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Abstract

One of the fundamental issues in image processing and machine vision is texture, specifically

texture feature extraction, classification and abnormality detection. This thesis is concerned

with the analysis and classification of natural and random textures, where the building ele-

ments and the structure of texture are not clearly determinable, hence statistical and signal pro-

cessing approaches are more appropriate. We investigate the advantages of multi-scale/multi-

directional signal processing methods, higher order statistics-based schemes, and computation-

ally low cost texture analysis algorithms. Consequently these advantages are combined to form

novel algorithms.

We develop a multi-scale/multi-directional Walsh-Hadamard transform for fast and robust tex-

ture feature extraction, where scale and angular decomposition properties are integrated into

an ordinary Walsh-Hadamard transform, to increase its texture classification performance. We

also introduce a highly accurate Gabor Composition method for texture abnormality detection

which is a combination of a signal processing and a statistical method, namely Gabor filters

and co-occurrence matrices. Furthermore, to overcome the practical drawbacks of traditional

classification approaches, that require an extensive training stage, we introduce a method based

on restructured eigenfilters for texture abnormality detection within a novelty detection frame-

work. This demands only a minimal training stage using a few normal samples.

The proposed schemes are compared with commonly used texture classification methods on

different image sets, including a high resolution outdoor scene database, samples of the VisTex

colour texture suite, and randomly textured normal and abnormal tiles. The results are then

analysed in order to evaluate texture classification performance, based upon accuracy, general-

ity and computational costs.
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Chapter 1

Introduction

You love what you see, and you see what you love.

(An Old Iranian Proverb)

1.1 Background and Motivation

For humankind, vision is the most important resource of information, hence the most impor-

tant sense. Amongst several vision-based activities,object recognitionandclassificationare

regular, basic, and immediate acts. When one picks up a desired book from a table, an object

recognition task has been implicitly performed: choosing a particular book within a scene full

of other objects, possibly other books. In many applications, it would be decisively useful

if we managed to develop an automatic visual pattern recognition system to assist or replace

the human operator, for instance, a fast fingerprint identification system, a system for con-

verting handwritten texts to computer text files, face recognition for security systems, outdoor

scene object classification to help visually disabled people, and surface inspection of industrial
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products. These examples, all have something in common: to find the most important visual

propertiesor featuresof an object that make it distinguishable from others. These properties

can be colour, shape, edges, and texture, to name a few.

In a typical pattern recognition or object classification process, the first step is the extraction

of features or key properties of objects (i.e. mapping from the real world to the feature space).

The next step is classification of objects according to their features (i.e. mapping from the

feature space to the classification space). The human brain is an excellentclassifierwhich can

successfully classify objects in noisy environments even without significant features. However,

we still cannot expect the same performance from our artificial classifiers. Therefore, to work

towards a successful classification, extracted features of different objects must show adequate

separation in the feature space.

Figure 1.1 illustrates the structure of a traditional pattern recognition system. The two main

stages,feature extractionandclassification, eventually map the input object into one of theK

classes of the classification space.

Figure 1.1:A pattern recognition system.

Huge efforts in the field of automatic pattern recognition during the last few decades have

improved the overall performance of automatic recognition systems. However, even in con-

strained tasks, such as automatic registration of car number plates or handwritten character

recognition, the lack of efficiency, particularly in robustness and flexibility, is still an important

2



issue. In other words, even though a recognition systemA performs well in the recognition and

classification of pattern setα under given conditionsγ, it will not guarantee that the probability

of successful classification,P(A), on other patterns or under other conditions would be high

too:

P(A) = F (A;α;γ) (1.1)

To conclude, some effort is still needed in the field of pattern recognition to increase the quality

and performance of pattern recognition systems. This thesis considers the field oftexture anal-

ysis and classification, and its application in automatic pattern recognition as the main subject

of its study.

1.2 Overview

”The development of computational formalisms for segmenting, discriminating and recognising

image texture projected from visible surfaces are complex and interrelated problems. An important

goal of any such formalism is the identification of easily computed and physically meaningful image

features which can be used to effectively accomplish those tasks.” [16]

In recent years, the computer vision research group at the University of Bristol has developed a

neural network based system for classifying images of typical outdoor scenes to an area accu-

racy of approximately 90% [23]. The system is trained with features extracted from segmented

regions of a large image database with images of typically 512�512 resolution. One of the

issues investigated in this thesis is whether there is any advantage in utilising higher resolu-

tion images in outdoor scene object classification. Compared to ordinary images, different

objects in higher resolution photos show more explicit textural properties. Again, in a classi-

fication task, by employing higher resolution images we will be able to extract larger patches
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of different objects. Therefore, methods applied (e.g. filtering) can use a wider range of spatial

frequencies or spatial distances. This is particularly useful in texture analysis where essential

characteristics of a texture, such as patterns and edges, are mapped on a rather broad range of

spatial frequencies. Figure 1.2(a) illustrates a high resolution outdoor scene image. Figures

1.2(b) to (e), show a pavement patch in four successive resolutions, demonstrating declining

textural detail of the pavement.

Recent research on the human visual system suggests that receptive field neurons in the hu-

man visual cortex show orientation-selective and spatial-frequency-selective properties [70].

This justifies the popular use of multi-scale and multi-directional (MSMD) schemes in image

processing, for example in texture analysis, where textures usually show an obvious MSMD

structure. We propose and investigate a novel version of the Walsh-Hadamard transform, called

theDirectional Walsh-Hadamard transformor DWHT in the context of a MSMD framework.

The Walsh-Hadamard transform is one of the fastest and computationally cheapest transforms.

The proposed DWHT can be precise and cost-effective in texture analysis applications. To

evaluate the DWHT method, its performance is compared with the Gabor filter which is a

widely used MSMD algorithm. Colour features are also employed in our outdoor scene object

classification experiments. We introduce two hue-like and saturation-like colour features and

compare them with colour features extracted from standard colour spaces HLS andLab . The

proposed chromatic features show good classification accuracy and speed as well.

The experiments performed on the outdoor scene images were part of a large scale project

which dealt with wearable computers and supportive tools for partially blind people. For the

time being, it is not feasible to embed high resolution imaging tools in such systems. However,

as hardware facilities improve in time, this may become practical.

Furthermore, the fast and cheap DWHT, as proposed here, is feasible and it is worthwhile to

compare it with more costly algorithms (e.g. Gabor filtering) under real circumstances. Hence,
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further experiments and comparisons are reported in this thesis performed on the standard

texture test suite VisTex to measure the reliability and generality of results applied to images

of a more typical resolution.

(a)

(b) (c) (d) (e)

Figure 1.2:A high resolution 2048�2048 pixel outdoor scene image (a), and a pavement patch in four

successive resolutions, from the highest 256�256 pixels (b) to the lowest 32�32 pixels (e).

Attention is also paid to another field of texture analysis and classification: Detection of ab-

normalities in randomly textured ceramic tiles. Quality ranking of tiles is an essential stage in

the tile manufacturing industry and development of an automatic surface inspection and defect

detection system would have an impressive impact on the overall performance of a tile produc-

tion plant. Figure 1.3 shows normal and abnormal samples of two textured tiles selected from
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our tile database.

We shall use the term ‘textural abnormality’ to refer to all possible defects, such as cracks or

broken edges, colour or water drops, shading problems and so on. Using this definition, any

defect is an unexpected change in the typical texture of a tile. Therefore, we emphasise on

texture abnormality detection methods, and review, develop and test many texture abnormality

detection algorithms on our tile data set which includes several types of randomly textured

tiles. Experimental methods are based on statistical analysis (e.g. co-occurrence matrix and

local binary pattern, LBP) or signal processing (e.g. DWHT, Gabor filters, PCA and directional

discrete cosine transform (DDCT)). Also a new Gabor Composition scheme (GC) is introduced

and implemented. The proposed GC scheme, which is in fact a combination of Gabor filtering

and co-occurrence analysis, is on average the best of the tested algorithms.

In our texture classification and defect detection experiments described in Chapters 3 and 4, we

employed two different classifiers: a back propagation neural network (BPNN) and a K-nearest

neighbourhood (KNN). In a move away from such traditional approaches, in the final part of the

thesis we develop a newnovelty detection(ND) method for texture abnormality detection. The

most important advantage of novelty detection in industrial inspection is its independence from

defective samples. In other words, while ordinary classifiers need both normal and abnormal

samples for a successful training, a novelty detector only employs normal samples.

The proposed algorithm reconstructs a given texture twice, once using a subset of its own

eigenfilter bank, and once again using a subset of a reference eigenfilter bank, and measures

the reconstruction error as the level of novelty. We then present an improved reconstruction,

generated by structurally matched eigenfilters through rotation, negation, and mirroring. Ex-

periments on tile defect detection show that this method can perform very well.

The two major applications that we dealt with (outdoor scene object classification and randomly

textured tile defect detection), required a balance between accuracy and the computational
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(a) (b)

(c) (d)

Figure 1.3:Two pairs of normal and abnormal tiles from two different types. Top: A normal (a) and an

abnormal (b)PRODO. Bottom: A normal (c) and an abnormal (d)KIS . The defective areas have been

highlighted in the small images on the right.

costs. Performance results for all experiments (when appropriate) is presented, and the overall

performance of the proposed methods suggests that they can provide a good balance between

accuracy and computation cost.

1.3 Contribution

The contributions of this thesis are:

� A novel multi-scale/multi-directional Walsh-Hadamard transform, DWHT, which is fast
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and easy to implement, and hence is suitable for realtime applications.

� Two easy to compute chromatic features based on the definition of hue and saturation.

These features can be used in colour texture classification.

� A Gabor Composition method for detection of abnormalities in random textures. The al-

gorithm highlights the defective textures by combining Gabor filtering and co-occurrence

analysis.

� An eigenfilter based reconstruction method for texture novelty detection. The proposed

method utilisesrestructuredeigenfilters to reconstruct the texture, and then considers the

reconstruction error as the indicator of abnormality.

1.4 Thesis Layout

This thesis is divided into 6 chapters. After the introduction part,Chapter 2 provides a general

review of texture analysis literature and the methods employed in this thesis. Definitions of a

texture and related terms are reviewed to provide a clearer approach to the subject of the study.

It also contains a review on surface inspection and texture abnormality detection. Finally,

methods used such as neural networks and principal component analysis are briefly introduced.

In Chapter 3, methods for feature extraction and classification of objects in high resolution

colour images are presented. Textural features are obtained from a novel multi-band and direc-

tional Walsh-Hadamard transform, as well as simple chromatic features that correspond to hue

and saturation in the HLS colour space.

In Chapter 4, a study in normal/abnormal textures classification experiments is presented. The

two proposed methods (DWHT and GC) are applied and compared in terms of accuracy and
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speed against other established and optimised texture classification methods, such as Gabor

filters and co-occurrence matrices on a data set of normal and defective textured ceramic tiles.

In Chapter 5, a new eigenfilter-based novelty detection approach to find abnormalities in ran-

dom textures is presented. The method is accurate and fast, and amenable to implementation

on a production line.

The thesis is concluded inChapter 6.
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Chapter 2

Texture Analysis and Classification:

Background and Methods

2.1 Introduction

In this chapter, we briefly review the field of texture and texture analysis. We begin with the

definition of texture and related terms in Section 2.2. Then, diverse approaches to texture analy-

sis and classification are discussed in Section 2.3. New methods for random texture analysis are

introduced in Section 2.4. Section 2.5 briefly reviews some previous studies in colour texture

processing. Section 2.6 provides an overview to texture inspection and abnormality detection.

Finally, Section 2.7 summarises the methods used in this thesis.
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2.2 Texture: Definitions

‘Texture’ is a widely used and implicitly understandable term, however as many other intu-

itively known phenomenon, there is no precise definition. In the Webster dictionary, texture

is defined as “the character of a surface as determined by the arrangement, size, quality, and

so on” or “the arrangement of the particles or constituent parts of any material as it affects

the appearance or feel of the surface”. Some other specific and technical definitions found in

machine vision literatures are “discrete 2D stochastic field with a given governing joint prob-

ability density function” [97] or “repetitive arrangement of a unit pattern over a given area”

[101]. Humans usually describe a given texture by words like fine, coarse, smooth, rough and

so on. These attributes are again instinctually obvious, however still relative and not easily

measurable [113].

As with many other analyses, a reasonable approach to describe a texture could be extraction

and definition of itsprimitivesor elements, which usually are referred astextons[127, 131],

along with the description of the inter-primitives relations. We can refer to the internal proper-

ties of a primitive (e.g. intensity or colour of the pixels) as thetoneand spatial inter-primitive

relationship as thestructure[44, 113]. Consequently a countable set of primitives with distin-

guishable tones and their structure describe the texture. However, for many natural textures, it

is not very easy to determine the primitive set and the structure.

Textures could be categorised according to their strength or cohesion feature. Aconstanttex-

ture, is constant, slowly changing or approximately periodic. In astrongtexture, the primitive

set is well defined and the structure is rather regular. In other words, elements and spatial rela-

tions between them are clearly determinable. While in aweaktexture definition of a crisp set

of primitives is relatively more difficult and spatial correlation between primitives is also low.

An extremely weak texture could be considered as arandomtexture [113]. Again, textures can

be categorised asfineor coarse. In a fine texture, primitives are small and the contrast between
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primitives are high. In contrary, in a coarse texture primitives are relatively large. However, all

the definitions above are relative, particularly for natural textures. Also, texture is a property

of area, therefore texture measures are dependent on the size of the observation (i.e. patch size)

and also the resolution [97].

As an example, Figure 2.1(a) and (b) illustrate that the fineness and coarseness are scale-

dependent attributes. In fact, the coarser checkered texture (b) is a patch of the finer (a) af-

ter 16 times zooming-in. Figure 2.1(c) and (d) show two natural textures selected from the

pseudo-standard Brodatz texture album [18]. Although (c) is more regular than (d) and can be

assumed as a strong texture, defining a clear set of primitives as the building blocks of (c) is

still difficult. For a weaker texture like (d), it is almost impossible to determine primitives and

structure in current resolution. Figures 2.1(e) and (f) are two natural textures from the VisTex

texture suite [69]. Again it is not clear how one can define primitives of a weak/random texture

like (f), while it is an easier task for (e).

Figure 2.2 depicts a fuzzy-like separation of different textures according to their strengths and

the corresponding degrading/increasing properties. While for a constant texture primitives and

the structure are well-defined and strength is high, for random textures they are ill-defined and

low.

Texture analysis covers a wide range of applications: medical image analysis, scene under-

standing, remote sensing, textured surface inspection, document processing and many more.

Next, we categorise different approaches to texture analysis, with special attention to texture

classification. Our study emphasises on the lower level texture processing. Although during

recent years an obvious shift of interest from low level to high level vision has occurred in

machine vision, low level processes are still an active field of study. High level processes are

not independent from low levels, and there are still a lot of unanswered questions in the field

of low level vision and image processing [31].
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(a) (b) (c)

(d) (e) (f)

Figure 2.1:Examples of artificial and natural textures. (a) and (b): A similar ‘checkered’ artificial

texture in high and low resolution representations. (c) and (d): Two natural textures from Brodatz

album, (c) is D111 and (d) is D105. (e) and (f): Two colour natural textures from VisTex set. (e) is a

fabric and (f) is a grass.

2.3 Texture Analysis and Classification: Different Approaches

Sonkaet al [113] state that there are two main approaches to texture analysis: statistical and

syntactic. They consider auto correlation, discrete image transform, ring/wedge filtering, grey

level co-occurrence matrices (GLCM), (or dependency matrices [66]), and mathematical mor-

phology as popular statistical texture analysis methods, and shape chain grammar and prim-

itive grouping as syntactic methods. In a more comprehensive categorisation, Tuceryan and

Jain [116] distinguish four different approaches to texture analysis: statistical, geometrical,

model-based and signal processing approaches. Using the later categorisation, geometrical

(e.g. Voronoi tessellation or region growing) and model-based approaches (e.g. Markov ran-
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Figure 2.2:Definition of different textures and their properties.

dom fields or fractals) are not of interest in this thesis. Therefore, we only review statistical

and signal processing approaches and their advantages and disadvantages.

2.3.1 Statistical Approaches

Statistical texture analysis methods deal with the distribution of grey levels (or colours) in a

texture. The first order statistics and pixel-wise analysis are not able to efficiently define or

model a texture. Therefore, statistical texture analysis methods usually employ higher order

statistics or neighbourhood (local) properties of textures. The most commonly used statistical

texture analysis methods are co-occurrence matrices, autocorrelation function, texture unit and

spectrum, and grey level run-length [49, 113, 116].

Co-occurrence Matrices: Introduced by Haralick [45], GLCM is one of the earliest texture

analysers which is still of interest in many studies. Since the beginning of the 70’s many

researchers have studied GLCM theory and have practically implemented it in a wide range of

texture analysis problems.

GLCM is a model that can explicitly represent the higher order statistics of an image, just like
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ordinary histograms which represent the first order statistics of images. For anN-grey level

image,x, the GLCM which captures the second order statistics and presents them inN�N

matrices, is defined as:

Φd;θ(i; j) =
U

∑
u=1

V

∑
v=1

ρ(x(u;v);x(u0;v0); i; j) (2.1)

where the image size isU�V, d andθ are distance and direction between pixel pair

< x(u;v);x(u0;v0)> andρ is:

ρ(x(u;v);x(u0;v0); i; j) =

�
1 If x(u;v) = i and x(u0;v0) = j

0 other wise
(2.2)

In fact Φd;θ(i; j) shows the number of occurrence of grey level pair< i; j > between pixels at

d distance andθ direction of each other. For instance, the expression below illustrates a given

4�4 image and one of its GLCM matrix withd = 1 andθ = 0Æ.

x=

2
666664

0 0 1 1

0 0 1 1

0 2 2 2

2 2 3 3

3
777775 ) Φ1;0Æ(x) =

2
666664

4 2 1 0

2 4 0 0

1 0 6 1

0 0 1 2

3
777775 (2.3)

There is no generally accepted solution for optimisingd andθ, however, havingd = 1 and

θ = f0Æ;45Æ;90Æ;135Æg is typical. The next step is usually extracting more condensed texture

features by applying some appropriate functions onΦ. GLCM and its parameter setting and

functions will be discussed in detail later in Section 4.3.3.

There are several reports on relatively successful implementations of GLCM in texture analy-

sis and classification, for instance [44, 66, 100]. Moreover, recently Partioet al [94] utilised

15



GLCM to retrieve rock textures, where GLCM features performed better than Gabor wavelet-

based features. Also Clausi [24] employed GLCM to classify SAR images. Clausi also re-

viewed several former implementations of GLCM, mostly on the field of remote sensing, and

posed certain questions about their algorithms and results, in particular the methods used for

parameter optimisation. Again, the role of grey level quantisation on the GLCM performance

were discussed in that study.

Autocorrelation (AC) function: The AC function is defined as:

AC∆u;∆v(x) =
∑M

u=1∑M
v=1x(u;v)x(u+∆u;v+∆v)

∑M
u=1∑M

v=1x2(u;v)
(2.4)

wherex is theM�M image,∆u and∆v, are horizontal and vertical displacements. The AC

function can assess the regularity and fineness/coarseness of the texture. The autocorrelation

function of a coarse texture drops off slowly and vice versa. Again, the autocorrelation function

of a regular texture exhibits clear peaks and valleys. Although it is possible to find some

different artificial textures with a similar autocorrelation function, this does not necessary rule

out the utility of an AC feature set for natural texture classification [97]. In general however,

the AC function is not considered a highly effective and popular texture classification tool.

Texture unit and spectrum (TUS): Introduced by He and Wang [47], TUS firstly replaces the

texture’s pixels withtexture units(TU), which are functions of a rather small neighbourhood

around each pixel (e.g. 3�3), and then computes the distribution (e.g. histogram) of TUs over

the mapped image as thetexture spectrum. Many of the proposed neighbourhood functions are

in fact a mixture of simple logical operators and weighted summation of neighbourhood pixels.

For instance, a pixel can be replaced by sum of its brighter neighbour pixels. He and Wang

employed their method in texture classification and unsupervised segmentation, and textural

filtering, however, the excessive dimensionality of feature space (e.g. 6561 features in [47])
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limited the method’s practicality.

Local binary pattern (LBP) was introduced by Ojalaet al [92] as a TUS-based grey level shift

invariant texture descriptor. The basic LBP operator considers a 3�3 neighbourhood of a pixel,

then these 8 border pixels will be replaced either by 1, if they are larger than or equal to the

central pixel or by 0 otherwise. Finally, the central pixel will be replaced with a summation of

the binary weights of border pixels in the LBP image and the 3�3 window slides to the next

pixel.

Figure 2.3:Computing the basic 3�3 LBP (From [80]).

It is possible to develop the basic LBP into various neighbourhood sizes and distances [93]:

LBPP;R =
P�1

∑
p=0

s(gp�gc)2
p (2.5)

wheres(�) is the sign function:

s(x) =

(
1 ; x� 0

0 ; x< 0
(2.6)

gp andgc are grey levels of border pixels and central pixel respectively, andP is the number of

pixels in the neighbourhood.

In this case, if we set(P= 8 ; R= 1), we obtain the basic LBP (see Figure 2.3.1). Luminance

changing cannot affect signed differencesgp� gc, hence LBP is grey level shift invariant.

Whereas ordinary LBP is not rotation invariant, it is possible to modify it to a rotation invariant
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version [93]. Typically the 256-bin histogram of the LBP is considered as the texture descriptor.

However, when aP > 8 is used, the LBP range exceeds far beyond 28 = 256 and it may be

necessary to select a subset ofP to decrease the maximum value of LBP. Figure 2.4 shows a

textured ceramic tile, its basic LBP map and the corresponding histograms.

(a) (b)

(c) (d)
Figure 2.4:A textured ceramic tile (a), its basic LBP map (b) and corresponding histograms ((c) and

(d)).

We will utilise Local Binary Patterns algorithm later in Section 4.3.2 in a texture defect detec-

tion experiment.

Grey level run-length or primitive-length (GLRL): In this method, the primitive set is de-

fined as the maximum set of continuous pixels of the same grey level, located in a line. The

length of primitives (run-lengths) in different directions can then be used as the texture de-

scriptors. A longer run-length implies a coarser texture and vice versa, also a more uniformly

distributed run-length implies a more random texture and vice versa. Statistics of the primitives

can be computed as the texture features. For example, letB(g; r) be the number of primitives

of the lengthr and grey levelg, N the number of grey levels, andNr the maximum run-length
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of the texture. ThenK is the total number of runs:

K =
N

∑
g=1

Nr

∑
r=1

B(g; r) (2.7)

and texture uniformity measure can be defined as:

1
K

N

∑
g=1

Nr

∑
r=1

B(g; r)2 (2.8)

Primitives should be computed for all grey levels, lengths, and directions, which is a costly

process. Again, implementation of GLRL on grey scale textures is not straightforward, since

some considerations on quantisation tolerance should be satisfied. Also GLRL has not shown

promising results in many texture classification experiments. For instance, in [108], applied

on a specified benchmark [88], GLRL performance is the lowest one with around 45% correct

classification, and almost 30% less than the AC and GLCM in the same experiment.

2.3.2 Signal Processing Approaches

Signal processing approaches cover a wide range of spatial and transform domain filtering, dis-

crete transform domain analysis, and multi-scale/multi-directional (MSMD) methods. Signal

processing schemes, which indicate the texture as a 2D digital signal, are very popular and

capable of dealing with random as well as regular textures.

Spatial domain filtering: A texture can be considered as a mixture of patterns, therefore

characteristics of ‘edges’ and ‘lines’ are key elements to describe any texture. Even a plain or

smooth texture can be considered as a texture without any edge. The early attempts to utilise

spatial domain filtering as texture descriptor were emphasised on gradient (i.e. line and edge

detector) filters such as Robert and Sobel operators [97, 113]. Moreover, Laws [72] proposed
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his nine 3�3 pixel filter set (see Figure 2.5(a) and (b)) to extract the micro structure of textures.

His method concerns filtering the texture by an empirical filter set and measuring the micro

structures’energy(i.e. standard deviation of the responses). In a later study, Laws successfully

employed 5� 5 filters and a 15� 15 sliding window absolute averaging scheme for texture

segmentation [73].

The common term in all spatial domain filtering methods is 2D convolution of the texture

with a set of relatively small filters (i.e. filter bank) and then processing the filter responses.

It is also possible to implement small size discrete sin (DST), cosine (DCT) or Hadamard

filters instead of Laws filters. In a series of works, Unser established a platform of small size

spatial domain filters (which he callslocal linear transform, LLT) for texture analysis and

classification [117, 118]. Figure 2.5(c) and (d) illustrate 3�3 DCT and DST filters. Apparent

similarity between these filters and Laws filters suggests that all methods use similar principles

and may have similar performances.

Eigenfilters (or similarly Karhunen�Loeve transform, KLT) are another alternative for spatial

domain texture analysis. Although they look like Laws and other gradient filters (see Fig-

ure 2.6), compared to Laws filters they have two additional important features: adaptability

and orthogonality. Adaptability means each image has its individual eigenfilter bank which

is extracted from its covariance matrix using a principal component analysis (PCA) scheme.

Orthogonality means the eigenfilter bank is orthogonal, hence it can decompose an image into

a set of uncorrelated detail (or basis) images, and regenerate the image by re-composition of

detail images [2]. Details of PCA and eigenfilters will be discussed later in Sections 2.7.1 and

4.3.7. Figure 2.6 depicts a randomly textured ceramic tile (a), its nine 3�3 eigenfilters (b), and

detail images (c).

Various authors have suggested that KLT is one of the best texture analysers. For instance, re-

garding its adaptive nature, Unser [118] considered the KLT as the optimum LLT, and indeed in
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(a) (b)

(c) (d)

Figure 2.5:Nine 3�3 Laws filters ((a) and (b)), DST filters (c) and DCT filters (d). To increase the

visibility, all filters have been equalised.

his experiments KLT performed better than all other local linear transforms. More clarification

of the KLT transform and eigenfiltering can be found in [120].

Fourier domain analysis: The Fourier Transform, and its fast version, FFT, is a basic tool for

harmonic analysis of images:

F(u;v) =
1

ω2

M

∑
x=1

M

∑
y=1

f (x;y)e
�2π j

ω (ux+vy) (2.9)

The complex FFT represents magnitude (jF(u;v)j, namely absolute value or power spectrum

density) and phase (6 F(u;v)) information of the signal in the frequency domain. Power spec-

trum density (PSD) is directionally symmetric and represents global frequency contents of an

image. Therefore, regarding special attributes of textures, typical PSD analysis (e.g. employ-
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(a) (b)

(c)
Figure 2.6:3�3 Filter bank (b) and detail images (c) of a randomly textured tile (a).

ing PSD moments as features) may not be sufficient for extracting efficient texture features. A

solution is processing and analysing the FFT output to obtain high performance textural fea-

tures. For instance, D’Astous and Jernigan utilised detailed measures of the FFT domain for

texture discrimination [30]. They proposed two groups of PSD-based features: peak features

and power distribution features. Strength, curvature, area and distance-to-centre are examples

of their peak features, and difference between vertical/horizontal direction variances, power

spectrum eigenvalues and the circularity of the PSD are some of their power distribution fea-

tures. Chan and Pang studied fabric defect detection by Fourier analysis [19]. They applied

FFT domain analysis inx andy directions since many fabric defects occur in those directions.

Their proposed features were the first and the second peaks or harmonics of the horizontal and

vertical 1D slices of the power spectrum (e.g.jF(u;0)j andjF(0;v)j projections ofjF(u;v)j).

However, while FFT is a very fast transform, many of the proposed subsequent features of the
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above-mentioned methods are computationally costly.

Ring and Wedge filters(RF/WF) are another commonly used FFT based texture analysis method

[53, 113] and can be defined as:8>><
>>:

RF(∆r) = ∑(u2+v2)2∆r jF(u;v)j2

WF(∆θ) = ∑arctan(u
v)2∆θ jF(u;v)j2

(2.10)

wherejF(u;v)j is the power spectrum. Figure 2.7(a) and (b) show a ring and a wedge filter.

