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Abstract

One of the fundamental issues in image processing and machine vision is texture, specificall
texture feature extraction, classification and abnormality detection. This thesis is concernec
with the analysis and classification of natural and random textures, where the building ele-
ments and the structure of texture are not clearly determinable, hence statistical and signal pr¢
cessing approaches are more appropriate. We investigate the advantages of multi-scale/mul
directional signal processing methods, higher order statistics-based schemes, and computatio
ally low cost texture analysis algorithms. Consequently these advantages are combined to forr

novel algorithms.

We develop a multi-scale/multi-directional Walsh-Hadamard transform for fast and robust tex-
ture feature extraction, where scale and angular decomposition properties are integrated in
an ordinary Walsh-Hadamard transform, to increase its texture classification performance. W
also introduce a highly accurate Gabor Composition method for texture abnormality detection
which is a combination of a signal processing and a statistical method, namely Gabor filters
and co-occurrence matrices. Furthermore, to overcome the practical drawbacks of traditione
classification approaches, that require an extensive training stage, we introduce a method bas
on restructured eigenfilters for texture abnormality detection within a novelty detection frame-

work. This demands only a minimal training stage using a few normal samples.

The proposed schemes are compared with commonly used texture classification methods c
different image sets, including a high resolution outdoor scene database, samples of the VisTe
colour texture suite, and randomly textured normal and abnormal tiles. The results are ther
analysed in order to evaluate texture classification performance, based upon accuracy, gener

ity and computational costs.
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Chapter 1

Introduction

You love what you see, and you see what you love.

(An Old Iranian Proverb)

1.1 Background and Motivation

For humankind, vision is the most important resource of information, hence the most impor-
tant sense. Amongst several vision-based activibbgect recognitiorand classificationare
regular, basic, and immediate acts. When one picks up a desired book from a table, an obje:
recognition task has been implicitly performed: choosing a particular book within a scene full
of other objects, possibly other books. In many applications, it would be decisively useful
if we managed to develop an automatic visual pattern recognition system to assist or replac
the human operator, for instance, a fast fingerprint identification system, a system for con-
verting handwritten texts to computer text files, face recognition for security systems, outdoor

scene object classification to help visually disabled people, and surface inspection of industria



products. These examples, all have something in common: to find the most important visual
propertiesor featuresof an object that make it distinguishable from others. These properties

can be colour, shape, edges, and texture, to name a few.

In a typical pattern recognition or object classification process, the first step is the extractior
of features or key properties of objects (i.e. mapping from the real world to the feature space)
The next step is classification of objects according to their features (i.e. mapping from the
feature space to the classification space). The human brain is an excllg=ifierwhich can

successfully classify objects in noisy environments even without significant features. However,
we still cannot expect the same performance from our artificial classifiers. Therefore, to work
towards a successful classification, extracted features of different objects must show adequa

separation in the feature space.

Figure 1.1 illustrates the structure of a traditional pattern recognition system. The two main
stagesfeature extractiorandclassification eventually map the input object into one of tKe

classes of the classification space.

Feature

Exiractor =  Feahoes o lamifier —»  Class

Obgect —+ Pre Processor | -

Fritung Exlracion Shage Classfication Stage

Figure 1.1:A pattern recognition system.

Huge efforts in the field of automatic pattern recognition during the last few decades have
improved the overall performance of automatic recognition systems. However, even in con-
strained tasks, such as automatic registration of car number plates or handwritten charactt

recognition, the lack of efficiency, particularly in robustness and flexibility, is still an important



issue. In other words, even though a recognition syggrarforms well in the recognition and
classification of pattern setunder given conditiong, it will not guarantee that the probability
of successful classificatiof}(A), on other patterns or under other conditions would be high
too:

P(A)= F (A a,y) (1.2)

To conclude, some effort is still needed in the field of pattern recognition to increase the quality
and performance of pattern recognition systems. This thesis considers the feeltlioé anal-
ysis and classificatiorand its application in automatic pattern recognition as the main subject

of its study.

1.2 Overview

"The development of computational formalisms for segmenting, discriminating and recognising
image texture projected from visible surfaces are complex and interrelated problems. An important
goal of any such formalism is the identification of easily computed and physically meaningful image

features which can be used to effectively accomplish those tasks.” [16]

In recent years, the computer vision research group at the University of Bristol has developed:
neural network based system for classifying images of typical outdoor scenes to an area accl
racy of approximately 90% [23]. The system is trained with features extracted from segmentec
regions of a large image database with images of typically>6%22 resolution. One of the

issues investigated in this thesis is whether there is any advantage in utilising higher resolu
tion images in outdoor scene object classification. Compared to ordinary images, different
objects in higher resolution photos show more explicit textural properties. Again, in a classi-

fication task, by employing higher resolution images we will be able to extract larger patches

3



of different objects. Therefore, methods applied (e.qg. filtering) can use a wider range of spatia
frequencies or spatial distances. This is particularly useful in texture analysis where essentic
characteristics of a texture, such as patterns and edges, are mapped on a rather broad range
spatial frequencies. Figure 1.2(a) illustrates a high resolution outdoor scene image. Figure
1.2(b) to (e), show a pavement patch in four successive resolutions, demonstrating declinint

textural detail of the pavement.

Recent research on the human visual system suggests that receptive field neurons in the h
man visual cortex show orientation-selective and spatial-frequency-selective properties [70]
This justifies the popular use of multi-scale and multi-directional (MSMD) schemes in image

processing, for example in texture analysis, where textures usually show an obvious MSMD
structure. We propose and investigate a novel version of the Walsh-Hadamard transform, calle
the Directional Walsh-Hadamard transforror DWHT in the context of a MSMD framework.

The Walsh-Hadamard transform is one of the fastest and computationally cheapest transform:
The proposed DWHT can be precise and cost-effective in texture analysis applications. Tc
evaluate the DWHT method, its performance is compared with the Gabor filter which is a
widely used MSMD algorithm. Colour features are also employed in our outdoor scene object
classification experiments. We introduce two hue-like and saturation-like colour features anc
compare them with colour features extracted from standard colour spaces HLUSaBnd' he

proposed chromatic features show good classification accuracy and speed as well.

The experiments performed on the outdoor scene images were part of a large scale proje
which dealt with wearable computers and supportive tools for partially blind people. For the
time being, it is not feasible to embed high resolution imaging tools in such systems. However,

as hardware facilities improve in time, this may become practical.

Furthermore, the fast and cheap DWHT, as proposed here, is feasible and it is worthwhile tc

compare it with more costly algorithms (e.g. Gabor filtering) under real circumstances. Hence,



further experiments and comparisons are reported in this thesis performed on the standat
texture test suite VisTex to measure the reliability and generality of results applied to images

of a more typical resolution.

a)

(
..I-
(b)

(©) (d) (e
Figure 1.2:A high resolution 204& 2048 pixel outdoor scene image (a), and a pavement patch in four

successive resolutions, from the highest 25866 pixels (b) to the lowest 32 32 pixels (e).

Attention is also paid to another field of texture analysis and classification: Detection of ab-
normalities in randomly textured ceramic tiles. Quality ranking of tiles is an essential stage in
the tile manufacturing industry and development of an automatic surface inspection and defec
detection system would have an impressive impact on the overall performance of a tile produc

tion plant. Figure 1.3 shows normal and abnormal samples of two textured tiles selected fron
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our tile database.

We shall use the term ‘textural abnormality’ to refer to all possible defects, such as cracks or
broken edges, colour or water drops, shading problems and so on. Using this definition, any
defect is an unexpected change in the typical texture of a tile. Therefore, we emphasise o
texture abnormality detection methods, and review, develop and test many texture abnormality
detection algorithms on our tile data set which includes several types of randomly textured
tiles. Experimental methods are based on statistical analysis (e.g. co-occurrence matrix an
local binary pattern, LBP) or signal processing (e.g. DWHT, Gabor filters, PCA and directional
discrete cosine transform (DDCT)). Also a new Gabor Composition scheme (GC) is introduced
and implemented. The proposed GC scheme, which is in fact a combination of Gabor filtering

and co-occurrence analysis, is on average the best of the tested algorithms.

In our texture classification and defect detection experiments described in Chapters 3 and 4, w
employed two different classifiers: a back propagation neural network (BPNN) and a K-neares
neighbourhood (KNN). In a move away from such traditional approaches, in the final part of the
thesis we develop a nemovelty detectiofND) method for texture abnormality detection. The

most important advantage of novelty detection in industrial inspection is its independence from
defective samples. In other words, while ordinary classifiers need both normal and abnorma

samples for a successful training, a novelty detector only employs normal samples.

The proposed algorithm reconstructs a given texture twice, once using a subset of its owr
eigenfilter bank, and once again using a subset of a reference eigenfilter bank, and measur
the reconstruction error as the level of novelty. We then present an improved reconstruction
generated by structurally matched eigenfilters through rotation, negation, and mirroring. EXx-

periments on tile defect detection show that this method can perform very well.

The two major applications that we dealt with (outdoor scene object classification and randomly

textured tile defect detection), required a balance between accuracy and the computation

6



@) (b)
(©) (d)

Figure 1.3:Two pairs of normal and abnormal tiles from two different types. Top: A normal (a) and an

abnormal (b)PRODOBottom: A normal (c) and an abnormal (K)S . The defective areas have been

highlighted in the small images on the right.

costs. Performance results for all experiments (when appropriate) is presented, and the over:
performance of the proposed methods suggests that they can provide a good balance betwe

accuracy and computation cost.

1.3 Contribution

The contributions of this thesis are:

e A novel multi-scale/multi-directional Walsh-Hadamard transform, DWHT, which is fast



and easy to implement, and hence is suitable for realtime applications.

e Two easy to compute chromatic features based on the definition of hue and saturation

These features can be used in colour texture classification.

e A Gabor Composition method for detection of abnormalities in random textures. The al-
gorithm highlights the defective textures by combining Gabor filtering and co-occurrence

analysis.

e An eigenfilter based reconstruction method for texture novelty detection. The proposed
method utilisesestructuredeigenfilters to reconstruct the texture, and then considers the

reconstruction error as the indicator of abnormality.

1.4 Thesis Layout

This thesis is divided into 6 chapters. After the introduction pahapter 2 provides a general

review of texture analysis literature and the methods employed in this thesis. Definitions of a
texture and related terms are reviewed to provide a clearer approach to the subject of the stuc
It also contains a review on surface inspection and texture abnormality detection. Finally,

methods used such as neural networks and principal component analysis are briefly introduce:

In Chapter 3, methods for feature extraction and classification of objects in high resolution
colour images are presented. Textural features are obtained from a novel multi-band and direc
tional Walsh-Hadamard transform, as well as simple chromatic features that correspond to hu

and saturation in the HLS colour space.

In Chapter 4, a study in normal/abnormal textures classification experiments is presented. The

two proposed methods (DWHT and GC) are applied and compared in terms of accuracy an



speed against other established and optimised texture classification methods, such as Gak

filters and co-occurrence matrices on a data set of normal and defective textured ceramic tile:

In Chapter 5, a new eigenfilter-based novelty detection approach to find abnormalities in ran-
dom textures is presented. The method is accurate and fast, and amenable to implementatic

on a production line.

The thesis is concluded i@hapter 6.



Chapter 2

Texture Analysis and Classification:

Background and Methods

2.1 Introduction

In this chapter, we briefly review the field of texture and texture analysis. We begin with the
definition of texture and related terms in Section 2.2. Then, diverse approaches to texture analy
sis and classification are discussed in Section 2.3. New methods for random texture analysis a
introduced in Section 2.4. Section 2.5 briefly reviews some previous studies in colour texture
processing. Section 2.6 provides an overview to texture inspection and abnormality detection

Finally, Section 2.7 summarises the methods used in this thesis.
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2.2 Texture: Definitions

‘Texture’ is a widely used and implicitly understandable term, however as many other intu-
itively known phenomenon, there is no precise definition. In the Webster dictionary, texture
is defined as “the character of a surface as determined by the arrangement, size, quality, ar
so on” or “the arrangement of the particles or constituent parts of any material as it affects
the appearance or feel of the surface”. Some other specific and technical definitions found i
machine vision literatures are “discrete 2D stochastic field with a given governing joint prob-

ability density function” [97] or “repetitive arrangement of a unit pattern over a given area”

[101]. Humans usually describe a given texture by words like fine, coarse, smooth, rough anc
so on. These attributes are again instinctually obvious, however still relative and not easily

measurable [113].

As with many other analyses, a reasonable approach to describe a texture could be extractic
and definition of itsprimitivesor elementswhich usually are referred asxtons[127, 131],

along with the description of the inter-primitives relations. We can refer to the internal proper-
ties of a primitive (e.g. intensity or colour of the pixels) as theeand spatial inter-primitive
relationship as thetructure[44, 113]. Consequently a countable set of primitives with distin-
guishable tones and their structure describe the texture. However, for many natural textures,

is not very easy to determine the primitive set and the structure.

Textures could be categorised according to their strength or cohesion feataonsfantex-

ture, is constant, slowly changing or approximately periodic. strangtexture, the primitive

set is well defined and the structure is rather regular. In other words, elements and spatial rele
tions between them are clearly determinable. While weaktexture definition of a crisp set

of primitives is relatively more difficult and spatial correlation between primitives is also low.
An extremely weak texture could be considered emralomtexture [113]. Again, textures can

be categorised dmeor coarse In a fine texture, primitives are small and the contrast between
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primitives are high. In contrary, in a coarse texture primitives are relatively large. However, all
the definitions above are relative, particularly for natural textures. Also, texture is a property
of area, therefore texture measures are dependent on the size of the observation (i.e. patch si

and also the resolution [97].

As an example, Figure 2.1(a) and (b) illustrate that the fineness and coarseness are sca
dependent attributes. In fact, the coarser checkered texture (b) is a patch of the finer (a) a
ter 16 times zooming-in. Figure 2.1(c) and (d) show two natural textures selected from the
pseudo-standard Brodatz texture album [18]. Although (c) is more regular than (d) and can be
assumed as a strong texture, defining a clear set of primitives as the building blocks of (c) is
still difficult. For a weaker texture like (d), it is almost impossible to determine primitives and

structure in current resolution. Figures 2.1(e) and (f) are two natural textures from the VisTex
texture suite [69]. Again it is not clear how one can define primitives of a weak/random texture

like (f), while it is an easier task for (e).

Figure 2.2 depicts a fuzzy-like separation of different textures according to their strengths anc
the corresponding degrading/increasing properties. While for a constant texture primitives anc
the structure are well-defined and strength is high, for random textures they are ill-defined an

low.

Texture analysis covers a wide range of applications: medical image analysis, scene unde
standing, remote sensing, textured surface inspection, document processing and many mor
Next, we categorise different approaches to texture analysis, with special attention to texture
classification. Our study emphasises on the lower level texture processing. Although during
recent years an obvious shift of interest from low level to high level vision has occurred in

machine vision, low level processes are still an active field of study. High level processes are
not independent from low levels, and there are still a lot of unanswered questions in the field

of low level vision and image processing [31].
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(d) (e) (f)

Figure 2.1: Examples of artificial and natural textures. (a) and (b): A similar ‘checkered’ artificial

texture in high and low resolution representations. (c) and (d): Two natural textures from Brodatz
album, (c) is D111 and (d) is D105. (e) and (f): Two colour natural textures from VisTex set. (e) is a

fabric and (f) is a grass.

2.3 Texture Analysis and Classification: Different Approaches

Sonkaet al [113] state that there are two main approaches to texture analysis: statistical anc
syntactic. They consider auto correlation, discrete image transform, ring/wedge filtering, grey
level co-occurrence matrices (GLCM), (or dependency matrices [66]), and mathematical mor-
phology as popular statistical texture analysis methods, and shape chain grammar and prin
itive grouping as syntactic methods. In a more comprehensive categorisation, Tuceryan an:
Jain [116] distinguish four different approaches to texture analysis: statistical, geometrical,
model-based and signal processing approaches. Using the later categorisation, geometric

(e.g. Voronoi tessellation or region growing) and model-based approaches (e.g. Markov ran
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Figure 2.2:Definition of different textures and their properties.

dom fields or fractals) are not of interest in this thesis. Therefore, we only review statistical

and signal processing approaches and their advantages and disadvantages.

2.3.1 Statistical Approaches

Statistical texture analysis methods deal with the distribution of grey levels (or colours) in a
texture. The first order statistics and pixel-wise analysis are not able to efficiently define or
model a texture. Therefore, statistical texture analysis methods usually employ higher orde!
statistics or neighbourhood (local) properties of textures. The most commonly used statistica
texture analysis methods are co-occurrence matrices, autocorrelation function, texture unit an

spectrum, and grey level run-length [49, 113, 116].

Co-occurrence Matrices: Introduced by Haralick [45], GLCM is one of the earliest texture
analysers which is still of interest in many studies. Since the beginning of the 70’'s many
researchers have studied GLCM theory and have practically implemented it in a wide range o

texture analysis problems.

GLCM is a model that can explicitly represent the higher order statistics of an image, just like

14



ordinary histograms which represent the first order statistics of images. Rérgaay level
image,x, the GLCM which captures the second order statistics and presents thidm

matrices, is defined as:

CDd,G(ia J) = Z z p(X(U,V),X(UI,\/),i, J) (2-1)

where the image size 8 x V, d and@ are distance and direction between pixel pair

< X(u,v),x(U,v) > andp is:

1 If x(u,v) =i and x(u/,v) =]
ol x )iy = {1 = 22
O other wise

In fact @y (i, j) shows the number of occurrence of grey level pair, j > between pixels at
d distance and direction of each other. For instance, the expression below illustrates a given

4 x 4 image and one of its GLCM matrix witth= 1 and@ = 0°.

0 0 1 1] (4 2 1 0]
0 0 1 1 2 4 0 O
X= = D1(X) = (2.3)
0 2 2 2 1 0 6 1
2 2 3 3 00 1 2

There is no generally accepted solution for optimisthgnd 6, however, havingl = 1 and
0 ={0°,45",90°,135} is typical. The next step is usually extracting more condensed texture
features by applying some appropriate functionslonGLCM and its parameter setting and

functions will be discussed in detail later in Section 4.3.3.

There are several reports on relatively successful implementations of GLCM in texture analy-

sis and classification, for instance [44, 66, 100]. Moreover, recently Patrab[94] utilised
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GLCM to retrieve rock textures, where GLCM features performed better than Gabor wavelet-
based features. Also Clausi [24] employed GLCM to classify SAR images. Clausi also re-
viewed several former implementations of GLCM, mostly on the field of remote sensing, and
posed certain questions about their algorithms and results, in particular the methods used fc
parameter optimisation. Again, the role of grey level quantisation on the GLCM performance

were discussed in that study.

Autocorrelation (AC) function: The AC function is defined as:

S SV XU VX(U Ay, v AY)

AC X
2o Ty Sy X2 (u,v)

(2.4)

wherex is theM x M image,A, and4y, are horizontal and vertical displacements. The AC
function can assess the regularity and fineness/coarseness of the texture. The autocorrelati
function of a coarse texture drops off slowly and vice versa. Again, the autocorrelation function
of a regular texture exhibits clear peaks and valleys. Although it is possible to find some
different artificial textures with a similar autocorrelation function, this does not necessary rule
out the utility of an AC feature set for natural texture classification [97]. In general however,

the AC function is not considered a highly effective and popular texture classification tool.

Texture unit and spectrum (TUS): Introduced by He and Wang [47], TUS firstly replaces the
texture’s pixels withtexture units(TU), which are functions of a rather small neighbourhood
around each pixel (e.g.>383), and then computes the distribution (e.g. histogram) of TUs over
the mapped image as thexture spectrumMany of the proposed neighbourhood functions are

in fact a mixture of simple logical operators and weighted summation of neighbourhood pixels.
For instance, a pixel can be replaced by sum of its brighter neighbour pixels. He and Wanc
employed their method in texture classification and unsupervised segmentation, and texture

filtering, however, the excessive dimensionality of feature space (e.g. 6561 features in [47])
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limited the method’s practicality.

Local binary pattern (LBP) was introduced by Ojalizal [92] as a TUS-based grey level shift
invariant texture descriptor. The basic LBP operator considers&rdighbourhood of a pixel,

then these 8 border pixels will be replaced either by 1, if they are larger than or equal to the
central pixel or by 0 otherwise. Finally, the central pixel will be replaced with a summation of
the binary weights of border pixels in the LBP image and the3window slides to the next

pixel.
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Figure 2.3:Computing the basic 8 3 LBP (From [80]).

It is possible to develop the basic LBP into various neighbourhood sizes and distances [93]:

P-1
LBRr= s(gp—9c)2” (2.5)
p=0
wheres(-) is the sign function:
1 ,x>0 2.6)
S(X) = 2.6
) 0 ,x<0

gp andgc are grey levels of border pixels and central pixel respectivelyRaische number of

pixels in the neighbourhood.

In this case, if we segP = 8, R= 1), we obtain the basic LBP (see Figure 2.3.1). Luminance
changing cannot affect signed differenags— gc, hence LBP is grey level shift invariant.

Whereas ordinary LBP is not rotation invariant, it is possible to modify it to a rotation invariant
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version [93]. Typically the 256-bin histogram of the LBP is considered as the texture descriptor.
However, when & > 8 is used, the LBP range exceeds far beyohe-256 and it may be
necessary to select a subsetfotfo decrease the maximum value of LBP. Figure 2.4 shows a

textured ceramic tile, its basic LBP map and the corresponding histograms.

(a) (b)

(c) (d)
Figure 2.4:A textured ceramic tile (a), its basic LBP map (b) and corresponding histograms ((c) and

(d)).

We will utilise Local Binary Patterns algorithm later in Section 4.3.2 in a texture defect detec-

tion experiment.

Grey level run-length or primitive-length (GLRL): In this method, the primitive set is de-
fined as the maximum set of continuous pixels of the same grey level, located in a line. The
length of primitives (run-lengths) in different directions can then be used as the texture de-
scriptors. A longer run-length implies a coarser texture and vice versa, also a more uniformly
distributed run-length implies a more random texture and vice versa. Statistics of the primitives
can be computed as the texture features. For examplB(det) be the number of primitives

of the lengthr and grey leved, N the number of grey levels, arid} the maximum run-length
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of the texture. Thei is the total number of runs:

N N
K=Y Y Bgn) (2.7)
g=1r=

and texture uniformity measure can be defined as:
1 N N

K ngr:

B(g,r)? (2.8)

Primitives should be computed for all grey levels, lengths, and directions, which is a costly
process. Again, implementation of GLRL on grey scale textures is not straightforward, since
some considerations on quantisation tolerance should be satisfied. Also GLRL has not show
promising results in many texture classification experiments. For instance, in [108], applied
on a specified benchmark [88], GLRL performance is the lowest one with around 45% correct

classification, and almost 30% less than the AC and GLCM in the same experiment.

2.3.2 Signal Processing Approaches

Signal processing approaches cover a wide range of spatial and transform domain filtering, dis
crete transform domain analysis, and multi-scale/multi-directional (MSMD) methods. Signal
processing schemes, which indicate the texture as a 2D digital signal, are very popular an

capable of dealing with random as well as regular textures.

Spatial domain filtering: A texture can be considered as a mixture of patterns, therefore

characteristics of ‘edges’ and ‘lines’ are key elements to describe any texture. Even a plain o
smooth texture can be considered as a texture without any edge. The early attempts to utilis
spatial domain filtering as texture descriptor were emphasised on gradient (i.e. line and edg

detector) filters such as Robert and Sobel operators [97, 113]. Moreover, Laws [72] propose:
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his nine 3x 3 pixel filter set (see Figure 2.5(a) and (b)) to extract the micro structure of textures.
His method concerns filtering the texture by an empirical filter set and measuring the micro
structuresenergy(i.e. standard deviation of the responses). In a later study, Laws successfully
employed 5« 5 filters and a 1% 15 sliding window absolute averaging scheme for texture

segmentation [73].

The common term in all spatial domain filtering methods is 2D convolution of the texture
with a set of relatively small filters (i.e. filter bank) and then processing the filter responses.
It is also possible to implement small size discrete sin (DST), cosine (DCT) or Hadamard
filters instead of Laws filters. In a series of works, Unser established a platform of small size
spatial domain filters (which he callscal linear transform LLT) for texture analysis and
classification [117, 118]. Figure 2.5(c) and (d) illustrate 3 DCT and DST filters. Apparent
similarity between these filters and Laws filters suggests that all methods use similar principles

and may have similar performances.

Eigenfilters (or similarly KarhunenLoeve transform, KLT) are another alternative for spatial
domain texture analysis. Although they look like Laws and other gradient filters (see Fig-
ure 2.6), compared to Laws filters they have two additional important features: adaptability
and orthogonality. Adaptability means each image has its individual eigenfilter bank which
is extracted from its covariance matrix using a principal component analysis (PCA) scheme.
Orthogonality means the eigenfilter bank is orthogonal, hence it can decompose an image int
a set of uncorrelated detail (or basis) images, and regenerate the image by re-composition ¢
detail images [2]. Details of PCA and eigenfilters will be discussed later in Sections 2.7.1 and
4.3.7. Figure 2.6 depicts a randomly textured ceramic tile (a), its nin@ 8igenfilters (b), and

detail images (c).

Various authors have suggested that KLT is one of the best texture analysers. For instance, r

garding its adaptive nature, Unser [118] considered the KLT as the optimum LLT, and indeed in
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(c) (d)
Figure 2.5:Nine 3x 3 Laws filters ((a) and (b)), DST filters (c) and DCT filters (d). To increase the

visibility, all filters have been equalised.

his experiments KLT performed better than all other local linear transforms. More clarification

of the KLT transform and eigenfiltering can be found in [120].

Fourier domain analysis: The Fourier Transform, and its fast version, FFT, is a basic tool for

harmonic analysis of images:

H
<

M -2n
F(u,v S f(xy)e o @ (2.9)
x ly=1

The complex FFT represents magnitude((,v)|, namely absolute value or power spectrum
density) and phase F (u,Vv)) information of the signal in the frequency domain. Power spec-
trum density (PSD) is directionally symmetric and represents global frequency contents of ar

image. Therefore, regarding special attributes of textures, typical PSD analysis (e.g. employ
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(c)
Figure 2.6:3 x 3 Filter bank (b) and detail images (c) of a randomly textured tile (a).

ing PSD moments as features) may not be sufficient for extracting efficient texture features. A
solution is processing and analysing the FFT output to obtain high performance textural fea-
tures. For instance, D’Astous and Jernigan utilised detailed measures of the FFT domain fo
texture discrimination [30]. They proposed two groups of PSD-based features: peak feature
and power distribution features. Strength, curvature, area and distance-to-centre are exampl
of their peak features, and difference between vertical/horizontal direction variances, powe
spectrum eigenvalues and the circularity of the PSD are some of their power distribution fea-
tures. Chan and Pang studied fabric defect detection by Fourier analysis [19]. They appliet
FFT domain analysis i andy directions since many fabric defects occur in those directions.
Their proposed features were the first and the second peaks or harmonics of the horizontal ar
vertical 1D slices of the power spectrum (ellg(u,0)| and |F (0, v)| projections of|F (u,V)|).

However, while FFT is a very fast transform, many of the proposed subsequent features of th
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above-mentioned methods are computationally costly.

