank frgmiee Let

a blank frame angi,, ; be the previous frame such thgt ; > Tgq. To determine iff,, marks the

end of a fade-out or if the frame pair contain a shot cut, the meljcandC),, can be computed.

The similarity of edge feature’,, will be poor. However, iff,, marks the end of a fade-out which

is a gradual transition the difference between the colour distributions should be small and will not
indicate any change. This is illustrated in Fig. 4.5 which presents the métyiesd C,, during

a sub-sequence of video that contains a fade-out followed by a fade in. It can be seen that there
does not exist any change @j,. On the other hand, if the frame pair contain a shot cut then both
these measures will indicate a significant change. This is shown in Fig. 4.6 which shows a plot of
E, andC,, for a section of video that contains a shot cut to black followed by a fade-in.
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Figure 4.6: During a shot cut to a constant frame both metrics indicate a significant change.

If the constant frame is declared to mark the start/end of a fade transition then the opposite bound
must be ascertained. A fade is a scaling of the pixel intensities over time which can be be observed
by a parabolic pattern in the variance of the pixel intensities. Furthermore, this is reflected by
an approximately linear scaling in the standard deviation of the pixel intensiti@s shown in

Fig. 4.7 which illustratesr,, during a fade-in. Reliable fade detection can not be achieved by
assuming the increasing rate of change is constant during the transition. However, it is noticeable
that the end of the fade-in is marked by a considerable change in the rate of incregsd hris
suggests that the end of a fade-in can be detected by locating the frame pair where this large change
occurs (a similar comparison can be used to detect the start of the fade-out by analysing the rate
of increase backwards from the end of the fade-out). It is worth noting that the standard deviation
continues to increase slightly after the end of the fade-in so it is not sufficient to detect the frame
pair where the rate of change is less than or equal to zero as the end of the fade-in.

However, if a fade is to/from a relatively low contrast scene then using the standard deviation
alone is not sufficient to detect the boundaries accurately. Figure 4.8 shiomrees from a shot

during which the camera pans up to the sky and then ends with a fade-out. It can be seen by the
red line in Fig. 4.9 that there is little change in the standard deviation of the pixel intensities during
the fade-out. The largest decrease in this time series corresponds to the section of the shot where
the camera pans up to the low contrast sky. In fact, the largest indication of this fade transition
is found in the time series of the mean of the pixel intensities as shown by the green dashed line
in Fig. 4.9.

This approach to detect fade transitions also includes the detection of ‘dips to colour’. Although
uncommon, it can occur that there is little change in the mean of the pixel intensities and that the
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Figure 4.7: A fade is a scaling of the pixel intensities over time which can be observed in the
standard deviation of the pixel intensities.
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Figure 4.8: Frames illustrating a fade-out from a low contrast image.

largest indication is given by the standard deviation. As a result neither measure alone is sufficient
to reliably detect the boundaries of a fade. Therefore, the linear combination of both measures is
used as shown by the blue dashed line in Fig. 4.9. If we only consider a faglgill always be

close to zero for the first frame irrespective of its colour. However, the mean could be anywhere
in the rangg0, 255]. Indeed, the mean could decrease during a fade-in. For this reason, the mean
value of the first frame of the fade-in and each subsequent frame is transformed by

= lppn — | form >s 4.2)

wherey,, is the mean of fram¢,, and framef; is the first frame of the fade-in. Detecting the
end of the fade-in now becomes a problem of locating the frame where there is a considerable
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Figure 4.9: If a fade is to/from a low contrast scene there can be little change in the standard
deviation. A larger change can be observed in the mean.

reduction in the rate of change of the time series representing the linear combination

In = lf';b +0on (4.3)

The detection of this turning point is achieved by using the average rate of chahgbetfveen

the starting frame and a current frame to predict the valug &r the next frame. If the actual

value for the next frame is less than its predicted value for several consecutive frames, the rate of
increase is deemed to have changed considerably and the end of the fade-in is declared.

More formally, for each fram¢,, following the first framef, such thatn > s, the average rate

of change ofl,, is computed wheré, = [,,/(s — n). Then, the value of, is predicted for the

next framef, ;1 usingl,, ., = I, +,. If the actual value of,,, is greater than or equal to the
predicted value i.el,,+; > I;,,, then the fade-in is deemed to still be continuing. On the other
hand, ifl,1 < I;,.,, the current framef,, is marked as the potential end of the fade-in. If the
actual value of,, . is less than its predicted value for several successive frames the fade-in is
determined to have finished. If the number of successive fravggs:is equal tol this would be
equivalent to assuming the rate of increase must be linear and the end of the fade-in will frequently
be detected too early. However, computing the average rate of change between the starting frame
and each current frame and usifdgycc > 1 allows for a non-linear increasing function. In

fact, if Ngyccis set too high, the average rate of change will eventually become close to zero and
potentially,, 1 will be greater than or equal to its predicted value for many successive frames.
In this case, the detected fade-in will be declared too long. We fdlqdc = 5 resulted in the
start/end of each transition to be determined accurately and was kept constant in our approach.
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4.3 Dissolve Detection

The final extension to the segmentation algorithm is to incorporate the detection of dissolve transi-
tions. This stage of the algorithm is only applied to shorter sections of the video sequence between
any detected shot cuts and fade transitions. For this reason, this approach assumes that the only
transitions that may exist in the shorter sequence are dissolves. During a dissolve the contents of
the current shot gradually disappear while the contents of the next shot gradually become appar-
ent. If a sub-sequence does not contain any camera or object motion or any dissolve transitions
then the visual content of the first frame should be similar to that in the last. In contrast, in the
presence of a dissolve a similar comparison should indicate the visual content has significantly
changed. Comparing the content of frames that are far apart is the main idea behind the detection
of dissolve transitions. However, a sequence may contain camera and object motion which result
in a similar change in the visual content. To compensate for such motions, the first frame of a
shot is subdivided into a number of blocks and each block is tracked through the video sequence.
Then, for selected blocks, the original content of each block is compared with its content in sub-
sequent frames. If a block becomes occluded or leaves the shot its content is no longer compared.
Therefore, any significant change should only be as a result of a dissolve transition.

The comparison between the contents of a block in distant frames is achieved using the same
features and metrics used in the current work to detect shot cuts. However, the shot cut detection
algorithm uses a variable block size to represent the visual content as a fixed block size is not
appropriate for all video data. Tracking variable sized blocks through a sequence is a complex
problem in its own right, and we therefore opt for using a fixed size blocks in the detection of
dissolves. Although this means a slight sacrifice in generality, we are not interested in the tracking
of actual objects, suggesting that a fixed block size will be adequate for our needs. This leaves
the problem of choosing the most appropriate block size to use to track blocks through the video
sequence and compare the visual content of frames that are far apart. If a larger block size is
chosen, a block may contain multiple motions, i.e. it must be subdivided over time to track its
content accurately. If a smaller block size is chosen, a block is less likely to contain multiple
motions. However, it may be impossible to track its content accurately in the presence of large
motions and it may not contain sufficient high-frequency phenomena to track its content reliably.
Moreover, if the majority of blocks contain little or no high-pass information then the similarity
metric based on the comparison of edge features will be poor between consecutive frames and
frames that are further apart leading to the false detection of dissolves. Nevertheless, the problems
encountered using a smaller block size are easier to overcome in this approach than using a block
size too large. Therefore, a smaller block siz&dfx 32 was chosen.

To overcome the problem of tracking each block accurately in the presence of motions larger than
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[—15,16], motion estimates resulting from the detection of shot cuts can be used as “parent” esti-
mates to be inherited by each block. Hierarchical motion estimation was employed in the detection
of shot cuts to find the optimal block size to represent the visual content of each frame pair. The
chosen block size is such that it provides the best overall correlation between the two frames. It
can, therefore, be assumed that the optimal block size also estimates the motion sufficiently accu-
rately between them. These motion estimates corresponding to the optimal block size can then be
used as initial guesses for estimating the motion of the fixed sized blocks to be tracked between
the two frames.

Given two framesf,,_1 and f,,, the blocks corresponding to the optimal block sizeare in a
regular spatial grid irf,,_;. However, the fixed sized blocks being tracked through the sequence
can be at any position. We define that each blegknherits a motion estimate from the blogk
that it overlaps with the most, i.e. the parentmgfis defined to be the blocl; that contains the
centre point ofr;. Given a blockz; with its centre at positiom in frame f,,_y, it is correlated
with the block at the positiop + d in f,, whered is the displacement vector estimated fpr
containing the poinp.

The second problem that may be encountered is if a block does not contain sufficient grey-level
variation. If the chosen block size is inappropriate, the similarity measure based on the comparison
of edge features will be poor, indicating the visual content has changed even though a dissolve has
not occurred. The inclusion of the comparison of colour distributions helps to overcome this
problem. However, if a block is not being tracked reliably or there is a change in the global
illumination, its colour distribution may change. If this occurs for the majority of blocks then the
difference between the visual content of two distant frames will appear to be large leading to a
false detection. Based on this observation, only blocks that resulted in a high similarity metric
E,, between the first frame pair are chosen to compare their original content with the content they
contain in subsequent frames. These selected blocks are referred to as regions of interest (ROI). To
select the ROI the blocks are grouped iRtdusters based in their corresponding similarity metric

E,. Thisis achieved by using the k-means clustering algorithm Witk 2. The blocks belonging

to the cluster with the highest mean value are chosen to be the ROI. Figure 4.10 illustrates the first
frame from four different shots. The blocks chosen to be a ROI are shown in white and the
mean value off,, for each cluster is also presented. It can be seen that the blocks that were not
chosen correspond to areas in the image with little or no high-pass phenomena or contain multiple
motions.

Motion estimation between each frame pair is now used to track all of the blocks over time in
the video sequence. In addition, each ROI is compared with the corresponding block at its new
location in framen + 1, n+ 2, etc. as shown in Fig. 4.11(a-c), using the same features and metrics
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Figure 4.10: Blocks are selected to regions of interest (ROI) in the first frame of each shot.

used to detect shot cuts. This results in two measuRés] F,, corresponding to the similarity

of edge features for the ROl andOIC,, corresponding to the difference between the colour
distributions of the ROI. During a shaRO1 E,, should remain high an®@O1C;, should be small
indicating that the contents of each ROI has not changed significantly. During a dissolve, the
content of each ROI will gradually change. This means @t F,, will decrease andROI1C),

will increase until they reach values comparable to those obtained for a shot cut.

Whilst tracking, object or camera motion or inaccurate motion estimation may cause blocks to
become overlapped or move out of the scene as shown in Fig. 4.11(c). Once this occurs the block
tracking is no longer reliable because block matching cannot easily resolve occlusion. This may
cause the content of a block to change. Blocks that are overlapping or have started to move outside
the image are removed as shown in Fig. 4.11(d). If any of the removed blocks were a ROI they
are also removed from the current set of ROI. A block is removed if the proportion of its area
overlapping with other blocks is greater th&n. A block is also removed if it is more thdfi,

outside of the frame. In this approach, was kept constant and equald. The removal of

blocks will leave areas of the image uncovered, the contents of which still need to be tracked. For
this reason, new blocks are re-introduced in the uncovered areas. This is achieved by comparing
the current positions of the remaining blocks to a regular spatial grid. Any blocks in this regular
grid that are not covered more th@&n by the current set of blocks are added as shown by the white
blocks in Fig. 4.11(d). This helps maintain a regular grid of blocks to track the video content.