(a) (b) (c)
Figure 2.7:A ring filter (a), a wedge filter (b), and four wedge filters with∆θ = 45Æ and Gaussian

envelope.

A ring filter, which is indeed a symmetric band-pass filter, can reveal the distribution of tex-

ture’s energy across the frequency domain and measure its fineness/coarseness. A wedge filter

in ∆θ passes the energy in∆θ+ π
2 orientation, thus can evaluate the directionality of the image.

As Figure 2.7(c) illustrates, to decrease the harmful side lobes a Gaussian envelope may cover

the filter and smooths its edges [96].

Discrete transforms: Rather than the FFT, it is possible to apply other discrete transforms

or harmonic analysers such as discrete cosine transform or Walsh/Hadamard transforms (DCT

and WHT respectively) for texture analysis. Each discrete transform has its own advantages

and disadvantages. For instance, while FFT is complex, DCT and WHT are real, hence easier
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to handle. FFT and DCT use sinusoidal kernel functions, whereas WHT uses less accurate but

faster square kernels and therefore is easier to implement. However, in the case of WHT or

DCT, generally some modification should be carried out on the original transform, to make it

more suitable for texture processing. For example, presented in this study, the new DWHT

method which will be described later in Chapter 3, is in fact a modified MSMD version of

WHT with a better performance in texture classification.

MSMD schemes: Several studies on early stages of the human (and other mammals) visual

system (HVS), suggest that we decompose the input image into detail images of various spatial

frequencies (scales) and orientations. In other words, retina cells are selective, and different

cells respond to different scales and orientations [9, 70]. Inspired by this biological theory,

MSMD methods have been developed and tested on texture classification, segmentation and

synthesis applications [23, 54, 107]. Although there are some reports on multi-scale LBP [93]

and GLCM [122] techniques, MSMD methods are mostly based on either Gabor filters [25, 67,

90], or wavelet analysis [12, 78, 96, 107]. In the spatial frequency domain, a Gabor transform

can be interpreted as a windowed or short-time Fourier transform. A Fourier transform is a

global frequency content analysis. Instead, a windowed Fourier transform is a local analysis

which will be obtained by multiplying the input signal by a window [4]. If the window function

is a Gaussian, the transform will be a Gabor transform [116].

A 2D Gabor filter can be defined in both spatial (G(x;y)) and spatial-frequency domain (G(u;v))

as: 8>><
>>:

G(x;y) = e�π[(x�x0)
2σ2

u+(y�y0)
2σ2

v]:e�2π j(x0u+y0v)

G(u;v) = e
�π[ (u�u0)2

σ2
x

+
(v�v0)

2

σ2
y

]

:e�2π j[x0(u�u0)+y0(v�v0)]

(2.11)

Gabor filter parameters will be discussed later in Section 3.3.1. In the spatial domain, a Ga-

bor filter is a sinusoid wave modulated by a Gaussian envelope. The standard deviation of the

Gaussian envelope determines the filter bandwidth, while the direction and frequency of the
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sinusoid signal tune the direction and frequency of the passing band. Gabor filters in frequency

domain are Gaussian bell-shape filters with different horizontal and vertical central frequency

and bandwidth, placed in various orientations. Therefore, they are frequency and orientation

selective filters. There are two major ways to optimally choose parameters of a Gabor filter:

supervisedandunsupervised. In a supervised manner, several sets of parameters are tried to

find out the optimum filter (or a few filters) for a given problem. Whereas in an unsupervised

manner, a filter bank which spreads throughout the frequency plane is used. The unsupervised

method is more general and more popular, however dealing with a filter bank means a higher

computational cost and a larger feature space [54]. It is also of importance to optimise Ga-

bor filter bank parameters, namely central frequencies, bandwidths, and directions, and select

effective Gabor-based features.

Utilising 1-octave difference between central frequencies is typical and also confirmed by some

studies on HVS. This means that for two successive central frequencies in the filter bank,ωi ,

andωi+1 we havelog2(ωi+1=ωi) = 1 (or ωi+1 = 2ωi). The bandwidth of higher frequencies

is wider than the lower frequencies and half-power bandwidth would be considered as well,

where the point of intersection is on half magnitude of two successive filters. This configuration

results in adyadicGabor filter bank [9, 23]. Although biological evidence considers∆θ = 30Æ

for HVS cortex directional resolution [25], many researchers have found∆θ = 45Æ adequate,

e.g. [54].

In their study, Grigorescueet al [43] compared a variety of Gabor based texture features. In

particular Gabor energy, complex moments and grating cell operator features were evaluated by

both Fisher criterion and classification results. The key point of their work was benefits ofpost-

Gabor processingusing grating cell operators. This operator which is a computational model

of a specific type of neuron found in visual cortex of some monkeys, signals the presence

of 1D periodicity of particular spatial frequency and orientation in 2D images. To be more

specific, a grating cell only responds when a set of at least three bars of a given direction and
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spacing is present in the receptive field. The response increases with the number of bars but

will saturate soon. Classification tests suggest that the grating cell operator performs more

effectively than Gabor energy and complex moments in texture segregation. Furthermore, in

an effort to separate textures from other parts of image (e.g. edges or contours), the grating cell

is the only one which does not give a false positive signal to non-texture regions. Meanwhile

many other studies have employed non-linear blob detectors as the post-Gabor processing [54,

103].

Although a restricted Gabor filter bank can also be considered as a wavelet analysis tool, typical

wavelets for texture analysis are based on a sequence of spatial domain filters applied on a

pyramid-shape multi-scale structure of the image. There are several ways to implement a multi-

scale wavelet technique. However, the formal and unified approach which was introduced

by Mallat [81] is a well established and popular platform. A wavelet transform decomposes

the input signal (e.g. an image) into an orthogonal set of wavelet sub-signals (detail images).

There are certain interesting studies on wavelet-based texture classification and synthesis based

on Mallat propositions and Gaussian/Laplacian pyramids, in particular Heeger and Bergen’s

steerable pyramids [37, 48], Portilla and Simoncelli’s complex joint statistics [96, 107] and

DeBonet’s flexible histograms [11, 12].

Figure 2.8 depicts a way of generating multi-scale pyramids and extracting texture features.

The input imagex is low pass filtered by functionf to generate the first Gaussian detail image

L1. If we want to keep 1-octave scaling,f can be a 2-times down sampling function:

L1 = f (x) = 2#(x) (2.12)

and in general,

Ln = f (Ln�1) = 2#(Ln�1) (2.13)

where 2# is 2-times down sampling operator. To obtain the high pass filtered Laplacian detail
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Figure 2.8:Wavelet algorithm and Gaussian/Laplacian pyramids. Parents/children path is defined in

Debonet method [11, 12].

images, we can up sampleLn and subtract it from its Gaussian ‘child’,Ln�1:

Hn = Ln�1� 2"(Ln) = Ln�1� 2"(2#(Ln�1)) (2.14)

where 2" is 2-times up sampling operator. SequencesLn andHn are indeed different levels of

Gaussian and Laplacian pyramids respectively. Figure 2.9 illustrates Gaussian and Laplacian

detail images of a test portrait.

Texture feature extraction can be completed by applying directional filters (pi) on different
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(a) (b)
Figure 2.9:Gaussian (a) and Laplacian (b) detail images of a portrait.

levels ofLn and obtaining the responses. As an example, Figure 2.10 depicts 3� 3 gradient

filters which we utilised for a texture synthesis test. This set contains line detectors in vertical

and horizontal direction (p1 andp2) and edge detectors in four directions (p3 to p6). A simple

feature vector then comprises the statistics ofHn along with the statistics of low pass responses

pi(Ln) for all levels and filters. Portilla and Simoncelli suggest that adding joint statistics of

different levels and orientations (e.g. cross correlation ofpi(Ln) and pi+1(Ln) ) can increase

the classification performance. DeBonet instead exploitsflexible histograms, where each bin

contains the number of pixels with closeparent structures. A parent structure is the filter

responses of a pixel and all of its parents (i.e. pixels at the same position of the lower resolution

levels of the Gaussian pyramid).

Figure 2.10:Six gradient filters which are employed for wavelet feature extraction.
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These works all are applicable in texture synthesis as well, where they aim to produce a per-

ceptually similar, but not copied version of a model texture. Heeger and Bergen start with a

random noise and attempt to match its histogram and then sub-band histograms (i.e. histograms

of pyramid levels andpi(Ln)) with ones of the model texture to be synthesised iteratively. Por-

tilla and Simoncelli employ a recursive procedure to match the marginal and joint statistics of

a random texture and the model level by level, starting from the vertex of pyramid (i.e. low-

est resolution). Synthesis mostly begins from the lowest resolution, whereas analysis usually

begins from the highest. DeBonet proposes another method of synthesis which again begins

from the lowest resolution and randomly swaps the pixels whose parent structures are similar

enough, and continues toward the highest resolution.

2.4 Textons in Random Textures: A Different Approach

As mentioned before, modelling of natural and random textures based on the definition and

extraction of textons or texture primitives is not a straightforward process. In particular it is

not clear how to geometrically define elements of a random texture. However, there is a more

stochastic way to model a texture and define its textons, based on a well-prepared set of filter

responses and their statistics, clustered in the feature space. This signal processing approach

is more suitable than geometrical methods for random textures modelling, since it provides a

more operational way to deal with random textons [75, 123]. Amongst several studies which

utilised this approach, Leung and Malik in [75], considered a texton as a cluster centre in

the filter response space. Their filter bank comprised a few tens of asymmetric MSMD (with

different scales and orientations), symmetric low pass and symmetric high pass filters. K-means

clustering was then employed to cluster the filter responses intoK clusters. Next, cluster centres

were assumed as textons and built up atexton dictionary. In this study effects of both surface

attributes and illumination on generating 3D textures were reviewed and a rotation-invariant
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method was introduced which represented different viewpoints and lightings. Cula and Dana

[29] and Varma and Zisserman [123] utilised a basically similar method, but exploited diverse

filter banks and defined texton histograms as the texture feature. In their work textons of a

given texture were extracted and labelled using the reference texton dictionary. The Varma and

Zisserman algorithm was rotation-invariant, since it exploited an energy-ordered directional

filter responses and took the maximum energy. Schmid [105] employed a symmetric multi-

scale filter bank and a two-layer constructing model for image retrieval. Her algorithm was

also rotation-invariant and showed good performance in image retrieval experiments. We will

refer to these schemes later in Section 4.4 as a justification for our proposed method toward

texture classification using the innovative Gabor Composition approach.

2.5 Colour Texture analysis

Almost all of the studies on colour texture analysis either deal with colour channels R,G, and

B as three individual signals, or transform the texture into anothercolour space(e.g. HLS

or L�a�b�) and then process the chromatic planes as well as the intensity one. For instance,

Baldrich et al [5] established a study on tile classification using colour features in the RGB

space. Their work was focused on colour inconstancy detection using a K-means coloured-blob

segmentation and there was no signal processing approach in their report. Kittleret al [64] on

the other hand, utilised both RGB andL�a�b� (for simplicity we may show it asLab ) spaces

for colour clustering as a part of their defect detection scheme in colour textures. The initial

clustering was carried out in the RGB space, then since inter cluster distances in the RGB space

did not fully convey the perceptual distances between colours, clusters were transformed to the

Labspace where the clusters merged together.

Colour texture classification will be explained further in Section 3.4. Meanwhile, the applica-
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tion of colour-based methods in this thesis is limited. In Chapter 3, we mostly focus on the

texture greyscale features, then utilise the chromatic features to enrich the set. Moreover, the

tile data set of Chapters 4 and 5 only contains greyscale images, therefore we do not apply

any colour texture processing further than the third chapter. HLS andLab colour spaces are

discussed in Appendix A

2.6 Texture Inspection and Abnormality Detection

Quality ranking and defect detection of randomly textured ceramic tiles is one of the major

topics to be investigated in this thesis. Surface inspection and abnormality detection is a partic-

ular case in texture classification, where the algorithm attempts to inspect a surface for possible

defects, to classify the input sample as eithernormal or abnormal, or to rank its quality. In

fact detection of textural abnormalities is a vital part of many systems and applications such

as clinical checkup systems [66, 86], surface inspection of industrial products [6, 13, 46], food

products inspection [32], and remote sensing [22, 116]. Apart from typical advantages of an

automated system in industrial and clinical applications, in some cases such as underwater

apparatuses and space crafts automatic inspection is inevitable, since the environment is too

hazardous for human operators [22].

2.6.1 How to Detect a Textural Abnormality?

One of the earliest attempts on texture discrimination was Julesz works which started in the

early 60s [59]. In a series of studies, she emphasised the fabulous human ability to distinguish

between textures and tried to extract some reliable and applicable facts from that process. She

stated that the human texture discrimination process could be divided into two categories of
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effortlesswhich is fast andpre-attentive(PA) andneed-scrutiny(NS) which is slow and needs

search and focus on the patterns. Figure 2.11 shows one of her classic examples where‘X’ s pop

up from background‘L’ s (i.e. pre-attentive), finding‘T’ s requires scrutiny. The later indeed

needs the serial shift of attention [60, 127].

Figure 2.11:An example of pre-attentive and need-scrutiny texture segregation, from [127].

In this example, obviously the 1st order statistics of primitives (i.e. histograms of‘X’ , ‘L’ and

‘T’ ), are similar. Hence higher order statistics must be involved in segregation. Consequently

the question to answer would be ‘what is the highestN for which it is possible to have identical

Nth order statistics for a yet distinguishable texture pair?’ At first it was claimed thatN = 2

is the answer. In other words 2nd order statistics could sufficiently describe the differences

between textures. However, later Julesz and her colleagues found some stochastic texture pairs

with identical 2nd (and even 3rd) order statistics that still were pre-attentively distinguishable

[127].

There are some significant differences between normal/abnormal tiles discrimination and stochas-

tic, artificially generated examples of Julesz. Firstly, the threshold between PA and NS is not

crisp but fuzzy. Inspection of a textured tile, and many other similar activities, is observer-

dependent and environment-dependent. Observer’s experience and vision quality or lighting

conditions can affect the detection of a particular defect. Secondly, and more importantly, in

natural and random textures definition and extraction of texture primitives and the structure is

not usually easy.
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The major challenge in tile defect detection is in dealing with randomly textured tiles, where

the real shape of the tile is not precisely predictable. If the texture is not random, (e.g. Figure

2.12(a) and (b) which are a plain and a figurative tile), we can preserve the model image as a

templateor reference. Then we can compensate the intensity and lighting variations (e.g. by

normalisation or histogram matching), and viewpoint differences (e.g. by so-calledregistration

or matching the corners and edges of model and test images). Consequently, the defect detec-

tion can be easily carried out by calculating the difference between the model and test images.

The defective areas also will be easily highlighted by this method [46].

(a) (b) (c) (d)
Figure 2.12:A plain (a) and a figurative (b) tile and two randomly textured tiles, (c) and (d).

Abnormality detection in a random texture on the other hand, will not be that straightforward.

Figure 2.12(c) and (d) are two normal random texture tiles of the same type. It is apparent

that they are texturally similar, however no pixel-wise comparison can measure the quality.

Instead, we need a texture-wise comparison or measuring the textural properties as the key

feature. Rao and Lohse [99] state that humans essentially use three high-level features for

texture interpretation:repetition, directionality, and complexity. Repetition and directionality

may represent spatial frequency and orientation. Complexity could be related to the consistency

of the texture: A strong texture is less complex than a very weak (random) texture. These

features can be efficiently measured by signal processing or statistical texture analysis methods

to materialise a texture-wise comparison. This fact justifies the wide application of signal

processing and statistical methods in random texture classification.
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2.6.2 Ceramic Tiles Inspection

As well as many other industries, surface inspection and quality classification is an essential

stage in tile manufacturing. Due to the high cost of human inspection, speed of the production

line, and repetitious nature of the activity, development of a suitableautomatic defect detection

system(ADDS) would have an impressive impact on the overall performance of a tile pro-

duction plant. The key point is eventually being at the performance zenith, which guarantees

the success in a very competitive market. To be more specific, the advantages of automatic

inspection in the tile industry can be listed as:

� Lower inspection costs: In the long term, human inspectors will cost more than an

ADDS.

� Less human skill dependent inspection: Precision of the final quality ranking depends

on the skill and experience of the inspector. Again, inspection is an iterative and boring

task and fatigue can disturb the inspector’s performance. An ADDS can provide a more

homogenous and consistent inspection process.

� Higher production line speed: The human inspector speed is limited and in many cases

the bottle neck of the production line. An ADDS-facilitated production line speed can be

increased much further than that limit.

� Workers health risk: The environment of a tile factory is damp and saturated by sus-

pended dirts, and inspectors stay there all the time while the production lines are working.

An ADDS decreases the risks of such an unhealthy environment.

� Further development to the other stages of the production line: It is possible to spread a

modular ADDS throughout the production line to gain a more effective and robust quality

control process. Fault prediction and correction, and recycling the defective materials

before the kiln will be some of the advantages of such an advanced system.
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Figure 2.13(a) illustrates a schematic of a tile production line and the position of an ordinary

ADDS on that. Figure 2.13(b) shows the tiles on a conveyor.

(a) (b)
Figure 2.13:A schematic of a tile production line (a) and a picture of tiles on the conveyor belts (b).

Although several manufacturers have introduced their commercial inspection systems (see [74]

for some examples) and also there have been massive investigations on that field across aca-

demics and research groups (to name a few [5, 13, 14, 28, 79, 84, 111, 121]), it seems that still

more efforts and studies are required to achieve high performance, robust and flexible defect

detection algorithms and systems.

Defect Characteristics

Broken corners and edgesPhysical damages on corners and edges

Colour grading Changes in colour shades

Cracks Thin and long random physical defects

Dirt Small random particles on the surface

Drops Include colour and water drops

Lines Wide visible direct lines on tile surface,

mostly result of production line bars

Pinholes Very small holes

Textural problems Changes in density and shape of patterns

Table 2.1:Typical defects of ceramic tiles.
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Table 2.1 illustrates the typical defects for a ceramic tile. Tiles, excluding plain or figurative (or

patterned) ones (see Figure 2.12(a) and (b)), are typical examples of random or pseudo-random

textures. Any defect changes the expected texture of the tile and hence can be interpreted

as atextural abnormality. Thus texture analysis is appropriate for normal and abnormal tile

discrimination. As an example, Figure 2.14 shows normal and defective tiles of three different

types. It can be seen that while normal tiles represent a rather homogeneous texture, defective

tiles contain abnormal regions with different textural properties.

(a) (c) (e)

(b) (d) (f)
Figure 2.14:Three pairs of normal/abnormal tiles. Top row: normal, bottom: abnormal.

2.6.3 Previous Studies on Surface Inspection and Tile Defect Detection

Useful reviews on automated visual inspection literature are provided by Chin [22], who covers

early works until the beginning of the 80’s, and also Bayro-Corrochano [7], and Newman and

Jain [91], who cover more recent works until the mid 90’s.

36



Some pioneering work on automatic detection of textural abnormalities was carried out by

Kruger et al in 1974 [66]. Indeed, in the early 70’s it was decided that tens of thousands of

chest roentgenogram had to be checked to detect possible coal workers Pneumoconiosis. This

massive task was also supposed to be finished in a limited time. That was the main motiva-

tion for their work on computer diagnosis of Pneumoconiosis which included texture feature

extraction via both co-occurrence matrices (or as they called it ‘spatial grey level dependence

matrices’) and Fourier domain analysis. The co-occurrence matrices were computed on four

orientations and four distances, then five pseudo-standard Haralick functions were applied on

them. Finally an averaging on different angles was performed to decrease the number of fea-

tures. Edge information usually concentrates on the higher frequency region of the Fourier

domain, also the disease usually affects the image edges. So they employed 32 ring filters to

extract Fourier-based textural features and a band-reject wedge filter to diminish the effect of

ribs. Then, the normalized energy of rings were selected as the features. The number of grey

levels (only 8) and the size of input patches (4�5 inches zonal reproductions of a 14�17 inches

roentgenogram) both were relatively low, but justifiable considering the early 70’s facilities. A

correct decision performance of around 80% was reported. Apart from the limited number of

test images, perhaps the most obvious disadvantage of the study might be the assumption of

a minor rule for the directionality of the texture compared to the distance (in co-occurrence)

and the frequency (in Fourier). In the absence of any reported analogy, it is not clear why

directionality has been considered less important than those other two factors.

Hayatiet al developed a machine vision system for automated surface flaw detection on orbit-

ing space platforms. Their double-staged system firstly compared the grabbed images of the

space platform with reference images. Any mismatch triggered the second stage where pat-

tern recognition techniques were exploited to detect and classify the possible flaws. Notable

points of their work included a light variability compensation method using a powerful strobe

(flash) illumination technique, an iterative matching technique to overcome the misregistration

problem between the reference and the inspection image, and a region-based and multi-scale
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approach to make the flaw recognition process computationally tractable using prior knowledge

of image texture [46].

Iivarinenet al [52], reported a defect detection system for web surface inspection applicable in

distinct processes such as paper, plastic and plywood industries. They applied co-occurrence

matrices for feature extraction and a self organizing map (SOM) for segmentation on a win-

dowed web. A notable point of their work is the particular hardware implementation of the

system which requires simple feature extraction and segmentation schemes to be used. Hence,

for instance only two simple Haralick functions, Mean and Contrast, were applied on the co-

occurrence matrices. There is no comment on the utilised directions and distances on that

article, however, apparently the devised hardware-oriented co-occurrence computing considers

the direction and the speed of the production line to determine a single distance and direction

parameters.

Davieset al [32] studied on detection of contaminants in food products. They used X-ray

images of sealed food bags, which showed strong textural properties, as input, and applied 3�3

Laws filters to extract their textural features. Then a 5�5 scanning window was employed to

calculate local energies and build the final texture energy map. A software-based system was

also developed for realtime implementation of their foreign object detection scheme.

In [103], Sari-Sarraf and Goddard introduced a vision system for fabric inspection, exploiting

multi-scale Wavelet representation to obtain detail images. Bernoulli’s rule of combination was

then used to recompose the images to highlight the edges and defective regions. Khodaparast

and Mostafa [61] repeated a very similar procedure to detect the defective regions in tiles and

reported 89% of correct detection. However, due to using rather small number of samples of a

single tile model, the generality of results might be questionable.

Similarly, Escofetet al in [38] and Kumar and Pang in [68] both implemented the basic idea

of wavelet-like Gabor filtering in spatial domain to detect defective textured textiles. Escofet
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et al discussed the algorithm used in details, while Kumar and Pang described the practical

implementation more precisely. Decomposition of image into detail images or contrast units

(i.e. normalised filter responses) using a Gabor filter bank, applying certain post-processing

such as non-linear blob detection and subtraction form a reference feature vector to amplify the

‘differences’, and composition (fusion) of detail images into a features map were basic stages

of these (and in fact many other, e.g. [103]) MSMD schemes. A thresholding operation on the

feature map produced the final output where the defects were expected to be highlighted [38].

In [17], Boydet al proposed an inspection method for concrete surfaces using blob-based de-

tection and thresholding in the spatial domain. They employed a perimeter-to-area ratio as a

criterion for measuring the blob shape compactness. They suggested that cracks are blobs with

high compactness and also utilised a blob-counting scheme to evaluate the consistency of the

concrete surface. Conci and Belmiro reported an industrial realtime fabric inspection system

[27], focusing on software engineering and implementation aspects of the system. However

their categorised-by-defect type and briefly discussed results suggested that amongst three op-

tional defect detection techniques used, thresholding, edge detection and fractal dimension,

fractal dimension was the best one. Wang and Asundi studied a computer vision system for

wineglass defect inspection [124]. They employed global edge-based Gabor filtering to sep-

arate the object of interest (i.e. wineglass) from the background. Then a local Gabor filter

was applied to the wineglass image to obtain detail images. Lastly, using 16-grey level co-

occurrence matrices, GLCM features of each detail image was extracted and fed to a BPNN

classifier to materialise the acceptance/rejection decision.

Valienteet aldescribed their tile corner defect detection method in [121]. Their algorithm was

based on separation of the tile from the background where the defective corner (i.e. broken

corner) was a part of the background. They implemented a histogram subtraction technique

which computed the difference between histograms of a pure background and a background/tile

patches to threshold between the tile and the background. Difference between expected edges
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and computed edges at a corner was considered as a defect. After computing this difference in

bothX andY directions a simple classifier classified the tiles into three quality ranks from the

best to the worst. Outcomes reported showed a good performance on the third and the second

quality classes (99.7% and 100% correct classification). Performance for the first quality class

however was rather lower and limited to 85.6%. This can be interpreted as a good sensitivity

but weaker specificity and perhaps a slight shift in the classifier parameters could balance it

in favour of the specificity factor. For further clarification of this subjective classification see

[121].

Lopezet al studied the registration methods for ceramic tiles [79]. The basic algorithm was

edge detection of the test tile, then obtaining the boundary rectangle, followed by a simple

geometrical rotation/displacement to map the test image on the reference. They applied two

different boundary detection methods: A simpler, faster and more accurate histogram based

method and a more complicated, however less accurate Hough transform (HT) based method.

The first and the better method used a least square fitting of a straight line on a reduced set of

the edge pixels. Unfortunately there was no comment in the paper about possible reasons for

the poorer performance of the HT-based method, which on the other hand showed promising

results in Costa and Petrou tile registration study [28], where they employed the HT to extract

long and straight lines within a tile image. Then a Fourier phase correlation was utilised to

register the test and the reference images. Iteratively several displacements< ∆x;∆y> of the

test image were tried and the one with the maximum phase correlation with the reference were

selected as the registration parameter. In fact, the high similarity between even unregistered

test and reference images results in very similar FFT magnitudes, thus only FFT phase was

applied as the registration measure.

Smith and Stamp investigated vision techniques for ceramic tile inspection [111]. Their algo-

rithm attempted to analyse complex surfaces which might include 3D topographic features, by

separating the topographic and chromatic maps. They reported good feasibility, no need for
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initial training and being largely pose-invariant as the advantages of their method.

Penarandaet al [84] introduced a practical colour machine vision system for ceramic tile in-

spection. The algorithm contained a simple registration by finding four corners of the test

tile using a simple procedure, following a background subtraction. They utilised some special

purpose peripherals and a Pentium III CPU to achieve the tile inspection rate of 51 tiles per

minute.

In [13], Boukouvalaset al used optimal filters to detect abnormal lines and spots in tiles.

They also used the Wigner distribution to combine the advantages of both spatial and spatial-

frequency domains to detect cracks. In fact, the pseudo Wigner spectrum of each pixel of

normal images was calculated and processed to form feature vectors during the training stage.

Then in the testing stage, the distance between the feature vectors of train/test images was com-

puted to configure the test image distance map. Unfortunately there was no reported numerical

result to evaluate the defect detection precision. Furthermore in [63], the authors presented a

method for detecting random texture tile defects consisting of K-means clustering, followed by

perceptual merging of clusters inLuv space and morphological analysis. This was computa-

tionally expensive, although a promising approach.

Unser and Ade extended their general local transform texture analysis schemes (e.g. [2, 117])

to texture automated inspection in [120]. They proposed an eigenfilter-based feature extraction

scheme and a Mahalanobis distance-based decision making procedure.

Chetverikov studied diverse aspects of texture analysis concerning regularity (i.e. approximated

period) and defect detection. In [20] he employed a statistical approach together with GLCM

to measure the coarseness and regularity of a texture. Also Chetverikov and Hanbury in [21]

discussed application of regularity and local orientations as two fundamental structural features

in textural defect detection. Their experiments with both Brodatz and TILDA data sets showed

promising results.
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2.7 Methods

Methods used during this study, namely principal component analysis, two classifiers: artifi-

cial neural networks and K-nearest neighbourhood, and novelty detection approach, will be

discussed briefly in this section.

2.7.1 PCA, KLT and Eigen-based Decomposition

Principal Component Analysis (PCA) [58] is a popular approach used in pattern recognition

studies for reducing problem dimensionality by seeking and eliminating redundant features. It

has been applied in a variety of works on texture analysis, for instance [23, 106]. Considering

~xi a column vector ofn features, andM, anm�n matrix of different observations of~xi , and

finally CM, the covariance matrix ofM, the principal components are the eigenvectors~ej of the

covariance matrixCM:

CM~ej = λ j~ej (2.15)

where the eigenvalue,λ j , is relative to variance of the data across~ej , hence showing theim-

portanceof the eigenvectors. In dimensionality reduction tasks, the newp-dimensional feature

space is obtained by projection (i.e. element-wise production) of all~xi into the first few eigen-

vectors, sorted on descending eigenvalues.

