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ABSTRACT 
 

 

 

Witnessing the omnipresence of digital video media, the research community has 

raised the question of its meaningful use and management. Stored in immense 

multimedia databases, digital videos need to be retrieved and structured in an 

intelligent way, relying on the content and the rich semantics involved. Current 

Content Based Video Indexing and Retrieval systems face the problem of the semantic 

gap between the simplicity of the available visual features and the richness of user 

semantics. 

This work focuses on the issues of efficiency and scalability in video indexing and 

retrieval to facilitate a video representation model capable of semantic annotation. A 

highly efficient algorithm for temporal analysis and key-frame extraction is developed. 

It is based on the prediction information extracted directly from the compressed-

domain features and the robust scalable analysis in the temporal domain. Furthermore, 

a hierarchical quantisation of the colour features in the descriptor space is presented. 

Derived from the extracted set of low-level features, a video representation model that 

enables semantic annotation and contextual genre classification is designed. 

Results demonstrate the efficiency and robustness of the temporal analysis algorithm 

that runs in real time maintaining the high precision and recall of the detection task. 

Adaptive key-frame extraction and summarisation achieve a good overview of the 

visual content, while the colour quantisation algorithm efficiently creates hierarchical 

set of descriptors. Finally, the video representation model, supported by the genre 

classification algorithm, achieves excellent results in an automatic annotation system by 

linking the video clips with a limited lexicon of related keywords. 
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I.  INTRODUCTION 

I.1. PROLOGUE 
In the year 1936 and continuing into the Second World War years, German engineer 

Konrad Zuse had been building a computer in the living room of his parents’ 

apartment in Berlin. It was the first working digital computer to have its programs 

driven by a punched tape. The tape Zuse used was actually discarded 35mm film tape. 

Like every other mass-produced object of the industrial age, film copies would often 

end up as waste, pilling up in dustbins outside film studios. It was probably there that a 

young Berliner had found the material essential for his new invention. Zuse carved the 

first dots and bars of digital information over smiles and tears cut as the unsuccessful 

takes of the pre war German filmmaking. 

Things remain same, more or less, for a modern computer. The content of film scenes 

and TV shows are far from being comprehensible to current digital machinery. Having 

the latest computer vision armoury, we are raising the question of content analysis in 

visual media and its application to visual information retrieval. 

I.2. PROBLEM 
It was only in the 20th century that media became so deeply ingrained in our lives. Yet 

a new era of the digital media world is emerging in our global village. With the advent 

of the World Wide Web we are experiencing a new form of world perception through 

all-pervasive digital media. 

Development of the new forms of media have arisen hand-in-hand with the 

development of the computing machinery. Media has defined its identity through 

mainly technological terms like its discrete and numerical representation, scalability, 

automation, variability, etc.  

All these features enable enormous possibilities of digital media and, by that, our 

perception of the world. In order to make use of it we need to develop better ways of 

interaction with the new forms of media. The most prevalent form of the new media is 

digital multimedia, and in this thesis, we will try to find ways to improve our 

interaction with it. 
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The term multimedia refers broadly to information presented in different formats such 

as text, graphics, video, animation and sound in an integrated way. Long touted as the 

future revolution in computing, multimedia applications were, until the mid-1990s, 

rare due to the expensive hardware required. With the increase in performance and 

decrease in price, however, multimedia applications are now commonplace. Nearly all 

PCs are capable of displaying video (though the resolution available depends on the 

power of the computer's video adapter and CPU). Nowadays, MP3 music, DVD, 

Video-on-demand, interactive TV, IP telephony and digital image collections are 

everyday phrases. 

A timeline of the digital media development is depicted in  Figure I.1. It shows that 

fundamental technologies, such as the laser disk and video games, were invented in the 

1970s and 1980s..The multimedia industry has grown significantly in the last decade 

with the total world market estimated to be about $50 billion. 

 Figure I.1  Development Timeline of Multimedia Technologies 

Another aspect of the digital multimedia revolution is the establishment of a new 

media industry comprising the computer, entertainment, communication and 

consumer electronics companies. Information technology and media industries, like 

telephone, cable, and satellite TV companies, TV and radio broadcasters, Internet 

Service Providers, multimedia and gaming software designers are currently involved in 

creating new products and services to attract customers and create new markets. 

The main driving force of multimedia nowadays is its omnipresence through the 

biggest network in the world – the Internet. In order to adapt to networked modalities, 

major research efforts in the multimedia field include media streaming, media retrieval 

from large and remote repositories, media compression and resource management. 

Conversely, multimedia forms one of the main driving force of the Internet nowadays. 
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Moved by the recent collapse of the IT market, internet businesses are trying to revive 

their customer’s needs by offering them rich multimedia content with music, video 

streaming and on-line gaming experiences. 

Either via the Internet or locally, creators of digital media (as well as end-users) 

approach multimedia through various interfaces, but the primary form of the digital 

media is the multimedia database. This structured collection of digital data has not only 

enabled the storage of large multimedia records, but has boosted the choices of 

experiencing the stored media. 

 

“… Following analysis of linear perspective as a "symbolic form" of the modern age, 

we may even call database a new symbolic form of a post-modern computer age, a new 

way to structure our experience of ourselves and of the world . . . that appears to us as 

an endless and unstructured collection of images, texts, and other data records, it is 

only appropriate that we will be moved to model it as a database …”[Lev Manovich, 

Database as a Symbolic Form, 1998.] 

 

In order to facilitate user’s utilisation of these “endless and unstructured” collections, a 

system for the intuitive exploration of multimedia databases has to be developed. This 

system should enable; easy access to multimedia data; intuitive browsing of the 

records; the placing of meaningful queries; the retrieval of desirable media; the 

suggestion of appropriate content, etc.  

While getting deeply involved with multimedia database technology, one shouldn’t 

forget that, on the other side of the interface, human subjects make queries and expect 

meaningful results. The user could be a journalist, a policeman or a student. Using the 

fact that there are as many modalities of interaction with a multimedia database as 

there are users, is one of our final objectives.  

Moreover, the contemporary creative work of media production, like editing a 

documentary or making a multimedia web portal, can be understood as the 

construction of an interface to a multimedia database. The database becomes the 

centre of the creative process in the computer age [MANOV]. 

Tendencies, driven by the market, are trying to please consumers by offering less user 

interference, followed by more autonomous machine processing. These tendencies are 
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inherited from the industrialisation era, when the need for a diminishing of human 

effort was crucial.  

For that reason, variety and creativity of new media and its non-consumer existence in 

our lives is facing a dead end. Lacking human input, omnipresent media will end up 

oversimplified and schematised. Thus, unlike its innate richness and diversity, 

multimedia produces mainly poor, insipid and inhuman content. In order to preserve 

creativity and richness of new forms of media, and with it our perception of the world, 

it is crucial to get the human subject deeply involved in the processes of media 

creation and usage. 

So, to achieve this task, one needs to automatically analyse content of the media 

involved. The research area that has been attracting the attention of the multimedia 

and computer vision research community during last decade and that tackles the 

problem of the meaningful management of the multimedia databases is Content Based 

Indexing and Retrieval. 

I.3. RESEARCH SCOPE 
Bearing in mind the importance of multimedia databases (and our need to intuitively 

handle their content), meeting the user’s requirements with the available content based 

video indexing and retrieval technology appears to be the main focus of the research in 

the field of multimedia and computer vision. The research presented here focuses on 

the problem of bridging the “semantic gap” between a users’ need for meaningful 

retrieval and the current technology for computational analysis and description of the 

media content. It takes into account both the high complexity of the real-world 

implementation and user’s need for conceptual video retrieval and browsing. 

Focusing on video media as the most complex form of multimedia, in particular the 

visual aspect of it, is the most challenging task of CBIR. The reason for that are its 

diversity of expressive elements on one hand and the simplicity of our perception of 

the visual information. 

The initial work focuses on the temporal analysis of video sequences involving shot 

boundary detection, visual event detection and key-frame extraction. These algorithms, 

essential for content based video indexing and retrieval system, enable analysis of the 

main dimension of video media – time. The algorithms parse video sequences into its 

basic structural units, i.e. shots, and by utilising that information generates a temporally 

structured description of the sequence. The major stress was on algorithm robustness 
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and efficiency by utilising compressed domain features of the existing video 

compression standards such as H.26X and MPEG-1/2. 

As the next step in content based video retrieval systems, key-frame extraction 

modules extract a set of the most representative images for a given sequence. This 

module leads to a substantial reduction of processing complexity, enabling feature 

analysis in the spatial domain. Thus, the choice of the most appropriate key-frame set 

is crucial to the quality of retrieval results. 

The next requirement for an intuitive video indexing system is the ability to adapt its 

representations to different environments and application scenarios. Thus attributes 

like system scalability and multi-resolution analysis are of great importance.  

This work confronts the problem of analysis in both temporal and spatial domain 

descriptors in order to achieve scalability of the system behaviour in indexing as well as 

during retrieval. Current research efforts in key-frame extraction attempt to embed 

scale space as part of the algorithm, accomplishing the user customised video 

summaries and desired preciseness in the process of representation creation. By 

following the hierarchical structure in the descriptor space this research deals with the 

problem of a perceptually driven quantisation of colour. In addition, a robust method 

for extracting camera motions is also presented. 

In order to achieve semantic and conceptual retrieval of videos from large repositories, 

the representation of videos has to render the important aspects of the video sequence 

in a given context. Thus, in the research presented here, this problem is addressedby 

generating novel video representations following new paradigms such as 

computational media aesthetics. Furthermore, contextual information of the video’s 

genre is generated using the representation defined earlier in the research. Using 

representations extracted from low-level features and contextual information from the 

genre classification process, a foundation has been built for the automatic semantic 

annotation of video sequences. 

I.4. PROJECT SPECIFICATION AND OBJECTIVES 
The research leading to this work has been supported by the Engineering and Physical 

Sciences Research Council (EPSRC), the UK Government’s leading funding agency 

for research and training in engineering and the physical sciences, on the Hierarchical 
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Video Indexing Project, grant number R01699/01. A Gantt chart of the project 

timeline can be found in the Appendix of the thesis1.  

The project commenced by focusing on low-level feature extraction aimed at temporal 

parsing of videos, shot detection and key-frame extraction. However, following the 

new tendencies in the field towards high-level semantic issues and problems 

concerning the semantic gap in CBVIR, consequent research has focused more on 

video classification and automatic annotation tasks.  

The main objectives of the project were to: 

• Make advances in the area of temporal video analysis including shot detection, 

key-frame extraction and temporal description, by exploiting compressed 

domain processing techniques in order to achieve efficient, robust and scalable 

algorithms, 

• Tackle the problem of multi-resolution, scalable and hierarchical video 

description to gain efficiency in the task of video indexing, 

• Generate appropriate representations of videos in the processes of semantic 

classification and automatic annotation following new perspectives in the area 

using the above-mentioned descriptors and to 

• Make advances towards automatic video annotation e.g. genre classification, 

annotation propagation, high-level semantic labelling, etc. by exploiting 

generated representations. 

Last, but not the least, our objective was to evaluate the research results by comparing 

it with published work in the field in an appropriate experimental environment 

consisting of a representative digital video dataset. 

I.5. RESEARCH CONTRIBUTIONS 
Following the research guidelines given above, a system for content based video 

indexing and retrieval has been developed. Almost every module of the system 

introduces novelty: from highly efficient temporal analysis to video representation 

                                                
1 The final part of the project was developed in collaboration with Mr. Andres Dorado together with 

whom I designed the rule inference system essential for evaluation of the video representations and 

genre classification algorithm. 
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supporting automatic annotation and labelling. The major contributions to the general 

knowledge in the CBVIR field are given below: 

• Efficient transformation of the complex MPEG video stream into a one 

dimensional metric representing the visual activity of the sequence. 

• Robust real-time shot detection utilising only compressed domain features 

based on a generic frame difference metric. 

• Scalable and hierarchical temporal description of videos with robust key-frame 

extraction. 

• An HSV colour histogram descriptor based on a perceptual degradation 

criterion and hierarchical quantisation. 

• Video representation based on the available set of low-level features utilising 

shot length distribution, shot activity, dominant colour change, etc. in order to 

achieve a good foundation for further processing. 

• Hierarchical k-means clustering of videos into genre sub-classes. 

• Lexicon based classification/annotation using rule-based annotation. 

These contributions have lead not only to a set of theoretical methods for solving 

problems of CBVIR, but a real world implementation as well, sowing the seeds of 

collaboration with media industry and further commercial development. 

I.6. STRUCTURE 
The Chapters are structured in a way to gradually introduce the problem tackled in this 

work. In Chapter II a wider background theory of the CBVIR field is presented, 

bringing the overview of the basic approaches and paradigms throughout the 

development of the CBVIR technology. Consequently, Chapter III introduces a 

detailed description of closely related research work in the area, focusing on temporal 

analysis, feature representation and methods to tackle the problem of the “semantic 

gap”. Chapter IV thoroughly describes the methods developed for temporal analysis 

and extraction of low-level video descriptors, including frame difference extraction, 

shot detection and key-frame extraction and colour analysis. Based on the set of 

extracted low-level descriptors, a video representation model and its application in 

genre classification is presented in Chapter V. An experimental environment is 
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described in Chapter VI, while Chapter VII presents the results achieved. After the 

discussion and the conclusion of Chapter VII, the thesis ends with the bibliography 

and appendices of the project timeline. 
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II.  CONTENT BASED VIDEO INDEXING AND 

RETRIEVAL 

II.1. OVERVIEW 
The contemporary development of various multimedia compression standards 

combined with a significant increase in desktop computer performance, and a decrease 

in the cost of storage media, has led to the widespread exchange of multimedia 

information. The availability of cost effective means for obtaining digital video has led 

to the easy storage of digital video data, which can be widely distributed over networks 

or storage media such as CDROM or DVD. Unfortunately, these collections are often 

not catalogued and are accessible only by the sequential scanning of the sequences. To 

make the use of large video databases more feasible, we need to be able to 

automatically index, search and retrieve relevant material. 

Content-Based Video Indexing and Retrieval (CBVIR) has been the focus of the 

research community during last 15 years. The main idea behind this concept is to 

access information and interact with large collections of videos referring to and 

interacting with its content, rather than its form. Although there has been a lot of 

effort put in this research area the outcomes were relatively disappointing. The 

discontinuity between the available content descriptions like colour layout or motion 

activity and the user’s need for rich semantics in user queries makes user approval of 

automated content retrieval systems very difficult. Thus, in order to develop a 

meaningful CBVIR system one has to involve multidisciplinary knowledge ranging 

from image and video signal processing to semiotic theories and video production 

techniques. Signal processing and computer vision methodologies achieved astonishing 

results in extracting structural and perceptual features from the video data. Algorithms 

from database system theory and other computer science disciplines enabled efficient, 

adaptive and intelligent indexing and retrieval of data with various structure and 

content. Furthermore, fields like computational linguistics and even semiotics have 

engaged with problems of natural language and even visual media semantics. However, 

this knowledge is scattered and needs a way to fuse into one system that will enable 

content-based retrieval of videos in a way natural for users. 



CHAPTER II CONTENT BASED VIDEO INDEXING AND RETRIEVAL 

 

22 

This Chapter gives an insight into foundations and chronological development of 

CBVIR as well as introducing the biggest challenges to the research community in the 

filed. It presents the research context in which this work aims to develop groundwork 

for semantic video indexing and retrieval. Section 2 introduces the scope of the 

research with the short description of CBVIR development during the last decade. 

Further on, the problem of the “semantic gap” is defined and discussed in Section 3. 

As vital issues of this work, the problem of knowledge representation in video 

databases and the computational media aesthetics as the first fruitful theory trying to 

solve it are described in Sections 4 and 5. In order to achieve high-level retrieval 

CBVIR system has to involve the context information profoundly. Thus, the issues 

raised by the context analysis in CBVIR systems are given in Section 6. Chapter 

concludes outlining the proposed system for efficient low-level feature extraction and 

video representation for semantic video retrieval. 

II.2. VIDEO INDEXING AND RETRIEVAL 

II.2.1. VISUAL MEDIA: OUR SCOPE 

Focus of this research is the most complex form of multimedia – video media. Uniting 

both visual and aural elements, this heterogeneous digital media has very demanding 

and complex form. Especially when there is a need to process vast amount of digital 

data in a video database and enable the user to communicate and interact with it. 

Furthermore, the visual aspect of video media is the one of the most challenging areas 

of CBVIR. The reason for that is in its diversity of expressions and forms on one hand 

and the simplicity of our visual perception. In the book Visual Intelligence Hoffman 

describes the importance and the challenge of understanding the way we see: 

"…Vision is normally so swift and sure, so dependable and informative, and 

apparently so effortless that we naturally assume that it is, indeed, effortless. But the 

swift ease of vision, like the graceful ease of an Olympic ice skater, is deceptive. 

Behind the graceful ease of the skater are years of rigorous training, and behind the 

swift ease of vision is an intelligence so great that it occupies nearly half of the brain's 

cortex. Our visual intelligence richly interacts with, and in many cases precedes and 

drives, our rational and emotional intelligence. To understand visual intelligence is to 

understand, in large part, who we are…" [HOFFM].  
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Our perception of the world is in the first place visual. Therefore, exploring the visual 

part of the video media should be the essential milestone in the development process 

of a CBVIR system. Demands for high computational complexity of data processing 

and still unexplored semantic issues are unique challenges that keep the research in 

visual information retrieval a hot topic within the research community. 

II.2.2. THREE GENERATIONS OF CBVIR 

In the first generation of visual retrieval systems attributes of visual data are extracted 

manually. Such attribute-based representations entail a high level of image abstraction 

and model visual content at a conceptual level. They identify significant entities 

contained in the image or video (an object, a person, etc.), object parts (eyes in the 

face, boat in the lake, etc.) or the scene represented and concepts associated to it (a 

landscape, a storm, etc.). Representation schemes like relational models and object-

oriented models are used. Search engines work in the textual domain and use either 

traditional query languages like SQL or full text retrieval. Cost of annotation is typically 

very high and the whole process suffers from subjectivity of descriptions, in that the 

annotator is a different person from the one who issues the query. 

Different from the first generation, second-generation systems address perceptual 

features like colour, textures, shape, spatial relationships, etc.  They concentrate on 

obtaining fully automated numeric descriptors from objective measurements of the 

visual content and support retrieval by content based on combinations of these 

features. These systems take advantage of the research in pattern recognition and 

computer vision, which has provided solutions to model and extract visual primitives 

from image frames. Therefore, in these systems image processing, pattern recognition 

and computer vision subsystems are an integral part of the architecture and operation. 

Retrieval is based on similarity models that somehow replicate the way in which 

humans assess similarity between different objects. Unlike still images, video conveys 

informative messages through multiple planes of communication. These include the 

way in which the frames are linked together by using editing effects (cut, fades, 

dissolves, mattes, etc.), and high level information embedded in the frame sequence 

(the characters, the story content, the story message). Text embedded in the video 

frames and the other sensory data like speech and sound can be employed to extract 

useful data. Research on second-generation video retrieval has mostly been concerned 

with automatic extraction of the video structure [BOREC] – by detecting the edit 
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effects that permit video composition, the extraction of the key-frames from the shots, 

and modelling perceptual content of these key-frames. In this way the problem of 

video retrieval by content has been reduced to the problem of retrieval by content of 

structured still images. 

A CBVIR system depicted in the Figure II.1 has the typical structure of a second 

generation retrieval system with additional user relevance feedback functionality. 

Initially, it segments video into its temporal units like shots or scenes and afterwards 

extracts a set of representative key-frames. Exploiting various image processing and 

computer vision techniques system generates a low-level feature descriptor and stores 

it in a metadata database for later retrieval. When user makes a query, query is 

transformed into the structurally same low-level feature descriptor and the search 

engine finds the most similar record from a metadata base. The relevance feedback 

unit monitors feedback given by user during the retrieval process and adapts the 

feature descriptor in order to achieve more consistent results in terms of perceptual 

similarity. 

 

Figure II.1 Scheme of a common CBVIR System 

Despite of some effective results that have been reported in the literature, a key 

problem with second-generation retrieval systems remains bridging the semantic gap 

between the system and users. Virtually all the systems proposed so far use only low-

level perceptively meaningful representations of pictorial data. Similarity of perceptual 
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properties is generally of little use in most practical cases of retrieval by content, if not 

combined with similarity of high-level information. 

We are now on the way to third generation retrieval systems, looking for more 

information from images, audio and video content. Who are the characters, their roles, 

the actions and their logical relations, as well as the feeling the user perceives, are 

information that we aim to extract automatically, with no or minimal manual 

intervention, so as to support objective semantic-based retrieval. Third generation 

retrieval systems are particularly important for video media. Much more that single 

images, retrieval of video is generally meaningful only if performed at high levels of 

representation and has to do with image sequence classification based on semantically 

meaningful categories of information. In fact, human memory is much more 

concerned with the narrative and discourse structure of the video content than merely 

with perceptual elements of the video. Individual frames are not perceived as such, and 

the spectator doesn’t realise the segmentation into shots and the editing performed by 

director. Instead he perceives the rhythm of the sequence (which is induced by the 

editing), the scenes (which are obtained from shots), the story (including the 

characters, their roles, actions and their logical relations), as well as the feeling (which 

depends on the combination of perceptual facts like colours, objects, music, sounds, 

etc. and from the meaning of the story). 

II.3. SEMANTIC GAP 
One of the major failings of current media annotation systems is the semantic gap that 

refers to the discontinuity between the simplicity of features or content descriptions 

that can be currently computed automatically and the richness of semantics in user 

queries posed for media search and retrieval. 

The failing of current systems is that while "the user seeks semantic similarity, the 

database can only provide similarity on data processing". The authors define the 

semantic gap as the "lack of coincidence between the information that one can extract 

from the visual data and the interpretation that the same data has for a user in a given 

situation" [SMOUL]. Bridging this semantic gap between the simplicity of available 

visual features and the richness of user semantics is the key issue in building effective 

content management systems. 
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II.3.1. THE QUESTION OF MEANING: FROM QUERY BY EXAMPLE TO 

SEMANTIC RETRIEVAL 

Visual information retrieval has emerged in the last 10 years as a natural extension of 

certain database ideas to multimedia data— in particular, for images and video. The 

idea seemed natural in its simplicity: retrieve media from a large repository based on its 

content or, more precisely, certain standard interpretations of its contents. 

Such a program’s feasibility assumes that there is something we can reasonably call a 

media’s meaning. Traditional computer vision hypothesized that we could, in principle, 

extract meaning from the visual data and represent it in a symbolic or numerical way. 

In other words, it is possible to extract features from images or videos and cast them 

into an appropriate metric space in such a way that similar images or videos have 

similar meaning. The query by example model of multimedia databases is based on this 

idea. 

Although it makes a smaller ontological commitment, query by example still 

presupposes the existence of a media’s meaning. Impossible as it might be to 

characterize this meaning using syntactic features, it is nevertheless still a function of 

the visual data and, although absolute meaning can’t be revealed, similarity of meaning 

between images can.  

 

Figure II.2 Bridging the gap between user’s query concept and metadata representation of the 
multimedia database record 

A fair share of the problems that plague multimedia databases comes from this 

semantic presupposition, and we’ll only solve these problems by redefining the 
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concept and role of meaning in an information system. Meaning is not a datum that is 

presented in the image or video clip (however implicitly) and that can be computed 

and encoded prior to the query process, but it is the result of the user activity during 

the query process. This is the case of emergent semantics: the meaning of an image or 

clip is given by its relations with all the other records in the database as it emerges 

during the query interaction. It is no longer a property of a single media element but of 

the whole system, which consists of that element, all the others, the user, and his/her 

cultural presuppositions. The concept of emergent semantics started as a 

computational linguistic method, but has been present in multimedia retrieval for some 

time now and has lit the area with a brand new light. It owes its paradigm of dynamic 

construction of meaning to the semiotics, discipline responsible for creation of 

meaning from signs. 

So as to digest the vast amount of information involved in the construction of video 

semantics it is substantial to define appropriate video representation in a CBVIR 

system. The next section raises the issue of video knowledge representation as the 

breaking point of the signification chain between the digital video media on one side 

and the user on the other. 

II.4. KNOWLEDGE REPRESENTATION FOR VIDEO 
The problem of bridging the semantic gap in content based video indexing and 

retrieval requires very complex analysis of the low-level video features. Therefore the 

development of techniques involved in CBVIR area set course towards intelligent and 

knowledge based approaches. 

Regarding the fact that the research community is agreed on the need for artificial 

intelligence and knowledge methods to achieve meaningful content-based multimedia 

retrieval, essential question would be how to adequately represent videos to and within 

intelligent and/or knowledge based systems. The core of intelligent video indexing is 

the knowledge representation model, analogous to the data-model in a generic 

database system. Explicit knowledge representation has been recognized as the key to 

dealing with domain specific problems in the artificial intelligence community [RICH]. 

Thus, the problem of video representation model is at the core of the CBVIR 

development process. 

A typical processing chain that links user with the desired media, video clip in our case, 

is depicted in Figure II.3. Video clip is fed into the database system by digitalisation or 
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in its native digital form. Represented as a data stream it is processed by the feature 

extraction module that produces low-level descriptor metadata. In order to achieve 

user-centred retrieval offering conceptual and semantic communication with the user 

system has to develop contextually adaptive representation of videos.  

 

Figure II.3 Representation as a part of the processing chain between the input media and the user 

In a CBVIR system videos, clips or single frames should be represented as points in an 

appropriate multidimensional metric space where dissimilar videos are distant from 

each other, similar videos are close to each other, and where the distance function 

captures well the user’s concept of similarity [CASTELLI]. Just like in Figure II.4, 

representation looking glass transforms this multidimensional metric space into 

concepts intrinsically understandable by users in a given context.  

 

 

Figure II.4 Representation looking glass  
– transforming low-level metric space into the user’s conceptual space - 
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Unfortunately, in the existing CBVIR systems a metric space that encapsulates user’s 

similarity demands hasn’t been developed yet. Neither has an appropriate video 

representation. Although the user centred disciplines that model the user’s behaviour 

in the given multimedia retrieval context, like relevance feedback analysis or HCI, have 

been a hot topics in the area for years now, there haven’t been any revolutionary 

achievements. Besides, research activities in the video knowledge representation 

domain hasn’t been that vigorous yet. Nevertheless, by the emergence of the 

inclinations in the area towards media aesthetics, semiotics and film theory a new 

perspective is given to the development of the video knowledge representation. 

II.5. COMPUTATIONAL MEDIA AESTHETICS 
Computational Media Aesthetics is an emerging approach to multimedia analysis that 

aims at bridging the semantic gap and by building innovative content annotation and 

navigation services. This approach is founded upon an understanding of media 

elements and their role in synthesis and manipulation of multimedia content with a 

systematic study of the media production. It proposes a framework for computational 

understanding of the dynamic nature of the narrative structure and techniques via 

analysis of the integration and sequencing of audio/visual elements.  

II.5.1. BACKGROUND 

To address the issue of semantic gap, it is essential to have an approach that goes 

beyond representing what is being directly shown in a video or a movie, and aims to 

understand the semantics of the content portrayed and to harness the emotional, visual 

appeal of the content seen. It should focus on deriving a computational scheme to 

analyze and understand the content of video and its form. Accepted rules and 

techniques in video production are used by directors worldwide to solve problems 

presented by the task of transforming a story from a written script to a captivating 

narration [ARIJON]. These rules, termed as film grammar in the movie domain, refer 

to repeated use of certain objects, visual imagery, and patterns in many films to 

instantly invoke a specific cinematic experience to the viewers. The rules and icons 

serve as shorthand for compressing story information, characters, and themes into 

known familiar formulae, often becoming the elements of a genre production. They 

constitute a style or form of artistic expression that is characteristic of content 
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portrayed, and can be considered to be almost idiomatic in the language of any 

program composer or director. Production rules are found more in history of use, than 

in an abstract predefined set of regulations, and elucidate on ways in which basic visual 

and aural elements can be synthesized into larger structures. 

Employment of these tacitly followed rules in any genre not only can be understood 

and derived automatically with a systematic study of media productions, but also be 

exploited in characterizing what is happening in a video for high-level video/film 

abstraction in an algorithmic framework.  

II.5.2. OVERVIEW OF CMA 

The Computational Media Aesthetics framework approaches the computational 

understanding of the dynamic nature of the narrative structure and techniques via 

analysis of the integration and sequencing of audio/visual elements. It is aimed at 

bridging the semantic gap and building effective content management systems at 

higher level of abstraction. Further, it puts video/film analysis on a sound footing 

resting on principles and practices from video/film production rather than on ad hoc 

schemes.  

Zettl [ZETTL] defines Media Aesthetics as a study and analysis of media elements 

such as lighting, motion, colour and sound both by themselves and their roles in 

synthesizing effective productions. Computational Media Aesthetics [DORAI] is 

defined as the algorithmic study of a number of image and aural elements in media and 

the computational analysis of the principles that have emerged underlying their use and 

manipulation, individually or jointly, in the creative art of clarifying, intensifying, and 

interpreting some event for the audience. 

What does this new framework entail? By focusing on the emotional and visual appeal 

of the content, it attempts to uncover the semantic and semiotic information by a 

study of the relations between the cinematic elements and narrative form. It enables 

distilling techniques and criteria to create efficient, effective and predictable messages 

in media communications, and to provide a handle on interpreting and evaluating 

relative communication effectiveness of media elements through a knowledge of film 

codes that mediate perception, appreciation and rejection. 

This approach, undergirded by the broad rules and conventions of content creation, 

uses the production knowledge to elucidate the relationships between the many ways 

in which basic visual and aural elements are manipulated in video and their intended 
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meaning and perceived impact on content users. Its computational scheme analyzes 

videos to understand the film grammar, in particular and uses the set of rules that are 

commonly followed during the narration of a story, to assist us in deriving the 

annotation or description of video contents effectively. A system built using this 

principled approach where videos are analyzed guided by the tenets of film grammar 

will be effective in providing high-level concept oriented media descriptions that can 

function across many contexts and in enhancing the quality and richness of 

descriptions derived. 

II.5.3. NOVELTY AND CONTRIBUTION OF CMA 

Let’s discuss what sets this approach apart from other schemes at the initial stage. It 

extracts complex constructs, or expressive elements that expose the underlying 

semantic information embedded in the media production. The extraction of 

increasingly complex features from a hierarchical integration of underlying primitives is 

a commonly followed approach. But the key difference is this framework of analysis 

based on production knowledge, that is, to both define what to extract, and how to 

extract these constructs seeks guidance from film grammar and theory. It is done so 

because directors create and manipulate expressive elements related to some aspect of 

visual or emotional appeal in particular ways to have maximum impact on the 

observer. With movies for example, this approach draws attention to the film creation 

process, and argue that to interpret the data one must see it through the filmmaker's 

eye. Film theory is the portal that gives us insight into the film creation process. It can 

tell us not only what expressive elements a director manipulates, but also how he/she 

does it, why, and what the intended impact is. Thus, complex constructs are both 

defined and extracted only if media production knowledge tells us that it is an element 

that the director crafts or manipulates intentionally. These elements by their derivation 

and study result in grafting human-friendly content descriptions since they directly 

impact viewers' engagement with the content portrayed. 

