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Abstra
tThis dissertation presents a novel, biologi
ally inspired approa
h to edge dete
tion andper
eptual organisation, based on a synthesis of the well-known Gabor �lters with the
on
ept of population 
oding from 
omputational neuros
ien
e.A Gabor �lter bank is regarded as an ensemble of orientation sensitive units thaten
ode lo
al 
ontour orientation in a distributed fashion, somewhat akin to the \simple
ells" in the mammalian primary visual 
ortex. From the �lter ensemble, a probabilitydensity fun
tion (pdf) of lo
al 
ontour orientation is de
oded by taking into a

ountthe orientation tuning fun
tion of the �lters and assuming a von Mises mixture modelfor the 
ontour angle. The parameters of the pdf are estimated using an expe
tationmaximisation (EM) algorithm.Whereas 
onventional edge dete
tion s
hemes tend to redu
e the set of �lter re-sponses in ea
h pixel to a single quantity, e.g. a lo
al tangent angle, this dissertationtakes a di�erent approa
h, aiming to maintain a distributed representation. The ben-e�ts of the resulting analyti
ally derived probabilisti
 population de
oding algorithmis that points with multiple orientations, su
h as 
orner points or jun
tions, 
an be a
-
ommodated within the same framework by means of multimodal probability densities.Another important aspe
t of distributed 
oding is the notion of 
ertainty, 
hara
-terised by the spread of a
tivity a
ross the �lter bank or the entropy of the orientationpdf. It is demonstrated that the availability of lo
al feature 
ertainty prior to per
ep-tual organisation is bene�
ial for feature lo
alisation. Sele
ting features by means oftheir 
ertainty, rather than by thresholding �lter responses, renders the feature extra
-tion 
ontrast independent and more robust against noise.In the subsequent grouping step, small 
urved 
ontour segments are generatedthrough spline interpolation between pairs of lo
ally extra
ted tangent elements. Thegrouping pro
ess involves a revision of the lo
al orientation measurements, 
ontrolled2



by their 
ertainty values and the overall 
urvature of the 
onne
ting spline. This is pos-sible only be
ause 
ertainty has be
ome a measured quantity determined at the stageof lo
al feature extra
tion. In most other grouping s
hemes, 
ertainty is either not
onsidered, or, as in probabilisti
 relaxation labeling, inferred after feature extra
tionduring the optimisation of probability density parameters representing lo
al features.While not 
laiming to present a model of biologi
al visual pro
essing, this thesisprovides some new insight into the initial problems that both arti�
ial and neuralvisual systems are 
onfronted with: the extra
tion and representation of lo
al featuresfollowing sensory a
quisition, and the subsequent grouping of su
h lo
ally extra
tedfeatures into larger, more 
omplex entities.
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Chapter 1
Introdu
tion
The �rst step after data a
quisition in many 
omputer vision tasks is the extra
tion oflo
al image features, su
h as edge orientation, texture, 
olour or shading 
ow. Theirdete
tion is notoriously ambiguous and error prone due to sensor noise and digitisation.Furthermore, they usually are strongly a�e
ted by 
lutter or 
hange in illumination.Any eÆ
ient general purpose visual system should therefore represent the inherentun
ertainty and ambiguity of sensory information at an early level, in order to avoidpremature 
ommitment to unreliable information. Lo
al un
ertainties should be re-solved at later stages by relating lo
al information to its 
ontext. This is 
learly anon-trivial task sin
e the number of possible 
ombinations of features 
an easily leadto a \
ombinatorial explosion", where the sear
h spa
e be
omes intra
table. Thus twofundamental questions arise:� How 
an lo
al information be organised into robust global stru
tures?� How should lo
al information be represented in order to support global organi-sation?The obje
tive of this thesis is to approa
h these 
omplex problems from a biologi
allyinspired point of view and to provide suggestions for over
oming them. Essentially19



the novel 
ontributions are the establishment of a theoreti
al link between the notionof population 
oding (a ubiquitous prin
iple of distributed information representationin the brain) and the te
hni
al problem of obje
t boundary dete
tion, as well as aresultant algorithm that 
ombines the dete
tion of edges, 
orners and jun
tions into auni�ed probabilisti
 framework.1.1 Per
eptual Organisation and GestaltPsy
hologyThe idea that per
eption is a holisti
 pro
ess in whi
h parts are linked a

ording totheir 
ontextual relations was formulated during the 1920s by Wertheimer, Ko�ka,K�ohler and other psy
hologists (Ellis, 1967) as part of \Gestalt" theory, whereby theyestablished a number of \laws" of per
eption (see Figure 1.1) based on psy
hophysi
alinvestigations sin
e the late 19th 
entury.The \Gestalt laws" are prin
iples of per
eptual organisation, a phenomenologi
aldes
ription of the inbuilt bias in human vision by whi
h lo
al image elements aregrouped and ambiguities are resolved. For instan
e, in Figure 1.1 (d) the s
ene isinterpreted as two overlapping shapes with smooth boundaries. The alternative inter-pretation, two adja
ent obje
ts with more 
ompli
ated outlines, is reje
ted despite bothinterpretations being a priori equally probable. In our natural environment, we areusually unaware of the a
tive nature of our visual sense. However, spe
ially designedarti�
ial images, su
h as those in Figures 1.2 and 1.1, reveal that 
ontour per
eptionis more than a merely passive re
ording of sensory input (Kanizsa, 1979). It involvesthe binding of lo
al features into per
eptually salient groups (\pop-out"), 
ompletionof disrupted 
ontours (\�lling-in") and, as a result, segmentation. The opti
al illusions(Fig. 1.2) also illustrate that the per
eption of obje
t outlines is not based on lo
al20



edge 
ontrast alone, or else one would not see illusory or \amodal" 
ontours (Kanizsa,1979) where no a
tual intensity gradient (edge 
ontrast) is present.While it is often assumed that 
ompletion of large-s
ale gaps 
aused by o

ludingobje
ts and \�lling-in" of lo
al 
ontour disruptions resulting from low signal-to-noise-ratio 
an be a

omplished within the same 
omputational framework, it is importantto distinguish between the two, sin
e they a
tually require fundamentally di�erentpro
essing strategies (August and Zu
ker, 2000). Closing the large gaps in 
ontoursfragmented by an o

luding obje
t may even involve representing the o

luder, requir-ing a more global degree of per
eptual grouping.This thesis will fo
us on short-range \�lling-in" and 
ontour grouping based on theGestalt prin
iples of \good 
ontinuation" and the 
losely related \good form" (Fig. 1.1(
) and (d)). Though Gestalt psy
hology provides a merely des
riptive theory with nodire
t 
lues as to how the 
omputer s
ientist might in
orporate per
eptual organisationinto an arti�
ial vision system, prin
iples su
h as \good 
ontinuation" 
an be expressedin geometri
al terms (Kellman and Shipley, 1991), as will be explained in the literaturereview. Additional insight is provided by re
ent biologi
al studies that have begun toshed light on the underlying physiologi
al me
hanisms of per
eptual organisation atthe single 
ell level.1.2 Biologi
al Fundamentals of Per
eptual Organi-sation in Early VisionIn visual neurobiology, the 
on
ept of lo
al feature dete
tors as elements of 
ontourper
eption applies only to a simple isolated stimulus, su
h as an oriented bar. Theresponse behaviour of so-
alled \simple 
ells" in striate 
ortex (V1), dis
overed byHubel and Wiesel (1962), has been found to be less stri
tly linear than was origi-21



d) Good Formc) Good Continuation

b) Similaritya) Proximity

Figure 1.1: Examples of Gestalt prin
iples. (a) Dot patterns are grouped with respe
tto proximity. (b) If the distan
e between dots is 
onstant, elements are grouped with re-spe
t to other 
ues{in this 
ase 
ontrast. (
) The linear pattern tends to be interpreted astwo smooth, interse
ting 
urves rather than adja
ent 
urves with tangential dis
ontinuities.(d) The upper right interpretation{two adja
ent forms with 
ompli
ated outlines{is reje
tedin favour of the lower{two overlapping forms with simple and 
onsistent boundaries{thoughboth interpretations are a priori equally probable. Examples (
) and (d) are 
losely related,and both reveal a per
eptual bias in favour of overlapping, rather than adja
ent, stru
tures.
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c) d)b)a)Figure 1.2: Examples of illusory 
ontours. (a) Ehrenstein-illusion. In the 
entre a 
ir
le
an be seen whi
h appears brighter than the white of the ba
kground. (b) Modi�ed Kanizsa-triangle. Instead of three \pa
men" and three line segments, a triangular shaped obje
t seemsto o

lude three bla
k disks and a linear stru
ture in the middle. Again the obje
t in the\foreground" appears brighter. (
) Gratings of abutting lines 
reate the illusion of a 
urvedsmooth edge. (d) A bright white bar seems to overlap two disks and a 
ir
le. As in (a) and(b), there is no a
tual di�eren
e in brightness in the image.nally assumed. For instan
e, neural �ring rates saturate as stimulus 
ontrast in
reases,a pro
ess whi
h 
an be understood as a normalisation of neural responses within ahyper
olumn (Heeger et al., 1996). Also, when stimuli of greater 
omplexity are pre-sented that ex
eed the size of the re
eptive �eld of an individual 
ell, neighbouring 
ellsrespond as a 
onsequen
e of their retinotopi
 arrangement.Due to various lateral 
onne
tions between 
ells, di�erent parts of a 
omplex stimu-lus a
t as 
ontextual surround for one another, and the prin
iple of linear superpositionis invalidated. The surrounding 
ontext 
an either fa
ilitate or suppress neural re-sponses, depending on relative 
ontrast and orientation between 
entre and surround(Polat et al., 1998), and 
an even 
hange the preferred orientation (Gilbert and Wiesel,1990), perhaps explaining the Z�ollner/\tilt" illusion (Fig. 2.2 in the next 
hapter).Using stimuli su
h as those in Figure 1.2, neurons at early stages (V1 and V2) ofvisual pro
essing have been found that respond to illusory 
ontours (von der Heydt23



and Peterhans, 1989a; von der Heydt and Peterhans, 1989b; Grosof et al., 1993). The
on
lusion of these experiments is that the per
eption of real and illusory 
ontours isperformed in the same area of the visual 
ortex at a low fun
tional level.In summary, 
orti
al 
ontour pro
essing is very intri
ate and, despite the vastamount of known details, a 
on
ise physiologi
al theory of per
eptual grouping remainselusive.1.3 Per
eptual Organisation in Computer VisionPer
eptual organization in human and animal vision is a 
onsequen
e of an adaptationto the natural environment. Erroneous per
eption of arti�
ial images, su
h as theZ�ollner illusion (Figure 2.2), is the pri
e for enhan
ed performan
e in the pro
essing ofnatural images (a mere subset of all possible images), whi
h have parti
ular statisti
alproperties (Field, 1987; Kr�uger, 1998) that 
an be exploited in order to over
ome theun
ertainties of lo
al image features.Su
h features, whi
h form the basis of natural and arti�
ial vision, often have a smallsignal-to-noise-ratio, espe
ially in \
luttered s
enes", where obje
t-ba
kground 
ontrastis low. Nonetheless animals and humans 
ope amazingly well with su
h lo
al distortionsand their re
ognition 
apabilities are barely a�e
ted. It is diÆ
ult to imagine how anarti�
ial system 
ould yield 
omparable performan
e without in
orporating some kindof te
hni
al equivalent to the Gestalt laws.To over
ome lo
al distortions in ma
hine vision, numerous authors (e.g., Lowe, 1985;Sha'ashua and Ullman, 1988; Heitger and von der Heydt, 1993; Sarkar and Boyer, 1994;Elder and Zu
ker, 1996; Guy and Medioni, 1996) have therefore proposed in
orporat-ing 
ontextual relations among lo
al features by 
ombining responses of neighbouringfeature dete
tors into a globalised and 
onsequently more robust pro
essing.
24



