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 Abstract 
 

This thesis investigates how scene activity, which is observed by fixed 

surveillance cameras, can be modelled and learnt. Modelling of activity is performed 

through a spatio-probabilistic scene model that contains semantics like entry/exit zones, 

paths, junctions, routes and stop zones. The spatial nature of the model allows physical 

and semantic representation of the scene features, which can be useful in applications like 

video annotation and contextual databases. The probabilistic nature of the model encodes 

the variance and the related uncertainty of the usage of the scene features, which is useful 

for activity analysis applications, such as motion prediction and atypical motion 

detection. 

A variety of models and learning methods are used to represent and automatically 

derive particular activity-based semantic scene elements. Expectation-Maximisation is 

used for learning Gaussian Mixture Models and accumulative statistics in image maps are 

integrated in the methods presented. Also, a novel route model and an appropriate 

learning algorithm are introduced. Additionally, a Hidden Markov Model superimposed 

on the scene model is used for enabling activity analysis. 

The application of the methods is investigated for single cameras and collectively 

across multiple cameras. Additionally, a novel automatic cross-correlation method is 

introduced that reveals the topology of a network of activities, as observed by a network 

of uncalibrated cameras. The method is important not only because it provides an 

integrated activity model for all the cameras, but also because it provides a mechanism to 

automatically estimate the topology of the camera network, modelling the activity across 

the “blind” areas of the surveillance system. 

 All the proposed learning algorithms are unsupervised to allow automatic learning 

of the scene model. Their input is a set of noisy trajectories derived automatically by 

motion tracking modules, attached to each of the cameras. 

 



  9 
________________________________________________________________________ 

 

List of Abbreviations 
 
AHMM:  Abstract Hidden Markov Model 
BBN:  Bayesian Belief Network 
blob:  Binary Large OBject 
CCTV:  Closed Circuit TeleVision 
CHMM:  Coupled Hidden Markov Model 
CUES:  City University Experimental Surveillance
DBN:  Dynamic Belief Network 
DDN:  Dynamic Decision Network 
DPN:  Dynamic Probabilistic Network 
EM: Expectation Maximisation 
FLTC:  Fuzzy Logic Trajectory Classifier 
FOV:  Field Of View 
GM  Gaussian Model 
GMM:  Gaussian Mixture Model 
GP:  Ground Plane 
GPC: Ground Plane Constraint 
HHMM:  Hierarchical Hidden Markov Model 
HMM: Hidden Markov Model 
ICA:  Independent Component Analysis 
LMS:  Least Median of Squares 
MCAN:  Multiple Camera Activity Network 
MDL:  Minimum Description Length 
ML:  Maximum Likelihood 
MLTC:  Maximum Likelihood Trajectory Classifier
NIHC:  Numeric Iterative Hierarchical Cluster 
NN:  Neural Network 
PCA:  Principal Component Analysis 
pdf:  probability distribution function 
PDM: Point Distribution Model 
RBHMM Route-Based Hidden Markov Model 
SVM:  Support Vector Machine 
TCM:  Tracking Correspondence Model 
VLHMM Variable Length Hidden Markov Model 
VMD: Video Motion Detection 
VQ:  Vector Quantisation 



Chapter 1: Introduction  10 
________________________________________________________________________ 

 

Chapter 1 
 

1 Introduction 
 

The main application area of this thesis is automatic visual surveillance. 

Nowadays, surveillance cameras are common to many public areas in the UK, from small 

off-licence stores to train stations, large buildings, motorways and park areas. 

A traditional security surveillance system can be described as a set of CCTV 

cameras that send their video signals to display monitors and perhaps at the same time to 

analogue recording devices. Human personnel are required to monitor the display devices 

in real time, or to check the recorded videos off-line. 

The main purposes of surveillance systems are to prevent, confront, record and 

identify criminal actions. Potential criminals are more cautious when they know that they 

are in an “under surveillance” environment. A criminal action can be viewed by security 

personnel instantly and may be confronted immediately. After a crime, recorded video 

data can be viewed and searched for evidence of the crime and its perpetrators. 

The human factor in surveillance systems is very important, as the security 

personnel have to use their cognitive knowledge about the observed scene and about what 

a suspicious action may be, and to identify those events that may need further attention. 

However, this is a very tedious work, as the personnel are usually located in a room full 

of monitors that mainly display trivial and boring events for the majority of time. Fatigue, 

distractions and interruptions are unavoidable and it is almost certain that a significant 

percentage of interesting events are overlooked. 

Visual surveillance systems have significantly benefited from the progress of 

digital technology. It is not only the replacement of the analogue devices (cameras, 

monitors, recording devices) with digital ones, but also the fact that digitised video data 

can be processed and analysed using Digital Image Processing and Computer Vision 

methods. Indeed, a significant amount of research has been performed in the last 10-15 
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years that aimed to assist visual surveillance systems. Algorithms have been developed 

for automatic motion detection, motion tracking, system/camera calibration, event 

logging, video annotation, activity and behaviour analysis, face detection and recognition 

and object recognition [78]. 

Current commercial systems are limited to only detect and track moving objects 

within the field of view of the cameras. For example, Video Motion Detection (VMD) 

systems can detect motion within user-defined windows and alert operators. However, 

many false alarms can be triggered due to illumination changes or non-interesting 

apparent motion. Consequently, operators learn to ignore them. 

The goals of current research in the area of surveillance systems are the 

development of methods that will allow integration of information from multiple sensors 

and coverage of wide-area scenes, high-level of understanding and system 

reconfigurability. A high-level of understanding of the scene and the observed activity 

and behaviour helps to minimise the role of human personnel to just responding to proper 

alarms raised by the system, or to setting questions to the system for retrieving specific 

events. The ability of the system to be automatically reconfigured does not only mean 

that its installation will be much easier (“plug ‘n’ play”), but also that it will be able to 

adapt to any environmental changes and work efficiently for extended periods of time 

under varying conditions. 

This thesis investigates the application of unsupervised learning methods to single 

and multiple camera surveillance systems. More specifically, it aims to provide 

surveillance systems with a semantic scene model and proposes analysis of the activity 

based on the semantic model. Unsupervised learning is used to automate the whole 

procedure and minimise the human effort. 

The proposed approach is inspired by the way that human operators develop and 

use their vision system. Initially, a scene may be completely unknown for new security 

guards. Gradually, they identify interesting scene elements (using their cognitive vision 

system that has been developed since their birth) as well as which activities and 

behaviours are typical and which are not. Activity within the scene is usually understood 

with respect to the context of the scene. 
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In the proposed framework, a surveillance system builds up its own “cognitive” 

model of the scene, by just observing the scene. Then, it is able to analyse the activity, 

based on the derived model. The cognitive model consists of semantic nouns like “entry 

zone”, “exit zone”, “path”, “route”, “junction” and “stop zone”. These semantic nouns 

refer to specific regions of the scene that are related to specific activity events described 

by verbs like “enter”, “exit”, “move along”, “go through”, “stop”. The subjects of the 

verbs are the targets, usually pedestrians or vehicles that the surveillance system aims to 

capture their activity. 

The work presented in this thesis can provide multiple benefits to surveillance 

systems: The installation and maintenance of a surveillance system may be much easier, 

thanks to the automatic methods that are provided. High-level extracted information can 

be fed back to low level tasks and enhance the overall performance of the system. A 

means of automatic sophisticated activity analysis is provided that can be used to alert 

operators in their own human language. Finally, operators can set queries to the 

surveillance system that can be handled by a contextual database. 

1.1 Overview of the Thesis – Aims and objectives 
 

The principal aim of this thesis is to provide surveillance systems with an 

automatically derived, semantic, activity-based model of the scene that is observed by 

single or multiple surveillance cameras. Semantic elements of the model are entry/exit 

zones, paths, junctions, routes and stop zones. Figure 1.1 visualises some of these 

features in a specific scene. In addition to the semantic character of the model, it is 

required to successfully describe the variance of the usage of the scene features.  

The proposed models have two main required characteristics: spatial and 

probabilistic. A spatial description of the scene is considered essential, because the 

human interpretation of the semantic scene features is closely related to their spatial 

extent. Additionally, a probabilistic description is able to capture the variance of the 

usage of these semantics features and the related uncertainty. 

The semantic description is useful because it allows better interaction of human 

operators with the surveillance system. For example, applications like video annotation, 

where the surveillance system “interprets” the observed activity to the human language, 
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and contextual databases, where the system “understands” and processes queries 

expressed in the human language, are both based on semantic descriptors. 

The probabilistic description of the model is desirable for many reasons. A 

probabilistic representation allows the application of “soft” logic, compared to the “hard” 

logic of a Boolean representation. Soft logic can deal with uncertainties and allows 

adaptation of the model. Additionally, it allows the scene model to be used as the basis of 

a probabilistic analysis of the activity and in applications like long-term prediction, 

atypical activity detection and tracking enhancement. 

 
Figure 1.1: A semantic, manually derived, description of the observed scene. Yellow areas 
correspond to the entry and exit areas of the scene, green areas to commonly used paths and red 
areas to areas where pedestrians normally stop for a while.  

Although scene models can be defined manually (and this is the case for a large 

variety of surveillance systems), this thesis suggests that they could be learnt 

automatically from observations, with minimum human intervention. Such an approach 

not only minimises the human effort to install a surveillance system, but also allows it to 

detect and adaptively respond to possible changes of the scene environment. 

Learning scene models from observations is actually a reverse engineering 

technique. The observed target activity is directly affected by the structure of the scene, 

therefore observations of the activity can uncover this structure. More specifically, the 
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input of all the methods that are presented here is a set of trajectories, derived from a 

motion tracking system. 

A variety of models and learning methods are used to represent and derive the 

individual types of scene elements. The core idea of the learning methods presented in 

this thesis is to exploit the large number of observations that can be derived by the 

surveillance system and group similar data to automatically derived activity-related 

models. Well-known techniques like Expectation Maximisation (EM) are used for 

learning Gaussian Mixture Models (GMMs) and accumulative statistics in image maps 

are integrated in the presented methods. In addition, a novel route model and an 

appropriate learning algorithm are introduced. A Hidden Markov Model (HMM) is 

superimposed on the scene model and used for activity analysis. Finally, a cross-

correlation technique is used to reveal the topology of the cameras and the activities of a 

multiple camera surveillance system. 

Chapter 2 presents useful background information for the context of this thesis. 

Main modules of the surveillance systems, like motion detection, motion tracking and 

calibration are discussed. Also, it summarises learning methods used in Computer Vision 

and discusses their suitability in surveillance applications. 

The semantic scene model is introduced in chapter 3. Models and learning 

methods for scene elements like entry/exit zones, stop zones, motion noise sources and 

occlusion areas are also proposed in chapter 3. An EM-based algorithm is used that aims 

to deal with noisy data. 

Chapter 4 discusses models and learning methods for paths, junctions and routes. 

The route model is introduced and details are given for a proposed algorithm that allows 

learning of route models from trajectories. 

In chapter 5, the scene model is used to analyse the activity. The chapter 

demonstrates the concept of how probabilistic networks such as HMM may be overlaid 

on the scene model. 

Chapter 6 illustrates how the presented methods are used in a multiple camera 

surveillance system. Results are given for the City University Experimental Surveillance 

(CUES) system. In addition, a cross-correlation algorithm is introduced that “bridges the 
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gaps” of a multi-camera surveillance system and allows automatic integration of the 

learnt models in a multiple camera activity network (MCAN). 

Finally, conclusions and suggestions for further work are presented in chapter 7. 
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Chapter 2 
 

2 Background 
 

This chapter provides background information that is useful for the rest of the 

thesis. More specifically, it summarises how tracking data can be derived by a 

surveillance system, which is used as input to the algorithms proposed in this thesis. The 

chapter also discusses the role and the application of the learning processes in computer 

vision in general and in surveillance systems in particular. 

An overview of the architecture of visual surveillance systems is given in §2.1. 

Basic tasks of automatic surveillance systems are described in §2.2 (motion detection), 

§2.3 (motion tracking) and §2.4 (camera calibration). §2.5 discusses the term “activity” 

as it possesses a key role in the context of this thesis. The importance and the application 

of learning in computer vision is discussed in §2.6 and special discussion is made for 

learning in surveillance applications, in §2.6.1. 

2.1 Visual Surveillance 
 

Traditional visual surveillance systems, which firstly appeared in the ‘60s, consist 

of a set of CCTV cameras, connected to display monitors and possibly to recording 

devices. Later, in the ‘90s, computer units were added that allowed the deployment of 

computer vision modules. The current trend is to integrate processing power and 

computer algorithms in “smart” cameras. 

In Figure 2.1, a software-level description of the City University Experimental 

Surveillance (CUES) system is given. Although other systems may have a different 

architecture, in general, all visual surveillance systems have modules like motion 

detection and motion tracking. 

The focus of this thesis will be the “Learning module”. Because its input data 

consists of tracks, an overview of the procedure of extracting tracks from video is 
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considered essential. In the next few sections, overviews of motion detection, motion 

tracking and camera calibration methods are presented. Their description is kept general, 

as the presented learning methods are assumed independent of the track extraction 

method. However, brief details are given of the motion detection and motion tracking 

methods that were used for extracting the results that are illustrated in this thesis. 

 
Figure 2.1: Software Architecture of the City University Experimental Visual Surveillance System. 

2.2 Motion Detection 
 

Motion detection algorithms aim to identify the regions of the image where object 

motion is present. All motion detection methods attempt to exploit the fact that observed 

motion causes changes of pixels, over time and space. However, they have to deal with 
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the aperture problem, where pixel values are unchanged by motion, or noise that causes 

change of pixel values independently of the motion. 

Optical flow [42] was one of the first motion detection and estimation methods. If 

a video sequence is assumed as a 3D intensity signal (one temporal and two spatial 

dimensions), then motion can be detected using the optical flow constraint equation, 

which is a differential equation of the video signal. 

Although optical flow is quite general, the solution of the differential equation is 

computationally very expensive and inapplicable in real time systems. A simplified 

version of the optical flow is frame differencing [50], which actually considers the 

variation of the video signal only along the temporal dimension, in two consecutive 

frames. Frame differencing is considerably faster than optical flow, however it is 

sensitive to noise and to the aperture problem. 

Background subtraction, which is actually an evolution of the frame differencing 

method, uses a background image as reference to identify foreground moving objects in 

the video sequence. The background image is continuously updated to adapt to the 

environment changes. 

Background subtraction is described by the flowchart of Figure 2.2. Each new 

frame of the video sequence is subtracted from the background image. At the same time, 

the new frame (Figure 2.3a) is used to update the existing background image (Figure 

2.3b). A threshold is applied [84][85] to the difference image between the current frame 

and the background image, and a binary image is produced (Figure 2.3c) which indicates 

the areas of change. Finally, connectivity algorithms are applied on the binary image and 

localise “blobs” (Binary Large OBjects), that provide cues for detecting moving objects 

(Figure 2.3d). 

Common problems in the application of the background subtraction methods are: 

i. Change of the illumination conditions of the scene can result in difference of the 

pixel values and false motion detection. Illumination changes can be sudden or 

gradual, global or local. 

ii. Temporarily stationary objects can be confused with the background. 

iii. Shadows of moving objects are detected as part of the moving objects. 

iv. Reflections, computer screens, trees and curtains seem as moving objects, because 
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of their apparent motion. 

Video Input ConnectivitySubtraction

Estimate
Background

Image

Thresholding

Blobs

 
Figure 2.2: Flowchart of motion detection algorithms based on background subtraction. 

 
Figure 2.3: (a) Original frame, (b) background image,(c) The thresholded difference image, (d) 
Detected objects (blobs). 

Alternative to simple background subtraction methods are the pixel classification 

methods (see Figure 2.4), which are generally more sophisticated and promising. The 

Gaussian mixture model method, proposed by Stauffer and Grimson [8] classifies each 

pixel to pixel-based Gaussian models for the foreground and the background. A version 

of this algorithm in the chromaticity colour space, proposed by Xu and Ellis [105] allows 
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the background model to adapt to illumination changes very fast. The Wallflower 

algorithm, proposed by Toyama et al [97], uses pixel-level, region level and frame-level 

background models. 

Pixel classification methods still suffer from the same problems as the 

background subtraction algorithms do. However, they provide better results, in general, 

because they model the noise process. 

  

Video Input ConnectivityPixel
Classification

Background/
Foreground

Models
Blobs

 
Figure 2.4: Flowchart of motion detection algorithms based on pixel classification. 

 

2.3 Motion Tracking 
 

Motion tracking aims to extract the motion history of targets from video 

sequences. A simple representation of the motion history is a sequence of spatial 

locations in time that is visualised by a trajectory (Figure 2.5). Although motion detection 

algorithms provide the cues for detecting moving objects in the scene, they do not track 

moving objects. Motion tracking algorithms are used to correspond detected objects in 

consecutive frames and ideally provide one track for each observed target. 

Object correspondence can be based on various appearance and dynamic 

characteristics of a target, such as position, velocity, size, shape and colour. Tracking data 

is generally expressed using the 2D coordinates of the image plane. However, it can be 

converted to the 3D scene coordinates using a ground plane model and/or camera models 

and/or multiple views of the scene. 

When the observed scene contains only one target, the motion tracking problem 

seems to be easy. However, a motion tracking algorithm must be able to identify the 

target among possible falsely detected blobs. In addition, it has to cope with static 
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occlusions, which occur when the target moves behind a stationary object and cannot be 

viewed by the camera. 

 
Figure 2.5: A set of trajectories derived by a motion tracking algorithm. Each trajectory visualises 
the sequence of the locations of an individual target. 

In a real surveillance system, simultaneous tracking of multiple objects in 

cluttered environment is required. This case is much more complicated, because the 

interaction of the targets can cause ambiguities about the number and the identities of the 

targets. For example, a target may be occluded by another, merged in a group of targets 

or split from the group. All these interactions are generally described as dynamic 

occlusions. 

Each target is characterised by a set of attributes that allows the target to be 

distinguished from others. These attributes are usually related to the position, the velocity 

and the appearance of the target. The appearance of the target has been described by its 

size, shape descriptors (height-to-weight ratio, Point Distribution Models (PDMs) [7]), 

and colour descriptors [18]. 

Many strategies have been proposed to correspond blobs at consecutive frames. 

Because of the fact that the values of the target attributes may be changed over time, 

predictive schemes are used to assist the correspondence task. Some examples of 

predictive schemes that have been used are linear prediction, the Kalman filter [56] and 

the particle filter [48] [49]. 

The results that will be presented in this thesis are based on trajectory data that 

has been derived using the CUES system. Motion detection is performed by adaptive 
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Gaussian mixture models for background in intensity and chromaticity space [27] [105] 

[106]. Motion tracking on the image plane establishes correspondences among detected 

blobs in consecutive frames using position, velocity, size and colour information. A 

special Kalman filter was developed to cope with the static and dynamic occlusion 

problem [107]. Image plane tracks from different cameras can be combined using the 

homography alignment method and camera calibration models and the ground plane 

constraints are used to localise the combined trajectories on a common world coordinate 

system [9] [10]. 

For each tracked object, the derived trajectory data contains information about its 

position, velocity, bounding box, and average colour, for all frames from the time the 

object is initially detected, until it exits the scene. A status field indicates whether the 

object is initialised, matched successfully or only predicted, or finally terminated at 

specific frames. Additionally, each frame is time-stamped using a synchronised clock. 

The methods that will be presented in this thesis assume that an object trajectory 

is described as {xi, yi, ui, vi, ti, si}, where i indicates the frame, {xi, yi} is the position of 

the object centroid, {ui, vi}, is the velocity of the centroid, ti is the frame timestamp and si 

is the status of the object which can be assigned to one of the following values: {New, 

Matched, Predicted, Terminated}. Position and velocity can be expressed in either image 

plane coordinates or in ground plane coordinates. In the latter case, instead of the object 

centroid, its projection on the ground plane is considered. 

2.3.1 Motion Noise 
 

Unfortunately, motion detection and tracking in a cluttered environment can 

experience many problems due to a variety of reasons: illumination changes (local-

global, slow-fast), static occlusions, stationary targets absorbed in the background, “semi-

stationary” motion that may result in either falsely detected blobs, or un-detected objects. 

Additionally, the presence of multiple targets may cause errors to the blob matching 

process. We can identify different types of system noise that are manifested as 

incomplete trajectories, false trajectories and trajectories corresponding to apparent 

motion (e.g., associated with moving vegetation, curtains, computer screens, reflections 

on windows and other surfaces, background motion) that are of no direct interest. Many 
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techniques have been developed to improve the reliability of motion detection and 

tracking. However, because of the requirement that a surveillance system has to operate 

continuously for extended periods of time, under a variety of conditions, it seems that 

there is no guarantee for perfect tracking. 

Two types of noise are recognised in the trajectory datasets that have been used 

for the experimental work described in the chapters 3-6. 

i. Tracking failure noise: Tracking failure noise is due to the failure of the motion-

tracking algorithm to track a target successfully for its whole activity in the scene. 

It may appear in the form of false trajectories (trajectories where the motion 

history of more than one targets have been mixed), or split trajectories 

(trajectories that represent only a portion of the motion history of a target). 

ii. Semi-stationary motion noise: If sources of semi-stationary motion noise are 

present (such as trees, curtains, window reflections), then a high level of apparent 

activity is detected in the vicinity of the source of the semi-stationary motion 

noise. The characteristic of this apparent activity is that it is restricted in the area 

of and around its source. Therefore, all the points of a semi-stationary trajectory 

are within the same local region. 

In chapter 3, an automatic method of identifying these types of noise is 

introduced. The benefit of the method is that it allows automatic cleaning of the data from 

the noise. 

2.4 Camera Calibration 

2.4.1 Single Camera Calibration 
 

A camera provides a projection of the real 3D scene on the 2D plane of the image. 

This geometric transformation is expressed by the following mathematical equation: 
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where x, y are the 2D coordinates on the image plane, X, Y, Z are the 3D coordinates of 

the real scene, λ is an arbitrary scale factor and P is the projection matrix of the camera 
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[32] 

The projection matrix represents the geometrical model of the camera. The 

camera model can also be described by the intrinsic and extrinsic camera parameters. The 

intrinsic parameters are related to the internal structure of the camera (focal length, aspect 

ratio, image centre coordinates and radial distortion), while the extrinsic parameters are 

related to the position and the orientation of the camera with respect to a defined 3D 

world coordinate system of the scene.  

