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Abstract

It is widely accepted that schizophrenia is accompanied by an increase in the volume
of the lateral ventricles of the brain. It is of interest to investigate if the volumetric
changes are accompanied by specific localised shape changes. If these can be shown
they will aid in understanding what is a complex disease. Studies based on volumetric
measurements have been carried out to further characterise the observed differences.
However, volume is not a powerful shape descriptor - as ventricles with the same
volume can have quite different shapes. Additionally, because of the intrinsic natural
variation of biological structures, statistical methods which allow the separation of
variability due to disease from natural variability are of interest.

Statistical shape models (SSMs) are a tool from computer vision that capture the
inherent variation in the shape of a specified class of object based on statistics learnt
from a sample representative of the population of interest. Our choice of SSM for
carrying out morphometric analysis is the point distribution model (PDM). This type
of model has been widely used as a segmentation tool in 2D and application in 3D is
a subject of active research. The aim of this thesis is to use a 3D PDM to quantify
localised changes in the shape of the lateral ventricles associated with schizophrenia.

Starting with magnetic resonance (MR) images of 30 control subjects and 39 age
and sex matched schizophrenics, we describe the pre-processing of the MR images
to improve their quality prior to segmentation. A semi-automatic approach to the
segmentation of the lateral ventricles was adopted. We give details of an automatic
approach to the construction of the 3D PDM using crest points as curvature-based
landmarks on the ventricles. We use the transportation algorithm to solve the prob-
lem of defining correspondences of crest points. Issues regarding the comparison of
3D PDMs are also discussed.

Applying discriminant analysis to the most important shape parameters obtained
from the PDM, the means of the schizophrenic and control groups are significantly
different (p < 10−12). The shape changes observed were localised to three regions : the
temporal horn (its tip near the amygdala, and along its body near the parahippocam-
pal fissure), the central part of the lateral ventricles around the corpus callosum, and
the tip of the anterior horn in the region of the frontal lobe. The differences in the
temporal region and anterior horns are in regions close to structures thought to be
implicated in schizophrenia. Investigations of asymmetry between left and right ven-
tricle pairs was also undertaken. This showed that a degree of asymmetry existed in
both schizophrenics and controls, and that the nature of asymmetry was different in
the two groups.
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Chapter 1

Introduction

The internal structure of the human body is an age old fascination of the human

race. Some scientists have gone to macabre lengths such as body-snatching in the

nineteenth century [131], in their thirst for more knowledge about it. The fascination

with our internal structure still continues to the present day - consider for instance

the controversial Bodyworlds exhibitions of Professor Gunther von Hagens [55].

However, seeing into the body is of prime importance in medicine. It aids diagnosis,

helps in understanding the aetiology of diseases, and is now commonly used in surgical

and radiotherapy planning. The discovery of X-rays by William Roentgen in 1895

heralded the birth of non-invasive diagnosis. There are now four main methods

of non-invasively imaging the body - Computed Tomography (CT) and other X-ray

based methods, Magnetic Resonance Imaging (MRI), Positron Emission Tomography

(PET) and Ultrasound Scanning (US). Novel imaging methods using devices such as

the Superconducting Quantum Interference Device (SQUID) are continually being

reported.

The processing power of computers and the capacity for storage of digital data are also

increasing rapidly. This has lead to a proliferation in the availability of high quality

digital data. Research in medical image analysis and the application of computer
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Chapter 1. Introduction

vision techniques to solving biomedical problems has also increased at a rapid pace.

Unfortunately, the development of automated tools has not matched the needs posed

by the proliferation of imaging data. Nevertheless, important new directions in the

analysis and interpretation of medical images are being realised.

This thesis explores one of these new directions in which there is a lot of interest - the

application of morphometric analysis to 3D surfaces of neuroanatomical structures.

By morphometric analysis, we mean the measurement of shape changes or differences.

Our goal is to investigate shape and asymmetry differences between the lateral ven-

tricles in the brains of control and schizophrenic subjects. En route to achieving this

we describe, in 3D, the construction of a Point Distribution Model (PDM) [32] of

the lateral ventricles, and comprehensively demonstrate its application to answering

questions posed by morphometric analysis.

1.1 Schizophrenia

Schizophrenia is a collective term for mental disorders in which affected individuals

exhibit grossly abnormal behaviour. The broad range of its symptoms include re-

duction in cognitive ability, hallucinations, and emotional instability. The general

population risk of being affected is 1%, although genetic predisposition can consid-

erably increase this risk. Onset usually occurs before an individual is 30 years old,

and about 85% of sufferers respond to drug therapy. However, given its relatively

common occurrence, and the severity of its symptoms this represents a reduction in

the quality of life of a significant number of people who cannot be treated for the

disease. An even greater number have their lives affected because of the interactions

of schizophrenics with their families and with the society.

Although a genetic predisposition to schizophrenia has been recognised, the aetiology

of schizophrenia is still unknown. Schizophrenia is divided into two types (Type I and

Type II) and a number of subclasses of each type exist depending on the symptoms
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exhibited by a patient. However, categorisation of patients is difficult as they usually

exhibit symptoms from more than one subclass. Investigations of size and shape

changes of the brain associated with schizophrenia may help with categorisation.

There is an intrinsic degree of asymmetry between the left and right hemispheres of

human brains. It is believed that these occur in the developmental stage before birth.

However, several volumetric MRI studies e.g. [10] and postmortem investigations [49]

have suggested that the degree of asymmetry in the brains of schizophrenic subjects

is less than that in the normal population.

Several theories about the origin of the disease have been put forward, e.g. biochem-

ical hypotheses implicating neurotransmitters such as dopamine and glutamate [27].

A hypothesis by Professor T J Crow [35] - often referred to as the Crow Hypothesis,

is of particular interest to morphometric studies. Crow hypothesised that the asym-

metry in the brain is an evolutionary trait associated with increased linguistic ability,

and that the loss of asymmetry in schizophrenics accounts for some of the symptoms

associated with the disease. Morphometric studies of specific structures in the brain

can allow further investigation of this theory.

1.2 The Lateral Ventricles

1.2.1 Anatomical Description of the Brain Ventricles

The brain ventricles are extensive cavities within the brain containing cerebro-spinal

fluid (CSF). There are four ventricles - the right and left lateral ventricles, the third

ventricle and the fourth ventricle. The structure of these within the human brain is

shown in Figure 1.1. The two lateral ventricles are the subjects of interest in this

work. They are the largest of the ventricles, one in each hemisphere of the brain. Each

lateral ventricle has a central part, and anterior, posterior and inferior horns as shown

in Figure 1.2. The third ventricle connects directly with the lateral ventricles. The
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third and fourth ventricles are connected by a narrow canal, the “cerebral aqueduct”

or aqueduct of Sylvius. The fourth ventricle is contiguous with the central canal of

the spinal cord.

Figure 1.1: A view of the brain showing the ventricular system (source
[26])

1.2.2 Function of the Brain Ventricles

The brain ventricles produce and circulate CSF within the brain. Each ventricle

contains a choroid plexus which produces CSF within it. The CSF performs the

physical function of buffering the brain from shock due to internal or external forces

and facilitates biochemical activity by draining excess fluids and acting as a medium

for the transfer of substances between the blood and the nervous tissues. The lateral

ventricles contain the largest amount of choroid plexus and produce the majority

of the CSF. This flows into the third ventricle then the fourth ventricle where CSF

produced by each of these augments that produced by the lateral ventricles. The CSF
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Figure 1.2: A view of the brain showing the lateral ventricles with the
four main parts labelled (source [26])

flows from the fourth ventricle into the subarachnoid space from which majority of it

flows over the cerebral hemisphere, then over the spinal chord before being reabsorbed

back into blood through the arachnoid villi and through the walls of capillaries of the

central nervous system.

1.3 Ventricular Changes in Schizophrenia

Hemispheric asymmetry in the brain is due to differences in the distribution of brain

tissue and differences in the size and shape of neuroanatomical structures in the left

and right hemispheres. The brain is a jelly-like material composed mainly of gray

matter (GM), white matter (WM), and CSF enclosed in the rigid casing of the skull.

It therefore occupies a fixed volume, and changes giving rise to asymmetry will be

reflected in the distribution and relative composition of GM, WM and CSF in the

brain. As majority of the CSF is contained in the lateral ventricles, changes in their

size and shape may indicate structural abnormalities in adjacent brain structures

due to disease. Volumetric investigations of differences in the lateral ventricles due to

schizophrenia have been carried out. More recently, a number of shape based studies
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have also been carried out. A brief review follows.

1.3.1 Volumetric Studies

Schizophrenia is widely believed to be accompanied by an increase in size of the

lateral ventricles. This was first reported by Johnstone et. al. [67] in a CT study

of age-matched controls and 17 institutionalized schizophrenics. The nature of the

volume changes have been investigated by many groups. For instance Chance et. al.

[28] report selective enlargement of the temporal horns of the ventricles, and Puri

et. al. [94] report significant differences in volumetric asymmetries of two groups

of schizophrenics, one group exhibiting active syndromes and the other withdrawn

syndromes. [90] gives a recent review of volumetric findings in schizophrenia.

1.3.2 Morphometric Studies

Buckley et al. [24] use 48 manually defined landmarks corresponding to curvature

extrema on the surface of the ventricles of 20 schizophrenic patients and 20 control

subjects to investigate shape differences. They considered the whole ventricular sys-

tem and reported no overall shape differences between the entire patient group and

the entire schizophrenic group. However, when only the males of both groups were

considered, significant shape differences were identified in the proximal parts of the

temporal horn of the lateral ventricles and in the foramen of Monro.

Narr et al. [87] obtained average maps of anatomical differences based on voxel values

of the limbic structures and the lateral ventricles of 25 schizophrenic and 28 control

subjects. Their analysis showed that significant shape differences occurred in the left

lateral ventricles. In particular, there was enlargement of the superior and posterior

horns. There were also noticeable differences in the part of the lateral ventricles in

the vicinity of the caudate head.
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The results of the morphometric findings of this thesis will be compared with the

above results in chapter 5.

1.4 Aims and Motivation

The fact that ventricular enlargement occurs in schizophrenia is now well established.

Further work is needed to quantify and characterize shape and asymmetry differences.

However, as noted by Ballester [7] volume is not a powerful shape descriptor - as

two objects with the same volume can have quite different shapes. Furthermore,

volumetric methods usually give global differences in shape and it is not easy to obtain

information on specific localised shape changes. Gerig et al. [54] showed that shape

measures reveal new information in addition to size or volumetric differences, which

might assist in the understanding of structural differences due to neuroanatomical

diseases.

A number of groups have recently proposed methods of morphometric analysis ap-

plicable to neuroanatomical structures, such as [87] and [24] mentioned in section

1.3.2. We propose that PDMs offer advantages in carrying out this morphometric

analysis because they allow separation of shape changes due to disease in the presence

of natural variation, and characterise shape by a small number of “modes of shape

variation”, providing a compact parameterisation.

Our aims are :

1. To construct a 3D PDM of the lateral ventricles of a group of schizophrenic and

control subjects

2. To use the PDM to investigate difference in shape and asymmetry associated

with schizophrenia in a quantitative manner

3. To demonstrate the use of PDMs to facilitate quantitative and qualitative in-

vestigations of specific localised shape differences
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1.5 Overview of Thesis

The work described in this thesis begins from the point at which MRI images of the

subjects were obtained. The work done was in three main parts - the processing of the

MRI images to obtain the structure of interest (the lateral ventricles), the building

of the PDM of the lateral ventricle, and the application of the PDM to morphome-

tric analysis. Each chapter (except the conclusions) begins with an overview of its

contents and ends with a summary of the main points discussed.

Chapter 2 gives a background to image processing and shape analysis. Chapter 3

presents the MRI data we used and describes the preprocessing we applied to obtain

the lateral ventricles. Chapter 4 gives a comprehensive description of PDMs and

describes our approach to the construction of the PDM of the lateral ventricles.

Chapter 5 shows the PDM can be applied to morphometric analysis, and gives the

results of its application to investigation of shape and asymmetry differences between

the control and schizophrenic groups. Chapter 6 concludes the thesis by summarising

the main contributions made by this work.

Three appendices are included at the end. The first gives further details of some

techniques mentioned in the text. The second contains images of all the lateral

ventricles used. The third gives details of the files on the CD accompanying this thesis.

This CD contains additional images and movies relevant to the work presented.
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Background

2.1 Overview

In this chapter we give background details relevant to the work involved in this thesis.

MRI was used to obtain cross-sections of the brains of the subjects involved in the

work we describe, and section 2.2 is a brief overview of the theory of MRI. The output

of MR scans are arrays of values (gray levels) proportional to image contrast within

the subject being imaged. In the 3D case these can be represented as 3D arrays

referred to as volumetric images. Section 2.3 introduces volumetric images. Section

2.4 discusses the image analysis techniques used in the pre-processing of the images.

It should be noted that the techniques are applicable to images obtained by other

modalities. Section 2.5 discusses shape analysis in medical imaging, and introduces

statistical shape models (SSMs) and PDMs. Section 2.6 is a summary of the main

points of the chapter.
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2.2 Magnetic Resonance Imaging

In this section we give only the briefest of descriptions of MRI. Standard texts such as

[132] can be consulted for more detailed information. MRI is based on the magnetic

properties of atoms by exploiting the principle of nuclear magnetic resonance (NMR)

discovered in 1945 by Felix Bloch and Edward Purcell. NMR is a phenomenon in

which the nuclei of atoms of a material placed in a strong magnetic field absorb

radio-waves of certain frequencies.

A rigourous description of NMR requires the use of quantum mechanics, however,

for our purposes a simplified classical description is sufficient. In classical physics,

the nucleus of an atom is viewed as a concentrated spinning positive charge. Asso-

ciated with this is a nuclear magnetic moment indicating the direction and strength

of the field generated by the nucleus. In a non-magnetic material the direction of

the nuclear magnetic moments of its atoms are oriented randomly, giving rise to no

net magnetisation. The introduction of a strong magnetic field causes the nuclear

magnetic moments to become aligned parallel to the direction of the magnetic field

and they are said to be in a low-energy state. Introduction of electromagnetic radi-

ation with frequency in the radio-wave range causes the nuclei to absorb photons of

specific frequency and move to high-energy states in which their magnetic moments

are aligned anti-parallel to the direction of the external magnetic field. Removal of

the source of radio-frequency energy results in a proportion of the nuclei in the high

energy state returning to the low energy state, and in the process emitting photons of

their characteristic resonant frequency. These can be detected by a radio-frequency

induction coil. Figure 2.1 summarises the details given in this paragraph.

Hydrogen atoms are more amenable to NMR than most others, and given that they

are constituents of water and organic molecules they have a relatively high concentra-

tion in the body. The characteristic resonant frequency given out by each hydrogen

atom is determined by the other types of atom it is bound to and its local intra-

cellular environment. This results in MRI giving good anatomical and functional
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Material with magnetic moments

of nuclei oriented randomly

B
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Introduction of a strong magnetic

field causes the magnetic moments

of the nuclei to be aligned parallel

to the field – the low energy state

Radio-frequency source introduced

temporarily. Absorption of photons

causes most magnetic moments to

undergo transition to a higher

energy state in which they are

aligned anti-parallel to the

magnetic field.

On removal of the

radio-frequency source,

the nuclei return to the

low energy state

emitting photons of
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in the process. This is

detected by a radio-

frequency induction

coil.

Figure 2.1: Schematic illustration of the use of nuclear magnetic reso-
nance in the generation of signals for MRI
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contrast of cross-sections of the body. Further enhancements to the images can be

obtained by using different protocols for the introduction and detection of the radio-

frequency waves. Two of these are the so called T1-weighted and T2-weighted images.

T1-weighted images are acquired when the net magnetisation in the direction of the

external field returns to 63% of its original value, whilst T2-weighted images are ac-

quired when the magnetisation in the direction transverse to the external field returns

to 63% of its original value.

To obtain a cross-sectional image through the body in a particular plane, a gradient

field is applied in a direction orthogonal to the plane, whilst the strong magnetic

field causing NMR is applied parallel to the plane. The gradient field is used in con-

junction with a readout gradient to prevent measurement of radio-frequency signals

from nuclei not in the plane of interest. Standard tomographic (slice) techniques such

as measurement of signals from different angles are applied to reconstruct point-by-

point values in the cross-section of interest. Figure 2.2 is a schematic diagram of

a complete MRI system. The data acquired by the MR scan is exported in digital

format. Most modern scanners export data conforming to the DICOM standard for

radiologic images [1].

2.3 Volumetric Images

As mentioned in the previous section, the data resulting from a MR scan are to-

mographic (slice by slice) cross-sections of the body. Each slice represents a 2D

cross-section in which the image is composed of discrete picture elements (pixels -

see Figure 2.3) of specified size and with a specified gray level value indicating its

relative contrast within the image. It should be noted that these 2D slices actually

represent cross-sections with finite thicknesses, although this is not evident when they

are displayed. The cross-sections could be in axial, sagittal or coronal orientations as

shown in Figure 2.4.
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Figure 2.2: Principal components of a complete magnetic resonance
imaging system (source [132])

Volumetric 3D images are sequentially ordered stacks of 2D slices which may have

been acquired contiguously, or with a specified interval between consecutive slices (an

inter-slice gap). The discrete unit of volumetric images are volume elements (voxels),

which are basically the pixels of a 2D slice attributed an extra spatial dimension to

account for the slice thickness. Figures 2.3(c) and 2.4 show a schematic diagram of

voxels and cross-sections through a volumetric image. In the following subsections, we

discuss some properties of volumetric images, and some operations that are routinely

performed on them.

2.3.1 Image Resolution and the Partial Volume Effect

The spatial resolution of 3D images is determined by the size of the voxels. The

stronger the external magnetic field the greater the spatial resolution can be. High

resolution images are desirable because they reduce the probability of several different

types of tissues contributing to the signal in a particular voxel - the partial volume

effect. They also allow greater clarity in the images and reveal greater anatomical
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(a) 2D coronal cross-section through the
head

(b) 2D images are grids of discrete picture
elements (pixels). The resolution of the
image is determined by the size of the pix-
els

(c) 3D images are arrays of cuboid or cubic volume
elements (voxels). These are formed from consecutive
2D slices. In-plane resolution is determined by the
size of the pixels in the 2D slices, and out of plane
resolution is determined by the slice thickness

Figure 2.3: Sub-figures illustrating a 2D cross-section (a) and the dis-
crete nature of images in 2D (b) and 3D (c)
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(a) Coronal Orientation

(b) Axial Orientation

(c) Sagittal Orientation

Figure 2.4: The three orthogonal orientations of MRI cross-sections
through a volumetric 3D image of the head
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detail. This is especially important when performing morphometry.

However, several practical factors have to be considered in determining the resolution

of a 3D image. Firstly, there is an interplay between the slice thickness, the acquisition

time and the signal-to-noise ratio (SNR) in the acquired images. The greater the slice

thickness the greater the SNR, but the lower the out-of-plane resolution. The longer

the acquisition time the greater the SNR. Because the body is a dynamic system the

acquisition time has to be kept small. Therefore in many cases the slice thickness is

increased to improve SNR.

Secondly, the size of the resulting images and the storage requirements are also con-

sidered when determining the resolution of images. The higher the resolution within a

slice (in-plane resolution) and the smaller the slice thickness (out-of-plane resolution),

the greater the number of voxels in the slice and therefore, the storage requirements

increase. For these reasons many MR images are acquired with lower out-of-plane

resolution, than in-plane resolution, leading to cuboid rather than cubic voxels - voxel

anisotropy.

2.3.2 Re-sampling and Interpolation

Re-sampling is simply redivision of the voxel grid of an image to give voxels of another

size. Interpolation is necessary to ensure the distribution of gray level values in the re-

sampled voxels is similar to that of the original image. Re-sampling and interpolation

may be required to convert anisotropic voxels to isotropic voxels before application

of specific image analysis techniques. They are used in re-slicing volumes to allow

visualisation through them in specified directions. They are also required during

image registration as discussed in section 2.3.3.

The most commonly used method for interpolation is trilinear interpolation. In this

the value of a particular voxel is obtained by distance-weighted linear interpolation

of the values of its neighbouring voxels. Trilinear interpolation is popular because
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it produces relatively good results and is computationally efficient. A faster method

is the nearest neighbour method. This simply substitutes the gray level value at a

particular voxel of the re-sliced image with that of the nearest voxel in the original

image. This method produces low quality results. However, interpolation using

cubic spline functions gives smoother transitions between voxel values because of the

continuity properties of splines. Interpolation using sinc functions addresses issues

such as the sampling rate, and if implemented correctly has the potential to produce

high quality re-sliced images. Unfortunately, sinc interpolation requires convolution

of images with large kernels to produce accurate results. Although the computational

requirements of this limits its application to 3D images, there is an active body of

research to address this e.g. [114]. A comprehensive survey of image interpolation

methods is available in [76].

2.3.3 Image Registration

Image registration is the process of bringing two images (in our case 3D volumetric

images) into spatial correspondence. It involves applying geometric transformations

to one of the images to optimise a metric indicating the similarity of the two im-

ages. Re-sampling and interpolation are needed to produce a registered image with

appropriate voxel sizes and gray level values.

The three classes of geometric transformations and the main image similarity metrics

of relevance to this thesis are described below. We are interested in registration

of images of the same subject acquired with the same modality using voxel based

similarity measures, and as such the discussion below is limited to these. [81] gives a

comprehensive review of medical image registration. It should be noted that the term

“registration” is sometimes used generically to refer to image registration as well as

to the geometric transformation of point-sets. However, which is meant should be

clear from the context.

Geometric Transformations
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Rigid-body transformations are transformations in which global rotations and trans-

lations are carried out and in some cases includes isotropic scaling. In the 3D case

there are 6 degrees of freedom (rotation about the x, y and z axes, and translations

in the x, y and z directions). These transformations preserve all Euclidean distances

and angles. If isotropic scaling is included there are 7 degrees of freedom. In this

case distances between points change, but relative distances and the angles do not

change.

Affine transformations give a greater degree of freedom than rigid registrations by

allowing anisotropic scaling in the x, y and z directions, and the application of shears

in each of these directions. If anisotropic scaling is the only addition to the 6 degree

of freedom rigid registration case then the affine registration has 9 degrees of freedom.

However, if both anisotropic scaling and shearing are included it becomes a 12 degree

of freedom affine transformation. Affine transformations do not preserve distances or

angles, but do preserve the linearity of structures (i.e. straight lines remain straight).

Details of rigid and affine transformations are given in [52].

Non-rigid transformations involve application of different transformations at different

spatial locations of an image in a localised manner. This results in a greater number of

degrees of freedom than rigid and affine transformations. A wide variety of methods

exist for preforming non-rigid transformations, and a comprehensive review is given

by Toga [122]. In this thesis we implement a spline-based method outlined in chapter

14 of [122] to perform our non-rigid transformations.

Image Similarity Metrics

The main voxel-based similarity metrics used in volumetric image registration are

the Sum of Squared Distances (SSD), the Normalised Cross Correlation (NCC), the

variance of intensity ratios (also called the Woods Function), and Mutual Information.

Image similarity metrics are described in more detail in chapter 6 of [6].

The SSD is the simplest of the similarity metrics. It simply gives a measure of the

global difference between the voxel values at corresponding spatial locations in two
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images. However, it does not take into account differences in voxel values that may

arise due to different scales being used in the two images or offsets in voxel values.

In the registration of two images, A and B, the SSD is given by:

1

N

N∑
i=1

|A(i)−B(i)|2 (2.1)

Where N is the number of overlapping voxels in corresponding spatial locations in A

and B.

The NCC is a relatively straightforward metric that is invariant to scale and offset

differences. It gives the correlation between the values of all pairs of voxels at cor-

responding spatial locations in the two images being compared. This correlation is

normalised by the geometric mean of the variance of voxel values in each image. The

disadvantage of NCC is that it assumes that the voxel intensities in an image can be

represented by a linear function which is not necessarily true. The NCC is given by:

∑
i

(
(A(i)− A)(B(i)−B)

)
(∑

i(A(i)− A)2
∑

i(B(i)−B)2
) 1

2

(2.2)

The Woods function addresses non-linearity of intensities in the two images being

compared. It requires that the reference image is partitioned into areas of similar

intensity (isosets). The image being registered is then partitioned into regions using

the boundaries of the isosets of the reference image. The variance within each region

is calculated and the sum of the variance for all regions is normalised by the mean of

their intensities to give the Woods function, i.e.

∑
a∈IA

(
nA(a)

N

σB(a)

µB(a)

)
(2.3)

Where

IA contains of all the isosets in image A, and a refers to a particular isoset.

nA(a) is the number of voxels in the ath isoset
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σB(a) is the standard deviation of the voxel values in the region in image B corre-

sponding to the ath isoset in A, and µB(a) is the mean of the voxel values in this

region.

The Mutual Information cost function is a more general similarity metric. It is

based on the concept of the entropy of an image. The entropy of an image is a

measure of the dispersion of the probability distribution of the voxel values of the

image. The measure of Mutual Information is given by the difference between the

joint entropy of the two images being registered and their individual entropies. The

mutual information is sometimes used in normalised form. The normalised mutual

information (NMI) has several definitions - see [6],[81]. One of these is the joint

entropy of the two images normalised by the sum of their individual entropies. i.e.

H(A) + H(B)

H(A,B)
(2.4)

Where the entropy of image A is given by

H(A) = −
∑
i∈IA

p(a) log p(a) (2.5)

IA being the range of intensities in image A, and p(a) the probability of the occurrence

of the intensity in A - The proportion of voxels in A with this intensity. The entropy

for B and the joint entropy, H(A,B), are calculated in a similar manner.

2.4 Image Preprocessing

Raw images obtained from a MRI scanner usually require preprocessing before be-

ing amenable for their desired purpose. In the following subsections we discuss the

correction of MR image intensity inhomogeneity, and image segmentation to obtain

particular structures of interest.
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2.4.1 MR Intensity Non-Uniformity Correction

Intensity non-uniformity is the smooth variation in intensity present in MR images.

This can occur within a slice (intra-slice non-uniformity) or between slices (inter-slice

non-uniformity). Intensity non-uniformity is an artifact of the techniques used in MR

imaging. It is due to factors such as radio-frequency excitation field inhomogeneity,

non-uniform reception coil sensitivity, eddy currents driven by field gradients as well

as electrodynamic interactions with the subject being imaged.

Correction is needed because the effects may be severe enough to impair visual in-

spection of a scan. With newer MRI scanners the effects may be subtle enough not to

be detected on visual inspection. However, they can affect automated image analysis

techniques that assume homogeneity of intensity within each tissue type, for example

data driven segmentation. Despite the need for correction of intensity inhomogeneity

the problem is sometimes assumed to be inconsequential and not dealt with. This

may be valid in cases were processing such as segmentation is done manually.

In correction of non-uniformity there have been several approaches. Dawant et. al.

[40] propose a direct fit method. This requires the identification of specific points

within the image to be corrected. The intensity of the image is then modelled to give

a profile of the radio-frequency induced inhomogeneity. This is subtracted from the

image to give a corrected version. This method has the disadvantage that it requires

substantial user intervention. The authors proposed an automated version but the

results were poorer than those of the direct method.

Wells et. al. [129] in implementing an automated method of segmentation correct

for inter-slice and intra-slice non-uniformity use a priori knowledge about the tissues

being imaged. They assume each pixel value in an image is given by a composite

function of a gain field and a tissue field. If the gain field is known the tissue field

can be determined and conversely the gain field can be obtained if the tissue field is

known. This method requires a priori knowledge of the tissues being imaged and the
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implementation is dependent on the types and distribution of the tissues.

Sled et. al. [103] describe an approach not requiring a model of the tissue classes

present, in which intensity non-uniformity is modelled as a smooth multiplicative

field. The measured signal giving rise to image intensity is assumed to be a sum of

three components - the true signal, multiplicative noise, and additive Gaussian noise.

Using the image intensities in a slice, an iterative algorithm is applied to estimate the

multiplicative bias field and the distribution of true tissue intensities. Sub-sampling

of the image is necessary to reduce the computational time for the algorithm.

Vorkuka et. al. [127] describe a technique to generate estimates of non-uniformity

maps for correction of inter-slice and intra-slice non-uniformity. Their approach to

non-uniformity correction was based solely on the assumption that the various sources

of non-uniformity give rise to smooth variations in image intensity, and that these

variations can be extracted and corrected for. The algorithm used is

1. Estimate the additive noise in the image

2. Estimate the normalised local intensity gradients in x and y directions in the

slice

3. Estimate the smooth local derivatives using statistical averaging

4. Re-integrate the derivatives to determine a “relative” non-uniformity map

5. Computation of the “true” non-uniformity map G(x, y)

2.4.2 Segmentation

Neuroanatomical segmentation is defined as “the extraction of a specific, precise and

comprehensive 3D morphological description of the neuroanatomical structure of the

subject’s brain that is obtained robustly and practically from volumetric data” [135].

Different neuroanatomical structures in the brain appear as varying combinations of
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GM, WM and CSF depending on the types of cells they are made of. Segmentation

at one extreme can be considered as the classification of voxels into one of these types

based on their intensity values. However, in practice, segmentation requires a priori

knowledge of characteristics of the structure of interest.

Several issues, some particular to MR imaging, result in segmentation not being

a straightforward task. These include the structural complexity of the brain and

neuroanatomical structures, the variability between brains of individuals, the partial

volume effect, and the unavailability of a “Gold Standard” to allow quantitative

assessment of the results of segmentation.

Manual, Automatic and Semi-automatic Segmentation

Segmentation could be done manually, automatically or semi-automatically. In man-

ual segmentation, an independent rater e.g. a radiologist examines an image and

interactively delineates the boundaries of the structure of interest based on their

knowledge and experience. Manual segmentation has disadvantages in that it is sub-

jective and uses human resources that could be better applied elsewhere. Despite

these disadvantages, it is still used because it is usually straightforward and produces

more acceptable results than automatic methods.

Automatic segmentation offers the benefits of freeing valuable human resources and

overcomes the problem of the requirement for segmentation being a bottleneck in

clinical research. However, at present fully automated methods of segmentation are

usually tailored for specific goals and are not used clinically. Semi-automatic segmen-

tation combines manual and automatic methods and is widely used.

Approaches to Automatic Segmentation

As with most of the information in this background chapter, segmentation is an entire

topic in its own right and a full review is beyond the scope of this thesis. Chapter 5

of [105] provides a thorough overview of segmentation.

The most basic of automatic methods is Thresholding. This involves setting a thresh-

42



Chapter 2. Background

old on voxel values either using a priori knowledge of the expected voxel values within

the structure of interest or using adaptative techniques to determine suitable thresh-

olds. However, coming up with a good adaptative scheme is not trivial. Morpholog-

ical operations such as opening and closing are usually required to give acceptable

results. Another class of methods using gray level information are region based meth-

ods which attempt to segment an image by modelling their gray levels according to

predefined functions. Statistical Methods also use gray level values. In the case of

neuroanatomical segmentation the aim is usually to classify voxels as belonging to

GM, WM or CSF by fitting them to probability distributions.

Edge-based methods rely on the assumption that the boundaries between different

structures give rise to local differences in voxel values that can be detected. The

algorithm of Canny [25] is very popular with these methods. However, the major

problem faced is how to convert edge elements (edgels) into meaningful boundaries.

Watershed algorithms provide a solution to the boundary conversion problem. Wa-

tershed algorithms transform an image into a disjointed set of catchment basins each

of which can be imagined to be filled with water until it reaches its watershed. The

image is segmented into regions in this manner. Watersheds can be applied to gray

level images, but produce better results when applied to images in which the edges

have been enhanced.

Model based methods come in a variety of forms. They include the use of shape

models, which are discussed in section 2.5. They offer the advantages of allowing

the incorporation of a priori anatomical information to the problem of segmenta-

tion. They also offer in many cases (such as snakes - [68]) an intuitive interface for

manual interaction to modify boundaries, making them suitable for semi-automatic

segmentation.

A growing area of research in segmentation is the use of anatomical atlases [119].

These are high resolution digital images of specified regions of the body for instance

the brain, which have been labelled in detail. To segment an image of the same
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anatomic region (for instance that of another brain), a non-rigid registration process

is required. This is used to bring the two images into spatial correspondence. The

labels from the atlas can then be transferred to the image to be segmented.

Accuracy of Segmentation

The verification of the accuracy of the result of segmentation of images of structures

within the human body cannot be carried out directly because there is no non-invasive

method of determining their exact boundaries - no “Gold Standard”. Verification

is therefore performed by a radiologist or other suitably qualified individual in a

subjective manner. The variation from person to person on the same set of images

should be small and statistical confidence in the assessment can be increased by using

a number of independent raters. However, such assessments are time consuming,

repetitive and laborious. An alternative approach, which provides scope for limited

quantitative evaluation of automatic methods, is to use test images where the ground

truth is known. Images such as those provided by the simulator of the Montreal

Neurological Institute [30] can be used for this purpose.