Extracted from the same hypothesis, Karhunen�Loeve transform, (KLT) and eigenfilter-based

methods have been widely used in texture analysis studies [33, 118]. The basic idea under-

pinning KLT is the employment of eigenfilters as a bank of adaptable filters and obtaining an

appropriate set of detail or channel images by projecting the original image onto the bank (i.e.

via 2D convolution). The method will be discussed further in Chapters 4 and 5.
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2.7.2 Classifiers: Artificial Neural Networks

An artificial neural network (ANN) is a simplified mathematical model of the human brain. The

ability of the human brain in learning from experiments, problem solving, and decision making,

convinced researchers that an artificial model of the brain, even an extremely simplified one,

should be able to perform well in many decision making or computing activities [1, 102].

Figure 2.15(a) depicts a piece of a natural neural system and Figure 2.15(b) shows a multi-

layer artificial neural network.

(a) (b)
Figure 2.15:A piece of a natural neural system (a) and a diagram of an ANN (b).

In both natural and artificial NNs, each neuron (i.e. node) accomplishes a very simple task,

which is to apply a simple function on its inputs and send the results to its outputs. In an ANN,

a node computes the weighted summation of its inputs and compares it with a threshold (or

bias) and sends a signal to outputs accordingly:

Z = f (
N

∑
i=1

wixi�β) (2.16)

whereZ is the output of the node,xi is the ith input, wi the weight (or strength) of theith

connection, andβ is the threshold.f can be a simple step function, howevertanhor sigmoid

functions (see 2.17) are more commonplace [10, 56].

f (x) =
1

1+e�x (2.17)
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A training stage is then necessary to optimise the weights. Training indeed conveys the

learning-from-example concept of the neural system. A back propagation method is a basic

and widely used training algorithm which results in the so-called back propagation neural net-

work (BPNN). This gradient descent method attempts to minimise the difference of the actual

and expected output vectors of the network, by thoughtful modification of weights in an itera-

tive procedure [1, 102]. The training algorithm starts with random weights, presents a training

sample to the BPNN and calculates the actual outputs and then the error (typically mean square

error, MSE) between the expected and actual output vectors. Next, it modifies the weights

layer-by-layer from the output toward the input as any modification descends the MSE, and

starts the procedure again with these new weights.

During this iterative training procedure MSE ideally should converge to zero. Practically how-

ever we may stop the epochs after achieving an adequately small error. Therefore, for training

the network we need an adequate number oflabelledtraining samples containing all classes,

(i.e. samples of all target classes with known expected output vectors). When the training stage

is completed, the trained network will be evaluated by presenting atestsample set. MSE or

the number of correct decision made of the test set show the network performance [10]. Due

to their decision making ability, ANNs are appropriate classifiers and in fact have been imple-

mented successfully in many classification applications, to name but a few [23, 39, 67, 89, 92]

and [36] where there is a rich list of NNs applications in pattern recognition. There are sev-

eral NN models each suitable for certain applications. We chose a BPNN with a single hidden

layer. The number of nodes in the hidden layer is one of the parameters to be optimised during

the tests. It depends on the number of network nodes and training samples and can affect the

network properties. For instance, a BPNN with one hidden node is very similar to a linear

classifier [10].

When the total number of training/testing samples in the data set is limited, the generality

of results obtained by a BPNN classifier could be under question. In such a case, there are
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some special methods to increase the reliability and generality of the results. Widely-used

generalisation methods have different names. Basically however, they are similar. Leave-one-

out, Cross-validation, K-folding and Boot-strapping all refer to the same idea: How can we

virtually increase the number of training/testing samples?

In a k-fold cross-validation algorithm, a sample set is divided intok subsets of almost equal

size. the network will be trainedk times, each time leaving out one of the subsets from training

and consider it for testing (i.e.k�1 subsets for training, 1 subset for testing). Ifk equals the

size of the sample set, this is calledleave-one-outcross-validation. Cross-validation allows

you to use all of the data for training. The disadvantage of cross-validation is that you have

to retrain the networkk times. Bootstrapping is an improvement on cross-validation that often

provides more accurate generalization error approximation at the cost of even more computing

time. In the simplest form of bootstrapping, instead of repeatedly analyzing subsets of the

data, you repeatedly analyze subsamples of the data. Each subsample is a random sample with

replacement from the full sample [65, 104].

2.7.3 Classifiers: K-Nearest Neighbourhood Classifier

A k-nearest-neighbourhood classifier (KNN) is a simple but efficient distance-based classifier.

Basically a KNN classifier has a labelled training set which contains examples of all possible

n classes of data. When the KNN is presented by a test sample,x, it looks up and finds thek

nearest training samples tox. k typically is a small integer and should not be a divisor ofn (i.e.

mod(n;k) 6= 0). Thenx will belong to the class which has the most samples amongst thek

nearest neighbours [57]. Figure 2.16 shows a 2-feature feature spaceF1F2, andn= 3 classes

of patterns:fblack; red; greeng. With k= 7, the test samplex belongs toblackclass, because

there are moreblack samples amongst its 7 nearest neighbours thanred or green(4 vs. 2 vs.

1).
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Figure 2.16:KNN classification, k=7 and n=3 classes

To be more specific, distance measurement is mostly carried out in the feature space where

the feature vectors of training samples are preserved. Different distance measurements can be

employed, however an Euclidian distance on normalised feature vectors usually performs well.

For instance normalisation by

vi =
vi

max(j vi j)
(2.18)

wherevi is a vector contains theith feature of all samples, will bring all the features into[�1; 1]

range. It gives all the features the same weight in distance measurement. A subtly weighted

feature vector however, may increase the classification performance but this also decisively

increases the complexity of the classifier design. A simple KNN only should be optimised upon

1 parameter:k, whereas a weighted KNN should be optimised upon number of features+1

parameters [57], which may not be practically worthwhile in many cases. A KNN classifier is

not statistical in nature, however it can be proven that if the number of training samples moves

toward infinity, it will converge to the optimal Bayes classifier [41]. It can also be considered as

a lazy algorithmwhich does not need heavy computing. Even its training, in contrary of ANNs,

is not real training, but only saving the training samples for further distance measurement.
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2.7.4 Novelty Detection

Novelty detection is a different approach to the traditional classification problem. The typical

classification approach relies on samples of all classes of patterns due to be classified. In

the particular case of abnormality detection, there are two classes of patterns:normal and

abnormal. Although typical classifiers can show a promising accuracy in theory or limited

practice, in many applications it is often difficult to acquire an adequate number of defective

samples and build up the abnormal data set which also represents the wholeabnormalities

space. While it is much easier to develop an efficient normal data set.

Novelty detectionor concept learningapproach on the other hand, only needs the normal class

to be defined. A novelty detector learns the model of normality in the training stage using

only normal samples and abnormalities are then identified by testing for novelty against that

model. In a geometrical sense, a defective sample shows a considerable distance to the cluster

of normal samples [55, 112].

It is common in novelty detection studies to apply auto-associative neural networks (AANN) or

self organising maps (SOM). An AANN attempts to recreate the output of the network the same

as its input. There is a number of different ways for designing an AANN. The simplest method

is to use Principal Component Analysis or a special purpose neural network with a few hidden

nodes and equal input/output nodes [112]. For example, Worden [128] utilises an AANN for

cracked beam defect detection and Sohnet al applies it for hard disk quality inspection [112].

A SOM is an alternative to statistical clustering and is an unsupervised approach. Therefore,

it does not needa priori information on classes. In most SOM based approaches, similar

to statistical clustering, some form of cluster membership value is thresholded to determine

whether a sample belongs to a cluster or not. In [52] Iivarinenet al implement a SOM for

web surface inspection. Also Tolba and Abu-Rezeq utilise a SOM for textile visual inspection
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[115]. Statistical methods however, are also popular. In [83], Markou and Singh review both

statistical and neural network based novelty detectors. Our work respecting novelty detection

however, does not employ any complex classifier. Instead, it maps the texture features into a

1D classification space and utilises a simple single-parameter thresholding scheme. This new

texture defect detection algorithm will be presented in Chapter 5.
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Chapter 3

Texture Analysis of High Definition

Outdoor Scene Images

3.1 Introduction

Outdoor scene object classification using texture analysis is a prime example of a computation-

ally expensive process where there is usually a need for trade-off between speed and accuracy.

Examples of such bartering are sometimes inherent in the nature of past works on texture anal-

ysis, or less often the subject of explicit analysis [89, 95, 100, 110, 119]. This problem is

exacerbated as the size of the image under analysis increases, involving more and more com-

putations. For instance, we tried a frequency space analysis of very high resolution outdoor

scene images (4032�2688 pixels) aimed only at increasing the accuracy of texture segmen-

tation. The trade-off issue and the penalties expended by the computational costs were not

considered important, and it was found that a 6% increase in accuracy could be achieved, albeit

at some considerable computational expense [89]. Here, we show that by using novel faster
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approaches, similar levels of accuracy can be maintained.

We study computationally lower cost (i.e. faster and easier to implement), precise algorithms

for image classification. Past works in grey level texture analysis have increasingly found

success in the classification of texture features derived from Gabor filters [25, 40, 54, 100,

110] or wavelets [78, 95, 119]. Gaining their multi-scale and multi-directional properties, the

considerable discriminatory power of such features have recently been further strengthened

through the use of chromatic features based on such colour spaces as RGB,Lab , or HLS

[34, 87]. However, as mentioned previously, these methods are computationally high cost.

Our fundamental idea is selecting and analysing a few well-known, high performance feature

extractors in each area of texture and colour data, to find out their most important strengths.

Consequently a few correspondence lower cost algorithms which attempt to retain those strengths

are proposed and compared to the original higher cost methods. Here, we examine the perfor-

mance of Gabor andLab features as a highly accurate set for colour texture classification

against a sometimes slightly less accurate, but much faster set of novel features. These new

proposed features are a combination of directed textural features, extracted using the appli-

cation of Walsh-Hadamard transforms (WHT) to oriented images (calleddirectional Walsh-

Hadamard Transformor DWHT), as well as chromatic features that correspond to, but more

easily computed than, hue and saturation in the HLS or HSI spaces. Gabor features allow us to

conveniently capture the low to high frequencies present in the Fourier space of high resolution

images in different directions. In the same way, we are proposing a method of capturing these

frequencies through the rotation of the image by varying angles before applying the WHT.

WHT is a typical tool in image processing. For instance, Unser [118] used Hadamard matrices

along with other local transforms such as DCT and KLT in texture measurement. He applied

different small size filters and a filter sliding scheme in the spatial domain to evaluate the

effectiveness of these filters in texture analysis. Kim and Cho [62] have also implemented
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Walsh functions in a texture segmentation task using 16 different 4�4 Walsh matrices as the

textural feature extractors. In their recent book, Yarlagadda and Hershey have introduced some

new applications of Hadamard matrices, such as error correction coding, signaling (based on a

new Hadamard basis) and a signal representation scheme which is capable of representing odd

frequency component made signals [50, 129]. To find more examples see Section 2.3.2.

Figure 3.1 illustrates a procedural overview of the experiments to be reported in this chapter.

The experiments procedure contains textural and chromatic feature extraction schemes, their

appropriate classification performance tests, and the final test with merged textural/chromatic

features.

We describe our data set and framework in Section 3.2. In Section 3.3, the Gabor and the

DWHT feature sets are described as textural feature extraction schemes. The new chromatic

features will be discussed next at Section 3.4. Experimental results using merged texture/colour

feature sets on outdoor scenes are presented in Section 3.5. Execution times of different

schemes are compared in Section 3.6. Next, in Section 3.7 new tests using pseudo-standard

texture suite, VisTex, will be presented. The chapter then is concluded in Section 3.8.

3.2 High Resolution Outdoor Scene Data Set

We have a data set consisting of 724 colour image patches of 128�128 pixels extracted from

more than a hundred high resolution 4032�2688 images of outdoor scenes. These scenes were

photographed by a high attribute optical camera using high definition low speed (25 ASA) films

and a normal 50mm lens under bright clear (sunny) daylight conditions. Then a high resolution

negative scanner was used to digitise the 36�24 mm negatives into 4032�2688 pixel, 24 bit

RGB images. The pixel definition is 112 pixel/mm or 2845 pixel/inch. Figure 3.2 illustrates

six images of that set.
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Figure 3.1:An overview of Chapter 3 experiments.

In recent years, the C.V. research group at Bristol University has developed a neural network

based system for classifying images of typical outdoor scenes to an area accuracy of approx-

imately 90% [39]. Texture information is represented in this system using Gabor filters. A

common problem is that many regions in typical outdoor scenes are too small to allow a signif-

icant range of spatial frequencies to be included in the feature set. In [89], we presented a pilot

study designed to establish if high resolution images would provide a sufficient increase in tex-

ture information to justify the extra computational complexity. We found that a 6% increase in

accuracy could be achieved at some considerable computational expense. Here, we show that

by using a faster approach, i.e. through our proposed oriented DWHT and chromatic features,
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Figure 3.2:Six high resolution outdoor scene images

similar levels of accuracy can be achieved.

The patches come from four categories:CAR, PAVEMENT, ROADandTREE. Figure 3.3 shows

some typical examples of our input patches. In brief, the goal of this classification experiments

is to classify an unknown test patch into one of those four possible groups. These patches of

high resolution images contain shiny, fairly smooth bodies of cars (but including wheels, door-

handles, lights etc., rough and coarse surfaces of pavements, fine resolution granularity of road

surfaces, and fine and coarse structures within trees and bushes. These provide a wide range of

characteristics and frequencies in the data set. Many such frequencies are diminished or lost in

lower resolution images (see Figure 1.2-(b)).

3.3 Textural Feature Extractors

In this section, two different feature extraction schemes exploited in this work are discussed.

The schemes, namely Gabor filtering and directional Walsh-Hadamard transform, are imple-
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mented in a practical image classification task and compared.

C1 C2 C3 C4

P1 P2 P3 P4

R1 R2 R3 R4

T1 T2 T3 T4

Figure 3.3:Sixteen sample images of four classes, from the top,CAR(C1...C4),PAVEMENT(P1...P4),

ROAD(R1...R4), andTREE(T1...T4).

3.3.1 Gabor Filters

Gabor filters are widely used for multi-scale/multi-directional analysis in image processing.

Specifically, they have shown high performance as feature extractors for texture discrimination
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and unsupervised texture classification [40, 54, 100, 110, 90, 34]. The important strength of

Gabor filters in texture analysis is that they facilitate oriented or directional band pass filtering

of the input texture. This allows the filter to extract notable textural features which are direc-

tional and, in a frequency sense, band-limited [53, 54, 118, 126]. A basic practical disadvantage

in Gabor filtering is their high computational costs. Basically it is possible to define and em-

ploy Gabor filters in both spatial and spatial frequency domain, however frequency domain

implementation would be faster, particularly for larger images. The Gabor filter in the spa-

tial frequency domain is: (This presentation may seem different from Equation 2.11, however

basically they are similar)

G(u;v) = e
�π(

u2
p

σ2
x
+

v2
p

σ2
y
)

:e�2π j(x0u+y0v) (3.1)

where,

up = (u�ωx)�cos(θ)+(v�ωy)�sin(θ) and vp =�(u�ωx)�sin(θ)+(v�ωy)�cos(θ)

are the rotated/displaced coordinates in the frequency plan,ωx andωy are filter central frequen-

cies (i.e. modulation factors) in x and y directions,θ is filter orientation parameter,σx andσy

are filter standard deviations (i.e. band width) in x and y directions, andx0 andy0 are horizontal

and vertical displacements in the spatial domain. We keepx0 = 0 , y0 = 0 , and setωx = ωy,

andσx = σy in all experiments. Hence the applied Gabor filter is:

G(uc;σc) = e
�2π( u2

c
σ2

c
)

(3.2)

In texture analysis applications, usually a set of Gabor filters (called aFilter Bank), which con-

tains a few filters with different central frequencies and orientations is employed (see Section

2.3.2). Diverse filtering frequency and orientation of a filter bank will allow it to extract con-

siderable amounts of texture information. However a question to answer is how the optimum

filter bank can be configured. Unfortunately, since it seems that there is no general analytical

method of optimisation for this, a lengthy procedure of test and evaluation was necessary to

determine the best possible filter bank configuration. For example, in current tests we mostly
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used a Gabor filter bank containing 12 filters arranged in 3 frequency bands and 4 orientations:

Gabor Filters : G(ωi ;θ j) ; ωi = f
ΩM

8
;
ΩM

4
;
ΩM

2
g; θ j = f0

Æ;45Æ;90Æ;135Æg (3.3)

WhereΩM is the maximum possible spatial frequency (i.e. half of the dimension in the FFT

domain). Figure 3.3.1 shows that filter bank in the frequency domain. Parameters were declared

in keeping with current theories on biological vision system as the frequency bandwidth of 1

octave and half-power bandwidth [23]. Selected central spatial frequencies (ω = ΩM
2 ; ΩM

4 ; ΩM
8 ),

cover the lower 50% of frequency domain with alog2 scale. In fact in all Gabor filter tests

we considered one octave (dyadic) central frequency rate and the half power bandwidth (see

Section 2.3.2). Filter responses then will be calculated as:

Filter Responses : G(ω;θ) = j F�1(F(A) �G(ω;θ)) j (3.4)

whereG(�) is the filter response,F andF�1 are Fourier and inverse Fourier transforms,A is the

image andG(�) is the Gabor filter in the frequency domain. Figures 3.5 and 3.6 illustrate the

filter responses of two outdoor scene samples, aCAR, and aPAVEMENT. Apparent diversities

amongst multi-band and directional responses suggest that a feature vector based on a few

statistics of filter responses (e.g. mean, standard deviation and so on) may adequately segregate

the input samples.

Clausi and Jernigan believe that an improper setting could seriously damage the performance

of the Gabor functions [25]. Apart from acceptedlog2 bandwidth scale throughout the spatial

frequency domain, there are several options for central frequencies and directional definition.

In our experiments, the above mentioned central frequencies usually provided the maximum

accuracy. Starting atωM
2 as the highest central frequency, seems to keep the balance between

more important lower spatial frequencies and useful higher ones [89, 90]. In fact, Clausi and

Jernigan state that rather poor performance of Gabor filters in [114] may be partially due to the

exclusion of higher frequency bands [25].
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Figure 3.4:Applied Gabor filter bank, 4 lower pass (ω = ΩM
2 , inner), 4 band pass (ω = ΩM

4 , middle),

and 4 higher pass (ω = ΩM
8 , outer). Orientations areθ = 0Æ;45Æ;90Æ;135Æ.

3.3.2 The New Approach: Directional Walsh-Hadamard Transform

In this section, we introduce and describe our novel Hadamard-based texture analyser, di-

rectional Walsh-Hadamard transform. Amongst the family of orthogonal linear transforms

of time/spatial domain signals, which mostly employ sinusoidal-based kernel functions (e.g.

Fourier or Cosine transforms), the Walsh transform is defined as:

W(u;v) =
1
N

N�1

∑
x=0

N�1

∑
y=0

I(x;y)[(�1)ψ(u;v;x;y)] (3.5)

whereI is the image,N is the image size, andψ determines the transform’s parametric kernel

function�1ψ(�). The Walsh transform is one of the exceptions in so-called ‘harmonic anal-

ysers’ which implies sequency-based kernel functions and decomposes the input signal into

rectangular wave primitives in the transform domain [8]. The kernel function can be selected

from a diverse set of possibilities. For instance, in the Hadamard natural transform (a member

of the Walsh family)ψ is:

ψ(u;v;x;y) =
m�1

∑
i=0

[bi(x)bi(u)+bi(y)bi(v)] (3.6)
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Figure 3.5:Gabor filter responses of aCAR. Left: Input image, Right: filter responses (detail images)

G

wherebi(z) is the ith bit of z in binary representation. The Walsh-Hadamard form ofdigital

frequencyor sequency, which is the number of zero-crossings or sign-changing of the signal,

is analogous to the frequency in the Fourier transform. However, sequency is twice the size of

the frequency of a signal, i.e.Seq(x) = 2�Freq(x) , wherex is a signal in time or spatial

domain. As shown in Figure 3.7, the orthogonal set of rectangular waveforms that generate the

WHT kernel can only approximate a sinusoidal waveform (c), by weighted summation of their

square wave elements (d and e). Hence, we expect WHT features to be a weaker representation

of the texture in comparison to those of the FFT or Gabor. For instance, results reported by

Unser [118] and Adeet al [3], demonstrate the relatively lower performance of WHT in texture

classification. Nevertheless, in both cases spatial domain filtering using very small size filters

(e.g. 3� 3 to 5� 5) were applied. Therefore, smoother structure of a, for example, Cosine

filter outperforms sharp 0-1 structure of a Hadamard filter (see Figure 3.7 (a) and (b)). This

is the typical problem of representation of a signal by rectangular basis functions. When we
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Figure 3.6:Gabor filter responses of aPAVEMENT. Left: Input image, Right: filter responses (detail

images)G

apply a Hadamard transform and utilise higher sequency ranks however, since higher sequency

functions can smooth and moderate the outputs, the representation error degrades. Again in

Figure 3.7, in synthesising a sinusoidal signal (a), involvement of higher ranks (here: 8) Walsh

functions, decrement the representation error (compare (d) and (e)).

Furthermore, the WHT has important computational advantages. For instance, it is a real (not

complex) transform, it only needs addition and subtraction operations, and if the input signal

is a set of integer-valued data (as in the case of digital images), we need only use integer op-

erations. Furthermore, there is a fast algorithm for Walsh transforms by simple substitution

of the exponential kernel of the Fast Fourier Transform with the�1ψ(�) kernel of Walsh. The

transform matrix, usually referred to asHadamard matrix, can also be saved in binary for-

mat resulting in a decrease in memory requirements [42]. Also it is rather easier than other

transforms to implement WHT in hardware [35].
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(a) (b)

(c) (d) (e)

Figure 3.7:4�4 Cosine (a) and Hadamard (b) filters, and synthesising a given sine wave (c) using

Hadamard functions. The Original signalx(t) = 63cos(0:16t) (c), and its two Walsh-Hadamard ap-

proximated representations:g(t) = 63h(2; t) (d), and f (t) = 41h(2; t)+17h(4; t)+8h(8; t) (d).

Amongst different Walsh transforms (e.g. Dyadic, Natural, Ordered and so on) we applied a

sequency-ordered Hadamard(SOH) matrix [42, 8] where the rows (and columns) are ordered

according to their sequency. In other words, in the first row there are no sign changes, and in

thenth row there aren-1. As an example, see Figure 3.8 for a rank=3 (or 8�8) SOH matrix (a)

and a map of rank=6 (or 64�64) one (b).

The 2D Walsh-Hadamard transform can be defined as:

WHT2D(A) = H�A�H 0 (3.7)

whereA is the image andH andH 0 are Hadamard matrices of the same size and its transpose. In

fact for a Hadamard matrix,H is always equal toH 0. The resultWHT(�) would be the unique

and reversible representation of the input in the sequency domain. Then, as Figure 3.8(c)

shows, different row-column bands ofWHT2D(�) contain the information of correspondence

low/high sequency bands of the input image.
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(a) (b) (c)

Figure 3.8:(a) Sequency-ordered rank=3 (8�8) Hadamard matrix. (b) A map of rank=6 (64�64)

SOH. (c) Sequency bands of SOH in a transform domain.

Due to its faster speed and more feasibility in real time applications, we aimed to use the

Hadamard transform as a textural feature extractor, the task that Gabor filters usually carry out

formidably but in higher computation costs. Inspired from oriented/multi-band structures of

Gabor filters, it seems to be useful to develop anorientedandmulti-bandHadamard based

feature extraction algorithm which would be capable of extracting textural features in different

directions and sequency scales. Traditional Hadamard transforms, (like other 2-dimensional

transforms, e.g. Fourier or Cosine) can only extract the vertical and horizontal information. In

fact, the normal 2D transform in (3.7) can be implemented as:

WHT2D(A) = WHT1D([WHT1D(A)]
0) (3.8)

where [WHT1D(A)]0 is the transposed transform matrix. This results in applying a normal

1D transform on rows of the input matrix, transposing the result and again applying the 1D

transform on rows. Hence a standard Hadamard transform provides the sequency informa-

tion of rows and columns of the image. To generate anoriented WHT, a direct solution can

be rotating the input image before transformation. However, this solution could not be com-

pletely practical. For example, whereas any rotation will change the square alignment of the

input, eventually we should reshape that to a square matrix before transformation. Hence, we

propose a novel oriented Hadamard based features to represent the directionality of texture.

In this scheme, the Hadamard matrix remains constant but the image function isrotatedby

α = f0Æ;45Æ;90Æ;135Æg. The rotation is applied to each element in the top row of the image
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matrix. At border pixels corresponding elements are used from a repeated imaginary version of

the same image matrix (i.e. image is vertically and horizontally wrapped around). For example,

in the simple 4�4 image matrix below, a 45Æ rotation at positionb givesfb;g; l ;mg (also see

A45Æ in Equation (3.10)) and a 135Æ rotation at the same positionb givesfb;e; l ;og (similarly

seeA135Æ in (3.10): 2
666664

a b c d

e f g h

i j k l

m n o p

3
777775

2
666664

a b c d

e f g h

i j k l

m n o p

3
777775 (3.9)

The full rotation set whereα= 0Æ;45Æ;90Æ;135Æ can be defined for a simple 4�4 image matrix

as follows:

A0Æ =

2
666664

a b c d

e f g h

i j k l

m n o p

3
777775 A45Æ =

2
666664

a f k p

b g l m

c h i n

d e j o

3
777775

A90Æ =

2
666664

a e i m

b f j n

c g k o

d h l p

3
777775 A135Æ =

2
666664

a h k n

b e l o

c f i p

d g j m

3
777775 (3.10)

Note that this is not an ordinary geometrical rotation. For example, we create the rows ofA45Æ

image by considering the pixels that sit in a 45Æ direction in imageA0Æ and so on. This means

that the resulting horizontal rows capture the information at the specified angles. In fact it

looks more like a pixel rearrangement rather than a geometrical rotation. Of course we extend

this concept to vary larger images in this work (e.g. 64� 64 or 128� 128). The artifacts of
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repetition (disruption) at the borders are much less significant with larger images than those in

the examples above.

Although we have never used other rotations in this study, it is theoretically possible to extend

this rotation idea to any desired degree. For instance, (3.11) shows a 22:5Æ rotated version of

A:

A0Æ =

2
666664

a b c d

e f g h

i j k l

m n o p

3
777775 ! A22:5Æ =

2
666664

a g i o

b h j p

c e k m

d f l n

3
777775 (3.11)

Other rotation schemes were also tried. Experiments with geometrically rotated images, ro-

tated Hadamard matrices (Hα), or using a wedge of transform domain to explicit directional

information in WHT domain (as Figure 3.9 shows), all failed to reach adequate performance

levels.

Figure 3.9: A Wedge of WHT matrix. Wedges did not clearly convey the texture’s corresponding

directional properties.

The manner of our rotations means that after the DWHT transformation we need only extract

row sequencyinformation, corresponding to the directions used. This reduces (3.8) to a more

simplified transform:

DWHTα(A) = Aα�H 0 (3.12)

We can also ignore, without loss, the column sequency information. Indeed, this takes out the

redundancy created by the fact thatA0Æ = A
0

90Æ andH = H 0. We performed a PCA test on the
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DWHT feature sets and found no particular preference for any orientationα= f0Æ;45Æ;90Æ;135Æg

in the feature space. Since we have textures with random directions in the outdoor scene im-

ages, it is reasonable to believe that there is no considerable directional preference amongst the

set.