Initially, the set of ROI are selected from the first frame pair of the sub-sequence. As blocks are
gradually removed, the set will become empty. As well as adding blocks from the regular grid to
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Figure 4.11: (a-c) Blocks are tracked over time and the content of each ROl is compared. Blocks
may become overlapped, (d) overlapped blocks removed, (e) blocks added in uncovered area, (f)
blocks continue to be tracked.

track the video content, blocks must be added to conserve the current set of ROIl. Once the addition
of blocks in framef,, is complete it is possible to continue to track the blocks into the next frame
frn+1 (Fig. 4.11(f)). A similarity metricE, ;1 is computed for all the blocks betweép and f,, 1

and the blocks are grouped ifdalusters in the same manner as between the first frame pair. If a
block has just been added i and is in the cluster with the highest mean value it is added to the
current set of ROI. The addition and the removal of blocks allows the set of ROI to be updated for
changes due to camera and object motion.

Comparing nothing but the content of the ROI obviously restricts the amount of image content
that is being compared between frames that are far apart. In some cases, this can result in only a
small amount of the frame content being compared to detect a dissolve transition. For example,
Fig. 4.12(a) showd frames during a dissolve. If the ROl are chosen from the first frame as shown

by white in Fig. 4.12(b), then less than half of the frame content is actually being compared in
subsequent frames. Moreover, it can be seen that by the end of the dissolve the content of all the
blocks has changed significantly not only the content of the ROI. Indeed, the content change in
the rest of the blocks is also a good indication of the presence of a dissolve and should not be
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(a) Four frames representing a dissolve

(b) Comparing nothing but the content of the ROI limits the amount of change in the
image content that will be detected

Figure 4.12: The content of blocks that are not ROI also changes significantly and should not be
overlooked.

overlooked. It can be seen in Fig. 4.12(b) that if the dissolve had been from the second shot to the
first, nearly all of the blocks would have been chosen as ROI.

Blocks with little high-pass information or multiple motions are not included in the set of ROI be-
cause their similarity metric based on the comparison of edge features will be poor and negatively
influence the value oROIE,,. If there is not a dissolve in the sub-sequence, then these blocks
should not be included in the set of ROI. However, if there is a dissolve such that their content
significantly changes it would be preferable to also compare their content between distant frames.
A good indication that the content of such blocks has changed is if their content starts to result
in a high value forF,, between consecutive frame pairs, i.e. their content now includes high-pass
phenomena. Therefore, between each frame pair all of the blocks are group2dlmsters. If

any block is in the cluster with the highest mean valueHgrthat is not already a ROl it is added

to the current set so its original content can be compared with its current content.

A dissolve is detected using the same thresholds used in the shot cut detecRon Af, < T

and ROIC,, > T¢ a dissolve is deemed to be present. Usually, this occurs towards the end of the
dissolve. However, the actual boundaries of the dissolve must be determined. If there exists motion
during the dissolve this may be sufficient to cause the set of ROI to be updated before the end of the
dissolve. The difference between the content of two frames will, therefore, appear less different
before the actual end of the dissolve. ConsequentR(Of F,, < T and ROIC,, > T at frame

fn, the blocks are no longer tracked through the sequence and the set of ROI is not updated. Each
ROl is simply compared in the same location in the following frames. The difference between the
visual content will continue to increase until the content becomes maximally different at the end
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of the dissolve. Once the end of the dissolve is detected, the first frame of the next shot is divided
into a regular grid of blocks and a new set of ROI are selected to be tracked for the detection of
the next dissolve. This continues until the end of the sub-sequence is reached.

The start of the dissolve is detected by locating the frame pair wRéreF,, started to decrease
andROIC, started to increase i.e. the frame pair where the visual content started to change. The
end is marked by the frame whef@) I E,, and ROIC,, reached their minimum and maximum
respectively. A dissolve can be of any length lasting anywhere from approximigi2lgecond

(10— 12 frames) to extremely long lengths of over a minute. Although they can be as short as only

1 — 10 frames known as a soft-cut [50]. For this reason, the detection of the boundaries does not
make any assumptions about the typical length of a dissolve as in some previous approaches [84,
37]. Fig. 4.13 illustrateRROIT FE,, and ROIC,, during a dissolve transition. The blue vertical line
shows the frame wherBOIFE, < Tg and ROIC,, > T¢ and it can be seen that this happens
towards the end of the dissolve. Once this occurs, the ROI are compared with the block in the
same position in the subsequent frames until the end of the shot is reached and then the boundaries
of the dissolve are detected by analysR@IFE,, and ROIC,,. In practise, afteROIFE, < Tg
andROIC,, > T each block is only correlated witN subsequent frames where is kept constant

and equal t&0 or until the end of the shorter sequence. The boundaries of the dissolve are then
detected by analysing the combination®® [ E,, and ROIC,, defined by

M, =2(1 — ROIE,) + ROIC, (4.4)

If ROIE, < Tg andROIC,, > T at framef,, the average rate of changeidf, from f,, to the

end of the sequence is computed. The point with the largest difference between its actual value
for M,, and a predicted value fav/,, using the average rate of change is selected as the end of the
dissolve as shown in Fig. 4.14. A similar comparison is used between the end of the last transition
andf,.

Finally, Fig. 4.15 illustratesROI F,, and ROIC,, during two consecutive dissolves in a video
sequence. It can be seen tif&D 1 F,, decreases anBO1C),, increases during a dissolve and they
reach their minimum and maximum respectively at the end. The two dissolves are, therefore,
easily detected.
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Figure 4.14: A combination oROIC,, and ROIE,, can be used to find the boundaries of the
dissolve.
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Figure 4.15: The metrics can be used to identify consecutive dissolves.
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4.4 Comparative Results

In this section, the performance of the proposed gradual transition detection method is evalu-
ated and compared with one other method, the twin comparison technique. The histogram-based
method was chosen since it is a well established technique and has been shown to perform well in
detecting edit effects [61]. Other methods, such as the feature-based methods were not included
in the comparison as their performance has been shown to be disappointing [70]. Moreover, tech-
nigues such as the edge change ratio and the edge based contrast require several thresholds, their
performance can be sensitive to the values chosen and require ‘hidden’ parameters not specified
in the literature [8].

The histogram-based method we used is similar to the method with the best performance in the
comparative investigation by Lupatini et al. [61]. This approach usegtstatistic to define the
difference between two global colour histograms which is compared against two threghglds,
andT7. Whenever the histogram difference between two consecutive frames is greatélthan

a shot cut is detected. If the difference lies between the two thresholds the frame is marked as the
potential start of a gradual transition. Successive frames are then compared with the first frame
of the transition and if the difference exceeflg, a gradual transition is detected. The end of

the gradual transition is marked once the difference between frame pairs dropsibelomntwo

frame pairs.

Test Data

To test these methods we usindifferent video sequences totallisg248 frames. All sequences
contained a combination of shot cuts, fades and dissolves and were chosen to include different
genres. The number of frames, transitions and the category of each sequence is summarised in
Table 4.1. The locations of these transitions were hand labelled to obtain a ground truth to evaluate
the performance of each algorithm.

The real boundaries of a gradual transition can be difficult to ascertain when hand labelling the
transitions. This means that it is difficult to evaluate the accuracy of the detected boundaries.
However, if a shot cut detection algorithm is to be used in the first step of a video indexing process
it is important that the transition boundaries are detected precisely. To represent properly the con-
tent of a shot, key frames should not be selected partway through a gradual transition. Therefore,
for these experiments an algorithm must detect and classify correctly the type of the transition
to the best of its ability for the transition to be considered a correct detection. In other words,

if an algorithm can distinguish between cuts and gradual transitions it must detect a cut as a cut
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Sequence Frames Cuts Fade-ins Fade-outs Dissolves Genre

1 478 7 5 4 3 Cartoon

2 422 8 3 4 2 Film

3 462 4 0 1 2 Film

4 3326 12 6 5 8 Documentary
5 3843 20 7 9 8 Comedy series
6 9037 80 8 7 19 Documentary
7 4376 29 14 9 23 Documentary
8 5736 11 2 4 7 Drama series
9 2483 21 6 10 11 Sit-com
10 3085 51 0 0 11 Sport

Table 4.1: Test data used to compare gradual transition detection algorithms.

and fades and dissolves as gradual transitions. In these experiments, if an edit effect was detected
but classified incorrectly it was considered a false detection and the actual transition was labelled
undetected. For example, an algorithm that detected a long dissolve by marking two frames as a
shot cut would not segment the video properly. The proposed algorithm must classify all of the
transitions correctly into cuts, fade-ins, fade-outs and dissolves. Although there exists some error
on the labelled boundaries of a gradual transition, a gradual transition is only considered correct
if it overlaps with an actual gradual transition and the detected boundaries are Withinmes of

the real boundaries. In our experimems = 50.

This work aims to detect all types of shot transitions using a single technique and the same param-
eter set. It is proposed that the gradual transitions can be detected using the same thresholds used
in the detection of shot cuts. For this reason, the threshold valug%;fand7 used to maximise

the recall and precision for the shot cut detection algorithm were used in these experiments.

Initially, the threshold value that maximised the harmonic mean for the global-histogram compar-
ison shot cut detection method was to be usedIfgrand the value fofl’;, would be varied to

find the most appropriate threshold. However, it soon became apparefythat).12 was not a
suitable value to be used in the detection of gradual transitions. During many gradual transitions
(particularly short effects) the difference between frame pairs was greatefl'thaimn this case,

all of the shot cuts would be considered false and the gradual transition undetected. As a result,
Ty needed to be increased to prevent the misclassification of gradual transitions. Various possible
values forT'y andT7, were tried betweefi and2, and the results presented here for the twin com-
parison technique are always using the threshold set that maximises both recall and precision i.e.
the threshold pair that maximised the harmonic mean.

The performance of the motion-based approach (MB) compared with that of the twin-comparison
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Algorithm Threshold values C M F R P
MB Tp =042 Tc=022 241 2 0 099 1.00
TC T, =0.14 Ty =0.29 190 53 92 0.78 0.67

Table 4.2: Comparative performance for shot cut detection only.

Algorithm Threshold values C M F R P
MB Tp =042 T-=022 195 3 5 098 0.98
TC T, =001 Typ=019 123 75 36 0.62 0.77

Table 4.3: Comparative performance for gradual transition detection only.

Algorithm Threshold values C M F R P
MB Tp =042 Tc=022 436 5 5 099 0.99
TC T, =0.01 Ty =0.27 309 132 130 0.70 0.70

Table 4.4: Comparative performance for the detection of all the transitions.

technique (TC) for shot cut detection only can be seen in Table 4.2. A comparison of the per-
formance of the algorithms for the detection of gradual transitions can be seen in Table 4.3. It
should be noted that while the MB method classifies gradual transitions into fade-ins, fade-outs,
and dissolves, TC does not make a distinction at all. From these tables it is simple to notice the
better performance of our method compared with the TC technique. It should also be mentioned
that the missed and false gradual transitions were all dissolves and the detection of fade transitions
actually had recall and precision equallt.

Finally, Table 4.4 summarises the performance of both algorithms for the detection of all the
transitions. Although the TC method obtained results similar to those reported in the literature,
the performance of the MB method was considerably better. Hanjalic noted that robust algorithms
for detecting various types of transitions have not been found yet [41]. The author defined an
algorithm to be “robust” if it gives excellent performance for all types of shot transitions (cuts and
gradual) and provides constant quality of the detection performance for any arbitrary sequence. In
other words, there is no need for manual fine-tuning of parameters for different sequences. Having
shown the performance obtained on these sequences using the same parameter values used in the
detection of shot cuts we feel that the proposed algorithm is accurate and robust.