2.5 Shape Analysis in Medical Imaging

In this section we describe what is meant by shape and shape analysis, concentrating

on 3D applications to neuroanatomical structures of the brain. We discuss methods

used in 3D shape analysis, and explain why the statistical shape model approach

was chosen. Section 2.5.1 describes shape from a computational viewpoint and il-

lustrates this using hand outlines. Section 2.5.2 introduces shape analysis and the

representations of shapes. Section 2.5.3 reviews methods used in 3D shape analysis of

neuroanatomical structures, and section 2.5.4 discusses the the effect of head shape

on the analysis of the shape of neuroanatomical structures in the brain.
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2.5.1 Shape

Objects of the same class e.g. hands, have a common physical form which is generally

referred to as the shape of the class. The shape of an object comprises both its

topology and its intrinsic geometry (relative sizes and orientations of its various sub-

parts). We take our formal definition of shape as “All the geometric information

remaining when translation, scale and rotational effects are filtered from an object”

[44]. Hence, by definition, shape is invariant under Euclidean transformations of

translation, isotropic scaling and rotation.

Figure 2.5 is used to illustrate what is meant by the formal definition given above.

It shows two versions of the left hand of an individual (the original outline and

a re-sampled and interpolated version with random noise added) drawn to scale at

different locations and with different orientations (subfigure (a)). In this case location

is removed by translating so that the centroids are coincident; orientation is removed

by alignment of the principal axes; and scale is removed by approximating ellipsoids

to the convex hulls of each and scaling the major axes of one of the hand outlines to

be the same as that of the other. The remaining differences between the hands are

shape differences.

2.5.2 Shape Analysis

In everyday situations the shape of individual members of a class are qualitatively de-

scribed relative to an idealised notion of the shape of the class. In the same way shape

analysis is concerned not with measurement of actual shape, but with investigating

the extent of differences in the shape of two or more objects of the same or different

classes, depending on the application. Shape analysis is used in many other fields

for example biology [45], gait recognition [128], and character recognition [97]. The

development of the application of multivariate statistical methods to shape analysis

started with the independent work of Kendall [70], Bookstein [14], and Ziezold [138].
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(a) Location, scale
and orientation dif-
ferent

(b) After orientation and scale dif-
ferences removed

(c) After Location differ-
ences also removed

(d) Final differences in
shape

Figure 2.5: An example to illustrate shape differences using two differ-
ent outlines of the hand
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Shape analysis methods applied to medical imaging can be classified in a variety

of ways. One such classification is into statistical shape analysis methods and non-

statistical shape analysis methods. Non-statistical methods generally perform shape

analysis on individual members of a sample of a population with respect to one

member of the sample. Statistical methods on the other hand obtain a mean of the

sample and perform shape analysis of individual members using the mean. In the

case of structures within the human body, there is great natural variation in addition

to variation due to the factor(s) of interest. The use of statistical methods allow more

robust evaluation of shape differences to be made as they allow for natural variation.

To perform shape analysis the following have to be done: Physical representations

of the shapes being analysed have to be obtained and transformed to numerical or

structural representations in which variations due to Euclidean transformations have

been removed. The removal of variations due to Euclidean transformations involves

establishing correspondence (identification of homologous parts) between the shapes

being analysed, and performing registrations (spatial transformations) to attain Eu-

clidean invariance using the observed correspondences. From these Euclidean invari-

ant representations, quantification of global and/or local shape differences have to be

determined.

It is also desirable to obtain statistical inferences of the significance of any computed

differences. Additionally, an intuitive presentation of the observed differences, al-

though not an essential requirement, is very useful as it allows greater understanding

of the observed differences, and determination of whether they make intuitive sense.

A number of shape representations are considered below, along with the ways of iden-

tifying correspondences and performing registration to obtain Euclidean invariance.

There are a diverse variety of shape representations, but the review below is limited

to 3D representations used in medical image analysis. Although it is convenient to

consider the shape representations separately, in practical applications different rep-

resentations may be combined. Examples of application to medical image analysis
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are given in section 2.5.3.

Voxel-Based Representations

Voxel-based representations are 3D arrays of values. At one extreme they could

simply be volumetric image given as the output of magnetic resonance (MR) or

another imaging modality over a specified section of the body. At the other extreme

they could be binary values representing the surface or volume of specified structures

or regions. In between these extremes they could also represent transformations of

the output of an imaging modality e.g. distance transforms and probability maps.

In this section the first case, in which voxel values represent the output of an imaging

modality, is of interest. The other two cases are usually used in the preliminary stages

of the formation of other shape representations as described in the subsections below.

The first case has the greatest information content as the other two cases are derived

directly or indirectly from it. Correspondence can be measured using image simi-

larity metrics as described in section 2.3.3. Euclidean invariance can be established

by applying non-rigid registrations to minimise the chosen image similarity metric.

Landmarks (see 2.5.2) can also be used to augment the non-rigid registrations. In the

case of brain images a common method of obtaining correspondence is to transform

the images into the standard Taliarach coordinate space. This is a coordinate system

within the brain defined by Taliarach [110] which is widely used in neuroanatomy

and available in digital format. Because of the method of application these represen-

tations are sometimes termed deformable anatomical templates (not to be confused

with deformable shape templates discussed in section 2.5.2).

Advantages of this form of representation include the fact that it is derived directly

from the output of the imaging modality and needs little or no manual intervention.

Additionally, when used in shape analysis of brain data it allows the investigation

of the shape of multiple structures within images. However, it has disadvantages

in that the use of voxels involves applying complex non-rigid registrations to large
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number of elements, the validity of the warps is not guaranteed, statistical analysis is

complicated (due to the number of elements), and visualisation of the resulting shape

differences is not straightforward. Voxel-based morphometry is a popular method

that uses this representation. This is discussed in section 2.5.3

Surface Based Representations

Structures within the body are three-dimensional, and their boundaries are therefore

surfaces. The methods considered in this subsection rely solely on the use of the sur-

faces of the objects whose shapes are being analysed. This means that a segmentation

step must have occurred, and this can be a disadvantage in some situations. How-

ever, surface based representations are more amenable to mathematical treatment

than voxel based representations. Three categories are reviewed here.

Triangulated Meshes

Triangulated meshes are approximations of a surface using vertices on the surface and

a notion of the connectivity of the vertices to give polygonal faces. The marching

cubes algorithm of Lorensen and Cline [78] and a Delaunay based method [13] are

popular triangulation methods.

Triangulated surfaces are mainly used for visualisation purposes and as a starting

point for other shape representation methods. However, correspondences can be

sought by applying point based techniques such as the iterative closest point (ICP)

method [9] and rigid or non-rigid transformations to minimise Euclidean distance

between closest points. Unfortunately, correspondences sought in this manner are

usually crude as they are not based on any physical properties of the surfaces, and

are sensitive to outliers.

Surface Parameterisation

Parameterisation gives a continuous representation of a 3D surface, with each surface

point being uniquely represented by parameters specifying a point on a 2D manifold.
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The parameterisation can be considered a mapping that must be one-to-one and

“onto” (each point on the surface is mapped onto a point on the manifold) for which

an inverse exists. Ideally, both the mapping and its inverse should be differentiable.

It is also desirable that the magnitude of shape differences in parameter space be

linearly related to the shape differences in Euclidean space.

We make the assumption that the surfaces to be parameterised represent whole struc-

tures in the body and are therefore closed surfaces. This assumption is quite valid in

practice, and is important, as the problem of parameterisation of a closed surface is

not as straightforward as that of the parameterisation of a surface patch because of

the requirement here of one-to-one correspondence.

Brechbühler [21] described a method of surface parameterisation using spherical har-

monic functions defined on a unit sphere. Firstly, the surface to be parameterised is

triangulated and mapped to a unit sphere. In Euclidean space the spatial relation-

ship of vertices resulting from the triangulation can be viewed as a surface net or a

graph. The mapping to parameter space is posed as an optimisation problem, with

a cost function that minimises the distortion of the surface net whilst embedding

it on the surface of a unit sphere. Secondly, the shape of the surface in parameter

space is represented as the summation series of the inner product of the vertex points

in parameter space and the spherical harmonic basis functions defined on the unit

sphere. This gives the parameterised representation of the surface. It is assumed

that higher frequency spherical harmonics contain noise, and a cutoff is selected so

that harmonics with frequency above the cutoff are not included in the parameterised

representation.

Location invariance is obtained by using object centred coordinates in Euclidean

space e.g. by using the centroid as the origin of the coordinate system. Orientation

invariance is obtained by rotations in parameter space to align the axis of the first

spherical harmonic terms which are ellipsoids. This alignment is also assumed to

establish correspondence. Scale invariance is implicitly obtained as all surfaces are
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mapped to a unit sphere. Spherical harmonic shape descriptors, which are Euclidean

invariant representations of the surfaces, are obtained from the parameterisations and

are analysed to obtain differences in shapes.

Surface parameterisation methods allow continuous description of surfaces and arbi-

trary re-sampling, and the method of Brechbülher has been applied to a number of

shape analysis problems e.g. [54]. However, current surface parameterisation meth-

ods have topological restrictions which limit their use. Such restrictions include the

requirement that surfaces have no folds or self intersections. Additionally, there is

not an intuitive relationship between the shape differences obtained from the shape

descriptors in parameter space, and actual changes in Euclidean space.

3D Fourier transforms for surface parameterisation have also been described e.g.

[136]. However, the only example of the use of 3D Fourier Descriptors in shape anal-

ysis [102] involved a modification of the spherical harmonic method of Brechbülher

in which surfaces are mapped to spheres using an area preserving method, and shape

descriptors were combined Fourier and spherical harmonic terms. Zhang [137] de-

scribes the parameterisation of 3D surfaces using harmonic maps. However, this is

limited to disc like surfaces.

Semi-Parameterisation of Surfaces

Spline functions [42] are popularly used to represent curves and boundaries in 2D.

They are piece-wise polynomial functions defined over a domain of control or “knot”

points that are continuously differentiable to a specified order. The control points

are the non-parametric portion as they have to be specified in advance. Splines have

a number of desirable properties - differentiable continuity (smoothness), local shape

controllability and invariance under certain transformations. Cubic splines, Bezier

curves and surfaces, and non-uniform rational b-splines (NURBS) are of particular

interest in shape representation. Shape descriptors have been defined in 3D using

NURBS [23]. Bezier functions have been used in visualisation of surfaces [29].

During the literature review, we have encountered no examples of 3D splines being
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used directly as shape representations in shape analysis. Reasons for this may include

the requirement that changes in the spline parameters be linearly related to changes in

the shape of the actual surfaces being represented. Additionally, the creation of spline

surfaces may require the discretisation of the surface into patches, or the manual

specification of surface correspondences to allow registrations to remove location,

scale and orientation differences. However, because of their smoothness and local

control properties, spline based functions, for example thin plate splines [15], are

widely used in non-rigid registrations of other shape representations.

Deformable Shape Templates

Deformable shape templates start with a primitive surface (the template) which is

deformed to fit the surface of interest. They are closely related to deformable mod-

els whose use in medical image analysis was introduced by Terzopulus [113]. In the

present case the primitives are closed surfaces or 3D materials of simple geometry.

Arbitrary correspondences are defined based on properties of the surface to be repre-

sented, and the primitive is deformed to closely match the surface being represented.

Quantification of shape differences is based on analysis of the deformations required

to match the primitive to the different surfaces being represented. A number of primi-

tives and methods of deformations have been described. Two of these (superquadrics

and physically based templates) are considered. The common drawback of these

methods are the need to specify material properties of the template such as elasticity

or stiffness, and the arbitrary ways in which correspondences are generated. Addi-

tionally, most of these methods tend to be computationally intensive. It should be

noted that some representations that fall into the voxel-based class of section 2.5.2

in this thesis have been termed deformable templates elsewhere e.g. [61]. However,

they are more precisely deformable anatomical templates.

Superquadrics

Superquadrics (such as ellipsoids) are generalisations of quadric surfaces. They are
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parametric surfaces that can model a wide variety of complex shapes realistically with

a compact number of parameters. They allow controllability and intuitive meaning

of their deformations, and their parameters can be obtained robustly.

The use of superquadrics as primitives is described by [112]. Initial correspondences

(as well as location, orientation and scale invariance) are obtained from the centroids

and central moments of the surface to be represented. To obtain the parameters

for the surface, stiffness parameters are assigned to the superquadric template, then

global and local shape parameters are obtained by solving equations of motion of the

model under the action of externally applied forces (from the surface to be repre-

sented). The global parameters contain scale, location and orientation terms, whilst

the local parameters allow quantification of local shape differences.

Physically Based Templates

In this case the primitive is taken as a solid material with physical properties that

determine its deformation. Pentland and Scarloff [91] use an ellipsoidally shaped

elastic material whose elastic properties are specified according to the surface to be

represented. Nodes on the template are attached to the surface by virtual springs.

The point of attachment of the virtual springs determines the correspondences of the

surfaces to be represented. To obtain these, the centroid and principal axes of the

template are aligned with those of the surface being represented. The projection of

points on the surface onto the template determine the points of attachment of the

virtual springs.

A constant load due to the surface to be represented causes forces to be exerted at

the nodes of attachment on the template, and these nodes vibrate until the system

reaches an equilibrium. The nature of the vibrations and the nodal displacements at

equilibrium are determined using the finite element method (FEM). Modal analysis

is performed on the vector of the nodal displacements to give the modes of vibration.

Shape invariant descriptors are obtained from these by discarding the modes corre-

sponding to the lowest frequencies, which are the modes of translation, rotation and
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scaling.

Landmark (Point) Based Representations

Landmarks in the context of this thesis are points on a 3D surface or within a 3D vol-

ume chosen according to some predefined criteria. Landmarks have been categorised

into three types according to Bookstein [16].

1. Anatomical landmarks which are points marking salient parts of an object

with particular application dependent significance, e.g. the positions of the

interphalangeal joints on an outline of a hand or some suitable point on the

surface of a ventricle.

2. Mathematical landmarks which are points marking mathematical or geo-

metrically meaningful features which are application independent, e.g. points

of extreme curvature like the tips of the fingers.

3. Pseudo-landmarks whose positions can be interpolated from points of type

1 and type 2, e.g. placing a fixed number of points between each type 2 point

on a boundary.

Figure 2.6 uses a 2D outline of the hand to illustrate examples of the three types of

landmark points.

With landmark based representations correspondence is achieved by placing land-

marks at homologous points of each of the shapes to be analysed. The same number

of landmarks have to be placed on each of the shapes. There is no hard and fast

rule setting the number of landmarks needed to represent a structure, however, they

should be sufficient in number and placement to be truly representative of the shape

of the original structure. Euclidean invariance is achieved by registrations of the

shapes using the landmarks. For instance by applying Procrustes analysis [58] in
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Figure 2.6: Illustration of classification of landmarks to anatomical,
mathematical and pseudo-landmarks. The anatomical landmarks are the
labelled anatomical points, the mathematical landmarks are the curva-
ture extrema of the hand outline, and the pseudo-landmarks are sets
of three equally spaced points between consecutive anatomical and/or
mathematical landmarks (not drawn to scale in the figure)
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3D using iterations of seven degree of freedom rigid body registrations to minimise a

criterion based on the Euclidean distance between corresponding points.

The main advantage of landmark based representations is that there is a wealth

of knowledge about their statistical analysis. They can be put into vector/matrix

form and multivariate analysis techniques performed on them. The quantification

and visualisation of shape differences is also straightforward as the differences can

be represented in Euclidean space. The main disadvantage of landmarking methods

is that it is impractical to manually place a large number of landmarks accurately

on a boundary. This is particularly true of placing landmarks on a 3D surface. The

numbers of landmarks needed to truly represent a 3D object is much larger than

for 2D (usually starting at a few hundred landmarks). This is the “correspondence

problem” and various methods of overcoming this are discussed in section 4.3.

Distance Transforms

Given a binary image containing a region of interest or its boundary, a distance

transform assigns a value to each image element giving its distance from the boundary

of the region. A sign convention can be used to distinguish between the interior and

exterior points. Borgefors [20] describes methods for obtaining distance transforms

in 3D.

Golland et. al. [56] describe a method of obtaining Euclidean invariant shape de-

scriptors of 3D binary data using distance transforms. The distance transform is

inherently location invariant as it is object centred. Orientation and size invariance

are obtained by applying rigid body transformations to align the centroids and mo-

ments of the objects to be analysed and to scale them to the same volume. The rigid

body alignment is assumed to establish correspondence between the objects. The

distance transforms of the aligned versions are recomputed and re-sampled to give

feature vectors which are the shape descriptors.
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This method of representation has advantages in that it is relatively straightforward

and easy to compute, does not require manual intervention (except maybe for a seg-

mentation step), and copes well with complex topology. However, the assumption

that alignment of the centroid and moments of the distance transform establish cor-

respondence is not justified, and may lead to invalid correspondences. Additionally

the uniform sampling used to produce the shape descriptors may lead to insensitivity

to some local shape differences.

Medial Axis Representations

The terms medial axes and skeletons are sometimes used interchangeably in computer

vision literature. Here we take them to mean the same thing. That is the locus of the

centres of the maximal spheres touching the surface of the object being represented

whilst being completely enclosed within the object. The set of points making the

medial axis can therefore be thought of as nodes on a graph, hence this representation

has also been called a graphical representation by skeletonisation (chapter 6 of [105]).

Medial axis transforms or skeletonisation are generic names used for operations that

result in the medial axis being obtained from a binary version of an object or a

sampling of points on its surface. Skeletonisation was introduced into computer

graphics by Blum [11]. There are a large number of methods for performing medial

axes transforms in 3D, some of which address the undesirable properties of this form

of representation.

Invariant shape descriptors can be obtained from medial axes in a variety of ways.

These commonly assume that the shapes being compared are similar, and share a

common form from which the connectivity of the nodes of a generic skeleton (the

branch topology) for the particular class of shapes can can be defined. The generic

skeleton is then fitted to each shape to be analysed, and the fitting process removes

orientation and location dependencies. Reparameterisation of the medial axes re-

moves scale differences. The invariant medial axis is then uniformly sampled to obtain
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correspondence between the shapes being analysed. Radial distances to the object

surface at specific angles at the sampled points are used to give shape descriptors.

This form of shape representation is intuitive and differences in the shape descriptors

can be illustrated clearly using the skeletons or can be projected back onto the actual

shapes. The major drawback of this method is that it is highly sensitive to noise in

the boundary. Additionally, the need to specify the branching topology for particular

classes of objects in advance reduces the desirability of this method.

Pizer et. al. [92] and Styner and Gerig [107] describe a method using 3D Voronoi

graphs to obtain skeletons and automatically specify the branching topology. In this

case skeletons were obtained for all shapes to be analysed, and the deformation of the

skeletons was used as the shape descriptor. They term their medial axis description

of shape “m-reps”. Golland et. al. [57] used fixed topology skeletons computed from

3D distance transforms of the surfaces. Saha and Chaudhuri [99] obtain skeletons

using morphological operations, and classify these to specify the branching topology.

2.5.3 A Selection of Methods for 3D Shape Analysis of Neu-

roanatomical Structures

Various aspects of shape analysis have been mentioned in the above survey. Here we

give examples of application of 3D shape analysis to investigation of shape differences

in neuroanatomical structures of the brain. The applications are in four categories,

and in no way illustrate the full diversity of applications of shape analysis in computer

vision, they are simply to illustrate the application of shape analysis techniques to

the brain. A review of other methods applied in computer vision can be found in

[77].
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Neuroanatomical Brain Atlases

Neuroanatomical brain atlases are based on voxel-representations and are a non-

statistical method. The anatomical structures of interest in the gray-level image of the

brain of a subject are manually or automatically labelled to give the neuroanatomical

brain atlas e.g. [123]. Given volumetric images of the set of subjects to be analysed,

the atlas is then deformed to each using high dimensional transformations. These

transformations can have up to 106 parameters e.g. [120].

Csernansky et. al. [36] analysed a group of 15 matched pairs of schizophrenics

and control subjects for shape differences in the hippocampus using MR images.

Their neuroanatomical atlas in which the hippocampus was labelled was created

using a control subject. Anatomical landmarks were placed in the MR images of

the atlas and each subject to be analysed. These were used to obtain a coarse

alignment of the atlas to each subject’s brain. The coarse alignment was refined

using a fluid transformation. A triangulated mesh was described on the surface of

the hippocampus of the template, and this was carried along during the deformation.

Vector fields were computed from the displacement of the vertices of the triangulated

mesh for each subject. A covariance matrix was obtained using the vector fields

to which principal component analysis (PCA) was applied. The first 15 principal

components were used for shape analysis. The results showed abnormalities occurred

in specific subregions of the head and body of the hippocampus between the control

and schizophrenic groups. Furthermore, the shape analysis gave greater statistical

significance between the groups than volumetric analysis.

Probabilistic Brain Atlases

Probabilistic brain atlases use voxel-based representations and are a statistical shape

method. They use the notion of an average brain of a normal population in the

analysis of the brain of a particular subject for shape differences. They are termed
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probabilistic because they assign a probability value to each anatomical position in

the brain under investigation. The value gives the probability of the anatomical point

being abnormal when compared to the location of corresponding points in a database

of brains of normal subjects. Probabilistic brain atlases allow quantification of the

full range of normal variation of anatomical structures, and help distinguish changes

due to disease by providing confidence limits on normal variability.

Guimond et. al. [59] and workers at the Montreal National Institute [48] have

generated average brains. However, the Laboratory on Neuro Imaging (LONI) group

of the University of California, Los Angeles, is foremost in this field, and Thompson

et. al. [119] from that group give a review of methods of constructing average brain

atlases.

Thompson and Toga [118] of the LONI group describe a method for the creation of

a probabilistic brain atlas. They demonstrate its use on a set of ultra high resolu-

tion MR images of 12 Alzheimer’s patients and matched controls, and on a set of 6

cryosections of the brains of cadavers of a set of patients with metastatic tumours in

the brain and matched controls. To establish orientation, scale and location invari-

ance, all images are transformed to Taliarach space using manually defined landmarks

within their 3D volumes. As a first step to establishing correspondence, surfaces of

several different anatomical structures in all the brains e.g. the cortical sulci, are

segmented manually, and overlaid with triangulated meshes.

Each brain from the disease group is then matched to every single brain in the con-

trol group in turn to compute probability values. High dimensional warps are used

to transform the Taliarach space version of the disease brain to be exactly anatomi-

cally equivalent to the Taliarach version of each of the control brains via a spherical

mapping using correspondences obtained from the labelled anatomical structures. 3D

probability density functions of the distribution of the mapping of the same anatom-

ical point in each of the control brains is used to obtain a probability value of the

location of that point in the diseased brain being abnormal. The probability values
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obtained decrease in a monotonic manner with the probability that the location of

an anatomic point is abnormal. These values were mapped via a logarithmic lookup

table onto a standard colour range, and superimposed within the brain of a refer-

ence image for visualisation. For group comparisons, the root mean square of the

probability values for the members of each group can be obtained.

The results of [118] were for demonstration of the method only. In the case of a subject

with Alzheimer’s, there were major differences in the extent of the lateral ventricles

and the cortical boundaries. The cerebellum was smaller for the Alzheimer’s brain,

and there were differences in the cortical sulci. In the case of a subject with metastatic

tumours, it was shown that there were significant structural abnormalities in struc-

tures in the immediate vicinity of the tumour, but structures in regions further away

from the tumour did not exhibit significant structural abnormalities. Furthermore,

they showed that when normal controls were analysed, the probability values were

not significantly different from those in the database.

Voxel-Based Morphometry

“At its simplest, voxel-based morphometry (VBM) involves a voxel-wise comparison

of the local concentration of gray matter between two groups of subjects.” This is a

quote from [4] which gives comprehensive details of VBM. The basis of the approach

is similar to that of probabilistic brain atlases. However, in the case of VBM, non-

rigid registrations are applied to remove global differences in shape, whereas local

differences are retained, and these are quantified using the difference of concentration

of gray matter (GM). A fundamental assumption is that differences in concentration

of GM indicate local structural abnormalities in corresponding areas of brains in the

same stereotactic space.

The two high resolution images (or the images from the two groups) being compared

are spatially normalised to the same stereotactic space using a template. Ideally, the

template should be an average brain based on a large number of images, however, at
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the risk of introducing bias into the results, single brains can also be used. Spatial

normalisation involves using 12 degree of freedom affine registrations, and linear com-

binations of smooth spatial basis functions to minimise the sum of squared difference

between the image and the template. This is assumed to correct for global shape

differences.

The spatially normalised images are segmented into GM, white matter (WM) and

“other” tissue classes using cluster analysis. The GM distribution is smoothed with

a gaussian kernel whose size depends on the nature of the differences being sought.

This means the density of GM in each voxel depends on those of its surroundings, and

makes the properties of the voxel values more like those in the statistical assumptions.

The statistical analysis of the smoothed data uses a general linear model to identify

regions of GM concentration significantly related to the effects being studied. It gives

a framework in which different standard parametric tests e.g. t-tests and F-tests can

be applied to hypothesis. The significance of any differences can be ascertained using

the theory of gaussian random fields.

The validity of VBM has been questioned by Bookstein [17][18] who argued amongst

other things that the spatial normalisation involved in VBM may make the statistics

about voxelwise comparisons uninformative about group differences. Ashburner and

Friston who pioneered VBM agreed that some findings deduced by using the method

may pertain to systematic errors [5], but state that Bookstein’s argument about

voxelwise tests do not apply to real data. Despite this ongoing debate the method

is widely used in the neuroimaging community. The facts that it is automated and

relatively straightforward undoubtedly contribute to this. Furthermore, it is more

reproducible than manually defined volumetric regions of interests - the current gold

standard.

Kubicki et al [73] use VBM in the analysis of brains from patients with first episode

schizophrenia, and first episode affective disorder. The schizophrenic and affective

disorder groups each comprised of 16 subjects. The control group comprised 18
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matched subjects. VBM comparisons of the control and schizophrenic group showed

significant differences in the left superior temporal gyrus (STG) of the schizophrenic

group. Additional group differences were observed bilaterally in the anterior cingulate

gyri and insula, and unilaterally in the parietal lobe. The use of a smaller smoothing

kernel showed left sided hippocampal group differences. No significant differences

were observed between the controls and the affective disorder group. However, local-

isation of comparisons to the same regions found defective in the schizophrenic group

showed the same pattern of differences in the left STG and the left hippocampus of

the affective group as with the schizophrenic group.

Davatzikos et al [37] describe a modification of VBM whereby the spatial normal-

isation is aided by manually defining a number of sulcal curves within the brain.

Using simulated atrophy within the STG and the precentral gyrus, they demonstrate

that this method performed substantially better than that of Ashburner et. al [4].

described above. However, this was at the cost of manual intervention.

Statistical Shape Models

Statistical shape models (SSMs) are models that attempt to capture the inherent

variation in the shape of a specified class of object based on statistics learnt from a

training set (a sample from the population of interest). As the name suggests, they

are a statistical method. In addition to shape analysis, they have been used in 2D

for object tracking and segmentation. SSMs have an advantage over other methods

in that they can allow the comparison of subgroups within a class

3D SSMs have been built using combinations of all the shape representations discussed

in section 2.5.2. To construct 3D SSMs, 3D representations of the training set are

needed. The members of the training set are normally obtained by segmentation

of non-invasively acquired images of the structure of interest. The training set is

supposed to be a truly representative sample of the population to be modelled, but

obtaining adequate numbers in practice is usually not possible. Three criteria are
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usually used in assessing how good a SSM is - Compactness, generalisation ability,

and specificity. These are discussed in chapter 4.

Point distribution models (PDMs), were introduced by Cootes et al [32]. As the name

suggests, a shape is represented by a cloud of [landmark] points. Given a training

set, corresponding points on each member of the training set are obtained. The

spatial coordinates of the corresponding points for each member of the training set

are concatenated into a vector - the “shape vector”. Procrustes analysis or some

other form of alignment and normalisation are applied to remove variations due to

differences in size and orientation between members of the training set to give an

aligned shape vector for each member of the training set. A mean shape and a

covariance matrix based on deviations from the mean shape are then obtained from

the aligned shape vectors. PDMs are of particular interest in this thesis and will be

discussed more fully in chapter 4.

Styner and Gerig [107] present a framework for building SSMs combining surface

representations based on the spherical harmonics of [21] and the medial axis of the

structures to be modelled. Surface parameterisations are obtained for each member

of the training set and these are brought into correspondence by normalising their

first degree ellipsoids as in [69]. The continuous parameterisations of the surface

are then finely sampled to give point representations of each member of the training

set, from which medial axes are obtained by skeletonisation. The medial axes of all

members of the training set are used to construct an “m-rep” model. Shape analysis

is performed by deforming this to the surface parameterisation of each member of

the training set. This method has been used to demonstrate shape differences in the

ventricles of monozygotic and dizygotic twins with schizophrenia, and to investigate

differences in the hippocampus of schizophrenic and control subjects.

Martin and Pentland [83] describe a finite element method using a physically based

deformable template. The intercranial cavities (ICCs) of all members of the training

set were segmented along with the structure(s) of interest in the brain. Correspon-
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dence was achieved by rigid body registration to align the ICCs of all members of the

training set. An average ICC is determined, and a FEM of this is created by assum-

ing the ICC is a linear elastic material. Variations in the shape of the intercranial

structures due to differences in head shape are normalised by deforming the FEM to

the ICC of each member of the training set and warping the structures of interest

accordingly. Modal analysis of the displacement vectors was used to allow shape

based discrimination of Alzheimer’s disease patients from normals, and schizophrenic

patient from normals.

Golland et al [56] use a 3D distance transform as has been described in 2.5.2,

and support vector analysis for shape discrimination between diseased and control

anatomical structures. They demonstrated that discrimination of the hippocampus-

amygdala complex between schizophrenic and control subjects was increased using

their method, compared to using a volumetric technique.

2.5.4 Normalisation for Brain/Head Shape

In the special case of morphometric analysis of neuroanatomical structures in the

brain, it is reasonable to assume that the size and shape of the brain is influenced

by that of the head as the brain is a jelly like material. The size and shape of the

neuro-anatomical structures in the brain are correlated with that of the brain and

ultimately the head. It could be argued that in studying two groups, incorporating

large enough samples in each could reduce the effects of size and shape between the

groups. However, the numbers of subjects used in current trials is usually between

ten and fifty per group and cannot be fully representative of variations in head size

and shape.

In morphometric studies of this kind, it is important to eliminate as many variables as

possible that may influence the size and shape to increase confidence that the residual

differences are due to pathological effects of the disease in question. Normalisation

of the internal structures of the brain for brain shape has been shown to result in
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better shape discrimination. Martin et. al. [83] use a finite element method to

accomplish this. They made approximations of the mechanical properties of the

brain and accounted for these in their finite element model used to perform shape

analysis. They showed that applying their normalisation increased the classification

rate of structures into control and disease groups. Gerig et. al. [54] also normalise for

brain size. They used the first mode of the spherical harmonic parameterisation of

the ventricles to scale all shapes to a unit volume. They reported that normalisation

resulted in improved shape differences.

The mechanical properties of the brain are not well known and the scaling factors

applied by Gerig et. al. represent a volume parameter and therefore accounts for

global size and not shape. We approach normalisation by obtaining an ellipsoidal

approximation to the brain and using the three main axes of the ellipsoids to re-scale

the ventricles of each brain relative to a chosen template in the three orthogonal

directions. This is described in section 3.6.

2.6 Summary

This chapter has given details of the background necessary for the work done in this

thesis. The principles behind MRI have been explained, as well as relevant properties

of the images formed. The preprocessing necessary for our investigations have been

described. A review of shape analysis was undertaken and as morphometric analysis

is our goal we give a summary of the main points discussed in the section on shape

analysis.

Section 2.5 discussed methods of shape analysis, and has given examples of practical

application in 3D brain imaging emphasising the desirability of statistical methods.

The three statistical methods discussed in section 2.5.3 each have their strengths and

weaknesses.

66



Chapter 2. Background

VBM has advantages in that it can be fully automatic, it is relatively straightforward

and it is applicable to multiple structures located throughout the brain. However, the

validity of the principles behind its use are the subject of ongoing scientific debate.

The fact that some structures in the brain e.g. some of the cortical sulci vary greatly

or may be completely absent in some brains means the spatial registrations may not

be accurate. Additionally, it does not directly measure shape differences of specific

neuroanatomical structures.

Probabilistic brain atlases involve a great deal of interaction, and can compare one

subject to a database of control subjects as well as compare disease and control

groups. They are well suited for qualitative visual analysis of deviations of individual

subjects from a group or deviations between two groups. However, the obtaining the

high dimensional warps required for registration is computationally expensive. Fur-

thermore, shape differences are expressed in parameters with a high dimensionality.

They also suffer from the same problem as VBM in that the high dimensional warps

may or may not make real differences.