If the majority of the observed motion is restricted on a plane, the world 

coordinate system can be defined so that the motion plane is described by the equation 

Z=const. (usually Z=0) and is named ground plane. The assumption that all the motion is 

restricted on a plane is named ground plane constraint (GPC) [96]. The GPC is widely 

used in Visual Surveillance, because it simplifies the representation of the spatial data 

from 3D to 2D. 

Camera calibration is the task of the estimation of the camera model, i.e. the 

estimation of the projection matrix P or equivalently the estimation of the intrinsic and 

extrinsic parameters of the camera. Traditionally, stationary camera calibration is 

achieved by using a calibration pattern and the 8-point algorithm [98]. 

In addition to the geometrical camera calibration, colour camera calibration can 

be defined [2]. Colour camera calibration estimates the colour response of the camera, 

using standardized colour surfaces, like standard grey cards or the Macbeth Colour 

Checker. Colour camera calibration is considered useful, because it allows homogenous 

perception of colours from different cameras, as it is explained in §2.4.2. 

2.4.2 Multiple Camera Calibration 
 

A multiple camera system has to be calibrated in three different senses. In 

addition to the geometric and the colour sense that have already been introduced in the 

single camera calibration, network camera calibration is also required. 

The views of a pair of cameras may be overlapped, adjacent or distant. Generally, 

information from different cameras is possible when they have overlapped or adjacent 

views. Therefore a multi-camera surveillance system should be aware of the relationships 

between the different camera views and this logical structure can be represented by an 
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NxN binary matrix, where N is the total number of the cameras and the entries of the 

matrix are {1} for overlapped or adjacent views and {0} for distant views. In this thesis, 

the procedure of estimating the required logical structure of the network of cameras is 

defined as network camera calibration. In chapter 5, an automatic method for network 

camera calibration is introduced. 

When two cameras have overlapped field of views, corresponding geometric 

calibration is also required. The geometric calibration of a pair of two cameras is defined 

as the estimation of the intrinsic parameters of each camera and the estimation of the 

relative position and orientation of the two cameras (the extrinsic parameters of the 

cameras). The geometric calibration is performed using again a calibration pattern that 

can be viewed by both cameras at the same time.  

For the CUES system, all camera models were estimated with respect to a world 

coordinate system, where the plane Z=0 represents the ground plane. Landmarks that 

were clearly visible in views were used for camera calibration, using the Tsai algorithm 

[98]. 

Alternatively, to associate cameras with substantial overlapped field of views, 

homography calibration may be used. In this case, a homography transformation, defined 

by a 3x3 homogenous matrix, associates the projective coordinates of the two cameras. 

The same object can generate different apparent colours in the sensors of different 

cameras because of possible different camera colour responses and the variation of 

illumination conditions (in the case that the cameras are placed in locations where the 

spectral distributions of light are different). The different apparent colours of the same 

object mean that the colour component of the identity tag of the object may not be 

reliable information that can be passed from one camera to the other, except in the case 

when the ratio of the colour responses of the cameras is estimated. Colour calibration 

estimates the relationship of the responses of the two cameras, using similar methods and 

techniques to the single camera colour calibration. 
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2.5 Activity 
 

Activity: 

1 a) the condition of being active or moving about. b) the exertion of 

energy; vigorous action. 

2(often in plural) a particular occupation or pursuit (outdoor 

activities). 

 

In the surveillance research domain, the terms activity and behaviour are used for 

similar and some times confusing meanings. Because this thesis investigates activity 

modelling and analysis, it is considered essential to define the term “activity”, as used in 

the context of this thesis, and to distinguish it from the term “behaviour”. 

The activity of a target, within an observed scene, is defined as the complete 

motion history of the target that can be described by the sequence of target positions over 

time (one position per frame). Therefore, the activity of a target is closely related to its 

trajectory. The centroid of the detected blob will be used to indicate the position of the 

target in image-plane coordinates, because it is considered more stable to disturbances 

than for example the highest or the lowest point of the blob. In the case that ground plane 

coordinates are used, the position of the target is indicated by the projection of the object 

centroid on the ground plane. 

The behaviour of a target is a more complex term that takes account not only of 

the history of the target’s centroid positions but also of the particular motion of the 

target’s subparts (articulated motion). Therefore, intuitive descriptions of activity can be 

verbal phrases such as  “goes from area A to area B”, “is stopped in area C”, “moves 

fast”, “meets”, while similar descriptions for behaviour can include phrases such as  

“walks”, “runs”, “jumps”, “picks up”, “sits”, leans”, “fights” etc. 

The set of activities of all the targets defines the activity in the scene. However, 

describing the activity in the scene by all the observed trajectories is not a compact 

representation. This thesis proposes scene activity-based models and suggests appropriate 

learning methods. 

The activity in the scene is closely related to the structure of the scene. This 

dependency is obvious in highly restricted environments, such as in roads, where the 
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vehicle motion must be consistent with any traffic restrictions. In pedestrian 

environments, direct restrictions may also exist or pathways can be considered as indirect 

restrictions that influence the scene activity. But even in environments where neither 

direct nor indirect restrictions are present, the general structure of the scene, consisting of 

entrances, exits and areas of interest, can influence the activity. 

Activity can be described not only in image-based coordinates but also in ground 

plane coordinates. To convert image-based coordinates to ground plane coordinates, an 

average target height of 170cm is taken into account for pedestrian environments and 

consequently the centroid of the target is assumed to be 85cm above the ground plane. A 

similar assumption can be made for vehicle environments. Although this is a rough 

approximation, it seems to be acceptable in most of the cases. The approximation may 

fail when the optical axis of the camera is almost parallel to the ground, (in the extreme 

case that it is parallel, no ground plane coordinates can be derived at all), or when the 

targets’ heights vary significantly from the proposed average value (for example, in 

vehicle environments, double decker London buses are much higher than the rest of the 

vehicles). In the extreme case that the camera optical axis is perpendicular to the ground 

plane, image plane coordinates can be directly converted to ground plane coordinates, 

without any assumption about the target height. 

2.6 Learning in Computer Vision 
 

Computer vision is the research area that aims to endow computers and machines 

with a visual perception capability similar to the human visual system. Although 

researchers have put significant effort in the area of computer vision during the last 20-30 

years, computer vision is far from its goal. The effectiveness of the human vision system 

is based not only on the complex and unknown way that the human brain perceives the 

images, but also on humans’ ability to learn and adapt to their environments. E.g., the 

visual system of a newly born baby is not fully developed. Eventually the visual system 

of the infant evolves and the infant learns to perceive its environment and keep an 

abstract image of it [47]. Similarly, if computer vision systems can learn models of their 

environment, their performance may be improved and their functionality be extended. 
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Many learning techniques have been developed and applied in the area of 

Computer Vision. Learning is performed through a training dataset and the outcome is 

usually a model that “explains” the training dataset and aims to explain any similar 

dataset. Actually, learning methods are closely related to the models that are used to 

represent the data. 

Learning methods are categorised into supervised, unsupervised and 

reinforcement methods. Supervised learning methods require manual labelling of the 

training dataset, while unsupervised methods attempt to extract labelling information 

from the dataset itself. Reinforcement learning methods are different in the way that they 

are applied to active systems (e.g., robots) and learning is performed through the actions 

of the system and the perceived feedback from the environment. 

Methods like the K-means algorithm, the hierarchical clustering algorithm and the 

Fuzzy K-Means algorithm assume that data can be represented by clusters of points. The 

K-means algorithm [64] and its fuzzy version [8][26] assume a constant number K of 

clusters and attempt to identify the K centres of the clusters, iteratively. Solution is 

guaranteed in a finite number of steps. However, because the K-means algorithm is based 

on a Euclidean distance measure, it actually fails to identify underlying models of the 

data. 

Hierarchical clustering methods produce a hierarchical tree of clusters, where the 

number of clusters at consecutive levels differs by one. The hierarchical tree can be learnt 

either top-down, starting with a single cluster and using a splitting strategy, or bottom-up, 

starting with each dataset sample as a cluster and using a merging strategy. A classic 

example of the hierarchical method is the hierarchical agglomerative clustering methods 

[54] that use a set of distance criteria. However, results depend heavily on the specific 

type of distance criterion that is used. They also suffer from an inability to identify the 

underlying models of the data for the same reasons as the K-means algorithm. 

Expectation-Maximisation (EM) [25] models the clusters using probability 

density function (pdf) and searches for the pdf parameters that maximise the likelihood of 

the dataset. A common use of EM is to assume that clusters are modelled by Gaussian 

distributions, in which case the set of clusters is represented by a Gaussian Mixture 



Chapter 2: Background  29 
________________________________________________________________________ 

 

Model (GMM). EM benefits from its strong theoretical base and it can handle cases 

where models have overlapped distributions. 

K-means, Fuzzy K-means and EM assume that the model order (number of the 

clusters) is known. Unfortunately, this is not always the case and model order is desired 

to be set automatically. Many criteria have been proposed that define cost functions of 

the model order and allow its automatic estimation. Most popular is the Minimum 

Description Length (MDL) criterion [83], inspired by information theory. 

Support Vector Machines (SVM) [20] are widely used in high dimensionality 

problems, where the samples of the training dataset may be fewer than the dimensions of 

the data. The SVM method is actually a supervised method that attempts to learn an 

optimal separating hyperplane in order to classify new unseen examples. However, 

because the SVM algorithm complexity depends on the amount of the training data, they 

are inappropriate for learning from large datasets. 

Probabilistic network modelling is based on a set of states and conditional 

probabilities that are used to represent state transitions. Markovian chains and Hidden 

Markov Models (HMM) [80] are well-known special cases of probabilistic networks and 

they are used to model the progress of events over time. There is no known analytical 

method that allows optimal learning of HMM from observations. Instead, iterative 

algorithms like the Baum-Welch method [5] (an implementation of the Expectation-

Maximisation [25]) and gradient methods [60] are used. However, these iterative 

algorithms may be very slow, especially when the number of the states is large. 

Neural Networks (NN) are inspired by a model of the human brain that consists of 

neurons organised in layers. A neuron’s task is to process information, normally by 

applying some transformation to the input variable in order to produce an output. Whilst 

NN may produce acceptable results, it is often not clear how and when their performance 

is reliable. NN learning can be performed by either supervised (back-propagation 

algorithm) or unsupervised (hebbian learning, competitive learning) methods [94]. 

However, in comparison with other methods, they tend to be rather expensive 

computationally and not always appropriate for real-time online learning. 

Genetic learning is another biologically inspired method that attempts to simulate 

the evolution process that is observed in nature. In genetic learning, a large number of 
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possible solutions is assumed. Solutions are evaluated and the best ones are combined to 

produce a new “generation” of solutions that tend to be better. Because genetic learning 

is based on the mechanisms of Darwinian evolution, it is a type of stochastic directed 

search. However, it may be appropriate for investigating solutions in large-scale 

problems, with little or no background information [102]. 

 

2.6.1 Learning in Surveillance Systems 
 

Visual surveillance systems are required to operate over extended periods, under 

varying conditions and in different environments. Their performance depends on the 

configuration of a set of parameters that affect the effectiveness of the various modules. 

The current practice is to manually set these parameters when the system is installed. The 

disadvantage of the manual installation and configuration is not only that it requires 

human effort (which in the case multi-camera systems can be significant), but also that it 

does not guarantee the optimal performance of the system, over extended periods and 

under varying conditions. 

A surveillance system can benefit significantly if it can learn properties related to 

its environment and adapt to changes. Such capability not only allows an effortless 

installation of a surveillance system (“plug ‘n’ play”), but also promises some stability of 

the performance, under varying conditions. 

The advantage of surveillance systems over other computer vision systems is that 

they can easily acquire a large number of observations, which can be used for learning 

and adaptation of the system parameters. The ideal visual surveillance system should be 

similar to a child that observes the scene from a window, learns the scene and 

understands its changes.  

A list of characteristics related to the observed scene that can potentially be learnt 

are: 

− Properties related to the motion detection and motion tracking methods. A 

well-known example is the estimation of a background model, used for motion 

detection and the adaptive GMMs [89] is a widely used method. Also, models for 

moving targets can be learnt and used for assisting the motion tracking module. 
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For example, [6] and [7] discuss learning silhouette models of pedestrians, while 

[36] discusses learning of 3D models for vehicles. 

− The camera models (network, geometric, colour) that are traditionally 

obtained using calibration patterns. For example, in [95], single camera 

calibration models are learnt using the gravity constraint, and in [82], the scene 

ground plane is learnt for single cameras. In [3], multiple camera calibration is 

attempted using blob information and in [9], [59] and [93] spatial-temporal 

calibration of multiple cameras is learnt from observations and the homography 

matrix of pairs of cameras with overlapped views is estimated. 

− Features of the 3D scene, like occluding objects, paths, junctions, 

entry/exit areas. For example, in [88], a depth map of the scene is constructed, in 

[33], [34] and [35] the geometry of scene paths is learnt by accumulation of blob 

objects and in [92], entry/exit zones are estimated. 

− Activity and/or behaviour models. For instance, in [52] activity and 

behaviour models are learnt using vector quantisation. A review of learning 

activity models is given in [22]. 

In this thesis, models and methods are presented for learning features of the 3D 

scene (chapter 3-4), activity models (chapter 5-6) and network camera models (chapter 

6). 

The selection of the appropriate models aimed to fulfil two requirements: The 

semantic description of the scene and modelling of uncertainty. Semantic description of 

the scene is fulfilled by the spatial representation of scene features, related to specific 

activities (entries, exits, stops, motions), while uncertainty is represented within a 

probabilistic framework. 

The above requirements were determined according to possible applications in 

visual surveillance. For example, the semantic character of the model is essential for 

applications like video annotation and context-based databases, while the uncertainty 

modelling can benefit applications like motion prediction and atypical activity detection. 

Algorithms were selected according to the special characteristics of the 

surveillance systems: the need to operate for extended periods under a wide variety of 

operating conditions and the ability to acquire a large number of observations. Therefore, 
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the learning algorithms must be able to operate automatically with ideally no human 

intervention and exploit the large number of observations. Additionally, algorithms must 

be fast enough to operate in real time and ideally allow online adaptation of the models to 

the new data. 

Supervised learning requires manual labelling of the data, which can be a tedious 

work, especially for large datasets. Additionally real time adaptation of the system is not 

possible, due to the required human intervention. 

Reinforcement learning requires external feedback from the environment. 

However, in the context of this thesis, cameras are considered fixed and passive and no 

other information is available, therefore reinforcement learning is inappropriate. 

Therefore, only unsupervised methods seem to be appropriate for learning in 

visual surveillance. From the wide variety of unsupervised methods and models, 

computationally expensive methods like NN methods, genetic learning and the Baum-

Welch method were avoided, because they are not suitable for real time, online learning 

The next chapter illustrates how an EM-based algorithm is used to learn some 

semantic features. In chapter 4, a novel route model and an appropriate learning 

algorithm are introduced. In chapter 5, the structure of the semantic scene models, learnt 

in the previous chapters, is used as the basis to estimate a HMM model using 

accumulative statistics. Chapter 6 uses a cross-correlation technique to reveal the 

structure of activities within a network of cameras as well the topology of the network 
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Chapter 3 
 

3 Learning Activity-Based Semantic Regions 
 

3.1 Introduction 
 

An activity-based semantic scene model is introduced in this chapter. The model 

consists of elements like entry/exit zones, paths, junctions, routes and stop zones. 

Modelling and learning issues of entry/exit zones and stop zones are detailed here, while 

the discussion on paths, junctions and routes is left until the next chapter. Additionally, 

scene features like semi-stationary motion noise sources and occlusion regions are 

discussed here. All the elements that are discussed in this chapter are learnt from single 

point datasets, while the next chapter discusses learning from sequences of points, i.e. 

trajectories. 

The scene model and its semantics are introduced in §3.2. The scene model fulfils 

the requirement of the semantic description of the scene in spatial terms and the 

requirement for a probabilistic description of activity. 

Modelling and learning of entry/exit zones, stop zones and semi-stationary motion 

noise sources are discussed in §3.3-§3.5. These scene elements are generally modelled by 

GMMs and are learnt by a novel EM-based algorithm. The EM-based algorithm aims to 

deal with the unavoidable presence of noisy data in the trajectory dataset. 

Occlusion regions are discussed in §3.6. Occlusion regions are represented by a 

probabilistic image map, which is estimated using histograms of matched and non-

matched target positions. 
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3.1.1 Previous work 
 

Extracting semantics from images has attracted the attention of computer vision 

researchers since the early stages. For example, the VISIONS system by Hanson and 

Riseman [41] aimed to segment static images into semantically consistent regions, 

according to their pixel values. 

Howarth and Buxton [43] identified the lack of an explicit semantic model and 

they proposed a spatial (polygon based) model of the scene, consisting of “leaf” and 

“composite” regions. Leaf regions aim to model the primitive elements of the scene and 

they are non-overlapped polygons. Composite regions aim to model semantic areas and 

they consist of leaf regions. However, those areas have to be defined manually and are 

not learnt from the video data [44]. Additionally, these polygon-based models lack a 

probabilistic representation. 

Manually defined polygon-based scene models have been used in many 

surveillance applications. For example, the VIGILANT surveillance system [39] uses 

manually segmented scene areas to support contextual database queries. Cuppilard et al 

[24] suggests a scenario-based analysis of behaviour, whose spatial reasoning is based on 

a manually defined 3D scene model. Ellis and Xu [27] use a polygon-based scene model 

to define short-term and long-term occlusions and support the motion tracking process. 

Fernyhough et al [33] and Fernyhough [34] used the spatial model presented in 

[43] as a basis for a learning algorithm that can automatically learn object paths by 

accumulating the traces of targets. The trace of a target consists of all the pixels that have 

been assigned to the specific target by the motion detection and motion tracking modules, 

in all the frames that the target was visible. Paths are formed by clustering similar traces, 

i.e. traces with sufficient overlap areas. The benefits of his method are that it is 

unsupervised and auto-initialised. However it is based on “hard” Boolean logic, therefore 

it cannot adapt to environmental changes and it may be sensitive to noise. 

Grimson et al [40] describe activity in a 6-dimensional space (position, velocity, 

size, aspect ratio). They use two different methods to classify activities: a) Clustering of 

observations in the 6D space with Gaussian models by using the Numeric Iterative 

Hierarchical Cluster (NIHC) and b) accumulating co-occurrence statistics in a quantised 

6D space. Using the former method, activity-related areas, e.g., queues, can be retrieved 
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by backprojecting Gaussian clusters with specific characteristics onto the spatial (x, y) 

plane. However, similar results can be derived working in lower dimensionality spaces, 

e.g., in the 2D (x, y) space. The latter method aims to cluster similar trajectories, which is 

a problem discussed in the next chapter. 

In [92], Stauffer presented a method of learning “sources” and “sinks”, which are 

actually entry/exit zones. He proposed a HMM where all sequences are two-state long. 

His algorithm deals with tracking failure noise using a “track stitching” method. The 

model-order is selected by a MDL-like heuristic that penalises high-order models, 

according to an exponentially decreasing function. The knowledge of entry/exit zones is 

used to correct and stitch tracks in a closed-loop manner. His method and the method that 

is introduced in this thesis have considerable similarities and further discussion is made at 

the end of the chapter. 

Stauffer [88] accumulated target observations to reconstruct a rough depth map of 

the scene, using the line-of-sight constraint. A target detected by a camera is an indication 

that the space between the target and the camera is free of obstacles. The relative depth of 

a target, which in this case is a human, is estimated by the top position of the detected 

blob and assuming that all the tops of the heads always lie near a plane which is parallel 

to the floor. The accumulation of observations provides a model of the open space of the 

scene that is used by the targets and indirectly a rough approximation of the static objects 

in the scene. However, the construction of the map is based on hard Boolean logic, 

therefore it is sensitive to noise and it cannot be adapted to scene changes. 

3.2 Semantic Scene Model 
 

A semantic description of activity is usually performed in relation to semantic 

elements of the scene, e.g., “John entered the house from the front door, walked along the 

corridor, sat at the desk and then left from the back door”. However, to allow automatic 

description of such activities (video annotation) from visual surveillance, semantics, like 

“front door”, “corridor”, “desk” must be defined. Ideally, these features must be 

automatically recognised by the visual surveillance system. 

In the context of this thesis, semantics are defined in relation to the activity of 

targets. For instance, doors are characterised by the fact that are associated with entry/exit 
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events, a desk is an element of interest that targets may stop nearby and a corridor is a 

common path that targets use. 

A semantic model of the scene is introduced, before any semantic activity areas 

can be learnt. The model must have both spatial and probabilistic elements in order to 

enable characterisation of the target activity in terms of spatial features of the scene. The 

model includes regions associated with a particular semantic interpretation, such as 

entry/exit zones, paths, routes, junctions and stop zones.  

Figure 3.1 shows a simplified depicture of an outdoor scene, consisting of a 

number of interconnected pathways. The seat icon (I, J) represents regions where targets 

normally stop, while other labels are associated with entry/exit regions (A, C, E, G, H) 

and junctions (B, D, F) where targets moving down the pathways may change their 

routes. The segments between entry/exit zones or/and junctions (AB, CB, BD, DF, FG, 

...) represent paths, while routes are represented by the sequence of paths between an 

entry zone and an exit zone (ABDFH, CBDFG, EDFG, ...).  

Entry zones are regions where targets enter the scene. Similarly, exit zones are 

regions where targets leave the scene. An entry zone and an exit zone may be coincident, 

e.g., as in most pedestrian environments, or not e.g., in road traffic environments, where 

traffic is constrained by road traffic regulations. Typically, entry/exit zones are either 

scene-based, e.g., doors and gates, or view-based, e.g., located parts on the boundaries of 

the camera view. The distinction between scene-based and view-based entry/exit zones 

can be useful when information from multiple cameras is integrated. 

Junctions are the areas where two or more pedestrian pathways or roads meet. At 

junctions, there is an uncertainty about the future motion of a target, as it can follow more 

than one path. 

Whilst in common English, paths and routes have similar meanings, they are 

distinguished in the context of this thesis in the following manner. Paths are segments of 

either pedestrian pathways or roads in between entry/exit zones and junctions. A target 

route is the complete history of a target activity around the scene, from its entry zone to 

its exit zone, through various paths and junctions. More precisely, paths should be 

referred to as path segments, but the above given definitions are kept for the sake of 

simplicity. 
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Stop zones are defined as the regions where targets are stationary or almost 

stationary, for some minimum period of time. For example, pedestrians are stationary 

when they stop in order to sit, rest, queue, wait to access a resource, merely observe the 

scene or just wander around. Stop zones are included in the scene model for two reasons: 

Firstly, a stop zone is usually related to a physical scene feature, such as a bus stop, an 

ATM machine, a park seat, a shop window, a cashier, a computer, a printer, etc. 

