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Abstract

Accurate localisation of faces and facial features within grey scale images is a chal-

lenging task due to the high variability, in both shape and texture, of the appearance

of the human face. This thesis investigates methods of combining shape modelling

techniques and texture based pattern recognition to reliably and accurately detect

facial features, such as the eye pupils, nostrils and mouth corners.

Individual feature detectors designed to find specific facial features, e.g. the right

mouth corner, are found to be unreliable. The lack of distinctive local image struc-

ture around many facial features results in many false matches. Local variation in

appearance due to expression, blinking or occlusion may mean the true feature is not

detected at all.

These problems are addressed in two ways. Firstly, a coarse-to-fine approach is

adopted to find the whole face and restrict the search region for individual features.

Secondly, shape information is used to select the most likely looking group of candi-

date features that form a plausible face shape. Three methods of combining shape

and feature detection are presented. All three methods are found to give superior

performance, compared to merely selecting the best match by each feature detector.

The best performing shape constrained feature detection method is compared with

the well known Active Appearance Model (AAM) approach. Shape constrained fea-

ture detection is found to outperform the basic AAM algorithm. However, a recent

variation of the AAM which is tuned to edge and corner features is found to give
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similar results to shape constrained feature detection.

The most accurate feature detection performance is achieved using a hybrid approach.

This uses shape constrained feature detection to predict initial feature points. These

feature points are then refined using edge/corner AAM search. This method is found

to be comparable with the accuracy of human annotation.
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Chapter 1

Introduction

1.1 Facial Feature Detection

The task addressed by this thesis is that of automatically locating features on the

human face. For example given an unlabelled image as shown in Figure 1.1(a), the

computer is asked to mark the locations of seventeen features, as shown in Fig-

ure 1.1(b).

(a) Unlabelled Image (b) Manually Labelled Im-
age

Figure 1.1: Example labelled image with 17 landmark points

The image in Figure 1.1(b) was landmarked manually by a human operator. However,
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manual landmarking is time consuming, tedious and error prone. The algorithms in

this thesis aim to automate this process.

1.2 Motivations

Some applications of automatic facial feature detection are as follows:-

• Animation - Computer generated facial expressions can be animated by tracking

features on the human face and then replacing the facial texture with a cartoon

like face. Therefore automatic landmarks would be useful in the computer game

and film industries.

• Expression Recognition - The location of key feature points on the face could

be used to aid the recognition of human facial expressions. e.g. The corners of

the mouth when attempting to recognise a smile.

• Face Recognition - Algorithms that identify human beings from photographs

require accurate registration to compare two given faces.

• Face Processing - Any process applied to an image containing a face requires

the accurate localisation of the face before further processing takes place.

1.3 Challenges

The challenges which make facial feature detection a difficult task are common to

many computer vision problems, especially general object recognition. Some face

specific problems are as follows:-

• Identity variation - Human faces vary greatly between individuals
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• Expression variation - One human face is capable of a great deal of variety, e.g.

when blinking or opening the mouth

• Head rotation - Both in plane and out of plane rotation of the head causes

major changes in visual appearance

• Lighting variation - The lighting of a face causes non-linear effects on the value

of image pixels

• Scale variation - The face can appear at a wide range of sizes

• Occlusion - Facial hair or glasses can cause the facial features to be obscured.

• False positives - Background regions of the image may resemble human faces

and may lead to false detections

• Speed Constraints - Face detection is usually followed by further processing,

e.g. face recognition, so should ideally be an efficient real-time algorithm.

Any one of the above problems may cause a face detector or facial feature finding

algorithm to fail. In general, the difficulty of face and feature detection depends

largely on the data set used and the extent to which these variations are controlled.

In this thesis, the feature finding methods are restricted to static grey scale images.

This makes the task more difficult because skin colour information cannot be used

to aid face detection [57] and there are no motion cues as when using video input

instead of single images.

1.4 Approach

In this thesis, the most effective approach to facial feature detection is found to be a

coarse-to-fine approach. This effectively splits the problem into two stages:-
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1. Locate the face using a face detector

2. Find facial features within the region indicated by the face detector

To solve stage 1, there are many face detection methods devised by previous authors

(see review in Chapter 2). Four methods are implemented and tested in this thesis

(see Chapter 3). The region supplied by best performing face detector is then taken

as the starting point for testing algorithms in stage 2.

To solve stage 2 and find features given a face region, a simple approach is to reuse

the face detector method, but train the detector on individual features, instead of

the whole face. For example, train a detector on a small image patch surrounding

the corner of the mouth. However, this method is found to give very poor results.

To improve the performance of local feature detection several algorithms are de-

scribed which apply shape constraints to the output of individual feature detectors.

It is found that shape constraints are fundamental to any robust method of feature

point prediction. For example Figure 1.2, shows the improvement when using shape

constraints compared to unconstrained feature detection.

(a) Unconstrained Feature Detection (b) Shape Constrained Feature De-
tection

Figure 1.2: Examples of individual feature detections (white crosses)
within the region predicted by a face detector (white box). Black crosses
are manually labelled ground truth feature locations.
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Figure 1.2(a) shows that unconstrained feature detection finds the correct feature in

some cases, but fails badly in others. For example in Figure 1.2(a), the right eye region

is located accurately. However on the same face, the left eye brow detectors fail and

match to the glasses. The left mouth corner detector fails even more spectacularly,

matching to the left nostril.

If feature detections are constrained to form a plausible face shape then these false

matches can be avoided. Figure 1.2(b) shows the feature points output by a shape

constrained search algorithm described in this thesis (see Section 6.3) using the same

set of feature detectors.

Another approach, that can be used to perform local search given an approximate

face region, is the well known Active Appearance Model (AAM) search algorithm,

which was developed at Manchester University by Edwards et al. [22]. The AAM is

compared with the shape constrained feature search methods in Chapter 7 of this

thesis. Hybrid searches which use shape constrained detection to initialise the AAM

are also evaluated and found to give superior results to any other method used in

isolation.

1.5 Structure of Thesis

The structure of the thesis is as follows.

Chapter 2 : Face and Feature Detection Background Previous work on face

detection and feature localisation is discussed.

Chapter 3 : Face Detection Methods Four approximately real-time face detec-

tion methods are described, implemented by the author and tested on three separate

data sets.

Chapter 4 : Boosted Cascade Detector Experiments The Boosted Cascade
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Detector is investigated in more detail.

Chapter 5 : Shape Modelling Shape modelling techniques are discussed, as shape

is a useful constraint, when using noisy local feature detectors.

Chapter 6 : Shape Constrained Feature Detection Three types of feature

detector and three different types of shape constraint are described and tested.

Chapter 7 : Active Appearance Models The well known Active Appearance

Model (AAM) algorithm is described and combined with the shape constrained meth-

ods described in Chapter 6.

Chapter 8 : Conclusions Discussion of the research and suggestions for further

work.
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Chapter 2

Face and Facial Feature Detection

Background

This chapter reviews previous work on face and facial feature detection. Template

methods, which classify all subwindows of the image as face/non-face regions are

discussed in Section 2.2 and extensions to multi-view face detection described in

Section 2.3. Feature based approaches to face detection are considered in Section 2.4.

Feature localisation, which aims to find features given the approximate location of

the whole face, is discussed in Section 2.5. Finally iterative search algorithms are

considered in Section 2.6.

2.1 Scope of Literature Review

This review of face and feature detection methods is restricted to static grey scale

images, as these are the conditions under which our system is required to operate.

Therefore methods that require a known static background, use motion cues or colour

information are not considered. Static grey-scale methods are compared using the

following criteria:-
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1. Face detection performance (detection rate versus number of false positives)

2. Accuracy and reliability of feature localisation

3. Speed of detection

4. Ability to cope with rotated faces (in plane+out of plane)

The lack of a common test set often makes different methods difficult to compare.

Even when a common test set is used detection systems can be biased differently

between finding all true faces and avoiding false detections. Face detection meth-

ods are sometimes designed to perform slightly different tasks. e.g. Some methods

detect rotated faces, while others are restricted to upright faces. Feature localisa-

tion algorithms are even harder to compare, as researchers rarely use the same data

sets and do not always search for the same features. However, some data sets are

publicly available for example the BIOID data set∗, which is used throughout this

thesis. In this review, direct comparisons are made where possible and the advan-

tages/disadvantages of different approaches are discussed.

2.2 Template Based Methods

In this approach a template model of the whole face is built and used to search the im-

age. Face detection is therefore simplified to a 2D pattern recognition problem. This

whole face approach is sometimes called “holistic” modelling, see the face detection

survey by [42].

Typically a template face model is scanned across a target image, at multiple scales

(using an image pyramid [1] ) and asked to classify each subregion as face or non-

face. Therefore face detection is reduced to a binary pattern classification problem.

It is however a highly skewed classification task, because when searching an image

∗http://www.humanscan.de/support/downloads/facedb.php
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very few image subregions actually contain a human face. Several researchers have

attempted to solve this pattern recognition problem by modelling the distribution of

human faces [89][62][63] or more commonly by applying well known machine learning

techniques to discriminate between face/non-face distributions [88][74][65].

One of the earliest face modelling techniques is the “eigenfaces” method developed

by Turk and Pentland [89]. This approach models face texture by projecting pixel

values from a subwindow containing the face into a linear subspace using Principal

Components Analysis (PCA) [44]. The eigenvectors of this space (the “eigenfaces”)

represent the main modes of variation learnt from the training set. Two face images

can then be compared by projecting into the subspace and recording the “distance

in feature space”, which is a Mahalanobis type metric.

The eigenface model can also be used to discriminate between face/non-face image

regions, by projecting the region into the subspace and computing the “distance from

feature space” measure [89]. This measure computes the residual texture variation

of the subwindow, which the face model is unable to model. Therefore subwindows

which resemble the training set of face images, will be accepted and non-face like

image regions will be rejected.

The eigenface method is primarily used for face recognition rather than face detection.

Therefore the primary focus has been face recognition, for which eigenfaces have

proved successful [62][63]. In the Sept 1996 FERET face recognition competition [67]

the combined face detection/recognition system due to Moghaddam and Pentland [62]

achieved a success rate of 95% when applied to a database consisting of 7,562 images

of 3,000 people. However in these images the face detection task is reasonably easy

(i.e. controlled conditions with uniform backgrounds). There are no detection results

reported for later more challenging data sets (see Tables 2.1 and 2.2).

A template method that utilises neural networks to solve the face/non-face classi-

fication problem is due to Sung and Poggio [88]. They model the distribution of

faces using 6 prototype distributions and also the nearby non-faces using another
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6 prototype distributions. The distance of a candidate region from each of these 12

distributions is used to provide a 12 element feature vector. A neural network applied

to this feature vector classifies the region as face/non-face.

The face distributions are learnt by applying a modified k-means clustering algorithm

to a set of 1067 face patterns (19*19 pixels). Each face pattern is preprocessed by

fitting a linear function to the window to correct for lighting variation and further

normalised by histogram equalisation [85]. The non-face distributions are learnt by

applying clustering to a set of non-face images, which have been normalised using the

same preprocessing steps. An eigenspace model is built for each of the 12 clusters.

For each training example (face + non-face), a 24 (2*12) element feature vector is

computed by calculating the Mahalanobis distance and Euclidean distance from the

centre of each cluster. A Multi-Layer Perceptron (MLP) is trained to distinguish

faces and non-faces based on this 24 element vector.

A large number of face images are collected to form the faces example set (1067

images). However, the space of non-faces is much larger and impossible to represent

with a large set of random images. Therefore Sung and Poggio employ a boot-

strapping method, originally described in [87], to incrementally add false positives

from previous detectors to the non-faces data set (see Algorithm 2.1). When the

number of false matches is sufficiently low the boot-strap (Algorithm 2.1) terminates

and the final version of the detector is retained. This boot-strap method has since

been utilised by other researchers [73] [74] [80].

Algorithm 2.1 Boot-strap Training [87]

1. Start with a set of face images and a small set of non-face images.

2. Train the detector with the face images and current set of non-face images.

3. Apply the detector to a set of images not containing any faces and collect all false
matches.

4. Select a subset of the false matches and add them to the training set. Go to step 2.
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To test their face detector Sung and Poggio collected a set of images containing

human faces and background clutter, from various sources e.g. scanned photographs

from newspapers and images from the web. This test set contains 136 faces amongst

23 images and has since been used by various researchers to compare face detection

algorithms (see Table 2.1) and is known as the MIT data set†. The Sung-Poggio

detector is able to find 79.9% of the faces with 5 false positives on the MIT images,

see Table 2.1.

Number of False Detections
Method 0 3 5 8 13 20 42

Sung-Poggio [88] - - 79.9% - - - -
Rowley [74] 74.8% - - 84.5% - - 90.3%

Viola-Jones [92] - - 77.8% - - - -
Osuna [65] - - - - - 74.2% -

Schneidermann [80] - - 79.7% - 84.6% - -
Roth [73] - 94.1% - - - - -

Table 2.1: Comparison of detection rate versus number of false detec-
tions for various algorithms applied to the MIT data set (subset B of the
CMU data set).

Osuna et al. [65] use a similar scheme to that of Sung and Poggio. They subsample

19*19 pixel regions of the face, apply lighting correction and histogram normalisation.

However, Osuna et al. train a support vector machine (SVM ) to discriminate between

face/non-face regions instead of a neural network. The SVM [90] learns a decision

boundary that can be used directly to classify a 19*19 region. Osuna et al. also use

the bootstrapping technique of (Algorithm 2.1) to create a representative non-face

training set by building the face detector multiple times and collecting false positives

from a set of images not containing faces.

The final detector is applied to the MIT data set. The SVM method produces

a detection rate of 74.2% and 20 false detections, so is comparable to the results

obtained by Sung and Poggio (see Table 2.1). The authors state that the SVM

classifier is 30 times faster than that of Sung and Poggio, due to the small number

†The MIT test set was later combined with data from Carnegie Mellon University and now forms
subset B of the CMU data set described in Section 3.6.3 of this thesis.

34



Chapter 2. Face and Facial Feature Detection Background

of support vectors that need to be evaluated for each image region. However, the

method is still slowed down by the requirement to perform lighting correction and

histogram normalisation to every subwindow of the image that is examined.

Rowley et al. [74] trained a neural network directly on the image pixels, to partition

the image subwindows into face/non-face regions. This method models the face as

a 20*20 pixel template. Again each extracted subwindow is pre-processed using

lighting correction and histogram equalisation. A Multi-Layer Perceptron (MLP) is

then applied to the normalised subwindow to classify the region as a face or non-face.

The system is summarised in Figure 2.1.

Figure 2.1: System diagram for the Rowley Detector, reproduced with
permission from [74]

Several face detectors are built by Rowley et al. using different MLP structures.

The method is then refined by combining the results of the separate face detectors.

Simple voting or AND/OR logic operators are used to improve performance. On the

MIT data set, the Rowley-Baluja-Kanade detector achieves 74.8%/0 false positives or

84.5%/8 false positives (see Table 2.1), so has similar performance to the Sung-Poggio

detector. Rowley later expanded the original MIT data set (136 faces/23 images) to

form the CMU data set (507 faces/130 images). Both the MIT data set and CMU

set have since been widely used by researchers to compare face detection algorithms.

On the CMU data set the Rowley Detector is able to detect 89.2% of the faces with 95
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false positives over the whole test set [75]. The detection rates for different numbers

of false positives are shown in Table 2.2. Table 2.2 shows that the Rowley Detector

is comparable with other later detection methods.

Number of False Detections
Method 10 31 65 78 95 120 167 422

Viola-Jones [92] 78.3% 85.2% 89.8% 90.1% 90.8% - 91.8% 93.7%
Rowley [74] 83.2% 86.0% - - 89.2% - 90.1% 89.9%

Schneidermann [80] - - 94.4% - - - - -
Roth [73] - - - (94.8%) - - - -
Fröba [28] - - - - - 87.8% - -
Fröba [29] 89.0% 90.0% - - - - - -

Table 2.2: Comparison of detection rate versus number of false detec-
tions for various algorithms applied to the CMU data set, (expanded
version of table appearing in [93]).

A successful method is described by Roth et al. [73], using the sparse network of

winnows (SNoW) architecture [72] to discriminate between face and non-face regions.

They use a 20*20 pixel region and a training set of 1681 face examples. Again all

images are corrected for lighting variation and histogram equalisation applied. The

bootstrap training method is also used (see Algorithm 2.1).

The method produces a detection rate of 94.1% with only 3 false positives on the MIT

test set and 94.8% with 78 false detections on the CMU test set, see Table 2.2, so is

a highly successful method. However, the CMU result excludes 5 images containing

hand drawn faces, so presumably would give a lower detection rate if tested on the

full CMU test set.

The Roth Detector is also slow, because like the Rowley-Baluja-Kanade detector,

lighting variation and histogram equalisation must be applied to all subwindows.

The SNoW classifier itself is reasonably efficient as it only retains a relatively small

number of features from the large number available.

Schneidermann and Kanade [80] model the face patch using an approach based on the

naive Bayes classifier. Many classifiers (assumed to be independent) are combined.
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Each classifier estimates the joint probability of local appearance and position of a

facial subregion.

The method is very slow, as all classifiers need to be applied to every subwindow, but

gives good results. On the CMU data set the detection rate is 94.4% with 65 false

positives [81], see Table 2.2. On the MIT data set it is 79.7% with 5 false positives,

see Table 2.1. Schneidermann and Kanade later extend the method to use a wavelet

decomposition instead of facial subregions [81] and demonstrate that the method can

also be applied to the detect out-of-plane profile faces (see Section 2.3).

All the template methods discussed so far give good detection results and few false

positives, however all of them are very slow requiring at least a few seconds to analyse

even a small (300*200 pixel) image on a modern computer. However, Viola and

Jones [92] have recently developed a template based method that gives a reasonable

detection rate (see Table 2.1 and Table 2.2), but at greatly reduced computational

cost. The Viola and Jones “Boosted Cascade Detector” is capable of searching a

384*288 image at 15 frames per second using a 700Mhz PentiumIII processor. This

is a vast improvement in speed compared to previous face detectors, even taking into

account improvements in computer hardware.

The Boosted Cascade Detector derives its speed from the use of an image represen-

tation known as the “integral image”. This structure allows the sum of pixel values

in rectangular image regions to be computed quickly, independent of the region size.

The need for lighting correction is also removed by computing a second integral im-

age of squared pixel intensities that can be used to variance normalise the feature

responses directly.

Given a candidate region the Boosted Cascade Detector algorithm applies several

small classifiers, which compute the sum of pixel values from adjacent regions. The

output of the classifiers can be combined using a process called “boosting”, which

combines many independent, but weak classifiers (maybe only just better than ran-

dom), into one strong classifier. For the Boosted Cascade Detector a boosting algo-
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rithm known as AdaBoost [26], is used to both select individual weak classifiers and

weight them appropriately in order to distinguish between face and non-face regions.

The Boosted Cascade Detector has been implemented by the author and is investi-

gated in this thesis. The Viola-Jones method is describe in more detail in Section 3.5.

In Chapter 3, the Boosted Cascade Detector is compared with three other efficient

face detection methods. The different formulations of the detector and effects of

varying training set size are demonstrated in Chapter 4.

Another efficient method is due to Fröba and Küllbeck [30]. This algorithm computes

an orientation map of the image at multiple scales. Each scale is then searched

using an orientation map template of the face. Fröba and Küllbeck report that their

implementation searches a 190x140 image in 80ms using a PII 500Mhz processor.

The Orientation Map Detector is also implemented by the author and described in

more detail in Section 3.3 of Chapter 3. Later in Section 3.8 it is compared with the

Viola-Jones Boosted Cascade Detector [92].

In later work, Fröba [33] extends the Orientation Map Detector by applying the

SNoW face classifier devised by Roth et al. [73] to verify face candidate regions and

therefore reduce the false positive rate of the detector. In conjunction with the SNoW

classifier this algorithm is able to achieve a detection rate of 87.8% with 120 false

positives on the CMU data set (see Table 2.2).

Fröba applies AdaBoost to the orientation template approach in [32]. This treats

each orientation vector as a separate feature and results in improved classification

performance. This detector is also extended to detect faces rotated in the image

plane [28] (see Section 2.3 for more details).

In a recent work, Fröba [29] uses a modified version of the consensus transform [102]

instead of the orientation map. This detector also uses AdaBoost to create a strong

classifier template. The consensus transform is shown to be less susceptible to lighting

variation, compared to the orientation map. The improved results using consensus
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transform are shown in Table 2.2 (Fröba [29]). The detection rate for a small number

of false positives using this approach is superior to previous methods, but it is not

clear whether the detection rate can be improved further.

2.3 Multi-view Template Methods

The obvious drawback of template based methods, discussed in Section 2.2, is the

restriction to frontal upright faces. This section gives a brief overview of extensions

to template based search, which aim to detect human faces at multiple view points.

Multi-view face detection is generally broken down into two types of variation; in-

plane rotation and out-of-plane rotation. In-plane rotation refers to cases where the

whole face is visible and facing the camera, but the face is not necessarily upright.

Out-of-plane rotation is when the face is turned away from the camera, such that

some of the facial features are occluded, e.g. a side view of the face.

The huge variety in appearance of the human face, when viewed from different an-

gles means multi-view face detection is much more challenging than upright frontal

face detection. However, recently many authors have attempted to extend template

methods to solve the problem. The various approaches can be summarised as follows:-

1. One “monolithic” model for all view points

2. Parallel application of multiple face models

3. Pose prediction followed by testing with single model

4. Pyramidal application of multiple face models

The first approach, using one face template to model all possible face views, is widely

reported as being unworkable [76][45][97][81][28]. The reason is the highly non-linear
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variation of the human head and face when viewed from different angles. No authors

suggest building a single template to model all possible views of the head.

Rowley et al. [76] suggest using approach two or three for solving the problem of

in-plane rotation. Approach two generally involves building multiple detectors for

multiple viewpoints and then running all detectors to search for a face. However, in

the in-plane rotation case, this can be achieved using a single frontal face detector

and rotating the test image. Approach three involves a two stage method, which first

tries to predict the most face-like orientation of a given image region and then de-

rotates the patch before applying a frontal face detector. In all cases, Rowley’s MLP

face template method [74] is used (see Section 2.2 for discussion of MLP approach

to upright face detection). A multi-class neural network is trained to perform the

pose estimation. The network has 18 outputs, which correspond to 18 in-plane face

orientations.

To test detection accuracy of the system, Rowley introduced a test set containing

in-plane rotated faces, which is known as “Set D” or the “rotated set” of the CMU

frontal face data set‡. This image set consists of 50 images, with 223 faces at various

orientations. All subjects are looking directly at the camera, but some are upside

down or at 90 degrees to the camera. Detection rates and number of false positives

when applying Rowley’s method to this test set are shown in Table 2.3.

Number of False Detections
Method 45 221 400 600 1345

Rowley [76] (PE) - 89.2% - - -
Rowley [76] (ALL) - - - - 96.0%

Jones [45] (PE) 87.0% 89.7% 90.6% 91.6% -
Jones [45] (ALL) 87.0% 90.5% 92.3% 92.3% 95.0%

Fröba [28] 89.7% - - - -

Table 2.3: Comparison of detection rate versus number of false detec-
tions for various algorithms applied to the CMU in-plane rotations data
set.

‡http://vasc.ri.cmu.edu/idb/html/face/frontal images/index.html
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Rowley’s approach using pose estimation and de-rotating the face finds 89.2% of

faces, with 221 false positives (see Table 2.3, Rowley(PE)). Rotating the test image

multiple times and applying Rowley’s upright detector at all orientations results in

an improved detection rate of 96.0%, but an increased number of false positives (see

Table 2.3, Rowley(ALL) ). The two approaches are not therefore directly comparable,

because only one point on each ROC curve has been computed for each approach.

Whether the pose-estimated method is successful, compared to the run at all orienta-

tions approach, depends on the accuracy of the pose estimator relative to the frontal

face detector. Similarly the speed of both methods depends on the complexity of the

pose estimator relative to the frontal face detector. Rowley et al. report that the pose

estimated (PE) method is “much quicker” than the try all approach [76].

Rowley also suggests an extension of the MLP pose estimator approach to out-of-

plane rotation, with 5 separate models - left profile, left half profile, frontal, right

half profile and right profile. However, no results are presented for this system [76].

Schneidermann and Kanade [81] use approach three to attempt to solve the out-of-

plane rotation problem. They build separate frontal face and right profile detectors

using the successful naive Bayes template detection method described in [80] (see

Section 2.2). The test image is also reflected, so that left profile faces can also be

detected using the right profile detector. The test image is therefore searched three

times.

To test the method, Schneidermann [81] introduces a test set for out-of-plane de-

tection algorithms. This test set contains 208 images with 441 faces (347 in profile

view). It is publicly available§ and referred to as the “CMU out-of-plane rotations”

set. Results of applying the Schneidermann detectors to this data set are presented

in Table 2.4.

The Schneidermann detector finds 75.2% of all faces for 12 false detections rising to

92.7% of faces for 700 false detections. Therefore the method is reasonably successful

§http://vasc.ri.cmu.edu//idb/html/face/profile images/index.html
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Number of False Detections
Method 8 12 34 89 91 221 415 700

Schneidermann [81] - 75.2% - - 85.5% - - 92.7%
Jones [45] (PE) - - - - - (75.5%) - (83.0%)
Jones [45] (ALL) - - - - - (76.0%) - (84.0%)

Wu [97] (PE) 79.4% - 84.8% - - 89.8% - -
Wu [97] (All) - - 84.1% 86.2% - - 91.3% -

Table 2.4: Comparison of detection rate versus number of false detec-
tions for various algorithms applied to the CMU out-of-plane profile data
set, (expanded version of table appearing in [97] ).

and gives one or two false positives per image, when set to find 90% of faces. The

original template method is very slow due to requiring three detectors in parallel.

This approach is successful, but very computationally expensive.

Jones and Viola [45] extend their successful upright face detector [92], to cope with

in-plane and out-of-plane rotated faces. Similar to Rowley [76], they use a pose

estimator to predict the correct orientation model and also compare this approach

with the run-all detectors approach. A decision tree classifier, trained using the C4.5

algorithm (Quinlan [70]), is used to predict the face orientation of a given image

patch.