SSMs also require manual intervention to various degrees. A segmentation step is

usually required, and obtaining shape representations and correspondence in 3D may

also require manual intervention. SSMs are usually applied to individual brain struc-

tures, which although at first sight may appear a disadvantage, allows the detailed

characterisation of the particular structure. They allow the comparison of groups

and yield compact parameters to which discriminant analysis can be applied.
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Data and Image Preprocessing

3.1 Overview

In this chapter we describe the MR data used in our work. We also describe the

preprocessing steps carried out to obtain the surface representations of the lateral

ventricles used in building the shape model. Section 3.2 describes the MR data, and

section 3.3 the MR non-uniformity correction applied to this data. Segmentation

of the lateral ventricles is the subject of section 3.4. Image combination was used

to deal with with problems caused by voxel anisotropy and inadequate spatial res-

olution, this is described in section 3.5. To facilitate better shape discrimination,

the surface representations of the ventricles were normalised for differences in brain

shape. Obtaining the parameters required for this is the subject of section 3.6.

3.2 Description of Data

Volumetric T1-weighted and T2-weighted MR scans of 39 schizophrenic subjects and

30 age and sex matched controls were used. The age range in the schizophrenic

group was 14-48 years, and that for the control group was 13-45 years. For the
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control subjects there were 13 females and 17 males, whilst the schizophrenic group

was composed of 9 females and 30 males.

For each subject T1 MR scans had been acquired in the coronal orientation, and T2

scans in the sagittal, coronal and axial orientations using a 1.5 Tesla magnet. The

acquisition in each orientation was independent (i.e. represented an entirely separate

scan). The voxel dimensions for scans acquired in the coronal orientation was 0.78mm

by 0.78mm in the plane of the slice. For the sagittal and axial orientations the in-

plane size of voxels was 0.86mm by 0.86mm.

For all orientations there were 256 × 256 voxels in each slice, with each slice having

a thickness of 5mm. There was a 1mm intra-slice gap between consecutive slices.

The images were originally in DICOM format but were converted to AnalyzeTM 7.5

format for viewing purposes. All subsequent processing took place using images in

the Analyze format.

3.3 Application of MR Non-Uniformity Correc-

tion

All images were corrected for MR inhomogeneity using the method of Vorkuka et.

al. [127] outlined in section 2.4.1. This method was used because it is a proven

method and had been implemented in the Tina [121] environment by the authors.

Figure 3.3 shows the results of non-uniformity correction for three consecutive slices

from a T1-weighted scan of one of the subjects in the study. The results of intensity

histograms of the slices before and after application of non-uniformity correction are

also shown next to each slice.

The intensity histograms show a reduction in low intensity values after non-uniformity

correction. The profiles after correction show tri-modal peaks in all slices, which were

not observed in the histograms before correction. The peaks correspond to CSF,
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GM and WM intensity distributions respectively. The results show that although

non-uniformity correction results in no significant visual improvement, the tri-modal

nature of the histograms indicates an improved gray level distribution into tissue

classes.

Slices and intensity histograms
Before correction

Slices and intensity histograms
After correction

Figure 3.1: .
Qualitative results of intensity non-uniformity correction. The histograms of inten-
sity values show distinct tri-modal peaks attributable to CSF, GM, and WM, after
application of non-uniformity correction. Voxel intensities of the same region in all
slices (see image on the right in row 1) were used in obtaining the histograms

3.4 Segmentation of the Lateral Ventricles

Our approach to segmentation was to use a 3D edge detector [85] to give edgels

which were manually linked to form closed contours in each slice. In determining our
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approach to segmentation the following were considered:

1. The Quality of Results. As the purpose of segmentation was shape analysis

of the resulting ventricular surface it was paramount that the ventricles were

segmented as accurately as possible. The quality of segmentations was judged

by two neuro-radiologists.

2. Efficiency. 69 Images had to be segmented, and the lateral ventricles spanned

approximately 90 slices in each image. Therefore, a considerable amount of

data had to be segmented. The method of choice had to make as much use

as possible of the characteristics peculiar to the segmentation of the ventricles.

The most prominent of these is the fact that the ventricles contain CSF, whilst

the surrounding tissues contain GM and WM. Therefore in most slices there is

usually good contrast between the ventricles and the surrounding tissues.

3. Intuitive Interaction. Even though there is good contrast between the ven-

tricles and surrounding tissues in most slices, this is not the case in the temporal

horns where the ventricles are thin. The partial volume effect is a problem at

the temporal horns, and automated segmentations would require manual editing

in this region. Additionally, the left and right ventricles may come into close

contact in some slices. There is therefore the need for a significant amount

of manual interaction. Intuitive methods of carrying this out help to reduce

frustration and increase the accuracy of segmentation.

4. Quick Implementation. Developing methods of segmentation is an active

research topic. However, it is not the subject of this thesis. Therefore we sought

a method that met the criteria listed above, and was either readily available or

could be implemented in a straightforward manner.

Before selecting the 3D edge detector approach a number of other methods were

considered. Two readily available methods, the region-based method in Analyze and

a statistical method available in the Tina environment were evaluated. Segmentation
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using Analyze required substantial user interaction, and the results obtained still had

to be modified manually in most cases.

The statistical method of Tina involved fitting Gaussian kernels to the distribution of

gray levels for GM, WM and CSF (see figure 3.3). The partial volume effect was ac-

counted for by using a linear approximation to the tails of the Gaussian distributions

where two of the kernels overlapped (it is assumed that only two tissue types overlap

in any one voxel). The results of the fit are used to obtain probabilities that a voxel

is drawn from a population of CSF, GM, or WM - resulting in a probability image

that can be thresholded. Segmentation using Tina gave reasonable results in most

slices. However, it also required user interaction defining regions on which to base

its probability estimations. It could not distinguish between left and right ventricles

when they were close. Furthermore, it gave poor results for the temporal horns and

at the extremities of the ventricles. The statistical method of Tina was not used

because of these unfavourable features.

A watershed method [98] was implemented. This required the user to place seed

points within the ventricles, so that their catchment basins could be identified. Again

this method gave good results for most of the ventricle, but could not distinguish

between right and left ventricles when they were in close proximity and did not work

well for the temporal horns. Furthermore, in some instances the catchment basins

overflowed. Although several modifications were made in attempts to solve this they

did not completely eradicate the problem.

The edge-based method was selected because the edges are well defined for most slices

of the ventricle. The problem of linking edgels was tackled manually as we did not

want to spend time developing heuristics that needed further modification. Figure

3.2(a) shows the edgels superimposed on a slice of one of the subjects of the study

and the resulting segmented contours. We were also able to present the interaction

in an intuitive way using a user interface generated with Matlab (see Figure 3.2(b)).

The 3D detector was used rather than a 2D one because the neuro-radiologists felt it
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gave more accurate results.

The steps involved in segmentation were:

1. Load image into Matlab segmentation tool (see figure 3.2)

2. Obtain edges using 3D edge detector by clicking the “Get Edges” pushbutton

in the toolbox on the left of figure 3.2.

3. The binary edge image is superimposed on the gray level image as shown in

figure 3.2(a).

4. The “Modify Edge Im” pushbutton in the toolbox on the left of figure 3.2 allows

the pixels of the binary edge image to be turned on or off. This is used to isolate

the edgels around the ventricles to form closed contours. Figure 3.2(b) shows

the contours for the slice displayed in figure 3.2(a).

5. The contours around the ventricles of each slice in the image are obtained in

this manner.

6. The contours are then saved as list of x,y,z coordinates in a text file.

3.5 Image Combination to Improve Spatial Reso-

lution

The voxels of the acquired images are anisotropic (see section 3.2), with the effective

slice thickness of 6mm, leading to “steps” on the ventricular surface (see Figure 3.7).

The reasons for acquiring images with anisotropic voxels were explained in section

2.3.1. However, from a shape analysis point of view we would like to represent the

ventricular surface with as fine a resolution as possible (preferably 1mm or less). We

would also like isotropic voxels to simplify the construction of the shape model by

having the same distance units in the three orthogonal directions.
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(a) 3D edges overlaid on a coronal slice

(b) Contours of segmented ventricle

Figure 3.2: Images of a coronal slice showing the 3D edges and the
resulting segmented contours of the ventricle. The images are displayed
within the GUI used for segmentation
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A straightforward solution to both voxel anisotropy and inadequate out-of-plane reso-

lution is re-slicing the images to give isotropic voxels of an adequate resolution using

one of the interpolation methods discussed in section 2.3.3. Contour based inter-

polation [124] is an alternative method. This involves segmentation of the desired

structure of interest from the low out-of-plane resolution image. Interpolation is per-

formed on the segmented contours to approximate contours that would have been

obtained had the out-of-plane resolution been higher. Contour interpolation meth-

ods have the advantage that they reduce the amount of segmentation required, as the

low out-of-plane resolution image has thicker and hence fewer slices than one that

would have resulted from conventional image interpolation.

However, inherent in the independently acquired T2 coronal, axial and sagittal views

of a subject is sub-millimetre resolution in all three orthogonal directions. Our aim

in this section was to produce high resolution isotropic voxel images of the brain

of each subject using information from all three views. Our motivation being that

conventional application of re-slicing and interpolation or contour based interpolation

would only use information from one of the three views.

In the following subsections we describe how we arrived at our chosen approach

to image combination. The layout is as follows. Image combination requires the

accurate registration of the three views. Registration is required because the views

were acquired independently and there would have been a degree of movement in

the patient between the acquisitions. Section 3.5.1 describes the evaluation of three

freely available registration packages to select an appropriate one for performing our

registrations. In addition to straightforward interpolation, two approaches to image

combination were investigated. The first (combination method 1), that which was

selected as the method of choice, is described in section 3.5.2. The second approach

(combination method 2) involved forming sets of linear equations from the images

and solving for voxel values. This is described in section 3.5.3. Section 3.5.4 presents

the results of application of both image combination methods, as well as conventional

re-slicing and interpolation to synthetic test images and to the actual images used
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in this study. The method of choice for image combination to apply in this study is

discussed in section 3.5.5.

3.5.1 Evaluation of Three Registration Packages

The Registration Software

The three packages assessed were, version 3.08 of the Automated Image Registration

(AIR) package of Woods et. al. [134]. The “MPR” registration package from the

Computational Imaging Sciences Group at King’s College London (now called the

VTK CISG registration toolkit) [106], and the FMRIB Linear Image Registration

Tool (FLIRT) from the University of Oxford [66]. AIR uses the Woods function as

its similarity metric, whilst MPR uses normalised mutual information, and FLIRT

uses the correlation ratio.

We use the AIR convention when referring to the registration of a set of images. The

image to which the others are registered is called the standard image, and the image

being registered is the reslice image. For the registration of each reslice image to the

standard image we obtain six parameters Tx, Ty and Tz for translations and Rx, Ry

and Rz for rotations.

The aim of this evaluation was to investigate the robustness, accuracy and consis-

tency of the registration software in order to select the best one for our purposes. It

should be noted that the evaluation carried out here is limited to rigid-body registra-

tion of images of the same subject obtained by the same imaging modality (mono-

modal intra-subject rigid-body registration). Other more comprehensive evaluations

of multi-modal inter-subject registration have been carried out e.g. [51]

Gold Standards and Measure of Registration Accuracy

An MR simulator [30] was used to generate five T2 images of a phantom model at

a resolution of 1mm × 1mm × 1mm. These served as gold standards for the assess-

ment of the accuracy of registration and were also used in quantitative evaluation of
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image combination. The number of elements in the x, y and z directions were 181

× 181 × 216. The images were generated with 3% noise and 20% MR inhomogene-

ity. They were converted into “thickened” anisotropic voxel images in the coronal,

axial and sagittal orientations, each with 1mm × 1mm in-plane resolution and 5mm

slice thickness and 1mm slice gap, by averaging adjacent voxels in the appropriate

direction.

A triangulated surface of the lateral ventricles of the phantom model was generated.

The coordinates of the vertices, V , of this were stored for use in the computation of

a similarity metric to assess the various registration packages.

An Euclidean metric dm (Equation 3.1), was calculated using transformation param-

eters for a particular registration and the pre-stored vertices of the ventricular surface

of the phantom. Artificial mis-registrations were introduced into the test images by

rotating them about the coordinate axes. The same mis-registration was applied to

V to give a new set of coordinate points V ′. The transformation parameters returned

by a registration package for the registration of the mis-registered and original im-

ages were applied to V ′ to give V ′′. dm is the mean Euclidean distance between

corresponding points in V and V ′′.

dm =
1

N

N∑
i=1

[
(xi − x′′i )

2 + (yi − y′′i )
2 + (zi − z′′i )2

] 1
2 (3.1)

where

N = number of vertices on the ventricular surface

x, y and z are coordinates of the vertices on V

x′′, y′′ and z′′ are the coordinates of corresponding vertices of V ′′

Experiments Performed

Experiments were performed as follows. The axial version of each of the five thickened

test images of resolution 1mm × 1mm × 6mm, was used to generate both a standard

image and a reslice image. The standard image was formed by re-slicing the thickened
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image into 1mm × 1mm × 1mm voxels using spline interpolation. The reslice image

was formed by rotation of the thickened image by 0o , 5o or 10o to give an image

with resolution of 1mm × 1mm × 6mm. The rotations were done about the x,y and z

axes independently. Identical rotations were applied to the vertices of the ventricular

surface, V , to give a new set of vertices V ′. The reslice image was registered to

the standard image by MPR, AIR and FLIRT, and the resulting transformation

parameters tabulated. These were used to form transformation matrices applied to

the respective V ′ to give V ′′. A value of dm was then calculated using equation 3.1.

For MPR and AIR the above was repeated using images in the coronal orientation

(FLIRT only works on images in the axial orientation).

Results of Evaluation Experiments

Tables 3.1, 3.2 and 3.3 give average values of the translation parameters for each

registration package. The values in each column represent the mean over the five test

images. The first column states the initial rotation applied to give an artificial mis-

registration. The values along each row give the rotation and translation parameters

applied by the registration package to correct for the mis-registration. Table 3.4

summarises the values of dm for each set of experiments.

In general the rotations applied by all the packages were correct to two decimal places.

However, AIR mis-registered in three of five cases (highlighted in Table 3.1) when

rotated by 10o about the x-axes in the axial orientation, and in all five cases when

rotated by 10o in the coronal orientation.

The translation parameters returned differed for each method. This was the main con-

tributor to differences in dm between the methods. For AIR and MPR the maximum

translations were 0.52mm in x, and 0.42mm in y. In the z direction the maximum

translation was 2.32mm for AIR and 1.24mm for MPR. For FLIRT the maximum

translations were 3.31mm in x, 2.95mm in y and 2.00mm in z. The greater transla-

tion in the z direction may be expected because of the lower resolution of the reslice

images in this direction. This also explains the fact that even when no rotations are
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Initial Tx (mm) Ty (mm) Tz (mm) Rx (degrees) Ry (degrees) Rz (degrees) dm (mm)

Rotation Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

Axial Orientation

0 0.058 0.001 0.049 0.072 -2.324 0.005 0.020 0.027 0.078 0.002 0.019 0.002 2.327 0.006

Rx 5 -0.111 0.000 -0.290 0.001 -1.977 0.002 -5.007 0.002 -0.195 0.001 -0.015 0.000 2.000 0.002

Rx 10 -0.266 0.146 0.186 0.615 -2.228 0.300 -4.065† 5.396 -0.046 0.138 -0.012 0.000 5.825 3.528

Ry 5 -0.280 0.002 -0.172 0.002 -2.004 0.010 -0.072 0.003 -5.034 0.003 -0.009 0.001 2.034 0.009

Ry 10 -0.520 0.001 -0.176 0.001 -1.950 0.005 -0.074 0.001 -10.010 0.001 -0.006 0.000 2.030 0.004

Rz 5 0.001 0.000 -0.001 0.001 -2.320 0.001 0.003 0.001 0.001 0.000 -5.003 0.000 2.320 0.001

Rz 10 0.001 0.000 0.000 0.001 -2.319 0.001 0.003 0.001 0.001 0.000 -10.003 0.000 2.319 0.001

Coronal

0 0.002 0.005 0.022 0.003 0.660 0.002 0.080 0.001 -0.068 0.097 -0.015 0.022 0.670 0.009

Rx 5 -0.167 0.001 0.007 0.002 0.924 0.003 -4.974 0.004 0.008 0.002 -0.016 0.001 0.937 0.003

Rx 10 -0.375 0.004 -0.420 0.002 0.355 0.002 -0.173† 0.001 -0.006 0.002 0.024 0.001 5.232 0.001

Ry 5 -0.004 0.001 -0.180 0.001 1.055 0.003 0.000 0.004 -5.003 0.002 -0.004 0.001 1.071 0.003

Ry 10 -0.090 0.179 -0.228 0.109 0.892 0.188 0.000 0.008 -7.999† 4.389 0.009 0.004 1.663 1.509

Rz 5 -0.007 0.001 0.017 0.001 0.689 0.000 0.002 0.000 -0.004 0.001 -5.020 0.000 0.690 0.000

Rz 10 -0.007 0.001 0.016 0.001 0.687 0.000 0.003 0.000 -0.002 0.001 -10.020 0.000 0.688 0.000

Table 3.1: Mean Translation and Rotation Parameters for AIR. The
values along each row are the parameters applied to correct for the initial
rotations. Rx5 indicates an initial 5o rotation about the x-axis and Rx10
an initial 10o rotation etc. The column headings show the parameters
required to register the image with its unrotated version. †Highlighted
values show where gross mis-registrations occurred

present, there is still significant translation in the z direction.

Table 3.4 shows MPR gave the lowest value of dm for registrations in both the coronal

and the axial orientations. The value of dm for AIR was affected by the gross mis-

registrations at 10o . The fact that gross mis-registrations occurred shows AIR is

less robust than MPR and FLIRT. These mis-registrations were probably due to

the optimisation method finding a local minimum of the voxel similarity metric cost

function as opposed to the global minimum. The value of dm for FLIRT was high

because of the error resulting from the registration. Additionally the use of FLIRT

would mean restriction to the axial orientation. On the basis of these results MPR

was selected as the registration tool for the subsequent experiments.
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Initial Tx (mm) Ty (mm) Tz (mm) Rx (degrees) Ry (degrees) Rz (degrees) dm (mm)

Rotation Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

Axial Orientation

0 0.000 0.000 0.000 0.000 -1.000 0.000 0.000 0.000 0.000 0.000 -0.120 0.000 1.012 0.000

Rx 5 0.120 0.000 0.000 0.000 -1.210 0.000 -4.970 0.000 -0.120 0.000 0.000 0.000 1.215 0.000

Rx 10 0.120 0.000 0.000 0.000 -1.236 0.058 -9.960 0.000 -0.120 0.000 0.000 0.000 1.240 0.058

Ry 5 0.000 0.000 0.120 0.000 -1.236 0.058 0.048 0.066 -5.064 0.058 0.000 0.000 1.240 0.057

Ry 10 0.000 0.000 0.120 0.000 -1.210 0.000 0.000 0.000 -10.090 0.000 0.000 0.000 1.217 0.000

Rz 5 0.000 0.000 0.000 0.000 -0.880 0.000 0.000 0.000 0.000 0.000 -5.030 0.000 0.881 0.000

Rz 10 0.000 0.000 0.000 0.000 -0.880 0.000 0.000 0.000 0.000 0.000 -10.040 0.000 0.882 0.000

Coronal

0 0.000 0.000 0.000 0.000 -1.000 0.000 0.120 0.000 -0.072 0.107 0.000 0.000 0.996 0.011

Rx 5 0.000 0.000 0.120 0.000 -0.960 0.000 -5.120 0.000 -0.120 0.000 0.000 0.000 0.959 0.000

Rx 10 0.000 0.000 0.120 0.000 -0.960 0.000 -10.160 0.000 -0.120 0.000 0.000 0.000 0.959 0.000

Ry 5 0.000 0.000 0.000 0.000 -0.910 0.000 0.000 0.000 -5.030 0.000 0.000 0.000 0.907 0.000

Ry 10 0.000 0.000 0.000 0.000 -0.988 0.071 0.000 0.000 -10.040 0.000 0.000 0.000 0.983 0.071

Rz 5 0.000 0.000 0.120 0.000 -1.000 0.000 0.120 0.000 0.000 0.000 -5.090 0.000 1.006 0.000

Rz 10 0.000 0.000 0.120 0.000 -1.000 0.000 0.120 0.000 0.000 0.000 -10.090 0.000 1.005 0.000

Table 3.2: Mean Translation and Rotation Parameters for MPR. See
caption of 3.1 for description of row and column headings

Initial Tx(mm) Ty(mm) Tz(mm) Rx (degrees) Ry (degrees) Rz (degrees) dm (mm)

Rotation Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

Axial Orientation

0 -0.036 0.004 -0.018 0.013 1.999 0.009 -0.032 0.013 -0.004 0.013 -0.044 0.003 1.999 0.008

Rx 5 -0.026 0.015 0.380 0.001 3.333 0.006 -5.005 0.006 -0.016 0.018 0.000 0.000 3.355 0.006

Rx 10 -0.026 0.028 0.895 0.003 4.722 0.013 -10.037 0.017 0.001 0.063 0.017 0.019 4.804 0.013

Ry 5 0.266 0.006 -0.031 0.004 0.266 0.002 0.000 0.001 -5.057 0.004 0.000 0.000 0.382 0.003

Ry 10 0.353 0.014 -0.033 0.017 -1.481 0.011 0.024 0.025 -10.074 0.005 -0.012 0.004 1.524 0.011

Rz 5 -1.579 0.008 -1.532 0.004 1.990 0.002 -0.021 0.003 -0.010 0.004 -4.971 0.014 2.968 0.006

Rz 10 -3.309 0.019 -2.948 0.017 1.987 0.004 -0.006 0.008 -0.004 0.012 -9.972 0.005 4.858 0.018

Table 3.3: Mean Translation and Rotation Parameters for FLIRT. See
caption of 3.1 for description of row and column headings

Package Orientation No Rotation Rx 5 Rx 10 Ry 5 Ry 10 Rz 5 Rz 10
Overall
Mean S.D.

AIR Axial 2.327 2.000 5.825 2.034 2.030 2.320 2.319 2.693 1.389

AIR Coronal 0.670 0.937 5.232 1.071 1.663 0.690 0.688 1.564 1.655

MPR Axial 1.012 1.215 1.240 1.240 1.217 0.881 0.882 1.098 0.168

MPR Coronal 0.996 0.959 0.959 0.907 0.983 1.006 1.005 0.974 0.035

FLIRT Axial 1.999 3.355 4.804 0.382 1.524 2.968 4.858 2.841 1.668

Table 3.4: Summary of values of dm (mm) for AIR, MPR and FLIRT.
See caption of 3.1 for description of row and column headings
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3.5.2 Combination Method 1 - Image Combination by Reg-

istration and Interpolation

In performing image combination by registration and interpolation, the coronal, axial,

and sagittal images of a subject are registered and re-sliced to isotropic voxels of the

same size. Overlapping regions in all three views are averaged to give the combined

high resolution output with isotropic voxels. An outline of the experimental procedure

for the ventricle study images is as follows.

For each subject:

1. The coronal image is selected as the standard image. Its original resolution

is 0.78mm x 0.78mm x 6.0mm in coronal space. It is resliced into 0.78mm

x 0.78mm x 0.78mm isotropic voxels using spline interpolation to give a high

resolution standard image.

2. The axial image is taken as the current reslice image. It’s original resolution is

0.86mm x 0.86mm x 6.0mm. This is converted to the coronal orientation by a

90 anticlockwise rotation about the x - axis in axial space (see Figure 1). The

reslice image is therefore the axial image in coronal orientation with a resolution

of 0.86mm x 6.0mm x 0.86mm.

3. The re-slice image is registered with the standard image of step 1. This regis-

tered image is resliced into 0.78 x 0.78 x 0.78mm voxels using trilinear interpo-

lation.

4. The sagittal image is taken as the current reslice image. Its original resolution

is 0.86 x 0.86 x 6.0mm in sagittal space. This is converted to the coronal

orientation by a 90 rotation about the y axis in sagittal space. The current

reslice image is therefore the sagittal image in the coronal orientation with

resolution 6.0 x 0.86 x 0.86mm.

5. Step 3 is repeated using the current reslice image.

81



Chapter 3. Data and Image Preprocessing

We therefore have the axial and sagittal images in coronal space registered with

the coronal image and having the same voxel dimensions as the coronal image. A

combined image is formed from these three images by averaging overlapping regions.

Specifically:

• Overlapping regions in all three images are averaged.

• Overlapping regions in axial and coronal but not sagittal are averaged.

• Overlapping regions in sagittal and coronal but not axial are averaged.

• The coronal values are used to fill any voxels not already assigned a value.

The combined image therefore has isotropic voxels and occupies the same spatial

extent as the coronal image but contains information from the coronal, axial, and

sagittal views. This procedure was applied to the thickened versions of test images

(resolutions in this case are 1 x 1 x 6mm). The reconstructed images were compared

with the gold standards and the results given in section 3.5.4. The results of the

application to the images of the ventricle study are also given in this section.

3.5.3 Combination Method 2 - Image Combination by Solu-

tion of Linear Equations

The coronal, axial and sagittal views are different representations of the same original

image. A system of linear equations can be set up using the known values from these

views to solve for a combined image of a given resolution. In an attempt to present

the method clearly, a simple 2D case is used to illustrate the basic principle.

The following are assumed.

1. All three views are in spatial correspondence and have a common origin at the
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top left. This was achieved by registration of the axial and sagittal views to

the coronal view using MPR.

2. The value of each voxel/pixel is uniformly distributed within it

3. The coronal, axial, and sagittal image voxel values represent averages of the

gray levels over the spatial extent they occupy

The Simple 2D Case

In this case the combined image we want to form, W , is a m× n matrix with pixels

of unit resolution. We have a matrix R, which represents the sum (actually average)

over dr rows in our original m × n image and a matrix C, which is the sum over dc

columns in our original image - see Figure 3.3.

1 2 3 64 5

1

2

3

6

4

5

dr

dc
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rows
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1 2 3 64 5
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3

m/ dr
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n/dc

cols

1 2 3
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6

4

5

m

rows
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Figure 3.3: A schematic illustration of the 2D case for image combina-
tion by linear equations
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In the case where m = n, and dr = dc = d (see Figure 3.3), we can form the following

sums using the three assumptions made in the beginning of this subsection.

Rij =
d×i∑

k=d×(i−1)+1

Wkj

Cij =

d×j∑

k=d×(j−1)+1

Wik (3.2)

Where R, C, and W are elements in R, C, and W respectively. The first subscript

of each element is the row index, and the second the column index.

The equations in 3.2 can be written in matrix form as

Aw = b (3.3)

Where

A is a matrix whose elements refer to the indices of the elements in W

w is a vector representing the pixel values in the combined image (the values we seek

to find)

b is a vector formed by the concatenation of the known pixel values from R and C.

Equation 3.3 is underdetermined in that the number of unknowns is greater than the

number of equations (in the case when d = 2 the number of unknowns and equations

are the same, however, some of the equations will be linearly dependent). The solution

given by solving Equation 3.3 for w are constrained to sum to the respective values

of R and C. A further constraint is introduced to impose a degree of smoothness

on the image by minimising differences between the values of neighbouring elements.

This reduces discontinuities in the resulting image. Figure 3.4 in conjunction with

Equation 3.4 illustrates our reasoning.

To impose smoothness we want to minimise the differences between neighbours.

84

kob
Highlight

kob
Highlight



Chapter 3. Data and Image Preprocessing

x
n cols

m

rows

W11 W 12 W 13 W 14

W 21 W 22 W 23 W 24

W 311 W 32 W 33 W 34

W 41 W 42 W 43 W 44

y

Figure 3.4: The simple 2D case to illustrate the smoothness term

Hence for the x (column) direction the term to be minimised is

m∑
i=1

n−1∑
j=1

(Wi,j+1 −Wi,j) (3.4)

A similar equation holds for the y direction.

With the elements of W put in the form of a column vector w, the smoothing terms

can be represented in matrix form as |Axw|2, and |Ayw|2, where Ax and Ay are

matrices selecting the coefficients of wij in Equation 3.4. Recalling that Equation

3.3 is underdetermined, its least squares solution is found by minimising |Aw − b|2.
Hence to include the smoothness constraint we have to minimise

E = |Aw − b|2 + α|Axw|2 + β|Ayw|2 (3.5)

Where |Axw|2 represents the sum of absolute differences in neighbouring pixels on a

row, and |Ayw|2 gives the equivalent for a column. α is a factor that determines the

smoothness in the x direction β is a factor that determines the smoothness in the y

direction.

Differentiating 3.4 and setting the result to 0 (at a minimum) gives (see chapter 9
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[80] for details)

(AT A + αAT
x Ax + βAT

y Ay)w = AT b (3.6)

Generally we require α = β. If α = β = 0 then Equation 3.4 reduces to Equation 3.3.

The 3D case simply requires a term in the z direction to be included in Equation 3.4

and the addition of the known values in this direction (in a matrix we refer to as P )

to b. The 3D case is given by :

(AT A + αAT
x Ax + βAT

y Ay + γAT
z Az)w = AT b (3.7)

Implementation Considerations

Obtaining a combined image by solving the linear equations requires a considerable

amount of memory for storing the matrix elements, not to mention that required for

the necessary computations. For the case of the test images, we want a combined

image with 180×180×216 elements. This is generated from coronal axial and sagittal

images each with (180×180×216)/6 elements. The matrix A for the test images has

(6,998,400 × 3,499,200) elements requiring 178 terabytes of storage. However, it only

contains 20,995,200 non-zero elements and is therefore created as a sparse matrix

requiring 160MB of storage. Ax, Ay and Az are also generated as sparse matrices.

Applying Equation 3.4 to solve for the (180 x 180 x 216) test images did not finish

after 1 week using 500MHz Pentium class processor running Matlab 5.3.1. An imple-

mentation whereby the matrices A, Ax, Ay and Az were created for a 6× 6× 6 unit

was therefore used. The inverse of A and the transposes of Ax, Ay and Az had to be

calculated only once for the 6 × 6 × 6 unit. The whole image solution was obtained

by consecutively applying these to successive values of R, C and P . The solution in

this case took approximately 1 minute for each test image using equation 3.3 to give

a minimum norm solution, and about 21 minutes for each test image using equation

3.4 to obtain a least squares solution.
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3.5.4 Experiments on Image Combination

The two image combination methods and spline interpolation were applied to the

thickened images of the phantom described in section 3.5.1 to reconstruct images

of the same resolution as the original. This enabled a quantitative measure of the

fidelity of the reconstructed images to the original versions by each method. We

used the NCC measure (see Equation 2.2) for this. Qualitative comparisons of the

reconstructed and original test images are also presented.

The combination methods and spline interpolation were also applied to images of this

study to produce images with 0.78mm isotropic voxels. This resolution was chosen

because it represented the lowest in-plane resolution in the acquired images. However,

as there was no ground truth, only qualitative results are presented.

Results for Test Images

Table 3.5 gives the NCC values obtained for comparison of results of the two im-

age combination methods and the spline interpolated image with the original image.

Figure 3.5 shows a slice from the original image in coronal, axial, and sagittal orien-

tations, and the corresponding slice from each of the methods. Both the qualitative

and quantitative results show that combination method 2 using the linear equation

approach gives consistently better results for all orientations. Combination method 1

using registration and interpolation gives more consistent results for all orientations

than simply interpolating. This is shown in Figure 3.5. The coronal reconstruction

using spline interpolation is sharper than that of the corresponding reconstruction by

combination method 1. However, the sagittal and axial reconstructions of combina-

tion method 1 look better than those resulting from spline interpolation.

Results for Images for this Study

Figure 3.6 shows results of coronal, sagittal and axial views for the images acquired

for this study. As in the results for the test images, combination method 2 gives more

consistently sharper images. However, on close inspection of the results of combina-
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Original Image

1.0 x 1.0 x 1.0

Thicken Image

1.0 x 1.0 x 6.0

Spline Interpolated

1.0 x 1.0 x 1.0

Combined Method 1

1.0 x 1.0 x 1.0

Combined Method 2

1.0 x 1.0 x 1.0

Figure 3.5: Qualitative results of the application of reconstruction
methods to test images
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Reconstruction Method NCC Standard Deviation
Spline Interpolation 0.8839 0.0001
Combination Method 1 0.8856 0.0011
Combination Method 2 0.9773 0.0000

Table 3.5: Average values of NCC (n=5) for comparison of recon-
structed image with original

tion method 2 for the actual images of this study there were “blocky discontinuities”.

The spline interpolation gives a sharp image for the coronal orientation but fuzzy

images in the sagittal and axial orientations. The results for combination method 2

appeared slightly blurred in all the three orientations, but more so in the sagittal and

axial orientations.

3.5.5 Selection of Method of Choice for Image Combination

The quantitative results of the test images indicated that combination method 2

performed best of all followed by combination method 1, then the spline interpolation.