DWHT0Æ(A) = A0Æ �H 0 =

2
666664

a b c d

e f g h

i j k l

m n o p

3
777775�

2
666664

1 1 1 1

1 1 �1 �1

1 �1 �1 1

1 �1 1 �1

3
777775=

2
666664

a+b+c+d a+b�c�d a�b�c+d a�b+c�d

e+ f +g+h e+ f �g�h e� f �g+h e� f +g�h

i+ j +k+ l i + j �k� l i � j �k+ l i � j +k� l

m+n+o+ p m+n�o� p m�n�o+ p m�n+o� p

3
777775 (3.13)

As (3.13) shows, the operationDWHTα(A) = Aα�H 0 computes and gathers the sequency

information of input matrix rows into transformed matrix columns. Hence, the same half trans-

form for a rotated matrix (e.g.A45Æ) will give us the sequency information of pixels with a 45o

orientation, again into the columns of transformed matrix. The transformed matrix columns

from left to right correspond to the lower to higher sequency elements. In the Hadamard-based

feature extraction procedure, we exploited the above mentioned rotation and transformation for

four different orientations,α = f0Æ;45Æ;90Æ;135Æg:8>>>>><
>>>>>:

DWHT0Æ(A) = A0Æ�H 0

DWHT45Æ(A) = A45Æ�H 0

DWHT90Æ(A) = A90Æ�H 0

DWHT135Æ(A) = A0Æ�H 0

(3.14)

Since the relative arrangement of pixels is of essence in texture analysis [127, 113], sequency

based features which represent the number of zero-crossings of pixels in a particular direction
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can convey a notable amount of textural information. We can measure the DWHT energy in

DWHTα(A) as the absolute value of the DWHT output along each column. Columns can be

divided into a few groups which represent differentsequency bands, then a few statistics of

each band can be extracted to configure a feature vector with reasonable dimensionality. So, a

DWHT output and feature vector can be defined as:

H (α;b) = DWHTα(A)ji; j ;1� i � N ; j 2 b ; and ; FDWHT = M(H (α;b)) (3.15)

whereH is the transform’s output matrix,N is the matrix size,F is the feature vector,M

indicates the applied statistical function, andb is the desired sequency band. Againlog2 or

semi-log2 bandwidth scales could be applied, however we mostly used a simplerf 1
4;

1
4;

1
2g

division (from the lowest to the highest sequence) for 3-band and a1
4 division for 4-band

feature sets.

As an example, Figure 3.10 depicts, the sequency representation of a typical fine resolution

texture (a) will show more energy in higher sequency bands compared to a coarse resolution

texture (b), which indicates the method’s spatial frequency sensitivity. Again, the rightmost

graph (c) in that figure, illustrates the lack of response of the DWHT transform to the coarse

vertical texture when it is rotated (i.e.A90Æ), which indicates the method’s directional sensitiv-

ity.

One main advantage of the proposed Hadamard based feature extraction scheme is that by

using larger (e.g. 64�64 or 128�128) Hadamard transforms, rather than the usual 3�3 or

4�4 local filters [118, 62], we can extract higher frequency/sequency information and in fact

emphasise on ‘global’ instead of ‘local’ features.
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(a) (b) (c)

Figure 3.10:From left: Example average energies for fine resolution texture (a), coarse resolution

texture (b), and coarse resolution texture at 90Æ rotation (c). Corresponding textures are shown inside

each graph. Energies are computed as the absolute value of the WHT output along each column.

3.3.3 Justification of the DWHT

To justify the proposed DWHT transform, a quick review of some related works could be use-

ful. Boukouvalaset al [13] have applied an optimal line filter to detect lines in ceramic tiles

which in fact performs two 1D convolutions in the horizontal and vertical directions respec-

tively. Their achievement suggests that although textures are 2D signals, sometimes 1D pro-

cesses would be significantly effective. In particular, where directional objects are concerned,

a 1D process in the appropriate direction would be advisable.

Proposing DWHT, we aim to add MSMD characteristics to an ordinary Hadamard transform.

The basic idea behind all MSMD texture analysis methods is scale (i.e. band) and angular (i.e.

directional) decomposition of the texture. For instance, in ring/wedge filtering, the intersection

of a ring (directional) and a wedge (band-pass) filter reveals the energy of a particular band

and orientation of the texture. (There is always a 90Æ difference between the orientation of

the filter and revealed patterns. e.g. a vertical wedge filter highlights the horizontal patterns

of the texture) [113]. In a Gabor filter bank, rotated filters decompose the image’s energy into

different directional detail images, while different central frequencies facilitate the multi-scale
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analysis [54]. In a wavelet analysis, down/up sampling procedure generates detail images in

diverse scales, and directional band-pass filters analyse the distribution of the energy across

different orientations in the scaled image [11].

The applied rotation and band separation of the DWHT follows the same idea by a different

manner. Rotation brings the different directions of the image into the 1D sequency transform

scope, hence performs an angular decomposition. Separation of different bands in the transform

domain reveals the information of various sequency bands of the texture. If we again look at

(3.13), the first column of the result matrix is of course the summation of rows, which can

be interpreted as the DC-term or average. The second column comprises the 1st sequency

harmonic of rows (sequence=1). Eventually the fourth column conveys the rows’ maximum

(here, 3) sequency harmonics. Therefore, after dividing the columns into a few groups (or

sequency bands), sequency characteristics of the texture’s rows would be analyzable in different

scales. If we repeat the procedure for all directions, a comprehensive set of the sequency

information of the texture will be obtained. Figures 3.11 and 3.12 represent the outputs of

DWHT applied on two different images, aCARand aPAVEMENT. The transform domain

is depicted in logarithmic scale and for four different orientations,α = f0Æ;45Æ;90Æ;135Æg

from top left to bottom right. Diversity amongst objects and orientations are considerable and

suggest that transform can be effective on discrimination between different images and also has

directional sensitivity.

3.4 Colour Feature Extractors

Colour features are gradually playing a more important role in image classification: since

colour processing has become feasible for modern hardware in terms of both colour sens-

ing and costs of processing. Nevertheless, having faster algorithms along with maintaining an
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adequate level of performance is still of importance in terms of real applications.

In many studies, the colour image is considered as a composition of three separate individual

colour channels (spectrums) R,G and B [34]. Although it seems to be the simplest way and

suitable for digital systems, it has some important disadvantages in colour perception. For

instance, coordinations in the RGB space cannot necessarily show the chromatic similarity or

contrast of pixels, and in this sense, it is far from human colour perception as well.

Colour is in fact the human eye perception of an object [15]. Therefore some different colour

spaces where each pixel can be characterised by features closer to human perception have been

introduced. Those three factors are [15, 97]:

� Luminance: perception of light intensity or brightness.

� Hue: approximately the dominant wavelength in a mixture of light waves, or less for-

mally, perception of dominant nuance or tone by the observer.

� Saturation: The perception of colourfulness, purity of colour or lack of mixed white

light.

There are some different colour spaces that have been developed based on that idea, namely

HLS, HSB, YIQ, YUV and Lab [15, 26]. Those models, which mostly use the same idea in

different ways and details, can produce both intensity and chromaticity (e.g. hue and saturation)

characteristics of pixels, that is very close to the human perception.

Several studies have reported the advantages of using perceptual colour spaces in colour object

classification (for instance [34]). However, since the digital input data is mostly in RGB for-

mat, to employ other colour spaces we should always carry out aRGB-to-new spaceconversion,

which usually is the most costly stage of the colour feature extraction procedure. Hence, trying
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Figure 3.11:DWHT transform of aCAR. Left: Input image, Right: the output in transform domain in

log scale. Note the differences between various orientations of the transform domain, and also between

Figures 3.11 and 3.12 which represent two different objects.

to find out some RGB-based, easier-to-compute, and inspired-from-perception chromatic fea-

tures could be a worthwhile challenge. We introduce two new faster-to-compute chromaticity

features, calledHp andSp, and compare them to corresponding chromatic features extracted

from standard colour models, HLS andLab . These colour spaces will also be discussed later

in Appendix A.

3.4.1 New Chromatic Features:Hp and Sp

The first proposed RGB-based colour feature,Hp, is a mapping from RGB to a hue-like value,

where the maximum of (R,G,B) will be mapped to an appropriate1
3 division of the possible

range [0,255]. In fact, the definition ofHp has been derived from the basic meaning ofHue
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Figure 3.12:DWHT transform of aPAVEMENT. Left: Input image, Right: the output in transform

domain in log scale. Note the differences between various orientations of the transform domain, and

also between Figures 3.11 and 3.12 which represent two different objects.

which is the dominant tone of the object. This definition is not mathematically very close to the

standard definition of the Hue in other colour spaces. For example, in the HLS model shown in

A.1 (Appendix A), after finding out the maximum of (R,G,B), a factor of difference between

other two colours would be computed as the Hue.

The second colour feature,Sp, measures the absolute difference between the maximum value

and the average of colours (i.e. intensity), which can be considered as a simple close-to-

saturation idea. Again, as (A.1) in Appendix A exhibits, this definition is not completely com-

patible with the saturation term in the HLS colour space. In fact in our definition ofSp, the role

of the minimum spectrum has been eliminated, and the termMax(R;G;B)+Min(R;G;B) has
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been roughly replaced with the average of R,G and B.

Hp =

8>>><
>>>:

R
3 if R is Maximum

G+255
3 if G is Maximum Sp = Max(R;G;B)� R+G+B

3
B+(2�255)

3 if B is Maximum

(3.16)

In performed tests, statistical moments of the chromatic channels or features of an image are

calculated as its colour feature vector. After a brief review on standard RGB-to-HLS and

RGB-to-Labprocedures (see, for instance [85, 15, 26]), proposed features seem to be faster to

compute than both HLS-based andLab -based chromatic features (Unless we employ 16 Mega

Byte look-up tables for conversions). It is expected due to different background motivations

of methods. Whereas we aim to extract simple, fast, and accurate enough colour features for

object recognition purposes, standard colour spaces must impose some physical restrictions and

also must provide a precise one-to-one (invertible) mapping from RGB space and vice versa.

Therefore their procedure is necessarily more complicated. The HLS algorithm tests some

parameters and accomplishes some comparisons, andLabperforms an intermediate conversion

from RGB to CIE-XYZ space. Meanwhile, since they are empirical and approximated models

of the hue and saturation, the computation ofHp and Sp is plain and direct. Experimental

results presented in the following sections will compare the different aspects of these chromatic

features in detail.

Figure 3.13 exhibits an outdoor scene image and itsLab (a andb), HLS (hue and saturation)

andHpSp colour features. The common notable point amongst all features is that they attempt

to discriminate different objects inside the scene. Also similarity between HLS-saturation and

Sp is considerable.
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3.5 Classification Tests

Our experiments consist of classifying the data set introduced in Section 3.2 using:

� Gabor only

� DWHT only

� colour features only

� Gabor with colour features

� DWHT with colour features

We divided our 724 images into a training set of 396, a test set of 160 and a validation set

of 168 patches. For classification, we employed a back-propagation neural network (BPNN)

classifier with one hidden layer, optimised for the best number of nodes. (for more details see

Section 2.7.2).

Pre-processing for textural features included conversion to greyscale and normalisation to com-

pensate the possible tonal effects and making the classification more texture-oriented. To con-

vert the colour images into greyscale a so-calledRGB-to-luminancefunction was applied [26]:

AGL = 0:299RA + 0:587GA + 0:114BA (3.17)

whereA is the input colour image andAGL is the greyscale image.

Then, the resulting greyscale image was normalised by:

ANR =
AGL�µAGL

σAGL

(3.18)
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An Outdoor Scene Image

Lab -a HLS-Hue RGB-Hp

Lab -b HLS-Saturation RGB-Sp

Figure 3.13:Chromatic features of different colour spaces extracted from a high resolution outdoor

scene image (top).

whereµ� andσ� are the mean and standard deviation of the greyscale image.

To evaluate classification performance, we used the Mean Square Error, MSE, as the differ-

ence between the ground truthG (i.e. theexpectedoutputs of classifiers), and the network

classificationC (i.e. theactual outputs of the classifiers) acrossN classes. A second metric,

theClassification Accuracy, CA, was evaluated as the percentage of correct class assignments

across the complete labelled test set. MSE and CA are therefore defined as:
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MSE=
∑N

i=1(Gi�Ci)
2

N
CA=

No. of correct class assignments
Total no. of samples (i.e. 160)

�100 (3.19)

3.5.1 Classification using Textural Features: Gabor and DWHT

In the first series of tests, we employed our Gabor-based and DWHT-based textural features

separately and measured their classification accuracy. Both texture features were extracted

from greyscale images. Amongst several Gabor filter banks tested, a 12-filter bank with 3 cen-

tral frequencies,ω = fΩM
8 ; ΩM

4 ; ΩM
2 g and 4 orientations,θ = f0Æ;45Æ;90Æ;135Æg provided the

optimum results. Using more central frequencies and also changing the directional resolution

to ∆θ = 22:5Æ not only increased the number of features but also decreased the classification

accuracy (unlike what Clausi and Jernigan have reported in [25] about advantages of less than

45Æ directional definition). Our tests indeed confirmed 3 to 5 orientations as the optimum as

has been suggested by Smith and Burns [110]). The Gabor feature vector,FGabor, included 12

mean values of the filter responses (i.e. mean values ofG(ω;θ) in (3.4)).

The first DWHT feature vector,F 1
DWHT, included mean, standard deviation and maximum

values of DWHT outputs (H (α;b)) in four different directionsα = f0Æ;45Æ;90Æ;135Æg but

without any bands separation (i.e. statistics of 4 orientations in a single sequency scale were

calculated). The second DWHT feature set,F 2
DWHT, contained mean, standard deviation and

maximum values of 4 quarter sequency bands of a non-rotated transform (i.e. statistics of 4

sequency scales without rotation).F 3
DWHT comprised mean values of 4 rotated half transforms

arranged in 3 sequency bands,b = f0� 1
4 ; 1

4�
1
2 ; 1

2�1g (i.e. means of 4 orientations and

3 sequency scales). Finally,F 4
DWHT contained 16 mean outputs of 4 sequency bands (each
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covering a quarter of the sequency domain) and 4 directions.8>>>>>>>>>>><
>>>>>>>>>>>:

FGabor= fµ(Gω;θ)g ; ω 2 fΩM
8 ; ΩM

4 ; ΩM
2 g ; θ 2 f0Æ;45Æ;90Æ;135Æg

F 1
DWHT = fµ(Hθ) ; σ(Hθ) ; Max(Hθ)g ; θf0Æ;45Æ;90Æ;135Æg

F 2
DWHT = fµ(Hb) ; σ(Hb) ; Max(Hb)g ; b2 f0� 1

4;
1
4�

1
2;

1
2�1g

F 3
DWHT = fµ(Hb;θ)g ; b2 f0� 1

4;
1
4�

1
2;

1
2�1g ; θ 2 f0Æ;45Æ;90Æ;135Æg

F 4
DWHT = fµ(Hb;θ)g ; b2 f0� 1

4;
1
4�

1
2;

1
2�

3
4;

3
4�1g ; θ 2 f0Æ;45Æ;90Æ;135Æg

(3.20)

It is possible to apply some post-processing on the feature vectors (e.g. complex moments,

grating cell operators [43] or blob detection on Gabor features [54, 103]). However, since we

wanted to compare different algorithms, no post-processing was applied for any of the feature

extraction schemes. Table 3.1 shows the best classification results obtained by the Gabor filters

and DWHT transforms.

Texture Features No. Features MSE CA

FGabor 12 0.183 88.75%

F 1
DWHT 12 0.257 81.88%

F 2
DWHT 12 0.269 80.62%

F 3
DWHT 12 0.237 85.00%

F 4
DWHT 16 0.212 86.88%

Table 3.1:Classification results using Gabor and DWHT texture features

The results can be summarised as:

� As expected, the optimum classification accuracy of 88.75%, (i.e. 142 correct classifica-

tion out of 160) was achieved by Gabor filters. However, the best DWHT performance

of 86.88% (F 4
DWHT) was close and comparable.
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� Both extraction of features from different sequency bands and different directions influ-

enced the DWHT performance. The classification accuracy of the single band feature

set (F 1
DWHT) was limited to 81.88% and the single direction feature set (F 2

DWHT) perfor-

mance was 80.62%. While (F 3
DWHT) with 4 directions and 3 sequency bands achieved

a higher accuracy of 85%. Even adding more statistics (σ and maximum) could not

compensate the lack of directional and multi-band information.

� In our tests, directionality was marginally more effective than having multi-sequency

bands (again, 81.88% vs. 80.62%).

� Employing four sequency bands instead of three, added 1.88% to the classification accu-

racy of DWHT (85% vs. 86.88%).

Execution time of different algorithms will be discussed later in Section 3.6.

3.5.2 Classification using Chromatic Features

In the second experiment, we applied different chromatic features (H and S of the HLS,a

andb of the Lab colour spaces, and RGB-basedHp andSp, and measured their classification

accuracy. As Table 3.2 illustrates, two series of experiments with colour features were carried

out. In the first series, only the mean value of each chromatic channel was computed as the

feature, while in the second series both the mean and the standard deviation configured the

feature vector. Hence, in the first series we had two and in the second, four features per image.

Table 3.2 shows that amongst 2-feature sets of the first test, the best classification performance

was achieved byLab as 84.66%. However this performance was only slightly better than

our proposedHpSp with CA=82.97%, while bothLab andHpSp outperformed HLS at 68%

accuracy. Next, in the second series and by using four chromatic features, results in general
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exhibit higher accuracies for all feature extraction schemes. AgainLab was the best one

with 91.16%, followed by theHpSp set with 87.91%, both were noticeably higher than HLS

features with CA=80%. This reiterated that simple featuresHpSp gained a higher classification

performance in comparison to the HLS model, but was marginally lower than the precision

of Lab features. A notable point in this test is the considerable performance of all of colour

features in general. We therefore can assume that the homogeneity of colour properties of given

objects is relatively high.

Colour Features No. Features MSE CA

Lab (Mean ofa andb) 2 0.221 84.66 %

HLS (Mean ofH andS) 2 0.28 68.00 %

RGB-Based (Mean ofHp andSp) 2 0.234 82.97 %

Lab (Mean and STD ofa andb) 4 0.13 91.16%

HLS (Mean and STD ofH andS) 4 0.241 80.00%

RGB-Based (Mean and STD ofHp andSp) 4 0.169 87.91%

Table 3.2:Classification using colour featuresLab , HLS and the RGB-basedHpSp

3.5.3 Classification Using Merged Texture and Colour Features

We then merged our texture features with the colour features and performed classification using

all combinations for comparative purposes. The results of these are shown in Table 3.3 and

were found to be very close to each other, with the best result in each texture category being

Gabor+ Lab and DWHT with eitherHpSp or Lab features.

The Gabor+ Lab features provided the maximum classification accuracy of 94.38%. This was

slightly (0.63%) higher than Gabor+HpSp as the second best. The DWHT merged withLabor

HpSp showed close approximation to the maximum accuracy at 93.13%. To conclude, the
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Merged Features No. Features MSE CA

Gabor+ Lab 16 0.096 94.38%

Gabor+HLS 16 0.103 90.00%

Gabor+HpSp 16 0.097 93.75%

DWHT + Lab 20 0.094 93.13%

DWHT +HLS 20 0.123 89.38%

DWHT +HpSp 20 0.105 93.13%

Table 3.3:Classification using merged texture and colour features. For all colour spaces above, the

features wereµ andσ of each colour band used.

difference between the best (Gabor+ Lab ) and the proposed (DWHT+HpSp) is 1.25%, which

qualifies the new schemes, given the computational demands involved.

3.6 Summary of Computational Costs

Previous tests indicated that the proposed lower cost algorithms (DWHT andHpSp), along with

their simple structures, both performed well in classification experiments. Therefore, if their

computational times show notable decreases, they can be reasonably advisable, in particular

for realtime applications. To measure and compare the running time of different algorithms, a

series of tests were carried out, where both textural (DWHT vs. Gabor) and chromatic (HpSp

vs. Lab vs. HLS) feature extraction algorithms were run several times, and on different

machines. Tables 3.4 and 3.5 depict the average execution time of 20 runs on two different

work stations: a PC Pentium III-700 MHz machine and a Sun Ultra-10 Sparc work station.

As Table 3.4 exhibits, the DWHT feature extraction algorithm was 11.46 times faster than Ga-

bor filtering on PC, and 10.29 times on Sun. Meanwhile, both PC Pentium and Sun Sparc are

fast, powerful CPUs and we expect more differences on lower level hardware. The chromatic
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Textural Algorithm PC PIII 700 MHz Sun Sparc

Gabor 2.75 sec 7.10 sec

DWHT 0.24 sec 0.69 sec

Gabor=DWHT Ratio 11.46 10.29

Table 3.4:Average execution time for texture feature extractions (sec).

Chromatic Algorithm PC PIII 700 MHz Sun Sparc

Lab 0.30 sec 0.50 sec

HLS 0.73 sec 1.24 sec

HpSp 0.05 sec 0.11 sec

Lab=HpSp Ratio 6.05 4.54

HLS=HpSp Ratio 14.6 11.27

Table 3.5:Average execution time for colour feature extractions (sec).

feature extraction times, presented in Table 3.5, showed that the RGB-basedHpSp scheme was

the quickest, and 6.05(4.54) times faster thanLab and 14.6(11.27) times faster than HLS on

PC(Sun). This notable reduction in computation time even on high speed CPUs, proves the con-

siderable lower cost of the proposed features that along with their notable classification accu-

racy, make them highly plausible for realtime applications. For example, Gabor+ Lab needed

3.05 sec to be calculated at 94.38% accuracy, whereas DWHT+HpSp needed 0.29 sec at

93.13% accuracy.

3.7 Experiments with VisTex

To evaluate the robustness and generality of the proposed approaches, we repeated the experi-

ments, this time on a pseudo-standard texture database. Amongst a few commonly used texture

test suites, (namely Brodatz [18], MeasTex [88], VisTex [69]), VisTex was chosen since it has
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a rich variety of colour textures and also is easily downloadable via the Internet. Introduced

by the MIT Media Lab, the VisTex suite has been gathered to assist in computer vision algo-

rithm evaluation and comparison on a common data set. VisTex contains several colour images

of mostly natural textures which have been photographed under real world circumstances to

represent real world conditions.

Sixteen different textures from the VisTex database were selected and 192 non-overlapping

64�64 pixel patches were extracted from each, resulting in 3072 patches. The test procedure

and circumstances were kept compatible with the former high resolution outdoor scene ex-

periments, apart from addingOrdinary Hadamard Transform(OHT) as a new texture feature

extractor, and theNormalised RGB(NRGB) as a new chromatic feature extractor. Experiments

were divided into two stages. Firstly, all textural and chromatic features were tested to segre-

gate all 16 groups of textures. Secondly, to have a more precise evaluation of the advantages

of the new directional Hadamard approval on directional textures analysis, a comparative test

between OHT and DWHT was arranged. In this test only 5 groups of more directional textures

were involved. Figure 3.14 exhibits samples of all 16 groups of tested VisTex textures. the five

directional textures (BRICK (g1),FABRIC (g2),FOOD2(g5),GRASS(g6), andWATER(g9))

of the second experiment are highlighted by�. The applied classifier was an ordinary BPNN.

Samples of 3072 patches were divided into 50% for training and 50% for testing (i.e. randomly

selected 96 training and 96 testing patches per group). To increase the reliability and generality

of the outcome, the training and testing subsets were swapped and the classifier was trained

and tested once again. The reported results are in fact the average of these two iterations.
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BRICK (g1)* FABRIC

(g2)*

FABRIC2

(g3)

FOOD (g4)

FOOD2 (g5)* GRASS (g6)* METAL (g7) SAND (g8)

WATER(g9)* BARK (g10) FABRIC3

(g11)

STONE

(g12)

TERRAIN

(g13)

TERRAIN2

(g14)

WHER-WALDO

(g15)

FABRIC4

(g16)

Figure 3.14:Some samples of the applied 16 groups of VisTex textures.* indicates the directional

textures involved in the second experiment.

3.7.1 Texture-based Classification

For the texture based classification test, we first applied Gabor filters, DWHT and OHT in

three frequency/sequency bands, and four directions. The mean values of filter responses and
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transforms were calculated as the features:8>><
>>:

F 1
Gabor= fµ(Gω;θ)g ; ω 2 fΩM

8 ; ΩM
4 ; ΩM

2 g ; θ 2 f0Æ;45Æ;90Æ;135Æg

F 1
DWHT = fµ(Hb;θ)g ; b2 f0� 1

4;
1
4�

1
2;

1
2�1g ; θ 2 f0Æ;45Æ;90Æ;135Æg

F 1
OHT = fµ(Hb) g ; b2 f0; 1

4;
2
4g

(3.21)

As Table 3.6 represents, the classification accuracy of the Gabor filters is the highest (80.86%),

but only very slightly higher than DWHT (80.21%). OHT however, clearly shows a lower

performance of 69.14%.

Texture Features No. Features MSE CA

Gabor Filters (F 1
Gabor) 12 0.262 80.86%

Directional Hadamard (F 1
DWHT) 12 0.278 80.21%

Ordinary Hadamard (F 1
OHT) 3 0.416 69.14%

Table 3.6:Classification results of 16 VisTex textures using mean values of 3 frequency/sequency bands

as the texture features.

In the second test, standard deviations of the outputs were inserted to the feature vectors to

potentially increase the performances. New feature vectors included 24 features for Gabor and

DWHT and 6 features for OHT:8>><
>>:

F 2
Gabor= fµ(Gω;θ) ; σ(Gω;θ)g ; ω 2 fΩM

8 ; ΩM
4 ; ΩM

2 g ; θ 2 f0Æ;45Æ;90Æ;135Æg

F 2
DWHT = fµ(Hb;θ) ; σ(Hb;θ)g ; b2 f0� 1

4;
1
4�

1
2;

1
2�1g ; θ 2 f0Æ;45Æ;90Æ;135Æg

F 2
OHT = fµ(Hb) ; σ(Hb) g ; b2 f0� 1

4;
1
4�

1
2;

1
2�1g

(3.22)

As Table 3.7 exhibits, for the first time DWHT showed the highest classification accuracy with

82.72%, marginally improving on the Gabor filters’ 82.06% accuracy. OHT is still well behind

at 73.40% correct classification rate. This test indicated that it was possible to increase the

performance of DWHT even further by choosing appropriate features. Including the standard

deviation which in a sense showed the ‘normalised energy’ of the transform output or filter
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response [2], had more significant effects on DWHT and in particular OHT than Gabor filters.

Several other tests, where higher order moments or different statistics (e.g. max or min value)

were added to the feature sets, did not increase the classification accuracy of any of the feature

sets at all.

Texture Features No. Features MSE CA

Gabor Filters (F 2
Gabor) 24 0.253 82.06%

Directional Hadamard (F 2
DWHT) 24 0.234 82.72%

Ordinary Hadamard (F 2
OHT) 6 0.409 73.40%

Table 3.7:Classification results of 16 VisTex textures using texture features with 3 frequency/sequency

bands.

In the third test, we added the fourth frequency/sequency band to the features. So, for DWHT

and OHT the bandwidth was changed to1
4. For Gabor filters, we ignored the usuallog2 band-

width scheme and inserted the fourth central frequency atω = 3ΩM
4 :8>><

>>:
F 3

Gabor= fµ(Gω;θ) ; σ(Gω;θ)g ; ω 2 fΩM
8 ; ΩM

4 ; ΩM
2 ; 3ΩM

4 g ; θ 2 f0Æ;45Æ;90Æ;135Æg

F 3
DWHT = fµ(Hb;θ) ; σ(Hb;θ)g ; b2 f0� 1

4;
1
4�

1
2;

1
2�

3
4;

3
4�1g ; θ 2 f0Æ;45Æ;90Æ;135Æg

F 3
OHT = fµ(WHT2D

b ) ; σ(WHT2D
b )g ; b2 f0� 1

4;
1
4�

1
2;

1
2�

3
4;

3
4�1g

(3.23)

whereWHT2D is the output of an ordinary 2D Hadamard transform (see (3.8) for details, and

also Figure 3.8(c) for definition of ‘sequency bands’ in this case).