When comparing the Jones [45] in-plane rotation approach with Rowley [76] there are

some implementation changes, which are required to preserve the speed of the original

Viola-Jones approach. For example multiple models are built at 12 orientations,

instead of de-rotating the image patch at run-time. Similarly when applying the run-

all approach, the multiple models are applied to each image, instead of rotating the

test image.

Table 2.3 shows that on the CMU in-plane rotation test set the Jones method gives

very similar performance to the Rowley approach. When using the pose estimation

(PE), Jones finds 89.7% of faces for 221 false detections, versus 89.2% using Row-

ley. Similarly when applying all detectors, Jones finds 95.0% of faces for 1345 false

detections, versus 96.0% using Rowley. Therefore the main benefit of the Jones ap-

proach compared to Rowley is speed. When searching a 320x240 pixel image, the
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Jones method requires just 140ms using pose estimation and 660ms using the run-all

approach (with a 2.8Ghz Pentium4 Processor).

The Jones [45] approach is also applied to out-of-plane face detection. Here the

decision tree is trained to distinguish between left and right profiles. The detector

ignores frontal face images, but is still applied to the CMU out-of-plane test set.

Table 2.4 shows that similar results are achieved using pose estimation (PE) and

running both left/right profile detectors in profile (e.g. 83.0%/84.0% for 700 false

matches). This result is not directly comparable with Schneidermann because frontal

faces are not consider by Jones, however the Jones detection rate for 700 false matches

is still much lower ( 84.0% vs 92.7%). Therefore the Jones multi-view method is much

more efficient, but performs worse than Schneidermann for out-of-plane profile faces.

Y.Li et al. [51] also use a pose prediction method to detect multi-view faces. They

build models which cover all 8 combinations of up/down, frontal/profile and left/right

face views. Each image window is preprocessed using horizontal and vertical Söbel

filters. SVM Regression [90] is used to predict the pose angle and select the ap-

propriate face detector [50]. The individual detectors are a hybrid of the eigenface

model [62] and the SVM face classifier [65] (see Section 2.2 for a description of these

template methods). However these detectors are applied to Söbel filter outputs, not

the normalised image pixels.

This approach is more efficient than applying all 8 face detectors to every face patch,

but it is still computationally expensive to test an individual image window. There-

fore this technique is only used to test small regions of the image, which have been

detected using motion or skin colour techniques [57]. The method is shown to give

accurate results when used to track faces in video sequences [51], but is not applied

to any of the CMU test sets.

S.Li et al. [49] describe a multi-view detector based on the Viola-Jones upright face

detector. Their method finds out-of-plane rotation faces using an algorithm they

describe as the “detector pyramid”, which can be considered a fourth approach to
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multi-view face detection. This method first applies one detector to distinguish face

and non-face regions (all views from left to right profile are modelled). If a region

passes this detector another level of detectors is applied. Each level of detectors

restricts the range of face profiles modelled, in a coarse-to-fine manner. If all detectors

at a particular level fail then the region is rejected. In-plane rotation is dealt with

by applying the detector pyramid to rotated versions of the test image. The pyramid

detector is very efficient, so this multi-view method is very quick (200ms per 320x240

image on a PIII 700Mhz PC). S.Li et al. apply their algorithm to the CMU out-of-

plane profile set, but unfortunately provide no quantitive multi-view results in their

paper [49], therefore it is not possible to assess the effectiveness of this approach.

A similar pyramidal scheme is adopted by Fröba [28]. Fröba adapts the boosted

orientation map frontal face detector [32] (see Section 2.3) to the task of in-plane

rotated face detection. The first detector accepts faces in the range (-60o,+60o) or

immediately rejects the image patch. The second level of detectors partition the

orientations into finer ranges, or reject the image patch if all detectors fail. The final

level applies the SNoW detector due to Roth et al. [73] at the appropriate orientation.

Fröba applies this method to the CMU in-plane rotations test set (see Table 2.3) and

achieves a reasonable detection rate of 89.7% for only 45 false positives. However,

Fröba’s method is difficult to compare with other methods because the ROC curve

does not extend to higher true/false detection rates. The restriction to faces in

the range (-60o,+60o) also puts an upper limit on the detection rate, which can be

achieved. However, the decision tree algorithm is very fast ( 40ms for a 320x240 pixel

image using a 1000Mhz Athlon processor ).

Wu et al. [97] describe a multi-view extension to the Viola-Jones cascaded face detec-

tor [92] approach (see Section 2.3). This method is a hybrid of approaches two and

four. Face detectors are built for 5 out-of-plane orientations and 3 different in-plane

orientations (i.e. 15 detectors in total). In version one of this approach all detectors

are run in parallel. In version two, only the first six layers of each (16 level) cascaded
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detector are applied. The most promising detector after the first 6 layers is taken as

the likely orientation of the face and the remaining layers evaluated. Hence the image

patch is ultimately accepted or rejected by one appropriately orientated detector.

The results of applying the Wu method [97] to the CMU out-of-plane test set are

shown in Table 2.4. The method outperforms Jones [45] and gives performance similar

to Schneidermann [81]. However, the Wu algorithm is preferable to Schneidermann

due to the more efficient detectors used, which means the system can approach real-

time on a fast machine ( 80ms for a 320x240 image on a P4 2.4Ghz PC ).

The pose estimation (PE) version of the Wu algorithm, gives similar results to the

run-all approach (see Table 2.4) and gives a speed up factor of 1.7. Wu et al. also

apply their algorithm to a test set with simultaneous 360o in-plane and out-of-plane

rotated faces (the CMU out-of-plane test set contains only approximately upright

non-frontal faces). For this they use 12 in-plane orientations and 5 out-of-plane

orientations, hence 60 detectors in total. They give a few example results on their

own test set. This simultaneous in-plane/out-of-plane multi-view algorithm requires

just 250ms on a 320x240 image (using a Pentium4 2.4 Ghz Processor).

The multi-view detection methods discussed in this section are all extensions of the

upright frontal template detection methods described in Section 2.3. However, multi-

view face detection is much more challenging than upright frontal face detection,

therefore the performance of multi-view algorithms tends to be worse (lower detection

rates and more false positives). The most successful and computational efficient

approach is probably due to Wu [97], which extends the highly successful Viola-

Jones face detector [92]. Approaches which try to predict the correct orientation

(e.g. Jones [45] and Rowley [76]) tend to be more brittle and not perform as well.

45



Chapter 2. Face and Facial Feature Detection Background

2.4 Feature Based Methods

An alternative to using a single template to represent the whole face is to search

for individual facial features and then declare an image region to be a face if an

appropriate combination of facial features are identified. The detection of smaller

facial features instead of the whole face makes the detection of not quite frontal faces

more robust (e.g. faces with small amounts of in-plane and out-of-plane rotation).

However, the face generally needs to be larger in the image, so that internal facial

features can be detected. Therefore many feature based methods are unsuitable for

detection of low resolution faces, e.g. 30*30 pixels.

For example Leung et al. [48] use multi-orientation, multi-scale Gaussian derivative

filters to detect facial features. The vector of filter responses are learnt for 5 points

on the face, namely both nostrils, both pupils and the nose lip junction. The bank of

filters is applied to an image and the best matches (using a dot product metric) are

retained as candidate nostrils, eye etc. The facial features are combined into possible

face candidates. This is achieved by selecting all feature points above a certain

threshold and pairing them up. Each pair is then used to define small elliptical

regions where the remaining 3 feature points are likely to occur. If further feature

points are found within the predicted regions, then a face candidate is formed.

Given a face candidate the inter-point distances form the basis of a likelihood score,

assuming a Gaussian distribution of inter-feature distances computed from the train-

ing set. A refinement, implemented by the Burl and Leung [4], is to use the shape

statistics of Dryden and Mardia [20], instead of just inter-feature distances. For both

methods, the candidate shape with the highest likelihood score is deemed the location

of the face.

This feature based method achieves a 95% success rate with approximately frontal

face images with cluttered backgrounds [48]. However, results are only provided for

a small database that is not publicly available. The feature detectors do have some
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tolerance to head rotation (ie out of plane and in plane rotation), except at extreme

angles. The method is also able to cope with occlusions, in some cases, because not all

5 feature points need to be found to return a face candidate. Therefore this method

is reasonably robust.

The system developed by Yow and Cipolla [99] [100] [101] also uses a Gaussian second

derivative filter to detect facial features. In this case the filters are merely elongated

horizontally in the ratio 3:1 to match the approximate shape of facial features, such

as the eyes and mouth. The feature point candidates are then formed using non-

maximal suppression of the Gaussian filter response. The candidate features are then

combined to form face candidates. Shape is not modelled explicitly, but implicitly

using a grouping method based on belief networks [78]. The quality of the feature

response is propagated up the network (using an algorithm due to Pearl [66]) and the

highest scoring configuration of points selected as the location of the facial features.

This method was able to produce a success rate of 93% on 135 test images [100].

Again the images are not publicly available, so it is difficult to make comparisons

between this algorithm and the method due to Leung et al. [48].

Cootes et al. [11] implement a feature detector based on Eigen-features [61] to ap-

proximately locate the face in the image, before applying a local ASM search [13] (see

Section 2.6). Four feature detectors are trained to recognise the grey level patterns

around both pupils and both nostrils by projecting into a low dimension eigenspace,

in a manner similar to the original eigenface approach, due to Turk and Pentland [89].

When searching, each feature detector is scanned across the image (at multiple scales

and orientations) and the closest matches (calculated by proximity in each feature

eigenspace) are declared candidate points for the pupils/nostrils etc.

The candidate points are then grouped into face candidates, which are tested by

fitting a shape model [8] [20] to the (possibly incomplete) set of facial features. The

face candidate with the most number of feature points and best match to the shape

model is declared the location of the face. This approximate location and scale is
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then used to seed a local active shape model (ASM) search [13].

The system was able to find 35 faces in a test set of 40 [11], giving an overall success

rate of 87.5%. Here a success is declared when the top scoring face candidate returns

a starting point for the ASM algorithm, which is close enough to the true face position

for the ASM to converge on the face. However, testing is only performed on a small

number of images. The method is quite slow, taking 12 seconds on a SUNSPARC20

computer, but would be much faster on a modern computer. An algorithm similar

to this one is evaluated as part of this thesis, see Section 3.2 of Chapter 3.

A more recent feature based approach is due to Hamouz et al. [39], which utilises a

bank of Gabor filters to search for 10 facial features (eye corners, eye centres, nostrils

and mouth corners). Each feature is modelled using a Gaussian Mixture Model

(GMM) of feature responses. Any triplet of feature detections, with an acceptable

spatial orientation, produce a face location hypothesis. These face candidates are then

normalised using an affine transformation and tested using an SVM region classifier,

similar to the one used by Osuna et al. [65] for template based face detection (see

Section 2.2). The highest ranking candidate based on the SVM discriminant function

is declared the location of the face.

One advantage of using Gabor filters and searching over all scales and orientations is

that the implied scale and orientation of each detector can be used to limit the search

for feature triplets. This is achieved by computing limit regions for the relative distri-

bution of individual features [37]. Otherwise the number of possible triplets becomes

prohibitive, if too many candidate locations are returned by each feature detector,

resulting in a combinatorial explosion. However, applying 10 feature detectors to the

whole image is computationally expensive. The reported speed of the whole method

is 13 seconds per image (however the implementation is not optimised for speed and

could be much quicker [39]).

Hamouz et al. apply their algorithm to the XM2VTS and BIOID test sets (see Sec-

tion 3.8 for a description of these two data sets). The algorithm finds 91% of eye
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locations in the XM2VTS within 10% of the true inter-ocular eye separation. The

success rate on the BIOID data set is 65%. This is similar performance to the Jesorsky

et al. [43] localisation method, discussed in Section 2.5. The methods described in

this thesis are compared with the Hamouz and Jesorsky algorithms in Section 7.7.

Graf et al. [35] applied band pass filtering and detect facial features using morpholog-

ical operations, which are then grouped to form face candidates. Maio and Maltoni

use the Söbel filter to extract edge orientation features. The generalised Hough trans-

form [2] is then used to detect the elliptical outline of the face. All these methods

report good results, but on different data sets, so are difficult to compare.

A general weakness of all feature based methods is that they depend on the accurate

detection of certain set of features. If this initial search fails, then the face will not

be detected. Individual feature detectors are often noisy, due to the limited local

image structure around a given feature compared to the richer structure present in

the whole face. Some feature based methods have in built redundancy, to missing

features e.g. [4][11][54][43][100]. However, if the face is at very low resolution (e.g.

30*30 pixels) none of these methods will be successful, because it is not possible to

discern individual features.

Another limitation of feature based face detection is that if the feature detectors

generate too many false matches then there is a combinatorial explosion in the number

of possible face candidates. This can make feature based methods slower than whole

face methods, even if the individual feature detectors are simpler and faster than the

whole face detector.

A problem with comparing feature based algorithms is that no common test set has

been adopted by researchers, therefore it is difficult to make performance comparisons.

The CMU data set, used to compare template methods in Section 2.2 contains many

low resolution faces, so is not suitable.

49



Chapter 2. Face and Facial Feature Detection Background

2.5 Feature Localisation Methods

This section reviews previous methods for facial feature finding. The methods dis-

cussed attempt to find facial features such as eyes, nose and mouth given an approx-

imate location of the face. These algorithms assume that the face has been found

correctly and facial features are present in the image, although they may be occluded

by glasses, hands etc. Many methods are similar to those discussed in Section 2.4.

However, in Section 2.4 the configuration of candidate features is used to discriminate

between faces/ non-faces. Here the purpose of feature detection is merely to locate a

given set of facial features within a predefined target region.

A common feature detection approach is to extend a whole face detection method, to

search for smaller facial features at a higher resolution. For example Feris et al. [23]

use Gabor Wavelet Networks(GWNs) to first find the approximate face region and

then use smaller GWNs to look for 8 individual features, namely the corners of the

eyes, the nostrils and mouth corners.

Gabor Wavelet Networks [46] consist of a weighted set of wavelets, each having an

associated position, orientation and scale within a common co-ordinate system. A

GWN is trained by randomly dropping wavelets onto an image and optimising the

parameters to minimise the difference between the training image and the GWN

representation. Each GWN therefore compresses the data present in the training

image, see Figure 2.2 for examples of GWN compression.

Figure 2.2: Example of image compression using various numbers of
Gabor Wavelets, reproduced with permission from [23]
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A GWN is fitted to an unseen image, by finding the linear transformation from

the model frame that enables the GWN to best reconstruct a portion of the image.

The match can be computed efficiently without reproducing the image pixel values

explicitly [23]. The first stage of feature localisation is to fit a whole face GWN to

the image, which suggests approximate locations for each feature. The second stage

is the refinement of the approximate feature prediction using GWNs trained on each

feature. The initial whole face GWN is influenced by all facial features and therefore

less accurate than the local GWN feature search.

Feris [23] states that each feature is found within 3 pixels of the landmarks points in

∼95% of cases for eye corners and nostrils and in ∼88% of cases for mouth corners.

The test set is a subset of the Feret database [67], where the faces have an approximate

inter-ocular separation of 50-60 pixels. Here, 3 pixels represents 5-6% of the inter-

ocular separation, so the GWN method is accurate, but not always reliable and is

only tested on a relatively clean data set. The method is also rather slow, so is

unsuitable for real-time applications.

Jesorsky et al. [43] use the Söbel filter to detect edges in the image and then match

strong edges to a face edge model using the Hausdorff distance [77]. This initial face

localisation method is then extended by searching with a smaller model to refine the

eye locations, as shown in Figure 2.3. The location of each pupil is further refined

using a MLP based detector for each eye.

Jesorsky et al. introduce the BIOID data set, which is described in Section 3.6.2

and used throughout this thesis. This three stage method is able to find the centre

of the eye pupils within 10% of the inter-ocular distance for 80% of the BIOID

database (described in Section 3.6.2) and 92% of the XM2VTS database (discussed

in Section 3.6.1). The Hausdorff matching is quick, requiring just 30ms for both coarse

matching and refinement on a PIII 850Mhz processor, but the speed of the final MLP

eye detector stage is not commented on. In Section 7.7, the methods presented in

this thesis are shown to give similar results to the Hausdorff+MLP search on the
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Figure 2.3: Overview of face localisation using the Hausdorff distance,
reproduced with permission from [43]

XM2VTS data set, but outperform the Hausdorff+MLP method on the BIOID data

set.

Reinders et al. [71] describe a system to detect the right eye using neural networks

and orientation maps (see Section 3.3.1). Four eye features are detected, namely the

inner and outer corners of the eye and the upper and lower eyelids. The configuration

of strong responses from each of the 4 neural networks is used to determined the

likelihood of a region being the true location of the right eye. The system detects 96%

of right eyes within 2 pixels, on faces with an inter-ocular separation of 20± 2 pixels.

However, a good initialisation is required, for the eye finder. In fact, Reinders et al.

use video and initialise the search from the previous frame, which limits the search

region for the eye detector. It is unclear how well this system would work if the eye

search was less constrained.

Herpers et al. [41] use steerable filters [25] to find strong edges on the face. They

use high resolution face images (512*512 pixels) and recognise key points on the face,
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e.g. eye and mouth corners using hand built heuristics. For example a point on an

edge of high curvature close to a spherical edge is assumed to be the corner of the eye

and the spherical edge is the outline of the pupil. This approach achieves a success

rate of 97.3% with the iris, 94.4% with eye corners and 83.8% with mouth corners.

However, the algorithm is only tested on a private data set, that does not contain

any occlusion (e.g. due to facial hair or glasses) and all images are collected under

controlled lighting conditions. Therefore the method is unlikely to work in realistic

situations and is only usable on high resolution faces.

Shakunaga et al. [83] describe a system which combines the Eigen-template approach

of Turk and Pentland [89] and a 3D model of the human face. Eight facial features

are used; namely the eyes, eye brows, ears, mouth and nose. A common Eigen-space

is built for each feature with a training set of left, right and frontal views. These

detectors scan the image to produce a set of feature candidates that also indicate a

direction (i.e. left/right/frontal). The feature candidates are combined into groups

to form face candidates, subject to geometric constraints. The approximate pose of

the face is estimated and a 3D shape model used to predict the location of missing

features. A refined search for missing features then takes place. The final evaluation

function is a weighted combination of the sum of feature responses, the fit with the

3D shape model and a penalty for missing features.

Shakunaga report finding ∼ 98% of the internal facial features and ∼ 87% of the ears

testing on frontal face images and a few percent worse results using a test set with

the subject at 30o to the camera. However, they do not specify the accuracy required

to define a correctly detected feature and only test on their own data. They also

appear to only test performance at discrete angles i.e. -30/0/+30 degrees and do not

comment on intermediate angles. The speed of the system is not commented upon.
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2.6 Iterative Search Methods

Iterative search methods project a model into the image and update the model pa-

rameters given the fit of the model to the nearby image pixels. An example is the

approach due to Wiskott et al.[95] known as “Elastic Bunch Graph Matching”. Here

a “Bunch Graph” consists of a set of “Gabor Jets” and a graph structure. A Gabor

Jet is a vector of responses to a family of Gabor filters and is used to model each

facial feature. Forty Gabor filters are used at 5 frequencies at each of 8 orientations.

The graph structure models the distribution of distances between adjacent features.

The first stage of this algorithm is to find the approximate face location by searching

with a rigid graph and finding the best match to a set of averaged Gabor jets. The

second stage is to perform an iterative search of the face region to refine the position

and size of the face. At this stage the full set of Gabor Jets is used. The disparity

between each Gabor Jet from the Bunch Graph and the Gabor Jet computed from

the image is used to predict small local displacements to improve the location of each

feature. The third stage is the same as stage two, but allows variation in aspect ratio.

Finally a small refinement of each Gabor Jet takes place, weighted by the distortion

of the inter-feature distances relative to the graph model.

The Wiskott method is primarily a face recognition algorithm, as the final Gabor

Jet responses are used to identify individuals. Therefore the accuracy of the feature

localisation is not discussed in detail. However the system is quoted as giving an

average point to point error of 1.6 pixels [95], for faces with an an inter-ocular distance

of ∼ 40 pixels. The system is therefore accurate to within ∼ 4% of the inter-ocular

separation, but is relatively slow, requiring 30 seconds on a SUNSPARC 10-512.

Gabor jet features have also been utilised for the task of face feature tracking [56] [58]

[94]. For example Maurer et al. [56] compute the phase disparity between consecutive

frames to predict the direction of movement of individual feature points. Maurer et

al. initially track multiple feature points through a sequence of frames and then
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reverse the process to select a set of reliable features for each individual. The bunch

graph approach (described above) is then used to constrain the relative movement of

features in future tracking.

McKenna et al. [58] also use phase disparity to track features, but constrain the

detection using a statistical shape model (which is further described below and dis-

cussed in detail in Chapter 5 of this thesis). A confidence measure is assigned to each

feature point, based on the difference in Gabor Jet representations between frames.

This allows the shape model to be fitted to the predicted feature points in a weighted

manner, which allows unreliable matches to be excluded and avoids the final set of

predicted points forming an unlikely configuration.

Wieghardt et al. [94] adopt the shape constraint method developed by McKenna,

but compare it with a novel approach which encodes the shape constraints directly

into the Gabor Jet phase-based disparity motion estimation. Wieghardt et al. claim

improved point to point error when applying their shape constraint technique to a

series of frames. However all these tracking extensions to the original Wiskott method

[95] are difficult to compare due to the lack of a common test set.

Another method that combines shape constraints and feature detection is the active

shape model (ASM) due to Cootes et al. [13]. The shape is learnt from a set

of manually landmarked images using the shape statistics of Dryden and Mardia

[20]. Building such a shape model is described in detail in Chapter 5, but can be

summarised as aligning the shapes to a common co-ordinate frame and performing a

principal components analysis (PCA) on the aligned data. A profile model is trained

on a linear patch passing through each feature point within the shape model. The

set of profile models and shape model form the ASM.

Given a sufficiently accurate starting position the ASM search proceeds by searching

along each linear profile to improve the local match. The best match for each profile

is then recorded and the shape model fitted to the new shape. Constraints are placed

on the shape model, so that spurious matches by an individual profile model are
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ignored. The search then proceeds iteratively with a new search along each profile.

The ASM uses an image pyramid [1] to perform a coarse-to-fine search.

(a) Initial (b) After 2 itera-
tions

(c) After 6 itera-
tions

(d) After 18 iter-
ations

Figure 2.4: Examples of valid and invalid feature detections

Good results fitting ASMs to unseen faces are reported in [7]. The ASM is trained

on a set of 200 face images with 133 landmark points and applied to a test set of 200

unseen faces with equivalent manually labelled points. The ASM was initialised with

the mean shape and displaced from the true location of each test face by ±10 pixels.

The resulting search gave an average point to point error of 4.8 pixels, with 1.0% of

searches failing to match to the face (and therefore not included in the mean error

calculation). Relative to the inter-ocular separation of 70-80 pixels, this represents a

point to point error of ∼ 6.2%. This is a good result considering the large number

of feature points evaluated, many of which are implied points, e.g. equally spaced

points along the outline of the face.

A later alternative to the ASM is an approach known as the Active Appearance

Model (AAM) [6]. The AAM is described in detail in Chapter 7. Like the ASM, the

AAM is projected into the image and searches iteratively for the best match using a

coarse-to-fine search. However, instead of using profile models to search around each

feature point, the AAM uses the difference between the texture model and the image

to drive the shape and texture parameters.

The ASM and AAM algorithms are compared by Cootes et al. [7]. The AAM is

found to give a point to point error of 4.0 pixels with 1.6% failures, compared to 4.8
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pixels using the ASM with 1.0% failure rate, when both are applied to the same test

set. The AAM uses all the image data, instead of just profile texture, which makes

the search more robust and locally accurate. A practical advantage of the AAM

approach compared to the ASM is that a successful model can be built with fewer

control points (i.e. less than 133), because the texture model is able to capture some

of the shape variation, whilst the ASM requires many control points to adequately

model the local texture variation using profiles.

A weakness of both the AAM and ASM methods is that they require a good starting

position to converge to the correct solution. The AAM must start within approxi-

mately ±15 pixels of the correct location for a face of width ∼ 200 pixels [6], with

approximately correct orientation and scale. The ASM has a slightly larger capture

range, compared to the AAM [7], however if either is initialised too far away from the

face it will find a false minima and fail to find the correct solution. These methods

are therefore only suitable for local search. Different variations of the AAM search

are evaluated in Chapter 7 of this thesis.

The AAM algorithm has also been extended to face tracking applications. For ex-

ample Dornaika and Ahlberg [19] extend the AAM to a 3D wireframe model of the

human face, with a separate texture model. They first compute the 3D head pose

using a RANSAC (RANdom SAmpling Consensus [24]) technique combined with a

goodness of fit estimate for the face texture. The AAM algorithm is then used to

refine the model fit. This method shows promising results, but is only evaluated (for

pose estimation accuracy) on four video sequences.

2.7 Summary

The main conclusion of this review of face and feature detection is that is very difficult

to compare algorithms due to the lack of common test sets. This is especially true for

feature based face detection (see Section 2.4) and feature localisation methods (see

57



Chapter 2. Face and Facial Feature Detection Background

Section 2.5).

For template based face detection (see Section 2.2) and multi-view face detection (see

Section 2.3) the CMU data sets provide common data to compare results. Therefore

whole face template methods are more thoroughly tested and appear to provide more

robust results, compared to feature based detection, especially for low resolution

upright faces. Therefore the main approach to face detection in this thesis is template

based.

An important concern for practical applications of face detection is the time required

to locate a face. The algorithm must find the face in less than one second and

preferably less than ∼200ms. With the processor speed of modern computers this

is now feasible. However, only certain algorithms are suitable. The Boosted Cascade

Detector [92] and Orientation Map Detector [30] are selected and tested in the next

chapter along with two other face detection methods.