This order was also evident on qualitative inspection of both the test images and the

images acquired for this study.

However, the neuroradiologists assisting with the segmentation expressed a preference

for the images obtained by combination method 2. They felt those of combination

method 1, although sharper were not “natural” because of the blocky discontinuities

arising because of the computational constraints. Furthermore, they felt that the

quality of the images produced by combination method 1 were adequate for the

purposes of verifying the segmentation of the lateral ventricles.

The “blockiness” of combination method 1 was most probably due to the modified

approach to the solution of the linear equations. It may be possible to solve the linear

equation for a complete image, given significant computational resources, but that

route was not followed in this study.
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Combination

method 1

Spline

interpolation

Combination

method 2

Figure 3.6: Qualitative results of the application of reconstruction
methods to an image of one of the subjects of this study
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The surface of the images used in the construction of the PDM of the lateral ventricle

were segmented from combined images of the T2 axial, sagittal and coronal views of

each subject using combination method 2 to give an image of 0.78mm isotropic voxels.

Figure 3.7 shows the surface of one ventricle obtained from a coronal view of resolution

0.78mm× 0.78mm× 6mm compared with one obtained from the combined image of

the same subject.

3.6 Obtaining Brain Size Parameters

The need for normalisation for brain shape was discussed in section 2.5.4. For each

subject, brain size parameters were obtained as follows. Skull stripping was per-

formed on each MR image using the Brain Extraction Tool of the FMRIB group

at Oxford [104], and ellipsoids were fitted to the resulting brains. The lengths of

the three principal axes of the ellipsoids were stored as the brain size parameters.

The ventricular surfaces were aligned to a canonical coordinate system using their

centroids and the three principal axes obtained from the distribution of the coordi-

nates of their surface points. The brain size parameters were then used to scale each

ventricle independently in the three orthogonal directions for normalisation for brain

size with respect to the brain size of an arbitrarily chosen template brain. Figure 3.8

shows the surface of the brain of one subject and an ellipsoid fitted to it.

3.7 Summary

In this section we have given details of the data used. We have shown that the ap-

plication of non-uniformity correction allows better classification of voxels into the

three primary classes of brain tissue and therefore results in improved images. A semi-

automatic segmentation process was adopted which allows segmentation of individual

left and right ventricles. To improve spatial resolution, independently acquired coro-

91



Chapter 3. Data and Image Preprocessing

(a) Ventricular surface obtained from segmen-
tation of the coronal view of a subject. The
image resolution was 0.78mm×0.78mm×6mm

(b) Ventricular surface obtained after
performing image combination to give
a resolution of 0.78mm × 0.78mm ×
0.78mm using combination method 1

Figure 3.7: Rendering of a ventricular surface before and after image
combination
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Figure 3.8: A brain surface of one subject is shown with an ellipsoid fit-
ted to it. The length of the three main axis of the ellipsoid give the scaling
parameters to be applied in the coronal, sagittal and axial directions
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nal sagittal and axial views of each subject were combined to give isotropic voxels

with nominal sub-millimetre resolution. Brain size parameters were obtained by fit-

ting ellipsoids to the brains of each subject. These will be used in normalisation for

brain size during shape analysis.
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Chapter 4

3D Point Distribution Models -

Theory and Practice

4.1 Overview

This chapter centres on the construction of the 3D PDM used for morphometric anal-

ysis of the lateral ventricles. We base our approach to construction of the PDM on

the framework suggested by Subsol et. al. [108] in which correspondence is estab-

lished using curvature-based landmarks automatically extracted from the surface of

segmented ventricles.

We begin by giving a more in-depth introduction to PDMs (compared to that in

chapter 2) in section 4.2 then we review approaches that have been taken to the

construction of 3D PDMs in section 4.3. Section 4.4 discusses how to compare PDMs

in a quantitative manner, and in this section we introduce a distance transform

approach which we believe is more appropriate than current methods.

Section 4.5 gives an overview of our approach to the construction of the 3D PDM of

the lateral ventricles. This involves creating point-to-point matches of the curvature-
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based landmarks and selection of one ventricle to initiate the model building process.

In section 4.6 we describe surface curvature and how curvature-based landmarks

on the ventricular surface are obtained. Point-to-point matching is the subject of

section 4.7. In this section we describe how point matching can be formulated as a

transportation problem. Section 4.8 investigates the dependence of our approach on

the ventricle chosen to initiate the model building process. The chapter ends with a

summary of the main points discussed.

4.2 Point Distribution Models - The Theory

PDMs were briefly mentioned in section 2.5.3. Here a more in-depth description is

given as well as the framework by which they are created. The description in this

section is based on the seminal work of Cootes et al. [33].

The aim of a PDM is to provide a compact model of the variability within corre-

sponding points of aligned versions of the training set. For the present purposes,

each example of the training set is a point in a 3n-dimensional space, where n is the

number of landmark points, with each landmark point having x, y, and z cartesian co-

ordinates. A set of N example shapes gives a cloud of N points in this 3n-dimensional

space. The region of space defined by the cloud is called the Allowable Shape Domain

i.e. any point in this region will give a set of landmarks whose shape is similar to

that of the class of shapes in the training set.

The approach of [33] was to attempt to model the shape of this cloud in a reduced

dimensional space (number of dimensions less than 3n) in order to capture the re-

lationships between the positions of the individual landmark points. It is assumed

that the shape of the cloud is that of a 3n-dimensional hyperellipsoid and that it

can be defined by calculating its centre and its major axes. The centre is taken as

the mean shape of the training set and orthogonal basis vectors (the major axes) are

calculated using Principal Component Analysis (PCA). This allows a reduction in
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dimensionality by describing the shape in terms of a set of basis vectors, which are

the axes of the ellipsoid representing most of the variability. Any point (shape) in

the reduced dimensional space can be reached by using the mean shape (origin) and

a linear combination of the basis vectors, and a PDM encapsulates this.

4.2.1 Mathematical Definition of 3D PDMs

Given a training set composed of N members, with each member having n landmark

points in 3D cartesian space, a shape vector is formed for each member of the training

set by concatenation of the x, y and z coordinates of its landmark points. For the ith

member of the training set this is :

xi = [xi0, xi1, . . . , xin−1, yi0, yi1, . . . , yin−1, zi0, zi1, . . . , zin−1]
T (4.1)

To attain invariance to Euclidean transformations, differences due to orientation,

scaling and position are removed by an alignment step described in section 4.2.2.

The shape vectors referred to in the rest of this section are the Euclidean invariant

aligned shape vectors. From the aligned shape vectors of all members of the training

set, a mean shape vector can be obtained :

x =
1

N

N∑
i=1

xi (4.2)

and principal component analysis can be carried out by obtaining the eigenvalues and

the eigenvectors of the covariance matrix of the aligned shape vectors:

S =
1

N

N∑
i=1

(xi − x)(xi − x)T (4.3)
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Eigen-decomposition of the sample covariance matrix S, gives:

Spk = λkpk (4.4)

where λk is the eigenvalue corresponding to the kth eigenvector pk, with k ranging

from 1 to 3n. If the number of examples is much less than the number of landmark

points (N << 3n), which is generally the case for 3D PDMs, the maximum number

of degrees of freedom of the model is N - 1 which is also the maximum number of

non-zero eigenvalues the 3n by 3n covariance matrix may have. Therefore, it is not

necessary to calculate all the 3n eigenvectors, and [33] gives an appendix showing an

efficient method for the derivation of the eigenvectors of the non-zero eigenvalues in

this case (where k ranges from 1 to N − 1).

The dimensionality of the shape space is reduced to t dimensions from k dimensions

by selecting t so that the 3n-dimensional hyperellipsoid is approximated by a t-

dimensional hyperellipsoid. t is a positive integer less than k and represents a cutoff

so that eigenvalues for λk (k > t) are ignored. t is chosen so that a large proportion

of the total variance, λT =
∑3n

k=1 λk, is encompassed by
∑t

k=1 λk where λk ≥ λk+1

(i.e. the eigenvalues are arranged in descending order).

t∑

k=1

λk ≥ fvλT (4.5)

where fv specifies the fraction of the total variation retained.

Each eigenvector describes a mode of variation of the PDM. Eigenvectors correspond-

ing to the largest values of λk describe the longest axes of the ellipsoidal approximation

to the shape space, and give the most significant modes of variation. Any shape in

the training set and indeed any allowable shape in the class can be reached by taking

the mean shape and a linear combination of the eigenvectors :

x = x + Pb (4.6)
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The above equation is essentially the mathematical definition of a PDM. P is a matrix

whose columns are the first t (in descending order) eigenvectors of the covariance

matrix i.e. P = [p1 p2 p3 · · · pt], and b is a vector of weights.

The values of the elements of b can be constrained in two ways. Firstly, the variance of

the eigenvalue corresponding to a given element in b can be used. Assuming a normal

distribution, a given percentage of the population will be expected to lie within a

range of standard deviation units - e.g. 95% within 2 sd’s giving−2
√

λk ≤ bk ≤ 2
√

λk.

This constrains shape vectors to be within a hypercuboid in shape space, centred on

the mean vector.

Secondly, the Mahalanobis distance (D2
m) can be used. The Mahalanobis distance is

a distance metric in which the Euclidean distance is weighted by the inverse of the

sample covariance matrix.

D2
m = (x− x)T S−1(x− x) (4.7)

where x is the mean shape vector, S is the sample covariance matrix, and x is the

shape vector of the shape instance under consideration. A given value of D2
m specifies

a hyperellipsoid centred about the mean shape, thus confining instances generated

by the PDM to a specified region of shape space. The elements of b are chosen so

that the Mahanalobis distance from the mean is less than a pre-selected value D2
max.

D2
m =

t∑

k=1

( b2
k

λk

)
≤ D2

max (4.8)

D2
max is determined from the distribution of the Mahalanobis distances of members

of the training set.

In the above, there has been an implicit assumption that the position of each shape in-

stance about the mean can be obtained by a linear combination of the eigenvectors of

the covariance matrix. In certain cases the correlations between landmark points may

not be linear and the hypercuboid/hyperellipsoid constraints do not always result in
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meaningful (“legal”) shapes. However, as long as the position of individual points do

not vary very much, the linear assumption is acceptable. Non-linear PDMs [126] are

being researched in attempts to address cases where linear PDMs are inappropriate.

4.2.2 Steps to Create a Point Distribution Model

Given a training set, the first step in the creation of a PDM is labelling each mem-

ber of the training set with the same number of homologous landmarks to establish

correspondence. It is important that the points on each example in the training

set are labelled as accurately as possible so that variation in position of homologous

landmarks between examples is not due to erroneous labelling. Davies et al. [39]

have shown that certain properties of SSMs depend critically on finding accurately

corresponding landmark points. The labelling issue and correspondence were intro-

duced in section 2.5.2. Section 4.3 below reviews various methods that have been

used to establish correspondence in the construction of 3D PDMs and sections 4.6 to

4.8 detail the approach taken here to automatically establish correspondence.

Once labelling is completed, the resulting shape vectors formed by the concatena-

tion of the coordinates of the labelled points (as specified by equation 4.1) have to

be aligned to remove differences due to location, scale and orientation. To remove

differences due to location, an object-centred coordinate system is obtained using the

centroid of each shape to translate the coordinates of its landmark points accordingly.

e.g. for the x coordinate of each landmark point of the first member of the training

set, the object-centred coordinate of the ith landmark point, x′0i is :

x′0i = x0i − 1

n

n−1∑
i=1

x0i (4.9)

and the object-centred y and z coordinates are obtained similarly.

To remove scale and orientation differences, Generalised Procrustes Analysis [58] is

carried out within the iterative framework suggested in [31]. Generalised Procrustes
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Analysis is a widely used method in shape analysis for the least squares alignment of

two or more shapes represented as matrices of coordinates of corresponding landmark

points. It optimally matches each landmark configuration in the sample to an average

configuration determined from all the shapes in the sample. This is achieved by find-

ing translation, rotation and isotropic scaling factors for each shape that minimises a

criterion based on the sum of squared differences of corresponding points across the

whole training set.

The iterative framework of [31] includes weighting factors for each landmark point

based on the variance of the position of the landmark over the training set, and

penalising those with greatly varying positions. The intention of this is to give greater

significance to points that tend to be more “stable”. Weighting is applied using a

vector of weights, w, of length n. Each element of w is the weight applied to the

corresponding landmark. The weight for the kth landmark point, wk is given by

wk =

( n−1∑

l=0

Vkl

)−1

(4.10)

where Vkl is the variance of the Euclidean distance between landmark k and landmark

l over all shapes in the training set. The iterative procedure applied during the

construction of the 3D PDMs of the ventricles is outlined in figure 4.1. The rigid

registrations referred to in the outline have 7 degrees of freedom - translation in the

three orthogonal directions, rotation about the three axes, and isotropic scaling. The

aligned shape vectors obtained are used to calculate the PDM parameters described

in section 4.2.1

4.3 A Review of Approaches to Construct 3D PDMs

A key step in building a PDM is establishing correspondence between points on train-

ing images. In section 2.5.2 we mentioned that establishing correspondence in 3D was

not straightforward. The manual approach to landmarking usually used in 2D is not
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Given a training set of labelled shapes:

1. Transform the coordinates of the landmark points of each shape to obtain
object-centred coordinates using equation 4.9.

2. Calculate weight vector using equation 4.10.

3. Align each shape to the first shape in the training set by finding the rigid body
transformation that minimises the sum of the weighted Euclidean distance
between the corresponding landmark points of the first shape and the current
shape.

4. Repeat the following :

(a) Calculate a current mean using equation 4.2.

(b) Align the current mean shape to the first shape in the training set (as in
3 above).

(c) Align all shapes in the training set to the current mean (as in 3 above).

5. Until there is convergence of Euclidean distance between corresponding points.

Figure 4.1: Outline of algorithm for alignment of shapes in a training
set

practical for the 3D case because of the large number of points needed to truly repre-

sent shape and the practical difficulty of viewing and comparing surfaces. A number

of approaches have been developed to address the issue of landmark generation in 3D

and the related issue of automation of landmark generation in general. This section

reviews methods that have been applied to solve the correspondence problem in the

building of 3D PDMs. A common feature of all the methods reviewed (except those

of Hill et. al. [63] and Andresen et. al. [3]) is that the 3D PDM is constructed

from a representation of the surfaces of the members of the training set in which

correspondence has been established. That is to say the landmarks are not placed

on the actual surfaces of the members of the training set but on an approximated

surface derived from the point locations. We refer to the training set used for the

construction of the 3D PDM as the corresponding training set. We will address issues

arising from this approximation in section 4.8.

The first practical extension of PDMs from 2D to 3D was by Hill et. al. [63]. They
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used 2D contour data from contiguous slices of a 3D volume as the basis for generation

of their 3D PDM of the lateral ventricles (minus the temporal horns, modelled as

three sub-parts), the caudate nucleus, a section of the brain stem and a section of the

subcutaneous fat under the skin of the head. They assumed that the structures being

modelled had simple topology which did not vary from slice to slice. Contour data

were landmarked interactively with the same number of landmarks on contours in each

slice. Within each slice the landmarks followed an ordered sequence which was used

to impose correspondence between slices, and curves were drawn through the locus of

points of corresponding landmarks on each slice. These curves in 3D space were then

subdivided and discretely sampled to give the points used to construct the 3D PDM.

The major drawbacks of this method are that it is limited to cylindrically shaped

structures, it involves extensive manual interaction in placing landmarks on each slice,

and the correspondences obtained are not based on anatomical features. Furthermore,

the requirement that the same number of landmarks is placed on contours in each slice

is impractical, as the size of contours usually taper towards the ends of structures.

Hill et. al. [64] introduced a novel framework for automatic landmark identifica-

tion to establish correspondence over training sets of the shapes represented by their

boundaries in 2D. The main contribution of their work was the description of a pair-

wise corresponder to allow the construction of a mean shape from the members of

the training set in a hierarchical manner. Brett and Taylor [22] extended this work

to describe a method of automated 3D PDM construction. Triangulated polyhedral

surface representations of each member of the training set were generated from 2D

contours. The pair-wise corresponder was used to construct a binary tree with a

mean shape at the root and the members of the training set at the leaf nodes. At the

leaf node level of the tree, the pair-wise corresponder generated sparse triangulated

approximations of pairs of members of the training set and established correspon-

dences between their sparse approximations. A dense triangulation using the pair

of corresponding points was then obtained by recursively inserting vertices between

the vertices of the sparse triangulation. This was repeated at each level until the
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root level was reached. The dense triangulation at the root level is the mean shape,

and the vertices of this are the landmark points of the mean shape. These landmark

points are propagated down the tree to the members of the training set on the leaf

nodes generating the labelled training set. A drawback of this method is that the

selection of landmark points is dependent on the triangulation of the surface, and

only loosely coupled to the shape of the class of objects. Furthermore, the use of the

pair-wise corresponder requires the evaluation of all possible pairings in the training

set, which may become prohibitive as the size of the training set increases.

Gerig et. al. [54] created a 3D PDM of the lateral ventricles using the SPHARM

parameterisation of Brechbühler [21]. The ventricular surface of each member of the

training set was mapped onto a unit sphere from which spherical harmonic functions

were obtained. Correspondence was imposed by aligning the ventricles using the ma-

jor axes of the ellipsoids given by the first term of their harmonic functions. The

continuous parameterisations of the surface are then finely sampled to give point rep-

resentations of each member of the training set. However, the physical relationships

of the corresponding points obtained by this method are unclear. Davies [38] has

shown that the properties of PDMs created in this manner are inferior (according

to criteria for quantitative assessment of PDMs described in section 4.4) to those

of PDMs created by optimisation of a minimum description length cost function.

Gerig et. al. have subsequently modified their method to incorporate a medial axis

transform. This was described in section 2.5.2.

Davies [38] describes a method for automatically placing landmarks on 2D and 3D

PDMs by optimisation of a minimum description length (MDL) objective function.

The members of the training set are segmented contours of the structure of interest,

and have to be parameterised and mapped to a unit sphere. Landmark points are

placed on the parameterised representations in a multi-resolution manner by minimi-

sation of a MDL based objective function. The final landmarks are then inversely

mapped back unto the spatial domain of the members of the training set. This

method has advantages in that it is relatively general as it can potentially be applied
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to any class of shapes as long as they can be mapped to a sphere. Additionally, it

considers all the members of the training set simultaneously unlike other methods e.g.

[22], [79] that match the members of the training set in a pair-wise manner. However,

the parameterisation of 3D shapes is not trivial and the effectiveness of the model is

determined by how well the parameterisation method works. This, combined with

the fact that the complexity of the shape of some structures in the body do not allow

straightforward mapping of their surfaces unto a sphere, currently limit the use of

this method in 3D.

Lorenz and Kranhnstöver [79] use a template based method in their construction

of 3D PDMs. They create a landmarked template of the class of objects to be

modelled, and use this to coat a surface representation of each member of the training

set. The template was acquired by Delaunay triangulation [13] of the binary voxel

representation of a randomly selected member of the training set to give vertex points

and triangle faces. The vertex points were taken as the landmark points of the

template. The template is registered to each member of the training set using a

small number of manually defined landmarks which have to be placed interactively

on the surface of each member of the training set. The method was applied to the

construction of a 3D PDM of lumbar vertebrae. This method is not fully automatic

as it involves user interaction in placing landmarks. Accurate placement of landmarks

on 3D surfaces is difficult to achieve and the choice of template may influence the

properties of the resulting model.

Shen et al. [100] define point correspondences using an “Adaptative Focus Deformable

Model (AFDM)”. This uses both a triangulated representation of the surface of the

structure to be modelled generated from segmented contours, as well as image data

from the actual 3D volumetric MR images. Attribute vectors are created for each

vertex of the triangulation of each member of the training set. The attribute vectors

reflect the geometric structure of the model in a hierarchical manner from local to

global level. Correspondences are based on moving the vertices of the triangulations

to minimise an energy term created from both the triangulations (using the attribute
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vectors of the vertices) and the image data (designed to move the vertices towards

boundary structures). This method of establishing correspondence attempts to use

both segmented data and actual image data - the distinction being that binary seg-

mented data only provides geometric information, whereas image data allows gray

level values of a neighbourhood about two points to be compared. Disadvantages of

this method include the requirement of manual intervention in some cases to “pull”

the triangulated surface towards image boundaries, and the fact that the initial cor-

respondences are defined by the triangulation of segmented data.

Frangi et al. [53] use a distance transform method to obtain a template of a training

set of segmented binary voxel images. Landmark propagation from the template to

each member of the training set is achieved by “volumetric elastic registration”. One

member of the training set is randomly selected as the initial template. Each member

of the training set is then registered with the template using a nine degree of freedom

quasi-affine registration to minimise a similarity metric based on normalised mutual

information. Euclidean distance transforms of each registered image are obtained

using a convention of negative values within the subject of interest and positive values

outside it. An average image is computed by obtaining the mean of the distance

transformed images. This is converted to a binary representation by thresholding at

the zero-level set. This average image is taken as the new template. A triangulated

surface is obtained by applying the marching cubes algorithm [78] to its binary image

and the vertices of the triangles are used as the landmark points of the template. To

propagate the landmarks of the template onto each member of the training set, the

binary image of the fiducial member of the training set is warped onto the average

image using a volumetric elastic registration process. The inverse transformation is

applied to the landmarks of the template to map them onto the surface of the fiducial

image. This gives a set of corresponding points from which a 3D PDM can be built.

The method was demonstrated by building 3D PDMs of the head of the radius (a

bone of the arm) and the caudate nucleus of the brain.

Lamecker et al. [75] describe a “patchification” method to tackling the correspon-
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dence problem. They use manually placed landmarks to divide the surface of each

member of the training set into the same number of surface patches. Each patch

represents similar regions, and is topologically equivalent to a disk. Each patch is

mapped onto a disk, and correspondence between equivalent patches of a pair from

the training set are obtained by solving a sparse linear system of equations to obtain

the mapping that minimises local scaling and shearing. They applied this method to

the construction of a 3D shape model of the liver. The shape model was intended

to be applied to segmentation of the liver from abdominal MR images. An obvious

disadvantage of this method is the need for manual intervention to specify the land-

marks defining the surface patches. Furthermore, the fact that the surface is divided

in this manner may result in non-optimal correspondences, as the correspondences

obtained are directly dependent on the surface subdivision. The authors cite an ad-

vantage of the method as the fact that it is applicable to shapes of any topology, and

state that the intention is to apply automatic techniques to the surface sub-division

stage. However, the application of automatic techniques will result in restriction to

surfaces on which salient landmarks can be reliably detected automatically.

Subsol et al. [108] describe a framework for automatically constructing 3D morpho-

metric atlases which they proposed could be used as a basis for the construction of 3D

PDMs. Their method was based on the identification of curvature extremum points

on the surfaces of the members of the training set. A sparse correspondence between

each member of the training set and a template is obtained in a pair-wise manner,

and this is used to define a dense correspondence for warping a predefined set of

landmark points from the surface of the template onto the surface of each member

of the training set. Andersen et. al. [3] have used this framework as the basis of

their method of construction of a 3D PDM of the human mandible. This framework

was also used as the basis of the construction of the 3D PDM of the lateral ventricles

used for the shape analysis presented in this thesis. Section 4.6.3 reviews the work

of Andresen et. al. and sections 4.6 and 4.7 give further details of the framework

suggested by Subsol et. al.
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4.4 Quantitative Assessment of 3D PDMs

A number of methods by which 3D PDMs have been created were reviewed in the

previous section. However, there is a dearth of studies in which different methods

of 3D PDM construction are quantitatively compared. Furthermore most of these

methods use an approximation to the surfaces in the original training set (the cor-

responding training set) as opposed to the actual surfaces of the members of the

training set in constructing PDMs. We encountered no studies in which the fidelity

of the surfaces of the corresponding training set to those of the original training set

were investigated quantitatively. Lastly, most of the methods reviewed involved the

selection of one member of the training set to initiate the model building process.

Again there has been a dearth of quantitative investigation of the effect the initial

choice has on the final PDM.

In this section three measures used for quantitatively assessing 2D PDMs - Gener-

alisation Ability, Specificity, and Compactness are described. To our knowledge the

only quantitative comparison of two methods of 3D PDM construction was under-

taken by Davies [38]. This compared a PDM of the hippocampus produced by the

MDL approach with one obtained from the same training set using the SPHARM

approach of Gerig et. al. [54] and showed that the MDL approach produced PDMs

with better properties.

The comparisons were with respect to the corresponding training set (approxima-

tions to the surfaces of the actual training set in which correspondence has been

established). However, we argue that they should be with respect to the actual train-

ing set. We propose the use of 3D distance transforms in a novel manner to give a

metric showing the similarity of a triangulated surface with the surface of a binary

volumetric image. This metric can be used to allow comparisons of PDMs based on

the surfaces of the original training set (if they are available as binary volumetric

images). It also allows the corresponding training set to be compared with the orig-

inal training set, and investigation of the dependence of the resulting PDM on the
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member of the training set selected to initiate the PDM building process.

4.4.1 Generalisation Ability

A PDM models a class of shapes using a sample of the class assumed to be repre-

sentative of the class. Cootes [31] describes the generalisation ability of the resulting

PDM as a measure of the ability of the model to exhibit all the variation expected

in the class of shapes being modelled.

To obtain a quantitative measure of the generalisation ability, Cootes proposed a

set of leave-one-out experiments. For a training set composed of N members, one

member is left out in the construction of the model. The model is then fitted to the

left out example, and the error of the fit is used as a quantitative measure of the

generalisation ability. The leave-one-out procedure is repeated for each member of

the training set. To further characterise the properties of the PDM, the model fitting

stage can be performed as a function of the number of modes of variation in the model.

To do this, during the model fitting stage, the number of modes used is increased

from the first (most significant mode of variation) mode to the last (least significant

mode of variation) mode in a cumulative manner. For two PDMs constructed in

different ways, this allows a mean error-of-fit and the associated error of the mean

to be calculated as a function of the number of modes used in the fitting. This gives

a measure of generalisation that is independent of compactness (see section 4.4.3).

The PDM with the lower error-of-fit is said to have better generalisation ability.

The traditional method used in obtaining the error of the fit is the sum of squared

differences between corresponding points of the model fit and the member of the

training set that the fit was applied to. For 2D PDMs where the corresponding

training set is an exact representation of the actual shape, but on which corresponding

points have been placed, this can be considered an adequate way to obtain the error-

of-fit. However, for 3D PDMs where the corresponding training set is usually an

approximation of the actual surfaces, AND this can be different for two different
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methods, it makes more sense to obtain the error-of-fit from the actual surfaces of

the training images, which is the same for both methods. Doing this ensures that

the error-of-fit is not dependent on the fidelity to which the corresponding training

set represents the original surfaces. However, it also presents the problem of how to

obtain the measure as there are no correspondences between the generated instance

and the actual surface. In measuring generalisation ability we evaluate both metrics:

the point-to-point distance between a generated instance and the annotated points

on the training surface and the distance transform between the generated instance

and the original surface.

In performing the leave-one-out experiments, one alignment step including all the

members of the training set is performed. When building a model with an example

left out, re-alignment is not performed. This is because the alignment step for all 138

ventricles takes a considerable amount of time, and we can expect that the omission

of one example would not result in significant changes to the overall alignment. For

the ith left out example, xi, the weight vector bi is given by rearranging equation 4.6:

bi = P T (xi − x) (4.11)

The model fit to xi is obtained by using bi in equation 4.6.

4.4.2 Specificity

The specificity of a PDM is a measure of its ability to generate “valid” shapes. As

mentioned in section 4.2, the PDM is a linear approximation of the allowable shape

domain. The parameters of the PDM are learnt from the training set, and the

elements of the b-vector are weights which restrict the generation of new shapes to

those in the allowable shape domain. If the allowable shape domain is not modelled

accurately, some of the shapes generated by the PDM may be “illegal” for the class

of shapes being modelled and the resulting PDM is not very specific.

110



Chapter 4. 3D Point Distribution Models - Theory and Practice

The specificity of a model can be qualitatively assessed by viewing randomly gener-

ated shapes and forming a subjective opinion of their validity. However, for objective

assessments, quantitative measures are needed. These can be obtained in two ways.

One is to generate a number of random examples and obtain a measure of their sim-

ilarity to the shapes in the training set. The other is to assume the shapes in the

training set are samples from a probability density function. Then, given any shape,

we can calculate the probability that it is a plausible example of the class of shapes

described by the training set.

Examples of practical application of the second method were not encountered in the

literature reviewed. This may be because it is not easy to estimate the probability

distribution function of the class of shapes. Davies [38] used the first method and

defined the measure of similarity between two shapes as the sum of squared differences

between corresponding points on the two shapes. However, as explained in section

4.4.1, this may not be adequate in the present case. Therefore, in addition to using

the sum of squared differences, we have used the distance transform metric to obtain

a measure of the similarity of the generated random shape to the actual surfaces of

the training images.

The generation of random shapes is carried out by randomly generating values for

the elements of the b vector, using a multivariate gaussian distribution. For each b

vector, the shape generation is carried out as a function of the number of modes in a

cumulative manner as in section 4.4.1.

4.4.3 Compactness

The amount of variation encompassed by a PDM is captured in the eigenvalues of

the eigenvectors of the covariance matrix S of equation 4.3. The compactness of a

PDM is a relative measure based on the amount of variation captured by the model.

For two PDMs of the same training set, a more compact model represents the same

amount of variation with a smaller number of modes of variation than a less compact
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one. The compactness is measured in a cumulative manner by summing the values

of the eigenvalues of each mode of variation and normalising by the overall sum of

all eigenvalues, i.e. for the ith mode of variation the compactness C(i) is given by

C(i) =

∑i
j=1 λj

λT

(4.12)

Where λT is the total variance (sum of all eigenvalues)

4.4.4 A Distance Transform Metric for Comparing Two Sur-

faces

In this section we describe the use of a 3D distance transform to facilitate the com-

parison of a triangulated surface with those of a surface represented by a binary voxel

image. We assume that the surfaces being compared are surfaces of objects of the

same class and therefore have similar shape and topology.

Borgefors [20] defines a distance transform as “an operation that converts a binary

picture, consisting of feature and non-feature elements, to a picture where each el-

ement has a value that approximates the distance to the nearest feature element”.

In the present case, the “binary picture” is the 3D array of voxels of the segmented

ventricles, with the feature elements being the voxels that are on the surface of the

ventricles. A D-Euclidean metric [20] is used to compute values for the transform.

This assigns positive values to each voxel in proportion to an approximation of its

lowest Euclidean distance from the surface voxels (the values of the distance trans-

form of the surface voxels are zero). Figure 4.2 shows two slices through the binary

voxel image of one ventricle, and the resulting distance transforms of the contours.

For our purposes, one surface is a triangulated surface made of vertices and faces,

whilst the other is a 3D binary array of voxels. The triangulated surface is embedded

in the distance transform of the binary voxel image. For each vertex of the triangu-
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lated surface, the value of the distance transform of the voxel in which it is embedded

is obtained. The mean of these values is used as an objective function for a rigid regis-

tration. The fminsearch function of Matlab is used to obtain the 6 degree-of-freedom

rigid registration giving the minimum value of the objective function. This minimum

value is taken as the final index of the similarity of the triangulated surface and the

voxel image. The rigid registrations are needed because the vertices of the triangu-

lated surface are in an object-centred coordinate system relative to the centroid of the

vertices. The coordinates of the binary voxel image on the other hand are relative to

the bottom left of the voxel array and are dependent on the position of the patient’s

head during the MR scan.

4.5 Our Approach to the Construction of a 3D

PDM of the Lateral Ventricles

In this section we describe our approach to construction of the 3D PDM of the lat-

eral ventricles, and introduce some terminology that will be used frequently in the

subsequent text. Correspondence amongst members of the training set is established

in a pair-wise manner. One ventricle (vt) was used as a template and its surface

represented as vertices and vertex faces defined by triangular triplets of the vertices.

The initial triangulation of the binary voxel image of vt produced about 10,000 ver-

tices, but for computational reasons these were decimated by an order of magnitude

to give 1,291 vertices. We use the term fiducial to refer to a particular member of

the training set on which an operation is being performed.

Curvature based landmarks (crest lines and crest points described in section 4.6)

were obtained for each ventricle. The crest lines of the template were matched to

those of the remaining 137 ventricles vi ∈ {v1, . . . ,v137} in a pair-wise manner. The

matching was performed in both directions i.e vt → vi and vi → vt. The method of

point-to-point matching is the subject of section 4.7.
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(a) Binary contour of ventricle (b) Distance transform

(c) Binary contour of ventricle (d) Distance transform

Figure 4.2: Binary contours of two slices of the ventricle (a) and (c)
and their respective distance transforms
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The symmetric subset of matched points gives a sparse correspondence which is used

to obtain coefficients defining a final spline based warp allowing transformation of

the vertex points of vt onto the surface of each vi, giving the corresponding training

set. The ventricles vi, to which the template is deformed, is referred to as the target.