Secondly, although the majority of research in video surveillance has focused on 

detecting and tracking motion, it is actually when targets stop and interact with each other 

or with these fixed elements of the scene that the system is more likely to be interested in 

them. 

Two different presentations of the scene model are suggested: topographical and 

topological. The scene model is naturally represented by a topographical map (Figure 

3.1) based on either an image plane(s) or a ground map representation. Ground map 

representations have an advantage over image-based representations not only because 

they can represent the physical features of the scene in proper proportion, but also 

because they allow integration of information from multiple cameras (see §6.4). 

 
Figure 3.1: Topographical map of the scene. 

The scene model can be represented by a topological map, i.e. an abstract network 

of nodes and connections, as shown in Figure 3.2 and Figure 3.3. In Figure 3.2 entry/exit 

zones and junctions consist the nodes of the network connected by paths. In Figure 3.3, 
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paths and stop zones are also represented as nodes of the network and the connections are 

actually region boundaries. 

 
Figure 3.2: Topological map of the scene. Entry/exit zones and junctions are the nodes of the 
network. 

  
Figure 3.3: Extended topological map of the scene where stop zones and paths are included as nodes 
of the network. 

The two different representations are used to illustrate two different aspects of the 

model. More specifically, the topographical map visualises the spatial characteristics of 

the scene elements, as interpreted by a human, whereas the topological map can be the 

basis of a Dynamic Probability Network (DPN) that can be used for a probabilistic 

analysis of the activity. In chapter 6, a HMM overlaid onto the scene model is used to 

support activity analysis. 

In contrast to the features of the scene model that were described, other types of 

scene features are not directly related to the activity of the scene. However, because of 

the fact that they affect the way that the activity is viewed and interpreted by the 

surveillance system, their detection may support the motion tracking process. Such scene 

features are the semi-stationary motion noise regions and occluding regions. 
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Semi-stationary motion noise was described in §2.3.1. It may be related to real 

scene features, such as trees, windows, computer screens or curtains that are sources of 

apparent motion, constantly detected by the motion tracking algorithm, Semi-stationary 

motion is of no interest, therefore, a mechanism to discard it is required. 

Targets may be occluded as they move around the scene. Occlusions can be either 

static, due to a stationary object such as a wall, or dynamic because of the presence of 

other targets. Occluding regions are the regions where targets seem to disappeared from 

the camera view. Occluding regions are usually related to real scene features, i.e. real 

objects that cause static occlusions. In the case of dynamic occlusions, they may be 

related to a densely occupied region in the scene. 

 

3.2.1 Spatio-probabilistic modelling 
 

The elements of the semantic scene model must have both a spatial and 

probabilistic character in order to label the target activity in terms of spatial features of 

the scene, using a probabilistic framework. Considering the spatial and probabilistic 

requirements, many options seem to be available in order to model the individual scene 

features: 

i) Accumulative maps that explicitly represent the frequency of an event for each 

location. Accumulative maps were used in [73] and  [74] to indicate the activity 

areas. They provide accurate, low level and rather expensive encoding of the 

spatial and the probabilistic information. 

ii) Polygons (or degenerate polygons such as line segments and points) that can 

explicitly define the spatial area of each feature. Such an approach is proposed in 

[43] and is consistent with a manual estimation of the scene features. However, a 

pure polygon representation lacks probabilistic information. A solution to this can 

be the enrichment of polygon representations with overlaid probabilistic 

distributions in order to fulfil the modelling requirements. 

iii) Specific types of probability density functions (pdfs). A common choice is the 

Gaussian (normal) function. Pdfs describe the probabilistic character of the 

feature with specific restrictions and accuracy, whereas the spatial area is defined 
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implicitly. Their representations are, in general, compact and there are many 

learning algorithms that can produce representations based on specific types of 

pdfs, especially on Gaussian distributions. Mixture models, e.g., GMMs (see 

Appendix I) can be used to represent features, where a single pdf is not sufficient. 

iv) Hidden Markov Models (see Appendix III), which can be assumed as 

probabilistic networks of pdfs. They can be assumed as a dynamic extension of 

the mixture models, according to Roweis and Ghahramani [86]. For this reason, 

they are associated not with instantaneous events (e.g., entrance), but with 

continuous events (e.g., motion).  

In this thesis, all the prescribed models are used. Accumulation maps are mainly 

used to illustrate the distribution of events on the image plane. GMMs are used to model 

regions related to instantaneous events (entrance, exit, stop) in this chapter, while route 

models, which can be assumed as polygons enriched with probabilistic distributions, are 

used to model regions related to motion in chapter 4. Finally, the application of HMM on 

route models is investigated in chapter 5. 

3.3 Entry/exit zones 

3.3.1 Modelling 
 

Targets enter and exit the scene from either the borders of the image (view-based 

features), or doors and gates (scene-based features). The first and the last successfully 

tracked positions of an object (in other words the first and the last points of its trajectory) 

are used to indicate the entry and the exit event respectively. Entry/exit zones could be 

modelled by polygons for scene-features or line segments (degenerate polygons) for 

view-based features, according to the human interpretation. However, GMMs are used 

instead, because they represent compactly the variability and the uncertainty of the 

entry/exit observed events. 

As seen in Figures 3.4-3.17, which depict entry/exit point datasets and fitted 

GMMs, GMMs can approximate successfully the shape of the majority of the entry/exit 

zones. For instance, a narrow Gaussian ellipse can closely approximate a line segment 

and a general Gaussian ellipse can approximate a convex-hull polygon. If the shape of the 

entry/exit zone is not a convex-hull, then a set of Gaussian models is used instead.  
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When the entry/exit speeds of the targets are high and the frame-rate of the system 

is relatively slow, the distribution of the entry/exit points is wider, because the position of 

first/last detected point of each target varies significantly around the real entry/exit zone. 

In these cases, the distribution of points can be well represented by a Gaussian model 

(GM), while line segments and polygon representations do not seem appropriate, because 

they cannot represent the variation of the entry/exit points. 

A multi-step learning method is introduced in this thesis that is based on the 

Expectation-Maximization (EM) algorithm [25] (see Appendix II). An entry-point dataset 

consists of the start points of each trajectory, as derived by the motion-tracking 

algorithm. Similarly, the end points of a trajectory form the exit-point dataset.  

One of the advantages of EM is that it can successfully distinguish overlapped 

distributions. Therefore, if noise is overlaid onto the signal, then it is possible to generate 

separate clusters for the signal and the noise, subject to different statistics. The two types 

of noise that are present in the trajectory data are also found in the entry/exit-point 

datasets and they have specific statistical characteristics. 

In the entry-point/exit-point datasets, tracking failure noise (defined in §2.3.1) 

appears as false positive points, distributed over all the activity areas. The greater the 

activity in an area, the more false positive points are generated. This can be interpreted 

for the following reasons: a) If the probability of a tracking failure ptf for every target is 

assumed constant and K/t is the rate of detected objects in the area per second, then the 

rate of false positive points in the area is tKptf ⋅ . b) Actually, the probability ptf is not 

constant for every target; it is greater where the activity is higher, due to higher rate of 

dynamic occlusion. 

In the entry-point/exit-point datasets, semi-stationary motion noise appears as a 

dense distribution of false positive points on and around the noise source, e.g., at the top-

left corner of Figure 3.4. 

Both types of noise are modelled, as they appear in the entry-point/exit-point 

datasets, using Gaussian distributions. The tracking failure noise is identified by wide 

Gaussian distributions over the activity areas, whereas the semi-stationary motion noise is 

usually interpreted by narrow Gaussian distributions at the noise sources. Because of the 

different nature of the two types of noise, different methods are used to filter them out. 
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3.3.2 Learning 
 

A multi-step learning algorithm, based on the Expectation Maximisation (EM) 

algorithm (see Appendix II) has been developed. To justify the selection of the EM 

algorithm, its performance is compared with the performance of the K-means algorithm, 

at the end of this section. 

The multi-step algorithm first discards the semi-stationary noise and then the 

tracking failure noise. The actual number of entry/exit zones in the scene is undefined. In 

order to overcome this problem, the number of entry/exit zones in the scene is 

overestimated and the number of the signal clusters is estimated by eliminating the noisy 

ones. The algorithm is described and results for each step are illustrated for an entry-point 

dataset taken from a pedestrian scene (Figure 3.4). 

i. The EM algorithm with model order N is applied to the entry-point dataset E and 

a GMM is derived (Figure 3.5). To initialise the EM algorithm, the outcome of a 

K-means algorithm starting from N random points is used. 

ii. If all the points of a trajectory belong to a single GM, as derived in the previous 

step, the trajectory is considered semi-stationary. A new cleaned entry-point 

dataset E' (Figure 3.6) is formed that does not contain the entry points of the 

semi-stationary trajectories. 

iii. The EM algorithm with model order N' is applied to the clean entry-point data-set 

E' (Figure 3.7). 

iv. Gaussian clusters are classified as either signal clusters or noise clusters, 

according to a density criterion (Figure 3.8). More specifically, if wi is the prior 

probability of a cluster i and Σi is its covariance matrix, where i=1.. N', then a 

measure of the density di is given by: 

i

i
i

w
d

Σ⋅
=
π

 (3.1)

A threshold value T is defined by the clean entry-point dataset E': 

Σ⋅
=
π

αT  (3.2)
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where α is a user-defined weight (typical values are between 1.5 and 2) and Σ is the 

covariance matrix of the dataset E'. 

 

 
Figure 3.4: Entry-point dataset (4250 
samples) with both types of noise present. 

 
Figure 3.5: GMM after first run of EM (N=6). 
The upper left cluster is caused by the semi-
stationary movement of the tree branches. 

 
Figure 3.6: Clean entry-point dataset (1767 
samples) after discarding stationary motion 
noise. 

 
Figure 3.7: GMM after second run of EM 
(N'=8). 

 
Figure 3.8: Three Entry zones derived by the 
multi-step algorithm. 

 
Figure 3.9: Classification of entry points to 
clusters (colours taken from Figure 3.7). 
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The clusters derived in steps (i) and (iii) are characterised according to their 

density. High-density Gaussian clusters correspond to either entry zones or semi-

stationary motion noise, while low-density clusters correspond to tracking failure noise. 

The algorithm eliminates semi-stationary motion noise at step (ii) and tracking failure 

noise at step (iv). 

The density criterion is justified by the Table 3.1, which lists the densities di of 

the clusters of Figure 3.7 and their ratios to the threshold T. The table also shows that the 

popularity of the clusters, determined by the prior probabilities wi, cannot be used as a 

criterion to distinguish signals from noise clusters. For instance, although cluster 4 has 

very low popularity, it is dense enough to be considered a signal entry zone and indeed, it 

corresponds to a real entry zone, as it can be seen in Figure 3.8. Another example is 

cluster 3, the second most popular cluster. However, due to its wide distribution, it is 

correctly classified as a tracking failure noise area. 

Cluster id wi (%) di (10-6 pixels-2) di/T Signal? 

1 (red) 10.2 2 0.03 No 
2 (green) 13.2 1622 21.41 Yes 
3 (blue) 19.0 61 0.80 No 
4 (yellow) 4.3 134 1.77 Yes 
5 (magenta) 11.7 23 0.31 No 
6 (cyan) 3.3 13 0.17 No 
7 (red) 11.2 24 0.32 No 
8 (green) 27.0 417 5.51 Yes 

Table 3.1: Signal clusters of the Figure 3.7 are separated from noise. Decision is based on threshold 
T=78.7x10-6pixels-2, as estimated using Eq.3.2. 

Further results on entry/exit point datasets taken from a pedestrian scene and a 

traffic road scene are shown in Figures 3.10-3.17. The pedestrian scene is the part of 

Northampton Square that is in front of the main entrance of the university. Entry/exit 

zones are coincident, as in most of the pedestrian scenes. A person that knows the area 

can easily identify that the three entry/exit zones (see Figure 3.11 and Figure 3.13) 

correspond to the main entrance of City University, the way from and to Goswell Road 

(lower left) and the way from and to City University Student Union (bottom right). There 

is considerable tracking failure noise around the main entrance of the university and this 

is due to the fact that students normally gather at this area and therefore the rate of 

dynamic occlusions is higher. 
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Figure 3.10: Entry-point dataset (13223 
samples). 

 
Figure 3.11: Three detected entry zones. 

 
Figure 3.12: Exit-point dataset (13223 
samples). 

 
Figure 3.13: Three detected exit zones. 

The road traffic environment is the part of Goswell Road that is next to the main 

university site. Two entry zones and two exit zones were identified (see Figure 3.15 and 

Figure 3.17) that are not coincident, because they correspond to two unidirectional road 

lanes. Although in this scene pedestrian traffic is normally present, the dataset was 

derived over a weekend, when pedestrian traffic was very light. 

In Figures 3.14-3.17, the clusters at the left side of the image are less dense than 

the ones at the right side. The phenomenon can be explained by the higher image-based 

speed of the vehicles at the left side (closer to the camera), in combination with a low 

frame rate that results in a wider distribution of the first/last tracked positions for the 

vehicles. This difference of the distributions of the entry/exit zones is actually desirable, 
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as the cluster explicitly determines where the targets should be initialised/terminated, 

according to their entry/exit speed and the system frame rate. 

 
Figure 3.14: Entry-point (12746 samples) 
dataset in a road traffic environment. 

 
Figure 3.15: Two detected entry zones in a 
road traffic environment. 

 

Figure 3.16: Exit-point dataset (12746 
samples) in a road traffic environment. 

Figure 3.17: Two detected exit zones in a 
traffic environment road  

The selection of the threshold T in Eq.3.2 is justified as follows: Σ⋅π  is a 

measure of the area over which dataset E' is distributed (see Appendix I). Therefore, 

N ′⋅ /Σπ  is a measure of the area of an “average” cluster. If α/N' represents an 

acceptable prior probability for a signal “average” cluster, then T indicates the density of 

an “average” signal cluster. 

A typical value of α was estimated using experimental results on the entry-point 

dataset of the Figure 3.10. The EM algorithm was applied for values of N'=3,...,16. For 
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each model order, the algorithm was applied 5 times with different randomly selected 

initialisation points. 

For all 70 experiments, clusters were manually labelled as signal or noise, 

according to a combined interpretation of the dataset histogram and the real scene that the 

data came from. For each experiment, the signal cluster with the minimum density and 

the noise cluster with the maximum density were taken into account and a suggested 

threshold density was estimated as the mean average of the two densities. Results for all 

three densities are shown in Figure 3.18. 

Figure 3.18, shows that signal and noise clusters are separable by a threshold 

density value, in most of the cases. The variation of the estimated threshold density 

indicates that it should not depend on the model order and this fact is reflected in Eq.3.2. 

 
Figure 3.18: Diagram of the minimum density of signal clusters (red), the maximum density of noise 
clusters (green) and the estimated threshold value (black). Solid lines show the mean values, while 
dashed lines indicates the range of values around the averages. 

To estimate an optimal threshold value for the given dataset, clusters were 

separated into signal and noise according to threshold densities T(α), for α∈[0.5, 2.5]. 

Separation results were compared to the manual separation and the success rates of 

classifications are shown in Figure 3.19: The success rate is determined as the percentage 

of experiments for which automatic and manual separation coincides. The maximum 

success rate (85.71%) is reached for values α∈[1.7, 1.85]. Detailed results for α=1.8 are 

shown in Table 3.2. 
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Figure 3.19: Success rate of signal-cluster separation for various values of α. 

 
N' 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Overall

% 100 100 100 100 100 100 80 60 80 80 80 60 100 40 85.71 
Table 3.2: Separation success rate for N'=3...16 and α=1.8. 

The multi-step algorithm is relatively insensitive to the model order selection at 

steps (i) and (ii). N is manually selected to ensure that any possible motion source noise is 

not multi-modelled. Similarly, N' must be large enough to ensure that all the zones can be 

modelled, whilst not over-fitting the data. Therefore, if Ne is the number of the real entry 

zones, Nsm is the number of the semi-stationary motion sources and Ntf (usually 1-5) 

clusters are allowed to model the tracking failure noise, then N=Ne+Nsm+Ntf and 

N'=Ne+Ntf. The values of N, N' are quite flexible thanks to the fact that in most cases, 

extra clusters tend to model tracking failure noise. 

The relative insensitivity of the algorithm is supported by results that were 

extracted from the previous experiments, using the optimal α. Figure 3.20 illustrates 

results for N'=5, 7, 9, 11, 13, 15 and the values of N', Ne, and Ntf are shown in Table 3.3. 

If the results for N'=5 and N'=15 are compared, it can be seen that out of the 10 extra 

clusters, only 3 were allocated to signal clusters and the remaining 7 were allocated to 

noise clusters. 

N' 5 7 9 11 13 15

Ne 3 4 4 4 5 6

Ntf 2 3 5 7 8 9
Table 3.3: Number of signal and noise clusters for the results of Figure 3.20. 
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Figure 3.20: Results of the proposed method, on the dataset of the previous set for N'=5,7,9,11,13,15. 
First column shows all extracted clusters, second column shows only the signal clusters and third 
column shows classified points. 
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EM was selected as the basis of the proposed algorithm for three main reasons: 

Firstly, it can successfully localise signal clusters and therefore it can extract the spatial 

extent of the entry/exit zones. Secondly, it can learn overlapped distributions and 

therefore it can model any tracking failure noise that is overlapped with entry/exit zones. 

Finally, the separation of the signal clusters from noise clusters is possible, because of a 

detectable difference of their densities. 

In order to illustrate those advantages, the EM algorithm was compared against a 

common clustering method: the K-means algorithm [64]. Entry/exit-point datasets with 

considerable amount of noise were used from two different scenes. Scene A refers to 

Northampton Square area and scene B refers to Goswell Road area. In all the cases, the 

model order was set to N=10 and the extracted clusters were manually labelled as signal 

or noise, according to the interpretation of the histogram dataset and the scene. 

As can be seen in Figures 3.21-3.32, the K-means algorithm experiences problems 

accurately localising the signal clusters. In most of the cases, no separate clusters for 

noise are extracted. On the other hand, the EM algorithm's performance is clearly more 

satisfactory; it can successfully determine the position and the spatial extent of the signal 

clusters and separate clusters are derived for the noise. 

To estimate the separability of the signal clusters from the noise ones, a separation 

criterion Dij is defined: 

jiij ddD −=  (3.3)

where i is the signal cluster with the minimum density and j the noise cluster with the 

maximum density. The higher the value of Dij, the more separable the clusters. If Dij<0, 

then the clusters are not linearly separable, i.e. there is no threshold density T to 

successfully separate signal clusters from noise clusters. As seen in Table 3.4, the 

separation criterion for the K-means clusters is always negative, while for the EM 

clusters is always positive. Therefore EM clusters are separable as opposed to the K-

means clusters, which cannot be separated according to their densities. In addition, the 

EM clusters in all the experiments can be separated using the threshold density, as 

calculated by Eq.3.2.  
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Figure 3.21: Histogram of 9424 entry points of 
scene A. 

 
Figure 3.22: Histogram of 9424 exit points of 
scene A.

 

 
Figure 3.23: Histogram of 4643 entry points of 
scene B. 

 
Figure 3.24: Histogram of 4643 exit points of 
scene B. 

 

 
 Scene A Scene B 
Method Entry zones Exit zones Entry zones Exit zones 
K Means -54·10-6 pix-2 -44·10-6 pix-2   -6·10-6 pix-2   -3·10-6 pix-2 
EM +26·10-6 pix-2 +46·10-6 pix-2 +32·10-6 pix-2 +33·10-6 pix-2 
Table 3.4: Summary of the values of the separation threshold for different scenes, datasets and 
algorithms. 
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Figure 3.25: Results of K-means algorithm for the dataset of the entry points of the dataset. Clusters 
extracted (left), classified points (middle) and manually selected entry zones (right). 

 
Figure 3.26: Results of EM algorithm for the dataset of the entry points of scene A. Clusters 
extracted (left), classified points (middle) and manually selected entry zones (right). 

 
Figure 3.27: Results of K-means algorithm for the dataset of the exit points of scene A. Clusters 
extracted (left), classified points (middle) and manually selected exit zones (right). 

  
Figure 3.28:Results of EM algorithm for the dataset of the exit points of scene A. Clusters extracted 
(left), classified points (middle) and manually selected exit zones (right). 
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Figure 3.29: Results of K-means algorithm for the dataset of the entry points of scene B. Clusters 
extracted (left), classified points (middle) and manually selected entry zones (right). 

 
Figure 3.30: Results of EM algorithm for the dataset of the entry points of scene B. Clusters 
extracted (left), classified points (middle) and manually selected entry zones (right). 

 
Figure 3.31: Results of EM algorithm for the dataset of the exit points of scene B. Clusters extracted 
(left), classified points (middle) and manually selected exit zones (right). 

  
Figure 3.32: Results of K-means algorithm for the dataset of the exit points of scene B. Clusters 
extracted (left), classified points (middle) and manually selected exit zones (right). 
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Cluster id wi (%) di (pix-2) Signal 
1 (green) 17.23 109·10-6 Yes 
2 (magenta) 17.94 84·10-6 No 
3 (blue) 25.50 80·10-6 Yes 
4 (red) 12.02 30·10-6 Yes 
5 (blue) 6.59 30·10-6 No 
6 (green) 5.38 15·10-6 No 
7 (yellow) 4.96 11·10-6 No 
8 (cyan) 3.77 9·10-6 No 
9 (yellow)     4.72 5·10-6 No 
10 (red) 1.89 2·10-6 No 
Table 3.5: K-means clustering results of entry 
points of scene A. Dij=-54x10-6pix-2. 

 

Cluster id wi (%) di (pix-2) Signal 
1 (green) 9.59 1640·10-6 Yes 
2 (yellow) 6.49 308·10-6 Yes 
3 (red) 8.22 190·10-6 Yes 
4 (green) 3.76 88·10-6 Yes 
5 (cyan) 20.77 70·10-6 Yes 
6 (yellow) 22.55 54·10-6 Yes 
7 (blue) 4.76 29·10-6 No 
8 (magenta) 18.92 8·10-6 No 
9 (red) 2.80 5·10-6 No 
10 (blue) 2.14 4·10-6 No 
Table 3.6: EM clustering of entry points of scene 
A. Dij=+26x10-6pix-2. 