1.4 Biologi
al Plausibility of Computer Vision Al-gorithms\Biologi
al plausibility" will here refer to the drawing of fun
tional analogies betweeninformation pro
essing in biologi
al and te
hni
al systems, not to biologi
al modelling.In attempting to implement a biologi
ally plausible ma
hine vision system, theresear
her 
ombines methodologies from s
ien
e and engineering, sin
e the goal is toidentify fundamental prin
iples of per
eption relevant for both natural and arti�
ialvision, and to separate them from 
omputationally irrelevant physiologi
al details.The fun
tional ar
hite
ture of the visual 
ortex is, basi
ally, determined by twofa
tors: the statisti
s of the sensory input and the 
onstraints imposed by the physi
o-
hemi
al properties of 
orti
al tissue. For instan
e, neurons in the 
entral nervoussystem are mortal without the possibility of re-growth. They are also very noisy and,as a result of membrane 
apa
ities, have large time 
onstants 
ompared to ele
troni

omponents. (The time s
ale of neural pro
essing is within the range of millise
onds,whereas in ele
troni
s it is within nanose
onds.) Consequently, neural informationpro
essing must be highly parallel and robust against the failure of single neurons. Infa
t, a gradual de
rease in performan
e, due to loss of neurons or signal distortions, hasbeen identi�ed as a key feature of distributed neural pro
essing and is often referredto as the prin
iple of gra
eful degradation (Rumelhart et al., 1986).In 
omputer vision, only those aspe
ts of 
orti
al information pro
essing that area 
onsequen
e of adaptation to the stru
ture of visual input (and the stru
ture of theworld), not physi
o-
hemi
al 
onstraints of biologi
al neurons, need to in
uen
e te
h-ni
al implementation. It is argued in this thesis that the distributed nature of neuralpro
essing is not simply a ne
essary 
ompensation for the short
omings of individualneurons, but also an eÆ
ient 
oding strategy for lo
al feature extra
tion in general.Throughout this thesis, feature extra
tion will be performed by means of a bank25



of Gabor �lters, 
learly a 
onsiderable abstra
tion from the ensembles of \simple"and \
omplex" 
ells in mammalian visual hyper
olumns. No attempt will be madeto 
apture the intri
a
ies of intra-
olumnar 
onne
tivity in real 
orti
al hyper
olumns.Instead, a purely linear model of lo
al feature extra
tion will be used that a

uratelydes
ribes the response behaviour of a linear Gabor �lter bank.1.5 Distributed Coding: a Paradigm for Lo
al Fea-ture Extra
tion in Ma
hine Vision?As previously mentioned, per
eptual organisation of lo
al information requires some
exibility in the representation of lo
ally extra
ted features in order to avoid premature
ommitments at an early stage. A prin
ipal intention of this thesis is to demonstratethat distributed 
oding, a 
on
ept now generally a

epted in neuros
ien
e (Georgopou-los et al., 1986; Vogels, 1990; Young and Yamane, 1992; Wilson and M
Naughton, 1993;Lehky and Sejnowski, 1990), is perfe
tly suited for this purpose, and 
an also be ap-plied in arti�
ial visual systems (in this 
ase, to a bank of oriented �lters). Neither theneural ensemble in a hyper
olumn, nor the �lter bank, represent the lo
al orientationof a stimulus through the a
tivity of a single element, but rather through an a
tivitypro�le of the population as a whole.Even the unresponsive units 
hara
terise the stimulus, in the sense that the 
on-
entration of a
tivity in the population (loosely speaking the ratio of responsive tounresponsive units) des
ribes the 
ertainty of the en
oded information. Expressed inmore pre
ise mathemati
al terms, a quantitative des
ription of 
ertainty yields a valu-able additional pie
e of information for the sele
tion of �du
ial features, as will bedemonstrated. It will also be shown that, in a per
eptual grouping framework, the
ertainty of a lo
al edge feature 
an be used to 
ontrol the degree to whi
h it is allowed26



to be modi�ed, during an updating step, in order to in
rease mutual 
onsisten
y withneighbouring features.1.6 Outline of the ThesisChapter 2 provides an overview of relevant literature on population 
oding and per-
eptual grouping fo
using on edge/line 
ontinuation.In Chapter 3, the population ve
tor 
on
ept is applied to the problem of edge andline dete
tion with Gabor �lters. Also, the notion of 
ertainty in population 
odingis explained and its role in the de
ision about the presen
e or absen
e of features isdis
ussed.The population ve
tor algorithm is extended, in Chapter 4, to a probabilisti
 pop-ulation 
oding approa
h. Edge dete
tion is performed within a statisti
al frameworkbased on an analyti
al model of the �lter responses. By means of a version of the EM-algorithm (Dempster et al., 1977), a parametri
 model probability density fun
tion oflo
al edge orientation is de
oded from the Gabor �lter bank.In Chapter 5, the lo
al population 
odes of tangent orientation, derived in Chapter4, are 
ombined in order to determine the parameters of splines interpolating betweenpairs of feature points, thus establishing a form of per
eptual organisation in the senseof the Gestalt prin
iple of \good 
ontinuation".Chapter 6 summarises the results of the thesis and provides suggestions for futurework.
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Chapter 2
Literature Review
The purpose of this 
hapter is to review the relevant literature on population 
odingand per
eptual grouping of 
ontour segments, as separate �elds of resear
h. A synthesisof the population 
oding paradigm with the problem of 
ontour dete
tion is a
hievedthrough a novel method of 
ontour dete
tion, whi
h will be introdu
ed in the mainbody of the dissertation.Part I: Population CodingThrough biologi
al studies of various brain regions, it be
ame evident during the 1980sthat sensory, as well as motor, variables are represented by neural ensembles, ratherthan individual neurons, as had been postulated by Barlow (1972). The distributed
oding strategy is often referred to as \population 
oding".Typi
ally, a neural population en
oding one or several parameters 
onsists of neu-rons exhibiting a rather broad tuning (Fig. 2.1). Consequently, a single neuron providesmerely a 
ourse estimate of the en
oded variable(s). However, by 
ombining the outputsof ensemble members, the population as a whole is 
apable of a

omplishing a substan-tially higher degree of representational a

ura
y. Due to its intrinsi
 redundan
y, su
ha distributed 
ode is also robust against neural noise and failure of individual units.28
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Figure 2.1: A set of bell-shaped, overlapping tuning 
urves 
overing a range of orientations
reate a redundant 
ode that is robust against failure of individual units and noise. How 
ana pre
ise orientation estimate be obtained from a population of su
h broadly tuned units?Georgopoulos and 
olleagues (1986) have demonstrated that the dire
tion of armmovements 
an be de
oded from neural �ring rates in the motor 
ortex of monkeys.Wilson and M
Naughton (1993) have shown that the position of rats in their envi-ronment is en
oded in populations of hippo
ampal neurons. Re
ording from theseso-
alled \pla
e 
ells", the authors were able to predi
t the position of the animals.Moreover, eviden
e has been provided by Young and Yamane (1992) of a fa
e-en
odingpopulation in a region within the infero-temporal 
ortex, a brain area assumed to be in-volved in visual pro
essing at an intermediate level between simple features and obje
trepresentations. In the vision domain, population 
oding has also been linked to theper
eption of stereo disparity (Lehky and Sejnowski, 1990) and orientation estimation(Paradiso, 1988; Gilbert and Wiesel, 1990; Vogels, 1990).Population 
oding has thus emerged as an essential paradigm in 
omputational neu-ros
ien
e. It is in
reasingly studied among theorists in the neural network 
ommunity,29



where resear
h is mainly 
on
erned with modelling biologi
al information pro
essing,rather than te
hni
al appli
ations su
h as ma
hine vision.One prin
ipal issue in the 
omputational neuros
ien
e literature is 
oding a

ura
yand its dependen
e on the intrinsi
 noise in a neural network, as well as on the shape ofneural tuning 
urves (e.g., Baldi and Heiligenberg, 1988; Zhang and Sejnowski, 1999),the number of neurons, and their distribution in parameter spa
e (Vogels, 1990).Paradiso (1988) was one of the �rst theorists to analyse the performan
e of a modelhyper
olumn of broadly tuned neurons by means of statisti
al estimation theory. Hismodel o�ers an explanation for the high a

ura
y of dis
rimination in various sen-sory modalities, known as hypera
uity. For instan
e, the \just noti
eable di�eren
es"observed in psy
hophysi
al orientation dis
rimination tasks are up to two orders ofmagnitude smaller than the orientation tuning widths of individual neurons (Vogels,1990).Population 
oding has also re
ently been extended to extra
ting probability densi-ties from ensemble a
tivities (Zemel et al., 1998), opening up the possibility of a more\holisti
" pro
essing of the information en
oded in a population. In 
ontrast to \re-du
tionist" methods, whi
h aim to extra
t single quantities, the probabilisti
 approa
hpreserves the distributed nature of the 
ode and provides additional information aboutthe 
ertainty of the en
oded variable(s).2.1 Population Ve
tor CodingThere are several methods of de
oding a population 
ode. One is the so-
alled popula-tion ve
tor or \
entre-of-gravity de
oding", a 
on
ept introdu
ed by Georgopoulos andasso
iates to des
ribe, as mentioned, the representation of limb movements by dire
tionsensitive neurons in the motor 
ortex (Georgopoulos et al., 1986). The basi
 idea is asfollows. 30



Given a population of n neurons, ea
h neuron is assigned a 
omponent ve
tor witha magnitude proportional to the strength of its response, ri (spike frequen
y), anda dire
tion a

ording to its preferred dire
tion, denoted by the 
omponent ve
tor ~bi.The ve
tor 
omponents are then added, and the resultant ve
tor sum is the populationve
tor. Thus the population ve
tor is a response-weighted average of n 
omponentve
tors, ~bi, pointing in the neurons' preferred dire
tions:~p = nXi=1 ri~bi : (2.1)If a ve
tor ~x is properly en
oded by the population, then~p = ~x :It has been shown (Sanger, 1994; Sanger, 1996) that this equality implies 
osine-tuning;i.e., responses are given by the dot produ
tri = ~x �~bi ; (2.2)whi
h 
an be seen by inserting equation (2.2) in (2.1) and assuming the equality ~p = ~x:~p = nXi=1 (~x �~bi)~bi = ~x nXi=1 ~bi~b Ti ! != ~x :This yields the following 
ondition for the outer produ
t of 
omponent ve
tors:nXi=1 ~bi~b Ti = 1 ; (2.3)where 1 denotes the unit matrix. The requirement (2.3) is always ful�lled with or-thogonal basis ve
tors, i.e., when the 
omponent ve
tors are simply the Eu
lidean unitve
tors, ~e1; : : : ; ~en, but it imposes a severe restri
tion in the general 
ase of an over
om-plete basis f~bi : : :~bng. Any uneven distribution of preferred dire
tions 
an easily violate31




ondition (2.3) and introdu
e a stimulus dependent bias to the population ve
tor esti-mate (Salinas and Abbott, 1994; Sanger, 1996; Snippe, 1996). Though important forbiologi
al systems, su
h a bias is not a serious 
on
ern in a te
hni
al system, whereone has 
omplete 
ontrol over the positioning of tuning 
urves in the parameter spa
e.2.1.1 Ve
tor 
oding in biologi
al and arti�
ial visionVogels (1990) examined population ve
tor 
oding of visual stimulus orientation in amodel of striate 
orti
al 
ells. The model is able to explain just noti
eable di�eren
esof orientation dis
rimination in primate vision. Employing a suÆ
iently high numberof units (several hundred), the obtained 
oding a

ura
y is less than 1Æ, even usingtuning widths of up to 80Æ.Gilbert and Wiesel (1990) used a very similar approa
h to explain the 
ontextdependen
e of orientation measurements and related it to physiologi
al data and tothe psy
hophysi
al phenomenon of \tilt illusion" (see Fig. 2.2). They investigatedhow a population ve
tor estimate is a�e
ted by modi�
ations of the ensemble a
tivitypro�le indu
ed by surrounding stimuli via long-range intera
tions between neighbouringpopulations. Su
h 
ompli
ated lateral intera
tions not only alter the weighting ofindividual neurons but 
an even 
hange their orientation tuning.Expressed in the notation of the previous se
tion, lateral intera
tions 
ause analteration of the responses, ri, whi
h a
t as weights in equation (2.1), as well as amodi�
ation of the basis ve
tors ~bi. Sin
e the task is merely to estimate the dire
tionof the stimulus ~x (requirement ~p k~x instead of ~p = ~x), 
ondition (2.3) 
hanges to:nXi=1 ~bi~b Ti / 1 :Even this more relaxed 
onstraint on the basis ve
tors 
an be violated by long-rangeintera
tions, whi
h 
ause erroneous orientation estimates in 
ertain geometri
 arrange-32