The feature localisation methods discussed in Section 2.5 can be applied after the

face detection stage. This thesis describes three novel methods of combining feature

detection and shape modelling (see Chapter 6). These shape constrained methods are

compared and eventually combined with the iterative AAM search (see Chapter 7).
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Face Detection Methods

Four algorithms are investigated in more detail. Namely the Linear Profile Detec-

tor, Orientation Map Detector [31], Normalised Correlation Detector and Boosted

Cascade Detector [92]. The Linear Profile Detector is a feature based method, sim-

ilar to the method described by Cootes et al. [9]. The Orientation Map Detector,

Normalised Correlation Detector and Boosted Cascade Detector are template based

methods.

3.1 Face Detection Training Set

The WEBCAM image set is used to train a variety of face detectors. The data set

consists of 1055 images, containing one face each, with 128 identities, obtained using

a web camera in our lab. The WEBCAM images are manually labelled with 20

corresponding feature points, see Figure 3.1.

These feature points allow each face to be cropped and scaled when building template

based face detectors. The labelled feature points are used to build individual feature

models for the Linear Profile Detector described in Section 3.2 and later to train

individual feature detectors in Chapter 6. The WEBCAM training set is used as the
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(a) WEBCAM 1 (b) WEBCAM 2 (c) WEBCAM 3 (d) WEBCAM 4

Figure 3.1: Example WEBCAM training images with 20 landmark
points

main training set throughout this thesis. The only model to be built using a different

training set is the Boosted Cascade Detector (see Section 3.5), which uses ∼6000

small face images of which the WEBCAM images form a subset (see Appendix C).

3.2 Linear Profile Detector (LPD)

The Linear Profile Detector (LPD) was devised by Tim Cootes at Manchester Uni-

versity and investigated by the author. The LPD is similar in spirit to the feature

based methods discussed in Section 2.4. Feature points are modelled using Linear

Profile Models (see Section 3.2.1) and a face candidate detected if feature points can

be detected in a face like configuration.

3.2.1 Linear Profile Models

A Linear Profile Model characterises a given facial feature point by learning the

average normalised image gradient vector in a specified direction. For example a

horizontal or vertical line through the eye pupil. For a profile containing n pixels

{xi}, the gradient vector is

v = (v1, v2 . . . vn−1) (3.1)
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Where vi = xi − xi+1 is the difference between adjacent pixel values. Additionally

the normalised gradients v′
i are computed as follows.

v′
i =

vi

|vi| + µ
(3.2)

Where µ is the mean value of |vi| over all profiles collected from a given face.

Given a training set of face images the mean normalised gradient vector v′
m is com-

puted. Then the profile match score ms between a normalised gradient vector x′ from

an unseen image and the mean normalised gradient vector v′
m is computed using the

dot product, as follows.

ms = v′
m • x′ (3.3)

The profile model can search along multiple positions along a profile sampled from

an image in order to determine the best local match. This form of linear search is

very efficient.

3.2.2 LPD Training

The full Linear Profile Detector is trained from the WEBCAM data set (see Sec-

tion 3.1) by specifying a set of Linear Profile Models, passing through a given set

of feature points. In this implementation there are 18 profiles - 16 vertical profiles

through each point shown in Figure 3.1 (excluding the temples, chin and nose tip) and

two horizontal profiles through the centre of the eyes. Each profile has a manually

defined range (pmin, pmax) where the values of pmin and pmax are relative to a model

frame with the right eye at (-0.5,0) and the left eye at (+0.5,0). Given the list of

profiles and a set of labelled images, the LPD is built as described in Algorithm 3.1.
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Algorithm 3.1 Linear Profile Model Training Method

1. Normalise all shapes to a frame with the right eye at position (-0.5, 0) and the left
eye at position (+0.5,0)

2. Calculate the mean shape

3. Calculate the range of displacements (rmin, rmax) over the training set from the mean
of each landmark point.

4. Project each profile into each training image and calculate the image gradient vector
v = (v1, v2 . . . vn−1)

5. Normalise the gradient vector v by applying vi = vi

|vi|+µ
where µ is the mean value of

|vi| over all profiles.

6. For each profile, compute the mean vector vm from the set of gradient vectors v.

The set of Linear Profile Models, mean shape and range of displacements for each

linear profile define the LPD. The next section describes how to use such a model to

search unseen images for faces.

3.2.3 LPD Search

A summary of the LPD search algorithm is as follows:-

1. Search for troughs in the image to provide candidate eye locations

2. Pair eye candidates to form candidate face regions

3. Test each face candidate using Linear Profile Models and return the candidate

with the highest score.

Candidate eye locations are detected by building a gaussian image pyramid [1] of the

original image and searching each level of the pyramid for troughs - pixels with an

intensity lower than their immediate neighbours. Only troughs of a certain depth td

are accepted, where td is defined as the difference in intensity between the centre of

the trough and the maximum intensity in the surrounding neighbourhood. This form
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of feature detection is very simplistic, but usually finds the eye regions, if the face is

reasonably large in the image. However many false matches are also produced.

The next stage is combining candidate eye locations to form candidate pairs. Given n

candidate features in a pyramid level, the number of possible pairs is n(n− 1)/2. To

make the face search more efficient, restrictions are placed on the pairing of features,

as follows:-

• The angle θ between two features relative to the horizontal must be with the

range (θmin, θmax)

• The separation between the two features must be within the range (dmin, dmax)

where

dmin = max







s√
2
∗ 2L

wmin ∗ nx

dmax = min







s ∗
√

2 ∗ 2L

wmax ∗ nx

(3.4)

Here wmin and wmax are parameters controlling the maximum and minimum size of

the face relative to the image width nx. L is the pyramid level and s is the preferred

pixel separation.

The preferred pixel separation s is the pixel separation at which a pair of troughs

are likely to represent eyes and determines the pyramid level L at which a face is

candidate is likely to be formed. The value of s also determines which levels are

searched. For example, if dmin > dmax for a given level L then this pyramid level

is not searched - because the constraints cannot be satisfied at this level. Suitable

values for the parameters are as follows:-

s= 10 θmin = −30o θmax = 30o wmin = 0.1 wmax = 0.5 (3.5)
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The third step is to evaluate all candidate pairs and select the candidate that most

closely resembles a face. The algorithm for testing a pair of candidate eye locations

is as follows (see Algorithm 3.2).

Algorithm 3.2 Testing Candidate Pairs

1. Given a candidate pair, select the appropriate pyramid level specified by preferred
pixel separation s and project all profiles into the image plane.

2. For each Linear Profile Model k, sample a normalised gradient profile x′
k in the range

(pmin + rmin, pmax + rmax).

3. Search along x′
k for the best match ms of the mean linear profile v′

m, as specified by
Equation 3.3.

4. Overall candidate face score cs =
∑

k(ms)k

The final output of the LPD is the candidate with the highest face score cs. Note the

LPD tends to be used for localisation i.e. it is assumed that only one face is present

in the image being searched. It is possible to detect multiple faces, by thresholding

the match quality cs, but this approach is not generally adopted.

3.3 Orientation Map Detector (OMD)

The Orientation Map Detector [30] is a template method that runs a face model over

the image to detect upright faces, based on orientation maps (first introduced by

Granlund [36]).

3.3.1 Orientation Maps

An orientation map is an image representation which computes a direction and edge

strength for each image pixel. Given an image pixel i(x, y), the direction θ (x, y) and

edge strength s (x, y) are computed as follows.
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gx (x, y) =











1 0 −1

2 0 −2

1 0 −1











⋆ i (x, y) (3.6)

gy (x, y) =











1 2 1

0 0 0

−1 −2 −1











⋆ i (x, y) (3.7)

θ (x, y) = arctan
(

gy(x,y)

gx(x,y)

)

(3.8)

s (x, y) =
√

g2
x (x, y) + g2

y (x, y) (3.9)

Here the horizontal and vertical edge gradients gx (x, y) and gy (x, y) are computed

using Söbel filter masks [85]. The edge strengths s (x, y) and orientations θ (x, y)

form an orientation vector v (x, y) at each pixel of the orientation map. Orientation

maps are useful for object recognition because they ignore some superfluous image

properties. For example if a linear transformation is applied to the original pixel

values (e.g. addition of a constant or rescaling by a constant) then the orientation

map representation of the image is unchanged.

3.3.2 Comparing two Orientation Maps

Orientation maps of the same size are compared by summing the difference between

orientation vectors v (x, y) at corresponding (x,y) locations. The distance metric

between any two orientation vectors v1 = (s1, θ1) and v2 = (s2, θ2) is shown in

Equation 3.10.
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d(v1, v2) =







sin (θ1 − θ2) if |s1|, |s2| > st

1 otherwise
(3.10)

Hence the distance measure d(v1, v2) between two orientation vectors is the sine of

the angle between the two vectors, but is unit distance if the edge strength of either

orientation vector falls below a threshold. Note, using this distance measure, the

polarities of edges in the original image are ignored, as orientation vectors that differ

by 180o are considered equal.

3.3.3 OMD Training

An orientation map of the face is constructed from the WEBCAM training set de-

scribed in Section 3.1. The training images are aligned using the manually labelled

eye pupil locations, then cropped and subsampled to 32x32 pixels. The average face

is computed and shown in Figure 3.2(a). The resulting orientation map is 31x31

pixels and shown in Figure 3.2(b).

(a) Average face image (b) Orientation map

Figure 3.2: Orientation map of the average face

Figure 3.2(b) shows that the main facial features captured by the orientation map
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are the outline of the face and the eye regions. Only the orientation vectors with

s (x, y) > st are shown, because they are the only orientations used by the template

when searching an image. The template response is the sum of distance measures

d(v1, v2) between the template and a candidate image region. Therefore the number

of computer operations required to search an image linearly increases with the number

of orientation vectors stored in the template, so the total number of vectors should

be kept to a minimum. This implementation uses 453 orientations in a 31 by 31

template.

3.3.4 OMD Search

To search an image at multiple scales a Gaussian image pyramid [1] is built. Each

level of the pyramid is then searched by computing the match score of the template

at all possible sub-windows. The search is speeded up by initially searching at a

coarse scale and then performing a refined search if a strong enough match is found.

In practice this scheme involves the following algorithm.

Algorithm 3.3 Orientation Map Detector Coarse-to-Fine Search

1. Search every 6th pixel position. Get template response r1

2. If r1 < T1 then test all 8 possible positions that are 3 pixel positions away. Get
template response r2, for each location.

3. If r2 < T2 then test all 8 possible positions that are 1 pixel position away. Get
template response r3, for each location.

4. If r3 < T3 then accept as a face candidate.

Note, searching every 6th position instead of every possible position in the image

reduces the computation time by a factor of approximately 36. However, this scheme

can result in the same candidate being returned more than once. To enable efficient

computation appropriate thresholds values T1, T2&T3 are essential. A large value of

T1 produces a very slow detector! This coarse-to-fine method takes advantage of the
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fact that a face template often matches at many locations around and near the face,

a phenomenon noted by several researchers e.g. [75][92].

3.4 Normalised Correlation Detector (NCD)

The Normalised Correlation Detector is similar to the Orientation Map Detector. It

is a whole face template method, uses a Gaussian pyramid and the same coarse-to-

fine search method. However, the method of comparing image subwindows with the

face model is different.

3.4.1 Comparing Images using Normalised Correlation

Instead of using orientation maps, normalised correlation is used to compare two

images directly. Given two images X and Y, with the same dimensions normalised

correlation Nc(X,Y) is defined as follows.

Nc(X,Y) =
COV(X,Y)

√

VAR(X)VAR(Y)
(3.11)

Similar to the orientation map representation, the normalised correlation measure is

insensitive to linear transformations applied to the underlying pixel values of either

image.

3.4.2 NCD Training

The NCD is trained on the WEBCAM data set (see Section 3.1). The same average

face is computed as when building the OMD (see Figure 3.2(a)). The average face is

then rescaled to have zero mean and unit variance, using variance normalisation (see

Algorithm 3.4).
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Algorithm 3.4 Variance Normalisation of an Image

1. Given a subregion X of size n, with pixel values {x0, x1, . . . , xn}

2. Compute the mean µ = 1
n

n
∑

i=0
xi

3. Compute the variance σ2 = 1
n

n
∑

i=0
(xi − µ)2

4. Replace each pixel value xi → xi−µ
σ

The normalised average face image is then used to test candidate face regions, as

described in Section 3.4.3.

3.4.3 NCD Search

The NCD search uses a Gaussian pyramid and the coarse-to-fine search as described

in Section 3.3.4. When testing a subwindow X of the image the normalised cor-

relation distance measure described in Section 3.4.1 can be simplified due to the

face template Y having zero mean and unit variance. For example COV(X,Y) =

E(XY) − E(X)E(Y) and VAR(X) = E(X2) − (E(X))2, therefore with E(Y) = 0

and VAR(Y) = 1, Equation 3.11 simplifies to.

Nc(X,Y) =
E(XY)

√

E(X2) − (E(X))2
(3.12)

In practice, given a subregion X, Nc(X,Y) is calculated from the pixel value sums
∑

xi ,
∑

x2
i &

∑

xiyi as follows.

Nc(X,Y) =

∑

xiyi
√

∑

x2

i

n
−
(

∑

xi

n

)2
(3.13)

Therefore normalised correlation detection is very simple and easy to implement.
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This form of detection is very old and is described by Ballard and Brown in their

introduction to Computer Vision [1].

3.5 Boosted Cascade Detector (BCD)

The Boosted Cascade Detector [92][93] consists of three parts. The first is an efficient

method of encoding the image data known as the “integral image”. The second

element is the application of a boosting algorithm known as AdaBoost [26] to select

appropriate features that can form a template to model human face variation. The

third part is a cascade of templates that allows simple feature sets to quickly discard

most of the uninteresting parts of the image.

3.5.1 Integral Images

An integral image is constructed by replacing each image pixel value i(x, y) with a

value that corresponds to the pixel sum, above and to the left of the pixel, as shown

in Figure 3.3(a).

(x,y)

(a) Point (x,y) of the inte-
gral image stores the sum
of pixels in the grey region
of the original image

C

B

D

A

(b) The pixel sum in grey
region of the original im-
age = A+D-B-C, where
A,B,C,D are values taken
from the integral image

Figure 3.3: The integral image
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An integral image can be constructed in one raster scan of the image. This image

structure is also known as an “area sum table” and has been used by [18] for computer

graphics applications. The structure is useful, because it allows quick calculation of a

pixel sum in any rectangular region, independent of the size of the region, as described

in Figure 3.3(b).

3.5.2 Feature Classifiers

The ability to calculate area sums efficiently allows the construction of simple efficient

classifiers. Each classifier consists of a set of adjacent positive and negative regions.

Examples of the different types of feature classifier are shown in Figure 3.4.

(a) Left-Right Fea-
ture

(b) Top-Bottom
Feature

(c) Triple Feature (d) Quad Feature

Figure 3.4: Different feature types

Here each feature type is allowed to occupy any sub-rectangle of a face template. In

this case the template is 24*24 pixels, which produces approximately 30,000 different

feature classifiers. The number of feature classifiers is O(n4) for a template of size

n ∗ n pixels. Therefore if n is too large, an unfeasible number of potential feature

classifiers will be created.

Each individual feature classifier attempts to discriminate between faces/non-faces

by summing the difference between adjacent regions. More specifically, a feature

classifier hj(X) consists of a sum of areas response function fj(X) a threshold θj and

a parity function pj = {−1, +1} indicating the direction of the inequality sign, as

shown in Equation 3.14.
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hj(X) =







1 if pjfj(X) < pjθj

0 otherwise
(3.14)

Here X is a 24*24 pixel sub-window of the image, which may or may not contain

a face. hj(X) = 1 indicates that the feature classifier detects a face, hj(X) = 0

indicates no face is present.

Each feature classifier hj(X) is very simplistic, so the correct classification rate using

individual features will be very low. The next section describes how to combine

feature classifiers to make a more effective face model.

3.5.3 BCD - Training with AdaBoost

The Boosted Cascade Detector selects and combines the simple feature classifiers

hj(X) described in Section 3.5.2 to form a face model using an algorithm known as

AdaBoost[26].

AdaBoost is an example of classifier boosting [79]. Boosting algorithms aim to

combine many “weak classifiers” into one effective “strong classifier”. AdaBoost

achieves this by selecting the more promising classifiers. By a process of iteratively

re-weighting the training data, it constructs an effective classifier consisting of a large

set of appropriately weighted weak classifiers that complement each other and pro-

duce better discrimination than any individual weak classifier. AdaBoost is described

in Algorithm 3.5.

The training set for each feature classifier hj(X) is a large set of 24*24 pixel face

images (∼ 6000 in this implementation) and an equally large set of non-face images.

A sample of positive face examples is shown in Appendix C.

The features and weights selected by AdaBoost then form the template that is used to

scan the image and detect regions that resemble human faces. In our implementation
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Algorithm 3.5 AdaBoost - Adaptive Boosting (based on [92])

1. Given example images (X1,X2, . . . ,Xn) and labels (y1, y2, . . . , yn) where yi = 0, 1 for
negative and positive examples respectively.

2. Initialise weights w1,i = 1
2m

, 1
2l

for yi = 0, 1 respectively, where m and l are the
number of negatives and positives respectively.

3. For t = 1, . . . , T :

(a) Normalise the weights,
wt,i =

wt,i
n
∑

j=1

wt,j
(3.15)

so that wt is a probability distribution.

(b) For each feature j, train a single feature classifier hj(X)

(c) Evaluate the error with respect to wt, ǫj =
∑

i

wi |hj(X) − yi|.

(d) Choose the classifier, ht, with the lowest error ǫt.

(e) Update the weights:

wt+1,i = wt,iβ
1−ei
t (3.16)

where ei = 0 if example xi is classified correctly, ei = 1 otherwise, and βt = ǫt

1−ǫt
.

4. The final strong classifier is:

h(X) =







1 if
T
∑

t=1
αtht(X) ≥ 1

2

T
∑

t=1
αt

0 otherwise

(3.17)

where αt = log 1
βt
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the first 5 features chosen by AdaBoostare depicted in Figure 3.5.

(a) Feature 1 (b) Feature 2 (c) Feature 3 (d) Feature 4 (e) Feature 5

Figure 3.5: Features selected by AdaBoost, overlaid on an example from
the training set

The first feature exploits the fact that eyes are generally darker regions than the

nose and cheeks. The other features have less obvious interpretation, but generally

indicate that the outline of the head is modelled by the feature set. Note the first

feature found in our implementation is similar to the first feature selected by Viola

and Jones [93], but the second feature is different. This difference is due to variation

in the face/non-face training sets used. Also note that the first feature selected by

AdaBoost is not symmetric as may be expected from the left-right symmetry of the

human face. This is due to asymmetries in the random set of background images

which form the non-face training set.

3.5.4 BCD - Search with AdaBoost Model

The face model can now be used to discriminate between image regions containing

a human face and background regions, using Equation 3.17 (see Algorithm 3.5).

However, the threshold 1
2

T
∑

t=1

αt is unsuitable, because it is designed to minimise the

classification error given an equal distribution of faces/non-faces. When searching

images, the vast majority of subwindows do not contain faces, so in practice this

threshold must be determined manually using a set of verification face images.

When searching an image the integral image is computed and scanned at multiple

scales. The face template is resized at each scale, rather than subsampling the input
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image (e.g. using an image pyramid), because using the integral image structure the

computational cost of each feature classifier is independent of scale.

Three parameters of the search are the start scale s, the initial search step t and the

scale increment is, as shown in Figure 3.6.

t

Second ScaleFirst Scale

s

t*is

s*is

Figure 3.6: Boosted Cascade Detector multi-scale search parameters,
start scale s, step size t and scale increment is.

The values of s ,t and is vary with the size of faces that are expected in the image.

To find low resolution faces typical values are s = 24, t = 1.5 and is = 1.25. The

search terminates when the face template is larger than the input image.

To cope with lighting variation, variance normalisation (see Algorithm 3.4) is ap-

plied to both the training images (see Appendix C) and each subwindow of the input

image. It is easy to variance normalise the positive and negative training sets (see Al-

gorithm 3.4), before applying the AdaBoost algorithm (see Algorithm 3.5). However,

during BCD search a more efficient method of variance normalisation is used (see
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Algorithm 3.6), which normalises the feature classifier responses fj(X) (see Equa-

tion 3.14) instead of the pixel values directly. This efficient normalisation scheme is

one of the reasons for the speed of the Boosted Cascade Detector compared to other

template methods e.g. [73] [74] [80], which require the pixels of each subwindow to

be normalised before applying the detector.

Algorithm 3.6 Efficient Variance Normalisation

1. Given a subregion X of size n, with pixel values {x0, x1, . . . , xn}

2. Compute integral images for
∑

xi and
∑

x2
i

3. Compute σ2 = 1
N

∑

x2
i −

(
∑

xi

N

)2
for subregion X using both integral images

4. Compute the sum of areas response fj(X) for classifier hj(X) using the
∑

xi integral
image

5. Normalise the response fj(X) → fj(X)
σ2

∗

The final speed of the detector is linearly related to the number of features in the

template. However the classification performance of the AdaBoost template is also

dependent on the number of features. Using more features improves classification

performance, but slows down the detector. To use more features, but without jeopar-

dising speed, Viola and Jones developed an algorithm to train a cascade of AdaBoost

templates, as described below.

3.5.5 BCD - Training the Cascade

A cascade is employed to reduce image processing time by focusing attention on the

more interesting regions of the image. For example the flat regions of an image, clearly

do not contain faces and can be quickly discarded by use of a template consisting of

only a small number of features. Such a scheme has the potential to greatly improve

∗The normalised feature response is independent of the subwindow mean µ, because each feature
classifier hj(X) has an equal number of positive and negative pixels.
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the speed of the detector, but still allow a large number of features to be evaluated

on highly textured regions that may contain faces. The training of the cascade is

described by Algorithm 3.7.

Algorithm 3.7 Boosted Cascade Detector- Building the Cascade

1. Set the level number i = 0 and create an empty cascade model C0.

2. If i = 0 load from disk a set of face examples P0 and a set of non-face examples N0.

3. If i 6= 0 form a new non-face examples set Ni by running the incomplete cascade Ci−1

over a set of images, known not to contain human faces.

4. If the size of set Ni is less than a limit st then STOP.

5. Split the faces/non-faces sets P0 & Ni into training/verification sets Pt0 , Pv0
, Nti &

Nvi
.

6. Build template model Li from face set Pt0 and non-face examples Nti using ni features
†.

7. Calculate a threshold ti by applying Li to the verification sets Pv0
& Nvi

, such that
the false rejection rate is fi.

8. Create Ci+1 by adding Li with threshold ti to the current cascade Ci.

9. i = i + 1

10. if i = k then STOP else GO TO 2

Here the training parameters that need to be set are k, st, n and f . Where:-

• k is the number of cascade levels

• st is the threshold on the minimum size of the non-face training set

• n = {n0, n1, . . . , nk} is the number of features ni used in each level of the

cascade

• f = {f0, f1, . . . , fk} is the false rejection rate fi at each level of the cascade

†This training method is slightly different to the method described in [93], which specifies the
minimum acceptable detection rate for each layer rather than the number of features in each layer
ni
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In our implementation k = 16, st= 1000, fi = 0.01 for all levels and n = {
10,10,10,20,20,50,50,100,100,100,100,100,200,200,200,200 } The number of features

ni and the false rejection rate fi at each level are critical to the speed and the per-

formance of the final cascade. These parameters are found to give good results,

comparable to the results presented in [93] on the CMU [75] test data. There is no

guarantee that other formulations will not provide better classification performance

and be more efficient, e.g. by using a smaller number of features in the first level of

the cascade.

However, it is difficult to build multiple models due to the large amount of time

required to train the cascade. The main drawback of the Boosted Cascade Detector

method is the large amount of training time required to train a model. This extends

from the fact that at each stage of the AdaBoost algorithm all possible features must

be trained on the entire re-weighted training data. This means on a modern PC (e.g.

a 2.0Ghz machine) training the whole cascade requires a few days of computation

time. Therefore testing different formulations of the cascade is a time consuming and

difficult task.

3.5.6 BCD - Cascaded Search

The BCD cascaded search proceeds in a similar manner to the single template search

described in Section 3.5.4. The whole cascade is resized according to the three pa-

rameters s,t and fs described in Figure 3.6. For each subregion a cascade score cs is

computed as follows (see Figure 3.7).

A subwindow is classified as a face if cs is greater than a fixed threshold. Note

returning a score cs enables a set of candidate regions to be ranked. The original

Boosted Cascade Detector gives a binary output of one if the subwindow passes all

levels of the cascade and zero otherwise.

The resulting cascaded classifier is extremely efficient. The cascade described in this
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2 kT

F F F

T TT
All Subwindows 1 cs =

∑k
i=1

si

cs = s1 + s2cs = s1 cs =
∑k

i=1
si

Figure 3.7: Cascaded search, each level returns either true or false. If a
subwindow fails a level then no more levels are evaluated. The final score
is cs =

∑

i=1
si, where si is the AdaBoost response§ from level i.

thesis contains 1470 feature classifiers over 16 levels and is capable of searching a

320*240 image in ∼400ms using modest hardware (i.e. a 500Mhz PentiumII proces-

sor). This is much faster than searching a test image with a single template containing

all 1470 features.

3.6 Face Detection Test Sets

Three publicly available data sets are used to test the four face detection methods.

They are the XM2VTS [59], BIOID [43] and CMU [74] data sets.

3.6.1 XM2VTS

A test set is formed from photo sessions 1-4 of the XM2VTS¶ data set [59]. There

are 1817 images (720*576 pixels) containing frontal faces of ∼ 200 individuals, taken

under controlled conditions against a flat background. The face is large in the image

and there is no background clutter, so the face detection task is relatively easy.

However the XM2VTS data set does contain many individuals with facial hair and

glasses. Some example images are shown below ( Figure 3.8 ).