Ring and Wedge filte&kF/WF) are another commonly used FFT based texture analysis method
[53, 113] and can be defined as:

RF(Ar) = Z(u2+v2)eAr |F(U,V)|2
(2.10)

WF(A6) = Zarctar(\—‘j)EAG IF(u,v) |2

where|F (u,v)| is the power spectrum. Figure 2.7(a) and (b) show a ring and a wedge filter.

e L

- .h_‘ﬁﬁ

|
] :' i

(@) (b) (c)
Figure 2.7: A ring filter (a), a wedge filter (b), and four wedge filters witd = 45 and Gaussian

envelope.

A ring filter, which is indeed a symmetric band-pass filter, can reveal the distribution of tex-
ture’s energy across the frequency domain and measure its fineness/coarseness. A wedge fil
in AB passes the energy &8 -+ 7 orientation, thus can evaluate the directionality of the image.
As Figure 2.7(c) illustrates, to decrease the harmful side lobes a Gaussian envelope may cov

the filter and smooths its edges [96].

Discrete transforms: Rather than the FFT, it is possible to apply other discrete transforms
or harmonic analysers such as discrete cosine transform or Walsh/Hadamard transforms (DC
and WHT respectively) for texture analysis. Each discrete transform has its own advantage

and disadvantages. For instance, while FFT is complex, DCT and WHT are real, hence easie
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to handle. FFT and DCT use sinusoidal kernel functions, whereas WHT uses less accurate b
faster square kernels and therefore is easier to implement. However, in the case of WHT @
DCT, generally some modification should be carried out on the original transform, to make it
more suitable for texture processing. For example, presented in this study, the new DWHT
method which will be described later in Chapter 3, is in fact a modified MSMD version of

WHT with a better performance in texture classification.

MSMD schemes: Several studies on early stages of the human (and other mammals) visual
system (HVS), suggest that we decompose the input image into detail images of various spatic
frequencies (scales) and orientations. In other words, retina cells are selective, and differer
cells respond to different scales and orientations [9, 70]. Inspired by this biological theory,
MSMD methods have been developed and tested on texture classification, segmentation ar
synthesis applications [23, 54, 107]. Although there are some reports on multi-scale LBP [93]
and GLCM [122] techniques, MSMD methods are mostly based on either Gabor filters [25, 67,
90], or wavelet analysis [12, 78, 96, 107]. In the spatial frequency domain, a Gabor transform
can be interpreted as a windowed or short-time Fourier transform. A Fourier transform is a
global frequency content analysis. Instead, a windowed Fourier transform is a local analysis
which will be obtained by multiplying the input signal by a window [4]. If the window function

is a Gaussian, the transform will be a Gabor transform [116].

A 2D Gabor filter can be defined in both spati@lk,y)) and spatial-frequency domai& (u, v))

as:
G(x,y) = & {(x-%0)°0F+(y~Y0)?03] g2 (Xoui+yo)
(2.11)
_rqui? | (=) _
Guv)=e = o | o 2mi[Xo(U-Uo)+yo(v—vO)]

Gabor filter parameters will be discussed later in Section 3.3.1. In the spatial domain, a Ga
bor filter is a sinusoid wave modulated by a Gaussian envelope. The standard deviation of th:

Gaussian envelope determines the filter bandwidth, while the direction and frequency of the
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sinusoid signal tune the direction and frequency of the passing band. Gabor filters in frequenc
domain are Gaussian bell-shape filters with different horizontal and vertical central frequency
and bandwidth, placed in various orientations. Therefore, they are frequency and orientatior
selective filters. There are two major ways to optimally choose parameters of a Gabor filter:
supervisedandunsupervisedIn a supervised manner, several sets of parameters are tried to
find out the optimum filter (or a few filters) for a given problem. Whereas in an unsupervised
manner, a filter bank which spreads throughout the frequency plane is used. The unsupervise
method is more general and more popular, however dealing with a filter bank means a highe
computational cost and a larger feature space [54]. It is also of importance to optimise Ga-
bor filter bank parameters, namely central frequencies, bandwidths, and directions, and sele

effective Gabor-based features.

Utilising 1-octave difference between central frequencies is typical and also confirmed by some
studies on HVS. This means that for two successive central frequencies in the filtetpank,
andwi ;1 we havelogy(wii1/w) = 1 (or wir1 = 2wy). The bandwidth of higher frequencies

is wider than the lower frequencies and half-power bandwidth would be considered as well,
where the point of intersection is on half magnitude of two successive filters. This configuration
results in adyadicGabor filter bank [9, 23]. Although biological evidence considids= 30°

for HVS cortex directional resolution [25], many researchers have fdhe 45° adequate,

e.g. [54].

In their study, Grigorescuet al [43] compared a variety of Gabor based texture features. In
particular Gabor energy, complex moments and grating cell operator features were evaluated k
both Fisher criterion and classification results. The key point of their work was bengfibsof
Gabor processingising grating cell operators. This operator which is a computational model
of a specific type of neuron found in visual cortex of some monkeys, signals the presence
of 1D periodicity of particular spatial frequency and orientation in 2D images. To be more

specific, a grating cell only responds when a set of at least three bars of a given direction an:
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spacing is present in the receptive field. The response increases with the number of bars b
will saturate soon. Classification tests suggest that the grating cell operator performs more
effectively than Gabor energy and complex moments in texture segregation. Furthermore, ir
an effort to separate textures from other parts of image (e.g. edges or contours), the grating ce
is the only one which does not give a false positive signal to non-texture regions. Meanwhile
many other studies have employed non-linear blob detectors as the post-Gabor processing [5
103].

Although a restricted Gabor filter bank can also be considered as a wavelet analysis tool, typice
wavelets for texture analysis are based on a sequence of spatial domain filters applied on
pyramid-shape multi-scale structure of the image. There are several ways to implement a multi
scale wavelet technique. However, the formal and unified approach which was introducec
by Mallat [81] is a well established and popular platform. A wavelet transform decomposes
the input signal (e.g. an image) into an orthogonal set of wavelet sub-signals (detail images)
There are certain interesting studies on wavelet-based texture classification and synthesis bas
on Mallat propositions and Gaussian/Laplacian pyramids, in particular Heeger and Bergen’s
steerable pyramids [37, 48], Portilla and Simoncelli's complex joint statistics [96, 107] and

DeBonet’s flexible histograms [11, 12].

Figure 2.8 depicts a way of generating multi-scale pyramids and extracting texture features
The input image is low pass filtered by functior to generate the first Gaussian detail image

L1. If we want to keep 1-octave scalingcan be a 2-times down sampling function:

L= f(X) = 2Y(X) (2.12)

and in general,
L= f(Ln1) = 2"(Ln 1) (2.13)

where 2 is 2-times down sampling operator. To obtain the high pass filtered Laplacian detail
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Figure 2.8:Wavelet algorithm and Gaussian/Laplacian pyramids. Parents/children path is defined ir
Debonet method [11, 12].

images, we can up samglg and subtract it from its Gaussian ‘child’,_1:
Ho= Ln-1— 2'(Ln) = Lno1— 27(25(Ln-1)) (2.14)
where 2 is 2-times up sampling operator. SequencgsndH, are indeed different levels of

Gaussian and Laplacian pyramids respectively. Figure 2.9 illustrates Gaussian and Laplacia

detail images of a test portrait.

Texture feature extraction can be completed by applying directional filfgysof different
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(a) (b)
Figure 2.9:Gaussian (a) and Laplacian (b) detail images of a portrait.

levels ofL, and obtaining the responses. As an example, Figure 2.10 depicBdiadient
filters which we utilised for a texture synthesis test. This set contains line detectors in vertical
and horizontal directiong; andp2) and edge detectors in four directions to ps). A simple
feature vector then comprises the statisticelgfalong with the statistics of low pass responses
pi(Ln) for all levels and filters. Portilla and Simoncelli suggest that adding joint statistics of
different levels and orientations (e.g. cross correlatiop¢E,,) and pi+1(Ln) ) can increase

the classification performance. DeBonet instead explilgigble histogramswhere each bin
contains the number of pixels with clogarent structures A parent structure is the filter
responses of a pixel and all of its parents (i.e. pixels at the same position of the lower resolutior

levels of the Gaussian pyramid).

SIF

Figure 2.10:Six gradient filters which are employed for wavelet feature extraction.

28



These works all are applicable in texture synthesis as well, where they aim to produce a per
ceptually similar, but not copied version of a model texture. Heeger and Bergen start with a
random noise and attempt to match its histogram and then sub-band histograms (i.e. histogran
of pyramid levels angb; (L)) with ones of the model texture to be synthesised iteratively. Por-
tilla and Simoncelli employ a recursive procedure to match the marginal and joint statistics of
a random texture and the model level by level, starting from the vertex of pyramid (i.e. low-
est resolution). Synthesis mostly begins from the lowest resolution, whereas analysis usuall
begins from the highest. DeBonet proposes another method of synthesis which again begin
from the lowest resolution and randomly swaps the pixels whose parent structures are simila

enough, and continues toward the highest resolution.

2.4 Textons in Random Textures: A Different Approach

As mentioned before, modelling of natural and random textures based on the definition anc
extraction of textons or texture primitives is not a straightforward process. In particular it is
not clear how to geometrically define elements of a random texture. However, there is a more
stochastic way to model a texture and define its textons, based on a well-prepared set of filte
responses and their statistics, clustered in the feature space. This signal processing approa
is more suitable than geometrical methods for random textures modelling, since it provides &
more operational way to deal with random textons [75, 123]. Amongst several studies which
utilised this approach, Leung and Malik in [75], considered a texton as a cluster centre in
the filter response space. Their filter bank comprised a few tens of asymmetric MSMD (with
different scales and orientations), symmetric low pass and symmetric high pass filters. K-mean
clustering was then employed to cluster the filter response&intosters. Next, cluster centres
were assumed as textons and built ugxton dictionary In this study effects of both surface

attributes and illumination on generating 3D textures were reviewed and a rotation-invariant
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method was introduced which represented different viewpoints and lightings. Cula and Dane
[29] and Varma and Zisserman [123] utilised a basically similar method, but exploited diverse
filter banks and defined texton histograms as the texture feature. In their work textons of &
given texture were extracted and labelled using the reference texton dictionary. The Varma an
Zisserman algorithm was rotation-invariant, since it exploited an energy-ordered directional
filter responses and took the maximum energy. Schmid [105] employed a symmetric multi-
scale filter bank and a two-layer constructing model for image retrieval. Her algorithm was
also rotation-invariant and showed good performance in image retrieval experiments. We will
refer to these schemes later in Section 4.4 as a justification for our proposed method towar

texture classification using the innovative Gabor Composition approach.

2.5 Colour Texture analysis

Almost all of the studies on colour texture analysis either deal with colour channels R,G, and
B as three individual signals, or transform the texture into anotioéur space(e.g. HLS

or L*a*b*) and then process the chromatic planes as well as the intensity one. For instance
Baldrich et al [5] established a study on tile classification using colour features in the RGB
space. Their work was focused on colour inconstancy detection using a K-means coloured-blo
segmentation and there was no signal processing approach in their report. iel§84] on

the other hand, utilised both RGB arid'a*b* (for simplicity we may show it ad_ab) spaces

for colour clustering as a part of their defect detection scheme in colour textures. The initial
clustering was carried out in the RGB space, then since inter cluster distances in the RGB spac
did not fully convey the perceptual distances between colours, clusters were transformed to th

Lab space where the clusters merged together.

Colour texture classification will be explained further in Section 3.4. Meanwhile, the applica-
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tion of colour-based methods in this thesis is limited. In Chapter 3, we mostly focus on the
texture greyscale features, then utilise the chromatic features to enrich the set. Moreover, th
tile data set of Chapters 4 and 5 only contains greyscale images, therefore we do not appl
any colour texture processing further than the third chapter. HLS laadalcolour spaces are

discussed in Appendix A

2.6 Texture Inspection and Abnormality Detection

Quality ranking and defect detection of randomly textured ceramic tiles is one of the major
topics to be investigated in this thesis. Surface inspection and abnormality detection is a partic
ular case in texture classification, where the algorithm attempts to inspect a surface for possibl
defects, to classify the input sample as eithermal or abnormal or to rank its quality. In

fact detection of textural abnormalities is a vital part of many systems and applications such
as clinical checkup systems [66, 86], surface inspection of industrial products [6, 13, 46], food
products inspection [32], and remote sensing [22, 116]. Apart from typical advantages of an
automated system in industrial and clinical applications, in some cases such as underwate
apparatuses and space crafts automatic inspection is inevitable, since the environment is tc

hazardous for human operators [22].

2.6.1 How to Detect a Textural Abnormality?

One of the earliest attempts on texture discrimination was Julesz works which started in the
early 60s [59]. In a series of studies, she emphasised the fabulous human ability to distinguisl|
between textures and tried to extract some reliable and applicable facts from that process. St

stated that the human texture discrimination process could be divided into two categories o
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effortlesswhich is fast angre-attentivg(PA) andneed-scrutinfNS) which is slow and needs
search and focus on the patterns. Figure 2.11 shows one of her classic exampleXideop
up from backgroundl s (i.e. pre-attentive), finding” s requires scrutiny. The later indeed

needs the serial shift of attention [60, 127].
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Figure 2.11:An example of pre-attentive and need-scrutiny texture segregation, from [127].

In this example, obviously theSlorder statistics of primitives (i.e. histograms'¥f , ‘L’ and

‘T"), are similar. Hence higher order statistics must be involved in segregation. Consequently
the question to answer would be ‘what is the highe$br which it is possible to have identical

Nt order statistics for a yet distinguishable texture pair?’ At first it was claimedNhat2

is the answer. In other word€'2order statistics could sufficiently describe the differences
between textures. However, later Julesz and her colleagues found some stochastic texture pa
with identical 29 (and even §') order statistics that still were pre-attentively distinguishable
[127].

There are some significant differences between normal/abnormal tiles discrimination and stoch
tic, artificially generated examples of Julesz. Firstly, the threshold between PA and NS is nof
crisp but fuzzy. Inspection of a textured tile, and many other similar activities, is observer-
dependent and environment-dependent. Observer’s experience and vision quality or lighting
conditions can affect the detection of a particular defect. Secondly, and more importantly, in
natural and random textures definition and extraction of texture primitives and the structure is

not usually easy.
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The major challenge in tile defect detection is in dealing with randomly textured tiles, where
the real shape of the tile is not precisely predictable. If the texture is not random, (e.g. Figure
2.12(a) and (b) which are a plain and a figurative tile), we can preserve the model image as
templateor reference Then we can compensate the intensity and lighting variations (e.g. by
normalisation or histogram matching), and viewpoint differences (e.g. by so-cedjstration

or matching the corners and edges of model and test images). Consequently, the defect dete
tion can be easily carried out by calculating the difference between the model and test images

The defective areas also will be easily highlighted by this method [46].

FaTAT YA,

Fa®aiPa¥nva

() (b) (©) (d)
Figure 2.12:A plain (a) and a figurative (b) tile and two randomly textured tiles, (c) and (d).

Abnormality detection in a random texture on the other hand, will not be that straightforward.
Figure 2.12(c) and (d) are two normal random texture tiles of the same type. It is apparent
that they are texturally similar, however no pixel-wise comparison can measure the quality.
Instead, we need a texture-wise comparison or measuring the textural properties as the ke
feature. Rao and Lohse [99] state that humans essentially use three high-level features fc
texture interpretationtepetition directionality, and complexity Repetition and directionality

may represent spatial frequency and orientation. Complexity could be related to the consistenc
of the texture: A strong texture is less complex than a very weak (random) texture. These
features can be efficiently measured by signal processing or statistical texture analysis methoc
to materialise a texture-wise comparison. This fact justifies the wide application of signal

processing and statistical methods in random texture classification.
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2.6.2 Ceramic Tiles Inspection

As well as many other industries, surface inspection and quality classification is an essentia
stage in tile manufacturing. Due to the high cost of human inspection, speed of the productior
line, and repetitious nature of the activity, development of a suit@liematic defect detection
system(ADDS) would have an impressive impact on the overall performance of a tile pro-
duction plant. The key point is eventually being at the performance zenith, which guarantees
the success in a very competitive market. To be more specific, the advantages of automat

inspection in the tile industry can be listed as:

e Lower inspection costs: In the long term, human inspectors will cost more than an

ADDS.

e Less human skill dependent inspection: Precision of the final quality ranking depends
on the skill and experience of the inspector. Again, inspection is an iterative and boring
task and fatigue can disturb the inspector’s performance. An ADDS can provide a more

homogenous and consistent inspection process.

¢ Higher production line speed: The human inspector speed is limited and in many case:
the bottle neck of the production line. An ADDS-facilitated production line speed can be

increased much further than that limit.

e Workers health risk: The environment of a tile factory is damp and saturated by sus-
pended dirts, and inspectors stay there all the time while the production lines are working.

An ADDS decreases the risks of such an unhealthy environment,

e Further development to the other stages of the production line: It is possible to spread &
modular ADDS throughout the production line to gain a more effective and robust quality
control process. Fault prediction and correction, and recycling the defective materials

before the kiln will be some of the advantages of such an advanced system.
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Figure 2.13(a) illustrates a schematic of a tile production line and the position of an ordinary

ADDS on that. Figure 2.13(b) shows the tiles on a conveyor.
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(a) (b)
Figure 2.13:A schematic of a tile production line (a) and a picture of tiles on the conveyor belts (b).

Although several manufacturers have introduced their commercial inspection systems (see [7<
for some examples) and also there have been massive investigations on that field across ac
demics and research groups (to name a few [5, 13, 14, 28, 79, 84, 111, 121]), it seems that sti
more efforts and studies are required to achieve high performance, robust and flexible defec

detection algorithms and systems.

Defect Characteristics

Broken corners and edgesPhysical damages on corners and edges

Colour grading Changes in colour shades

Cracks Thin and long random physical defects
Dirt Small random particles on the surface
Drops Include colour and water drops

Lines Wide visible direct lines on tile surface

mostly result of production line bars

Pinholes Very small holes

Textural problems Changes in density and shape of patterns

Table 2.1:Typical defects of ceramic tiles.

35



Table 2.1 illustrates the typical defects for a ceramic tile. Tiles, excluding plain or figurative (or
patterned) ones (see Figure 2.12(a) and (b)), are typical examples of random or pseudo-randc
textures. Any defect changes the expected texture of the tile and hence can be interprete
as atextural abnormality Thus texture analysis is appropriate for normal and abnormal tile
discrimination. As an example, Figure 2.14 shows normal and defective tiles of three different
types. It can be seen that while normal tiles represent a rather homogeneous texture, defecti

tiles contain abnormal regions with different textural properties.

@) (©)

(e)
_ (b) (d) ®
Figure 2.14:Three pairs of normal/abnormal tiles. Top row: normal, bottom: abnormal.

2.6.3 Previous Studies on Surface Inspection and Tile Defect Detection
Useful reviews on automated visual inspection literature are provided by Chin [22], who covers
early works until the beginning of the 80’s, and also Bayro-Corrochano [7], and Newman and

Jain [91], who cover more recent works until the mid 90's.
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Some pioneering work on automatic detection of textural abnormalities was carried out by
Krugeret alin 1974 [66]. Indeed, in the early 70’s it was decided that tens of thousands of
chest roentgenogram had to be checked to detect possible coal workers Pneumoconiosis. T
massive task was also supposed to be finished in a limited time. That was the main motiva:
tion for their work on computer diagnosis of Pneumoconiosis which included texture feature
extraction via both co-occurrence matrices (or as they called it ‘spatial grey level dependenc:
matrices’) and Fourier domain analysis. The co-occurrence matrices were computed on fou
orientations and four distances, then five pseudo-standard Haralick functions were applied o
them. Finally an averaging on different angles was performed to decrease the number of fee
tures. Edge information usually concentrates on the higher frequency region of the Fouriet
domain, also the disease usually affects the image edges. So they employed 32 ring filters t
extract Fourier-based textural features and a band-reject wedge filter to diminish the effect o
ribs. Then, the normalized energy of rings were selected as the features. The number of gre
levels (only 8) and the size of input patches@inches zonal reproductions of at47 inches
roentgenogram) both were relatively low, but justifiable considering the early 70’s facilities. A
correct decision performance of around 80% was reported. Apart from the limited number of
test images, perhaps the most obvious disadvantage of the study might be the assumption
a minor rule for the directionality of the texture compared to the distance (in co-occurrence)
and the frequency (in Fourier). In the absence of any reported analogy, it is not clear why

directionality has been considered less important than those other two factors.

Hayatiet al developed a machine vision system for automated surface flaw detection on orbit-
ing space platforms. Their double-staged system firstly compared the grabbed images of th
space platform with reference images. Any mismatch triggered the second stage where pa
tern recognition techniques were exploited to detect and classify the possible flaws. Notable
points of their work included a light variability compensation method using a powerful strobe

(flash) illumination technique, an iterative matching technique to overcome the misregistration

problem between the reference and the inspection image, and a region-based and multi-sce
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approach to make the flaw recognition process computationally tractable using prior knowledge

of image texture [46].

livarinenet al[52], reported a defect detection system for web surface inspection applicable in
distinct processes such as paper, plastic and plywood industries. They applied co-occurrenc
matrices for feature extraction and a self organizing map (SOM) for segmentation on a win-
dowed web. A notable point of their work is the particular hardware implementation of the

system which requires simple feature extraction and segmentation schemes to be used. Henc
for instance only two simple Haralick functions, Mean and Contrast, were applied on the co-
occurrence matrices. There is no comment on the utilised directions and distances on the
article, however, apparently the devised hardware-oriented co-occurrence computing conside
the direction and the speed of the production line to determine a single distance and directiol

parameters.

Davieset al [32] studied on detection of contaminants in food products. They used X-ray
images of sealed food bags, which showed strong textural properties, as input, and ap@ied 3
Laws filters to extract their textural features. Then:a®scanning window was employed to
calculate local energies and build the final texture energy map. A software-based system we

also developed for realtime implementation of their foreign object detection scheme.

In [103], Sari-Sarraf and Goddard introduced a vision system for fabric inspection, exploiting
multi-scale Wavelet representation to obtain detail images. Bernoulli’s rule of combination was
then used to recompose the images to highlight the edges and defective regions. Khodapare
and Mostafa [61] repeated a very similar procedure to detect the defective regions in tiles anc
reported 89% of correct detection. However, due to using rather small number of samples of ¢

single tile model, the generality of results might be questionable.

Similarly, Escofetet alin [38] and Kumar and Pang in [68] both implemented the basic idea

of wavelet-like Gabor filtering in spatial domain to detect defective textured textiles. Escofet
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et al discussed the algorithm used in details, while Kumar and Pang described the practica
implementation more precisely. Decomposition of image into detail images or contrast units
(i.e. normalised filter responses) using a Gabor filter bank, applying certain post-processing
such as non-linear blob detection and subtraction form a reference feature vector to amplify th
‘differences’, and composition (fusion) of detail images into a features map were basic stage:
of these (and in fact many other, e.g. [103]) MSMD schemes. A thresholding operation on the

feature map produced the final output where the defects were expected to be highlighted [38]

In [17], Boyd et al proposed an inspection method for concrete surfaces using blob-based de:
tection and thresholding in the spatial domain. They employed a perimeter-to-area ratio as
criterion for measuring the blob shape compactness. They suggested that cracks are blobs wi
high compactness and also utilised a blob-counting scheme to evaluate the consistency of tt
concrete surface. Conci and Belmiro reported an industrial realtime fabric inspection systern
[27], focusing on software engineering and implementation aspects of the system. Howeve
their categorised-by-defect type and briefly discussed results suggested that amongst three c
tional defect detection techniques used, thresholding, edge detection and fractal dimensior
fractal dimension was the best one. Wang and Asundi studied a computer vision system fo
wineglass defect inspection [124]. They employed global edge-based Gabor filtering to sep
arate the object of interest (i.e. wineglass) from the background. Then a local Gabor filter
was applied to the wineglass image to obtain detail images. Lastly, using 16-grey level co-
occurrence matrices, GLCM features of each detail image was extracted and fed to a BPNI

classifier to materialise the acceptance/rejection decision.

Valienteet al described their tile corner defect detection method in [121]. Their algorithm was

based on separation of the tile from the background where the defective corner (i.e. brokel
corner) was a part of the background. They implemented a histogram subtraction techniqut
which computed the difference between histograms of a pure background and a background/til

patches to threshold between the tile and the background. Difference between expected edg

39



and computed edges at a corner was considered as a defect. After computing this difference
both X andY directions a simple classifier classified the tiles into three quality ranks from the
best to the worst. Outcomes reported showed a good performance on the third and the secot
quality classes (99.7% and 100% correct classification). Performance for the first quality clas:
however was rather lower and limited to 85.6%. This can be interpreted as a good sensitivity
but weaker specificity and perhaps a slight shift in the classifier parameters could balance |
in favour of the specificity factor. For further clarification of this subjective classification see
[121].

Lopezet al studied the registration methods for ceramic tiles [79]. The basic algorithm was

edge detection of the test tile, then obtaining the boundary rectangle, followed by a simple
geometrical rotation/displacement to map the test image on the reference. They applied twi
different boundary detection methods: A simpler, faster and more accurate histogram base
method and a more complicated, however less accurate Hough transform (HT) based metho
The first and the better method used a least square fitting of a straight line on a reduced set «
the edge pixels. Unfortunately there was no comment in the paper about possible reasons f
the poorer performance of the HT-based method, which on the other hand showed promisin
results in Costa and Petrou tile registration study [28], where they employed the HT to extract
long and straight lines within a tile image. Then a Fourier phase correlation was utilised to
register the test and the reference images. lteratively several displacemé&xtdy > of the

test image were tried and the one with the maximum phase correlation with the reference wer
selected as the registration parameter. In fact, the high similarity between even unregistere
test and reference images results in very similar FFT magnitudes, thus only FFT phase wa

applied as the registration measure.

Smith and Stamp investigated vision techniques for ceramic tile inspection [111]. Their algo-
rithm attempted to analyse complex surfaces which might include 3D topographic features, by

separating the topographic and chromatic maps. They reported good feasibility, no need fo

40



initial training and being largely pose-invariant as the advantages of their method.

Penarandat al [84] introduced a practical colour machine vision system for ceramic tile in-

spection. The algorithm contained a simple registration by finding four corners of the test
tile using a simple procedure, following a background subtraction. They utilised some special
purpose peripherals and a Pentium Ill CPU to achieve the tile inspection rate of 51 tiles pel

minute.

In [13], Boukouvalaset al used optimal filters to detect abnormal lines and spots in tiles.

They also used the Wigner distribution to combine the advantages of both spatial and spatial
frequency domains to detect cracks. In fact, the pseudo Wigner spectrum of each pixel o
normal images was calculated and processed to form feature vectors during the training stag
Then in the testing stage, the distance between the feature vectors of train/testimages was col
puted to configure the test image distance map. Unfortunately there was no reported numeric:
result to evaluate the defect detection precision. Furthermore in [63], the authors presented
method for detecting random texture tile defects consisting of K-means clustering, followed by
perceptual merging of clusters iuv space and morphological analysis. This was computa-

tionally expensive, although a promising approach.

Unser and Ade extended their general local transform texture analysis schemes (e.g. [2, 117
to texture automated inspection in [120]. They proposed an eigenfilter-based feature extractio

scheme and a Mahalanobis distance-based decision making procedure.

Chetverikov studied diverse aspects of texture analysis concerning regularity (i.e. approximate
period) and defect detection. In [20] he employed a statistical approach together with GLCM
to measure the coarseness and regularity of a texture. Also Chetverikov and Hanbury in [21
discussed application of regularity and local orientations as two fundamental structural feature:
in textural defect detection. Their experiments with both Brodatz and TILDA data sets showed

promising results.
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2.7 Methods

Methods used during this study, namely principal component analysis, two classifiers: artifi-
cial neural networks and K-nearest neighbourhood, and novelty detection approach, will be

discussed briefly in this section.