 
Cluster id wi (%) di (pix-2) Signal 
1 (blue) 25.66 243·10-6 Yes 
2 (magenta) 13.96 67·10-6 No 
3 (red) 12.82 49·10-6 No 
4 (green) 7.95 39·10-6 Yes 
5 (red) 10.28 31·10-6 No 
6 (blue) 10.55 23·10-6 Yes 
7 (cyan) 5.72 17·10-6 No 
8 (yellow) 6.70 12·10-6 No 
9 (green) 53.79 5·10-6 No 
10 (yellow) 2.58 2·10-6 No 
Table 3.7: K-means clustering of exit points of 
scene A. Dij=-44x10-6pix-2  

Cluster id wi (%) di (pix-2) Signal 
1 (yellow) 19.44 344·10-6 Yes 
2 (yellow) 10.35 184·10-6 Yes 
3 (blue) 6.49 144·10-6 Yes 
4 (red) 4.12 100·10-6 Yes 
5 (green) 17.34 46·10-6 No 
6 (blue) 21.02 26·10-6 No 
7 (magenta) 2.05 18·10-6 No 
8 (red) 14.50 6·10-6 No 
9 (cyan) 1.49 6·10-6 No 
10 (green) 3.21 2·10-6 No 
Table 3.8: EM clustering of exit points of scene 
A. Dij=+54x10-6pix-2. 

Cluster id wi (%) di (pix-2) Signal 
1 (yellow) 31.34 292·10-6 Yes 
2 (yellow) 13.74 81·10-6 Yes 
3 (blue) 7.90 76·10-6 Yes 
4 (red) 9.43 24·10-6 Yes 
5 (blue) 6.83 22·10-6 Yes 
6 (green) 8.59 21·10-6 Yes 
7 (green) 6.66 11·10-6 No 
8 (magenta) 7.28 9·10-6 No 
9 (red) 4.03 6·10-6 No 
10 (cyan) 4.20 5·10-6 Yes 
Table 3.9: K-means clustering of entry points of 
scene B. Dij=-6x10-6pix-2. 

 

Cluster id wi (%) di (pix-2) Signal 
1 (yellow) 19.02 4049·10-6 Yes 
2 (red) 16.07 356·10-6 Yes 
3 (blue) 11.52 190·10-6 Yes 
4 (yellow) 4.35 89·10-6 Yes 
5 (magenta) 4.25 56·10-6 Yes 
6 (green) 7.42 54·10-6 Yes 
7 (blue) 12.52 50·10-6 Yes 
8 (cyan) 9.09 8·10-6 No 
9 (green) 10.67 5·10-6 No 
10 (red) 5.10 2·10-6 No 
Table 3.10: EM clustering of entry points of 
scene B. Dij =+42x10-6pix-2. 
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Cluster id wi (%) di (pix-2) Signal 
1 (yellow) 26.86 195·10-6 Yes 
2 (green) 13.89 115·10-6 Yes 
3 (yellow) 15.25 86·10-6 Yes 
4 (green) 7.88 21·10-6 Yes 
5 (red) 12.23 20·10-6 Yes 
6 (blue) 7.75 17·10-6 Yes 
7 (red) 4.11 8·10-6 No 
8 (magenta) 5.51 6·10-6 No 
9 (cyan) 3.83 5·10-6 Yes 
10 (blue) 2.67 3·10-6 No 
Table 3.11: K-means clustering of exit points of 
scene B. Dij =-3x10-6pix-2. 

Cluster id wi (%) di (pix-2) Signal 
1 (yellow) 10.96 5369·10-6 Yes 
2 (red) 5.03 800·10-6 Yes 
3 (green) 5.68 223·10-6 Yes 
4 (blue) 26.60 146·10-6 Yes 
5 (green) 8.00 91·10-6 Yes 
6 (cyan) 8.91 77·10-6 Yes 
7 (yellow) 4.77 51·10-6 Yes 
8 (red) 5.58 39·10-6 Yes 
9 (magenta) 16.18 6·10-6 No 
10 (blue) 8.29 2·10-6 No 
Table 3.12: EM clustering of exit points of scene 
B. Dij =+33x10-6pix-2. 

3.4 Stop zones 
 

Stop zones are defined as regions where the targets are stationary or almost 

stationary. A variety of different areas can be characterised as stop zones, like areas 

where people rest, wait for the opportunity to continue their journey (e.g., at a pedestrian 

crossing or a road traffic junction), wait to access a particular resource (e.g., an automatic 

teller machine or at a bus stop), or merely observe the scene. Targets may also become 

stationary when they meet and interact with other targets, for example two people 

meeting in a park and sitting on a bench to chat or a vehicle waiting for a pedestrian to 

walk across a pedestrian crossing. 

A stop event is detected when a target’s speed becomes lower than a predefined 

threshold. A stop-event dataset is formed by checking the target trajectories for stop 

events. Speed is estimated in ground plane coordinates because the apparent speed on the 

image plane may be strongly affected by the perspective view of the camera. Therefore 

the stop-event dataset is formed using ground plane coordinates (see Figure 3.33). 

As with the entry/exit zones, a GMM is used to model the spatio-probabilistic 

characteristics of the stop zones and EM is applied to learn them (Figure 3.35). However, 

it is required to model an additional property of the stop zones: the duration of the stop 

events. Data have shown (see Figure 3.37) that the pdf of the stop event duration tse can 

be adequately approximated by an exponential function. 

sebt
se eAtp −⋅=)(  (2.4)
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The parameter A is associated with the popularity of the stop zone, while the parameter b 

is associated with the probability of terminating the stop-event (i.e. the target starts 

moving). More specifically, the probability of terminating a stop-event within the next 

second is constant and equal to -ln(b). The zone popularity is already represented by the 

GMM, therefore the stop event duration of each stop zone can be cheaply modelled by 

only one additional parameter. 

Table 3.13 summarises the detected stop zones in Figure 3.34. To distinguish 

signal from noise stop zones a density threshold T=12.492 10-3 m-2 is used. (T was 

estimated from Eq.3.2, with α=0.5). For the accepted stop zones (i.e. di/T>1), the decay 

parameter b was estimated by non-linear least-square optimisation (the matlab function 

curvefit was used). The stop event duration average E(tse) is equal to 1/b, according to the 

definition of the exponential function. 

 
Figure 3.33: Stop events (9455) on the ground 
plane. Stop events were detected when 
targets’ speed became lower than 0.25m/sec. 

 
Figure 3.34: Gaussian clusters derived by EM 
algorithm with model order 10. 

 
Figure 3.35: Five signal stop zones as derived 
by the EM algorithm. 

 
Figure 3.36: Classified stop events to stop 
zones.
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Figure 3.37: Stop event duration diagrams. The x-axis indicates the duration of a stop event and the 
y-axis the number of detected stop events with the specific duration. Results are given for the two 
most popular stop zones. 

 
Cluster id wi (%) di (10-3 m-2) di /T b (sec-1) E(tse) (sec) 

1 (red) 4.94 56.18 4.50 0.35 2.88 

2 (green) 5.17 17.07 1.37 0.36 2.74 

3 (blue) 26.25 7.98 0.64 - - 

4 (yellow) 13.17 8.24 0.66 - - 

5 (magenta) 10.85 16.01 1.28 0.33 3.09 

6 (cyan) 2.05 0.14 0.14 - - 

7 (red) 4.51 14.71 14.71 0.97 1.03 

8 (green) 8.43 1.57 1.57 - - 

9 (blue) 15.27 61.86 61.86 0.21 4.71 

10 (yellow) 9.37 10.28 10.28 - - 
Table 3.13: Stop zones derived by the EM algorithm.  

 
 Summarising, the GMM of the stop zones provides a means to localise these 

semantic features of the scene that are related to stop-events, while the stop-event 

duration function provides a probabilistic estimate of the time that an individual target 

may be stopped in the specific region. 

 

3.5 Semi-stationary motion noise sources 
 

Trees or curtains may be detected as moving objects, because of their possible 

slight and recurring motion, caused by blowing air. Similarly, apparent motion is detected 
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in reflective surfaces (e.g., windows, mirrors, static water surface) as a result of 

reflections of real moving objects. The falsely detected motion in all these cases is 

defined as semi-stationary motion, because of its characteristic to be almost stationary 

and restricted in a specific area. It is characterised as noise because not only it is of no 

interest, but also it obstructs the motion-tracking algorithm. An active background (e.g., a 

busy traffic road at the back of the scene) may also lead to detection of motion that is 

spatially restricted and of little interest, therefore, background motion may be considered 

as semi-stationary motion noise. 

Knowledge of semi-stationary motion noise sources can be beneficial for visual 

surveillance systems, as semi-stationary trajectories can be localised and ignored. Semi-

stationary motion noise sources were implicitly detected as a by-product of the entry/exit 

zones estimation. Their explicit estimation can be derived from the set of trajectories that 

are rejected as semi-stationary, according to sets of entry/exit zones. A trajectory is 

characterised as semi-stationary if and only if all its samples belong to the same entry/exit 

cluster. 

The EM algorithm is applied to a dataset of points, constructed from the first 

points of the semi-stationary trajectories that were rejected from the dataset, as described 

in §3.3.2. Clusters are separated into “signal” and “noise”, according to their densities. 

Dense “signal” clusters represent semi-stationary motion noise sources, whereas low-

density “noise” clusters usually represent tracking failure noise. 

Results are presented from the same scene that was used for the entry/exit zones. 

The proposed method successfully detects a tree as a motion noise source (Figures 3.38-

3.41). 
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Figure 3.38: Histogram of the first points of 
5099 semi-stationary trajectories. 

 
Figure 3.39: Gaussian clusters estimated by 
the EM algorithm. 

 
Figure 3.40: One semi-stationary motion noise 
detected which corresponds to the branches of 
a tree. 

 
Figure 3.41: Classification of points. 

3.6 Occlusion regions 
 

As stated above, many tracking failures are due to occlusion. Occlusion is one of 

the major challenges for motion tracking algorithms, not only because it is a main source 

of problems, but also because dealing with occlusion is difficult due to the variety of 

occlusion types. 

Occlusions are mainly classified as static and dynamic ones. Static occlusions are 

caused when a target goes behind a static object of the scene, so it cannot be viewed and 

detected by the system. Static occlusions can be further characterised as short-term or 

long-term [27], depending on the duration of the occlusion. 

Dynamic occlusions are caused due to other targets of the scene, e.g., when a 

target moves behind another target. Some motion tracking algorithms not only fail to 

detect the occluded target, but they also fail to match the occluding target. This failure 

occurs because the two targets are seen as merged on the motion detection image, 
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therefore, instead of two separate blobs, only one blob is detected and its characteristics 

may not correspond to any of the two blobs. 

Targets may also be assumed occluded because of lack of motion. If a target 

becomes apparently stationary, then it gradually becomes part of the background and the 

motion detection algorithm fails to detect it. 

Furthermore, occlusions can be total or partial, depending on the visible 

proportion of the occluded target and the solidity of the occluding object (e.g., solid wall, 

non-solid fence or bush). 

Faulty occlusions, i.e. apparent occlusions where the target is not really hidden by 

another object, are also possible. In addition to the target absorption in the background 

and the dynamic occlusion (for the occluding target), a target may appear as occluded 

(i.e. not detected) if its colour appearance is similar to the background. Also, if the target 

moves in front of an active semi-stationary motion noise source (e.g., an active 

background or a waving tree), then its blob may be merged with the noise source blob 

and its separation from the noise can be difficult. 

One solution to the static occlusion problem is to model [27] and learn the 

location of occlusion regions. Some areas that are related to specific types of occlusions 

are already modelled. For instance, semi-stationary motion noise sources can be detected 

as shown in §3.5. Because dynamic occlusions or occlusions that occur due to similarity 

to background usually cause a considerable proportion of tracking failures, tracking 

failure noise clusters are a spatio-probabilistic indication of those occlusions. Finally, in 

stop zones, targets are absorbed in the background, due to lack of motion. 

An occlusion event can implicitly be detected by the motion tracking algorithm. If 

a blob has been successfully detected previously but it fails to be matched at the current 

frame, then its position is predicted, according to the tracking filter. If the predicted 

position is within the scene, then the target is possibly occluded. However, no indication 

is given for the type of the occlusion (static, dynamic, etc). 

A histogram Hp of occlusion events is given in Figure 3.42. A high rate of 

occlusion is evident in a heavily used area in front of the City University main entrance 

where many students normally gather. Although this histogram Hp does provide an 

estimate of the rate of occlusions, similar estimation can also be derived from the 
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tracking failure noise clusters. Additionally, the interesting question is not “how many 

objects are occluded” but “how likely it is for an object to be occluded”. 

Therefore, it is necessary to take into account the activity in the area. Figure 3.43 

shows a histogram Hm of successfully matched blob positions. Occlusions are 

represented by a probabilistic image map Ho, defined by the following formula: 

),(

),(
),(

ji

ji
ji

m

p
o H

H
H =  (3.5)

where i,j are indices to the pixels of the image. Ho is shown on the Figure 3.44  

 

 
Figure 3.42: Log histogram of 19772 
predicted positions (occlusion events) 

 
Figure 3.43: Log histogram of 221356 
matched positions 

            
Figure 3.44: Representation of Ho. The dark areas indicate high probability of occlusions. The 
university building can be detected as occlusion regions. Also, part of the flag pole and its base are 
detected. 

To further investigate the performance of the occlusion detection algorithm, a 

synthetic occlusion was produced (Figure 3.45) and occlusions were detected in the 

probabilistic image map Ho. 
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Figure 3.45: A synthetic occlusion was 
produced by sticking some black tape on the 
window in front of the camera. 

 
Figure 3.46: Predicted positions (occlusion 
events)

 

 
Figure 3.47: Log histogram of 309380 
matched positions 

 
Figure 3.48: Representation of Ho. The black 
tape areas and the bus stop sign are associated 
to large values of Ho. 

 

Occlusion regions in Figure 3.44 and Figure 3.48 are represented by probabilistic 

image maps. Their representation with a more compact model is an open issue. Gaussian 

models are inappropriate because Ho cannot be assumed to result from a Gaussian 

process. Whilst polygons could be used to represent the spatial extent of the occlusion, 

such a representation assumes that occlusions are static, fixed, solid and no targets can 

move in front of the occlusion area. Scene depths maps were used in [88] to provide 

better occlusion reasoning, considering the 3D positions of the occlusion object and the 

targets. However, such a model is still “hard”, in the sense that is Boolean and therefore it 

cannot model non-solid occlusions or adapt to scene changes. 
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3.7 Discussion 
 

In this chapter, a semantic activity-based scene model was introduced. Modelling 

and learning entry/exit and stop zones location and usage from point-datasets has been 

investigated. Modelling and learning of scene features, such as occlusion regions and 

semi-stationary motion noise sources, were also discussed, although these scene features 

are not directly related to the proposed scene model. 

The multi-step algorithm that was introduced appears to cope with noisy data. The 

method is not very sensitive to the initial model order selection, as extra models tend to 

be used for the noise data. However, as the model order is increased, some signal clusters 

may be multi-modal. The MDL criterion seems to fail [92], as it favours high-order 

GMMs that are unrepresentative. Stauffer [92] tried to deal with this problem, using a 

heuristic similar to MDL that penalises high-order GMMs by using an exponentially 

decreasing function. However, no information is given on how the decay parameter is 

estimated.  

Because EM searches for a local maximum of the likelihood, its results depend on 

the initialisation. In the proposed method, random points are selected by the dataset, K-

mean algorithm is applied and its result is used for the initialisation of the EM. However, 

the dependency on the selected points remains. A hierarchical EM [23] that starts from a 

large number of clusters and gradually merges them may be a solution to this problem, as 

dependency on the initialisation is decreased, due to the large number of initial points. 

The data that is used for occlusion region detection is, as in all the other methods 

of this thesis, a set of centroid points, derived from the motion tracking algorithm. 

However, especially for this particular problem, it seems that using information about the 

shape and the size of detected blobs is more beneficial than using only their centroids. 

For instance, when a blob is partially occluded, its apparent centroid may differ from the 

real one and still be detected, while part of the blob is occluded. 

The scene features that have been discussed so far have a simple geometry; 

therefore, their spatial extent can be well approximated by GMs. However, routes may 

have a more complicated shape as it can be seen in an accumulative activity-histogram. 

Therefore, the single Gaussian model per feature model that was used cannot be applied. 
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In the next chapter an alternative solution of a polygon-like model, enriched with 

appropriate pdfs is suggested. 

Junctions and paths are closely related to routes and if the routes of the scene are 

known, then junctions and paths can be extracted more easily. All these scene elements 

are discussed in the next chapter. 
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Chapter 4 
 

4 Learning Routes 
 

4.1 Introduction 
 

In the previous chapter, a scene model was introduced and models and learning 

methods for semantics from single-point datasets, like entry/exit and stop zones, were 

presented. The scene model also represents paths, junctions and routes. These features 

require datasets of sequences of points rather than individual points. This chapter deals 

with modelling and learning of these features from observed trajectories. For this reason, 

a novel route model and an associated learning algorithm are introduced. Paths and 

junctions are derived from the set of scene route models. 

In §4.2, the route model is introduced. This model is consistent with the 

requirements of a spatial semantic description, combined with probabilistic encoding of 

activity. Furthermore, it is discrete, allowing direct deployment of probabilistic networks. 

In §4.3, a novel algorithm is described that learns route models from trajectories. The 

algorithm has the advantage of being unsupervised, auto-initialised and capable of 

operating online. It can deal with incomplete trajectories and is easily configured. 

Trajectory classification to route models is discussed in §4.4. Trajectory classification is 

used during the route learning process and during the operation time of a surveillance 

system. Approaches based on Boolean logic, fuzzy logic and maximum likelihood (ML) 

are discussed. In §4.5, experimental results illustrate the performance of the algorithm. In 

§4.6, junctions and paths are extracted from the set of scene route models, using 

computational geometry. 
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4.1.1 Previous work  
 

Fraile and Maybank [37] proposed a polynomial approximation of vehicle 

trajectory segments and a simple HMM to correspond trajectory segments to events like 

“turn left”, “turn right”, “ahead”, “stop”. The set of events is a rough approximation of 

the target dynamics, though no spatial modelling was attempted. Additionally, a spline 

representation seems to be a more appropriate approximation of a trajectory than a set of 

unrelated polynomial functions that do not guarantee continuity of the trajectory 

derivatives. 

Another HMM-based approach is to model trajectories as transitions between 

states representing Gaussian distributions on the 2D image plane (e.g., Remagnino and 

Jones [81], Kaewtrakulpong [55]) or on the 4D space of image locations and velocities 

(e.g., Walter et al [101]). However, the “hidden” states associated with point-centred 

distributions do not necessarily correspond to real semantic features of the scene. Also, 

the representation of routes as sets of point-centred distributions is not consistent to a 

physical interpretation that is analogue and continuous. 

Koller-Meier et al [58] used a node-based model to represent the average of 

trajectory clusters. The proposed learning algorithm is based on an average distance 

criterion. An extension mechanism allows learning from partial trajectories. A similar 

technique is suggested by Lou et al [61]. A K-means-like algorithm was used to cluster 

trajectories, based on the distance criterion of the maximum separation between 

trajectories. Although both methods successfully identify the mean-average of common 

trajectory patterns, no explicit information is derived regarding the distribution of 

trajectories around the mean average. 

Fernyhough et al [33] and Fernyhough [34] proposed an automatic path-learning 

algorithm that automatically learns object paths by accumulating the trace of tracked 

blobs. The proposed model represents the spatial extent of the paths, though no 

probabilistic information can be derived. Although the algorithm is auto-initialised and 

some promising results have been demonstrated, it requires full trajectories, cannot 

handle occlusions and the results depend on the shape and size of the blobs, as they 

appear on the image plane. 
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Johnson and Hogg [52] and Johnson [53] proposed a vector quantisation NN 

method to learn typical routes taken by pedestrians from representative trajectories. The 

main advantage of this method over previous approaches is that it provides a probabilistic 

representation of activity. However, no high level semantic information is derived and no 

partially observed trajectories are handled. 

Alternative Neural Network approaches have been proposed by Owens and 

Hunter [76], Hunter et al [46] and Hu et al [45]. Although results are promising in all the 

cases, the weakness of the NN learning methods is that they are computationally 

expensive, they lack adaptability, and therefore they are incompatible with online 

operation. 

Grimson et al [40] and Stauffer and Grimson [90] proposed a hierarchical 

clustering of trajectories. Trajectories are represented as a sequence of states in a 

quantised 6D space and trajectory classification and the method is based on a co-

occurrence matrix that assumes that all trajectory sequences are equally long. However, 

this assumption is usually not true and it is unclear how their method deals with it. 

4.2 Route model 
 

In road traffic environments, vehicles must follow specific predefined routes. In 

pedestrian environments, people normally walk on well-prescribed pathways. Even in 

cases where no predefined routes exist, the structure of the scene affects the behaviour of 

pedestrians and normal route-patterns of activity exist, which is verified by results 

presented in this chapter. 

A route model that is both consistent to the human interpretation and fulfils the 

requirements for probabilistic analysis is required, according to the goals that were 

defined in §2.6.1. A route can be described intuitively by its start and end areas, its main 

axis between the start and the end and its boundaries along the main axis. Additionally, 

quantitative information about the usage along and across the route is required to describe 

the statistics of typical usage. 

The scene is assumed to contain multiple routes that may have overlapped 

sections. A single route model must encode the following properties, so that it is 

consistent to both the spatial semantic and probabilistic description requirements: 
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- The main axis of the route. 

- The terminators (start and end points) of the route. 

- A description of the width along the route. 

- Indication of the level of usage of the route, both along and perpendicular to 

the direction and in comparison to the other routes. 

The route model that it is proposed in this thesis (Figure 4.1) consists of a central 

spline axis, defined by a sequence of equi-distant nodes that represents some average of 

the route. The constant distance between adjacent nodes is referred to as the resample 

factor R of the model. In addition, two bound splines around the central axis form an 

envelope and represent the width of the path. Alternatively, the width can be represented 

by the standard deviation of the observations across the route. A route has two terminator 

nodes (start and end) that typically correspond to entry/exit zones of the scene. Finally, a 

weight factor represents the usage frequency of the route. 

 
Figure 4.1: Spatial representation of the proposed route model. 

Specifically, each node i, i=1..L where L is the number of the model nodes, is 

characterized by: 

− a 2D position vector that represents the coordinates of the node: xi=[xi, yi] 

− a weight factor wi that reflects the strength of the node, based on the 

number of times that it has been updated, during learning. 