§si =
T
∑

t=1

αtht(x) as defined in Algorithm 3.5

¶http://www.ee.surrey.ac.uk/Research/VSSP/xm2vtsdb/
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(a) XM2VTS 1 (b) XM2VTS 2 (c) XM2VTS 3 (d) XM2VTS 4

Figure 3.8: Example XM2VTS images

3.6.2 BIOID

The BIOID data set was first used by Jesorsky et al. [43] and is publicly available‖.

There are 1521 images of 23 individuals. Each image is 384*286 pixels. The face is

large in the image. There is background and lighting variation. Some examples from

the BIOID data set are shown in Figure 3.9.

(a) BIOID 1 (b) BIOID 2 (c) BIOID 3 (d) BIOID 4

Figure 3.9: Example BIOID images

(a) BIOID ex-
cluded 1

(b) BIOID ex-
cluded 2

Figure 3.10: Examples of images not included in the BIOID subset, as
they do not include the whole face region.

This thesis uses two versions of the BIOID data set. The first is the full set of 1521

images. The second version is a subset of 1348 images, which excludes images that

do not show the full outline of the face (see Figure 3.10). The BIOID subset is used

‖http://www.humanscan.de/support/downloads/facedb.php
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to test the Boosted Cascade Detector in Chapter 4. Here results are presented on

both the full BIOID data set and the subset.

3.6.3 CMU

The CMU data set [74] is a publicly available ∗∗ test set that has been used by many

face detection researchers [74][73][80] to compare algorithms. The images contain

upright frontal faces and are collected from a variety of sources, e.g. scanned pho-

tographs from newspapers and the world wide web. The images are generally low

quality and contain some very small faces and lots of background clutter and lighting

variation. The CMU set is therefore a challenging data set. There are 507 upright

faces among 130 images.

The images are divided into 3 groups. Namely sets A,B & C. Sets A+C were collected

by Rowley et al. [74] and Set B was provided by Sung and Poggio [87]. Set B is also

known as the MIT data set and has been used to compare face detection algorithms

by itself in the past [65] [88] (see Chapter 2). There is a fourth set of rotated images,

which is not used in this thesis. Some examples from the CMU test set are shown in

Figure 3.11.

3.7 Face Detection Testing Methodology

The testing methodology varies depending on whether the test set contains one face

per image or multiple faces. For single faces, the face localisation accuracy is com-

puted, as described in Section 3.7.1. For multiple faces a FROC curve is computed,

as described in Section 3.7.2.

∗∗http://vasc.ri.cmu.edu/idb/html/face/frontal images/index.html
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(a) CMU 1 (b) CMU 2

(c) CMU 3 (d) CMU 4

Figure 3.11: Example CMU images

3.7.1 Face Localisation Accuracy

The XM2VTS and BIOID data sets contain one face per image, so the detection

accuracy of a face detector can be measured by searching the image, retaining the

highest ranking face candidate and comparing the detected region with the known

location of the true face.

For the three template methods (OMD + NCD + BCD) the eye locations are pre-

dicted by the average eye locations within the face template. For the Linear Profile

Detector the eye locations are the highest ranking candidate eye locations.

A distance metric deyes, between candidate eye locations and a pair of manually

labelled eye locations, is described in Figure 3.12.
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Figure 3.12: Distance metric between the eye points predicted by the
candidate region and the true eye points deyes = R+L

2S

Hence deyes is the average error of the right and left eye predictions, divided by the

known inter-ocular separation. The cumulative distribution of deyes over the test set

is used to compare different face detectors. For example, see the results of searching

the XM2VTS data set in Figure 3.14.

3.7.2 FROC Curve Analysis

For multiple face images (in this case the CMU data set) a Free Receiver Operator

Characteristic (FROC) curve is produced. A FROC curve plots the detection rate

(i.e. proportion of true faces found) versus the number of false positives detected.

A FROC curve is very similar to an ROC curve, which plots detection rate against

false positive rate. However, in this instance an ROC curve is inappropriate because

different face detection methods test different numbers of candidate regions when

searching the same image. A search algorithm could test many image regions and

therefore achieve a very low false positive rate, but still return many actual false

positives. Therefore for a given detection rate, only the absolute number of false

detections is meaningful when comparing two different methods.

83



Chapter 3. Face Detection Methods

To analyse the CMU data set, each images is searched and a set of candidate regions

returned by the face detector. The regions that are close enough to a true face in

the image are declared true positives. The value of deyes for the closest true face is

calculated for each detected region, then all candidate regions are classified as either

true positives, false positives or ambiguous (not included in FROC curve) according

to Table 3.1.

deyes Classification

0-0.3 true positive

0.3-0.5 ambiguous

> 0.5 false positive

Table 3.1: Classification of true and false positives. Based on the deyes

metric

Each possible configuration of a face detector can then be used to plot a point on

the FROC curve, showing the trade off between the proportion of faces found (i.e.

detection rate) and the number of false positives. The FROC curves produced for the

Orientation Map Detector and Boosted Cascade Detector are shown in Figure 3.16.

There are some refinements to the list of candidates returned by each detector. For

example, candidates that are close together are merged. This reflects the fact that

both the Boosted Cascade Detector and Orientation Map Detector produce multiple

candidates around a face region, i.e. the face is detected multiple times. This be-

haviour is also true of some false positive regions. Therefore to produce one candidate

per face the candidates in close proximity are merged. The distance metric between

any two candidates is described in Figure 3.13.

Two candidates are merged if dcands < 0.3. The two candidates are then merged by

averaging the top left corners A&C and the bottom right corners B&D to form a

new candidate. Merging candidates regions ensures that each true face is detected at

most once, so is a valid post processing method, producing cleaner search results. It

also reduces the number of false positives returned by each detector.
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D

B

C

A

Figure 3.13: The distance metric between a candidate defined by cor-

ners (A,B) and a candidate defined by corners (C,D) dcands =
d2

AC+d2

BD

d2

AB
+d2

CD

,

where dAB is the distance between points A & B.

3.8 Face Detection Results

3.8.1 XM2VTS

The cumulative distribution of the eye localisation error (deyes), when each face de-

tector is applied to the XM2VTS test set is plotted in Figure 3.14.

Figure 3.14 shows that if the proximity threshold is set to deyes = 0.3, then the

BCD finds 100%, the OMD 98%, NCD 90% and the LPD 68% of the faces correctly.

Therefore at this proximity threshold the BCD is the best performing method, then

the OMD followed by the NCD and the LPD. The three template methods (BCD +

OMD + NCD) give better results in comparison to the LPD feature based method.

For smaller values of deyes the relative success of each method is more complex.

However, Chapter 6 and Chapter 7 show that the best proximity results are obtained

by face detection followed by local feature search. Hence, in Figure 3.14, the success

rates for deyes < 0.3 are less important than the success/fail rate at a looser proximity

threshold (e.g. deyes = 0.3), because in the later case feature detection accuracy can
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Figure 3.14: Proportion of faces found at different thresholds for deyes,
when searching the XM2VTS test set

be achieved by a more refined local search (see Chapter 6 ).

3.8.2 BIOID

The success rate with the full BIOID data for each method is shown in Figure 3.15(a).

The face detection accuracy on the BIOID test set is generally worse than on XM2VTS

test set, for all four methods. This reflects the greater variability of the BIOID data

set, especially the effect of more lighting variation. With deyes = 0.3 the BCD gives

the best results finding 96% of all faces, the OMD finds 80%, the LPD 61% and the

NCD 55%. Therefore the BCD and OMD are still the best preforming methods, but

with the noisier BIOID data the BCD is significantly better than the OMD. Again,

the LPD and NCD perform much worse, but this time the LPD is slightly better

than the NCD.

When tested on the BIOID subset (Figure 3.15(b)), which excludes images that do
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(a) Full BIOID data set
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(b) Subset of BIOID data set

Figure 3.15: Proportion of faces found at different thresholds for deyes,
when searching the BIOID test set

not show the full face outline, the performance of the BCD is slightly improved 96% →
98% (deyes = 0.3). This is because the relatively large face region modelled by the

BCD is not able to locate faces overlapping the edge of the images (see Figure 3.10).

The performances of the OMD, NCD and LPD on the full BIOID and BIOID subset

are very similar, because these detectors model a smaller face region. The two graphs

in Figure 3.15 show that the BCD gives by far the best better performance overall

on the BIOID data set.

Note that in Section 7.7 of this thesis, the edge effects on the full BIOID data set

are alleviated by replicating the edge pixels to form a border around each BIOID

image. Thus it may be possible to further improve the performance of the BCD in

Figure 3.15(a), relative to the other methods by using this approach.

3.8.3 CMU

The CMU data set contains multiple faces per image, therefore a simple face local-

isation analysis cannot be performed. Instead a FROC curve is computed for both

the two best performing detectors (i.e. the BCD+OMD), see Figure 3.16.

The FROC curve shows that the BCD is capable of finding 88% of faces in the
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Figure 3.16: FROC curve for the Boosted Cascade Detector and Ori-
entation Map Detector when applied to the CMU test set

CMU data set, with 350 false detections (i.e approx 2.7 false detects per image).

Considering the challenging nature of the CMU data set, this is a good result††. In

contrast the OMD is only able to detect ∼ 35% of faces for 350 false detections.

Therefore the OMD is unable to cope with the variability of the CMU test set.

Note that in Figure 3.16 the FROC curve for the BCD first increases and then

decreases. This is due to the merging of similar face candidates, described in Fig-

ure 3.13. As the number of false positives increases more face candidates are merged,

which reduces the number of faces found in some images, which can result in a lower

true positive rate. Example search results, using the Boosted Cascade Detector and

merging the similar candidates, are shown in Figure 3.17.

The BCD is also shown to give superior performance to the OMD on the FGNET

“Smart meeting” ‡‡ data set [14], where a similar FROC curve analysis is performed.

††Viola and Jones quote a detection rate of 93% with 350 false detections [93]. This superior
result is probably due to differences in the training set and more finely tuned cascade parameters.

‡‡http://www.cvg.cs.rdg.ac.uk/PETS-ICVS/pets-icvs-db.html
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(a) CMU search example 1 (b) CMU search example 2

(c) CMU search example 3 (d) CMU search example 4

Figure 3.17: Example search results on the CMU images

However, these results only use the basic OMD formulation [31]. In later work

Fröba [32] demonstrated more successful results on the CMU data set, by combining

the OMD with the SNoW based detector due to Roth et al. [73]. More recently,

Fröba [28] applied AdaBoost to select discriminating orientation vectors, which also

improves on the original approach (see literature review in Section 2.2 for more de-

tails). However, the basic OMD detector, as presented here, performs poorly on the

CMU data.

3.9 Timings

The time to search an individual image using each method, when applied to the

BIOID data set is shown in Table 3.2.

The LPD is by far the fastest method, but also the least reliable. The OMD is
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Method Search Time

Linear Profile Detector 30ms

Normalised Correlation Detector 200ms

Orientation Map Detector 250ms

Boosted Cascade Detector 400ms

Table 3.2: Time to search BIOID image (384*286 pixels) using a 500Mhz
PII processor

marginally faster than the BCD, but the BCD gives much superior performance. The

speed of the NCD + OMD relative to the BCD is due to the coarse-to-fine search

method (see Algorithm 3.3). However, this approach could probably be adapted for

the BCD to make it even more efficient.

3.10 Conclusions

The BCD gives far superior performance compared with the OMD, NCD and LPD.

On the relatively easy XM2VTS test set, the BCD give similar results to the OMD. On

the difficult BIOID+CMU data sets, the BCD is shown to be much more successful

than the OMD.

The main advantage of the BCD over the OMD is an increased ability to detect

slightly rotated faces. This is due to the non-linear nature of the AdaBoost templates

used in the Viola-Jones cascade. This compares to the linearity of the Orientation

Map Detector template, which only models exactly frontal views of the face.

The LPD is shown to be the quickest method, but also the least accurate. The

BCD+OMD+NCD are slower, but still efficient methods. The reliability and speed

of the BCD means that this method is utilised and investigated in more detail in the

rest of this thesis.
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Boosted Cascade Detector

Experiments

This chapter describes experiments with the Boosted Cascade Detector (BCD). Com-

parisons are made between cascaded AdaBoost models and single AdaBoost models

( see Section 4.2). The number of features in each model, size of training set and face

region modelled are varied (see Sections 4.3, 4.4 and 4.6). In Section 4.7 models are

built to detect individual facial features.

4.1 Benchmark Detector

To show the effect of different build parameters on the BCD it is necessary to build

many models with the same training set (WEBCAM, see Section 3.1) and evaluate

them on the same test set (BIOID subset, see Section 3.6.2). An initial model is built

using the following set of parameters.

• 10 features per level (10 levels in the cascade)

• 1055 images in the training set
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• 21*21 pixel template resolution

• 10 samples of each original face image

In the rest of this chapter these parameters are varied from the initial model and

compared with the performance of the benchmark detector.

Note the WEBCAM data set contains only 1055 original face images compared to

∼6000 for the face detector described in Chapter 3. However, it is possible to over-

sample each image to artificially generate more training examples. The effect of

over-sampling a face image is shown in Figure 4.1.

(a) Sample 1 (b) Sample 2 (c) Sample 3 (d) Sample 4 (e) Sample 5

(f) Sample 6 (g) Sample 7 (h) Sample 8 (i) Sample 9 (j) Sample 10

Figure 4.1: Reflecting and over-sampling a face image

The original image is sampled to the appropriate size (21*21 pixels). Then the image

is resampled 4 times at a random orientation in the range ±20o and at a random scale

in the range ±10%. The reflected image is sampled in the same manner to generate

10 training examples from the original one. The effectiveness of this over-sampling

technique is evaluated in Section 4.4.

When training the initial model on the WEBCAM data, the first 5 features selected

by AdaBoost are shown in Figure 4.2.
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(a) Feature 1 (b) Feature 2 (c) Feature 3 (d) Feature 4 (e) Feature 5

Figure 4.2: Features selected by AdaBoost, overlaid on an example from
the training set

The first feature selected is similar to the first feature selected for the Boosted Cascade

Detector in Chapter 3, see Figure 3.5. The darkness of the eye region relative to the

cheek region below is again emphasised as a key facial characteristic. However the

features are generally different due to varying training sets and sampling the face to

21*21 pixels instead of 24*24 pixels.

The other major difference between benchmark detector and the Boosted Cascade

Detector created in Chapter 3 is that the latter uses vastly more features - 1470 split

over a 16 level cascade. In contrast, the benchmark detector has only 100 features

split over a 10 level cascade. Therefore the classification performance of this new

“slimmed down” cascade is expected to be worse. The performance drop is shown in

Figure 4.3.

Figure 4.3 shows that the original 1470 feature cascade (24*24 pixels) is more reli-

able than the new 100 feature cascade (21*21 pixels). At a proximity threshold of

deyes = 0.3 the success rate on the BIOID data set is 90% for the benchmark detector

compared to 98% with the old BCD from Chapter 3. Therefore the benchmark detec-

tor used in this chapter is not an especially good face detector. However, this initial

model provides a baseline to compare the effect of varying the training parameters,

such as the number of features and training set size.
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Figure 4.3: Proportion of successful searches at different thresholds for
deyes, when searching with the (16-level 24x24 pixel) Boosted Cascade
Detector from Chapter 3 and the new (10-level 21x21 pixel) benchmark
detector

4.2 Comparison with Single AdaBoost Model

The benchmark detector with 100 features spread over 10 levels is compared with a

single AdaBoost model built with 100 features in a single level. The performance of

the cascade versus the single model is shown in Figure 4.4.

Figure 4.4 shows virtually no difference in the location accuracy of the 10 level cascade

and the single 100 feature AdaBoost model. However, the cascade is much faster

than the single model. This is because candidate regions can be rejected after just

10 feature evaluations, compared to 100 feature evaluations for each candidate region

with the single model. In practice the 10 level cascade searches an image from the

BIOID data set in ∼150ms compared to ∼500ms with the single model. Therefore

the computational speed is increased by 70% using the cascade, with no loss in

performance. This result is similar to that reported by Viola and Jones [93].
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Figure 4.4: Proportion of successful searches at different thresholds for
deyes, when searching with the single template and cascade

4.3 Vary Number of Features

The number of features in each level of the cascade can be varied. Figure 4.5 shows

the performance of cascades using 3, 6, 10, 20 and 50 features in each of the 10 levels.

The graph shows that the greater the number of features in each level, the greater

the detection accuracy. For example with deyes = 0.3, only 63% of faces are found

using 3 features per level, 90% with 10 features, increasing to 97% of faces using 50

features.

There is a trade off between accuracy of detection and speed. The 10Lx10F bench-

mark detector searches a BIOID image in ∼150ms compared to ∼400ms with the

10Lx50F cascade. However, the 10Lx3F cascade searches an image in ∼ 220ms, i.e.

slower than the 10Lx10F cascade.

Therefore the number of features in each level is critical to the overall performance,

but obtaining a suitable trade of between classification and speed is only possible by
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Figure 4.5: Effect of varying the number of features in each level

trial and error. The optimal configuration may also be dependent on the size and

nature of the training data. Generally using more features improves classification

performance for each level, but slows down the detector.

4.4 Vary Training Set Size

The effect of training set size was tested by building the 10Lx10F cascade using the

full set of 1055 WEBCAM faces and comparing the performance using a subset of

500, 200, 50 or just 10 faces, see Figure 4.6(a). Here each training image is still

over-sampled 10 times, as described in Section 4.1.

Figure 4.6(a) shows that with deyes = 0.3 using 1055 faces finds 90% of faces, using

500 faces finds 84% and 200 faces finds 80%. Therefore the more original face images

in the training set the better. The detector performance drops dramatically when

using as few as 50 or even just 10 faces in the training set.
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(a) Varying the number of original images
in the training set
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(b) Varying the repeated sampling of all
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Figure 4.6: Varying the training set size and resampling

The size of the training set can also be changed by varying the number of times each

individual training face and its reflection is resampled. Figure 4.6(b) shows the effect

of reflecting and over sampling all 1055 WEBCAM training images once, 3 times and

5 times (the initial setting).

With deyes = 0.3 the original cascade, sampling 5 times, finds 90% of faces. When

sampling 3 times, this reduces to 88% and when resampling is not used only 80% of

faces are found. Therefore by sampling the same image multiple times we are able to

artificially expand the data set and provide better performance.

4.5 Vary Template Resolution

The template resolution of the face region can also be varied and used to build

different face detectors. For example, Figure 4.7 shows the same training set image

region sampled to different sizes.

The BCD can therefore be built using a 21x21, 18x18, 15x15 or 12x12 pixel template.

The sampling rate changes the training set images, but also changes the number

of possible feature classifiers that AdaBoost may choose from to create the strong
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(a) 21x21 (b) 18x18 (c) 15x15 (d) 12x12

Figure 4.7: Varying face template resolution

classifier. The number of possible features is O(n4) for a template of size n∗n pixels.

In the author’s implementation the number of possible feature for each template is

shown in Table 4.1. The performance of each of the four models is shown in Figure 4.8.

Template 21x21 18x18 15x15 12x12

No. Features 16,800 8,829 4,048 1,593

Table 4.1: Number of possible features during training, given different
size templates

Figure 4.8 shows that using an 18x18 template produces similar result to the original

21x21 cascade, 89% compared to 90% (using deyes = 0.3). When using a 12x12

template the detection accuracy drops to 85%. However when sampling to 15x15

pixels the detection rate actually increases to 94%.

This shows that there is no simple relationship between template resolution and

classification performance. The 15x15 model may perform better because it learns a

lower resolution model that is more stable between different individuals. It may be

that with a relatively small training set (i.e. 1055 faces) the 21x21 model over learns

spurious small details that do not generalise across individuals. The 12x12 template

may have too low a resolution to learn the characteristics of the human face, or too

few potential feature classifiers (only 1,593 versus 16,800 using a 21x21 template) for

the AdaBoost algorithm to work effectively.
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Figure 4.8: Varying the template resolution

4.6 Vary Face Region

The detectors in Section 4.5 subsample the training data to different size templates.

However the region modelled is constant (see Figure 4.7). Instead of modelling the

whole face and outline, it is also possible to subsample cropped face images and

merely attempt to model the internal face features. Figure 4.9 shows a cropped

training image subsampled to various template resolutions. The performance of each

cascade using cropped regions, versus the original whole head region is shown in

Figure 4.10.

(a) 21x21 (b) 18x18 (c) 15x15 (d) 12x12

Figure 4.9: Cropped face regions at various resolutions
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(a) 21x21
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(b) 18x18
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(c) 15x15
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Figure 4.10: Cropping the face template region

The four graphs of Figure 4.10 show that the original whole head template outper-

forms the cropped face template at all pixel resolutions, by 5-10%, using deyes = 0.3.

Therefore it is definitely worthwhile modelling the face outline as well as the internal

face features. This result agrees with Viola and Jones findings that the whole head

region provides more robust models [93].

4.7 Single Feature Detectors

The face template region can be altered more dramatically. For example by searching

for individual facial features, instead of the whole face. This technique is illustrated
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by building cascaded models of the right eye region. The template regions are shown

in Figure 4.11.

(a) whole face (b) right eye1 (c) right eye2 (d) right eye3

Figure 4.11: Varying right eye template region

Figure 4.11 shows the original whole face region. The other three regions are centred

on the right eye, but covering a progressively smaller proportion of the face. All

templates are subsampled to a resolution of 21x21 pixels. The performance of each

of the four cascades is shown in Figure 4.12
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Figure 4.12: Comparing whole face detection with various right eye
detectors

Figure 4.12 shows that the whole face template is a far more robust than any of the
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right eye templates. With deyes = 0.3, the whole face detector (see Figure 4.11(a))

find 90% of faces. When using the first right eye region (shown in Figure 4.11(b))

the detection rate drops to 72%. As the template region is shrunk to include just

the eye (see Figure 4.11(c)), the face detection performance decreases. With the

smallest right eye region (see Figure 4.11(d)) only 5% of faces can be found (with

deyes = 0.3). Therefore individual feature detection is considerably less reliable than

whole face detection, using the BCD. Methods for constraining the feature search and

therefore improving the detection of individual features are discussed in Chapter 6 of

this thesis.

4.8 Extensions to the BCD Literature Review

There have been various extensions to the Boosted Cascade Detector method pub-

lished since the original paper by Viola and Jones [92]. The results presented in

this thesis use the original formulation, but it may be possible to improve results by

adopting alternative methods, as discussed below.

For example, Viola and Jones later described a variant of AdaBoost, which they

call “Asymmetric AdaBoost” [91]. This algorithm selects and weights weak classi-

fiers using a cost function which penalises false negatives more than false positives

(hence asymmetric). The original AdaBoost algorithm [26] performs feature selec-

tion, weighting false positives and false negatives equally, which is inappropriate when

forming a cascade of classifiers. Viola and Jones demonstrate marginally improved

results using asymmetric boosting compared to symmetric boosting [91].

A number of alternative boosting schemes and an expanded set of features are in-

vestigated by Lienhart et al. [52]. Eleven new feature types are proposed in addition

to the original four (see Figure 4.13). The expanded feature set is shown to give

more efficient cascades when modelling faces, i.e. fewer classifiers in each level and is

capable of improved classification performance on objects which have more diagonal
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structure [53].

orig

extra

Figure 4.13: Expanded feature set used by Lienhart et al. [53]

Lienhart et al. [53] also compare three different variants of AdaBoost, namely Dis-

crete AdaBoost, RealBoost and Gentle AdaBoost. Discrete AdaBoost is the original

approach described by Schapire and Freund [26]. RealBoost is a variant which con-

siders the margin of each weak classifier [84]. Gentle AdaBoost fits a regression

function using least squares to create individual classifiers [27]. With their formula-

tion Lienhard et al. find that Gentle AdaBoost is superior to other forms of boosting

when building the cascade, both in terms of classification performance and speed.

Lienhart et al. also experiment with CART tree classifiers [3] compared to individual

feature classifiers and demonstrate a small improvement in performance.

Li et al. [49] generalise the feature set to include non-adjacent regions (see Fig-

ure 4.14). Li et al. use RealBoost [84] to perform feature selection and employ a

backtracking scheme known as FloatBoost [69], to allow features to be deselected at

a later stage, if they are shown to be redundant relative to other features. They

demonstrate marginally better results using FloatBoost compared to conventional

RealBoost. Li et al. also describe a multi-view face detection method, for detecting

profile faces, see Section 2.3 for a description of this approach.

More recently Wu et al. [97] use RealBoost and Haar wavelet features, but describe a
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Figure 4.14: Feature types used by Li et al.[49]

“nesting-structured cascade”. This approach is the same as the original Viola-Jones

cascade formulation, except each classification layer is retained as the first weak

classifier in the next layer of the cascade. This method retains the discriminating

power of the early classification layers, rather than throwing the information away

leading to smaller more efficient cascades and better classification performance. Wu et

al. present improved results compared to the original Viola-Jones results on the CMU

upright test set. Wu et al. also extend the Viola-Jones frontal face detector to build

a true multi-view face detector, i.e. a detector capable of detecting faces which are

simultaneously rotated in-plane and out-of plane (see Section 2.3 for more details).

The face region adopted by most researchers generally includes the face outline in the

template. This is found to be more robust than merely modelling the internal face

features [93]. The size of the template region is generally selected as 20x20 pixels.

The original Viola paper [92] used a 24x24 pixel region. However, several authors

claim 20x20 pixels to be optimal [49] [52].

Finally Kruppa et al. [47] demonstrate that the template region used by the Boosted

Cascade Detector can be expanded to include the head and shoulders, as well as the

face region. Kruppa demonstrates that in low resolution images, where face detection

is not possible this approach is able to improve on the face only detection approach,

mainly due to the distinctive shape of the human neck and shoulders.
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4.9 Conclusions

This chapter demonstrates the effect of various build parameters on the BCD. The

main problem with the BCD is the vast number of configurations which are possible

and the large amount of time required to train the detector. Therefore in practice

it is impossible to create the optimal detector. However the experiments performed

on the WEBCAM training set and BIOID test images have shown various important

aspects of the training method. As follows:-

Cascade vs Single AdaBoost classifier

Using 100 features spread over a 10 level cascade produces similar detection perfor-

mance to using one 100 feature classifier. However, the cascaded classifier is approx-

imately 4x quicker than the single classifier. A similar result was found by Viola and

Jones [93].