II.6. CONTEXT IN CBVIR 
By definition [OALD], context is the situation in which something happens and that 

helps you to understand it. In the context of CBVIR, that would be the whole 

environment involved in the video retrieval process. There are many aspects of the 

retrieval environment: human subject as the user, application of the retrieved results, 
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cultural background, genre, etc. In order to reduce the complexity of retrieval process 

and facilitate the semantic analysis a CBVIR system needs contextual information 

extracted automatically from the involved media and its environment. This section 

discusses ways of utilising contextual information in a CBVIR system. 

II.6.1. HUMAN SUBJECT : IMPORTANCE OF ITS PRESENCE 

While getting deeply involved with multimedia database technology, one shouldn’t 

forget that on the other side of the interface human subject makes queries and expects 

meaningful results. That could be a journalist, a policeman or a student. Overlooking 

the fact that there are as many modalities of interaction with a multimedia database as 

there are users, would lead us far from our final objective – Content Based Indexing 

and Retrieval (CBIR).  

According to the Information Society Technologies (IST) Programme, launched in 

1999 by European Commission to help create a user-friendly information society by 

building a global knowledge, media and computer space in EU [BADIQUÉ], the 

development of new forms of media should focus on more interactive interfaces using 

adaptable multi-sensory interfaces to achieve creativity and authoring of this new form 

and content. This programme promotes more creativity and better design in key 

multimedia applications: knowledge, business, publishing, etc. through the 

development of advanced content technologies. One of the objectives is to develop 

and demonstrate integrated multi-sensor subsystem using advanced sensor, actuator 

and display technologies including image and auditory scene processing, 3D and virtual 

reality, etc. in order to develop new interaction paradigms and inter-mediation 

technologies supporting intelligent multi-modal, multi-sensorial user interfaces for 

portable and/or wearable information appliances and systems.  

On the other hand, tendencies driven by the market are trying to please a current user 

by offering less user interference followed by more autonomous machine processing. 

These tendencies are inherited from the industrialisation era, when the need for 

diminishing of human labour was crucial, and just exploited later to boost consumer’s 

need for technological revolution. 

For that reason, variety and creativity of new media and its non-consumer existence in 

our lives is facing dead end. Lacking human subject, omnipresent media will end up 

oversimplified and schematised. Thus unlike its innate richness and diversity, new 

media produces mainly poor, insipid and inhuman content. In order to preserve 
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creativity and richness of new media, and by that our perception of the world, it is 

crucial to get the human subject deeply involved in the processes of media creation 

and usage. 

II.6.2. USER RELEVANCE FEEDBACK  

In the light of content-based retrieval, human interaction is crucial. A picture is worth 

a thousand words, and thus a profound challenge comes from the dynamic 

interpretation of videos under various circumstances. In other words, the perceptual 

similarity depends upon the application, the person and the context of usage. 

Therefore as well as the machine needs to learn the associations between high-level 

concepts and low-level descriptors, it has to learn the users preferences online by 

getting the user inside the retrieval loop.  

A natural way of getting user in the loop is to ask the user to give feedbacks regarding 

the relevance of the current outputs of the system. Though this is an idea borrowed 

from the text retrieval field, it seems to work better in visual domain: it is easier to tell 

the relevance of an image or video than of a document – image reveals its content 

instantly. 

Different methods have been developed under different assumptions or problem 

settings. The main questions in the user relevance-feedback setup are:  

• What is the user looking for? User target can be a particular video clip or a group 

of similar videos. 

• What to feedback? How much information to get from the user: binary yes/no or 

value estimation. 

• What is the distribution? Linear like Gaussian or non-linear kernel based. 

• What to learn and how? To improve the current query result or to modify the 

representation/similarity of records. 

Various techniques are proposed to utilise the information given as a feedback from 

user, starting from heuristic formulations with empirical parameter adjustment [RUI] 

to the contemporary optimal schemes like support vector machines [TONG], EM 

algorithms [WU] and Bayesian learning [COX]. This work doesn’t utilise user’s 

relevance feedback, but the representations presented support self-adaptive behaviour 

and revaluation. Furthermore, the rule-based platform developed as the experimental 

testbed leaves big space for development of a user feedback exploitation.  
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II.6.3. GENRE THEORY 

The genre approach within television and film theory is a way of media classification 

and it includes a consideration of the codes and conventions applied to the analysed 

media. Although the term 'genre' translates easily from the French as 'type' or 'kind', its 

meaning within media studies is both more complex and more far-reaching than this 

simple explanation suggests. It is possible to study genres in a range of ways: as socio-

historical actualities, as thematic and ideological constructions deriving from history, 

and in terms of their conventions in iconography, visual imagery, narrative patterns 

and archetypal characters. However the scope of this research limits our 

comprehension of genres only through production codes applied in genre-oriented 

media production.  

Genre classification in film studies was originally used in relation to Hollywood films 

made within the specific historical and economic conditions of the studio system. The 

economic conditions of production - that is, the 'factory-like' arrangements whereby 

films were a product churned out as quickly and cheaply as possible - meant that once 

a studio hit upon a commercially successful idea, it would be repeated, with minor 

variations, for some time. Thus, in the beginning of the filmmaking, films and shows 

sharing a similar theme or targeted audiences were having similar production 

conditions, e.g. lightning, actors, make-up and costumes as well as the editing rules and 

thus were classified as a genre. 

In addition to common production rules applied on film, the television industry 

utilises genre classification as a shorthand mean of scheduling, targeting and 

maintaining popularity. Television relies on regularity of programming to provide 

continuity, predictability and reassurance to its audiences. Therefore the information 

about the broadcast timing added to its genre label squeezes the analysed show into a 

narrow contextual space facilitating computational analysis in a more meaningful way.  

The most common genres are commercials, news programs, situation comedies, soap 

operas, documentaries, sports shows, talk shows, action adventure programs, detective 

shows, science-fiction shows, hospital dramas, and westerns. In principle, there may be 

a finite number of genres and each television show should fit into only one of them, if 

the classification system works perfectly.  

Given the proliferation of television forms and channels, classification into 

recognisable genres is becoming increasingly difficult, even on a common-sense level. 

Although the genre approach may be losing its relevance in TV and film studies, it is a 
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quintessential way of getting contextual information in the CBVIR area. Production of 

the genre-based shows tend to be formulaic - that is, they observe certain familiar 

conventions which make it relatively easy for audiences to follow them. By analysing 

those conventions this work investigates ways of representing video sequences 

targeting automatic annotation and indexing of videos and their further semantic 

analysis in CBVIR systems.  

II.7. SUMMARY 
This Chapter brought an overview of content-based video indexing and retrieval, its 

chronological development and current problems that occupy the research community 

in the field. After introducing the major focus of CBVIR and presenting three 

generations of CBVIR systems from its cradle to the current developments, Section 3 

presented the first and foremost problem of CBVIR and that is the semantic gap 

between the user conceptual needs and low-level perceptual descriptors we can extract 

automatically today. After questioning the matter of meaning in a visual retrieval 

system, in Section 4 the diminished problem of knowledge representation for video is 

highlighted and some aspects of its development were presented. As one of the main 

paradigms that try to deal with the problem of semantic gap, computational media 

aesthetics was outlined in the Section 5. Contextual issues in the CBVIR systems were 

discussed in Section 6, introducing the need for classification more intrinsic to video 

media – genre classification.  

Concluding this overview of the main research topic involved in this work, one thing 

should be stressed. In order to achieve further development of the CBVIR filed one 

has to focus on the creation of the groundwork for semantic analysis of videos. In 

other words, relying upon the vast amount of low-level information extracted from 

videos appropriate knowledge representations have to be generated and put in the 

appropriate context just to start approaching the signification space needed for 

semantics’ creation in visual media. Moreover, the technical characteristics of the 

CBVIR system like efficiency, robustness and scalability should be maintained in order 

to implement real world applications. 
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III.  CURRENT TENDENCIES IN CBVIR 

III.1. OVERVIEW 
This chapter brings an overview of the state-of-the-art research specifically related to 

the problems in the CBVIR area addressed in this work. Being key video formats used 

in the development process, MPEG video compression standards are described in the 

following Section 2. Temporal analysis methods e.g. shot detection and key-frame 

extraction are presented in the Sections 3 and 4. In addition to methods for temporal 

description and analysis, an overview of the spatial feature extraction, specifically 

colour based, is given in Section 5. Finally, a short survey of research focused on the 

representational and contextual aspects of CBVIR in Sections 6 and 7 concludes the 

chapter.  

III.2. MPEG VIDEO COMPRESSION STANDARDS 
The purpose of this section is to provide an overview of the MPEG-1 [ISO1] and 

MPEG-2 [ISO2] video coding algorithms and standards and their role in video 

communications. The Moving Picture Experts Group (MPEG) is a working group of 

ISO/IEC in charge of the development of international standards for compression, 

decompression, processing, and coded representation of moving pictures, audio and 

their combination. MPEG developed video coding standards MPEG-1/2 that are used 

as the main video format in this work. Thus the next section describes MPEG-1 and 

MPEG-2 in more detail presenting their basic concepts in the section opening, 

followed by the theory and techniques involved. 

III.2.1. FUNDAMENTALS OF MPEG VIDEO COMPRESSION 

Generally speaking, video sequences contain a significant amount of statistical and 

subjective redundancy within and between frames. The ultimate goal of video source 

coding is the bit-rate reduction for storage and transmission by exploring both 

statistical and subjective redundancies and to encode a "minimum set" of information 

using entropy-coding techniques. This usually results in a compression of the coded 

video data compared to the original source data. The performance of video 

compression techniques depends on the amount of redundancy contained in the image 

data as well as on the actual compression techniques used for coding. With practical 
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coding schemes a trade-off between coding performance (high compression with 

sufficient quality) and implementation complexity are targeted. For the development of 

the MPEG compression algorithms the consideration of the capabilities of "state of 

the art" technology foreseen for the lifecycle of the standards was most important. 

Dependent on the applications requirements we may envisage "lossless" and "lossy" 

coding of the video data. The aim of "lossless" coding is to reduce image or video data 

for storage and transmission while retaining the quality of the original images - the 

decoded image quality is required to be identical to the image quality prior to encoding. 

In contrast the aim of "lossy" coding techniques - and this is relevant to the 

applications envisioned by MPEG-1 and MPEG-2 video standards - is to meet a given 

target bit-rate for storage and transmission. Important applications comprise 

transmission of video over communications channels with constrained or low 

bandwidth and the efficient storage of video. In these applications high video 

compression is achieved by degrading the video quality - the decoded image 

"objective" quality is reduced compared to the quality of the original images prior to 

encoding (i.e. taking the mean-squared-error between both the original and 

reconstructed images as an objective image quality criteria). The smaller the target bit-

rate of the channel the higher the necessary compression of the video data and usually 

the more coding artefacts become visible. The ultimate aim of lossy coding techniques 

is to optimise image quality for a given target bit rate subject to "objective" or 

"subjective" optimisation criteria. It should be noted that the degree of image 

degradation (both the objective degradation as well as the amount of visible artefacts) 

depends on the complexity of the image or video scene as much as on the 

sophistication of the compression technique - for simple textures in images and low 

video activity a good image reconstruction with no visible artefacts may be achieved 

even with simple compression techniques. 

III.2.2. THE MPEG VIDEO CODER SOURCE MODEL 

The MPEG digital video coding techniques are statistical in nature. Video sequences 

usually contain statistical redundancies in both temporal and spatial directions. The 

basic statistical property upon which MPEG compression techniques rely is inter-pel 

correlation, including the assumption of simple correlated translatory motion between 

consecutive frames. Thus, it is assumed that the magnitude of a particular image pel 

can be predicted from nearby pels within the same frame (using Intra-frame coding 
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techniques) or from pels of a nearby frame (using Inter-frame techniques). Intuitively 

it is clear that in some circumstances, i.e. during scene changes of a video sequence, 

the temporal correlation between pels in nearby frames is small or even vanishes - the 

video scene then assembles a collection of uncorrelated still images. In this case Intra-

frame coding techniques are appropriate to explore spatial correlation to achieve 

efficient data compression. The MPEG compression algorithms employ Discrete 

Cosine Transform (DCT) coding techniques on image blocks of 8x8 pels to efficiently 

explore spatial correlations between nearby pels within the same image. However, if 

the correlation between pels in nearby frames is high, i.e. in cases where two 

consecutive frames have similar or identical content, it is desirable to use Inter-frame 

DPCM coding techniques employing temporal prediction (motion compensated 

prediction between frames). In MPEG video coding schemes an adaptive combination 

of both temporal motion compensated prediction followed by transform coding of the 

remaining spatial information is used to achieve high data compression (hybrid 

DPCM/DCT coding of video). 

III.2.3. SUBSAMPLING AND INTERPOLATION 

Almost all video coding techniques make extensive use of subsampling and 

quantization prior to encoding. The basic concept of subsampling is to reduce the 

dimension of the input video (horizontal dimension and/or vertical dimension) and 

thus the number of pels to be coded prior to the encoding process. This technique 

may be considered as one of the most elementary compression techniques which also 

makes use of specific physiological characteristics of the human eye and thus removes 

subjective redundancy contained in the video data - i.e. the human eye is more 

sensitive to changes in brightness than to chromaticity changes. Therefore the MPEG 

coding schemes first divide the images into YUV components (one luminance and two 

chrominance components). Next the chrominance components are subsampled 

relative to the luminance component with a Y:U:V ratio specific to particular 

applications (i.e. with the MPEG-2 standard a ratio of 4:1:1 or 4:2:2 is used). 

III.2.4. MOTION COMPENSATED PREDICTION 

Motion compensated prediction is a powerful tool to reduce temporal redundancies 

between frames and is used extensively in MPEG-1 and MPEG-2 video coding 

standards as a prediction technique for temporal DPCM coding. The concept of 
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motion compensation is based on the estimation of motion between video frames, i.e. 

if all elements in a video scene are approximately spatially displaced, the motion 

between frames can be described by a limited number of motion parameters (i.e. by 

motion vectors for translatory motion of pels).  

 

Figure III.1 Motion Compensation in MPEG stream 

In this simple example the best prediction of an actual pel is given by a motion 

compensated prediction pel from a previously coded frame. Usually both, prediction 

error and motion vectors, are transmitted to the receiver. However, encoding one 

motion information with each coded image pel is generally neither desirable nor 

necessary. Since the spatial correlation between motion vectors is often high it is 
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sometimes assumed that one motion vector is representative for the motion of a 

"block" of adjacent pels. To this aim images are usually separated into disjoint blocks 

of pels (i.e. 16x16 pels in MPEG-1 and MPEG-2 standards) and only one motion 

vector is estimated, coded and transmitted for each of these blocks (see Figure III.2). 

In the MPEG compression algorithms the motion compensated prediction techniques 

are used for reducing temporal redundancies between frames and only the prediction 

error images - the difference between original images and motion compensated 

prediction images - are encoded. In general the correlation between pels in the motion 

compensated Inter-frame error images to be coded is reduced compared to the 

correlation properties of Intra-frames due to the prediction based on the previous 

coded frame. 

Figure III.1 shows block matching approach for motion compensation: One motion 

vector MV(u,v) is estimated for each block in the actual frame N to be coded. The 

motion vector points to a reference block of same size in a previously coded frame N-

1. The motion compensated prediction error is calculated by subtracting each pel in a 

block with its motion shifted counterpart in the reference block of the previous frame. 

III.2.5. TRANSFORM DOMAIN CODING 

Transform coding has been studied extensively during the last two decades and has 

become a very popular compression method for still image coding and video coding. 

The purpose of Transform coding is to de-correlate the Intra- or Inter-frame error 

image content and to encode Transform coefficients rather than the original pels of 

the images. To this aim the input images are split into disjoint blocks of pels b (i.e. of 

size NxN pels). The transformation can be represented as a matrix operation using a 

NxN Transform matrix A to obtain the NxN transform coefficients c based on a 

linear, separable and unitary forward transformation  

 Tc  A b A= ⋅ ⋅  (III.1) 

Here, AT denotes the transpose of the transformation matrix A. Note, that the 

transformation is reversible, since the original NxN block of pels b can be 

reconstructed using a linear and separable inverse transformation  

 Tb  A c A= ⋅ ⋅  (III.2) 

Upon many possible alternatives the Discrete Cosine Transform (DCT) applied to 

smaller image blocks of usually 8x8 pels has become the most successful transform for 
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still image and video coding [AHMED]. In fact, DCT based implementations are used 

in most image and video coding standards due to their high decorrelation performance 

and the availability of fast DCT algorithms suitable for real time implementations. 

A major objective of transform coding is to make as many Transform coefficients as 

possible small enough so that they are insignificant (in terms of statistical and 

subjective measures) and need not be coded for transmission. At the same time it is 

desirable to minimize statistical dependencies between coefficients with the aim to 

reduce the amount of bits needed to encode the remaining coefficients. 

The DCT is closely related to Discrete Fourier Transform (DFT) and it is of some 

importance to realize that the DCT coefficients can be given a frequency interpretation 

close to the DFT. Thus low DCT coefficients relate to low spatial frequencies within 

image blocks and high DCT coefficients to higher frequencies. This property is used in 

MPEG coding schemes to remove subjective redundancies contained in the image 

data based on human visual systems criteria. Since the human viewer is more sensitive 

to reconstruction errors related to low spatial frequencies than to high frequencies, a 

frequency adaptive weighting (quantization) of the coefficients according to the human 

visual perception (perceptual quantization) is often employed to improve the visual 

quality of the decoded images for a given bit rate. 

The combination of the two techniques described above - temporal motion 

compensated prediction and transform domain coding - can be seen as the key 

elements of the MPEG coding standards. A third characteristic element of the MPEG 

algorithms is that these two techniques are processed on small image blocks (of 

typically 16x16 pels for motion compensation and 8x8 pels for DCT coding). To this 

reason the MPEG coding algorithms are usually referred to as hybrid block-based 

DPCM/DCT algorithms.  

III.2.6. MPEG-1 

The video compression technique developed by MPEG-1 covers many applications 

from interactive systems on CD-ROM to the delivery of video over 

telecommunications networks. The MPEG-1 is thought to be generic. To support the 

wide range of applications profiles a diversity of input parameters including flexible 

picture size and frame rate can be specified by the user. MPEG has recommended a 

constraint parameter set: every MPEG-1 compatible decoder must be able to support 

at least video source parameters up to TV size: including a minimum number of 720 
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pixels per line, a minimum number of 576 lines per picture, a minimum frame rate of 

30 frames per second and a minimum bit rate of 1.86 Mbits/s.  

MPEG-1 was primarily targeted for multimedia CD-ROM applications, requiring 

additional functionality supported by both encoder and decoder. Important features 

provided by MPEG-1 include frame based random access of video, fast forward/fast reverse 

(FF/FR) searches through compressed bit streams, reverse playback of video and 

editability of the compressed bit stream.  

III.2.7. THE BASIC MPEG-1 INTER-FRAME CODING SCHEME 

The basic MPEG-1 (as well as the MPEG-2) video compression technique is based on 

a MacroBlock structure, motion compensation and the conditional replenishment of 

MacroBlocks. As outlined in Figure III.2 the MPEG-1 coding algorithm encodes the 

first frame in a Group of Pictures in Intra-frame coding mode (I-picture). Each 

subsequent frame is coded using Inter-frame prediction (P-pictures) - only data from 

the nearest previously coded I- or P-frame is used for prediction. The MPEG-1 

algorithm processes the frames of a video sequence as a block-based structure. Each 

colour input frame in a video sequence is partitioned into non-overlapping 

MacroBlocks as depicted in Figure III.2. Each MacroBlock contains blocks of data 

from both luminance and co-sited chrominance bands - four luminance blocks (Y1, 

Y2, Y3, Y4) and two chrominance blocks (U, V), each with size 8x8 pels. Thus the 

sampling ratio between Y:U:V luminance and chrominance pels is 4:1:1. P-pictures are 

coded using motion compensated prediction based on the nearest previous frame. 

Each frame is divided into disjoint "MacroBlocks" (MB). With each MacroBlock (MB), 

information related to four luminance blocks (Y1, Y2, Y3, Y4) and two chrominance 

blocks (U, V) is coded. Each block contains 8x8 pels. 

The block diagram of the basic hybrid DPCM/DCT MPEG-1 encoder structure is 

depicted in Figure III.3. The first frame in a video sequence (I-picture) is encoded in 

INTRA mode without reference to any past or future frames. At the encoder the DCT 

is applied to each 8x8 luminance and chrominance block and, after output of the 

DCT, each of the 64 DCT coefficients is uniformly quantized (Q). The quantiser 

coefficients used to quantize the DCT-coefficients within a MacroBlock are 

transmitted to the receiver.  
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Figure III.2 MPEG sequence decomposition 

After quantization, the lowest DCT coefficient (DC coefficient) is treated differently 

from the remaining coefficients (AC coefficients). The DC coefficient corresponds to 

the average intensity of the component block and is encoded using a differential DC 

prediction method. The non-zero quantizer values of the remaining DCT coefficients 

and their locations are then "zig-zag" scanned and run-length entropy coded using 

variable length code (VLC) tables. 

 

Figure III.3 Block diagram of a basic MPEG encoder structure. 
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The decoder performs the reverse operations, first extracting and decoding (VLD) the 

variable length coded words from the bit stream to obtain locations and quantiser 

values of the non-zero DCT coefficients for each block. With the reconstruction (Q*) 

of all non-zero DCT coefficients belonging to one block and subsequent inverse DCT 

(DCT-1) the quantized block pixel values are obtained. By processing the entire bit 

stream all image blocks are decoded and reconstructed. 

For coding P-pictures, the previously I- or P-picture frame N-1 is stored in a frame 

store (FS) in both encoder and decoder. Motion compensation (MC) is performed on 

a MacroBlock basis - only one motion vector is estimated between frame N and frame 

N-1 for a particular MacroBlock to be encoded. These motion vectors are coded and 

transmitted to the receiver. The motion compensated prediction error is calculated by 

subtracting each pel in a MacroBlock with its motion shifted counterpart in the 

previous frame. A 8x8 DCT is then applied to each of the 8x8 blocks contained in the 

MacroBlock followed by quantization (Q) of the DCT coefficients with subsequent 

run-length coding and entropy coding (VLC). The decoder uses the reverse process to 

reproduce a MacroBlock of frame N at the receiver. 

The advantage of coding video using the motion compensated prediction from the 

previously reconstructed frame N-1 in an MPEG coder is illustrated in Figure III.4 for 

a typical test sequence. Figure III.4a depicts a frame at time instance N to be coded 

and Figure III.4b the reconstructed frame at instance N-1 that is stored in the frame 

store (FS) at both encoder and decoder (note that the motion vectors depicted in the 

image are not part of the reconstructed image stored at the encoder and decoder). The 

block motion vectors (MV, see also Figure III.1) depicted in Figure III.4b were 

estimated by the encoder motion estimation procedure and provide a prediction of the 

translatory motion displacement of each MacroBlock in frame N with reference to 

frame N-1. Figure III.4c depicts the pure frame difference signal (frame N - frame N-

1), which is obtained if no motion compensated prediction is used in the coding 

process - thus all motion vectors are assumed to be zero. Figure III.4d depicts the 

motion compensated frame difference signal when the motion vectors in Figure III.4b 

are used for prediction. It is apparent that the residual signal to be coded is greatly 

reduced using motion compensation if compared to pure frame difference coding in 

Figure III.4c. 
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Figure III.4 a) Frame at time instance N to be coded b) Frame at N-1 used for prediction of the content 
in frame N c) prediction error image obtained without using motion d) motion compensated prediction 

is employed. 

III.2.8. SPECIFIC FUNCTIONALITIES 

An essential feature supported by the MPEG-1 coding algorithm is the possibility to 

update MacroBlock information at the decoder only if needed - if the content of the 

MacroBlock has changed in comparison to the content of the same MacroBlock in the 

previous frame. The MPEG standard distincts mainly between three different 

MacroBlock coding types (MB types): 

1. Skipped MB - prediction from previous frame with zero motion vector. No 

information about the MacroBlock is coded nor transmitted to the receiver.  

2. Inter MB - motion compensated prediction from the previous frame is used. 

The MB type, the MB address and, if required, the motion vector, the DCT 

coefficients and quantization stepsize are transmitted. 

3. Intra MB - no prediction is used from the previous frame (Intra-frame 

prediction only). Only the MB type, the MB address and the DCT coefficients 

and quantization stepsize are transmitted to the receiver. 
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For accessing video from storage media the MPEG-1 video compression algorithm 

was designed to support important functionalities such as random access and fast 

forward (FF) and fast reverse (FR) playback functionalities. To incorporate the 

requirements for storage media and to further explore the significant advantages of 

motion compensation and motion interpolation, the concept of B-pictures (bi-

directional predicted/bi-directional interpolated pictures) was introduced by MPEG-1.  

 

Figure III.5 I-pictures (I), P-pictures (P) and B-pictures (B) used in a MPEG-1 video sequence.  

This concept is depicted in Figure III.5 for a group of consecutive pictures in a video 

sequence. Three types of pictures are considered: Intra-pictures (I-pictures) are coded 

without reference to other pictures contained in the video sequence. I-pictures allow 

access points for random access and FF/FR functionality in the bit stream but achieve 

only low compression. Inter-frame predicted pictures (P-pictures) are coded with 

reference to the nearest previously coded I-picture or P-picture, usually incorporating 

motion compensation to increase coding efficiency. Since P-pictures are usually used 

as reference for prediction for future or past frames they provide no suitable access 

points for random access functionality or editability. Bi-directional 

predicted/interpolated pictures (B-pictures) require both past and future frames as 

references. 

To achieve high compression, motion compensation can be employed based on the 

nearest past and future P-pictures or I-pictures. B-pictures themselves are never used 

as references. B-pictures can be coded using motion compensated prediction based on 

the two nearest already coded frames (either I-picture or P-picture). The arrangement 

of the picture coding types within the video sequence is flexible to suit the needs of 

diverse applications. The direction for prediction is indicated in the figure. The user 

can arrange the picture types in a video sequence with a high degree of flexibility to 

suit diverse applications requirements. As a general rule, a video sequence coded using 

I-pictures only (I I I I I I .....) allows the highest degree of random access, FF/FR and 
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editability, but achieves only minor compression. A sequence coded with a regular I-

picture update and no B-pictures (i.e. I P P P P P P I P P P P ...) achieves low 

compression and a certain degree of random access and FF/FR functionality. 

Incorporation of all three pictures types, as i.e. depicted in Figure 8 (I B B P B B P B B 

I B B P...), may achieve high compression and reasonable random access and FF/FR 

functionality. It is the most common MPEG stream format used and therefore the 

approach to compressed domain analysis adopted in this work assumes that B-type 

frames are present in the stream. 

III.2.9. MPEG-2 STANDARD OVERVIEW 

Worldwide MPEG-1 developed into an important and successful video coding 

standard with an increasing number of products becoming available on the market. A 

key factor for this success is the generic structure of the standard supporting a broad 

range of applications and applications specific parameters. However, MPEG 

continued its standardization efforts in 1991 with a second phase (MPEG-2) to 

provide a video coding solution for applications not originally covered or envisaged by 

the MPEG-1 standard. Specifically, MPEG-2 was given the charter to provide video 

quality not lower than NTSC/PAL and up to CCIR 601 quality. Emerging 

applications, such as digital cable TV distribution, networked database services via 

ATM, digital VTR applications and satellite and terrestrial digital broadcasting 

distribution, were seen to benefit from the increased quality expected to result from 

the new MPEG-2 standardization phase. Work was carried out in collaboration with 

the ITU-T SG 15 Experts Group for ATM Video Coding and in 1994 the MPEG-2 

Draft International Standard (which is identical to the ITU-T H.262 recommendation) 

was released [HALHED]. The specification of the standard is intended to be generic - 

hence the standard aims to facilitate the bit stream interchange among different 

applications, transmission and storage media. 

Basically MPEG-2 can be seen as a superset of the MPEG-1 coding standard and was 

designed to be backward compatible to MPEG-1 - every MPEG-2 compatible decoder 

can decode a valid MPEG-1 bit stream. Many video coding algorithms were integrated 

into a single syntax to meet the diverse applications requirements. New coding features 

were added by MPEG-2 to achieve sufficient functionality and quality, thus prediction 

modes were developed to support efficient coding of interlaced video. In addition scalable 

video coding extensions were introduced to provide additional functionality, such as 
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embedded coding of digital TV and HDTV, and graceful quality degradation in the 

presence of transmission errors. 

However, implementation of the full syntax may not be practical for most applications. 

MPEG-2 has introduced the concept of "Profiles" and "Levels" to stipulate 

conformance between equipment not supporting the full implementation. Profiles and 

Levels provide means for defining subsets of the syntax and thus the decoder 

capabilities required to decode a particular bit stream. 

As a general rule, each Profile defines a new set of algorithms added as a superset to 

the algorithms in the Profile below. A Level specifies the range of the parameters that 

are supported by the implementation (i.e. image size, frame rate and bit rates). The 

MPEG-2 core algorithm at MAIN Profile features non-scalable coding of both 

progressive and interlaced video sources. It is expected that most MPEG-2 

implementations will at least conform to the MAIN Profile at MAIN Level which 

supports non-scalable coding of digital video with approximately digital TV parameters 

- a maximum sample density of 720 samples per line and 576 lines per frame, a 

maximum frame rate of 30 frames per second and a maximum bit rate of 15 Mbit/s. 

III.3. TEMPORAL VIDEO FEATURE EXTRACTION 
The temporal video segmentation research efforts have resulted in a great variety of 

algorithms. Early work focuses on cut detection, while more recent techniques deal 

with the more difficult problem of gradual-transition detection. Fades, dissolves and 

wipes are special video editing effects that gradually change the content and therefore 

are more difficult to detect. Fade-in is a editing effect which allows the progressive 

transition from a solid black frame to full brightness of a shot content, while a fade-

out is a progressive darkening of a shot until the last frame becomes completely black. 

Dissolve is a superimposition of a fade-in and a fade-out: the first shot fades-out while 

the following fades-in to full brightness. Wipe is a content transition from one scene to 

another wherein the new scene is revealed by a moving line or pattern. In simplest 

form, simulates a window shade being drawn. More sophisticated variations include 

colorized wipes, quivering wipes and triangle wipes. In the following sections a 

number of relevant methods is described and compared with the algorithm proposed. 
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III.3.1. TEMPORAL VIDEO SEGMENTATION IN UNCOMPRESSED 

DOMAIN 

The majority of algorithms for temporal video segmentation exploits uncompressed 

video data. Usually, a similarity measure between successive images is defined. When 

two images are sufficiently dissimilar, there is a high probability of a cut. Gradual 

transitions are detected by using cumulative difference measures and more 

sophisticated thresholding schemes. Based on the metrics that is used to detect the 

difference between successive frames, the algorithms for temporal video segmentation 

in uncompressed domain can be divided broadly into three categories: pixel, block-

based and histogram comparisons. 