− a normal vector ni=[nxi, nyi], defined as the unit vector perpendicular to the 

local spline direction, defined by the sequence of vectors x. 



Chapter 4: Learning Routes  69 
________________________________________________________________________ 

 

− two bound 2D points along the normal vector line, the left boundary  

li=[lxi, lyi] and the right boundary ri=[rxi, ryi]. The two bound points encode the 

width of the route at the specific position. They can be set according to either the 

extremes of the matching trajectories, or a Gaussian distribution around the node 

position, based on the standard deviation σi of observations along the local normal 

vector. 

− A probability density function gi(d) of the usage of the node, across the 

route, where d is the signed distance from the node position. 

The direction of the normal vector ni is assumed that satisfies the following 

condition: 

( ) ( ) 00, ≤−⋅≥−⋅∀ iiiiiii xrnxln andi  (4.1)

The weight factor w of the whole route is given as the average of weights of its 

nodes: 
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A set of splines can be defined for each route model, derived by the sequence of 

nodes. A main axis spline Sx is defined by the sequence of the node centres x={xi}. 

Similarly, the left boundary Sl and the right boundary Sr splines are defined by the 

sequence of the node bound points l={li} and r={ri}, respectively. Additionally, two 

splines Slσ and Srσ are defined, based on the sequence of points lσ={xi+σi
.ni} and rσ={xi-

σi
.ni}, respectively. 

A region Ei is defined for the node i as the region enclosed by the two boundary 

splines Sl and Sr and two lines that are parallel to the normal ni and in distances R/2 from 

it. 

The above-described model allows explicit representation of the spatial extent of 

routes and therefore it is consistent to the semantic representation requirement. In 

addition, the probabilistic representation of the usage, both along and across the route, 

and the discrete nature of the model allow direct deployment of a probabilistic network 

(e.g., HMM). 
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4.3 Route learning 
 

The input data of the algorithm is a set of trajectories, derived by a motion 

tracking algorithm that estimates the location of the centroid of the moving objects, from 

a single fixed camera. It is desirable to learn paths using representative trajectories 

unconstrained by tracking failure noise (see §2.3.1) . For this reason, short trajectories or 

trajectories with many sudden changes of direction are filtered. Further validation of the 

trajectory dataset is based on knowledge of the entry/exit zones. Specifically, trajectories 

are accepted only if they start from a valid entry zone and terminate at a valid exit zone.  

Trajectories are resampled over the spatial distance, according to the resample 

factor R, to normalize the trajectories of high and low speed objects and to counter the 

effects of perspective. A resample trajectory p is represented as a sequence of points 

pi={pxi, pyi}, i=1..K, where K is the number of the samples. 

The model order of the scene routes is not defined explicitly, but it is determined 

implicitly by the algorithm parameters and the dataset. The first trajectory of the dataset 

initialises the first route model. Other route models will also be initialised automatically 

by trajectories that do not match an existing model. 

Theoretically, there is no restriction in the number of route models of the scene. In 

practice, route models with very low weight factors wi are discarded through the learning 

process, for computational efficiency. 

A summary of the learning algorithm is as follows: 

− The first trajectory of the dataset initialises the first route model. 

− Each new trajectory is compared with the existing route models. 

o If a trajectory matches a route model, then the route model is updated. 

o If a trajectory does not match to any route model, a new model is 

initialised. 

− The updated route model is resampled, so inter-node distances are kept equal to R. 

− Each updated route model is compared with the other route models. 

o If two route models are sufficiently overlapped, they are merged. 

The algorithm requires mainly two parameters: a) the resample factor R, b) the 

distance threshold T. The resample factor R defines how detailed are the route models. 
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Very small values for the resample factor are not recommended, because this selection 

can make the algorithm computationally expensive without significant benefit. The 

distance threshold T defines the minimum allowed gap between different routes. Its 

recommended value is related with the quantity of the learning data and specifically the 

less data the larger the value of T. Comparison of results for different values of the 

parameters R and T is given at §4.5. 

The estimation of the probability density functions gi(d) of usage across the route 

is performed after spatial clustering. This means that after determining the other route 

model properties, the trajectory dataset is re-used to explicitly estimate these distributions 

(see §4.4.2). However, if gi(d) is assumed Gaussian, it can be directly determined online 

by the standard deviation σi of the node, simultaneously with the other attributes of the 

model. 

In the following paragraphs, the basic steps of the learning algorithm are 

described in more detail.  

4.3.1 Route model initialisation 
 

The first trajectory of the dataset and any trajectory that does not match any of the 

existing routes initialise a new route model. Each sample i of the trajectory p defines a 

node of the new route model, according to the following equations: 

xi = pi (4.3a)

li = pi (4.3b)

ri = pi (4.3c)

wi = 1 (4.3d)

σi = 0 (4.3e)

 The normal vectors are determined to be perpendicular to the spline Sx. 

4.3.2 Classification of trajectory to route model 
 

Each trajectory is compared with each route model. Comparison is based on the 

distance between a route model and a trajectory. The route model l with the minimum 

distance from the trajectory k is a candidate match for the trajectory. If this distance Dkl is 

smaller than the threshold distance T ( TDkl ≤ ), the trajectory matches the candidate 
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route model and updates it. Otherwise, a new route model must be initialised by the 

trajectory. 

The following distances are defined for trajectory clustering: 

Distance dij of trajectory sample i from route node j: If pi is within the region Ej 

of the node j (as defined in §4.2), then dij is equal to zero. Otherwise, dij is set to the 

minimum Euclidean distance of pi from the borders of the node area Ej. 
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Distance d'il of trajectory sample i from route l: Defined as the minimum of the 

distances of the trajectory sample from the route nodes: 
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where Ll is the number of the nodes of the route model l. 

Distance Dkl of trajectory k from route l: Defined as the maximum of the 

distances of the trajectory samples from the route model: 
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where Kk is the number of samples of the trajectory k. 

The above classification scheme allows only one matched route per trajectory. 

Also, it assumes that a trajectory is not longer than the matched route. However, if the 

training dataset contains partial trajectories, then the algorithm may fail. 

For this reason, partial matching of route models from trajectories is allowed. 

That means that a trajectory may match a route model, even if the route model is shorter 

than the trajectory. In this case, the samples of the trajectory k that are beyond the end of 

the route l are excluded from the estimation of the distance Dkl, as calculated by Eq.4.6. 
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Figure 4.2: Distances of a trajectory points from a route. The maximum separation distance is 
smaller than the threshold, so that trajectory matches the route. 

 
Figure 4.3: Distances of trajectory points from a route. The maximum separation distance is larger 
than the threshold, so that the trajectory is unmatched. 

Because route models may have common paths, it is possible that a partial 

trajectory will match more than one route model. Although partial trajectories can be 

eliminated from the dataset using the knowledge of entry/exit zones, the ability to classify 

partial trajectories is still desirable. For example, an online trajectory classifier must be 

able to cope with partial trajectories and multiple matchings. 

However, the classifier that was described above is based on Boolean logic that 

does not allow multiple classifications. Later in this chapter, two other classifiers that 
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allow multiple matchings are discussed: the Fuzzy Logic Trajectory Classifier and the 

Maximum Likelihood Trajectory Classifier. 

4.3.3 Update route model with trajectory 
 

When a trajectory matches a route model, during the learning process, the route 

model is updated by the trajectory. Route model updating is performed in three steps: 

i) Node updating: The trajectory is resampled by the normals of the route model, so 

that each route model node i is associated with a trajectory sample pi laying on the 

direction of the normal ni. The node properties are updated according to the following 

equations: 
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The above equations allow accumulation of the information by the route model 

nodes. 

 
   (a)      (b) 
Figure 4.4: Route model matched by a trajectory (a) and then updated (b).  The red thick line 
represents the trajectory. 

ii) Route model extension: If partial matching is allowed, then it is possible that a 

route model is matched by a longer trajectory (see Figure 4.5). In this case, the part of the 
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trajectory that is beyond the terminators of the route model is used to initialise new nodes 

of the route model (using Eq.4.3) to extend the model. To avoid unrepresentative 

extensions, extension may not be allowed if the matched route model part is short or if 

the weight of route terminators is high. In this case, some extra parameters determine the 

restriction rules. 

 
Figure 4.5: Example of a route that should be extended. 

iii) Route model resampling: After updating, the route model nodes may have moved 

from their position and the distance between consecutive nodes may not be equal to R. To 

keep the nodes at equal distances, new sequences of position vectors x' and weights w' 

are calculated from the spline Sx. The sequence of normals n is updated appropriately, so 

that each new normal ni' is perpendicular to the direction of the spline Sx, at the position 

xi'. The bound vectors li' and ri' are defined as the points that the normal ni' crosses the 

splines Sl and Sr respectively. Standard deviations σi are estimated considering the 

splines lσ and rσ. The crossings of the two splines Slσ and Srσ with the normals ni' define 

two new sequences of points l'σi and r'σi. Then, the standard deviation is defined as: 

( )iσiiσi xrxl ′−′+′−′⋅=′
2
1

iσ  (4.8)

 

 



Chapter 4: Learning Routes  76 
________________________________________________________________________ 

 

4.3.4 Route comparison 
 

Route models are initialised according to the sequence of trajectories in the 

dataset. Therefore, during the learning process it is possible for a trajectory that 

corresponds to an existing but incomplete route model to initialise a second route model, 

due to the lack of trajectories that fill the “gap” between the two route models, at that 

time. Obviously, it is desirable that the two route models are merged, when evidence 

from the trajectory dataset can prove that they actually belong to the same scene route. 

Two route models are considered for merging, when their maximum separation falls 

below a threshold T. 

Route comparison is based on the following distances:  

i) Distance dik,jl of node i of route model k from node j of route model l: A region 

for each node is defined, according to the definition given at §4.2. If the regions Eik and 

Ejl of the two nodes are overlapped, then dik,jl is set to zero, otherwise it is set to the 

minimum distance between the two areas. 

( )⎩
⎨
⎧

=∩
≠∩

=
{},min
{}0

,
jlikjlik

jlik
jlik EEifEED

EEif
d  (4.9)

ii) Distance d'ik,l of node i of route model k from route model l: Defined as the 

minimum of the distances of the node i from the nodes of route model l: 

( )jlik

L

jlik dd
l

,, min=′  (4.10)

where Ll is the number of the nodes of the route model l. 

iii) Distance Dkl of route model k from route model l: Defined as the maximum of the 

distances of nodes of route model k from the route model l: 

( )lik

K

i
kl dD

k

,max ′=  (4.11)

where Kk is the number of nodes for the route model k. 
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Figure 4.6: Maximum Separation Distance of two paths. In this example, the distance is smaller than 
the threshold, so the paths will be merged. 

4.3.5 Route merging 
 

If the maximum separation distance between two route models is smaller than the 

threshold T, the two route models can be merged. Route merging is similar to route 

updating. First, the route with the highest weight is selected as primary and this route is 

updated with the other, secondary, route. Each node i of the main route is updated, using 

the crossing x2,i, l2,i, r2,i, lσ2,i, rσ2,i of the splines Sx2, Sl2, Sr2, Slσ2, Srσ2, of the secondary 

route, with the normal vector n1,i.  
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If the secondary route has nodes that extend beyond the terminators of the main 

route, then the main route is extended. Finally, the updated route is resampled, as 

described in the previous section. 

4.4 Trajectory classification 
 

Trajectories or parts of trajectories are classified to route models either during the 

learning process or during the normal operation of the surveillance system. In §4.3.2, a 

Boolean trajectory classifier, based on a distance criterion, has been described. This 

approach is appropriate when trajectories are in areas where routes are not overlapped 

and no ambiguity exists. However, when substantial overlapping occurs, an uncertainty 

arises which cannot be resolved by the Boolean classifier. An optimal approach (in a 

Maximum Likelihood sense) would require knowledge of the distribution of the 

observations across each route. Because in general this distribution is not known prior to 

the generation of the geometric model, a method is introduced that encodes the trajectory 

distribution across a route, and uses Fuzzy Logic in order to bootstrap the route 

construction process.  

Once the route models have been learnt, a maximum likelihood classifier can be 

used to recognise and label new trajectories. If cross route distributions are assumed 

Gaussian, then cross route distributions are known during the online learning and it is 

possible to use the maximum likelihood classifier for learning. 

4.4.1 Fuzzy Logic Trajectory Classifier (FLTC) 
 

Using a fuzzy logic approach, certainty estimates are calculated for point-node 

matches and then an overall certainty is estimated for the complete trajectory-route 

match. An asymmetric membership function is used (Figure 4.7) which captures the 

typical characteristics of the distribution. The distribution is modelled by a function g of a 

point pi lying in the normal direction of the node i and is defined as: 
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where iiii xbxp −−−=d  and ii lb =  or ii rb = , under the condition ( ) ( ) 0≥−⋅− iiii xbxp . 

If threshold<− ii xb , we set threshold=− ii xb  in Eq.4.13. The threshold distance is 

defined as the distance from either side of the route boundaries where matching is still 

possible.  

 
Figure 4.7: Proposed membership function that models the distribution of observations across a 
route node. xi is the position of the node and li, ri are the two bound points. The point pi is assumed to 
be lying on the normal direction of the route. 

To classify a trajectory within a route model j using the FLTC, the trajectory is 

sampled by the node normals of the route. For each trajectory sampled-point 
jip  a 

weighted estimate [87] 
jig  is given according to Eq.4.13. Then, the certainty estimate of 

a trajectory-route match })({ ipjh′  is given by the minimum of the certainty estimates of 

the point-node matches (4.14). Finally, the certainty estimates are normalized by dividing 

by the sum of the certainty estimates for all the possible trajectory-route matches 

(Eq.4.15). The trajectory { p } is classified to the route j that maximizes the certainty 

estimate. 

( ))(min})({
jj

j
iiij gh pp =′  (4.14)
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The FLTC is used during the learning process to match trajectories with existing 

route models. In the case that multiple matching occurs, all the matched route models are 

updated according to the particular certainty estimations. 

4.4.2 Maximum Likelihood Trajectory Classifier (MLTC) 
 

Having acquired the spatial model, distributions of observations across the routes 

are learnt and incorporated into the model. Figure 4.8 and Figure 4.9 show the estimated 

pdfs of observations across selected nodes for two specific routes, from 465 and 6172 

matched trajectories, respectively. An alternative, more compact, approach is to 

approximate the cross-route distributions using Gaussian functions. In this case, the 

standard deviations σi have already been estimated during the learning process. 

The knowledge of the distributions across the route allows for the use of a 

Maximum Likelihood Trajectory Classifier (MLTC) as a more accurate alternative to the 

FLTC. If 
jig represents the pdf of observations across node ij of route j, the probability 

})({pjh′  of a trajectory p, under the condition that it belongs to the route j, is given by 

Eq.4.16, assuming independent observations 
jip . According to the ML criterion, the 

trajectory is assigned to the route that maximizes the probability jh  as given by Eq.4.17. 
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Figure 4.8: Route model and derived distributions of observations across five selected nodes. Node 
ordering is from bottom left to top right along the route. Red dashed lines indicate the boundaries 
(envelope) of the route at each node. The x-axis indicates the distance from the main axis of the route 
in pixels. 

 
Figure 4.9: Route model and derived distributions of observations across 5 selected nodes. Node 
ordering is from bottom right to top left. 

4.5 Route learning results 
 

The performance of the proposed algorithm has been tested in different scenes 

and different datasets. Figure 4.10 depicts a dataset of 752 trajectories that are consistent 

with the entry/exit zones that were learnt in the previous chapter. Figure 4.11 shows the 

five route models that are automatically derived from the route learning algorithm, using 

a resample factor R=20 pixels and minimum separation distance threshold T=30 pixels, 

where frame size is 640x480. Figure 4.12 depicts the five route models individually.  

The second and the fifth route model seem to be very similar. However, the 

distance between their terminators at the right side is larger than the minimum separation 

distance threshold (physically corresponding to university entrance and a cash machine), 
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therefore the route models are assumed different. For larger T, the two routes are merged 

(see Figure 4.15). 

 
Figure 4.10: Dataset of  752 trajectories. 

 
Figure 4.11: Set of five route models, as they derived by the route learning algorithm, for R=20 pix. 
and T=30 pix. 
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Figure 4.12: The five derived route models. 

Route Model Nodes Usage 
1 23 40.54% 
2 33 31.30% 
3 27 15.12% 
4 34 8.96% 
5 32 4.07% 
Table 4.1: Usage of route models of Figure 4.12. 
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An alternative representation of the route width can be based on the standard 

deviation of the observations across the route. Figure 4.13 shows the spatial extent of the 

routes, if the boundaries of each node are set to a distance of 3.σi for each node i.  

For most of the routes, results are identical for both representations. However, 

because sometimes the distribution of observations is not symmetrical around the node 

position xi, a Gaussian function is not always accurate. Therefore, some difference may 

exist on the two boundary representations, as it can be seen in two of the route models. 

Although width representation based on the standard deviation is not so accurate, it has 

the advantage of allowing adaptive learning of routes. 

 

 

  
Figure 4.13: Route width modelling using the standard deviation of observations across the route. 
Red line indicates route width set to 3·σ, while white line indicates route width set according to the 
extremes of matched trajectories . Illustrations are given for the entire set of route models and for 
two specific route models. 
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Figure 4.14: Route models derived for different value of the resample factor R. Results are given for 
R=20, 30, 40, 50, 60 and T=30. 

The resample factor R defines the accuracy of the model. Results for different 

values of R (see Figure 4.14) are considered similar by a common visual inspection. 

Table 4.1 shows the average learning time per trajectory for different values of R. The 

route learning algorithm was implemented in Matlab and running on a Pentium3-550Mhz 

Linux system with 256MB RAM. The current implementation can serve real-time 

learning of routes with rates of 0.2-0.4 trajectories per second. Implementation of the 
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algorithm in C and deployment in faster processing units would allow real-time learning 

of routes, even for high-activity scenes, subject to satisfactory extraction of data from the 

motion tracking module. 

R(pix) 20 30 40 50 60 
Time(secs) 8.455 4.849 3.851 2.833 2.548 
Table 4.2: Variation of learning time per trajectory. 

The minimum separation distance threshold T parameter affects the number of 

derived route models and their widths. Smaller values of T lead to a large number of 

narrow route models that can be useful for motion prediction. For higher values of T, the 

learnt scene routes are fewer and wider and fit closer to a human interpretation of the 

scene. Figure 4.15 illustrates this variation of the scene route models. 

 

 
Figure 4.15: Route models derived for different values of minimum separation distance threshold T. 
Results are given for T=10, 20, 30, 40 and R=20. The number of accepted route models with usage 
above 1% is 19, 8, 5 and 4 respectively. 

The route learning algorithm is auto-initialised and its initialisation depends on 

the order of the trajectories in the dataset. The sensitivity of the algorithm to the order of 

the trajectories in the training set was investigated and found to be low. Figure 4.16 
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illustrates different sets of route models, derived from the same training dataset with 

different (random) ordering of trajectories. Results differ slightly but their semantic 

interpretation (4-5 routes between 3-4 entry/exit zones) is equivalent. 

 
Figure 4.16: Results for different (random) order of the trajectory dataset. Results indicate that the 
algorithm is not sensitive to the order of the data (initialisation). 

The route learning algorithm is demonstrated on two shorter video sequences that 

display pedestrian activity (Figure 4.17). From the first video sequence (Curtin video, 

resolution 768x576, 14 minutes, 2 frames/sec), 190 trajectories were extracted. The 

parameters of the algorithm were: the resample factor: R=40 pixels, distance threshold 

T=60 pixels. From the second video sequence (Northampton Square Video, resolution 

384x288, 10 minutes, 2.5 frames/sec), 155 trajectories were extracted and the parameters 

of the algorithm were the following: R=10 pixels and T=20 pixels. The two scenes and 

the derived trajectory data are shown in Figure 4.17. No entry/exit zone information was 

used and the route extension was unrestricted. 

Although the activity in the Curtin video is more complex, the performance of the 

algorithm is satisfactory, as indicated by the results (Figure 4.18). The Northampton 

Square video depicts the same scene with the Figure 4.10, from a different perspective 

and results are shown in Figure 4.19. 
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Figure 4.17: The video sequences that they have used for learning routes. The first video (top, 
Curtin) was captured in university of Curtin, in Australia. The second video (bottom, Northampton 
Square) images the main entrance of the City University. The trajectory dataset is depicted at the 
right. 
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Figure 4.18: The main axes of the extracted route models is shown on the top-left image. The most 
popular route models are shown on the rest. Notice at the bottom right image that a real scene 
feature (a bollard) separates the two detected routes. 
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Figure 4.19: The main axes of the extracted route models is shown on the top-left image. The most 
popular route models are shown on the rest. 

4.6 Junctions - Paths 
 

Intuitively, a junction is the area where two routes cross. A more rigorous 

definition is adopted by this thesis: a junction is the region of intersection of two routes, 

where route directions differ by more than an angle ω. This definition reflects the fact 

that while a target is on a junction, some uncertainty is raised about its future direction. 
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Paths are considered as route parts in between junctions and/or entry/exit zones. 

Paths may also relate to route overlapping. If route parts are overlapped and the route 

directions are similar along the overlapped route parts, their union represents a path. For 

instance, the upper path of Figure 4.22 is formed by two route parts with similar 

direction. 

Accumulative statistics could be used to identify the areas where target directions 

are similar (paths) or different (junctions). However, from the above definitions, it is 

concluded that junctions and paths are closely related to the geometry of the scene route 

models; therefore, they can be easily extracted from a set of route models. 

Let Eki be the area of the node i of the route model k, as defined in §4.2. All nodes 

of the scene route models are checked for whether they are part of junctions, according to 

the following criteria: 

{}EE ljki ≠I  (4.18)

( ) ωcos<⋅ ljki nnabs  (4.19)

where ω sets a decision threshold angle for the direction change. If both criteria are 

fulfilled for a pair of nodes i and j, belonging to route models k and l respectively (k≠l), 

then a junction area is Jki,lj which is related to the two nodes, is set as the intersection of 

the two nodes: 

ljkiljki, EEJ I=  (4.20)

A junction Jkl of two routes k and l is defined as: 

UU
i j

ljki,kl JJ =  (4.21)

The route models of Figure 4.11 are visualised as polygons in Figure 4.20. 

Junctions are detected for ω=5º and ω=30º and results are shown in Figure 4.21. As can 

be seen, larger values of ω provide a more conservative estimate of junctions. Junctions 

are used to split the route models to paths. Figure 4.22 visualises the segmentation of 

routes to paths and junctions. 