Figure 2.2: The Z�ollner illusion (\tilt" illusion). The long lines are parallel but appear tilted.The small line segments in
uen
e the per
eption of orientation, whi
h, a

ording to Gilbertand Wiesel (1990), 
an be explained by the altered a
tivities in the hyper
olumnar ensembles
aused by long range intera
tions between neighbouring orientation sensitive 
ells.ments of linear stimuli, su
h as in Figure 2.2.In 
omputer vision, Granlund and Knutsson (1995) have de�ned a ve
tor represen-tation of lo
al edge orientation, whi
h the authors 
all \double angle representation".Based on a �xed set of four fundamental orientations (horizontal, verti
al and thetwo diagonal orientations), a ve
tor sum is 
omputed. However, no 
onne
tion withpopulation ve
tor 
oding has been established.2.2 Maximum Likelihood De
odingAn alternative to ve
tor de
oding is maximum likelihood estimation (MLE). Based onGaussian tuning fun
tions and neural a
tivities ri governed by a Poisson distribution,a 
onditional density, p(xjri), in the en
oded variable is obtained using Bayes' law(Sanger, 1996). Assuming independent neural �ring rates, the total likelihood of the
33



en
oded parameter value is given by the produ
t of the individual 
onditional densities:L(xjr) =Yi p(xjri) : (2.4)Sanger (1996) has shown that equation (2.4) is essentially a produ
t of tuning 
urves.Consequently, the likelihood fun
tion 
an be very sharply tuned, even for broad tuning
urves.MLE is e�e
tively a form of template mat
hing. The response data are mat
hedwith a template derived from the average population a
tivity (Pouget et al., 2000).Sin
e the method makes expli
it use of the tuning fun
tion, it is not restri
ted to
osine-tuning impli
itly assumed in the population ve
tor approa
h (Oram et al., 1998).Theoreti
ally, maximum likelihood is an optimal estimator; i.e., it is unbiased (\
orre
ton average") and has the lowest possible varian
e, as determined by the Cramer-Raobound (De
o and Obdradovi
, 1996).Though MLE may seem biologi
ally implausible, Pouget and 
olleagues have shownthat it 
an be 
losely approximated by re
urrent biologi
al networks (Deneve et al.,1999) for a wide range of tuning widths and input 
ontrast values.2.3 Extra
ting Probability DensitiesThe methods des
ribed previously aim to extra
t a unique value of the en
oded quan-tity. However, the aforementioned MLE method proposed by Sanger (1996) a
tuallyprovides an entire 
onditional distribution, p(xjr) = L(xjr), in the en
oded variablex, given the \ve
tor" of responses, r. (The response ve
tor r, i.e., the ve
tor of en-semble a
tivities, must not be 
onfused with the population ve
tor ~p, whi
h is theresult of ve
torial averaging of a
tivities; see Se
tion 2.1). Re
overing a probabilitydensity is desirable be
ause it maintains a distributed information representation, thusavoiding a premature 
ommitment to lo
al features that often have a high degree of34



un
ertainty. Additionally, a probability density 
an quantitatively 
hara
terise su
hinherent un
ertainty of the estimate through its varian
e or a fun
tion thereof.Zemel and 
olleagues (1998) have shown, however, that Sanger's \standard Poissonmodel" is in
apable of representing densities broader than the tuning 
urve, a 
onse-quen
e of the multipli
ation of tuning 
urves des
ribed in Se
tion 2.2. Moreover, sin
ein Sanger's model p(xjr) is always unimodal, it is impossible to represent ambiguity inx. Both limitations in representational 
apa
ity are over
ome in a re
ently developed,more re�ned probabilisti
 model by Zemel and 
o-workers that is able to de
ode mul-timodal distributions of arbitrary width. Their distributional population 
oding ap-proa
h, the \extended Poisson model", is a non-parametri
 method whi
h aims tore
over the en
oded probability density as a set of sampling points. The dis
rete val-ues of the probability density are themselves treated as sto
hasti
 variables and aredetermined by maximising the data likelihood fun
tion. Thus the algorithm performsan approximated form of maximum a posteriori estimation in distributions over distri-butions.As in Sanger's model, a neural response ri to a stimulus x is governed by a Poissondistribution p(r) around a mean determined by the 
orresponding tuning 
urve fi(x).If the en
oded variable is governed by a probability density p(x), the average neurala
tivities are given by: �ri = ZX fi(x) p(x) dx ; (2.5)whi
h is the fundamental en
oding equation. However, in order to in
orporate arbitraryprobability distribtions of the stimulus, p(x), both the p(x) and the tuning fun
tionare approximated by pie
ewise 
onstant histograms. Let �̂j be the value of the pdfp(x) in the interval (xj; xj+1℄ and fij the value of the i-th tuning fun
tion in (xj; xj+1℄.The average ensemble a
tivities are then expressed by a dis
rete approximation of the35



en
oding equation (2.5): �ri = ZX fi(x) p(x) dx � MXj=1 fij�̂j :The unknown sampling points �̂j of the wanted pdf p(x) are themselves treated asrandom variables. The task is then to perform maximum a posteriori (MAP) estimationin order to �nd the �̂j, i.e., to maximiselog phf�̂jg��� frigi under the 
onstraint MXj=1 �̂j = 1 :The number of sampling points (\histogram bins"), M , ex
eeds the size of the popula-tion, and regularisation is a

omplished by means of a smoothness prior that restri
tsthe 
hange �̂j+1 � �̂j of the pdf in neighbouring points.One possible means to estimate the �̂j is simple gradient des
ent. In fa
t, Zemeland 
olleagues reformulate the MAP estimation as a maximum likelihood estimationby interpreting PMj=1 fij�̂j as a mixture model where the �̂j play the role of mixing
oeÆ
ients. A version of the EM-algorithm is then used to determine the MAP valuesof the �̂j.2.4 Complex Feature Dete
torsAn issue mentioned only brie
y in the population ve
tor model of Gilbert and Wiesel(1990) is 
omplex stimuli within the 
lassi
al re
eptive �eld. Two-dimensional stru
-tures with multiple orientation 
reate multimodal response a
tivity pro�les in the hy-per
olumnar ensemble. How the brain pro
esses su
h stimuli is un
lear, sin
e experi-mental data is s
ar
e.This matter is also highly relevant in ma
hine vision, where an analogous situ-ation arises when, in addition to regular edges, 
orner points and jun
tions are tobe dete
ted. In the presen
e of two-dimensional intensity features, 
lassi
al gradient36



based edge dete
tion s
hemes are ineÆ
ient sin
e intensity gradient is ill-de�ned and,even when 
orners are somewhat rounded, dete
tor responses tend to be minute. Theusual strategy is to employ spe
ially designed 
orner dete
tors. However, the biologi
alplausibility of su
h dete
tors is strongly debated.While some resear
hers (Heitger et al., 1992) regard the so-
alled end-stopped 
ellsas dete
tors of o

lusion points (T-jun
tions), their assumption has been questioneddue to the varying and often very limited degree of end-stopping that su
h 
ells a
tuallyexhibit. For example, Zu
ker and 
o-workers interpret end-stopped 
ells as 
urvaturedete
tors (Dobbins et al., 1987).Zetzs
he and Barth (1990) have identi�ed fundamental limitations of linear �ltersoperating on two-dimensional intensity features. Typi
ally, a linear �lter designed todete
t 2D-features involves a 
ombination of responses from linear 
omponents. Forsignal-theoreti
 reasons, Zetzs
he and Barth argue that any su
h �lters will inevitablyshow false-positive responses to 
ertain one-dimensional stimuli. The response am-biguity 
annot be over
ome by su

essive non-linear operations, su
h as thresholdingor re
ti�
ation. In order to avoid false-positive responses, intrinsi
 non-linearities inthe form of logi
al and-operations are ne
essary, by whi
h the linear 
omponents are
ombined.In a

ordan
e with Zu
ker's viewpoint, it is argued in this thesis that a hyper-
olumnar ensemble, respe
tively a �lter bank, is 
apable of representing 
omplex lo
alintensity stru
ture, ex
epting 
urvature, and that no additional 
orner dete
tor is re-quired.Using their distributional population 
oding model, Zemel, Dayan, and 
o-workershave shown how multiple motions (Zemel and Dayan, 1999) and multiple orientations(Zemel and Pillow, 2000) 
an be de
oded from biologi
al neural networks. Referring toZemel and 
olleagues, the problem of representing points of multiple edge orientationwill be addressed in Chapter 4 as a prin
ipal short 
oming of the population ve
tor37



approa
h, and a solution will be o�ered within a framework of probabilisti
 population
oding adapted to ma
hine vision. The issue of response ambiguities, raised by Zetzs
heand Barth (1990), will also be resolved in this 
ontext, sin
e probabilisti
 populationde
oding involves non-linear operations in the form of produ
ts of fun
tions of ensemblea
tivities.2.5 Combining and Transforming PopulationCodesAnother topi
 in the literature is the transformation and 
ombination of population
odes in order to en
ode 
omplex quantities that trans
end the sensory and/or motorvariables en
oded by the original populations.One example of a transformed population 
ode is 
olour vision. As pointed outby Lehky and Sejnowski (1998), the retinal 
olour population 
ode 
onsists of neuronstuned to opti
al wavelength, but the 
ombined neural a
tivities 
an represent the per-
ept \white", whi
h itself is not a wavelength. Combined neural populations 
an spanabstra
t representational spa
es 
omprising dimensions that, though derived from sen-sory and motor inputs, have no dire
t physi
al 
ounterpart in the outside world (Zemeland Dayan, 1997; Deneve et al., 2001).In vision, the information of neural populations with highly lo
alised re
eptive �elds,su
h as the simple and 
omplex 
ells in V1, is 
ombined to form neural populations atan intermediate level in the visual pathway that are responsive to 
omplex stimuli oflarge spatial extent, as observed in the inferotemporal 
ortex (Tanaka, 1996).
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2.6 Con
lusionThe main population 
oding 
on
epts from 
omputational neuros
ien
e have been re-viewed and their advantages and drawba
ks have been dis
ussed. The ubiquity ofpopulation 
oding in highly eÆ
ient biologi
al sensory systems provides the motiva-tion to investigate the appli
ation of population 
oding in image pro
essing pursuedin this dissertation. The relation to 
on
rete appli
ations in edge dete
tion will besubstantiated in 
hapters 3 and 4. In 
hapter 5 it will be shown how a 
ombinationof lo
al population 
odes of edge orientation 
an lead to per
eptual organisation of
ontour segments.The essential feature of population 
oding is its great 
exibility and representational
apa
ity. For the purpose of this thesis, the probabilisti
 approa
h provides the meansto a