The combination of central frequencies inF 3
Gabor provided the best result amongst several

examined. For instance,fΩM
16 ;

ΩM
8 ; ΩM

4 ; ΩM
2 g andf3ΩM

32 ; 3ΩM
16 ; 3ΩM

8 ; 3ΩM
4 g exhibited 2.41% and

1.75% less accuracy thanF 3
Gabor respectively. Once again, the mean and the standard deviation

of the outputs were calculated as feature vectors. Table 3.8 depicts the classification results.

Results showed that again the best performance belongs to DWHT, andF 3
Gabor stays 2.18% be-

hind that. 77.96% classification accuracy of the OHT was 7.16% lower than DWHT. Involving
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Texture Features No. Features MSE CA

Gabor Filters (F 3
Gabor) 32 0.260 82.94%

Directional Hadamard (F 3
DWHT) 32 0.194 85.12%

Ordinary Hadamard (F 3
OHT) 8 0.323 77.96%

Table 3.8:Classification results of 16 VisTex textures using texture features with 4 frequency/sequency

bands.

the 4th frequency band at a rather high frequency ofω = 3ΩM
4 also has added 2.08% to the Ga-

bor filters performance and suggests that in some cases ignoring the typicallog2 arrangement

could be beneficial.

In the fourth experiment, we switched to our second VisTex data set which contains five more-

directional texturesfBRICK, FABRIC, FOOD2, GRASS, WATERg. This data set has

960 images. This test aimed to evaluate the effectiveness of the DWHT on the directional

textures more clearly. Also, a Principal Components Analysis has been applied onF 3
DWHT

to decrease its feature space dimensionality from 32 to 8, to facilitate a fairer comparison

between the 8-feature OHT and DWHT. The results, illustrated in Table 3.9, suggested that

DWHT performs well in directional texture classification. Its accuracy (97.92%) was 13.13%

higher than the OHT’s 84.79%. This also indicated that compared to the third experiment with

16 groups of textures, DWHT is even more effective on directional textures. The difference

between performances of DWHT and OHT in the third test was 7.16, whilst it was 13.13 in the

more directional fourth test. Even after applying the PCA, the 8-feature DWHT is 8.97% more

accurate than OHT.
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Texture Features No. Features MSE CA

Directional Hadamard (F 3
DWHT) 32 0.030 97.92%

Ordinary Hadamard (F 3
OHT) 8 0.169 84.79%

PCA onF 3
DWHT (F 3p

DWHT) 8 0.092 93.76%

Table 3.9:DWHT and OHT performance comparison, applied on more directional VisTex textures.

3.7.2 Colour-based Classification on VisTex

Along with three formerly mentioned colour features, in this test a newNormalised RGB[82]

feature set was examined. In the normalised RGB (NRGB), normalised values of R, G and B

for each pixel are calculated as:

r = R
R+G+B ; g= G

R+G+B ; b= B
R+G+B (3.24)

The NRGB feature vector is then formed by the mean and standard deviation ofr,g and b

channels:

FNRGB= fµ(r) ; σ(r) ; µ(g) ; σ(g) ; µ(b) ; σ(b)g (3.25)

The feature extraction schemes for HLS,Lab and HpSp are identical to that mentioned in

Section 3.5.2. Table 3.10 illustrates the classification results, whereLab shows the best per-

formance with CA=74.28%. The second best isHpSp with 72.07%. Classification accuracy of

NRGB and HLS are considerably lower at 65.82% and 64.71%.

Colour Features No. Features MSE CA

Lab (Mean and STD ofa;b) 4 0.395 74.28%

HLS (Mean and STD ofH;S) 4 0.515 64.71%

RGB-based (Mean and STD ofHp;Sp) 4 0.389 72.07%

Normalised RGB (Mean and STD ofRn;Gn;Bn) 6 0.401 65.82%

Table 3.10:16 groups of VisTex textures classification performance using chromatic features
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The outcomes of colour feature-based classification on VisTex support the former results of the

outdoor scene experiments. AgainLab is the most accurate one, whileHpSp stands marginally

behind that and clearly in front of both HLS and the new NRGB. This experiment shows that

hue-like and saturation-likeHpSp outperform non-perceptual NRGB features, and indicates the

advantage of even simple perceptual-based chromatic features in colour texture classification.

Relatively poor performance of NRGB may also challenge the generality of the results reported

by Manian and Vasquez in [82].

3.8 Conclusion

We described novel and fast methods for extraction of both directional texture features us-

ing the Walsh-Hadamard-based DWHT transform and simplified hue and saturation-likeHpSp

chromatic features. The methods were applied to high resolution outdoor scenes for colour ob-

ject classification. The DWHT concept of sequency captured the lower and higher harmonics

present in high resolution images very well. The performance of the proposed features were

compared, for accuracy and speed, against Gabor and HLS/Lab features. We demonstrated

that the performance of the new features were highly comparable at a massively reduced com-

putational cost. Furthermore, similar experiments on a pseudo-standard VisTex texture suite

confirmed that DWHT was significantly more effective than the ordinary Hadamard transform

and even in some cases slightly more precise than the well-known high performance Gabor

filters for texture classification.

The advantages of the proposed Hadamard based feature extraction scheme relies on dif-

ferent factors. First of all, contrary to many previous works which employed local Walsh-

Hadamard filters (e.g. 3�3 in [118] or 4�4 in [62] ), we used larger patches (e.g. 64�64 or

128�128) and a global transform method. Hence, processed by an ordered Hadamard matrix,
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a wider range of sequency information is extractable. Moreover, the employment of higher

resolution images allows us to use bigger patches of objects and gain a wider range of fre-

quency/sequency. Secondly, the employed rotation scheme covers four main orientations of a

texture (0Æ;45Æ;90Æ;135Æ) and provides an organised set of oriented sequency features which

can be evaluated, ranked and utilised in image classification tasks.

The RGB-basedHpSp colour features have been inspired from perceptual phenomenon, Hue

and Saturation. The proposedHpSp performed well in our object classification tests and was

comparable with the well-knownLab -based colour features. Further experiments where those

colour features, along with the NRGB, were applied to the VisTex set, again confirmed the

quality of the proposedHpSp features. In general, their performance was comparable with the

best achieved byLaband was well in front of HLS and NRGB.

In the following chapter we will apply DWHT once again, along with Gabor filters and some

other texture analysis algorithms, this time to detect abnormalities in textured tiles.
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Chapter 4

Defect Detection in Textured Tiles

4.1 Introduction

In this chapter we present a study in texture quality classification and abnormality detection.

We apply several popular techniques and propose a novel algorithm for texture defect detection

and evaluate it on a randomly textured tile data set.

The main focus of this study is to explore statistical and signal processing approaches for

abnormality detection. The following methods are investigated and compared which represent

a cross-section of state-of-the-art techniques:

� Statistical:

– Ordinary Histogram

– Local Binary Pattern

– Co-occurrence Matrix
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� Signal processing:

– Gabor Filtering

– Ordinary Walsh-Hadamard Transform

– Directional Walsh-Hadamard Transform (as proposed in Chapter 3)

– Ordinary Discrete Cosine Transform

– Directional Discrete Cosine Transform (similar with DWHT)

– Eigenfiltering

– Gabor Composition (the new method proposed in this chapter)

For each algorithm several parameter optimisation tests were also carried out to maximise the

performance.

The next section starts with a description of the test framework, including the data set and

classifier specifications. The algorithms used and the classification test results are discussed in

Section 4.3. The new Gabor Composition method is presented separately in Section 4.4. Then

we compare the computational costs and performances of different algorithms in Section 4.5.

The chapter will conclude in Section 4.6.

4.2 Classification Tests Framework

4.2.1 Data Set

Our randomly textured tile data set (TDS) contained 1883 grey level 256�256 pixel images

selected from larger (e.g. 1024�1024 pixel) tile images. The resolution of the images was 4

89



pixel/mm (0.25 mm/pixel) and they were grabbed in the factory environment with a prototype

inspection system. The classification algorithm attempted to classify input samples into normal

and abnormal classes. In reality, the defect detection system could separate the input image into

a few non-overlapping 256�256 patches, and considered the tile as normal if all the patches

were normal, otherwise the tile would be considered as abnormal.

As Table 4.1 illustrates, the TDS comprised of eleven tile types. Samples of each type were

divided into three non-overlapping categories ofNormals, AbnormalsandTemplates.

Number of Samples

Tile Type Normals Abnormals Templates

ARDES 22 22 224

ARWIN 40 40 82

CASA 72 72 4

DJZAM 20 20 170

DJZUL 20 20 170

KIS 23 23 39

LRSIDE 46 46 135

PRODO 44 44 6

PRODT 38 38 5

SLTNP 26 26 161

SYM 20 20 145

Total 371 371 1141

1883

Table 4.1:Tile types and number of samples in the TDS

Figures 4.1 and 4.2 illustrate normal and abnormal samples of all eleven types of tiles. As these

figures show, the tiles used were all random textures with different character and coarseness.

Defects were also decisively diverse in attributes. Unexpected bars inARWINand PRODO

90



samples, small circular brighter regions inLRSIDE and SYM, or local density problems in

SLTNPwere only some instances of defects in the TDS.

ARDES ARWIN

CASA DJZAM

DJZUL KIS

Figure 4.1: Samples of the TDS: normal(left) and abnormal(right) tiles from 11 different models.

ARDES: abnormal bottom/right corner,ARWIN: dark horizontal bars,CASA: dark stain,DJZAM:

abnormal top/right corner,DJZUL: thin crack-like line at the bottom,KIS: blobs at the left edge (to

be continued in 4.2).
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LRSIDE PRODO

PRODT SLTNP

SYM

Figure 4.2:(Continued from 4.1) Samples of the TDS: normal(left) and abnormal(right) tiles from 11

different models.LRSIDE: bright pinhole-like spot,PRODO:horizontal bars,PRODT:diagonal thin

lines,SLTNP: regions with denser patterns at the left half,SYM: bright spot.

A review of the data set and some sample histograms showed that the image grabber system

could provide homogeneous 256�256 image samples with a uniform luminance throughout

each. However, in some types there was a slight change in brightness between different sam-

ples (e.g. seeCASAtiles in Figure 4.1). Therefore, a simple normalisation was accomplished

throughout the images to compensate the luminance variations:

xp = x�µx (4.1)
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wherex is the input image,µx is its mean value, andxp is the normalised image. This was the

only pre-processing carried out on the data set prior to the feature extraction stage.

4.2.2 Classifiers

In this chapter we employed a traditional approach to the normal/abnormal samples classi-

fication problem, comprising feature extraction, training the classifier with both normal and

abnormal samples and testing the performance. A BPNN and a KNN classifier were separately

used to evaluate the performance of the feature extraction algorithms. The BPNN classifier was

a single hidden layer network, trained on a type-wise paradigm and optimised on the number of

hidden nodes. The number of hidden nodes tried weren= f2;3;4;5g. We did not test larger

n due to the relatively limited number of samples per type in the TDS. The KNN classifier

was also trained in a type-wise manner and optimised on the closest neighbourhood parameter

K = f1;3g. Almost alwaysK = 3 provided the better results. In general we did not tryK = 5

or larger, however, when we testedK = f1;3;5g for two types with more samples,CASAand

LRSIDE, K = 3 was still the optimum choice.

To increase the generality of the classification results, a k-fold cross-validation scheme with

k = 5 was implemented for both classifiers. For each type, samples were divided into 5 non-

overlapping training/testing subsets, where 80% of samples formed the training and the remain-

ing 20% built the testing subsets. The reported results are in fact the average of 5 iterations

of the training/testing cross-validation procedure (see Section 2.7.2 for more details on cross-

validation algorithms). Classification performance is presented by classification accuracy, CA,

or the percentage of correct class assignments across the complete labelled test set:

CA=
Nnn+Naa

Ntotal
�100 (4.2)

whereNnn, Naa, andNtotal are the number of test samples which are classified as normal while
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they are indeed normal, the number of test samples which are classified as abnormal while they

are indeed abnormal, and the total number of test samples respectively.

4.3 Classification Experiments

4.3.1 Ordinary Histograms

We applied histograms to measure the level of complexity of this classification problem, and

the validity of assuming all kinds of defects astextural abnormalities. If a simple non-textural

operator like a histogram shows a high classification performance, the complexity of the clas-

sification problem or the validity of that assumption can be questioned. The first histogram

feature vector,F 1
Hist, contained 256 bins of the tile image histogram. As Table 4.2 (columns

2 and 3) illustrates, using the KNN and the BPNN classifiers the average CA were 68.06%

and 77.54% respectively, which are not adequate in defect detection applications. Then a PCA

was applied to decrease the feature space dimensionality toward something more comparable

with other methods that shall be used here. The result was the second histogram feature vector

F n=48
Hist;PCA, which contained the first 48 features of the PCA. Tests showed thatF n=48

Hist;PCA with

65.45% and 76.34% accuracy on KNN and BPNN is even slightly worse thanF 1
Hist. Next, a

PCA-based optimisation test was performed, in which different numbers of PCA features,n,

were tried, wheren 2 f16;26;36; :::;246g. This was to find out whether or not PCA can in-

crease the classification accuracy at all. The outcomes showed that no PCA feature reduction

can improve the performance. Table 4.2 in columns 2 and 3 represents the classification per-

formance of the histogram on different types of the TDS. The average performance of 77.54%

achieved by the ordinary histogram suggests that defect detection in TDS is complex. We next

show the employment of texture-oriented methods and evaluate their performances.

94



4.3.2 Local Binary Patterns (LBP)

In this defect detection experiment, we applied basic LBP operators on a 3�3 neighbourhood,

8 border pixels (P= 8), and single distance (d = 1), :

LBPP;R =
P�1

∑
p=0

s(gp�gc)2
p (4.3)

wheres(�) is the sign function,gp andgc are grey levels of border pixels and central pixel

respectively, andP is the number of pixels in the neighbourhood (see Section 2.3.1 for more

details).

Although there are some reports on the high performance of LBP in texture classification (e.g.

[80, 92, 93]), in our tests LBP did not show promising defect detection accuracy. The perfor-

mance of 256-feature LBP feature vectors, (F 1
LBP), was limited to 78.93% on the KNN and

84.18% on the BPNN classifiers. Again, to find whether or not any improvement in classifica-

tion performance was obtainable via reduction of the feature space dimensionality (particularly

for the BPNN classifier), a PCA analysis was employed onF 1
LBP. None of the PCA feature

vectors attempted with different numbers of features,n, wheren2 f16;26;36; :::;246g, could

improve the classification performance andF 1
LBP stayed our best LBP feature vector. Table 4.2

in columns 4 and 5 represents the LBP defect detection performance which was better than the

ordinary histogram, however was not adequate for a defect detection application.

4.3.3 Co-occurrence Matrices

Grey level co-occurrence matrices are one of the oldest, and still one of the most commonly

used, texture modelling and classification algorithms. For ann-grey level image,x, grey level

co-occurrence matrix,Φd;θ(x) is an�n matrix which contains the pairwise relations between
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Histogram LBP

CAKNN CABPNN CAKNN CABPNN

Tile Type F 1
Hist F 1

Hist F 1
LBP F 1

LBP

ARDES 75.00% 72.35% 65.00% 77.50%

ARWIN 68.75% 79.25% 86.25% 97.19%

CASA 62.86% 78.00% 82.00% 94.29%

DJZAM 75.00% 76.75% 80.00% 83.75%

DJZUL 55.00% 71.45% 75.00% 73.75%

KIS 55.00% 71.25% 75.00% 77.50%

LRSIDE 72.00% 84.2% 80.00% 97.00%

PRODO 72.50% 81.32% 85.00% 83.75%

PRODT 72.50% 80.34% 80.00% 77.50%

SLTNP 85.00% 81.75% 80.00% 77.50%

SYM 55.00% 76.25% 80.00% 86.25%

Average 68.06% 77.54% 78.93% 84.18%

Variance 0.0098 0.0019 0.0033 0.0073

Table 4.2:Defect detection results using ordinary histograms and LBP methods.

pixel intensities for a particular distanced, and orientationθ. Each element(i; j) of Φ, shows

how many pixel pairs with respective intensitiesi and j exist in the image considering a certain

distance,d, and orientation,θ. Φ is therefore a function of three parameters:

Φd;θ(x) = GLCM(x;d;θ) (4.4)

The co-occurrence matrices can reveal certain properties of the texture. For example, if larger

values have gathered around diagonals ofΦd;��(x), the texturex is relatively coarse, regard-

ing the distanced [116]. Various combinations of parametersd and θ can generate many

different GLCM matrices for a single image. It is also apparent that GLCM matrices cannot

be directly used as texture representatives. Therefore, to obtain the texture’s feature vector,
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a few pseudo-standard functions will usually be applied on the GLCM matrices. Haralicket

al [44] introduced 14 pseudo-standard GLCM functions. Amongst them, we chose 6 popular

functions:

8>>>>>>>>>>><
>>>>>>>>>>>:

f1 = Maximum = Maxi; j(Φ(i; j))

f2 = Energy = ∑i; j Φ(i; j)2

f3 = Entropy =�∑i; j Φ(i; j)log(Φ(i; j))

f4 = Correlation = ∑i; j
(i�µi)( j�µj )Φ(i; j)

σiσ j

f5 = Inverse Di�erence Moment = ∑i; j
1

1+(i� j)2
Φ(i; j)

f6 = Inertia = ∑i; j(i� j)2Φ(i; j)

(4.5)

Each proposed function represents certain properties of the texture. Maximum and Energy, (f1

and f2), are basic statistics ofΦ. Entropy, f3, measures the texture homogeneity. Correlation

function, f4, is image linearity metric. Linear directional structures in directionθ result in large

correlation values in that direction. This can also measure the image coarseness. Inverse Dif-

ference Moment (IDM),f5, measures the extent to which the same tones tend to be neighbours.

Inertia (or Contrast),f6, is a texture dissimilarity measure. The reason behind this selection is,

while f1 and f2 are basic descriptors ofΦ, we believe thatf3 to f6 are all implicitly defect

sensitive. Homogeneity, correlation, linearity, and dissimilarity all may change when a flaw

occurs.

We considered four directionsθ = f0Æ;45Æ;90Æ;135Æg in all co-occurrence tests. To find out

the nearly optimum distanced, we assumedd = 1 as a basic distance and tried two distance

sets ofcloserandfarther distances which built up the first two GLCM feature vectors:

(
F 1

GLCM = f fi(Φd;θ)g ; i 2 f1; :::;6g; d 2 f1;2;3;4;5g; θ 2 f0Æ;45Æ;90Æ;135Æg

F 2
GLCM = f fi(Φd;θ)g ; i 2 f1; :::;6g; d 2 f1;20;30;40;50g; θ 2 f0Æ;45Æ;90Æ;135Æg

(4.6)
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Each feature vector contained 120 features of 4 directions, 5 distances, and 6 functions. Repre-

sented in the first two columns of Tables 4.3 and 4.4, the CA of these two vectors on both classi-

fiers suggest that shorter distances are more effective than farther ones (72.10% vs. 68.93% for

KNN and 82.29% vs. 80.91% for BPNN). The accuracy however, is still lower than LBP. Next

we attempted to improve the GLCM performance using 3 closer-to-fartherlog-scale distances

in a reasonable range ofd = f1� � �49g. This resulted in four more GLCM feature vectors as:

8>>>>><
>>>>>:

F 3
GLCM = f fi(Φd;θ)g ; d 2 f1;4;16g

F 4
GLCM = f fi(Φd;θ)g ; d 2 f1;5;25g

F 5
GLCM = f fi(Φd;θ)g ; d 2 f1;6;36g

F 6
GLCM = f fi(Φd;θ)g ; d 2 f1;7;49g

(4.7)

For all vectors, i 2 f1; :::;6g and θ 2 f0Æ;45Æ;90Æ;135Æg, thus eachlog-scale feature vector

comprised 72 features. The reason underpinning the selection of thelog-scale distances is that

in natural textures the correlation between two pixels diminishes as their distance is growing.

Results in Tables 4.3 and 4.4 suggest that the performance oflog-scale distances are far better

than that of the only-close and only-far, and improve on the LBP algorithm. The best feature

vector wasF 5
GLCM with d = f1;6;36g, achieving 80.45% and 95.07% correct classification on

KNN and BPNN respectively.

Finding the optimum subset of co-occurrence functions is another problem to be solved. Strand

and Taxt [114] employed Energy (f2), Inertia (f6), Correlation (f4) and Entropy (f3). Clausi

[24] in his detailed study compared several parameters of the GLCM algorithm. He concluded

that a combination of Inertia (f6), Entropy (f3) and Correlation (f4) provides the highest classi-

fication accuracy on average. He also believed that utilising all the functions will not increase

the performance due to their considerable redundancy. We tried a put-one-aside scheme (or

greedy scheme [123]) to find out if elimination of any function can increase (or at least keep) the

accuracy of the 6-functionF 5
GLCM. We put functions aside one by one and repeated the whole
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classification procedure for the new 5-function feature vector. Elimination of three functions

Entropy (f3), IDM ( f5), and Inertia (f6) increased the performance marginally. Amongst them,

IDM elimination was the most effective one with 0.27% and 0.18% improvement on KNN

and BPNN (i.e.CAKNN=80.72% andCABPNN=95.25% respectively). The resulting feature

vector is the 5-function, 60-featureF 7
GLCM. The put-one-aside scheme was then repeated once

again, and this time only elimination of Entropy (f3) improved the performance to 81.08% and

97.09% for the 4-function, 48-featureF 8
GLCM. This is indeed a moderate performance for the

KNN and a promising one for the BPNN classifier. No advantage was gained by eliminating

any more functions. Tables 4.3 and 4.4 show the results of these GLCM classification tests.

Distance Optimisation Function Optimisation

Tile Type F 1
GLCM F 2

GLCM F 3
GLCM F 4

GLCM F 5
GLCM F 6

GLCM F 7
GLCM F 8

GLCM

ARDES 83.33% 45.00% 80.00% 80.00% 80.00% 80.00% 83.33% 80.00%

ARWIN 70.00% 70.63% 88.75% 85.00% 85.00% 85.00% 85.00% 86.25%

CASA 70.14% 63.19% 68.57% 68.57% 71.43% 64.29% 71.43% 67.14%

DJZAM 82.50% 87.50% 90.00% 90.00% 100% 90.00% 90.00% 100%

DJZUL 92.50% 65.00% 95.00% 95.00% 95.00% 95.00% 90.00% 95.00%

KIS 52.50% 59.82% 80.00% 85.00% 80.00% 85.00% 58.33% 80.00%

LRSIDE 94.60% 90.34% 96.00% 96.00% 96.00% 90.34% 90.34% 96.00%

PRODO 80.65% 76.79% 70.00% 77.50% 75.00% 55.00% 76.19% 62.50%

PRODT 47.50% 52.50% 42.50% 62.50% 57.50% 82.50% 90.48% 80.00%

SLTNP 53.63% 81.79% 90.00% 90.00% 90.00% 90.00% 92.86% 90.00%

SYM 65.77% 65.71% 45.00% 50.00% 55.00% 55.00% 60.00% 55.00%

Average 72.10% 68.93% 76.89% 79.96% 80.45% 79.28% 80.72% 81.08%

Variance 0.0261 0.02018 0.0351 0.0207 0.0223 0.0208 0.0157 0.0210

Table 4.3:Defect detection results using GLCM and the KNN classifier.

To conclude, optimised GLCM features performed effectively in this defect detection experi-

ment. However, it is also of importance to select a well prepared set of distances and functions
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Distance Optimisation Function Optimisation

Tile Type F 1
GLCM F 2

GLCM F 3
GLCM F 4

GLCM F 5
GLCM F 6

GLCM F 7
GLCM F 8

GLCM

ARDES 91.67% 100% 95.00% 90.00% 100% 91.25% 100% 100%

ARWIN 85.00% 82.50% 97.50% 100% 98.75% 95.63% 99.38% 94.06%

CASA 77.78% 77.78% 98.93% 95.71% 100% 97.86% 97.22% 96.43%

DJZAM 100% 100% 95.00% 100% 100% 100% 85.00% 100%

DJZUL 90.00% 100% 92.50% 85.00% 80.00% 95.00% 90.00% 90.00%

KIS 75.00% 33.33% 91.25% 100% 100% 90.00% 89.88% 100%

LRSIDE 100% 95.45% 90.00% 96.00% 92.00% 90.00% 95.64% 90.00%

PRODO 66.67% 76.19% 100% 95.63% 95.63% 100% 95.63% 97.50%

PRODT 76.19% 61.90% 90.63% 95.00% 95.00% 97.50% 100% 100%

SLTNP 92.86% 92.86% 86.25% 95.00% 95.00% 90.00% 100% 100%

SYM 50.00% 70.00% 100% 85.00% 85.00% 100% 95.00% 100%

Average 82.29% 80.91% 93.88% 94.70% 95.07% 94.81% 95.25% 97.09%

Variance 0.0229 0.0422 0.0017 0.0032 0.0047 0.0015 0.0025 0.0016

Table 4.4:Defect detection results using GLCM and the BPNN classifier.

to obtain promising results.Log-scale distances (e.g.d = f1;6;36g), and four functions: Max-

imum, Energy, Correlation and Inertia, provided the best results in our experiments. An appro-

priatelog-scale distance set represents the correlation information of pixels in short, medium,

and long distances (in terms of the image size) all together. The put-one-aside function selec-

tion method, allows us to find the optimum subset of GLCM functions. In our experiments, a

combination of these optimisations was effective in improving the GLCM performance. The

most important disadvantages of GLCM are their relatively high computation costs (time com-

parison will be presented later in Section 4.6) and its not very promising KNN performance

(CAKNN=81.08%).
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4.3.4 Gabor Filters

We wish to investigate whether it is possible to implement an efficient Gabor-based MSMD

algorithm for texture abnormality detection. Many studies have reported high performance of

Gabor filters in texture classification. Gabor filters also illustrated promising results in our

texture classification experiments in Chapter 3. In defect detection tests, we again set the

directional resolution to∆θ = 45Æ, and selected one octave (dyadic) central frequencies and

half power bandwidth. The first Gabor feature set used, was extracted from a 12-filter bank

in lower central frequencies offΩM
16 ;

ΩM
8 ; ΩM

4 g. ΩM was the maximum frequency in spatial

frequency domain (see Section 2.3.2 for details). 12 mean filter responses built the first feature

vectorF 1
Gabor:

F 1
Gabor= fµ(Gω;θ)g ; ω 2 f

ΩM

16
;
ΩM

8
;
ΩM

4
g ; θ 2 f0Æ;45Æ;90Æ;135Æg (4.8)

As Table 4.5 shows, theF 1
Gabor performance was not very high and limited to 65.17% for

the KNN classifier and 70.46% for BPNN on average. By involving higher central frequen-

cies for further experiments, we then formed the second feature vector,F 2
Gabor, comprising

filter responses atfΩM
8 ; ΩM

4 ; ΩM
2 g, and a third feature vector,F 3

Gabor, with central frequencies

fΩM
4 ; ΩM

2 ;ΩMg.(
F 2

Gabor= fµ(Gω;θ)g ; ω 2 fΩM
8 ; ΩM

4 ; ΩM
2 g ; θ 2 f0Æ;45Æ;90Æ;135Æg

F 3
Gabor= fµ(Gω;θ)g ; ω 2 fΩM

4 ; ΩM
2 ;ΩMg ; θ 2 f0Æ;45Æ;90Æ;135Æg

(4.9)

The classification performance then increased toCAKNN=82.10% andCABPNN=88.57% for

F 2
Gabor and 84.39% and 89.21% forF 3

Gabor. Results obtained from other similar central fre-

quency arrangements, such asf3ΩM
16 ; 3ΩM

8 ; 3ΩM
4 g or even non-dyadic settingfΩM

4 ; ΩM
2 ; 3ΩM

4 g,

were lower thanF 3
Gabor.

Next, further accuracy was obtained by involving more filter response statistics inF 4
Gabor,
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which contained mean, standard deviation and maximum value of filter responses (36 features):

F 4
Gabor= fµ(Gω;θ); σ(Gω;θ); max(Gω;θ)g ; ω 2 f

ΩM

4
;
ΩM

2
;ΩMg ; θ 2 f0Æ;45Æ;90Æ;135Æg

(4.10)

F 4
Gabor provided the best classification accuracy of 84.87% with KNN and 91.22% with BPNN,

(i.e. respectively 0.47% and 2.01% better thanF 3
Gabor). Table 4.5 illustrates the overall perfor-

mance of our Gabor filters in tile defect detection.