Vary Number of Features

The number of features used in each level of the cascade improves the classification

accuracy of each level and therefore gives a significant improvement to detection

accuracy. However, increasing the number of features in each level also slows down

the detector.

Vary Training Set Size and Sampling

The larger the training set the better. Sampling the training set to generate artifi-

cial examples improves performance with 1055 examples, but the number of original

images is the most critical factor.

Vary Template Resolution

The resolution of the AdaBoost template does affect performance. However larger

resolution templates are not necessarily better than lower resolutions. The best res-

olution may be dependent on the training set.
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Cropping the Face Region

The original template region models the whole face including the outline. Modelling

a cropped region just including the face gives worse results. This result was also

found by Viola and Jones [93].

Single Feature Detectors

Cropping the template region even further, to individual facial features reduces the

detection performance even more. A detector modelling the right eye only, gives

extremely poor performance. This indicates that local feature detection is likely to

be non-trivial, using the BCD.

The last section of the chapter outlines recent advances relating to the BCD. The most

comprehensive experiments are performed by Lienhart et al. [52]. They demonstrate

that using Gentle Boosting may give a significantly better result compared to Discrete

Boosting. However in most circumstances, e.g. the face viewed using a web camera

mounted on a computer, with reasonable lighting, the original approach due to Viola

and Jones is shown to be more than adequate. Therefore the plain vanilla version of

the BCD is used for face detection in this thesis.
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Shape Modelling

The right eye region detector investigated in Chapter 4 is shown to be unreliable.

However, if many local feature detectors are applied to a constrained face region it

may be possible to reduce the number of false detections by only selecting plausible

configurations of feature matches. This chapter describes shape modelling techniques

and methods of assessing the likelihood of a candidate set of facial feature locations.

5.1 Suitable Landmarks

To model face shape, independent of face texture, a set of facial features must be

selected and manually labelled across a set of face images. All twenty landmarks from

the 1055 WEBCAM images were used (see Section 3.1) to build shape models. These

twenty features were selected because they are easily identifiable by a human operator

and present in all human faces. For example the corners of the eyes and mouth

are unambiguous and salient features. These landmarks then form correspondences

consistent between individuals (see Figure 5.1).
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(a) Webcam1 (b) Webcam2

Figure 5.1: Corresponding landmark points between 2 examples from
the WEBCAM data set

5.2 Intrinsic Shape Variation

Shape is defined as “The geometrical information that remains when location, scale

and rotational effects are filtered out from an object” [20]. Under this scheme a

shape is considered unaltered if it is scaled, rotated or translated. Two shapes are

only considered identical if they can be mapped to each other using these three

transformations. For example, any pair of equilateral triangles are considered the

same, however, an isosceles triangle (non-equilateral) is considered to have different

shape.

The intrinsic shape variation of an object is the variability that is not due to scale,

rotation and translation. The object, in this case the human face, is represented

by a set of example shapes extracted from manually labelled images. This data

therefore varies in scale, rotation and location. This similarity variation, must first

be removed, by aligning the shapes into a common co-ordinate frame, before any

analysis of intrinsic shape can take place.
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5.3 Aligning the Training Data

To model the intrinsic shape variability all shapes must be aligned into a common co-

ordinate frame, free of variation due to similarity transformations. This is achieved

using Procrustes Analysis [34] which applies transforms to each shape in order to

minimise the squared distance to the mean (
∑ |xi − x̄|2), where x̄ is the mean shape

given a set of shapes {xi}

Firstly the shape data is reformatted to a more convenient notation. The x and y

co-ordinates of each 2D point are concatenated to form a single vector, as shown in

Equation 5.1.

x = (x1, . . . , xn, y1, . . . , yn)T (5.1)

Given s training examples, s such vectors x are generated. Each vector is of length

2n. In this case n = 20 landmark points and s = 1055 training examples. Procrustes

analysis then proceeds via the following iterative method, due to Cootes et al. [10],

see Algorithm 5.1.

Algorithm 5.1 Aligning the Training Data [10]

1. Translate each example so that its centre of gravity is at the origin.

2. Choose one example as an initial estimate of the mean shape and scale so that |x̄| = 1

3. Record the first estimate as x̄0 to define the default reference frame.

4. Align all shapes with the current estimate of the mean shape. (see Appendix A )

5. Re-estimate mean from the aligned shapes.

6. Apply constraints on the current estimate of the mean by aligning it with x̄0 and
scaling so that |x̄| = 1

7. If the mean x̄ has not changed significantly then STOP, else go to 4.
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The alignment procedure in step 4 of Algorithm 5.1 is critical to the final distribution

of shapes. The transformations allowed when aligning each shape to the mean are

scaling and orientation (shapes are already centred on the origin). However this step

is followed by a projection into the “tangent space” [20] of the mean shape x̄. This is

the hyperplane of vectors, normal to the mean shape, ie xt such that (xt − x) .xt = 0.

The projection is achieved by scaling a given shape by 1/ (x.x̄). The tangent space

projection improves the linearity of the aligned shape data.

A small training set of unaligned shapes is shown in Figure 5.2(a). The procedure de-

scribed in algorithm 5.1 is then applied to produce the aligned shapes in Figure 5.2(b).

(a) Unaligned Shapes (b) Aligned Shapes

Figure 5.2: Aligning a set of shapes

5.4 Building a Shape Model

The alignment procedure described in Section 5.3 produces a set of s vectors xi, which

form a distribution in a 2n dimensional space. In our case n = 20 and s = 1055,

so we have a cloud of 1055 points within a 40 dimensional space, known as “shape

space”, because each point represents an example shape, free of translation, rotation

and scale variation.
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We wish to model this distribution. However the high dimensionality (40D) of the

space is prohibitive. The dimensionality is reduced by applying Principal Components

Analysis (PCA) [44]. PCA computes the main axes of a cloud of points and allows

each point to be approximated using a small number of parameters. The approach

is described in Algorithm 5.2.

Algorithm 5.2 Principal Components Analysis

1. Compute the mean of the data x̄ = 1
s

∑s
i=1 xi

2. Compute the covariance of the data S = 1
s−1

∑s
i=1(xi − x̄)(xi − x̄)T

3. Compute the eigenvectors, φi and corresponding eigenvalues λi of S (sorted so that
λi ≥ λi+1).

4. Compute the sum of eigenvalues V =
∑n

i=0 λi and find the smallest t such that
∑t

i=0 λi ≥ pV , where p is manually defined.

5. Store the first t eigenvectors as a matrix Φ = (φ1|φ2| . . . |φt)

The mean shape x̄ and matrix Φ define a linear subspace. A shape x can be projected

into the subspace, using Equation 5.2.

b = ΦT (x − x̄) (5.2)

The set of parameters b have dimension t < n and can be used to approximate the

original shape vectors x (dimension n) as shown in Equation 5.3.

x ≈ x̄ + Φb (5.3)

Following Dryden and Mardia [20], the individual parameters bi are assumed to be

independent and Gaussian. The variance across the training set of an individual

parameter bi is given by λi. Therefore the original shapes can be modelled by varying

the parameters bi.
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By applying limits of ±3
√

λi to the parameter bi we ensure that the shape generated

is similar to those in the original training set. The variation attributed to the first

two modes of the human face shape model built are shown in Figure 5.3.

Mode 1

Mode 2

Figure 5.3: First two modes of the human face shape model

The dimensionality reduction due to PCA is controlled by the parameter p (see

step 4 of algorithm 5.2). Here p is the proportion of the total variance retained. If

p is small then t ≪ n and only a small number of eigenvectors are retained, but

the PCA parameters may only provide a very rough approximation to the original

shape vectors xj. If p is large then the original shape vectors will be more accurately

represented, but more eigenvectors will be retained, so the dimensionality of the data

may still be high. For example, setting p = 0.9 reduces the dimension of the PCA

space to t = 14 compared to the original 40–D shape space.
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5.5 Fitting to New Points

Given a new set of points Y the shape model can be fitted to the new shape by

finding a suitable transformation TXt,Yt,s,θ and set of shape model parameters b. The

new set of points are approximated using Equation 5.4.

Y ≈ TXt,Yt,s,θ(x̄ + Φb) (5.4)

Here the function TXt,Yt,s,θ performs a rotation by θ, a scaling by s and a translation

by (Xt, Yt). The transformation TXt,Yt,s,θ and b are chosen to minimise the sum of

squares error.

|Y − TXt,Yt,s,θ(x̄ + Φb)|2 (5.5)

Cootes et al. [10] define an algorithm to iteratively minimise the approximation error

(Equation 5.5, see Algorithm 5.3). In Algorithm 5.3 convergence is declared when

applying an iteration produces no significant change in the pose or shape parameters.

Converges usually takes only a few iterations.

5.5.1 Fitting to a Subset of Points

Frequently a shape model is required to fit to a subset of points and estimate the

locations of the missing points. For example a shape model may be built from both

eyes and both mouth corners, but be required to fit to a shape consisting of only one

eye and both mouth corners.

Fitting to a subset of points is achieved using algorithm 5.3, however there are two

changes to the algorithm:-
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Algorithm 5.3 Iterative Fitting to New Points [10]

1. Initialise the shape parameters, b, to zero

2. Generate the model instance x = x̄ + Φb

3. Find the similarity transformation TXt,Yt,s,θ which best maps x to Y (see Appendix A)

4. Invert the pose parameters and use to project Y into the model co-ordinate frame:

y = T−1
Xt,Yt,s,θ

(Y) (5.6)

5. Project y into the tangent plane to x̄ by scaling by 1/(y.x̄).

6. Update the model parameters to match to y

b = ΦT (y − x̄) (5.7)

7. Apply constraints on b

8. If not converged, return to step 2.

1. In step 3 the calculation of the transform TXt,Yt,s,θ proceeds in the same manner,

but only the subset of points are considered in the calculation.

2. In step 6 the parameters b of the PCA space must be estimated by minimising

the expression |(y − x̄ − Φb)|2, with reference to a weight vector specifying the

relative importance of each model point. Here the weight vector has value one

for points that are present and zero otherwise. The weighted fit procedure is

described in Appendix B.

Using this scheme a shape model can fit to a subset of points and the shape model

parameters found b automatically suggest a location for the missing points, which

can be calculated using Equation 5.4.
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5.6 Likelihood of a Shape

Given an unseen shape Y we would like to estimate the probability p(Y) of the shape

being a valid face. This is achieved by fitting the shape model to the face points (as

described in Section 5.5) to extract the closest fitting model parameters b and the

projection of Y in the aligned space x. The residual error r of the PCA model in the

aligned space is defined as follows.

r = x − x′

where x′ = x̄ + Φb
(5.8)

The probability p(Y) is analogous to the probability p(x) in the aligned shape space.

The shape x is represented by a combination of the PCA parameters b and the

residual error r. The distributions of r and b are assumed to be independent therefore

log p(x) = log p(b) + log p(r) (5.9)

Following Dryden and Mardia [20], the individual bi parameters are assumed inde-

pendent and gaussian. The log likelihood of a vector b representing a plausible shape

is therefore

log p(b) = −0.5
t
∑

i=1

b2
i

λi

+ const (5.10)

Here λi are the eigenvalues of each shape mode, which correspond to the variance of

each parameter bi, centred on zero and assumed gaussian.

Similarly it is assumed that each element of r is independent and gaussian distributed

with variance σ2
r , which can be estimated from the training set, so that
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log p(r) = −0.5
|r|2
σ2

r

+ const (5.11)

The p(x) can therefore be approximated using the following expression

log p(x) = −0.5

(

t
∑

i=1

b2
i

λi

+
|r|2
σ2

r

)

(5.12)

Given the log likelihood measure defined in Equation 5.12 a threshold pt can be learnt

from the training set on the quantity log p(x) such that a shape is defined plausible

if log p(x) > pt. Typically the threshold is chosen such that 98% of the training set

will pass. Some examples of log likelihood scores for various shapes are shown in the

Figure 5.4.

(a) Correct points
(log p(b) = 16.43)

(b) Mouth widened
(log p(b) = −7.22)

(c) Right eye moved up
(log p(b) = −9.38)

Figure 5.4: Example log likelihoods when fitting to 20 face points (de-
noted by x) after applying various distortions

In Figure 5.4 the fitted model is depicted using line segments. The points that are

being tested are denoted by “x”. When fitting to correct points the log likelihood

log p(b) = 16.43. When the correct points are distorted by widening the mouth to

an artificially large width, the log likelihood of the 20pts representing a face drops to

-7.22. When the right eye is raised to an unnaturally high level, relative to the left

eye, log p(b) decreases to −9.38. This shows that the shape model can be used to
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discriminate between plausible and non-plausible face point configurations.

Sometimes only a subset of face points are available. For example the eye pupils and

the mouth corners. However, the full shape model can still be fitted to this four point

subset using the method described in Section 5.5.1. Figure 5.5, shows examples of

fitting to shapes using only the eye pupils and mouth corners.

(a) Correct points
(log p(b) = 23.21)

(b) Mouth widened
(log p(b) = −24.06)

(c) Right eye moved up
(log p(b) = −21.58)

Figure 5.5: Example log likelihoods when fitting to 4 face points, (both
pupils and both mouth corners) after applying various distortions

There are some numerical changes in the log likelihood of each shape log p(b) when

considering only a four point subset. The likelihood of the the correct points has

increased 16.43 → 23.21. This is due to the shape model being able to fit to fewer

points and therefore produce a fitted shape closer to the mean of the shape model,

therefore log p(b) increases. However, the likelihood of the mouth distorted shape

has decreased −7.22 → −24.06, similarly the likelihood of the eye distorted shape has

decreased −9.38 → −21.58. This is due to the shape fitting to the distorted points

and ignoring the influence of the other correct points, resulting in a more unlikely

model parameters. However, despite these changes in the magnitude of log p(b) the

shape model is still able to discriminate between the correct points and distorted

points when fitting to the eye pupils and the mouth corners.
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5.7 Conclusions

This chapter has shown that the shape variation of 20 landmark points over the 1055

WEBCAM images can be modelled by aligning the shape data and projecting into

a 14 parameter PCA space. Examples are also shown of the shape model fitted to

valid face points and invalid face shapes. The model can be used to discriminate

between plausible and non-plausible configurations of points, assuming a Gaussian

distribution of the shape model parameters in the PCA space. This form of statistical

shape model is used as a discriminator in the next chapter, which aims to constrain

the search for individual facial features.
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Shape Constrained Feature

Detection

This chapter describes three methods of combining shape and feature detection to

accurately locate facial features. The methods perform a local search given the ap-

proximate location and orientation of the face. The Boosted Cascade Face Detector

described in Section 3.5 and Chapter 4 is used to locate upright faces and the tech-

niques described below are used to find individual facial features, such as the eye

pupils and corners of the mouth.

6.1 Local Feature Detectors

The Boosted Cascade Face Detector returns a region which is assumed to contain a

face. Here, a search is deemed successful if deyes < 0.3, following Section 3.7.2. Given

a successful global match to an unseen image, local feature detectors are applied to

search for individual facial features. The type of feature detector used may be any

form of 2D pattern recognition method. In this chapter, the three methods used

to model the whole face in Chapter 3, are now used to model local image patches
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centred on individual facial features.

6.1.1 Training Data

The training set is the WEBCAM data set described in Section 3.1. An example

training image from the WEBCAM data set is shown in Figure 6.1(a).

(a) Training image (b) Training features

Figure 6.1: Example feature training images

There are 17 internal landmarks on each training image (the temples and the chin are

excluded). A region with dimensions proportional to the inter-ocular separation of the

training face, is formed around each feature point and the feature patch subsampled to

15x15 pixels. Examples of subsampled patches are shown in Figure 6.1(b) and further

examples of data used to train the 17 feature models are shown in appendix D.

6.1.2 Individual Feature Detectors

Given the training patches described in Section 6.1.1 local detectors can be built for

each facial feature. Similar to Chapter 3, there are three different types of feature

detector.
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1. Normalised Correlation Detector (NCD) - The average training image for each

detector is scaled such that the pixel values have zero mean and unit vari-

ance, as described in Section 3.4. The templates for each feature are shown in

Appendix E.

2. Orientation Map Detector (OMD) - Orientation maps are constructed by appli-

cation of a Söbel edge filter, to each averaged feature image, using the method

described by Fröba and Küllbeck [30] and previously applied to whole face de-

tection in Section 3.3.1. The orientation maps for all 17 features are shown in

Appendix F.

3. Boosted Cascade Detector (BCD) - The training set described in Section 6.1.1

is used to build a 10 level cascade containing 10 features in each level, using the

method described in Section 3.5. The first six features selected by AdaBoost

for each facial feature are shown in appendix G.

6.1.3 Unconstrained Feature Search

Given a set of individual feature detectors, feature search proceeds by first applying

the global face detector to an image containing a human face. Assuming global search

is successful, the whole face region is used to predict a search region for each individual

facial feature. The bounding box for each feature is precomputed by applying the

global detector to a verification set. A feature detector is then applied to each region

and the best match of each detector recorded as the predicted location of each feature.

The search is unconstrained, in the sense that each local detector is independent, so

the final configuration of points is not guaranteed to form a plausible face shape.
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6.1.4 Proximity Measure

To assess the accuracy of feature detection the locations found by each feature detec-

tor are compared with manually labelled feature points. The average point to point

error (me) is calculated as follows.

me = 1
ns

i=n
∑

i=1

di (6.1)

Where di are the point to point errors and s is the inter-ocular distance as shown in

Figure 6.2. Here n is the number of feature points modelled.

s

x

xx
x

xx
x

x
xx

x
xxxx

xx

di

di

didi

Figure 6.2: Proximity Measure, “.” = true feature location and “x”=
predicted feature location

The mean error (me) used to assess search accuracy can be computed over all feature

points when it is referred to as me17. However, the mean error is sometimes restricted

to just four points, i.e. the eye pupils and mouth corners, when it is referred to as

me4. In Section 3.7.1 the deyes metric, used to assess face detection performance, can

be thought of as me2, where the mean error is computed using the eye pupils only.
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Similarly me1 is sometimes used to denote the error of an individual feature point.

6.1.5 Unconstrained Search Results

Unconstrained feature search is applied to the BIOID subset images described in

Section 3.6.2. Figure 6.3 shows the accuracy of unconstrained feature search relative

to manually labelled points. Various proximity measures are used. For example,

Figure 6.3(a) plots the proportion of successful searches using the mean error over

all 17 feature points (me17). Whilst Figures 6.3(b) , 6.3(c) and 6.3(d) plot the mean

error for the right eye, left mouth corner and nose tip feature detectors only.

The feature points can also be predicted by simply computing the mean feature

locations from the global face region, without performing any local search. For com-

parison purposes the average predicted point accuracies are also plotted with the

local search results in Figure 6.3.

Figure 6.3(a) shows that using the mean error (me17) over all feature points, all

three local detection methods give worse performance than merely computing the

average feature locations from the global face detection. For example, if the required

accuracy is me17 < 0.15 then the proportion of successful searches using the average

points predicted by the global candidate is 85%. Using unconstrained BCDs the

success rate drops to 75%. Whilst with normalised correlation, performance drops

dramatically to only 22% success rate and 9% with orientation maps.

Figures 6.3(b) , 6.3(c) and 6.3(d) show that the search accuracy varies from fea-

ture to feature. For example, the right eye detector is often much more accurate

than the average right eye prediction using the global candidate region (see Fig-

ure 6.3(b)). With Boosted Cascade Detectors the right eye detector has an accuracy

of me1 < 0.05 in 80% of cases, this drops to 25% with average point prediction. Fig-

ures 6.3(c) and 6.3(d) also show that the mouth corner and nose tip can sometimes

be located more accurately with local feature detectors instead of the average points.
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(a) All feature points (me17)
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(b) Right Eye (me1)
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(c) Left Mouth Corner (me1)
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(d) Nose Tip (me1)

Figure 6.3: Point to point error when performing unconstrained feature
detection on the BIOID test set

However, the local feature search is often unsuccessful. Especially when applied to

the left mouth corner and nose tip. When the local search fails the point to point

error can be very large. Therefore the average error (me17) over all features is often

worse than the average error for the mean points (see Figure 6.3(a)).

Figure 6.3 shows that generally the Boosted Cascade Detectors give better perfor-

mance than the Orientation Map Detectors and Normalised Correlation Detectors.

This is consistent with Chapter 3, which showed that the Boosted Cascade Detector

is also the most successful face detector. However, unconstrained Boosted Cascade

Detector search is still less reliable than the average point locations using the me17

distance measure.
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6.1.6 Unconstrained Search Examples

Examples of unconstrained search using Boosted Cascade Detectors are shown in

Figure 6.4.

(a) me17 = 0.056 (b) me17 = 0.062 (c) me17 = 0.065 (d) me17 = 0.106

(e) me17 = 0.112 (f) me17 = 0.116 (g) me17 = 0.120 (h) me17 = 0.171

Figure 6.4: Examples of unconstrained search with Boosted Cascade
Detectors

In Figures 6.4(a) , 6.4(b) and 6.4(c) the unconstrained search works reasonably

well. However in the other examples the unconstrained search finds some features,

but fails spectacularly for other features. For example, the outer right brow corner

detector fails in Figure 6.4(d). The mouth detectors fail in Figure 6.4(e). The eye

region detectors fail in Figures 6.4(f) and 6.4(g). Multiple feature detectors fail in

Figure 6.4(h).

In Figure 6.4, the individual feature searches are independent, so in many cases,

the false feature detections fail to form a plausible face shape. Constraining feature

detections using shape is explored later in this chapter.
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6.1.7 Unconstrained Search Timing

Time trials were carried out on the different unconstrained feature detectors on a PII

500Mhz PC. The results are summarised in Table 6.1.

Detector Time for local feature search (17pts)
boosted cascade ∼150ms

normalised correlation ∼300ms
orientation map ∼550ms

Table 6.1: Time to perform unconstrained feature search on a single
BIOID image using a 500Mhz PII processor

Table 6.1 shows that the BCD is the quickest local feature detector. This is because

the efficient cascade structure discards unlikely regions very quickly. In Section 3.2 of

Chapter 3, the normalised correlation and orientation map face detectors are actually

quicker than the Boosted Cascade Detector at searching the whole image. However,

the reason for this is the efficient coarse-to-fine mechanism described in Section 3.3.4,

which is only used for global face search.

6.1.8 Unconstrained Search Conclusions

The large point to point errors in Figure 6.3 and poor results shown in Figure 6.4 show

that purely local search is unreliable. The individual feature detectors described in

this chapter cannot improve on the accuracy of the average feature locations predicted

using the global candidate. This is probably due to individual features having a high

variability in appearance (see feature training examples in Appendix D) and therefore

not having enough fixed local structure to enable reliable detection.

In order to improve the accuracy of local search the author has developed and imple-

mented several methods of constraining local feature detectors by employing shape

constraints on the configuration of points suggested by the individual feature detec-

tors. Three such methods of combining shape and feature detection are implemented
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and tested. Combinatoric Shape Search (CSS) is described in Section 6.2. Shape Op-

timised Search (SOS) is described in Section 6.3. Pairwise Reinforcement of Feature

Responses (PRFR) is described in Section 6.4.

6.2 Combinatoric Shape Search (CSS)

This method of constraining feature detectors was first implemented by the author

and described in Cristinacce and Cootes [15]. The method proceeds by retaining the

best feature responses for each detector. All combinations of feature locations are

then grouped to form point sets. The set of most likely feature points that also passes

a threshold on the shape likelihood is deemed the final output of the algorithm.

The expectation is that the shape constraint will avoid invalid matches such as the

feature detections depicted in Figure 6.4. The statistical shape model, used to test

point configurations, is constructed as described in Chapter 5. The individual feature

detectors may be any of the detectors described in Section 6.1. Additionally, the

probability of an individual feature detector finding the correct location is estimated,

as described below.

6.2.1 Probability of Individual Feature Responses

The probability of a correct match for an individual feature detector is approximated,

by learning the distribution of responses to both positive and negative feature exam-

ples. Given P (r|F )∗ the probability of a given response at the true feature location

and P (r|B) the probability of a given response away from the true feature location,

the probability of a given feature response, r, matching the correct point within the

search window, P (F |r), is calculated using Bayes Theorem (see Equation 6.2).

∗In practice r is a continuous variable, therefore this is the probability of r lying within some
interval
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P (F |r) = P (r|F )P (F )
P (r|F )P (F )+(1−P (F ))P (r|B)

(6.2)

Here P (r|F ) is estimated by calculating a histogram of responses to a positive ver-

ification set and P (r|B) is similarly estimated using a histogram calculated using a

negative verification set. P (F ) is the prior probability of a correct feature match and

is estimated as P (F ) = 1/n, where n is the number of points evaluated by the feature

detector within the search region.

For each feature detector a suitable threshold Tf is learnt from a verification set, such

that 90% of true feature patches pass the threshold. Therefore a feature detection is

only accepted if P (F |r) > Tf , otherwise it is discarded.

6.2.2 Shape Constraints

The feature detections described in Section 6.2.1 are combined into candidate point

sets. Each candidate point set contains at most one candidate location for each feature

detector. A candidate point set must contain at least k > 2 detected features, with

the remaining (n−k) points predicted by fitting a shape model to the detected points.

To be considered as a possible face match, a candidate set of points must pass two

types of shape constraint as follows.

1. A shape model is fitted to the set of points. The likelihood of the shape ps(x),

is estimated using the the method described in Section 5.6. If ps(x) > Ts, the

shape is accepted, otherwise it is discarded.

2. Limits are placed on the transformation between the candidate point set and the

average points predicted by the global candidate. The maximum scale variation

is smax, the max rotation is θmax and the max translations xmax and ymax.

Here the transformation limits are set with knowledge of the accuracy of the global
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search. In this thesis the limits used are smax = 10%, θmax = 10o and xmax = ymax =

10%. The threshold Ts is set such that 90% of the training set shapes would pass the

threshold.

6.2.3 Point Set Objective Function

Given a list of candidate point sets {X}, which pass the shape constraints described

in Section 6.2.2, the objective function S(X) is used to select the best point set, as

follows.