urately represent lo
al 
ontour orientation and to 
hara
terise the reliability oforientation estimates through the inherent un
ertainty en
oded by the 
orrespondingangular probability density.
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Literature Review Part II:Per
eptual Grouping
Sin
e the literature on per
eptual organization is extensive, it is beyond the s
ope ofthis thesis to 
over all the existing methods. Therefore the purpose of the followingse
tions is to review some important papers representative of di�erent approa
hes toper
eptual organization of 
ontour features, and to des
ribe the performan
e of thesealgorithms on real images.2.7 Contour Integration And Per
eptual Salien
yAn important fun
tion of per
eptual grouping is the restoration of 
ontours, sin
eedge information extra
ted by means of lo
al operators is inevitably fragmented. Ea
hfeature gives a lo
al value of 
on�den
e that an edge segment is present, and possiblyadditional information about its orientation and 
urvature. Sometimes, due to noiseand 
lutter, the edge 
ontrast is very poor or varies strongly along a 
ontour. Thetask of a data driven grouping algorithm is then to relate edge fragments and to enablemutual support between individual lo
al features based on their dire
tional 
onsisten
y,thus enabling the transition from lo
al to global features, i.e, from edge segments tostraight lines or smooth 
urves. The pro
ess is 
losely related to �nding and enhan
ingregions that are per
eptually salient; i.e., a te
hni
al analogue of the \pop-out" e�e
t40



in psy
hophysi
s.2.7.1 The Salien
y Network of Sha'ashua and UllmanSha'ashua and Ullman (1988) de�ned a measure of per
eptual salien
y of a 
urve, basedon geometri
 properties. The salien
y measure in
reases monotoni
ally with the lengthof the evaluated 
urve and de
reases with its total squared 
urvature. Additionally, thedegree of fragmentation, expressed in terms of the number of gaps and total gap length,is penalised. Using the salien
y fun
tion, a \salien
y map" is de�ned as an image inwhi
h the intensity en
odes the salien
y value of the most salient 
urve emanatingfrom the point under 
onsideration. The network performs a relaxation pro
edure tomaximise the salien
y measure.In their 
riti
al assessment, Alter and Basri (1998) show that the salien
y net-work has some short
omings, produ
ing a number of results that di�er from humanper
eption:� A 
urve with one large gap is 
onsidered more salient than one with a few smallgaps of equal total length.� The network has diÆ
ulties representing more than the most salient 
urve.� The salien
y measure is not invariant with respe
t to uniform s
aling of the image.� Erroneous binding 
an o

ur through the merging of 
ontour segments belongingto di�erent obje
ts.2.7.2 Kellman and Shipley's Theory of Visual InterpolationKellman and Shipley (1991) developed a theory of visual interpolation based on psy-
hophysi
al eviden
e. By introdu
ing a geometri
al de�nition of edge segment \relata-bility", they provide a pre
ise mathemati
al des
ription of the Gestalt law of \good41




ontinuation". Figure 2.3 shows a geometri
 
onstru
tion of the 
on
ept of \relatabil-ity", whi
h a

urately des
ribes the bias in human per
eption towards smooth 
ontoursand whi
h 
an be dire
tly implemented in a ma
hine vision system. Two edge segments(tangent segments) 
entred around points P1 and P2 are \relatable" if, and only if, theangle Æ at the point of interse
tion of the edge extensions is a
ute, 
orresponding to aninterpolating 
urve with a moderate degree of bending and without in
e
tion points.In pra
ti
e, however, the geometri
al 
on�gurations of edge segments obtained froman edge dete
tor are often not as pre
ise as required, due to noise. As a result, twoedge segments belonging to the same 
ontour 
an appear \unrelatable", even if theirorientations deviate only slightly from the true values. This is expe
ted to happenfrequently with straight 
ontours, sin
e image noise 
reates an angular \jitter" in thetangent orientations measured along the 
ontour.
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R cosFigure 2.3: A 
onstru
tion de�ning the 
on
ept of \relatability" a

ording to Kellman andShipley (1991). Two edge segments are relatable, if and only if, 0 � R 
os Æ � r. Conse-quently, 0 � Æ � �=2, whi
h ex
ludes interpolation between edge segments that are parallelor require a 
onne
ting 
urve with sharp bending (R 
os Æ < 0).
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2.7.3 Global Contour Grouping: The Extension FieldGuy and Medioni (1996) devised an algorithm for 
ontour grouping based on theGestalt prin
iples of 
o-
urvilinearity (\good 
ontinuation") and proximity. After ap-plying an edge dete
tor, a 
onvolution is performed on the edge map using a spe
ialmask 
alled extension �eld, a ve
tor �eld en
oding the likelihood and orientation ofpossible 
ontinuations from an edge segment at its 
entre to all other points in theimage. Thereby a large number of smooth 
urves are represented simultaneously. Thedire
tion of the extension �eld at a point (x; y) equals the tangent angle of the mostlikely 
urve 
onne
ting (x; y) with the edge segment at the 
entre of the extension�eld. The magnitude of the ve
tor �eld in (x; y) is the likelihood of the existen
e ofthe 
onne
ting 
urve.Referring to Sha'ashua and Ullman (see Se
tion 2.7.1), the extension �eld is de�nedunder the assumptions that human 
ontour grouping favours 
urves of minimum total
urvature and that the 
ompletion of fragmented 
ontours is a

omplished in terms of
onstant 
urvature. Therefore the tangent orientation at a parti
ular point is 
hosento be that of the os
ulating 
ir
le 
onne
ting the point and the 
entral edge segment.By superposition of extension �elds emanating from all edge lo
ations, every pixelre
eives a number of ve
tor \votes". This pro
ess is a ve
tor 
onvolution resulting ina two-dimensional 
ovarian
e matrix for ea
h point. Then the prin
ipal axis of all theorientation votes is taken as the edge orientation. The eigenvalues are interpreted asthe axes of an ellipse, the e

entri
ity of whi
h des
ribes the degree of \agreement"among orientation votes, i.e., a measure of 
ertainty. Multipli
ation of e

entri
ity bythe strongest eigenvalue, whi
h depends on the edge 
ontrast, yields a salien
ymeasure.Sin
e the extension �eld 
ombines votes from all edge lo
ations in the image, itis an impli
itly global grouping s
heme that di�ers from many previously developedte
hniques that use lo
al operators to infer global stru
tures. The system 
an operate43



on tokens with di�erent degrees of orientational 
ertainty, from line segments witha pre
ise orientation to points (
omplete un
ertainty of orientation). A number ofvisual illusions 
an be reprodu
ed, su
h as the Ehrenstein 
ir
le (see Fig.1.2 a) anda Kanizsa-type �gure (see Fig.1.2b), but the performan
e on natural images is notdemonstrated.2.8 Algorithms Modelling Biologi
al DataBased on the neurophysiologi
al experiments of von der Heydt and Peterhans (1989a,1989b), Heitger and asso
iates (1992, 1998) developed a model of illusory 
ontourper
eption in mammalian visual systems fo
using on the 
lose relationship betweenillusory 
ontours (su
h as in Fig. 1.2) and o

lusion.The essential ingredients are models of neurons found in areae V1 and V2 of thevisual 
ortex. Complex 
ells are modelled as the moduli of 
omplex Gabor �ltersand referred to as C-operators. The so-
alled \end-stopped 
ells" (
ells respondingto sudden terminations of 
ontours, interrupted 
ontours or 
orners) are modelled as
ombinations of two or three C-operators.A 
ombination of end-stopped operators then serves as a tool to �nd the \keypoints" of o

lusion, i.e., lo
ations where 
ontours terminate due to o

lusion. Be
auseof the spe
ial geometri
 arrangement of operators, 
orner points 
an be ex
luded.On
e the key points of o

lusion are found, the map of end-stopped operator re-sponses at key points is 
onvolved with a \grouping �eld", an oriented 
lub-shapedkernel. The result of the 
onvolution is added to the C-operator responses, whereby
ontours of weak or vanishing 
ontrast are restored.The authors de�ne two types of grouping, \ortho-grouping" and \para-grouping",meaning that the restored 
ontour and the endpoint termination are either orthogo-nal or aligned, respe
tively. Due to the arrangement of end-stopped operators in the44



ortho- and para-grouping s
heme, it is possible to infer some information about theforeground/ba
kground stru
ture of the overlapping 
ontours in the image.The model seems to perform well on natural images, apart from some ambiguitiesin foreground/ba
kground segregation and o

asional erroneous �lling-in. The authors
on
lude (Heitger and von der Heydt, 1993) that these problems 
an only be over
omeat higher stages of pro
essing. The robustness against noise is not dis
ussed.2.8.1 Li's V1-Model of Contour IntegrationZhaoping Li's neural model of 
ontour integration (1998) tries to explain the dete
-tion of per
eptually important stru
tures based only on elements of the primary visual
ortex (V1). The model in
orporates os
illating neurons sensitive to lo
al stimulus ori-entation and inhibitory interneurons. Intera
ting via lateral intra-
orti
al 
onne
tions,neurons of similar orientation preferen
e 
an ex
ite and syn
hronise one another's a
-tivity, or inhibit one another through interneurons. The model also seems to reprodu
ethe e�e
t of pop-out of 
ontours from a noisy ba
kground, whi
h a

ords with re
entbiologi
al �ndings on the relation between lateral 
onne
tions in the visual 
ortex and
ontrast dependent fa
ilitation, or suppression, of oriented stimuli by their surround-ing 
ontext (Stemmler et al., 1995). Stemmler and asso
iates have suggested thatneural responses 
orresponding to an unrelated or noisy ba
kground 
an suppress oneanother due to their la
k of mutual 
onsisten
y. The responses produ
ed by smoothobje
t 
ontours are mu
h more 
onsistent, enabling mutual enhan
ement, and thussegregating �gure and ba
kground. However, Li's model 
onsiderably simpli�es the
ompli
ated dependen
ies of 
ontextual fa
ilitation and suppression between stimulion relative 
ontrast and orientation.Though the model presents a pre-attentive me
hanism, it also addresses the possiblerole of top-down feedba
k as an additional, though not ne
essary, element for the45



purpose of 
ontour integration. The possible feedba
k is not expli
itly modelled, butit is shown how higher levels might 
ontrol 
ontour pro
essing via proje
tions on theinhibitory interneurons (negative feedba
k). A more dire
t in
uen
e of feedba
k signalson the ex
itatory dire
tion sensitive neurons themselves is not 
onsidered. The reasonfor su
h a restri
tion is simpli
ity of pro
essing in terms of stability, and the ongoingdebate about the a
tual target neurons of feedba
k proje
tions.The model 
an enhan
e 
ontour elements of weak 
ontrast, but it does not explainillusory 
ontours (vanishing edge 
ontrast), as it relies ex
lusively on V1 elements. It isargued that, as opposed to 
ontour enhan
ement, at least V2 and possibly even higherlevels, as well as the feedba
k from these areae, are ne
essary to model the per
eptionof illusory 
ontours. The algorithm is tested on arti�
ial images (line drawings) andone natural image, where it emphasises 
ontours and redu
es ba
kground noise.2.9 Computing Contour ClosureElder and Zu
ker (1996) address the problem of 
omputing 
losed bounding 
ontours.Their approa
h is motivated by psy
hophysi
al �ndings that 
losure seems to be avery important grouping 
ue whi
h 
an override those of regional texture (Fig. 2.4).Therefore, no restri
tions are pla
ed on the type or shape of the bounded stru
tures,taking into a

ount the often highly inhomogeneous appearan
e of obje
ts in naturalimages.A multi-s
ale edge dete
tion algorithm yields information about edge position andtangent orientation from whi
h a sparsely 
onne
ted tangent graph is 
onstru
ted. Ea
hnode is assigned with the tangent information and, a

ording to a Bayesian model oftangent linking, ea
h ar
 is labelled with the likelihood that the 
orresponding tangentpair forms a 
ontiguous 
omponent of the same 
ontour. Ea
h node is 
onne
ted toonly a small number of neighbours (usually six), a

ording to the most likely pairings.46



The goal of 
losure grouping is then to �nd the maximum likelihood 
y
les for everytangent in the graph. Thus the grouping task is redu
ed to a shortest path problem,whi
h 
an be solved by means of standard te
hniques within a reasonable amount oftime.The performan
e of the algorithm is tested on natural images. Sin
e no restri
tionson type and shape of the bounded stru
ture have been made, the algorithm is able to�nd boundaries of per
eptually meaningful, but very heterogeneous, parts of an image.The result is an improvement over many other approa
hes that either fail to identify
losed boundaries, sin
e they fo
us on smoothness only, or, in the 
ase of texture basedsegmentation, de
ompose obje
ts into pie
es, due to their inner heterogeneity. As withother data-driven algorithms, o

asional binding errors 
annot be avoided.
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Figure 2.4: A syntheti
 image in whi
h human observers per
eive two overlapping obje
ts.Region based grouping, however, would segment six disjoint parts. Sin
e there are only \non-sense" obje
ts, human segmentation 
annot be based on familiarity. Elder and Zu
ker (1996)
on
lude that it is the geometry of the boundaries whi
h guides our per
eption (illustrationafter Elder and Zu
ker).
47