4.5 Summary

We have presented a novel, unified approach that classifies shot boundaries with a better resolution
into cuts, fade-ins, fade-outs and dissolves. The recall and precision values show either a signifi-
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cant improvement on other approaches or are easily comparable given that all shot transitions are
separately resolved.

Dissolves were detected by tracking regions over time, gradually removing blocks which no longer
can be relied upon, and adding blocks where gaps appear, or where new objects may enter the
scene. Blocks from previous frames still present in the current frame, and the differences in each
such block’s contents is monitored. If the majority of the difference metrics for such blocks exceed

a threshold, a dissolve is detected.

Fade transitions were detected by firstly locating constant images, and then using the shot cut de-
tection algorithm to determine if this frame was either a shot cut to a blank image, or the potential
start or end point of a fade. If the blank frame was determined to be the boundary of a fade, the op-
posing boundary was detected by examining the pixel mean and variance time series, looking for
a significant increase in the rate of change. The chapter concluded with the results of experiments
confirming the viability of the approach.



Chapter 5

Video Indexing

Extracting a small number of key frames that can summarise the content of a video is important
for efficient browsing and retrieval in multimedia databases. In this chapter a novel approach is
presented to select multiple key frames within an isolated video shot where there is camera motion
causing significant content change. This is achieved by determining the dominant motion between
frame pairs and computing the similarity between their contents. A directed weighted graph is
formed for each shot and the shortest path through the graph is used to designate key frames. The
extracted set of key frames portray both the video content and camera motions, both of which
are useful features for video indexing and retrieval. In addition, the perceived camera motions
contained within each shot are also annotated to provide a supplementary video index.

5.1 Video Summarisation

A set of key frames that summarise the video content can be used in conjunction with existing
textual annotations to augment the indexing process, to enable non-sequential browsing or to create
a visual index into video that has not been previously textually annotated—as the saying goes “a
picture is worth a thousand words”. Selected key frames arranged as a storyboard can be used to
quickly peruse the contents of a selected program. However, more importantly, if key frames are
properly selected, many higher level content searches can be performed on the key frames rather
than the complete video, thus reducing the computational requirements involved. The difficulty in
composing a visual summary is determining which frames best represent the video contents and
correctly portray the storyline.

83
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Figure 5.1: Equally distributed frames representing a single shot - a single key frame would not
represent all the shot'’s content.

To allow efficient indexing, a summary for a digital video library must represent the entire video
content with as little redundancy as possible [59, 45]. Each key frame should represent a video
segment which exhibits consistency in content. A common approach to this problem is to segment
temporally a sequence into shots and then select a single representative key frame for each shot [82,
26]. The resulting ordered set of key frames is often referred to as a filmstrip [18]. Although this
method illustrates the practical use of segmenting a video into its constituent shots, one key frame
may not always be sufficient to represent each shot. A shot can contain events such as camera or
object motions that may drastically change its content. Fig. 5.1 sRegsally distributed frames

from a single shot. At the beginning of the shot there is little activity, then two women appear
from a building entrance and the camera pans right to track them walking down the street. This
would be difficult to represent using a single key frame, which leads to the idea of motion-based
key frame detection.

Motion analysis has been used previously to extract key frames. Wolf proposed a method that
selects key frames at local minima of motion activity within a shot based on the assumption sig-
nificant pauses are used to emphasise video content [90]. The author conjectures that in many
shots key frames are identified by stillness—either the camera stops on a new position or the char-
acters hold gestures to emphasise their importance [90]. This method selects key frames which
correspond to pauses in the video sequence between motion activity within a shot. Consequently,
the content change between key frames can be expected to be the result of camera or object mo-
tion. Although this method aims to select key frames corresponding to stillness, it illustrates how
motion analysis can be used to select more than one key frame to represent the change in a shot’s
content. However, the selected key frames may still fail to represent adequately the entire video
content. For example, during a pan it may be the content which the camera is panning over is
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important which would not be represented by a key frame using this method. In addition, there
is no measure of the significance of the motion between key frames. Hence, the content change
between key frames may be small. The two main contributions of Wolf’s work were the novel use
of motion analysis to identify content change, and the assumption that the number of key frames
per shot need not be restricted to one, selecting instead the number appropriate to the composition
of the shot.

Several methods have been proposed for key frame selection that require no content-based analysis
within a shot. The most straightforward technique is to select a preset nundfdeey frames for

every shot. Although this approach is simple, i 1 it does not guarantee that the chosen frame

is a faithful representative of the shot anchif> 1, selected key frames may be redundant. An
alternative method is to progressively compare each frame in the shot against the last key frame
selected using difference metrics similar to those used in shot cut detection. A frame is selected
as an additional key frame if the difference between itself and the last key frame is greater than
some threshold [100]. Using such approaches, the reason why the difference metric exceeded the
threshold can not be determined, and the visual summary may include redundant, or an insufficient
number of frames. Again, this suggests that content-based analysis must be used to determine
which frames best represent a shot’s content.

Based on the above observations we conclude that an algorithm used to extract key frames to sum-
marise and index data in a digital video library must represent all the video content whilst focusing
on minimising the similarity between key frames. At least one key frame must be used to repre-
sent each shot in a video sequence. More than one key frame may be required if there has been
significant content change during the shot. The problem is determining when there has been suf-
ficient content change to warrant more than one key frame. The content of a shot can be changed
by camera or object motions. Detection of generic objects and understanding semantic changes
in the video content caused by their motion is still beyond the capability of current algorithms.
Methods have been proposed to summarise the semantic content of the video based on object mo-
tion and extracting key frames that represent ‘events of interest’, e.qg. appearance/disappearance,
entrance/exit and the deposit/removal of objects. However, the application of such techniques
are limited to constrained problems such as the indexing of surveillance videos where usually the
camera is static [76, 20]. During a shot there cantlakifferent scenarios involving camera and
object motion which are illustrated in Table 5.1. If a shot contains no camera or object motion, a
single key frame would be sufficient to summarise the shot. If a shot contains camera motion but
no object motion, then key frames correctly selected to represent the camera motion will also il-
lustrate any objects within the shot. Additionally, we conjecture that in the presence of camera and
object motion, it is the camera motion that causes the most significant content change. That is to
say, if key frames are selected to describe the camera motion adequately then any content change
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Camera Motion  Object Motion

No No

No Yes
Yes No
Yes Yes

Table 5.1: Different combinations of camera and object motion that can occur during a shot.

caused by object motion will also be depicted by the visual summary. For example, in Fig. 5.1, if
framesl1, 6, 7 and8 were selected to illustrate the pan right then the two women walking down
the street would also be shown. We propose that if camera motion-based analysis is used to select
key frames for each shot, th@mout of the4 situations will be represented satisfactorily. For this
reason, we focus on the detection of content change caused by camera motion only and propose
that this will provide a sufficient summarisation in the majority of cases. Once a shot has been
identified to contain no camera motion, further analysis can be done to identify object motions
that may have caused the content to change.

We propose an algorithm based on the assumption that a video sequence has already been tempo-
rally segmented into individual shots. Estimates of the dominant motion between each frame pair
are used to decide when there has been sufficient camera motion to require another key frame. If
there has been no motion between two frames we assume their contents are equal. As the amount
of camera motion between two frames increases, the overlap between their contents will decrease
until the contents of the two frames become disparate. For this reason, if a shot contains

e little or no camera motiongnly a single key frame is required.

¢ significant camera motiorthen more than one key frame must be extracted.

Thus, the number of key frames selected will vary for each shot depending on the amount of
camera motion contained within it. For example, Fig. 5.2(a) shbwgqually distributed frames

from a49 frame shot containing no camera motion. In this example, one key frame would be

sufficient to represent its content. In contrast, Fig. 5.2(b) shbegually distributed frames from

a 214 frame shot during which the camera tilts up. Representing all the content in this shot would
require more than one key frame. In addition, to selecting a sufficient number of key frames, the
similarity between them must be minimised.

If a shot contains a small amount of camera motion, the first and last frame of the shot may be
sufficient to represent the entire content. However, in Fig. 5.2(b) the contents of the first and last
frame do not overlap and it would be difficult to determine what had occurred during the shot. At

least one intermediate key frame would be needed to illustrate the tilt up and summarise all of the
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(b) A tilt up - more than one key frame is required to represent this shot.

Figure 5.2: The number of key frames required to adequately represent a shot’s content will vary
according to the composition of the camera motion within it.

visual content. If there is no overlap between the first and last frame we must choose intermediate
frames that provide a path through the shot that connects the first and last frame. Indeed, this
problem lends itself well to a graph based representation and the problem of finding a path from
one vertex to another. Each shot can be represented by a graph where the vertices correspond to
frames in the shot and edge weights are a measure of similarity between the corresponding frames.
If there is no similarity between two frames such as the first and last frame in Fig. 5.2(b) then the
path can not pass directly between them and another path must be sought. Obviously, one possible
path could include every frame, however, we also want to minimise the similarity between key
frames that represent the path. Given a directed weighted graph, the shortest path between two
vertices is the path of minimum total weight. We want to minimise the similarity between key
frames. Therefore, we formulate the selection of the optimal number of key frames as a shortest
path problem. The method can be described as follows.

1. Estimate the dominant motion between each consecutive frame pair.

Given an isolated shot in a video sequence, motion estimates obtained from the block-based
motion compensation employed in the edit effect detection algorithm are used to estimate
the dominant motion between each consecutive frame pair.

2. Compute a similarity metric between all combinations of frame pairs in the shot.

For each frame in the shot, the dominant motion estimates are accumulated between it and
every successive frame in the shot. A similarity metric between each frame pair is then
computed based on the total amount of motion between them. If there has been no motion,
the two frames will contain the same content resulting in a high similarity metric. As the
amount of motion increases the similarity metric will decrease.

3. Form a weighted directed graph for each shot.
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A weighted directed graph is formed where the vertices represent the frames in the shot and
the weight on each edge is equivalent to the similarity metric between each frame pair.

4. Find the shortest path through the graph to select key frames.

To minimise the similarity between key frames, the frames corresponding to vertices form-
ing the shortest path through the graph are used as representative key frames for each shot.

5.2 Estimating the Dominant Motion

The first step in this method is to estimate the dominant motion between each consecutive frame
pair. Given the 2D motion vector field obtained from the block-based motion compensation em-
ployed in the edit effect detection algorithm, a robust estimator is used to estimate the parameters
of a simple motion model. Assuming the dominant motion between a frame pair is caused by
camera motion, these estimates can then be used to identify shots containing significant camera
motion that may require more than one key frame to represent their content.

The video segmentation algorithm employs hierarchical motion estimation to find the optimal
block size to represent the visual content of each frame pair. The chosen block size is such that it
provides the best overall correlation between the given frame pair. If there is little high frequency
information and/or little motion between two frames a larger block size tended to be chosen.
If there exists multiple motions or motion that violates the 2D translational model between two
frames a smaller block size was chosen. For this reason, we can assume the optimal block size
to represent the visual contents also estimates the motion sufficiently accurately to estimate the
dominant motion between a consecutive frame pair.

Common camera operations used in video production can be grouped into two broad classes: (i)
tripod motion and (ii) free motion. If a camera is fixed to a tripod it can only exhibit three types
of motion as shown in red in Fig. 5.3:

1. Pan- arotational movement of the camera about the vertical axis.
2. Tilt - arotational movement of the camera about the horizontal axis.
3. Zoom - convergent or divergent.