If a junction Jkl, as defined by eq.4.20, consists of unconnected components, each 

component defines an individual junction element. For example, the green and yellow 

routes of Figure 4.20 cross each other in two different areas, as it can be seen in Figure 

4.22. Therefore, two individual junctions are defined. 
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Figure 4.20: Five routes detected by the route learning algorithm. 

 
Figure 4.21: Junction estimation, using ω=5º (left) and ω=30º (right). 

 The partitioning of routes to paths and junctions is performed not only to identify 

semantic features, but also to support activity analysis. For example, entry/exit zones, 

paths and junctions can be considered as primitives of routes and rare, complicated routes 

can be described as sequences of these primitives. Also, junctions are regions of interest 

for a long-term prediction module, because a target’s motion within junctions reflects the 

target’s intention to move towards specific regions. 
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Figure 4.22: Segmentation of the scene route models to paths (white areas) and junctions (black 
areas). 

4.7 Discussion 
 

A route model is introduced that aims to represent both the spatial extent and the 

probabilistic distribution of similar trajectories. A route learning algorithm is proposed 

that is unsupervised and auto-initialised. Additionally, the algorithm has only two 

parameters; therefore, it can be easily configured. 

One of the main dilemmas in developing the algorithm was whether to allow route 

extension or not. Route extension allows the algorithm to handle a trajectory dataset 

consisting of incomplete trajectories. On the other hand, the extension mechanism may 

extend routes in an unrepresentative way. To overcome the dilemma, trajectories can be 

validated using the entry/exit zones of the scene and the extension mechanism can be 

eliminated. 

Sometimes it is desirable to provide an algorithm that not only learns the routes, but 

also adapts to possible variation of the routes, due to temporal or environmental changes. 

Some mechanisms of the route learning algorithm, like the extension and the definition of 

the bound points, do not allow the algorithm to operate adaptively. However, since the 

extension step can be skipped, if the training dataset is consistent with the scene 

entry/exit zones and bound points can be determined using the standard deviation of the 
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observations across the route, the algorithm will function without significant loss of 

accuracy (see Figure 4.13). Some minor modifications (for example introducing an 

adaptive learning rate parameter to the Eq.4.7a-e) should allow the algorithm to be used 

online and to adapt to the scene route models. 

Further validation of the learning algorithm is given in the chapter 6. The next 

chapter discusses how activity can be analysed using the scene model. For this reason, a 

HMM is superimposed on the set of the route models. 
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Chapter 5 
 

5 Activity Modelling and Analysis 
 

5.1 Introduction 
 

This chapter illustrates how the scene model is used for activity analysis. As 

stated previously, the observed activity in a scene is closely related to the scene. Actually, 

the structure of the scene explicitly or implicitly affects the activity. In the previous two 

chapters, a reverse engineering approach was used to determine a semantic scene model 

using patterns of observed activity. This chapter does not attempt to develop a new 

activity model or to go deep in details of activity analysis methods. It rather demonstrates 

the potential of using the scene model in activity modelling and analysis. In particular, it 

illustrates how the discrete and probabilistic character of the scene model can be 

exploited by overlaying a probabilistic network onto the scene model. 

Activity is analysed in terms of the semantic scene model. For instance, activity can 

be annotated according to the scene semantics and high-level descriptors can be used for 

a context-based surveillance database. Individual targets activities can be characterised as 

typical or atypical and an automatic alarm system can relieve the operators. Also, long-

term predictions can be generated to reveal the target intentions. 

The motivation for the scene-based activity analysis is the fact that humans usually 

interpret the activity in relationship to scene features. This approach has been used in 

many surveillance applications, although in most cases the scene features are manually 

labelled. 

The chapter is organised as follows: A summary of previous work on activity 

analysis is given in §5.1.1. The proposed scene-based activity model is presented in §5.2. 

The requirement for time-variant activity models is discussed in §5.3. In §5.4, it is 
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illustrated how the proposed models are used for applications like long-term prediction 

and atypical activity detection. The chapter concludes with the discussion section §5.5. 

 

5.1.1 Previous Work 
 

Many researchers have used a variety of probabilistic networks to model and 

analyse activities. For instance, Buxton and Gong [21] proposed that Bayesian Belief 

Networks (BBNs) can be used for activity analysis. The nodes of the network are related 

to both mid-level trajectory data (position, speed, size) and high-level scene descriptors. 

The scene descriptors are ground-plane geometric primitives, related to the semantics of 

the scene [43] and they are defined manually [44]. A similar approach is taken by 

Cupillard et al [24]. In their framework, specific types of abnormal activities, such as 

“Fighting”, “Blocking”, “Vandalism” and “Overcrowding” are described by “scenarios” 

that are defined either by AND/OR trees or BBNs. The nodes of the networks are 

associated to either “states” (sets of specific values of properties of single/multiple 

targets), or “events” (change of “state”), or sub-scenarios. However, in both approaches, 

the structure of the BBNs must be defined manually and the BBN parameters are 

determined through supervised learning. 

The Hidden Markov Model (HMM), a different type of probabilistic network, has 

attracted much interest. Bobick [14] and Bobick and Ivanov [15] propose a HMM 

analysis of activity recognition of single targets. Analysis of interaction between targets 

is performed with Coupled HMM [17], proposed by Brand et al. Variable Length HMM 

(VLHMM) have been proposed by Galata et al [38] to deal with the cases where variable 

memory is required for optimal activity prediction and recognition, in contrast to the 

limitation of the constant memory-length that is imposed by traditional n-order HMMs. 

The states of the VLHMM are automatically learnt using a vector quantisation (VQ) 

method [53]. For wide-area surveillance systems, scalability of the activity models is 

required, which can be addressed using a hierarchical structure. For instance, the Abstract 

HMM (AHMM), proposed by Bui et al [19] and the Hierarchical HMM (HHMM), 

proposed by Luhr et al [63] aim to model activity observed from multiple camera 

surveillance systems that are distributed in structured scenes. Although a HMM and its 
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special variants have been proved quite efficient to analyse activity, HMM training is an 

issue. More specifically, the complexity of the HMM training methods that assume that 

the states are unknown is exponentially increased by the number of the states [80]. This 

chapter does not attempt to introduce another type of HMM; it rather exploits the scene 

models that were learnt in previous chapters and uses them as the basis of HMM. This 

approach allows fast learning of the HMM parameters and association of the HMM states 

with semantic features of the scene. 

In all the above approaches, model learning and activity analysis is based on 

available trajectory data. Some researchers have proposed activity analysis methods that 

do not require the knowledge of complete trajectories. For instance, Boyd et al [16], 

proposed a method where scene activity is represented by a source-destination network 

traffic model. A statistical network model of the activity is constructed not by tracking 

individual targets, but by counting transitions between manually defined areas and 

applying network tomography [99]. The benefit of the method is that it is useful for 

systems that are not able to reliably derive full trajectories, but that have some limited 

capability to track targets as they transit between areas. However, in this case, the overall 

activity of the scene can be analysed, but not activities related to individual targets. 

Pixel-based activity models have also been proposed. Pixel level event detection 

and semantic understanding, without the requirement of explicit target tracking is 

proposed by Jeffrey and Gong [75] and Xiang et al [104]. A GMM representation of the 

scene activity is suggested in [75], which is automatically learnt using EM and MDL 

[104]. However, pixel-based methods do not benefit from the history of target motion 

that may be crucial for activity analysis. 

A review of generative models that have been used for learning and understanding 

activity was present by Buxton [22]. A unified view of these models, based on [86], is 

presented in Table 5.1. 
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Initial Extension Final 

Gaussian Mixture VQ 
Gaussian reduce dimension Principal Component Analysis (PCA) 

VQ Dynamic HMM 
PCA Independence Independent Component Analysis (ICA) 

HMM Coupling CHMM 
HMM variable length VLHMM 
ICA Hierarchy BBN 

HMM Hierarchy AHMM, HHMM 
BBN Dynamic DBN 
DBN Utility DDN 

Table 5.1: Relationships between probabilistic models that have been used for activity learning and 
understanding (adapted from [22]). 

 

5.2 Scene-based activity modelling 
 

Target activity can be related to elements of the scene model. For example, a target 

will enter the scene by an entry zone, follow a path, then reach a junction and take 

another path, stop at a stop zone and finally exit the scene through an exit zone. If it is 

detected outside the scene model, its activity will be characterised as atypical. 

The discrete character of the scene model, as illustrated in a topological 

representation, allows discrete-state models like Markov Chains and Hidden Markov 

Models (HMM) to be applied. Both markovian models can be used for activity modelling 

and analysis. The suggested approach is HMM-like for two reasons: Firstly, HMMs are 

considered more powerful, because they distinguish observations and states and model 

the uncertainty of correspondences of observations to states using membership functions. 

Secondly, the probabilistic nature of each of the scene elements allows the required 

membership functions to be easily determined for each of the states of the model. 

Two network representations can be derived by the scene model. The first consists 

of scene elements like entry/exit zones, paths, junctions and stop zones. The second 

consists of all the nodes of all the scene route models. HMMs can be overlaid onto both 

types of network. In this chapter, the former approach of a route-based model (see Figure 

4.1) is investigated, while the next chapter illustrates an application of an entry/exit zone-

based model. 
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5.2.1 Route-based Hidden Markov Model (RBHMM) 
 

The states of a route-based Hidden Markov Model (RBHMM) are defined to be 

the nodes of all the accepted route models, plus two extra states: an “out-of-any-node 

state”, which indicates activity outside the modelled routes and an “end state”, which 

indicates the end of the observation. It is sensible to derive the nodes from uni-directional 

routes, so that directionality information is incorporated at each node. 

Let assume that a scene contains W route models and each route model w=1..W 

consists of Lw nodes. The number of the states N of the RBHMM is given by the 

following formula: 
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The elements of the RBHMM are: 

- S={Si}, i=1..N, the set of states. 

- Q={qk}, k=1..M, the sequence of the states.  

- A={aij}, i,j=1..N, the transition probability distribution, where aij=P(qt+1=Sj | qt=Si). 

- π={πi,} i=1..N, the initial state distribution, where πi=P(q1=Sj). 

- O={Ok}, k=1..M, the sequence of the observations. 

- B=[bi(v)], i=1..N, v a position vector and bi(v) is the membership function of the 

observation v to the state i. 

The HMM parameters are generally recommended to be learnt using iterative 

algorithms [80]. However, because of the large number of states, these algorithms are 

very slow and often impractical, especially for online learning. Instead, we use the pdf 

distributions of observations across the routes (see §4.2) to encode the observation vector 

B (Eq.5.2). Then the RBHMM parameters are estimated cumulatively using Eq.5.3 and 

Eq.5.4. 
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where Ol,k is the kth observation from the lth trajectory l=1..L, k=1..KL and gi(Ol,k) is the 

estimate of the probability that the observation Ol,k corresponds to the state i, according to 

the associated learnt cross-route distribution. 

5.3 Long term variations 
 

The HMM that we described in the previous section is built under the assumption 

that the trajectories are generated by a stationary stochastic process. In many cases, this 

assumption is invalid, as the target activity may vary depending on the time of day. For 

instance, for the scene of Figure 5.1 which is the entrance of the University, we expect 

that in general, between 8am and 10am, most pedestrians will be walking to the entrance 

of University; from 1pm to 2pm, they will be wandering around outside the entrance; at 

5pm many will be leaving the University and at midnight, hardly anyone will be around. 

However, we can assume that target behaviour remains the same for short periods 

of time (e.g., 15 min-1 hour) and this pattern is repeated every weekday at the same time. 

In addition, we assume that this period of time is long compared to the lifetime of a 

trajectory. Therefore, we can establish a static HMM model for each time slot. It is 

obvious that such models need learning data from more than one day, so sufficient 

observations are provided for estimating the models of each time slot. 

In Eq.5.3 the initial probability πi of the state i has been defined over the sum of 

the observed trajectories. However, a more reasonable approach is to multiply this 

relative probability by the rate of pedestrians’ appearances (M/T) to derive an absolute 

measure of the probability of a new appearance over time: 
T
Mπ ii ⋅=′ π . To illustrate the 

advantage of iπ ′  over iπ , let’s consider the case of 100 out of a total of 1000 pedestrians 

starting their route from node i, between 10am-11am and 1 out of a total of 10 

pedestrians starting from node i, between 10pm-11pm. In both cases, iπ takes the 0.1 
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value, but this fails to indicate the fact that a pedestrian appearing so late is anyway 

atypical, which is indicated by using iπ ′ . 

     
Figure 5.1: Initial probability iπ  of the two terminator nodes of the route in Figure 4.8, during a 24-
hour period. x-axis indicated the time of the day. At 8-9am, almost all trajectories occur towards the 
entrance of the University, whilst around 5pm, people tend to leave. 

      
Figure 5.2: Initially probability iπ′  over time for the two terminator nodes of the route in Fig.4. The 
peaks of the distributions have moved to 10am and 1-2pm, indicating that these are the most popular 
periods for people to come and leave the University respectively. 

 

5.4 Activity Analysis 
 

The activity of the scene is generally represented by a set of trajectories. 

However, this representation is mid-level and does not allow for analysis of any unseen 

activity. Therefore, it is desirable to provide a higher level of understanding of the 

activity. For instance, activity can be annotated in terms of the semantic features of the 

scene or it can be characterised as typical or atypical. It is also useful to provide a 

mechanism for activity prediction, based on previous observed activities. This section 

demonstrates how the proposed probabilistic models can be used for the prescribed 

applications. 

5.4.1 Activity Labelling 
 

Activity can be represented using a semantic, high-level representation, consistent 

to the scene model. For instance, the first/last points of a trajectory can be matched to an 
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entry/exit zone (see Appendix I) and the entire trajectory to one or more routes. Further 

characterisation can be based on the paths and the junctions that are related to the 

matched part of the route. 

For instance, Figure 5.3 illustrates the labelling of 53 previous unseen trajectories, 

according to a route model shown in Figure 4.18. The colour coding uses solid colour 

lines (red, magenta, cyan, green and black) to identify trajectories that have been matched 

with known routes. Dashed deep blue lines (see bottom left) indicate trajectories that do 

not match any existing route model.  

 
Figure 5.3: Trajectories labelling consistent to the route model of the scene. 

 

5.4.2 Activity Prediction 
 

Motion prediction is usually derived from the dynamics of a target, using linear 

prediction, Kalman filter [56] or particle filter [48] [49]. However, these approaches do 

not consider the general behaviour of the targets in a specific scene and they fail to 

provide reliable predictions about the position of the target after extended periods or the 

target's final destination. 

Long-term predictions can be derived from the RBHMM which encodes the 

general behaviour of the targets within the scene. The probability of a state j after K time-

steps, assuming the observation vector O is given by the following equation: 
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where (K)
i,ja  is the element {i,j} of the matrix AK and )(iKδ , defined in the Appendix III, 

represents the maximum probability of the state i at the time-step K, given the 

observation vector. 

In order to derive predictions about the destination of a target, (in other words the 

probability that the target will exit the scene at node j), HMM theory cannot provide a 

well-defined solution. This is because it must consider the infinite number of different 

sequences of states that lead to termination of object at the node j.  

An implicit estimation is provided by a route-level interpretation and by 

classifying the part of the trajectory that has been observed to route models. More 

specifically, a trajectory is dynamically classified online using the ML trajectory 

classifier (§4.4.2). For each possible matching of the incomplete trajectory to a route 

model, a probability is assigned according to Eq.4.14, which shows the likelihood that the 

trajectory matches the specific route. 

Activity recognition is performed by classifying the object trajectory to one of the 

existing routes. A Boolean classifier based only on the geometric model is sufficient to 

classify trajectories that match only one route for their entire length, but it cannot classify 

incomplete trajectories that entirely lie on the common part of overlapped routes. In this 

case, the ML classifier provides a more appropriate interpretation. 

Figure 5.4 illustrates a partial trajectory (white) and two candidate routes (red and 

magenta). A plot of the likelihood of each route is shown, as derived by the MLTC. In the 

beginning of the sequence, the red route dominates due to its high popularity, but 

gradually the magenta route is matched, as the target moves on. 

In the case that an object jumps from one route to another, the trajectory cannot be 

classified to only one route as different parts correspond to different routes. In this case, 

all the posterior probabilities of the trajectory become zero at a point k, which indicates 

that single matching is impossible. The problem can be solved by splitting the trajectory 

at the point k. Then, the rest of the trajectory is matched to a different route. 
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Figure 5.4: Classification of an incomplete trajectory (white) online by the ML classifier. The graph 
shows a plot of likelihood against time (in seconds) for matching the trajectory to the two route 
models. 

 

5.4.3 Suspicious activity detection 
 

Surveillance systems are required to provide an attention mechanism for 

“suspicious”/”dangerous” activities that will alarm operators. The benefit of such a 

capability is obvious, as the operators are not required to monitor the scene activity 

continuously, but they can only respond to the alarms. 

Both supervised and unsupervised methods have been proposed to solve the 

problem. Supervised methods, e.g., Foresti et al [62], are based on the classification of 

trajectories to “normal” and “dangerous”. The drawbacks of the supervised approach are 

that model learning is not automatic and that a “dangerous” model cannot represent the 

infinitive variety of “dangerous” trajectories. Unsupervised methods, e.g., by Johnson 

[53], allow the assessment of the typicality of the trajectories according to their 

consistency to an activity model. Therefore, atypical trajectories may be “suspicious” but 

not necessarily “dangerous”. The approach presented in this section is based on the 

typicality assessment. 

The learnt route models represent the set of typical activities of the scene. 

Therefore, activities that are not consistent with the learnt route models can be 

characterised as atypical. In this section, three different approaches for atypical activity 

detection are discussed. 

The first approach is based only on the spatial extent of the union of the route 

models. Route models determine where activity is expected; therefore any activity 
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outside the routes can be characterised as atypical. For instance, if an intruder climbs a 

wall, the system can identify the suspicious activity, because the wall is a region where 

no activity is expected. However, this approach cannot detect atypical activities that 

occur within the set of the route models, for instance a suspicious person wandering 

around the scene, within the spatial extent of the set of the routes, but not consistent to 

any route. 

An alternative approach could be to characterise as atypical those trajectories that 

do not match any single route for their entire length. This means that a trajectory may be 

characterised atypical, even if it occurs within the union of the valid route models. Figure 

5.5 illustrates such examples of unmatched atypical trajectories. However, this approach 

cannot distinguish between atypical activities and typical complex activities not 

describable by a single route, all of which may be occurring within the area defined by 

the union of the route models. 

 
Figure 5.5: Unmatched trajectories (right) from a set of scene route models (left) are indicated as 
atypical. 

 
Both approaches are based only on the spatial information of the route models and 

provide a Boolean mechanism to characterise activity. However, it is desirable to 

consider the statistics of the previously observed activity in order to provide a 

quantitative characterisation of the activity. To fulfil this requirement, atypicality 

detection is based on the HMM representation of the activity. 

More specifically, the consistency of an observation vector O (trajectory) with a 

given HMM λ, is represented by the probability P(O|λ). The estimation of the above 
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probability is known as the evaluation problem, the first of the three basic problems in 

HMM theory. The solution, as described in [80], is given by the equation: 
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where M is the size of the observation vector O and αM is the forward variable as 

explained in the Appendix III. The typicality criterion for the observation vector is given 

as: 

( ) MPl )(log)( λOO =  (5.7)

The typicality criterion l(O) is not related directly to the probability P(O|λ), but to 

its logarithm, because the probability P(O|λ), may have too low a value to be represented 

within the arithmetic range of the computer. Division by M is performed to normalise the 

criterion against the size of the vector. Atypicality is detected when l(O) is below a 

threshold. 

While the criterion defined by Eq.5.7 indicates the typicality of an entire 

trajectory, the criterion defined in Eq.5.8 characterises a specific sample Ok of the 

trajectory: 
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Figure 5.6 depicts three trajectories and Figure 5.7-Figure 5.8 present their 

evaluation according to the two criteria. The left trajectory is a common trajectory and 

this is verified by the values of the two criteria. (However, the same trajectory could be 

characterised as atypical, if it was observed late the night, according to §5.3). The middle 

trajectory is not so unusual, however it contains two samples (red circles) where the 

target speeds up. The criterion l estimates the overall typicality of the trajectory; therefore 

it does not find anything atypical. The criterion l' is able to detect the two suspicious 

samples. The right trajectory is a clearly atypical trajectory that could represent 

somebody climbing (red circle). The suspicious activity of the event is detected by both 

criteria. 
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Figure 5.6: Three trajectories are shown. The left trajectory is a very common one. The middle one 
contains two rather suspicious samples (red circles). The right one is a very uncommon one of 
somebody climbing. Actually the last trajectory is an error of the motion tracking algorithm. 

 

 
Figure 5.7: The evaluation of the three trajectories according to the l criterion. The left (green line) 
and the middle (blue line) trajectories of the Figure 5.6 are in general typical, while the right one (red 
line) is clearly atypical. 
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Figure 5.8: The three trajectories of Figure 5.6 are evaluated according to the l' criterion. All the 
samples of the left (green line) trajectory are typical; two of the samples of the middle (blue line) 
trajectory are characterized as atypical; the climbing sample of the right (red line) is clearly atypical. 

 

5.5 Discussion 
 

RBHMM is not another special type of HMM and the states of the proposed 

RBHMM are not really “hidden”, in the sense that both the states and their membership 

functions are known from the semantic scene model. The RBHMM is characterised as a 

HMM because it is described by the HMM equations. 

 The benefits of using RBHMM are that its parameters can be easily learnt and that 

it provides human-like interpretation of activity in terms of scene features. The 

motivation for the development of the RBHMM is that it exploits the semantic scene 

model. Theoretically, any special variant of HMM can be overlaid on the scene model. 

 Activities are characterised as typical or atypical depending on how consistent 

they are to the RBHMM activity model of the scene. Characterisation of an activity as 

“suspicious” or “dangerous” implies the existence of a class of “suspicious”/”dangerous” 

activities. However, training such a model requires supervised learning, which exploits 

the human justification of the activities [62]. But even in this case, it is not guaranteed 

that the whole range of the “suspicious” activities will be represented. 
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 Another issue with atypical activity detection is that erroneous trajectories are 

characterised as atypical. For example, the third trajectory of Figure 5.6 is actually an 

error of the motion tracking algorithm. This is a real problem, as any motion tracking 

error will be detected as atypical activity that will ring the alarm and unfortunately, such 

errors are common and unavoidable in real surveillance systems. Erroneous trajectories 

could be filtered, e.g., using the semantic scene model. However, in this case, the atypical 

activities would be filtered too and the surveillance system would become useless. 