2.10 Spline RepresentationsBe
ause of their properties of smoothness, splines have been widely used for the repre-sentation of 
urvilinear obje
t boundaries in 
omputer aided design (CAD) for de
ades.Various types have been developed (Farin, 1988). While in CAD-appli
ations the spline
ontrol points are usually determined by the user, a 
omputer vision system should beable to �nd them automati
ally, based on an initial feature dete
tion pro
edure, a prob-lem addressed by Zu
ker et al. (1988), Cham and Cipolla (1996), Leite and Han
o
k(1997) and others.Closely related forms of 
urves for dete
ting 
losed boundaries are the well-known\snakes", whi
h are energy minimising splines that serve as a 
exible 
ontour template(Kass et al., 1988). The \snakes" realise a trade-o� between smoothness 
onstraintand mat
hing of intensity features, su
h as edge segments. In pra
ti
e, however, theirinitialisation proves diÆ
ult and often requires manual intervention. Another obsta
leis the often highly 
omplex topology of the intensity gradient in natural images, whi
hmakes it diÆ
ult to dete
t global 
ontour features.2.10.1 The Role of Curvature in Computer Vision.In the 
ontext of splines as a means for 
ontour representation, the question of the roleof 
urvature arises. There is an old debate over the per
eptual signi�
an
e of 
urvaturein per
eption. It has been argued (Attneave, 1954) that lo
al extrema of 
urvature arethe most per
eptually important points on obje
t 
ontours, whi
h in turn motivatedPerez de la Blan
a and asso
iates to develop a spline-based algorithm for 
ontourrepresentation in a graph with landmarks at points of maximum lo
al 
urvature (Perezde la Blan
a et al., 1993). The points of highest 
urvature are found iteratively.By 
ontrast, Lowe (1985) argued that the per
eptual signi�
an
e of lo
al extrema of
urvature is 
ommonly overestimated. Firstly, when three-dimensional 
urves are pro-48



Figure 2.5: Two drawings derived from the same pi
ture of a 
at. (a) was 
reated by
onne
ting the points of lo
al maximum 
urvature with straight lines; (b) by 
onne
tingpoints between those of maximum 
urvature (leaving line terminations at the same pla
e).Both drawings are per
eptually similar and easily re
ognisable, though the points in (b) areas far removed from those in (a) as possible, leading to the 
on
lusion that the points ofmaximum 
urvature are not ne
essarily more per
eptually signi�
ant (illustration from Lowe[1985℄).je
ted onto a two-dimensional image, the 
urvature maxima are not invariant, unlike
urvature in
e
tion points, dis
ontinuities in tangent orientation and 
urve termina-tions. Se
ondly, it 
an be shown (Fig. 2.5) that in an \abstra
t" line drawing 
reatedfrom a pi
ture by sele
ting 
ertain points and 
onne
ting them with straight lines, the
ontent is equally well represented, whether or not the points are 
urvature extremaor pla
ed elsewhere on the 
ontour.Parent and Zu
ker pointed out that lo
al ambiguities in 
ontour dete
tion 
an beresolved by means of 
urvature 
onsisten
y, even though the measurement of 
urvatureis more prone to error than that of lo
al orientation (Parent and Zu
ker, 1989). The
onsisten
y of 
urvature seems to be more relevant than the exa
t value at spe
i�
lo
ations (Zu
ker et al., 1989).Kr�uger introdu
ed a novel kind of wavelet-type �lter as a generalisation of Gabor �l-ters (Kr�uger and Peters, 1997). The sinusoidal part of the �lter kernel and its Gaussian49



envelope are both bent paraboli
ally, rendering it sensitive to 
urved stimuli. Be
auseof their 
urved shape, they have been given the humorous name \banana wavelets".The features are organised in a metri
 spa
e whi
h 
ontains the normal Gaborwavelets as the subspa
e of vanishing 
urvature. By means of the metri
, a 
lusteringof features is performed in order to extra
t the �du
ial features from a training setof images showing examples of a 
ertain 
lass of obje
ts (Kr�uger and L�udtke, 1998).The result is a symboli
 representation of the obje
t 
lass (Fig.2.6
). However, the
urvature tuning of the wavelets is rather broad (Kr�uger personal 
ommuni
ation),allowing only a 
oarse measurement of 
urvature.

a) b) c) Figure 2.6: a) A Banana wavelet. b) The symboli
 analogue, a 
urved line segment. 
) Asymboli
 representation of the obje
t 
lass \fa
e", from Kr�uger and L�udtke (1998).
2.10.2 Token Based Grouping With SplinesDolan and Riseman (1992) developed an algorithm for per
eptual grouping of tokenssu
h as straight line segments, 
orners, in
e
tions, et
., represented by 
oni
 splines,whi
h are 
urves in the form of 
oni
 se
tions, in
luding hyperbolae and ellipses, inaddition to the usual parabolae (Farin, 1988). The 
ontour segments are assigned tonodes in a so-
alled link graph, and the ar
s are labelled with the result of a binary 
om-patibility relation among neighbouring tokens. The 
ompatibility depends on distan
e,50



di�eren
e of tangent orientation at the end points of tokens (angular 
ompatibility),and the degree of overlap among tokens.In an iterative pro
edure, tokens of suÆ
ient 
ompatibility 
an be repla
ed by alarger token, in su
h a way that the information about the 
onstituting smaller tokens isnot erased, resulting in a hierar
hi
al 
ontour representation a
ross di�erent s
ales that
an be tra
ed ba
k to the lowest level. The parameters determining the 
ompatibilityfun
tion 
hange with respe
t to s
ale, preserving high frequen
y stru
tures (su
h as
orners) on the �ne s
ale, and redu
ing noisy 
u
tuations on larger s
ales by morerigorous smoothing.2.11 Con
lusionAfter introdu
ing the basi
 
on
epts of population 
oding, a number of per
eptualgrouping te
hniques have been reviewed. Though the two topi
s have thus far beendealt with separately, some relations between population 
oding and per
eptual organ-isation have already be
ome apparent. For instan
e, the population ve
tor model ofGilbert and Wiesel (1990) investigates the in
uen
e of horizontal 
onne
tions betweenlo
al populations on the en
oding of stimulus orientation. This interpretation of per-
eptual organisation as a 
ombination of lo
al population 
odes will provide the linkbetween population 
oding and per
eptual grouping in the thesis.In many grouping algorithms the notion of 
ertainty is neither made expli
it, norquantitatively represented. Con�den
e in the presen
e of a parti
ular intensity featureis 
ommonly identi�ed with the response magnitude of a 
orresponding dete
tor. Inthe 
ase of edge dete
tion, 
ertainty of an edge orientation estimate is therefore 
loselylinked with edge 
ontrast (magnitude of the intensity gradient). Guy and Medioni'salgorithm is the only reviewed method that treats 
ertainty as a 
ontrast independentquantity, though only at the grouping level.51



Throughout this thesis, 
ertainty will be 
onsidered at the level of lo
al featureextra
tion. It will be demonstrated that, in the 
ontext of distributed 
oding, 
ertainty
an play a more distin
t role when de�ned in terms of the spread of a
tivity a
ross thefeature dete
tor ensemble. For unimodal a
tivity pro�les, a measurement (in this 
ase alo
al orientation estimate) is the �rst moment/mean of the ensemble a
tivities, and the
ertainty of that measurement 
an be asso
iated with the se
ond moment/varian
e ora fun
tion thereof. A generalisation of this 
on
ept to multimodal response pro�les willbe provided within a probabilisti
 population 
oding s
heme that de
odes a mixturedistribution from ensemble a
tivities.The 
ombination of the overall strength of dete
tor responses and the 
orresponding
ertainty 
an help level out the lo
al variations of responses on 
ontours and renderlo
al feature dete
tion more robust against noise.
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Chapter 3
Population Ve
tor Coding
This 
hapter addresses the problem of lo
al orientation sele
tion (tangent �eld estima-tion). The intention is to demonstrate the pra
ti
al appli
ability of population ve
tor
oding for this purpose and to relate 
omputer vision experiments to the theoreti
alresults in the 
omputational neuros
ien
e literature, as well as to 
ompare the per-forman
e of the population ve
tor to other methods of tangent �eld extra
tion andorientation estimation.Following the work of Heitger, von der Heydt and asso
iates (Heitger et al., 1992)and Lades et. al (1993), Gabor �lters are employed as a simple mathemati
al model oforientation sensitive 
ells in the 
orti
al hyper
olumn. Adopting the biologi
al 
on
eptof population ve
tor de
oding (Georgopoulos et al., 1986; Vogels, 1990), a 
ontinuousorientation estimate is extra
ted from the dis
rete set of responses in the Gabor �lterbank by performing ve
torial 
ombination of the broadly orientation-tuned �lter out-puts. The result is a population ve
tor, the orientation of whi
h gives a pre
ise androbust estimate of the lo
al 
ontour orientation. The a

ura
y and noise robustnessof orientation measurement and 
ontour dete
tion is also investigated, as well as therelationship between the 
ertainty of the orientation estimate and the shape of theresponse pro�le (ensemble a
tivity) of the �lter bank. Comparison with alternative53



methods of orientation estimation reveals that the tangent �elds resulting from thepopulation ve
tor te
hnique provide a more per
eptually meaningful representation of
ontour dire
tion and shading 
ow.3.1 Properties of Gabor �ltersGabor Filters have been proposed as a model of orientation sele
tive 
ells (\simple
ells") in the striate 
ortex (Mar
elja, 1980; Daugman, 1985) and have found numer-ous appli
ations in 
omputer vision, in
luding edge dete
tion (Shustorovi
h, 1994),dete
tion of line orientation and width (Buse et al., 1996), texture analysis and obje
tre
ognition (Lades et al., 1993).In the above-mentioned analogy to biologi
al information pro
essing, the real (
o-sine) part of a 
omplex Gabor �lter 
orresponds to simple 
ells of even symmetry andthe imaginary (sine), to simple 
ells of odd symmetry.3.1.1 Filter KernelsA general 
omplex Gabor �lter of wavelength � and preferred orientation � is de�nedas
G(x̂; ŷ; �; �) = 12��w�e�2 exp�� 12�2 � x̂2�2w + ŷ2�2e ��| {z }Gaussian envelope ( exp�2�� x̂ i�| {z }sinusoid � exp ��2��2w�| {z }mean-
orre
tion) ;(3.1)where x̂ and ŷ are the 
oordinates of an image point in the 
oordinate system rotatedby the angle �: x̂ = x 
os � + y sin � and ŷ = �x sin � + y 
os � :54