The landmark positions on the corresponding training set were re-projected onto

triangulated surfaces of the binary voxel image of each member of the training set,

and smoothed as described in section 4.8.

The brain size parameters that had been obtained as described in section 3.6 were

used to normalise the brain of each member of the training set with respect to that

of the template in order to reduce effects due to different brain shapes and sizes. The

PDM was built in the usual manner (section 4.5) using the resulting landmark points.

The schematic diagram of figure 4.3 summarises the key stages in the construction of

the PDM. The curvature-based landmarks on the surface of the ventricles are the sub-

ject of section 4.6. Section 4.7 discusses establishing a sparse correspondence across

the training set using these curvature-based landmarks. Section 4.8 investigates the

consequence of the need to select one ventricle as a template in our pair-wise approach

on the resulting PDM. The key question being asked is whether the resulting PDM

is dependent on the ventricle chosen as a template.

4.6 Curvature-Based Landmarks on the Ventricu-

lar Surface

Curvature is an important geometrical property of surfaces, and as boundaries of seg-

mented structures in 3D images are surfaces it is not surprising that surface curvature

is of importance here.

Section 4.6.1 gives a brief overview of surface curvature. Detailed mathematical de-

scriptions are available in differential geometry texts e.g. [43], and [65] (this gives
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Binary voxel images of
segmented ventricles

Extraction of
curvature-based

landmarks

Crest points matched using
transportation and closest point

methods

Surfaces with the same number of vertices
at corresponding points are created by

deforming the template to each ventricle
using spline-based warps defined by

point-to-point correspondences

Landmark points from each member
of the corresponding  training set projected

onto the actual surface of each ventricle

Normalisation for brain
size/shape

Point distribution model
created from resulting

landmarks

1 TRAINING SET

2  CREST POINTS & CREST LINES

3  POINT-TO-POINT CORRESPONDENCES

4  CORRESPONDING TRAINING SET

6  NORMALISATION

7  PDM

5  RE-PROJECTION

Figure 4.3: Schematic diagram of the process of creating the 3D PDM
of the ventricles. Quantitative analysis are carried out at steps 3 and 5.
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a less mathematical but more practical treatment). Definitions of some curvature

related terms are given including that of the normal curvature of a surface. The exis-

tence of maximal and minimal curvatures are stated and characterisation of surfaces

based on these are illustrated. Finally, curvature extrema are discussed, and crest

points and crest lines, which are used as curvature-based landmarks on the surface

of the lateral ventricles, are defined.

Section 4.6.2 discusses different ways to obtain crest points and crest lines. The

Marching Lines algorithm that was used as the method of choice in this thesis is

described here. The use of crest points and crest lines as curvature-based landmarks

is discussed in section 4.6.3. Examples of previous applications of crest points and

crest lines as curvature based landmarks are reviewed, and their appropriateness in

the case of the lateral ventricles is illustrated.

4.6.1 Curvature of 3D Surfaces

Basic Framework and Definitions

Consider a regular surface patch, S, above a plane in 2D, U , as shown in figure

4.4. Let U be a subset of two-dimensional real space R2 parameterised by u and v

(0 ≤ u, v ≤ 1). Let m be a mapping which takes points in U onto the 3D manifold

S, i.e. m(u, v) : U 7→ S; S ⊂ R3.

For a curve defined in U as s′(t) = (u(t), v(t)) there exists its mapping on S given by

s(t) = m(u(t), v(t)) (4.13)

The partial derivative ∂s
∂u

gives a tangent vector to the curves on the surface for which

v = constant, and is denoted su. A tangent vector sv can also be defined in a similar

manner. su and sv are sometimes called the basic vectors of the surface.
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u

v

u=u3

u=u2

u=u1

v=v1

v=v2

v=v3

su sv

Figure 4.4: A regular surface patch S over a 2D plane (u,v). The
coordinate lines show the curves on the surface for which u and v are
constant. These define a net of curves on the surface. The basic vectors
are also depicted on the surface.

Tangents to Curves and Surfaces

The tangent to s(t) at any point is obtained from its derivative :

ṡ(t) = u̇su + v̇sv (4.14)

Where u̇ = du
dt

and v̇ = dv
dt

.

Now ṡ(t) is a tangent vector to s(t) and hence a tangent vector to S. Therefore, for

any point p on s the tangent to s at p is also a tangent to S. Conversely, for any

tangent tp
θ to any point p on S, there exists a curve through p such that the tangent

to the curve at p is parallel to tp
θ.

There are an infinite number of directions in which a curve along the surface can

pass through p. Each direction, θ, has an associated tangent vector, tp
θ, and all the

possible tangent vectors lie in a plane called the tangent plane (see figure 4.5). There

is however only one normal vector at p, and this can be specified by its direction (the
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unit normal, n) :

n =
su × sv

|su × sv| (4.15)

Curvature of a 3D Curve

For curves, curvature is a scalar denoting the “bendiness” of the curve at a point (i.e.

the inverse of the radius of curvature of the circle that best fits the curve around the

point). It is proportional to the rate of change of the tangent along the curve. For

any curve s(t) on S, its curvature at any point p is given by the standard formula:

κ =
|̈s|
ν

(4.16)

where s̈ is the derivative of ṡ
|ṡ| , the unit tangent to the curve at that point, and ν is

the rate of change of arc length of the curve (the speed of the curve).

Surface Curvature

The curvature of a surface is a more complicated matter, with several different cur-

vatures being defined. The notion of curvature of a space curve is used to define the

normal curvature of a surface at a point p. Given a tangent at p in the direction θ,

tp
θ, the normal curvature is the curvature at p of the curve formed by the intersection

of the plane Π containing both the unit normal at p and tp
θ with the surface S. The

curve formed by the intersection of the normal plane Π with the surface is called the

normal section of the surface at p in the direction θ (see figure 4.5). The value of

the normal curvature is given by:

κ(tp
θ) =

Lu̇2 + 2Mu̇v̇ + Nv̇2

Eu̇2 + 2Fu̇v̇ + Gv̇2
(4.17)

where E = su · su, F = su · sv, G = sv · sv, L = suu · n, M = suv · n, and N = svv · n,

are standard abbreviations used in differential geometry. suu, suv, and svv are the

respective second order partial derivatives of the basic vectors. The numerator of

equation 4.17 is called the first fundamental form and the denominator the second
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u
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Figure 4.5: Illustration of tangent and normal planes and the normal
section through a surface
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fundamental form of S.

The normal curvature is also a function of direction, therefore as the direction of

tp
θ changes (i.e. the angle θ changes), the value of the normal curvature in that

direction will in general change. According to a theorem by Euler (expressed as

Euler’s formula), there exists a maximum and a minimum value of normal curvature

at every point on a surface (except umbilic points where the curvature in all directions

is the same, such as on a sphere). The maximum and minimum curvatures are called

the principal maximum and principal minimum curvatures, κmax and κmin. The

directions of tp
θ for which these extreme values are reached, tp

max and tp
min, are the

principal directions at that point, and are orthogonal to each other.

Two further curvatures, of importance in characterising a surface are defined from

the principal curvatures. The mean curvature, H, is the arithmetic mean of the

principal curvatures, and the Gaussian curvature, K is their product (the square of

their geometric mean) :

H =
κmax + κmin

2
(4.18)

K = κmaxκmin (4.19)

Characterisation of Surfaces using Curvature

The local area about a point on the surface can be characterised using the curvatures

defined above. One such characterisation is as follows (See figure 4.6) :

1. Elliptic Point (H 6= 0 and K > 0). At these points both κmax and κmin

are non-zero and have the same sign. The normal sections of both principal

curvatures have the same curvature profile, and the local surface around it is

ellipsoidal. If κmax = κmin the local surface becomes spherical and this special

case of an elliptic point is called an umbilic point.

2. Hyperbolic Point (H 6= 0 and K < 0). Here both κmax and κmin are non-

zero with opposite signs. The normal sections of both principal curvatures have
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p 

(a) Elliptic H 6= 0 and K > 0

p 

(b) Hyperbolic H 6= 0 and K < 0

p 

(c) Parabolic H 6= 0 and K = 0

p 

(d) Planar H = 0 and K = 0

Figure 4.6: Characterisation of local surface properties using the prin-
cipal curvatures. The shape of the surface around the point p can be
deduced from the values of the mean curvature (H) and the gaussian
curvature (K) at the point
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opposite curvature profiles, and the local surface around such a point is saddle

shaped.

3. Parabolic Point (H 6= 0 and K = 0). In this case one of the principal

curvatures is zero while the other one is non-zero. The curvature of the normal

section of the zero magnitude principal curvature is therefore linear, and the

local shape of the surface is that of a parabolic cylinder (a ridge or trough).

4. Flat or Planar Point (H = K = 0, κmax = κmin = 0) The normal sections

corresponding to both principal curvatures are linear, and the local surface is

flat.

The above classification of points based on the principal curvatures are also sum-

marised by Dupin’s indicatrix [65] (page 77).

Crest Points and Crest Lines

The use of curvature in identifying characteristic points and regions on surfaces is of

importance in this thesis. The beauty of using these is that the points described are

intrinsic to the shape of the surface and are insensitive to orientation and choice of

coordinate system. We are specifically interested in curvature extremum points and

the loci of these points.

Firstly, the lines of curvature should be defined. These are curves on a surface whose

tangents are always in the direction of the principal curvature. The equations for

these lines are :

(MG−NF )dv2 − (NE − LG)dudv + (FL−ME)dv2 = 0 (4.20)

where E, F , etc are as defined in Equation 4.17

Along a line of curvature the value of the principal curvature changes. It is the loci

of the extrema of these curves that are of interest here. Their equations are obtained

from equation 4.20 by including the curvature extremum condition dκ = κudu + κvdv = 0,
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where κu and κv are the partial derivatives of the normal curvature with respect to

the parameters u and v, giving :

(MG−NF )κ2
v − (NE − LG)κuκv + (FL−ME)κ2

v = 0 (4.21)

The loci of the set of points satisfying equation 4.21 on a surface have been called

principal curvature extremum curves in [65] and creases in [47] which are further

classified into the loci of weak and strong ridge points. Here we take ridge points

to mean points where equation 4.21 is satisfied, and a ridge or ridge line to be the

loci of such points. Crest points are a sub-set of ridge points corresponding to the

points where lines of principal maximal curvature have maximum values (in this

case the maximal curvatures denote maximum of the absolute values of the principal

curvatures) , i.e.

e1(p) = ∇(κmax(p) · tp
max) = 0 (4.22)

subject to the following conditions

If κmax(p) < 0, ∇(e1(p) · tp
max) > 0 (4.23)

If κmax(p) > 0, ∇(e1(p) · tp
max) < 0 (4.24)

The quantity e1 is called the first extremality and is discussed further in section 4.6.2.

The conditions 4.23 and 4.24 limit the points classified as crest points to only the

maximum extremum points of lines of maximum curvature.

Other characteristic curves and points on surfaces such as sub-parabolic lines, silhou-

ette curves, and gradient extremum points and curves can be defined, but these are

not of interest here.
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4.6.2 Obtaining Curvature-based Characteristics of 3D Sur-

faces

Three approaches can be taken to obtain curvature based characteristics on a surface.

If the analytic equations of the surface in question are known, the curvature values

and the required characteristics can be determined directly. However, in practice

these are not usually available for the surfaces of structures of interest in medical

image analysis. The common approach is to locally fit surface patches to the surface,

from which parameters for the calculation of the curvatures and curvature extrema

are obtained. A different approach suggested by Thirion et al. [117] is based on the

extremality function of a surface which they obtain directly from the 3D voxel values.

These three approaches are discussed further.

The Analytic Approach

If the analytic equations of a surface are known in parametric form, analytic expres-

sions for the mean and gaussian curvature can be obtained, as well as expressions for

calculating the ridge points and crest points using the appropriate equations from

section 4.6.1. Whilst in theoretical examples the analytical approach can be used, it

is not widely used in practical situations (in the literature reviewed no examples of

use of the analytical approach were encountered). Reasons for lack of practical use

include the fact that in practical situations it is often impossible to obtain analytic

expressions for the surfaces of interest because of their complex shape. Even in cases

where analytic expressions can be obtained, the parameterisation of these is compli-

cated by the fact that most surfaces of interest in medical image analysis are closed

surfaces. Obtaining one to one mappings from a plane to closed surfaces is usually

impossible - although alternative parameterisations such as cylinderical and spherical

ones can be used to achieve this.
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Local Surface Fitting

An alternative approach which circumvents the need for obtaining parameterised an-

alytic equations of the surface in question is to fit surface patches locally around

regions of the surface. This approach is widely used in practice with the main differ-

ence in methods being in the way surface patches are fitted and the way the problem

of accounting for variations in the surface due to noise is handled.

Kwak et al. [74] used a fourth-order least squares B-spline surface-fitting method.

The method was used to perform curvature analysis on the articular cartilage of the

human patellofemoral joint (the joint between the kneecap (patella) and thigh bone

(femur)). 3D surface points were obtained by stereophotogrammetry. As mentioned

in section 2.5.2 splines provide smooth continuity between points and surfaces. The

use of the fourth order spline was necessary to ensure continuous derivatives up to

the third order were obtainable, which are needed for the calculation of curvature

extrema. The principal curvatures were calculated from the B-spline parameters and

maps of lines of curvature were obtained and these were used to locate ridges on the

surface.

Shi et al. [101] perform motion tracking of the left ventricle (LV) of the heart using an

algorithm based on surface shape properties. The surface of the LV was triangulated

at various time points during the cardiac cycle. Curvature calculations were carried

out at the vertices of the triangulated surface by fitting a local biquadratic surface

patch to each vertex. Smoothing to account for distortions in the surface due to noise

was achieved by including different orders of neighbouring points when fitting the

surface patch to a fiducial point. The first order neighbours are vertices of triangles

defining faces directly connected to the fiducial vertex. The second order neighbours

are vertices directly connected to the first order neighbours and so on. The greater the

order of neighbourings the coarser the curvature estimation. A multi-scale approach

was adopted with the curvature estimations being refined by decreasing the order of

neighbours used. The curvatures where calculated directly from the parameters of

the quadratic surface patch.
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Kent et al. [71] use kriging as their method of smoothing in the determination of ridge

curves on surfaces. Kriging is based on the assumption that there is an underlying

process that gives rise to errors in the data and that this can be modelled as a linear

combination of the data. Ridge points on lines of curvature were identified using

a modified version of equation 4.21. Ridge curves were formed by applying a zero

tracing algorithm to identifying the ridge points on triangulated representations of

the surfaces of interest. The method was illustrated by applying it to detect ridge

curves on 3D laser range data of the human head.

The main advantage of the local surface fitting methods is that their implementation

to determine curvature is straightforward. However, despite the smoothing measures

taken the fitting of local surface patches may still be affected by noise. An additional

disadvantage is that the continuity of the ridge curves is not guaranteed across the

boundaries of surface patches.

The Marching Lines Algorithm

The Marching Lines algorithm [117] developed by researchers at INRIA circumvents

the need for local surface fitting by obtaining the curvature extremma directly from

the voxel values of 3D images.

Iso-surfaces can be defined on 3D images as the surface boundary between regions

whose intensity is higher than or equal to a given threshold, and regions whose inten-

sity is lower than the threshold. The Marching Lines algorithm describes a method

for computing with sub-voxel accuracy, the 3D curves formed at the intersection of

two iso-surfaces of two voxel images.

For the purposes of the algorithm the gray levels of individual voxels are assumed

to be concentrated at their bottom left corner. The voxel array is regarded as a

rectangular lattice of cubic cells with the voxel values defined at the nodes (see figure

4.7). Voxels where the iso-surfaces intersect can be determined by examining the

respective values in both images. The locations along the voxel edges where the
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intersections occur are found by linear interpolation of predetermined possible cases.

The extracted curves are shown to be continuous.

The application of the Marching Lines algorithm to the extraction of crest points

is made possible using the extremality criterion defined in equation 4.22. In [117]

previous work by Monga and Benayoun [84] allowing the calculation of curvature

from first and second derivatives of image values was extended. In particular it was

shown that the principal curvatures and associated principal directions of an iso-

surface defined on a 3D voxel image can be computed directly from the first and

second derivatives of image voxel values. These in turn allow the calculation of the

extremality values at each voxel. The Marching Lines algorithm can then be applied

to the intersection of the iso-surface of the zero level set of the extremality of the

image and a suitable threshold value of the actual voxel values. The curves at the

intersection of these two iso-surfaces are the crest lines on the iso-surface of the image.

For binary segmented data convolution with a gaussian kernel of specified width is

used to create an image with varying voxel values (between 0 and 1). This serves the

dual role of allowing the calculation of derivative information at voxels and acting

as a smoothing factor - the greater the width of the kernel the smaller the change

between neighbouring voxel values, hence the greater the smoothing. For the binary

segmentations of the lateral ventricles used in this study, the width of the kernel was

1.5 voxel units, and the threshold for determining the image iso-surface was 0.5. A

summary of the application of the Marching Lines Algorithm to the extraction of

crest lines is given in figure 4.8. Figure 4.9 shows the crest lines obtained from four

of the ventricles used in the study.
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Figure 4.7: The Marching Lines Algorithm works by examining voxel
values in a 2× 2× 2 neighbourhood. Subfigure (a) shows a 3D image as
an array of voxels. (b) shows the voxel array as a rectangular lattice and
(c) shows a neighbourhood of the voxel array as a cell in the lattice.
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1. The input to the algorithm is the binary segmented voxel data. On voxels
have value 1 and are within the lateral ventricles. off voxels have value 0 and
are not ventricle.

2. Two images are derived from the input.

• One is a smoothed version of the input data. This is obtained by convolu-
tion of the input data with a gaussian kernel to give an image with values
between 0 and 1. This is converted to a binary image by thresholding at
the 0.5 level set. This image is referred to as the isosurface image

• The other is referred to as the extremality image (see equation 4.22). This
is obtained by repeatedly convolving the input image with derivative of
gaussian filters to obtain derivatives to the required order.

3. The crest lines are extracted.

(a) March from cell to cell in the isosurface image (see figure 4.7(c) for de-
scription of what a cell is)

(b) For each cell, if all the nodes do NOT have the same value then the
isosurface passes through this cell. Otherwise, the isosurface does not
pass through this cell - march on to next cell.

(c) Check the signs of the values at the corresponding nodes in the extremal-
ity image. If the signs at all eight nodes are NOT the same the isosurface
and the zero level-set surface of the extremality function may intersect.
Otherwise, no intersection - march on to next cell.

(d) Use the values of the nodes of the cell in the extremality image and the
isosurface image to calculate where the isosurface intersects the zero level-
set surface of the extremality function. See [115] and [117] for details.

(e) Follow the crest line to the next cell and repeat from 3(b).

Figure 4.8: Summary of the steps in using the Marching Lines Algo-
rithm to extract crest lines
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Figure 4.9: Four ventricular surfaces colour-mapped according to mean
curvature with crest lines (after filtering out noisy ones) superimposed
on them
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4.6.3 The Use of Crest Points and Crest Lines as Curvature-

Based Landmarks on the Ventricular Surface

Here justification for the use of crest points and crest lines as curvature-based land-

marks in the construction of 3D PDMs of the lateral ventricle is presented. Curvature

has already been stated to be an important property of surfaces. In section 4.6.1 it

was shown that the mean and Gaussain curvatures of a point allow the characterisa-

tion of the local shape of the surface around that point. Koenderick in his treatise

on 3D shape [72] stated (page 319) that “the local shape on a surface depends only

on the values of the principal curvatures”. However, he also warned that the mean

and Gaussian curvatures together do not completely determine the global shape of a

surface (page 253) “Two surfaces may possess equal Gaussian and average curvatures

at corresponding points but still look quite different! Curvature isn’t all there is to

surfaces”.

The use of crest points here pays heed to Koenderick’s warning. Crest lines associated

with crest points are robust in the sense that if the surface on which they are defined is

deformed they deform accordingly [86]. Furthermore, the crest points are specifically

used to establish correspondence and are not used to measure shape differences. It is

the analysis of the coordinates of corresponding points that is used in the investigation

of shape differences. Ridge curves (of which crest lines are a subset) found repeatedly

on biological surfaces have been argued to be equivalent to anatomically meaningful

landmarks [19],[115]. Additionally, Thirion and Gourdon [116] have shown direct

correspondence between crest lines and anatomical features in medical images.

Andresen et. al. [3] use crest lines to obtain correspondences when building a 3D

PDM of the mandibles of six subjects with Apert’s syndrome to model and predict

mandible growth. The crest points and crest lines on the surface of the mandible of

each subject were obtained using the matching lines algorithm. One mandible was

chosen as a template and its surface was triangulated. Correspondence between the

training set was established in a similar manner to that described in section 4.5. How-
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ever, Andresen et. al. used a closest point method (we use a transportation-based

method described in section 4.7) in establishing point-to-point correspondences, and a

geometry-constrained diffusion algorithm to re-project landmark points onto the sur-

face of each member of the training set after deforming the template to approximate

the shape of that member.

Of greater importance here is the fact that crest points have been utilised in the cre-

ation of a 3D SSM of the ventricles of the brain - albeit by a manual method. Buckley

et al. [24] and Dean et al. [41] manually subdivided the surface of the entire ventric-

ular system into surface patches. The surface subdivision was based on geodesic lines

between salient crest points on the surface. The forty-eight crest points used were

known to be reliably detectable on ventricular surfaces. They were manually specified

by clicking a mouse on the ventricular surfaces that had been colour-mapped accord-

ing to magnitude of curvature. Average positions of the landmarks over the sets of

ventricles analysed were created using thin plate spline warping. This method was

applied to investigate shape differences between the lateral ventricles of schizophrenic

and control subjects. In this work crest lines were shown to be reliable consistent

landmarks on the ventricular surface. This proposition is backed up by figure 4.9 and

qualitative examination of the crest lines of all the ventricles used in the study. These

show that even though the shape of the ventricles varies quite markedly, the crest

lines on their surface seem consistent. Crest lines have also been used in creating

average morphometric atlases of the human skull [108].

A further reason for using the curvature-based approach is the fact that the appli-

cation of other methods of automatically constructing 3D PDMs to the construction

of PDMs of the lateral ventricles often results in failure. In the approach of Davies

et al. [38] the method of reparameterisation used cannot be applied to the whole of

the lateral ventricles because its highly curved shape cannot be projected easily onto

a sphere. The method of Brett et al. [22] is also inapplicable to the whole of the

lateral ventricle as their method is restricted to disc-like surfaces. Finally, the use of

crest points and crest lines to define correspondence as we have done here directly
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exploits a physically significant structure of the ventricles. This is in contrast to other

automatic methods that rely on arbitrary triangulations or other reparameterisations.

4.7 Generating Point-to-Point Correspondences

Having determined the crest points and crest lines of the set of ventricles in our

training set, they are used to define a sparse correspondence across the training

set in a pair-wise manner. In this section we summarise the automatic method for

establishing correspondence between a pair of ventricles A and B. We compare two

methods of point-to-point matching. One is based on matching locally close points

as suggested by [108] and in the other we present the point matching problem as a

transportation problem and apply an efficient algorithm to solve it.

Section 4.7.1 gives details of our implementation of the closest point method suggested

in [108]. Section 4.7.2 describes how the point matching is posed as a transportation

problem, and the application of an efficient algorithm to solve it. Section 4.7.3 focuses

on the quantitative comparison of the transportation and closest point methods.

The comparison is done at three levels. Firstly, the point-to-point correspondences

produced by the two matching methods are compared. Secondly, the fidelity of the

corresponding training sets generated by the two methods to the actual surfaces are

compared and lastly, the PDMs generated by both methods are compared.

4.7.1 A Closest Point Approach to Point Matching

The point matching method described by Subsol et. al. [108] is an adaptation of the

Iterative Closest Point (ICP) algorithm of Besl and Mckay [9]. As a preliminary step,

the origin of the coordinate system for the crest points in each ventricle being matched

is translated to the centroid of the crest points. In matching the pair of ventricles

A and B, the matching can be done in two “directions”, A → B and B → A. As
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(b)(a)

Figure 4.10: Illustration of the result of point-to-point matching. (a)
Point-to-point matching between lower and upper lines using closest
points results in cross matches (heavy dotted lines) and multiple matches
(light dotted lines). (b) removal of multiple and cross matches results in
a single correspondence for each point. Some correspondences may be
missed after this post-processing

will be discussed in section 4.7.3, the results of matching in both directions are not

generally the same. Here we consider matching in the direction A → B.

The matching is an iterative procedure. At each iteration, point-to-point correspon-

dences are obtained, then registrations are applied to A to make it more similar to B.

The final set of corresponding points are used to obtain parameters for a spline-based

warp allowing a set of predetermined vertices on the surface of A to be mapped to

corresponding points on the surface of B.

In the object centred coordinates of A and B, initial point-to-point correspondences

are obtained by finding for each crest point of A the closest crest point in B in terms

of Euclidean distance. This initial set of correspondences may result in multiple

matches (where more than one point in A is matched with the same point in B), and

cross-matches where the lines joining matched points “cross-over” as shown in the

example of figure 4.10.

To obtain a valid set of correspondences, each crest point in A is constrained to

have only one matching point in B. For each crest line in A the matching crest line

in B is found. The crest lines are used to impose an ordering on the crest points

to prevent cross-matches. These requirements are encapsulated in two constraints.

An injectivity constraint that each crest point on A can be matched to at most one
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crest point on B, and vice versa. And a monotonicity constraint that maintains the

same order of matched crest points along crest lines A and B. We used a modified

version of the heuristic algorithm proposed in [108] to enforce these constraints. This

is shown in figure 4.11

The main modification is that we do not restrict each crest line in A to be matched to

only one crest line in B. Instead, we allow partial line matching where a contiguous

part of any line in A can be matched to a contiguous part of any line in B and vice

versa. We found this necessary because our approach to filtering “spurious” crest lines

differed from that of [108]. They obtained crest lines using a low and a high width

Gaussian smoothing kernel, and then filtered the spurious crest lines obtained with

the less smoothed low width kernel using those obtained with the more smoothed high

width kernel. However, application of that method to our images resulted in some

salient crest lines not being obtained. We therefore used only a low width smoothing

kernel, and applied a threshold based on absolute value of curvature to filter out the

spurious crest lines as suggested in [117].

For the first 10 iterations of the point-to-point matching, rigid body transformations

are performed on A to minimise the Euclidean distance between pairs of matched

points given by the point matching algorithm. For the next 10 iterations 12 d.o.f

affine transformations are applied. For the last 10 iterations spline-based warps are

used. The spline-based warps were implemented as described in chapter 14 of [122].

4.7.2 A Transportation Approach to Point Matching

The previous section described the closest point method of obtaining crest point cor-

respondences on the surfaces of a pair of ventricles. This method of finding correspon-

dences is not necessarily optimal. Matching points with closest Euclidean distance

can result in rejection of matches which are good, but not locally “best”. This may

result in solutions which are not globally optimal across all points. In this section,

we demonstrate the presentation of point matching as a transportation problem, and
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Given crest points and crest lines for a pair of ventricles A and B to perform point-
to-point matching of crest points in A with crest points in B (A → B):

1. For each crest point in A find the closest crest point in B

2. For each crest line in A

(a) Enforce monotonicity and injectivity constraints for its point-to-point
matches (as described in [108])

(b) Find full or partial matching lines in B using the voting mechanism
described in [108]

(c) Obtain the closest point matches for the crest points in each matched
section of the crest line in A and B anew and enforce the monotonicity
and injectivity constraints

3. On each iteration perform rigid, affine or spline registrations as appropriate

4. The resulting matches after the final spline registration are the output of the
point matching process

Figure 4.11: Outline of algorithm for point-to-point matching

discuss the application of an efficient method of obtaining solutions.

Point-to-Point Matching as a Transportation Problem

A transportation problem is a class of linear programming problem in operational

research [60]. It derives its name from solving the problem of distributing goods

from a set of sources with given production to a set of outlets with known demands

along paths of known costs. The requirement is to provide the overall lowest-cost

distribution of all goods produced at the sources to the outlets, subject to the con-

straints that the total production at all sources equals the total demand at all outlets,

and the quantity transported between source and outlet is non-negative. The trans-

portation paradigm has been applied in some medical image analysis problems, for

example chromosome matching [125] and mammography [12]. Belongie et al [8] have

applied the transportation algorithm to point-to-point matching and generating cor-

respondences. However, we arrived at our approach independently, using a different

algorithm to solve the resulting assignment problem (see section 4.7.2). Furthermore

our application is in 3D and can be used in 2D whereas the method of Belongie et
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al was applied to 2D problems. The Softassign Procrustes Matching Algorithm [95]

also includes an assignment step in establishing point-to-point correspondences.

To illustrate how point matching is cast as a transportation problem, consider the

matching of crest points of two ventricles, ventricle A with m crest points, and ven-

tricle B with n crest points. We assume for the moment that the number of crest

points in both are equal (i.e. m = n). The crest points from A are taken as sources

each with unit production and those of B as outlets each with unit demand. We seek

to transport a quantity (create a match) from each source in A to each outlet in B.

The cost of each transportation (match) is simply the Euclidean distance between A

and B. We seek to minimise this cost over all matches. This gives the advantage of

permitting matches that are not locally closest, potentially allowing more matches

to be made. Point matching can therefore be written as the following transportation

problem: Given
m∑

i=1

ai =
n∑

j=1

bj (4.25)

where ∀ i, j; ai (availability at source) = bj (demand at outlet) = 1.

If xij is the quantity transported from source i to outlet j (For the purposes of

point matching,the quantity transported is always 1 when a match is created, or 0

otherwise).

Find xij ≥ 0 which satisfy

n∑
j=1

xij = ai(= 1), i = 1, . . . , m (4.26)

and
m∑

i=1

xij = bj(= 1), j = 1, . . . , n (4.27)

and which minimise

z =
m∑
i

n∑
j

Dijxij (4.28)
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Where D is a m×n distance matrix with element Dij of the ith row and jth column

given by,

100× dij (4.29)

dij being the square of Euclidean distance between crest point i on A and crest point

j on B.

Although the number of crest points on any two ventricles are of the same order, in

general they are not equal (i.e. for any two ventricles A and B, in general, m 6= n). In

such cases, dummy sources or dummy outlets are introduced to allow expression in

the form of equations 4.25 to 4.28. If n > m, we introduce n−m dummy sources, each

with unit availability, and amend equations 4.25 to 4.28 as necessary. On the other

hand, if m > n, a dummy outlet with demand equal to the difference between m and

n is introduced. The costs for transporting to or from dummy sources and outlets

are set to an arbitrarily high value i.e. transportation to/from dummy sources and

outlets capture the worst matches. The matched points are the (i, j) pairs for which

xij 6= 0, and i or j is not a dummy source or outlet. In section 4.7.1 we noted the

need to apply injectivity and monotonicity post-processing. Due to the constraints

stated in equations 4.26 and 4.27, the transportation method intrinsically enforces

the injectivity criterion (but not the monotonicity one).

An Efficient Solution to the Transportation Problem

The classical method for solving transportation problems is the Stepping Stone al-

gorithm [60]. However, the fact that the quantity transported in the present case is

always of unit value makes it similar to (but not quite) a special case of transportation

problems termed assignment problems. This special case has unit demand at each

outlet and unit availability at each source. The formulation of the point-to-point

matching problem given above is not quite an assignment problem, because in the

case where a dummy outlet is used, its demand is equal to the excess in the number

of sources, and not necessarily a unit demand. The classical method of solving the

assignment problem is the Hungarian method [96]. However, within the operational
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research field there are a variety of more efficient solutions to the assignment problem.

One such solution is that of Achatz et al. [2]. Their algorithm allows the assignment

of m unit source nodes to n outlets in time O(mn2), where m is the number of sources,

and n is the number of outlets - allowing its application to the formulation of the

point matching problem given above.

As the number of sources for the point matching problem are of the order 103 (rela-

tively large for transportation problems), the computational efficiency and memory

requirements of the algorithm used to find a solution are important. The NAG-C im-

plementation of the Stepping Stone Algorithm did not produce an optimal solution

for point matching of 1000 sources and 1000 outlets after 24hrs. However, an imple-

mentation of the algorithm of [2] produced an optimal solution for the same problem

in about 5 seconds. Both functions had been coded in C and were called using the

Mex functionality of Matlab 5.3.1 running on a standard PC with a 500Mhz Pentium

processor and 256 MB RAM. The running time of the Achatz et al. algorithm is

comparable to that of the closest point method. To match 1000 pairs of points it

takes 2.5 seconds with the closest point method. The transportation method takes

4.5 seconds for the matching, and an additional 2 seconds are needed for calculation

of the cost function.

4.7.3 Quantitative Comparison of the Transportation and

Closest Point Methods

Using the training set of all 138 ventricles (69 right ventricles of control and schizophrenic

subjects, and their left counterparts reflected to give the same pose as the right ones),

two PDMs were constructed as outlined in section 4.5 without the re-projection and

normalisation steps. For one PDM, the closest point approach was used to match

crest points, whilst in the other the transportation method was used.