2.7.1 PCA, KLT and Eigen-based Decomposition

Principal Component Analysis (PCA) [58] is a popular approach used in pattern recognition
studies for reducing problem dimensionality by seeking and eliminating redundant features. It
has been applied in a variety of works on texture analysis, for instance [23, 106]. Considering
X, a column vector oh features, and, anm x n matrix of different observations of;, and
finally Cv, the covariance matrix d¥l, the principal components are the eigenvecgrsf the
covariance matriy

Cm€ =Aj§ (2.15)

where the eigenvalud,;, is relative to variance of the data acr@shence showing than-
portanceof the eigenvectors. In dimensionality reduction tasks, the pelimensional feature
space is obtained by projection (i.e. element-wise production) & aito the first few eigen-

vectors, sorted on descending eigenvalues.

Extracted from the same hypothesis, Karhunkoeve transform, (KLT) and eigenfilter-based

methods have been widely used in texture analysis studies [33, 118]. The basic idea undel
pinning KLT is the employment of eigenfilters as a bank of adaptable filters and obtaining an
appropriate set of detail or channel images by projecting the original image onto the bank (i.e.

via 2D convolution). The method will be discussed further in Chapters 4 and 5.
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2.7.2 Classifiers: Artificial Neural Networks

An artificial neural network (ANN) is a simplified mathematical model of the human brain. The
ability of the human brain in learning from experiments, problem solving, and decision making,
convinced researchers that an artificial model of the brain, even an extremely simplified one
should be able to perform well in many decision making or computing activities [1, 102].
Figure 2.15(a) depicts a piece of a natural neural system and Figure 2.15(b) shows a multi

layer artificial neural network.
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Figure 2.15:A piece of a natural neural system (a) and a diagram of an ANN (b).
In both natural and artificial NNs, each neuron (i.e. node) accomplishes a very simple task
which is to apply a simple function on its inputs and send the results to its outputs. In an ANN,
a node computes the weighted summation of its inputs and compares it with a threshold (o

bias) and sends a signal to outputs accordingly:
N
Z= () wixi—pB) (2.16)
i; 1M

whereZ is the output of the nodey; is thei, input, w; the weight (or strength) of thiy,
connection, an@ is the threshold.f can be a simple step function, howevanh or sigmoid

functions (see 2.17) are more commonplace [10, 56].
1

f= 1% (2.17)
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A training stage is then necessary to optimise the weights. Training indeed conveys the
learning-from-example concept of the neural system. A back propagation method is a basic
and widely used training algorithm which results in the so-called back propagation neural net-
work (BPNN). This gradient descent method attempts to minimise the difference of the actual
and expected output vectors of the network, by thoughtful modification of weights in an itera-
tive procedure [1, 102]. The training algorithm starts with random weights, presents a training
sample to the BPNN and calculates the actual outputs and then the error (typically mean squal
error, MSE) between the expected and actual output vectors. Next, it modifies the weights
layer-by-layer from the output toward the input as any modification descends the MSE, and

starts the procedure again with these new weights.

During this iterative training procedure MSE ideally should converge to zero. Practically how-
ever we may stop the epochs after achieving an adequately small error. Therefore, for trainin:
the network we need an adequate nhumbdabélledtraining samples containing all classes,
(i.e. samples of all target classes with known expected output vectors). When the training stag
is completed, the trained network will be evaluated by presentitegissample set. MSE or

the number of correct decision made of the test set show the network performance [10]. Dut
to their decision making ability, ANNs are appropriate classifiers and in fact have been imple-
mented successfully in many classification applications, to name but a few [23, 39, 67, 89, 92]
and [36] where there is a rich list of NNs applications in pattern recognition. There are sev-
eral NN models each suitable for certain applications. We chose a BPNN with a single hidder
layer. The number of nodes in the hidden layer is one of the parameters to be optimised durin
the tests. It depends on the number of network nodes and training samples and can affect tt
network properties. For instance, a BPNN with one hidden node is very similar to a linear

classifier [10].

When the total number of training/testing samples in the data set is limited, the generality

of results obtained by a BPNN classifier could be under question. In such a case, there ar
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some special methods to increase the reliability and generality of the results. Widely-usec
generalisation methods have different names. Basically however, they are similar. Leave-one
out, Cross-validation, K-folding and Boot-strapping all refer to the same idea: How can we

virtually increase the number of training/testing samples?

In a k-fold cross-validation algorithm, a sample set is divided iktsubsets of almost equal
size. the network will be trainekitimes, each time leaving out one of the subsets from training
and consider it for testing (i.d&c— 1 subsets for training, 1 subset for testing)k kquals the

size of the sample set, this is calleghve-one-outross-validation. Cross-validation allows
you to use all of the data for training. The disadvantage of cross-validation is that you have
to retrain the network times. Bootstrapping is an improvement on cross-validation that often
provides more accurate generalization error approximation at the cost of even more computin
time. In the simplest form of bootstrapping, instead of repeatedly analyzing subsets of the
data, you repeatedly analyze subsamples of the data. Each subsample is a random sample w

replacement from the full sample [65, 104].

2.7.3 Classifiers: K-Nearest Neighbourhood Classifier

A k-nearest-neighbourhood classifier (KNN) is a simple but efficient distance-based classifier
Basically a KNN classifier has a labelled training set which contains examples of all possible
n classes of data. When the KNN is presented by a test samptdpoks up and finds th&
nearest training samplesxok typically is a small integer and should not be a divisondi.e.
mod(n,k) # 0). Thenx will belong to the class which has the most samples amongsk the
nearest neighbours [57]. Figure 2.16 shows a 2-feature feature Bp&& andn = 3 classes

of patterns:{black red, greer}. With k=7, the test samplebelongs tdblackclass, because
there are morélack samples amongst its 7 nearest neighbours tedror green(4 vs. 2 vs.

1).
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= Fl
Figure 2.16 KNN classification, k=7 and n=3 classes

To be more specific, distance measurement is mostly carried out in the feature space whel
the feature vectors of training samples are preserved. Different distance measurements can
employed, however an Euclidian distance on normalised feature vectors usually performs well

For instance normalisation by
Vi

(2.18)

wherey; is a vector contains thig, feature of all samples, will bring all the features iftel, 1]

range. It gives all the features the same weight in distance measurement. A subtly weighte:
feature vector however, may increase the classification performance but this also decisivel
increases the complexity of the classifier design. A simple KNN only should be optimised upon
1 parameterk, whereas a weighted KNN should be optimised upon number of featttes
parameters [57], which may not be practically worthwhile in many cases. A KNN classifier is
not statistical in nature, however it can be proven that if the number of training samples moves
toward infinity, it will converge to the optimal Bayes classifier [41]. It can also be considered as
alazy algorithmwhich does not need heavy computing. Even its training, in contrary of ANNSs,

is not real training, but only saving the training samples for further distance measurement.
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2.7.4 Novelty Detection

Novelty detection is a different approach to the traditional classification problem. The typical
classification approach relies on samples of all classes of patterns due to be classified. |
the particular case of abnormality detection, there are two classes of pattenmsal and
abnormal Although typical classifiers can show a promising accuracy in theory or limited
practice, in many applications it is often difficult to acquire an adequate number of defective
samples and build up the abnormal data set which also represents the atinolenalities

space While it is much easier to develop an efficient normal data set.

Novelty detectior concept learningpproach on the other hand, only needs the normal class

to be defined. A novelty detector learns the model of normality in the training stage using
only normal samples and abnormalities are then identified by testing for novelty against that
model. In a geometrical sense, a defective sample shows a considerable distance to the clus

of normal samples [55, 112].

Itis common in novelty detection studies to apply auto-associative neural networks (AANN) or
self organising maps (SOM). An AANN attempts to recreate the output of the network the same
as its input. There is a number of different ways for designing an AANN. The simplest method
is to use Principal Component Analysis or a special purpose neural network with a few hidden
nodes and equal input/output nodes [112]. For example, Worden [128] utilises an AANN for

cracked beam defect detection and Sehal applies it for hard disk quality inspection [112].

A SOM is an alternative to statistical clustering and is an unsupervised approach. Therefore
it does not neea priori information on classes. In most SOM based approaches, similar
to statistical clustering, some form of cluster membership value is thresholded to determine
whether a sample belongs to a cluster or not. In [52] livariaeal implement a SOM for

web surface inspection. Also Tolba and Abu-Rezeq utilise a SOM for textile visual inspection
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[115]. Statistical methods however, are also popular. In [83], Markou and Singh review both
statistical and neural network based novelty detectors. Our work respecting novelty detectior
however, does not employ any complex classifier. Instead, it maps the texture features into
1D classification space and utilises a simple single-parameter thresholding scheme. This ne

texture defect detection algorithm will be presented in Chapter 5.
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Chapter 3

Texture Analysis of High Definition

Outdoor Scene Images

3.1 Introduction

Outdoor scene object classification using texture analysis is a prime example of a computation
ally expensive process where there is usually a need for trade-off between speed and accura
Examples of such bartering are sometimes inherent in the nature of past works on texture ana
ysis, or less often the subject of explicit analysis [89, 95, 100, 110, 119]. This problem is

exacerbated as the size of the image under analysis increases, involving more and more cor
putations. For instance, we tried a frequency space analysis of very high resolution outdoo
scene images (40322688 pixels) aimed only at increasing the accuracy of texture segmen-

tation. The trade-off issue and the penalties expended by the computational costs were nc
considered important, and it was found that a 6% increase in accuracy could be achieved, albe

at some considerable computational expense [89]. Here, we show that by using novel faste
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approaches, similar levels of accuracy can be maintained.

We study computationally lower cost (i.e. faster and easier to implement), precise algorithms
for image classification. Past works in grey level texture analysis have increasingly found
success in the classification of texture features derived from Gabor filters [25, 40, 54, 100.
110] or wavelets [78, 95, 119]. Gaining their multi-scale and multi-directional properties, the

considerable discriminatory power of such features have recently been further strengthene
through the use of chromatic features based on such colour spaces aslRGBor HLS

[34, 87]. However, as mentioned previously, these methods are computationally high cost.

Our fundamental idea is selecting and analysing a few well-known, high performance feature
extractors in each area of texture and colour data, to find out their most important strengths
Consequently a few correspondence lower cost algorithms which attempt to retain those streng
are proposed and compared to the original higher cost methods. Here, we examine the perfo
mance of Gabor and_ab features as a highly accurate set for colour texture classification
against a sometimes slightly less accurate, but much faster set of novel features. These ne
proposed features are a combination of directed textural features, extracted using the appl
cation of Walsh-Hadamard transforms (WHT) to oriented images (cdiledtional Walsh-
Hadamard Transfornor DWHT), as well as chromatic features that correspond to, but more
easily computed than, hue and saturation in the HLS or HSI spaces. Gabor features allow us t
conveniently capture the low to high frequencies present in the Fourier space of high resolutior
images in different directions. In the same way, we are proposing a method of capturing thest

frequencies through the rotation of the image by varying angles before applying the WHT.

WHT is a typical tool in image processing. For instance, Unser [118] used Hadamard matrices
along with other local transforms such as DCT and KLT in texture measurement. He applied
different small size filters and a filter sliding scheme in the spatial domain to evaluate the

effectiveness of these filters in texture analysis. Kim and Cho [62] have also implemented
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Walsh functions in a texture segmentation task using 16 differend 4Valsh matrices as the

textural feature extractors. In their recent book, Yarlagadda and Hershey have introduced son
new applications of Hadamard matrices, such as error correction coding, signaling (based on
new Hadamard basis) and a signal representation scheme which is capable of representing o

frequency component made signals [50, 129]. To find more examples see Section 2.3.2.

Figure 3.1 illustrates a procedural overview of the experiments to be reported in this chapter
The experiments procedure contains textural and chromatic feature extraction schemes, the
appropriate classification performance tests, and the final test with merged textural/chromati

features.

We describe our data set and framework in Section 3.2. In Section 3.3, the Gabor and th
DWHT feature sets are described as textural feature extraction schemes. The new chromat
features will be discussed next at Section 3.4. Experimental results using merged texture/colot
feature sets on outdoor scenes are presented in Section 3.5. Execution times of differer
schemes are compared in Section 3.6. Next, in Section 3.7 new tests using pseudo-standa

texture suite, VisTex, will be presented. The chapter then is concluded in Section 3.8.

3.2 High Resolution Outdoor Scene Data Set

We have a data set consisting of 724 colour image patches of 128 pixels extracted from
more than a hundred high resolution 4032688 images of outdoor scenes. These scenes were
photographed by a high attribute optical camera using high definition low speed (25 ASA) films
and a normal 50mm lens under bright clear (sunny) daylight conditions. Then a high resolution
negative scanner was used to digitise the<Z8 mm negatives into 40322688 pixel, 24 bit

RGB images. The pixel definition is 112 pixel/mm or 2845 pixel/inch. Figure 3.2 illustrates

six images of that set.

51



Classification
Experiments

Input Colowr Image
(from the outdoor scene or Vistex dataset)

v +
Pre-processing for texture Chromatic Features Extraction:
features extraction: - HLS
- Convert to Grayscale - CIE_L*a*b*
- Nomalization X - New H,5,
‘ - NRGB (onVistex)
+

Texture Features Extraction:

- Gabor filters
x- DWHT

- WHT (on VisTez)

Classification using Chromatic
Features

}

Classification using Texture

Features

Comparison

Figure 3.1:An overview of Chapter 3 experiments.

Merging Various
Chromatic and
Textural Features

)y
\\
\
Comparison

Classification using Merged
Features

52

Comparison

In recent years, the C.V. research group at Bristol University has developed a neural networl|
based system for classifying images of typical outdoor scenes to an area accuracy of appro:
imately 90% [39]. Texture information is represented in this system using Gabor filters. A

common problem is that many regions in typical outdoor scenes are too small to allow a signif-
icant range of spatial frequencies to be included in the feature set. In [89], we presented a pilc
study designed to establish if high resolution images would provide a sufficient increase in tex-
ture information to justify the extra computational complexity. We found that a 6% increase in

accuracy could be achieved at some considerable computational expense. Here, we show tt

by using a faster approach, i.e. through our proposed oriented DWHT and chromatic features



Figure 3.2:Six high resolution outdoor scene images

similar levels of accuracy can be achieved.

The patches come from four categori€AR PAVEMEN,JROADaNdTREE Figure 3.3 shows

some typical examples of our input patches. In brief, the goal of this classification experiments
is to classify an unknown test patch into one of those four possible groups. These patches c
high resolution images contain shiny, fairly smooth bodies of cars (but including wheels, door-
handles, lights etc., rough and coarse surfaces of pavements, fine resolution granularity of roa
surfaces, and fine and coarse structures within trees and bushes. These provide a wide range
characteristics and frequencies in the data set. Many such frequencies are diminished or lost |

lower resolution images (see Figure 1.2-(b)).

3.3 Textural Feature Extractors

In this section, two different feature extraction schemes exploited in this work are discussed.

The schemes, namely Gabor filtering and directional Walsh-Hadamard transform, are imple
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mented in a practical image classification task and compared.

T1 T2 T3 T4
Figure 3.3:Sixteen sample images of four classes, from the @pRC1...C4),PAVEMEN{P1...P4),

ROAIR1...R4), and’REET1...T4).

3.3.1 Gabor Filters

Gabor filters are widely used for multi-scale/multi-directional analysis in image processing.

Specifically, they have shown high performance as feature extractors for texture discriminatior
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and unsupervised texture classification [40, 54, 100, 110, 90, 34]. The important strength of
Gabor filters in texture analysis is that they facilitate oriented or directional band pass filtering
of the input texture. This allows the filter to extract notable textural features which are direc-
tional and, in a frequency sense, band-limited [53, 54, 118, 126]. A basic practical disadvantag
in Gabor filtering is their high computational costs. Basically it is possible to define and em-

ploy Gabor filters in both spatial and spatial frequency domain, however frequency domain
implementation would be faster, particularly for larger images. The Gabor filter in the spa-

tial frequency domain is: (This presentation may seem different from Equation 2.11, however

basically they are similar)

Sho

2
i
G(u,v)=e Moz o) - 2mitottyon (3.1)

where,

Up = (U— ) *cogB) + (V—wy) *Sin(B) and Vvp= —(u—wy)*sin(8) + (v— wy) xcogy0)

are the rotated/displaced coordinates in the frequency @iaandowy are filter central frequen-
cies (i.e. modulation factors) in x and y directio®ds filter orientation parameteay andaoy
are filter standard deviations (i.e. band width) in x and y directionsxam@tdyg are horizontal
and vertical displacements in the spatial domain. We keep 0, yo = 0, and sety = wy,

andoy = oy in all experiments. Hence the applied Gabor filter is:

ION

—2m( &

G(uc,0c) =€ )

S

(3.2)

In texture analysis applications, usually a set of Gabor filters (callélteat Bank), which con-

tains a few filters with different central frequencies and orientations is employed (see Sectior
2.3.2). Diverse filtering frequency and orientation of a filter bank will allow it to extract con-
siderable amounts of texture information. However a question to answer is how the optimum
filter bank can be configured. Unfortunately, since it seems that there is no general analytica
method of optimisation for this, a lengthy procedure of test and evaluation was necessary tc

determine the best possible filter bank configuration. For example, in current tests we mostly
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used a Gabor filter bank containing 12 filters arranged in 3 frequency bands and 4 orientations
Qu Qu Q

Gabor Filters: G(w,0j), o) = {?M, TM’ 7“”}, 6; = {0°,45°,90°,135}  (3.3)
WhereQ)y is the maximum possible spatial frequency (i.e. half of the dimension in the FFT
domain). Figure 3.3.1 shows that filter bank in the frequency domain. Parameters were declare
in keeping with current theories on biological vision system as the frequency bandwidth of 1
octave and half-power bandwidth [23]. Selected central spatial frequensiesyt, 2, ),
cover the lower 50% of frequency domain withay, scale. In fact in all Gabor filter tests

we considered one octave (dyadic) central frequency rate and the half power bandwidth (se

Section 2.3.2). Filter responses then will be calculated as:

Filter Responses : G(w,0) = |F }F(A)-G(w,0)) | (3.4)

whereG () is the filter responsé; andF—* are Fourier and inverse Fourier transforrgs the
image andS(+) is the Gabor filter in the frequency domain. Figures 3.5 and 3.6 illustrate the
filter responses of two outdoor scene sampleéSAR and aPAVEMENTApparent diversities
amongst multi-band and directional responses suggest that a feature vector based on a fe
statistics of filter responses (e.g. mean, standard deviation and so on) may adequately segreg

the input samples.

Clausi and Jernigan believe that an improper setting could seriously damage the performanc
of the Gabor functions [25]. Apart from acceptied), bandwidth scale throughout the spatial

frequency domain, there are several options for central frequencies and directional definition
In our experiments, the above mentioned central frequencies usually provided the maximun
accuracy. Starting eﬂzﬂ as the highest central frequency, seems to keep the balance betweer
more important lower spatial frequencies and useful higher ones [89, 90]. In fact, Clausi and
Jernigan state that rather poor performance of Gabor filters in [114] may be partially due to the

exclusion of higher frequency bands [25].
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Figure 3.4:Applied Gabor filter bank, 4 lower pase & QTM inner), 4 band passu= QTM, middle),

and 4 higher passJy= %M, outer). Orientations afe= (,45°,90°,135.

3.3.2 The New Approach: Directional Walsh-Hadamard Transform

In this section, we introduce and describe our novel Hadamard-based texture analyser, d
rectional Walsh-Hadamard transform. Amongst the family of orthogonal linear transforms
of time/spatial domain signals, which mostly employ sinusoidal-based kernel functions (e.g.
Fourier or Cosine transforms), the Walsh transform is defined as:

N—IN-1

WY = G 3 310y 35)
Xx=0y=

wherel is the imageN is the image size, angl determines the transform’s parametric kernel
function —1%(), The Walsh transform is one of the exceptions in so-called ‘harmonic anal-
ysers’ which implies sequency-based kernel functions and decomposes the input signal int
rectangular wave primitives in the transform domain [8]. The kernel function can be selected
from a diverse set of possibilities. For instance, in the Hadamard natural transform (a membe

of the Walsh family W is:

W(U, v, x,y) = Z) [bi (X)bi (u) + bi(y)bi ()] (3.6)
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Figure 3.5:Gabor filter responses of @AR Left: Input image, Right: filter responses (detail images)
G

wherebj(2) is thei" bit of z in binary representation. The Walsh-Hadamard forndligftal
frequencyor sequencywhich is the number of zero-crossings or sign-changing of the signal,
is analogous to the frequency in the Fourier transform. However, sequency is twice the size o
the frequency of a signal, i.eSedx) = 2 x Freq(x) , wherex is a signal in time or spatial
domain. As shown in Figure 3.7, the orthogonal set of rectangular waveforms that generate thi
WHT kernel can only approximate a sinusoidal waveform (c), by weighted summation of their
square wave elements (d and e). Hence, we expect WHT features to be a weaker representat
of the texture in comparison to those of the FFT or Gabor. For instance, results reported by
Unser [118] and Adet al[3], demonstrate the relatively lower performance of WHT in texture
classification. Nevertheless, in both cases spatial domain filtering using very small size filters
(e.g. 3x 3 to 5x 5) were applied. Therefore, smoother structure of a, for example, Cosine
filter outperforms sharp 0-1 structure of a Hadamard filter (see Figure 3.7 (a) and (b)). This

is the typical problem of representation of a signal by rectangular basis functions. When we

58



iE v G i el el
= Wl D o T P
o el il 4 el el i

Figure 3.6:Gabor filter responses of RAVEMENTLeft: Input image, Right: filter responses (detail

images)G

apply a Hadamard transform and utilise higher sequency ranks however, since higher sequen:
functions can smooth and moderate the outputs, the representation error degrades. Again
Figure 3.7, in synthesising a sinusoidal signal (a), involvement of higher ranks (here: 8) Walsh

functions, decrement the representation error (compare (d) and (e)).

Furthermore, the WHT has important computational advantages. For instance, it is a real (no
complex) transform, it only needs addition and subtraction operations, and if the input signal
is a set of integer-valued data (as in the case of digital images), we need only use integer of
erations. Furthermore, there is a fast algorithm for Walsh transforms by simple substitution
of the exponential kernel of the Fast Fourier Transform with-t1#() kernel of Walsh. The
transform matrix, usually referred to &&adamard matrix can also be saved in binary for-
mat resulting in a decrease in memory requirements [42]. Also it is rather easier than othel

transforms to implement WHT in hardware [35].
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(@) (b)

(€) (d) (e)
Figure 3.7:4 x 4 Cosine (a) and Hadamard (b) filters, and synthesising a given sine wave (c) using
Hadamard functions. The Original signelt) = 63cog0.16t) (c), and its two Walsh-Hadamard ap-
proximated representationg(t) = 63h(2,t) (d), andf(t) = 41h(2,t) + 17h(4,t) + 8h(8,t) (d).

Amongst different Walsh transforms (e.g. Dyadic, Natural, Ordered and so on) we applied a
sequency-ordered Hadama(8OH) matrix [42, 8] where the rows (and columns) are ordered
according to their sequency. In other words, in the first row there are no sign changes, and i
thent” row there are-1. As an example, see Figure 3.8 for a rank=3 (ar® SOH matrix (a)

and a map of rank=6 (or 6464) one (b).

The 2D Walsh-Hadamard transform can be defined as:
WHTp(A)=H xAxH’ (3.7)

whereAis the image an#l andH’ are Hadamard matrices of the same size and its transpose. In
fact for a Hadamard matri}{ is always equal té1’. The resulWHT(-) would be the unique

and reversible representation of the input in the sequency domain. Then, as Figure 3.8(c
shows, different row-column bands W HTp(-) contain the information of correspondence

low/high sequency bands of the input image.
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(a) (b) (c)
Figure 3.8:(a) Sequency-ordered rank=3 %8) Hadamard matrix. (b) A map of rank=6 (6464)

SOH. (c) Sequency bands of SOH in a transform domain.

Due to its faster speed and more feasibility in real time applications, we aimed to use the
Hadamard transform as a textural feature extractor, the task that Gabor filters usually carry ot
formidably but in higher computation costs. Inspired from oriented/multi-band structures of
Gabor filters, it seems to be useful to developasientedand multi-bandHadamard based
feature extraction algorithm which would be capable of extracting textural features in different
directions and sequency scales. Traditional Hadamard transforms, (like other 2-dimensione
transforms, e.g. Fourier or Cosine) can only extract the vertical and horizontal information. In

fact, the normal 2D transform in (3.7) can be implemented as:
WHTp(A) = WHTp (WHTip(A)]) (3.8)

where[WHTp(A)]’ is the transposed transform matrix. This results in applying a normal
1D transform on rows of the input matrix, transposing the result and again applying the 1D
transform on rows. Hence a standard Hadamard transform provides the sequency informe
tion of rows and columns of the image. To generatearented WHT a direct solution can

be rotating the input image before transformation. However, this solution could not be com-
pletely practical. For example, whereas any rotation will change the square alignment of the
input, eventually we should reshape that to a square matrix before transformation. Hence, w:
propose a novel oriented Hadamard based features to represent the directionality of texture
In this scheme, the Hadamard matrix remains constant but the image functimtatisd by

a = {0°,45°,90°,135°}. The rotation is applied to each element in the top row of the image
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matrix. At border pixels corresponding elements are used from a repeated imaginary version o
the same image matrix (i.e. image is vertically and horizontally wrapped around). For example,
in the simple 4x 4 image matrix below, a 45rotation at positiorb gives{b,g,I, m} (also see

As5 in Equation (3.10)) and a 135otation at the same positidngives{b, e, I,0} (similarly

seeA35 in (3.10): i i
a b c d a b c d

f g h f
ik L i

'm n o p| [m n

D
D

(3.9)

A Q@
=y

(@)
©

The full rotation set whera = 0°,45°,90°, 135 can be defined for a simpled4 image matrix

as follows:

a b c d a f k p
e f h b g | m
Ay = Aug =
i I c h i n
m n o p |d e | o]
[a e i m] fa h k n
b f j n b el o
Aoy = A3z = _ (3.10)
c g k o c f i1 p
d h | p] d g | mj

Note that this is not an ordinary geometrical rotation. For example, we create the réws of
image by considering the pixels that sit in a°4direction in imageAqe and so on. This means
that the resulting horizontal rows capture the information at the specified angles. In fact it
looks more like a pixel rearrangement rather than a geometrical rotation. Of course we extent

this concept to vary larger images in this work (e.g.x684 or 128x 128). The artifacts of
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repetition (disruption) at the borders are much less significant with larger images than those ir

the examples above.

Although we have never used other rotations in this study, it is theoretically possible to extend
this rotation idea to any desired degree. For instance, (3.11) showsarafated version of
A

[a b c d [a g i o]
e f g h b h j p
Aoo = . . — A225o = (311)
] ko c e k m
'm n o p| d f | nj

Other rotation schemes were also tried. Experiments with geometrically rotated images, ro-
tated Hadamard matriceBl4), or using a wedge of transform domain to explicit directional
information in WHT domain (as Figure 3.9 shows), all failed to reach adequate performance

levels.

Figure 3.9: A Wedge of WHT matrix. Wedges did not clearly convey the texture’s corresponding

directional properties.