S(X) =
i=k
∑

i=1

Pi(F |r) + k (6.3)

Where k is the number of feature detections in the point set and Pi(F |r) is the proba-

bility of a correct match for each detected feature point, as described in Section 6.2.1.

This objective function is designed to ensure that a candidate set with 4 points is

always ranked higher than a candidate set with only 3 points.

6.2.4 Finding the Best Candidate Point Set

Given a list of feature responses for each detector, a simple method of selecting the

best candidate point set is to form all possible candidates and select the highest scor-

ing point set X which passes the constraints imposed by the shape model. However,

an obvious problem with this approach is the combinatorial explosion that results if

too many candidate points are returned for too many feature points. For example

with 7 feature points each returning 9 candidate locations and allowing for missing

features, the number of possible face candidates is (9 + 1)7 = 107. It is infeasible to

evaluate this number of candidates in a sensible amount of time.

We wish to find the best candidate point set, using the feature responses and the
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shape constraints, but also limit the combinatorial explosion. This is achieved in

three ways, as follows.

1. Limit np the number of feature points considered

2. Restrict the number of points any one feature detector can return nmax

3. Employ an efficient iterative search method, as described in algorithm 6.1.

Algorithm 6.1 Iterative Search Method

1. Order the feature candidates for each feature detector, largest response first.

2. Set i = 1

3. Restrict the search for a face candidate to the best i responses of each detector.

4. If a feature detector has less than i point candidates then it is allowed a wildcard.

5. Ensure that each face candidate contains at least one candidate point that is the ith

response of a detector †

6. Form all face candidates and test each with the shape model.

7. If no face candidate passes the shape constraint set i = i + 1 and go to step 3.

8. Rank all face candidates that pass the shape constraint using the objective function
described in Equation 6.3

9. If the best candidate has missing features these are predicted using the shape model.

The aim of algorithm 6.1 is to select the highest scoring candidate with the max-

imum number of feature points that satisfy the shape constraint. The procedure

makes searching tractable by ignoring weaker point candidates and returns the same

candidates as a full search.

The main parameters used in algorithm 6.1 are the number of feature points con-

sidered np and the maximum number of candidate points retained by each feature

†This ensures that point sets from previous iterations of i are not re-evaluated
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detector nmax. In this paper, np = 4 and the features modelled are the centre of the

pupils and the corners of the mouth, while nmax=5.

These parameters mean that a point set must be found from the top five point

candidate returned by each feature detector. If a feature detector returns less than

5 point candidates, because the probability of any correct match is too low, then a

wildcard will eventually be used for that feature. In practice these values for np and

nmax give good results and reduce the processing time relative to a full search of all

possible point candidates.

6.2.5 CSS Results

The effectiveness of the Combinatoric Shape Search algorithm is shown by applying

the method to the BIOID test set. CSS is compared with unconstrained feature

search and average point prediction by computing the mean point to point error

(me4). Here me4 is the average mean error of the eye pupils and mouth corner points,

as described in Section 6.1.4. Figure 6.5 plots the proportion of successful searches

given various thresholds of me4, using CSS and a variety of feature detectors.

Figure 6.5(a) shows that using CSS with Boosted Cascade Detectors provides more

accurate feature locations compared to the average points predicted by the global

face candidate. With a required accuracy of me4 < 0.15, the average point prediction

is successful for 83% of faces. However, when using Boosted Cascade Detectors and

Combinatoric Shape Search the number of successful searches is 90%. Using CSS the

proportion of successful searches is greater at all values of me4. Therefore CSS is a

clear improvement over the average points predicted from the global candidate, when

using Boosted Cascade Detectors.

Figures 6.5(b) and 6.5(c) show that when using orientation maps or normalised cor-

relation with CSS the performance is only similar to the average point prediction.

For example with me < 0.15, Orientation Map Detectors are successful for 77% of
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(a) CSS Boosted Cascade Detectors
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(b) CSS Orientation Map Detectors
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(c) CSS Normalised Correlation Detectors
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Figure 6.5: Average mean positional error (me4) when performing CSS
on the BIOID test set

faces and Normalised Correlation Detectors 78% compared to 83% with average point

prediction. However the Combinatoric Shape Search algorithm does give a vast im-

provement on unconstrained search. For normalised correlation with me < 0.15 the

success rate improves 59% → 78% (Figure 6.5(c)). Whilst for orientation maps the

success rate improves 15% → 77% (Figure 6.5(b)). Therefore, Combinatoric Shape

Search gives a vast improvement on unconstrained search for both the Normalised

Correlation Detector and Orientation Map Detector, however the end results are not

much better than average point prediction.

Figure 6.5(d) confirms that Boosted Cascade Detectors with Combinatoric Shape

Search is by far the best method, performing better than Combinatoric Shape Search
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with normalised correlation or orientation maps. Therefore given a reliable enough

detector Combinatoric Shape Search makes the local search more robust, when search-

ing for the eye pupils and mouth corners.

6.2.6 CSS Example Searches

The effectiveness of the CSS algorithm combined with Boosted Cascade Detectors is

illustrated by comparing examples of CSS search with unconstrained Boosted Cas-

cade Detector search. Figure 6.6 shows examples of constrained and unconstrained

searches.

→

(a) me4 = 0.182 → 0.055

→

(b) me4 = 0.083 → 0.045

→

(c) me4 = 0.146 → 0.035

→

(d) me4 = 0.132 → 0.035

Figure 6.6: Examples of improvement in search accuracy (me4) when
using CSS compared to unconstrained search, using Boosted Cascade
Detectors

In Figure 6.6(a) the unconstrained search falsely matches the left mouth corner de-

tector to the left nostril. However, this point configuration does not pass the shape

model constraint. The CSS algorithm therefore corrects the false detection and im-

proves the mean error (me4) from 0.182 → 0.055. Similar improvements are shown

in Figure 6.6(b), where a false detection to the left eye corner is avoided, and Fig-
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ure 6.6(d) where a false match to the left eye brow is corrected. In Figure 6.6(c),

both predictions for the mouth corners are improved.

6.2.7 CSS Timing

Timing evaluations were carried out on the CSS algorithm, using Boosted Cascade

Detectors, on a PII 500Mhz PC. The results are summarised in Table 6.2.

Event Time
Global search ∼400ms

Local feature search (4pts) ∼50ms
Find best point candidate set ∼0-150ms

Total ∼450-600ms

Table 6.2: Time to perform CSS with BCD detectors on a single BIOID
image using a 500Mhz PII processor

In Table 6.2, the time to find the best point set varies because sometime the best

feature responses form a valid shape, but often this is not the case and more points

sets have to be considered, increasing the search time. However, the whole search,

i.e. global search and four point feature search can be completed in ∼450-600ms even

on a relatively old machine, so the CSS algorithm is efficient and would be able to

search many times a second on more modern hardware.

6.2.8 CSS Conclusions

The CSS algorithm when combined with Boosted Cascade Detectors has been shown

to locate feature points more accurately than average point predictions (see Fig-

ure 6.5(a)). The improvement in performance relative to unconstrained search, is

due to the removal of false detections, which are deemed unlikely by the CSS shape

model (see Figure 6.6 for example search results). The CSS method is shown to

be efficient, allowing features to be located in ∼450-600ms on a relatively old PC.
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However, CSS is shown to be unreliable with weaker detectors, such as Normalised

Correlation Detectors and Orientation Map Detectors. Therefore a reasonably reli-

able detector, such as the Boosted Cascade Detector is required for the CSS algorithm

to work effectively.

A more serious problem with the CSS algorithm is that the combinatorial problems

described in Section 6.2.4 restrict the number of feature points that can be modelled.

This means that the shape constraints are weaker than they would be if more fea-

ture points were modelled. Also the locations of only four features are predicted by

the algorithm. A multi-stage procedure would be required to predict more points.

Therefore a different shape constraint method has been devised that can be more

easily extended to a greater number of feature points. This method is described in

Section 6.3 below.

6.3 Shape Optimised Search (SOS)

The Shape Optimised Search (SOS) method also attempts to combine feature de-

tection with shape constraints. However, unlike CSS explicit point configurations

are not considered. Instead the shape constraint is incorporated into an optimisa-

tion scheme. The SOS method is described below, but was originally described in

Cristinacce and Cootes [16].

6.3.1 Feature Response Images

Instead of simply recording the highest ranking feature responses, the feature de-

tectors are applied to their individual search regions and a quality of fit measure

returned for each pixel within the region. Responses for the eye and mouth corner

using Boosted Cascade Detectors are shown in Figure 6.7.

Dark regions in Figure 6.7 indicate a high likelihood of a correct match, whereas
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(a) Right eye (b) Left eye (c) Right mouth
corner

(d) Left mouth
corner

(e) Right nostril (f) Left nostril (g) Right outer
brow

(h) Left outer
brow

Figure 6.7: Response images for the eyes and mouth corner detectors
(black implies strong response)

lighter regions indicate that a pixel is unlikely to be the correct feature location.

6.3.2 Non Linear Optimisation

Given a set of feature response images {Ii}, the mean feature locations within the

object are used to initialise the shape. Here shape is represented as a concatenated

vector of X and Y co-ordinates, as follows.

X = (X1, . . . , Xn, Y1, . . . , Yn)T (6.4)

The shape X is represented by the shape parameters b from Equation 5.3 and a

transformation Tt from the shape model frame to the image frame. Therefore X is

calculated from the shape parameters as follows.

X ≈ Tt (x̄ + Φb) (6.5)
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Here Tt(x) applies a similarity transform with parameters t. We concatenate the

shape and pose parameters into p =
(

tT |bT
)T

. The objective function f(p) for a

given vector p is then defined as follows.

f(p) =







∑n

i=1 Ii(Xi, Yi) if |bi| < 3
√

λi ∀i

0 otherwise
(6.6)

Bilinear interpolation of the feature response image Ii(X,Y ) is used for non-integer

(X,Y ).

The search algorithm is simply to vary the parameter vector p to maximise the fitting

function f(p). This can be achieved using any optimisation technique. Throughout

this thesis we use the Nelder-Meade simplex method [64]. This requires an initial

step size to guide the optimisation of each element of vector p. For each element bi

the initial step size is
√

λi. The initial step size for the pose elements ti are such that

the translation varies by 10% of the object size and the orientation and scale may

vary by up to 20%. When the simplex method produces no significant change in the

parameter vector p, i.e. a maxima has been found, the algorithm terminates and the

final shape parameters p determine the location of each feature.

6.3.3 SOS Results

Figure 6.8(a) shows that when using BCDs the SOS algorithm modelling 17 points

outperforms the CSS method modelling 4 feature points, using the me4 distance

measure (see Section 6.1.4). However, the CSS method still outperforms the SOS

algorithm when it is restricted to modelling the same four feature points as the CSS

algorithm (i.e. the eye pupils and mouth corners).

For example in Figure 6.8(a) with a threshold of me4 < 0.15, the SOS 17pt method is

successful for 94% of faces. This compares to 90% for the CSS 4pt method. The SOS
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17pt method is more successful at all possible values of me4, so is clearly superior.

However, when restricted to four points SOS success rate drops to only 83% of faces,

which is the same as average point prediction. Therefore with BCDs, SOS is much

improved when modelling 17 feature points, compared to 4 feature points.
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(a) SOS-Boosted Cascade Detectors
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(b) SOS-Orientation Map Detectors
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(c) SOS-Normalised Correlation Detectors
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(d) SOS-compare feature detectors

Figure 6.8: Average mean positional error (me4) when performing SOS
on the BIOID test set§

Figures 6.8(b) and 6.8(c) show that when using orientation maps or normalised corre-

lation SOS with 17 feature points works much better than any other method. Using

OMD or NCD the CSS algorithm fails to improve on the average point predictions.

However using SOS the improvement relative to the average points (with me4 < 0.15)

§Note that in Figure 6.8 all point to point errors me4 are calculated only using the eye pupil and
mouth corners, irrespective of the other feature points that are modelled by the SOS algorithm.
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is 83% → 93% using orientation maps and 83% → 94% using normalised correlation.

Therefore the SOS algorithm works even with individually poor performing detectors

such as OMDs and NCDs. However when only using 4 feature point SOS perfor-

mance is much worse. Therefore the SOS algorithm needs many feature points to be

effective.

Figure 6.8(d) confirms that the SOS 17pt algorithm gives similar performance, with

all three feature detectors. Given a threshold of me4 < 0.15 the Boosted Cascade

Detector is successful for 94% of faces, the Normalised Correlation Detector 94% and

the Orientation Map Detector 93%, compared to the average point prediction success

rate of 83%. Therefore SOS with 17 feature points is a reliable and robust method

even with relatively weak individual feature detectors.

6.3.4 SOS Search Examples

Examples of the SOS 17pt search compared with the CSS 4pt search using Boosted

Cascade Detectors are shown in Figure 6.9.

→

(a) me4 = 0.092 → 0.041

→

(b) me4 = 0.132 → 0.043

→

(c) me4 = 0.128 → 0.064

→

(d) me4 = 0.038 → 0.041

Figure 6.9: Examples of improvement in search accuracy (me4) using
SOS 17pt search compared to CSS 4pt search with Boosted Cascade
Detectors
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Figure 6.9 shows improvements in search accuracy (me4) when using SOS 17pt search

instead of CSS 4pt search. For example in Figure 6.9(a) the CSS search does not

find the pupils accurately. The SOS algorithm is able to correct this and reduce the

mean error (me4). Figures 6.9(b) and 6.9(c) show an improvement in mouth corner

location using the SOS 17pt instead of the CSS 4pt method. Figure 6.9(d) shows

that both methods give similar accuracy in a case where the CSS already performs

well.

6.3.5 SOS Timing

The speed of the SOS algorithm using Boosted Cascade Detectors is evaluated on a

PII 500Mhz PC. The results are summarised in Table 6.3.

Event SOS 4pt SOS 17pt
Global search ∼400ms ∼400ms

Local feature search ∼50ms ∼150ms
Time to optimise shape parameters ∼0-50ms ∼0-200ms

Total ∼450-500ms ∼550-750ms

Table 6.3: Time to perform SOS with BCDs on a single BIOID image
using a 500Mhz PII processor

Table 6.3 shows that the global detector and SOS 17pt local search can find features

in ∼550-750ms. With four points the SOS finds features in ∼450-500ms. however as

Figure 6.8(a) shows, performance is dramatically reduced when only modelling four

points.

The most variable step is the time taken for the Nelder-Meade downhill simplex to

converge. The maximum observed optimisation time increases from ∼50ms →∼ 200ms

when moving from 4 → 17 points. The time to optimise the shape parameters is also

highly variable between images. However even on a relatively old machine the SOS

can find 17 facial features in less than a second.
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6.3.6 SOS Conclusions

The SOS 17pt algorithm is shown to predict the eye pupil and mouth corner locations

more accurately then the CSS 4pt algorithm. Figure 6.8 shows that the SOS 17pt

method gives good performance with all feature detectors, even the weaker NCD

+ OMD detectors, which give very poor unconstrained search results. The SOS

algorithm is efficient - able to find features in ∼550-750ms even on an old CPU.

The strength of the SOS algorithm compared to the CSS method is probably due

to its ability to model many feature points instead of just four. With just four

feature points the SOS 4pt algorithm performs poorly (see Figure 6.8). With 17pts

the shape constraints are stronger and features are located more accurately than the

CSS method (see Figure 6.9 for example searches).

6.4 Pairwise Reinforcement of Feature Responses

(PRFR)

A third approach, known as Pairwise Reinforcement of Feature Responses (PRFR)

was developed by the author (see Cristinacce and Cootes [17]). This does not use

an explicit shape model, rather it models shape implicitly by learning the pairwise

distribution of all true feature locations relative to the best match of each individual

feature detector. When searching each true feature location is predicted by multiple

detectors. The combination of multiple predictions makes the final prediction of each

feature point more robust compared to individual feature search.

6.4.1 Pairwise Feature Distributions

The pairwise distribution pij(xi|xj) is defined as the 2D probability density distri-

bution of true feature location i given the best match for feature detector j in the
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reference frame defined by the whole face region.

In practice we use histograms of the form hij(xi − xj) as an approximation to

pij(xi|xj). These probability density distribution histograms must be learnt for all

possible pairs of feature detector and true feature locations. There are 17 feature

detectors, trained to search for 17 feature locations, therefore 289 (=17x17) pairwise

histograms are required.

Learning of histograms is achieved by applying the global face detector, followed by

unconstrained feature detection, to a verification set of face images (see Section 6.1.3

for description of unconstrained search). For each verification image, the true location

of all features within the global candidate frame is recorded along with the best

match of each feature detector. The ensemble of true feature locations and detector

matches allows relative histograms hij to be computed for the distribution of true

feature location i relative to detector j.

Relative histograms hij for the right eye pupil location, are shown in Figure 6.10. Each

diagram plots the distribution of true feature locations relative to the best match of

a feature detector (marked with a cross). For example, the spread of true right eye

locations relative to a right eye detection are shown in Figure 6.10(a). The spread of

right eye locations relative to a left eye detection are shown in Figure 6.10(b).

(a) Right eye de-
tector

(b) Left eye detec-
tor

(c) Left mouth cor-
ner detector

(d) Inner right eye
corner detector

Figure 6.10: Right eye pupil location histograms relative to the best
match of four different feature detectors (black pixels indicate peaks in
each histogram)
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As expected the spread of feature locations for the right eye is least when attempt-

ing to predict the right eye location directly with the right eye detector (see Fig-

ure 6.10(a)). The histogram of right eye locations relative to predicted location of

the left eye (see Figure 6.10(b)) is much less peaked. The spread of each histogram

and therefore the confidence in predicting the location of each feature is mainly de-

pendent on three factors, as follows.

1. The variability of the true feature location within the global candidate detector

frame.

2. The reliability of the feature detector used to produce the histogram.

3. The distance of the predicted feature point from the feature used to train the

detector.

The first factor is a consequence of the natural variation of face shape between individ-

uals and inaccuracies in the window returned by the global face detector. The second

factor is a result of noisy feature detectors, which sometimes find false matches. For

example the left mouth corner detector (see Figure 6.10(c)) has two peaks for the

right eye location, due to tendency of the left mouth corner detector to false match

to the left nostril. Similarly the inner right eye corner detector (see Figure 6.10(d))

has multiple peaks due the tendency of this detector to match to the wrong part of

the right eye. The third factor occurs because each feature detector is trained locally,

so only has limited knowledge of the likely relative location of other facial features.

Using non-parametric histograms allows realistic pairwise statistics to be modelled

and makes no prior assumptions as to the distribution of any feature location relative

to any particular feature detector. For example Figures 6.10(c) and 6.10(d) show

multi-modal histograms which encode variation in the right eye pupil location relative

to the more noisy left mouth corner and inner right eye corner feature detectors. This

information may have been lost if simpler single Gaussian modelling had been used.
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One disadvantage of using histograms is that a reasonably large amount of training

data is required to obtain a representative sample of feature location/feature detection

pairs. The number of samples required increases with the number of histogram bins.

In our experiments, 100x100 bins were used for the whole candidate frame region,

trained with 500 verification faces. It may be possible to approximate the distribution

histograms using a Gaussian Mixture Model (GMM), if insufficient verification data

is available. This would also produce a more compact model. However, in this section

we make no Gaussian assumptions.

For reference, Appendix H shows the histograms predicting the locations for the eye

pupils, mouth corners and nostrils for the Boosted Cascade Detectors trained on each

of the seventeen feature points shown in Figure 6.1.

6.4.2 PRFR Search

Given a set of pairwise histograms hij, as described in Section 6.4.1, the PRFR

algorithm proceeds in a similar manner to the CSS. In that, the global candidate

frame predicts local search regions for each detector and each detector j then returns

a list of ordered feature detections.

Given an ordered list of detections for each feature detector we wish to predict the

location x̂i of feature i by combining feature responses with the pairwise probability

density distributions pij(xi|xj) as follows:-

x̂i = arg max
n
∑

j=1

k
∑

t=1

pij(xi|qjt) (6.7)

Here qjt is the position of the tth maximum in the response image for feature detec-

tor j. We sum the probability density distributions (effectively voting) rather than

multiplying, as this generally gives more robust results. Multiplication would be ap-

propriate if all features were independent, which in this case they are not. Note that
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the prior probability density distribution p(qjt) of each feature detector is ignored

here and only raw matches to the current face region are used to predict the final

feature locations (x̂i).

The first k matches of each feature detector j are used instead of just the best match.

This helps to protect against spurious false matches and provides more robust results.

By empirical testing a suitable value of k is found to be 3. Similar results are obtained,

using any value of k in the range (3, 10). However taking more detections into account

increases the time taken to perform PRFR.

In practice the pairwise probability density distributions pij(xi|xj) are represented

by relative histograms hij(xi − xj). When searching, the PRFR algorithm projects

the top k feature locations from the jth detector into the histogram frame. Given the

feature locations qjt the relative histogram hij can be used to predict distributions

dijt of likely locations for feature i. This is summarised by the schematic diagram in

Figure 6.11.

0.1 0.2 0.1

0.10.10.1

0.10.1 0.1

(a) hij

0.10.1 0.1

0.1 0.1 0.1

0.10.20.1

(b) Predicted probability
density distribution dij1 for
feature point xi given fea-
ture detection qj1 in his-
togram frame

0.1 0.2 0.1

0.10.10.1

0.10.1 0.1

(c) Predicted probability
density distribution dij2 for
feature point xi given fea-
ture detection qj2 in his-
togram frame

Figure 6.11: Probability density distributions dijt in the histogram
frame for feature point i predicted by relative histogram hij given the
two best matches of detector j

The most likely location x̂i is determined by simply summing over all predicted

distributions dijt and selecting the highest ranking pixel in the histogram frame. The
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predicted feature locations x̂i in the histogram frame can then be mapped back to

the corresponding location in the image being searched.

The PRFR method is therefore relatively simple compared to the CSS and SOS

algorithms. Both the CSS and SOS require a statistical shape modelling as described

in Chapter 5. The PRFR only models shape implicitly by learning the histograms of

relative feature locations.

6.4.3 PRFR Results

The results of PRFR are presented in a similar manner to the SOS results of Sec-

tion 6.3.3. The PRFR method is compared with CSS and accuracy evaluated using

the eye pupils and mouth corner features. The mean positional errors me4 for various

feature detectors are plotted in Figure 6.12.

Figure 6.12(a) shows that the PRFR 17pt algorithm with Boosted Cascade Detectors

is able to predict the location of the eye pupils and mouth corners more accurately

than the CSS method with 4 points. However, when the PRFR algorithm uses only

four feature detectors, the search is much worse than the CSS method or the average

point predictions. Therefore qualitatively the PRFR algorithm with Boosted Cascade

Detectors (Figure 6.12(a)) gives similar results to the SOS algorithm (Figure 6.8(a)).

Both the PRFR and SOS algorithms perform better than CSS, but only when using

all 17 feature detectors.

For example, in Figure 6.12(a) with a threshold of me < 0.15 the PRFR 17pt method

is successful on 96% of faces, compared to 90% with the CSS 4pt method. However,

for the PRFR 4pt search only 70% of faces are found successfully, this is much worse

performance than the CSS and or even the average points predicted from the global

face candidate ( 83%). Therefore the PRFR needs more than four Boosted Cascade

Detectors to be an effective method.
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(a) PRFR - Boosted Cascade Detectors
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(b) PRFR - Orientation Map Detectors
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(c) PRFR - Normalised Correlation Detec-
tors
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(d) PRFR - Compare feature detectors

Figure 6.12: Average mean positional error (me4) when performing
PRFR on the BIOID test set

Figures 6.12(b) and 6.12(c) show the performance of the PRFR algorithm with OMDs

and NCDs. Theses graphs show that the PRFR 17pt algorithm still outperforms the

CSS 4pt method using both orientation maps and normalised correlation. However

the graphs also show that the PRFR 17pt method, does barely better than the average

predicted points, using either OMDs or NCDs. The PRFR 4pt algorithm is again

much worse than the CSS 4pt method.

For example, with a threshold of me < 0.15, Figure 6.12(b) shows that the PRFR

17pt OMD method achieves a success rate of only 84%, compared to 83% for the

average predicted points. Similarly PRFR 17pt NCD (Figure 6.12(c)), is successful

for only 86% of faces at this threshold. However, in both graphs the PRFR 17pt
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algorithm gives better performance compared to the CSS 4pt algorithm. There is

a large improvement in moving from PRFR 4pt to PRFR 17pt. For Orientation

Map Detectors the improvement is 20% → 84% (Figure 6.12(c)). For Normalised

Correlation Detectors the improvement is 45% → 86% (Figure 6.12(c)).

Figure 6.12(d) confirms that PRFR 17pt with BCDs is by far the most effective

method. Finding features accurately for 96% of faces, compared to 86% with NCDs

and 84% with OMDs. Therefore the PRFR 17pt method works well, only if many

feature detectors are used and the detectors are reasonably accurate. The only feature

detector found to be reliable enough in Figure 6.12 is the BCD.

6.4.4 PRFR Search Examples

Examples of the PRFR algorithm improving on the results of the CSS method are

shown in Figure 6.13.

→

(a) me4 = 0.092 → 0.052

→

(b) me4 = 0.132 → 0.078

→

(c) me4 = 0.128 → 0.051

→

(d) me4 = 0.038 → 0.025

Figure 6.13: Examples of improvement in search accuracy me4 using
PRFR 17pt search, compared to CSS 4pt search with Boosted Cascade
Detectors.

Figure 6.13 compares PRFR 17pt BCD with CSS search on the same images as
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Figure 6.9, which compares SOS with CSS. Like the SOS 17pt method, the PRFR

17pt method improves on the CSS search accuracy (me4). For example, in Fig-

ure 6.13(a) the eyes are found more accurately by PRFR compared to CSS. In Fig-

ures 6.13(b) and 6.13(c) the mouth locations are improved using PRFR compared to

CSS. There is also a small improvement in Figure 6.13(d).

6.4.5 PRFR Timing

The speed of the PRFR algorithm using Boosted Cascade Detectorsis evaluated on

a PII 500Mhz PC. The results are summarised in Table 6.4.