If there is free motion of the camera it can exhibit three additional motions shown in black in
Fig. 5.3:

1. Boom - upward/downward motion of the camera along the vertical axis.
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Boom

Track

Tilt

Figure 5.3: Common camera operations used in video production.

2. Track - right/left motion of the camera along the horizontal axis.

3. Dolly - forward/backward motion of the camera along the optical axis.

The effect of a pan on the change of contents in a shot and the perceived image motion is very
similar to that of a track. For example, assuming a static scene, if a camera pans or tracks right,
the background and objects appear to move to the left and gradually leave the shot while new
background and objects may appear on the right. Such similarities can also be drawn between “tilt
and boom” and “zoom and dolly”. For this reason, we only consider pan, tilt and zoom and use

a simple motion model which only represents the scale and translation in x and y between two
frames. The poinp in the framef,, 1 is transformed to the point’ in frame f,,, with respect to

a reference point according to

p =su(p—r)+d, (5.1)

wheres,, corresponds to the scale adlglis the translation vector between the franfgs; andf,.

In practice, the frame centre is taken as the reference point. The model parameters are estimated
using the robust estimator MSAC [83] which provides good estimates in the presence of outliers.
Outliers could possibly be present in the data where the motion equation is invalidated or where
points correspond to secondary motions.

Robust estimators such as MSAC [83] are commonly used when least squares estimators can
not handle significant numbers of outliers. Using the MSAC algorithm we can select two points
in frame f,_; at random and estimate the model parametgrand d,, using motion vectors
corresponding to each point. The algorithm then finds how many of the remaining data items fit
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the model using the estimated parameters within a given tolerdhdeach remaining poirp in
frame f,,_; is transformed to poinp’ in frame f,, according tos,, andd,,, and to pointp” using

its corresponding motion vector. The ereobetween the model and the actual measurements for
pointp is then the Euclidean distanee= |p’ — p”|. We allow the erroe to be a maximum of one
pixel in x and y, givingT' = v/2. MSAC then proceeds in the same manner seeking to minimise
the cost functiorC' = -y, p(e?) where

p(e?) = (5.2)

ez 2 < T?
T? €2 > T2

In other words, the estimated parameters which result in the minimum error for all poarts
chosen to model the camera motion between frafjes and f,,.

5.3 Determining Shared Content

If a shot contains sufficient camera motion to warrant more than one key frame to represent all
of its content, then at least the first and last frame is required and potentially several intermediate
frames. Using the 3-component motion model defined in (5.1), we initially attempted to use the
accumulated amount of each individual component to determine when to select each key frame.
If the magnitude of either the scale, translation in x or translation in y exceeded its own threshold
since the last key frame, a new key frame was selected. Thresholding each individual motion
component, however, can allow the overall amount of motion to be more significant between one
pair of key frames than another depending on whether there is only a single or multiple motions
between key frames. All three motion components could potentially reach their threshold before a
new key frame is selected. This situation is illustrated in Fig. 5.4, for a translation-only case. The
motion illustrated by the red arrow, representing a combination of translation in x and y, is more
significant than that shown by the black arrow representing a single motion.

The Euclidean distance could be used to determine the overall amount of translational motion.
Then, if this distance exceeds a threshold, as shown by the blue ellipse in Fig. 5.4, a new key
frame is selected. In this example, a frame would be chosen before the motion shown by the red
arrow was completed. However, the Euclidean distance could not readily be combined with scale
to determine the overall amount of camera motion.

Determining when to extract intermediate key frames when more than one motion component is
non-zero, lead us to use the amount of shared content between two frames. Each successive frame
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Ty  Threshold for motion in the x direction - >

Ty  Threshold for motioninthey direction Overall motion shown by the red arrow is more
+ Origin significant than that shown by the black

O Threshold for the combined translational
motion using the Euclidean distance

Figure 5.4: Thresholding each individual motion to extract key frames can potentially lead to more
overall motion between one frame pair than another.

is compared with the last key frame and if the amount of content overlap between them is less than

some threshold, the previous frame is selected as a new key frame. Thus, the amount of shared
content between key frames will always be greater than or equal to a predefined amount. It can

be seen in Fig. 5.4, that the overlap shown by the light blue shading is less than that shown by

the green shading and again, a new key frame would be selected before the motion illustrated by
the red arrow was accomplished. The measure of shared content can also be determined in the
presence of scale to ascertain the effect of multiple motions.

Consider a synthetic motion consisting of a pan right followed by a tilt down shown by the blue
track in Fig. 5.5(a). Fig. 5.5(b) illustrates the positions of the intermediate key frames selected
by comparing the amount of shared content between each frame and the last key frame with a
predefined threshold (in this ca88%). It shows two intermediate key frames are required to
maintain the minimum amount of overlap between the key frames that will be used in the visual
summary to adequately portray this camera motion. Fig. 5.5(b) also illustrates the first problem
with the approach of selecting key frames using a threshold, which is that it can often result in
a large overlap between the last two key frames. To overcome this, a new set of key frames was
selected using a new threshold equal to the average amount of overlap in the current set of key
frames. In this example, the new minimum amount of overlap to be maintain@dis This
approach to redistribute frames more evenly could be used in the presence of a single motion.
However, Fig. 5.5(c) shows the new set of key frames chosen for this example and it can be seen
that in the presence of more than one motion it can introduce an additional key frame resulting in
representational redundancy.
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The second problem with this method and the key frames it selects in Fig. 5.5(b) is that it does not
minimise the overlap between them. Fig. 5.5(d) shows that by selecting the third key frame slightly
earlier the overall amount of overlap is decreased, reducing the representational redundancy con-
tained in the visual summary. An algorithm is required that determines the optimal distribution of
the key frames during the camera motion to minimise the shared content between them. This can
be achieved by employing a shortest path algorithm to select representative key frames, described
in the rest of this chapter. This algorithm:

e minimises the number of key frames required to represent a shot’s content;

e Mminimises the shared content between key frames and consequently minimises representa-
tional redundancy;

e can be used to evenly distribute frames throughout a shot; and

e selects the optimal number of key frames according to the composition of the camera motion
in the shot.

5.4 Measuring Key Frame Similarity

The first step is to represent a shot as a graph where vertices correspond to frames in the shot
and edge weights are a measure of similarity between two frames. The frames corresponding to
vertices forming the shortest path through the graph are then used as representative key frames for
each shot.

As the amount of camera motion increases, the similarity between the contents of a frame pair
will decrease. Therefore, we define the similarity megrig, ¢) as the amount of overlap between

the contents of any two framefs and f,,, potentially far apart, whereé < v (p,q) < 1. If there

has been no camera motion between the frame pair,iiery) = 1. As the amount of camera
motion increases the amount of overlap will decrease until the contents of each frame are disparate

and(p,q) = 0.

For each shot we have an estimate of the dominant motion paramgtansid,, for each consec-
utive frame pairf,_; and f,,. Given any two frameg),, and f, wherep < ¢, we accumulate the
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Pan Right 140 units
Tilt Down 100 units

(a) A synthetic camera motion: pan right fol- (b) Key frames selected once the overlap be-
lowed by a tilt down. tween two frames is less th&h,,

. 30% overlap

. 30% overlap . 20% overlap

. 30% overlap . 32% overlap

. 70% overlap . 20% overlap
(c) Redistributing key frames whilst trying to (d) Key frames can be selected to minimise the
maintain the average amount of overlap. overlap between them.

Figure 5.5: Problems extracting key frames that are overcome by applying the shortest path algo-
rithm.
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D View frame containing the contents of franfe
+  Origin

. Sub-frame containing the contents of frarfﬁe

. Physical overlap between the view frame and sub—frame

+

(a)0py < 1. If there has been no scale or a scale down, compute what proportion of the view frame still
contains the contents of franfg

D View frame containing the contents of franfe
+  Origin

. Sub-frame containing the contents of frarfﬁe

. Physical overlap between the view frame and sub—frame

(b) 6,4 > 1. If there has been a scale up, compute what proportion of the contefifsacé still present
in the view frame.

Figure 5.6: Computing the similarity metric between franfgand f,.

motion parameters between them to obtjipand A, where

q

Opg = [ sn (5.3)
n=p+1

Ay = dq—i-sq-Ap(q,l) (5.4)

and A,,—1) = 0 whenp = ¢ — 1. Hence,0,, and A,, are the total amount of scale and
translation respectively, betwegp and f,. These accumulated motion parameters can then be
used to compute the amount of overlap between the contents of the two frames.

There are two cases to be considered depending on the scale par@ge(gro,, < 1 and (ii)
0, > 1. In each case, assume there is a fixed view frame which has constantuyidéights
and aread = w - h with its centre at the positiof0, 0). Given two framesf, and f, with the
contents off;, initially contained within the view frame, we define that by the frafpén the shot,
the contents of, are now within the view frame and the contentgphave moved from the view
frame according to the motion transformation definedhyandA .. We apply the accumulated
scale and translation to the view frame to obtain a sub-fraggeith a new width“z,, = w - 0,,
height”z,, = h - 0, and area'z,, = “z,, - "z,, With its centre at the positiod,,. In other
words, the sub-frame conveys the size and position of the contents of fiamedative to the
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view frame by framef,. If the contents off, are now within the view frame we can compute the
physical overlap between the sub-frame and the view frame, defing¢pby), to determine the
amount of overlap between the contents of frafpand framef,.

If 6,, < 1, there has either been no scaling or a scale down plus possibly translation in x and y
applied to the contents gf,. In this case, we must compute what proportion of the view frame
still contains the contents of, to determine the overlap between the contentg,adind f, and
subsequently the similarity between the frame pair. Hewndp, q) = ¢(p,q)/A, as illustrated

in Fig. 5.6(a). In case (ii) whe#,, > 1, there has been a scale up plus possibly translation in x
and y so we must compute what proportion of the content§, afre still in the view frame, thus

¥(p,q) = ¢(p,q)/ " 24 @s shown in Fig. 5.6(b).

5.5 Representing a Shot as a Graph

We now use the similarity metrig(p, ¢) described above to represent each individual shot as a
graph. Let us define a gragh = {V, £} comprised of a se¥’ of NV vertices,{v1,..,vx}, and a
setFF C V x V of directed weighted edges connecting vertice¥inln a directed graph, each
edge also has a direction, so edges v,) and (v, v,), wherei # j, are distinct. The weight

of an edge connecting two vertices andv, is defined byw(v,,v,). A path from vertexv, to
vertexvy, is a set of connected edgé®,, vy), (vg, vk), ..., (v1, ) } from E. The weight of path

p = (vg,v1, ..., V) IS the sum of the weights of its constituent edges:

Qp) = Zw(vi,l,vp). (5.5)

i=1

If one or more paths exist fromy to v, the shortest path is defined as the paittith the minimum
total weight,min{Q(p)} [19].

The connectivity of a graph can be represented as an adjacency tainxvhich each element

(p, q) represents the edge between vertigeandwv,,. If there exists an edge,, v,) thenM,,, =

w(vp, vg) OtherwiseM,,, = 0. Our goal is to form an adjacency matrix for each shot where vertices
correspond to individual frames and edge weights are a measure of similarity between each frame
pair i.e.w(vp, vq4) = ¥(p, q). Hence, the shortest path from the first to the last frame will minimise

the amount of overlap between the contents of the representative key frames. If there is no overlap
between two frameg,, and f, then by definition,M,, = ¢ (p,q) = 0. This implies that the

key frames corresponding to the vertices in the shortest path must always have some overlap of
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=

(a) Two distinct key frames.