The manner of our rotations means that after the DWHT transformation we need only extrac
row sequencynformation, corresponding to the directions used. This reduces (3.8) to a more
simplified transform:

DWHTy(A) = Aq x H (3.12)

We can also ignore, without loss, the column sequency information. Indeed, this takes out the

redundancy created by the fact tiigt = A;OO andH = H’. We performed a PCA test on the
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DWHT feature sets and found no particular preference for any orientatioi0°,45°,90°, 135’}
in the feature space. Since we have textures with random directions in the outdoor scene i
ages, it is reasonable to believe that there is no considerable directional preference amongst tl

set.

a b c d 1 1 1 1
e f g h 1 1 -1 -1
DWHTy (A) = Ap xH' = X =
i) ko 1 -1 -1 1
m n o p 1 -1 1 -1
a+b+c+d a+b-c—-d a-b—-c+d a—-b+c—d
e+f+g+h e+f—-g—-h e-f—-g+h e-f4+g—h
(3.13)
i+ j+k+1 i+j—k—I i—j—k+1 i—j+k-I
m+n4+0+p M+n—0—p M—N—0+p M—N+0—p

As (3.13) shows, the operatiddW HTy(A) = Aq x H' computes and gathers the sequency
information of input matrix rows into transformed matrix columns. Hence, the same half trans-
form for a rotated matrix (e.dfss) will give us the sequency information of pixels with a%5
orientation, again into the columns of transformed matrix. The transformed matrix columns
from left to right correspond to the lower to higher sequency elements. In the Hadamard-base
feature extraction procedure, we exploited the above mentioned rotation and transformation fo

four different orientationsy = {0°,45°,90°,135}:

(DWHTp(A) = Ag xH’

DWHTs(A) = Ass x H

¢ (3.14)
DWHTg(y(A) = A90>XH/

| DWHTi35(A) = Ag x H’

Since the relative arrangement of pixels is of essence in texture analysis [127, 113], sequenc

based features which represent the number of zero-crossings of pixels in a particular directiol
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can convey a notable amount of textural information. We can measure the DWHT energy in
DWHTy(A) as the absolute value of the DWHT output along each column. Columns can be
divided into a few groups which represent differeseiquency bandshen a few statistics of

each band can be extracted to configure a feature vector with reasonable dimensionality. So,

DWHT output and feature vector can be defined as:

H (O(,b) = DWH_IEX(A)“’J' ,1<i<N, jeb, and, FowhT = M(H (O(,b)) (3.15)

whereH is the transform’s output matriX\l is the matrix sizefF is the feature vectoiv
indicates the applied statistical function, ainds the desired sequency band. Agéng, or
semi{og, bandwidth scales could be applied, however we mostly used a sir{mﬁ;jér,%}
division (from the lowest to the highest sequence) for 3-band ar%dda'yision for 4-band

feature sets.

As an example, Figure 3.10 depicts, the sequency representation of a typical fine resolutio
texture (a) will show more energy in higher sequency bands compared to a coarse resolutio
texture (b), which indicates the method’s spatial frequency sensitivity. Again, the rightmost
graph (c) in that figure, illustrates the lack of response of the DWHT transform to the coarse

vertical texture when it is rotated (i.89¢ ), Which indicates the method’s directional sensitiv-

ity.

One main advantage of the proposed Hadamard based feature extraction scheme is that |
using larger (e.g. 6% 64 or 128x 128) Hadamard transforms, rather than the usual33or
4 x 4 local filters [118, 62], we can extract higher frequency/sequency information and in fact

emphasise on ‘global’ instead of ‘local’ features.
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Figure 3.10:From left: Example average energies for fine resolution texture (a), coarse resolution
texture (b), and coarse resolution texture &at@fation (c). Corresponding textures are shown inside

each graph. Energies are computed as the absolute value of the WHT output along each column.

3.3.3 Justification of the DWHT

To justify the proposed DWHT transform, a quick review of some related works could be use-
ful. Boukouvalaset al [13] have applied an optimal line filter to detect lines in ceramic tiles
which in fact performs two 1D convolutions in the horizontal and vertical directions respec-
tively. Their achievement suggests that although textures are 2D signals, sometimes 1D prc
cesses would be significantly effective. In particular, where directional objects are concerned

a 1D process in the appropriate direction would be advisable.

Proposing DWHT, we aim to add MSMD characteristics to an ordinary Hadamard transform.
The basic idea behind all MSMD texture analysis methods is scale (i.e. band) and angular (i.€
directional) decomposition of the texture. For instance, in ring/wedge filtering, the intersection
of a ring (directional) and a wedge (band-pass) filter reveals the energy of a particular banc
and orientation of the texture. (There is always & #iference between the orientation of

the filter and revealed patterns. e.g. a vertical wedge filter highlights the horizontal patterns
of the texture) [113]. In a Gabor filter bank, rotated filters decompose the image’s energy into

different directional detail images, while different central frequencies facilitate the multi-scale
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analysis [54]. In a wavelet analysis, down/up sampling procedure generates detail images i
diverse scales, and directional band-pass filters analyse the distribution of the energy acros

different orientations in the scaled image [11].

The applied rotation and band separation of the DWHT follows the same idea by a different
manner. Rotation brings the different directions of the image into the 1D sequency transform
scope, hence performs an angular decomposition. Separation of different bands in the transfor|
domain reveals the information of various sequency bands of the texture. If we again look at
(3.13), the first column of the result matrix is of course the summation of rows, which can
be interpreted as the DC-term or average. The second column comprise¥ Hagjdency
harmonic of rows (sequence=1). Eventually the fourth column conveys the rows’ maximum
(here, 3) sequency harmonics. Therefore, after dividing the columns into a few groups (or
sequency bands), sequency characteristics of the texture’s rows would be analyzable in differel
scales. If we repeat the procedure for all directions, a comprehensive set of the sequenc
information of the texture will be obtained. Figures 3.11 and 3.12 represent the outputs of
DWHT applied on two different images, @ARand aPAVEMENTThe transform domain

is depicted in logarithmic scale and for four different orientatiomss {0°,45°,90°,135°}

from top left to bottom right. Diversity amongst objects and orientations are considerable and
suggest that transform can be effective on discrimination between different images and also he

directional sensitivity.

3.4 Colour Feature Extractors

Colour features are gradually playing a more important role in image classification: since
colour processing has become feasible for modern hardware in terms of both colour sens

ing and costs of processing. Nevertheless, having faster algorithms along with maintaining ar
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adequate level of performance is still of importance in terms of real applications.

In many studies, the colour image is considered as a composition of three separate individue
colour channels (spectrums) R,G and B [34]. Although it seems to be the simplest way anc
suitable for digital systems, it has some important disadvantages in colour perception. For
instance, coordinations in the RGB space cannot necessarily show the chromatic similarity o

contrast of pixels, and in this sense, it is far from human colour perception as well.

Colouris in fact the human eye perception of an object [15]. Therefore some different colour
spaces where each pixel can be characterised by features closer to human perception have bt

introduced. Those three factors are [15, 97]:

e Luminance: perception of light intensity or brightness.

e Hue: approximately the dominant wavelength in a mixture of light waves, or less for-

mally, perception of dominant nuance or tone by the observer.

e Saturation: The perception of colourfulness, purity of colour or lack of mixed white

light.

There are some different colour spaces that have been developed based on that idea, nam
HLS, HSB, YIQ, YUV and Lab [15, 26]. Those models, which mostly use the same idea in
different ways and details, can produce both intensity and chromaticity (e.g. hue and saturation

characteristics of pixels, that is very close to the human perception.

Several studies have reported the advantages of using perceptual colour spaces in colour obje
classification (for instance [34]). However, since the digital input data is mostly in RGB for-
mat, to employ other colour spaces we should always carry R@B-to-new spaceonversion,

which usually is the most costly stage of the colour feature extraction procedure. Hence, trying
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Figure 3.11:DWHT transform of aCAR Left: Input image, Right: the output in transform domain in
log scale. Note the differences between various orientations of the transform domain, and also betwe:

Figures 3.11 and 3.12 which represent two different objects.

to find out some RGB-based, easier-to-compute, and inspired-from-perception chromatic fea
tures could be a worthwhile challenge. We introduce two new faster-to-compute chromaticity
features, calledHp andS,, and compare them to corresponding chromatic features extracted
from standard colour models, HLS arichb. These colour spaces will also be discussed later

in Appendix A.

3.4.1 New Chromatic FeaturesHp and S,

The first proposed RGB-based colour featitg, is a mapping from RGB to a hue-like value,
where the maximum of (R,G,B) will be mapped to an appropr@tﬁvision of the possible

range [0,255]. In fact, the definition ¢, has been derived from the basic meanind-ole
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Figure 3.12:DWHT transform of aPAVEMENTLeft: Input image, Right: the output in transform
domain in log scale. Note the differences between various orientations of the transform domain, an

also between Figures 3.11 and 3.12 which represent two different objects.

which is the dominant tone of the object. This definition is not mathematically very close to the
standard definition of the Hue in other colour spaces. For example, in the HLS model shown in
A.1 (Appendix A), after finding out the maximum of (R,G,B), a factor of difference between

other two colours would be computed as the Hue.

The second colour featur,, measures the absolute difference between the maximum value
and the average of colours (i.e. intensity), which can be considered as a simple close-to
saturation idea. Again, as (A.1) in Appendix A exhibits, this definition is not completely com-
patible with the saturation term in the HLS colour space. In fact in our definiti@yahe role

of the minimum spectrum has been eliminated, and the ddar(R, G, B) + Min(R, G, B) has
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been roughly replaced with the average of R,G and B.

B if Ris Maximum
Hp=1{ S£2%  if Gis Maximum Sp=Max(R G,B) — RtS+B (3.16)
B+(2x255)

3 if Bis Maximum

In performed tests, statistical moments of the chromatic channels or features of an image ar
calculated as its colour feature vector. After a brief review on standard RGB-to-HLS and
RGB-to-Lab procedures (see, for instance [85, 15, 26]), proposed features seem to be faster t
compute than both HLS-based ahdb-based chromatic features (Unless we employ 16 Mega
Byte look-up tables for conversions). It is expected due to different background motivations
of methods. Whereas we aim to extract simple, fast, and accurate enough colour features fc
object recognition purposes, standard colour spaces mustimpose some physical restrictions al
also must provide a precise one-to-one (invertible) mapping from RGB space and vice versa
Therefore their procedure is necessarily more complicated. The HLS algorithm tests some
parameters and accomplishes some comparisond,amgderforms an intermediate conversion
from RGB to CIE-XYZ space. Meanwhile, since they are empirical and approximated models
of the hue and saturation, the computationHyf and S, is plain and direct. Experimental
results presented in the following sections will compare the different aspects of these chromatic

features in detail.

Figure 3.13 exhibits an outdoor scene image and_#b (a andb), HLS (hue and saturation)
andHpS, colour features. The common notable point amongst all features is that they attempt
to discriminate different objects inside the scene. Also similarity between HLS-saturation and

Sp is considerable.
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3.5 Classification Tests

Our experiments consist of classifying the data set introduced in Section 3.2 using:

Gabor only

DWHT only

colour features only

Gabor with colour features

e DWHT with colour features

We divided our 724 images into a training set of 396, a test set of 160 and a validation set
of 168 patches. For classification, we employed a back-propagation neural network (BPNN]
classifier with one hidden layer, optimised for the best number of nodes. (for more details see
Section 2.7.2).

Pre-processing for textural features included conversion to greyscale and normalisation to corn
pensate the possible tonal effects and making the classification more texture-oriented. To cor

vert the colour images into greyscale a so-cafR€B-to-luminancéunction was applied [26]:
AcL = 0.29Ra + 0.587Ga + 0.114BA (3.17)

whereA is the input colour image anllg, is the greyscale image.

Then, the resulting greyscale image was normalised by:

ANR = AcL — Hagt (3.18)
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Lab-a HLS-Hue RGBHj

Lab-b HLS-Saturation RGB-§,

Figure 3.13:Chromatic features of different colour spaces extracted from a high resolution outdoor

scene image (top).
wherep: ando- are the mean and standard deviation of the greyscale image.

To evaluate classification performance, we used the Mean Square Error, MSE, as the diffe
ence between the ground truth (i.e. theexpectedoutputs of classifiers), and the network
classificationC (i.e. theactual outputs of the classifiers) acrobkclasses. A second metric,
the Classification AccuracyCA, was evaluated as the percentage of correct class assignments

across the complete labelled test set. MSE and CA are therefore defined as:
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N (GI _Ci)Z

N No. of correct class assignments
MSE = £1=L - J

CA = _ 100 3.19
N Total no. of samples (i.e. 160)>< ( )

3.5.1 Classification using Textural Features: Gabor and DWHT

In the first series of tests, we employed our Gabor-based and DWHT-based textural feature
separately and measured their classification accuracy. Both texture features were extracts
from greyscale images. Amongst several Gabor filter banks tested, a 12-filter bank with 3 cen
tral frequenciesw = {4, 2 2u1 and 4 orientationsd = {0°,45°,90°, 135} provided the

optimum results. Using more central frequencies and also changing the directional resolutior
to AB = 22.5° not only increased the number of features but also decreased the classificatior
accuracy (unlike what Clausi and Jernigan have reported in [25] about advantages of less the
45° directional definition). Our tests indeed confirmed 3 to 5 orientations as the optimum as
has been suggested by Smith and Burns [110]). The Gabor feature Veagigy; included 12

mean values of the filter responses (i.e. mean valuéqaf 6) in (3.4)).

The first DWHT feature vector=3, 41, included mean, standard deviation and maximum
values of DWHT outputsH (a,b)) in four different directionsx = {0°,45°,90°,135} but
without any bands separation (i.e. statistics of 4 orientations in a single sequency scale wer
calculated). The second DWHT feature 968, ,1, contained mean, standard deviation and
maximum values of 4 quarter sequency bands of a non-rotated transform (i.e. statistics of ¢
sequency scales without rotatiofyg,, ;1 comprised mean values of 4 rotated half transforms
arranged in 3 sequency bantts= {0— % , 7 — 3, 3 —1} (i.e. means of 4 orientations and

3 sequency scales). Finalll3, 47 contained 16 mean outputs of 4 sequency bands (each
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covering a quarter of the sequency domain) and 4 directions.

( Feabor= {U(Gwﬁ)} ) (UE{%V',%TM,QTM} , 8€{0°,45°,90°,135}

Fownr = {H(He) , o(He) , Max(Hg)} ,  6{0°,45°,90° 1350}

Fwur = {K(Hb) , o(Hp) , Max(Hp)} , be{0-3,7-3.3-1}
F3ur= (M 1} , 8¢ {0°,45,90°,135}
[ Fa (

?
7%_%7%_1} , 8€{0°,45°,90°,135}
(3.20)

pwHT = {M(Hbp

It is possible to apply some post-processing on the feature vectors (e.g. complex moments
grating cell operators [43] or blob detection on Gabor features [54, 103]). However, since we
wanted to compare different algorithms, no post-processing was applied for any of the feature
extraction schemes. Table 3.1 shows the best classification results obtained by the Gabor filte!

and DWHT transforms.

Texture Features | No. Features| MSE CA
Faabor 12 0.183| 88.75%
Fownt 12 0.257 | 81.88%
Féwut 12 0.269| 80.62%
FovuT 12 0.237| 85.00%
Fdwut 16 0.212| 86.88%

Table 3.1:Classification results using Gabor and DWHT texture features

The results can be summarised as:

e As expected, the optimum classification accuracy of 88.75%, (i.e. 142 correct classifica-
tion out of 160) was achieved by Gabor filters. However, the best DWHT performance

of 86.88% F 3y 1) Was close and comparable.
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e Both extraction of features from different sequency bands and different directions influ-
enced the DWHT performance. The classification accuracy of the single band feature
set F gy 1) Was limited to 81.88% and the single direction feature Bghy(, ) perfor-
mance was 80.62%. Whild=(3, 1) with 4 directions and 3 sequency bands achieved
a higher accuracy of 85%. Even adding more statisticarfd maximum) could not

compensate the lack of directional and multi-band information.

e In our tests, directionality was marginally more effective than having multi-sequency

bands (again, 81.88% vs. 80.62%).

e Employing four sequency bands instead of three, added 1.88% to the classification accu

racy of DWHT (85% vs. 86.88%).

Execution time of different algorithms will be discussed later in Section 3.6.

3.5.2 Classification using Chromatic Features

In the second experiment, we applied different chromatic features (H and S of theaHLS,
andb of the Lab colour spaces, and RGB-basdd andS,,, and measured their classification
accuracy. As Table 3.2 illustrates, two series of experiments with colour features were carriec
out. In the first series, only the mean value of each chromatic channel was computed as th
feature, while in the second series both the mean and the standard deviation configured th

feature vector. Hence, in the first series we had two and in the second, four features per imag

Table 3.2 shows that amongst 2-feature sets of the first test, the best classification performanc
was achieved bylLab as 84.66%. However this performance was only slightly better than
our proposed S, with CA=82.97%, while bothLab andH,S, outperformed HLS at 68%

accuracy. Next, in the second series and by using four chromatic features, results in gener:
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exhibit higher accuracies for all feature extraction schemes. Adaab was the best one

with 91.16%, followed by theH S, set with 87.91%, both were noticeably higher than HLS
features with CA=80%. This reiterated that simple featitgS, gained a higher classification
performance in comparison to the HLS model, but was marginally lower than the precision
of Labfeatures. A notable point in this test is the considerable performance of all of colour
features in general. We therefore can assume that the homogeneity of colour properties of give

objects is relatively high.

Colour Features No. Features| MSE CA
Lab (Mean ofa andb) 2 0.221| 84.66 %
HLS (Mean ofH andS) 2 0.28 | 68.00 %
RGB-Based (Mean dfi; andS,) 2 0.234| 82.97 %
Lab (Mean and STD o& andb) 4 0.13 | 91.16%
HLS (Mean and STD oH andS) 4 0.241| 80.00%
RGB-Based (Mean and STD b&f, andS;) 4 0.169| 87.91%

Table 3.2:Classification using colour featurdsab, HLS and the RGB-based,S,

3.5.3 Classification Using Merged Texture and Colour Features

We then merged our texture features with the colour features and performed classification usin
all combinations for comparative purposes. The results of these are shown in Table 3.3 an
were found to be very close to each other, with the best result in each texture category bein

Gabor- Laband DWHT with eitheH S, or Labfeatures.

The Gabo# Lab features provided the maximum classification accuracy of 94.38%. This was
slightly (0.63%) higher than GabeH S, as the second best. The DWHT merged wlithb or

HpS, showed close approximation to the maximum accuracy at 93.13%. To conclude, the
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Merged Features || No. Features| MSE CA
Gabor+ Lab 16 0.096| 94.38%
Gabor+HLS 16 0.103| 90.00%
Gabor+H,S, 16 0.097 | 93.75%
DWHT + Lab 20 0.094| 93.13%
DWHT +HLS 20 0.123| 89.38%
DWHT +H,S, 20 0.105| 93.13%

Table 3.3:Classification using merged texture and colour features. For all colour spaces above, th

features werg@tando of each colour band used.

difference between the best (Gabdrab) and the proposed (DWHTHSp) is 1.25%, which

gualifies the new schemes, given the computational demands involved.

3.6 Summary of Computational Costs

Previous tests indicated that the proposed lower cost algorithms (DWHH g8¢J, along with

their simple structures, both performed well in classification experiments. Therefore, if their

computational times show notable decreases, they can be reasonably advisable, in particul
for realtime applications. To measure and compare the running time of different algorithms, a
series of tests were carried out, where both textural (DWHT vs. Gabor) and chrokhigBe (

vs. Labvs. HLS) feature extraction algorithms were run several times, and on different

machines. Tables 3.4 and 3.5 depict the average execution time of 20 runs on two differen

work stations: a PC Pentium I11-700 MHz machine and a Sun Ultra-10 Sparc work station.

As Table 3.4 exhibits, the DWHT feature extraction algorithm was 11.46 times faster than Ga-
bor filtering on PC, and 10.29 times on Sun. Meanwhile, both PC Pentium and Sun Sparc ar:

fast, powerful CPUs and we expect more differences on lower level hardware. The chromatic
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Textural Algorithm || PC PIIl 700 MHz | Sun Sparc
Gabor 2.75 sec 7.10 sec
DWHT 0.24 sec 0.69 sec

Gaboy DWHT Ratio 11.46 10.29

Table 3.4:Average execution time for texture feature extractions (sec).

Chromatic Algorithm || PC PIIl 700 MHz | Sun Sparc
Lab 0.30 sec 0.50 sec
HLS 0.73 sec 1.24 sec
HpS 0.05 sec 0.11 sec
Lab /H,S, Ratio 6.05 4.54
HLS/H,S, Ratio 14.6 11.27

Table 3.5:Average execution time for colour feature extractions (sec).

feature extraction times, presented in Table 3.5, showed that the RGB+3gSgdcheme was

the quickest, and 6.05(4.54) times faster thiamb and 14.6(11.27) times faster than HLS on
PC(Sun). This notable reduction in computation time even on high speed CPUs, proves the cor
siderable lower cost of the proposed features that along with their notable classification accu
racy, make them highly plausible for realtime applications. For example, Gabal needed

3.05 sec to be calculated at 94.38% accuracy, whereas DWHE, needed 0.29 sec at
93.13% accuracy.

3.7 Experiments with VisTex

To evaluate the robustness and generality of the proposed approaches, we repeated the exp
ments, this time on a pseudo-standard texture database. Amongst a few commonly used textu

test suites, (namely Brodatz [18], MeasTex [88], VisTex [69]), VisTex was chosen since it has
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a rich variety of colour textures and also is easily downloadable via the Internet. Introduced
by the MIT Media Lab, the VisTex suite has been gathered to assist in computer vision algo-
rithm evaluation and comparison on a common data set. VisTex contains several colour image
of mostly natural textures which have been photographed under real world circumstances t

represent real world conditions.

Sixteen different textures from the VisTex database were selected and 192 non-overlappin
64 x 64 pixel patches were extracted from each, resulting in 3072 patches. The test procedur
and circumstances were kept compatible with the former high resolution outdoor scene ex
periments, apart from addin@rdinary Hadamard TransfornflOHT) as a new texture feature
extractor, and thBlormalised RGBNRGB) as a new chromatic feature extractor. Experiments
were divided into two stages. Firstly, all textural and chromatic features were tested to segre
gate all 16 groups of textures. Secondly, to have a more precise evaluation of the advantage
of the new directional Hadamard approval on directional textures analysis, a comparative tes
between OHT and DWHT was arranged. In this test only 5 groups of more directional textures
were involved. Figure 3.14 exhibits samples of all 16 groups of tested VisTex textures. the five
directional texturesgRICK (g1), FABRIC (g2), FOOD2g5), GRASSg6), andWATERQ9))

of the second experiment are highlighted+yThe applied classifier was an ordinary BPNN.
Samples of 3072 patches were divided into 50% for training and 50% for testing (i.e. randomly
selected 96 training and 96 testing patches per group). To increase the reliability and generalit
of the outcome, the training and testing subsets were swapped and the classifier was traine

and tested once again. The reported results are in fact the average of these two iterations.
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BRICK (g1)* FABRIC2 FOOD (g4)

(93

SAND (g8)

FOOD2 (g5)*

WATER(g9)* BARK (g10) FABRIC3

(911)

TERRAIN TERRAIN2 WHER-WALDO FABRIC4
(913) (914) (915) (916)

Figure 3.14:Some samples of the applied 16 groups of VisTex texturemdicates the directional

textures involved in the second experiment.

3.7.1 Texture-based Classification

For the texture based classification test, we first applied Gabor filters, DWHT and OHT in

three frequency/sequency bands, and four directions. The mean values of filter responses al
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transforms were calculated as the features:
Féaor= {H(Gwp)} , we {1,551}, 8€{0°,45,90°,135'}
Fownr= {MHpp)} , bef{o-12-11-1}, 6¢€{0°,45,90°,135} (3.21)
I:olHT = {U(Hp) } , be {07%1’421

As Table 3.6 represents, the classification accuracy of the Gabor filters is the highest (80.86%
but only very slightly higher than DWHT (80.21%). OHT however, clearly shows a lower

performance of 69.14%.

Texture Features No. Features| MSE | CA
Gabor Filters B4, 12 0.262| 80.86%
Directional HadamardRg, 1) 12 0.278| 80.21%
Ordinary HadamardRd,,1) 3 0.416 | 69.14%

Table 3.6:Classification results of 16 VisTex textures using mean values of 3 frequency/sequency band

as the texture features.

In the second test, standard deviations of the outputs were inserted to the feature vectors 1
potentially increase the performances. New feature vectors included 24 features for Gabor an
DWHT and 6 features for OHT:
Fébor= {M(Gue), 0(Gup)} . we {8,505} . 8¢ {0°,45°,90°,135)
I:DZWHT = {H(Hb,e) ) O(Hb,e)} ) be {O_ %17 %1 - %7% - 1} 3 Be {00745079007 1350}
1
2

Féur = {uHp) o(Hy) } . be{0-33-33-1)
(3.22)

As Table 3.7 exhibits, for the first time DWHT showed the highest classification accuracy with
82.72%, marginally improving on the Gabor filters’ 82.06% accuracy. OHT is still well behind
at 73.40% correct classification rate. This test indicated that it was possible to increase the
performance of DWHT even further by choosing appropriate features. Including the standarc

deviation which in a sense showed the ‘normalised energy’ of the transform output or filter
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response [2], had more significant effects on DWHT and in particular OHT than Gabor filters.
Several other tests, where higher order moments or different statistics (e.g. max or min value

were added to the feature sets, did not increase the classification accuracy of any of the featu

sets at all.
Texture Features No. Features| MSE | CA
Gabor Filters 2, 24 0.253| 82.06%
Directional Hadamard®3,, ;1) 24 0.234| 82.72%
Ordinary HadamardR2,) 6 0.409| 73.40%

Table 3.7:Classification results of 16 VisTex textures using texture features with 3 frequency/sequency

bands.

In the third test, we added the fourth frequency/sequency band to the features. So, for DWHT
and OHT the bandwidth was changedzltoFor Gabor filters, we ignored the usuag, band-

width scheme and inserted the fourth central frequenuyatmTM:

Fébor= {HGup) . 0(Cup)} , e {9, O Ou 39y | ge (0°,45°,90°,135'}
Fayur= {H(Hbo), o(Hpe)} , be{o-11_-11_33_ 11  gc{0° 45 90,135}
F(%HT: {H(WH-II)zD) ) O-(WH-II)ZD)} ) be {O_%7%_%7%_%7%_1} (3 23)

whereW HT?P is the output of an ordinary 2D Hadamard transform (see (3.8) for details, and

also Figure 3.8(c) for definition of ‘sequency bands’ in this case).

The combination of central frequencies Fi,, ., provided the best result amongst several

examined. For instance g, 21 2u Quy gang {3 3w 3w 30u} exhibited 2.41% and

1.75% less accuracy thﬁa;abor respectively. Once again, the mean and the standard deviation

of the outputs were calculated as feature vectors. Table 3.8 depicts the classification results.

Results showed that again the best performance belongs to DWHF,G%angL stays 2.18% be-
hind that. 77.96% classification accuracy of the OHT was 7.16% lower than DWHT. Involving
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Texture Features No. Features| MSE | CA
Gabor FiltersEZ,, ) 32 0.260| 82.94%
Directional HadamardR3, ;1) 32 0.194| 85.12%
Ordinary HadamardR3,) 8 0.323| 77.96%

Table 3.8:Classification results of 16 VisTex textures using texture features with 4 frequency/sequency

bands.

the 4" frequency band at a rather high frequencywot 3QTM also has added 2.08% to the Ga-
bor filters performance and suggests that in some cases ignoring the tyggicarrangement

could be beneficial.