With reference to figure 4.3, quantitative comparison of both methods is carried out
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at steps 3, 4 and 7. At step 3, the results of the point-to-point correspondences of

both methods are compared. The four criteria used for this comparison are detailed

in the subsection below. In step 4, the corresponding training sets produced by both

methods are compared using the 3D distance transform metric described in section

4.4.4. Lastly, the resulting PDMs are compared. The criteria of section 4.4 are used

for this comparison. In all results in the following subsections (except where stated),

the data plotted are the mean of the values for all 138 ventricles. In all cases the

measure of error used is the standard error of the mean obtained in the usual manner

(i.e. σ√
N

, where σ is the sample standard deviation, and N is the number of samples).

Comparing the Point-to-Point Correspondences Produced by the Trans-

portation Method and the Closest Point Method

The point-to-point correspondences obtained for the crest points are used to drive a

spline-based warp. The spline-based warp is an approximating function that maps

each 3D coordinate of the template onto the fiducial ventricle. The greater the

number of accurately determined corresponding points, the better the approximation

function. As the process of obtaining the point-to-point correspondences is iterative,

it is also desirable to ascertain the level of convergence that had been attained at the

end of the matching process.

In this section the point-to-point correspondences obtained by the transportation

method and the closest point method are quantitatively compared. The four measures

used for this comparison are: Number of point matches at each iteration, Number of

matches changed at each iteration, Mean distance between matched points, and the

symmetry of the matched points. Each measure is described more fully below, and

their results for the present experiment shown.

Number of Matched Points

During point matching, the point-to-point correspondences are stored in a vector.

The index of the elements of the vector represent points on one ventricle, and the
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value of the element is the corresponding point on the other ventricle. At each

iteration of the point matching process, the number of point-to-point matches after

monotonicity and injectivity constraints have been enforced is measured. This is

achieved by simply obtaining the number of non-zero elements in the vector defining

the point-to-point correspondences.

Figure 4.12(a) shows plots of the mean number of matched points at each iteration

for both methods. The transportation approach gives almost twice the number of

point matches than the closest point method on each iteration.

Changes in Matched Points Between Iterations

Using the vector defining point-to-point correspondences, the number of changes

between matched points at each iteration can be obtained by comparing the elements

of the vector for consecutive iterations. This gives a measure of the stability of the

matching method as the iterations progress. As the template becomes more similar

to the ventricle to which it is being matched, the number of changes in the matched

points should decrease.

Figure 4.12(b) shows the mean percentage of changes in matched points from one it-

eration to the next. The plots for both methods show the same pattern - an initially

high proportion of points changing correspondences, which reduces in a somewhat

exponential manner as the number of iterations for a particular transformation type

increases. When the transformation type changes, there is a discontinuity (also evi-

dent to a lesser extent in figure 4.12(a) for the number of points and figure 4.12(c) for

the mean distance between matched points). The proportion of points in which the

match changes between iterations, stabilises more quickly using the transportation

method than the closest point method during rigid and affine transformations. How-

ever, the rate of reduction in point changes is similar during spline transformations.
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(c) Mean distance between matched points

Figure 4.12: Evolution of the number of matched points after injectiv-
ity and monotonicity enforced (a), the percentage number of changes in
matched points (b), and the mean distance between matched points (c),
with iterations for the transportation method (blue) and the closest point
method (red) during the point-to-point matching process. The disconti-
nuities in the curves (most obvious in (b)) occur where the registration
changes from rigid to affine and then to spline-warping.
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Mean Distance Between Corresponding Points

At each iteration, the mean Euclidean distance between matched points can be ob-

tained in a straightforward manner using the correspondences between points at that

iteration, and the coordinates of the points of the ventricles being matched. As the

crest lines of the template are deformed to become more similar to the ventricle it is

being matched to, it would be expected that the distance between the matched points

decreases. The mean distance between corresponding points serves as a measure of

the convergence of the iterations.

Figure 4.12(c) shows that the mean distance between matched points evolves in the

same pattern for both methods. However, its value is smaller for the closest point

method at each iteration. This is, of course, to be expected, since the transportation

method does not exclude matches that are not locally shortest.

Symmetry of Matches

Although the matching algorithms for both matching methods do not require matches

to be symmetric (that ventricle A matched to ventricle B, A → B, gives the same

result as B matched to A, B → A), we would have greater confidence in symmetric

correspondences. This was briefly touched upon in sections 4.7.1 and 4.7.2.

To quantitatively measure the symmetry of matches, an index of symmetry, Is, is cal-

culated using matched points lying on symmetrically matched partial-lines. Partial-

lines were described in section 4.7.1, and symmetrically matched partial-lines are

overlapping partial-lines from matches A → B and B → A. Is is the ratio of the

number of point-to-point matches in overlapping partial lines for A→B and B→A,

to the total number of point-to-point matches in both directions, i.e.

Is =
number of matches on symmetrically matched partial − lines

(number of matches in A → B + number of matches in B → A)
(4.30)

For the transportation method, if the number of crest points on both A and B are
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equal (i.e. m = n), then the xij given as a solution to the transportation problem are

the same for both A → B and B → A. This is because firstly, the constraints given in

equations 4.25 to 4.27 are not changed if a and b are interchanged. And secondly, for

m = n, D is a square matrix, and DA→B
ij = DB→A

ji ∀ i, j (i.e. DA→B = (DB→A)T ).

Hence, the constraints and the cost function are not changed for this case, and the

optimal solution is symmetric.

Figures 4.13 and 4.14 illustrate the fact that the transportation method is more

symmetric than the closest point method using a pair of synthesised lines. Points

were generated along each line and matched with both methods. The initial results of

both methods have to be subjected to the injectivity and monotonicity constraints. In

the case where m = n as for the synthetic lines, a symmetric match is expected for the

transportation method. Although the initial matches are symmetric, after enforcing

the monotonicity constraints (the transportation solution ensures injectivity) some

matches may be deleted. Therefore, the output for the transportation method may

not be symmetric even though the optimal solution was symmetric. However, as

the transportation method gives a globally optimal solution, we would nevertheless

expect the matches produced to be more symmetric than those of the closest point

method.

Notice in subfigures (c) and (d) of Figure 4.13 that there is one point on each line

that does not match “naturally” to the other line. The transportation method forces

a match between these points. Despite the high cost for this particular match, the

global match cost is minimised by the intuitively correct matches of the remaining

points. The “incorrect” match is rejected by the application of the monotonicity

constraint.

Figure 4.15 shows a line plot of the mean index of symmetry for the members of the

evaluation set matched to the chosen target for both methods. Along the x-axis each

data point represents a particular ventricle, there is no continuity between data points

- the use of lines is purely for ease of visualisation. The mean index of symmetry
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(a) Closest points
A → B
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(b) Closest points
B → A
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Figure 4.13: Initial results (before enforcement of monotonicity and
injectivity constraints) for the closest point method in both directions (a)
and (b). (c) and (d) are the equivalent results for the matches returned
by the transportation method before enforcement of monotonicity and
injectivity constraints. The initial results of the transportation method
are always symmetric for the case where the number of points in A and B
are the same, whereas those of the closest point method are not generally
symmetric

for the transportation method was 0.79 ± 0.05 (range 0.63-0.91), whilst that of the

closest point method was 0.70± 0.11 (range 0.26-0.89).

Figures 4.16(a) and (b) show the matches in both directions for the case where the

closest point index of symmetry was lowest (Is = 0.26), and the corresponding set of

matches for the transportation method (Is = 0.78) are shown in figures 4.16 (c) and

(d). Figures 4.17 (a) and (b) show the matches in both directions for the case where

the closest point index of symmetry was highest (Is = 0.89) and figures 4.17 (c) and

(d) are the corresponding set of matches for the transportation method (Is = 0.85).

Comparing the Corresponding Training Set Produced by the Transporta-

tion Method and the Closest Point Method

Each member of the corresponding training set is composed of the same number of

vertices as the template. The similarity of each to its original version was deter-

mined by finding the rigid registrations that minimised the distance transform based

objective function. The mean values are given in table 4.1. The results show that

on average the transportation method gives a corresponding training set that ap-

proximates the original training set better than the corresponding training set of the
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Figure 4.14: (a) and (b) are the results of the closest point method after
enforcement of monotonicity and injectivity constraints. (c) and (d) are
the results after enforcement of the constraints for the transportation
method (note that the transportation method gives an injective map for
the case where the number of points on A and B are the same). Again the
transportation method is symmetric whereas the closest point method is
not.

closest point method. However, the difference is not very significant (p = 0.0059).

Transportation Closest Point
Mean value of Distance Transform metric 1.01± 0.16 1.08± 0.28
Range 0.71 - 1.74 0.69− 2.60

Table 4.1: Value of distance transform metric for comparison of surfaces
of the corresponding training sets produced by transportation and closest
point methods with their respective original surfaces. The values shown
are in voxel units (1 voxel = 0.78mm). A t-test showed that the difference
between both groups was not very significant (p = 0.0059).

Comparison of Point Distribution Models Produced by the Transportation

Method and by the Closest Point Method

The PDMs created by the two methods were compared using the criteria described

in section 4.4. The results are presented below.

Generalisation Ability

In section 4.4.1 we stated that the error-of-fit to measure the generalisation ability

of a model can be obtained in two ways. One method (the de facto one) uses the
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Figure 4.15: Plot of the index of symmetry for each ventricle for both
the transportation and the closest point methods. The plots show that
the closest point method is generally less symmetric, and its index of
symmetry is more variable
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(a) Match for closest
point with best Is, A →
B

(b) Match for closest
point with best Is, B →
A

(c) Equivalent match
for transportation Is,
A → B

(d) Equivalent match
for transportation Is,
B → A

Figure 4.16: The figure above shows point-to-point correspondences
(black lines) obtained between crest points of a pair of ventricles giv-
ing the worst measure of symmetry for the closest point method (Is =
0.26).The red lines are the crest lines of one ventricle and the blue ones
the crest lines of the other.(a) shows the matches in one direction for the
closest point method, and (b) shows the matching in the other direction.
(c) and (d) are the equivalent results for the same pair of ventricles using
the transportation method. The symmetry value for the transportation
method was 0.78, and the figure shows that the matches for the trans-
portation method are more symmetric and evenly distributed.
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(a) Match for closest
point with best Is,
A → B

(b) Match for closest
point with best Is,
B → A

(c) Equivalent match
for transportation Is,
A → B

(d) Equivalent match
for transportation Is,
B → A

Figure 4.17: The figure above shows point-to-point correspondences
(black lines) obtained between crest points of a pair of ventricles giv-
ing the best measure of symmetry for the closest point method (Is =
0.89).The red lines are the crest lines of one ventricle and the blue ones
the crest lines of the other. (a) shows the matches in one direction for the
closest point method, and (b) shows the matching in the other direction.
(c) and (d) are the equivalent results for the same pair of ventricles using
the transportation method. The symmetry value for the transportation
method was 0.85, and the figure shows that qualitatively the matches
returned are similar.
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approximations to the training set in which correspondence has been established (the

corresponding training set), whilst the other (a novel product of the present work)

uses the binary segmentations of the training set. Results for both methods are

presented in this subsection and the subsection on specificity.

Figures 4.18(a) and (b) show plots of the generalisation ability of the PDMs con-

structed using the closest point and the transportation methods. Subfigure 4.18(a)

uses the difference in Euclidean distance between the model fit and the shape vector

of the left out example from the corresponding training set. Subfigure 4.18(b) uses

the distance transform metric obtained from the model fit and the binary voxel-based

image of the left out example.

The shapes of the plots in both cases are the same, with the error-of-fit decreasing as

the number of modes used in generating the model fit increases. The comparison with

respect to the corresponding training set suggests that the closest point method gives

a model with greater generalisation ability than the transportation method. However,

the comparison with respect to the binary voxel data of the left out example suggests

that the model created by the transportation method gives better generalisation

ability. It is also interesting to observe that the generalisation error-of-fit measured

with respect to the corresponding training set decreases to zero as the number of

modes increases, whereas the minimum of the distance transform metric is 1.3 voxel

units. We believe these results are important as they suggest that the de facto method

of measuring generalisation ability, which is a direct extension of that of the 2D case,

is not appropriate in the 3D case.

Specificity

25 random shapes were generated to investigate the specificity of the PDMs created

by the transportation and closest point methods. The specificity measure and the

generation of the random shapes were described section 4.4.2. As in the case of gen-

eralisation ability the specificity is measured both with respect to the corresponding

training set and with respect to the binary voxel data of the training set.

151



Chapter 4. 3D Point Distribution Models - Theory and Practice

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

Number of modes

E
uc

lid
ea

n 
di

st
an

ce
 b

et
w

ee
n 

co
rr

es
po

nd
in

g 
po

in
ts

 (
vo

xe
l u

ni
ts

)

Transportation
Closest Point

(a) Generalisation ability with respect to the corresponding
training set
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(b) Generalisation ability with respect to actual surfaces of
training set using the distance transform metric

Figure 4.18: Comparison of the Generalisation Ability of the PDMs
constructed by the closest point and transportation methods. The com-
parison is done as a function of the number of modes. Subfigure (a)
shows the generalisation ability measured as the Euclidean distance be-
tween corresponding points of the generated instance and its surface ap-
proximation in the corresponding training set. Subfigure (b) shows the
generalisation ability measured by comparison of the instance generated
by the model to its binary segmentation using the distance transform
metric.
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Figure 4.19(a) shows the specificity as a function of the number of modes for the

two PDMs as measured by comparison of landmark points on each random shape

with the landmark points on the members of the corresponding training set. Figure

4.19(b) shows the specificity measured by comparison of the surface of each random

shape with the most similar surface of the binary representations of the ventricles

using the distance transform metric. Each data point in the graphs is the mean of

the values for all 25 random shapes, and the error is given as the standard error of

the mean.

The shapes of the plots for both measures of specificity are similar rising in an expo-

nential manner. For both measures, corresponding values of the error-of-fit for the

PDM produced by the closest point method are lower than those of the PDM pro-

duced by the transportation method. The difference in error-of-fit for both methods

is very significant for comparison using the corresponding training set than compar-

ison using the distance transform metric. This suggests that the PDM produced by

the closest point method is more specific than that produced by the transportation

method.

Compactness

Section 4.4.3 discussed how PDMs are compared on the basis of compactness. Figure

4.20 shows the compactness of the PDMs created using both point matching methods.

In both cases the amount of the total variation encompassed by a given number of

modes is similar. For both PDMs over 95% of the total variation was contained in

the first 30 modes.

Figure 4.21 shows the amount of variation encoded by both PDMs as a function of

the number of modes. The difference between Figures 4.20 and 4.21 is that the data

points in the former have been normalised by the total variance (λT of Equation

4.12) whilst the later is simply a cumulative sum of the eigenvalues of the model. For

each mode, the PDM created by the transportation method had over twice as much

variation as that created by the closest point method.
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(a) Specificity measured with respect to the corresponding
training set
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(b) Specificity measured with respect to actual surfaces of train-
ing set using the distance transform metric

Figure 4.19: Comparison of the Specificity of the PDMs constructed
by the closest point and transportation methods. The comparison is
done as a function of the number of modes. Subfigure (a) shows the
specificity measured as the Euclidean distance between corresponding
points of the randomly generated instances and those of the most similar
member from the corresponding training set. Subfigure (b) shows the
specificity measured in a similar manner using the distance metric to
compare the randomly generated instance to the binary segmentations of
the members of the training set.
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Figure 4.20: Compactness of the PDMs created by the transportation
and closest point methods as a function of number of modes. This is a
plot of the cumulative variance normalised by the total variance (λT of
Equation 4.12)

0 20 40 60 80 100 120 140

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

4

Number of modes

C
um

m
ul

at
iv

e 
va

ria
nc

e 
(a

rb
rit

ar
y 

un
its

)

Transportation
Closest Point

Figure 4.21: Variance captured by the the PDMs created by the trans-
portation and closest point methods as a function of number of modes.
This is simply a plot of the cumulative variance WITHOUT normalised
by the total variance
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Discussion of Results of Comparisons

Point-to-Point Correspondences

The results of the quantitative comparison of point-to-point correspondences pro-

duced by both matching methods suggest that the transportation method is better

than the closest point method. However, figure 4.15 showed that in 18 out of 137 cases

the symmetry of the closest point method was better than that of the transportation

method. This may occur in cases where the shapes of the ventricles being compared

are very similar. However, when the ventricles are very different (as quite a number of

them are) the transportation method gives better results. In particular, the fact that

the average number of point correspondences returned by the transportation method

is almost twice that returned by the closest point method, and that the symmetry

of the former is better in 119 out of 137 cases attest to the overall superiority of the

transportation method to the closest point method.

Corresponding Training Set

The translation of the better correspondences obtained by the transportation method

to giving better spline-based warps is demonstrated by the results of the comparison

of the corresponding training sets produced by both methods (Table 4.1). In this

the similarity of the surface obtained by deforming the template to approximate the

surface of each member of the training set was measured using the distance transform

metric.

The mean value of the distance transform metric over the whole training set was lower

for the transportation method. However, the difference was not very significant (p =

0.0059). Furthermore, the minimum value of the distance transform metric for the

closest point method was lower than that of the transportation method (0.69 cf. 0.71).

We believe this is because when two ventricles of similar shape are being matched, the

closest point and transportation methods give comparable results. However, when

the shapes of the ventricles being matched are quite different, the transportation

method out-performs the closest point method. This is reflected in the fact that the

range of the values of the distance transform metric is smaller for the transportation
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method (0.71-1.74) than for the closest point method (0.69-2.60). Comparison of the

values of the distance transform metric for individual ventricles showed that for 82

ventricles out of the 138, the transportation method gave a better approximation to

the original surface than the closest point method.

The fact that the corresponding training sets produced by both methods are different

also suggests that its use as the basis of comparing the resulting PDMs, as is the

convention in the 2D case, is not adequate in the 3D case.

PDMs

The interpretation of the results obtained for the comparison of the PDMs produced

by both methods requires some care. Firstly, the results of the compactness (Figure

4.20) and the amount of variation encoded by each PDM (Figure 4.21) are considered.

The compactness results are similar for both PDMs. However, the PDM constructed

by the closest point method may have a slightly greater degree of compactness than

the transportation PDM at lower modes of variation.

The actual amount of variation encoded by the two PDMs is significantly different.

The transportation PDM encodes over twice as much variation as that of the closest

point method. According to Davies [38] this can be taken to mean that the trans-

portation method is less compact. However, based on the results discussed in the

previous subsection (those of the corresponding training set), we believe that the

corresponding training set used to build the PDM constructed by the transportation

method is more representative of the original training set than that used to build

the PDM of the closest point method. To conclude, the compactness results suggest

that the closest point and transportation PDMs have similar compactness. However,

the transportation PDM encompasses more of the variability actually present in the

data.

Both the generalisation ability and the specificity were measured in the conventional

manner with respect to the corresponding training set and then in a novel manner

with respect to the binary segmentations from MR data using the 3D distance trans-
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form metric. Measurement of the generalisation ability in the conventional manner

suggested that the closest point method gave a PDM that had better generalisation

ability than that of the transportation method (Figure 4.18(a)). However, using the

distance transform metric, the results were reversed (Figure 4.18(b)). If our assertion

in section 4.4.1, that the comparison relative to the actual ventricular surfaces, as

opposed to comparison with surfaces of the corresponding training set (which has

been shown to be different for the closest point and transportation methods) is cor-

rect, then it can be concluded that the PDM created by the transportation method

has better generalisation ability on the basis of the results obtained by the distance

transform metric.

The measures of specificity with respect to the corresponding training set and with

respect to the actual ventricular surfaces using the distance transform metric showed

a similar trend. In both cases the PDM constructed by the closest point method had

greater specificity. However, the significance of the difference in specificity was much

greater when measured with respect to the corresponding training set. The trend

shown in the plots of figure 4.19 are counter-intuitive. This is because it may be

expected that as the number of modes used to construct a random example increases

the accuracy of the surface produced should increase, and the error-of-fit with the

nearest member from the training set should decrease. However, the shape of the

graphs show that as the number of modes increases the error-of-fit also increases

- i.e. the specificity decreases! This makes sense when it is considered from the

point of view of the allowed shape domain. Each mode of variation is an axis of the

hyperellipsoid approximating this domain. As the number of modes of variation are

increased, the volume of this hyperellipsoid also increases. Each mode of variation

therefore increases the distance between the shapes in this domain - the volume they

are contained in is expanding and carrying the shapes along.

Importance of Distance Transform metric

The importance of these results is the demonstration that the evaluation of the gen-

eralisation ability by the conventional method and by the distance transform method
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give conflicting results. We believe that in the comparison of PDMs the generalisa-

tion ability and specificity should be compared with respect to the actual members

of the training set and not to their representations in the corresponding training set.

This is justified by the results of the generalisation ability comparisons. However, in

the case of specificity, the distance transform method is not ideal as the shape of the

randomly generated instances are different from that of the members of the training

set, and there is no guarantee of implicit correspondence.

4.8 Dependence on Choice of Template

The PDM building process requires the selection of a template. Landmark points are

placed on the template by a process of triangulation and decimation. For the creation

of the PDM we need the same number of corresponding points on each member of

the training set. This is achieved by using crest points and crest lines to obtain a

mapping of curvature based landmark points between the template and each member

of the training set in a pair-wise fashion. The mapping is used to obtain coefficients

which drive a spline-based warp of the template to place its landmark points at

corresponding locations on each member of the training set. The deformation gives

an approximation of each member of the training set, resulting in what we termed

the corresponding training set.

How is the template chosen? There is an argument that it should be chosen randomly.

However, visualisation of the surfaces of all the ventricles used in this study (see

appendix B) shows that there is great variation in the shape of the members of the

training set, some being quite irregular even within the control group. The template

was therefore chosen from a subset of the training set that were adjudged to be most

representative of the entire training set.

There are several approaches to answer the key question posed in the overview to

this chapter - whether the choice of template affects the resulting PDM. These must
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involve comparison of PDMs built from the same training set using different mem-

bers of the training set as the template. However, the manner in which the result-

ing PDMs are compared is not trivial. Quantitative methods based on the PDM

equation (equation 4.6) may be devised. These may use the mean shape (x), the

principal components (P ), the weights (b), or combinations of these. There is also

the option of qualitative assessment of the mean shape and the modes of variation

by visual inspection. Quantitative assessment is more desirable. However, with the

present method there is a complication in that PDMs created using different tem-

plates do not generally have the same number of landmark points - as the number of

landmark points on the template is determined by its triangulation. It is therefore

not straightforward to compare the mean shapes, the principal components and the

weight vectors as these are not constrained to have the same number of dimensions.

Indeed this may explain why there is a dearth of quantitative comparisons of the

effect of templates in methods of construction of PDMs that require a template to

be chosen from the training set. In the literature reviewed, of five methods requiring

pair-wise matching or choosing a template (i.e. [3],[22],[53],[75],[79]), only one ([53])

included a quantitative assessment of the dependence of the resulting model on the

choice of template.

The quantitative assessment of the dependence of the final model on the choice of

template in [53] was made in the following manner. Two models were constructed

using different members of the training set (say A and B) as templates. A volumetric

elastic registration process was the core of their method (more details of their method

are in section 4.3). The registration is applied to obtain the parameters of a 9 degree-

of-freedom quasi-affine transformation for registering one template (say A) to each

of the two models and for registering the model created by template A to the model

created by template B. These allow transformations for registering template A to

itself in a cyclic manner (see figure 4.22) to be applied. The resulting composite

transformation matrix would be expected to be the identity matrix. Therefore, the

difference of its elements from those of corresponding elements of the identity matrix
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is taken as a quantitative measure of the dependence of the models on the choice of

template. The results obtained showed that the models did depend on the choice of

template. However, no correction for this fact was introduced as the authors felt the

dependance did not affect the ability of the model to perform segmentation. Figure

4.22 schematically illustrates how the quantitative measure was derived.

Template A

Model A
Model created with template A

Model B
Model created with template B

TA

TB

-1

TAB

Quantitative  Measure = T - I

T = TABT TB A

-1

Figure 4.22: A schematic diagram illustrating how the quantitative
measure used by [53] is obtained.

The use of the transformation parameters of the volumetric elastic registration to

measure the dependence of the model on the choice of template is not ideal. This

is because the volumetric elastic registration is itself used in the construction of

the model. If a dependence on the choice of template does exist, it is very likely

that the volumetric elastic registration process is a contributing factor. Therefore,

the quantitative measure detailed in figure 4.22 reflects both the inaccuracies of the
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registration process as well as the dependence of the model on the template.

Given a training set, the mean shape is expected to be independent of the ventricle

chosen as the template. Therefore, if several PDMs are obtained using different

members of the training set as templates, their mean shapes would be expected to be

approximately equal. This is analogous to the expectation that the average of a set

of numbers is independent on the order of the individual numbers. To quantitatively

assess the dependence of our model generation scheme on the choice of template, we

propose to use the distance transform metric described in section 4.4.4 to measure the

similarity of the mean shapes of models generated with different choices of template.

The use of the distance transform metric requires a distance transform image of

a binary voxel representation, and a triangulated surface. However, we only have

triangulated representations of the mean shapes we intend to compare. We therefore

need a binary voxel representation of each mean shape. We generated binary voxel

representations (with 0.78mm isotropic voxels) of the surfaces of the mean shapes

by obtaining contours in planes representing contiguous slices through the surface in

coronal orientation (details are given in appendix A.3). The distance transform of

the binary voxel representation can then be taken, and distance transform metrics

can be obtained.

A scatter matrix (see Tables 4.2 and 4.3) is constructed whereby the triangulated

surface of each mean shape is embedded in the distance transform of every other mean

shape (including its own). The minimum values of the distance transforms obtained

after optimisation of rigid registrations as described in section 4.4.4 is used as the

measure of similarity. In the case of the results reported below, 100 initialisations

were used when obtaining the distance transform metric. The values recorded in

this chapter are means of the lowest three values. The standard deviations of the

lowest three values were used to estimate the error of measurement. If there is no

dependence on the choice of template, the scatter matrix would be expected to be a

symmetric matrix with elements close to 0.
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Additionally, qualitative assessments of the dependence of PDMs on choice of tem-

plate can be carried out by rendering the mean shapes due to different templates and

visualising the variations of the most significant modes of each PDM.

4.8.1 Dependence of PDM Construction on Choice of Tem-

plate without Re-projection

Here we investigate the dependence of the current method of PDM construction (using

the transportation method of matching points) on the choice of template without

applying the re-projection step (step 5 of Figure 4.3) .

Experiments

The segmented ventricles of the 17 male control subjects were used. The left ven-

tricles of each subject were reflected to give the same pose as the right ones giving

a training set of 34 ventricles. Four ventricles, three chosen at random and the ven-

tricle adjudged to be most representative of the training set were used as templates.

Four PDMs were constructed in the prescribed manner, each using one of the chosen

templates. The similarity of the mean shapes of each of the PDMs were compared

using the distance transform metric.

Results

The qualitative results are shown in Figure 4.23. These show each of the templates

(first column of each row) and the corresponding mean shape obtained using the

current method (second column of each row). The fact that each mean shape retains

features of the ventricle used as a template is obvious in each of the four cases.

Figure 4.26 shows the variation of the most significant mode of each PDM between

three standard deviation units of the value at the mean. In all cases (looking from

left to right along each row) the model seems to “elongate”. However, the different

parts are affected to varying degrees. The width of the anterior and temporal horns
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Template Mean shape of PDM

Results for
template 1

Results for
template 2

Results for
template 3

Results for
template 4

Figure 4.23: Mean shapes of PDMs of the same training set obtained
from four different templates (down the rows)
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decrease, and the temporal horns seem to move closer to the central part of the

ventricle. However, in the PDMs constructed using the first and fourth templates,

the elongation of the occipital horn is more pronounced than in the PDMs of the

second and third templates.

Table 4.2 gives the quantitative results of the comparison of the differences in the

mean shapes. The lowest values of the distance transform metric are in the diagonal

of the table representing the embedding of a triangulated surface of the mean of a

particular PDM within the distance transform of the voxel representation of the same

mean. The values of the distance transform metric along the diagonal ranged from

0.079 to 0.095 with a mean of 0.088 (±0.007). The off-diagonal values ranged from

0.777 to 1.581 with a mean of 1.029 (±0.245). These values are in voxel units - each

voxel unit being equivalent to 0.78mm. These results show that the mean shapes

of PDMs of the different templates are different - as the distance transform metric

of the diagonal entries of the table are an order of magnitude less than those of the

other entries. However, the extent to which the mean shapes of the different models

depend on the choice of template cannot be measured from this. These results are

revisited for a relative comparison in the next section.

4.8.2 Re-Projection as a Solution to Dependence on the Tem-

plate

Figure 4.25 shows that for the current method of construction of PDMs, if the re-

projection step is not included the resulting model depends on the choice of template.

Three possible reasons for this are put forward in this section. Two of these are

unlikely, and the re-projection step was included to address the third reason.

The first is that the number and placement of landmark points might be different for

different templates. The second is that the accuracy with which correspondence is

established differs with the member of the training set chosen as the template. The
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third is that in deforming the template to a target, the template may retain some of

its features and not fully deform to the target.

The first reason may exist, but if it does it should not be significant, as the trian-

gulation and the decimation aim to preserve the topological structure of the shapes

they are applied to. Furthermore, it is the variation in position of the corresponding

landmarks on each ventricle that is being measured, and not the number of land-

marks. Therefore, as long as the landmarks fully represent the shape being modelled,

and are placed in corresponding locations on each member of the training set their

number and placement on the template should not matter. The second reason may

also exist in that using a ventricle that has a highly irregular shape may result in

worse pair-wise crest line correspondence with more members of the training set than

a ventricle with a more regular shape.

However, the third reason seems more the culprit. Visualisation of the corresponding

training set of the experiment in section 4.8.1 showed that although each template was

deformed to approximate the target, the deformed template still retained some of its

own characteristics. Row 2 of Figure 4.24(b) shows an example from the correspond-

ing training set used to construct the PDM of the lateral ventricles of the controls

which illustrates this. We therefore propose to improve the approximation of each

member of the training set by the template. This can be achieved by re-projecting

the landmark points of the deformed template approximating each ventricle (the

corresponding training set) back onto the surface of the actual ventricle. For each

landmark on the approximating ventricle, the re-projection is along the normal to

the surface of the approximating ventricle. The closest vertex on the intersection

of the normal with the actual ventricle is taken as the better approximation of the

landmark. The premise is that the deformed template is a reasonable approxima-

tion of the target ventricle. Therefore, if the deformed template and the target it is

approximating are aligned, the projection of the vertices of the deformed template

along the normal to the vertices should intersect the target at a corresponding point.

The landmarks on each member of the corresponding training set can therefore be
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transferred onto the surfaces of the actual ventricles in this manner.

Two steps are needed to implement the surface projection described above. Firstly, we

need to calculate the outward normals for the deformed template surface. Secondly,

we need to calculate the intersection of these normals with the raw (triangulated)

target surface. Appendix A give details of the two steps in this process: calculating

the surface normals (appendix A.1) and calculating the intersection of these normals

with the target surface (appendix A.2).

The smoothing method of Taubin [111] was applied to the resulting surfaces purely

for visualisation purposes to reduce the “jaggedness” due to the discrete nature of

the surface projection. The effect of this step on the positions of the vertices of

the triangulated surface was negligible. The mean difference in Euclidean distance

between vertices before and after smoothing was applied was 0.87± 0.59mm. Figure

4.24 shows an example of a member of the corresponding training set obtained before

and after applying the projection of vertices and smoothing. These results are typical

of the entire training set, and support the quantitative results that re-projecting

decreases the dependence of the PDM on the choice of template (see section 4.8.3).

However, these results suggest that although the influence of the template on the

corresponding training set is greatly reduced by re-projection, this influence is not

eliminated.

4.8.3 Dependence of PDM Construction on Choice of Tem-

plate, Using Re-projection

The experiments described in section 4.8.1 were repeated here. The only difference

was that prior to construction of the PDM, the vertices of each member of the corre-

sponding training set were projected onto the actual surfaces as described in section

4.8.2.
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(a) Raw triangulated surface of a “target” ventricle

Templates used to generate
point correspondences

Approximation to the sur-
face of the target ventri-
cle following point matching
and deformation to generate
dense point set

Surface generated by re-
projecting the dense cor-
responding point set back
onto the original surface (a)

re-projected surfaces follow-
ing surface smoothing

(b) Approximation of surface in (a) by different templates

Figure 4.24: Qualitative comparison of a member of the correspond-
ing training set produced by four different choices of template with and
without the re-projection step. Subfigure (a) shows the original triangu-
lated surface of the “target”. In subfigure (b), the 1st row shows the four
templates. Subsequent rows show the surfaces produced by deformation
of each template to the target with and without re-projection.
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Surface 1 Surface 2 Surface 3 Surface 4
Dist Trans 1 0.0910 (0.0023) 0.9576 (0.0062) 0.9468 (0.0202) 0.7768 (0.0093)
Dist Trans 2 1.5807 (0.0142) 0.0947 (0.0036) 0.9432 (0.0073) 1.1902 (0.0158)
Dist Trans 3 1.3746 (0.0386) 0.7906 (0.0225) 0.0792 (0.0010) 1.1052 (0.0225)
Dist Trans 4 0.9614 (0.0169) 0.8374 (0.0029) 0.8819 (0.0219) 0.0868 (0.0004)

Table 4.2: Values of the distance transform metric for the comparison
of mean shapes of PDMs. There are four PDMs of the same training
set. Each PDM was created using a different member of the training set
as the template. The values along each row represent the values of the
metric for the triangulated surface of each mean shape embedded in the
distance transform of the mean shape of the particular PDM. The values
in parenthesis give the error estimate of the distance transform metric.