(b) Two key frames with overlap.

Figure 5.7: Overlap between key frames makes it easier to determine the storyline during a shot.

their contents. Fig. 5.7(a) shows two distinct key frames representing a single shot and without
any overlap it is difficult to ascertain in a glance how the two key frames are related. However,
Fig. 5.7(b) shows a different pair of key frames from the same shot with some degree of overlap.
It is easier to determine that the camera has panned right during this shot. In fact, we define a
thresholdT;,,;, to specify the minimum amount of overlap there must be between key frames.
Thus an edgév,, v,) only exists ifw(p, ¢) > Tin. Additionally, to preserve temporal coherence

in the video index, a directed edge,, v,) can only exist iff, succeedg), in the video sequence.

Fig. 5.8 shows a visualisation of the adjacency matrix representing a shot where the camera pans
continuously to the right witl,,,;,, = 0.2. The shortest path from the first to the final vertex is

p = (0, 38, 74), with the corresponding key frames shown in Fig. 5.9(a). The weight of the shortest
path edges are(0,38) = 0.432 andw(38,74) = 0.439 and the total weight i§2(p) = 0.871.

For comparison, the frames representing the second shortesi’ patko, 29, 55, 74) are shown

in Fig. 5.9(b) withQ(p’) = 1.850. It can be seen that applying the shortest path algorithm results

in less representational redundancy.

Fig. 5.10(a) shows the adjacency matrix representing a stii®9drames where the camera pans

to the right followed by a pan left returning just past the origin. It can be seen where the latter
frames start to overlap again with those earlier in the sequence. The shortest path in this graph
isp = (0,288) andQ(p) = 0.564. To be an efficient index into a video, the key frames must
depict all of the content and convey the temporal order of events in the shot i.e. the camera
motion. The key frames here (i.€) and 288) can be seen in Fig. 5.11. In this example, the

two selected key frames would not represent any of the video content when the camera pans to
the right. We therefore add a final constraint to forming an adjacency matrix such that an edge



5.5 Representing a Shot as a Graph 97

«(0,38) = 0.432

0 10 20 30|40 50 60 70
0 1C
0.¢
0.8
0.7
0.€
0.t
04
0.3
0.2
0.1
0.C

0(38,74) = 0.439

Figure 5.8: Adjacency matrix representing a panning shot Wjth, = 0.2.

0.432 0.439

O—>38.—>74

(a) Key frames corresponding to the shortest path.

0.579 0.577 0.694
0O ——> 29 —— > 55 ——— > 74

(b) Key frames corresponding to the second shortest path.

Figure 5.9: Applying the shortest path algorithm minimises representational redundancy between
key frames.
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(a) Any edge exists i) (vp, V) > Tmin (b) An edge only exists ifw(vp,vy) >

Trin, Vi < k < j.

Figure 5.10: Two adjacency matrices under different constraints for a shot with a significant pan
right followed by a pan left back past the origin.

214

-~ Pan Left

Figure 5.11: Shortest path key frames for the adjacency matrix in Fig. 5.10(b). The two highlighted
frames denote the shortest path for the adjacency matrix in Fig. 5.10(a).

(vp,vq) OnNly exists if there is more théf,,;, overlap between the corresponding franfgsnd

fq and more tharf;,,;, overlap between the framg and every frame in betweefy and f,. That

is to say, in addition to the earlier condition that an edge only exisiuif, v,) > T}y, the edge

(vp,vq) Only exists ifw(vy,vg) > T for alli < k < j. Fig. 5.10(b) shows the adjacency
matrix representing this shot after this constraint has been added and the shortest path is now
p = (0,49,100, 214, 245, 288) with Q(p) = 1.363 which represent all of the shot content, as
shown in Fig. 5.11.
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Condition1 p<gq
Condition 2 w(vp,vq) > Tin
Condition 3 w(vy,vk) > Tin forallp < k < ¢

Table 5.2: Conditions for which a directed edgg, v,) exists.

In summary, we form an adjacency matrix for each shot where the vertices represent each frame
of the sequence and(v,,v,) = 9 (p,q). Table 5.2 outlines the conditions for which a directed
edge(vy, v,) exists.

5.6 Finding the Shortest Path

To perform an exhaustive search to find the shortest path from a starting vertex to a final vertex,
can be computationally expensive. For this reason, we employ theearch algorithm which is
an informed search strategy [32].

Central to thed* algorithm is the use of an evaluation function for ordering the vertices in the
search space, defined as

e(vp) = g(vp) + h(vp) (5.6)

whereg(v,) is the actual cost of reaching, from the starting vertex anfl(v,) is a heuristic
estimate of reaching the final vertex from verigxwhich must always be an underestimate of the
actual cost. It can be shown that an optimistic heurfstdways results in an optimal solution [32].
In our algorithm,i(v,) is the minimum weight of all existing edges fromp. Hence, the actual
cost fromw,, to reach the final vertex will always be greater than or equal to this estimate.

In a graph there may exist several paths of equal length which may turn out to be the shortest.
Given two possible shortest pathandp’ with 2(p) = Q(p’), each path corresponds to a different

set of key frames. If the total amount of overlap between the selected key frames is the same, is one
set of key frames more preferable than the other? Fig. 5.12 illustrates two possible distributions of
key frames during a synthetic pan right. The first set of key frames in Fig. 5.12(a) minimises the
overlap between the first frame pair (assumiliyg,, = 20%) but results in a large overlap between

the second frame pai6({%). In the second set of key frames in Fig. 5.12(b), the overlap between
both frame pairs is equivalert(%) and the key frames are evenly distributed through the camera
motion. However, the total amount of overlap between the key frames in both sets is the same
(80%) and consequently would result in two paths of equal length. We propose that the second set
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20%  60% 40%  40%

(a) Key frames are unevenly distributed. (b) Key frames are evenly distributed.

Figure 5.12: Two possible distributions of key frames during a synthetic pan right with equal
amounts of overlap.

of key frames is more preferable and that given two paths of equal length, ideally the one with the
smallest spread of edge weights should be chosen as the shortest path, i.e. the path corresponding
to the most evenly distributed key frames. Hence, we compute the standard dewiatidhe
constituent edge weights on each path and select the path with the smallegpractice, given

a shortest patlp there rarely exists another pagthwith Q(p) = Q(p') because of floating point
resolution. Even so, there may exist another patwith Q(p') ~ Q(p) ando(p’) < o(p) that

would be preferred as the shortest path(¥(p) — Q(p’) |< € ande is small. Given a patlp with

Q(p) ando (p), we define a new weight fgr as

Y(p) = Q(p) + - o(p) (5.7)

whered is a weighting. We now chooseif T(p) < Y(p'), otherwise we select paftf. In
practice, in our algorithmj = 1 because the standard deviations are small. However, comparing
every possible path with the shortest path is not feasible, due to combinatorial explosion. Thus, we
need to bias the search for the shortest path towards a path with assofats constituent edge
weights. Using thed* algorithm, the vertices are ordered in the search space uagipy If there

are several vertices for whieftv,) are approximately equal, we want the search to favour the path
through the vertex where the standard deviation of the edge weights is the smallest. Therefore, we
define a new heuristic

d(vp) = e(vp) +6 - o(e(vy)) (5.8)

to order the vertices in the search space. Given several possible paths of approximately equal
length the search algorithm is biased towards finding the path with the smallest spread of edge
weights. Fig. 5.13(a) and Fig. 5.13(b) show comparative key frames representing the shortest
paths found using the heuristics defined in (5.6) and (5.8) respectively, for the same panning shot.
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0.212 0.788
o " »29 > 2%

(a) Key frames representing the shortest pat¥ith Q(p) = 1.000 and

o(p) = 0.288.

0.500

54> 295

(b) Key frames representing the pagth with Q(p') = 1.005 and
o(p') = 0.0025.

Figure 5.13: Two paths with approximately the same weight: the one with the smallest spread of
its constituent edge weights is selected.

It can be seen that, at the cost of a slightly longer path, the latter key frames are more evenly
distributed through the shot.

5.7 Selecting Key Frames

So far we have used the frames corresponding to the vertices in the shortest path to represent the
video content. It follows that there will always be a minimum of two key frames to represent
each shot—the first and last frames. However, when there is little or no camera motion a single
key frame could potentially be sufficient. To detect this, we introduce a second thré&shgld
which defines the maximum amount of overlap between two key frames. If there are more than
two vertices in the shortest path or there are only two vertices @) < T},..., then the path
accurately summarises the video. However, if there are only two vettices in p and2(p) >

Tmaz, the single vertex that best represents the dadgey,) is selected. This is defined as the
vertexv;, corresponding to the frame with the most overlap with all the other frames between and
including the first and last frame. That is the vertgxwith the maximum sum of edge weights

i w(vg, vr), wherew(vg, v) = w(vg, vg) if | < kandw(vg,v) = 1if k= 1.
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0.642
0 — > 49
@) If Q(p) < Tz the path accurately sum- (b) If Q(p) > Tmae the frame with the most
marises the video. overlap with other frames in the shot is chosen.

Figure 5.14: If there is little of no camera motion a single key frame could potentially be sufficient.

For example, Fig. 5.14(a) shows the first and last frame from a shot during which the camera pans
right slightly. If T;,,.,, = 0.8 then the overlap between these two frames is not enough and both
frames would be used in the visual summary. Howevef,,jf, = 0.5 the overlap between these

two frames is sufficient and a single frame is selected. In this case, the frame is chosen from
the middle of the pan which is shown in Fig. 5.14(b). The valligg, = 0.2 and T}, = 0.8

were fixed in all our experiments and to generate the following example video abstracts. These
parameters can be set according to user preference.

There is no absolute measure for the quality of an abstraction. Ultimately, the effectiveness of an
approach can only be evaluated by users of a video library in which the algorithm is implemented.
Here, we shall show some example video abstracts to demonstrate our proposed method. For each
shot, we shall show every nth frame which will be deliberately oversampled to portray all the
contents of the shot. Alongside we shall show the key frames extracted using the shortest path
algorithm and those selected using another method for comparison.

The comparative method used is a mathematical approach rather than a content-based approach
and is similar to those outlined in [35, 77, 40, 92]. It transforms each frame of a video sequence
into an eigenspace and then groups frames in this space using a line simplification algorithm.
Principal Components Analysis (PCA) is applied to perform dimensionality reduction so that the
high dimensional image space can be represented in a lower dimensional space whilst retaining
the significant variations of the original data [35]. The algorithm assumes the video is segmented
into individual shots and each image is scaled to have dimengions36 (1/16th of DV PAL

image dimensions). GivelN frames of a shot, each of which contaihs pixels andN << M,
eigenvectors for the raw image data are computed. The reduction of the dimensionality is achieved
by selecting the firsf principal components that captW&’% of the variance in the data wheiés

limited to a maximum ob. That is, each frame is projected onto theigenvectors corresponding

to thed largest eigenvalues into its eigen-image representation. A binary line splitting algorithm
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is then used to group the frames in the eigenspace. The line simplification algorithm starts with a
straight line segment approximating the polyline in the eigenspace from the first to the last point.
The remaining points are tested for closeness to that segment and if there are any vertices further
than a specified tolerance from that line, the point furthest away is added to the line approximation.
The algorithm continues until the distance of each point from the simplification is less than a
threshold or until the number of points in the simplification is a maximurt2ofT he threshold is

equal t00.5% of the distance from the point in the eigenspace with the maximum variation to the
origin. As a result the chosen threshold is relative to the amount of variation within each shot.