In the fourth experiment, we switched to our second VisTex data set which contains five more-
directional texture§ BRICK, FABRIC, FOOD2, GRASS, WATER. This data set has

960 images. This test aimed to evaluate the effectiveness of the DWHT on the directional
textures more clearly. Also, a Principal Components Analysis has been appliE@Vp,q\T

to decrease its feature space dimensionality from 32 to 8, to facilitate a fairer comparison
between the 8-feature OHT and DWHT. The results, illustrated in Table 3.9, suggested tha
DWHT performs well in directional texture classification. Its accuracy (97.92%) was 13.13%
higher than the OHT's 84.79%. This also indicated that compared to the third experiment with
16 groups of textures, DWHT is even more effective on directional textures. The difference
between performances of DWHT and OHT in the third test was 7.16, whilst it was 13.13 in the
more directional fourth test. Even after applying the PCA, the 8-feature DWHT is 8.97% more

accurate than OHT.
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Texture Features No. Features| MSE | CA
Directional Hadamard®3,, ;1) 32 0.030| 97.92%
Ordinary HadamardR3,,1) 8 0.169 | 84.79%
PCAonF3, 1 (FoP ¢ 8 0.092| 93.76%

Table 3.9:DWHT and OHT performance comparison, applied on more directional VisTex textures.

3.7.2 Colour-based Classification on VisTex

Along with three formerly mentioned colour features, in this test a Nermalised RGE82]
feature set was examined. In the normalised RGB (NRGB), normalised values of R, G and E

for each pixel are calculated as:

_ R _ G _ B
'=rrer8 © 9= rRrore » D= rycee (3.24)

The NRGB feature vector is then formed by the mean and standard deviation afid b

channels:
Fnree= {W(r) , o(r) , u(9) , 0(9) , Wb) , a(b)} (3.25)

The feature extraction schemes for HLEab andH,S; are identical to that mentioned in
Section 3.5.2. Table 3.10 illustrates the classification results, whafeshows the best per-
formance with CA=74.28%. The second bestlisS, with 72.07%. Classification accuracy of
NRGB and HLS are considerably lower at 65.82% and 64.71%.

Colour Features No. Features| MSE CA
Lab (Mean and STD o0&, b) 4 0.395| 74.28%
HLS (Mean and STD o, 9 4 0.515| 64.71%
RGB-based (Mean and STD Hi,, S;) 4 0.389| 72.07%
Normalised RGB (Mean and STD &, G, By) 6 0.401| 65.82%

Table 3.10:16 groups of VisTex textures classification performance using chromatic features
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The outcomes of colour feature-based classification on VisTex support the former results of the
outdoor scene experiments. Agdimbis the most accurate one, whig,S, stands marginally
behind that and clearly in front of both HLS and the new NRGB. This experiment shows that
hue-like and saturation-likd ,S, outperform non-perceptual NRGB features, and indicates the
advantage of even simple perceptual-based chromatic features in colour texture classificatiol
Relatively poor performance of NRGB may also challenge the generality of the results reportec

by Manian and Vasquez in [82].

3.8 Conclusion

We described novel and fast methods for extraction of both directional texture features us:
ing the Walsh-Hadamard-based DWHT transform and simplified hue and saturatidhytke
chromatic features. The methods were applied to high resolution outdoor scenes for colour ob
ject classification. The DWHT concept of sequency captured the lower and higher harmonics
present in high resolution images very well. The performance of the proposed features wers
compared, for accuracy and speed, against Gabor and HilSfeatures. We demonstrated
that the performance of the new features were highly comparable at a massively reduced con
putational cost. Furthermore, similar experiments on a pseudo-standard VisTex texture suitt
confirmed that DWHT was significantly more effective than the ordinary Hadamard transform
and even in some cases slightly more precise than the well-known high performance Gabo

filters for texture classification.

The advantages of the proposed Hadamard based feature extraction scheme relies on d
ferent factors. First of all, contrary to many previous works which employed local Walsh-
Hadamard filters (e.g. 83 in [118] or 4x 4 in [62] ), we used larger patches (e.g.>684 or

128x 128) and a global transform method. Hence, processed by an ordered Hadamard matri;
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a wider range of sequency information is extractable. Moreover, the employment of higher
resolution images allows us to use bigger patches of objects and gain a wider range of fre
guency/sequency. Secondly, the employed rotation scheme covers four main orientations of
texture (0,45°,90°,135) and provides an organised set of oriented sequency features which

can be evaluated, ranked and utilised in image classification tasks.

The RGB-basedHpS, colour features have been inspired from perceptual phenomenon, Hue
and Saturation. The proposetyS, performed well in our object classification tests and was
comparable with the well-knowihab -based colour features. Further experiments where those
colour features, along with the NRGB, were applied to the VisTex set, again confirmed the
quality of the proposeti S, features. In general, their performance was comparable with the
best achieved byab and was well in front of HLS and NRGB.

In the following chapter we will apply DWHT once again, along with Gabor filters and some

other texture analysis algorithms, this time to detect abnormalities in textured tiles.
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Chapter 4

Defect Detection in Textured Tiles

4.1 Introduction

In this chapter we present a study in texture quality classification and abnormality detection.
We apply several popular techniques and propose a novel algorithm for texture defect detectio

and evaluate it on a randomly textured tile data set.

The main focus of this study is to explore statistical and signal processing approaches fol
abnormality detection. The following methods are investigated and compared which represen

a cross-section of state-of-the-art techniques:

e Statistical:

— Ordinary Histogram
— Local Binary Pattern

— Co-occurrence Matrix
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e Signal processing:

— Gabor Filtering

— Ordinary Walsh-Hadamard Transform

— Directional Walsh-Hadamard Transform (as proposed in Chapter 3)
— Ordinary Discrete Cosine Transform

— Directional Discrete Cosine Transform (similar with DWHT)

— Eigenfiltering

— Gabor Composition (the new method proposed in this chapter)
For each algorithm several parameter optimisation tests were also carried out to maximise th
performance.

The next section starts with a description of the test framework, including the data set anc
classifier specifications. The algorithms used and the classification test results are discussed
Section 4.3. The new Gabor Composition method is presented separately in Section 4.4. The
we compare the computational costs and performances of different algorithms in Section 4.5

The chapter will conclude in Section 4.6.

4.2 Classification Tests Framework

4.2.1 Data Set

Our randomly textured tile data set (TDS) contained 1883 grey levek2B#6 pixel images

selected from larger (e.g. 10241024 pixel) tile images. The resolution of the images was 4
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pixel/mm (0.25 mm/pixel) and they were grabbed in the factory environment with a prototype
inspection system. The classification algorithm attempted to classify input samples into normal
and abnormal classes. In reality, the defect detection system could separate the inputimage in
a few non-overlapping 256 256 patches, and considered the tile as normal if all the patches

were normal, otherwise the tile would be considered as abnormal.

As Table 4.1 illustrates, the TDS comprised of eleven tile types. Samples of each type were

divided into three non-overlapping categories\afrmals AbnormalsandTemplates

Number of Samples
Tile Type || Normals | Abnormals | Templates
ARDES 22 22 224
ARWIN 40 40 82
CASA 72 72 4
DJZAM 20 20 170
DJZUL 20 20 170
KIS 23 23 39
LRSIDE 46 46 135
PRODO 44 44 6
PRODT 38 38 5
SLTNP 26 26 161
SYM 20 20 145
Total 371 371 1141
1883

Table 4.1:Tile types and number of samples in the TDS

Figures 4.1 and 4.2 illustrate normal and abnormal samples of all eleven types of tiles. As thes
figures show, the tiles used were all random textures with different character and coarsenes

Defects were also decisively diverse in attributes. Unexpected bad&kWWINand PRODO
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samples, small circular brighter regions LRSIDE and SYM or local density problems in

SLTNPwere only some instances of defects in the TDS.

ARDES ARWIN

CASA DJZAM

DJZUL KIS
Figure 4.1: Samples of the TDS: normal(left) and abnormal(right) tiles from 11 different models.

ARDES: abnormal bottom/right corneARWIN: dark horizontal barsCASA: dark stain,DJZAM:
abnormal top/right corneJZUL.: thin crack-like line at the bottonKIS: blobs at the left edge (to

be continued in 4.2).
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LRSIDE PRODO
PRODT SLTNP

SYM

Figure 4.2:(Continued from 4.1) Samples of the TDS: normal(left) and abnormal(right) tiles from 11
different models.LRSIDE: bright pinhole-like spotPRODO:horizontal barsPRODT:diagonal thin
lines, SLTNP: regions with denser patterns at the left h&¥ M: bright spot.

A review of the data set and some sample histograms showed that the image grabber syste
could provide homogeneous 25&56 image samples with a uniform luminance throughout
each. However, in some types there was a slight change in brightness between different san
ples (e.g. se€ASAtiles in Figure 4.1). Therefore, a simple normalisation was accomplished

throughout the images to compensate the luminance variations:
Xp = X— (4.1)
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wherex is the input imageyly is its mean value, anxl, is the normalised image. This was the

only pre-processing carried out on the data set prior to the feature extraction stage.

4.2.2 Classifiers

In this chapter we employed a traditional approach to the normal/abnormal samples classi
fication problem, comprising feature extraction, training the classifier with both normal and
abnormal samples and testing the performance. A BPNN and a KNN classifier were separatel
used to evaluate the performance of the feature extraction algorithms. The BPNN classifier wa
a single hidden layer network, trained on a type-wise paradigm and optimised on the number o
hidden nodes. The number of hidden nodes tried wete {2,3,4,5}. We did not test larger

n due to the relatively limited number of samples per type in the TDS. The KNN classifier
was also trained in a type-wise manner and optimised on the closest neighbourhood paramet
K = {1,3}. AImost alwaysK = 3 provided the better results. In general we did notdry: 5

or larger, however, when we testéd= {1, 3,5} for two types with more sample§ASAand

LRSIDE, K = 3 was still the optimum choice.

To increase the generality of the classification results, a k-fold cross-validation scheme with
k =5 was implemented for both classifiers. For each type, samples were divided into 5 non-
overlapping training/testing subsets, where 80% of samples formed the training and the remain
ing 20% built the testing subsets. The reported results are in fact the average of 5 iteration:
of the training/testing cross-validation procedure (see Section 2.7.2 for more details on cross
validation algorithms). Classification performance is presented by classification accuracy, CA
or the percentage of correct class assignments across the complete labelled test set:

Nnn+ Naa

otal

CA= x 100 (4.2)
whereNpn, Naa, andNqta are the number of test samples which are classified as normal while
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they are indeed normal, the number of test samples which are classified as abnormal while the

are indeed abnormal, and the total number of test samples respectively.

4.3 Classification Experiments

4.3.1 Ordinary Histograms

We applied histograms to measure the level of complexity of this classification problem, and
the validity of assuming all kinds of defects &xtural abnormalitiesIf a simple non-textural
operator like a histogram shows a high classification performance, the complexity of the clas-
sification problem or the validity of that assumption can be questioned. The first histogram
feature vectorF,},, contained 256 bins of the tile image histogram. As Table 4.2 (columns
2 and 3) illustrates, using the KNN and the BPNN classifiers the average CA were 68.06%
and 77.54% respectively, which are not adequate in defect detection applications. Then a PC,
was applied to decrease the feature space dimensionality toward something more comparak
with other methods that shall be used here. The result was the second histogram feature vect
F st Which contained the first 48 features of the PCA. Tests showedrfigfS. , with
65.45% and 76.34% accuracy on KNN and BPNN is even slightly worseFijan Next, a
PCA-based optimisation test was performed, in which different numbers of PCA features,
were tried, wheren € {16,26, 36,...,246}. This was to find out whether or not PCA can in-
crease the classification accuracy at all. The outcomes showed that no PCA feature reductic
can improve the performance. Table 4.2 in columns 2 and 3 represents the classification pe
formance of the histogram on different types of the TDS. The average performance of 77.54%
achieved by the ordinary histogram suggests that defect detection in TDS is complex. We nex

show the employment of texture-oriented methods and evaluate their performances.
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4.3.2 Local Binary Patterns (LBP)

In this defect detection experiment, we applied basic LBP operators on3arteighbourhood,
8 border pixels® = 8), and single distancel = 1), :

P-1
LBRer= ) s(gp—c)2” (4.3)
p=0

wheres(-) is the sign functiong, andg. are grey levels of border pixels and central pixel
respectively, andP is the number of pixels in the neighbourhood (see Section 2.3.1 for more

details).

Although there are some reports on the high performance of LBP in texture classification (e.g
[80, 92, 93]), in our tests LBP did not show promising defect detection accuracy. The perfor-
mance of 256-feature LBP feature vector,}{;), was limited to 78.93% on the KNN and
84.18% on the BPNN classifiers. Again, to find whether or not any improvement in classifica-
tion performance was obtainable via reduction of the feature space dimensionality (particularly
for the BPNN classifier), a PCA analysis was employed=ggs. None of the PCA feature
vectors attempted with different numbers of featuresyheren € {16, 26, 36, ..., 246}, could
improve the classification performance dfds, stayed our best LBP feature vector. Table 4.2

in columns 4 and 5 represents the LBP defect detection performance which was better than tr

ordinary histogram, however was not adequate for a defect detection application.

4.3.3 Co-occurrence Matrices

Grey level co-occurrence matrices are one of the oldest, and still one of the most commonly
used, texture modelling and classification algorithms. Fan-grey level image x, grey level

co-occurrence matrixPg g(X) is an x n matrix which contains the pairwise relations between
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Histogram LBP

CAxnn | CAgpry ||| CAkny | CAgprN

Tile Type | Fyis Fiist Fiep Fiep
ARDES || 75.00% | 72.35% 65.00% | 77.50%
ARWIN | 68.75% | 79.25% 86.25% | 97.19%
CASA || 62.86% | 78.00% 82.00% | 94.29%
DJZAM || 75.00% | 76.75% 80.00% | 83.75%
DJZUL | 55.00% | 71.45% 75.00% | 73.75%
KIS 55.00% | 71.25% 75.00% | 77.50%
LRSIDE || 72.00% | 84.2% 80.00% | 97.00%
PRODO| 72.50% | 81.32% 85.00% | 83.75%
PRODT || 72.50% | 80.34% 80.00% | 77.50%
SLTNP || 85.00% | 81.75% 80.00% | 77.50%
SYM 55.00% | 76.25% 80.00% | 86.25%
Average || 68.06% | 77.54% 78.93% | 84.18%
Variance || 0.0098 | 0.0019 0.0033 | 0.0073

Table 4.2:Defect detection results using ordinary histograms and LBP methods.

pixel intensities for a particular distande and orientatior®. Each elementi, j) of ®, shows
how many pixel pairs with respective intensitieend j exist in the image considering a certain

distanced, and orientationf. ® is therefore a function of three parameters:

The co-occurrence matrices can reveal certain properties of the texture. For example, if large
values have gathered around diagonalsbgf. (x), the texturex is relatively coarse, regard-
ing the distanced [116]. Various combinations of parametatsand 6 can generate many
different GLCM matrices for a single image. It is also apparent that GLCM matrices cannot

be directly used as texture representatives. Therefore, to obtain the texture’s feature vecto

Byo(x) = GLCM(xd,6)
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a few pseudo-standard functions will usually be applied on the GLCM matrices. Haedlick
al [44] introduced 14 pseudo-standard GLCM functions. Amongst them, we chose 6 popular

functions:

( f1 = Maximum = Max j(P(i, ]))
fo = Energy =3, ; ®(i, j)?
f3= Entropy = — Zi,j CD(I, J)lOg(cD(l, J))

i—1) (i—ky) (i, )
0igj

(4.5)

f4 = Correlation =Yy ; (

fs = Inverse Difference Moment = ; W{j)zcb(i, j)

fe = Inertia = y; (i — j)2@(i, j)

Each proposed function represents certain properties of the texture. Maximum and Efergy, (
and f,), are basic statistics @b. Entropy, f3, measures the texture homogeneity. Correlation
function, f4, is image linearity metric. Linear directional structures in direcarsult in large
correlation values in that direction. This can also measure the image coarseness. Inverse Di
ference Moment (IDM) {5, measures the extent to which the same tones tend to be neighbours.
Inertia (or Contrast)fg, is a texture dissimilarity measure. The reason behind this selection is,
while f; and f, are basic descriptors @b, we believe thatf; to fg are all implicitly defect
sensitive. Homogeneity, correlation, linearity, and dissimilarity all may change when a flaw

OcCcurs.

We considered four directiors= {0°,45°,90°,135’} in all co-occurrence tests. To find out
the nearly optimum distana® we assumed = 1 as a basic distance and tried two distance

sets ofcloserandfarther distances which built up the first two GLCM feature vectors:

{ Fldioyw={fi(®ae)},ic{l..6}, de{1,23 45} 6¢c{0,45,90,135} o

Féom={fi(®ap)},i€{1,..,6}, de {1,20,30,40,50}, 6 € {C,45,90°,135}
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Each feature vector contained 120 features of 4 directions, 5 distances, and 6 functions. Repr
sented in the first two columns of Tables 4.3 and 4.4, the CA of these two vectors on both classi
fiers suggest that shorter distances are more effective than farther ones (72.10% vs. 68.93% f
KNN and 82.29% vs. 80.91% for BPNN). The accuracy however, is still lower than LBP. Next
we attempted to improve the GLCM performance using 3 closer-to-falbigescale distances

in a reasonable range df= {1---49}. This resulted in four more GLCM feature vectors as:

Féiem= {fi(®ap)}, d€ {1,4,16}

Féiom= {fi(®ap)} , d € {1,5,25} 7
Féiem= {fi(®ap)} , d € {1,6,36}

F (Pa6)

Sem={fi(Pap)}, de{1,7,49}

For all vectors,i € {1,...,6} and 6 € {0°,45°,90°,135°}, thus eacHog-scale feature vector
comprised 72 features. The reason underpinning the selection lfgtseale distances is that

in natural textures the correlation between two pixels diminishes as their distance is growing.
Results in Tables 4.3 and 4.4 suggest that the performanog-aicale distances are far better
than that of the only-close and only-far, and improve on the LBP algorithm. The best feature
vector was 3, o\, With d = {1,6,36}, achieving 80.45% and 95.07% correct classification on

KNN and BPNN respectively.

Finding the optimum subset of co-occurrence functions is another problem to be solved. Stran
and Taxt [114] employed Energy), Inertia (fg), Correlation ¢4) and Entropy €3). Clausi

[24] in his detailed study compared several parameters of the GLCM algorithm. He concluded
that a combination of Inertiaf§), Entropy (f3) and Correlation {z) provides the highest classi-
fication accuracy on average. He also believed that utilising all the functions will not increase
the performance due to their considerable redundancy. We tried a put-one-aside scheme (
greedy scheme [123]) to find out if elimination of any function can increase (or at least keep) the

accuracy of the 6-functioR 3 . We put functions aside one by one and repeated the whole
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classification procedure for the new 5-function feature vector. Elimination of three functions
Entropy (f3), IDM ( f5), and Inertia €g) increased the performance marginally. Amongst them,
IDM elimination was the most effective one with 0.27% and 0.18% improvement on KNN
and BPNN (i.e CAxnn=80.72% andCAppnn=95.25% respectively). The resulting feature
vector is the 5-function, 60-featufe, .. The put-one-aside scheme was then repeated once
again, and this time only elimination of Entropfsj improved the performance to 81.08% and
97.09% for the 4-function, 48-featufe® ., This is indeed a moderate performance for the
KNN and a promising one for the BPNN classifier. No advantage was gained by eliminating

any more functions. Tables 4.3 and 4.4 show the results of these GLCM classification tests.

Distance Optimisation Function Optimisation

Tile Type || Féiom | Féiem | Féiom | Féiem | Féiem | Féiem || Fdiom Féem
ARDES || 83.33%| 45.00% | 80.00% | 80.00% | 80.00%| 80.00%/| 83.33% 80.00%
ARWIN || 70.00% | 70.63% | 88.75% | 85.00%| 85.00% | 85.00%| 85.00% 86.25%
CASA 70.14%| 63.19% | 68.57%| 68.57%| 71.43%| 64.29%| 71.43% 67.14%

DJZAM || 82.50%| 87.50% | 90.00% | 90.00%| 100% | 90.00%/| 90.00% 100%
DJZUL || 92.50% | 65.00% | 95.00% | 95.00% | 95.00%| 95.00%/| 90.00% 95.00%
KIS 52.50% | 59.82% | 80.00% | 85.00%| 80.00%| 85.00%)| 58.33% 80.00%
LRSIDE || 94.60% | 90.34% | 96.00% | 96.00% | 96.00%| 90.34%/| 90.34% 96.00%
PRODO || 80.65% | 76.79% | 70.00%| 77.50% | 75.00%| 55.00%/| 76.19% 62.50%
PRODT || 47.50%| 52.50% | 42.50% | 62.50% | 57.50%| 82.50%/| 90.48% 80.00%
SLTNP || 53.63%| 81.79% | 90.00% | 90.00% | 90.00%| 90.00%/| 92.86% 90.00%
SYM 65.77% | 65.71% | 45.00% | 50.00%| 55.00%| 55.00%| 60.00% 55.00%
Average || 72.10%| 68.93% | 76.89%)| 79.96%| 80.45%| 79.28%| 80.72% 81.08%
Variance || 0.0261 | 0.02018| 0.0351| 0.0207| 0.0223| 0.0208| 0.0157 0.0210

Table 4.3:Defect detection results using GLCM and the KNN classifier.

To conclude, optimised GLCM features performed effectively in this defect detection experi-

ment. However, it is also of importance to select a well prepared set of distances and function:
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Distance Optimisation Function Optimisation

Tile Type || Féiom | Féem | Féiom | Féiom | Féem | Féiem || Féiom Féiom
ARDES || 91.67%| 100% | 95.00%| 90.00%| 100% | 91.25%| 100% 100%
ARWIN || 85.00% | 82.50% | 97.50%| 100% | 98.75%/ 95.63%|| 99.38% 94.06%

CASA 77.78%)| 77.78% | 98.93%| 95.71%| 100% | 97.86%| 97.22% 96.43%
DJZAM 100% | 100% | 95.00%| 100% | 100% | 100% || 85.00% 100%
DJZUL || 90.00%| 100% | 92.50%| 85.00% | 80.00%| 95.00%/( 90.00% 90.00%

KIS 75.00%| 33.33%| 91.25%| 100% | 100% | 90.00%| 89.88% 100%

LRSIDE 100% | 95.45%| 90.00% | 96.00% | 92.00% | 90.00%|| 95.64% 90.00%
PRODO || 66.67%| 76.19%| 100% | 95.63%/| 95.63%/| 100% || 95.63% 97.50%
PRODT || 76.19% | 61.90% | 90.63% | 95.00%| 95.00%| 97.50%/| 100% 100%
SLTNP || 92.86% | 92.86% | 86.25%| 95.00% | 95.00%| 90.00%| 100% 100%

SYM 50.00%| 70.00%| 100% | 85.00% 85.00%| 100% || 95.00% 100%

Average || 82.29%)| 80.91%| 93.88%| 94.70%| 95.07%| 94.81%| 95.25% 97.09%
Variance || 0.0229 | 0.0422| 0.0017| 0.0032| 0.0047| 0.0015| 0.0025 0.0016

Table 4.4:Defect detection results using GLCM and the BPNN classifier.

to obtain promising resultd.og-scale distances (e.d.= {1, 6,36}), and four functions: Max-
imum, Energy, Correlation and Inertia, provided the best results in our experiments. An appro-
priatelog-scale distance set represents the correlation information of pixels in short, medium,
and long distances (in terms of the image size) all together. The put-one-aside function selec
tion method, allows us to find the optimum subset of GLCM functions. In our experiments, a
combination of these optimisations was effective in improving the GLCM performance. The
most important disadvantages of GLCM are their relatively high computation costs (time com-
parison will be presented later in Section 4.6) and its not very promising KNN performance
(CAxnN=81.08%).
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4.3.4 Gabor Filters

We wish to investigate whether it is possible to implement an efficient Gabor-based MSMD
algorithm for texture abnormality detection. Many studies have reported high performance of
Gabor filters in texture classification. Gabor filters also illustrated promising results in our
texture classification experiments in Chapter 3. In defect detection tests, we again set th
directional resolution td\@ = 45°, and selected one octave (dyadic) central frequencies and
half power bandwidth. The first Gabor feature set used, was extracted from a 12-filter bank
in lower central frequencies o[f TH QM QM} Qm was the maximum frequency in spatial
frequency domain (see Section 2.3.2 for details). 12 mean filter responses built the first featur

vectorFGabor

Qm Qu Qm

Fépor= {HGup)} , wE {16 382 —1} , 8€{0°,45,90°,135'} (4.8)

As Table 4.5 shows, th& 2, . performance was not very high and limited to 65.17% for
the KNN classifier and 70.46% for BPNN on average. By involving higher central frequen-

cies for further experiments, we then formed the second feature végfgy,,, comprising

or
filter responses a*, 2 2u1 and a third feature vectoF$,, ., with central frequencies
Ou ©
{TM7 TM, QM}
{Féabor: {MGuo)} , we{F, G, P}, 0€{0°,45,90°,135} (4.9)

Fébor= {HGup)} , we{%, Wy}, 6€{0°,45,90°,135}

The classification performance then increased facnn=82.10% andCAgpnn=88.57% for
Fé.por 2nd 84.39% and 89.21% fét3,, . Results obtained from other similar central fre-
quency arrangements, such g, 3 39u1 or even non-dyadic settinge, & 3uy

3
were lower thark-S,,, .-

Next, further accuracy was obtained by involving more filter response statistiegjp,,
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which contained mean, standard deviation and maximum value of filter responses (36 features

Qm Qm

Féanor= {H(Gwo), 0(Gue), maxGue)} , we {1, 1 Qu}, B€ {0°,45',90°,135)

(4.10)

F&.por Provided the best classification accuracy of 84.87% with KNN and 91.22% with BPNN,
(i.e. respectively 0.47% and 2.01% better t@bor)- Table 4.5 illustrates the overall perfor-

mance of our Gabor filters in tile defect detection.

Using either more frequency bands (e.g. 5 bafigs, 4, . 2u 39u1 or smaller directional

definition (e.g.A6 = 30° or 225°) or more statistics (e.g. skewness and kurtosis), did not
increase the overall CA. Although for some types of tiles using 5 frequency bands increasec
the accuracy (e.g. almost 5% more accuracy on KNN on AREES, in general we either
must employ the better three central frequencielééjbOr and FG"'abor, or apply a type-by-type

frequency optimisation scheme.