Results

Qualitative results are shown in figures 4.25. The first, third and fourth columns of

each row are relevant to this section. These show each of the templates (first column

of each row), the corresponding mean shape after inclusion of the projection step

(third column of each row), and the mean shape when smoothing was applied to each

member of the corresponding training set after the projection (fourth column). Com-

parison of the third and fourth columns supports the assertion that the smoothing

merely increases the aesthetic quality of the surfaces. The images of the mean shapes

in the third and fourth columns show that they are much more similar to each other,

and less similar to the ventricle used as the template than corresponding mean shapes

in column 2.

Figure 4.27 shows the variation of the most significant mode of each PDM out to three

standard deviation units on either side of the mean. In all cases (looking from left to

right along each row) the model seems to “elongate”. The modes of variation seem

to be similar for all four PDMs, although the physical instances shown are different.

Table 4.3 gives the quantitative results of the comparison of the differences in the

mean shapes. As with table 4.2 the lowest values of the distance transform metric are

in the diagonal entries. These ranged from 0.079 to 0.095 with a mean of 0.074±0.011.

The off-diagonal values ranged from 0.266 to 1.208 with a mean of 0.642± 0.259.
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Template
No
re-projection

Re-projection
Re-projection
AND smoothing

Results for
template 1

Results for
template 2

Results for
template 3

Results for
template 4

Figure 4.25: Mean shapes of PDMs of the same training set obtained
from four different templates (down the rows) by three different methods
(along the columns). Column 1 shows the surfaces of the templates,
column 2 the mean shapes of the PDM before the re-projection, column
3 shows the surfaces of the mean shapes after the re-projection step, and
column 4 shows the surfaces of the mean shapes after the re-projection
step is followed by smoothing
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Figure 4.26: First mode of variation of the PDMs of the same training
set obtained from four different templates. The columns of each row are
the modes of variation for -3 s.d. units (column 1), -1.5 s.d. units (column
2) the mean shape - 0 s.d. units (column 3), 1.5 s.d. units (column 4)
and 3 s.d. units (column 5).
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Figure 4.27: First mode of variation of the PDMs of the same training
set as for figure 4.26 obtained from four different templates after the
projection of landmark points of the corresponding training set onto the
surfaces of the actual ventricles in the training set. The columns of each
row are the modes of variation for -3 s.d. units (column 1), -1.5 s.d.
units (column 2) the mean shape - 0 s.d. units (column 3), 1.5 s.d. units
(column 4) and 3 s.d. units (column 5).

172



Chapter 4. 3D Point Distribution Models - Theory and Practice

Surface 1 Surface 2 Surface 3 Surface 4
Dist Trans 1 0.0683 (0.0067) 0.7041 (0.0054) 0.6618 (0.0170) 0.4525 (0.0135)
Dist Trans 2 1.2081 (0.0029) 0.0736 (0.0061) 0.3610 (0.0164) 0.6787 (0.0058)
Dist Trans 3 0.9923 (0.0182) 0.2663 (0.0200) 0.0896 (0.0043) 0.6628 (0.0230)
Dist Trans 4 0.6657 (0.0089) 0.4862 (0.0114) 0.5668 (0.1005) 0.0655 (0.0018)

Table 4.3: Values of the distance transform metric for the comparison
of mean shapes of PDMs after projection of normals and smoothing steps
were added to the method of construction of the PDMs. There are four
PDMs of the same training set. Each PDM was created using a different
member of the training set as the template. The values along each row
represent the values of the metric for the triangulated surface of each
mean shape embedded in the distance transform of the mean shape of
the particular PDM. The values in parenthesis give the error estimate of
the distance transform metric.

Mean of diagonal terms Mean of off-diagonal terms
Before re-projection 0.075± 0.005 1.029± 0.245
After re-projection 0.074± 0.011 0.642± 0.259
significance of difference p = 0.896 p = 0.001

Table 4.4: Means of the diagonal and off-diagonal terms of Tables 4.2
and 4.3. The last row shows the significance of the significance of the
difference of the means using a t-test.

Discussion

The results of section 4.8.1 can be compared qualitatively with those obtained in

this section. Firstly, the mean shapes of the different PDMs show that projection of

the landmarks of the deformed template onto the surface of the target significantly

reduces the similarity of the mean shape to the template. However, there might be

a residual similarity to the target. This may explain why, although the mean shapes

are more similar to each other for the case were the landmarks were projected onto

the surface of the target, some noticeable difference still exist.

Secondly, the variation of the most significant mode between 3 standard deviation

units about the mean shows similar trends for both the PDMs constructed before

and after the surface projection step was introduced. However, in the case after the

introduction of the surface projection step, the modes of variation were markedly

more similar for all the PDMs. The most salient part of this was the elongation of

the occipital horn. This result suggests that although the mean shapes may differ,
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the underlying differences between the shapes are still being captured regardless of

the choice of template. This result is important because our intention is to use the

PDM for shape analysis. Therefore the relative difference between the members of

the training set are what we are interested in.

The suggestion by the qualitative results, that the surface projection reduced the

dependence of the resulting PDM on the choice of template, is backed up by the

quantitative results of the distance transform metric given in tables 4.2 and 4.3. As

suggested in section 4.8.2 these tables would have been expected to be symmetric,

with the diagonal entries being zero. The diagonal entries in both cases are sig-

nificantly smaller than the other entries. However, the tables do not seem to be

symmetric. This suggests that the embedding of the triangulated surface of mean

shape A into the distance transform of the binary voxel representation of mean shape

B does not give the same value for the distance transform metric as the embedding

of surface B in the distance transform of A. This observation is most likely due to

the discretisation process necessary for the conversion of the triangulated surface into

the voxel representation.

The mean values of the diagonal entries of Tables 4.2 and 4.3 are given in Table 4.4.

The mean values of the non-diagonal entries are also given in the table. This shows

that the inclusion of the surface projection step does not cause a significant change

in the mean values of the diagonal entries. This is to be expected as the diagonal

entries are simply the comparisons of the triangulated and voxelised representations

of the same mean shape. However, the inclusion of the surface projection does cause

a significant reduction in the distance transform metric of the non-diagonal entries.

This is quantitative evidence to back up the qualitative observation that surface

projection reduces the dependence of the PDM on the choice of template.
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4.9 Summary

We have described the mathematical details of PDMs and issues pertaining to their

construction in 3D. A method of PDM construction based on curvature and involving

the transportation algorithm was outlined and used in the construction of the PDM of

the lateral ventricles. The characteristics of the PDM were investigated quantitatively

and qualitatively, and measures to reduce the dependence of the PDM on the choice

of template were implemented. Appendix B shows the surfaces of all the ventricles

and the corresponding surfaces used in construction of the PDM of all 138 (left and

right) ventricles of all the subjects. The modes of variation of the first three modes

of this PDM can be seen on the accompanying CD.
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Morphometric Analysis

5.1 Overview

This chapter gives the results of the morphometric analysis of the ventricles of the

schizophrenic and control subjects. We investigate both shape differences between

the schizophrenic and control groups, as well as differences in the extent of asymmetry

of left and right ventricles in both groups. These comparisons are the main aim of

the thesis, and the culmination of work described in previous chapters.

In chapter 1 the motivation for morphometric analysis, as well as related research was

discussed. Chapter 2 described shape analysis and explained why the PDM approach

was chosen. Description of what a PDM is, and the method of construction of the

3D PDM of the lateral ventricle was given in chapter 4. Parameters obtained from

the PDM are used in the morphometric analysis performed in this chapter. The

morphometric analysis is based on linear discriminant analysis (LDA). The PDM

is also used in characterising the differences in shape inferred from the LDA by

allowing instantiation of intermediate surface representations showing progression of

differences from the schizophrenic extreme to the control extreme.
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The chapter is organised as follows. Section 5.2 states the experimental method. Sec-

tion 5.3 describes how the parameters obtained from the PDM are useful for morpho-

metric analysis. The morphometric analysis involves investigating shape differences

between a pair of groups (control and schizophrenics) and differences between degree

of asymmetry within a group of pairs (left and right ventricles of the same subject).

The investigations we wish to make are detailed in section 5.4. Section 5.5 describes

the basic linear discriminant analysis used for the investigation of shape differences,

and section 5.6 the paired-linear discriminant analysis used in the case of the asym-

metry investigations. In section 5.7 we show that significant shape differences are

observed between control and schizophrenic groups, and that these are adjacent to

neuroanatomical regions that have known association with schizophrenia. However,

we also note that because the discriminants are determined from the training set, the

p-values quoted are optimistically biased. Results of the asymmetry analysis are also

presented in this section. The results are discussed in section 5.8, and a summary of

the main points of the chapter is given in section 5.9.

5.2 Experimental Methods

The PDM used in the subsequent analysis was constructed as described in section

4.5 using segmented ventricles of all subjects. The left ventricles of each subject were

reflected to give the same pose as the right ventricles, giving an evaluation set of 138

ventricles - 60 from the control group (26 female, 34 male) and 78 from the age and

sex matched schizophrenic group (18 female, 60 male).
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5.3 Using the Parameters of the PDM for Mor-

phometric Analysis

The parameters of the PDM are the mean shape, x, the principal components P , and

the weights vector, b. The concept of parameter space or shape space was described

in section 4.2. The mean shape can be taken as the origin of the shape space, and

each principal component as defining an orthogonal direction from the mean shape in

this shape space. The elements of b are orthogonal shape features in the shape space.

The dimensionality of the shape space is determined by the number of principal

components kept. In the present case, the first 30 principal components were used.

These explained over 95% of the variance captured by the PDM.

Each member of the training set is a point within this 30-dimensional space, the

coordinates of which are obtained by inversion of equation 4.6. For the ith member

of the training set, this is given by :

bi = P T (x− xi) (5.1)

The reduction of dimensionality (from 3873 to 30 in the present case) was one of

the reasons for using the PDM approach. For each member of the training set we

therefore have a 30-dimensional parametric representation obtained from the PDM.

These are used for the analysis detailed in the rest of this section.

5.4 Comparisons we Wish to Make

We seek to identify differences in shape between the groups:

• Are there significant differences in shape between the ventricles of the control

and schizophrenic groups?
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• If such differences exist, how do they relate to brain anatomy and, in particular,

regions believed to be associated with schizophrenia?

• Is there any difference between male and female subgroups in this respect?

We also wish to investigate whether differences exist in lateral asymmetry between

groups. The degree of left-right asymmetry of the ventricular shape between the

control and schizophrenic subjects is compared for the pooled male and female groups,

and for each subgroup.

The six comparisons we carry out are listed explicitly below:

1. Shape differences between all schizophrenic subjects and all control subjects.

2. Shape differences between all male schizophrenic subjects and all male control

subjects.

3. Shape differences between all female schizophrenic subjects and all female con-

trol subjects.

4. Difference in extent of asymmetry between left-right pairs of all control subjects

compared with extent of asymmetry between left-right pairs of all schizophrenic

subjects

5. Difference in extent of asymmetry between left-right pairs of all male control

subjects compared with extent of asymmetry between left-right pairs of all male

schizophrenic subjects

6. Difference in extent of asymmetry between left-right pairs of all female control

subjects compared with extent of asymmetry between left-right pairs of all

female schizophrenic subjects
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5.5 Shape (Group) Comparisons Using Linear Dis-

criminant Analysis

Linear discriminant analysis (LDA) forms the core of our investigations into shape

and asymmetry differences. Brief details relevant to this particular application are

given in this section and in section 5.6. Texts such as [46] (chapter 4) and [62] (chapter

4) give fuller details of LDA.

The shape comparisons we wish to carry out are essentially comparisons between

two groups located in a 30-dimensional space. We wish to investigate if the two

groups can be distinguished in this space, and describe the difference(s) between

the groups. An ideal situation would be each group being a multivariate gaussian

distribution centred about a mean with known standard deviations and no overlap

in each dimension. Figure 5.1(a) illustrates this in the 2D case. However, in practice

a degree of overlap will exist between the groups. Figure 5.1(b) illustrates this by

plotting the values of the first and second elements of the parameter vectors of the

male schizophrenic and male control groups. Furthermore the fact that the shape

space is multidimensional means a hyperplane would be needed for separation of the

groups.

The use of LDA allows simplification of the problem of separation of the two groups

by reducing it to a one-dimensional problem. LDA involves finding a discriminant

vector in shape space which gives a direction along which the difference between

the groups is most marked. Shape differences can be quantified by projecting the

individual shape vectors of each ventricle onto the discriminant vector to provide a

scalar value representing each ventricle. The extent of the difference between the

groups is mirrored by the difference between the means of the scalar values of the

members of each group. Furthermore, the nature of the shape differences between

the groups can be visualised by reconstructing shapes along this vector between the

schizophrenic extreme and the control extreme. Specific differences correspond to

180



Chapter 5. Morphometric Analysis

b2

b1

Group 1
Group 2

(a) Ideal case

b2

b1

Male schizophrenics
Male controls

(b) Real case

Figure 5.1: Illustration of an ideal case of separation of two groups (a)
compared with the actual case for the first and second shape parameters
of the male schizophrenics and male controls
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locations on the surface where differences are observed between corresponding points

of the reconstructed shapes.

The importance of the direction of the discriminant vector in obtaining optimum sep-

aration between the two groups is illustrated in figure 5.2. This shows the projection

of the two non-overlapping gaussian distributions of figure 5.1(a) onto discriminant

vectors in two directions. In one direction chosen arbitrarily (subfigure a), the sep-

aration is not good as there is an overlap of the projections of the two groups. The

other direction is obtained by applying the steps discussed below to maximise Fisher’s

criterion. The separation in this case (subfigure b) is better as there is no overlap

between the projections of the two groups.

To obtain the direction of the discriminant vector in the present case, we use Fisher’s

criterion [50]. According to Fisher, the direction of optimum separation is that in

which the difference between the class means is maximised relative to the standard

deviations of the classes in that particular direction. This is encapsulated in Fisher’s

criterion, which for our purposes can be written:

JF =
distance between sample means

standard deviation within sample means
=

wT bc −wT bs√
wT Sw

(5.2)

where w is a vector in the direction that (wT bc−wT bs) is maximised relative to the

standard deviation in that direction.

bc is the mean of the control group

bs is the mean of the schizophrenic group

S is the total within class scatter, which gives a measure of the total within group

variance of the schizophrenic and control groups

Differentiating equation 5.2 and setting the result to 0 allows the direction of the

discriminant vector, ŵ that maximises JF to be determined. This is given by
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Group 1
Group 2

w 

B1 

B2 

(a) Bad separation - direction of discriminant vector w chosen arbitrarily

Group 1
Group 2

w 

B1 

B2 

(b) Good separation - direction of discriminant vector w given by Fisher’s
discriminant analysis

Figure 5.2: The importance of the direction of the discriminant vector
in obtaining good separation is illustrated. In (a) the direction is chosen
arbitrarily, whereas in (b) it is that which maximises Fisher’s criterion
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ŵ = αS−1(bc − bs) (5.3)

α is set to normalise the result so that the unit vector ŵ giving the direction of w

can be obtained.

In the results presented, the definition of the total within class scatter matrix accord-

ing to [46] was used :

S = Sc + Ss (5.4)

Where

Sc and Ss are the unnormalised covariance matrices of the schizophrenic and control

groups. i.e. for the control group, Sc =
∑

i∈s(bi − bc)(bi − bc)
T

The scalar values facilitate the investigation of shape differences in three ways. Firstly,

the significance of the separation between the groups can be obtained by applying a

t-test to the scalar values for the schizophrenic and control groups.

Secondly, localisation of the magnitude of the shape differences on the ventricular

surface is given by the Euclidean distance between corresponding points of instan-

tiations of ventricular surfaces corresponding to the means of the scalar values of

both groups on the discriminant vector. The localisation of shape differences can be

presented intuitively by colour-coding the ventricular surface using this difference.

It should be noted that the differences are expressed in arbitrary normalised shape

units due to the fact that in the creation of the PDM, the members of the training

set were normalised for brain size, and subjected to transformations to make them

Euclidean invariant.

Thirdly, the shape change involved in moving from the schizophrenic extreme to the

control extreme along the discriminant vector can be animated (see accompanying

CD). The extremes are taken as three standard deviation units from the means along
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the discriminant vector. Instantiation of ventricle surfaces at intervals on w between

the schizophrenic and control extremes can be made by substituting the position

vector of sampled points along w into the PDM equation (equation 4.6) i.e.

x = x + Pλŵ (5.5)

Where λ is the scalar value giving the position on w at which the surface instantiation

occurs. The first and third methods above are similar to the analysis applied to the

hippocampi of schizophrenic and control subjects by Davies [38].

5.6 Asymmetry Comparisons Using Paired Linear

Discriminant Analysis

In this section we describe the use of LDA in the analysis of asymmetry within

the schizophrenic and the control groups. Whereas, in section 5.5 we sought to

maximise the separation between the schizophrenic and control groups, here we seek

to maximise the separation between left and right ventricles of the same subject. It

is the difference between the scalar values of left and right counterparts projected

onto the discriminant vector that we are interested in. It should be noted that the

left ventricles had been reflected to give the same pose as the right ventricles. The

analysis presented here follows a method suggested by Poxton et al. [93], used in

the analysis of asymmetry in 2D hippocampal slices. The premise is that there is an

underlying trend in the separation of left and right pairs within shape space. The

hypothetical example of figure 5.3 illustrates this.

For the control group, the discriminant vector we seek is that which maximises sepa-

ration of all left and right pairs in shape space. The same goes for the schizophrenic

group, hence for each of comparisons 4 to 6 we obtain one discriminant vector for

the control group and one for the schizophrenic group. To obtain the direction of
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b1

b2

Right member of pair
Left member of pair

w 

Figure 5.3: Illustration of finding the discriminant vector maximising
the separation between a group of pairs. The figure shows the vector
obtained after application of the methods described in section 5.6

the discriminant vector, Poxton et al. substituted the differences of the means in the

numerator of Fisher’s criterion (equation 5.2) with the mean difference between left

and right pairs. The scatter matrix, S, was replaced with a paired covariance matrix,

Sp.

JP =
mean difference between left and right pairs

standard deviation of difference
=

wT
p d√

wT
p Spwp

(5.6)

where wp is a vector in the direction that wT
p d is maximised relative to the standard

deviation in that direction.

d = 1
n

∑n
i=1 di - with di being the difference in the parameter vectors of the ith left

and right pair.

The measure of the standard deviation of the difference between the left and right
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pairs is taken as the paired covariance matrix Sp which is simply the covariance

matrix of the differences between the left and right pairs :

Sp =
1

n− 1

n∑
i=1

(di − d)(di − d)T (5.7)

The direction of the discriminant vector in this case is

ŵp = αS−1
p d (5.8)

We assess comparisons 4 to 6 in four ways. The first is by using a pair-wise t-test to

investigate whether the scalar values of the projections of the left and right ventricles

onto the discriminant vector for each group are significantly different. This indicates

whether a significant degree of asymmetry exists within each group. Secondly, as in

section 5.5 we show the localisation of shape differences between left and right using

the difference between corresponding points on instantiations of ventricular surfaces

of the left and right means on the discriminant vector.

The above two assessments are similar to those carried out in [93]. However, we go

further by doing two more assessments. Firstly, we perform a t-test on the differ-

ences in the scalar values of left-right pairs in the schizophrenic and control groups.

This indicates whether there is a significant difference in the magnitude of left-right

asymmetry in the two groups. Secondly we find the scalar product of the unit vectors

in the directions giving best discrimination for the control and schizophrenic group.

This indicates whether the shape differences between the left and right pairs are of the

same nature in schizophrenics and controls. If the magnitude of the scalar product is

close to 1 the discriminant vectors are co-directional and represent shape changes of

the same nature. On the other hand, if the magnitude of the scalar product is close

to 0, it indicates that the discriminant vectors are orthogonal, representing different

kinds of shape change.
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5.7 Results of Morphometric Analysis

5.7.1 Shape Differences Between Schizophrenics and Con-

trols

Figures 5.4 to 5.6 show the results for each of the three shape comparisons. The

scalar values of the projections of the ventricles onto the discriminant vector in the

30-dimensional shape space are shown in (a) of each figure. The difference between

ventricles at the schizophrenic mean and the control mean of the projections onto the

discriminant vector are shown in (b) and (c). In each case sub-figure (b) is the view

of the ventricle from the lateral aspect - i.e. the midline of the brain. Sub-figure (c)

is the view from the medial aspect - i.e. from the side of the head. Figure (d) in each

case shows the colour-map of the normalised shape distance. The same colour-map is

used in the results of comparisons 1 to 3 as it is the relative magnitudes of the shape

differences that interest us. AVI files of animations showing the change in the shape

of the ventricular surface between the schizophrenic and control extremes along the

discriminant vector are included on the accompanying CD.

5.7.2 Differences in Extent of Asymmetry within Schizophrenic

and Control Groups

Figures 5.7, 5.9 and 5.11 show the results of the paired LDA for the three comparisons

in this section. In each case sub-figure (a) shows two plots. The first is that of the

scalar values of the left-right pairs of the schizophrenic group projected onto the

discriminant vector. The second is a similar plot for the control group. Sub-figure

(b) is also a plot of the projections onto the discriminant vector. However, in this case

the intention is to highlight the relationship between the scalar values of left-right

pairs on the discriminant vector. The vertical distance between the pairs was added

simply to aid the clarity of presentation.
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−40 −30 −20 −10 0 10 20 30

Schizophrenics
Controls

(a) Scalar values for projection onto the discriminant vector in 30-
dimensional space. The filled black circles are the group means

(b) Ventricular surface showing localised
shape differences. View from lateral aspect.

(c) Ventricular surface showing localised
shape differences. View from medial aspect

0.2 0.4 0.6 0.8 1 1.2 1.4

(d) Colour map of figures (b) and (c) above

Figure 5.4: Results of Comparison 1 - Shape differences between all
schizophrenic subjects and all control subjects
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−30 −20 −10 0 10 20 30

Schizophrenics
Controls

(a) Scalar values for projection onto the discriminant vector in 30-
dimensional space. The filled black circles are the group means

(b) Ventricular surface showing localised
shape differences. View from lateral aspect

(c) Ventricular surface showing localised
shape differences. View from medial aspect

0.2 0.4 0.6 0.8 1 1.2 1.4

(d) Colour map of figures (b) and (c) above

Figure 5.5: Results of Comparison 2 - Shape differences between all
male schizophrenic subjects and all male control subjects
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−20 −15 −10 −5 0 5 10 15 20

Schizophrenics
Controls

(a) Scalar values for projection onto the discriminant vector in 30-
dimensional space. The filled black circles are the group means

(b) Ventricular surface showing localised
shape differences. View from lateral aspect

(c) Ventricular surface showing localised
shape differences. View from medial aspect

0.2 0.4 0.6 0.8 1 1.2 1.4

(d) Colour map of figures (b) and (c) above

Figure 5.6: Results of Comparison 3 - Shape differences between all
female schizophrenic subjects and all female control subjects
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Schizophrenic mean Control Mean Dshape pshape
†

Comparison 1 5.89 (9.41) -7.66 (10.62) 13.54 7.35× 10−13

Comparison 2 5.34 (9.94) -12.34 (7.54) 17.68 2.87× 10−14

Comparison 3 11.00 (4.72) -5.78 (5.23) 16.78 8.30× 10−14

Table 5.1: Summary of results of shape comparisons. The mean val-
ues for the scalar result of projection of members of the schizophrenic
and control groups onto the discriminant vector is given for comparison
1 (both males and females), comparison 2 (males only) and compari-
son 3 (females only). Dschiz is the mean difference between the scalar
projections of the schizophrenic group and the control group (standard
deviations in parenthesis), and pshape is the probability associated a t-
test between the two groups. † The p-values are optimistically biased as
stated in section 5.1

Dschiz pschiz Dcont pcont
†

Comparison 4 7.94 (2.38) 2.16× 10−22 2.49 (0.33) 3.55× 10−27

Comparison 5 3.59 (1.07) 1.69× 10−17 19.42 (11.23) 2.39× 10−6

Comparison 6 23.15 (19.65) 1.61× 10−02 32.45(32.03) 1.13× 10−03

Table 5.2: Pair-wise t-tests of differences in left-right pairs. Dschiz is
the mean difference between the scalar projections of the left-right pairs
within the schizophrenic group (standard deviations in parenthesis), and
pschiz is the probability associated with the pair-wise t-test of the scalar
values. Dcont and pcont are corresponding values for the control groups.
† The p-values are optimistically biased as stated in section 5.1

Figures 5.8, 5.10 and 5.12 show the localisation of shape asymmetry between left-

right pairs. Sub-figures (a) and (b) are views for the schizophrenic group from the

lateral aspect and the medial aspect respectively. Sub-figure (c) is the colour-map

for (a) and (b). Sub-figures (d), (e) and (f) give similar results for the control group.

The same colour-map is not used in all the figures because the magnitude of the

shape differences varies significantly for the different sub-groups. Table 5.2 shows the

values for the pair-wise t-test of the scalar values of the left and right ventricles for

comparisons 4, 5 and 6. Comparison 4 examines differences in extent of asymmetry

between left-right pairs of all control subjects and left-right pairs of all schizophrenic

subjects. Comparison 5 does the same for the male subgroup, and comparison 6 for

the female subgroup. Table 5.3 summarises the quantitative comparison of differences

in extent of asymmetry between the schizophrenic and control subjects in each of the

groupings.
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−40 −30 −20 −10 0 10 20 30 40

Schizophrenics − right
Schizophrenics − left
Controls − right
Controls − left

 D = 2.48    

D = 7.94

(a) Scalar values for projection onto the discriminant vector.

−40 −30 −20 −10 0 10 20 30 40

Schizophrenics − right
Schizophrenics − left
Controls − right
Controls − left

(b) Scalar values for projections showing relationship of values of left and right counterparts

Figure 5.7: Results of Comparison 4 - Scalar values for projections of
left and right pairs of all schizophrenic and all control subjects
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(a) Localised shape differences be-
tween left and right means of all
schizophrenics. View from lateral
aspect

(b) Localised shape differences
between left and right means of all
schizophrenics. View from medial
aspect

0.1 0.2 0.3 0.4 0.5 0.6 0.7

(c) Colour map of figures (a) and (b)

(d) Localised shape differences
between left and right means of
all controls. View from lateral as-
pect

(e) Localised shape differences be-
tween left and right means of all
controls. View from medial as-
pect

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

(f) Colour map of figures (d) and (e)

Figure 5.8: Results of Comparison 4 - Colour-mapped ventricular sur-
face of shape differences between means of left and right pairs of all
schizophrenic and all control subjects after projection onto the discrimi-
nant vector
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−40 −20 0 20 40 60 80

Male Schizophrenics − right
Male Schizophrenics − left
Male Controls − right
Male Controls − left

    D = 19.42

D = 3.59

(a) Scalar values for projection onto the discriminant vector.

−40 −20 0 20 40 60 80

Male Schizophrenics − right
Male Schizophrenics − left
Male Controls − right
Male Controls − left

(b) Scalar values for projections showing relationship of values of left and right counterparts

Figure 5.9: Results of Comparison 5 - Scalar values for projections of
left and right pairs of male schizophrenic and male control subjects onto
the discriminant vector
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(a) Localised shape differences be-
tween left and right means of male
schizophrenics. View from lateral
aspect

(b) Localised shape differences
between left and right means of
male schizophrenics. View from
medial aspect

0.05 0.1 0.15 0.2

(c) Colour map of figures (a) and (b)

(d) Localised shape differences
between left and right means of
male controls. View from lateral
aspect

(e) Localised shape differences be-
tween left and right means of male
controls. View from medial as-
pect

0.2 0.4 0.6 0.8 1 1.2

(f) Colour map of figures (d) and (e) above

Figure 5.10: Results of Comparison 5 - Colour-mapped ventricular sur-
face of shape differences between means of left and right pairs of male
schizophrenic and male control subjects after projection onto the discrim-
inant vector
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−80 −60 −40 −20 0 20 40 60 80 100 120

Female Schizophrenics − right
Female Schizophrenics − left
Female Controls − right
Female Controls − left

D = 32.45    

D = 23.15    

(a) Scalar values for projection onto the discriminant vector.

−80 −60 −40 −20 0 20 40 60 80 100 120

Female Schizophrenics − right
Female Schizophrenics − left
Female Controls − right
Female Controls − left

(b) Scalar values for projections showing relationship of values of left and right counterparts

Figure 5.11: Results of Comparison 6 - Scalar values for projections of
left and right pairs of female schizophrenic and female control subjects
onto the discriminant vector
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(a) Localised shape differences be-
tween left and right means of fe-
male schizophrenics. View from
lateral aspect

(b) Localised shape differences
between left and right means of
female schizophrenics. View from
medial aspect

0.5 1 1.5 2 2.5 3 3.5

(c) Colour map of figures (a) and (b)

(d) Localised shape differences
between left and right means of fe-
male controls. View from lateral
aspect

(e) Localised shape differences be-
tween left and right means of fe-
male controls. View from medial
aspect

0.5 1 1.5 2

(f) Colour map of figures (d) and (e) above

Figure 5.12: Results of Comparison 6 - Colour-mapped ventricular sur-
face of shape differences between means of left and right pairs of female
schizophrenic and female control subjects after projection onto the dis-
criminant vector
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Dschiz Dcont p† |Dot Product| (angle)
Comparison 4 7.94 (2.38) 2.49 (0.33) 4.5× 10−19 0.18 (800)
Comparison 5 3.59 (1.07) 19.42 (11.23) 8.7× 10−10 0.26 (1050)
Comparison 6 23.15 (19.65) 32.45(32.03) 0.41 0.43 (660)

Table 5.3: Summary of the quantitative results of the asymmetry anal-
ysis. Dschiz is the mean difference between the scalar projections of the
left-right pairs within the schizophrenic group (standard deviations in
parenthesis). Dcont is the mean for the control group. p is the value
of the t-test comparing Dschiz and Dcont. The last column contains the
magnitude of the dot product of the unit vectors in the direction of the
schizophrenic and control discriminant vectors, and the angle between
them is given in brackets. † The p-values are optimistically biased as
stated in section 5.1

5.8 Discussion

5.8.1 Discussion of Results of Shape Comparisons

Comparison 1 shows that significant shape differences exist between the schizophrenic

and control groups. The means of the scalar values of projection of ventricles from

each group onto the discriminant vector are significantly different (p < 0.0005 by

two tailed t-test). Significant shape differences also exist between the subgroups of

schizophrenic males and control males, and schizophrenic females and control females

with p < 0.0005 in both cases. For all three comparisons the localisation of the shape

differences was presented using colour-mapped ventricular surfaces.

For comparison 1 the shape differences were greatest at the lateral aspect of the

anterior horn near the caudate nucleus, the region of the medial aspect of the anterior

horn adjacent to the corpus callosum, the medial aspect of the lower part of the central

body of the ventricle, and parts of the inferior (temporal) horn.

For comparison 2, the greatest shape differences were observed in the anterior horn

and in the temporal horn as in comparison 1. However, the magnitude of the

shape differences in the anterior horn were greater when only the male subgroups

of schizophrenics and controls were compared. Shape differences were also present in
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the medial aspect of the lower part of the central body of the ventricle, however their

magnitude was much less than that of comparison 1. There were shape differences

in the lateral aspect of the lower part of central body of the ventricle which were not

observed in comparison 1. The shape differences between schizophrenics and controls

in the female subgroup (comparison 3) were more similar to those of the combined

male and female (comparison 1), than to those of the male subgroup. Shape differ-

ences were present in the anterior and temporal horns, and also in the medial aspect

of the lower part of the central body of the ventricle. The differences in the lateral

aspect of the anterior horn were over a larger local area in the case of the female

subgroup than the combined male and female group and the male subgroup. There

was no noticeable difference in the lateral aspect of the lower part of the central body

as observed in the male subgroup.