The next chapter discusses how to integrate scene models from a network of multiple 

cameras and how target motion can be modelled in the unseen areas of the network. To 

deal with these challenges, an activity model, based on the detected entry/exit zones, is 

proposed, which is derived without using correspondence information. 
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Chapter 6 
 

6 Learning in Multi-Camera Surveillance 
 

6.1 Introduction 
 

The learning methods for the scene and activity models that were presented in the 

previous chapters were all demonstrated on single camera views. However, the majority 

of real surveillance systems consist of multiple cameras that cover a wide area. This 

chapter investigates the applicability of these methods in a multi-camera surveillance 

system. It also discusses the problem of integration of information derived from multiple 

cameras. 

A case study of a multiple camera surveillance system is presented. Learning 

methods are validated by results on all the camera views of the system. Activity and 

scene models are also learnt on a common ground plane coordinate system. The ground 

plane model allows integration of the models derived from multiple cameras. 

However, the ground plane model assumes that all the scene activity is co-planar, 

which is not always true. In addition, the ground plane model is based on geometric 

camera models that are derived by calibration. 

This thesis proposes an alternative model of information integration that can be 

derived automatically. An activity model that covers the entire scene observed by 

multiple cameras is learnt by a correspondence-free method. This methodology is used to 

automatically estimate the camera topology and to integrate image-based scene models in 

temporal terms. Because the model represents the activity even across the gaps in 

between the camera views, it can be used to support tracking across these “blind” areas. 

Section §6.2 reviews previous work related with this chapter. Section §6.3 

discusses how a scene is viewed by a multi-camera system. Semantic scene models are 

learnt for the City University multiple camera surveillance system in section §6.4. 
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Section §6.5 introduces an activity model that covers the entire scene and an appropriate 

correspondence-free learning method. The chapter concludes with the discussion 

presented in section §6.6. 

 

6.2 Previous Work 
 

The ground plane constraint (GPC), introduced by Tan et al [96], is the method of 

information integration that is used by the majority of multiple camera surveillance. The 

ground plane (GP) model assumes that all the targets move on a plane and the cameras 

models are determined with respect to this plane, usually by manual calibration methods 

[98].  

Automatic calibration of a single camera with respect to the ground plane is 

proposed by Renno et al [82]. Calibration is performed by measuring the heights of 

pedestrians and applying a linear model that relates these heights with the pedestrians' 

distances from the camera. However, their method requires the knowledge of the height 

of the camera and cannot be applied in all circumstances, e.g., not for top-down camera 

views. Also, the ground plane constraint is not always valid, especially for surveillance 

systems that cover wide areas. 

Stein [93] and Black and Ellis [9] proposed a homography-based method to 

associate two camera views that are substantially overlapped, which also implies that all 

the activity is coplanar. The method compares the observations derived from the two 

camera views and uses the Least Median of Squares (LMS) algorithm to estimate a 

homography matrix that defines the relationship of the two camera views. Stauffer and 

Tieu [91] extended the method and proposed the Tracking Correspondence Model 

(TCM). Their method can automatically estimate which of the cameras have overlapped 

views and establish common TCMs for the clusters of the cameras that are linked through 

overlapped views. However, cameras or clusters of cameras that do not have overlapped 

views are treated as isolated and no model is proposed to link them. 

 Camera views can be related not only by their geometric relationships, but also by 

their activities. Kettnaker and Zabih [57] proposed a Bayesian framework for linking 

camera views using target information like transition times, transition probabilities and 
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appearance cues. The advantage of this framework is that allows linking of non-

overlapped views. However, they do not define how the Bayesian Belief Network (BBN) 

can be trained. Javed et al [51] proposed that transition times and relationships between 

colour appearances in different cameras could be learnt using supervised learning. They 

have used an approach of target feature matching to track pedestrians across multiple 

cameras, learning a typical track’s spatio-temporal transition probability using a Parzen 

estimator. Individual tracks are corresponded by maximising the posterior probability of 

the spatio-temporal and colour appearance, adapted to account for changes between 

cameras. The transition probabilities are learnt using a small number of manually labelled 

trajectories. But supervised learning is not assumed suitable for auto-calibrating 

surveillance systems. Porikli and Divakaran [79] proposed an unsupervised method of 

automatic colour calibration between cameras based on the colour appearances of 

matched targets. The method estimates conditional probabilities of colour appearances 

and formulates a Bayesian Belief Network. However, it is not always possible to 

establish such colour correspondences, e.g., a surveillance system may consist of cameras 

of different image modalities such as monochrome and/or thermal. In this case, colour 

information is not available at all. 

 In [16], a network-based activity model is constructed using network tomography 

[99]. This method constructs a network representation of the scene activity. It requires 

only counting the target transitions through the borders of manually defined areas of the 

scene. Therefore, correspondence is required only around the borders. However, it is not 

an absolute correspondence-free method and it cannot be used in areas where no 

correspondence can be established, such as the gaps in between cameras. 

 The method presented here (§6.5, based on [29] and [70]) shares similarities with 

the Amari [1]. Amari proposed information geometry to be used to derive the structure of 

a high-order Markov chain that could derive human brain structure from detected neuron 

triggers. The method does not use any correspondence information. It just attempts to 

statistically correlate the signals that appeared at the different nodes of the model. 

Wren and Rao [103] proposed a method that can reveal the topography of the 

camera views concurrently with Ellis et al [29]. Both methods are correspondence free 

and just attempt to correlate events. Wren and Rao correlate target detections within 
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camera views, while Ellis et al correlate appearances and disappearances at entry/exit 

zones. However, Wren and Rao's method is able only to identify the topology of the 

cameras, whilst the method presented in this chapter identifies the distance between non-

overlapped cameras and provides an activity model for the “gaps” of the virtual field of 

view (FOV). 

 

6.3 Multi-camera Surveillance Systems 
 

Multi-camera surveillance systems cover wide-area scenes and aim to track targets 

within this scene. The key issue in these systems is to effectively integrate information 

from multiple cameras in order to provide complete histories of targets' activities within 

the observed scene. 

To integrate information in the spatial domain, a world coordinate system is 

required. Usually, a ground plane coordinate system [96] is used which is consistent with 

the assumption that all the scene activity is coplanar. A ground plane map is used to 

illustrate results in ground plane coordinates. For example, Figure 6.1 shows a synthetic 

ground map, while Figure 6.6 illustrates a ground map constructed from geometric 

calibration models and views from six cameras. 

 

 
Figure 6.1: Visible FOVs of a network of cameras. 
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Four different field of views (FOV) are defined on the ground plane, to determine 

how the scene is viewed by a multiple camera surveillance system: 

− Visible FOV defines the regions that a single camera images, excluding 

occluded areas and obscure areas where activity cannot be interpreted. 

− Camera FOV encompasses all the regions within the camera view, including 

occluded regions. 

− Network FOV is the union of all the visible FOVs of all the cameras of the 

network. 

− Virtual FOV covers the network FOV and all the gaps in between the visible 

camera FOVs, within which targets may exist. 

The visible FOVs of different cameras are related with different types of 

associations, depending on their spatial locations and how activity is seen. Specifically, 

two FOVs may be a) overlapped, i.e. they have common parts and a target may be seen 

simultaneously by the two cameras, b) adjacent, i.e. they do not have common parts, but 

they are quite close so targets exiting the one FOV may enter the other FOV, c) distant, 

i.e. they are far apart and there is no direct relationship of the targets activities in these 

two views. This thesis uses the term “camera network topology” to represent the set of all 

the relationships of the cameras of the network. 

 

6.4 A multi-camera case study 
 

The methods that were described in chapters 3 and 4 are applied in a specific 

multi-camera surveillance system, the City University Experimental Surveillance 

(CUES) system. Entry/exit zones and route models are learnt and represented on both 

individual image planes and a common ground plane. 

The CUES system consists of six cameras that cover both pedestrian environments 

and traffic roads. The camera views of this system are shown in Figure 6.2. Each camera 

tracks targets within its own visible FOV and tracking information is passed to a central 

database [28]. 
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The system has been geometrically calibrated with respect to a common ground 

plane coordinate system, using the Tsai algorithm [98]. A ground map (see Figure 6.6) 

has been constructed that shows the cameras FOVs and their relative location. 

 Figure 6.2 shows the views of the six cameras of the network (left column) and 

trajectory datasets that were derived by the motion tracking modules, attached to each 

camera (middle column). The trajectory datasets were derived during a 13-hour daylight 

period and they consist of 8417, 9985, 6799, 3060, 5022 and 15272 tracks for the 

cameras 1-6 respectively. Figure 6.3 and Figure 6.4 illustrates the derived entry/exit 

zones for the six cameras, according to the methodology described in §3.3. Entry/exit 

zones are used to remove noisy trajectories, as explained in §3.3.2. The cleaned trajectory 

datasets consist of 4282, 5579, 3853, 1922, 4230 and 10600 tracks for the cameras 1-6 

respectively (Figure 6.2, right column). 

 Sets of 256, 500, 44, 500, 298 and 500 tracks (for the cameras 1-6 respectively) 

from the cleaned trajectory datasets were used as input to the route learning algorithm 

(§4.3). Figure 6.5 shows the results plotted onto the six camera views. 
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Figure 6.2: Views of the six cameras (left), trajectory datasets (middle) and cleaned trajectory 
datasets (right). 
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Figure 6.3: Detection of entry zones on image plane: Histograms of entry points (left), detected entry 
zones (middle) and classified points (right). 
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Figure 6.4: Detection of exit zones on image plane: Histograms of exit points (left), detected exit zones 
(middle) and classified points (right). 
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Figure 6.5: Detected routes on the image planes of the six cameras of CUES system. 

 
Activity scene models can be applied to both the individual camera views and the 

common ground plane. Trajectory data has been converted to ground plane coordinates, 

as described in §2.5, and used as input to the entry/exit zones learning algorithm and the 

route learning algorithm. Results are illustrated in Figure 6.7 and Figure 6.8. 

Two issues are related to the prescribed approach of constructing integrated 

models for the entire covered scene. Firstly, the method requires explicit geometric 

calibration of all the cameras of the system. Secondly the model covers only the network 

FOV, failing to represent activity on the “holes” of the virtual FOV. The next section 

introduces a novel technique that deals with these two issues. 
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Figure 6.6: Ground map of the six-camera CUES system. 
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Figure 6.7: Entry/exit zones detected on the ground plane. Each colour (red, green, blue, yellow, 
magenta, cyan) corresponds to one of the six camera views. 
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Figure 6.8: Routes learnt on the common ground plane. 
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6.5 Multiple Camera Activity Network (MCAN) 
 

In the previous section, semantic scene models have been derived for individual 

camera FOVs and for the network FOV. However, it is desirable to extend the scene 

model to the entire virtual FOV, to cover activities that occur within the “blind” areas of 

the system. Although these activities are not directly viewed by the system, reasonable 

assumptions are derived. 

Let us assume that no geometric information exists that allows localisation of the 

camera FOVs. Cameras with overlapped visible FOVs can be identified [93], [10] and 

calibrated using homography. A common semantic scene model can be derived for each 

set of cameras with overlapped FOVs. However, possible gaps in between cameras do 

not allow the semantic scene model to be established for the whole system, and isolated 

scene models are derived, instead. 

 To overcome the lack of a common scene model for the virtual FOV, the isolated 

scene models must be linked. However, no spatial linking is achievable, due to the lack of 

geometric calibration. Instead, this thesis proposes a probabilistic-temporal linking of the 

isolated views. 

All the entry/exit zones of the camera FOVs are represented collectively as a 

network of nodes (similar to the topological representation in §3.2). The links of the 

network represent transitions between the entry/exit zones, either visible (through the 

Network FOV), or invisible (through the “blind” areas). A markovian chain or a HMM 

can be overlaid on the topology representation, which can provide a probabilistic 

framework for activity analysis and long-term predictions. (In this case, an extra “out-of-

the-scene” state is required to indicate the event where targets exit the Virtual FOV of the 

system).  

Visible links are learnt automatically (see chapter 4) using trajectories derived by 

a single-camera tracker [27] or overlapped multiple camera tracker [10] and are 

physically represented in spatial terms, according to the route model (§4.2). 

However, the challenge is to identify the invisible links and this is the focus of the 

method proposed in this section. Invisible links are estimated in temporal terms and more 

specifically by pdfs that shows the distribution of the target transition periods through the 

blind areas. 
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6.5.1 Theoretical formulation 
 

A MCAN is formulated by the set of all the entry/exit nodes that are detected 

within all the cameras of the system. No information is provided regarding the spatial 

relationship of these nodes. It is required to identify the directional links of this network 

expressed in probabilistic-temporal terms, which represent target transitions from one 

node to the other. 

 A graph model (shown in Figure 6.9) is used to represent a possible link between 

two nodes, i and j. Targets disappear from the node i with rate ni(t) and appear at the node 

j with rate mj(t). A third virtual node k represents everything out of the nodes i and j. 

Targets transit from node i to node j in time τ with probability aij(τ), otherwise they 

transit to the virtual node k with probability aik. 

 
Figure 6.9: Graph model showing the probabilistic links between two nodes (i and j) and the virtual 
node k. 

Transition probabilities fulfil the equation: 

∫ =+ 1)( ikij ada ττ  (6.1)

Also, targets from the node k move to node j with rate πj; i.e. new targets can be 

“generated” at node k, and are detected on entering at node j. 

 The surveillance system is able to observe the signals ni(t) and mj(t). The two 

signals are assumed individually and jointly stationary. Therefore, the cross-correlation 

function is defined: 

{ })()(()( ττ +⋅= tmtnER jiij  (6.2)
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 If it is assumed that the two signals ni(t), mj(t) are taking digital values from the 

set {0, 1}, then pn=p{ni(t)=1}=E{ni(t)} and pm=p{mj(t)=1}=E{mj(t)}. 

 The cross-correlation Rij(τ) and the covariance Cij(τ) defined as: 

Cij(τ)=Rij(τ)-pnpm (6.3)

are used to identify possible links. If ∫ = 0)( ττ dCij , then the two signals are uncorrelated 

and, because according to the proposed graph model, their relationship can be only linear, 

they are independent [77] and no real link should exist in between them. Otherwise, the 

two signals are dependent and a valid link i→j must exist. In this case, the transition 

probability is estimated by the formula: 

)1(/)()( nnijij ppCa −⋅= ττ  (6.4)

 The above equation is derived by the graph model in Figure 6.9. To prove this, let 

define the stationary digital signals sτ(t) and oj(t) with means: E{sτ(t)}= aij(τ) and 

E{oj(t)}= πj. Then, according to the graph model in Figure 6.9, the signal mj(t) can be 

expressed as: 

)()()()( , ττ τ ++⋅=+ totntstm jiijj  (6.5)

and the probability pm as: 

{ } jnijjm patmEp πττ +⋅=+= )()(  (6.6)

Based on the Eq.6.5, the product ni(t).mj(t+τ) is written as: 

[ ])()()()()()( , ττ τ ++⋅⋅=+⋅ totntstntmtn jiijiji (6.7)

Because the signal ni(t) is digital, )()(2 tntn ii = , therefore: 

)()()()()()( , ττ τ +⋅+⋅=+⋅ totntstntmtn jiijiji (6.8)

and the cross-correlation Rij(τ) is written as: 

{ } jnijnjiijijiij paptotntstntmtnR πττττ τ ⋅+⋅=+⋅+⋅=+⋅Ε= )()()()()()()()( ,  (6.9)

From the Eq.6.3, Eq.6.6 and Eq.6.9, it is derived that: 

[ ]jnijnjnijnij pappapC πτπττ +⋅⋅−⋅+⋅= )()()( (6.10)

which is equivalent to Eq.6.4. 

Summarising, the MCAN is defined by the nodes, expressed as Gaussian 

distributions on the separate camera views and directional links between nodes, defined 

by transition probabilities that depend on the transition time. 
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6.5.2 Implementation 
 

 For each possible link i→j, from an exit zone i to an entry zone j, a cross-

correlation function Rij(τ) is estimated for TT ≤≤− τ , by accumulating disappearing 

events at the exit zone i and appearing events at the entry zone j, in a discrete time buffer. 

More specifically, for a given disappearing event at zone i at time t1, searching is 

performed for appearing events at zone j, at time t2, t2∈[t1-T, t1+T], where T is a 

parameter that defines the time-search window. When such an event is detected, Rij(τ) is 

updated:  

⎣ ⎦( ) ⎣ ⎦( ) 15.05.0 1212 ++−←+− ttRttR ijij  (6.11)

Theoretically, Cij(τ) should be estimated by Eq.6.3. However, because the assumption 

that the signals are stationary is not accurate, the covariance Cij(t) is estimated as: 

Cij(τ)=Rij(τ)-median(Rij) (6.12)

If a valid link exists, then Cij(τ) has a clear peak which indicates the most popular 

time-transition value. Valid links are detected by detecting peaks above a threshold, 

defined as: 

ijij RRthr σωµ ⋅+=  (6.13)

where ω=3, in practice. 

The transition probability aij(τ) is estimated using the Eq.6.4 and enforcing the 

constraint 

∫ ≤≤ 1)(0 ττ daij  (6.14)

However, if the most popular transition time is negative, this is an indication of 

target transitions from j to i. Therefore, instead of aij(τ), we estimate aji(-τ): 

)1(/)()( nnijji ppCa −⋅=− ττ  (6.15)

The topology of the camera views is determined by the set of the valid links and 

their transition times. If a link is detected between the zones of two cameras, the two 

cameras are either adjacent or overlapped. If the transition time between the exit zone i 

and the entry zone j is approximately zero, then the two zones of the two cameras are 

overlapped. If the transition time is positive, then the targets move from one zone to the 

other through an invisible path. Finally, if the transition time is negative, then the targets 
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move from one zone to the other through a path that is partially or entirely visible from 

the two cameras. 

 

6.5.3 Results 
 

Results are presented for a six-camera network. Trajectory data was derived by 

motion tracking modules [7], running during the daylight period. The dataset consists of 

4282, 5579, 3853, 4230, 1922, 10600 trajectories for the cameras 1-6 respectively, 

derived during a 13-hour period. Only the first and the last point of each trajectory are 

used for these experiments and they are clustered to automatically to derive the entry and 

exit zones. 

The entry and exit points are used to estimate the entry and the exit zones in each 

camera. The detected zones are the nodes of the MCAN and are numbered to illustrate 

the results (Figure 6.10). Entry and exit zones that were coincident have been merged for 

sake of simplicity. 

The real spatial relationship of the zones is depicted in Figure 6.11, where the 

zones are overlaid onto a ground plane map of the network FOV. The ground plane map 

has been derived using geometric calibration information. However, this information is 

not used by the method presented here and the map is given only to provide the readers 

with the real geometry of the scene. The geometry of the scene is also shown in the 

simplified drawing of Figure 6.12. 

   

   
Figure 6.10: The detected entry/exit zones for the six cameras of the network. The zones are 
numbered as nodes of the activity network. 
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Figure 6.11: Entry/exit zones illustrated on a ground plane map of the network FOV. 
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Figure 6.12. Geometric model of the camera environment showing the relative placement of the six 
cameras. Expected entry/exit zones are shown as blue ellipses.  

Figure 6.13 depicts the cross-correlation function and Figure 6.14 the transition 

probabilities for six detected links (detailed results in Table 6.1). The black line in Figure 
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6.14 indicates the level of cross-correlation if the zones were uncorreletated, while the 

red line indicates the peak detection threshold (thr). In all the cases, the cross-correlation 

function has a clear peak above the threshold. On the contrary, Figure 6.15 depicts the 

cross-correlation function of invalid links where no clear peak exists. 

The near-zero transition time between zones 3-7 (link 8) is an indication of 

overlapping. The small positive transition time between zones 18-10 (link 42) and 

between 23-20 (link 55) indicates that the two zones are closed each other and a “blind” 

region exists in between. Finally, the negative transition time between zones 1-3 (link 1), 

between 10-7 (link 25) and between zones 24-13 (link 53) indicates that the zones are 

close each other and their connection links are visible by at least one camera. Indeed, all 

conclusions are verified, as seen in Figure 6.11. 

 

   

 
Figure 6.13: Cross-correlation functions for selected pairs of zones. Time is measured in secs. Red 
line indicates the peak detection threshold (thr), while the black line indicates the level of cross-
correlation if the zones were uncorrelated. In all the cases, a clear peak exists on the most popular 
transition time. 
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Figure 6.14: Transition probabilities derived by the cross-correlations of the Figure 6.13. 

 

 

 
Figure 6.15: Cross-correlation for invalid links. Time is measured in secs. Red line indicates the peak 
detection threshold (thr), while the black line indicates the level of cross-correlation if the zones were 
uncorrelated. In all the cases, no clear peak exists. 
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Table 6.1 shows the 58 links that were automatically detected, between the zones 

shown in Figure 6.10. For each link the most popular transition time and the total 

transition probability were estimated. Additionally, the distances between the centres of 

the zones on the ground plane Figure 6.11 were used to provide an estimate of the most 

popular speeds across links, assuming linear velocity of the targets on the ground plane. 