Results showed that in general having three rows of filters in the low, middle and high frequen-
cies were essential and sufficient for successful defect detection, and in contrast to some oth
applications higher frequency filters were of importance (see Table 4.5 and cofpgye

with for instanceF 2,,,.). Optimisations successfully improved the Gabor filter performance
and added almost 20% to its classification accuracy on both classifiers (i.e. from 65.17% tc
84.87% on KNN and from 70.46% to 91.22% on BPNN). Also, we illustrated that finer di-
rectional definition or higher order moments did not necessarily increase the performance o
a Gabor-based texture defect detector. This suggested that applied directions, central freque
cies, and statistics could sufficiently cover the features of normal and abnormal tiles. Gaboi
filters accuracy on KNN is 3.79% better than GLCM, on the BPNN classifier however, it is on

average 5.87% less accurate than GLCM.
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CAxNN CAgpnN

Tile Type | Féapor | Féavor | Féabor | Féavor || Fdavor | Favor | Féabor | Féabor
ARDES || 89.58% | 80.00% | 80.00% | 85.00%/| 83.33%/| 87.50%| 90.00%]| 85.00%
ARWIN || 45.00% | 85.00% | 86.25% | 85.00% | 48.13%| 97.81%| 91.25%| 98.75%
CASA | 58.33% | 98.57%| 98.57% | 98.57% | 63.19%| 92.86%| 98.57%| 97.14%
DJZAM || 62.50% | 70.00% | 45.00% | 75.00%| 72.50%| 62.50% 60.00%| 75.00%
DJZUL | 65.00% | 60.00% | 85.00% | 65.00% | 65.00%| 60.00% | 85.00%| 85.00%

KIS 86.31%| 100% | 100% | 100% | 82.50%/| 73.75%)]| 85.00%| 100%

LRSIDE || 71.78% | 92.00% | 96.00%| 100% || 65.44%| 93.00%/| 94.00%| 100%
PRODO|| 54.76% | 95.00% | 77.50% | 95.00% | 72.80%| 100% | 92.50%| 85.00%
PRODT || 57.44% | 77.50%| 95.00% | 70.00% | 57.26%/| 95.63%/ 90.00%| 90.00%
SLTNP || 38.69% | 70.00% | 85.00% | 75.00% | 53.87%| 87.50% | 90.00%| 97.50%
SYM 87.50% | 75.00% | 80.00% | 85.00%/| 90.00%/| 87.50%| 90.00%/| 90.00%
Average || 65.17%| 82.10%| 84.39%| 84.87%| 70.46%)| 88.57%| 89.21%| 91.22%
Variance || 0.0291| 0.0172| 0.0233| 0.0156| 0.0197| 0.0127| 0.0112| 0.0067

Table 4.5:Defect detection results using Gabor filters.

4.3.5 Directional Walsh-Hadamard Transform

The modified directional Walsh-Hadamard transform was the next feature extraction methoc
tested. DWHT showed high speed and accuracy in outdoor scene and VisTex classification tes
in Chapter 3. So itis also of interest to implement and evaluate the proposed DWHT method in
tile defect detection. DWHT applies rotated (i.e. rearranged) input matrices and a 1D row-wise
sequence analysis to encapsulate a MSMD texture analysis. Figure 4.3 ddpids iitile,

its 45° rotated version, their 1D Hadamard transforms, and their average of transform matrices
columns. Angular decomposition is completed by adding two other rotated input matrices (90
and 135) and scale decomposition is carried out by individual analysis of different sequency

bands (i.e. separated vertical bands at the transform matrix). Figures 4.3(c) and (d) show th

103




separation of three and four individual sequency bands applied in these experiments. Statistic

of these bands eventually build the DWHT feature vectors.
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Figure 4.3:A DJZAMtile, (a), its 45 rearranged version, (b), their 1D Hadamard transforms, (c) and
(d), and the average of transform matrices columns, (e) and (f). Three and four separated sequer

bands are also shown in (c) and (d).

The first feature vector experimented wiffy, 41, contained the mean values of 4 directions
and 4 sequency bands (column-wise quarters of the transform matrix). Next, we decreased tf
sequency bands into three (Figure 4.3(c)) but concurrently added maximum value and standat
deviation of the sequency bands to the second feature végigy,,, to see which one was
more effective on the defect detection performance. The third feature &ty comprised

4 sequency bands and 3 statistics all together.
I:D:LWHT = {“(Hbﬁ) ) be {O_ %a % - %a % - %a
Févnut = {U(Hbe) , 0(Hbp) , Max(Hue)}, be {0—3,7
Fawvur = {M(Hbp) , 0(Hbp) , Max(Hpe)}, be {0— 7,7 —

Nlw
|
H
-

(4.11)

For all DWHT feature vectord) € {0°,45°,90°,135}. The number of features was 16 for
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Fawnt 36 for F&y T, and 48 forF3, ;1 As Table 4.6 illustrates, the defect detection per-
formance ofF 3, 1 is 74.58% and 89.15% on KNN and BPNN. Involving 2 more statistics
(o andMax), added 1.55% t€ Axnn and only 0.32% taCAgpny. The best DWHT perfor-
mance was obtained Wys3,, 1 Which outperformed 3, 4+ at 82.62% and 95.58% accuracy

for KNN and BPNN. It suggests that an individual higher sequency band and more statistics
are both necessary for higher performance DWHT-based defect detection. Compared to th
best Gabor filter results, DWHT performance was slightly lower on the KNN (82.62% vs.
84.87%), however it was considerably higher on the BPNN classifier (95.58% vs. 91.22%).
DWHT performance was also 1.51% lower than GLCM on BPNN, but 1.54% higher on the

KNN classifier.

CAKNN CAgpnnN

Tile Type || Fownr | Féwur | Fownr || Fowwr | Fdwnr | Fownr
ARDES || 87.50% | 87.50%| 85.00% | 91.15% | 93.42%| 97.50%
ARWIN || 78.13% | 79.38% | 86.25% | 99.69% | 99.84%| 100%

CASA 86.81% | 92.36% | 88.57% | 98.09% | 97.57%| 99.64%
DJZAM || 85.00% | 85.00% | 85.00% | 82.50% | 88.57%| 87.50%
DJZUL 50.00% | 50.00% | 55.00% | 69.38% | 73.75%| 87.50%

KIS 67.56% | 63.99%| 100% | 95.61% | 93.68%| 93.75%

LRSIDE | 90.06% | 88.92% | 94.00% || 94.88% | 91.12%| 98.00%
PRODO || 79.23% | 81.61% | 90.00% || 88.04% | 91.73%| 100%
PRODT || 65.00% | 61.01%| 70.00% | 79.87%| 87.50%| 87.50%
SLTNP || 71.13% | 85.12%| 90.00% || 96.43% | 79.54%| 100%

SYM 60.00% | 62.50%| 65.00% | 85.00% | 87.50%| 100%

Average || 74.58% | 76.13%| 82.62%| 89.15% 89.47%| 95.58%
Variance || 0.0167 | 0.0200| 0.0183 | 0.0086| 0.0057| 0.0030

Table 4.6:Defect detection results using DWHT features.
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4.3.6 Discrete Cosine Transform

DCT is a commonly used transform in image and texture processing, most seen in image com
pression and coding applications [125]. Its characteristics are rather similar with the FFT (it
also uses sinusoidal kernels), and Hadamard (it also is a real transform). There were two goa
in our DCT experiments. Firstly, to measure its texture defect detection performance, and sec
ondly, and more importantly, to copy the DWHT idea in a directional DCT, called DDCT, and
compare its performance with the ordinary DCT. A 2-dimensional DCT is defined as:

M—1N-1
C(A) = \/%T(u)T(v) % Z}A(x,y)cos((zx;r'\j)un)cos((Zszer)Vn) (4.12)
X= y:

whereAis aM x N image, and

1 ifx=0
T(x) = { vz X (4.13)
1 otherwise

The DCT can also be represented in matrix form. Figure 4.4 illustrates<ec684DCT matrix.

Although smoother, it is comparable with the Hadamard transform matrix of Figure 3.8(b).

Figure 4.4:A 64 x 64 DCT matrix. Although smoother, it is comparable with thex684 SOH matrix
in Figure 3.8(b), Section 3.3.2.

DCT features were statistics of the transform matrix. The first DCT feature veegpr,,
contained the maximum, mean and standard deviatidh(8) (3 features). Its performance
was relatively low and limited to 62.51% with the KNN and 73.27% with the BPNN classifier
(see Table 4.7). Next we tried a multi-band scheme on the DCT transform matrix (no rotation).

This F2-; feature vector comprised three statistics of four separated bands:

11 11 33

Fier = {M(Co) , o(Cy) , max(Cy)} , be{0-7

13 22 a4 W @19
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The multi-band, 12-featurE 2.1 showed better accuracy and achieved 77.48% and 89.84%

correct classification respectively with KNN and BPNN.

We repeated the DWHT procedure after replacing the Hadamard matrix with a DCT one, re-
sulting in a directional DCT. A DDCT feature vectdfin.t, was extracted next with three

statistics, four bands, and four directions (48 features in total).

NN S)

—1}, 8€{0°,45,90°,135 }
(4.15)

8
4’

NI =

1
2’

N

)

i

Foocr = {M(Che), 0(Che), maxCpe)}, be {0

Faocr performed better than both DCT feature vectors, with 82.15% correct classification
for the KNN and 95.14% for the BPNN classifier. The 4.67% and 5.30% respective difference
between DCT and DDCT performances showed the advantage of DDCT in texture abnormality
detection (see Table 4.7). Meanwhile, DDCT outcomes are quite close, although marginally
behind the DWHTSs. In fact DWHT is 0.47% and 0.44% better than DDCT on the KNN and the

BPNN classifiers. Given the basic similarity between DCT and WHT, such close performances
are expected. However, it also suggests that in comparison to WHT, in larger size transformn
domain processes, DCT loses its advantages, whereas reportedly it outperforms WHT in spati

domain texture processing using smaller size filters (see Section 2.3.2 and also [118]).

4.3.7 Eigenfiltering

As mentioned before, in texture processing the first order statistics (e.g. histograms) are nc
sufficient, but second (or higher) order statistics are necessary. Basically, a texture may b
processed either in the spatial domain, where, for instance, co-occurrence matrices can expre
pixel relations, or in the spatial frequency domain, where, for instance, directional wedge-ring
or Gabor filters can be employed. The question is however, which method would be the optima

one.
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Figure 4.5:A DJZAMtile (a), its 45 rearranged version (b), their 1D DCT transforms ((c) and (d)),

and average of transform matrices columns ((e) and (f))

Generally, if a local approach instead of a global approach is of interest,Shadd. 2" order

statistics are sufficient for modelling a texture, then co-occurrence matrices will be powerful
analytical tools for that texture. However, this method is computationally expensive. So, if
we are looking for a more condensed but still powerful representation of pixel neighbourhood

analysis, PCA and eigenfilters are a good alternative [2, 33].

Using n x n sliding windows,n x n local neighbourhoods of the image can be extracted and
rearranged as different observations of data intoan® matrix (k is the number of sliding
windows). Theneighbourhood sizes typically in the rangen = 3,5, 7. The covariance matrix

is then computed and the eigenvectors and eigenvalues are obtained:
C(x) = E[(x— ) (X— 1] (4.16)

(C(X) = Adl)e=0 (4.17)

where,y is the mean valud, is the unity matrix\ is the eigenvalue anélis the eigenvector
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CAxNN CAppnN

Tile Type || Fger | Fooer | Foer | Foper
ARDES || 50.00% | 85.00% /| 80.00% | 90.00%
ARWIN || 88.75% | 91.25%| 100% | 100%
CASA | 80.00% | 77.14%| 95.71% | 98.57%
DJZAM || 60.00% | 85.00% | 75.00% | 95.00%
DJZUL || 65.00% | 50.00% | 85.00% | 85.00%

KIS 100% | 100% 100% | 100%
LRSIDE || 96.00% | 96.00% | 100% | 98.00%
PRODO|| 72.50% | 77.50% | 92.50% | 95.00%
PRODT | 80.00% | 77.50% | 90.00% | 95.00%
SLTNP || 90.00% | 75.00% | 75.00% | 90.00%

SYM 70.00% | 80.00%/| 95.00%| 100%
Average || 77.48% | 82.15%]| 89.84%)| 95.14%
Variance || 0.0244 | 0.0214 | 0.0094 | 0.0025

Table 4.7:Defect detection results using DCT and DDCT.

matrix. A nx nrearrangement of the eigenvectors could be interpreted as a bank of adaptet
filters of the same size, which optimally coveral n relations of the test image pixels. Detail

images can be obtained by 2D spatial domain convolution of the test image by the members o

the eigenfilter bank:

whereA is the input image amﬂ:iA and DiA are itsit" eigenfilter and detail image. So, the
process provides? detail images of each input [2, 98]. (See Figure 4.7). Assuming<a

n neighbourhood of an image as different observations of adjacent data, Ade [2] shows that «
n x n neighbourhood covariance is very similar to Haralick’s Correlatify) function:

(i =) () — 1) Pap(i, j)
0i0j

DA=AQF?, 1<i<nr?

Y
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wherey; andy; are means of the rows and columns, anénda; are the standard deviations

of the rows and columns. This is applied on an ordinary co-occurrence matrix of the corre-
sponding distanceshq g [44]. In fact an x n neighbourhood covariance covers akal <n
distances. As Figure 4.6 exhibits, a«3 neighbourhood admits 13 different spatial relation-
ships between a pixel pair. All of those relationships are reflected in eigenfilters. Therefore,
together alin? eigenfilters convey the proper structure of the original texture with respect to a
N x n basic structure. Ordered by their eigenvalues, Figure 4.7(b) exhiki®& &igenfilters of

a given tile, and show that apart from the first filter which is a simple ‘weighted average’, the

eigenfilter bank comprises mostly of gradient filters which are not rotation invariant.

b _
T .____“ a fcd k g mk
_a__b_cl M s f .T S a b e ¢ d 1 g m
e

T a1/ g | n a je e il g
1 ™ a4 b focd k
S L | e Cov= a b e ¢ d

i - .
LI L JAEN a j e ¢
o 1 m a b f
s \ a &
a

Figure 4.6:Possible relations between pixel pairs in 3x3 patches (left) and the covariance matrix (right).

(From [2]).

The filters’ orthogonality is of importance as well, because it builds up uncorrelated detail
images ( i.e. filter outputs) ordered by their role in building the original image (i.e. eigenval-
ues). These together describe and can reconstruct the image studied. Next, we need to u
those filter outputs as features of the texture, either by measuring certain statistics (typically
variance, which can be assumed as a normalised energy measure) and carry out some typi
classification, or apply reconstruction/synthesis processes. If results are not satisfactory, w
move towards larger neighbourhood sizBk ) or try different window shapes (e.g. cross, di-
amond, stripe, etc)[44]. In Figure 4.7, the relation between an eigenfilter and its detail images

(Figure 4.7(b) and (c)), and the coverage of the major part of the image information by the first
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eigenfilters are notable.

We started the experiments with the smaller neighbourhood\iz8 x 3. The first eigenfilter
feature vectorFZr, contained mean values of 9 detail images. The classification accuracy
wasCAxgNN=77.59% andCAgpnn=91.63% which was considerable for 9 features. Then the
standard deviatioo(D;j) was inserted to the feature vector. $@- included 18 features per

image.

1 _ X i =
{,:EF_ {uDi)}, ie{1---9}, N =3x3 (4.20)

F2 = {uDi),o(Dj)}, i€{1---9}, N =3x3

The classification performance usiﬁéF increased t€ Axnn=80.87% andC Agpnn=94.21%
respectively. Adding the maximum, the minimum, or higher order moments did not improve

the performance further.

Larger neighbourhood sizes were tried next, where the relations between farther pixels wer
also captured, hence improved detection rates were expected. The first series of experimer
contained\ =5x 5, 7x 7, and 9x 9. The results suggested that the maximum accuracies of
CAxnNN=85.30% andCAgpnn=95.7% were provided b =7 x 7. Table 4.8 represents these

tests results.
Fé- = {W(Di),0(D)}, i€ {1---25, N =5x5

Fée = {H(Di),a(D)}, i€{1--49}, N =7x7 (4.21)
FS = {WDi),0(D)}, ie{1l---81}, N =9x9

We found that the results peaked at 7 and continuously decreased for sizes greater than that.

This can be reasoned by the lack of inter-pixel correlation in farther distances.

Also, another problem can be the ordering of filters. We typically rely on the eigenvalues for
ordering and matching the filters and detail images. It will be shown later in Chapter 5 that this
can be problematic, in particular for larger neighbourhood sizes. If we compare eigenfiltering

and GLCM results, we will see that the best GLCM performance is achieved by the distance
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Figure 4.7:Filtering procedure for an ARDES tile (a), its33 eigenfilters (b) and detail images (c).

To increase the visibility, all filters and detail images have been equalised.

setd = {1,6,36}. The first two distances,,b are covered by % 7 eigenfilters, the farther
distance at 36 however, is very difficult to be covered. Even a quite sni\lket3x 13 would

be impractical, since handling of 2313 x 2 = 338 features is not easy and the computing
time of 13x 13 eigenfiltering procedure is also almost 78 times longer thar33 Although

on average the 98-featuFgl- is the most accurate feature vector, the optininis different
from type to type. For instance, considering both classifiersl. RBIDE the 5x 5 eigenfilter

is the most accurate one, while fBRWIN3 x 3 is the best. Therefore, if it is practical, filter

size optimisation for each tile type can increase the defect detection performance.

Moreover, it was attempted to find out which members of the eigenfilter bank were the most
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CAKNN CAgpnN

Tile Type | Fg& Fer Fer Fer Fée Fer Fer Fer

ARDES || 70.00% | 65.00% | 80.00%/| 80.00% | 100% | 100% | 98.75%| 90.00%

ARWIN || 98.75% | 96.25% | 96.25% | 96.25% || 96.88% 86.88%| 96.56% | 97.50%
CASA || 74.29%| 82.86% | 98.57% | 82.86% | 97.50%| 96.43%| 97.50%| 99.64%
DJZAM || 85.00% | 75.00% | 80.00% | 85.00%| 100% | 80.00%| 93.75%| 91.25%

DJZUL | 55.00% | 70.00% | 80.00% | 70.00%| 82.50%| 100% | 96.25%| 100%
KIS 100% | 90.00%| 95.00% | 90.00% | 100% | 87.50%| 95.00%  93.75%
LRSIDE || 94.00% | 98.00% | 96.00% | 94.00%| 100% | 100% | 93.00%  86.50%
PRODO|| 85.00% | 95.00%| 100% | 90.00%/| 92.50%| 100% | 93.75%| 99.38%
PRODT || 77.50% | 85.00% | 82.50% | 77.50%/| 90.63%/| 88.75%| 98.13%| 99.38%
SLTNP || 75.00%| 90.00% | 60.00% | 75.00%| 100% | 100% | 90.00%  87.50%
SYM 75.00% | 85.00% | 70.00%| 95.00%/| 76.25%| 100% | 100% | 82.50%

Average || 80.87% | 84.74%| 85.30%| 85.06%)| 94.21% 94.51%| 95.70%| 93.40%
Variance || 0.0180 | 0.0117| 0.0169| 0.0077| 0.0066| 0.0053| 0.0009| 0.0039

Table 4.8:Defect detection results using eigenfiltefd. =3 x 3 to N =9 x 9 filter response statistics

were used as features.

effective in the abnormality detection process. Table 4.9 represents the filter-wise classificatior
performance of % 3 eigenfilter bank on the KNN classifier. This table clearly shows that on
average the first gradient filters (here: F2, F3, F4) were the most effective. The reason ca
be the dominant role of these filters in texture determination. They convey the most important
characteristics of a texture, compared to the low pass filter (F1) or the last gradient filters
(i.e. bar detectors, edge detectors and so on) with smaller eigenvalues (F5 onward). A simila
test onN =5 x 5 filters also illustrated that the most effective filters are F2 and F4, however
the difference between their performance was less than the difference betwefiltrs’

performances.
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Tile Type F1 F2 F3 F4 F5 F6 F7 F8 F9

ARDES || 60.00% | 90.00% | 60.00% | 75.00% | 40.00% | 50.00% | 90.00% | 80.00% | 70.00%
ARWIN || 80.00% | 77.50% | 78.75% | 98.75% | 72.50% | 62.50% | 71.25% | 47.50% | 65.00%
CASA || 34.29% | 62.86% | 82.86% | 64.29% | 48.57% | 48.57% | 71.43% | 74.29% | 61.43%
DJZAM || 75.00% | 60.00% | 75.00% | 40.00% | 75.00% | 45.00% | 70.00% | 55.00% | 80.00%
DJZUL || 55.00% | 50.00% | 75.00% | 75.00% | 45.00% | 50.00% | 75.00% | 60.00% | 60.00%

KIS 40.00% | 100% | 50.00% | 95.00% | 100% | 60.00% | 50.00% | 30.00% | 60.00%
LRSIDE || 72.00%| 100% | 80.00% | 98.00% | 98.00% | 92.00% | 40.00% | 50.00% | 58.00%
PRODO || 77.50% | 92.50% | 80.00% | 80.00% | 70.00% | 92.50% | 85.00% | 77.50% | 97.50%
PRODT || 65.00% | 85.00% | 65.00% | 92.50% | 50.00% | 70.00% | 70.00% | 70.00% | 75.00%
SLTNP || 80.00% | 70.00% | 60.00% | 70.00% | 60.00% | 45.00% | 75.00% | 55.00% | 50.00%

SYM 30.00% | 80.00% | 65.00% | 80.00% | 70.00% | 50.00% | 80.00% | 75.00% | 80.00%

Average || 63.88% | 78.79% | 70.66% | 78.85% | 65.9% | 61.557% | 69.77% | 59.93% | 67.69%
Variance || 0.0348 | 0.0277 | 0.0114 | 0.0304 | 0.0405 | 0.0306 | 0.0207 | 0.0242 | 0.0180

Table 4.9:Comparison between different filters performance fora3eigenfilter bank.

4.4 Gabor Composition Method

Up to this stage, a few of the applied algorithms have performed well on the BPNN-based defec
detection tests (e.g. GLCM witbAgpnn=97.09%). The KNN performance meanwhile was
limited to at mostCA gxnn=85.30% for the % 7 eigenfilter feature vector. Given that KNN

is more practical than BPNN in some industrial applications due to its much simpler training
phase, we propose a new and advanced feature extraction method mainly to increase the KN
performance. This method, callégabor Compositio{GC), is based on a combination of

Gabor filtering and GLCM.

Major studies toward computing texture components (or more general, image components) ca
be divided into either discriminative or generative models. In discriminative models, a pyramid

of filters with various scales and orientations is convolved with the original image, then for
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each pixel a feature vector of filter responses is configured. If there are some distinguishabl
repeated ‘structures’ in the image, it will be justifiable to believe the pixels’ feature vectors

must form clusters. Then, after finding the cluster centers via clustering (e.g. using k-means
or fuzzy c-means), image icons will be generatable by a pseudo-inverse transform applied ol
the centers. In generative models, an over-complete dictionary of local image bases and the
transforms is built up. Then each image would be ‘generated’ by linear superposition of some

bases (i.e. detail images) selected from the dictionary [123, 131].

Although both approaches can determine texture structures, they seem essentially different. |
a generative model, the image is reconstructed by superposition of a number of detail images
where the number of those detail images is usually tens of times smaller than the number o
pixels. In contrast in discriminative models, pixels are represented by feature vectors and the
number of features is usually tens of times larger than the number of pixels [131]. For example
DeBonet's flexible histogram is a discriminative model which replaces a pixel with its relatively

large ‘parent structure’ vector [11, 12].

4.4.1 The Method

The proposed GC method, attempts to build up a generative model of texture using a Gabo
decomposition/composition approach. Figure 4.8 illustrates the different stages of a genere
Gabor decomposition-based image feature extraction procedure. Firstly, the input image i
decomposed into detail images using an appropriate Gabor filter bank. Then we can either us
detail images’ features as the texture descriptors, or re-compose them to a new feature mz
using a composition functioh. In the first method, spectral histogram, detail images GLCMs,
or moments (as we carried out in previous Gabor filtering experiments) of the detail images
can be utilised. In the second method, the composition funckipahould be able to properly

amplify the desired attributes of the input image in the feature map. In this application, these
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desired attributes are possible abnormalitiealso should match the final analysis selected.

To analyse the feature map, we may compute its statistics, extract its histogram or, as we prc
pose here, apply a GLCM process on it. In particular, when the input image is a texture, the
feature map will eventually show texture appearance too, therefore in such cases the textur
oriented GLCM is a suitable approach. The promising defect detection performance of Gabo
filters (see Section 4.3.4), suggests that they can effectively decompose the texture energy (i.
information) into various frequency scales and directions (i.e. detail images). Then a proper
function (e.g. a quantisation function), is applied to reduce the redundancy and consequentl
dimensionality of data in detail images. In the GC algorithm, Gabor filtering and quantisation

together reduce the data dimensionality. If this dimensionality reduction succeeds to dampeit
the irrelevant and redundant information, e.g. the background texture, as well as to amplify
desired information, e.g. defects, the performance of GLCM as the final feature extractor im-

proves. Consequently a highly accurate classification is attainable.

The proposed GC algorithm traces the following steps to complete a texture feature extractiol

procedure:

e Pre-Gabor-processing: As before, only a simplex, = X— i is applied to compensate

possible luminance changes and increase the textural aspects of experiment.

e Gabor filtering: The Gabor filter bank which provided the best classification results
in previous testsfF &, ., (see Section 4.3.4), is used again. This filter bank consists of

twelve filters in three frequency bands and four directions:

Qm Q
Guo we{TM,7M,QM}, 6 € {0°,45°,90°,135°} (4.22)

e Post-Gabor-processing: We do not utilise typical post-processing steps such as blob-

detection [54, 103]. Instead, a quantisation algorithm is used which quantises a detalil
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l.'l"ll-.ll'q'l-r'-ln
Figure 4.8:Gabor-based decomposition/composition procedure.

image into a few (e.g. 2 to 4) different levels. Blob detection is useful as a non-linear
operator to highlight blobs in an image, whereas we employ GLCM analysis at the final
stage. Quantisation decreases the number of grey levels in a detail image, hence the fin
composed feature map is in fact a Gabor-filtered version of the input, presented in les:s

grey levels and GLCM then deals with fewer grey levels.

Before quantisation, a simple linear normalisation is carried out to bring the detail images

magnitude intd0, 1] range:
oo X min(x)
P~ max(x) — min(x)
wherex andxp are the original and normalised images. Then a quantisatioreguidis-
tant thresholds which generatesia+1) grey level detail image is implemented as:

(4.23)

FOR ke {0,1,---,n—1} IF ggx(i,j)gkinl THEN y(i,j) =k, Vi,j€{1,---,M} (4.24)

wherex is theM x M normalised input image angis the quantisedn(+ 1) grey level
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output and the operation is performed on all pixelx.of

e Composition: The easiest way to re-compose the quantised detail images and generatc
the feature map is simple addition. Meanwhile other fusion functions such as Bernoulli’s
rule of combination are also applicable [103]. Post-Gabor-processing and composition,

together build ouf” function.

e Feature extraction: As the final stage, the composed feature map is fed to a GLCM
algorithm to extract the texture’s features. Basically the GLCM feature extraction applied
is similar to that used previously in Section 4.3.3, however a different parameter set may

be applicable.

4.4.2 Justification

Similar ideas have been proposed before in the defect detection literature. For example, Sar
Sarraf and Goddard [103] employed a wavelet-based method for on-loom fabric defect detec
tion. They used a MSWAR wavelet for MSMD analysis of textured fabrics and generating
detail images, and a Bernoulli function for fusion of appropriately conditioned detail images.
Finally, they measured the local coarseness and global homogeneity of the test texture to dete
defects. Their method is capable of defect localisation too, and showed promising accuracy an
feasibility. In [71] Latif-Ametet alalso studied a combination of wavelets and GLCM for fab-

ric texture defect detection. Their method, caléedh-band domain co-occurrence matri¢es
contrast to typical spatial domain co-occurrence matrices), contained a wavelet transform ol
a texture, followed by applying four GLCM functions (hamely Entropy, Contrast, Energy and
IDM), on wavelet sub-bands (i.e. detail images). A Mahalanobis distance was then employec

to measure the abnormality of the test texture.