III.3.1.1.  Pixel Comparison 

Pair-wise pixel comparison (also called template matching) evaluates the differences in 

intensity or colour values of corresponding pixels in two successive frames. The 

simplest way is to calculate the absolute sum of pixel differences and compare it 

against a threshold [KIKUK]: 
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for grey level images, 
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for colour images,  

where i and i+1 are two successive frames with dimension X*Y, Pi(x,y), is the intensity 

value of the pixel at the coordinates (x,y), in frame i, c is index for the colour 

components and Pi(x,y,c), is the colour component of the pixel at y,x in frame i. 

A cut is detected if the difference D(i,i+1) is above a pre specified threshold T. The 

main disadvantage of this method is that it is not able to distinguish between a large 

change in a small area and a small change in a large area. For example, cuts are 

misdetected when a small part of the frame undergoes a large, rapid change. Therefore, 

methods based on simple pixel comparison are sensitive to object and camera 

movements. A possible improvement is to count the number of pixels that change in 

value more than some threshold and to compare the total against a second threshold 

[ZHANG][NAGAS]: 
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If the percentage of changed pixels D(i,i+1) is greater than a threshold T2, a cut is 

detected. Although some irrelevant frame differences are filtered out, these approaches 

are still sensitive to object and camera movements. For example, if camera pans, a 

large number of pixels can be judged as changed, even though there is actually a shift 

with a few pixels. It is possible to reduce this effect to a certain extend by the 

application of a smoothing filter: before the comparison each pixel is replaced by the 

mean value of its neighbours. 

III.3.1.2.  Block-based comparison 

In contrast to template matching that is based on global image characteristic (pixel by 

pixel 8 differences), block-based approaches use local characteristic to increase the 

robustness to camera and object movement. Each frame i is divided into b blocks that 

are compared with their corresponding blocks in i+1. Typically, the difference between 

i and i+1 is measured by 

 ( ) ( )
b

k
k 1

D i,i 1 c DP i,i 1,k
=

+ = ⋅ +∑  (III.7) 

where ck is a predetermined coefficient for the block k and DP(i,i+1,k) is a partial 

match value between the kth blocks in i and i+1 frames. 

In [KASTURI] corresponding blocks are compared using a likelihood ratio: 
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where σk,i,σk,i+1 are the mean intensity values for the two corresponding blocks k in the 

consecutive frames i and i+1, and µk,i,µk,i+1 are their variances, respectively. Then, the 

number of blocks for which the likelihood ratio is greater than a threshold T1 is 

counted: 
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A cut is declared when the number of changed blocks is large enough, i.e. D(i,i+1) is 

greater than a given threshold T2 and ck=1 for all k. Compared to template matching, 

this method is more tolerant to slow and small object motion from frame to frame. 

On the other hand, it is slower due to the complexity of the statistical formulas. 

Additional potential disadvantage is that no change will be detected in the case of two 

corresponding blocks that are different but have the same density function. Such 

situations, however, are very unlikely. 

Another block-based technique is proposed by Shahraray [SHAHR]. The frame is 

divided into 12 non-overlapping blocks. For each of them the best match is found in 

the respective neighbourhoods in the previous image based on image intensity values. 

A non-linear order statistics filter is used to combine the match values. Thus, the effect 

of camera and object movements is further suppressed. The author claims that such 

similarity measure of two images is more consistent with human judgement. Both cuts 

and gradual transitions are detected. Cuts are found using thresholds like in the other 

approaches that are discussed while gradual transitions are detected by identifying 

sustained low-level increase in match values. 

Xiong, Lee and Ip [XIONG] describe a method they call net comparison, which attempts 

to detect cuts inspecting only part of the image. It is shown that the error will be low 

enough if less than half of so called base windows (non-overlapping square blocks, as 

in Figure III.6) are checked. Under an assumption about the largest movement 

between two images, the size of the windows can be chosen large enough to be 

indifferent to a non-break change and small enough to contain the spatial information 

as much as possible. Base windows are compared using the difference between the 

mean values of their grey-level or colour values. If this difference is larger than a 

threshold, the region is considered changed. When the number of changed windows is 

greater than another threshold, a cut is declared. 

The experiments demonstrated that the approach is faster and more accurate than 

pixel pair-wise, likelihood and local histogram methods. In their subsequent paper 

[XIONG1], the idea of video subsampling into space is further extended to 

subsampling in both space and time. The new Step variable algorithm detects both 

abrupt and gradual transition comparing frames i and j, where j=i+myStep. If no 

significant change is found between them, the move is with half step forward and the 

next comparison is between i+myStep/2 and j+myStep/2. Otherwise, binary search is 
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used to locate the change. If i and j are successive and their difference is bigger than a 

threshold, cut is declared.  

 

Figure III.6 Non-overlapping square blocks in net comparison algorithm 

Otherwise, edge differences between the two frames are compared against another 

threshold to check for gradual transition. Obviously, the performance depends on the 

proper setting of myStep: large steps are efficient but increase the number of false 

alarms, too small steps may result in missing gradual transition. In addition, the 

approach is very sensitive to object and camera motion. 

III.3.1.3.  Histogram comparison 

A step further towards reducing sensitivity to camera and object movements can be 

done by comparing the histograms of successive images. The idea behind histogram-

based approaches is that two frames with unchanging background and unchanging 

(although moving) objects will have little difference in their histograms. In addition, 

histograms are invariant to image rotation and change slowly under the variations of 

viewing angle and scale. As a disadvantage one can note that two images with similar 

histograms may have completely different content. However, the probability for such 

events is low enough, moreover techniques for dealing with this problem have already 

been proposed in [PASS]. 

A grey level (colour) histogram of a frame i is an n-dimensional vector Hi(j)=1,…,n 

where n is the number of grey levels (colours) and H(j) is the number of pixels from 

the frame i with grey level (colour) j. 

III.3.1.4.  Global Histogram Comparison 

The simplest approach uses an adaptation of the metrics from Equation (III.3): instead 

of intensity values, grey level histograms are compared. A cut is declared if the 
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absolute sum of histogram differences between two successive frames D(i,i+1) is 

greater than a threshold T: 

 ( ) ( ) ( )
n

i i 1
j 1

D i,i 1 H j H j+
=

+ = −∑  (III.10) 

where Hi(j) is the histogram value for the grey level j in the frame i, j is the grey value 

and n is the total number of grey levels. 

Another simple and very effective approach is to compare colour histograms. Zhang, 

Kankanhalli and Smoliar [ZHANG] apply Equation (III.10) where j, instead of grey 

levels, denotes a code value derived from the three colour intensities of a pixel. In 

order to reduce the bin number (3 colours x 8 bits create histograms with 224 bins), 

only the upper two bits of each colour intensity component are used to compose the 

colour code. The comparison of the resulting 64 bins has been shown to give 

sufficient accuracy. 

To enhance the difference between two frames across a cut, several authors  propose 

the use of the χ2 test to compare the (colour) Hi(j) histograms and Hi+1(j)  of the two 

successive frames i and i+1: 
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When the difference is larger than a given threshold T, a cut is declared. However, 

experimental results reported in [ZHANG] show that χ2 test not only enhances the 

difference between two frames across a cut but also increases the difference due to 

camera and object movements. Hence, the overall performance is not necessarily 

better than the linear histogram comparison represented in Equation (III.11) In 

addition, χ2 statistics requires more computational time. Gargi et al. [GHARGI] 

evaluate the performance of three histogram based methods using six different colour 

coordinate systems: RGB, HSV, YIQ, L*a*b*, L*u*v* and Munsell. The RGB 

histogram of a frame is computed as three sets of 256 bins. The other five histograms 

are represented as a 2-dimensional distribution over the two non-intensity based 

dimensions of the colour spaces, namely: H and S for the HSV, I and Q for the YIQ, 

a* and b* for the L*a*b*, u* and v* for the L*u*v* and hue and chroma components 

for the Munsell space. The number of bins is 1600 (40x40) for the L*a*b*, L*u*v* and 

YIQ histograms and 1800 (60 hues x 30 saturations/chroma) for the HSV and Munsell 
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space histograms. The difference functions used to compare histograms of two 

consecutive frames are defined as follows: 

Bin-to-bin differences: 

 ( ) ( ) ( )
n
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j 1

D i,i 1 H j H j+
=

+ = −∑  (III.12) 

Histogram intersection: 
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Note that for two identical histograms the intersection is 1 and the difference 0 while 

for two frames which do not share even a single pixel of the same colour (bin), the 

difference is 1. 

Weighted bin differences: 
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where N(k) is a neighbourhood of bin j and W(k) is the weight value assigned to that 

neighbour. A 3x3 or 3 neighbourhoods are used in the case of 2-dimensional and 1-

dimensional histograms, respectively. 

It is found that in terms of overall classification accuracy YIQ, L*a*b* and Munsell 

colour coordinate spaces perform well, followed by HSV, L*u*v* and RGB. In terms 

of computational cost of conversion from RGB, the HSV and YIQ are the least 

expensive, followed by L*a*b*, L*u*v* and the Munsell space. 

So far only histogram comparison techniques for cut detection have been presented. 

They are based on the fact that there is a big difference between the frames across a 

cut that results in a high peak in the histogram comparison and can be easily detected 

using one threshold. However, such one threshold based approaches are not suitable 

to detect gradual transitions. Although during a gradual transition the frame-to-frame 

differences are usually higher than those within a shot, they are much smaller than the 

differences in the case of cut and cannot be detected with the same threshold. On the 

other hand, object and camera motions might entail bigger differences than the gradual 

transition. Hence, lowering the threshold will increase the number of false positives. 

Below we review a simple and effective two-thresholds technique for gradual transition 

recognition. 
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Figure III.7 Twin comparison: a. consecutive, b. accumulated histogram differences.  
Figure taken from [ZHANG] 

The twin-comparison method [ZHANG1] takes into account the cumulative differences 

between frames of the gradual transition. In the first pass a high threshold Th is used to 

detect cuts as shown in Figure III.7a. In the second pass a lower threshold Tl is 

employed to detect the potential starting frame Fs of a gradual transition. Fs is than 

compared to subsequent frames (Figure III.7b). This is called an accumulated 

comparison as during a gradual transition this difference value increases. The end 

frame Fe of the transition is detected when the difference between consecutive frames 

decreases to less than Tl, while the accumulated comparison has increased to a value 

higher than Th. If the consecutive difference falls below Tl before the accumulated 

difference exceeds Th, then the potential start frame Fs is dropped and the search 

continues for other gradual transitions. It was found, however, that there are some 

gradual transitions during which the consecutive difference falls below the lower 

threshold. This problem can be easily solved by setting a tolerance value that allows a 

certain number of consecutive frames with low difference values before rejecting the 

transition candidate. As it can be seen, the twin-comparison detects both abrupt and 

gradual transitions at the same time. Boreczky and Rowe [BOREC] compared several 

temporal video segmentation techniques on real video sequences and found that twin-

comparison is a simple algorithm that works very well. 

III.3.1.5.  Local Histogram Comparison 

As it was already discussed, histogram based approaches are simple and more robust 

to object and camera movements but they ignore the spatial information and, 

therefore, fail when two different images have similar histograms. On the other hand, 



CHAPTER III CURRENT TENDENCIES IN CBVIR 

 

56 

block based comparison methods make use of spatial information. They typically 

perform better than pair-wise pixel comparison but are still sensitive to camera and 

object motion and are also computationally expensive. By integrating the two 

paradigms, false alarms due to camera and object movement can be reduced while 

enough spatial information is retained to produce more accurate results. 

The frame-to-frame difference of frame i and frame i+1 is computed as: 
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where Hi(j,k) denotes the histogram value at grey level j for the region (block) k and b 

is the total number of the blocks. 

For example, Nagasaka and Tanaka [NAGAS] compare several statistics based on 

grey-level and colour pixel differences and histogram comparisons. The best results 

were obtained by breaking the image into 16 equal-sized regions, using χ2 test on 

colour histograms for these regions and discarding the largest differences to reduce the 

effects of noise, object and camera movements. 

Another approach based on local histogram comparison is proposed by Swanberg et al. 

[SWANB]. The partial difference DP(i,i+1,k) is measured by comparing the colour 

RGB histograms of the blocks using the following equation: 
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Then, Equation (III.7) is applied where ck is 1/b for all k. 

Lee and Ip [LEEIP] introduce a selective HSV histogram comparison algorithm. In order 

to reduce the frame-to-frame differences caused by change in intensity or shade, image 

blocks are compared in HSV (hue, saturation, value) colour space. It is the use of hue 

that makes the algorithm insensitive to such changes since hue is independent of 

saturation and intensity. However, as hue is unstable when the saturation or the value 

are very low, selective comparison is proposed. To further improve the algorithm by 

increasing the differences across a cut, local histogram comparison is performed. It is 

shown that the algorithm outperforms both histogram (grey level global and local) and 

pixel differences based approaches. However, none of the algorithms gives satisfactory 

performance on very dark video images. 
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III.3.1.6.  Algorithm Comparison  

Compared with the algorithm proposed in this thesis, all temporal video parsing 

techniques that exploit information in uncompressed domain lack efficiency. The 

reason for that is in the nature of the approach. In the feature extraction part the 

majority of uncompressed analysis techniques must initially decode the video stream 

and afterwards apply some processing on the vast pixel data, which additionally slows 

down the processing time. Thus, algorithms that base their analysis on pixel data 

[KIKUK, ZHANG, NAGAS] require substantial processing time. Block-based 

algorithms [KASTURI, SHAHR, XIONG] and methods based on histogram 

comparison [ZHANG1, GHARGI, SWANB] achieved considerable improvement in 

both processing requirements and sensitivity to camera and object motion, but far 

from the efficiency of the compressed domain analysis. However, reported precision 

and recall of some algorithms presented in this section [ZHANG1, NAGAS] are 

almost the same as the same parameters of the algorithm proposed in this thesis.  

III.3.2. CLUSTERING-BASED TEMPORAL VIDEO SEGMENTATION 

The approaches discussed so far rely on suitable thresholding of similarities between 

successive frames. However, the thresholds are typically highly sensitive to the type of 

input video. This drawback is overcome by the application of unsupervised clustering 

algorithm. More specifically, the temporal video segmentation is viewed as a 2-class 

clustering problem ("scene change" and "no scene change") and the well-known K-

means algorithm [PAPPAS] is used to cluster frame dissimilarities. Then the frames 

from the cluster "scene change" which are temporary adjacent are labelled as belonging 

to a gradual transition and the other frames from this cluster are considered as cuts. 

Two similarity measures based on colour histograms were used: χ2 statistics and the 

histogram difference defined in Equation (III.10), both in RGB and YUV colour 

spaces. The experiments show that the χ2-YUV detects the larger number of correct 

transitions but the histogram difference-YUV is the best choice in terms of overall 

performance (i.e. number of false alarms and correct detections). As a limitation we 

can note that the approach is no able to recognize the type of the gradual transitions. 

The main advantage of the clustering-based segmentation is that it is a generic 

techniques that not only eliminates the need for threshold setting but also allows 

multiple features to be used simultaneously to improve the performance. For example, 
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in their subsequent work Ferman and Tekalp [FERMAN] incorporate two features in 

the clustering method: histogram difference and pair-wise pixel comparison. It was 

found that when filtered these features supplement one another, which results in both 

high recall and precision. A technique for clustering based temporal segmentation on-

the-fly was introduced as well. 

Due to the fact that clustering techniques presented here apply even more complex 

analysis on the features extracted from the uncompressed domain, efficiency reported 

is even worse in comparison to techniques presented in Section III.3.1. Furthermore, 

robustness to the camera and object motion and algorithm’s precision and recall has 

not been improved. This is due to the fact that clustering based approach doesn’t take 

into account the temporal nature of the shot detection task, but analyses only a set of 

perceptual frame features. 

III.3.3. FEATURE BASED TEMPORAL VIDEO SEGMENTATION 

An interesting approach for temporal video segmentation based on features is 

described by Zabih, Miller and Mai [ZABIH]. It involves analyzing intensity edges 

between consecutive frames. During a cut or a dissolve, new intensity edges appear far 

from the locations of the old edges. Similarly, old edges disappear far from the 

location of new edges. Thus, by counting the entering and exiting edge pixels, cuts, 

fades and dissolves are detected and classified. To obtain better results in case of 

object and camera movements, an algorithm for motion compensation is also 

included. It first estimates the global motion between frames that is then used to align 

the frames before detecting entering and exiting edge pixels. However, this technique 

is not able to handle multiple rapidly moving objects. As the authors have pointed out, 

another weakness of the approach are the false positives due to the limitations of the 

edge detection method. In particular, rapid changes in the overall shot brightness, and 

very dark or very light frames, may cause false positives.  

Although introducing  a novel approach to temporal parsing, especially the detection 

of gradual changes, this algorithm doesn’t bring any improvement regarding efficiency. 

It extracts edges from the uncompressed domain, and by that intensifies feature 

extraction so that the overall processing time increases even more in comparison to 

the techniques presented in Section III.3.1. Therefore, considering the importance of 

real-time shot detection, this approach, as well as the whole group of algorithms that 
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base their analysis on features extracted from uncompressed domain, cannot compete 

the efficiency and robustness of the algorithm presented in this thesis. 

III.3.4. MODEL DRIVEN TEMPORAL VIDEO SEGMENTATION 

The video segmentation techniques presented so far are sometimes referred to as data 

driven, bottom-up approaches. They address the problem from data analysis point of 

view. It is also possible to apply top-down algorithms that are based on mathematical 

models of video data. Such approaches allow a systematic analysis of the problem and 

the use of several domain-specific constraints that might improve the efficiency. 

Hampapur, Jain and Weymouth [HAMPA] present a shot boundary identification 

approach based on the mathematical model of the video production process. This 

model was used as a basis for the classification of the video edit types (cuts, fades, 

dissolves). For example, fades and dissolves are chromatic edits and can be modelled 

as: 
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where S1(x,y,t) and S2(x,y,t) are two shots that are being edited, S(x,y,t) is the edited 

shot and l1,l2 are the number of frames for each shot during the edit. 

The taxonomy along with the models are then used to identify features that 

correspond to the different classes of shot boundaries. Finally, feature vectors are fed 

into a system for frames classification and temporal video segmentation. The approach 

is sensitive to camera and object motion. 

Another model-based technique, called differential model of motion picture, is 

proposed by Aigrain and Joly [AIGRAIN]. It is based on the probabilistic distribution 

of differences in pixel values between two successive frames and combines the 

following factors:  

[1] a small amplitude additive zero-cantered Gaussian noise that models camera, 

film, digitizer and other noises; 

[2] an intra shot change model for pixel change probability distribution resulting 

from object and camera motion, angle, focus and light change; 

a shot transition model for the different types of abrupt and gradual transitions. The 

histogram of absolute values of pixel differences is computed and the number of pixels 

that change in value within a certain range determined by the models is counted. Then 
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shot transitions are detected by examining the resulting integer sequences. 

Experiments show 94-100% accuracy for cuts and 80% for gradual transitions 

detection. 

Yu, Bozdagi and Harrington [YU] present an approach for gradual transitions 

detection based on a model of intensity changes during fade out, fade in and dissolve. 

At the first pass, cuts are detected using histogram comparison. The gradual transitions 

are then detected by examining the frames between the cuts using the proposed model 

of their characteristics. For example, it was found that the number of edge pixels have 

a local minimum during a gradual transition. However as this feature exhibits the same 

behaviour in case of zoom and pan, additional characteristics of the fades and 

dissolves need to be used for their detection. During a fade, the beginning and end 

image is a constant image, hence the number of edge pixels will be close to zero. 

Furthermore, the number of edge pixels gradually increases going away from the 

minimum in either side. In order to distinguish dissolves, the so called double 

chromatic difference curve is examined. It is based on the idea that the frames of a 

dissolve can be recovered using the beginning and end frames. The approach has low 

computational requirements but works under the assumption of small object 

movement. 

Boreczky and Wilcox [BOREC1] use Hidden Markov Models (HMM) for temporal 

video segmentation. Separate states are used to model shot, cut, fade, dissolve, pan and 

zoom. The arcs between states model the allowable progressions of states. For 

example, from the shot state it is possible to go to any of the transition states, but 

from a transition state it is only possible to return to a shot state. Similarly, the pan and 

zoom states can only be reached from the shot state, since they are subsets of the shot. 

The arcs from a state to itself model the length of time the video is in that particular 

state. Three different types of features (image, audio and motion) are used: 

• a standard grey-level histogram distance between two adjacent frames; 

• an audio distance based on the acoustic difference in intervals just before and just 

after the frames and 

• an estimate of object motion between the two frames. 

The parameters of the HMM, namely the transition probabilities associated with the 

arcs and the probability distributions of the features associated with the states, are 

learned by training with the Baum-Welch algorithm. Training data consists of features 
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vectors computed for a collection of video and labelled as one of the following classes: 

shot, cut, fade, dissolve, pan and zoom. Once the parameters are trained, segmenting 

the video is performed using the Viterbi algorithm, a standard technique for 

recognition in HMM. 

Thus, thresholds are not required as the parameters are learned automatically. Another 

advantage of the approach is that HMM framework allows any number of features to 

be included in a feature vector. The algorithm was tested on different video databases 

and has been shown to improve the accuracy of the temporal video segmentation in 

comparison to the standard threshold-based approaches. 

III.3.4.1.  Algorithm Comparison 

Unlike the algorithms presented in previous sections, model driven algorithms for 

temporal video parsing tackled the problem of robustness and precision by applying 

more complex analysis of extracted feature set. Methods that model the way videos are 

being edited [HAMPA, YU] resulted in similar approaches that utilised compressed 

domain features. In addition, reported precision/recall in [BOREC1] are high and 

even show that the algorithm is very reliable and robust to camera and object motion. 

Compared to the algorithm proposed here, these results are better regarding its 

robustness and precision. However, efficiency of these algorithms is questionable since 

the features used to model transitions are extracted from the uncompressed domain. 

III.3.5. TEMPORAL VIDEO SEGMENTATION IN MPEG COMPRESSED 

DOMAIN 

The previous approaches for video segmentation process uncompressed video. As 

nowadays video is increasingly stored and moved in compressed format (e.g. MPEG), 

it is highly desirable to develop methods that can operate directly on the encoded 

stream. Working in the compressed domain offers the following advantages. First, by 

not having to perform decoding/re-encoding, computational complexity is reduced 

and savings on decompression time and decompression storage are obtained. Second, 

operations are faster due to the lower data rate of compressed video. Last but not 

least, the encoded video stream already contains a rich set of pre-computed features, 

such as motion vectors (MVs) and block averages, which are suitable for temporal 

video segmentation. 
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Several algorithms for temporal video segmentation in the compressed domain have 

been reported. According to the type of information used, they can be divided into six 

non-overlapping groups - segmentation based on: 

- DCT coefficients;  

- DC terms;  

- DC terms, MacroBlock (MB) coding mode and MVs; 

- DCT coefficients, MB coding mode and MVs; 

- MB coding mode and MVs and 

- MB coding mode and bitrate information. 

III.3.5.1.  Temporal Video Segmentation Based on DCT Coefficients 

The pioneering work on video parsing directly in compressed domain is conducted by 

Arman, Hsu and Chiu [ARMAN1] who proposed a technique for cut detection based 

on the DCT coefficients of I frames. For each frame a subset of the DCT coefficients 

of a subset of the blocks is selected in order to construct a vector Vi={c1, c2, c3,…}. Vi 

represents the frame i from the video sequence in the DCT space. The normalized 

inner product is then used to find the difference between frames i and i+ϕ : 
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A cut is detected if 1-|D(i,i+ϕ)|>T1 where T1 is a threshold. 

In order to reduce false positives due to camera and object motion, video cuts are 

examined more closely using a second threshold T2 (0<T1<T2<1). If T1 < 1-

|D(i,i+ϕ)| < T2 the two frames are decompressed and examined by comparing their 

colour histograms. 

Zhang et al. [ZHANG2] apply a pair-wise comparison technique to the DCT 

coefficients of corresponding blocks of video frames. The difference metric is similar 

to pixel comparisons. More specifically, the difference of block l from two frames 

which are ϕ frames apart is measured as: 
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where cl,k(i) is the DCT coefficient of block l in the frame i, k=1,2,…64 and l depends 

on the size of the frame. 
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If the difference exceeds a given threshold T1, the block l is considered to be changed. 

If the number of changed blocks is larger than another threshold T2, a transition 

between the two frames is declared. The pair-wise comparison requires far less 

computation than the difference metric used by Arman. The processing time can be 

further reduced by applying Arman's method of using only a subset of coefficients and 

blocks. 

It should be noted that both of the above algorithms [ARMAN1, ZHANG2] may be 

applied only to I frames of the MPEG compressed video, as they are the frames fully 

encoded with DCT coefficients. As a result, the processing time is significantly 

reduced but the temporal resolution is low. In addition, due to the loss of the 

resolution between the I frames, false positives are introduced and, hence, the 

classification accuracy decreases. Also, neither of the two algorithms can handle 

gradual transitions or false positives introduced by camera operations and object 

motion.  

However the processing of these algorithms is minimised, the time needed for feature 

extraction and analysis is higher than in the algorithm proposed in this thesis. 

Furthermore, the feature set extracted is only partial, since the features are extracted 

only from I frames. Therefore, the robustness of these methods is lower compared to 

the proposed technique. 

Following this approach, Yeo and Liu [YEO] proposed a method where so called DC-

images are created and compared. DC-images are spatially reduced versions of the 

original images: the (i,j) pixel of the DC image is the average value of the 

corresponding block of the compressed frame (Figure III.8). 

As each DC term is a scaled version of the block's average value, DC images can be 

constructed from DC terms. The DC terms of I frames are directly available in the 

MPEG stream while those of B and P frames are estimated using the MVs and DCT 

coefficients of previous I frames. It should be noted that the reconstruction techniques 

is computationally very expensive - in order to compute the DC term of a reference 

frame (DCref) for each block, eight 8x8 matrix multiplications and 4 matrix 

summations are required. Then, the pixel differences of dc-images are compared and a 

sliding window is used to set the thresholds because the shot transition is a local 

activity. 
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Figure III.8 A full resolution image and its DC image 

In order to find a suitable similarity measure, the authors compare metrics based on 

pixel differences and colour histograms. They confirm that when full images are 

compared, the first group of metrics is more sensitive to camera and object 

movements but computationally less expensive than the second one. However, when 

DC-images are compared, pixel differences based metrics give satisfactory results as 

DC-images are already smoothed versions of the corresponding full images. 

Hence, as in the pixel domain approaches, abrupt transitions are detected using a 

similarity measure based on the sum of absolute pixel differences of two consecutive 

frames (DC images in this case): 

 ( ) ( ) ( )l l 1
i, j

D l, l 1 P i, j P i, j++ = −∑  (III.21) 

where l and l+1 are two consecutive DC-images and Pl(i,j), is the intensity value of the 

pixel in l-th DC-image at the coordinates (i,j). 

In contrast to the previous methods for cut detection that apply global thresholds on 

the difference metrics, Yeo and Liu propose to use local thresholds as scene changes 

are local activities in the temporal domain. In this way false positives due to significant 

camera and object motions are reduced. More specifically, a sliding window is used to 

examine m successive frame differences. A cut between frames l and l+1 is declared if 

the following two conditions are satisfied: 
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• D(l,l+1) is the maximum within a symmetric sliding window of size 2m-1 

• D(l,l+1) is n times the second largest maximum in the window. 

The second condition guards against false positives due to fast panning or zooming 

and camera flashes that typically manifest themselves as sequences of large differences 

or two consecutive peaks, respectively. The size of the sliding window m is set to be 

smaller than the minimum duration between two transitions, while the values of n 

typically range from 2 to 3. 

Gradual transitions are detected by comparing each frame with the following kth 

frame where k is larger than the number of frames in the gradual transition. A gradual 

transition gn in the form of linear transition from c1 to c2 in the time interval (α1,α2), is 

modelled as 
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Then if k > α2-α1 the difference between frames l and l+k from the transition gn will 

be 
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Figure III.9 Gradual transition gn and pixel difference model Dgn(l,l+k) in dissolve detection.  
Figure taken from [YEO] 
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As Dgn(l/l+k) corresponds to a symmetric plateau with sloping sides (see Figure III.9), 

the goal of the gradual transition detection algorithm is to identify such plateau 

patterns. The algorithm of Yeo and Liu needs eleven parameters to be specified. 

In [SHEN] shots are detected by colour histogram comparison of DC term images of 

consecutive frames. Such images are formed by the DC terms of the DCT coefficients 

for a frame. DC terms of I pictures are taken directly from the MPEG stream, while 

those for P and B frames are reconstructed by the following fast algorithm. First, the 

DC term of the reference image (DCref) is approximated using the weighted average of 

the DC terms of the blocks pointed by the MVs, Figure III.10: 

 ref
E

1DC N DC
64 α α

α∈

= ⋅∑  (III.24) 

where DCα is the DC term of block E is the collection of all blocks that are 

overlapped by the reference block and Nα is the number of pixels in block that is 

overlapped by the reference block. 

 

Figure III.10 DC term estimation in the method of Shen and Delp 

Then, the approximated DC terms of the predicted pictures are added to the encoded 

DC terms of the difference images in order to form the DC terms of P and B pictures:  

 diff refDC DC DC= +  (III.25) 

for only forward or only backward prediction 

 ( )diff ref1 ref 2
1DC DC DC DC
2

= + +  (III.26) 

for interpolated prediction. 
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In this way the computations are reduced to at most 4 scalar multiplications and 3 

scalar summations for each block to determine DCref. 

The histogram difference diagram is generated using the measure from Equation 

(III.10) comparing DC term images. As it can be seen from Figure III.11, a break is 

represented by a single sharp pulse and a dissolve entails a number of consecutive 

medium-heighten pulses. Cuts are detected using a static threshold. For the 

recognition of gradual transitions, the histogram difference of the current frame is 

compared with the average of the histogram differences of the previous frames within 

a window. If this difference is n times larger than the average value, a possible start of 

a gradual transition is marked. The same value of n is used as a soft threshold for the 

following frames. End of the transition is declared when the histogram difference is 

lower than the threshold. Since during a gradual transition not all of the histogram 

differences may be higher than the soft threshold, similarly to the twin comparison, 

several frames are allowed to have lower difference as long as the majority of the 

frames in the transition have higher magnitude than the soft threshold. 

 

Figure III.11 Histogram difference diagram (*:cut, ---:dissolve). Figure taken from [SHEN]. 

As only the DC terms are used, the computation of the histograms is 64 times faster 

than that using the original pixel values. The approach is not able to distinguish rapid 

object movement from gradual transition. As a partial solution, a median filter (of size 

3) is applied to smooth the histogram differences when detecting gradual transitions. 

There are 7 parameters that need to be specified. 

An interesting extension of the previous approach is proposed by Taskiran and Delp 

[TASKI]. After the DC term image sequence and the luminance histogram for each 

image are obtained, a two dimensional feature vector is extracted from each pair of 
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images. The first component is the dissimilarity measure based on the histogram 

intersection of the consecutive DC term images: 

 ( )
( ) ( )( )n

i i 1j 1
1i i i 1 n

i 1j 1

min H j ,H j
x 1 Intersection H H 1

H
+=

+

+=

= − − = −
∑

∑
 (III.27) 

where Hi(j) is the luminance histogram value for the bin j in frame i and n is the 

number of bins used. 