Using either more frequency bands (e.g. 5 bandsfΩM
16 ;

ΩM
8 ; ΩM

4 ; ΩM
2 ; 3ΩM

4 g, or smaller directional

definition (e.g.∆θ = 30Æ or 22:5Æ) or more statistics (e.g. skewness and kurtosis), did not

increase the overall CA. Although for some types of tiles using 5 frequency bands increased

the accuracy (e.g. almost 5% more accuracy on KNN on typeARDES), in general we either

must employ the better three central frequencies ofF 3
Gabor andF 4

Gabor, or apply a type-by-type

frequency optimisation scheme.

Results showed that in general having three rows of filters in the low, middle and high frequen-

cies were essential and sufficient for successful defect detection, and in contrast to some other

applications higher frequency filters were of importance (see Table 4.5 and compareF 1
Gabor

with for instanceF 2
Gabor). Optimisations successfully improved the Gabor filter performance

and added almost 20% to its classification accuracy on both classifiers (i.e. from 65.17% to

84.87% on KNN and from 70.46% to 91.22% on BPNN). Also, we illustrated that finer di-

rectional definition or higher order moments did not necessarily increase the performance of

a Gabor-based texture defect detector. This suggested that applied directions, central frequen-

cies, and statistics could sufficiently cover the features of normal and abnormal tiles. Gabor

filters accuracy on KNN is 3.79% better than GLCM, on the BPNN classifier however, it is on

average 5.87% less accurate than GLCM.
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CAKNN CABPNN

Tile Type F 1
Gabor F 2

Gabor F 3
Gabor F 4

Gabor F 1
Gabor F 2

Gabor F 3
Gabor F 4

Gabor

ARDES 89.58% 80.00% 80.00% 85.00% 83.33% 87.50% 90.00% 85.00%

ARWIN 45.00% 85.00% 86.25% 85.00% 48.13% 97.81% 91.25% 98.75%

CASA 58.33% 98.57% 98.57% 98.57% 63.19% 92.86% 98.57% 97.14%

DJZAM 62.50% 70.00% 45.00% 75.00% 72.50% 62.50% 60.00% 75.00%

DJZUL 65.00% 60.00% 85.00% 65.00% 65.00% 60.00% 85.00% 85.00%

KIS 86.31% 100% 100% 100% 82.50% 73.75% 85.00% 100%

LRSIDE 71.78% 92.00% 96.00% 100% 65.44% 93.00% 94.00% 100%

PRODO 54.76% 95.00% 77.50% 95.00% 72.80% 100% 92.50% 85.00%

PRODT 57.44% 77.50% 95.00% 70.00% 57.26% 95.63% 90.00% 90.00%

SLTNP 38.69% 70.00% 85.00% 75.00% 53.87% 87.50% 90.00% 97.50%

SYM 87.50% 75.00% 80.00% 85.00% 90.00% 87.50% 90.00% 90.00%

Average 65.17% 82.10% 84.39% 84.87% 70.46% 88.57% 89.21% 91.22%

Variance 0.0291 0.0172 0.0233 0.0156 0.0197 0.0127 0.0112 0.0067

Table 4.5:Defect detection results using Gabor filters.

4.3.5 Directional Walsh-Hadamard Transform

The modified directional Walsh-Hadamard transform was the next feature extraction method

tested. DWHT showed high speed and accuracy in outdoor scene and VisTex classification tests

in Chapter 3. So it is also of interest to implement and evaluate the proposed DWHT method in

tile defect detection. DWHT applies rotated (i.e. rearranged) input matrices and a 1D row-wise

sequence analysis to encapsulate a MSMD texture analysis. Figure 4.3 depicts aDJZAMtile,

its 45Æ rotated version, their 1D Hadamard transforms, and their average of transform matrices

columns. Angular decomposition is completed by adding two other rotated input matrices (90Æ

and 135Æ) and scale decomposition is carried out by individual analysis of different sequency

bands (i.e. separated vertical bands at the transform matrix). Figures 4.3(c) and (d) show the
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separation of three and four individual sequency bands applied in these experiments. Statistics

of these bands eventually build the DWHT feature vectors.

Figure 4.3:A DJZAMtile, (a), its 45Æ rearranged version, (b), their 1D Hadamard transforms, (c) and

(d), and the average of transform matrices columns, (e) and (f). Three and four separated sequency

bands are also shown in (c) and (d).

The first feature vector experimented with,F 1
DWHT, contained the mean values of 4 directions

and 4 sequency bands (column-wise quarters of the transform matrix). Next, we decreased the

sequency bands into three (Figure 4.3(c)) but concurrently added maximum value and standard

deviation of the sequency bands to the second feature vector,F 2
DWHT, to see which one was

more effective on the defect detection performance. The third feature vectorF 3
DWHT comprised

4 sequency bands and 3 statistics all together.8>><
>>:

F 1
DWHT = fµ(Hb;θ) ; b2 f0� 1

4;
1
4�

1
2;

1
2 �

3
4;

3
4 �1g

F 2
DWHT = fµ(Hb;θ) ; σ(Hb;θ) ; Max(Hb;θ)g ; b2 f0� 1

4;
1
4�

1
2;

1
2 �1g

F 3
DWHT = fµ(Hb;θ) ; σ(Hb;θ) ; Max(Hb;θ)g ; b2 f0� 1

4;
1
4�

1
2;

1
2 �

3
4;

3
4 �1g

(4.11)

For all DWHT feature vectors,θ 2 f0Æ;45Æ;90Æ;135Æg. The number of features was 16 for
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F 1
DWHT, 36 for F 2

DWHT, and 48 forF 3
DWHT. As Table 4.6 illustrates, the defect detection per-

formance ofF 1
DWHT is 74.58% and 89.15% on KNN and BPNN. Involving 2 more statistics

(σ andMax), added 1.55% toCAKNN and only 0.32% toCABPNN. The best DWHT perfor-

mance was obtained byF 3
DWHT which outperformedF 2

DWHT at 82.62% and 95.58% accuracy

for KNN and BPNN. It suggests that an individual higher sequency band and more statistics

are both necessary for higher performance DWHT-based defect detection. Compared to the

best Gabor filter results, DWHT performance was slightly lower on the KNN (82.62% vs.

84.87%), however it was considerably higher on the BPNN classifier (95.58% vs. 91.22%).

DWHT performance was also 1.51% lower than GLCM on BPNN, but 1.54% higher on the

KNN classifier.

CAKNN CABPNN

Tile Type F 1
DWHT F 2

DWHT F 3
DWHT F 1

DWHT F 2
DWHT F 3

DWHT

ARDES 87.50% 87.50% 85.00% 91.15% 93.42% 97.50%

ARWIN 78.13% 79.38% 86.25% 99.69% 99.84% 100%

CASA 86.81% 92.36% 88.57% 98.09% 97.57% 99.64%

DJZAM 85.00% 85.00% 85.00% 82.50% 88.57% 87.50%

DJZUL 50.00% 50.00% 55.00% 69.38% 73.75% 87.50%

KIS 67.56% 63.99% 100% 95.61% 93.68% 93.75%

LRSIDE 90.06% 88.92% 94.00% 94.88% 91.12% 98.00%

PRODO 79.23% 81.61% 90.00% 88.04% 91.73% 100%

PRODT 65.00% 61.01% 70.00% 79.87% 87.50% 87.50%

SLTNP 71.13% 85.12% 90.00% 96.43% 79.54% 100%

SYM 60.00% 62.50% 65.00% 85.00% 87.50% 100%

Average 74.58% 76.13% 82.62% 89.15% 89.47% 95.58%

Variance 0.0167 0.0200 0.0183 0.0086 0.0057 0.0030

Table 4.6:Defect detection results using DWHT features.
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4.3.6 Discrete Cosine Transform

DCT is a commonly used transform in image and texture processing, most seen in image com-

pression and coding applications [125]. Its characteristics are rather similar with the FFT (it

also uses sinusoidal kernels), and Hadamard (it also is a real transform). There were two goals

in our DCT experiments. Firstly, to measure its texture defect detection performance, and sec-

ondly, and more importantly, to copy the DWHT idea in a directional DCT, called DDCT, and

compare its performance with the ordinary DCT. A 2-dimensional DCT is defined as:

C (A) =
2

p
MN

T(u)T(v)
M�1

∑
x=0

N�1

∑
y=0

A(x;y)cos(
(2x+1)uπ

2M
)cos(

(2y+1)vπ
2N

) (4.12)

whereA is aM�N image, and

T(x) =

(
1p
2

i f x = 0

1 otherwise
(4.13)

The DCT can also be represented in matrix form. Figure 4.4 illustrates a 64�64 DCT matrix.

Although smoother, it is comparable with the Hadamard transform matrix of Figure 3.8(b).

Figure 4.4:A 64�64 DCT matrix. Although smoother, it is comparable with the 64�64 SOH matrix

in Figure 3.8(b), Section 3.3.2.

DCT features were statistics of the transform matrix. The first DCT feature vector,F 1
DCT,

contained the maximum, mean and standard deviation ofC (A) (3 features). Its performance

was relatively low and limited to 62.51% with the KNN and 73.27% with the BPNN classifier

(see Table 4.7). Next we tried a multi-band scheme on the DCT transform matrix (no rotation).

This F 2
DCT feature vector comprised three statistics of four separated bands:

F 2
DCT = fµ(Cb) ; σ(Cb) ; max(Cb)g ; b2 f0�

1
4
;
1
4
�

1
2
;
1
2
�

3
4
;
3
4
�1g (4.14)
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The multi-band, 12-featureF 2
DCT showed better accuracy and achieved 77.48% and 89.84%

correct classification respectively with KNN and BPNN.

We repeated the DWHT procedure after replacing the Hadamard matrix with a DCT one, re-

sulting in a directional DCT. A DDCT feature vector,F 1
DDCT, was extracted next with three

statistics, four bands, and four directions (48 features in total).

F 1
DDCT = fµ(Cb;θ); σ(Cb;θ); max(Cb;θ)g ; b2 f0�

1
4
;
1
4
�

1
2
;
1
2
�

3
4
;
3
4
�1g ; θ 2 f0Æ;45Æ;90Æ;135Æg

(4.15)

F 1
DDCT performed better than both DCT feature vectors, with 82.15% correct classification

for the KNN and 95.14% for the BPNN classifier. The 4.67% and 5.30% respective difference

between DCT and DDCT performances showed the advantage of DDCT in texture abnormality

detection (see Table 4.7). Meanwhile, DDCT outcomes are quite close, although marginally

behind the DWHTs. In fact DWHT is 0.47% and 0.44% better than DDCT on the KNN and the

BPNN classifiers. Given the basic similarity between DCT and WHT, such close performances

are expected. However, it also suggests that in comparison to WHT, in larger size transform

domain processes, DCT loses its advantages, whereas reportedly it outperforms WHT in spatial

domain texture processing using smaller size filters (see Section 2.3.2 and also [118]).

4.3.7 Eigenfiltering

As mentioned before, in texture processing the first order statistics (e.g. histograms) are not

sufficient, but second (or higher) order statistics are necessary. Basically, a texture may be

processed either in the spatial domain, where, for instance, co-occurrence matrices can express

pixel relations, or in the spatial frequency domain, where, for instance, directional wedge-ring

or Gabor filters can be employed. The question is however, which method would be the optimal

one.
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Figure 4.5:A DJZAMtile (a), its 45Æ rearranged version (b), their 1D DCT transforms ((c) and (d)),

and average of transform matrices columns ((e) and (f))

Generally, if a local approach instead of a global approach is of interest, and 1st and 2nd order

statistics are sufficient for modelling a texture, then co-occurrence matrices will be powerful

analytical tools for that texture. However, this method is computationally expensive. So, if

we are looking for a more condensed but still powerful representation of pixel neighbourhood

analysis, PCA and eigenfilters are a good alternative [2, 33].

Using n� n sliding windows,n� n local neighbourhoods of the image can be extracted and

rearranged as different observations of data into ak� n2 matrix (k is the number of sliding

windows). Theneighbourhood sizeis typically in the rangen= 3;5;7. The covariance matrix

is then computed and the eigenvectors and eigenvalues are obtained:

C(x) = E[(x�µx)(x�µx)
T ] (4.16)

(C(x)�λxI)e= 0 (4.17)

where,µx is the mean value,I is the unity matrix,λ is the eigenvalue ande is the eigenvector

108



CAKNN CABPNN

Tile Type F 2
DCT F 1

DDCT F 2
DCT F 1

DDCT

ARDES 50.00% 85.00% 80.00% 90.00%

ARWIN 88.75% 91.25% 100% 100%

CASA 80.00% 77.14% 95.71% 98.57%

DJZAM 60.00% 85.00% 75.00% 95.00%

DJZUL 65.00% 50.00% 85.00% 85.00%

KIS 100% 100% 100% 100%

LRSIDE 96.00% 96.00% 100% 98.00%

PRODO 72.50% 77.50% 92.50% 95.00%

PRODT 80.00% 77.50% 90.00% 95.00%

SLTNP 90.00% 75.00% 75.00% 90.00%

SYM 70.00% 80.00% 95.00% 100%

Average 77.48% 82.15% 89.84% 95.14%

Variance 0.0244 0.0214 0.0094 0.0025

Table 4.7:Defect detection results using DCT and DDCT.

matrix. A n�n rearrangement of the eigenvectors could be interpreted as a bank of adapted

filters of the same size, which optimally cover alln�n relations of the test image pixels. Detail

images can be obtained by 2D spatial domain convolution of the test image by the members of

the eigenfilter bank:

DA
i = A
FA

i ; 1� i � n2 (4.18)

whereA is the input image andFA
i and DA

i are its ith eigenfilter and detail image. So, the

process providesn2 detail images of each input [2, 98]. (See Figure 4.7). Assuming an�

n neighbourhood of an image as different observations of adjacent data, Ade [2] shows that a

n�n neighbourhood covariance is very similar to Haralick’s Correlation (f4) function:

f4 = ∑
i; j

(i�µi)( j�µj)Φd;θ(i; j)

σiσ j
(4.19)
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whereµi andµj are means of the rows and columns, andσi andσ j are the standard deviations

of the rows and columns. This is applied on an ordinary co-occurrence matrix of the corre-

sponding distances,Φd;θ [44]. In fact an�n neighbourhood covariance covers all 2� d � n

distances. As Figure 4.6 exhibits, a 3�3 neighbourhood admits 13 different spatial relation-

ships between a pixel pair. All of those relationships are reflected in eigenfilters. Therefore,

together alln2 eigenfilters convey the proper structure of the original texture with respect to a

n�n basic structure. Ordered by their eigenvalues, Figure 4.7(b) exhibits 3�3 eigenfilters of

a given tile, and show that apart from the first filter which is a simple ‘weighted average’, the

eigenfilter bank comprises mostly of gradient filters which are not rotation invariant.

Figure 4.6:Possible relations between pixel pairs in 3x3 patches (left) and the covariance matrix (right).

(From [2]).

The filters’ orthogonality is of importance as well, because it builds up uncorrelated detail

images ( i.e. filter outputs) ordered by their role in building the original image (i.e. eigenval-

ues). These together describe and can reconstruct the image studied. Next, we need to use

those filter outputs as features of the texture, either by measuring certain statistics (typically

variance, which can be assumed as a normalised energy measure) and carry out some typical

classification, or apply reconstruction/synthesis processes. If results are not satisfactory, we

move towards larger neighbourhood sizes (N ) or try different window shapes (e.g. cross, di-

amond, stripe, etc)[44]. In Figure 4.7, the relation between an eigenfilter and its detail images

(Figure 4.7(b) and (c)), and the coverage of the major part of the image information by the first
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eigenfilters are notable.

We started the experiments with the smaller neighbourhood sizeN =3�3. The first eigenfilter

feature vector,F 1
EF, contained mean values of 9 detail images. The classification accuracy

wasCAKNN=77.59% andCABPNN=91.63% which was considerable for 9 features. Then the

standard deviationσ(Di) was inserted to the feature vector. So,F 2
EF included 18 features per

image. (
F 1

EF = fµ(Di)g ; i 2 f1� � �9g ; N = 3�3

F 2
EF = fµ(Di);σ(Di)g ; i 2 f1� � �9g ; N = 3�3

(4.20)

The classification performance usingF 2
EF increased toCAKNN=80.87% andCABPNN=94.21%

respectively. Adding the maximum, the minimum, or higher order moments did not improve

the performance further.

Larger neighbourhood sizes were tried next, where the relations between farther pixels were

also captured, hence improved detection rates were expected. The first series of experiments

containedN =5�5, 7�7, and 9�9. The results suggested that the maximum accuracies of

CAKNN=85.30% andCABPNN=95.7% were provided byN =7�7. Table 4.8 represents these

tests results. 8><
>:

F 3
EF = fµ(Di);σ(Di)g ; i 2 f1� � �25g ; N = 5�5

F 4
EF = fµ(Di);σ(Di)g ; i 2 f1� � �49g ; N = 7�7

F 5
EF = fµ(Di);σ(Di)g ; i 2 f1� � �81g ; N = 9�9

(4.21)

We found that the results peaked at 7�7 and continuously decreased for sizes greater than that.

This can be reasoned by the lack of inter-pixel correlation in farther distances.

Also, another problem can be the ordering of filters. We typically rely on the eigenvalues for

ordering and matching the filters and detail images. It will be shown later in Chapter 5 that this

can be problematic, in particular for larger neighbourhood sizes. If we compare eigenfiltering

and GLCM results, we will see that the best GLCM performance is achieved by the distance
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(a) (b)

(c)

Figure 4.7:Filtering procedure for an ARDES tile (a), its 3�3 eigenfilters (b) and detail images (c).

To increase the visibility, all filters and detail images have been equalised.

setd = f1;6;36g. The first two distances, 1;6 are covered by 7� 7 eigenfilters, the farther

distance at 36 however, is very difficult to be covered. Even a quite smallerN =13�13 would

be impractical, since handling of 13� 13� 2 = 338 features is not easy and the computing

time of 13�13 eigenfiltering procedure is also almost 78 times longer than 3�3. Although

on average the 98-featureF 4
EF is the most accurate feature vector, the optimumN is different

from type to type. For instance, considering both classifiers, forLRSIDE the 5�5 eigenfilter

is the most accurate one, while forARWIN3�3 is the best. Therefore, if it is practical, filter

size optimisation for each tile type can increase the defect detection performance.

Moreover, it was attempted to find out which members of the eigenfilter bank were the most
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CAKNN CABPNN

Tile Type F 2
EF F 3

EF F 4
EF F 5

EF F 2
EF F 3

EF F 4
EF F 5

EF

ARDES 70.00% 65.00% 80.00% 80.00% 100% 100% 98.75% 90.00%

ARWIN 98.75% 96.25% 96.25% 96.25% 96.88% 86.88% 96.56% 97.50%

CASA 74.29% 82.86% 98.57% 82.86% 97.50% 96.43% 97.50% 99.64%

DJZAM 85.00% 75.00% 80.00% 85.00% 100% 80.00% 93.75% 91.25%

DJZUL 55.00% 70.00% 80.00% 70.00% 82.50% 100% 96.25% 100%

KIS 100% 90.00% 95.00% 90.00% 100% 87.50% 95.00% 93.75%

LRSIDE 94.00% 98.00% 96.00% 94.00% 100% 100% 93.00% 86.50%

PRODO 85.00% 95.00% 100% 90.00% 92.50% 100% 93.75% 99.38%

PRODT 77.50% 85.00% 82.50% 77.50% 90.63% 88.75% 98.13% 99.38%

SLTNP 75.00% 90.00% 60.00% 75.00% 100% 100% 90.00% 87.50%

SYM 75.00% 85.00% 70.00% 95.00% 76.25% 100% 100% 82.50%

Average 80.87% 84.74% 85.30% 85.06% 94.21% 94.51% 95.70% 93.40%

Variance 0.0180 0.0117 0.0169 0.0077 0.0066 0.0053 0.0009 0.0039

Table 4.8:Defect detection results using eigenfilters.N =3�3 to N =9�9 filter response statistics

were used as features.

effective in the abnormality detection process. Table 4.9 represents the filter-wise classification

performance of 3�3 eigenfilter bank on the KNN classifier. This table clearly shows that on

average the first gradient filters (here: F2, F3, F4) were the most effective. The reason can

be the dominant role of these filters in texture determination. They convey the most important

characteristics of a texture, compared to the low pass filter (F1) or the last gradient filters

(i.e. bar detectors, edge detectors and so on) with smaller eigenvalues (F5 onward). A similar

test onN =5�5 filters also illustrated that the most effective filters are F2 and F4, however

the difference between their performance was less than the difference between 3� 3 filters’

performances.
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Tile Type F1 F2 F3 F4 F5 F6 F7 F8 F9

ARDES 60.00% 90.00% 60.00% 75.00% 40.00% 50.00% 90.00% 80.00% 70.00%

ARWIN 80.00% 77.50% 78.75% 98.75% 72.50% 62.50% 71.25% 47.50% 65.00%

CASA 34.29% 62.86% 82.86% 64.29% 48.57% 48.57% 71.43% 74.29% 61.43%

DJZAM 75.00% 60.00% 75.00% 40.00% 75.00% 45.00% 70.00% 55.00% 80.00%

DJZUL 55.00% 50.00% 75.00% 75.00% 45.00% 50.00% 75.00% 60.00% 60.00%

KIS 40.00% 100% 50.00% 95.00% 100% 60.00% 50.00% 30.00% 60.00%

LRSIDE 72.00% 100% 80.00% 98.00% 98.00% 92.00% 40.00% 50.00% 58.00%

PRODO 77.50% 92.50% 80.00% 80.00% 70.00% 92.50% 85.00% 77.50% 97.50%

PRODT 65.00% 85.00% 65.00% 92.50% 50.00% 70.00% 70.00% 70.00% 75.00%

SLTNP 80.00% 70.00% 60.00% 70.00% 60.00% 45.00% 75.00% 55.00% 50.00%

SYM 30.00% 80.00% 65.00% 80.00% 70.00% 50.00% 80.00% 75.00% 80.00%

Average 63.88% 78.79% 70.66% 78.85% 65.9% 61.557% 69.77% 59.93% 67.69%

Variance 0.0348 0.0277 0.0114 0.0304 0.0405 0.0306 0.0207 0.0242 0.0180

Table 4.9:Comparison between different filters performance for a 3�3 eigenfilter bank.

4.4 Gabor Composition Method

Up to this stage, a few of the applied algorithms have performed well on the BPNN-based defect

detection tests (e.g. GLCM withCABPNN=97.09%). The KNN performance meanwhile was

limited to at mostCAKNN=85.30% for the 7� 7 eigenfilter feature vector. Given that KNN

is more practical than BPNN in some industrial applications due to its much simpler training

phase, we propose a new and advanced feature extraction method mainly to increase the KNN

performance. This method, calledGabor Composition(GC), is based on a combination of

Gabor filtering and GLCM.

Major studies toward computing texture components (or more general, image components) can

be divided into either discriminative or generative models. In discriminative models, a pyramid

of filters with various scales and orientations is convolved with the original image, then for
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each pixel a feature vector of filter responses is configured. If there are some distinguishable

repeated ‘structures’ in the image, it will be justifiable to believe the pixels’ feature vectors

must form clusters. Then, after finding the cluster centers via clustering (e.g. using k-means

or fuzzy c-means), image icons will be generatable by a pseudo-inverse transform applied on

the centers. In generative models, an over-complete dictionary of local image bases and their

transforms is built up. Then each image would be ‘generated’ by linear superposition of some

bases (i.e. detail images) selected from the dictionary [123, 131].

Although both approaches can determine texture structures, they seem essentially different. In

a generative model, the image is reconstructed by superposition of a number of detail images,

where the number of those detail images is usually tens of times smaller than the number of

pixels. In contrast in discriminative models, pixels are represented by feature vectors and the

number of features is usually tens of times larger than the number of pixels [131]. For example,

DeBonet’s flexible histogram is a discriminative model which replaces a pixel with its relatively

large ‘parent structure’ vector [11, 12].

4.4.1 The Method

The proposed GC method, attempts to build up a generative model of texture using a Gabor

decomposition/composition approach. Figure 4.8 illustrates the different stages of a general

Gabor decomposition-based image feature extraction procedure. Firstly, the input image is

decomposed into detail images using an appropriate Gabor filter bank. Then we can either use

detail images’ features as the texture descriptors, or re-compose them to a new feature map

using a composition functionΓ. In the first method, spectral histogram, detail images GLCMs,

or moments (as we carried out in previous Gabor filtering experiments) of the detail images

can be utilised. In the second method, the composition function,Γ, should be able to properly

amplify the desired attributes of the input image in the feature map. In this application, these
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desired attributes are possible abnormalities.Γ also should match the final analysis selected.

To analyse the feature map, we may compute its statistics, extract its histogram or, as we pro-

pose here, apply a GLCM process on it. In particular, when the input image is a texture, the

feature map will eventually show texture appearance too, therefore in such cases the texture-

oriented GLCM is a suitable approach. The promising defect detection performance of Gabor

filters (see Section 4.3.4), suggests that they can effectively decompose the texture energy (i.e.

information) into various frequency scales and directions (i.e. detail images). Then a proper

function (e.g. a quantisation function), is applied to reduce the redundancy and consequently

dimensionality of data in detail images. In the GC algorithm, Gabor filtering and quantisation

together reduce the data dimensionality. If this dimensionality reduction succeeds to dampen

the irrelevant and redundant information, e.g. the background texture, as well as to amplify

desired information, e.g. defects, the performance of GLCM as the final feature extractor im-

proves. Consequently a highly accurate classification is attainable.

The proposed GC algorithm traces the following steps to complete a texture feature extraction

procedure:

� Pre-Gabor-processing: As before, only a simplexp = x�µx is applied to compensate

possible luminance changes and increase the textural aspects of experiment.

� Gabor filtering: The Gabor filter bank which provided the best classification results

in previous tests,F 4
Gabor (see Section 4.3.4), is used again. This filter bank consists of

twelve filters in three frequency bands and four directions:

Gω;θ ; ω 2 f
ΩM

4
;
ΩM

2
;ΩMg ; θ 2 f0Æ;45Æ;90Æ;135Æg (4.22)

� Post-Gabor-processing: We do not utilise typical post-processing steps such as blob-

detection [54, 103]. Instead, a quantisation algorithm is used which quantises a detail
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Figure 4.8:Gabor-based decomposition/composition procedure.

image into a few (e.g. 2 to 4) different levels. Blob detection is useful as a non-linear

operator to highlight blobs in an image, whereas we employ GLCM analysis at the final

stage. Quantisation decreases the number of grey levels in a detail image, hence the final

composed feature map is in fact a Gabor-filtered version of the input, presented in less

grey levels and GLCM then deals with fewer grey levels.

Before quantisation, a simple linear normalisation is carried out to bring the detail images

magnitude into[0;1] range:

xp =
x�min(x)

max(x)�min(x)
(4.23)

wherex andxp are the original and normalised images. Then a quantisation onn equidis-

tant thresholds which generates a (n+1) grey level detail image is implemented as:

FOR k2 f0;1; � � � ;n�1g IF
k
n
� x(i; j)�

k+1
n

THEN y(i; j) = k ; 8i; j 2 f1; � � � ;Mg (4.24)

wherex is theM�M normalised input image andy is the quantised (n+1) grey level
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output and the operation is performed on all pixels ofx.

� Composition: The easiest way to re-compose the quantised detail images and generate

the feature map is simple addition. Meanwhile other fusion functions such as Bernoulli’s

rule of combination are also applicable [103]. Post-Gabor-processing and composition,

together build ourΓ function.

� Feature extraction: As the final stage, the composed feature map is fed to a GLCM

algorithm to extract the texture’s features. Basically the GLCM feature extraction applied

is similar to that used previously in Section 4.3.3, however a different parameter set may

be applicable.