Figure 4.9 illustrates KIS tile and its artificially defected version (a thin bright vertical curve
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was added). Detail images of both textures and recomposed feature maps are also present
The defective region is clearly highlighted in the less-redundant recomposed feature map of th

defective tile in 4.9(f), which suggests the efficiency of the GC algorithm.

(a) (b)

(e)
Figure 4.9: A normal KIS tile (a), and its artificially defectlve version (b), their respective detail

images, (c) and (d), and feature maps, (e) and (f). Note the highlighted defective region in (f).

Figures 4.10 and 4.11 depict the GC method concepts, applied aiR@WiNand aSYMtile.

An original texture is filtered by a 12-filter Gabor filter bank resulting in corresponding detail
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images. Then the detail images are combined and the feature map is built. The feature ma
histogram (e) suggests a considerable reduction of grey levels compared to the original imag
histogram in (b), which means reduction of dimensionality in the feature space (e.g. smaller
co-occurrence matrices). In both examples the defective area is clearly visible in the featur

map which shows that along with detection of defects, GC is also capable of defect localisation

(d) (e)
Figure 4.10:An ARWINtile (a), with the histogram (b), detail images (c), generated feature map (d),

and the feature map histogram (e).
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(d) (e)
Figure 4.11:A SYMtile (a), with the histogram (b), detail images (c), generated feature map (d), and

the feature map histogram (e).

4.4.3 Experiments

For the first GC feature vectoF,GlC, we applied twelve filters, two quantisation thresholds
(QT) at QT= {0.33, 0.66}, and the simple composition-by-addition scheme. The result was

a 25-grey level feature map. In fact, usingilter filter bank andh quantisation thresholds,
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resulted in a(mx n)+1 grey level feature map:
0<y(i,j) <mxn (4.25)

wherey is the feature map. Then four GLCM matrices for four directioh® £ 45°), and one
distance § = 1) were computed. Next, we employed those four GLCM functions which had
provided the best classification accuracy in previous experiments (namely Maximum, Energy.
Correlation and Inertia, see Section 4.3.3) and extracted

B xdx functions= 4x1x4= 16

1
features of .

The results however, were not promising(@ gnn=76.10% andCAgpnn=88.75%. These
were obviously lower than the previous high performance methods (e.g. respectively 4.98%
and 8.34% lower than GLCM). To improve the performance, we then tried more quantisation
thresholds. There were four threshol@¥ = {0.2, 0.4, 0.6, 0.8}, and hence five levels, in
FGZC, which generated a 49-grey level feature map. Other parameters were kept silﬁiﬂ@: to
The Féc performance was considerably improvedat xnn=80.79% and’Agpnn=92.44%.
Although clearly better thaﬁéc, it was still outperformed by the GLCM method in Section
4.3.3.

Next we attempted to discard some detail images from the composition procedure. Each textur
has a certain energy distribution throughout its detail images after Gabor decomposition, de:
pending on its frequency and directional characteristics. Again, a certain defect is traceable ir
some detail images more than others, also depends on its characteristics. Therefore a well pr
pared exclusion of a few detail images prior to the composition can decrease the redundancy;,
well as highlight the defects further. To optimally select a subset of detail images, Latif-Amet
et al discarded a detail image if its energy (g Diz(u, v) ) was significantly lower than the
maximum detail image energy of the same scale. Regarding the diminished energy of highe

frequencies, it would not be reasonable to compare the energy of detail images of differen
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scales [71]. Meanwhile, Sari-Sarraf and Goddard considered the background texture attent
ation as the more important factor. Hence, if a given detail image had an energy decisively
higher than the others (of the same scale) but almost equal to that of a corresponding deta
image in a defect-free reference texture, it would be excluded from the composition process
They believed this rejected the detail images which were captured by the faultless backgroun

texture [103].

We, on the other hand, employ a different approach. The template subset of the TDS comprise
of defect-free reference samples of all tile types and does not overlap the normal subset (se
Table 4.1). For each type, the average of detail image energies is computed throughout th
template and preserved, to be compared later with detail image energies of the test tile. I
our algorithm, detail images with the closest energy to their counterpart template average ar
excluded from the composition process. A defect changes the energy of detail images, henc
by eliminating detail images with minimum distance to the ‘average of good textures’, we

increase the presence of defects, and reduce the background texture simultaneously. Using t
average energy of templates is easier than finding an appropriate image in the template set
the reference. We will refer to this problem once again and discuss it in more detail in Chapter

5 as a part of our novelty detection study.

We added the detail image exclusion scheme to the algorithm to obtain the third GC feature
vectorFZ.. This performed better than former GC feature vectors and achieved 85.9% anc
96.43% correct classification on KNN and BPNN respectively. This was a promising improve-
ment of 5.11% and 3.99% higher thzﬁgc. The optimum number of detail images to be
excluded was found by trial and error. We evaluated the performance of 1 to 6 detail images
exclusion (out of 12) and realised that the optimum result on average was obtained by exclu
sion of 3 detail images (i.e. using 9 detail images in composition). Therefore the composed
feature map contained>©94+ 1= 37 grey levels. Other parameters (e.g. thresholds, GLCM

functions and so on) were kept similarfg., soF 2. still had 16 features. Now, although the
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CAppnn Was marginally lower than the GLCM (just 0.66%), the GC method uEiég was
the best on the KNN classification with 0.6% higher accuracy. In fact, the GC algorithm using

FZ: attributes is one of the best defect detection algorithms developed in this study so far.

Next, addition was replaced with Bernoulli’s rule of combination (BRC) [130] as the composi-

tion function. The BRC is defined as:
S=1-(1—x1)(1—%)(1—xa) (4.26)

wherexy, X2, andxg are three input signals and is their Bernoulli combination. The equation

is expandable to more inputs. Compared to addition, BRC almost follows one of the inputs,
while others possess relatively low values, i.e. it roughly follows the maximum input. This
can be useful in our GC abnormality detection method where defects (in particular, defective
areas boundaries) usually generate high magnitudes in detail images. An ordinary additior
implies averaging, thus can diminish the presence of these high-magnitude defect boundarie
in the composed feature map [103, 130]. Figure 4.12 illustrates a simple representation of BR(
applied on two linear signals= —x andb = 0.5x+ 0.3. As the graphd shows, in contrary to
additionc, BRC almost follows the major input signal and is minimum while inputs are equal.

If we assume the larger parts of signal&ndb as possible defective regions, summateon
does not explicitly show that region of the sigrmwhile the BRC functiond, illustrates two

separate maximum points for possibly defective regions of bathdb.

The next GC feature vectoF, 3., which used BRC, reached the highest GC performance of
CAgnNn=88.35% andApgpnn=97.02%. It was in fact slightly lower than the best BPNN per-
formance presented by GLCM (97.09%), however, it was the most promising KNN classifica-
tion result that we obtained in our experiments, and was 3.05% better than the second best KNI
classification performed by eigenfiltering. Further efforts to improve the accuracy were not suc-
cessful. For instance, when in one test three GLCM distadeeq1,6,36} were employed,

the performance of 48-featui%§c decreased t€ Axnny=86.03% andCAgpnn=94.74% re-
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Figure 4.12Bernoulli’'s rule of combination applied on two simple signad$ &nd ). (c) isa+band
(d) their BRC ora+b—abh.

spectively. Also, a series of peaks-position based feature extraction algorithms that were ap
plied on the composed feature map failed to obtain adequate classification accuracy. Table

4.10 and 4.11 illustrate the GC algorithm results.

To conclude, the combination of Gabor filtering and GLCM analysis in the new Gabor Com-
position algorithm provided the maximum classification accuracy on the KNN classifier. GC
also can localise the defects in its feature map before final feature extraction. Its promising
performance illustrates the potential for improving a statistical method’s performance using a

signal processing method as pre-processor and data conditioner.

4.5 Computational Costs and Performance Comparison

In any industrial application, as well as accuracy, computing cost is another factor that shoulc
be considered. Table 4.12 illustrates the overall ranking of the results of textured tile classifica-
tion experiments on both KNN and BPNN classifiers. Table 4.13 depicts the average executiol

time of the more promising feature extraction algorithms after 40 runs on a PC Pentium I11-700
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Tile Type | F&- Fé FSe Fée Fée
ARDES | 40.00% | 35.42% | 60.00% | 60.00% | 60.00%
ARWIN | 70.00% | 88.75% | 88.75% | 88.75%| 87.50%

CASA || 67.14%| 95.83% | 97.14%| 98.57% | 92.86%
DJZAM | 70.00% | 70.00% | 90.00% | 90.00% | 85.00%
DJZUL | 75.00% | 85.00% | 85.00% | 90.00%/ | 85.00%
KIS 90.00% | 91.96% | 95.00% | 95.00% | 90.00%
LRSIDE || 70.00% | 90.15% | 84.00% | 82.00% | 86.00%
PRODO | 92.50% | 92.62% | 97.50% | 80.00% | 97.50%
PRODT || 82.50% | 77.98% | 77.50%| 100% | 82.50%
SLTNP || 95.00% | 73.51% | 75.00% | 97.50% | 90.00%
SYM 85.00% | 87.50% | 95.00% | 90.00%| 90.00%
Average || 76.10%| 80.79%| 85.9% | 88.35%| 86.03%
Variance | 0.0244 | 0.0294 | 0.0138| 0.0129| 0.0092

Table 4.10:Defect detection results using GC algorithm and the KNN classifier.

MHz machine.

Amongst the statistical approaches tested, GLCM provided the best classification accuracy o
BPNN (97.09%), but not a good one on KNN (81.08%). Computationally however, GLCM was

a moderate algorithm with 0.132 sec execution time per tile. GC provided the most promising
results on KNN (88.35%) and the second best on BPNN (97.02%). Its execution however,
needed 0.198 sec per tile which made it a costly algorithm. Although GC was in fact a combi-
nation of Gabor filtering and GLCM, its computing time was less than the summation of those
two methods (0.198 vs 0.132.114= 0.246), since the GLCM algorithm was applied on 256-

grey level images and utilised 3 distances, whereas GC was applied to 37-grey level image

and a single distance.
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Tile Type | F&- Fé FSe Fée Fée

ARDES || 88.75% | 85.00%| 100% | 100% | 100%
ARWIN | 80.31% | 97.50% | 98.75% | 97.19%| 98.13%
CASA || 93.93%] 96.83%| 100% | 99.64% 100%
DJZAM || 82.50%| 95.00% | 100% | 95.00% | 87.50%
DJZUL | 76.25%| 95.00% | 90.00% | 100% | 88.75%

KIS 95.00% | 95.00% | 90.00% | 95.00%| 95.00%
LRSIDE | 92.00% | 90.00% | 92.00% | 88.50%| 89.00%
PRODO || 95.63%| 92.50% | 100% | 98.75%| 98.13%
PRODT || 93.13%| 90.00% | 100% | 96.25%| 96.86%
SLTNP || 95.00% | 95.00%| 100% | 97.50% | 98.75%

SYM 83.75% | 85.00% | 90.00% | 99.38%| 90.00%

Average || 88.75%| 92.44%| 96.43%| 97.02%| 94.74%
Variance | 0.0047 | 0.0019| 0.0023| 0.0011| 0.0024

Table 4.11:Defect detection results using GC algorithm and the BPNN classifier.

The proposed DWHT was the fastest algorithm. With 0.009 sec execution time, it was 12.6
times faster than the next fastest that was Gabor filter. Its classification performance (i.e
CAxnN=82.62% andCAppnNn=95.58%) was also good and gave it the fourth best rank on
both classifiers. Thus, in a realtime texture analysis application DWHT is a reasonable choice
In our experience, although DDCT outperformed DCT, it stood behind DWHT on both classi-
fication accuracy and computing time (not reported in Table 4.13). Eigenfiltering was another
interesting signal processing method. It was amongst the most accurate algorithms (the secor
on KNN and third on BPNN), however the slowest one as well. The execution time for smaller
N s were much lower than% 7. For instance, execution time f&f =3 x 3 was only 0.025

sec. However, it was still around 2.78 times more than DWHT.

Figure 4.13 shows the average execution time of different algorithms, where the advantage c
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Classifier

Algorithms NF || CAxny | Rank || CAgpny | Rank
Ordinary Histogram|| 256 | 68.06%| 8 77.54% 8
LBP 256 || 78.93% 7 84.18% 7
GLCM 48 || 81.08% 6 97.09% 1
Gabor Filter 36 || 84.87%| 3 91.22% 6
DWHT 48 || 82.62% 4 95.58% 4
DDCT 48 || 82.15% 5 95.14% 5
EigenfilterN =7x7 || 98 || 85.30%| 2 95.70% 3
GC 16 || 88.35% 1 97.02% 2

Table 4.12:Summary of tile classification experiments. NF is the number of features.

Algorithms Running Time (sec) | Rank
GLCM 0.132 3
Gabor Filter 0.114 2
DWHT 0.009 1
EigenfilterN =7x 7 0.223 5
GC 0.198 4

Table 4.13:Different algorithms’ running time (sec).

DWHT is visible. Figure 4.14 illustrates the classification performance of different algorithms

used, averaged on all types of tile. The error bars show the standard error:

SE= @ (4.27)

whereo? is variance ana is the number of tile types.
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4.6 Conclusion

We implemented three statistical (ordinary histogram, LBP, and GLCM) and five signal pro-
cessing schemes (Gabor filter, DWHT, DDCT, Eigenfilter, and GC) in randomly textured tile

abnormality detection experiments, using two different classifiers: KNN and BPNN. To obtain

the best outcomes, a series of parameter optimisation steps was carried out on each algorith
which successfully improved their performances (e.g. by almost 20% for Gabor filters). The
ordinary histogram was employed only to measure the complexity of the defect detection prob-
lem, while all other algorithms applied were texture based. The GLCM illustrated promising

performance on BPNN. The eigenfiltering algorithm, optimised on the filter size, showed high
accuracy on both classifiers. However, on average the proposed GC algorithm was the mo:
accurate method. In particular a well-tuned GC was very effective and accurate on the sim
pler KNN classifier. The GC method showed also good generality across various tile types,
apart from typeARDESon the KNN classifier, where possibly the coarse structure of the tex-

ture demanded a different parameter setting. The procedure of the GC algorithm, (i.e. Gabo
filtering, quantisation, exclusion, and Bernoulli’'s combination), decreased the redundancy a:
well as highlighted the defective regions (in particular their boundaries) in the feature map.

Consequently the GLCM could extract more effective features for texture classification.

The proposed DWHT was the fastest algorithm while also showed a high classification accu-

racy. Therefore it can be declared as a reasonable choice for realtime applications.

The proposed classification algorithms carry two significant shortcomings. Firstly, they rely
on a lengthy training stage, particularly in the case of the BPNN classifier. Secondly, they
depend on the availability of a substantial number of defective samples, that moreover, shoul
cover the full range of possible defects. These are not always available. In the next chapter w
attempt to overcome these disadvantages using an effective novelty detection scheme which

both accurate and independent of defective samples.
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Chapter 5

A New Eigenfilters-Based Method for

Abnormality Detection

5.1 Introduction

A typical approach to normal-abnormal pattern classification comprises feature extraction anc
then training a classifier with feature vectors of both negative and positive samples (e.g. nor
mal and defective tiles). Consequently the trained classifier will be used to classify unknown
input samples. By employing well aimed pre and post-processing steps, efficient features
and powerful classifiers, we can expect good classification performance from such a typica
scheme. However, this traditional method suffers from a few practical drawbacks. Firstly, in
real cases the number of abnormal samples is usually much lower than the number of norme
samples. (e.g. how many examined patients have a particular kind of cancer?) Therefore, th
classifier usually cannot be facilitated with enough abnormal training samples. Secondly, in

many cases abnormalities and defects are diverse and unpredictable. So even a large set
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abnormal samples may not necessarily cover all the possible forms of defects. In other words
in a given N-dimensional feature space, whereas the normal samples may build well definet
and separated clusters, we may see many ill-defined regions of abnormal samples which al
scattered across the feature space. However, all the abnormal samples should show a comm
characteristic: a considerable distance to normal clusters. This ‘distance’ is the base of a dif
ferent approach to normal/abnormal sample classification which is aadieelty detectioror
concept learning55]. There are several novelty detection schemes developed for a variety of
applications, for instance [51, 55, 109] (for more examples see Section 2.7.4). However, the
basic idea behind almost all of them is measuring a distance toward a set of positive referenc
samples, here called tihemplateset, as the level of novelty of the input sample. Measurement
is usually carried out in the feature space and the template should adequately cover the possik

positive samples set.

In this study, we develop a new eigenfilter based novelty detection scheme to segregate abnc
mal textured tiles. The method is based on the reconstruction of the test image twice: once b
its own eigenfilter bank and once again by a template tile’s eigenfilter bank, and measuring the

reconstruction error as the level of novelty.

In the next section, after a brief review of PCA analysis and eigenfilters, the proposed methoc
and the results of the first series of experiments is detailed. Section 5.3 describes an improve
filter's structure oriented method and the results of the second series of tests concerning thi

new method. The study is concluded in Section 5.4.
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5.2 The Proposed Method and the First Experiments

5.2.1 PCA Analysis and Eigenfilters: Background

PCA and eigenfiltering have been previously discussed in Sections 2.7.1 and 4.3.7. Here w
only look over the notations again. Using the covariance matrix okth@? rearrangement of
a given image (n? is the neighbourhood size & ), eigenfilters ofA would be computed and

utilised to generate? detail images:
DA=A®QFA, 1<i<n? (5.1)

WhereFiA andDiA are thei'" eigenfilter and detail image &. Figure 5.1 illustrates a tile im-

age, its 25-filteN =5x 5 eigenfilter bank, and resulted detail images. Two characteristics of
eigenfilters are of importance and helpful in our proposed novelty detection mettiaptabil-

ity andorthogonality Adaptability means the eigenfilter bank of different images are different
and each eigenfilter conveys the certain attributes of the image, regarding the eigenfilter size
Orthogonality means we can successfully reconstruct the original image by composition of its
detail images [2]. The eigenfilter bank decompose the image into an orthogonal set of detail im-
ages. The process of decomposition however, is image dependent. Also, eigenfilters and dete
images of similar images are close to each other (considering distances in Euclidian space:
and vice versa. We use all these factors to establish our eigenfilter based novelty detectio

algorithm.

5.2.2 Data Set

The applied data set included eight diverse types of textured ceramic tiles. Samples of each tyf.

were divided into four non-overlapping categoriesabihormal normal, template(reference,
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T), andtraining (parameter estimatio®). The number of samples in the normal and abnormal
categories was kept equal, and all the remaining good samples were used to build the templa
and the training sets. As Table 5.1 shows, typically for each tile type in this study the template

set was much larger than the training set.

Number of Samples
Tile Type || Normal | Abnormal | Template | Training

ARDES 22 22 224 20
ARWIN 40 40 82 15
DJZAM 20 20 170 20
DJZUL 20 20 170 20
KIS 23 23 39 10
LRSIDE 46 46 135 20
SLTNP 26 26 161 20
SYM 20 20 145 20

Table 5.1:Tile types and number of samples

5.2.3 The Method

Initially, we compute and store the eigenfilters and detail images of all the reference images
in our templatesetT. Then the eigenfilters of a new tile image are computed. We search

the template set to find the most similar imageAtoThis template member is referred s

When textures are involved, usually methods such as pixel-by-pixel comparison, histogram ol
power spectrum differences, are not effective to evaluate the similarity (i.e. distance, in a giver

Euclidian space). Instead, textural properties can be more helpful.
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Figure 5.1:Filtering procedure for a DJZAM tile (a), its 65 eigenfilters (b), and detail images (c).

To increase the visibility, all filters and detail images have been equalised.

For example, the most similar textures could be the pair with the closest co-occurrence matrice
or the closest MSMD filter responses [44, 54, 127]. Since eigenfilters preserve the textura
characteristics, the distance between eigenfilter responses (i.e. detail images) could be used
a textural similarity metric. For such comparisons, the widely appfédlistance function

is used [77, 76, 123].x2 is in fact a normalised (or relative) distance between two vectors
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regardless of their elements’ magnitude and can be defined as:

(DA—DM)?

Z DA+ 52)

whereD” andDM are detail images of andM using (5.1). Hencé would be the member
of template with the minimuny? distance toA. However, considering the adaptability of the
eigenfilters, it is also possible to implement an eigenfilter vs. eigenfilter similarity measure-

ment. GiverFA andFM as any two eigenfilters that are to be compared, then:

FA FM
(Gt i (5.3)
4 R+ R

In fact, we tried both distance between detail images (DBD) and distance between filters (DBF
schemes and the comparative results are discussed later in Section 5.2.4. We also applied sol
other distance functions, for instance MSE and vectors angle. On avegaghowed the

highest performance in these experiments.

Next, the testimage, is reconstructed twice: once by a subset of its own eigenfilters and once
again by a subset of the selectd eigenfilters (resulting iRy andRy). The number of filters

in the subset is naturally important and is dealt with in Section 5.2.6. Reconstruction could be
carried out by simple addition of the detail images or Bernoulli’s rule of combination [103]. In
these experiments, BRC did not show any advantage to simple addition, hence subsequent

only addition-based reconstruction was used:

Ra= 3D , Ru= y;DM (5.4)

The error between the reconstructed pair is considered as the level of abnormality of test imag
A. An error larger than a given threshold, is considered as a sign of a defect on the tile
surface texture:

=|Ra—Rw|>Y = DEFECT (5.5)
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Figure 5.2 specifies the proposed abnormality detection algorithm.
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Figure 5.2:Eigenfilter-based abnormalities detection algorithm

Figure 5.3 illustrates &IS tile and its artificially defective version (round grey area in the
bottom right). The 3 3 eigenfilter banks are different due to the flaw. Graphs 5.3(e) and 5.3(f)
respectively show thg? distance between the eigenfilter banks and the detail images. Figure
5.3(g) presents the reconstruction error map using filters 2 to 7. Note that in the reconstructe:
map the defective area boundary shows a higher error level. Figure 5.4 illustrates the sam
procedure for anothd€IS tile, where this time & 7 filters are exploited. Again the defective
area in the reconstruction error map (g) shows a higher level of error. In this example filters 25

to 49 were employed for reconstruction.
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Figure 5.3:A normalKIS tile (a), and its artificially defected version (b), their respective Beigen-

filter banks ((c) and (d)), thg? distance between filters (e) and detail images (f), and the reconstruction

error map (g).

5.2.4 The First Experiments

In the first series of experiments, presented in Table 5.2, three different neghibourhood size:
N =3x 3, 5x5 and 7x 7, and -inspired by KNN classifiers- a different number of closest
templates were tried. The second column shows the outcomes of the DBF scheme, and the thi
column presents the outcomes of the DBD scheme. Results suggest that the best classificatit
performance of 85.32% was achieved by using@33neighbourhood, three closéds, DBD,

and reconstruction using 6 (out of 9) detail images. In fact for all thNed the accuracy of
DBD was higher than DBF. However, it was achieved at the expense of slightly more elaborate
computations. The DBF method fd& =3 x 3 took 0501s on a 700 MHz PC, while it took
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Figure 5.4:A normalKIS tile (a), and its artificially defected version (b), their respective 77eigen-

filter banks ((c) and (d)), thg? distance between filters (e) and detail images (f), and the reconstruction

error map (g).

0.538s for the DBF. The higher accuracy of DBD means it will be considered as the preferred
scheme in all further experiments. Degrading performances prevented us from testing large
N s. As an exception, and only fdd =3 x 3, in this test employing 3 closedts provides

the optimum results. In such cases, average distance to a few (here: 3) dMasesiuld be
computed. In all other tests, the best performance is obtained by a single dlos@gtimum
results shown are achieved by employing a subset of detail images in the reconstruction stagt
6 detail images are involved ft =3 x 3, 12 (out of 25) for 5¢ 5, and 32 (out of 49) for % 7.

The method used to choose these subsets will be discussed later.

Perhaps one of the first questions to arise about the proposed method is how effective thi

particular reconstructional algorithm is. In other words, why cannot the distance between detai
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images be used as the normality/abnormality metric? The last row of Table 5.2 illustrates the
outcomes of a detail images-based classification effort with all circumstances kept similar with
the tests above, but without the reconstruction phase and by utilising all the detail images a:
the feature of novelty. Reduced classification accuracy of 12.91% (from 85.32% to 72.41%)
shows that the hypothesis of reconstruction via two different filter banks and using a subse
of filters, is effective and increases the overall accuracy. This comparison shows that while
eigenfilter is successful as an ordinary classifier (see Section 4.6 and Table 4.12), to apply it a
a promising novelty detector, we need to develop a new eigenfilter-based scheme. The sligt
diversity of eigenfilters oA andM, amplifies the differences of the reconstructed pair, and the

amplification magnitude will be higher when the test im#ge defective.

Neighbourhood || CA Using | CA Using | No. Filters | No. Ms
Size (N ) DBF DBD Involved | Involved
3x3 81.12% 85.32% 6 3
5x5 77.62% 81.25% 12 1
7x7 74.22% 79.90% 32 1
Classification Without Reconstruction
Neighbourhood || CA Using | CA Using | No. Filters | No. Ms
Size (N ) DBF DBD Involved | Involved
N =3x3 69.67% 72.41% all 1

Table 5.2:Results of the first series of experiment. DBD and DBF are distance between filters and

detail images respectively, and Nids is the number of involved closest templates.

The proposed algorithm looks simple and straightforward, however, certain fundamental issue:
arise out of the proposed method and implemented tests that we now attempt to deal with. Fo
instance, how the optimum threshold)( or the optimum subset of filters/detail images for

reconstruction can be established.

140



5.2.5 Finding the OptimumY

The simplest way to choose théis considering the maximum reconstruction error of the
training set as that threshold. However this can slightly decrease the sensitivity of the novelty
detector. So, the choice ¥fis determined through a simple type-by-type training or parameter
estimation stage. Initially, we apply the proposed algorithm on the training é&thich con-

tains only ‘good’ samples) and obtain the reconstruction errors. Then the megpand the
standard deviatiorop) of the reconstruction errors are computed. The optimum threshsd

assumed to be am weighted deviation from the mean:
Y = Up+00p (5.6)

Thus, any unseen tiles with reconstruction et&r > Y will be considered as abnormal. Fur-
thermore, we continue the parameter estimation stage to determine the optimum vaiue for
using k-fold cross-validation. Here a 4-fold cross-validation was employed, where 75% of
samples were used for parameter estimation, and 25% for testing the performance. The rest

is taken as the average of four iterations of that procedure on non-overlapping subsets.

As an example, Fig. 5.5 depicts the distributions for normal, abnormal and template
sets of a specific type of tile. In this case, the templafdsstatistics arqup = 0.24, and

op = 0.11 (Fig. 5.5(top)). The test data reconstruction errors are plotted in Fig. 5.5(bottom).
The cross-validation algorithm estimates the optimum separation parameterYset @86,

from a = 1.12, on the normalisedE axis. The subsequent correct classification rate for this

example was 95.0%.

Next, we describe how the near-optimal number of eigenfilters are selected to reconstruct a
image, whether for routine comparison of unseen tiles against the templatersetdetermine

the optimum value of as just described.

141



& Training Set (£
A A Mk A A hh AhPA A Akk 4 k4 statistics:
Hp=024

5, =0.11

¢ Average of 7

[.Ib =0.24
Reconstruction Error (AE) (normalised 0-1)
0 0z 04 06 08 1
|
|

« test-defective
= test-normal

Average of 7

B =024 «—T=p, +1120,
\ Optimum Threshold
| Reconstruction Error (AE) (normalized 0-1)
0 02 04 06 038 1

Figure 5.5:Reconstruction errotNE) distribution for (top) training sel, (bottom) normal and abnor-
mal test samples. The training set parametgssop) are used in computing the optimum threshold for

the test samples. Th&E axis has been normalised to lie in the range [0-1].