The second feature is the absolute value of the difference of standard deviations σ for 

the luminance component of the DC term images i.e. xi2 = |σi-σi+1|. The so called 

generalized sequence trace d for a video stream composed of n frames is defined as di = 

║xi-xi+1║ , i=1,…,n. 

These features are chosen not only because they are easy to extract. Combining 

histogram-based and pixel-based parameters makes sense as they complement some of 

their disadvantages. As it was discussed already, pixel-based techniques give false 

alarms in case of camera and object movements. On the other hand, histogram-based 

techniques are less sensitive to these effects but may miss shot transition if the 

luminance distribution of the frames do not change significantly. It is shown that there 

are different types of peaks in the generalized trace plot: wide, narrow and middle 

corresponding to a fade out followed by a fade in, cuts and dissolves, respectively. 

Then, in contrast to the other approaches that apply global or local thresholds to 

detect the shot boundaries, Taskiran and Delp pose the problem as a one dimensional 

edge detection and apply a method based on mathematical morphology. 

Patel and Sethi [PATEL] use only the DC components of I frames. In [PATEL1] they 

compute the intensity histogram for the DC term images and compare them using 

three different statistics: Yakimovski likelihood ratio, χ2
 test and Kolmogorov-Smirnov 

statistics. The experiments show that χ2
 test gives satisfactory results and outperforms 

the other techniques. In their consequent paper [PATEL1] , Patel and Sethi compare 

local and global histograms of consecutive DC term images using χ2
 test, Figure III.12. 

The local row and column histograms Xi and Yj are defined as follows: 

 ( ) ( )
M N

i 0,0 j 0,0
j 1 j 1

1 1X b i, j , Y b i, j
M N= =

= =∑ ∑  (III.28) 

where b00(i,j) is the DC term of block (i,j), i=1..N, j=1..M. The outputs of the χ2
 test 

are combined using majority and average comparison in order to detect abrupt and 

gradual transitions. 
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Figure III.12 Video shot detection scheme of Patel and Sethi. Figure taken from [PATEL]. 

As only I frames are used, the DC recovering is eliminated. However, the temporal 

resolution is low as in a typical GOP every 12th frame is an I frame and, hence, the 

exact shot boundaries cannot be labelled. 

Meng, Juan and Chang [MENG] propose a shot boundaries detection algorithm based 

on the DC terms and the type of MB coding, Figure III.13. DC components only for 

P frames are reconstructed. Gradual transitions are detected by calculating the variance 

σ2 of the DC term sequence for I and P frames and looking for parabolic shapes in 

this curve. This is based on the fact that if gradual transitions are linear mixture of two 

video sequences f1 and f2 with intensity variances σ1 and σ2, respectively, and are 

characterized by f(t) = f1(t)[1 - α(t)] + f2(t) where α(t) is a linear parameter, then the 

shape of the variance curve is parabolic: σ2(t) = (σ21 + σ22)α(t) - σ21 α(t) + σ21. Cuts are 

detected by the computation of the following three ratios: 

 p b f
intra back forwR , R , R
forw forw back

= = =  (III.29) 

where intra, forw, and back are the number of MBs in the current frame that are intra, 

forward and backward coded, respectively. 

 

Figure III.13 Shot detection algorithm of Meng, Juan and Chang. Figure taken from [MENG]. 
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If there is a cut on a P frame, the encoder cannot use many MBs from the previous 

anchor frame for motion compensation and as a result many MBs will be coded intra. 

Hence, a suspected cut on P frame is declared if Rp peaks. On the other hand, if there 

is a cut on a B frame, the encoding will be mainly backward. Therefore, a suspected 

cut on B frame is declared if there is a peak in Rb. An I frame is a suspected cut frame 

if two conditions are satisfied: 1) there is a peak in |∆σ2| for this frame and 2) the B 

frames before I have peaks in Rf. The first condition is based on the observation that 

the intensity variance of the frames during a shot is stable, while the second condition 

prevents false positives due to motion. This technique is relatively simple, requires 

minimum encoding and produces good accuracy. The total number of parameters 

needed to implement this algorithm is 7. 

A technique by Fernando, Canagarajah and Bull [FERNA] stands out as a unified 

approach to scene change detection in both compressed and uncompressed domain. 

In this framework, an efficient algorithm estimates statistical features from the MPEG-

2 compressed domain. These features can be computed from the uncompressed 

domain as well. The statistic properties of each image are used to identify special 

effects that create gradual transitions like fades, dissolves and wipes. A transition 

model based on the image properties is created for each type of transition. The 

reported results show high precision/recall values of the scene change detection, 

approximately at the same level as for the proposed algorithm. However, the amount 

of processing needed for calculation of the statistical properties for each image is 

much bigger in comparison to the techniques that utilise only MB coding type 

information due to the partial decompression needed. This conclusion can be 

generalised to all methods that involve DCT coefficient analysis. In order to keep the 

continuity and process every frame in the sequence, partial motion compensation has 

to be done. Therefore, this substantial processing put methods that exploit DCT 

coefficient information somewhere between uncompressed and compressed domain 

analysis when it comes to their efficiency.   

III.3.5.2.  Temporal Video Segmentation Based on Motion Vectors 

Trying to minimise this partial decompression, a two-pass approach is presented by 

Zhang, Low and Smoliar [ZHANG3]. Here, the regions of potential transitions are 

located first applying the pair-wise DCT coefficients comparison of only I frames as in 

their previous approach. 



CHAPTER III CURRENT TENDENCIES IN CBVIR 

 

71 

The goal of the second pass is to refine and confirm the break points detected by the 

first pass. By checking the number of MVs M for the selected areas, the exact cut 

locations are detected. If M denotes the number of MVs in P frames and the smaller 

of the numbers of forward and backward nonzero MVs in B frames, then M<T 

(where T is a threshold close to zero) is an effective indicator of a cut before or after 

the B and P frame. Gradual transitions are found by an adaptation of the twin 

comparison algorithm utilizing the DCT differences of I frames. By MV analysis, 

though using thresholds, false positives due to pan and zoom are detected and 

discriminated from gradual transitions. 

Thus, the second pass of the algorithm uses only information directly available in the 

MPEG stream. It offers higher processing speed due to the multipass strategy, good 

accuracy and also detects false positives due to pan and zoom. However, the metric for 

cut detection yields false positives in the case of static frames and the efficiency is 

worse than of the proposed algorithm. Also, the problem of how to distinguish object 

movements from gradual transitions is not addressed. 

 

Figure III.14 Cuts: a) video structure, b) number of intra coded MBs  

In [KOPRI] cuts, fades and dissolves are detected only using MVs from P and B 

frames and information about MB coding mode. The system follows a two-pass 

scheme and has a hybrid rule-based/neural structure. During the rough scan peaks in 
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the number of intra coded MBs in P frames are detected. They can be sharp (Figure 

III.14) or gradual with specific shape (Figure III.15) and are good indicators of abrupt 

and gradual transitions, respectively. The solution is then refined by a precise scan over 

the frames of the respective neighbourhoods. The “simpler” boundaries (cuts and 

black fade edges) are recognized by the rule-based module, while the decisions for the 

“complex” ones (dissolves and non-black fade edges) are taken by the neural part. The 

precise scan also reveals cuts that remain hidden for the rough scan, e.g. B24, I49, B71 

and B96 in Figure III.14. 

 

Figure III.15 Fade out, fade in, dissolve: a) video structure, b) No. of intra coded MBs for P frames 

The rules for the exact cut location are based on the number of backward and forward 

MBs while those for the fades black edges detection use the number of interpolated 

and backward coded MBs. There is only one threshold in the rules that is easy to set 

and not sensitive to the type of video. The neural network module learns from pre-

classified examples in the form of MV patterns corresponding to the following 6 

classes: stationary, pan, zoom, object motion, tracking and dissolve. It is used to 

distinguish dissolves from object and camera movements, find the exact location of 

the “complex” boundaries of the gradual transition and further divide shots into sub-

shots. The approach is simple, fast, robust to camera operations and very accurate 

when detecting the exact locations of cuts, fades and simple dissolves. The 
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experimental results show high accuracy of this method, but efficiency-wise, due to the 

neural approach, this algorithm doesn’t fully use the opportunity of the compressed 

domain features. In the next session, a group of algorithms that utilise direct access to 

the compressed domain features is presented. 

III.3.5.3.  Temporal Video Segmentation Based on MB Coding Mode 

Although limited only to cut detection, a simple and effective approach is proposed in 

[WEISS]. It only uses the bitrate information at MB level and the number of various 

motion predicted MBs. A large change in bitrate between two consecutive I or P 

frames indicates a cut between them. As well as the proposed algorithm, this method 

only exploits MB coding type information, but lacks robustness to camera and object 

motion and gradual transitions. In order to solve this problem, Meng et.al. [MENG] 

analyses a relation between the number of backward predicted and motion 

compensated MBs for detecting cuts on B frames. Here, the ratio is calculated as Rb = 

back/mc where back and mc are the number of backward and all motion compensated 

MBs in a B frame, respectively. The algorithm is able to locate the exact cut locations. 

It operates hierarchically by first locating a suspected cut between two I frames, then 

between the P frames of the GOP and finally (if necessary) by checking the B frames. 

Following the similar idea, work presented by Dawood and Ghanbari [DAWOO] 

compares the way frames are referenced by exploiting the MB coding types. It assumes 

the standard GOP structure of MPEG stream, as it is assumed in this work. However, 

the algorithm proposed in this thesis is more robust to gradual transitions and camera 

motion, due to the fact that it calculates the continuous frame difference metric based 

upon the prediction behaviour within a whole SGOP. 

III.3.5.4.  Comparison of Algorithms for Temporal Video 

Segmentation in Compressed Domain 

In [GARGI] the approaches of Arman et al.[ARMAN], Patel and Sethi [PATEL], 

Meng et al.[MENG], Yeo and Liu [YEO] and Shen and Delp [SHEN] are compared 

along several parameters: classification performance (recall and precision), full data 

use, ease of implementation, source effects. Ten MPEG video sequences containing 

more than 30 000 frames connected with 172 cuts and 38 gradual transitions are used 

as an evaluation database. It is found that the algorithm of Yeo and Liu and those of 

Shen and Delp perform best when detecting cuts. Although none of the approaches 
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recognizes gradual transitions particularly well, the best performance is achieved by the 

last one. As the authors point out, the reason for the poor gradual transition detection 

is that the algorithms expect some sort of ideal curve (a plateau or a parabola) but the 

actual frame differences are noisy and either do not follow this ideal pattern or do not 

do this smoothly for the entire transition. Another interesting conclusion is that not 

processing of all frame types (e.g., like in the first two methods) does decrease 

performance significantly. The algorithm of Yeo and Liu is found to be easiest for 

implementation as it specifies the parameter values and even some performance 

analysis is already carried out by the authors. The dependence of the two best 

performing algorithms on bitrate variations is investigated and shown that they are 

robust to bitrate changes except at very low rates. Finally, the dependence of the 

algorithm of Yeo and Liu on two different software encoder implementations is 

studied and significant performance differences are reported.  

Compared to the algorithm proposed here, most of the techniques that work in both 

uncompressed and compressed domain lack efficiency considerably. Yet only a few 

achieve better overall accuracy and robustness. On the other hand, algorithms that 

access compressed domain features without additional processing and thus having the 

similar efficiency, underperformed in the accuracy and robustness criteria.   

III.4. KEY-FRAME EXTRACTION TECHNIQUES 
Key-frames are still images extracted from original video data that best represents the 

content of the shot in an abstract manner. Key-frames have been frequently used to 

supplement the text of a video log, but identifying them was done manually in the past. 

The effectiveness of key-frames depends on how well they are chosen from all frames 

of a sequence. The image frames within a sequence are not all equally descriptive. 

Certain frames may provide more information about the objects and actions within the 

clip than other frames. In some prototype systems and commercial products, the first 

the first frame of each shot has been used as the only key-frame to represent the shot 

content. However, while such a representation does reduce the data volume, its 

representation power is very limited since it often does not give a sufficient clue as to 

what actions are presented by a shot, except for shots with no change or motion. 

Key-frame-based representations views video abstraction as a problem of mapping an 

entire segment (both static and motion content) to some small number of 

representative images. The challenge is that the extraction of key-frames needs to be 
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automatic and content-based so that they maintain the important content of the video 

while removing all redundant information. In theory, semantic primitives of video, 

such as interesting objects, actions, and events should be used. However, such general 

semantic analysis is not currently feasible, especially when information from 

soundtracks and/or closed caption is not available. In practice, we have to rely on low-

level image features and readily available information instead. 

An effective approach to key-frame extraction, based on temporal variation of low-

level image features such as colour histograms and motion information, has been 

proposed by Zhang, et. al. [ZHANG1]. The key idea of this approach is that the 

number of key-frames needed to represent a segment should be based on temporal 

variation of video content in the segment; if there is a large temporal variation of 

content, there should be more key-frames, and vice versa. That is, after shot 

segmentation, key-frames in a shot will be selected based on the amount of temporal 

variation of colour histograms and motion in reference to the first or the last selected 

key-frame of the shot. It is reported that this approach achieves real-time processing 

speed, especially when MPEG compressed video and reasonable accuracy is used. 

In more detail, in this approach, frames in the shot will be compared in terms of 

colour histogram changes against the last key-frame or the first frame of the shot 

sequentially as they are processed, based on their similarities defined by colour 

histogram. If a significant change occurs, the current frame will be selected as a key-

frame. Such a process will be iterated until the last frame of the shot is reached. In this 

way, any significant action in a shot will be captured by a key-frame, while static shot 

will result in only one key-frame. In addition, information of dominant or global 

motion resulting from camera motion and large moving objects is added into the 

selection process according to a set of rules. For a zooming like (zooming, dollying, 

and perpendicular motion of large objects) sequence, the first and the last frames will 

be selected as key-frames; one presents a global, and the other the more focused view. 

For panning like (panning, tilting and tracking) sequence, the number of frames to be 

selected will depend on the scale of panning: ideally the spatial content covered by 

each frame should have little overlap, or each frame should capture a different, but 

sequential part of object activities. 

Figure III.16 shows an example in which three key-frames from a zoom-in shot were 

extracted using this approach. One can see clearly that it is a zoom-in sequence, which 

will not be concluded reliably from any single key-frame. In this respect, extracting 
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three key-frames is a more adequate than only a single key-frame, which is important 

for users (especially producers and editors) who want to choose some particular of 

shots from stock footages. 

 

 

Figure III.16 Three frames showing an example of a zoom-in sequence 

In this approach, the density of key-frames or the abstraction ratio can be controlled 

according to the user's need by adjusting the threshold for determining "significant" 

colour histogram changes and the overlap ratio of key-frames in panning sequences. 

However, the exact number of resultant key-frames will be determined a posteriori by 

the actual content of the input video. This fact has been argued to be a disadvantage of 

this type of key-frame extraction approach. On the other hand, predefining the 

absolute number of key-frames without knowing the content of video may not be 

desirable; assigning two key-frames for a talking head sequence of 30 minutes should 

still be considered having too much redundancy! In addition, assigning the same 

number of key-frames t, for instance, two video sequence of same length does not 

guarantee the same level of visual abstraction since the contents of the two sequences 

may have different levels of abstraction and/or totally different level of activities. 

Therefore, controlling the level of abstraction ratio or key-frame density is a more 

robust and useful approach. 

A compromise to meet the need of having a predefined number of key-frames, while 

maintaining the content-based selection criteria and constant level of abstraction ratio 
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among a given set of video sequences, is to set up a maximum number of key-frames 

allowed. In this way, an initial set of key-frames can be selected at a given abstraction 

ratio using the approach discussed above.  Then, if the number of key-frames exceeds 

the maximum, a post-filtering can be applied to filter out the frames whose similarity 

to their immediate neighbouring two frames are high. 

The key-frame extraction approach described above is based on a frame-based 

representation. That is, each frame is considered the basic unit for content 

representation. However, if we could further decompose frames into key-objects, then 

key-frames can be extracted based on the motion or activity of the objects. Below we 

outline some strategies for key-frames selection based on the motion activity and 

attributes of key-objects within the shot: 

- a key-object enters or leaves the image frame boundaries 

- key-object participate in occlusion relationship 

- two key-objects are at the closest distance between them 

- mean and extremes of key-object attributes, i.e., colour, shape, motion… 

- key-frames should have some small amount of background object overlap 

Figure III.17 shows 3 frames selected from the video sequence according to the 

criteria outlined above. 

 

Figure III.17 Three frames depicting a trolley-bus entering the scene, being in the middle,  
and leaving the scene as events crucial to the object tracking based summarisation. 
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III.5. REPRESENTING COLOUR IN CBVIR 
Colour is perhaps the most expressive of all the spatial visual features and has been 

extensively studied in the image and video retrieval research during the last decade. 

This Section presents state-of-the-art colour feature analysis in the CBVIR area. In a 

CBVIR system, once the key-frames are extracted as the representative set of images 

for a given video sequence, a set of low-level spatial features is extracted as a low-level 

description of the video sequence. These features include colour, texture, edges, shape, 

etc. The focus here is on the most expressive and widespread spatial feature: colour. 

III.5.1. COLOUR HISTOGRAMS 

In order to describe the variety of colours present in an image, the most suitable 

description is the colour distribution in the form of a colour histogram. A colour 

histogram is organised into a number of bins that represent non-overlapping colour 

ranges. Each bin contains the number of pixels that fall within each colour range. The 

histogram allows images with similar colour distributions to be retrieved. Colour 

descriptors originating from histogram analysis have played a central role in the 

development of visual descriptors in CBVIR. 

 

Figure III.18 Sample Colour Image suzie.jpg 

 

Figure III.19 Colour histogram of the image above 
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III.5.2. COLOUR HISTOGRAM COMPARISON 

There are a number of ways to compare histograms. Two simple methods include the 

absolute difference between two histograms, as in Equation (III.30), or the Euclidean 

distance as in Equation (III.31). In these two cases a lower distance value represents a 

greater similarity between images. 
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Another method for comparing histograms is to use the histogram intersection 

[SWAIN]. The histogram intersection adds up the minimum values from each 

corresponding bin in the histograms. Two images are considered similar if they have a 

large intersection. The intersection is then divided by the total number of pixels in the 

second image to normalise the value. A disadvantage with these approaches is that the 

computational complexity depends linearly on the product of the size of the histogram 

and the size of the database. Only comparing the bins with the largest number of 

pixels can reduce the complexity. Swain combined this technique with histogram 

intersection to perform an incremental intersection. Using incremental intersection the 

computational complexity can be reduced from O(nm) to O(n log(n) + cm), where c is 

the number of bins to compare from each histogram. 
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Another problem with these histogram comparison techniques is that bins are not 

compared with adjacent bins that may represent perceptually similar colours. The 

QBIC (Query by Image Content) [NIBLA] system uses the colour histogram cross-

distance, which considers the cross-correlation between histogram bins based on 

perceptual similarity expressed in Equation (III.33). The cross-correlation is 

determined by a matrix with entries apq. When the matrix is an identity matrix the 

formula becomes the Euclidean distance. 
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Stricker and Orengo [STICKER] argue that the problem is not with histogram 

comparison techniques but with the formulation of the histogram. They propose a 
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cumulative histogram where each bin Ci in the cumulative histogram is the sum of all 

bins Hj≤i in the colour histogram. However, their results do not show a significant 

improvement over standard colour histograms. 

In addition to the cumulative histogram Stricker and Orengo propose using central 

moments to describe the features of the histogram rather than the histogram itself. 

Moments have the general form: 
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where N is the number of data points and n is the order of the moment. The first 

moment is related to the mean, the second relates to the variance, the third determines 

the skewness and the fourth can be used to calculate kurtosis. Stricker and Orengo use 

the following formulae to determine mean, variance and skewness: 
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where pij is the j-th pixel of the i-th colour channel. The moments for each colour 

channel are stored separately resulting in only nine floating-point numbers per image. 

The similarity between two image entries can be determined using the similarity 

function dmom: 
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The weights, wil, allow varying emphasis to be placed on different moments. For 

example, an indoor scene may have non-varying lighting conditions so more 

importance may be placed on the average colour because the average colour should 

not change considerably between shots with similar lighting. 

III.5.3. SELECTION OF COLOUR SPACE 

Images can be faithfully reproduced using an additive RGB colour space because the 

photoreceptors in the eye, which loosely represent the red, green, and blue 

wavelengths, combine their outputs so that all colours of the visible spectrum can be 

perceived. However, analysing images based on the RGB colour space does not always 

give perceptually accurate results. The human vision system doesn't see colours as 

three separate dimensions ranging from black to red, green or blue. Rather colours are 

interpreted on a colour wheel (Figure III.20) where each colour mixes into the next 
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and completes a circle. Colour is then best represented as the angle on the wheel rather 

than individual strengths of red, green or blue. To represent all visible wavelengths a 

colour solid or colour spindle [MATLIN] can be constructed (Figure III.21). The 

colour spindle allows colour to be represented in terms of hue, saturation, and 

brightness. 

A colour system designed to imitate human colour perception is the Munsell colour 

coordinate system that has the three components hue, value and chrominance (HVC 

colour space) [MIYAH]. 

 

Figure III.20 Colour circle 

 

Figure III.21 Colour cone 

 

Gong [GONG] calculates an approximation to the Munsell colour coordinate system 

by converting the RGB values into CIE XY Z values using the formulae 

 
X 0.607 R 0.174 G 0.201 B
Y 0.299 R 0.587 G 0.114 B
Z 0.066 G 1.117 B

= ⋅ + ⋅ + ⋅
= ⋅ + ⋅ + ⋅
= ⋅ + ⋅

 (III.37) 

 

 

Equations (III.38), (III.39), and(III.40) show how the L*a*b* values can then be 

obtained from the X Y Z values, where Xo, Yo, and Zo represent the X, Y, and Z 

values for the reference white. 

 

1
3

o

YL 116 16
Y

∗  
= ⋅ − 

 
 (III.38) 
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X Y

∗

 
    = ⋅ −         

 (III.39) 

 

1 1
3 3

o o

Y Zb 200
Y Z

∗

 
    = ⋅ −         

 (III.40) 

Finally the H V C values can be derived from the L*a*b* values 

 ( )H arctan b a∗ ∗=  (III.41) 

 V L∗=  (III.42) 

 ( ) ( )2 2
C a b∗ ∗= +  (III.43) 

Determining the HVC values from RGB can be a difficult process as can be seen with 

the preceding formulas. Smith and Chang [SMITH] used a more tractable transform to 

HSV colour space. The algorithm assumes input in the range R,G,B∈0→1 and 

produces output, H∈0→6 and S,V∈0→1. Even though much faster to compute, the 

HSV colour space is not as perceptually accurate as the HVC colour space. 

Other colour spaces that are suited for compression, such as YUV and XYZ, use 

opponent colour axes. Swain and Ballard [SWAIN] used the opponent colour axes that 

are defined as: 

 rg r g= −  (III.44) 

 by 2 b r g= × − −  (III.45) 

 wb r g b= + +  (III.46) 

Even though this colour space isn't perceptually uniform it can be computed quickly 

and allows the intensity axis (wb) to be more coarsely sampled to reduce the effects of 

lighting variation. 

III.5.4. COLOUR SPACE QUANTISATION 

With the intent to make the colour analysis simpler, the continuous colour space is in 

the most cases quantised into a partitioned and discrete colour space. In general, 

quantizer Qc is a mapping vector of dimension k and size M that transforms from a 

vector in k dimensional colour space into a finite set C containing M outputs 

[GERSHO]. Thus, a quantizer Qc is defined as: 

 { } { }k k
c 0 1 M 1 mQ : C,C y , y ,..., y m 0,1,...M , y−ℜ → = ∧ ∀ ∈ ∈ℜ  (III.47) 
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In general, the set C is called the codebook and has size M. In the case of colour space 

quantisation, k=3 and each entry in the codebook ym corresponds to a colour vector. 

Therefore, the codebook C represents the gamut or collection of colours. The 

quantizer Qc is a covering of kℜ into M partitions, where each partition Rm contains 

all points wc in the continuous colour space that are assigned the same codeword ym: 

 ( )k
m c c c mR w : Q w y= ∈ℜ =  (III.48) 

From the definition of the partitions it follows that they completely cover kℜ and are 

non-overlapping: 

 k
m m n

m

R R R , m n= ℜ ∧ = ∅ ∀ ≠∩∪  (III.49) 

so that these partitions form a complete partitioning of kℜ . 

Practically, since the colour histograms are already a discrete representation of the 

continuous colour space giving the colour distribution of the analysed image/key-

frame, one-dimensional colour space quantisation is automatically done by generation 

of the colour histogram with M bins. 

III.5.5. HISTOGRAM QUANTISATION 

In addition to the colour space quantisation, CBVIR systems use the colour histogram 

quantisation to manage the retrieval process in a scalable and hierarchical way. This 

process is sometimes referred to as colour histogram compaction. The best example of 

the quantisation in the descriptor domain is the Scalable Colour Descriptor of (SCD) 

defined in the MPEG-7 standard.  

The SCD addresses the interoperability issue by fixing the colour space to HSV, with a 

uniform quantization of the HSV space to 256 bins. The bin values are non-uniformly 

quantized to a 11-bit value. This method achieves full interoperability between 

different resolutions of the colour representation, ranging from 16 bits/histogram at 

the low end to approximately 1000 bits/histogram at the high end. Of course, the 

accuracy of the feature description is highly dependent on the number of bits used. 

However, core experiments have shown that good retrieval results are still achievable 

using only 64 bits, while excellent results can be obtained using medium or full 

resolution of the descriptor.  

The HSV space is uniformly quantized into a total of 256 bins. This includes 16 levels 

in H, four levels in S, and four levels in V. The histogram values are truncated into a 

11-bit integer representation. To achieve a more efficient encoding, the 11-bit integer 
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values are first mapped into a “nonlinear” 4-bit representation, giving higher 

significance to the small values with higher probability. This 4-bit representation of the 

256-bin HSV histogram would require 1024 bits/histogram, which is too large a 

number in the context of many MPEG-7 applications. To lower this number and 

make the application scalable, the histograms are encoded using a Hadamard 

transform. The basic unit of the Hadamard transform consists of a sum operation and 

a difference operation [see Figure III.22(A)], which relate to primitive low- and high-

pass filters.  
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Figure III.22 A) Basic unit of Hadamard transform, B) A schematic diagram of SCD generation 

Summing pairs of adjacent histogram lines is equivalent to the calculation of a 

histogram with half number of bins. If this process is performed iteratively, usage of 

subsets of the coefficients in the Hadamard representation is equivalent to histograms 

of 128, 64, 32 bins, which are all calculated from the source histogram. The high-pass 

(difference) coefficients of the Hadamard transform express the information contained 

in finer-resolution levels (with higher number of bins) of the histogram. This 

procedure relies o the assumption that natural image signals usually exhibit high 

redundancy between adjacent histogram lines. This can be explained by the “impurity” 

(slight variation) of colours caused by variable illumination and shadowing effects. 

Hence, the high-pass coefficients expressing differences between adjacent histogram 

bins usually have only small values. Exploiting this property, possibility to truncate the 

high-pass coefficients to integer representation with only a low number of bits is 

claimed. Figure III.22(B) shows the block diagram of the complete system.  
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The output representation is scalable in terms of numbers of bins, by varying the 

number of coefficients used. Interoperability between different resolution levels is 

retained due to the scaling property of the Hadamard transform. Thus, matching based 

on the information from subsets of coefficients guarantees an approximation. 

Table III.1 shows the relationship between numbers of Hadamard coefficients as 

specified in the SCD and partitions in the components of a corresponding HSV 

histogram that could be reconstructed from the coefficients. A different type of 

scalability is achieved by scaling the quantized (integer) representation of the 

coefficients to different numbers of bits. 

SCALING H S V 
16 4 2 2 

32 8 2 2 

64 8 2 4 

128 8 4 4 

256 16 4 4 

Table III.1 Equivalent Partitioning of the HSV colour Space for different configurations of the MPEG-
7 Scalable Colour Descriptor 

Although this method argues that the histogram simplification procedure gradually 

removes least relevant information first, it doesn’t establish its argument on the 

perceptual distortion to the image but on the distortion of the colour histogram. In 

Chapter IV a colour histogram simplification algorithm based on the perceptual 

distortion of the represented image is given. 

III.6. SEMANTIC EFFORTS IN CBVIR 
Numerous CBIR systems have explored the possibilities of indexing image and video 

content by using low-level visual features (see Virage [BACH], QBIC [FLICK], and 

VisualSeek [SMITH2]). These systems work by (1) automatically extracting features 

directly from the visual data; (2) indexing the extracted descriptors for fast access; and 

(3) querying and matching descriptors for the retrieval of the visual data. Beyond these 

basic capabilities, there has been an effort to support relevance feedback to refine 

queries and learn through examples what the user may be looking for [RUI]. 

More recently, there has been focused effort on automatically producing certain 

semantic labels that could contribute significantly to retrieving visual data. For 

example, recent work has focused on portrait vs. landscape detection, indoor vs. 
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outdoor classification, city vs. landscape classification, sunset vs. forest classification 

[SZUMMER], [VAILAYA], and other attempts to answer basic questions of who, 

what, when, and where about the visual content. Most of the approaches rely on 

traditional machine learning techniques to produce semantic labels, and some degree 

of success has been reached for various constrained and sometimes skewed test sets. 

However, these efforts represent only a small initial step towards achieving the real 

understanding of the visual content.  

III.6.1. SEMIOTIC THEORIES 

Semiotics is a discipline that studies the relationships between signs and their meanings 

and provides a sound framework for the automatic extraction of semantics in video 

streams from recognition of basic visual and audio primitives and their combination 

according to a suitable set of rules [SANTINI]. In the following section we discuss the 

semiotic perspective to derive meaning from signs in video. Frequent buzzwords like 

text and language are to be placed in the context of the film theory although the 

semiotic approach at this level doesn't involve any particular medium. 

Semiotics is a theoretical framework for the study of meaning in film, TV and other 

media, identifies underlying structure of their symbolic values, their use and 

interpretation. The term semiotics stems from the Greek word semeiotikos, which 

denotes the study of signs, what they represent and signify, and how we act and think 

in their universe. Founder of semiotics and modern linguistics, Ferdinand de Saussure 

[SAUSS], argued first that language is a system, in which it is the relations between 

elements and not elements themselves that are responsible for meaning. Humans make 

meanings through creation and interpretation of signs as mental concepts, with a 

signifier as its material aspect (letter, icon, sound, etc.). Sign has an arbitrary nature of 

the bond between signifier and signified, so that the sign signifies by virtue of its 

difference from other signs. Structuralism, an analytical method based on Saussure's 

linguistic model, has been employed by many semioticians that described the overall 

organization of sign systems as languages with their grammars. They engaged in a 

search for deep structures underlying the 'surface features' of phenomena. 