Table 5.1 summarizes the differences in the scalar values of the projections onto the

discriminant vector for comparison 1 (both males and females), comparison 2 (males

only), and comparison 3 (females only). values of the differences in the means of the

projections onto the discriminant vector for the schizophrenic and control members in

each of the comparisons is of the same order (between 13 and 17). The significance of

the differences in the means is high for all three comparisons (p << 10−12). However,

the maximum difference was observed in the male only group (comparison 2), followed

by the female only group (comparison 3). Narr et. al. [87] have also noted that shape

differences between male schizophrenics and male controls were greater than those

between female schizophrenics and female controls. Buckley et. al. reported that

no significant shape differences were observed when comparing the lateral ventricles

of a combined group of male and female schizophrenics. However, within the male

subgroup significant shape differences were observed in the temporal horn.

The differences in the anterior horn and the temporal horn are in regions thought to

be associated with schizophrenia. The corpus callosum connects the two hemispheres

of the brain and a number of MRI studies e.g. [133] have reported abnormalities in

this structure in the brains of schizophrenics.
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Schizophrenia frequently involves cognitive and behavioural impairment, and these

are often associated with frontal lobe damage [89]. The anterior horn extends into the

frontal lobe of the brain. Some functional studies of the brains of schizophrenic sub-

jects using positron emission tomography (PET) and functional magnetic resonance

imaging (fMRI) have shown abnormalities in the prefrontal cortex, which occupies the

anterior portions of the frontal lobe. Some structural MRI studies have also reported

abnormalities in the Frontal lobe. However, there have also been studies reporting

no significant differences in this area between schizophrenic and control subjects. A

review of studies of the involvement of the frontal lobe in schizophrenia is given in

[130] .

The shape differences observed in the temporal horn are also interesting. These

were observed in the region around the hippocampus. Changes in the function of

the hippocampus are thought to be important in the symptoms and aetiology of

schizophrenia.

The shape differences in the lower part of the central body of the ventricle could

not be associated with published schizophrenic findings. We also did not observe

significant shape differences at the tip of the temporal horn, which is in the region of

the amygdala. The amygdala is closely associated with the hippocampus, and also of

importance in the pathology of schizophrenia. Shape differences in the frontal horn

were reported by Narr et. al. [87] in their morphometric analysis of schizophrenia.

However, they also reported significant shape differences in the posterior horn which

we have not observed.

5.8.2 Discussion of Asymmetry Results

The results of the asymmetry comparisons show that there is a significant degree of

asymmetry in left and right ventricle pairs within both the schizophrenic and control

groups. For comparisons 4 and 5 (all subjects and males subgroup respectively), pair-

wise t-tests of the scalar values of the projections onto the discriminant vector (Table
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5.2) showed p ¿ 0.0005. For the the female schizophrenic subgroup (comparison 6)

p = 0.016 and for the female control subgroup, p = 0.0011. Sub-figure (b) of figures

5.7, 5.9 and 5.11 shows that in almost all cases the scalar value of the projection

of the right ventricle onto the discriminant vector was greater than that of its left

counterpart. This supports the assumption depicted in the hypothetical example of

figure 5.3, that there is an underlying trend in the separation of left and right pairs

in the shape space.

Table 5.3 shows that the magnitude of the asymmetry within the schizophrenic group

was significantly different to that within the control group for comparisons 4 and 5

(p ¿ 0.0005). The pattern of asymmetry for the control group was also different

from that of the schizophrenic group for comparisons 4 and 5. This was reflected

quantitatively by the magnitude of the dot products of the discriminant values. The

fact that the patterns of asymmetry are different is also illustrated qualitatively in

Figures 5.8 and 5.10. The asymmetry in the projections of the means of the left-right

pairs of all schizophrenic subjects on the discriminant vector (5.8 (a) and (b)) was

greatest in the lower part of the main body of the ventricle and in the anterior horn.

In the case of all control subjects (5.8(d) and (e)), asymmetry was greatest at the

tip of the temporal horn and the tip of the anterior horn. The maximum of the

magnitude of the asymmetry in the schizophrenic case was over three times as much

as that in the control case (0.72 vs 0.20 normalised shape units).

When only the male subgroup was considered (comparison 5), the extent of asym-

metry in the control group was greater than that in the schizophrenic group - a

reversal of the observation in comparison 4. However, as in comparison 4, the lo-

calisation of asymmetry was different in the control and schizophrenic groups. For

the schizophrenic group asymmetry was greatest in the lateral aspect of the anterior

horn in a similar region to that where shape differences were observed between the

controls and schizophrenic males. Asymmetry was also present in lower part of the

main body of the ventricle, the medial aspect of the anterior horn, the occipital horn,

and the tip of the temporal horn. For the male control group the greatest asymmetry
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was observed around the tip of the anterior horn, in the lower part of the central

body of the ventricle, and in the temporal horn.

Table 5.3 shows that the extent of the asymmetry observed in the female subgroup

(comparison 6) was not significantly different between the control and schizophrenic

groups (p = 0.41). The localisation of the asymmetry was also similar for the controls

and the schizophrenic females. This was mainly in the occipital horn, although in

the control group there was also some asymmetry in the middle part of the medial

aspect of the main body of the ventricle. This similarity is also shown quantitatively

in Table 5.3, as the magnitude of the scalar product for this sub-group (0.43) is

greater than for the combined male and female group, and the male only sub-group.

Figures 5.11 shows that there is much higher variability between the left and right

pairs of the female subgroup, particularly within the schizophrenic subjects. This

is most probably due to the small number of subjects in these groups (18 female

schizophrenics and 26 female controls, compared with 60 male schizophrenics and 34

male controls).

In conclusion, the asymmetry results indicate that there a difference in the extent of

asymmetry of the shape of the ventricles for schizophrenic subjects and for control

subjects. Our results showed that when the pooled groups of males and females are

compared (comparison 4) the magnitude of asymmetry is greater in schizophrenics

than in controls, and that the nature of the asymmetry in both groups is different.

However, comparison of the male subgroup showed that the magnitude of the asym-

metry in controls was greater than that in schizophrenics, and again the nature of

asymmetry in both groups was different. The comparison of the female subgroup

showed that there was no significant difference in the magnitude of asymmetry be-

tween schizophrenics and controls. Furthermore the nature of the observed asymme-

try was similar for schizophrenics and controls. However, the results for this subgroup

may have been affected by the small sample size.

Crow’s hypothesis was mentioned in section 1.1. This proposed that brains of schizophrenic
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subjects are more symmetric than those of control subjects. The results of compari-

son 5 (male subgroup) support Crow’s hypothesis as the magnitude of the asymmetry

is greater in the male schizophrenics than in the male controls. On the other hand

the results of comparison 4 (combined male and female group) do not support Crow’s

hypothesis as they indicate that the magnitude of asymmetry of the schizophrenics

is greater than that of the controls. However, the most interesting aspect of our

results are the suggestion that the nature of asymmetry in the schizophrenic group

is different from that in the control group.

5.9 Summary

In this section we have outlined the construction of the PDM used to perform morpho-

metric analysis on the lateral ventricles of the schizophrenic and control subjects. We

explained the application of LDA to investigate the differences between the groups.

The results showed that there were significant shape differences in areas of the lateral

ventricles adjacent to structures in the brain implicated in schizophrenia. There was

also a significant degree of asymmetry between the left and right ventricles within

both the control and the schizophrenic groups. The pattern of asymmetry was sim-

ilar for controls and schizophrenics in the female sub-group. However, in the male

sub-group, and in the combined male and female group the pattern of asymmetry

was different for controls and schizophrenics.
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Conclusions

6.1 Contributions of this Thesis

We have described a method of construction of 3D PDMs of the lateral ventricles

using salient curvature-based physical landmarks. These were the crest lines of the

ventricles obtained using the marching lines algorithm. The use of crest lines in

constructing 3D PDMs was proposed by Subsol [108], and Andresen et. al. [3] have

applied this to the construction of a 3D PDM of the human mandible.

However, our method differs from that of [3] in that we have used the transportation

algorithm to address the problem of obtaining point-to-point correspondences. We

have shown that this method gives better correspondences, and that the resulting

PDMs capture the variation in the training set better than those obtained by corre-

spondence using the closest points. The transportation approach we described can

be applied to other point matching problems.

The application of PDMs to 3D problems is relatively new and their construction

usually involves automatic location of homologous points on structurally significant

parts of surface representations of each member of the class of object being modelled.
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This is less clearly true in the MDL approach of Davies et. al. [39] since they never

relate the optimal points to structural features on the surface. In the case of the

lateral ventricles, 3D PDMs of parts of the lateral ventricle have been constructed

[22][38]. We are only aware of one group (Gerig et. al. [54]) that have constructed a

comprehensive 3D PDM of this structure. However, in that case the corresponding

points were simply distributed uniformly across the surface (taking no account of

structural features). Furthermore, the entire ventricle surface was not modelled, the

examples shown in [54] do not include the temporal horns and the posterior horns.

Therefore, the PDM described here is the first true PDM of the entirety of the lateral

ventricles and our method of construction has explicitly incorporated normalisation

for brain shape, as opposed to other methods that apply global normalisation based

on brain size.

We have performed extensive quantitative analysis of our PDM. We introduced the

use of a 3D distance transform method for the quantitative comparison of the similar-

ity of triangulated surfaces with voxel images. We have applied this to the comparison

of the corresponding training set with the original training set to quantitatively mea-

sure the fidelity with which the original surfaces are represented in the building of

the PDM. This comparison has not been reported for other methods of building 3D

PDMs. Additionally, we quantitatively investigated the dependence of our model on

the choice of template, and took steps to reduce this.

The approach we adopted to shape analysis gave both quantitative and qualitative

indications of shape and asymmetry differences between the schizophrenic and control

groups being compared. Our shape analysis showed that the ventricular shape of the

schizophrenic and control groups are significantly different (p < 10−12). The shape

differences observed were localised to four main regions. Three of these are close to

structures thought to be implicated in schizophrenia: the temporal horn (its tip near

the amygdala, and along its body near the parahippocampal fissure), the central part

of the lateral ventricles around the caudate nucleus, and the tip of the anterior horn

in the region of the frontal lobe and near the corpus callosum.
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Investigations of asymmetry between left and right ventricle pairs showed that a

degree of asymmetry in shape existed in both schizophrenics and controls. The

extent of asymmetry in the combined group of male and female subjects was greater

in schizophrenics than in controls. However, when the male subgroup was examined

the degree of asymmetry in controls was greater - which would be expected according

to the “Crow hypothesis”. For the female subgroup the degree of asymmetry was not

significantly different for schizophrenics and controls. This may have been because of

the small number of subjects within this subgroup. Our analysis also showed that the

nature of the asymmetry in the combined male and female group and in the male only

subgroup was different for schizophrenics and controls. This is interesting as it may

suggest that it is not the degree of asymmetry alone that changes with schizophrenia,

but the nature of the actual asymmetry. The PDM model can be used to investigate

this further as it allows instantiation of surfaces that gives insight into the physical

nature of the differences. These results contribute to the sparse (but growing) results

of differences in the lateral ventricles of schizophrenic and control subjects provided

by 3D morphometric techniques.

6.2 Further Work

The dependence of the model on the choice of template needs to be investigated

further. It is possible that the use of a better method of non-rigid registration in

the step involving deformation of the template to each member of the training set

might reduce the effect. One possible solution may arise from work being carried out

at ISBE on clamped-plate splines [82], being extended to the case of approximating

spline functions.

The crest-line approach to the construction of 3D PDMs is application specific in that

it can only be applied in cases where consistent salient curvature landmarks exist e.g

the ventricles and the skull. There are three other prominent methods of constructing

SSMs - the MDL based approach of Davies et.al [39], the combined SPHARM and
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medial transform approach of the Styner and Gerig [107], and the high-dimensionality

transformation method of Thompson and Toga used in [87]. Comparison of these

methods against each other, and indeed methods of comparison of different SSMs

in general are desirable. This will allow the effectiveness of different methods to be

compared - it may be that application-specific methods such as the present one are

better than general methods in certain instances, or the converse might be the case.

The form of this comparison may be in applying different methods to the same data

set to see if similar results are produced.

PDMs can also be used in model based segmentation. As indicated in chapter 2,

segmentation is usually a bottleneck in the analysis of medical images, and methods

of automating segmentation are desirable. The 3D PDM of the ventricle could be

used in the construction of a 3D active shape model (ASM) which can be applied to

segmentation.

6.3 Final Statement

3D Shape based morphology is an active area of research. We have presented a

principled method of quantitative shape analysis. In the case of schizophrenia we do

not claim to have a method that allows automatic categorisation into control and

schizophrenic groups, but one which will aid the understanding and monitoring of

schizophrenia, and other neurological diseases.
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Operations on the Triangulated

Surfaces

Dealing with the 3D surfaces of the ventricles presented some problems that are

faced in the computer graphics field, and for which solutions are avialable. This

appendix gives details of the operations carried out in chapter . . . where results from

the computer graphics field that were used. Texts such as [34][88] give further details.

However, the solutions used here were based on notes obtained from [109].

A.1 Outward Normals to a Triangulated Surface

Triangulation of a surface involves having a list of coordinate points on the surface -

the vertices, and a list of triplets of vertices defining triangular facets which tessellate

the surface.

The vertices can be stored in a M × 3 matrix V . The number of rows of the matrix,

M , gives the number of vertices, and there are three columns because we are dealing

with 3D space. Each row in the matrix represents the triplet of real numbers V giving

the 3D coordinates of a particular vertex.
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The facets are represented by a N × 3 Matrix, F . Each row of this matrix stores

three indices to the rows in V containing the coordinates of the vertices defining a

facet. We assume (quite rightly in practice) that the order of vertices in each triplet

defining a facet is the same - i.e. applying the right hand rule to the vectors formed

by the vertex edges gives consistent results for all facets. We therefore have a sense

of outward and inwards for vectors on the surface.

The unit normal to a facet is given by the cross-products

n̂f =

∑2
i=1(Vi+1 − Vi)⊗ (Vi+2 − Vi+1)

‖∑2
i=1(Vi+1 − Vi)⊗ (Vi+2 − Vi+1)‖

(A.1)

where i is the column in F from which the index to a vertex is obtained. Note that

when i = 2, the column referred to by i + 2 is the first column.

An estimation to the unit normal to a vertex is obtained from the unit vectors of the

neighbouring facets which share the vertex :

n̂v =

∑
neighbours n̂f

‖∑
neighbours n̂f‖ (A.2)

A.2 Intersection of a Triangulated Surface By a

Line Segment

One of the steps in the construction of PDMs described in this thesis required pro-

jection of vertices from one surface onto another surface. Each vertex was projected

in the direction of its unit normal vector obtained using Equation A.2.

The problem can be stated as follows : Given a vertex point P0, and a direction n̂v

(the unit normal of the vertex), we wish to determine the point of intersection of a

line segment through P0 in the direction n̂v, with the triangular facet F in a plane

π. F has vertices V0, V1, and V2, and unit normal vector n̂f . Figure A.1 illustrates
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this.
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Figure A.1: A facet F with vertices V0, V1, and V2 lying in the plane
π. The line segment from the point P0 in the direction n̂v, intersects F
at Px.

Firstly, we need to find the point Px, at which the line segment from P0 in the

direction nf intersects the plane π. This is obtained from the parametric equation

of the line segment :

Pi = P0 + λn̂v (A.3)

Where

λ = − n̂f ·w
n̂f · n̂v

with w being the vector in the plane π joining Px and V0, i.e. w = (Px − V0).

Secondly, we check if the intersection point, Px, is in the triangle defined by the facet,

F . The parametric equation of Px in the plane is :

V (s, t) = V0 + su + tv (A.4)
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where s, t ∈ <, u = (V1 − V0), and v = (V2 − V0) as shown in Figure A.1.

Px is in F only if ALL of the follow three conditions are true,

s ≥ 0

t ≥ 0

s + t ≤ 1 (A.5)

[109] derive an expression allowing s and t to be computed using only scalar products

:

s =
(u · v)(w · v)− (v · v)(w · u)

(u · v)2 − (u · u)(v · v)
t =

(u · v)(w · u)− (u · u)(w · v)

(u · v)2 − (u · u)(v · v)
(A.6)

The algorithm for the projection of the vertices of one surface S1 onto another tri-

angulated surface, S2, is :

1. For each vertex in S1

(a) Find parametric equation of line segment in direction of vertex normal

using Equation A.3

(b) Find position of intersection of the line segment with planes of ALL facets

of S2 by solving for λ in each case

(c) Find the facets for which the intersection points satisfy Equation A.5

2. Repeat above steps in the direction −n̂v (as we do not know if the vertex is on

the inside or the outside of surface S2)

If there is more than one candidate point on surface S2 for a vertex on S1, we select

the closest point whose facet normal is in the same direction as n̂v. On the other

hand, if no candidate points were returned - which happened in less than 5% of

vertices, the vertex is projected onto the closest vertex on surface S2.
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The algorithm outlined above seems exhaustive. However, a vectorised implementa-

tion in Matlab was used. This took less than two minutes for each pair of surfaces.

A.3 Generating Voxel Representations of Trian-

gulated Surfaces

To generate voxel representations of a triangulated surface, planes representing con-

tiguous slices are used to intersect the surface at uniform intervals (see Figure A.2).

The coordinates of the points at which the surface intersects the plane are obtained

as a finely sampled contour using the algorithm outlined below. These coordinates

are rounded to the nearest integer to get the indices of the surface voxels for that

plane (slice).

Algorithm for voxelisation of a surface

1. Translate surface so all vertices have positive coordinate values

2. In the present case unit normal to plane is always in Z−direction, i.e. (0,0,1)

3. Repeat for each plane, i := floor(minimum Z - 1) To ceil(maximum Z) + 1 In

Unit integer steps

(a) for each facet determine if it intersects plane (by comparing Z coordinates

of its three vertices with i)

(b) for each intersecting facet find the pair of points on the facet edges, P1 and

P2 at which intersection with the plane occurs using the steps outlined in

A.2 above

(c) linearly interpolate between P1 and P2 to obtain a finely sampled contour
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Figure A.2: An illustration of using planes to intersect the ventricular
surface in creating a voxel representation of the triangulated ventricular
surface
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Subjects Participating in the Study
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Male Schizophrenics Female Schizophrenics
Subject Number Age Subject Number Age
5258 15 5131 14
5285 18 5179 17
5296 18 5203 18
5200 19 5314 18
5263 19 5019 19
5062 20 5237 23
5315 20 5265 23
5090 21 5091 30
5225 21 5116 31
5231 21
5266 21
5274 21
5002 22
5087 22
5160 22
5077 23
5054 24
5280 24
5148 25
5256 26
5025 27
5197 27
5283 27
5284 27
5141 28
5276 28
5233 30
5171 33
5140 36
5175 48

Table B.1: Age and sex data for schizophrenic subjects
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Right from
segmentation

Right after
correspondence

Left from
segmentation

Left after
correspondence

Subject 5258
Age at scan:
15yrs

Subject 5285
Age at scan:
18yrs

Subject 5296
Age at scan:
18yrs

Subject 5200
Age at scan:
19yrs

Subject 5263
Age at scan:
19yrs

Figure B.1: Lateral ventricles of male schizophrenic subjects (1 to 5 of
30). The 1st column shows the surface of the segmented right ventricle
of the specified subject. The 2nd column is the surface of the member
of the training set used in construction of the PDM. The surface has
been colour-coded such that corresponding parts of the surface have the
same colour. The 3rd and 4th columns give respective versions for the left
ventricle (reflected to give same pose as right) of the subject.
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Right from
segmentation

Right after
correspondence

Left from
segmentation

Left after
correspondence

Subject 5062
Age at scan:
20yrs

Subject 5315
Age at scan:
20yrs

Subject 5090
Age at scan:
21yrs

Subject 5225
Age at scan:
21yrs

Subject 5231
Age at scan:
21yrs

Figure B.2: Lateral ventricles of male schizophrenic subjects (6 to 10
of 30). The 1st column shows the surface of the segmented right ventricle
of the specified subject. The 2nd column is the surface of the member
of the training set used in construction of the PDM. The surface has
been colour-coded such that corresponding parts of the surface have the
same colour. The 3rd and 4th columns give respective versions for the left
ventricle (reflected to give same pose as right) of the subject.
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Right from
segmentation

Right after
correspondence

Left from
segmentation

Left after
correspondence

Subject 5266
Age at scan:
21yrs

Subject 5274
Age at scan:
21yrs

Subject 5002
Age at scan:
22yrs

Subject 5087
Age at scan:
22yrs

Subject 5160
Age at scan:
22yrs

Figure B.3: Lateral ventricles of male schizophrenic subjects (11 to 15
of 30). The 1st column shows the surface of the segmented right ventricle
of the specified subject. The 2nd column is the surface of the member
of the training set used in construction of the PDM. The surface has
been colour-coded such that corresponding parts of the surface have the
same colour. The 3rd and 4th columns give respective versions for the left
ventricle (reflected to give same pose as right) of the subject.
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Right from
segmentation

Right after
correspondence

Left from
segmentation

Left after
correspondence

Subject 5077
Age at scan:
23yrs

Subject 5054
Age at scan:
24yrs

Subject 5280
Age at scan:
24yrs

Subject 5148
Age at scan:
25yrs

Subject 5256
Age at scan:
26yrs

Figure B.4: Lateral ventricles of male schizophrenic subjects (16 to 20
of 30). The 1st column shows the surface of the segmented right ventricle
of the specified subject. The 2nd column is the surface of the member
of the training set used in construction of the PDM. The surface has
been colour-coded such that corresponding parts of the surface have the
same colour. The 3rd and 4th columns give respective versions for the left
ventricle (reflected to give same pose as right) of the subject.
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Right from
segmentation

Right after
correspondence

Left from
segmentation

Left after
correspondence

Subject 5025
Age at scan:
27yrs

Subject 5197
Age at scan:
27yrs

Subject 5283
Age at scan:
27yrs

Subject 5284
Age at scan:
27yrs

Subject 5141
Age at scan:
28yrs

Figure B.5: Lateral ventricles of male schizophrenic subjects (21 to 25
of 30). The 1st column shows the surface of the segmented right ventricle
of the specified subject. The 2nd column is the surface of the member
of the training set used in construction of the PDM. The surface has
been colour-coded such that corresponding parts of the surface have the
same colour. The 3rd and 4th columns give respective versions for the left
ventricle (reflected to give same pose as right) of the subject.
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Right from
segmentation

Right after
correspondence

Left from
segmentation

Left after
correspondence

Subject 5276
Age at scan:
28yrs

Subject 5233
Age at scan:
30yrs

Subject 5171
Age at scan:
33yrs

Subject 5140
Age at scan:
36yrs

Subject 5175
Age at scan:
48yrs

Figure B.6: Lateral ventricles of male schizophrenic subjects (26 to 30
of 30). The 1st column shows the surface of the segmented right ventricle
of the specified subject. The 2nd column is the surface of the member
of the training set used in construction of the PDM. The surface has
been colour-coded such that corresponding parts of the surface have the
same colour. The 3rd and 4th columns give respective versions for the left
ventricle (reflected to give same pose as right) of the subject.
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Right from
segmentation

Right after
correspondence

Left from
segmentation

Left after
correspondence

Subject 5131
Age at scan:
14yrs

Subject 5179
Age at scan:
17yrs

Subject 5203
Age at scan:
18yrs

Subject 5314
Age at scan:
18yrs

Subject 5019
Age at scan:
19yrs

Figure B.7: Lateral ventricles of female schizophrenic subjects (1 to 5
of 9). The 1st column shows the surface of the segmented right ventricle
of the specified subject. The 2nd column is the surface of the member
of the training set used in construction of the PDM. The surface has
been colour-coded such that corresponding parts of the surface have the
same colour. The 3rd and 4th columns give respective versions for the left
ventricle (reflected to give same pose as right) of the subject.
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Right from
segmentation

Right after
correspondence

Left from
segmentation

Left after
correspondence

Subject 5237
Age at scan:
23yrs

Subject 5265
Age at scan:
23yrs

Subject 5091
Age at scan:
30yrs

Subject 5116
Age at scan:
31yrs

Figure B.8: Lateral ventricles of female schizophrenic subjects (6 to 9
of 9). The 1st column shows the surface of the segmented right ventricle
of the specified subject. The 2nd column is the surface of the member
of the training set used in construction of the PDM. The surface has
been colour-coded such that corresponding parts of the surface have the
same colour. The 3rd and 4th columns give respective versions for the left
ventricle (reflected to give same pose as right) of the subject.
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Right from
segmentation

Right after
correspondence

Left from
segmentation

Left after
correspondence

Subject 5165
Age at scan:
15yrs

Subject 5257
Age at scan:
15yrs

Subject 5029
Age at scan:
17yrs

Subject 5067
Age at scan:
19yrs

Subject 5205
Age at scan:
21yrs

Figure B.9: Lateral ventricles of male control subjects (1 to 5 of 17).
The 1st column shows the surface of the segmented right ventricle of
the specified subject. The 2nd column is the surface of the member of
the training set used in construction of the PDM. The surface has been
colour-coded such that corresponding parts of the surface have the same
colour. The 3rd and 4th columns give respective versions for the left
ventricle (reflected to give same pose as right) of the subject.
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Right from
segmentation

Right after
correspondence

Left from
segmentation

Left after
correspondence

Subject 5075
Age at scan:
24yrs

Subject 5079
Age at scan:
26yrs

Subject 5081
Age at scan:
27yrs

Subject 5149
Age at scan:
28yrs

Figure B.10: Lateral ventricles of male control subjects (6 to 9 of 17).
The 1st column shows the surface of the segmented right ventricle of
the specified subject. The 2nd column is the surface of the member of
the training set used in construction of the PDM. The surface has been
colour-coded such that corresponding parts of the surface have the same
colour. The 3rd and 4th columns give respective versions for the left
ventricle (reflected to give same pose as right) of the subject.
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Right from
segmentation

Right after
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Left from
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Left after
correspondence

Subject 5241
Age at scan:
28yrs

Subject 5059
Age at scan:
29yrs

Subject 5101
Age at scan:
29yrs

Subject 5137
Age at scan:
29yrs

Figure B.11: Lateral ventricles of male control subjects (10 to 13 of
17). The 1st column shows the surface of the segmented right ventricle
of the specified subject. The 2nd column is the surface of the member
of the training set used in construction of the PDM. The surface has
been colour-coded such that corresponding parts of the surface have the
same colour. The 3rd and 4th columns give respective versions for the left
ventricle (reflected to give same pose as right) of the subject.
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Right from
segmentation

Right after
correspondence

Left from
segmentation

Left after
correspondence

Subject 5097
Age at scan:
32yrs

Subject 5125
Age at scan:
32yrs

Subject 5275
Age at scan:
33yrs

Subject 5065
Age at scan:
37yrs

Figure B.12: Lateral ventricles of male control subjects (14 to 17 of
17). The 1st column shows the surface of the segmented right ventricle
of the specified subject. The 2nd column is the surface of the member
of the training set used in construction of the PDM. The surface has
been colour-coded such that corresponding parts of the surface have the
same colour. The 3rd and 4th columns give respective versions for the left
ventricle (reflected to give same pose as right) of the subject.
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Right from
segmentation

Right after
correspondence

Left from
segmentation

Left after
correspondence

Subject 5245
Age at scan:
13yrs

Subject 5155
Age at scan:
14yrs

Subject 5003
Age at scan:
16yrs

Subject 5211
Age at scan:
19yrs

Subject 5213
Age at scan:
19yrs

Figure B.13: Lateral ventricles of female control subjects (1 to 5 of
13). The 1st column shows the surface of the segmented right ventricle
of the specified subject. The 2nd column is the surface of the member
of the training set used in construction of the PDM. The surface has
been colour-coded such that corresponding parts of the surface have the
same colour. The 3rd and 4th columns give respective versions for the left
ventricle (reflected to give same pose as right) of the subject.
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Right from
segmentation

Right after
correspondence

Left from
segmentation

Left after
correspondence

Subject 5249
Age at scan:
20yrs

Subject 5169
Age at scan:
26yrs

Subject 5017
Age at scan:
27yrs

Subject 5183
Age at scan:
27yrs

Figure B.14: Lateral ventricles of female control subjects (6 to 9 of
13). The 1st column shows the surface of the segmented right ventricle
of the specified subject. The 2nd column is the surface of the member
of the training set used in construction of the PDM. The surface has
been colour-coded such that corresponding parts of the surface have the
same colour. The 3rd and 4th columns give respective versions for the left
ventricle (reflected to give same pose as right) of the subject.
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Right from
segmentation

Right after
correspondence

Left from
segmentation

Left after
correspondence

Subject 5041
Age at scan:
30yrs

Subject 5069
Age at scan:
30yrs

Subject 5039
Age at scan:
33yrs

Subject 5027
Age at scan:
45yrs

Figure B.15: Lateral ventricles of female control subjects (10 to 13 of
13). The 1st column shows the surface of the segmented right ventricle
of the specified subject. The 2nd column is the surface of the member
of the training set used in construction of the PDM. The surface has
been colour-coded such that corresponding parts of the surface have the
same colour. The 3rd and 4th columns give respective versions for the left
ventricle (reflected to give same pose as right) of the subject.
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Appendix B. Subjects Participating in the Study

Male Controls Female Controls
Subject Number Age Subject Number Age
5165 15 5245 13
5257 15 5155 14
5029 17 5003 16
5067 19 5211 19
5205 21 5213 19
5075 24 5249 20
5079 26 5169 26
5081 27 5017 27
5149 28 5183 27
5241 28 5041 30
5059 29 5069 30
5101 29 5039 33
5137 29 5027 45
5097 32
5125 32
5275 33
5065 37

Table B.2: Age and sex data for control subjects
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Appendix C

Movies on Accompanying CD

There are fourteen movies on the accompanying CD. They can be viewed by running

the Powerpoint presentation - ThesisMovies.ppt. Alternatively, the individual avi

files can be viewed using a program such as Realplayer. Contents of the individual

avi files are as follows

1. 03-CoronalViewOfSegmentedVentricle.avi - Coronal View Showing Con-

tours Resulting from Segmentation of a Ventricle

2. 03-RotatingSegmentedVentricle.avi - Surface of a Segmented Ventricle(rotating)

3. 04-PdmFirstModeOfVariation.avi - First mode of variation of the PDM of

all 138 ventricles (between -2 standard deviations (−2
√

λ1) and +2 standard

deviations (+2
√

λ1) of the mean shape)

4. 04-PdmSecondModeOfVariation.avi - Second mode of variation of the

PDM of all 138 ventricles (between -2 standard deviations and +2 standard

deviations of the mean shape)

5. 04-PdmThirdModeOfVariation.avi - Third mode of variation of the PDM

of all 138 ventricles (between -2 standard deviations and +2 standard deviations

of the mean shape)
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Appendix C. Movies on Accompanying CD

6. 05-Comparison1 ShapeDiffAll.avi - Shape comparisons of all schizophrenic

subjects vs all control subjects. The movie shows movement along the discrimi-

nant vector from the schizophrenic mean + 2 standard deviations to the control

mean + 2 standard deviations.

7. 05-Comparison2 ShapeDiffMale.avi - Shape comparisons of male schizophrenic

subjects vs male control subjects. The movie shows movement along the dis-

criminant vector from the schizophrenic mean + 2 standard deviations to the

control mean + 2 standard deviations.

8. 05-Comparison3 ShapeDiffFemale.avi - Shape comparisons of female schizophrenic

subjects vs female control subjects. The movie shows movement along the dis-

criminant vector from the schizophrenic mean + 2 standard deviations to the

control mean + 2 standard deviations.

9. 05-Comparison4 1AllSchizAsymm.avi - Left-Right asymmetry comparisons

of all schizophrenic subjects. The movie shows movement along the discrimi-

nant vector from the right mean + 2 standard deviations to the left mean + 2

standard deviations.

10. 05-Comparison4 2AllControlAsymm.avi - Left-Right asymmetry compar-

isons of all control subjects. The movie shows movement along the discriminant

vector from the right mean + 2 standard deviations to the left mean + 2 stan-

dard deviations.

11. 05-Comparison5 1MaleSchizAsymm.avi - Left-Right asymmetry compar-

isons of male schizophrenic subjects. The movie shows movement along the

discriminant vector from the right mean + 2 standard deviations to the left

mean + 2 standard deviations.

12. 05-Comparison5 2MaleControlAsymm.avi - Left-Right asymmetry com-

parisons of male control subjects. The movie shows movement along the dis-

criminant vector from the right mean + 2 standard deviations to the left mean

+ 2 standard deviations.
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13. 05-Comparison6 1femaleSchizAsymm.avi - Left-Right asymmetry com-

parisons of female schizophrenic subjects. The movie shows movement along

the discriminant vector from the right mean + 2 standard deviations to the left

mean + 2 standard deviations.

14. 05-Comparison6 2femaleControlAsymm.avi - Left-Right asymmetry com-

parisons of female control subjects. The movie shows movement along the dis-

criminant vector from the right mean + 2 standard deviations to the left mean

+ 2 standard deviations.
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