The first shot which lasts for82 frames and contains a substantial zoom-in is summarised in
Fig. 5.15 with everyi6th frame shown in Fig. 5.15(a). It can be seen that the object with the light
blue top moves left across the image slightly but then a zoome-in starts betwekrd Hred4th key

frame and continues until the end of the shot. Fig. 5.15(b) illustrate¥ kiey frames extracted

using the PCA approach and Fig. 5.15(c) shows the key frames selected using our approach. We
consider the zoom-in to be the main cause of content change during this shot. It is too large to be
represented by only the first and last key frame so we would expect at least one intermediate frame
to be selected and the shortest path algorithm does, in fact, result hKagtframes.

For the remainder of the examples, the content of each shot is portrayed sufficiently by the key
frames selected using either the PCA approach or the shortest path algorithm. For this reason, the
shot will no longer be illustrated by evenly distributed frames. The second example is a shot which
lasts for131 frames during which the camera pans continuously to the right. In this example the
content in the first frame is completely different to that in the last so again at least one intermediate
frame is required to show all of the shot’s content. Fig. 5.16(a) illustratesitbg frames selected

using the PCA approach. Tl3ekey frames chosen by the shortest path algorithm are shown in
Fig. 5.16(b).

The third visual summary represents a shot from a wildlife documentary during which there is
no camera motion and very little object motion. In such a case, a single key frame would be
sufficient to represent its content which is returned by the shortest path algorithm, as shown in
Fig. 5.17(b). However, the PCA approach retutriey frames, shown in Fig. 5.17(a), illustrating

that the shortest path algorithm can be used to minimise representational redundancy.

As with any method that does not use content-based analysis to select key frames, e.g. simply
thresholding a difference metric, the means of operation of the PCA method can only be treated
as a ‘black box’. That is to say, it is not always obvious what triggers it to select key frames,
making its behaviour hard to predict. For this reason, it can be difficult to determine the correlation
between a given threshold value and the number of key frames it will return. For example, Fig. 5.18
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illustrates the visual summaries for two different shots that both contain a zoom-out. The shortest
path algorithm selects three key frames to represent each shot but the PCA approach fmlects

the first shot and for the second. It is not immediately clear why several more key frames were
chosen to represent the contents of the second shot. After viewing the shot itself it can be seen that
the camera jitters slightly during the zoom and we assume this is the reason. In addition, the key
frames chosen by the shortest path algorithm for the first shot are more evenly distributed through
the zoom than those chosen by the PCA approach.

A visual summary should enable a researcher to efficiently browse a large quantity of film material
and locate shots containing the visual content they are interested in. Minimising the number of
key frames is, therefore, important whilst still representing all of the visual content. We proposed
that using estimates of the dominant motion to select key frames would represent the contents
and portray the order of events sufficiently for the majority of cases. However, what this method
does not address is representing any content change caused by object motion in the absence of
any camera motion. For example, Fig. 5.19(a) shdWsmes chosen by the PCA method from

a shot during which a flower blossoms and Fig. 5.20(a) shbfksmes from a shot during which

the object leaves the scene. In both cases, the shortest path algorithm only selects one key frame
because there has been no camera motion. However, the content between the first and last frames
is different. To overcome this problem, there are several possible solutions. When shots with no
camera motion are identified either:

Always choose the first and last frame.

Use a method such as the PCA algorithm to select key frames.

Apply the difference metric used in the shot cut detection method between the first and
last frame. If the difference exceeds some predefined threshold the first and last frame are
chosen otherwise a single frame is used.

Perform further content-based analysis to detect if there has been any significant events such
as an object entering or leaving.

Ideally, the use of one or a combination of these approaches could be used to distinguish between
the examples shown in Fig. 5.19 and Fig. 5.20 which would preferably be represented using two
key frames and those in Fig. 5.17 and Fig. 5.21 where one key frame would be sufficient.
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(a) Every 16th frame.

(c) Key frames selected using the shortest path algorithm.

Figure 5.15: Three different visual summaries for a shot containing a zoom in.
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(b) Key frames selected using the shortest path algorithm.

Figure 5.16: Two different visual summaries for a shot containing a pan right.

(b) Key frames selected using
the shortest path algorithm.

Figure 5.17: Two different visual summaries for a shot containing no camera motion.
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(a) Key frames selected using the PCA approach.

(b) Key frames selected using the shortest path algorithm.

| .

(d) Key frames selected using the shortest path algorithm.

Figure 5.18: Different visual summaries for two different shot containing a zoom in. Using the
PCA approach it can be difficult to determine what caused the selection of additional key frames.
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(a) Key frames selected using the PCA approach.

(b) Key frame selected using
the shortest path algorithm.

Figure 5.19: If there is no camera motion the shortest path algorithm only selects one key frame.

(a) Key frames selected using the PCA approach.

(b) Key frame selected using
the shortest path algorithm.

Figure 5.20: If there is no camera motion the shortest path algorithm only selects one key frame.
Further processing could be performed to identify any object motion.
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(a) Key frames selected using the PCA approach.

(b) Key frame selected using
the shortest path algorithm.

Figure 5.21: If there is no camera motion and little object motion, one key frame is sufficient.

5.8 Motion Characterisation

For each shot, the extracted key frames give a graphic, sequential depiction of the narrative; anal-
ogous to a storyboard. However, as well as browsing the visual content a user may also wish to
perform a specific search. A search query could, for example:

e be for a particular object e.g. ‘find all shots containing a lion’ or ‘return all shots in the
Fawlty Towers footage that contain the character Manuel’;

e be scene specific e.g. ‘find a panning shot of the Chicago horizon’ or ‘return all shots of the
desert’

¢ be dependent on specific attributes of the shot, e.g.

camera motion: pan, tilt, zoom etc.

camera angle: high, low, aerial etc.

camera position: close up, long shot, mid shot etc.

lighting: artificial, daylight, dark etc.
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If a textual annotation exists for a shot it can contain details of such information, for example, ‘A
low angle shot pans right following flight of two white terns among trees’ or ‘Mid-length shot of
penguin perched on rocks’. Then, a search query can be performed by matching words of interest
in the textual description for each shot. However, this work focuses on automated video indexing
for data that has not previously been annotated. Key frames provide a visual index into the video
content and, in addition, can be used to retrieve similar shots using different image features if
an exemplar is provided. However, we propose that future work should investigate the automatic
production of metadata that provides descriptive information about the context and characteristics
of each shot. The metadata for each shot would then be inclusive of the textual annotations and the
visual summary which could then provide a collection of indices to search the video content. The
automated production of metadata should aim to provide as much as possible of the information
provided by the manual descriptions.

The problem of describing and recognising objects which can then be used to provide meta data
such as ‘shot contains a lion’ or ‘shot contains character A’ is an active area of research initself [25,
31]. However, there are some attributes which can be labelled using current image processing
techniques, such as the camera motion. Given that we have estimates of the camera motion as a
result of the video summarisation algorithm, this approach is extended to characterise and textually
annotate the apparent camera motion contained within each shot. As mentioned above, as well as
searching for a shot containing a specific object or scene, a user may also wish to search for a
shot which appears to contain a particular type of camera motion. For example, a producer of a
wildlife documentary may search an archive for a “fill in” shot which must appear to pan across a
particular background (but be less concerned with how the shot was filmed i.e. the actual motion
of the camera). If the perceived camera motion has been annotated then only visual summaries of
shots containing a pan should be returned as the result of such a query.

To annotate the camera motion contained within a shot we do not just want to label the motion
between each consecutive frame pair but to classify the motion for different segments of the shot
that contain the same overall camera motion. One approach could be to classify the camera mo-
tion between each frame pair and then group successive frames together that have been labelled
with the same motion. However, such a bottom-up approach would be sensitive to noise such as
momentary changes during a camera motion or camera jitter. For example, Fig. 5.22(a}shows
frames from &6 frame shot which contains camera jitter but no predominant camera motion (the
jitter can be seen by looking at the appearance and disappearance of the bush/tree on the left).
Fig. 5.22(b) shows the translation in x (red line) and y (green dashed line) between each frame
pair. The result of classifying the motion between each frame pair as a pan or tilt, if the motion

in the x or y direction respectively is greater therand then grouping similar motions together

is also shown. It can be seen that this approach would result in several different motions being
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annotated for this shot. Determining whether each cluster of frames actually results in a significant
motion that should be annotated would necessitate additional constraints e.g. does the translation
exceed a distance threshold, does the motion last morentframes etc.

However, Fig. 5.22(c) shows the accumulated motion in the x and y direction and it can be seen
that the overall translation by the end of the shot in the x and y direction is approxindeaely

23 pixels respectively. Given that the dimensions of the frames in this sequeng&are272 the
absolute translational motion seems insignificant. In addition, it can be seen that the accumulated
motion never varies more tha® pixels from the point of origin. Both of these factors indicate
there was no significant camera motion during this shot. If either motion had deviated by a large
distance it could indicate a significant camera motion that had returned to the origin.

Rather than just measure the deviation of the motion from the origin, this approach can be ex-
tended to use a model of the overall motion in the shot and measure how well the actual camera
motion fits this model. If it fits well the model can be used to classify the motion within the shot.

If the actual motion deviates significantly, then additional motion models can be used to represent
smaller segments of the shot. For example, in Fig. 5.22(c) if we assume the models for the mo-
tion in both directions fit well, we can then use the average motion, fefixels/66 frames=

0.08 pixels per frame in the x direction, to characterise the motion. In this case, we would classify
this shot to contain no motion which would be correct. Given the above observations, we use a
top-down approach to characterise the motion contained within each shot. We start with a crude
initial model of the camera motion between the first and last frame of each shot which is then re-
cursively refined. Fig. 5.22(c) illustrates that if we use the motion estimates between frame pairs to
plot a polyline through space then a line simplification algorithm would in fact lend itself well for
this refinement process. The resulting line approximation can then be used to classify the camera
motion contained in different segments of the shot which results in less sensitivity in the presence
of noise, such as camera jitter.

Several different algorithms exist for reducing the points in a polyline to produce a simplified
polyline that approximates the original within a specified tolerance. Arguably the least complex

is vertex reduction. In this method, vertices that are clustered too closely are reduced to a sin-
gle vertex. Whereas vertex reduction uses the closeness of vertices as a rejection criterion, the
Douglas-Peucker (DP) algorithm uses the closeness of a vertex to an edge segment. Given that
we want to measure the closeness of the camera motion to a model which can be represented
by a straight line, the DP algorithm best suites this purpose. The result of applying the DP line
simplification algorithm is the division of each shot into segments where the rate of change of the
motion that appears in the image is constant. Although we use the principle of the DP algorithm
to approximate a polyline the conventional distance measure is not suitable for our application.
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(a) Frames from a shot containing camera jitter.
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(b) Using a bottom-up approach to classify camera motion is sensitive to noise.
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(c) The overall motion contained in this shot is insignificant.

Figure 5.22: A top-down approach results in less sensitivity in the presence of noise.
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In this section, we start with a brief outline of the DP algorithm and explain how and why we
modify the distance metric used to test the closeness of points in the original polyline to its current
simplification. Our method is firstly illustrated by classifying the motion in the x direction and it
is then extended to classify all three types of motion.