Structuralism produced the first semioticians of the film language. Initial attempts to 

analyse the underlying structure of signs in visual media were made in the 1950s by 

Rolan Barthes on photography and in late 1960s by Christian Metz on cinema 

[METZ]. Metz examined the ways in which film could be considered as language, the 
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nature of a shot opposed to the word, and what the grammar of cinematic narrative 

might be. He developed a classification of sequences and scenes known as la grande 

syntagmatique, based on editing strategies and their role in conveying narrative form. 

By identifying five levels of cinematic codification that create basic significations in a 

film, i.e. perceptual, cinematic, diegetic, connotative and subtextual level, Metz sowed 

the seeds of computational semantic and semiotic analysis in visual media.  

Much earlier, in 1920s, Soviet filmmakers Eisenstein and Pudovkin introduced the fact 

that editing is the crucial expressive element in cinema. Kuleshov [KULESH] 

experiment proved that meaning appears to derive from the relationship of contiguous 

shots rather than from the content of the individual shots themselves.  

Almost concurrently with structuralism in film theory, in the years immediately 

preceding the student uprising in 1968, a new semiotic theory was emerging. It 

brought fundamental critics of Western philosophy in general by returning the crucial 

role of the human subject in signification process. It was called post-structuralism. As 

the creator of the most influential method in post-structuralism, Deconstruction, 

Jacques Derrida gave definite consequences for the human’s relation to the system of 

representations [DERRIDA], central to our problem of multimedia management.  

Deconstruction states that it is impossible for a text to have one fixed meaning, and 

emphasizes the role of the observer in the production of meaning. Language does not 

reflect meanings, which pre-exist in the world; it is the site for the production of 

meaning. This appeared to be the case for all signifying practices like film, television 

and other media that we are eager to explore. 

Structuralism claimed to provide a scientific method that located unity and order in the 

underlying structures of texts but assumed that analysts’ meanings coincided with 

those of the observer. Deconstruction is, though, characterised by a shift away from 

the determining structures of texts, a concern with signifiers as against signs, and a 

foregrounding of the role of the observer in the process of producing meaning 

[BRUNET].  

Clearly structured analysis enabled breaking down the problem complexity to the level 

bearable for computational implementation. Structuralistic approach to computational 

problems tempted its technical developers: it offered straightforward and stable 

solution to the complex problem of multimedia semantics. On the other hand, 

deconstruction offered undecidability and deep involvement in interaction with the 

human subject. 
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The main idea of deconstruction is in a way analogous to the Werner Heisenberg’s 

uncertainty principle which asserts that at the quantum level the observer effects that 

which is observed, thus making truly objective observation impossible. Subject of 

observation is constantly disturbing the signification chain from its equilibrium giving 

the new paths to the meaning. 

III.6.2. SEMIOTICS IN CBVIR 

There has been some recent work connecting the fields of semiotics and multimedia 

information systems. Smoliar et al. [SMOLIAR] describes some of the implications to 

multimedia search from the point of view of writing and reading multimedia signs. 

Multimedia material such as images and words are considered to signify notions of 

objects in the world (e.g., an image of a carrot and the word “carrot” signify the notion 

of carrot); and search, fundamental for the processes of reading and writing. Joyce et 

al. [JOYCE] proposes a semiotics framework to integrate high-level metadata (e.g. 

“carrot”) and low-level metadata (e.g. colour histogram extracted from the image of a 

carrot) by formally adding a second representation level to the [SMOLIAR]. This level 

consists of features extracted from the multimedia material acting as signs of the 

multimedia material itself as depicted in Figure III.23.  

 

Figure III.23 Semiotic framework for multimedia and features extracted from multimedia  

Textual and non-textual features signs are identified as high-level and low-level 

metadata, respectively. The link between the two is established with the Multimedia 

Thesaurus [TANSLAY] and neural-network classification agents [JOYCE]. Del Bimbo 

[DELBIM] applies the semiotics idea of producing meaning at two levels, the narrative 

level and discourse level, to automatically annotate and retrieve videos of commercials. 

The narrative level includes basic signs and the results of sign combinations; the 

discourse level describes how to use narrative elements to create a story. 

Though the efforts to approach the task of semantic video indexing and retrieval from 

the semiotic perspective are radical change to the existing mainstream CBVIR systems, 
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they all followed structuralistic theories in the process of signification. In order to 

involve the user’s influence focus of the semiotic approach should move towards post-

structuralist theories and let user and retrieval context shape the signification space on 

a deeper level. However, for that purpose, we need to develop appropriate 

representations that can adapt themselves to the environment.  

III.6.3. RELEVANCE FEEDBACK 

Early attempts in the filed of CBIR aimed at fully automated, open-loop system. It was 

hoped that current computer vision and image processing techniques would be good 

enough for image search and retrieval. The modest success rates experienced by such 

systems encouraged researchers to try a different approach, emphasizing interactivity 

and explicitly including the human user in the loop. An example of this shift can be 

seen in the work of MIT Media Lab researchers in this field, when they moved from 

the “automated” Photobook [PENTL] to the “interactive” FourEyes [MINKA].  

Relevance feedback is a powerful technique first introduced in traditional text-based 

information retrieval systems. It is the process of automatically adjusting an existing 

query using the information fed back by the user about the relevance of previously 

retrieved objects such that the adjusted query is a better approximation to the user’s 

information need [BUCKLEY] In an interactive system, neither the user nor the 

system designer need to specify any weights. The user only needs to mark which 

images he/she thinks are relevant to his/her query. The weights associated with the 

query object are dynamically updated to model the user’s information need and 

perception subjectivity. In general, there are three approaches to relevance feedback in 

image and video retrieval. One is based on artificial intelligence (AI) learning 

techniques [PICARD], one on the probabilistic methods like a Bayesian framework 

[COX], and the last on information retrieval techniques [RUI]. Furthermore, this 

feedback might be provided in many different ways and each system might use it in a 

particular manner to improve its performance. The expected effect of relevance 

feedback is to “move” the query in the direction of relevant images (or any other 

media) and away from the on-relevant ones. 

There are many ways of using the information provided by the user interactions and 

refining the subsequent retrieval results of a CBVIR system. One approach 

concentrates on the query phase and attempts to use the information provided by 

relevance feedback to refine the queries. Another option is to use relevance feedback 



CHAPTER III CURRENT TENDENCIES IN CBVIR 

 

90 

information to modify feature weights, such as in the MARS project [RUI1]. A third 

idea is to use relevance feedback to construct new features on the fly, as exemplified in 

[MINKA1]. A fourth possibility is to use the relevance feedback information to update 

the probability of each image in a database being the target image, in other words, to 

predict the goal image given the user’s interactions with the system [COX]. 

III.7. REPRESENTATIONS OF VIDEOS IN CBVIR 
There are a few in-depth research efforts focused on the problem of knowledge 

representation of videos. The initial contribution to the area was made by M. Davis in 

[DAVIS] where an early definition of a video representation and the problems 

involved were presented. Here, four main ontological issues in video are outlined as: 

space, identity, action and time. Most of the arguments raised in this work referred to 

the experimental cinematic work of Lev Kuleshov [KULESH]. Davis underlines that 

the task in front of the researchers is to gather insights from disciplines that have 

studied the structure and function of video data and to use these insights in the design 

of new representations for video which are adequate to the task of representing the 

medium. This idea in its essence is identical to the Computation Media Aesthetics 

paradigm, but coming from the AI background it has more practical influence in 

CBVIR. In fact, this work precedes CMA acquiring the groundbreaking status in the 

field. Furthermore, in [DAVIS1] Davis proposed the concept of Media Streams as a 

visual language for video representation. It utilises a hierarchically structured semantic 

space of iconic primitives, which are combined to form a set of compound descriptors. 

Though not directly connected with CBVIR task, these representations opened a huge 

space indispensable to the development in the field. 

Nowadays, following the wave of research activities that attempt to address the 

problem of semantic gap, various approaches are proposed. In [NAPHA] a graph 

framework of probabilistic multimedia objects called multijects attempts to formulate 

relationships of the low-level descriptors, semantic labels and contextual information. 

Multiject representation achieved good results in semantic labelling, but the efficiency 

of the probabilistic approach appeared to be a drawback of the system as a result of 

high computational complexity involved. Another statistical approach in [VASCO] 

suggested a statistical model for content analysis relying on shot duration and activity. 

They apply Bayesian formulation for shot segmentation and later semantic labelling.  
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Attempts to formulate a prolific representation of video that should enable semantic 

CBVIR have had two common characteristics. One is that they all turned to 

knowledge of the content producers and theoreticians searching for a strategy that 

would facilitate their aims. The other, less progressive characteristic is that the results 

achieved didn’t allow adaptable and scalable representations due to their high 

complexity and structural approach adopted. Thus, the results of semantic CBVIR that 

fundamentally depend on the user’s preferences, contextual information and all the 

relationships between the instances involved couldn’t achieve much. Without adaptive 

and scalable representations computed efficiently, the final target of the semantics in 

the CBVIR will stay on the other side of the semantic gap. 

III.7.1. EXPRESSIVE ELEMENTS USED IN VIDEO REPRESENTATIONS 

This section presents expressive elements used by film and TV producers and 

exploited in the CBVIR area to extract essential perceptual and structural features of 

video media. In some publications these elements are called mid-level descriptors, 

explaining their position in the signification chain. Certainly, this is only a limited and 

the simplest set of expressive elements used, but some of the biggest film and TV 

theoreticians argue that some of these elements generate basic impressions in minds of 

the audiences. 

III.7.1.1.  Shot Pace 

Tempo or pace is often used interchangeably in film appreciation, and refers to the 

”rate of performance or delivery”. Zettl [ZETTL] makes a distinction in defining pace 

as the perceived speed and tempo as the perceived duration. Thus tempo/pace is a 

reflection of both the speed and time of the underlying events being portrayed and 

affects the overall sense of time of a movie. Tempo is crafted and manipulated in 

different ways. One technique is the montage that allows a director to manipulate the 

shot lengths used in the creation of a scene, thus deliberately controlling the speed at 

which a viewer’s attention is directed. Another means by which a viewer’s perception 

of speed can be manipulated is through controlling object and camera motion. Fast 

motion gives us the feeling of fast events, while no or little motion has the opposite 

effect on our perception of pace. Film audio is a third factor that increases or 

decreases our sense of the performance delivery. There may be other more subtle 

factors besides the story itself, but we argue that one can construct a computable and 
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powerful expressive element, pace, that reasonably captures the flow of time in a 

movie based on the underlying primitives of shot length and motion. 

III.7.1.2.  Rhythm 

Film rhythm is another complex narrative concept used to endow structure and form 

to film. Mitry defines it as an “organization of time” [MITRY, MITRY2]. Of the many, 

often elusive cinematic devices contributing to film rhythm, Bordwell and Thompson 

[BORDW] state that “frame mobility involves time as well as space, and film makers 

have realized that our sense of duration and rhythm is affected by the mobile frame”. 

They list camera position/movement, sound rhythm, and editing as constituent 

elements of rhythm. Further they label resulting rhythms types in higher-level terms by 

stating that a “camera motion can be fluid, staccato, hesitant and so on”. Thus, 

because a film is structured in time with editing, it manifests a natural beat, and has an 

intrinsic rhythm. To find this rhythm, one must examine a neighbourhood of shots. In 

addition, since both shot length and motion contribute to rhythm, one can examine 

the rhythm that arises individually and jointly from these contributing elements. Since 

shot length and motion are computable, motion rhythm and editing rhythm are 

likewise derivable from them. 

III.7.1.3.  Motion 

The most discernible difference between still images and moving pictures stems from 

movements and variations. In order to obtain a more precise and complete semantic 

information from video, we need the ability to classify objects appearing in a video 

sequence based on features such as shape or colour, as well as their movements. 

Besides providing information on objects trajectories, analysis of motion is useful to 

detect objects, to recover the kind of camera operation (e.g. zoom, pan, tilt), and to 

create salient video stills by mosaicking several frames. 

III.7.1.4.  Camera Motion 

Camera operation information is very significant for the analysis and classification of 

video shots [HIRZAL], since it often explicitly reflects the communication intentions 

of the film director. The seven basic camera operations are fixed, panning (horizontal 

rotation), tracking (horizontal transverse movement), tilting (vertical rotation), 

booming (vertical transverse movement), zooming (varying the focusing distance), 
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dollying (horizontal lateral movement) and Roll (coaxial rotation), as shown in Figure 

III.24.  
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Figure III.24 Camera Motion Types 

Camera operations include the basic operations and all the different possible 

combinations [ZHANG]. Each of these operations induces a specific pattern in the 

field of motion vectors from a frame to the next. Simple methods for detecting 

panning (tilting) and zoom operations have been proposed in [ZHANG1]. In order to 

detect camera operation, the motion vectors can be obtained by optical flow 

techniques or by coding algorithms such as MPEG or H.263.  

The first step aims at discriminating between static/motion scenes; this can be done 

simply by looking at the average size of the motion vectors. The motion vector field 

for any combination of panning and tilting will exhibit a single strong modal vector 

value which corresponds to the direction of camera movement. Most of the motion 

vectors will be parallel to this vector. This may be checked by analyzing the 

distribution of the direction of the motion vectors; a pan/tilt is characterized by a 

small standard deviation of the distribution or by a small absolute deviation from the 

modal direction as suggested in [ZHANG]. Zooming is characterized by a flat 

appearance of the direction distribution. Alternatively zooming operations are 

characterized by vectors of opposite sign at the frame edges. This means that the 

magnitude of the difference between vertical (or horizontal) components exceed the 

magnitude of both components. This simple approach can be fooled by the motion of 

large objects. More generally, the problem of recovering camera motion can be seen as 
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that of estimating an affine transformation which accounts for the dominant global 

view transformation. 

Akutsu et al. [AKUTSU] have used motion vectors and their Hough transforms to 

identify the seven basic camera operations. The motion vectors pattern is characterized 

physically and spatially by (i) the magnitude of the motion vectors and (ii) the 

divergence/convergence point. For ex-ample, in case of a simple zoom in (Figure 

III.25a) and pan right (Figure III.26a) at a constant speed, the motion vectors are 

shown in Figure III.25b and Figure III.26b respectively. The algorithm has two stages. 

The first stage employs block matching to determine the motion vectors between 

successive frames. In the second stage the motion vectors are transformed to the 

Hough space. The Hough transform of a line in the spatial domain is just a point in 

the Hough space. A group of lines in the spatial domain are represented by 

 ( ) ( )0 0x cos y sinρ = ⋅ ϕ + ⋅ ϕ  (III.50) 

in the Hough space, where (x0 , y0) is the point of divergence or convergence. The 

least-squares method is used to fit the transformed motion vectors to the curve 

represented in the formula above. Seven categories of camera operations have been 

estimated: pan, zoom, tilt, pan and tilt, pan and zoom, tilt, zoom, and pan. We note 

this technique based on motion vectors is noise sensitive and has a high computational 

complexity. 

 

Figure III.25 Camera zoom operation and corresponding motion vectors 
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Figure III.26 Pan operation and corresponding motion vectors 

An alternate approach in detecting camera operations is to examine what are known as 

the X-ray images [AKUTSU]. Edge detection is first performed on all the frames 

within a shot. A horizontal X-ray image is then obtained by taking a weighted integral 

of the edge frames in the horizontal direction. Similarly, a vertical X-ray image is 

obtained by taking a weighted integral of the edge frames in the vertical direction. 

Camera operations are obtained by approximating the spatial distribution of the edge 

angles of the horizontal and vertical X-ray images. We note that performing edge 

detection on all frames in the sequence is time consuming. 

We note that in all the previous techniques, only a subset of the camera operations is 

extracted. In addition, it is not possible to distinguish tracking from panning, and 

booming from tilting. Recently, Srinivasan et al. [SRINI] have proposed a technique 

based on optical flow in order to distinguish tracking from panning, and booming 

from tilting. This technique is based on the idea that if the components of the optical 

flow due to camera rotation and zoom are subtracted from the optical flow, the 

residual flow will be parallel. 

We note that in all these techniques for the detection of camera operations, it is 

assumed that there is no large moving object dominating the visual field in the video 

sequences. In case of the presence of a large moving object dominating the visual field, 

false detection of a camera operation may occur. The effect of a large moving object 

on the detection process can be reduced by employing techniques to detect the 

moving objects and compensate for their effects. 
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III.8. GENRE CLASSIFICATION 
In a recent review on multimodal video indexing Snoek and Worring define genre as a 

set of video documents sharing similar style, putting genre information as the first level 

of semantic index hierarchy [SNOEK]. This standpoint is supported in the discussion 

in Section 6.3 of the previous Chapter. Genre acts as the main contextual guideline of 

video indexing. Thus, there has been a lot of research effort put in the genre 

classification and verification task.  

Foundations of genre classification were laid by Fischer et. al. [FISCHER] where the 

genre classes were mapped in a three level processing sequence. On the first level, 

syntactic properties of videos, like shot boundaries, colour descriptors, camera and 

object motion and audio, are extracted from the sequence. These properties are 

analysed on a more abstract level trying to define the main attributes of the film style, 

like camera zooms or pans, speech, music, etc. Finally, the style attributes are mapped 

to previously defined genre classes.  

Following similar concepts, some more detailed analyses of particular style attributes 

have been published since. Interestingly, the most prolific medium having been 

analysed is audio. The main reason for that is the extremely high computational 

complexity of the visual media computation, so the pragmatic researchers turned 

towards audio classification tools. Jasinschi and Louie present classification of TV 

program genre based on audio patterns defined as a set of relative probabilities for a 

set of mid-level audio categories [JANSCH]. Research work by Roach and Mason on 

video genre classification using audio features applies various algorithms like mel-

frequency cepstral coefficients, short term spectral estimates, etc. [ROACH1]. Roach 

proposes a system that firstly does a discrete Fourier transform (DFT) applied to a 

short time frame of the time domain signal and the magnitude terms obtained. The 

second step is to apply a log function to the magnitude spectrum. This serves to 

reduce the dynamic range of the spectrum. Then a mel filter bank is applied and finally 

a discrete cosine transform (DCT) is applied to give the cepstral coefficients used in 

the classification process. 

If the contextual information limits the classification environment then the 

classification task can become more specific as for example in [IDE] were semantic 

attributes of captions are used for classification of news videos. A combination of 

static and dynamic features used in a limited environment is presented by Haering et. 

al. in [HAERING] where event detection is applied to detecting hunts in wildlife 
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videos. Similar approach is applied to sports sequences by Yow et al in [YOWJ who 

analyse soccer video for highlights, where the ball is tracked and the static up-rights of 

the goal posts are detected to indicate a shot on goal. These applications require 

constrained inputs for success; they rely on the video being pre-classified into news, 

wildlife and sport respectively. It is this high level of video classification to which our 

approach is applied. 

Approaches that use less complex motion measures to classify video sequences are 

presented by Bouthemy et. al. For example in [FABLE] and [BOUTH] local motion 

measures and global motion features are used to classify temporal textures such as fire 

and foliage; they also claim that these measures can be used to retrieve clips of similar 

global motion properties such as sports. 

Work of Troung and Dorai [TROUNG] examines a set of features that would be 

useful in distinguishing between sports videos, music, news, cartoons, and 

commercials. In contrast to audio based algorithms they concentrate on features that 

can be extracted only from the visual content of a video. Rather than learning features 

from video data sets, they use human perception and discernment of video genre 

characteristics as a starting point, and extract computational features that would reflect 

those visual characteristics such as editing, motion, and colour. They address the 

related issue of the length of a clip required to be processed for reliable genre 

identification and its impact on the classification performance using proposed features. 

Likewise, Rasheed and Shah [RASHE] analyse Film Grammar or Cinematic Principles 

(camera movements, sound effects, lighting, etc.) by which one can create mood and 

atmosphere, induce emotional reactions and convey information to the viewers. They 

first classify movies into action and non-action classes by estimating the visual 

disturbance and average shot length using a very simple but robust technique. Visual 

disturbance is defined as the motion content of a video clip. Using the colour and 

audio information and combining that with the Cinematic Principles to classify movies 

they make three subclasses: comedy, horror and drama/other under non-action group. 

Finally they classify action movies into explosion/fire category and other-action 

category. This is done by analyzing audio information and identifying the peaks in 

sound energy while testing corresponding video frames for the occurrence of an 

explosion. 

Various other approaches have been applied to the task of genre classification using 

different modalities of the video media, like textual transcripts, TV schedules, and 
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other available metadata, next to the audio-visual domain analysis. Related work 

includes Infomedia's Universal Genre Classification System [INFOME]. This system is 

text-based and it employs country-specific and language-specific program 

classifications; it describes a TV program into three levels, were each of these levels is 

broken down in 12 general headings, followed by sub-categories. 

Utilising multimodal information for genre classification in a dynamic and adaptive 

way is a new challenge. Up-to-date research has offered classification into relatively 

small number of genre categories with too broad meanings. By following the CMA 

paradigm in a more general way we are offered broad and complex information that is 

computationally too expensive for the system and unable to scale down to the level 

bearable for the implementation resources.  
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IV.  EFFICIENT LOW-LEVEL FEATURE EXTRACTION 

IV.1. OVERVIEW 
This Chapter brings in-detail description of algorithms applied in the low-level feature 

extraction process. First part gradually introduces methods for temporal segmentation 

of MPEG videos that exploit temporal prediction information embedded in the 

stream. Following that, a technique for key-frame extraction based on the presented 

scalable temporal segmentation is described. In addition to temporal parsing, an 

algorithm for efficient global and camera motion categorisation is presented. Finally, a 

hierarchical colour descriptor is generated by applying a scalable quantisation of colour 

information in the descriptor domain. 

IV.2. METRIC EXTRACTION 
In order to apply temporal analysis to a video stream one has to extract representative 

information on the way  visual features change in time. The major goal of the temporal 

analysis is to run in real time, i.e. that the processing period is shorter than the frame 

rate of the streamed video. Although the processing power is big nowadays, 

requirements for real-time broadcast quality video processing in spatial domain haven’t 

been met yet. Therefore, the focus of this research are the algorithms for temporal 

analysis in the compressed domain, particularly applied to the  widespread video 

compression standards like MPEG-2 and H.261. 

IV.2.1. PREDICTION INFORMATION IN THE MPEG STREAM 

The major contribution to the high MPEG1/2 compression rate lies in the 

exploitation of the temporal redundancy present in the sequence of frames that form a 

video stream. By analysing the behaviour of the way the redundancy is being 

minimised by temporal prediction it is possible to detect global visual changes present 

in the stream without decompressing it. This Section introduces the initial terms and 

notations of the applied methodology. 

As described in Chapter III, MPEG-2 encoders compress video by spatially dividing 

each frame into 8x8 blocks and quantising its DCT coefficients. Besides that, a group 

of 6 to 12 blocks form a so called MacroBlock of size 16x16 pixels. In addition to 

encoded pixel values, MacroBlock unit contains information about the type of 
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temporal prediction and values of the corresponding vectors used for motion 

compensation. The character of the MacroBlock prediction is defined in a MPEG 

variable called MBType. There are four types of MacroBlock prediction:  

• Intra coded 

• Forward referenced 

• Backward referenced 

• Interpolated.  

Each block of an Intra coded MacroBlock is encoded without any temporal prediction, 

being equivalent to a 8x8 block in the JPEG compression standard. Pixels in the 

Forward referenced MacroBlock are predicted by a region in the preceding reference 

frame, whether if it’s I or P frame. On the contrary, Backward referenced MacroBlocks 

are predicted by the subsequent reference frame. Finally, pixels of the Interpolated 

MacroBlocks are predicted by both preceding and subsequent reference frame with 

equally weighted fraction of the prediction value. 

Temporal prediction is applied to the frame sequence in order to minimise high 

temporal redundancy present in the stream. To avoid flicker and to produce an 

impression of the continuous motion visual changes between the displayed frames are 

small. Therefore, if there is no abrupt visual change present in the frame sequence the 

preceding frames can predict well the visual content of the subsequent frames. This is 

the main concept that will be followed in the development of the temporal analysis 

algorithm. 

Because of the present prediction within a shot, a continuously strong inter-frame 

reference will be present in the stream as long as no significant changes occur in the 

scene. The “amount” of inter-frame reference in each frame and its temporal changes 

can be used to define a metric, which measures the probability of a visual change in 

the given frame. Therefore, the analysis of the MBType information embedded in 

MPEG stream is an efficient way to measure the “amount” of inter-frame reference. 

By exploiting the reference information, a frame-to-frame difference metric is to be 

generated so as to detect visual changes and parse the video in the temporal domain 

into visually homogeneous units - shots. 
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IV.2.2. MPEG SEQUENCE STRUCTURE 

Although thee are variations in the MPEG sequence structure and its profiles, the 

majority of MPEG encoders utilise bidirectional prediction. Only the bidirectional 

prediction brings the high compression ratios and at the same time minimises 

perceptual distortion of the perceived video quality. Therefore a random MPEG 

stream is likely to have B type frames present.  

With this in mind, it is assumed that in analyzed MPEG stream Group Of Pictures 

(GOP) will have the standard structure [IBBPBBPBBPBBPBB] i.e. there will be two 

bidirectional frames between two reference frames with encoder parameter M=3. 

Observe that this frame structure can be split into groups of three having the form of 

a triplet: IBB or PBB. In the sequel, both types of the reference frames (I or P) are 

denoted as Ri, front bi-directional frame of the triplet as Bi (uppercase), while the 

second bi-directional frame is denoted as bi (lowercase). Thus, the MPEG sequence 

can be analyzed as a group of frame-triplets in the form  

R1 B2 b3 R4 B5 b6 … Ri Bi+1 bi+2 … 

This triplet structure representation simplifies the notation in the future calculus, so it 

will be user throughout this Chapter. Having defined the main variables and notation, 

the next Section brings the first definitions of the frame difference metric. 

IV.2.3. FRAME DIFFERENCE METRIC WITHIN ONE SGOP 

Possible locations of a cut in a frame triplet are depicted in Figure IV.1. Considering 

the previously defined triplet structure in the MPEG sequence, there are three possible 

positions of the shot boundary: 

- Shot ends with reference frame, and the new one begins with front bi-

directional frame Bi 

- Shot ends with rear bi-directional frame bi-1, and the new one begins with 

reference frame Ri 

- Shot ends with front bi-directional frame Bi and the new one begins with bi. 

Let us analyse the behaviour of the temporal prediction present in the frame triplet 

depending upon the shot boundary position. If the front referenced frame Bi is the 

first frame of the next shot (Figure IV.1a), the next reference frame Ri+2 predicts a 

significant percentage of inter-frame MBs in both Bi and bi+1. This is due to the fact 

that the majority of MBs is visually similar to the reference MBs present in the Ri+2 
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frame. If the scene change occurs at Ri (Figure IV.1b), then the previous bi-directional 

frames Bi-2 and bi-1 will be mainly referenced to Ri-3. Finally, if the scene change occurs 

at bi (Figure IV.1c), then Bi-1 will be referenced to Ri-2 unlike bi that will be predicted 

mainly by Ri+1 reference frame. 
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Figure IV.1 Possible positions of the cut in a frame triplet 

By analysing which MBType is predominant in the analysed frame, one can gain the 

information about the “amount” of inter-frame referencing between a reference frame 

and the predicted frame in a given SGOP. If two frames are strongly referenced and 

thus visually similar their MBType variable will be predominantly either forward 

referenced, backward referenced or interpolated. On the other hand, if there is a visual 

change present between the reference frame and the predicted frame, predominant 

MBType will be intra-coded. For example, if the bi-directional frame is strongly 

referenced to its preceding reference frame, then there will be a lot of forward 

referenced MBs in the frame.  

Having this in mind, a frame-to-frame difference metric is generated by analyzing the 

percentage of MBs having a specific prediction type in a given frame. Let ΦT(i) be the 

set containing all forward referenced MBs and ΒT(i) the set containing all backward 

referenced MBs in a given frame with index i and type T. Then the cardinality of ΦT(i) 

is denoted as ϕT(i) and the cardinality of ΒT(i) as βT(i). The metric ∆(i) used to 

determine the measure of frame-to-frame difference is defined as: 
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∆(i) is directly proportional to the probability of strong content change event at the 

frame with index i. It means that the proposed metrics is not only the shot change 

detection evaluator, but also the estimator of general difference between two adjacent 

frames in a sequence. This is inherent property of the proposed metrics ∆(i), and it 

could be used in the key-frame extraction algorithm and the shot characterisation. 

 

Figure IV.2 Difference metric ∆(i) for the sequence ulosci.mpg (frames 230-430) 

IV.2.3.1.  Adaptive thresholding 

Since ∆(i) is a frame-to-frame difference metrics, the peaks in ∆(i) present strong and 

abrupt changes in the visual content as depicted in Figure IV.2. Cut positions are 

determined by thresholding the metric applying the adaptive threshold algorithm 

[YUSOFF, DUGAD]. The algorithm is based on the assumption that the probabilistic 

model of the not-a-shot-boundary event N is unimodal and stationary. With this 

assumption, the decision threshold mT is recalculated for each new frame as follows: 

1. The mean µN and the variance σN are estimated dynamically from the 

difference metric ∆ of M neighbouring frames, 

2. The value of the adaptive threshold is calculated following the Dugad model 

as:  

 T N d NTδ = µ + ⋅ σ  (IV.2) 

where Td  is empirically determined in the literature [DUGAD] as Td = 5. 
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3. Decision is made whether the current frame is a shot boundary or not. After a 

shot cut is detected, no new decisions are made until M/2 frames have elapsed. 

However, due to the existence of gradual changes, like wipes or dissolves, where there 

is no significant change in the visual content and where the prediction is partially 

existing even during the transition, a method for detection of gradual changes has to 

be developed. In order to achieve this by keeping the processing in the compressed 

domain, particularly on the prediction data, one has to take a more general approach to 

frame difference metric. In the next section, an attempt to reuse the prediction data for 

detection of gradual transition is presented. It follows the approach of the previous 

difference metric extraction algorithm. 

IV.2.4. METRIC EXTENSION FOR GRADUAL CHANGE DETECTION 

The next step in the implementation of a shot changes detection algorithm is the 

detection of gradual changes. Gradual transitions do not show such a significant 

changes in any of the features, and thus are more difficult to detect. Due to advances 

in digital video editing, there are various types of gradual changes: dissolves, where the 

first shot frames become dimmer, while the second ones become brighter and are 

superimposed on the first shot frames; wipes, where the image of the second shot 

replaces the first one in a regular pattern, such as vertical line, etc. Since there is 

inevitably additional processing in feature analysis for gradual changes extraction, real 

time implementation is more difficult than the basic cut detection. Because of this, the 

main efforts were directed towards the improvement of the algorithm for gradual 

changes detection. 

IV.2.4.1.  Motion Information Based Change Detection 

Given that the initial approach was to use information incorporated in the process of 

motion estimation and temporal prediction, the first feature to be analysed was the set 

of Motion Vectors (MV) from the MPEG stream. The extracted set of vectors is a three-

dimensional vector field, and within it there are numerous features that could be 

analysed for changes detection, such as statistical distribution of vector intensities and 

angles, gradients, divergences, etc. Unfortunately, experimental results appeared to be 

poor regardless the choice of the feature utilised to detect the visual changes.  