Event PRFR 4pt PRFR 17pt
Global search ∼400ms ∼400ms

Local feature search ∼50ms ∼150ms
Histogram Voting ∼150ms ∼700ms

Total ∼600ms ∼1250ms

Table 6.4: Time to perform PRFR with BCDs on a single BIOID image
using a 500Mhz PII processor

Table 6.4 shows that the global detector and PRFR 17pt local search find features

in ∼1250ms. With 4pts the PRFR predicts features in ∼600ms, but performs very

badly. The most time consuming step is summing the histograms ( ∼700ms ). This

is mainly due to the large number and size of each histogram image. For the PRFR

17pt method there are 2890 (=17x17x10) histogram additions per search. However,

the PRFR 17pt method in its current form, would still be able to search multiple

images in less than a second on a modern PC.

6.4.6 PRFR Conclusions

The PRFR 17pt algorithm is shown to provide superior performance to the CSS 4pt

algorithm using BCDs. However, when using weaker feature detectors, such as the
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OMD and NCD the performance of the PRFR 17pt algorithm is relatively poor (see

Figure 6.12). Therefore the PRFR algorithm only works with 17 feature points and

a relatively strong feature detector, such as the Boosted Cascade Detector.

Recently Chen et al. [5] have developed a similar approach to the PRFR method.

Chen et al. use local BCD search, but do not use shape constraints. Instead boosting

chain learning [98] is used to calculate a probabilistic like output for each detector.

Chen et al. report good results on the FERET data set [67]. However, this test set

contains relatively clean image set, so it is unclear how well the method compares to

the PRFR method described here.

6.5 Comparison of SOS and PRFR Algorithms

Sections 6.3.3 and 6.4.3 show that the SOS 17pt and PRFR 17pt algorithms outper-

form the CSS 4pt method. The metric used (me4) is the point to point error of the

eye pupils and mouth corners. However, the SOS 17pt and PRFR 17pt methods are

able to predict all 17 feature points shown in Figure 6.1, not just the eye pupils and

mouth corners. Therefore it makes sense to compare the SOS and PRFR algorithms

by computing the point to point error me17 over all 17 feature points.

6.5.1 SOS and PRFR 17pt Results

The results comparing PRFR and SOS with the 17pt metric (me17) are shown in

Figure 6.14.

Figure 6.14(a) compares the SOS and PRFR algorithms with the strongest feature

detectors, i.e. Boosted Cascade Detectors. The graph shows that PRFR+BCDs

gives better performance than SOS+BCDs. For example at an accuracy threshold of

me17 < 0.15 the success rate for PRFR is 98% compared to 96% for SOS. The PRFR

method has a greater success rate at all values of me17. Both the PRFR and SOS
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Figure 6.14: Comparison of PRFR and SOS algorithms on the BIOID
test set given the same feature detector, using the average mean positional
error of all 17pts (me17)

methods are much more accurate than the average points predicted by the global

candidate (see Figure 6.14(a)).

However Figures 6.14(b) and 6.14(c) show a different story. With weaker feature

detectors, such as Orientation Map Detectors and Normalised Correlation Detectors

the PRFR algorithm performs very poorly and the SOS algorithm gives much better

results. For example with orientation maps (Figure 6.14(b)) and me17 < 0.15, the

search is successful in 93% of cases using SOS, 85% using average point prediction,

but only 80% using PRFR. With normalised correlation (Figure 6.14(c)) 94% of cases

succeed using SOS, but only 82% using PRFR.
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Figure 6.15: Comparing performance of PRFR and SOS algorithms
with different feature detectors on the BIOID test set, using the average
mean positional error of all 17pts (me17)

Therefore SOS is far more reliable than PRFR. Given weak detectors, such as orien-

tation maps and normalised correlation, the SOS search still performs well. However

with stronger feature detectors, such as Boosted Cascade Detectors the PRFR is

slightly more accurate than the SOS algorithm. The reliability of the SOS algorithm

with any feature detector is made clear in Figure 6.15(a), which shows the SOS always

giving better results compared to the average points. Figure 6.15(b) shows that only

PRFR combined with Boosted Cascade Detectors gives better than average feature

detection.

6.5.2 SOS and PRFR Search Examples

Figure 6.16 illustrates the different results obtained when predicting feature locations

with SOS and PRFR using different feature detectors.

Figures 6.16(a) , 6.16(b) and 6.16(c) show SOS gives very similar accuracy with

all three feature detectors. Figure 6.16(d) shows PRFR gives accurate point pre-

diction with Boosted Cascade Detectors. However, as indicated by the graphs in

Figure 6.15(b), the search accuracy with Orientation Map Detectors and Normalised

Correlation Detectors is degraded when using PRFR (see Figures 6.16(e) and Fig-
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(a) SOS+BCD
(me17 = 0.041)

(b) SOS+OMD
(me17 = 0.060)

(c) SOS+NCD
(me17 = 0.041)

(d) PRFR+BCD
(me17 = 0.066)

(e) PRFR+OMD
(me17 = 0.118)

(f) PRFR+NCD
(me17 = 0.084)

Figure 6.16: Examples of SOS and PRFR 17pt search with different
feature detectors

ures 6.16(f)).

6.5.3 Individual Feature Errors

The graphs in Figure 6.14 compare the average errors me17 of the SOS and PRFR

algorithms over all 17 features. It is also possible to examine the individual point to

point errors for individual feature points. These errors are plotted in Figure 6.17.

Figure 6.17 shows that for each feature PRFR and SOS search always perform much

better than the average point predictor. The PRFR tends to be slightly better than

the SOS for most features. Hence the average error me17 over all images and all

features being 7.07% for PRFR, 7.55% for SOS and 11.08% using average point pre-

diction. Figure 6.17 also shows that the errors for all three point prediction methods

are greater for the nose and mouth features and less for the eye and eye brow regions.
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Figure 6.17: Average point to point errors me1 for each feature when
performing PRFR, SOS and average point prediction on the BIOID test
set (error bars show upper and lower quartiles of me1 for each feature).

6.6 Conclusions

This chapter demonstrates that shape constraints are able to improve the accuracy of

local feature detectors. Unconstrained local feature detectors perform poorly giving

less accurate results than the average points predicted from the whole face template.

Three methods of combining local feature detectors with shape constraints are de-

scribed, namely Combinatoric Shape Search (CSS), Shape Optimised Search (SOS)

and Pairwise Reinforcement of Feature Responses (PRFR). These three techniques

can be combined with any of three different types of local feature detector, namely

Boosted Cascade Detectors (BCDs), Orientation Map Detectors (OMDs) or Nor-

malised Correlation Detectors (NCDs). The most accurate combination is PRFR+BCDs.

However the SOS algorithm is shown to perform much better than PRFR with weak

feature detectors such as the OMDs or NCDs.
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The accuracy of PRFR with BCDs is probably due to the fact that the histogram

shape constraints are relatively loose. Therefore the PRFR is able to match more

closely to a large variety of faces compared to the SOS. The SOS shape constraints

are stronger, which could explain the superior performance with weaker detectors

such as the OMDs and NCDs.

With BCDs the PRFR is only slightly more accurate than the SOS, however the

SOS is faster ( ∼550-750ms vs ∼1250ms ). Therefore when deciding between the two

methods, there is a compromise between performance and speed.

Figure 6.17 shows that the features that are most difficult to locate using either PRFR

or SOS are the mouth and nose features, in particular the nose tip and upper/lower

lip. If the overall average search error me17 is to be improved these features need to

be located more accurately.
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Active Appearance Models

The previous chapter described the use of shape modelling to constrain feature de-

tection. However, another well established method for combining shape and texture

information is the Active Appearance Model (AAM) [6] search method. An overview

of this technique is given in Section 2.6 of the literature review in Chapter 2. In

this chapter the AAM is compared with the feature detection methods described in

Chapter 6.

7.1 Appearance Models (APMs)

Appearance Models (APMs) are a combined model of both the shape and texture of

the face. Separate shape and texture models are built using Principal Components

Analysis (PCA) and then combined using a further PCA.

7.1.1 Shape Model

The shape model is built using the method described in Chapter 5 using the WEB-

CAM training set. This produces a linear model of shape variation, where a shape
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example x is represented by a shape parameter vector bs, as follows:-

x = x̄ + Psbs (7.1)

Where x̄ is the mean shape, Ps is a set of orthogonal modes of variation and bs is a

set of shape parameters. The first two modes of variation of the shape model, trained

on the WEBCAM data, are shown in Figure 7.1.

Mode 1

Mode 2

Figure 7.1: Modes of Shape Model (±2.5std)

7.1.2 Texture Model

The texture model is built by warping each training example into the mean shape,

to produce a “shape free” face patch. The texture can then be sampled to form a

vector of grey values g. This texture vector is normalised to minimise the effect of

global lighting variation, by applying a scaling α and an offset β.

g = (gim − β1)/α (7.2)

The values of α and β are computed as follows.
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α = gim.ḡ , β = (gim.1)/n (7.3)

PCA is then applied to the normalised texture to produce a linear model of the

shape-free texture variation (see Equation 7.4 ).

g = ḡ + Pgbg (7.4)

Where ḡ is the mean normalised grey-level vector, Pg is a set of orthogonal modes of

variation and bg is a set of grey-level parameters.

Mode 1

Mode 2

Figure 7.2: Modes of Texture Model (±2.5std)

7.1.3 Combined Model

Following Edwards et al. [21], the combined model is formed by applying a further

PCA to find correlations between the shape model and texture model parameters.

The first step is to concatenate the shape parameters bs and texture parameters bg

to form a combined vector b as follows.
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b =





Wsbs

bg



 =





WsP
T
s (x − x̄)

PT
g (g − ḡ)



 (7.5)

Here Ws = rI is a diagonal weight matrix allowing for the difference in units between

shape and texture parameters, where r2 is the ratio of the total intensity variation

to the total shape variation (in the normalised frames).

A further PCA is then performed on the set of combined vectors b. To produce a

linear model of the variation in b, as follows.

b = Pcc (7.6)

where Pc are the eigenvectors and c is a vector of appearance parameters control-

ling both the shape and grey-levels of the model. Since the shape and grey-model

parameters have zero mean, c is also zero mean.

The shape x and g texture vectors can now be expressed as functions of c, as shown

in Equation 7.7.

x = x̄ + PsW
−1
s Pcsc

g = ḡ + PgPcgc
(7.7)

where

Pc =





Pcs

Pcg



 (7.8)

By varying the individual parameters of c the principal modes of variation are con-

structed. The first two modes are shown below.
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Mode 1

Mode 2

Figure 7.3: Modes of Combined Model (±2.5std)

7.2 Active Appearance Models (AAMs)

The Appearance Models (APMs) model variation given a marked up training set of

faces. However given an unlabelled face the AAM search is required to match the

APM to the face image automatically.

7.2.1 AAM Search

The AAM is active because the parameters c of the APM (see Section 7.1) are altered

such that the appearance model moves and evolves in the image plane, hopefully

converging to produce the best possible match of the APM to the face image. The

update rule for the c parameters is based on the texture residual between the model

texture and image pixels.

More specifically, given a set of appearance parameters c, the current APM face

can be reconstructed using Equation 7.7. This face is then projected into the image

being searched. The idea of the AAM algorithm is to iteratively compare the texture

sampled from the image gim to the current model texture gapm and update the APM

parameters. If the correct direction in parameter space is chosen the APM will

converge to the best possible solution. Formally, at each iteration the texture residual

r(p) is computed, as follows.
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r(p) = gim − gapm (7.9)

Where p are the current parameters of the model, pT = (cT |tT |uT ). Where c are

the PCA parameters of the statistical model, t describes the project from the model

plane into the image plane and u describes the texture normalisation parameters α

and β (see [10] for more details). Having computed r(p) the AAM search predicts

the direction of movement in parameter space, using an update matrix R.

δp = Rr(p) (7.10)

The parameter vector p is then updated and the APM re-projected into the image.

The search terminates when the change in parameters δp drops below a threshold.

7.2.2 AAM Training

Training the AAM involves computing the update matrix R described in 7.10. The

matrix R models the relationship between the texture residual r(p) and the change

δp required to improve the sum of squares magnitude of the residuals. A Taylor’s

series expansion of r(p) gives

r(p + δp) = r(p) +
∂r

∂p
δp (7.11)

Where the ijth element of matrix ∂r
∂p

is dri

dpj
. Setting the right hand side of Equa-

tion 7.11 to zero and computing the pseudo inverse of ∂r
∂p

leads to the following

solution for δp.

δp = −Rr(p) where R = ( ∂r
∂p

T ∂r
∂p

)−1 ∂r
∂p

T (7.12)
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Since R is computed in a standard reference frame it is assumed to be constant

throughout an incremental search. Therefore it is pre-computed from the training

set off-line. This is achieved by fitting the appearance model to each training example

to obtain vector p and systematically varying each appearance parameter pi to obtain

a numeric approximation to ∂r
∂p

.

7.3 AAM Results

The AAM search is evaluated in a similar manner to the CSS, SOS and PRFR

feature detector based algorithms described in Chapter 6. The Boosted Cascade Face

Detector is used to predict the approximate face location and the AAM is initialised

by fitting to the average points within the face template region. The accuracy of AAM

search is then evaluated using the mean point to point distance error me17 described

in Section 6.1.4. There are many different formulations of the AAM. In this chapter,

the effects of varying the resolution of the APM, the face region modelled and the

texture sampling are evaluated.

7.3.1 Vary Model Resolution

When computing the APM, the face region lying within the set of landmark points

is subsampled to build the grey scale models described in Section 7.1.2. The number

of pixels sampled from each face can be varied, to build higher or lower resolution

models. The average faces of the APM models with different resolutions are shown

in Figure 7.4.

Figure 7.4(c) shows the increase in detail in the average model face when sampling

5000 pixels compared sampling only 1000 pixels (Figure 7.4(a)). The improvement

in performance when using a greater resolution model is shown in Figure 7.5.

Figure 7.5 shows that higher resolution models tend to perform better than lower
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(a) 1000 Pixel
APM

(b) 3000 Pixel
APM

(c) 5000 Pixel
APM

Figure 7.4: Mean face of APMs, built at different resolutions
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Figure 7.5: Point to point error me17 when performing AAM search on
the BIOID test set, varying the resolution of the APM

resolutions. For example with a proximity threshold me17 < 0.15 the AAM search

with 1000 pixels is successful in only 82% of cases. This is actually worse than

the average points predicted from the global face region, without any local search

which has a success rate of 85%. When increasing the resolution from 1000 → 3000

pixels the success rate increases from 82% → 90%. When the resolution is further

increased 3000 → 5000 pixels there is a much smaller improvement to the success

rate 90% → 91%. Therefore Figure 7.5 indicates that search is much improved when

sampling 3000 pixels instead of 1000, but the basic AAM performance cannot be

significantly improved by increasing the resolution further.
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7.3.2 Vary Region Modelled

Another parameter of the AAM is the region modelled by the appearance model. In

Section 7.3.1, the APM is built using the 20pt markup scheme, see Figure 7.6(a). It

is also possible to increase the size of the region slightly by moving the temple points

to the hairline and adding two new points at the corners of the jaw. This alternative

markup scheme is shown in Figure 7.6(b).

(a) 20 pt labelled image (b) 22 pt labelled image
(note extra points either
side of mouth)

Figure 7.6: Two different labelling schemes

The markup scheme in Figure 7.6(b) increases the proportion of the face modelled

by the APM. The new modes of variation using this region are shown in Figure 7.7

and can be compared with the original modes of variation shown in Figure 7.3.

The effect of modelling a larger face region on the search accuracy is shown in Fig-

ure 7.8. Here the same sampling rate of 1000 pixels is used for both APMs.

Figure 7.8 shows that the basic AAM search with 1000 pixels is much improved when

using the new 22 point markup scheme. Using a proximity threshold of me17 < 0.15,

the success rate is 92% using the 22 point region compared to 82% using the 20 point

region. The 22 point gives similar performance to the higher resolution 20 point

models shown in Figure 7.3.1. Therefore Figure 7.8 indicates that modelling a larger

face region can improve AAM search.
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Mode 1

Mode 2

Figure 7.7: Modes of Combined Model 22pts, sampling 1000 pixels
(±2.5std)

7.3.3 Vary Sampling Method

Another variation of the APM/AAM method, is to vary the way texture is sampled

within the face region. The basic AAM uses a linear normalisation of the sampled

texture vector, in attempt to minimise the effect of global lighting variation (see

Section 7.1.2). However it is possible to employ more sophisticated texture processing.

For example, Cootes and Taylor [12] describe a method using local image gradients

instead of raw pixel values to drive the AAM search. Scott et al. [82] go further

and compute local gradients and also edge/corner features based around the Harris

corner detector [40]. In this section, the improvement in performance when using

the gradient/corner/edge sampling method due to Scott et al. [82] is compared with

pixel based AAM sampling. The method computes four values for each pixel namely,

g′
x the normalised gradient in the x direction, g′

y the normalised gradient in the y

direction, e′ a measure of “edgeness” and c′ a measure of “cornerness”.

The raw gradients gx and gy are computed from the texture vector and the gradients

are normalised as follows.

g′
x = gx

|g|+|ḡ| g′
y = gy

|g|+|ḡ| (7.13)
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Figure 7.8: Point to point error me17 when performing AAM search on
the BIOID test set, varying the face region modelled by the APM

Where g = (gx, gy)
T at each pixel and |ḡ| is computed over the entire model region.

The corner and edge values are based on the Harris corner detector [40], which finds

the eigenvalues of the local gradient matrix.

M =





A C

C B



 =





g2
x gxgy

gxgy g2
y



 (7.14)

The edgeness, e, and cornerness, c, values are computed from this matrix as shown in

Equation 7.15. Additionally the edge and corner measures are normalised as shown

in Equation 7.16. For further details of the derivation of these equations see Scott et

al. [82].

e = 2AB − 2C2 c = (A + B)
√

(A − B)2 + 4C2

(7.15)

e′ = e
e+ē

c′ = c
c+c̄ (7.16)
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The AAM algorithm then proceeds as before. However instead of using the nor-

malised pixel texture vector to drive the AAM, a new APM is constructed using the

gradient/edge/corner values for each pixel and this new texture vector used to drive

the AAM search. The aim is to use edge and corner information more explicitly as

distinct edges and corners are present on the human face. The effect of edge/corner

texture sampling is shown in Figure 7.9.
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Figure 7.9: Point to point error me17 when performing AAM search on
the BIOID test set, varying the texture sampling method

Figure 7.9 shows that there is a large increase in search accuracy when using edge/corner

sampling compared to the basic AAM search, when using the 20 point label scheme

and modelling 1000 pixels. With edge/corner sampling and a proximity threshold

of me17 < 0.15 the success rate is 96%, which compares to just 83% using normal

sampling over the same facial region. Figure 7.9 shows that edge/corner sampling

method is more successful at all me17 thresholds. Therefore edge/corner sampling is

superior to normal texture sampling.
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7.3.4 Optimal AAM Formulation

Section 7.3.3 shows that moving to edge/corner sampling gives a clear improvement

over normal AAM texture sampling. Therefore this section attempts to optimise

AAM performance using edge/corner sampling by varying the other search param-

eters. For example Figure 7.10(a) compares the performance of the 20 point model

and the 22 point model regions.
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Figure 7.10: Point to point error me17 when performing AAM search
on the BIOID test set using corner texture sampling

Figure 7.10(a) shows that when using the edge/corner sampling, moving from the 20

point markup scheme to the 22 point markup scheme makes little difference. There

was a large increase when using the 22 point region instead of the 20 point region with

normal texture sampling (see Figure 7.8). The reason for the lack of improvement

is probably due to the fact that the extra facial region modelled with 22 points is

the cheek region, which does not contain many strong edges or corners. Also the

edge/corner sampling AAM with 20 point markup performs strongly, so it is more

difficult to improve the search.

Figure 7.10(b) shows using higher resolution models with edge/corner sampling makes

a small improvement when moving from 1000 → 3000 pixels. The success rate in-

crease marginally from 96% → 97%, using a proximity threshold of me17 < 0.15 (see
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Figure 7.10(b)). However virtually identical search accuracy is shown when using

3000 or 5000 pixels. This is similar to the result shown by Figure 7.5 and indicates

that the AAM search is not improved by modelling more than 3000 pixels.

7.4 AAM Timings

The search time using the various formulations of the APM/AAM search are shown

in Table 7.1, which shows that the time to perform the local AAM search is primarily

dependent upon the resolution of the APM and the sampling method.

Event Time
Global search ∼400ms

Local Basic 20pt 1000 pixel search ∼80-100ms
Local Basic 20pt 3000 pixel search ∼150-200ms
Local Basic 20pt 5000 pixel search ∼240-280ms

Local Edge/Corner 22pt 1000 pixel search ∼390-450ms
Local Edge/Corner 22pt 3000 pixel search ∼800-1400ms
Local Edge/Corner 22pt 5000 pixel search ∼1800-3000ms

Table 7.1: Time to perform various AAM searches on a single BIOID
image using a 500Mhz PII processor

For example, the quickest search method is basic texture sampling of 1000 pixels

(using the 20pt labelling scheme). When basic sampling is increased from 1000 to

5000 pixels the search time is approximately 2.5 times larger. Using edge/corner

sampling is much slower than basic sampling, because 4 values have to be computed

for every pixel. Therefore edge/corner sampling is much slower than basic sampling -

∼390-450ms vs ∼80-100ms at a resolution of 1000 pixels. With edge/corner sampling

the search time becomes prohibitive when increasing the resolution beyond 1000 pixels

(see Table 7.1).
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7.5 AAM Conclusions

Figure 7.9 shows that edge/corner sampling gives much improved search results com-

pared to basic texture sampling. Figure 7.10 shows that increasing the model resolu-

tion or changing to the 22 point markup scheme makes little difference to the search

accuracy of the edge/corner AAM.

Table 7.1 shows that edge/corner sampling is more computationally expensive com-

pared to basic texture sampling. Also, the search time is vastly increased when

modelling more than 1000 pixels with edge/corner AAMs.

However, given the improvement in search accuracy using edge/corner sampling, a

sensible compromise between speed and accuracy is to use edge/corner sampling,

with the 22pt markup, but limit the resolution of the face region to 1000 pixels. An

AAM using this formulation is able to find feature points accurately and the total

search time (global + local = ∼790-850ms) is less than a second using a PII 500Mhz

processor.

7.6 Combining Feature Detection and the AAM

This section compares the AAM search with the feature detector based methods de-

scribed in Chapter 6 and also present results when the two approaches are combined.

7.6.1 Comparing AAM, SOS and PRFR

Figure 7.11 compares the accuracy of the edge/corner AAM and basic AAM search

(using 1000 pixels and 22pt markup) with the SOS and PRFR constrained feature

detection methods, using Boosted Cascade Detectors (see Sections 6.3 and 6.4).

Figure 7.11(a) shows that the SOS, PRFR methods perform better than the basic
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Figure 7.11: Comparing PRFR, SOS and AAM point to point error
me17 when searching the BIOID test set

AAM search at all proximity thresholds (me17). For example with me17 = 0.15, the

SOS achieves a success rate of 96% and the PRFR 98%, compared to the basic AAM

only managing 92%. All three local search methods perform much better than the

average point prediction with only find 85% of faces.

When switching to the edge/corner sampling the AAM search compares much more

favourably with the SOS and PRFR methods. Figure 7.11(b) shows that with a

proximity threshold of me17 = 0.15 the edge/corner AAM is successful for 97% of

faces, compared with SOS 96% and PRFR 98%. Therefore the PRFR is the most

successful method at a proximity threshold of me17 = 0.15.

However, the shape of the curves in Figure 7.11(b) show that the edge/corner AAM

is the most successful method if the proximity threshold is set tighter, i.e. any value

of me17 < 0.1. The PRFR is only more successful if me17 > 0.1. The SOS method

is worse than the PRFR and edge/corner AAM at all values of me17. This indicates

that the PRFR method is the most robust method in the sense that the predicted

points are approximately correct most of the time. The edge/corner AAM is slightly

less robust, but in many cases able to predict feature points more accurately than

the PRFR.
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7.6.2 Combined PRFR and AAM Search

Section 7.6.1 suggests that the PRFR search method is the most robust local search

method, but the edge/corner AAM is the most accurate. This suggests that the

two methods could be combined. For example the PRFR method can be applied

to predict the approximate location of the feature points and the edge/corner AAM

search applied to further improve the accuracy. Figure 7.12 shows the search accu-

racy of average point prediction, PRFR, edge/corner AAM search initialised using

average points and edge/corner AAM search initialised using PRFR points. The best

performing method is the PRFR+AAM search.
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Figure 7.12: PRFR+AAM Search Error me17 when searching the
BIOID test set

In Figure 7.12 using a proximity threshold of me17 = 0.1, the average points are accu-

rate enough for only 48% of faces. When using the edge/corner AAM (22pts +1000

pixels) starting from the average points the success rate increases to 90%. When

applying the PRFR algorithm the success rate is 87% (with me17 = 0.1). However
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when applying the PRFR algorithm then initialising the AAM with these points, the

success rate jumps to 97%. At all values of me17 the PRFR+AAM refinement search

is more successful than the initial PRFR point predictions.

Therefore AAM edge/corner search works very well, but only given a good starting

position provided by the PRFR algorithm. It appears that the average points are

not accurate enough, which means that the AAM finds false minima instead of the

true solution in many cases. The PRFR+edge/corner AAM hybrid method gives the

best automatic feature point predictions that can be achieved using the methods in

this thesis.

7.6.3 Individual Feature Accuracy

Figure 7.12 shows that the PRFR+edge/corner AAM search improves on the PRFR

method alone, using the me17 proximity measure. However, it is also possible to

analyse the point to point errors for individual features points. Figure 7.13 plots the

average point to point errors (me1) over all images in the BIOID test set for each

individual feature, using PRFR and PRFR+AAM.