The DP approximation algorithm is used extensively in both Computer Graphics and Geographic
Information Systems to reduce the vertices and edges of a polyline. The DP algorithm starts with
a straight line between the two endpoints of the polyline as an initial rough approximation. Then,
how well it approximates the whole polyline is determined by computing the distances from all
intermediate vertices to that line segment. If all these distances are less than a specified tolerance
the approximation is good, the endpoints are retained and the other vertices are eliminated. How-
ever, if any of these distances exceed the tolerance, the point that is furthest away is taken as a new
vertex subdividing the original approximation into two shorter lines, as illustrated in Fig. 5.23(a).
This procedure is repeated recursively until all possible points have been eliminated. What can
often be ambiguous in a description of the DP algorithm is the definition of the distance criterion
used for the selection of an intermediate point. This problem has been addressed by Ebisch who
reports that the most widely used measure is to select the point with the greatest perpendicular
distance between it and the straight line defined by the anchor and the floater [24]. Here, the an-
chor and floater are the start and endpoint of a straight line segment respectively. This definition
overcomes the problem when the perpendicular distance between the point and the finite segment
is undefined. However, the mistake of using this criterion is shown by the polyline with three
vertices in Fig. 5.23(b). If this line is simplified with the tolerance band shown by the red dashed
line the middle point will be eliminated. Ebisch uses such an example to demonstrate that it is
in fact the minimum distance from the point to the segment that is needed, not the distance from
the line nor the perpendicular distance from the segment. That is to say, if the perpendicular to
the line segment is undefined then the distance to each end point is computed and the minimum
distance is used. If this distance is greater than a threshold the intermediate point is included in the
simplification. It can be seen in Fig. 5.23(b) that using the tolerance shown by the red line would
result in the middle point being included in the simplification.

Nevertheless, even with this correction in place the polyline shown in Fig. 5.23(c) would still be
simplified to a single straight line. If this simplification was for such purposes as displaying the
polyline on a screen then such an approximation might be satisfactory. However, considering this
polyline to represent a plot of the accumulated camera motion in the x and y direction at successive
time intervals and with the motion in the y direction being negligible, it would correspond to a pan
right, followed by a pan left, followed by another pan right. Simplifying this line to enable the
correct classification of the different motions contained within the video sequence would require
three separate line segments in the approximation.
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Figure 5.23: The Douglas-Peucker line simplification algorithm.
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Given that the polyline represents a discrete time series describing the state of the accumulated
camera motion at constant time intervals, the actual distance measure required to test the closeness
of a point on the polyline to the approximation is the distance between itself at imathe point

on the finite line segment at time That is to say, the distance between the actual position at
time ¢ and the estimated position at timesing the current approximation. If a polyline contains

N vertices andN — 1 edges representiny — 1 time steps, the finite line segment between

the start and end vertices is subdivided ido— 1 edges of equal length. The closeness of a
vertex on the polyline to the simplification is now equal to the distance between itself and its
corresponding vertex. For the polyline in Fig. 5.23(c) the distances of the intermediate vertices
from the simplification are shown by the solid red lines which are now greater than the tolerance
value, hence these points are included in the approximation.

Although this may appear to be a very specific example, such repetitive motions can occur within a
video sequence for several different reasons. For example, during a dialogue between two charac-
ters the video can either cut to and from each person or the camera can pan left and right between
them within the same shot. Fig. 5.24(a) shows several frames from the same shot which starts with
a pan left following one character as he moves across the room (shown by thdifnstes), the
camera then pans back right to focus on the second character that he is talking to (betwéen the
andbth frame) followed by another pan left to focus on the first character whilst he continues to
talk (between thé&th and6th frame). A plot of the accumulated translational motion in the x and

y direction is shown in Fig. 5.24(b) which illustrates that using the conventional distance criterion
would result in an approximation containing a single straight line segment. However, assuming
the motion in the y direction is insignificant, a plot of the accumulated motion in the x direction
against time in Fig. 5.24(c) shows that using the distance between the approximated position at
time ¢ and the actual position at timtevould result in further points being included in the simpli-
fication. Another common occurrence of such repetitive motion is during sports footage, such as
a football match as a consequence of the camera panning left and right across the field following
the play of the ball. The modified distance criterion also addresses the problem of identifying seg-
ments of a video sequence with little or no camera motion. This can be illustrated by the example
in Fig. 5.25(a) where the blue dotted line is the sum of the translation in x against time. It can
be seen that the amount of translation in the negative direction increases, then the camera remains
stationary for a period of time followed by a translation in the positive direction until it finally
becomes constant for the remainder of the shot. In applying the DP algorithm to characterise the
motion, we start with a straight line segment between the two endpoints of the original line as
shown by the red line in Fig. 5.25(a). This line segment is an initial rough approximation which
describes the overall motion contained within a shot. How well it approximates the camera mo-
tion contained within the shot is determined by testing the closeness of all intermediate polyline
vertices to that straight line.
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Figure 5.24: A modified distance criterion.
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As outlined above we compute the Euclidean distance between the estimated amount of motion
and the actual amount of motion at tinae If all these distances are less than a specified tol-
erance the approximation is good. The endpoints are then retained and the other vertices are
eliminated. However, if any of these distances exceed the tolerance the point that is the furthest
away is taken as a new vertex, sub-dividing the original approximation into two shorter lines as
shown in Fig. 5.25(b). The second line segment now approximates a segment of video where the
camera is stationary, followed by a pan left until it becomes stationary again for the remainder of
the shot. If the original distance criterion was used, the vertices corresponding to no motion would
be at the same position as the start and end points of the line segment resulting in them being very
close to the simplification and this line segment being evaluated as a good approximation. How-
ever, this line segment represents a constant pan and if this was the true motion in the shot then
the accumulated motion would not have increased in the positive direction as much as it actually
has by approximately frame 525. This is still a poor approximation. Using the modified distance
measure results in the second line segment being subdivided further as shown in Fig. 5.25(d).

This procedure is repeated recursively until all points are within the specified tolerance and a final
approximation is reached as shown in Fig. 5.25(e). The result of the line simplification algorithm
is an approximation of the original line where the average rate of change of the motion along each
line segment is constant within a specified tolerance. We then use the average rate of change to
classify the motion as shown in Fig. 5.25(e). We use the term pan to characterise image translation
in the x direction, tilt to characterise image translation in the y direction and zoom to characterise
image scale. Each line segment represents a different type of motion or a similar motion but with a
different rate of change. For example, in Fig. 5.25(e) the camera pans left.6uanes faster for

the first pan compared with the second. If we want to identify the changes in speed of the apparent
motion, the final approximation in Fig. 5.25(e) may be used. However, once the motion has been
characterised for each line segment we prefer to merge similar motions together to obtain the final
approximation shown in Fig. 5.25(f).

To characterise the combination of all three types of motion we must plot and simplify a line in 4D
(scale, translation in x, translation in y, time). For this, the rate of change of each motion between
each frame pair must be in the same unit of measure. To achieve this we use the amount of area
removed by each motion. Hence, given a consecutive framefpairand f,,, we redefine the

motion parameters,, andd,, = (1d,,%d,) asB, andX, = (*\,,?)\,) respectively where

Bn:

{ Al —s2)  ifs, <1 (5.9)

A(1—1/s%) otherwise
N, = h-Yd, (5.10)
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Rules Motion Classification
If Savg < Tscale Zoom out

If Savg > 1/Tscate Zoom in

If =3 zoom and !dgy, [> 1 Pan

If =3 zoom and ?d,, |> 1 Tilt

If 3a zoom out andl *dyyg [> (w — (W Saug))/2 Zoom out and Pan

If 3azoom out and®duyg |> (h — (b - Saug))/2 Zoom out and Tilt

If 3azoomin and 'dgy, |> (W - Sang) — w)/2 Zoom in and Pan

If 3azoom inand 2dgyg |> ((h - Savg) — h)/2 Zoom in and Tilt

Table 5.3: Rules for Motion Characterisation.

with A, w, andh as defined earlier. We now plot the sum@f ' \,, and?\,, against time to obtain

a line in 4D to be simplified. Once the original line has been simplified we use the average area
removed by each motion to compute the average motion paramefgysndd,,, for each line
segment and use these parameters to classify the type of motion using a rule-based approach. The
rules for this classification are shown in Table 5.3 whErg,. = (maz{w, h} —2)/maz{w,h}.

If more than one rule is satisfied then there has been a combination of motions. There are different
rules for classifying a pan and tilt depending on whether there exists any zoom. If there is a zoom
in then it must appear to zoom in on an object or scene not contained in the original content for
there to be any pan or tilt. Likewise, if there exists a zoom out then none or only part of the
original content can be present by the end of the zoom out for there to exist any pan or tilt. The
direction of a pan and tilt is assigned simply by examining the sign of the parameter. Once the
motions have been characterised, the key frame extraction algorithm described previously may be
applied between motion boundaries rather than shot boundaries and the motions can be textually
annotated. Alternatively, key frames can be extracted at the start and end of each different motion.
If we are more interested in searching for a particular type of motion contained within a shot
then the textual annotations can be used to present key frames from shots containing this type
of motion and nothing else. Fig. 5.26 shows the camera motion annotations for a single shot
contain multiple different motions. A key frame has been selected at each transition point between
different motions.

5.9 Summary

A novel method for the selection of representative key frames was presented. It was based on the
idea of using the amount of shared content between frames as a measure to be minimised in order
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Figure 5.26: Camera motion annotations for a single shot containing multiple different motions.

to keep representational redundancy to a minimum. This was achieved by representing each shot
as a weighted, fully connected directional graph, where each node corresponds to a frame and the
edge weights are the similarity metrics based on the level of shared content. Key frames were then
selected by finding the lowest cost path through this graph, and using the frames corresponding to
the nodes. It was pointed out that the quality of key frame selection is subjective, and thus difficult
to quantify. The chapter presented a comparison with a radically different technique based on
PCA. The new technique appeared to result in lower representational redundancy, in that fewer
key frames were selected where shot contents varied little.

The chapter concluded with the introduction of a technique for classifying the dominant motion
present in a shot. It was based on a top-down refinement of an initial crude estimate of the motion
from end frame to end frame of a shot. This initial estimate was then successively improved on
using a line simplification algorithm, and was shown to be capable of successfully describing a
number of commonly occurring camera operations.



Chapter 6

Conclusions and Further Work

The principal motivation underpinning the presented work was to enable content-based retrieval
and efficient browsing of visual information stored in large multimedia databases. This can aid

in the reuse of archived footage which can represent a significant saving compared with the cost
of re-shooting film. This thesis presented work in the areas of video segmentation, key frame
selection and motion characterisation for the purpose of generating video abstracts intended for
efficient indexing into long video sequences.

6.1 Thesis Summary

It was argued in Chapter 1 that in order for a video abstract to be useful it needs to fulfill the
following two criteria.

1. It should represent the entire content.

2. Representational redundancy should be kept to a minimum.

To represent the entire content the abstract should contain at least one frame from each shot present
in the sequence. Moreover, it should be able to represent significant changes in content within
shot boundaries, which can result in the selection of multiple key frames per shot. Minimising
representational redundancy means that the difference between the selected key frames should be
maximised, whilst still capturing the entire content of the video.

121
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Following a review of some recent works in Chapter 2, Chapter 3 introduced a novel abrupt tran-
sition detection algorithm which takes into account both image structure and colour information.