Theoretically, the set of MV should show very typical behaviour during gradual 

transitions. However there is a decrease in the amount of defined MV per frame in 
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transition regions due to the increase in the number of Intra coded MBs. Therefore the 

result of MV analysis becomes highly unstable. This problem becomes less important 

in MPEG streams with higher bit rates, but is never avoided completely. Fortunately, 

there is additional information that can be extracted using MV features like camera 

movement, panning, zooming, object segmentation, etc.  

If one wonders if it is possible to use the significant instability of MV information as a 

sign of the shot changes, attention should be drawn to the fact that the information 

whether the MV are defined is actually information stored in MBType variable. 

Moreover, since the approach to the abrupt shot change detection was based on the 

analyses of inter-frame referencing, it would be natural to apply the same paradigm to 

the algorithm for the detection of gradual transitions. 

IV.2.4.2.  Random Distance Metric for Gradual Change Detection 

Obviously, the metrics and the analyses for gradual change detection have to be 

different from the ones used in cut detection. The conventional process of gradual 

changes “calculates a frame-to-frame distance and then performs some kind of 

tracking over it” [BESCOS]. Thus, there is a need for a difference metrics between 

two frames within a random distance. Again, the amount of inter-frame referencing 

can be used as an inversion of the difference metrics, but must be generalised to 

random distance and random frame type for this purpose. 

Having in mind the previously defined notation and definitions, let us analyse Figure 

IV.3, which shows a general frame structure of two frame triplets. 

Since it is important to define an inter-frame reference for any frame type at any frame 

distance, there will be five different types of local inter-frame references d(i) within a 

frame triplet that will form the overall inter-frame reference 1/∆D(i) at random 

distance D: 

- dRR – distance between two R frames 

- dRB, dBR – distance between R frame and the closest B frame and vice versa  

- dRb, dbR - distance between R and the closest b frame and vice versa 
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Figure IV.3 Structure of two frame triples 

The definition of local inter-frame reference is given as follows: 

 ( ) ( ) ( ) ( ) ( ) ( )( )RR B B b b Rd i max i 1 i 1 , i 2 i 2 , i 3= ϕ + ⋅β + ϕ + ⋅β + ϕ +  (IV.3) 

 ( ) ( ) ( ) ( )( )RB B RR Bd i max i 1 ,d i i 1= ϕ + ⋅β +  (IV.4) 

 ( ) ( ) ( ) ( )( )Rb b RR bd i max i 2 ,d i i 2= ϕ + ⋅β +  (IV.5) 

 ( ) ( ) ( ) ( )( )BR B RR Bd i max i ,d i 1 i= β − ⋅ϕ  (IV.6) 

 ( ) ( ) ( ) ( )( )bR b RR bd i max i ,d i 2 i= β − ⋅ϕ  (IV.7) 

To calculate the overall inter-frame reference, the local values are multiplied to 

evaluate cross-referencing, with the frame types and their positions in mind: 

⇔ If exists, first element in product is distance from current frame to the nearest 

R frame, 

⇔ Second element is the product of distances between each two R frames from 

the nearest to the last R frame in the analysed sequence part 

⇔ If exists, last element is distance from the last R frame to the last frame of the 

analysed sequence part 

 ( )
( ) ( ) ( )

D d d

XR RR RX
j

1i

d i d j d i D
∃ ∃

∀

∆ =

⋅ ⋅ +∏
678 64748  (IV.8) 

Detection of changes is implemented by applying the twin comparison algorithm 

proposed by Zhang et al. [ZHANG2] to the inter-frame difference ∆D(i) as the 

algorithm metrics. The algorithm is based on analysis of the difference measure of two 

frames at random distance. The distance between the frames should have similar value 
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to the shot transition length. The more similar are these values, the stronger peak will 

occur at the transition location. For more detailed explanation refer to the previous 

chapter. 

IV.2.5. LOW-PASS FILTERING OF THE METRIC 

Since the noise in the extracted metric is very strong, and the curve slopes are weak 

during the gradual transitions, the metric needs pre-processing in order to detect and 

locate the shot boundaries’ positions. After twin-comparison algorithm the final 

difference metric is formed. The noise is reduced by low-pass filtering. A convolution 

with LP Gaussian filter is applied to ∆D(i). The pulse response of the filter applied is: 

 ( )
2

2
i

21h i e
2

−
σ= ⋅

πσ
 (IV.9) 

where i=1,...,N and σ=3 is determined empirically.  Filtering is done by convolution of 

the pulse response and the metrics: 

 ( ) ( ) ( )i i h iδ = ∆ ⊗  (IV.10) 

After filtering, the difference curve δ(i) is smooth (see Figure IV.4), so that the 

detection algorithm that locates local maxima in the curve now can be applied. 

 

Figure IV.4 Gaussian Smoothing of the Metric Curve of the sequence ulosci.mpg (frames 250-400) 
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The algorithm is based on the analysis of the first derivation in time of the difference 

metric function. It detects shot changes at metric’s zero-crossings: 

 ( )
i L

i
0 L is local maxima position

i
=

∂δ
= ⇒

∂
 (IV.11) 

Frame indexes of zero-crossings L are locations of peaks that define positions of the 

shot transitions. 

IV.2.6. GENERALIZED FRAME DIFFERENCE METRICS 

Although very efficient, the presented difference metric lacks prediction continuity 

between two SGOP needed for more reliable detection of the shot changes. The 

results showed poor consistency for instances of the difference metric that compared 

similarity between the frames in separate SGOPs, and as the distance increases, the 

reliability of the metric rapidly decreases. Thus, the development process continues in 

the same direction utilising the prediction information embedded in the MPEG 

stream, but analysing the differences between the frames with the direct prediction 

bond, i.e. within the same SGOP. However, the information on the overall change 

within the SGOP has to be added to the difference metric in order to be able to detect 

the gradual changes. In addition to that, there is a need for a scalable and hierarchical 

analysis of the temporal features of video. Based on the approach presented above, 

following section introduces a novel scheme for scalable video analysis and parses 

video on a visual event basis, rather than following the standard shot change paradigm. 

As mentioned before, a high visual similarity within a sequence should result in high 

percentage of predicted MBs in both bi-directional B frames and predicted P frames 

and lack of intra coded MBs. More precisely, if two frames are strongly referenced 

then the most of the MBs in predicted frame would have the corresponding prediction 

type: forward, backward or interpolated, depending on the type of reference.  

Let ΦT(i) be the set containing all forward referenced MBs and BT(i) the set containing 

all backward referenced MBs in a given frame with index i and type T. In the same 

manner, sets of intra coded MBs are defined as ΙT(i) and interpolated MBs as Π T(i). 

Then the cardinalities of the corresponding sets are denoted as: φT(i), βT(i), ιT(i) and 

πT(i). The metric ∆(i) used to determine a visual difference measure within a frame 

triplet is defined as: 

 ( ) B B b b B B b b B B b b B B b bi k k k k k k k kϕ ϕ β β ι ι π π∆ = ϕ + ϕ + β + β + ι + ι + π + π  (IV.12) 
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Figure IV.5 Content change in a frame triple 

By analysing the prediction character and behaviour in one frame triplet (see Figure 

IV.5), the changes in visual content within can be estimated. Depending on the frame 

type, there are three different linear combinations of variables φT(i), βT(i), ιT(i) and 

πT(i) for both bi-directional frames in a frame triplet. Each linear combination has two 

main coefficients that are directly proportional to the visual content change within 

predicted and reference frame in a frame triplet (k=+1), and two that are inversely 

proportional (k=-1) to it. Additional factors kπ and kι are describing overall change in a 

triplet, one in direct (kι) and one in inverse (kπ) proportion. The coefficient values are 

determined by the rule of thumb, and are presented in Table IV.1. The possible 

subject of the future research could be the development of optimised and adaptable 

process of linear coefficient generation in order to improve the difference metric. 

 T(i)=R T(i)=B T(i)=b 

KϕB +1 -1 +1 

Kϕb +1 -1 -1 

KβB -1 +1 -1 

Kβb -1 +1 +1 

kιB,kιb +0.5 

kπB,kπb -0.5 

Table IV.1 Coefficients in the linear combination 
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IV.2.7. CURVE SMOOTHING 

After the metric generation, just as with the random distance metric, the raw difference 

curve is extremely noisy. Thus, a Gaussian smoothing is applied. However,  in this case 

the noise frequency is known. The source of the noise is the prediction discontinuity 

between frame triplets. Since there is a reference frame that breaks the prediction 

bond, often the amount of prediction is rapidly changing from triplet to triplet, though 

there is no visual change. Therefore, in order to eliminate the discontinuities, a 

smoothing algorithm is applied.  

Since the metrics value is determined separately for each frame and the content change 

is based on frame triplet element, low-pass filtering with kernel proportional to triplet 

length would eliminate the noise. The filter with Gaussian pulse response (Figure IV.6) 

is applied: 

 ( )
2

2
i

21h i
2

e−
σ=

πσ
 (IV.13) 

Where i∈[-4σ,4σ], and σ=1.5 . The value for σ is chosen to maximize the smoothing 

within one frame triplet. 

 

Figure IV.6 Belll shaped pulse response of the applied Gaussian filter 

 

Figure IV.7 Noise suppression for the sequence ulosci.mpg (frames 0-400) 
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Metrics with suppressed noise is calculated as a convolution of Gaussian filter pulse 

response and the raw noisy metrics: 

 N h∆ = ∆ ⊗  (IV.14) 

Example of noise suppression from a difference metrics is given in Figure IV.7. 

IV.3. METRIC SIMPLIFICATION 
In order to extract a number of representative frames from the sequence previously 

filtered difference metrics ∆(i) is simplified in a way that spurious and small changes in 

the metrics curve are discarded without any influence on the main features of the 

difference metrics. The algorithm that has these features is Discrete Curve Evolution 

(DCE). Main properties of DCE are [LATEC]: 

• It leads to the simplification of curve complexity, in analogy to evolutions guided 

by diffusion equations, with 

• No blurring (i.e. peak rounding) effects and no dislocation of relevant features, due 

to the fact that the remaining vertices do not change their positions 

• The relevance measure K is stable with respect to noisy deformations, since noise 

elimination takes place in the early stages of the evolution 

• It allows us to find digital line segments in noisy metrics due to the relevance order 

of the repeated process of digital linearization. 

Flowchart of DCE algorithm is depicted in Figure IV.8. 

DCE procedure (Dm, NOKP)

Find in Dk a pair si, si+1 such that
K(si,si+1) is minimal

k=m

k=k-1, i++

NOF-i<NOKP

End

Yes

Dk-1=Dk with segments si,si+1
replaced by line segment s' that joins the

endpoints od arc si∪si+1

 

Figure IV.8 Flowchart of the DCE algorithm 
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Let Dm = s0, …, sm-1 be a decomposition of a digital curve S into consecutive digital 

line segments. The algorithm that computes the decomposition Dk for each stage of 

the discrete curve evolution k>3 until it reaches wished number of key points 

(NOKP). Approximate number of key-frames (NOKF) after the DCE algorithm is 

half of NOKP. The exact NOKF can be determined only a posteriori. The input video 

sequence has NOF frames. 

Key-frames positions are determined by locations of the local minima in simplified 

metrics curve, while shot change central points are located as the local maxima. 

IV.3.1. RELEVANCE ORDER 

The evolution process is guided by a relevance order. To every pair of two adjacent 

line segments s1,s2 in a decomposition of a given digital curve S is assigned a cost 

function value K(s1,s2) which represents the significance of the contribution of arc s1∪s2 

to the shape of S. The pairs of adjacent line segments are ordered with respect to this 

significance cost. This order is called a relevance order. The linearization cost K(s1,s2) of 

any supported arc s1,s2 depends on its length, its global curvature and area below the 

arc. It seems that an adequate measure of the relevance of arc s1∪s2 for the shape of a 

given object can be based on turn angle β(s1,s2), on the lengths of the segments l(s1), 

l(s2) and the area of the region enclosed by s1∪s2. It is assumed that the larger both 

lengths, area enclosed and the total turn of the arc, the greater is its contribution to the 

shape of a difference curve. Thus, the cost function K is monotonically increasing with 

respect to the arc lengths, area enclosed and the total curvature. This assumption can 

be justified by the simple analysis of the Figure IV.9. 

 

Figure IV.9 Relevance order examples 

The peak-like change labelled a) is strong and fast change in visual content. Obviously 

it is result of a cut change in the video sequence and it has a strong turn angle. Case b) 

is very long change with long arc segments. Third case c) shows a gradual transition 

with big area enclosed, but without huge turn angle. These three simple examples 



CHAPTER IV EFFICIENT LOW-LEVEL FEATURE EXTRACTION 

 

113 

depict three criteria for relevance order, and introduce the main ideas for definition of 

the relevance measure. 

IV.3.2. RELEVANCE MEASURE 

For each two adjacent line segments s1, s2 in the decomposition of a digital curve S, the 

relevance measure K(s1, s2) is determined, which represents the significance of the 

contribution of arc s1∪s2 to the shape of S. The value K(s1, s2) can be interpreted as 

the cost required for linearization of arc s1∪s2. Let s1=AB and s2=BC be two 

consecutive line segments in the decomposition of curve S, so that β=α1+α2 is the 

turn angle. The corresponding cost function K(s1, s2) is given by the equation: 

 ( )1 2 1 2 1 2 (ABC)K(s ,s ) (s ,s ) l l P∆= β ⋅ + ⋅  (IV.15) 

β

δ ι+
1

δ ι

αι+1

αι

τι τι+1

 

Figure IV.10 DCE linearization of two adjacent line segments 

Observing an arc linearization example given in Figure IV.10, formulae for each 

element in equation above for relevance measure are given as: 
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 2 2
i i i i(i 1) (i) , lδ = ∆ + − ∆ = τ + δ  (IV.16) 

 ( ) ( )i i 1 i i i 1 i 1(s ,s ) acrtg acrtg+ + +β = δ τ − δ τ  (IV.17) 

 ( )ABC i i i 1 i 1
1P
2∆ + += δ τ + δ τ  (IV.18) 

IV.4. MOTION FLOW EXTRACTION 

IV.4.1. MOTION VECTORS AS OPTICAL FLOW APPROXIMATION 

As presented in the overview of the MPEG standards, motion vectors embedded in 

the compressed stream present the translation of the reference MacroBlock in the 

prediction process in order to minimise the prediction error. As a result of the fact that 

the only criterion for the choice of the motion vector values is minimal prediction 

error encoded, one can easily conclude that the set of motion vectors is nowhere near 

the approximation for optical flow of the video sequence. The best example of motion 

vectors giving completely wrong picture of motion flow in the video is black break 

sequence, where the motion estimator in MPEG encoder is constantly trying to 

minimise the prediction error and searches through the neighbourhood and gives the 

set of vectors that show almost random, chaotic and strong motion all over the 

completely black frame! However, information needed for camera motion analysis is 

quite robust in statistical terms so that the flow extracted from motion vectors could 

serve that purpose. 

IV.4.2. FLOW ESTIMATION 

Having the motion vector values extracted from the MPEG video stream as a set of 

two-dimensional pairs (forward and backward prediction) of motion vectors for each 

frame, first step in the process of the optical flow approximation would be to generate 

optical flow using extrapolation of the existing motion vectors. 

Extrapolation procedure is depicted in Figure IV.11, Figure IV.12 and Figure IV.13. 

Union set of all existing motion vectors is labelled as M. For instance, to generate the 

flow vector for a MacroBlock in the reference frame (I or P) with the index i, one 

needs to check if there is a corresponding forward motion vector in the frame i+1, and 

if it exist, the flow vector will be just the inverted forward motion vector of that 
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MacroBlock. If there is no forward motion prediction in that MacroBlock, the 

corresponding forward motion vector in the frame with the index i+2 is found, etc.  

Frame Type

F[i]=-FMV[i+1]

F[i]=-1 *FMV[i+2]

F[i]=BMV[i+1]

BMV[i+1]∈Μ

FMV[i+2]∈Μ

FMV[i+1]∈Μ

F[i]=BMV[i]

F[i]=-1 *BMV[i-1]

FMV[i+2]∈Μ

FMV[i+1]∈Μ

F[i]=BMV[i]-
BMV[i+1]

F[i]=FMV[i+1]-
FMV[i]

F[i]=1 *BMV[i]

BMV[i]∈Μ

FMV[i],
FMV[i+1]∈Μ

BMV[i],
BMV[i+1]∈Μ

F[i]=2*BMV[i+1]

F[i]=1 *BMV[i]+
FMV[i+1]

BMV[i],
FMV[i+1]∈Μ

BMV[i+1]∈Μ

F[i]=-1 *FMV[i+1]

F[i]=FMV[i+1]-
FMV[i]

FMV[i],
FMV[i+1]∈Μ

FMV[i+1]∈Μ

I or P b

BYes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

YesYes

 

Figure IV.11 Flowchart of the flow vectors extrapolation procedure 

By following the algorithm, a majority of the flow vectors are generated. This 

procedure is based on the motion prediction links depicted in Figure IV.12 and Figure 

IV.13. 

BR Rb

Forw

Back

 

Figure IV.12 Flow Extraction: Analysis within one SGOP 

BR Rb

Forw

Back

BR Rb

Forw

Back

 

Figure IV.13 Flow Extraction: Analysis of two SGOP 

Although the majority of flow vectors are defined after this procedure, it is important 

to fill in the gaps and output homogeneous optical flow field. Hence, the missing flow 
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vectors are generated by either median filtering of the existing flow vectors or 

averaging. Both procedures need to repeat iterations until the flow field is smooth and 

completely defined. However, the whole flow extraction process is fast and it doesn’t 

obstruct the real-time capability of the whole system.  

IV.4.3. CAMERA MOTION ANALYSIS 

Once the optical flow approximation is generated, categorisation of the camera work is 

straightforward. Four basic descriptions of camera motion are defined, and the others 

are just the combination of these four: 

1. Horizontal motion 

2. Vertical Motion 

3. Zoom 

4. Rotation 

To detect either Horizontal or Vertical motion, the overall sum of the motion field is 

calculated: 

 ( )i, j
Sum F i, j= ∑
uuuur r

 (IV.19) 

If the resultant vector of the motion filed has intensity greater than the predefined 

threshold, than the motion is directed towards the resultant vector, horizontal, vertical, 

or diagonal (rare). 

In order to detect zooms, he resultant vector is compared to the predefined lower 

threshold, and if the threshold is not reached, the camera work is either zoom or 

rotation, or there is no camera motion. 

If so, the rotation is detected if the RotSum value is greater than the predefined 

threshold, where: 

 ( ) ( ) ( ) ( )
I / 2 I J / 2 J

h h v v
i 0, j i I / 2, j i, j 0 i, j J / 2

RotSum F i, j F i, j F i, j F i, j
= = = =

= − − +∑ ∑ ∑ ∑  (IV.20) 

Zoom class is assigned if the intensity of ZoomSum is greater than a predefined 

threshold: 

 ( ) ( ) ( ) ( )
I / 2 I J / 2 J

v v h h
i 0, j i I / 2, j i, j 0 i, j J / 2

ZoomSum F i, j F i, j F i, j F i, j
= = = =

= − + −∑ ∑ ∑ ∑
uur uur uur uur

 (IV.21) 

If ZoomSum is negative, camera work is classified as zoom out, while if it is positive it 

is zoom in. The algorithm flow of the classification process is depicted in Figure IV.14. 
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Calculate |Sum|

|Sum|>ThSum Class, Horizontal,
Vertical or Diagonal

Calculate |RotSum|
Calculate |ZoomSum|

|RotSum|>ThRotSum

|ZoomSum|>ThZoomSum

Class Rotation

|ZoomSum|>0

Class Zoom Out

Class Zoom In

Yes

Yes

Yes

Yes

 

Figure IV.14 Flowchart of the Camera Classification Algorithm 

IV.5. KEY-FRAME EXTRACTION 
Since the difference metric depicts the overall visual activity within a shot, the best 

representative frame in visual terms could be detected by analysing the metric. 

Obviously, peaks of the metric curve are representing a strong visual change, while the 

valleys represent the visually homogeneous parts. 

After metric simplification using discrete contour evolution algorithm metric curve has 

finite number of linear segments. It enables simple detection of peaks and valleys by 

applying the second derivation to the simplified difference metric: 

 ( )2
DCE

detect 2

n
n

∂ ∆
∆ =

∂
 (IV.22) 

Peaks in the metric are detected as distinctive positive values, while the lowest values 

are detected as the distinctive negative values as seen in Figure IV.15. The applied 

threshold for peak detection is a variable more in an adjustment process for the 

sensitivity on visual changes. Higher values mean that the change was short and 

strong, meaning it was a cut.  
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Figure IV.15 Detection Process using DCE of the sequence ulosci.mpg (frames 10-450) 

What are the detected peaks and valleys of the metric representing? Evidently, peak 

positions define the strongest visual changes within the analysed sequence. That would 

be a detected visual event, as defined previously. On the other hand, valleys represent 

the lowest visual activity, and in this case, they are used as a detection area for the key-

frame. Furthermore, the lowest value in the valley denotes that the visual changes in 

that part of the shot are smallest so that the particular frame with the lowest metric 

value is the closest in the visual terms to the neighbouring frames in the shot. With 

considerable approximation because of the algorithm speed and simplicity, negative 

peaks are the positions of the extracted key-frames. The customisable BMP or JPG 

format frames are extracted and saved in a particular directory, as the starting point for 

the future metadata extraction. As the main feature in the metadata generation process, 

the HSV scalable hierarchical colour descriptor is applied. 

IV.6. COLOUR HISTOGRAM QUANTISATION 
Since the computational analysis of the image colour features is the most developed 

part of the computer vision, every retrieval engine in the world offers colour-based 

analysis. In order to evaluate the implemented algorithm and exploit this reach and 
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descriptive feature, the hierarchical colour indexing of the extracted set of key-frames 

is developed. 

HLS Histogram Simplification

Find a colour bin  Bi such that
K(Bi) is minimal

k=256 for each component

k=k-1, i++

K>0

End

Yes

Rescale the histogram to keep the power
constant

 

Figure IV.16 Flowchart of the histogram simplification algorithm 

Initial task is to choose the optimal colour space. Among different colour 

representations the HLS model has two important characteristics: it is easy to use and 

it produces colour components that closely follow those perceived by humans 

[SWAIN]. For this reason a family of quantised colour histograms in the HLS colour 

space is used as the set of the image descriptors.  

To generate a hierarchical family of histograms, a continuous histogram simplification 

algorithm is implemented. In each step of the algorithm the least significant colour 

component is removed and the image degradation measure is calculated. By reaching 

the desired measure of image degradation the representing histogram is extracted as 

the image descriptor at that particular level of detail. 

The simplification algorithm is similar to the DCE algorithm applied to the frame 

difference metrics and its flowchart is given in Figure IV.16. It removes colour 

components gradually using specific relevance measure. The relevance measure 

function in this case is defined as: 

 i i 1K(i) hist(i) log( )+= ⋅ τ + τ  (IV.23) 
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where hist(i) is the image histogram and τi is interval between components i and i-1. 

The algorithm removes the colour component with the lowest relevance measure 

value. 

The image degradation function Df(n) at the algorithm step n is defined as the 

cumulative sum of the previously removed histogram bin values: 

 
m,hist (m) hist '

Df (n) hist(m)
∀ ∈

= ∑  (IV.24) 

where hist’ is a set of previously removed components. The value of Df(n) is equal to 

the number of image pixels that got removed during the histogram simplification 

process. The user can predefine the levels of the image degradation according to the 

addressed application. 

 

Figure IV.17 Colour Histogram Simplification Process 

Figure IV.17 shows six simplification stages of the HLS colour histogram hist(i)I-VI.as 

well as the image degradation function Df(n) thoughout the simplification process. 

First graph hist(i)I shows the Hue histogram with 180 colour bins.  
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Bin removal process is done with the respect to the cylindrical nature of the HLS 

colour space. The calculation of the cost function in the simplification algorithm starts 

with the highest value in the Hue histogram, and ends with it. For that reason, the 

distance of the end points in the Hue histogram is kept constant during histogram 

quantisation. 

To measure colour similarity between key-frames at a given scale, the Hausdorf metric 

is applied. Each histogram is represented by a set of points A = {p1, p2,…, pk} for k ∈  

[0, 360). The distance from any p A∈  to another set B={q1, q2,…, ql} is defined as:  

 
min

d(p, B) p q
q B

= −
∈

 (IV.25) 

The directed Hausdorf distance from A to B is given by: 

 
p A

hdist(A, B) d(p,B)
∈

= ∑  (IV.26) 

Using that, the final distance between A and B is: 

 D(A, B) hdist(A, B) hdist(B, A)= +  (IV.27) 

Distance metric D(A,B) is used to determine the visual similarity of two processed key-

frame images. It gives a comparison in terms of colour, but it lacks information about 

texture, shape, localisation and spatial distribution. However, it is used in this work as 

a simplest low-level perceptual media description for further video representation. In 

particular, distance metric D(A,B) is used in the experiment described in Section 

VII.3.2 as a global-colour change representation in the fuzzy learning unit. 
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V.  VIDEO REPRESENTATION MODEL 

V.1. OVERVIEW 
This Chapter presents a proposed video representation model and a genre 

classification system that enable automatic annotation of videos. In the opening 

section a critique of the current representation models is given, as well as the basics of 

the proposed approach. Section 3 describes the representation model in more detail. 

Section 4 describes the genre classification algorithm, while Section 5 gives a brief 

summary of the chapter. 

V.2. INTRODUCTION  
As described in Chapter 2, the current CBVIR paradigm represents the records in the 

digital media database, i.e. videos, clips or single images, as points in a metric space. 

This space is generated in a way that dissimilar videos are distant from each other 

while similar videos are located close to each other. The distance function that defines 

the metric space has to follow the user’s concept of the visual similarity [CASTELLI]. 

Unfortunately, current video representation models are nothing more than a subset of 

well known low-level features extracted from the video, e.g. colour, texture, shape, 

motion, etc. The major requirement of the distance definition to capture the visual 

similarity relevant to the user has been never fulfilled. 

How can we expect a semantic user centred retrieval if we describe videos with the 

colour histograms or a wavelet based texture descriptor? What do these features mean 

to the end-user? These questions have been brought up only recently, with the 

appearance of the “semantic gap” and the gradual abandonment of the “query by 

example” paradigm in CBVIR (see Chapter II). Therefore a meaningful video 

representation model that delivers information relevant to the user in a given context 

has to be developed. In the following sections a novel video representation model that 

tackles this problem is presented. It follows computational media aesthetics paradigm 

and represents videos as a dynamic form, giving information on its dynamic features, 

namely shot pace and visual activity. Later, a genre classification algorithm is given. 

This classification algorithm, relying on the aforementioned representation model, 

embarks upon the context issues, essential for a future automatic video annotation 

system. 
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V.3. VIDEO REPRESENTATION MODEL  
The transformation of low-level feature vectors into the semantic concepts that are 

natural to the user is a critical task of a current CBVIR system. This task can be seen as 

a metric space transformation from the points in the descriptor space to the discrete 

conceptual semantic space. Unfortunately often this artificial transform is very 

complex in its nature, being discontinuous and non-linear. Furthermore, the kernel of 

this “transformation” has to be modelled on the basis of the human visual perception. 

How do we link a set of luminescent stimuli with the meaningful concepts in our mind 

is still a mystery even for psychologists.  There are numerous models of the human 

semantic cognition [RUMEL, MCCLE, HARDT], but majority of them appear to have 

questionable reliability and haven’t achieved much in the visual perception domain. 

Nevertheless, having the common digital media as the domain of expertise, the 

contextual limitations could draw the finite boundaries of this transformation, given a 

set of axiomatic rules present in the digital media production domain. These rules 

could be seen as the grammar of the visual media language. Moreover, in the film and 

TV studies a buzzword “grammar” has been the key theoretic tool for objective 

analysis and synthesis of the media. Its foundations lie in the semiotic theory grounds, 

as presented in Chapter III. Editing dynamics, camera work, narrative structure in 

space and time, etc are all film grammar rules appropriate for computational analysis 

and at the same time important in the creation of high-level semantic concepts. 

For example, numerical values of the editing pace will fall into different classes for 

different genres like commercials and documentaries. While a given shot length could 

be characterised as “short shot” in a documentary, the same shot length in a 

commercial could be labelled as “long shot”. Furthermore, while flashy shots lasting a 

fraction of a second can be important “special effects” in a commercial, they can be 

only the result of editing artefacts in a documentary. Thus, a good knowledge about 

characteristics of the targeted end-users, environment and application is essential for 

the design of highly effective knowledge representation.   

V.3.1. REPRESENTATION OBJECTIVES 

Let us set up the objectives and requirements of the video representation model. As 

mentioned before, the choice of the low-level features and their extraction process are 

essential to achieve annotation efficiency. Certainly, a computer cannot extract 

meaning from low-level features without any additional inference strategy or learning 
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process. Thus, by choosing the most appropriate feature subset and its form to 

represent a video, the process of giving meaning to the lowest instances of video 

description becomes more feasible. The main objectives of the model are its efficiency, 

classification separability, scalability and ability to utilise and adapt to user relevance 

feedback information. 

V.3.1.1.  Efficiency 

Having in mind the processing resources and costs needed for analysis of digital video 

media, the computational requirements appear to be an important issue in the design 

of the representation model. Trade-off between the algorithm’s computational 

efficiency and ability to distinguish between videos conveying different higher-level 

concepts were the main concern during the development process. Since the backbone 

of the present feature extraction system is a highly efficient temporal analysis of 

MPEG compressed video, the major part of the representation model consists of the 

temporal features extracted directly from the MPEG compressed domain. Therefore, 

the processing cost of the feature extraction module is minimised. 

V.3.1.2.  Separability for Genre related issues 

In addition to the generation of the links between high-level semantic concepts and 

low-level video features the focus of the representation model development is the 

enhancement of the demarcation between videos conveying different concepts in a 

given context. This requirement is essential in the classification process. This is due to 

the fact that the genre classification module relies entirely on the separation 

characteristics of the video representation model. Therefore, the model should 

transform the feature vectors into their representation that will form groups in the 

conceptual space around the same concepts, but at the same time make groups as 

distant as possible. The representation model and the distance metric have to be 

defined with great precaution. If successful, this module will enable contextual 

classification of the videos into genres.  

V.3.1.3.  Scalability & Adaptability 

As highlighted in Section II.6.2. one of the major challenges for the future 

developments of the CBVIR systems is its capability to self-adapt to the contextual 

circumstances of the retrieval process, and thus limit the signification space in order to 
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gain more precise retrieval hits. Furthermore, it is not only the revaluation of the 

difference measure in the metric space that should show the adaptive behaviour, but 

the representation model as well. If the feature extractor module of the system 

generates a set of low-level visual features, the representation model should adapt itself 

from the user relevance feedback output. However, to achieve this goal, video 

representation model has to have capability to change its structure and scale its 

representations to the desired level. This capability is very important, though in this 

stage of the research, the system that supports the self-adaptive behaviour has not 

been developed. However, this functionality of the model, together with all others, will 

be presented in the following section. 