5.2.6 Finding The Optimum Subset of Eigenfilters

As mentioned before, eigenfilters are an orthogonal set, therefore any reconstruction usin
a complete set of detail images would be error free. Also, a few filters (and consequently
detail images) of a defective tile may convey the information of the defect. So, the resulting
reconstruction error using those filters may provide the optimum discrimination. However, it

would be difficult to find the optimum subset. The first reasonable selection could therefore
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be the filters with highest eigenvalues. Nevertheless our experiments have shown that this we
not the best option, as the correct classification achieved was limited to 72.92%. This lack of
performance is expected since the defective area is usually a small portion of the whole tile
and therefore cannot affect the first eigenvectors which convey the basic structure of the image
Consequently, employing a subset of the smallest-eigenvalue filters performed even worse wit|

69.91% correct classification.

Another option could be measuring the distance between pairs of counterpart detail images i
M and the testimagA. Reasonably, pairs with maximum distance may convey the differences,

i.e. abnormalities information, whereas closer pairs may convey the similarities. However,
this assumption has failed during tests, when a subset of a few closer filters provided a bette
classification result than a subset of farther ones. In particular the specificity (SPC) factor
of the farther filters was lower than the closer filters, which suggests that we need the close
filters too to keep the SPC adequate. Table 5.3 exhibits the results and suggests that where
a subset of 6 closer filters reach up to 85.32% correct classification, maximum accuracy of the
farther subset is limited to 77.13%. Moreover, the farther subset shows a considerably lowe
specificity, (0.761 vs. 0.596), which means that this selection puts more normal tiles wrongly
into the abnormal category. However, as expected, the sensitivity (SNS) of the farther set is
marginally better than the closer (0.954 vs. 0.946), which shows that it can reveal the defect:

slightly more clearly.

Filter Subset | No. of Filters CA SNS | SPC

Closer 6 85.32%| 0.946| 0.761

Farther 6 77.13%)| 0.954| 0.596

Table 5.3:Comparison between closer and farther subsets performances.

Although the classification accuracy of 85.32% is relatively acceptable, we must try to increase
it and also find out why the smallebt has provided the best performance. In the following

sections we will explain an improved filter-structure based method to achieve a higher perfor-
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mance.

5.3 Improvement Through Matching by Structure

In the proposed algorithm, when we want to measure the similarity between two textures or the
distance between two filters, we implicitly sort the filters or detail images by the eigenvalues,
and then compare the corresponding pairs. However, this scheme may have some disadva
tages. For example, Figure 5.6, which depicts 3 eigenfilter banks of twdJZAMtiles,
suggests that an ordinary comparison (e.g. by ugifig of filter pairs while all have been
sorted by eigenvalues, may show an incorrect distance between two wrongly matched filters
Consequently the computed overall distance between two textures would not be reliable. Fo
instance, on that figure, edge detector filter pairs 2 and 3 (in (a) and (b)) aretafed ver-
sions of each other. Therefore it might be more reasonable to matcltHitér of (a) with

the 39 filter of (b) and vice versa. As another example, pair 8 are complement (negative) of
each other, however, both are pixel detectors. In such cgegfinitely cannot be applied to
measure the structural similarity between gradient filters. So, the calcijattidtance (either

between filters or between detail images) may not be very precise.

Another drawback of the current algorithm is its rotation-variant property, where rotation of a
tile will rotate the filters and consequently disrupt the distance measurement. Uneven surface
of many tiles and slanted lighting of the image grabber system amplify the effects of rotation
on the texture. As an example, Figure 5.7 showRRDEStile, its 90° rotated version and
their 3x 3 and 5x 5 eigenfilter banks. Rotation has affected almost all of the filters. (e.qg. filters
2,3and5t08in X 3 (c,d) and 2,3 and 5 to 13 in’65 (d,e)).

Furthermore, Figure 5.7 also reveals that finding some sort of similarity or relation amongst

larger 5x 5 filters is much more difficult than smaller<33 ones, perhaps due to the consid-
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Figure 5.6:3 x 3 Filter banks of two DJZAM tiles.

erably higher diversity of % 5 matrices. Therefore the usuahtching-by-eigenvalu@VBE)
scheme would be even less effective for larger neighbourhood sizes. That can be a reasc
for having lower performance while enlargimg in the first experiments (see Section 5.2.4
and Table 5.2). Again, as Figure 5.8 exhibits, indeed the difference between eigenvalue:
Aj,j=2to n?, are relatively small and adjacert; and Aj,1 are very close together.
Hence, after a slight change in the texture, a swap between adjacent filters will not be unex

pected.

To summarise, we need a more effective and rotation-invariant scheme to match the filter pairs
in order to replace the current MBE method. Hence we propose an alternative comparisol
scheme which involves the filter’'s structure. This scheme will alidirthe filters of M to
compete as the possible counterpart of itfidilter of the test imageA, regardless of their

eigenvalues. In the new scheme, the distantetween two specific filters would be computed
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Figure 5.7: Effect of a 90 rotation of a tile on eigenfilters. The majority of filters have also been
rotated.
as:

&, = min(X*(F.Gj) . X(F.GF) . X2(R,G") , ¥2(R.G)) . X*(R.GY))  (5.7)
where,
. (F=G)?
Xz(Flan) == .

R+ G]
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(a) (b)
Figure 5.8:Cumulative eigenvalues of two types: ARDES (left) and DJZAM (right)

F andG are eigenfilters of giver andM, andeﬁ and GJN are vertically and horizontally

mirrored (i.e. ‘flipped’) matrices G;) is the complement (i.e. ‘negative’) of the matrix, a@@

indicates the degrees rotated version of the input.

Mirroring is implemented by swapping the columns or row&ofComplementing is performed

by using the mean value of the filtgk as the origin:

X' = —(X—px) + Hx (5.8)

Then, two filters with minimum distance are paired. We refer to this improved approach as

matching by structur@r MBS. MBS consequently affects both findily and selecting the

optimum filter subset, where the number of filters in the subset used for computing the recon-

structed image is then worked out as before (see Section 5.2.6).

Table 5.4 presents the performance of the MBS method, where there is a slight improvemer

(see Table 5.2) for smaller neighbourhood sizéNof=3 x 3, (85.32% vs. 86.71%), and con-
siderable improvements for larger sizds=5x 5 (81.25% vs. 91.19%) andx/7 (79.90%
vs. 91.46%), then the accuracy slightly degrades fer®@down to 90.74%. In fact during

the tests we realise that for the smallex 3 size, MBE and MBS are quite similar. However,
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the new scheme compensates the filter matching problem of I&rgep to 7x 7, and the
classifier can now gain the advantages of the grown neighbourhood sizes. All the reported be:
performances have been achieved by utilising the farther filter subsets. In fact, the classifica
tion accuracy of closer subsets were limited to 83.97% at mofer 7 x 7. This means that
MBS has considerably increased the SPC factor of the farther subset compared to the previol
MBE method. Utilising MBS, now all the optimum results (CA, SNS and SPC) are attained
withN =7x 7.

Neighbourhood CA SNS | SPC | No. Filters | No. Ms
Size Involved | Involved
3x3 86.71% | 0.898| 0.835 5 1
5x5 91.19% | 0.969| 0.853 14 1
Tx7 91.46%| 0.972| 0.855 26 1
9% 9 90.74% | 0.966| 0.850 43 1

Table 5.4:Classification performance using matched-by-structure filters

AlthoughN =7 x 7 has the maximum CA, it is only 0.27% higher thar 5. Also the larger

the size, the more time consuming the algorithm. Figure 5.9 outlines the computing time of
the algorithms for differenN and matching schemes. Tests were run on a PC Pentium 11 700
MHz computer several times and then averaged. Results reveal that regarding an eMNayging
whereas the increase rate of computing time for the MBE method is rather low (from 0.53 to
2.31 seconds), the increase rate for the MBS method is very high (from 0.74 to 69.23 seconds
It is not unexpected, since the MBS applies much more matrix operations. Trying Mrger

is deemed unnecessary, due to both decrement in accuracy and huge increment in computit

time.

Table 5.5 presents the detailed results of the MBS method for difféMefior all our types
of tile. Except for cas&SLTNP, bothN =5x 5 and 7x 7 always achieve better classification

accuracy thaiN =3 x 3. By the time we get to a 2 9 neighbourhood, a decline in the accu-
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Figure 5.9:Average computing time comparison for the MBS method.

racy can be observed, thus showiNg=7 x 7 as the optimal window on average. However,
the N =5x 5 case achieves a close average toNhe7 x 7 case, while also getting better
individual accuracies fotRSIDE and SLTNPtile textures, all at much lower computational
costs. Perhaps optimisilg for a given type in the training stage could improve the overall
classification performance even more. For instance, as this table dlow&x 3 and 5< 5 can
compensate the % 7 lack of specificity on particular typdsRSIDE andSLTNP (e.g. 0.646
for 7x 7 vs 0.706 and 0.922 fors5 and 3x 3 onSLTNP.

Moreover, it was claimed that the MBS method is decisively less rotation variant. To prove that,
applying both the MBE and MBS methods, the distance between eigenfilters and detail image:
of several tiles and their 9Qotated versions were computed, averaged, and compared. Table
5.6 presents the results and suggests that MBE is clearly less capable of revealing decisiv
textural similarity between rotated textures compared to MBS, since distances computed b

MBS are many times smaller than MBEs (between 8.1 and 1563.5, depending on the case
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N =3x3 N =5x5 N =7x7 N =9x9
| e | ca | sns | sec cn | sns | sec| ca | sns|spc| ca | sns | spc

ARDES || 82.45% | 0.852 | 0.797 || 83.72% | 0.874 | 0.800 || 87.54% | 0.875 | 0.875| 84.56% | 0.832 | 0.859
ARWIN || 76.29% | 0.850 | 0.675 || 87.24% | 0.919 | 0.825| 89.84% | 0.965 | 0.831 | 87.33%| 0.943 | 0.804
DJZAM 100% 1 1 100% 1 1 100% 1 1 99.81% | 0.998 | 0.998
DJZUL 79.29% | 0.792 | 0.792 100% 1 1 100% 1 1 99.81% | 0.999 | 0.998

KIS 88.00% | 0.899 | 0.861 || 93.55% | 0.978 | 0.893 || 97.81% 1 0.956 || 94.27% | 0.998 | 0.887
LRSIDE || 85.29% | 0.934 | 0.771 || 86.76% 1 0.735 || 81.72% 1 0.624 || 81.97% | 0.976 | 0.712
SLTNP || 92.22% | 0.922 | 0.922 || 85.34% 1 0.706 || 80.80% | 0.969 | 0.646 || 85.30% | 0.983 | 0.682

SYM 90.15% | 0.935 | 0.868 || 92.89% | 0.988 | 0.869 | 93.98% | 0.968 | 0.910 || 92.88% | 0.998 | 0.859

1) 86.71% | 0.898 | 0.835 || 91.19% | 0.969 | 0.853 || 91.46% | 0.972 | 0.855| 90.74% | 0.966 | 0.850
o? 0.0058 | 0.0042 | 0.0099 || 0.0041 | 0.0023 | 0.012 0.006 | 0.0018| 0.022 | 0.0048 | 0.0033| 0.0135

Table 5.5:Classification accuracy of different tile types for different neighbourhood dizgsusing

MBS. p ando? are mean and variance.

Therefore, even having the rotated version of a test tile in the template, there is no guarante
that MBE can select that as tMg, while MBS will most probably find it and can ensure a more

reliable textural similarity measurement.

x? - DBF x?-DBD
N MBE | MBS | MBE | MBS

3x3 || 0.2461| 0.0019| 0.6254| 0.0004
5x5 || 0.5409| 0.0669| 0.7358| 0.0010

Table 5.6:Average distances between tile images and théirrdations.

5.4 Conclusion

The proposed eigenfilter-based novelty detection method showed significant performance an
robustness in tile defect detection. Like other novelty detection schemes, its most importan
advantage is its relatively low dependence on abnormal samples. Moreover, the modified MBS

scheme has added accuracy and flexibility compared to the original algorithm. The MBS is
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rotation invariant and capable of a more accurate normal/abnormal segregation. Figure 5.1
presents a conclusion of the various tests performed and their results. The first proposal i
the obvious advantage of the proposed method compared to a simple filter responses distan
measurement scheme (Testvs. B, C, andD). It also suggests better performance of the
closer subset compared to the farther one when the MBE scheme is use@ (dD), and

in contrast advantages of farther subsets when the MBS scheme is employe@ (Redt).
Finally, a combination of MBS, farther subset, aNd=7 x 7 neighbourhood size attains the

optimum result of 91.46% correct classification (Tt

To conclude, the eigenfilter-based novelty detection algorithm emphasises on the adaptabilit
of eigenfilters and the similarity between the eigenfilters and detail images of similar textures.
It also utilises the orthogonality of eigenfilters to reconstruct the test texture, where we expec
more reconstruction error in the case of abnormal textures. To overcome the matching probler
of eigenfilters and also to develop a rotation invariant defect detector, we introduce and exploit
the MBS method, which shows promising detection performance, particularly on neighbour-
hoods of sizd\ =5x 5 and 7x 7. Defect detection performance across all tested tile types
is high (e.g. between 83.72% and 100% Ir=5 x 5, see Table 5.5), which given the diver-
sity of types suggests promise for the applicability of the method in the detection of textural

abnormalities in general.
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Figure 5.10:A summary of various experiments outcomes
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Chapter 6

Conclusions and Further Work

6.1 Summary

This thesis developed several efficient approaches to the texture classification problem, cor
cerning natural and random textures in particular, with efficiency defined in terms of classifica-
tion accuracy, computation costs, robustness and flexibility, and practicality. Experiment results
on two texture-based applications (outdoor scenes object classification and tile defect detec
tion) using three data sets (outdoor scenes, VisTex, and the tile image data set) all suggest:
that DWHT is a reliable, precise, and low cost texture feature extractor that can be applied or
a wide range of texture analysis problems. Its classification performance was comparable witl
well-known Gabor filters when it was applied on outdoor scene and VisTex sets (e.g. 88.75%
vs. 86.88% on outdoor scene tests). DWHT also obtained very good results in tile abnormality
detection tests (e.g. 95.58% with the BPNN classifier). While its accuracy was usually lower
than a pure Gabor filtering method, DWHT always was around ten times or more faster thar

other algorithms in all experiments. In addition, we developed a directional cosine transform
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algorithm (DDCT), which compared to its ordinary counterpart showed higher accuracy on
tile abnormality detection (e.g. 89.84% vs. 95.14% on the BPNN classifier). The promising
performance of DDCT showed that the angular/scale decomposition scheme of DWHT is alsc

applicable on other similar kernel functions and transforms.

We also introduced two simple chromatic featurgsandS,, which were inspired from the def-
initions of hue and saturation in standard colour spaces. The hue-like and saturatidip3ke
features performed well on both high resolution outdoor scenes and VisTex data sets. Thei
classification accuracy outperformed NRGB and HLS, but stood slightly lower Liadn For
instance, in VisTex tests, whileabwas the best feature set with 74.28% correct classification,
HpSp accuracy of 72.07% put it in the second place, but much higher than HLS and NRGB
with respectively 64.71% and 65.82% correct classification rates.HJ$8 method was also

very faster than the rest, for example 6.05 times faster thabh on a PC PIIl machine. We
generally utilised colour features and texture features together to achieve higher classificatio

performances in outdoor scenes experiments.

In the texture abnormality detection study, the DWHT was also proposed as a viable alternative
Initially, more traditional algorithms such as co-occurrence matrices, LBP, Gabor filters, and
eigenfilters were experimented with. Excellent accuracy levels of 97.09% and 95.70% correc
classification were obtained for GLCM and eigenfiltering respectively on the BPNN classifier.
The best GLCM performance achieved after a series of optimisations on distances and the c
occurrence functions involved. In the case of eigenfiltering, the larger neighbourhood size of
7 x 7 provided the maximum accuracy. However, both algorithms were amongst the most time-
consuming methods. As a fast and highly accurate alternative, DWHT with 95.58% correct
classification on BPNN can be used. DWHT was almost 14.6 times faster than GLCM and
24.7 times faster than thex/7 eigenfilter. Another statistical scheme tested, LBP, did not

perform well and its accuracy was limited @\ xnn=78.93% andCAgpnn=84.18%
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The implementation of the KNN classifier in real applications is easier than the BPNN, due to
its relatively simple training stage. The best KNN performance however, was limited to 85.30%
of the eigenfilter algorithm. In order to increase the KNN performance, we opted for the Gabor
filter as the signal conditioner for a GLCM feature extractor and developed the proposed Gabo
Composition algorithm. In this method, a Gabor filter bank was applied to amplify the defects
and attenuate the background texture simultaneously, resulting in a composed feature ma
which later was fed to a GLCM process to extract the final feature vector. We then completec
the proposed GC method with a detail image exclusion module and a Bernoulli combination
module to further enhance its performance. GC increased the KNN accuracy to 88.35% an:

was on average the most precise algorithm in our defect detection tests.

Next, we developed an eigenfilter-based novelty detection algorithm for texture abnormality
detection applications. The proposed algorithm utilised a template set and adaptable eiger
filter banks in its reconstructional algorithm to highlight the differences between normal and
abnormal textures. The proposed novelty detection method achieved a promising level of accu
racy and robustness in textured tile abnormality detection tests. We introduced two versions o
our algorithm, namely matched-by-eigenvalue (MBE), and matched-by-structure (MBS). The
re-structural MBS showed higher performance and flexibility relative to the MBE algorithm,

which ordered and matched eigenfilters according to their eigenvalues, i.e. a typical approact
MBS was also rotation invariant and illustrated better performance on larger neighbourhooc

sizes. MBS achieved 91.46% correct classification in our novelty detection experiments.

We also gathered a survey of texture analysis, classification and defect detection studies durir
the literature review. A broad range of studies concerning texture analysis were assessed |
build up a reliable background for this work. Review of several surface inspection projects
and the industrial applications of texture defect detection were also an important part of our
reviews. Also, two main texture databases were developed during this work. A set of outdoor

scene high resolution images and corresponding labelled patches of different objects, and
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categorised tile images data set.

6.2 Concluding Remarks

The aim of this study was the development of more efficient texture classification methods,
where computation costs, classification accuracy, and practical specifications were traded o
and balanced against each other: Dealing with high resolution images requires fast algorithm
to compensate their heavy processing cost. Therefore, we proposed the fast DWHJ/&d

scheme. In industrial applications however, a compromise between accuracy, speed, and pra
ticality was of interest. Therefore, we proposed the high performance GC and novelty detectior

eigenfilter-based algorithms.

Multi-scale/multi-directional algorithms (e.g. Gabor filters or wavelets) model the basic char-

acteristics of textures. Specifically they can extract repetition and directionality which are two
key features of a random texture, thus they can analyse and classify textures accurately. T
extract repetition and directionality, they perform an angular and scale decomposition on the
texture and generate a multi dimensional detail image space. Feature extraction and othe
analysis in the detail image space is more efficient than the pattern space. Computationall
however, they are complicated and time consuming. On the other hand, fast sequency-base
transforms (e.g. Hadamard), are quick and easy to implement, but less accurate in texture cla
sification. We model the characteristics of MSMD texture analysis algorithms in a modified

Walsh-Hadamard transform, called DWHT. In the DWHT algorithm, a special purpose rota-

tion and a band-wise analysis integrate the basic angular and scale decomposition propertie
of MSMD schemes with the ordinary Walsh-Hadamard transform. While Gabor filters and the
wavelet transform explicitly decompose the image into angular and scale sub bands, DWHT

presents an implicit transform domain decomposition: Sequency harmonics of pixels in differ-
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ent orientations are extracted and categorised into a few low-to-high sequency bands. Neve
theless, the proposed DWHT exhibits the advantages of both the Walsh-Hadamard transforr
(computation efficiency) and MSMDs (high accuracy) in texture classification. The promising
performance of DWHT on a diverse set of texture classification and defect detection appli-
cations emphasises its generality. This method can be used for realtime texture analysis i
particular. A similar approach can be implemented on other harmonic analysers such as DC

or Haar transform.

The interpretation of the hue and saturation in forms of the proposed chromatic functions,
Hp andS;, also gains both simplicity and the performance of perceptual colour representa-
tion. The intention is not developing a real and precise colour space, but extracting significan
colour features for pattern classification purposes. Therefore, employing these colour feature

is reasonable, in particular for realtime and embedded systems.

The comparative study for the detection of abnormalities in randomly textured tiles reveals the
advantages and disadvantages of different statistical and signal processing approaches. Al
optimisation tests applied on each approach illustrate the substantial role of parameter optimi
sation on the overall classification performance. With respect to its accuracy and fast executio
time, DWHT is the practically favorite method, while GLCM and eigenfiltering provide better

precision on the BPNN classifier, at the cost of longer execution times. We also propose the
Gabor Composition algorithm to increase the performance of the more feasible KNN classi-
fier. GC decomposes the image into sub-band detail images using a Gabor filter bank, the
attempts to highlight the defective regions and their boundaries in a recomposed feature may
using exclusion and Bernoulli's combination techniques. GC decreases the redundancy as we
as highlights the defective region in the texture-like resulted feature map, so a simple GLCM
algorithm can efficiently extract the normal and abnormal texture features. GC shows excel
lent classification performance on almost all of the tile types of the data set, which illustrates its

scope for the detection of abnormalities on random textures. However, it is again of importance
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to optimise all the parameters concerning the characteristics of the test texture.

In practical applications, such as the tile industry, novelty detection is more suitable than ordi-
nary classification methods for quality inspection, since it is independent of defective samples
The orthogonality and adaptability of eigenfilters lead us to develop an innovative eigenfilter-
based novelty detection scheme. The idea underpinning the proposed method is mutual recol
struction of the test image by its own and the template eigenfilter bank. We expect less succes
(i.e. larger reconstruction error) in the reconstruction of a defective texture rather than a flaw-
less texture, when a template of flawless samples is used as the reference. The proposed nove
detection scheme illustrates promising results on all types of tile tested. This can suggest thi

generality of the method in the field of texture abnormality detection.

6.3 Contributions

The main contributions of this study were:

A novel multi-scale and multi-directional Walsh-Hadamard transform, DWHT, as a fast

and accurate method with potential applications in realtime systems.

Two low cost chromatic featurebi,S,, based on the definition of hue and saturation in

standard colour spaces, efficient for use in colour texture classification.

A new Gabor Composition based method, GC, devised for detection of abnormalities in

random textures.

An eigenfilter based reconstruction method for tile inspection within a novelty detection

framework.
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6.4 Further Work

This thesis illustrated effective texture feature extraction and classification techniques which
were applied on various test frameworks and procedures. Meanwhile, there are some essent
aspects where the methods’ performances can be enhanced. We therefore propose the list bel

as possible outlines for further work.

e DWHT:

— It may be useful to replace the ordinary SOH kernel of DWHT with a slanted

Hadamard transform to determine if this can improve the overall performance.

— It also may be worthwhile to employ and test the Gaussian sequency band envelope:
instead of current ideal (hard) separators on both DWHT and DDCT. It is also
possible to apply dyadic bandwidths to DWHT-like algorithms.

— A wavelet-like multi-scale approach instead of current multi-scaling via the band
separation method may be of interest. We may down-sample the input texture and
apply the DWHT on each stage of the Gaussian pyramid and compare the results
with the current method. In this case, there will be no need to separate the sequenc

bands. Rotation however, still will be performed as before.
o GC:

— Using a GC feature map as the platform, a novelty detection approach could be
developed based on measuring the distances between small blocks of the featur

map, and a reference set containing the ‘normal’ feature map blocks.

— It would also be of interest to develop a GC-based defect localisation method, also

utilising the GC feature map.
¢ Eigenfilter-based classification and ND scheme:

159



— Applying a multi-scale eigenfilter-based method could be of interest where the in-
put image is down-sampled, then the eigenfilter-based analysis and reconstructior
algorithm will be applied on different scales of that multi-scale input pyramid. Al-
though it seems computationally heavy to apply PCA on every single stage of the
image pyramid, we may be able to find the optimum stage or stages for a given

texture during a training phase.

— Alternatively, to use diverse mask shapes instead of typicah squares to detect a

particular abnormality can be a reasonable option for further eigenfiltering studies.

— We can attempt to establish a relation between texture characteristics (e.g. coarse
ness) and the optimum eigenfilter size and subset, applied in eigenfilter-based tex:

ture analysis.

— We can try the MBS method in traditional eigenfilter-based classification schemes.
MBS in particular may increase the classification performance of the larger eigenfil-
ters, ifitis utilised to order and match detail images instead of the typical eigenvalue-

based approach.
e General:

— Texture analysis algorithms usually have several parameters to be tuned (e.g. centre
frequencies and directional resolution in Gabor filters). Automated optimisation of
a texture analyser’'s parameters with respect to the given texture characteristics
could be an essential development in texture processing. It also can be extendet
to the automatic selection of the optimum method for analysing (e.g. detection of
abnormalities) of a particular texture, again regarding its properties. For instance,
automatic selection of either GLCM or Gabor filters considering the test texture,

can significantly increase the overall abnormality detection performance.
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Appendix A

Colour Spaces

A.0.1 HLS Colour Space

HLS directly implements simple definitions of Hue, Luminance and Saturation to build up its

3D colour space. Considering a colour disk of all spectrums, Hue is an angle in a colour disk,
Luminance is an average of R,G, and B, and saturation is the distance from its central axis. Fig
ure A.1 shows a graphical representation of those informal definitions. We applied expression:
below for RGB-to-HLS conversion. There are several other RGB-to-HLS algorithms available

[15, 97], however they are only slightly different in details.

e G-B T ;
MaxRG,B) _Min(RG.E) if R is Maximum
R—B . . .
Hue= MaXRGE) _MnRGE) if G is Maximum
R-G

if B is Maximum

Max(R,G,B)—Min(R,G,B)

. (A.1)
. Max(R,G,B)+Min(R,G,B)
Luminance= >

Max(R,G,B)—Min(RG,B)

| Saturation= g e S B TMin(RG B)
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Figure A.1:HLS Colour disk.

A.0.2 LabColour Space

Labwas introduced in 1976 by CIE (Commission Internationale de I'Eclairage) to provide a

more uniform and accurate model of colours. In this color space you use three companents:

is the luminancea andb are respectively red/blue and yellow/blue chromatic data. This color

space is defined regarding the intermediate CIE-XYZ color space.

( L 116(3)5 — 16 if ¢ > 0.008856
9033(y) if ¢ < 0.008856

,
o
I
N
o
Q
—
—
<
N—
|
—
—~
SN
=

7.787xt+ 28 if Yio < 0.008856

td) if ¥ > 0.008856
f(t) = 0
116
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X 0431 0342 Q178] [R
Y| = 0222 Q707 Q071| |G| Xo= 09505, Yo=1, Zo—= 10887,
v4 0.020 Q130 Q939| |B

Labparameters (e.g. XYZ matrix afKo, Yo, Zo} constants) depend on the chromaticity of the
reference white point. The expressions above are according gheeference point which

we employ in this study [15, 26, 97].

Lab chromatic featuress andb, have direct relations with hue and chroma (i.e. saturation):

{ Hue= arctar(®)

(A.3)
Chroma(Saturation = /a2 +b?
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