4.4.2 Justification

Similar ideas have been proposed before in the defect detection literature. For example, Sari-

Sarraf and Goddard [103] employed a wavelet-based method for on-loom fabric defect detec-

tion. They used a MSWAR wavelet for MSMD analysis of textured fabrics and generating

detail images, and a Bernoulli function for fusion of appropriately conditioned detail images.

Finally, they measured the local coarseness and global homogeneity of the test texture to detect

defects. Their method is capable of defect localisation too, and showed promising accuracy and

feasibility. In [71] Latif-Ametet alalso studied a combination of wavelets and GLCM for fab-

ric texture defect detection. Their method, calledsub-band domain co-occurrence matrices(in

contrast to typical spatial domain co-occurrence matrices), contained a wavelet transform on

a texture, followed by applying four GLCM functions (namely Entropy, Contrast, Energy and

IDM), on wavelet sub-bands (i.e. detail images). A Mahalanobis distance was then employed

to measure the abnormality of the test texture.

Figure 4.9 illustrates aKIS tile and its artificially defected version (a thin bright vertical curve
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was added). Detail images of both textures and recomposed feature maps are also presented.

The defective region is clearly highlighted in the less-redundant recomposed feature map of the

defective tile in 4.9(f), which suggests the efficiency of the GC algorithm.

(a) (b)

(c) (d)

(e) (f)
Figure 4.9: A normal KIS tile (a), and its artificially defective version (b), their respective detail

images, (c) and (d), and feature maps, (e) and (f). Note the highlighted defective region in (f).

Figures 4.10 and 4.11 depict the GC method concepts, applied on anARWINand aSYMtile.

An original texture is filtered by a 12-filter Gabor filter bank resulting in corresponding detail
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images. Then the detail images are combined and the feature map is built. The feature map

histogram (e) suggests a considerable reduction of grey levels compared to the original image

histogram in (b), which means reduction of dimensionality in the feature space (e.g. smaller

co-occurrence matrices). In both examples the defective area is clearly visible in the feature

map which shows that along with detection of defects, GC is also capable of defect localisation.

(a) (b)

(c)

(d) (e)
Figure 4.10:An ARWINtile (a), with the histogram (b), detail images (c), generated feature map (d),

and the feature map histogram (e).
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(a) (b)

(c)

(d) (e)
Figure 4.11:A SYMtile (a), with the histogram (b), detail images (c), generated feature map (d), and

the feature map histogram (e).

4.4.3 Experiments

For the first GC feature vector,F 1
GC, we applied twelve filters, two quantisation thresholds

(QT) at QT= f0:33; 0:66g, and the simple composition-by-addition scheme. The result was

a 25-grey level feature map. In fact, using am-filter filter bank andn quantisation thresholds,
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resulted in a(m�n)+1 grey level feature map:

0� y(i; j)�m�n (4.25)

wherey is the feature map. Then four GLCM matrices for four directions (∆θ = 45Æ), and one

distance (d = 1) were computed. Next, we employed those four GLCM functions which had

provided the best classification accuracy in previous experiments (namely Maximum, Energy,

Correlation and Inertia, see Section 4.3.3) and extracted

θ�d� functions = 4�1�4= 16

features ofF 1
GC.

The results however, were not promising atCAKNN=76.10% andCABPNN=88.75%. These

were obviously lower than the previous high performance methods (e.g. respectively 4.98%

and 8.34% lower than GLCM). To improve the performance, we then tried more quantisation

thresholds. There were four thresholdsQT = f0:2; 0:4; 0:6; 0:8g, and hence five levels, in

F 2
GC, which generated a 49-grey level feature map. Other parameters were kept similar toF 1

GC.

TheF 2
GC performance was considerably improved atCAKNN=80.79% andCABPNN=92.44%.

Although clearly better thanF 1
GC, it was still outperformed by the GLCM method in Section

4.3.3.

Next we attempted to discard some detail images from the composition procedure. Each texture

has a certain energy distribution throughout its detail images after Gabor decomposition, de-

pending on its frequency and directional characteristics. Again, a certain defect is traceable in

some detail images more than others, also depends on its characteristics. Therefore a well pre-

pared exclusion of a few detail images prior to the composition can decrease the redundancy, as

well as highlight the defects further. To optimally select a subset of detail images, Latif-Amet

et al discarded a detail image if its energy (i.e.∑u;vD2
i (u;v) ) was significantly lower than the

maximum detail image energy of the same scale. Regarding the diminished energy of higher

frequencies, it would not be reasonable to compare the energy of detail images of different
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scales [71]. Meanwhile, Sari-Sarraf and Goddard considered the background texture attenu-

ation as the more important factor. Hence, if a given detail image had an energy decisively

higher than the others (of the same scale) but almost equal to that of a corresponding detail

image in a defect-free reference texture, it would be excluded from the composition process.

They believed this rejected the detail images which were captured by the faultless background

texture [103].

We, on the other hand, employ a different approach. The template subset of the TDS comprises

of defect-free reference samples of all tile types and does not overlap the normal subset (see

Table 4.1). For each type, the average of detail image energies is computed throughout the

template and preserved, to be compared later with detail image energies of the test tile. In

our algorithm, detail images with the closest energy to their counterpart template average are

excluded from the composition process. A defect changes the energy of detail images, hence

by eliminating detail images with minimum distance to the ‘average of good textures’, we

increase the presence of defects, and reduce the background texture simultaneously. Using the

average energy of templates is easier than finding an appropriate image in the template set as

the reference. We will refer to this problem once again and discuss it in more detail in Chapter

5 as a part of our novelty detection study.

We added the detail image exclusion scheme to the algorithm to obtain the third GC feature

vectorF 3
GC. This performed better than former GC feature vectors and achieved 85.9% and

96.43% correct classification on KNN and BPNN respectively. This was a promising improve-

ment of 5.11% and 3.99% higher thanF 2
GC. The optimum number of detail images to be

excluded was found by trial and error. We evaluated the performance of 1 to 6 detail images

exclusion (out of 12) and realised that the optimum result on average was obtained by exclu-

sion of 3 detail images (i.e. using 9 detail images in composition). Therefore the composed

feature map contained 9�4+1= 37 grey levels. Other parameters (e.g. thresholds, GLCM

functions and so on) were kept similar toF 2
GC, soF 3

GC still had 16 features. Now, although the
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CABPNN was marginally lower than the GLCM (just 0.66%), the GC method usingF 3
GC was

the best on the KNN classification with 0.6% higher accuracy. In fact, the GC algorithm using

F 3
GC attributes is one of the best defect detection algorithms developed in this study so far.

Next, addition was replaced with Bernoulli’s rule of combination (BRC) [130] as the composi-

tion function. The BRC is defined as:

S= 1� (1�x1)(1�x2)(1�x3) (4.26)

wherex1, x2, andx3 are three input signals andS is their Bernoulli combination. The equation

is expandable to more inputs. Compared to addition, BRC almost follows one of the inputs,

while others possess relatively low values, i.e. it roughly follows the maximum input. This

can be useful in our GC abnormality detection method where defects (in particular, defective

areas boundaries) usually generate high magnitudes in detail images. An ordinary addition

implies averaging, thus can diminish the presence of these high-magnitude defect boundaries

in the composed feature map [103, 130]. Figure 4.12 illustrates a simple representation of BRC

applied on two linear signalsa=�x andb= 0:5x+0:3. As the graphd shows, in contrary to

additionc, BRC almost follows the major input signal and is minimum while inputs are equal.

If we assume the larger parts of signalsa andb as possible defective regions, summationc

does not explicitly show that region of the signalb, while the BRC function,d, illustrates two

separate maximum points for possibly defective regions of botha andb.

The next GC feature vector,F 4
GC, which used BRC, reached the highest GC performance of

CAKNN=88.35% andCABPNN=97.02%. It was in fact slightly lower than the best BPNN per-

formance presented by GLCM (97.09%), however, it was the most promising KNN classifica-

tion result that we obtained in our experiments, and was 3.05% better than the second best KNN

classification performed by eigenfiltering. Further efforts to improve the accuracy were not suc-

cessful. For instance, when in one test three GLCM distancesd = f1;6;36g were employed,

the performance of 48-featureF 5
GC decreased toCAKNN=86.03% andCABPNN=94.74% re-
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Figure 4.12:Bernoulli’s rule of combination applied on two simple signals (a) and (b). (c) is a+b and

(d) their BRC ora+b�ab.

spectively. Also, a series of peaks-position based feature extraction algorithms that were ap-

plied on the composed feature map failed to obtain adequate classification accuracy. Tables

4.10 and 4.11 illustrate the GC algorithm results.

To conclude, the combination of Gabor filtering and GLCM analysis in the new Gabor Com-

position algorithm provided the maximum classification accuracy on the KNN classifier. GC

also can localise the defects in its feature map before final feature extraction. Its promising

performance illustrates the potential for improving a statistical method’s performance using a

signal processing method as pre-processor and data conditioner.

4.5 Computational Costs and Performance Comparison

In any industrial application, as well as accuracy, computing cost is another factor that should

be considered. Table 4.12 illustrates the overall ranking of the results of textured tile classifica-

tion experiments on both KNN and BPNN classifiers. Table 4.13 depicts the average execution

time of the more promising feature extraction algorithms after 40 runs on a PC Pentium III-700
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Tile Type F 1
GC F 2

GC F 3
GC F 4

GC F 5
GC

ARDES 40.00% 35.42% 60.00% 60.00% 60.00%

ARWIN 70.00% 88.75% 88.75% 88.75% 87.50%

CASA 67.14% 95.83% 97.14% 98.57% 92.86%

DJZAM 70.00% 70.00% 90.00% 90.00% 85.00%

DJZUL 75.00% 85.00% 85.00% 90.00% 85.00%

KIS 90.00% 91.96% 95.00% 95.00% 90.00%

LRSIDE 70.00% 90.15% 84.00% 82.00% 86.00%

PRODO 92.50% 92.62% 97.50% 80.00% 97.50%

PRODT 82.50% 77.98% 77.50% 100% 82.50%

SLTNP 95.00% 73.51% 75.00% 97.50% 90.00%

SYM 85.00% 87.50% 95.00% 90.00% 90.00%

Average 76.10% 80.79% 85.9% 88.35% 86.03%

Variance 0.0244 0.0294 0.0138 0.0129 0.0092

Table 4.10:Defect detection results using GC algorithm and the KNN classifier.

MHz machine.

Amongst the statistical approaches tested, GLCM provided the best classification accuracy on

BPNN (97.09%), but not a good one on KNN (81.08%). Computationally however, GLCM was

a moderate algorithm with 0.132 sec execution time per tile. GC provided the most promising

results on KNN (88.35%) and the second best on BPNN (97.02%). Its execution however,

needed 0.198 sec per tile which made it a costly algorithm. Although GC was in fact a combi-

nation of Gabor filtering and GLCM, its computing time was less than the summation of those

two methods (0.198 vs 0.132+0.114= 0.246), since the GLCM algorithm was applied on 256-

grey level images and utilised 3 distances, whereas GC was applied to 37-grey level images

and a single distance.
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Tile Type F 1
GC F 2

GC F 3
GC F 4

GC F 5
GC

ARDES 88.75% 85.00% 100% 100% 100%

ARWIN 80.31% 97.50% 98.75% 97.19% 98.13%

CASA 93.93% 96.83% 100% 99.64% 100%

DJZAM 82.50% 95.00% 100% 95.00% 87.50%

DJZUL 76.25% 95.00% 90.00% 100% 88.75%

KIS 95.00% 95.00% 90.00% 95.00% 95.00%

LRSIDE 92.00% 90.00% 92.00% 88.50% 89.00%

PRODO 95.63% 92.50% 100% 98.75% 98.13%

PRODT 93.13% 90.00% 100% 96.25% 96.86%

SLTNP 95.00% 95.00% 100% 97.50% 98.75%

SYM 83.75% 85.00% 90.00% 99.38% 90.00%

Average 88.75% 92.44% 96.43% 97.02% 94.74%

Variance 0.0047 0.0019 0.0023 0.0011 0.0024

Table 4.11:Defect detection results using GC algorithm and the BPNN classifier.

The proposed DWHT was the fastest algorithm. With 0.009 sec execution time, it was 12.6

times faster than the next fastest that was Gabor filter. Its classification performance (i.e.

CAKNN=82.62% andCABPNN=95.58%) was also good and gave it the fourth best rank on

both classifiers. Thus, in a realtime texture analysis application DWHT is a reasonable choice.

In our experience, although DDCT outperformed DCT, it stood behind DWHT on both classi-

fication accuracy and computing time (not reported in Table 4.13). Eigenfiltering was another

interesting signal processing method. It was amongst the most accurate algorithms (the second

on KNN and third on BPNN), however the slowest one as well. The execution time for smaller

N s were much lower than 7�7. For instance, execution time forN =3�3 was only 0.025

sec. However, it was still around 2.78 times more than DWHT.

Figure 4.13 shows the average execution time of different algorithms, where the advantage of
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Classifier

Algorithms NF CAKNN Rank CABPNN Rank

Ordinary Histogram 256 68.06% 8 77.54% 8

LBP 256 78.93% 7 84.18% 7

GLCM 48 81.08% 6 97.09% 1

Gabor Filter 36 84.87% 3 91.22% 6

DWHT 48 82.62% 4 95.58% 4

DDCT 48 82.15% 5 95.14% 5

EigenfilterN =7�7 98 85.30% 2 95.70% 3

GC 16 88.35% 1 97.02% 2

Table 4.12:Summary of tile classification experiments. NF is the number of features.

Algorithms Running Time (sec) Rank

GLCM 0.132 3

Gabor Filter 0.114 2

DWHT 0.009 1

EigenfilterN =7�7 0.223 5

GC 0.198 4

Table 4.13:Different algorithms’ running time (sec).

DWHT is visible. Figure 4.14 illustrates the classification performance of different algorithms

used, averaged on all types of tile. The error bars show the standard error:

SE=

r
σ2

n
(4.27)

whereσ2 is variance andn is the number of tile types.
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4.6 Conclusion

We implemented three statistical (ordinary histogram, LBP, and GLCM) and five signal pro-

cessing schemes (Gabor filter, DWHT, DDCT, Eigenfilter, and GC) in randomly textured tile

abnormality detection experiments, using two different classifiers: KNN and BPNN. To obtain

the best outcomes, a series of parameter optimisation steps was carried out on each algorithm

which successfully improved their performances (e.g. by almost 20% for Gabor filters). The

ordinary histogram was employed only to measure the complexity of the defect detection prob-

lem, while all other algorithms applied were texture based. The GLCM illustrated promising

performance on BPNN. The eigenfiltering algorithm, optimised on the filter size, showed high

accuracy on both classifiers. However, on average the proposed GC algorithm was the most

accurate method. In particular a well-tuned GC was very effective and accurate on the sim-

pler KNN classifier. The GC method showed also good generality across various tile types,

apart from typeARDESon the KNN classifier, where possibly the coarse structure of the tex-

ture demanded a different parameter setting. The procedure of the GC algorithm, (i.e. Gabor

filtering, quantisation, exclusion, and Bernoulli’s combination), decreased the redundancy as

well as highlighted the defective regions (in particular their boundaries) in the feature map.

Consequently the GLCM could extract more effective features for texture classification.

The proposed DWHT was the fastest algorithm while also showed a high classification accu-

racy. Therefore it can be declared as a reasonable choice for realtime applications.

The proposed classification algorithms carry two significant shortcomings. Firstly, they rely

on a lengthy training stage, particularly in the case of the BPNN classifier. Secondly, they

depend on the availability of a substantial number of defective samples, that moreover, should

cover the full range of possible defects. These are not always available. In the next chapter we

attempt to overcome these disadvantages using an effective novelty detection scheme which is

both accurate and independent of defective samples.
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Figure 4.13:Execution time of different algorithms.

Figure 4.14:KNN and BPNN classification overall results.
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Chapter 5

A New Eigenfilters-Based Method for

Abnormality Detection

5.1 Introduction

A typical approach to normal-abnormal pattern classification comprises feature extraction and

then training a classifier with feature vectors of both negative and positive samples (e.g. nor-

mal and defective tiles). Consequently the trained classifier will be used to classify unknown

input samples. By employing well aimed pre and post-processing steps, efficient features,

and powerful classifiers, we can expect good classification performance from such a typical

scheme. However, this traditional method suffers from a few practical drawbacks. Firstly, in

real cases the number of abnormal samples is usually much lower than the number of normal

samples. (e.g. how many examined patients have a particular kind of cancer?) Therefore, the

classifier usually cannot be facilitated with enough abnormal training samples. Secondly, in

many cases abnormalities and defects are diverse and unpredictable. So even a large set of
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abnormal samples may not necessarily cover all the possible forms of defects. In other words,

in a given N-dimensional feature space, whereas the normal samples may build well defined

and separated clusters, we may see many ill-defined regions of abnormal samples which are

scattered across the feature space. However, all the abnormal samples should show a common

characteristic: a considerable distance to normal clusters. This ‘distance’ is the base of a dif-

ferent approach to normal/abnormal sample classification which is callednovelty detectionor

concept learning[55]. There are several novelty detection schemes developed for a variety of

applications, for instance [51, 55, 109] (for more examples see Section 2.7.4). However, the

basic idea behind almost all of them is measuring a distance toward a set of positive reference

samples, here called thetemplateset, as the level of novelty of the input sample. Measurement

is usually carried out in the feature space and the template should adequately cover the possible

positive samples set.

In this study, we develop a new eigenfilter based novelty detection scheme to segregate abnor-

mal textured tiles. The method is based on the reconstruction of the test image twice: once by

its own eigenfilter bank and once again by a template tile’s eigenfilter bank, and measuring the

reconstruction error as the level of novelty.

In the next section, after a brief review of PCA analysis and eigenfilters, the proposed method

and the results of the first series of experiments is detailed. Section 5.3 describes an improved

filter’s structure oriented method and the results of the second series of tests concerning this

new method. The study is concluded in Section 5.4.
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5.2 The Proposed Method and the First Experiments

5.2.1 PCA Analysis and Eigenfilters: Background

PCA and eigenfiltering have been previously discussed in Sections 2.7.1 and 4.3.7. Here we

only look over the notations again. Using the covariance matrix of thek�n2 rearrangement of

a given imageA (n2 is the neighbourhood size orN ), eigenfilters ofA would be computed and

utilised to generaten2 detail images:

DA
i = A
FA

i ; 1� i � n2 (5.1)

WhereFA
i andDA

i are theith eigenfilter and detail image ofA. Figure 5.1 illustrates a tile im-

age, its 25-filterN =5�5 eigenfilter bank, and resulted detail images. Two characteristics of

eigenfilters are of importance and helpful in our proposed novelty detection method:adaptabil-

ity andorthogonality. Adaptability means the eigenfilter bank of different images are different

and each eigenfilter conveys the certain attributes of the image, regarding the eigenfilter size.

Orthogonality means we can successfully reconstruct the original image by composition of its

detail images [2]. The eigenfilter bank decompose the image into an orthogonal set of detail im-

ages. The process of decomposition however, is image dependent. Also, eigenfilters and detail

images of similar images are close to each other (considering distances in Euclidian spaces)

and vice versa. We use all these factors to establish our eigenfilter based novelty detection

algorithm.

5.2.2 Data Set

The applied data set included eight diverse types of textured ceramic tiles. Samples of each type

were divided into four non-overlapping categories ofabnormal, normal, template(reference,
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T), andtraining (parameter estimation,P). The number of samples in the normal and abnormal

categories was kept equal, and all the remaining good samples were used to build the template

and the training sets. As Table 5.1 shows, typically for each tile type in this study the template

set was much larger than the training set.

Number of Samples

Tile Type Normal Abnormal Template Training

ARDES 22 22 224 20

ARWIN 40 40 82 15

DJZAM 20 20 170 20

DJZUL 20 20 170 20

KIS 23 23 39 10

LRSIDE 46 46 135 20

SLTNP 26 26 161 20

SYM 20 20 145 20

Table 5.1:Tile types and number of samples

5.2.3 The Method

Initially, we compute and store the eigenfilters and detail images of all the reference images

in our templatesetT. Then the eigenfilters of a new tile imageA, are computed. We search

the template set to find the most similar image toA. This template member is referred asM.

When textures are involved, usually methods such as pixel-by-pixel comparison, histogram or

power spectrum differences, are not effective to evaluate the similarity (i.e. distance, in a given

Euclidian space). Instead, textural properties can be more helpful.
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(a) (b)

(c)

Figure 5.1:Filtering procedure for a DJZAM tile (a), its 5�5 eigenfilters (b), and detail images (c).

To increase the visibility, all filters and detail images have been equalised.

For example, the most similar textures could be the pair with the closest co-occurrence matrices

or the closest MSMD filter responses [44, 54, 127]. Since eigenfilters preserve the textural

characteristics, the distance between eigenfilter responses (i.e. detail images) could be used as

a textural similarity metric. For such comparisons, the widely appliedχ2 distance function

is used [77, 76, 123].χ2 is in fact a normalised (or relative) distance between two vectors
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regardless of their elements’ magnitude and can be defined as:

χ2(A;M) =
N

∑
i=1

(DA
i �DM

i )
2

jDA
i j+ jD

M
i j

(5.2)

whereDA andDM are detail images ofA andM using (5.1). HenceM would be the member

of template with the minimumχ2 distance toA. However, considering the adaptability of the

eigenfilters, it is also possible to implement an eigenfilter vs. eigenfilter similarity measure-

ment. GivenFA andFM as any two eigenfilters that are to be compared, then:

χ2(A;M) =
N

∑
i=1

(FA
i �FM

i )
2

jFA
i j+ jF

M
i j

(5.3)

In fact, we tried both distance between detail images (DBD) and distance between filters (DBF)

schemes and the comparative results are discussed later in Section 5.2.4. We also applied some

other distance functions, for instance MSE and vectors angle. On average,χ2 showed the

highest performance in these experiments.

Next, the test image,A, is reconstructed twice: once by a subset of its own eigenfilters and once

again by a subset of the selectedM’s eigenfilters (resulting inRA andRM). The number of filters

in the subset is naturally important and is dealt with in Section 5.2.6. Reconstruction could be

carried out by simple addition of the detail images or Bernoulli’s rule of combination [103]. In

these experiments, BRC did not show any advantage to simple addition, hence subsequently

only addition-based reconstruction was used:

RA = ∑i D
A
i ; RM = ∑i D

M
i (5.4)

The error between the reconstructed pair is considered as the level of abnormality of test image

A. An error larger than a given threshold,ϒ, is considered as a sign of a defect on the tile

surface texture:

∆E = jRA�RMj> ϒ ) DEFECT (5.5)
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Figure 5.2 specifies the proposed abnormality detection algorithm.

Figure 5.2:Eigenfilter-based abnormalities detection algorithm

Figure 5.3 illustrates aKIS tile and its artificially defective version (round grey area in the

bottom right). The 3�3 eigenfilter banks are different due to the flaw. Graphs 5.3(e) and 5.3(f)

respectively show theχ2 distance between the eigenfilter banks and the detail images. Figure

5.3(g) presents the reconstruction error map using filters 2 to 7. Note that in the reconstructed

map the defective area boundary shows a higher error level. Figure 5.4 illustrates the same

procedure for anotherKIS tile, where this time 7�7 filters are exploited. Again the defective

area in the reconstruction error map (g) shows a higher level of error. In this example filters 25

to 49 were employed for reconstruction.
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(a) (b) (c) (d)

(e) (f) (g)
Figure 5.3:A normalKIS tile (a), and its artificially defected version (b), their respective 3�3 eigen-

filter banks ((c) and (d)), theχ2 distance between filters (e) and detail images (f), and the reconstruction

error map (g).

5.2.4 The First Experiments

In the first series of experiments, presented in Table 5.2, three different neghibourhood sizes,

N =3� 3, 5� 5 and 7� 7, and -inspired by KNN classifiers- a different number of closest

templates were tried. The second column shows the outcomes of the DBF scheme, and the third

column presents the outcomes of the DBD scheme. Results suggest that the best classification

performance of 85.32% was achieved by using a 3�3 neighbourhood, three closestMs, DBD,

and reconstruction using 6 (out of 9) detail images. In fact for all triedN , the accuracy of

DBD was higher than DBF. However, it was achieved at the expense of slightly more elaborate

computations. The DBF method forN =3�3 took 0:501s on a 700 MHz PC, while it took
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(a) (b) (c) (d)

(e) (f) (g)
Figure 5.4:A normalKIS tile (a), and its artificially defected version (b), their respective 7�7 eigen-

filter banks ((c) and (d)), theχ2 distance between filters (e) and detail images (f), and the reconstruction

error map (g).

0:538s for the DBF. The higher accuracy of DBD means it will be considered as the preferred

scheme in all further experiments. Degrading performances prevented us from testing larger

N s. As an exception, and only forN =3� 3, in this test employing 3 closestMs provides

the optimum results. In such cases, average distance to a few (here: 3) closestMs would be

computed. In all other tests, the best performance is obtained by a single closestM. Optimum

results shown are achieved by employing a subset of detail images in the reconstruction stage.

6 detail images are involved forN =3�3, 12 (out of 25) for 5�5, and 32 (out of 49) for 7�7.

The method used to choose these subsets will be discussed later.

Perhaps one of the first questions to arise about the proposed method is how effective this

particular reconstructional algorithm is. In other words, why cannot the distance between detail
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images be used as the normality/abnormality metric? The last row of Table 5.2 illustrates the

outcomes of a detail images-based classification effort with all circumstances kept similar with

the tests above, but without the reconstruction phase and by utilising all the detail images as

the feature of novelty. Reduced classification accuracy of 12.91% (from 85.32% to 72.41%)

shows that the hypothesis of reconstruction via two different filter banks and using a subset

of filters, is effective and increases the overall accuracy. This comparison shows that while

eigenfilter is successful as an ordinary classifier (see Section 4.6 and Table 4.12), to apply it as

a promising novelty detector, we need to develop a new eigenfilter-based scheme. The slight

diversity of eigenfilters ofA andM, amplifies the differences of the reconstructed pair, and the

amplification magnitude will be higher when the test imageA is defective.

Neighbourhood CA Using CA Using No. Filters No. Ms

Size (N ) DBF DBD Involved Involved

3�3 81.12% 85.32% 6 3

5�5 77.62% 81.25% 12 1

7�7 74.22% 79.90% 32 1

Classification Without Reconstruction

Neighbourhood CA Using CA Using No. Filters No. Ms

Size (N ) DBF DBD Involved Involved

N =3�3 69.67% 72.41% all 1

Table 5.2:Results of the first series of experiment. DBD and DBF are distance between filters and

detail images respectively, and No.Ms is the number of involved closest templates.

The proposed algorithm looks simple and straightforward, however, certain fundamental issues

arise out of the proposed method and implemented tests that we now attempt to deal with. For

instance, how the optimum threshold (ϒ), or the optimum subset of filters/detail images for

reconstruction can be established.
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5.2.5 Finding the Optimum ϒ

The simplest way to choose theϒ is considering the maximum reconstruction error of the

training set as that threshold. However this can slightly decrease the sensitivity of the novelty

detector. So, the choice ofϒ is determined through a simple type-by-type training or parameter

estimation stage. Initially, we apply the proposed algorithm on the training setP (which con-

tains only ‘good’ samples) and obtain the reconstruction errors. Then the mean (µP) and the

standard deviation (σP) of the reconstruction errors are computed. The optimum thresholdϒ is

assumed to be anα weighted deviation from the mean:

ϒ = µP+ασP (5.6)

Thus, any unseen tiles with reconstruction error∆E > ϒ will be considered as abnormal. Fur-

thermore, we continue the parameter estimation stage to determine the optimum value forα

using k-fold cross-validation. Here a 4-fold cross-validation was employed, where 75% of

samples were used for parameter estimation, and 25% for testing the performance. The result

is taken as the average of four iterations of that procedure on non-overlapping subsets.

As an example, Fig. 5.5 depicts the distributions of∆E for normal, abnormal and template

sets of a specific type of tile. In this case, the template’s∆E statistics areµP = 0:24, and

σP = 0:11 (Fig. 5.5(top)). The test data reconstruction errors are plotted in Fig. 5.5(bottom).

The cross-validation algorithm estimates the optimum separation parameter set asϒ = 0:36,

from α = 1:12, on the normalised∆E axis. The subsequent correct classification rate for this

example was 95.0%.