In (3.1), �w and �e are the width parameters of the Gaussian envelope in units of thewavelength, de�ned by the s
ale invariant expressions�w = �x� and �e = �y� :The index w stands for \wave", sin
e �w determines the size of the envelope in thedire
tion of the sinusoidal os
illation, and �e (as in "edge") denotes the width in thepreferred orientation of the �lter. Following Lades (Lades et al., 1993), the termexp(�2��2w) in equation (3.1) is subtra
ted, in order to obtain a �lter of zero mean,ensuring independen
e of mean intensity. Heitger and asso
iates (Heitger et al., 1992)have proposed frequen
y modulation to a
hieve independen
e of mean intensity, butthe 
omputation of the kernels then be
omes more 
ompli
ated.Furthermore, it is useful to 
onsider the modulus of the 
onvolution of an inputimage I with the 
omplex Gabor �lter G, i.e., the Pythagorean sum of even-symmetri
and odd-symmetri
 �lter responses, whi
h will be denoted by G for simpli
ity:G = jG � Ij :The square of G is often referred to as lo
al energy (Adelson and Bergen, 1985; Mor-rone and Owens, 1987). The properties of Gabor response moduli resemble those of\
omplex 
ells", sin
e they do not distinguish 
ontrast polarity (edges vs. lines) andare robust against small stimulus translations within the re
eptive �eld (Heitger et al.,1992; Lades et al., 1993; Heitger et al., 1998). The robustness of the response modulushas been su

essfully utilised in arti�
ial fa
e and obje
t re
ognition, e.g., by Lades etal. (1993).Throughout this 
hapter, only Gabor moduli will be 
onsidered. Additionally, all�lters will have radial symmetry, i.e., �e=�w = 1.
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3.1.2 Orientation Tuning of Gabor FiltersThe essential element in the analysis of a population 
ode is the tuning 
urve, in this
ase the orientation tuning 
urve, whi
h des
ribes the relation between �lter responseand the orientation of the lo
al edge/line stru
ture. The quantity that 
hara
terisesthe shape of the tuning 
urve is the tuning half width, w (i.e., the half-width at halfheight of the tuning 
urve), and it is important to know how w depends on the �lterparameters.Like simple and 
omplex 
ells in striate 
ortex, Gabor �lters have rather broadorientation tuning, whi
h depends on an essential 
ontrol parameter for the shape ofthe �lter kernels, the width of the Gaussian envelope, denoted by �e. Though, inprin
iple, the �lter mask extends a
ross the entire image, a value of three times �e 
anbe 
onsidered the e�e
tive radius of the \re
eptive �eld" (radius of the �lter mask),sin
e the Gaussian envelope virtually vanishes at greater distan
es from the 
entre.To determine the tuning 
urve and to examine the in
uen
e of the �lter envelopewidth on the tuning width, syntheti
 images of straight lines were used as test stimuli.The line thi
kness in all experiments was one pixel, and orientations ranged from 0Æto 170Æ at 10Æ intervals. Figure 3.1 shows the tuning 
urves for three �lters with apreferred orientation  = 90Æ, a wavelength � = 8 pixels, and envelope widths �e = 0.6(4.8 pixels), 1.0 (8 pixels) and 2.0 (16 pixels), respe
tively. The estimated half-widths ofthe tuning 
urves are w = 17:2Æ, 9:7Æ and 5:2Æ. The �rst value is 
omparable to typi
alorientation tuning half-widths of striate 
orti
al 
ells (Vogels, 1990). Interestingly,as will be demonstrated later, this proves to be the most suitable tuning width fororientation measurement.The responses in Figure 3.1 are �tted with a model orientation tuning fun
tion.Here the von Mises fun
tion (Mardia, 1972) is used, sin
e it is appropriate to angularvariables and 
onsistent with biologi
al studies (Swindale, 1998). The normalised form56
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Figure 3.1: Normalised empiri
al tuning 
urve for the moduli of three Gabor �lters (� = 8pixels, verti
al orientation). The \stimuli" are single straight lines in 256 � 256 grey-s
aleimages. Response magnitude is averaged over several points on the line, avoiding the region
lose to the end points. The half-widths are w = 17:2Æ, 9:7Æ and 5:2Æ. Responses are �ttedwith von Mises fun
tions (see equation 3.2).of the tuning fun
tion is:f(�; ) = � 1�f0e��e�� � e� 
os[2(�� )℄ � � 1�f0e2��1�+ f0 ; (3.2)where  is the preferred orientation of the �lter, � is the so-
alled 
on
entration pa-rameter, playing a similar role as the inverse of the width � of a Gaussian, and theo�set f0 is a \mean a
tivity", modelling the e�e
t of dis
retisation noise.The fun
tion e� 
os[2(�� )℄ is always greater than zero. To ensure that f0 is the totalo�set along the ordinate, the term (1� f0)=(e2� � 1) is subtra
ted. Consequently, thetuning fun
tion has values in the range [f0; 1℄. Thus �,  and f0 serve as independent
ontrol parameters of the normalised model tuning fun
tion.In Figure 3.2 the tuning width is plotted as a fun
tion of the kernel width �e. Thetwo quantities are inversely proportional to one another due to the general un
ertainty57
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Figure 3.2: Log-log-plot of the tuning half-width as a fun
tion of the kernel width illustratesthe un
ertainty relation between tuning width and spatial width: w / (�e)�1.relation between orientational bandwidth (i.e., the tuning width w) and spatial width(�e). In fa
t, Gabor �lters have been shown to minimise the quantity w �e (Daugman,1985).The main 
on
lusion to be drawn is that Gabor �lter banks provide rather 
oarseestimates of feature orientation, unless the full range of orientations is sampled witha large number of �lters, whi
h would obviously be highly ineÆ
ient. In the nextse
tion it will be demonstrated that, when population ve
tor 
oding is used to 
ombinethe responses of the �lter bank, only a small number of �lters are required in orderto a
hieve an a

ura
y of orientation estimation 
onsiderably higher than that of anindividual �lter.
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3.2 Lo
al Orientation Estimation by Population Ve
-tor De
odingThe 
on
ept of a population ve
tor was originally introdu
ed by Georgopoulos and
olleagues to des
ribe the representation of limb movements in the motor 
ortex (Geor-gopoulos et al., 1986). Adapting the authors' de�nition to a bank of n Gabor �lters,the population ve
tor is 
omputed as follows. The �lter bank 
onsists of pairs of �lterswith even symmetry (
osine part) and odd symmetry (sine part), also 
alled quadraturepairs. Consider a wavelength �. Let G(x; y; i; �) be the response modulus (\energy")of the quadrature pair of Gabor �lters of orientation  i. Let ~ei = (
os i ; sin i)T bethe unit ve
tor in the dire
tion  i. Then the population ve
tor ~p is de�ned as~p(x; y) = nXi=1 G(x; y; i; �) ~ei ; (3.3)whi
h means that ea
h �lter is represented by a two-dimensional 
omponent ve
tor.The ve
tor orientation and magnitude are given by the preferred orientation  i andthe response magnitude (modulus) G(x; y; i) of the �lter at lo
ation (x; y), and thepopulation ve
tor is the sum of the n �lter ve
tors.However, equation (3.3) 
annot dire
tly be applied, sin
e the �lters are only sensi-tive to orientation, rather than dire
tion; i.e., there is a 180Æ-ambiguity. Consequently,the population ve
tor is 
omputed using the s
heme in Figure 3.4. The orientationvariable is de
oded by determining the angle of the population ve
tor �pop, whi
h isgiven by: �pop(x; y) = ar
tan�py(x; y)px(x; y)� : (3.4)The magnitude of the population ve
tor, k~p(x; y)k, is related to the response \energy"of the �lter bank at position (x; y). If evaluated at 
ontour lo
ations, i.e., lo
al maximaof k~pk, �pop gives an estimate of the lo
al tangent angle. Theoreti
ally, the 
oding59
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Figure 3.3: General s
heme for population 
oding with a bank of Gabor �lters. Ea
h �lteris represented by a 
omponent ve
tor. The ve
tor orientation and magnitude are given bythe preferred orientation and the response magnitude of the �lter. The population ve
tor isthe ve
tor sum of the 
omponents. Its orientation gives an estimate of the lo
al orientationat the 
onsidered position. The magnitude 
hara
terises the overall response strength of theensemble.error 
an be made as small as desired by applying a larger number of �lters. However,
omputational 
ost and dis
retisation errors in digital images limit the optimal numberof �lters, in pra
ti
e.
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must be flipped

stimulus
orientation

Figure 3.4: Ve
tor 
oding of orientations. Orientations are restri
ted to the range 0Æ� 180Æ.Therefore, the ve
tor 
omponents are 
omputed with respe
t to a symmetry axis, in this
ase the orientation of maximum response. Components outside the �90Æ range around theaxis have to be \
ipped" ba
k into that range to enfor
e a symmetri
al arrangement. A
omponent perpendi
ular to the symmetry axis (i.e., on the dashed line) would e�e
tively
an
el itself out and 
an thus be ignored.3.3 Mat
hed Filtering and the Extra
tion of Ori-ented EnergySteerable �lters have been introdu
ed by Freeman and Adelson (1991) to redu
e the
omputational 
ost of 
ontour representation. Instead of applying a large number of�lters to 
over the full range of orientations, only a small set of basis �lters is used,from whi
h the response of a �lter of arbitrary orientation 
an be synthesised. Theapproa
h is feasible for Gaussian derivatives, but Gabor �lters are known to be onlyapproximately steerable (Shustorovi
h, 1994).In this se
tion, it is shown how the Gabor �lter bank 
an be made steerable, in thesense that the orientational energy 
an be approximated by means of the magnitudeof the population ve
tor. To a

omplish this, it is ne
essary to move beyond the linearve
tor population 
oding and to make expli
it use of the orientation tuning 
urve.61



Originally, the population ve
tor was used to extra
t a ve
torial quantity, e.g., theposition ~x of a limb in three-dimensional spa
e (Georgopoulos et al., 1986). Here thepopulation ve
tor ~p 
an dire
tly represent the position ve
tor, i.e.,~p = ~x :The population ve
tor and the en
oded position ve
tor are expe
ted to be equal indire
tion and magnitude. The response, ri, of a single dire
tion en
oding motor neuronis modelled as a proje
tion of the population ve
tor onto the 
orresponding unit ve
tor:ri = ~p � ~ei :The situation with 
ontour representation using Gabor �lters is di�erent. There aretwo separate quantities, orientation and �lter response energy, to be merged into a
ontour representing ve
tor. Its orientation should be equal to the lo
al 
hara
teristi
orientation of the 
ontour (tangent angle), whi
h is, of 
ourse, only well de�ned if thereis unimodal anisotropy in the neighbourhood of the 
onsidered lo
ation. The degree ofanisotropy 
an, however, be judged from the distribution of �lter responses by meansof a reliability 
riterion of the orientation measurement derived in se
tion 3.5.The magnitude of the 
ontour representing ve
tor shall here be de�ned as theresponse of the Gabor �lter tuned to the very tangent orientation, �
, of the 
ontour,Gmax. In the literature on steerable �lters, this is usually referred to as the \mat
hed�lter" (Perona, 1992). The 
ontour ve
tor at a parti
ular point (x; y) is then~
 = Gmax(x; y;�)~e
 ;where ~e
 is the unit ve
tor in the dire
tion of the 
ontour. Gmax is the orientationalenergy and therefore a measure of the 
ontour 
ontrast. The question is how the
ontour ve
tor 
an be de
oded from the �lter \population".62



The orientation 
an easily be obtained from equation (3.4). However, as Gabor�lters (and visual 
orti
al neurons) have non-
osinusoidal orientation tuning (se
tion3.1.2, (Swindale, 1998)), the relationship between the magnitudes of the 
ontour ve
-tor and the population ve
tor is more 
ompli
ated than in Georgopoulos' approa
h(Georgopoulos et al., 1986). The magnitude of the population ve
tor does not equalthe orientational energy, as one would expe
t in linear ve
tor 
oding, sin
e the �lterresponses 
annot be des
ribed as dot-produ
ts between the 
ontour ve
tor and the�lter 
omponent ve
tor. In order to derive the oriented energy, the population ve
torhas to be modelled by means of the tuning 
urves.The response of a �lter of orientation  to an input image with lo
al 
ontourorientation �
 at (x; y) 
an be des
ribed by Gmax and the normalised tuning fun
tionsf given by equation (3.2):G(x; y; ; �) = Gmax(x; y;�)f(�
; ) : (3.5)Assuming that the population angle �pop (the measured orientation) is 
lose to the true
ontour orientation (�
 � �pop), a model population ve
tor ~m is 
al
ulated from thenormalised tuning fun
tions: ~m = nXi=1 f(�pop; i)~ei : (3.6)Inserting the response model (3.5) into the de�nition of the population ve
tor (3.3)and 
omparing the result with (3.6) yieldsGmax = j~pjj~mj : (3.7)Sin
e Gmax and the tuning properties are known, steerability has been a
hieved in thoseimage regions where the degree of anisotropy is high enough, i.e., where the responsepro�le of the �lter outputs 
losely resembles the tuning 
urve. The �lter response forany orientation 
an thus be 
al
ulated from equation 3.5.63