It used a hierarchical motion compensation scheme utilising a normalised correlation-based tech-
nigue to estimate local motions of elements corresponding to high-frequencies. The motivation for
this approach was that image structure, such as edges, corners and certain textures, are primarily
high frequency phenomena. Motion compensation enabled the algorithm to differentiate between
content changes caused by camera operations, such as pans, tilts and zooms, and those caused by
shot transitions. Using a hierarchical block decomposition enabled the method to adapt its anal-
ysis scale to the underlying data to counter the generalised aperture problem, and also allowing
for larger disparities to be estimated. It was shown that the method performed well, under the
provision that there is enough structure present in the images.

To enable the method to deal with situations where the correlation measure is unreliable, such as
images containing motion blur, soft focus, significant local motions, or other cases where there
is not enough high-frequency energy present, it was extended to also employ a localised colour
histogram difference metric. Local colour histogram differences represent an efficient way of
measuring the similarity of images that proved an ideal complement to the correlation metric. On
its own, the histogram measure has its own weaknesses, but in conjunction with the correlation
metric it proved remarkably effective in detecting shot cuts in real video data. This assertion was
backed up by a comparative study against a set of representative methods.

In Chapter 4, the shot-cut detection algorithm was extended to also detect the most commonly oc-
curring gradual transitions, fades and dissolves. Detecting gradual transitions is a harder problem
than the detection of cuts, and especially reliable dissolve detection can be considered an unsolved
problem today. Many published techniques are based on the assumption that the transition function
is linear, which is rarely the case in real video data. Another questionable assumption frequently
seen is that gradual transitions will not coincide with camera or object motions.

The nature of a gradual transition means that the difference between frames is small, regardless
of the metric employed, suggesting that detection needs to involve multiple frames—it can be
assumed that the frame difference between the first and last frame of a gradual transition should
be of the same magnitude of that which exists between two frames separated by a cut. A method
for detecting dissolve transitions based on the tracking of local regions was presented. Blocks
which can no longer be relied upon are removed, and new blocks are introduced where previously
covered areas are uncovered, for example when an object leaves the scene. Blocks from previous
frames still present in the current frame are monitored, and the differences between each block’s
contents in the frame it was selected from and the current frame is compared. If the majority of
the blocks’ differences are sufficiently large, then a dissolve transition was flagged.
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The method was also extended to detect fade transitions. It used blank frames to detect the start
or end of a potential fade-in or fade-out. The shot cut detection algorithm was then used to dis-
tinguish between shot cuts to/from constant images and fade transitions. Once a blank frame was
determined to mark the start or end of a fade transition, the opposite boundary was detected by
analysing the mean and variance time series. The boundary was detected where there was a signif-
icant change in the rate of increase in these sequences. The gradual transition detection algorithm
was shown to perform favourably compared with another technique.

The next component required for automatic video abstract generation is the selection of relevant
key frames, which was introduced in Chapter 5. The quality of the selection is fundamentally a
subjective matter that depends on the application for which the abstract is intended. The approach
taken in this work is that a sufficient number of key frames should be presented to convey any
significant content change occurring within each shot. In order to achieve this, a metric based
on the amount of shared content between the intra-shot frames was devised. A shot was repre-
sented as a fully connected, weighted, directional graph where each node corresponds to a frame
and the edge weights correspond to the amount of shared content between the frames. The set
of key frames was then defined to be those represented by the nodes present on the lowest cost
path through the graph. By design, this technique has the property that if a shot contains signif-
icant motion that alters the contents, more key frames will be selected. The presented key frame
selection algorithm was contrasted against a fundamentally different approach based on Principal
Component Analysis. Although difficult to compare performance-wise without large-scale user
preference experiments in application context, it was shown that the new method results in lower
representational redundancy when inspecting the selected key frame sets from the respective ap-
proaches.

Chapter 5 also introduced a technique for characterising the dominant motion present in a shot,
which may be used for automatically adding a further layer of descriptive annotation. Textual
labels describing the main camera operation may provide another way of indexing and retrieving
shots. The classification algorithm developed here used a top-down approach starting with a crude
estimate of the motion in a shot which was then recursively refined by means of a line simplifi-
cation algorithm. It was shown to be capable of describing successfully a number of commonly
occurring camera operations: zoom-in, zoom-out, pan, tilt and various combinations thereof.
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6.2 Principal Contributions

The work presented in this thesis was concerned with the video indexing task. This was divided
into four main components.

1. Detecting shot cuts.
2. Detecting gradual transitions.
3. Selecting the appropriate number of key frames to summarise the video.

4. Categorising the apparent camera motion.
The principal contributions are:

¢ A novel method for abrupt shot transition detection combining hierarchical normalised cor-
relation with local colour histogram differences. This method was shown to perform well
on real video data, requiring minimal parameter tuning as shown on the data used in these
experiments.

e A technique for detecting the two most commonly occurring gradual shot transitions, fades
and dissolves. This was achieved without resorting to the frequently violated assumptions
of linear blending functions and zero motion.

e Anovel key frame selector based on the amount of shared content between frames. This was
expressed in terms of a shortest path problem, and experiments suggested that the frames se-
lected had a lower degree of representational redundancy compared with a different method.

e A camera motion classifier capable of classifying the dominant motion based on a line
simplification technique.

The algorithms developed were demonstrated to perform well, and were all implemented within a
unified framework which could be incorporated in an automated video indexing system.

6.3 Further Work

Although the transition detection algorithm and the key frame selector were shown to perform
well, several outstanding issues remain to be explored. Some of these are outlined below, together
with ideas on how research effort could be spent in order to resolve them.
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Detecting Gradual Transitions

The two main causes of false detections are the presence of non-translational motions such as a
camera zoom, and the choice of an inappropriate block size of the tracking. Although the incor-
poration of colour histogram differences helps to overcome these problems, the algorithm could
benefit from the investigation of higher-order motion models, for example by allowing the tracked
regions to deform. Another possible way of tackling these problems may be to employ a hierarchi-
cal block tracking scheme where the size of the analysis window can be adapted to the underlying
data. It was judged that both these approaches represent research areas in their own right.

A different area that could be investigated is to try to resolve occlusion issues to improve the
updating of the regions of interest. Currently, overlapping blocks are removed, so the content of
occluded regions are not compared between distant frames. This can cause the set of regions of
interest to be updated too frequently, resulting in a missed detection. Perhaps a depth-ordered
representation could be used to resolve this, by allowing moving regions to pass over each other.

Although uncommon in real world video, there exists a number of other gradual transitions, apart
from fades and dissolves, collectively known as wipes and pushes. The current work could be
extended to detect those.

Selecting Key Frames

One of the fundamental assumptions made here was that the change of content in the face of
camera motion was the significant factor when determining whether to select a key frame or not.
This means that if a shot contains little or no camera motion, typically a single key frame will be
selected. This may not be appropriate for all applications, and the selection of key frames based
on object motion and event detection could be investigated further.

The major area that could benefit from further investigation is one of scene-adaptive video en-
coding [27, 54]. Many video codecs employ some form of inter-frame encoding punctuated by
so-calledreference framesor temporal decorrelation structures, from which the next set of inter-
frame encodings are derived. Work in this area suggest that making use of some data-specific
adaption may provide for a better bit rate performance from the codec. It is entirely possible that
the presented scheme to detect shot transitions and select key frames could be a useful basis for a
video codec.

Although this suggests doing such analysis prior to the coding step, the flip-side of this coin is that
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if the video data is already present as an encoded stream it may be possible to exploit the motion
compensation information which is typically present to do the transition detection and key frame
selection.

Motion Characterisation

The motion characterisation scheme could be extended to recognise more kinds of motions. For
example, it currently makes no distinction between a camera pan and a tracking operation. It also
makes the assumption that the camera motion is always the dominant one, which, although true
for the majority of cases, represents a simplification. As it uses MSAC to fit a motion model to
the available data it may be useful to investigate the meaning of the points discarded as outliers.
It may be possible to glean information about other motions present, and potentially segment the
video into moving objects.

6.4 Concluding Remarks

One of the central issues in this work has been one of data generality. If a video indexing system
is to be useful in the wider context, it is essential that it does not depend on myriads of thresholds
needing hand-tuning prior to each new video sequence encountered. Many techniques exist that
can be tuned to work well for constrained data, but it was decided from the outset that the target
for the current work was generality. The author believes that the results presented go some way
towards reaching that target.

The question if this work has been successful or not can only be fully answered after the techniques
and ideas presented are incorporated into a complete automated video indexing system akin to
that outlined in the introduction of this thesis. Saying that, it is the author's opinion that the
tests performed were done using a large set of real-world data from a disparate set of genres and
sources. Furthermore, the techniques build upon significant amounts of established work, such
as normalised correlation and histogram differencing, which should testify to the solidity of the
underlying principles. It is the author’s hope that the techniques developed here will eventually
be deployed in a commercial application for video indexing that would prove useful for film and
video researchers doing real production work.
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Appendix B

Computational Efficiency of
Normalised Correlation

We wish to establish the point at which the frequency domain implementation of hormalised cor-
relation becomes more efficient than the direct implementation. Considering only the numera-
tors in (3.3) and (3.4) and assuming the mean values in (3.3) have already been removed, then
(3.3) requiresN?(M + N — 1)? additions andV?(M + N — 1)? multiplications. That isy(¢)

will have potentially(M + N — 1) non-zero points (all instances whetgandy, overlap) and
requiresN? additions and multiplications at each point. Equation (3.4) requires two Discrete
Fourier Transforms (DFT), a conjugate multiplication and an Inverse Discrete Fourier Transform
(IDFT). Computing normalised correlation via the frequency domain requires the two square anal-
ysis blocksz; andz; are of the same size. Assuming they are both of 8ize M whereM is

a power of2, using a popular implementation of the FFT algorithm to compute the DFTs, they
can be implemented usiny 2 log, M?/2 complex multiplications and/? log, M? complex ad-
ditions and the conjugate multiplication requirds®> complex multiplications [10]. Therefore,

this method require$2M?2log, M + 4M? real multiplications and8M?logs M + 2M? real addi-
tions/subtractions. Fig. B.1 shows a comparison of the number of multiplications and the number
of additions/subtractions required for each method respectively as the block/sizereases as-
sumingN = M for the direct method. Only considering block sizes of a power of two, for a
block size of8 and greater, the transform method of correlating two 2-D sequences is faster than
the direct method.

Circular correlation is not used when implementing correlation using the direct method. The 2-D
function y; is embedded within a larger image whose values can be used wheverlaps the
edges ofy;. For this reason, for an area of interest of siex N, to estimate equivalent displace-

137



138

250000 250000
2
o %)
3 200000 1 angform method S 200000 I 1¢ansform method i
8 Direct method ———— 8 Direct method
3 150000 - = 150000 - B
o =
8 =
S 100000 | 2 100000 - 1
k] =
] o
= 50000 | o] 50000 | B
2 5
T - I
£ o e 0 - 1
=}
z
-50000 L L L L L L L -50000 L L L L L L L
0 2 4 6 8 100 12 14 16 0 2 4 6 8 10 12 14 16
Block Size M (with M=N) Block Size M (with M=N)

Figure B.1: Comparison of the efficiency of the direct and Fourier computation of normalised
correlation.
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Figure B.2: Comparison of the efficiency of the direct and Fourier computation to estimate dis-
placement$—N/2 + 1, N/2] for a block sizeN.

ments[— N/2+1, N/2] requires onlyN? multiplications and additions & positions. Figure B.2
compares the efficiency of the implementation of each method required to obfsj2+ 1, N/2]
displacement estimates for an area of intergstf size N x N. Itillustrates that both methods are
approximately equivalent foN = 16 particularly if only considering multiplication operations.
However, the Fourier method is clearly more efficient for a block 3%and greater.