Next, we describe how the near-optimal number of eigenfilters are selected to reconstruct an

image, whether for routine comparison of unseen tiles against the template setT or to determine

the optimum value ofϒ as just described.
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Figure 5.5:Reconstruction error (∆E) distribution for (top) training setP, (bottom) normal and abnor-

mal test samples. The training set parameters(µP;σP) are used in computing the optimum threshold for

the test samples. The∆E axis has been normalised to lie in the range [0-1].

5.2.6 Finding The Optimum Subset of Eigenfilters

As mentioned before, eigenfilters are an orthogonal set, therefore any reconstruction using

a complete set of detail images would be error free. Also, a few filters (and consequently

detail images) of a defective tile may convey the information of the defect. So, the resulting

reconstruction error using those filters may provide the optimum discrimination. However, it

would be difficult to find the optimum subset. The first reasonable selection could therefore
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be the filters with highest eigenvalues. Nevertheless our experiments have shown that this was

not the best option, as the correct classification achieved was limited to 72.92%. This lack of

performance is expected since the defective area is usually a small portion of the whole tile,

and therefore cannot affect the first eigenvectors which convey the basic structure of the image.

Consequently, employing a subset of the smallest-eigenvalue filters performed even worse with

69.91% correct classification.

Another option could be measuring the distance between pairs of counterpart detail images in

M and the test imageA. Reasonably, pairs with maximum distance may convey the differences,

i.e. abnormalities information, whereas closer pairs may convey the similarities. However,

this assumption has failed during tests, when a subset of a few closer filters provided a better

classification result than a subset of farther ones. In particular the specificity (SPC) factor

of the farther filters was lower than the closer filters, which suggests that we need the closer

filters too to keep the SPC adequate. Table 5.3 exhibits the results and suggests that whereas

a subset of 6 closer filters reach up to 85.32% correct classification, maximum accuracy of the

farther subset is limited to 77.13%. Moreover, the farther subset shows a considerably lower

specificity, (0.761 vs. 0.596), which means that this selection puts more normal tiles wrongly

into the abnormal category. However, as expected, the sensitivity (SNS) of the farther set is

marginally better than the closer (0.954 vs. 0.946), which shows that it can reveal the defects

slightly more clearly.

Filter Subset No. of Filters CA SNS SPC

Closer 6 85.32% 0.946 0.761

Farther 6 77.13% 0.954 0.596

Table 5.3:Comparison between closer and farther subsets performances.

Although the classification accuracy of 85.32% is relatively acceptable, we must try to increase

it and also find out why the smallestN has provided the best performance. In the following

sections we will explain an improved filter-structure based method to achieve a higher perfor-
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mance.

5.3 Improvement Through Matching by Structure

In the proposed algorithm, when we want to measure the similarity between two textures or the

distance between two filters, we implicitly sort the filters or detail images by the eigenvalues,

and then compare the corresponding pairs. However, this scheme may have some disadvan-

tages. For example, Figure 5.6, which depicts 3� 3 eigenfilter banks of twoDJZAMtiles,

suggests that an ordinary comparison (e.g. by usingχ2 ) of filter pairs while all have been

sorted by eigenvalues, may show an incorrect distance between two wrongly matched filters.

Consequently the computed overall distance between two textures would not be reliable. For

instance, on that figure, edge detector filter pairs 2 and 3 (in (a) and (b)) are 90Æ rotated ver-

sions of each other. Therefore it might be more reasonable to match the 2nd filter of (a) with

the 3rd filter of (b) and vice versa. As another example, pair 8 are complement (negative) of

each other, however, both are pixel detectors. In such cases,χ2 definitely cannot be applied to

measure the structural similarity between gradient filters. So, the calculatedχ2 distance (either

between filters or between detail images) may not be very precise.

Another drawback of the current algorithm is its rotation-variant property, where rotation of a

tile will rotate the filters and consequently disrupt the distance measurement. Uneven surfaces

of many tiles and slanted lighting of the image grabber system amplify the effects of rotation

on the texture. As an example, Figure 5.7 shows anARDEStile, its 90Æ rotated version and

their 3�3 and 5�5 eigenfilter banks. Rotation has affected almost all of the filters. (e.g. filters

2,3 and 5 to 8 in 3�3 (c,d) and 2,3 and 5 to 13 in 5�5 (d,e)).

Furthermore, Figure 5.7 also reveals that finding some sort of similarity or relation amongst

larger 5�5 filters is much more difficult than smaller 3�3 ones, perhaps due to the consid-
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(a) (b)

(c) (d)

Figure 5.6:3�3 Filter banks of two DJZAM tiles.

erably higher diversity of 5�5 matrices. Therefore the usualmatching-by-eigenvalue(MBE)

scheme would be even less effective for larger neighbourhood sizes. That can be a reason

for having lower performance while enlargingN in the first experiments (see Section 5.2.4

and Table 5.2). Again, as Figure 5.8 exhibits, indeed the difference between eigenvalues

λ j ; j = 2 to n2; are relatively small and adjacentλ j and λ j+1 are very close together.

Hence, after a slight change in the texture, a swap between adjacent filters will not be unex-

pected.

To summarise, we need a more effective and rotation-invariant scheme to match the filter pairs,

in order to replace the current MBE method. Hence we propose an alternative comparison

scheme which involves the filter’s structure. This scheme will allowall the filters of M to

compete as the possible counterpart of thei th filter of the test image,A, regardless of their

eigenvalues. In the new scheme, the distanceδ, between two specific filters would be computed
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(a) (b)

(c) (d)

(e) (f)

Figure 5.7: Effect of a 90Æ rotation of a tile on eigenfilters. The majority of filters have also been

rotated.

as:

δFi ;Gj = min( χ2(Fi ;Gj) ; χ2(Fi;G
�! �
j ) ; χ2(Fi;G

"#
j ) ; χ2(Fi;Gj) ; χ2(Fi ;G

θ
j ) ) (5.7)

where,

χ2(Fi ;G
�
j ) =

(Fi�G�
j )

2

jFi j+ jG�
j j
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(a) (b)

Figure 5.8:Cumulative eigenvalues of two types: ARDES (left) and DJZAM (right)

F andG are eigenfilters of givenA andM, andG
�! �
j andG"#

j are vertically and horizontally

mirrored (i.e. ‘flipped’) matrices, (Gj ) is the complement (i.e. ‘negative’) of the matrix, andGθ
j

indicates theθ degrees rotated version of the input.

Mirroring is implemented by swapping the columns or rows ofG. Complementing is performed

by using the mean value of the filterµX as the origin:

X =�(X�µX)+µX (5.8)

Then, two filters with minimum distance are paired. We refer to this improved approach as

matching by structureor MBS. MBS consequently affects both findingM and selecting the

optimum filter subset, where the number of filters in the subset used for computing the recon-

structed image is then worked out as before (see Section 5.2.6).

Table 5.4 presents the performance of the MBS method, where there is a slight improvement

(see Table 5.2) for smaller neighbourhood size ofN =3�3, (85.32% vs. 86.71%), and con-

siderable improvements for larger sizesN =5� 5 (81.25% vs. 91.19%) and 7� 7 (79.90%

vs. 91.46%), then the accuracy slightly degrades for 9� 9 down to 90.74%. In fact during

the tests we realise that for the smaller 3�3 size, MBE and MBS are quite similar. However,
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the new scheme compensates the filter matching problem of largerN s up to 7� 7, and the

classifier can now gain the advantages of the grown neighbourhood sizes. All the reported best

performances have been achieved by utilising the farther filter subsets. In fact, the classifica-

tion accuracy of closer subsets were limited to 83.97% at most forN = 7�7. This means that

MBS has considerably increased the SPC factor of the farther subset compared to the previous

MBE method. Utilising MBS, now all the optimum results (CA, SNS and SPC) are attained

with N = 7�7.

Neighbourhood CA SNS SPC No. Filters No. Ms

Size Involved Involved

3�3 86.71% 0.898 0.835 5 1

5�5 91.19% 0.969 0.853 14 1

7�7 91.46% 0.972 0.855 26 1

9�9 90.74% 0.966 0.850 43 1

Table 5.4:Classification performance using matched-by-structure filters

AlthoughN =7�7 has the maximum CA, it is only 0.27% higher than 5�5. Also the larger

the size, the more time consuming the algorithm. Figure 5.9 outlines the computing time of

the algorithms for differentN and matching schemes. Tests were run on a PC Pentium III 700

MHz computer several times and then averaged. Results reveal that regarding an enlargingN ,

whereas the increase rate of computing time for the MBE method is rather low (from 0.53 to

2.31 seconds), the increase rate for the MBS method is very high (from 0.74 to 69.23 seconds).

It is not unexpected, since the MBS applies much more matrix operations. Trying largerN s

is deemed unnecessary, due to both decrement in accuracy and huge increment in computing

time.

Table 5.5 presents the detailed results of the MBS method for differentN for all our types

of tile. Except for caseSLTNP, bothN =5�5 and 7�7 always achieve better classification

accuracy thanN =3�3. By the time we get to a 9�9 neighbourhood, a decline in the accu-
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Figure 5.9:Average computing time comparison for the MBS method.

racy can be observed, thus showingN =7�7 as the optimal window on average. However,

the N =5� 5 case achieves a close average to theN =7� 7 case, while also getting better

individual accuracies forLRSIDE andSLTNP tile textures, all at much lower computational

costs. Perhaps optimisingN for a given type in the training stage could improve the overall

classification performance even more. For instance, as this table shows,N =3�3 and 5�5 can

compensate the 7�7 lack of specificity on particular typesLRSIDE andSLTNP(e.g. 0.646

for 7�7 vs 0.706 and 0.922 for 5�5 and 3�3 onSLTNP).

Moreover, it was claimed that the MBS method is decisively less rotation variant. To prove that,

applying both the MBE and MBS methods, the distance between eigenfilters and detail images

of several tiles and their 90Æ rotated versions were computed, averaged, and compared. Table

5.6 presents the results and suggests that MBE is clearly less capable of revealing decisive

textural similarity between rotated textures compared to MBS, since distances computed by

MBS are many times smaller than MBEs (between 8.1 and 1563.5, depending on the case).
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N =3�3 N =5�5 N =7�7 N =9�9

Type CA SNS SPC CA SNS SPC CA SNS SPC CA SNS SPC

ARDES 82.45% 0.852 0.797 83.72% 0.874 0.800 87.54% 0.875 0.875 84.56% 0.832 0.859

ARWIN 76.29% 0.850 0.675 87.24% 0.919 0.825 89.84% 0.965 0.831 87.33% 0.943 0.804

DJZAM 100% 1 1 100% 1 1 100% 1 1 99.81% 0.998 0.998

DJZUL 79.29% 0.792 0.792 100% 1 1 100% 1 1 99.81% 0.999 0.998

KIS 88.00% 0.899 0.861 93.55% 0.978 0.893 97.81% 1 0.956 94.27% 0.998 0.887

LRSIDE 85.29% 0.934 0.771 86.76% 1 0.735 81.72% 1 0.624 81.97% 0.976 0.712

SLTNP 92.22% 0.922 0.922 85.34% 1 0.706 80.80% 0.969 0.646 85.30% 0.983 0.682

SYM 90.15% 0.935 0.868 92.89% 0.988 0.869 93.98% 0.968 0.910 92.88% 0.998 0.859

µ 86.71% 0.898 0.835 91.19% 0.969 0.853 91.46% 0.972 0.855 90.74% 0.966 0.850

σ2 0.0058 0.0042 0.0099 0.0041 0.0023 0.012 0.006 0.0018 0.022 0.0048 0.0033 0.0135

Table 5.5:Classification accuracy of different tile types for different neighbourhood sizesN , using

MBS. µ andσ2 are mean and variance.

Therefore, even having the rotated version of a test tile in the template, there is no guarantee

that MBE can select that as theM, while MBS will most probably find it and can ensure a more

reliable textural similarity measurement.

χ2 - DBF χ2 - DBD

N MBE MBS MBE MBS

3�3 0.2461 0.0019 0.6254 0.0004

5�5 0.5409 0.0669 0.7358 0.0010

Table 5.6:Average distances between tile images and their 90Æ rotations.

5.4 Conclusion

The proposed eigenfilter-based novelty detection method showed significant performance and

robustness in tile defect detection. Like other novelty detection schemes, its most important

advantage is its relatively low dependence on abnormal samples. Moreover, the modified MBS

scheme has added accuracy and flexibility compared to the original algorithm. The MBS is
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rotation invariant and capable of a more accurate normal/abnormal segregation. Figure 5.10

presents a conclusion of the various tests performed and their results. The first proposal is

the obvious advantage of the proposed method compared to a simple filter responses distance

measurement scheme (TestA vs. B, C, andD). It also suggests better performance of the

closer subset compared to the farther one when the MBE scheme is used (TestC vs. D), and

in contrast advantages of farther subsets when the MBS scheme is employed (TestG vs. H).

Finally, a combination of MBS, farther subset, andN =7�7 neighbourhood size attains the

optimum result of 91.46% correct classification (TestH).

To conclude, the eigenfilter-based novelty detection algorithm emphasises on the adaptability

of eigenfilters and the similarity between the eigenfilters and detail images of similar textures.

It also utilises the orthogonality of eigenfilters to reconstruct the test texture, where we expect

more reconstruction error in the case of abnormal textures. To overcome the matching problem

of eigenfilters and also to develop a rotation invariant defect detector, we introduce and exploit

the MBS method, which shows promising detection performance, particularly on neighbour-

hoods of sizeN =5� 5 and 7� 7. Defect detection performance across all tested tile types

is high (e.g. between 83.72% and 100% forN =5�5, see Table 5.5), which given the diver-

sity of types suggests promise for the applicability of the method in the detection of textural

abnormalities in general.
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Figure 5.10:A summary of various experiments outcomes
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Chapter 6

Conclusions and Further Work

6.1 Summary

This thesis developed several efficient approaches to the texture classification problem, con-

cerning natural and random textures in particular, with efficiency defined in terms of classifica-

tion accuracy, computation costs, robustness and flexibility, and practicality. Experiment results

on two texture-based applications (outdoor scenes object classification and tile defect detec-

tion) using three data sets (outdoor scenes, VisTex, and the tile image data set) all suggested

that DWHT is a reliable, precise, and low cost texture feature extractor that can be applied on

a wide range of texture analysis problems. Its classification performance was comparable with

well-known Gabor filters when it was applied on outdoor scene and VisTex sets (e.g. 88.75%

vs. 86.88% on outdoor scene tests). DWHT also obtained very good results in tile abnormality

detection tests (e.g. 95.58% with the BPNN classifier). While its accuracy was usually lower

than a pure Gabor filtering method, DWHT always was around ten times or more faster than

other algorithms in all experiments. In addition, we developed a directional cosine transform
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algorithm (DDCT), which compared to its ordinary counterpart showed higher accuracy on

tile abnormality detection (e.g. 89.84% vs. 95.14% on the BPNN classifier). The promising

performance of DDCT showed that the angular/scale decomposition scheme of DWHT is also

applicable on other similar kernel functions and transforms.

We also introduced two simple chromatic featuresHp andSp, which were inspired from the def-

initions of hue and saturation in standard colour spaces. The hue-like and saturation-likeHpSp

features performed well on both high resolution outdoor scenes and VisTex data sets. Their

classification accuracy outperformed NRGB and HLS, but stood slightly lower thanLab . For

instance, in VisTex tests, whileLabwas the best feature set with 74.28% correct classification,

HpSp accuracy of 72.07% put it in the second place, but much higher than HLS and NRGB

with respectively 64.71% and 65.82% correct classification rates. TheHpSp method was also

very faster than the rest, for example 6.05 times faster thanLab on a PC PIII machine. We

generally utilised colour features and texture features together to achieve higher classification

performances in outdoor scenes experiments.

In the texture abnormality detection study, the DWHT was also proposed as a viable alternative.

Initially, more traditional algorithms such as co-occurrence matrices, LBP, Gabor filters, and

eigenfilters were experimented with. Excellent accuracy levels of 97.09% and 95.70% correct

classification were obtained for GLCM and eigenfiltering respectively on the BPNN classifier.

The best GLCM performance achieved after a series of optimisations on distances and the co-

occurrence functions involved. In the case of eigenfiltering, the larger neighbourhood size of

7�7 provided the maximum accuracy. However, both algorithms were amongst the most time-

consuming methods. As a fast and highly accurate alternative, DWHT with 95.58% correct

classification on BPNN can be used. DWHT was almost 14.6 times faster than GLCM and

24.7 times faster than the 7� 7 eigenfilter. Another statistical scheme tested, LBP, did not

perform well and its accuracy was limited toCAKNN=78.93% andCABPNN=84.18%
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The implementation of the KNN classifier in real applications is easier than the BPNN, due to

its relatively simple training stage. The best KNN performance however, was limited to 85.30%

of the eigenfilter algorithm. In order to increase the KNN performance, we opted for the Gabor

filter as the signal conditioner for a GLCM feature extractor and developed the proposed Gabor

Composition algorithm. In this method, a Gabor filter bank was applied to amplify the defects

and attenuate the background texture simultaneously, resulting in a composed feature map

which later was fed to a GLCM process to extract the final feature vector. We then completed

the proposed GC method with a detail image exclusion module and a Bernoulli combination

module to further enhance its performance. GC increased the KNN accuracy to 88.35% and

was on average the most precise algorithm in our defect detection tests.

Next, we developed an eigenfilter-based novelty detection algorithm for texture abnormality

detection applications. The proposed algorithm utilised a template set and adaptable eigen-

filter banks in its reconstructional algorithm to highlight the differences between normal and

abnormal textures. The proposed novelty detection method achieved a promising level of accu-

racy and robustness in textured tile abnormality detection tests. We introduced two versions of

our algorithm, namely matched-by-eigenvalue (MBE), and matched-by-structure (MBS). The

re-structural MBS showed higher performance and flexibility relative to the MBE algorithm,

which ordered and matched eigenfilters according to their eigenvalues, i.e. a typical approach.

MBS was also rotation invariant and illustrated better performance on larger neighbourhood

sizes. MBS achieved 91.46% correct classification in our novelty detection experiments.

We also gathered a survey of texture analysis, classification and defect detection studies during

the literature review. A broad range of studies concerning texture analysis were assessed to

build up a reliable background for this work. Review of several surface inspection projects

and the industrial applications of texture defect detection were also an important part of our

reviews. Also, two main texture databases were developed during this work. A set of outdoor

scene high resolution images and corresponding labelled patches of different objects, and a
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categorised tile images data set.

6.2 Concluding Remarks

The aim of this study was the development of more efficient texture classification methods,

where computation costs, classification accuracy, and practical specifications were traded off

and balanced against each other: Dealing with high resolution images requires fast algorithms

to compensate their heavy processing cost. Therefore, we proposed the fast DWHT andHp=Sp

scheme. In industrial applications however, a compromise between accuracy, speed, and prac-

ticality was of interest. Therefore, we proposed the high performance GC and novelty detection

eigenfilter-based algorithms.

Multi-scale/multi-directional algorithms (e.g. Gabor filters or wavelets) model the basic char-

acteristics of textures. Specifically they can extract repetition and directionality which are two

key features of a random texture, thus they can analyse and classify textures accurately. To

extract repetition and directionality, they perform an angular and scale decomposition on the

texture and generate a multi dimensional detail image space. Feature extraction and other

analysis in the detail image space is more efficient than the pattern space. Computationally

however, they are complicated and time consuming. On the other hand, fast sequency-based

transforms (e.g. Hadamard), are quick and easy to implement, but less accurate in texture clas-

sification. We model the characteristics of MSMD texture analysis algorithms in a modified

Walsh-Hadamard transform, called DWHT. In the DWHT algorithm, a special purpose rota-

tion and a band-wise analysis integrate the basic angular and scale decomposition properties

of MSMD schemes with the ordinary Walsh-Hadamard transform. While Gabor filters and the

wavelet transform explicitly decompose the image into angular and scale sub bands, DWHT

presents an implicit transform domain decomposition: Sequency harmonics of pixels in differ-
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ent orientations are extracted and categorised into a few low-to-high sequency bands. Never-

theless, the proposed DWHT exhibits the advantages of both the Walsh-Hadamard transform

(computation efficiency) and MSMDs (high accuracy) in texture classification. The promising

performance of DWHT on a diverse set of texture classification and defect detection appli-

cations emphasises its generality. This method can be used for realtime texture analysis in

particular. A similar approach can be implemented on other harmonic analysers such as DCT

or Haar transform.

The interpretation of the hue and saturation in forms of the proposed chromatic functions,

Hp andSp, also gains both simplicity and the performance of perceptual colour representa-

tion. The intention is not developing a real and precise colour space, but extracting significant

colour features for pattern classification purposes. Therefore, employing these colour features

is reasonable, in particular for realtime and embedded systems.

The comparative study for the detection of abnormalities in randomly textured tiles reveals the

advantages and disadvantages of different statistical and signal processing approaches. Also

optimisation tests applied on each approach illustrate the substantial role of parameter optimi-

sation on the overall classification performance. With respect to its accuracy and fast execution

time, DWHT is the practically favorite method, while GLCM and eigenfiltering provide better

precision on the BPNN classifier, at the cost of longer execution times. We also propose the

Gabor Composition algorithm to increase the performance of the more feasible KNN classi-

fier. GC decomposes the image into sub-band detail images using a Gabor filter bank, then

attempts to highlight the defective regions and their boundaries in a recomposed feature map,

using exclusion and Bernoulli’s combination techniques. GC decreases the redundancy as well

as highlights the defective region in the texture-like resulted feature map, so a simple GLCM

algorithm can efficiently extract the normal and abnormal texture features. GC shows excel-

lent classification performance on almost all of the tile types of the data set, which illustrates its

scope for the detection of abnormalities on random textures. However, it is again of importance
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to optimise all the parameters concerning the characteristics of the test texture.

In practical applications, such as the tile industry, novelty detection is more suitable than ordi-

nary classification methods for quality inspection, since it is independent of defective samples.

The orthogonality and adaptability of eigenfilters lead us to develop an innovative eigenfilter-

based novelty detection scheme. The idea underpinning the proposed method is mutual recon-

struction of the test image by its own and the template eigenfilter bank. We expect less success

(i.e. larger reconstruction error) in the reconstruction of a defective texture rather than a flaw-

less texture, when a template of flawless samples is used as the reference. The proposed novelty

detection scheme illustrates promising results on all types of tile tested. This can suggest the

generality of the method in the field of texture abnormality detection.

6.3 Contributions

The main contributions of this study were:

� A novel multi-scale and multi-directional Walsh-Hadamard transform, DWHT, as a fast

and accurate method with potential applications in realtime systems.

� Two low cost chromatic features,HpSp, based on the definition of hue and saturation in

standard colour spaces, efficient for use in colour texture classification.

� A new Gabor Composition based method, GC, devised for detection of abnormalities in

random textures.

� An eigenfilter based reconstruction method for tile inspection within a novelty detection

framework.
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6.4 Further Work

This thesis illustrated effective texture feature extraction and classification techniques which

were applied on various test frameworks and procedures. Meanwhile, there are some essential

aspects where the methods’ performances can be enhanced. We therefore propose the list below

as possible outlines for further work.

� DWHT:

– It may be useful to replace the ordinary SOH kernel of DWHT with a slanted

Hadamard transform to determine if this can improve the overall performance.

– It also may be worthwhile to employ and test the Gaussian sequency band envelopes

instead of current ideal (hard) separators on both DWHT and DDCT. It is also

possible to apply dyadic bandwidths to DWHT-like algorithms.

– A wavelet-like multi-scale approach instead of current multi-scaling via the band

separation method may be of interest. We may down-sample the input texture and

apply the DWHT on each stage of the Gaussian pyramid and compare the results

with the current method. In this case, there will be no need to separate the sequency

bands. Rotation however, still will be performed as before.

� GC:

– Using a GC feature map as the platform, a novelty detection approach could be

developed based on measuring the distances between small blocks of the feature

map, and a reference set containing the ‘normal’ feature map blocks.

– It would also be of interest to develop a GC-based defect localisation method, also

utilising the GC feature map.

� Eigenfilter-based classification and ND scheme:
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– Applying a multi-scale eigenfilter-based method could be of interest where the in-

put image is down-sampled, then the eigenfilter-based analysis and reconstruction

algorithm will be applied on different scales of that multi-scale input pyramid. Al-

though it seems computationally heavy to apply PCA on every single stage of the

image pyramid, we may be able to find the optimum stage or stages for a given

texture during a training phase.

– Alternatively, to use diverse mask shapes instead of typicaln�n squares to detect a

particular abnormality can be a reasonable option for further eigenfiltering studies.

– We can attempt to establish a relation between texture characteristics (e.g. coarse-

ness) and the optimum eigenfilter size and subset, applied in eigenfilter-based tex-

ture analysis.

– We can try the MBS method in traditional eigenfilter-based classification schemes.

MBS in particular may increase the classification performance of the larger eigenfil-

ters, if it is utilised to order and match detail images instead of the typical eigenvalue-

based approach.

� General:

– Texture analysis algorithms usually have several parameters to be tuned (e.g. central

frequencies and directional resolution in Gabor filters). Automated optimisation of

a texture analyser’s parameters with respect to the given texture characteristics,

could be an essential development in texture processing. It also can be extended

to the automatic selection of the optimum method for analysing (e.g. detection of

abnormalities) of a particular texture, again regarding its properties. For instance,

automatic selection of either GLCM or Gabor filters considering the test texture,

can significantly increase the overall abnormality detection performance.
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Appendix A

Colour Spaces

A.0.1 HLS Colour Space

HLS directly implements simple definitions of Hue, Luminance and Saturation to build up its

3D colour space. Considering a colour disk of all spectrums, Hue is an angle in a colour disk,

Luminance is an average of R,G, and B, and saturation is the distance from its central axis. Fig-

ure A.1 shows a graphical representation of those informal definitions. We applied expressions

below for RGB-to-HLS conversion. There are several other RGB-to-HLS algorithms available

[15, 97], however they are only slightly different in details.8>>>>>>>>>>>><
>>>>>>>>>>>>:

Hue=

8>><
>>:

G�B
Max(R;G;B)�Min(R;G;B) if R is Maximum

R�B
Max(R;G;B)�Min(R;G;B) if G is Maximum

R�G
Max(R;G;B)�Min(R;G;B) if B is Maximum

Luminance= Max(R;G;B)+Min(R;G;B)
2

Saturation= Max(R;G;B)�Min(R;G;B)
Max(R;G;B)+Min(R;G;B)

(A.1)
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Figure A.1:HLS Colour disk.

A.0.2 LabColour Space

Lab was introduced in 1976 by CIE (Commission Internationale de l’Eclairage) to provide a

more uniform and accurate model of colours. In this color space you use three components:L

is the luminance,a andb are respectively red/blue and yellow/blue chromatic data. This color

space is defined regarding the intermediate CIE-XYZ color space.

8>>>>>>>>>><
>>>>>>>>>>:

L =

8<
:

116( Y
Y0
)

1
3 �16 if Y

Y0
> 0:008856

903:3(Y
Y0
) if Y

Y0
� 0:008856

a= 500[ f ( X
X0
)� f ( Y

Y0
)]

b= 200[ f ( Y
Y0
)� f ( Z

Z0
)]

(A.2)

with,

f (t) =

8<
:

t(
1
3) if Y

Y0
> 0:008856

7:787� t+ 16
116 if Y

Y0
� 0:008856

and,
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2
664

X

Y

Z

3
775=

2
664

0:431 0:342 0:178

0:222 0:707 0:071

0:020 0:130 0:939

3
775
2
664

R

G

B

3
775 X0 = 0:9505 ; Y0 = 1 ; Z0 = 1:0887 ;

Labparameters (e.g. XYZ matrix andfX0;Y0;Z0g constants) depend on the chromaticity of the

reference white point. The expressions above are according to theD65 reference point which

we employ in this study [15, 26, 97].

Labchromatic features,a andb, have direct relations with hue and chroma (i.e. saturation):(
Hue= arctan(b

a)

Chroma(Saturation)=
p

a2+b2
(A.3)
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