3.4 Performan
e of Orientation EstimationIn this se
tion, the a

ura
y of the orientation estimate is investigated, as well as itsdependen
e on tuning width and noise level. The algorithm is tested on arti�
ial im-ages using �lter-banks of di�erent sizes. The test images and the �lter wavelengthare the same as those previously des
ribed in Se
tion 3.1.2. The �lter banks 
onsistof 8, 16 and 32 Gabor �lters. Figure 3.5 shows the root mean square (rms) error ofthe population angle hÆ�popirms as a fun
tion of the tuning half-width of the appliedGabor �lters. The error in
reases when, given the number of �lters, the tuning widthis too small to guarantee suÆ
ient �lter overlap to 
over the entire range of 180 de-grees. In the experiments, this limit is not rea
hed with 32 �lters. The error seemsto 
ontinuously de
rease further for de
reasing tuning width. However, a

ording tothe 
orresponding un
ertainty relation, the tuning width de
reases at the expense ofan in
reasing re
eptive �eld size and, 
onsequently, a lower spatial resolution.For large tuning widths the envelope parameter is so small that the entire re
eptive�eld 
onsists of only a few pixels, and dis
retisation errors be
ome noti
eable.In 
on
lusion, eight �lters 
an be 
onsidered suÆ
ient for pra
ti
al purposes, sin
ethe 
omputational 
ost is signi�
antly lower and the pre
ision only slightly smallerthan with 16 �lters.Compared to the tuning width of a single Gabor �lter, the population ve
tor esti-mate of stimulus orientation is very a

urate. The resulting rms-deviation of the angleof the population ve
tor from the ground truth value of the stimulus orientation is onlyhÆ�popirms � 1Æ, whi
h should be 
ompared with the half-width of the tuning 
urve forthe most suitable �lter (w � 17Æ). The error of the population 
oded orientation esti-mate 
onsists of two 
omponents: the 
oding error due to the limited number of �ltersand the dis
retisation error 
aused by the pixelation of digital images. Moreover, themeasured rms-error is 
onsistent with simulations by Vogels (1990).64
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3.4.1 Noise robustnessIn another experiment, sensitivity to additive Gaussian noise was investigated. The-oreti
ally, there are two essential weaknesses of the population ve
tor method in thepresen
e of noise: the problem of noise 
ontributions from unstimulated units and thepotentially small ratio of tuning width to sensor array extent (Snippe, 1996). How-ever, in the 
ontext of orientation estimation with a �lter bank, neither are of mu
h
on
ern. The range of orientations [0; �℄ (extent of the sensor array) is �xed and 
aneasily be 
overed by a relatively small number of �lters. Moreover, unlike with a linearvariable, the 
ir
ular topology of the sensor array implies that tuning 
urves lo
atedat the ends of the interval [0; �℄ do overlap. Consequently, there are few unresponsiveunits, unless a small tuning width is 
hosen, whi
h is disadvantageous even withoutnoise (see se
tion 3.4).Figure 3.6 shows the rms-error as a fun
tion of the noise varian
e for di�erentnumbers of �lters (8,16 and 32). The dependen
e is roughly linear for all three �lterbanks, with no signi�
ant di�eren
e in noise sensitivity.3.4.2 Comparison to Other Methods in the LiteratureBuse and asso
iates (Buse et al., 1996) have developed a method for simultaneous mea-surement of orientation and length of straight lines. Using the real parts (
osine part)of a bank of Gabor �lters, they 
ompute an orientation estimate from an interpolationof �lter responses at the line end points. Sin
e they use 256� 256 grey-s
ale images ofsingle lines, their data are dire
tly 
omparable to the results obtained by population
oding.Sin
e Buse and asso
iates do not report the number of �lters involved, their resultshave to be 
ompared with �lter banks of di�erent sizes. It seems likely, however, that agood interpolation result requires a number of �lters similar to that used for population66
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tion of the noise varian
e for additive Gaussian noiseusing 8, 16 and 32 �lters. The method seems to be quite robust. The �lter banks show nosigni�
ant di�eren
e in noise sensitivity.
oding. Unfortunately, the authors do not present a detailed statisti
al analysis of theirdata. No root mean square error nor a similar measure of the a

ura
y of the orientationmeasurement is given, and the limited amount of data given does not allow a reliable
al
ulation of any mean error.Be
ause of the limited data given by Buse and Caelli, an exa
t assessment of thea

ura
y in 
omparison with population ve
tor 
oding is diÆ
ult. An essential disad-vantage of their algorithm is the restri
tion to straight lines. The population 
odingmethod 
an measure lo
al tangent orientation at any point on a 
urve, provided thatthe radius of 
urvature is larger than the \re
eptive �eld" size of the �lter. On theother hand, their method also performs a length measurement by means of di�erent�lter frequen
ies.
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3.5 The Un
ertainty of Orientation InformationThe response pro�le of the �lter bank, i.e., the angular distribution of �lter outputsat a given point in the input image, 
ontains valuable information of the lo
al 
ontourstru
ture. Zemel and 
olleagues proposed to represent 
ertainty of lo
al information interms of the sum of responses (Zemel et al., 1998). In the notation used in this thesis,C(x; y) = nXi=1 Gi(x; y)� nXi=1 Gi!max ; (3.8)where the denominator is some global maximum of the summed responses. However,this measure only depends on response energy (
ontour 
ontrast) and 
annot dis
rim-inate between low 
ontrast 
ontours and intense noise. Also, points of multimodalanisotropy, su
h as 
orners (points of high 
urvature) and jun
tions, 
an produ
e highresponses in the �lter bank, though lo
al tangent orientation is ill-de�ned.It is argued in this thesis that the \sharpness" of the response pro�le is moresuitable to 
hara
terise the reliability of the lo
al orientation estimate, as it is 
ontrastindependent. Thus 
ontour 
ontrast and 
ertainty are treated as two separate pie
esof information. In fa
t, there is eviden
e that per
eived 
ontrast and the appearan
eof 
ontours is not so 
losely linked as is 
ommonly assumed (Hess et al., 1998).Figure 3.7 shows the response pro�le of the �lter bank at a number of di�erentpoints in a natural image. Despite the fa
t that the response pro�les are normalised,the quality of the edge (degree of anisotropy), and thus the expe
ted reliability oforientation measurement, is well-re
e
ted in the width of the pro�le. A

ordingly,
ertainty should be measured in terms of the angular 
on
entration of the responseenergy around the population ve
tor orientation. At a 
ontour, the response energyof the �lter bank 
an be assumed to be 
lustered around the 
ontour orientation.Therefore the average of the 
osines of orientation di�eren
es is used, weighted by theresponses: 68



2

5

6

4

3

1

(a) 0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180

2
1

preferred filter orientation (deg)

no
rm

al
iz

ed
 f

ilt
er

 r
es

po
ns

e 

(b)

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180

5

6

preferred filter orientation (deg)

no
rm

al
iz

ed
 f

ilt
er

 r
es

po
ns

e 

(
)
0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160 180

4
3

no
rm

al
iz

ed
 f

ilt
er

 r
es

po
ns

e 

preferred filter orientation (deg)(d)Figure 3.7: Normalised response pro�les of the �lter bank (16 �lters, � = 8 pixels, �e =0:6��) at di�erent points in a natural image (a). Note how the distribution of �lter responsesre
e
ts the quality of the edge. The width of the response pro�le allows the distin
tion ofnoisy regions from weak 
ontours, independent of their 
ontrast level. (b) The half-widths atwell pronoun
ed edges (points 1, 2) are very similar to the tuning width of the �lter obtainedfrom syntheti
 line images. Compare w = 17:2Æ with w1 = 19:8Æ, w2 = 21:5Æ. (
) Pointswith less intensity gradient, su
h as (6) yield a wider pro�le. Compare w6 = 24:2Æ withw5 = 21:3Æ. (d) An even wider pro�le is obtained in regions with high 
urvature, su
h aspoint (3); w3 = 52:9Æ. In lo
ations without any orientational stru
ture (point 4), the responseenergy is spread irregularly over the entire range of orientations.69



C(x; y) = Pni=1Gi(x; y) 
os ��2 � j�2 �� ij �Pni=1Gi(x; y)� i = j i � �popj ; (3.9)where  i is the �lter orientation and �pop, the population 
oded 
ontour angle. The
ertainty measure is related to the resultant length in dire
tional statisti
s (Mardia,1972), a measure of 
on
entration of a set of random samples around its mean dire
tion,de�ned by the following expe
tation value:� = En 
os(� � h�i)o :In this expression, the 
osine of the di�eren
e between mean dire
tion h�i and a randomsample � is analogous to the squared di�eren
e (x � hxi)2. The 
ertainty measuree�e
tively has an upper bound less than unity, sin
e the maximum degree of response
lustering is limited by the tuning width. Additionally, every 
ertainty value below 0.5signals total unreliability, sin
e C = 0:5 
orresponds to 45Æ, and any response 
lusteringfurther than 45Æ away from the measured orientation �pop simply indi
ates that thereis a multimodal distribution. The 
ertainty measure 
ould be normalised by dividingit by the largest 
ertainty value dete
ted.3.6 Tangent FieldsIn this se
tion, the population 
oding te
hniques for the measurement of orientation,response energy and 
ertainty are 
ombined to obtain tangent �elds. The results arepromising not only for the purpose of 
ontour dete
tion, but also with respe
t to therepresentation of tangent 
ow �elds. 70



Figure 3.8: An Infra-red aerial image of Luton airport (512 � 512 pixels).Figure 3.9 shows a detail from the tangent 
ow �eld 
orresponding to an infra-red aerial image obtained with di�erent methods of orientation measurement. The
omparison in
ludes Zu
ker's method, whi
h uses se
ond Gaussian derivatives, (Zu
keret al., 1988), sele
tion of tangent orientation from S-Gabor �lters (Leite and Han
o
k,1997), and population ve
tor 
oding.Note that the population ve
tor approa
h is able to re
over some �ne details inthe 
ow. The 
ow �eld follows even small stru
tures in the intensity pattern, su
has the \vortex" in the upper left, that have been lost by the other algorithms due tosmoothing.
71



Figure 3.9: Magni�ed detail (roundabout) of Fig. 3.8. Ea
h grey square represents a pixel.(a) original, (b) with overlaid tangent �eld following (Zu
ker et al., 1988), (
) tangent�eld obtained by sele
ting the strongest response from 8 S-Gabor �lters, (d) tangent �eldfrom population ve
tor 
oding with 8 Gabor �lters (� = 3 pixels). The population ve
torapproa
h preserves some �ne details in the 
ow �eld that are lost with the other methods asa 
onsequen
e of insuÆ
ient angular resolution or over-smoothing. Images (a)-(
) after Leiteand Han
o
k (1997). 72



3.6.1 Contour Representation: Tangent sele
tion in naturalimagesIn order to represent 
ontours by means of lo
al line segments from the tangent �eld,it is ne
essary to sele
t those line segments on the 
rest lines of the response energylands
ape given by the magnitude of the population ve
tor. In the terminology ofParent and Zu
ker, this problem is referred to as the sear
h for lateral maxima (Parentand Zu
ker, 1989).In a nutshell, the feature sele
tion algorithm used in this 
hapter �rst performs thelo
al maximum sear
h on the produ
t of 
ertainty and response energy, j~p(x; y)jC(x; y),rather than energy j~p(x; y)j alone. Thus points of high 
urvature or jun
tions, wherethe orientation measurement is not well-de�ned, are ex
luded, as well as noisy regionswhere virtually no orientational stru
ture is present. In a subsequent step, spuriousparallels in the 
ontour neighbourhood are eliminated through 
ompetition amongneighbouring parallel line segments. The remaining points undergo thresholding. As aresult, only points of high 
ontrast and high 
ertainty \survive".