V.3.2. PROPOSED REPRESENTATION MODEL 

The set of the features selected to be a part of the representation model has been 

backed by the efficient algorithm for the compressed domain video temporal analysis. 

A set of video sequence descriptors is generated using temporal expressive elements, 

i.e. editing pace and the overall visual activity within a shot. The numerical values that 

concisely describe these elements are shot length distribution and shot activity. 

V.3.2.1.  Shot Length Distribution 

Following the tendencies of the computational media aesthetics approach, temporal 

features of video and its structure are considered as the foremost expressive elements 

to be analysed. The pace and rhythm of the video sequence appear to convey 

information vital for higher-level concept creation to the user. Therefore these 

expressive elements have been chosen to be a part of the representation model. 

Having in mind that during the initial process of temporal parsing a positions of the 

shot boundaries are determined, generating the shot length distribution (SLD) of a 

given video clip would be the most economical representation resourcewise.  

As described in the previous chapter, the shot detection peak curve is derived from the 

frame difference metric as: 

 ( )2
DCE

detection 2

i
i

∂ ∆
∆ =

∂
 (V.1) 

The set of shot boundary locations Λ is determined by thresholding the detection 

curve with the constant threshold Ψ: 
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 ( ) ( ){ }detectioni i | i , E 2*∆ ∆Λ = ∆ ≥ Ψ Ψ = + σ  (V.2) 

where E∆ and σ∆ are the mean and the standard deviation of the peak metric ∆detection: 

 ( ) ( )( )
M M 2

detection detection
j 1 j 1

1 1E j , j E
M M∆ ∆ ∆

= =

= ∆ σ = ∆ −∑ ∑  (V.3) 

The values of the shot durations are calculated as: 

 ( ) { }k 1 ki , k+λ = Λ − Λ ∀ ∈ Λ  (V.4) 

The process of shot duration extraction is depicted in Figure V.1. 

 

Figure V.1 Shot duration extraction for sample MPEG file ulosci.mpg 

The next step in the creation of the shot length distribution model is histogram 

generation from the set of shot duration λ. As mentioned in the requirements section, 

distribution representation has to achieve scalability and separability of the 

classification involved in the process. Therefore, there are three basic ways to 

determine the histogram bin boundaries: linear, production based and normalised 

division. 

V.3.2.1.1 Linear Division 

The duration classes are divided linearly, each having the same range of values, as 

depicted in Figure V.2. Bin boundaries β are defined as: 

 ( )i C i,C const. 10β = ⋅ = =  (V.5) 

This is the easiest way to generate shot length distribution and the only one that has 

been used before. It is typical for the ignorant approach to the user adaptability and 

leads to the inefficient clustering and classification. It involves all ranges of the shots 

lengths with the same importance in the process of further classification and 
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conceptualisation. Therefore, the results achieved by applying this division haven’t 

been successful.  

 

Figure V.2  Scalable shot length distribution generation applying uniform division 

V.3.2.1.2 Exponential Division 

This model is a rough approximation of the shot length impact on the clustering 

efficiency. It models it in a way that as the shots get longer, their number is decreasing 

so that the range of values for longer shots increases. An exponential function is used 

to calculate bin boundaries β: 

 ( ) { }ii 2 ,i 2,3,...β = ∈  (V.6) 

This division is depicted in Figure V.3. Due to the fact that the granularity of the bins 

for short cuts is too detailed, this approach was abandoned. 

 

Figure V.3  Exponential division 

V.3.2.1.3 Production Based Division 

This is a non-linear division where the duration value ranges are determined by 

following the rules an editor follows during the editing process. Unlike previous 

methods, even the simplification of the representation is driven by the empiric rules, as 

depicted in Figure V.4. The bins are grouped by the empirical rules, rather than just 

grouped in pairs. 

 

Figure V.4  Distribution generation based on the production rules: non-linear division 
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V.3.2.1.4 Normalised Division 

As the previous division, this is a non-linear process. The bin boundaries are 

determined by achieving the uniform distribution of the whole dataset present in the 

classification learning stage, or in the whole database. Thus, the union set of all shots 

in the database should have the uniform distribution after applying this division. The 

bin boundaries are determined by following the next algorithm: 

1. Form the union set of the all Ν shots in the domain (database, learning set, 

etc.) 

 m
m

, # N
∀

Ω = λ Ω =∪  (V.7) 

2. Sort the union set Ω in ascending order to form Ω. 

3. Extract desired number K of bin boundaries β as: 

 ( ) Nk k , k K
K

 β = Ω ⋅ ∀ ≤ 
 

 (V.8) 

 

 

Figure V.5  Normalised division: overall database SLD histogram is uniform  

V.3.2.1.5 Applied SLD Representation Models 

Two shot length distribution representations are used in the development process. The 

first one is involved in the genre classification process. Because it is the only 

classification feature used in this process, a higher precision is needed. Therefore the 

shot length histogram consists of 6 bins, as shown in Table V.1. The bin boundaries 

are determined by following the production rules appropriate for the types of 

programme involved, i.e. news, commercials, soaps, etc.  

FLASH VERY SHORT SHORT MID SHORT MID LONG 
0-10 10-25 25-50 50-100 100-200 200+ 

Table V.1 Shot length rage division in genre classification representation 

A typical SLD distribution for a commercial and a news clip is depicted in Figure V.6. 

This model clearly distinguishes between these two genre classes, and thus improves 

the separability of the classification process. 
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Figure V.6  Typical SLD representation as applied in the genre classification algorithm 

On the other hand, the shot length distribution descriptor used in the algorithm for 

automatic video annotation (described in the following chapter) is generated as a 

normalised 3-bin histogram. This is due to the fact that the fuzzy annotation module 

involves heavy computation and there fore the representation dimension has to be 

minimal. In addition, the SLD representation is that case is strengthened with shot 

activity descriptor. The bin boundaries are defined applying the normalised division 

algorithm, because of the presence of the learning set that enables normalisation. The 

final 3-bin boundaries applied in this module, presented in Table V.2, group shots by 

SLD into short, mid and long shots. 

SHORT MID LONG 
0-27 28-156 157+ 

Table V.2  Normalised SLD representation applied in the annotation algorithm 

V.3.2.2.  Shot Activity 

In addition to the strictly temporal representation of SLD model, the major distinction 

of video media, unlike still images, is in its capability to show motion. The motion, 

actions and camera work brings magic to the video media. In order to represent the 

action within a video scene, one needs to analyse the spatial domain features. 

However, our goal is to analyse the video in its compressed domain. The solution to 

that problem is to utilise prediction information that has already analysed the spatial 

domain characteristics, and to give an overall impression of the activity involved in the 

shot.  
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V.3.2.2.1 Shot Activity And The Frame Difference Metric 

Implemented shot activity representation model describes the normalised distribution 

of the frame difference metric for each shot throughout the whole video clip. The 

frame difference metric shows the amount of visual change between them, whether it 

is camera motion, major object movement or any other kind of visual activity present 

in the video sequence. All of these events make an important impact on the overall 

impression of the clip. Therefore, different types of video have different distribution 

of the overall visual activity. For example, a news clip showing an anchorperson for 

couple of minutes clearly has no visual activity whatsoever while a commercial clip 

would have to attract attention of the audiences by offering the most of action and 

information in a limited duration of an add.  

 

Figure V.7 An example of the shot activity derived from frame difference metric ∆(ι)  
for sequence ulosci.mpg (frames 0-100) 

Let’s analyse the shot activity example in Figure V.7. The depicted clip starts with the 

end of a programme block, being very static with no camera or object motion. The 

next shot is a program break with black screen shot with duration of approximately 15 

frames. The activity in this shot is zero. The next shot is more active, having a slow 

camera pan of the scene where the objects are mildly moving through the scene. 

During this shot, the frame difference metric has higher values and follows the content 

change within the shot. Finally, the last shot is static with no camera movement, but 

the objects are moving in the scene. This is clearly less active shot than a previous one, 

but not as inactive as the first two. Therefore, it is obvious that the average value or 

mean of the frame difference within a shot describes the amount of motion and 
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activity present in the shot. For that reason, mean value of the metric ∆(i) defined in 

the previous chapter is to be used as the shot activity descriptor. Afterwards, values of 

the shot activity from each shot will form the Shot Activity (SA) representation model 

in order to characterise the overall activity of the clip. 

V.3.2.2.2 SA Extraction Algorithm 

The SA representation is generated as follows. The shot activity is extracted directly 

from difference metric described in Chapter IV. It is defined as the average of the Δ(i) 

metric within one shot. Thus, each shot gets assigned a unique activity value. For a 

shot starting at the i-th frame and having a shot length Ni, the shot activity is calculated 

as:  

 ( )
Ni

i
j 1

1Sa i j
Ni =

= ∆ +∑  (V.9) 

The SA model is formed as a normalised histogram of shot activities. The division of 

bin boundaries is uniform. The sum of the histogram bins is normalised to be one. 

Because the SA model is applied in the annotation module, there is no need for more 

that 3 classes of shot activity. A typical example of the SA descriptor is given in the 

Figure V.8. 

 

Figure V.8 SA representation example 

V.3.2.3.  Hierarchical Colour Descriptor 

Continuing to utilise the set of the robust and efficient low-level descriptors presented 

in the previous chapter, there has been an inclination towards application of the 

hierarchically quantised colour descriptor in the final representation model. However, 

the complexity of the sensible scalable colour representation needed for the automatic 

annotation module made the exploitation of the colour information inappropriate. The 

only instance of the colour features in this work is the example of the experimental 

testbed in Chapter VI. There, the descriptor simplification procedure is driven to its 
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final stage, where only one colour component is left, i.e. the dominant colour. This is 

described in more detail in Chapter III. 

V.4. GENRE CLASSIFICATION 
The complexity of the generic semantic annotation of videos is enormous. Therefore, 

the system needs to shrink the signification space through definition of the context 

involved in order to achieve any result. Often, this is done by limiting the amount of 

the semantic concepts to be linked with or by modelling the system for some particular 

type of application. However, by adopting the semiotic approach to the signification 

process in visual media and the new computational media aesthetics paradigm, 

shrinking of the contextual space has to follow the real world contextualisation. In 

other words, classification into subsets of the analysed media will reach semantic 

concepts only if the classes formed present types of media present in the real world. 

The most common classification in the video/TV and film theory is genre 

classification. This issue is described more in Chapter III. 

V.4.1. CLASSIFICATION METHOD 

In order to reduce the complexity of the signification process and improve its 

accuracy, the database is partitioned into sub-classes according to the properties of the 

extracted representation model. The database is clustered by applying the k-means 

algorithm to the low-level metric space transformed to the representation model. Two 

main reasons were considered to choose the k-means algorithm in order to achieve 

this classification: The huge population of conventional video databases and the 

excellent performance of the k-means clustering technique when number of clusters k 

is known and the set to be clustered is large. Since the number of sub-classes, i.e. 

genres, in the underlying annotation problem can be predetermined by the pre-

annotated dataset, it can be assumed that the number of clusters k is known. 

Furthermore, it can be assumed that at least one video per cluster in the dataset has 

been classified beforehand. This entry point in the representation metric space can be 

used to define the initial centre of the corresponding clusters in the k-means algorithm. 

The genres involved in the experimental process are grouped in three classes: news, 

commercials and soaps. News sequences used consist mainly of either anchorperson 

shots or news reports. Commercials comprise variety of short advertisements, while 

soaps include parts of sitcoms and soap operas. 
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V.4.2. K-MEANS CLUSTERING 

The k-means algorithm [HARTI1, HARTI2] is by far the most popular clustering tool 

used in scientific and industrial applications. The name comes from representing each 

of k clusters C by the mean (or weighted average) c of its points, the so-called centroid. 

While this obviously does not work well with categorical attributes, it has the good 

geometric and statistical sense for numerical attributes. The sum of discrepancies 

between a point and its centroid expressed through appropriate distance is used as the 

objective function. The choice of the distance function is crucial factor of the 

algorithm efficency. 

Two versions of k-means iterative optimization are known. The first version is similar 

to EM algorithm and consists of two-step major iterations that (1) reassign all the 

points to their nearest centroids, and (2) recompute centroids of newly assembled 

groups. Iterations continue until a stopping criterion is achieved (for example, no 

reassignments happen). This version is known as Forgy’s algorithm [FROGY] and has 

many advantages: 

• It easily works with any norm, and  

• It is insensitive with respect to data ordering. 

The second (classic in iterative optimization) version of k-means iterative optimization 

reassigns points based on more detailed analysis of effects on the objective function 

caused by moving a point from its current cluster to a potentially new one. If a move 

has a positive effect, the point is relocated and the two centroids are recomputed. It is 

not clear that this version is computationally feasible, because the outlined analysis 

requires an inner loop over all member points of involved clusters affected by 

centroids shifts. 

To cluster video representations into genre based classes, a first version of the k-means 

algorithm is applied. It is simple, straightforward, and is based on the firm foundation 

of analysis of variances. However, k-means also has its drawbacks:  

• The result strongly depends on the initial guess of centroids (or assignments)  

• It is not obvious what is a good k to use 

• The process is sensitive with respect to outliers  

• Only numerical attributes are covered  
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In our case, all difficulties are eliminated, due to the fact that we operate with 

numerical attributes with the defined number of clusters and the predefined initial 

centeroids.  

V.4.2.1.  K-means Algorithm 

The k-means method aims to minimize the sum of squared distances between all 

points and the cluster centre. This procedure consists of the following steps, as 

described in [TOU]. 

1. Choose randomly K initial cluster centres z1(1), z2(1), ... , zK(1) . 

2. At the i-th iterative step, distribute the samples {x} among the K clusters using the 

relation, 

 ( ) ( ) ( )j j kx C i if x z i x z i∈ − < −  (V.10) 

for all k = 1, 2, …, K; k≠j; where Cj(i) denotes the set of samples whose cluster centre 

is zj(i). 

3. Compute the new cluster centres zj(i+1), j = 1, 2, …, K such that the sum of the 

squared distances from all points in Cj(i) to the new cluster centre is minimized. The 

measure which minimizes this is simply the sample mean of Cj(i). Therefore, the new 

cluster centre is given by 

 ( )
( )j

j
x C ij

1z i 1 x, j 1,2,...,K
N ∈

+ = =∑  (V.11) 

where Nj is the number of samples in Cj(i). 

4. If zj(i+1) = zj(i) for j = 1, 2, …, K then the algorithm has converged and the 

procedure is terminated. Otherwise go to Step 2. 

V.4.2.2.  Distance Functions 

The choice of the dissimilarity measure is central in setting up the classification 

algorithm. Two main distance functions were implemented: bin-to-bin histogram 

distance and Earth Mover’s Distance. 

V.4.2.2.1 Bin-To-Bin Histogram Distance Functions 

In this category of distance functions only pairs of bins in the two histograms that 

have the same index are matched. The dissimilarity between two histograms is a 

combination of all the pairwise differences. A Minkowski-form distance is applied: 
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The L1 distance is often used for computing dissimilarity between colour images 

[SWAIN]. Other common usages are L2 and L∞. In [STICKER] it was shown that for 

image retrieval the L1 distance results in many false negatives because neighbouring 

bins are not considered. Therefore, a cross bin dissimilarity measure is applied in the 

final system. L2 Minkowski-form bin-to-bin measure was used only in the development 

process. 

V.4.2.2.2 Earth Mover’s Distance 

The distance between two single perceptual features can be found by psychophysical 

experiments. For example, perceptual colour spaces were devised in which the 

Euclidean distance between two single colours approximately matches human 

perception of the difference between those colours. This becomes more complicated 

when sets of features, rather than single colours, are being compared. The problems 

caused by dissimilarity measures that do not handle correspondences between different 

bins in the two histograms became the main focus of the histogram-based retrieval. 

This correspondence is key to a perceptually natural definition of the distances 

between sets of features.  

Intuitively, given two distributions, one can be seen as a mass of earth properly spread 

in space, the other as a collection of holes in that same space. Then, the EMD 

measures the least amount of work needed to fill the holes with earth. Here, a unit of 

work corresponds to transporting a unit of earth by a unit of ground distance.  

Computing the EMD is based on a solution to the well-known transportation problem 

[HITCH]. This can be formalized as the following linear programming problem: Let 

P={(p1,wp1),...,(pm,wpm)} be the first signature with m clusters, where pi is the cluster 

representative and wpi is the weight of the cluster; Q={(qi,wqi),...,(qn,wqn)} the second 

signature with n clusters; and D = [dij] the ground distance matrix where dij is the 

ground distance between clusters pi and qj. We want to find a flow F = [fij], with fij the 

flow between pi and qj, that minimizes the overall cost 

 ( )
m n

ij ij
i 1 j 1

WORK P,Q,F d f
= =

= ∑∑  (V.13) 

subject to the following constraints: 



CHAPTER V VIDEO REPRESENTATION MODEL 

 

136 

 

ij

n

ij pi
j 1

m

ij qj
i 1

m n m n

ij pi qj
i 1 j 1 i 1 j 1

f 0 1 i m,1 j n

f w 1 i m

f w 1 j n

f min w , w 1 j n

=

=

= = = =

≥ ≤ ≤ ≤ ≤

≤ ≤ ≤

≤ ≤ ≤

 
= ≤ ≤ 

 

∑

∑

∑∑ ∑ ∑

 (V.14) 

Constraint (1) allows moving "supplies" from P to Q and not vice versa. Constraint (2) 

limits the amount of supplies that can be sent by the clusters in P to their weights. 

Constraint (3) limits the clusters in Q to receive no more supplies than their weights; 

and constraint (4) forces to move the maximum amount of supplies possible. We call 

this amount the total flow. Once the transportation problem is solved, and we have 

found the optimal flow F, the earth mover's distance is defined as the work normalized 

by the total flow: 

 ( )
m n

ij iji 1 j 1
m n

iji 1 j 1

d f
EMD P,Q
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∑ ∑

 (V.15) 

This distance function is utilised in the process of clustering as a dissimilarity measure 

between SLD histogram representations. 

V.5. SUMMARY 
This chapter described in detail the importance of the efficient and robust video 

representation in a CBVIR system. After bringing the critique of the sate-of-the-art 

methods in the video representation field, a set of essential requirements was defined 

in order to target more efficient representation. Furthermore, a model based on 

computational media aesthetics paradigm is presented. It utilises production 

knowledge to achieve requirements set in the beginning of the chapter. The features 

involved are shot length distribution and normalised shot activity. Finally, a contextual 

classification of videos into genres is presented. This algorithm exploits representation 

model to cluster video clips into syntactically similar groups applying k-means 

algorithm as a classification tool.  
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VI.  EXPERIMENTAL TESTBED 

VI.1. OVERVIEW 
The algorithms were implemented on Windows platform, using C/C++ programming 

tools, particularly MS Visual C++ 6 and some specific libraries available online. The 

collection of C++ classes called Mpeg Development Classes, implemented by Dongge 

et al. [DONGGE], was used as the main tool for manipulation with MPEG streams, 

while Berkeley mpeg2codec was used as the reference MPEG codec. The tool used for 

data visualisation and some experiments was Mathworks’ Matlab Suite. 

All experiments were performed on a Pentium III 750MHz workstation running on 

the Windows 2000 platform. Experimental environment was designed to benchmark 

efficiency and robustness of the algorithms involved. Ground truth for the shot 

detection evaluation was made manually, by precise labelling the shot boundaries. 

Experimental dataset is described in the following section. 

VI.2. EXPERIMENTAL DATASET 
The majority of the test sequences involved in the experiments was produced by 

Multimedia & Vision Research Lab, Queen Mary, University of London. Additional 

dataset was provided by Computer Vision Department, Dublin City University, 

Dublin, Ireland.  

 

Two video grabber cards were used in the creation of the experimental dataset locally:  

i) Nebula Electronics DigiTV, courtesy of the BUSMAN project, recorded 

the MPEG2 digital broadcast stream directly to the local multimedia server  

ii) Pinnacle DV500 required transcoding to produce the needed MPEG2 

compression format form its original M-JPEG compression.  

§ These sequences were all in CIF resolution 352x288pixels, encoded in multiple 

copies with the bitrates ranging from 1 to 8 Mbps. Sequences produced by 

Computer Vision Department at Dublin City University were captured at their local 

multimedia network Físchlár (http://www.cdvp.dcu.ie/) and were encoded as CIF 

MPEG1 with resolution 356x288pixels. For the computational speed evaluation 

purposes, a range of resolutions was used, from QCIF to HDTV, all in MPEG2 

http://www.cdvp.dcu.ie/
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format. Test sequences ulosci.mpg and news136.mpg referenced in this work can be 

downloaded from:  

www2.elec.qmul.ac.uk/~janko/ulosci.mpg, and 

www2.elec.qmul.ac.uk/~janko/news136.mpg.  

Their visual summaries with the corresponding difference metrics are given in Annex 

X.3. 

VI.3. AUTOMATIC VIDEO ANNOTATION SYSTEM 
As a part of a bigger CBVIR system, video representation and classification module 

presented in the previous chapter is evaluated by supporting an automatic video 

annotation system. Low-level features extracted from the video sequences and their 

representations are fed to the video annotation system input. Relying upon different 

video representations annotation system creates a set of inference rules linking low-

level features with high-level user defined concepts. Results substantiated our 

expectations that a choice of suitable representation significantly affects annotation 

outcomes even if aimed only at a modest process of labelling from a predefined 

keyword lexicon. 

VI.3.1. ANNOTATION SYSTEM OVERVIEW 

The proposed evaluation system annotates video sequences automatically using 

knowledge from a pre-annotated dataset. It creates representations from a set of low-

level video features and infers the association rules between them and high-level 

concepts from a pre-defined lexicon, listed in Table VI.1. The used paradigm for 

automatic semantic annotation is depicted in Figure VI.1 

 

Low-level Features

Knowledge Representation

Conceptual Level

 

Figure VI.1.  Mapping between low-level features and high-level concepts. 
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The system consists of two units: learning and annotation units. The learning unit 

consist of three sequential modules: low-level feature extraction, knowledge 

representation and rule mining. This unit uses pre-annotated videos to generate rules 

that link a particular low-level representation of the sequence with a corresponding 

label from the lexicon. Figure VI.2 shows a flowchart of the learning unit.  
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. . .
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Figure VI.2  Flowchart of the learning unit  

The annotation unit automatically infers concepts and assign them to videos using the 

rules and supports generated by the learning unit. Each time new content is added to 

the database new concepts can emerge from the constant evaluation of the confidence 

and support measures leading to continuously changing metadata and inference rules. 

The low-level feature extraction algorithm and the video representation model are 

being implemented here as the first module of the learning unit. Firstly, system parses 

video into shots and extracts a representative set of key-frames. Exploiting descriptors 

extracted from the temporal structure and key-frames, a subsequent filtering stage 

classifies videos into contextual sub-classes in order to limit the signification space and 

reduce rule-mining complexity. Each sub-class or genre has its own lexicon, on which 

the rule-mining algorithm is applied. Exploiting information from the video 
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representation model a fuzzy set is defined by assigning fuzzy boundaries to the 

numerical descriptors and labelling each fuzzy class with high-level representations.  

The third module of the learning unit performs rule mining. Initially a set of low-level 

features is extracted form the pre-annotated dataset. Using the knowledge 

representation provided by the expert user, for each video clip a set of features is 

mapped into words and a log of all available transactions is created. From this log and 

using fuzzy membership values, rules are mined and a list of possible rules is 

generated. By filtering the initially generated association rules, the learning unit creates 

a more dedicated set of rules. These selected rules are then used as a knowledge base 

in the annotation process. 

Rules

Low-level Description

Difference Metric D(i)

Video

Knowledge Representation

Annotation

keyword 1, class 1
keyword 2, class 1
. . .
keyword 1, class 2
keyword 2, class 2
. . .

 

Figure VI.3  Flowchart of the annotation unit. 

The annotation unit, as depicted in Figure VI.3, automatically assigns high-level 

concepts from the lexicon to any new video added to the database. As in the learning 

unit, the automatic annotation process starts with the extraction of the low-level video 

features and the automatic generation of descriptors. Using the video representation 

model defined in the previous chapter, the new videos are mapped into the 

corresponding feature-related words by a fuzzification process. Finally, a fuzzy 

inference module generates the pattern of assigned labels and outputs a set of high-

level concepts from the lexicon. In this process new rules can be created and added to 

the rule knowledge base. 
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VI.3.2. THE LEARNING UNIT 

For the sake of clarity, a simple system that uses only the dominant colour descriptor 

of automatically extracted key-frames and a simple lexicon is presented throughout the 

following descriptions of the implemented system. This illustrative example targets the 

annotation of broadcasting news and it will be referred as “dominant colour to 

annotate news” (DCAN) example in the sequel. For a given video sequence, the low-

level feature extraction module generates a set of shot boundaries and representative 

key-frames, as described in the previous subsection. The dominant colour descriptor 

defined in the previous chapter is extracted from each key-frame. For a lexicon with 

two concept-related keywords a knowledge representation that exploits dominant 

colour variations within the sequence is designed. Changes of the dominant colour 

within the sequence are estimated using the quadratic colour histogram distances γ as 

defined in the MPEG7 XM [XM]. The video descriptor δ  is then defined as the mean 

value of the γ-distances between the first key-frame and all the other key-frames in the 

same sequence. Small dominant colour variations within the sequence should 

correspond to the label "anchorperson" in the context of news clips, while strong 

changes should refer to the label "report". These two words form the concept-related 

part of the lexicon. Knowledge representation for this low-level feature is given by two 

fuzzy sets related to the mean values. The names of the fuzzy sets, mean of the 

distances between dominant colour high and low (ddcm_high, ddcm_low), are added 

to the lexicon as feature-related words, as given in Table VI.1.  

 

news commercial soap 

report anchorperson interview 

co
nc

ep
t-

ba
se

d 

ke
yw

or
ds
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high_act mid_act low_act 

Table VI.1 List of concept-based and feature-based keywords used in the annotation unit 

 

In Figure VI.4 the results obtained for 20 samples and the representation of the low-

level feature in the fuzzy space are depicted. In this figure the notation related to the 

knowledge representation module is used to link the obtained result with the 
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description given in the next paragraph. More detailed description of the inference and 

the rule mining module can be found in the Annex VI [DORADO]. 

For the DCAN example the fuzzy system generates feature-related words describing 

low or high mean values of the difference between dominant colour descriptors as 

ddcm_low and ddcm_high for each video clip processed.  A log of transactions was 

created using 4 words: ddcm_low, ddcm_high, anchorperson and report. The rule 

mining process found two rules with 100% of confidence: 

ddcm_low à anchorperson 

ddcm_high à report 

 
Figure VI.4 Knowledge representation for changes on dominant colour in key-frames. 

 

This set of rules form the rule knowledge base for this example system. Basically, these 

two rules imply that the mean difference between the dominant colour descriptors is 

low for "anchorperson" clips and high for "report" clips. The real automatic 

annotation system utilises representation model presented in the Chapter V. Results of 

the evaluation are given in the following chapter. 
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VI.3.3. AUTOMATIC VIDEO ANNOTATION 

Once a knowledge base with a set of association rules is created the system uses an 

inverse rule-based inference process to identify candidate concepts for the annotation 

of each new video added to the database. The annotation unit uses a fuzzy inference 

strategy which involves three basic modules: fuzzification, fuzzy inference and 

defuzzification. The input of the fuzzification module is a real number corresponding 

to an instance of a variable. Adopting the same principle as in the knowledge 

representation module of the learning unit, the set of low-level features forms a set of 

representation variables for the new video clip. The degree of membership for each 

fuzzy set is calculated using the membership functions defined in the knowledge 

representation step and mapping features into keywords. The output of this module is 

a fuzzy value. 

The fuzzy inference module uses rules in the form IF <condition> THEN <action>. 

Inference rules are not a free form of the natural language; they are limited to a set of 

words and a strict syntax. In this case, inference rules are limited to the keywords from 

the lexicon. Here, <condition> expresses the instances of low-level features and 

<action> denotes annotations. Each <condition> of a rule corresponds to a specific 

value of a fuzzy input. This input value is a result of the fuzzification module. Each 

<action> of a rule corresponds to a fuzzy output. In addition, this kind of rules have 

two representative characteristics: they are qualitative rather than quantitative and each 

<condition> is related to an appropriate <action>. The importance of these rules lays 

in the possibility of representing human knowledge by a hierarchical model. Besides, 

these rules are relatively simple and consistent with the way human reasoning works. 

The fuzzy inference module calculates the fuzzy output values for the corresponding 

variable. It uses the relationship between input and output variables using the base of 

linguistic rules provided by the learning unit. At this point, a number of rules can have 

different degrees of truth leading to competition between the results. Using an 

aggregation’s operator the instances of the <condition> part of rules are combined in 

order to determine the value of the rule. This value is used to determine the <action> 

part of the rule. The procedure is repeated for all rules from the rule knowledge base. 

It is possible that an output fuzzy variable has a fuzzy set as <action> in several rules. 

The composition’s operator is used to determine the final value of this fuzzy set.  

The defuzzification module combines the fuzzy values of each output variable to 

obtain a real number for each variable. In this module a weighted average method is 
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used. It combines fuzzy values using weighted averages to obtain the resulting crisp 

value. 

     
KF1 KF2 KF3 KF4 KF5 

Figure VI.5 A set of five key-frames from the sequence news136.mpg. 

To illustrate this process the sequence of key-frames KF1-5 extracted form the video 

news136.mpg is used. These five key-frames are shown in Figure VI.5. The aim of this 

exercise is to show the behaviour of the annotation unit for the rule knowledge 

database derived for the DCAN example. Following the procedure for representation, 

the distances from KF1 to the other key frames are calculated. These values along with 

the corresponding mean are given in Table VI.2. 

δ1 δ2 δ3 δ4 X  

83.4 82.8 78.7 82.4 81.83 

Table VI.2 Distances between the DCAN descriptor of KF1 and the other key frames form 
news136.mpg.  

The fuzzification process based on the knowledge representation generates ( )A x 0µ >%  

and ( )B x 0µ =% . So, the mapping function for this instance of the mean 

is ( ) { }M x A= %% , where A%  is ddcm_high. Using this word the rule mining process 

suggests the word “report” for the annotation of the sequence of key-frames KF1-5. 

VI.4. SUMMARY 
This chapter describes the experimental environment for the evaluation of the 

developed algorithms. Firstly, the video dataset used in experiments is specified. 

Furthermore, since the objective evaluation demands a wider CBVIR system an 

automatic video annotation system is presented in Section 3. It benchmarks the 

efficiency of the video representation model by exploiting fuzzy logic methods for 

labelling the video data. 



CHAPTER VII RESULTS 

 

145 

VII.  RESULTS 

VII.1. OVERVIEW 
This chapter presents experimental results of the evaluation process. First of all, results 

of the temporal analysis evaluation are given. This includes difference metric extraction 

for the three presented algorithms, metric simplification process, key frame extraction 

and motion filed estimation. Experiments conducted on the hierarchical quantisation 

of the colour descriptor are presented afterwards. The chapter concludes with an 

assessment of the video representation model and the involved genre classification 

system. 