The estimated speeds provide a quantitative validation of the method. For instance, links 

with low speed values (<3m/sec) correspond to pedestrian motion (e.g., most links 

between zones in cameras 1, 2 and 3), high speed values (>10m/sec) correspond to 

vehicle motion (e.g., most links between zones in cameras 4 and 6. Middle speed values 

(between 3m/sec and 10m/sec) correspond to vehicle motion on low-speed lanes (e.g., 

links between zones in cameras 3, 4, 5 and 6.). 
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Link Exit Entry Time 
(sec) 

Prob. Dist. 
(m) 

Speed
(m/sec)

Link Exit Entry Time
(sec) 

Prob. Dist. 
(m) 

Speed
(m/sec)

1 1 3 -16 0.35 23.56 1.47 30 10 11 12 0.19 76.48 6.37 
2 3 1 -15 0.37 23.26 1.55 31 8 20 -11 0.49 69.90 6.35 
3 2 2 0 0.37 0.35 - 32 10 19 4 0.24 34.51 8.63 
4 1 6 -14 0.54 20.06 1.43 33 15 13 -3 1.00 34.78 11.59
5 3 4 -17 0.40 25.11 1.48 34 11 12 -6 0.44 16.49 2.75 
6 1 9 -39 0.14 43.65 1.12 35 14 16 -4 0.85 44.29 11.07
7 1 10 -21 0.16 34.38 1.64 36 12 11 -7 1.00 16.94 2.42 
8 3 7 1 0.79 2.72 2.72 37 11 20 3 0.13 23.87 7.96 
9 1 21 -48 0.11 82.98 1.73 38 15 22 -1 1.00 5.58 5.58 

10 6 1 -13 0.46 20.39 1.57 39 14 25 -5 1.00 64.70 12.94
11 4 3 -17 0.19 26.33 1.55 40 20 7 -38 0.30 61.02 1.61 
12 5 4 -13 0.68 19.07 1.47 41 20 8 -11 0.23 69.19 6.29 
13 6 6 0 0.41 0.75 - 42 18 10 4 1.00 15.77 3.94 
14 6 4 -14 0.55 22.24 1.59 43 20 11 6 0.22 23.97 3.99 
15 4 5 -13 0.19 20.75 1.60 44 18 16 -9 0.44 74.49 8.28 
16 4 4 -1 0.30 1.62 1.62 45 20 20 0 0.21 0.28 - 
17 6 7 3 0.64 4.70 1.57 46 20 19 -4 0.41 19.46 4.87 
18 4 9 -40 0.08 46.29 1.16 47 18 20 -4 1.00 38.46 9.61 
19 10 3 5 0.16 11.42 2.28 48 21 21 -1 0.23 0.14 0.14 
20 7 3 0 0.72 4.89 - 49 21 19 -8 0.66 21.45 2.68 
21 7 6 3 0.72 7.08 2.36 50 20 22 8 0.39 32.14 4.02 
22 8 9 -3 0.36 7.42 2.47 51 18 25 -13 1.00 81.25 6.25 
23 8 8 0 0.23 0.94 - 52 23 10 12 0.16 87.04 7.25 
24 8 10 -5 0.51 23.70 4.74 53 24 13 -4 0.57 50.67 12.67
25 10 7 -4 0.51 9.71 2.43 54 23 16 0 0.36 9.06 - 
26 10 8 -5 0.21 22.62 4.52 55 23 20 6 0.11 34.08 5.68 
27 9 8 -2 0.43 6.57 3.29 56 24 22 -2 1.00 21.46 10.73
28 7 9 -11 0.22 20.71 1.88 57 23 25 -2 1.00 29.48 14.74
29 7 10 -5 0.43 8.77 1.75 58 23 26 -4 0.14 30.71 7.68 

Table 6.1: Detected links between entry/exit zones. Information about total transition probabilities 
(Prob.), most popular transition times (Time), real distance on the ground plane (Dist.) and an 
estimated target speed (Speed) are also shown. 
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When correlating signals from the same camera view, the transition times are 

almost always negative, because the links between the zones are actually visible from the 

camera. For example, the detected visible links of camera 3 are shown in Figure 6.16. 

 
Figure 6.16: Detected visible links between zones of the camera 3. 

 Figure 6.17 illustrates some detected links between zones of different cameras. 

Both visible (22-15, 16-23, 25-14) and invisible links (23-20, 20-22, 11-20) were 

successfully detected. Most of the links are unidirectional, because they correspond to 

vehicle traffic flow. The link 25-14 is redundant in the sense that it can be described by a 

set of simpler links (25-16, 16-23, 23-14).  

 
Figure 6.17: Detected visible and invisible links between zones of the cameras 4, 5 and 6. 

 The links of Table 6.1 were used to automatically determine the topology of the 

camera network, as shown in Figure 6.18. More specifically, any link between zones of 

two specific cameras, with a transition time that is not too long (e.g., more than 20secs), 

indicates that the cameras are either adjacent or overlapped. The sign of the transition 

times between zones of different cameras can indicate whether camera FOVs are adjacent 

or overlapped. If the transition time is too long or no significant correlation is detected, 

then the camera FOVs are assumed disjoint. 



Chapter 6: Learning in Multi-Camera Surveillance 134 
________________________________________________________________________ 

 

 
Figure 6.18: The topology of the six-camera network, as derived automatically. 

 
 Figure 6.19 depicts an activity model that contains both visible links (routes) 

detected in §6.4 and invisible links detected in this section. This illustration provides a 

model of activity of the entire virtual FOV of the CUES system. 

 

 
Figure 6.19: Visible routes (yellow-red) detected in §6.4 and invisible links (green) detected in this 
section. 
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6.6 Conclusions - Discussion 
 

This chapter demonstrated how the learning methods of previous chapters can be 

applied in a real surveillance system. The results on the image plane were produced to 

validate the methods, while the results on a common GP illustrated how learnt models are 

integrated in the spatial domain. 

However, the GP model assumes that all the activity of the wide area scene is co-

planar, which is not always true. Additionally, the GP model requires that all the network 

cameras be properly calibrated, which is not consistent with the aim of this thesis for self-

calibrated and adaptive surveillance systems. 

An alternative approach of integrating scene models of different cameras has been 

presented. A MCAN that covers all the virtual FOV of the system has been created and 

an appropriate learning method was demonstrated. Again, the model has been learnt 

using unsupervised methods, without recourse to an unreliable correspondence process. 

The MCAN is used to reveal the topology of the camera views of the system. It 

also links the entry/exit zones of each camera view using transition times and transition 

probabilities. This information can be also used to support tracking across the “blind” 

areas of the virtual FOV. 

Other methods that support tracking across “blind” areas are based either on the 

dynamics or the appearance cues of the targets. A motion prediction filter (e.g., Kalman 

filter) uses the dynamics of the target to predict the camera view and the location that the 

target will re-appear. However, this method requires knowledge of both the geometric 

models of the cameras and the GP model and assumes that motion dynamics will not 

change during the target transition across the “hole” of the virtual FOV. This is not 

always true due to possible target turning or scene obstacles. 

Using appearance cues, such as target geometry or colour, requires some kind of 

calibration between the cameras to ensure the correct correspondence of the cues at 

different cameras. Sometimes, this approach is problematic and unreliable, for example 

no reasonable colour correspondence can be established between colour cameras and 

monochrome cameras or thermal cameras. Also, the target geometry cues (size, shape) 

are heavily dependent of the camera geometric model, for example targets’ sizes and 
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shapes are quite different when viewed by common CCTV cameras, CCTV cameras with 

top-down view or omnidirectional cameras. 

The MCAN proposed in this chapter is independent on the camera types and does 

not require any calibration. A possible limitation of the method is that requires a large 

number of observations to statistically reveal the dependencies. Also, the variability of 

the targets’ velocities, when they disappear or reappear is not considered, although the 

variability of transition times is modelled. In the case that the circumstances allow the 

usage of other cues (dynamics, appearances), the transition probabilities are still useful as 

they can be combined with other probabilistic information using a Bayesian framework 

[57]. 
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Chapter 7 

 

7  Conclusion 
 

7.1 Summary 
 

The aim of this thesis was to develop a methodology that allows surveillance systems 

to automatically derive semantic scene models. These models consist of activity-based 

semantic elements such as entry/exit zones, paths, junctions, routes and stop zones that 

are described in both spatial and probabilistic terms. Automatic methods that exploit 

consistencies in large datasets of observations and allow automatic learning of the 

elements of the scene models were presented. 

The spatio-probabilistic character of the model aims to describe the spatial extent of 

the semantic features, similarly to the way that a human might interpret them, and to 

represent the variation of the usage of the semantic features and related uncertainty. 

The proposed methodology can significantly benefit surveillance systems. The 

semantic nature of the spatial component of the model supports the implementation of 

applications such as video annotation and contextual databases. On the other hand, the 

probabilistic component of the model supports applications such as atypical activity 

detection, long-term activity prediction and tracking enhancement. The philosophy of 

unsupervised learning that was adopted enables some autonomy for the surveillance 

systems, as it allows them to construct the scene models without human intervention. 

To successfully represent the spatio-probabilistic character of the scene model, a 

variety of representations were investigated, including known models such as Gaussian 

Mixture Models, accumulative maps and Hidden Markov Models and novel models such 

as the spline-based route model and the Multiple Camera Activity Network. 

Unsupervised training of these models was based on known methods, such as 
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Expectation-Maximisation and accumulative statistics whilst more novel methods were 

developed to learn the route model and the Multiple Camera Activity Network. 

Some general conclusions can be drawn from the models that were used in this 

thesis. Accumulative maps provide a very general non-parametric representation of the 

data, however they lack compactness, comparing to parametric models. Gaussian Mixture 

Models are adequate to represent regions that are spatially limited and usually related to 

single-point events. However, they cannot represent more complicated regions that are 

related to trajectories. For this reason, the route model was developed that represents the 

average of a cluster of trajectories and their variation using spline representations. Hidden 

Markov Models were used to represent the dynamics of the targets, as they move around 

the scene. Finally, the Multiple Camera Activity Network provides a means to model and 

learn activity in a wide-area scene, covered by uncalibrated multiple cameras, without the 

explicit requirement of tracking. 

Chapter 3 not only introduced the activity-based semantic model, but also 

investigated how semantic elements related to single-point events (such as entrance, exit, 

stop) can be represented using GMMs and learnt by EM. Entry/exit zones, in particular, 

are valuable because they can help to validate the trajectory dataset. Trajectories are 

assumed valid only if they start from an entry zone and exit at an exit zone. Additionally, 

the representation and learning of semantics not explicitly related to the activity in the 

scene, such as the occlusion regions and the semi-stationary motion noise sources, were 

investigated. 

Chapter 4 addressed the problem of deriving semantic regions related to sequences 

of points (trajectories), such as routes, paths and junctions. To allow this, a novel route 

model was introduced that allows adequate spatio-probabilistic representation of clusters 

of similar trajectories. An appropriate unsupervised auto-initialising learning method was 

developed that allow automatic deriving of the route models of a scene to be 

automatically derived from a set of trajectories. Further analysis of the scene route 

models, based on computational geometry, segmented them into more primitive 

elements: paths and junctions. These primitive elements are valuable, because they can be 

used to represent any possible route either in a single camera view or in a wide-area scene 
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covered by multiple cameras. Additionally, junctions are useful because they represent 

the areas that targets may change their direction. 

Chapter 5 demonstrated the idea of overlaying probabilistic networks onto the scene 

model, augmenting the representation to support analysis of the scene activity. As an 

example, the Route-Based HMM was introduced that is superimposed on the scene route 

models. The benefit of this approach is that learning, which is an issue for HMM, is quite 

fast and the nodes of the HMM are explicitly related to the semantics of the scene. The 

usage of the scene model in activity analysis applications, such as long-term predictions 

and atypical activity detection was also illustrated. 

Finally, Chapter 6 investigated the applicability of the methodology in real multiple 

camera surveillance systems. More specifically, it dealt with the problem of integrating 

scene models from multiple cameras. Although semantic models from multiple cameras 

can be combined in a ground plane map, this geometric-based approach is not attractive 

as it assumes that the activity in the entire observed scene is coplanar and requires 

manual calibration of the cameras. An alternative non-geometric approach that relates 

camera views in terms of transition times and transition probabilities is introduced: the 

Multiple Camera Activity Network that is constructed using the set of the entry/exit 

zones of all the cameras. A “correspondence-free” method is introduced that allows 

encoding of activity even in the unseen regions of the scene. The Multiple Camera 

Activity Network is also useful because it automatically reveals the topology of the 

camera views of the surveillance system, i.e. determines whether the camera views are 

overlapped, adjacent or distant. 

 

7.1.1 Contributions 
 

The main contributions of the current thesis are: 

- Developing an activity-based semantic scene model that consists of semantics 

like entry/exit zones, stop zones, routes, paths and junctions. 

- Demonstrating how semantic regions that are related to single-point events 

(entry, exit, stop) could be learnt automatically from observations. 
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- Developing a novel route model that represents typical patterns of motion and 

an appropriate unsupervised algorithm. 

- Augmenting the scene model with probabilistic networks to represent the 

activity in the scene. 

- Developing a novel method that automatically learns the activity across a wide-

area scene that can integrate information from multiple cameras, reveal the 

camera topology and encode activity in the unseen regions of the environment. 

 

7.2 Future work 
 

In general, the methodology described by this thesis achieved the initial aim. 

However, some further refinement of the methods can be considered. For example, 

automatically deriving the model order criterion for the GMM model of the entry/exit 

zones. Also, the route-model learning algorithm could be modified to remove the 

dependency of the outcome from the amount of training data. Redundant links of the 

MCAN could be removed. 

More generally, the issue of the adaptability of the models over time was not 

explicitly investigated. However the probabilistic character of the proposed models and 

the soft-logic approach in the design of the proposed learning methods provide the 

foundations for adaptive variations of the current methodology. 

Finally, another issue is that the semantic features that were learnt were based on a 

restricted set of events (“enter”, “exit”, “stop”, “move”) related to the dynamics of the 

targets. A richer set of semantics can be derived if a wider set of activity-based events is 

considered (“turn-right”, “turn-left”, “speed up”, “slow down”) that may be related to 

target classification (“route” of “pedestrians” → “pavement”, “route” of “vehicles” → 

“road”) or to more complicated rules (“targets moving slowly in a line” → “queues”, 

“queues” and “stop zone” of “pedestrians” and “stop zone” of “large vehicle” and 

“merge” of “pedestrian” with “large vehicle” → “bus stop”). 

A range of applications in visual surveillance can benefit from the current work. 

The semantic character of the scene model can be exploited in applications related to 

interaction of the surveillance systems with their operators, such as conceptual databases 
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[12] and video annotation. The probabilistic character of the model can be used to 

enhance the motion tracking process, to identify atypical activities and to provide long-

term prediction. Finally, the automatic learning of the camera topology can be used as 

part of a fully automatic multiple camera calibration process. 

 

7.3 Epilogue 
 

This thesis has developed a methodology that enables surveillance systems to 

automatically learn activity-based semantic scene models. Because the structure of the 

scene influences the activity in the scene, observing the activity provides cues related to 

the scene itself. A reverse-engineering method was adopted that exploits the potential 

consistency of large numbers of activity observations to build a scene model based on 

activity-based semantics. 

Therefore, surveillance systems are able to build their own cognitive knowledge 

databases that enable a higher level of understanding of the scene activity. The 

unsupervised character of the learning methods is consistent with the concept of “plug ‘n’ 

play” surveillance systems. 

The application of the methodology was investigated on both single-camera and 

multiple-camera surveillance systems. In particular for multiple-camera systems, an 

automatic method has been developed that allows integration of the scene models of 

individual cameras. Because the method does not require any manual camera calibration, 

it is useful for the installation and the adaptation of large surveillance systems. 

The presented work was motivated not only by the potential applications in visual 

surveillance, but also by the ambition to build an autonomous cognitive computer vision 

system that senses, learns and understands its environment with a minimal support from 

human operators. 
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Appendix I: Gaussian Mixture Model 
 
 A single multivariate Gaussian model is defined by the probabilistic density 

function (pdf): 

( )
( ) 2

1
2

2
1

2 Σ
Σµx

m)(xΣµ)(x 1T

⋅
=

−−⋅− −

d
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π
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where x is an observation in a d-dimensional space, µ is the mean and Σ the covariance 

matrix of the distribution. The importance of the Gaussian model is that it approximates 

successfully a wide range of phenomena that are affected by a large number of random 

variables with arbitrary pdfs, according to the Central Limit Theorem. 

 A Gaussian Mixture Model is defined as 
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Κ
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where K is the number of the components of the mixture model, 

},...,,,...,,,...,{ 1 K1Κ1 ΣΣµµθ Kpp= is the set of all the parameters and {pj} is the set of 
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1
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 The posterior probability of the i-component is given by the formula: 
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 A single Gaussian model can be visualised in the K-dimension space by a set of 

hyper-ellipsoidals, whose surfaces represent points with equal probabilities. The centre of 

these hyper-ellipsoidals is defined by the mean vector µ, while their orientation is defined 
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by the eigenvectors of the covariance matrix Σ and their shape by the associated 

eigenvalues. If the lengths of the axes of a hyper-ellipsoidal are set to equal to the square 

roots of the associated eigenvalues of the covariance matrix Σ, then this hyper-ellipsoidal 

contains the 68.3% of the samples of the multivariate guassian distribution. In this case, 

the volume of the hyper-ellipsoidal is equal to the square root of the determinant of the 

covariance matrix, multiplied by π: Σπ . 

 If a Gaussian model is bivariate, then it is visualised by ellipses, defined similarly 

by the mean vector µ and the covariance matrix Σ. The ellipse that contains the 68.3% of 

the samples has area equal to the square root of the determinant of the covariance matrix, 

multiplied by π: Σπ . 
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Appendix II 
 

Appendix II:Expectation-Maximisation 
 
 Let assume that a dataset X={x1,.., xN}, where N is the number of the samples, is 

drawn by a parametric model p(x|Θ), where Θ represents the set of the parameters of the 

model. The likelihood L(Θ|Χ) of the parameters given the data is defined as: 

( ) ( ) ( )∏
=

Θ=Θ=Θ
N

i

ppL
1

ixXΧ  (II.1)

 The aim of the Expectation-Maximisation algorithm is to adapt the parameters Θ 

in order to maximise the likelihood L(Θ|Χ), given the incomplete data Χ. It is assumed 

that a complete dataset exists Z=(X, Y), where Υ denotes the missing data. The missing 

data may represent missing data values in samples of a distribution. But usually, it used 

to model hidden variables. 

The algorithm is iterative and each iteration consists of two steps, the expectation 

step and the maximisation step. In the expectation step, the expected value of the 

likelihood of the complete data Ζ is estimated with respect to the missing data Υ, given 

the observed data X and the estimated parameters from the previous step Θold.  

( ) ( )[ ]oldold pEQ ΘΘ=ΘΘ ,log, XYX,  (II.2)

In the maximisation step, the set of parameters Θ are re-estimated so that the 

expectation of the first step is maximised: 

( )oldnew Q ΘΘ=Θ
Θ

,maxarg  (II.3)

 Dempster et al [25] have proved that each iteration is guaranteed to increase the 

likelihood and the algorithm is guaranteed to converge to a local maximum of the 

likelihood function. 

 To apply the EM algorithm to estimate the parameters of a GMM with order K, 

given the observed data X, the missing data Υ is used to represent the components of the 
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mixture model that generates X. The expectation and the maximisation steps can be 

performed simultaneously, and the new estimates of the model parameters at each 

iteration, are given by the following formulas: 

( )∑
=

Θ=
N

i

oldnew
j jp

N
p

1
,1

ix  (II.4)

( )

( )∑

∑

=

=

Θ

Θ⋅
= N

i

old

N

i

old
i

new
j

jp

jpx

1

1

,

,

i

i

x

x
µ  (II.5)

( ) ( ) ( )

( )∑

∑

=

Τ

=

Θ

−⋅−⋅Θ⋅
= N

i

old

new
j

new
j

N

i

old
i

new
j

jp

jpx

1

1

,

,

i

iii

x

µxµxx
Σ  (II.6)



Appendix III: Hidden Markov Models  158 
________________________________________________________________________ 

 

Appendix III 
 

Appendix III Hidden Markov Models 
 

Let assume that a dynamic system may be in one of N possible “hidden” states 

{S1, S2,.. SN} at each time. The system may transit from one state to another at discrete 

times {t1, t2,...} and results to a sequence of “hidden” states Q={q1, q2,...}. Instead of the 

sequence of states, a sequence of observation vectors O={o1, o2...} in a discrete or a 

continuous space is retrieved that is produced by the sequence Q. 

If transition probabilities between states are assumed stationary and the procedure 

of producing an observation vector from a state is modelled by a pdf, then a Hidden 

Markov Model (HMM) is used to model the system. More precisely, the HMM is defined 

by: 

- The state transition matrix A={aij}, i,j=1..N, where aij represents the 

transition probability from state i to state j: 

( )itjtij SqSqPa === +1  (III.1)

- The observation probability distribution B={bi(v)}, i=1..N, where bi(v) 

represents the pdf that the observation vector v is produced by the state i: 

( ) ( )iti SqPb === vov t  (III.2)

- The initial state distribution π={πi}, i=1..N, where πi represents the 

probability that the state i is the first state of the sequence Q: 

( )ii SqP == 1π  (III.3)

 According to the probability theory, the following constrains are valid: 

Nia
N

j
ij K11

1
=∀=∑

=

 (III.4)

If v is a continuous variable, then: 
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( ) Nidbi K1=∀∫
v

vv  (III.5a)

Otherwise if v is a discrete variable, then: 

( ) Nibi K1=∀∑
v

v  (III.5b)

Finally: 

∑
=

=
N

i
i

1
1π  (III.6)

In [80], three basic problems related to HMM are identified: 

1) The evaluation problem: Given a HMM λ, what is the likelihood P(O|λ) of 

a sequence of observations O={o1,..oT}. 

2) The “uncover the hidden part” problem: Given a HMM λ and a sequence 

of observations O={o1,..oT}, what is the optimal sequence of states Q={q1,.. qT) 

that maximises the conditional probability P(Q|λ, Ο). 

3) The learning problem: Given a dataset of sequence of observations {O}, 

what is the HMM λ that best explains the dataset or equivalently maximises the 

conditional probability P(O|λ). 

The solution to the first problem is given by the forward-backward procedure. 

More specifically, a forward variable is defined as: 

( )λα ,)( itt SqPi == t21 ooo K  (III.7)

The forward variables are initialised as: 

( ) Nibi ii ≤≤⋅= 1)(1 1oπα  (III.8)

Then, they are inductively estimated: 

( ) Njbaii tj

N

i
ijtt ≤≤⋅⎟
⎠

⎞
⎜
⎝

⎛
⋅= +

=
+ ∑ 1)()( 1

1
1 oαα  (III.9)

The solution to the first problem is given by the formula: 

( ) ∑
=

=
N

i
T iP

1
)(| αλO  (III.10)

A similar solution can be derived using the backward variable which is defined as: 

( )λβ ττ ,)( 1 itt SqPi == Τ+ ooo K  (III.11)



Appendix III: Hidden Markov Models  160 
________________________________________________________________________ 

 

 The solution to the second problem is given by the Viterbi algorithm [100], which 

uses the variables γt(i) and δt(i), defined as: 

( )λ
βα

γ
|

)()(
)(

OP
ii

i tt
t

⋅
=  (III.12)

( )λδ
τ

|,max)( 1
11

t1 oo KK
K

iqqPi tqqt ==
−

 (III.13)

 For the learning problem, no analytic solution is available, therefore iterative 

methods must be used. The most popular solution is given by the Baum-Welch method 

[5], which is an implementation of the EM algorithm. As a consequence, the Baum-

Welch method converges to a local maximum of the likelihood function. 

 