Figure 7.13 shows that the mouth and nose features are the points that are most

improved by the application of the AAM search to the initial PRFR points. For

example the lower lip error me1 is improved 10.14% → 7.46% and the nose tip is

improved 9.35% → 7.04%. However the improvement in me1 is much less for other

features such as the right eye 4.37% → 4.12%

The average point to point error me17 over all feature points plotted in Figure 7.13

is 7.07% using PRFR, but reduces to 5.85% when refining feature locations with the

edge/corner AAM search. The improvement in me17 using PRFR+AAM relative to

PRFR, can be shown to be mainly due to the mouth and nose regions. For example

the improvement in point to point error of the nose+mouth region ( i.e. nostrils, nose

tip + upper/lower lip + mouth corners ) is 7.97% → 5.86%, whilst the improvement
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Figure 7.13: Point to point error me1 for each feature when performing
PRFR and PRFR+AAM searches on the BIOID test set

in the eye region ( i.e. eye pupils, eye corners + eye brows ) is only 6.44% → 5.84%.

7.6.4 PRFR+AAM Timings

The search times using the PRFR + edge/corner AAM are shown in Table 7.2.

Event Time
Global search ∼400ms

Local BCD search ∼150ms
PRFR ∼700ms

Local Edge/Corner 22pt 1000 pixel search ∼400-450ms
Total ∼1650-1700ms

Table 7.2: Time to perform PRFR+AAM search on a single BIOID
image, using a 500Mhz PII processor

The total search time per image is quite large ∼1.5secs. This could probably be

improved by making some efficiency improvements to the PRFR search (see Sec-

tion 6.4.5). However the PRFR+AAM method in its current form could still search
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several frames per second, using more modern hardware.

7.6.5 PRFR+AAM Search Conclusions

Figure 7.12 shows that the PRFR + edge/corner AAM search is by far the best search

method presented in this thesis. The PRFR+AAM method outperforms both the

PRFR algorithm described in Section 6.4 and the edge/corner AAM search (described

in Section 7.3.3) initialised using the average points.

This suggests that the AAM search requires a very good initialisation to obtain

accurate results. The average points predicted by the global face region are not

accurate enough to initialise the AAM in many cases. However, when using the

PRFR method to predict feature locations and then seeding the edge/corner AAM

with these points, very accurate results can be obtained.

However, this hybrid method uses several algorithms sequentially, so is computation-

ally expensive. Using a 500MhZ PII processor and applying the hybrid algorithm

to the BIOID images, the current implementation takes ∼1.5secs to locate facial

features.

7.7 Comparison with Other Published Results

Jersorsky et al. [43] first introduced the BIOID data set and published results on the

eye pupil finding accuracy of their algorithm, which uses a face matching method

based on the Hausdorff distance followed by a Multi-Layer Perceptron (MLP) eye

finder (see Section 2.5). Jesorsky et al. also present eye location accuracy results

on the XM2VTS data set. Recently Hamouz et al. [39] also presented eye finding

results on the BIOID and XM2VTS test sets using a feature based face detection

method (see Section 2.4 for more details of this approach). These two methods can

be compared with the PRFR+AAM algorithm for the task of eye pupil detection.

175



Chapter 7. Active Appearance Models

Jersorsky et al. [43] use a distance measure for each search, which records the maxi-

mum point to point error over both eye point predictions, normalised by the known

inter-ocular separation. We refer to this distance measure as m̂e2. It is similar to

the deyes distance measure used in Chapter 3 of this thesis to compare face detection

algorithms (see Section 3.7.1). Figure 7.14(a) plots m̂e2 for the first two sessions of

the XM2VTS data set [59], which consists of 1180 images. Similarly Figure 7.14(b)

plots m̂e2 for both methods on the BIOID data set.
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Figure 7.14: Eye pupil finding comparison on the XM2VTS [59] and
BIOID test sets [43]

The graphs in Figure 7.14 show slightly different results from other graphs in this

chapter. For example:-

• The distance measure m̂e2 is plotted for all images, even if the global face

detector fails.

• An artificial border is created around each BIOID image by replicating the edge

pixels. This enables the enables the entire BIOID image set to be searched,

because the Boosted Cascade Face Detector is able to find faces lying next to

the edge of the image.

These changes allow a direct comparison between the multi-stage approach described

176



Chapter 7. Active Appearance Models

in this thesis and the published results of Jersorsky et al. [43] and Hamouz et al. [39].

Figure 7.14(b) shows that when applied to the BIOID images, the PRFR+AAM is

more successful than the Jesorsky method for all values of m̂e2. For example with

m̂e2 = 0.1, the PRFR+AAM search finds 96% of faces successfully compared to 79%

using the Jesorsky approach. The Hamouz∗ method is more likely to find eye pupils

very accurately (e.g. m̂e2 < 0.05), but is not very robust, sometimes failing to find

the face completely and is the worst performing method on the BIOID data set for

m̂e2 > 0.1.

However the results are very different for the XM2VTS data set. Figure 7.14(a)

shows that the accuracy of all three eye finding methods are very similar on the

cleaner XM2VTS images. With m̂e2 = 0.1, the Hausdorff+MLP search, Hamouz

approach and PRFR+AAM achieve a success rate of around 93% and give very

similar performance for all values of m̂e2. This indicates that the Hausdorff+MLP

and Hamouz methods work well on relatively clean images under controlled conditions

(e.g. the XM2VTS data set), but are less successful on the more complicated BIOID

data set. The multi-stage Boosted Cascade Face Detector + PRFR+AAM search

can find eye pupils reliably on both data sets.

7.8 Comparison with Human Landmarking

In order to estimate the theoretical limit on the accuracy with which facial features

can be located, ten volunteers were asked to hand label ten images from the BIOID

data set, shown in Appendix I. For each image the ground truth for each of the

17 feature points was approximated by taking the average of the human landmark

locations. Figure 7.15 shows the mean positional errors (me17) of human landmarking

and PRFR point prediction for each of the ten images. For each image the errors are

∗Here we take the best face match only, not the top 30 hypotheses, which are used by Hamouz et

al. [38] for face verification.
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constructed as follows.

1. Human Error - Mean positional error (me17) over all 17 features and all 10

volunteers for each image relative to the average human landmark locations. In

addition, error bars are plotted to show the range of human landmark errors

(me17) for each image.

2. PRFR+AAM Error - Mean positional error (me17) over all features for each

image, relative to the average human landmark locations.
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Figure 7.15: Bar chart to show average point to point error (me17) for
each of the 10 test images, using human landmarks and points predicted
using PRFR+AAM search.

Figure 7.15 shows that the PRFR+AAM error is worse than the average human error

for all 10 images. However, in some cases a human landmarker is less accurate than

PRFR+AAM using the me17 distance measure, relative to the average human land-

marks. Therefore the PRFR+AAM search behaves like a badly performing human

landmarker.

Generally the average human error is evenly distributed over all 10 images in Fig-

ure 7.15. The human landmark reproducibility is at its worst for images 3, 7 and 8
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(see images in Appendix I). However, it is not clear why human landmarking is less

consistent for these images.

The PRFR+AAM error in Figure 7.15 is also variable between images. The case

where the PRFR+AAM search deviates most from the average human landmark

ground truth is image 8 (see Appendix J). This is mainly due to difficulties in

locating the upper/lower lip points and also the outer end of the right eye brow. The

PRFR+AAM error is least for images 7,9 and 10 (see Figure 7.15), however is not

clear why this is the case.

The differences in search error between different facial features are shown in Fig-

ure 7.16 for both PRFR+AAM point prediction and human landmarking. More

explicitly the average feature errors in Figure 7.16 are computed as follows:-

1. Human Error - Mean positional error (me1) over all 10 images and all 10 vol-

unteers for each feature relative to the average human landmark locations.

2. PRFR+AAM Error - Mean positional error (me1) over all 10 images relative to

the average human landmark locations.

Figure 7.16 shows that for all features, the average human positional error is less

than the average PRFR+AAM point prediction error, over the 10 test images. The

PRFR+AAM method is particularly error prone for the lower lip feature over the

10 images. For the eye and eye brow regions the average mean errors for the

PRFR+AAM and human landmarking are generally closer than for other features.

The range of point to point errors overlaps for many eye and eye brow features in

Figure 7.16.

However, the average positional error (me17) of human labelling over the 10 images

is 2.50% error † versus 4.20% using PRFR+AAM. The average mean positional error

†This agrees with the average error of human landmarking quoted by Chen et al.[5], who label
30 FERET images using 25 human landmarkers

179



Chapter 7. Active Appearance Models

0

0.05

0.1

0.15

0.2

0.25
Average point to point errors for each feature point (Human Landmark Data)

A
ve

 p
2p

 e
rr

or
 (

ov
er

 h
um

an
 la

nd
m

ar
k 

da
ta

)

R
ight E

ye

Left E
ye

R
ight M

outh C
orner

Left M
outh C

orner

R
ight O

uter E
ye B

row

Left O
uter E

ye B
row

R
ight Inner E

ye B
row

Left Inner E
ye B

row

R
ight O

uter E
ye C

orner

Left O
uter E

ye C
orner

R
ight Inner E

ye C
orner

Left Inner E
ye C

orner

N
ose T

ip

R
ight N

ostril

Left N
ostril

U
pper Lip

Low
er Lip

Human
PRFR+AAM

Figure 7.16: Bar chart to show average point to point error for
various features, using human landmarks and points predicted using
PRFR+AAM. The error bars show the range of positional error me1

for each feature.

(me17) over the whole BIOID test set is 5.85% using PRFR+AAM. This indicates that

PRFR+AAM performs better on the ten image subset relative to the whole BIOID

data set, but still worse than human landmarking. Therefore automatic landmark

placement using PRFR+AAM cannot replace a human placing landmarks manually,

but can give a sensible markup in many cases.

7.9 Conclusions

This chapter gives an overview of the Active Appearance Model algorithm due to

Cootes et al. [6] and compares different formulations of the AAM when searching

the BIOID test set. The most critical variation is the edge/corner texture sampling

method recently introduced by Scott et al. [82]. This texture sampling method is

found to increase the accuracy of search compared to the original normalised texture

processing described by Cootes et al. [6].
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The edge/corner AAM search is then compared with the shape constrained feature

detection algorithms described in Chapter 6. It is found that the edge/corner AAM

is more accurate than the PRFR algorithm for many faces, however the edge/corner

AAM is sometimes less accurate due to poor initialisation. The basic AAM algorithm

is found to perform much worse than both the PRFR and SOS algorithms described

in Chapter 6.

The main conclusion of this chapter is that very accurate feature localisation can

be achieved if a hybrid approach of methods described in this thesis is adopted.

The PRFR algorithm can be used to predict approximate feature locations. These

points can then be refined using the edge/corner AAM search. This PRFR+AAM

method is found to easily out perform both the initial PRFR search and the AAM

search initialised using average points. Also the PRFR+AAM search is shown to

give superior results to previous published methods applied to the BIOID test set

(see Section 7.7 ).

Finally the PRFR+AAM method is compared with human landmarking. Humans are

able to mark faces with an average error of 2.50%. The average error for automatic

landmarking using PRFR+AAM is found to be 4.20% over the same small subset

of the BIOID data set. Therefore automatic feature location is worse than human

landmarking, but is comparable.
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Discussion and Conclusions

This thesis has described methods for the automatic detection of facial features.

This chapter gives an overview of the main conclusions and suggests future avenues

of research.

8.1 Summary of Thesis

Chapter 3 : Face Detection Methods

Four face detection methods are implemented and described, namely the Boosted

Cascade Detector (BCD), Orientation Map Detector (OMD), Normalised Correlation

Detector (NCD) and Linear Profile Detector (LPD). Of these four methods, the

Boosted Cascade Detector due to Viola and Jones [92] was found to be the most

successful face detector. Generally the BCD was more reliable than the OMD, which

was more reliable than the NCD and LPD methods. The difference in performance

between the BCD and OMD was particularly acute when tested on the difficult CMU

test set.

Chapter 4 : Boosted Cascade Detector Experiments

The build parameters for the Boosted Cascade Detector were investigated in more
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detail. The most critical parameters were found to be the size of the training set and

the number of features retained in each level of the cascade. The template resolution

was shown to be non-critical, but the template region was important. Modelling a

large face region, which includes the outline of the face, gave the best performance.

The whole face detector was much more reliable than modelling an individual feature,

such as the right eye, which has much less local structure.

Chapter 5 : Shape Modelling

Statistical shape models were described and an example model presented which uses

14 parameters to represent the shape variation of 20 facial features, spanning 128

identities. Shape modelling techniques were discussed, because shape is a reliable

constraint which can be used to distinguish between plausible and implausible com-

binations of candidate features.

Chapter 6 : Shape Constrained Feature Detection

Three feature detection algorithms were described (CSS, SOS, PRFR), which combine

local feature detection with shape constraints. All three shape constrained algorithms

performed much better than unconstrained feature detection. The best performing

method was found to be the PRFR algorithm with boosted cascade detectors. How-

ever the SOS algorithm was found to perform better than the PRFR method if

weaker detectors such as orientation maps and normalised correlation are used. Both

the PRFR and SOS methods found it relatively easy to locate eye features (e.g. eye

pupils, eye corners and eye brows), but were less accurate at locating eye and nose

features (e.g. nose tip, nostrils, mouth corners and lower/upper lip).

Chapter 7 : Active Appearance Models

Different variations of the Active Appearance Model (AAM) were evaluated on the

BIOID data set. The most critical variation was found to be the texture sampling

method used to model the face region. Edge/corner sampling recently developed by

Scott et al. [82] was found to give improved results relative to normalised texture

sampling, used in the original AAM approach [6].
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The edge/corner AAM local search was compared with the PRFR algorithm described

in Chapter 6. It was found that when using the average points predicted by the face

detector to initialise the search, the AAM sometimes found points more accurately

than the PRFR, but was less reliable, sometimes finding false minima far away from

the correct feature locations. Therefore the AAM search was later initialised using

the PRFR point predictions as starting points. This formulation was found to give

significant improvements over both AAM search using average points and PRFR

point prediction.

The PRFR+AAM search was compared with human landmarking and found to give

a search error∗ of 4.20% on a small subset of the BIOID data set, for which the

standard deviation of human error was 2.50%. Therefore PRFR+AAM search was

not as good as human landmarking, but was comparable.

8.2 Discussion

One conclusion of this thesis is that when automatically labelling facial features the

search method should be coarse-to-fine. The global face template detection methods

described in Section 2.2 are generally more robust than the direct feature detection

methods discussed in Section 2.4. Therefore it is sensible to use the classification

power of whole face detection methods ( the Viola-Jones “Boosted Cascade Detector

” is used in this thesis) and leave the accurate localisation of individual features to a

later stage.

However the task of locating facial features, given a box around the face indicating

the correct location, scale and orientation is still a non-trivial task. In this thesis,

feature detectors based on the Viola-Jones Boosted Cascade Detector were used to

locate facial points within the candidate face region. Unfortunately these detectors

∗Here search error is the average point to point error over all 17 feature points, normalised by
the known inter-ocular separation, see Section 6.1.4
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were found to be unreliable, due to the lack of consistent local structure around

(relatively) salient points on the face, such as the nostrils and mouth corners. The

localisation accuracy of feature detectors were only found to improve when shape

constraints were applied. The shape constraints couple the small templates used to

model each feature and therefore make the search more robust. Three methods of

combining shape and feature detection were presented and shown to be reasonably

successful.

The AAM approach to local face search was discussed in Chapter 7. The AAM

algorithm is fundamentally different from the local feature detector methods. The

AAM is based on a statistical model of face variation, which already combines shape

and texture in an appearance model of the whole face. The iterative update rule

of the AAM is designed to converge to the correct solution for an unseen face and

thus enable accurate feature localisation. However, it is unclear whether the AAM

formulation is theoretically better than the shape constrained detection algorithms

presented in Chapter 6.

The empirical experiments on the AAM indicated that the best formulation is the

edge-based AAM (due to Scott et al. [82]). Edge-based texture sampling was shown

to give superior results to the original basic AAM. The edge-based AAM gave similar

performance to the PRFR feature based method when initialised with the average

face points in the candidate face region. The edge-based AAM is formulated to be

more sensitive to corner and edge features, so perhaps it is not surprising that this

formulation and the more explicit feature detection of the PRFR method gave similar

results.

However the best results were achieved using a hybrid approach, which used PRFR

to seed the edge-based AAM. This indicates that the local search of the AAM is very

robust, but when initialised too far away from the correct solution the AAM is quite

likely to fall into a false minima. The robustness of the PRFR method can be used

to nudge the AAM closer to the correct solution. This hybrid local search provided

185



Chapter 8. Discussion and Conclusions

the best feature localisation results in this thesis.

The final formulation was found to be comparable with human landmarking (over a

small test set), which is surprising as such comparisons are usually highly unflattering

to the automated method. However, there is room for improvement, as the average

human variation is still less than the error of the computer landmarking relative to

the average human annotated points.

8.3 Future work

Improvements to AAM and PRFR

The AAM models used in this thesis could potentially be improved by adding more

hand labelled points to the training set. The models built in this thesis use 22 point

models, however the original AAM approach [6] used a 68 point scheme to markup

the face. An AAM built with 68 points could model the outline of the jaw more

accurately and potentially give more accurate results. The PRFR could also be

made more computationally efficient by trimming the size of the histogram images.

More powerful feature detectors may be developed for each feature, which could also

increase overall search accuracy.

Incorporating a multi-view face detector

A multi-view face detector, which was able to reliable find faces rotated in and out

of plane, would improve the performance of the system. This is not only because

non-upright faces could be detected, but also because the pose information from such

a detector could be used to further constrain the search for individual features. In

cases of extreme face rotation separate local feature and shape models could be used

to find features, even without non-frontal views. However, multi-view face detection

is generally less reliable than frontal face detection (see literature review Section 2.3).
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Use of PRFR+AAM to improve Face Recognition

The success rate of face recognition algorithms are highly affected by the accuracy

of face detection [55]. Therefore it would be interesting to assess the improvement

in face recognition that may be possible using PRFR+AAM to locate internal face

features to register face images, compared to just using a global face detector with

no feature detection.

Face Candidate Verification

The methods described in this thesis locate facial feature points assuming the face

detector has obtained a correct match. However this thesis did not consider if the

PRFR+AAM search could also be used to verify the presence or absence of a human

face, within the candidate region returned by the face detector. If a reliable quality

of fit measure could be calculated this could be used to check that a face has indeed

been found by the face detector.

Use of PRFR+AAM for Tracking

PRFR+AAM could be extended for use in tracking. Here the starting point from

the previous frame in a sequence would be used to initialise the search. A quality of

fit threshold would have to be defined to enable the global search to restart if local

search failed. This would greatly improve the efficiency of PRFR+AAM when used

to search video data.

Semi-Automatic Building Schemes

One of the problems with the algorithms described in this thesis is the large amount

of training data required to build the face models and time taken to manually land-

mark each training image. If automatic model building methods could be developed

this would make application of these techniques much less labour intensive. Semi-

automatic techniques could perhaps be used to select some of the model parameters,

for example the regions chosen to build each feature detector. If these regions could

be chosen in a more automatic way then perhaps search results could be improved.
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Apply techniques to non-face objects

The BCD+PRFR+AAM search could be applied to other objects. For example

images of cars, with consistent internal features, e.g. number plates, headlights etc.

The techniques could also be applied to other deformable objects, for example medical

images of internal organs.

Extension to 3D

The shape constrained algorithms could also be used in three dimensions. For ex-

ample with MRI medical image data. Feature detectors would have to be three

dimensional, but once built could easily be constrained using 3D statistical shape

models. AAMs have already been extended to three dimensions [96][60][86]. How-

ever, one problem with 3D is likely to be the availability of a large enough marked

up training set.

8.4 Final Statement

A coarse-to-fine algorithm has been developed, which first calculates the approximate

position and scale of the human face, then applies shape constrained local feature

detectors. An improved version of the AAM, which is tuned to edge/corner texture,

is then applied to refine the final feature locations. This multi-stage approach will

be useful for many computer vision applications, which require the accurate location

of facial features, such as face recognition, expression recognition and automatic

landmarking.
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Appendix A

Aligning Two 2D Shapes

Given two 2D shapes, x and x′, we wish to find the similarity transform T (x) which

minimises the least squares distance between the two shapes, as follows.

E = |T (x) − x′|2 (A.1)

The 2–D similarity transform T (x) has general form

T
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 (A.2)

Without loss of generality both shapes can first be translated to the origin. This is

achieved by computing the centre of gravity (CoG) of each shape.

xc =

(∑

xi

n
,

∑

y′
i

n

)

x′
c =

(∑

xi

n
,

∑

y′
i

n

)

(A.3)

With the CoG of both shapes at the origin tx = 0 and ty = 0 in Equation A.2.

The problem of then finding the correct scale and rotation reduces to minimising the
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following expression

E (a, b) = |T (x) − x′|2

=
∑n

i=1(axi − byi − x′
i)

2 + (bxi + ayi − y′
i)

2
(A.4)

Differentiating with respect to both a and b and equating to zero gives

∑n

i=1 ax2
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′
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′
i = 0

∑n
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(A.5)

This implies

a = (
∑n

i=1 xix
′
i + yiy

′
i)/(
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i + y2

i ) = x.x′/ |x|
b = (
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i)/(
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i=1 x2
i + y2

i ) = (
∑n

i=1 xiy
′
i − yix

′
i)/ |x|

(A.6)

Given a, b, xc and x′
c a shape x can be approximately mapped to a shape x′ as follows

x′ ≃ x′
c + T (x − xc) (A.7)
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Weighted fitting of PCA

parameters

In some cases it is necessary to compute the PCA parameters b with respect to a

weighted set of points, where weights indicate the relative importance of the model

fit to each point. We wish to find b, in the following equation.

y ≈ x̄ + Φb (B.1)

Here y represents a given shape, x̄ the PCA mean and Φ the PCA eigenvector matrix.

The weights are introduced using a diagonal weight matrix W. Then satisfying

Equation B.1 can be reformatted as selecting parameter b to minimise the following

expression.

|W (y − x̄ − Φb)|2 (B.2)

Setting v = y− x̄−Φb and differentiating the expression vTW2v with respect to b

gives the following.
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d
db

(

vTW2v
)

= dv
db

× d(vT W2v)
dv

= ΦT ×−2W2v

= −2ΦTW2 (y − x̄ − Φb)

(B.3)

Setting the differential to zero leads to the following matrix equation.

ΦTW2Φb = ΦTW2(y − x̄) (B.4)

ΦTW2Φ is known, as is ΦTW2(y − x̄), so Equation B.4, can be solved for b, for

example by singular value decomposition (SVD) [68]. Given b the original points y

can be approximated using Equation B.1.

Note given W = I Equation B.4 reduces to the normal unweighted PCA projection

b = ΦT (y − x̄).
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BCD Training Set
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Appendix D

Facial Feature Detector Training

Examples

Feature Training Example No.
1 2 3 4 5 6

right eye

left eye

right m/cnr

left m/cnr

outer re/brow

inner re/brow
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Appendix D. Facial Feature Detector Training Examples

Feature Training Example No.
1 2 3 4 5 6

outer re/cnr

inner re/cnr

outer le/brow

inner le/brow

outer le/cnr

inner le/cnr

nose tip

right nostril

left nostril

upper m/lip

lower m/lip
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Appendix E

Normalised Correlation Feature

Templates

right eye left eye right inner brow left inner brow upper lip

right inner eye left inner eye right inner brow left inner brow lower lip

right outer eye left outer eye right nostril left nostril nose tip

right m/corner left m/corner
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Appendix F

Orientation Map Feature

Templates

right eye left eye right inner brow left inner brow upper lip

right inner eye left inner eye right inner brow left inner brow lower lip

right outer eye left outer eye right nostril left nostril nose tip

right m/corner left m/corner
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Features selected by AdaBoost

Feature First 6 feature classifiers selected by AdaBoost
1 2 3 4 5 6

right eye

left eye

right m/cnr

left m/cnr

outer re/brow

inner re/brow
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Appendix G. Features selected by AdaBoost

Feature First 6 feature classifiers selected by AdaBoost
1 2 3 4 5 6

outer re/cnr

inner re/cnr

outer le/brow

inner le/brow

outer le/cnr

inner le/cnr

nose tip

right nostril

left nostril

upper m/lip

lower m/lip
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Appendix H

PRFR Histograms

Detector Relative distribution of true locations for 6 features
right eye left eye right m/cnr left m/cnr right nostril left nostril

right eye

left eye

right m/cnr

left m/cnr

outer re/brow

inner re/brow
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Appendix H. PRFR Histograms

Detector Relative distribution of true locations for 6 features
right eye left eye right m/cnr left m/cnr right nostril left nostril

outer re/cnr

inner re/cnr

outer le/brow

inner le/brow

outer le/cnr

inner le/cnr

nose tip

right nostril

left nostril

upper m/lip

lower m/lip
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Appendix I

Human Landmark Test Images

Image 1 (bioid 0000.pgm) Image 2 (bioid 0010.pgm)

Image 3 (bioid 0050.pgm) Image 4 (bioid 0090.pgm)
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Appendix I. Human Landmark Test Images

Image 5 (bioid 0250.pgm) Image 6 (bioid 0329.pgm)

Image 7 (bioid 0499.pgm) Image 8 (bioid 0579.pgm)

Image 9 (bioid 0609.pgm) Image 10 (bioid 0669.pgm)
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Average Human Landmarks vs

PRFR+AAM

Image 1 (me17 = 4.96%) Image 2 (me17 = 4.28%)

Image 3 (me17 = 4.06%) Image 4 (me17 = 4.63%)
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Appendix J. Average Human Landmarks vs PRFR+AAM

Image 5 (me17 = 4.64%) Image 6 (me17 = 4.36%)

Image 7 (me17 = 3.18%) Image 8 (me17 = 5.20%)

Image 9 (me17 = 3.50%) Image 10 (me17 = 3.14%)
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[28] B. Fröba and A. Ernst. Fast frontal-view face detection using a multi-path

decision tree. In 4th International Conference on Audio- and Video-Based Bio-

metric Person Authentication 2003, pages 921–928, 2003.
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