VII.2. METRIC EXTRACTION 
In order to evaluate the temporal video analysis a set of manually labelled video 

sequences are used as the ground truth. The precision of the manual labels is frame 

accurate with classification of the transition types into abrupt or gradual. The overall 

video material consists of over 7 hours of various content types. The dominant 

programme types are news, commercials and soaps.  

VII.2.1. FRAME-TO-FRAME DIFFERENCE METRICS 

To begin with, the typical behaviour of the first temporal segmentation algorithm is 

depicted in the following example. Therefore, a sample MPEG2 video sequence 

shot.m2v is generated having three abrupt shot changes at 6th, 16th and 23rd frame. 

As depicted in Figure VII.1, the first cut is positioned at rear b frame, and as 

proposed, it is clear that the level of forward reference is high at previous B frame 

β(5), and that at the present frame there is strong backward referencing β(6). On the 

other hand, for the 16th I type frame there are significant levels of forward prediction 

on both 13th and 14th frame, i.e. ϕ(13) and ϕ(14) are high. Finally, the 23rd B type frame 

brings the strong visual change and therefore both bi-directional frames have high 

values of β(23) and β(24). The reason for that is because both frames are predicted 

only by the coming reference frame an not at all by the previous reference frame. 
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Figure VII.1 Detection of the cuts on the 6th, 16th and 23rd frame in the test sequence  

VII.2.2. SHOT DETECTION EVALUATION PROCEDURE 

In order to compare the efficiency, robustness and preciseness of the shot detection 

algorithms presented here, a unified procedure for result evaluation is applied. It has 

been adopted by many researchers in the publications and surveys on temporal video 

analysis [GARGI, BOREC]. 

The applied statistical performance evaluation is "based on the number of missed 

detections (MD's) and false alarms (FA's), expressed as recall and precision" [GARGI]: 

 Detects DetectsRecall ,Precision
Detects MD's Detects FA's

= =
+ +

 (VII.1) 

Recall is defined as the percentage of desired items that are retrieved. Precision is 

defined as the percentage of retrieved items that are desired items. Recall and precision 

are commonly used in the field of information retrieval. It is difficult to make 

comparisons between algorithms based on recall and precision values. For example, an 

automated video indexing system that uses a human operator to screen the results 

requires a high recall. A system that summarizes video by selecting a key-frame for 
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each minute of video places higher emphasis on precision. In any application a trade-

off must be made between recall and precision. It may or may not be acceptable to 

retrieve one extra shot boundary that would otherwise be missed at the expense of 

retrieving 100 non-boundaries incorrectly. 

As said before, manually detected positions of the shot boundaries were taken as the 

ground truth. There were three main categories of video material analysed:  

• NEWS; long monotonous sequences with mainly abrupt changes, 

• SOAP OPERA; average shot length with some gradual changes and editing 

effects 

• COMMERCIALS; short shots with a lot of gradual changes and editing effects   

The initial cut detection procedure showed good results for abrupt changes while the 

gradual changes had intolerable number of both misses and false positives. Form 127 

transitions, 17 were gradual, and the algorithm detected only 9 of them. Therefore, the 

frame difference metric needed improvement. The results are presented in Table 

VII.1. 

 DETECT MISSED FALSE RECALL PRECISION 

NEWS 87 2 6 98% 94% 

SOAP 92 2 9 98% 91% 

COMMERCIALS 127 9 16 94% 88% 

Table VII.1 Cut detection statistics 

VII.2.3. RANDOM DISTANCE DIFFERENCE METRICS 

Comparing to the cut detection, evaluation of the gradual changes detection is always a 

delicate issue due to the variety of potential transition types and digital editing effects. 

A simplified classification of the transitions to cuts and gradual changes is applied 

here. By unifying the gradual types into one class, a complexity of the gradual 

transition categorisation is avoided. Any type of the shot transition that is longer than 

3 frames is considered as gradual. First, a dead end direction towards using MPEG 

motion vectors as a feature to detect shot boundaries is described in more detail. 

VII.2.3.1.  MPEG motion vectors as a detection feature 

The results of the algorithm that analyses motion vector fields turned out to be very 

poor, since less than 5% of MacroBlocks with defined motion vectors was obtained in 
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frame areas neighbouring the shot boundary. If the union of the MacroBlock sets 

having forward (Φ) or backward (B) prediction is denoted Γ: 

 ( ) ( ) ( )i i iΓ = Φ Β∪  (VII.2) 

then the fraction of defined motion vectors in a frame can be defined as: 

 ( )# i
(i) 256

H W
Γ

γ = ⋅
⋅

 (VII.3) 

where H and W are the frame height and width in pixels respectively. In Figure VII.2 a 

defined motion vector fraction is given in a short commercial clip. It is obvious that 

the number of defined motion vectors falls as soon as a transition occurs. 

 
Figure VII.2 Obvious lack of defined motion vectors during transitions 

If we consider the granularity of the MacroBlocks in case of different MPEG 

resolutions and bitrates, things doesn’t change much, as shown in Table VII.2: 

Mbps/Res 0.7/CIF 1.5/CIF 3/PAL 6/PAL 
γ  0.68 0.70 0.84 0.86 

Tγ  0.08 0.08 0.11 0.10 

Table VII.2  Inpact of the higher bitrates/resolution on MV definition is minor 

Where, if the set of the shot boundaries is denoted as Λ, γ  is the average defined MV 

fraction for a whole clip and Tγ  is the local average, as defined in the following 

formulae: 

 ( ) ( )
N 5

T
i 1 i 5

1 1i , and i
N 10 #= ∀ ∈Λ ε=−

γ = γ γ = γ + ε
⋅ Λ∑ ∑ ∑  (VII.4) 

VII.2.3.2.  Metric Evaluation 

Focusing on the metric extracted using random distance method that exploits 

information on the inter-frame referencing, let us analyse Figure VII.3. The figure 



CHAPTER VII RESULTS 

 

149 

shows an example of the raw frame difference metrics ∆D(i), defined in the previous 

chapter. 

In the generated sample video clip, there are three types of the shot changes: cut on 

the 48th frame, wipe from the 82nd to the 121st frame and dissolve from the 160th to the 

183rd frame. The graph shows unclear detection of those three changes, regardless of 

the change type because of the strong additional noise and weak peaks for longer 

gradual transitions. This method showed additional detection difficulties on sequences 

with high motion during the shot changes.  

 

Figure VII.3 Difference metrics ∆ for three types of gradual changes: cut, wipe and dissolve in the 
sequence news136.mpg (frames 100-320) 

After the metric noise reduction and the detection procedure described in Chapter IV 

a set of shot boundaries is extracted. The same approach as before was used for the 

statistical evaluation of this method. The results are shown in Table VII.3. 

 DETECT MISSED FALSE RECALL PRECISION 

NEWS 88 1 5 98% 95% 

SOAP 92 2 9 98% 91% 

COMMERCIALS 130 6 10 96% 92% 

Table VII.3 Statistics of the gradual changes detection 

VII.2.4. RESULTS FOR THE GENERALIZED DIFFERENCE METRIC 

Evaluation of the final metric is divided into two steps because of its utilisation in both 

shot boundary location and key-frame definition task. Throughout the evaluation 

∆(i) 

frames 
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process a commercial clip ulosci.mpg is analysed as an example. The stages of the 

temporal analysis of the sample clip are given in the Figure VII.4. 

 

Figure VII.4 Stages in the temporal analysis for the sample mpeg file ulosci.mpg 

VII.2.4.1.  Shot detection evaluation 

As described before, the evaluation of the generalized frame difference metric is based 

on the manually labelled ground truth of approximately 7 hours of MPEG video 

material. The results are presented in Table VII.4.   

 DETECT MISSED FALSE RECALL PRECISION 

NEWS 267 0 6 100% 99% 

SOAP 276 6 27 98% 91% 

COMMERCIALS 402 6 18 99% 97% 

Table VII.4 Shot changes detection results 

The boundaries are determined by analysing the difference metric ∆ as given in the 

following formula: 

 ( )2
DCE

detection 2

i
i

∂ ∆
∆ =

∂
 (VII.5) 

The set of shot boundary locations Λ is determined by thresholding the detection 

curve with the constant threshold Ψ: 

 ( ) ( ){ }detectioni i | i , E 2*∆ ∆Λ = ∆ ≥ Ψ Ψ = + σ  (VII.6) 

where E∆ and σ∆ are the mean and the standard deviation of the peak metric ∆detection: 
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 ( ) ( )( )
M M 2

detection detection
j 1 j 1

1 1E j , j E
M M∆ ∆ ∆

= =

= ∆ σ = ∆ −∑ ∑  (VII.7) 

In order to evaluate the robustness of the algorithm to changes in the MPEG 

compression rates and resolution, a next experiment was conducted.  

A chosen set of representative clips is transcoded in multiple bitrates and resolutions 

and the results are given in Table VII.5. Value pairs presented in the table are 

recall/precision values. 

Res.\Bitrate [Mbps] 0.7 1.0 1.5 2.0 3.0 4.0 6.0 8.0 

QCIF [176x144] 91/72 92/94 98/95 98/94 x x x x 

CIF [352x288] 94/99 99/100 100/97 97/88 91/85 80/77 x x 

PAL [720x576] x 95/96 99/99 99/99 90/92 80/81 77/80 78/75 

HDTV [1280x720] x x 91/84 94/87 91/87 81/74 74/68 66/71 

Table VII.5 Robustness on bitrate/resolution 

The graphical presentation of these results is given in Figure VII.5. The values 

presented in the figure are the sum of the recall and precision. Some of the 

resolution/bitrate pairs are avoided because of its irrelevancy.  

 

Figure VII.5  Robustness to the MPEG resolution/bitrate change 
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VII.2.4.2.  Metric Simplification 

After Gaussian smoothing of the raw difference metric curve simplification algorithm 

makes a scale-space of the metric curves on difference levels of detail. Two stages of 

the simplification algorithm are presented in Figure VII.6.  

 

Figure VII.6 DCE algorithm results 

During the curve simplification DCE algorithm deletes less important changes one by 

one without dislocating the vertices of the main difference metrics. Major values like 

frame difference and location of the peak in the function are stable.  

There are three ways of determining the desired stage of the simplification process: a-

priori defined number of key-frames, automatic analysis of the cost function and 

interactive.  

If the user needs a predefined number of key-frames to make a visual summary, than 

the algorithm finalises the process when the number of key-points has been reached. 

Number of key-frames cannot be determined exactly, but in the final stages, the 

number of key-points is approximately double of the number of key-frames. This is 

strictly speaking an empirical conclusion, but the results show that by following this 

rule, final number of key-frames varies ±2%! 
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Another way of determining the final granularity of the curve in the simplification 

process is to track values of the cost function K: 

 ( )1 2 1 2 1 2 (ABC)K(s ,s ) (s ,s ) l l P∆= β ⋅ + ⋅  (VII.8) 

where the variables involved in the equation are given as (see Figure IV.10): 

 2 2
i i i i(i 1) (i) , lδ = ∆ + − ∆ = τ + δ  (VII.9) 

 ( ) ( )i i 1 i i i 1 i 1(s ,s ) acrtg acrtg+ + +β = δ τ − δ τ  (VII.10) 

 ( )ABC i i i 1 i 1
1P
2∆ + += δ τ + δ τ  (VII.11) 

β

δ ι+
1

δ ι

αι+1

αι

τι τι+1

 

Figure VII.7 DCE linearization of two adjacent line segments 

In the Figure VII.8 a cumulative cost function σK is given for 6 stages in the 

simplification process. Cumulative cost function is defines as follows: 

 ( ) ( )
j

K removed
i 1

j K i
=

σ = ∑  (VII.12) 

In order to determine the optimal threshold an empirical evaluation has been 

conducted. By knowing the ground truth, the final simplification limit was set and the 

threshold for σK was calculated at the final stage of the process. The determined value 

for the experimental dataset involved was σKTh=1.73. 

The interactive setting of the final simplification stage needs a semi-automatic 

interface. However, in case of the real world application, editor can set the values of 

the threshold σKTh on a slider and in that way make a summary more or less detailed. 
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This refinement can run in real time because of the computational simplicity of the 

calculations involved in the final stages of simplification.  

 

Figure VII.8  Evident increase in the cost function appears in the area when the simplification 
procedure starts removing important vertices from the metric, sequence ulosci.mpg 

VII.3. MOTION FLOW AND CAMERA WORK ANALYSIS 
Since the motion flow extracted directly from MPEG motion vectors has rough 

granularity of one vector per 16x16 pixel region, it was impossible to determine local 

motion of the objects present in the scene. Therefore, just the global motion 

characteristics were extracted: camera pan, zoom in/out and rotation, as presented in 

Chapter IV.  

Rough granularity with rather good global motion description of the extracted motion 

flow is depicted in Figure VII.9. The only unsolved problem is with shots having big 

homogeneous regions covering the most of the screen, like black breaks, some very 

dark scenes or just special effects. During that sequence type, a motion estimator has 

almost a random choice of the best prediction region to minimise the prediction error, 

and therefore, the motion vectors involved are completely random in both direction 

and intensity, as depicted in the first frame in Figure VII.9. 
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Figure VII.9 Motion Flow extraction 

Again, the ground truth for the camera categorisation is labelled manually. It consisted 

of categories: pan, tilt, zoom in, zoom out, rotation. Results are compared with similar 

research work that based its camera analysis on MPEG motion vectors [MILAN]. 

Results are given in Table VII.6 in the form our result/comparison for the categories 

available. Other publication didn’t give any numerical comparison of the achieved 

camera classification quality. 

 Pan Tilt Zoom in Zoom out Rotation 

FA 5.64/8.89 7.21/7.48 5.64/- 7.25/- 21.56/- 

MD 6.35/5.75 6.25/0.00 15.02/18.87 12.35/- 26.22/- 

Table VII.6 Evaluation of the camera work categorisation 

VII.4. KEY-FRAME EXTRACTION 
Objective evaluation of how representative is the given set of key-frames is a very 

difficult task because of the subjective impression one can have about the importance 

of the particular events to the overall content. After few experiments with different 

abstraction rate and different video content, the conclusion is that the algorithm shows 

subjectively excellent results for news and soaps, while the content of the commercials 

is presented adequately if the major visual changes are transitions and not editing 

effects.  Nevertheless, since the visual summary has to give more key-frames in the 

case of frequent content change even within one single shot, this algorithm gives a 

good visual summary of the visual events present in the sequence. The three step 

metric analysis of a representative part in the sample clip ulosci.mpg is presented in 

Figure VII.10, where the dotted lines show the positions of the key-frames. 
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Figure VII.10 Dotted lines show the key-frame positions 

 

Figure VII.11 Summary of the commercial video clip 

An example of the video summary generated from the extracted set of the key-frames 

is given in Figure VII.11. Shot and scene analysis is easily applied to it: black key 

frames reveal the breaks between the commercials; scenes could be differentiated by 

simple colour analysis and local features could be extracted using common computer 

vision methods, like shape and texture descriptors. 
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VII.5. HIERARCHICAL COLOUR HISTOGRAM QUANTISATION 
Figure VII.12 depicts the hierarchical quantisation of the hue component of the colour 

histogram, as described in Chapter IV. 

 

Figure VII.12 Scalable Quantisation of the colour historgam descriptor 
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Even with only two components left, this histogram quantisation algorithm saves 

perceptual features needed to maintain the visual similarity. Moreover, the 

simplification procedure is implemented in the descriptor domain, so that the 

computational cost is minimised keeping the perceptual control of the process.  

Due to its scalability this hierarchical scheme offers highly efficient image and video 

capabilities. Since this features hasn’t been involved in the video representation model, 

the final results of the retrieval quality are not available.  

VII.6. GENRE CLASSIFICATION USING K-MEANS 

ALGORITHM 
Once the set of low-level descriptors have been extracted, the database is clustered by 

applying a k-means algorithm on the video descriptors. For the 6-dimensional feature 

vector defined in Chapter V the EMD distance between points in the 6-dimensional 

space was used. 

 

Figure VII.13 Video Filtering into three sub-classes: news, commercials and others. 

Figure VII.13 shows the partition of a portion of the experimental dataset into the 

three sub-classes: news, commercials and soap clips. In this image each item (square, 

circle or cross) represents the maximum component in 3-bin feature distribution of 

video clip’s SLD and SAD. In this representation squares correspond to news, circles 

correspond to commercials and the crosses represent other video clips in the database. 

As seen in the figure, designed representation model separates news and commercials 
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classes efficiently. However, the soap cluster has been dispersed so that the soap class 

was avoided in the final classification and automatic annotation described in the next 

section. 

VII.7. REPRESENTATION MODEL FOR AUTOMATIC 

ANNOTATION 
In case of the automatic annotation system the representation model consists of the 

shot activity descriptor as: i) normalised 3-bin distribution of the percentage of the 

video clips with high, mid and low shot activity and ii) 3-bin SLD descriptor defined in 

Chapter V. The final video representation model consists of a 6-dimensional vector 

containing three values for the length distribution (long, mid and short) and three 

values for the shot activity (high, mid and low). 

short mid long low act mid act high act
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

shot duration shot activity

 

Figure VII.14 Example of the 6-dimensional temporal descriptor of the video clip news025.mpg. 

Figure VII.14 shows an example of the 6-dimensional feature vector obtained for a 

news video clip with only anchorperson present. In this particular example the shots 

are long and the activity is low. 

Universe Fuzzy set b1 b2 b3 

A% =short 0.2 0.35 0.5 

B% =mid 0.2 0.35 0.5 Shot length distributions 

C% =long 0.1 0.25 0.4 

A% =low_act 0.3 0.5 0.7 

B% =mid_act 0.1 0.25 0.4 Shot Activity 

C% =high_act 0.1 0.25 0.4 

Table VII.7 Knowledge representation boundaries for the temporal descriptors. 
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The knowledge representation of the fuzzy system used in the experiments is given in 

the Table VII.7. Since news and commercial programmes are produced using a rather 

unique editing technique, the two temporal features described previously appear to be 

well suited to represent this sort of video clip in the rule mining process.  

0

1
A~ C~B~

f

( )fµ

1b 2b 3b
 

Figure VII.15 Definition of the fuzzy variables for the knowledge representation. 

For each feature a set of three fuzzy variables is generated, as shown in Figure VII.15. 

In this representation the shot length distribution is given by the percentage of shots in 

the video clip having short, mid and long duration. In addition, representation of the 

shot activity is given as the percentage of the clip duration having low, mid or high 

visual activity. The normalised fuzzy boundaries were determined empirically, by 

“manually optimizing” the differences between the three video categories in the feature 

space.  
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Figure VII.16 Temporal descriptors of the training dataset. 
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Applying rule mining based on the knowledge representation [DORADO], a rule 

knowledge base was created. Figure VII.16 shows temporal descriptors of video clips 

with the corresponding pre-annotated labels, e.g. anchorperson and report for news 

clips. At the left side of this figure the shot duration is plotted, while at the right side 

the shot activity is shown. 

After fuzzification feature-related words were added to the log of transactions and the 

rule mining generated the rules given in Table VII.8. 

SUPPORT <CONDITION> <ACTION> 

SLD_shorts is low  AND SLD_longs is high Labeled as anchorperson 

SLD_longs is high  AND SA_low is high Labeled as anchorperson 0.1 

SLD_longs is high  AND SA_mid is low Labeled as anchorperson 

SLD_longs is low  AND SA_mid is high Labeled as report 

SLD_midis is high  AND SA_low is low Labeled as report 0.08 

SLD_short is mid  AND SA_mid is high Labeled as report 

Table VII.8 Rules generated using representation given above with support values 1.0 and 0.08 

These rules appear to be rather intuitive resembling human reasoning and knowledge: 

clips containing anchorperson have many long shots with low shot activity, while 

report clips are characterised by middle length shots having medium visual activity. 

This shows the value of the representation model that enabled the meaningful 

automatic annotation of the videos based on a learning dataset. 

VII.8. AUTOMATIC ANNOTATION EVALUATION 
Using the rule-knowledge base given in Table VII.8, a set of 80 video clips was 

annotated both automatically and manually. The objective of the manual annotation 

was to generate ground truths for the evaluation of the automatic annotation process. 

An example of the particular feature values extracted from three random video 

sequences belonging to the “news” cluster is given in Table VII.9. Next to each feature 

value, fuzzy membership values are given as A, B and C. At the bottom of the table 

the membership values mf
k for the keywords k from the lexicon are given. These values 

are obtained as the output of the fuzzy inference module of the annotation unit as 

described in [DORADO]. In order to assess the accuracy of the annotation procedure, 

a statistical performance evaluation based on the amount of missed detections (MD's) 

and false alarms (FA's) for each keyword from the lexicon was conducted. The values 
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for quality of the annotations are defined as recall and precision, just as in the shot 

detection evaluation: 

 D DRecall ,Precision
D MD D FA

= =
+ +

 (VII.13) 

where the D is the sum of memberships mf  for the corresponding keyword k, MD is 

the sum of the distances to the full true membership mf=1 and FA is a sum of false 

memberships: 

( ) ( ) ( )
M M M

k k k
f f f

i 1 i 1 i 1
D m i , k : true,MD 1 m i , k : true,FA m i , k : false

= = =

= = − =∑ ∑ ∑  (VII.14) 

 NEWS032 A B C NEWS081 A B C NEWS138 A B C 
sld_shorts 0.000 1.0000.0000.000 0.200 1.0000.0000.000 0.333 0.1110.8890.000 
sld_mids 0.382 0.0000.7880.212 0.143 1.0000.0000.000 0.544 0.0000.0001.000 
sld_longs 0.618 0.0000.0001.000 0.657 0.0000.0001.000 0.122 0.8520.1480.000 
sa_low 0.655 0.0000.2250.775 0.418 0.4100.5900.000 0.317 0.9160.0850.000 
sa_mid 0.153 0.6450.3550.000 0.292 0.0000.7180.282 0.380 0.0000.1310.869 
sa_high 0.191 0.3900.6100.000 0.289 0.0000.7380.262 0.302 0.0000.6520.348 
ground truthAnchorperson mf  Anchorperson mf  Report mf  

Anchorperson 1.000 Anchorperson 1.000 Anchorperson 0.000 fuzzy 
inferences Report 0.000 Report 0.212 Report 0.916 

Table VII.9 Temporal representation of three randomly selected news clips. 

The obtained recall and precision for three representative clips are given in the Table 

VII.10. 

KEYWORDS DETECTS MD FA RECALL PRECISION 

Anchorperson 46.65 1.36 2.48 0.97 0.95 

Report 25.74 6.28 1.32 0.80 0.95 

Table VII.10 Recall and Precision results of the annotation process. 

 

VII.9. SYSTEM DEMONSTRATORS 
During the three year PhD project the system has developed into several 

demonstrators. They were presented at IPOT 2001 and IPOT 2002 exhibitions, 

EPSRC and DTI seminars, various internal seminars at QMUL, etc. They presented 

the functionalities of the presented system at different stages. For real time demos and 

publications please visit http://www2.elec.qmul.ac.uk/~janko .  

The layout images of the demos are given in three following figures Figure VII.17, 

Figure VII.18, Figure VII.19: 

http://www2.elec.qmul.ac.uk/~janko
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Figure VII.17 IPOT 2001 Demo 

 

Figure VII.18 DTI 2002 Demo 
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Figure VII.19 MPhil transfer Demo 

VII.10. SUMMARY 
This chapter brings the final results achieved during this research. It stats with 

evaluation of the temporal parsing, giving the details of both successful and less 

successful algorithms implemented. Followed by mid-level descriptors like motion 

flow and camera work, it presents the results of the exploitation of the video model in 

the automatic annotation system. The chapter concludes with the shortlist of the 

system demonstrators developed during the project. 
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VIII.  DISCUSSION AND CONCLUSIONS 

VIII.1. DISCUSSION 
Recent development of highly efficient video compression technology combined with 

the rapid increase in desktop computer performance, and a decrease in the storage 

cost, have led to a proliferation of digital video media. Therefore, the crucial problem 

in the field of multimedia indexing and retrieval nowadays is intuitive handling of that 

vast data stored in a multimedia database. 

Research presented here has focused on the problems of the content based video 

indexing and retrieval, targeting both robustness and efficiency of implemented 

algorithms on one hand, and the semantic capability of the generated video 

representations on the other. Wide spectrum of research activities fell within the scope 

of the work presented: temporal video analysis, shot boundary detection, key frame 

extraction, colour feature extraction and quantisation, video representation design and 

genre classification. 

The main objectives of this research project were to achieve real time processing 

capabilities of the temporal analysis algorithms in order to enable efficient and reliable 

representation for later high level semantic analysis in a CBVIR system. This goal was 

achieved by utilising easily accessed information from MPEG-1/2 compressed domain 

and other compliant compressing standards like the H.26X. The key advantage of the 

video analysis in the compressed domain is in its inherent efficiency and robustness. 

Particularly in our case, the prediction information extracted in the motion estimation 

part of the temporal prediction process is easily extracted directly from the MPEG 

video stream. Behind this information stands intense pre-processing in the encoding 

stage that tries to minimise temporal redundancy present in the sequence of frames by 

predicting motion compensated pixel values. From this prediction’s behaviour one can 

derive a frame similarity metric, essential for the process of temporal analysis. 

The MPEG compressed domain information exploited in our work is type of 

prediction on a macro block level, i.e. MB type. Various other MPEG variables were 

tested for this purpose. Motion Vectors and DC sequence coefficients were evaluated 

but being unreliable and complex to extract while achieving similar or even inferior 

results, these features were discarded in further study.  
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In number of development stages, a one dimensional frame difference metric is 

generated from a straightforward statistics of MB type distribution. The major obstacle 

in the metric development was its continuity through neighbouring sub-groups of 

pictures (SGOP). This problem is solved by tracking the information on intra and 

interpolated prediction within a SGOP, in addition to the forward and backward 

prediction. Moreover, a Gaussian smoothing is applied to minimise the noise present 

in the final metric.  

The second objective to efficiency was algorithm scalability. This requirement is 

essential for adaptive behaviour needed for the high-level semantic analysis. Adopting 

a geometric procedure called discrete contour evolution and adapting it to this 

particular application, a family of curves describing the temporal features of the video 

sequence is generated. Experiments conducted on various types of video clips showed 

that the simplification algorithm gradually removes noise and unimportant events from 

the metric while saving salient features. This scale space of frame difference metric 

curves can be used in various applications, especially knowing the fact that it is created 

in real-time: live editing, summarising, video surveillance, etc. Here, it is exploited for 

key-frame extraction, localising the most representative frames in a shot. Again, there 

is no expensive computation involved, so that the efficiency of the algorithm is 

maintained even in the key-frame extraction module.  

Following a similar simplification technique, a HSV colour histogram hierarchical 

quantisation is developed. Unlike the most of colour quantisation methods, this 

method simplifies a colour histogram in the descriptor domain. Consequently, the 

simplification procedure is very efficient. Yet, the simplification procedure is driven by 

perceptual degradation of colours in the image, so that the basic criterion behind the 

simplification process is not the degradation of histogram itself.  

Having a set of low-level descriptors, a video representation model is designed. The 

main guidelines in the design process were representation semantic quality while 

maintaining low complexity of the final model. Motivated by the Computational Media 

Aesthetics paradigm, representation model is generated following the rules and 

knowledge of the video editing and theory. Shot pace and the overall activity present in 

the scene are the backbone of the perceptual model developed. Shot pace is calculated 

on the fly with shot boundary detection, while the shot activity is extracted from the 

frame difference metric information. In addition, an adaptive capability is embedded in 

the model generation algorithm utilising scalable model behaviour.  
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In order to support contextual issues in the semantic retrieval, a genre classification 

algorithm is created. It is founded upon editing rules characteristic for a particular type 

of programme, e.g. news, commercials, soaps, etc. A video dataset is clustered into 

video categories using k-means algorithm, due to the fact that the number of clusters 

and at least on member of cluster is known from the learning dataset. Experimental 

results have shown that the automatic annotation system, being supported by 

contextual information gain from the genre classification module, achieves excellent 

results in unsupervised linking between video clip representations and a predefined 

keyword lexicon. This system is still evolving with the prospects to become an 

autonomous self-learning video indexing and retrieval engine, a system that has a wide 

application horizons and many research opportunities. Demonstrators built 

throughout this research project attracted a lot of attention of people from the media 

production business on various multimedia exhibitions and seminars in UK and 

worldwide. 

VIII.2. FUTURE WORK 
The need for further developments in the CBVIR area is obvious. The presented work 

brings up the problem of appropriate representations of video clips in current 

database. Whether the choice of one key-frame can bear the information load present 

in a shot; and if it can, are the current methods appropriate? Future research activities 

will try to answer this and other similar questions, critical for the progress of CBVIR 

towards semantic capabilities.  

Retaining requirements for the algorithm efficiency and robustness, our future work 

will look into the compressed domain analysis of the spatial information for intelligent 

key-frame extraction. By rough unsupervised region segmentation and camera motion 

characterisation, spatial relationships of regions and camera work analysis could 

improve the choice of the optimal representative frame sub-set, ranging from one key-

frame to multiple frame or panoramic shot representations. 

Another direction of the future research will be towards adaptive video representation 

models based on the production knowledge and high-level semantic information, as 

well as interaction with user. Without an intelligent interaction and adaptation of the 

system to the contextual circumstances and user preferences, semantic retrieval will 

stay only a science fiction topic. Deeper involvement of the user in the process of 

video analysis, even on the lowest levels, is essential to the CBVIR progress. 
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Therefore, utilisation of user relevance feedback information through various 

interfaces and creation of appropriate adaptable representations are the major 

challenges of the current multimedia database management development. 

VIII.3. CONCLUSIONS 
The starting objectives of the project towards efficient low-level feature extraction for 

video indexing and retrieval were achieved entirely. Experimental results show high 

efficiency and robustness of the temporal analysis algorithm and its scalability to 

various applications. The main contribution of the temporal analysis is in its entirely 

compressed-domain based analysis and the specific transformation from a complex 

video stream to one dimensional metric describing activity of visual change present in 

the analysed sequence. In addition, a novel key-frame extraction algorithm is 

developed.  

In the domain of video representation, a novel perspective is given. It follows the 

approach to video analysis adopted by filmmakers and film theoreticians, with the 

intention of generating more intuitive representations of videos in modern multimedia 

databases. A scalable video representation model designed to emulate the media 

editing rules, as another major contribution of this research, narrows the “semantic 

gap” by lifting low-level descriptors to a completely new level in a semantic 

signification chain. The representation model allows contextual classification of clips 

into genres and achieves high punctuality in the automatic video annotation. 

However, ever demanding field of content based retrieval needs further developments. 

Therefore, our future work will be focused on further exploration of intelligent 

content based retrieval and bringing the role of the user to a new level in a semantic 

retrieval process.  

By following these guidelines, the future of more intuitive handling of media is bright. 

If not fully understandable to future computers, digital media will be much more 

accessible by users, because the content of the motion pictures will be much closer to 

the machine, opening the whole new horizons of creativity and accessibility to 

humans. Whether the computer will ever be able to understand the smiles and tears of 

actors from Zuse’s punched film tapes will stay a question for future generations.  
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