(a) (b)Figure 3.10: Contour representation from population 
oded tangent �elds. (a) the orienta-tional energy map. (b) the 
ontour tangent �eld of a natural image (human hand, see Fig.3.7 a). The tangents in Image (b) represent the lo
al orientation at \key points", i.e., lo
almaxima of the produ
t of dire
tional energy and 
ertainty.73



In order to obtain su
h an initial set of key points, a grid is pla
ed on the mapof the produ
t j~p(x; y)jC(x; y). Within ea
h segment a lo
al maximum is determined.Interpreting the map of magnitude� 
ertainty as a lands
ape with the edges formingridges, this is a sear
h for the highest point on the ridge within ea
h grid segment.However, the grid dis
retisation 
an produ
e artifa
ts if the ridge is just outside theboundary of the 
onsidered grid segment. The lo
al maximum will then be only a pointon the slope (the real lo
al maximum is lo
ated in a neighbouring segment). In orderto avoid su
h false maxima, every 
andidate must be veri�ed by 
he
king for a lo
almaximum in a new neighbourhood 
entred around the 
andidate. If the 
andidate isstill found to be a lo
al maximum, it is a

epted as a key point; otherwise, it is erased.On
e these \key points" of reliable 
ontour information and the 
orrespondingtangent angles are determined, they provide a symboli
 representation in terms of lo
alline segments (Figure 3.10 and 3.11 ). Moreover, they 
ould serve as an initialisationof nodes in a graph representation and be further updated by more global 
onstraints.Figure 3.12 shows ea
h of the di�erent steps in the pro
edure of 
ontour tangent�eld extra
tion. The left 
ontour of the triangular blo
k, denoted by an arrow, appearsvery faint in the map of the population ve
tor magnitude. However, it is 
learly visiblein the 
ertainty map, sin
e response pro�les along the entire length of the 
ontour tendto 
luster tightly around the edge orientation, despite the low intensity gradient. Eventhough the information about the weak 
ontour is, in prin
iple, present in the energymap (Fig.3.12 b), it is mu
h easier to establish a general threshold for the produ
t of
ertainty and magnitude than for magnitude alone.
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(a)
(2)

(1)

(b)Figure 3.11: (a) An image with several polyhedra (256 �256 pixels). (b) The 
orresponding
ontour tangent �eld extra
ted with �=8 pixels. Only extremely faint 
ontours are notrepresented, su
h as the short edge (1). Additionally, the re
e
tions on the table surfa
e
reate some additional line segments. Note that 
orner points and jun
tions are left blank.
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(a) (b)

(
) (d)Figure 3.12: (a) Another image (512 �512 pixels). (b) The magnitude of the populationve
tor. The weak left 
ontour of the triangular blo
k (arrow) is almost lost. (
) The 
ertaintymap. As expe
ted for a se
ond order measure, more noise is present. The weak 
ontour is
learly visible, sin
e response pro�les all along the 
ontour tend to 
luster tightly around theedge orientation, despite the low intensity gradient. (d) In the 
ontour tangent �eld the weakedge has been re
overed without amplifying noise.76



3.7 Con
lusionsIs has been shown that population ve
tor 
oding with Gabor �lters 
an be used toa

urately estimate the orientation of edges and lines in grey-s
ale images. Moreover,based on an analysis of lo
al �lter response pro�les, a 
ertainty measure has beende�ned in terms of the distribution of response energy around the population ve
tor.The 
ertainty measure is, by de�nition, 
ontrast independent, and therefore provides anadditional pie
e of information that signals the presen
e of an edge/line. The 
ertaintymeasure also helps to avoid the 
al
ulation of wrong orientation estimates in unsuitablelo
ations, su
h as 
orner points and jun
tions.An important issue is the biologi
al plausibility of the population ve
tor approa
h.The fa
t that a population ve
tor interpretation allows read-out of the informationen
oded by a neural ensemble through the experimenter (Georgopoulos et al., 1986)does not mean that su
h de
oding is a
tually performed in the brain (Pouget andZhang, 97; Oram et al., 1998; Lehky and Sejnowski, 1998). It is more likely thatdistributed 
oding is maintained to se
ure robustness against noise and loss of neurons(Snippe, 1996).It is not 
laimed that the algorithm models aspe
ts of the 
orti
al pro
essing oforientation information. However, all the operations ne
essary for 
omputing a pop-ulation ve
tor 
ould easily be realized by 
orti
al neural networks. Also, it turns outthat the optimal performan
e of orientation estimation by the system is rea
hed whenthe tuning width of the �lters resembles that of striate 
orti
al 
ells.Another 
riti
ism stems from statisti
al estimation theory. Due to the non-
osineorientation tuning 
urves, the population ve
tor is not an eÆ
ient estimator, i.e., itdoes not attain the Cram�er-Rao bound (Snippe, 1996). This means that the angularmeasurement is not optimal in the sense that it does not have the lowest (
ir
ular)varian
e and, 
onsequently, minimal root mean square error. The optimal rms-error77



would be a
hieved within a maximum likelihood framework that takes into a

ount thea
tual shape of the tuning 
urve (Sanger, 1996; Oram et al., 1998).A serious limitation is the fa
t that regions of multiple orientations, su
h as 
ornerpoints, 
annot be a

urately des
ribed in terms of a single population ve
tor. Inthe next 
hapter, the population 
oding approa
h is therefore extended towards aprobabilisti
 interpretation of population 
oding, in order to re
over full probabilitydistributions over lo
al orientation.

78



Chapter 4
Probabilisti
 Population Coding
Probabilisti
 population de
oding of sensory input data is 
on
erned with the extra
-tion of a probability density fun
tion from the responses of a set/population of �l-ters/neurons tuned to a stimulus property. A major advantage of the probabilisti
approa
h over other methods is that it is not restri
ted to the de
oding of a uniquevalue, sin
e it 
an represent un
ertainty and ambiguity in the en
oded variable througha multi-modal distribution.Substantial theoreti
al 
ontributions in probabilisti
 population 
oding have beenmade by Sanger (1996) as well as Zemel, Dayan and 
olleagues (Zemel et al., 1998;Zemel and Pillow, 2000; Zemel and Dayan, 1999; Zemel et al., 1995), whi
h are mainly
on
erned with modelling biologi
al information pro
essing, parti
ularly the per
eptionof motion and orientation.In this 
hapter, probabilisti
 population 
oding is applied to the dete
tion andrepresentation of lo
al edge orientation. The ability to represent ambiguous inputs isused to extra
t multiple orientations in 
orner points and jun
tions. Thus it is possibleto over
ome the restri
tions of the population ve
tor approa
h, whi
h only allows theextra
tion of tangent �elds from unimodal response pro�les.Unlike neurons in biologi
al models of population 
oding, where �ring rates are79



regarded as random variables following Poisson statisti
s (Zemel et al., 1998), or arelated probabilisti
 model (Itti et al., 1998), the �lters are treated as deterministi
operators fed with a sto
hasti
 visual input. Even though the �ltering pro
ess is deter-ministi
 per se, the responses themselves be
ome sto
hasti
, sin
e they are fun
tionsof a random variable: the lo
al 
ontour orientation �.In order to re
over the whole pdf of the lo
al orientation, p(�), representing theun
ertainty and ambiguity of �, the pdf parameters have to be estimated from the givenset of �lter responses, whi
h 
an be a
hieved indire
tly via the pdf of the responses.Based on an empiri
ally and theoreti
ally motivated model of the tuning fun
tion ofGabor �lters and the assumption of a von Mises mixture distribution of the angularinput variable (lo
al 
ontour orientation), the 
orresponding pdf of the responses 
an bederived and the mixture parameters 
an determined so that the given �lter responsesare most likely. The pdf of the input variable is thus de
oded from the populationa
tivities (�lter outputs).4.1 Gabor Filter Response Pro�les at Lo
ations ofMultiple OrientationThe response pro�le of a bank of Gabor �lters extra
ted at lo
ations of multiple ori-entation 
ontains several peaks, whi
h are more or less separated, depending on thetuning width of the �lters applied. An adequate 
hoi
e of �lter parameters allows thedis
rimination of at least two response extrema 
orresponding to the di�erent orienta-tions of the edges meeting or overlapping at the 
onsidered point. Figure 4.1 (b) showsthe response pro�le extra
ted at point (5) in Figure 4.1 (a).Only odd symmetri
 Gabor �lters (\edge dete
tors") are 
onsidered throughoutthis 
hapter, but a similar analysis 
an be made for the even-symmetri
 
ounterpart80
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(b)Figure 4.1: (a) A real image (256� 256 Pixels) with several intensity features, su
h asedges, 
orners and T-jun
tions. (b) The response pro�le of the Gabor �lter bank at aT-jun
tion (point 5). The ensemble a
tivities re
e
t the two prin
ipal orientations.(\line dete
tor"). The reason for returning to the 
omponents of the quadrature pair,rather than 
ontinuing with magnitudes, is that a linear �lter is required. If the �ltersare stri
tly linear, one 
an assume that the prin
iple of superposition holds, whi
himplies that the response pro�le for 
omplex intensity stru
ture where several edges
oin
ide (e.g., at 
orner points) is a linear 
ombination of the response a
tivities for theindividual edge 
omponents. This assumption is 
ru
ial for the following derivations.It is 
ertainly valid for Gabor �lters with even or odd symmetry but already is vio-lated with Gabor moduli, sin
e the magnitude of a 
omplex �lter response is 
al
ulatedby a Pythagorean sum, whi
h is a non-linear operation.
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4.1.1 The tuning fun
tion of odd-symmetri
 Gabor �ltersThe tuning fun
tion of an odd-symmetri
al Gabor �lter 
an be derived analyti
ally fora sinusoidal grating of arbitrary orientation. The result is of general relevan
e, sin
e anyfully anisotropi
 input 
an be expanded into a Fourier series of sinusoids with di�erentwavelengths but equal orientation. Real images are likely to 
ontain edges subje
tto some degree of blur that, therefore, have a dominant spatial ground frequen
y intheir spe
trum, while higher frequen
y 
omponents are 
omparatively weak. This
hara
teristi
 spatial frequen
y of an edge's intensity stru
ture at a parti
ular lo
ationin
uen
es the tuning width of the �lter responses. For moderately 
urved stimuli, theabove argument is still valid within the e�e
tive range of the �lter mask (i.e., wherethe Gaussian envelope is signi�
antly above value zero).A

ordingly, the \input image" used to 
al
ulate the tuning fun
tion is a sinusoidof in�nite extent. (In pra
ti
e, this is to be understood in the sense of periodi
 
ontin-uation applied during the subsequent fast Fourier Transform.) For pra
ti
al purposes,the 
orresponding wavelength �s (in pixels) will be used, rather than the frequen
y.The sinusoid's orientation � is de�ned in terms of the orientation of its wave ve
tor,the magnitude of whi
h will be denoted by ks = 2�=�s. Hen
e, the sinusoid is writtenas S(x; y) = sin [ks (x 
os � + y sin �)℄ (4.1)For simpli
ity, and without loss of generality, a Gabor �lter is 
hosen with wavelength�f and verti
al orientation. Additionally, the quantity kf = 2�=�f is introdu
ed. ThusGodd(x; y) = exp�� x22�2w � y22�2e� sin(kfx) : (4.2)The orientation tuning fun
tion f(�) is the 
onvolution of the �lter with the sinusoid,at the origin (0; 0). 82



f(�) = (Godd � S)(0; 0)= 1Z�1 1Z�1 Godd(x; y)S(x; y; �) dx dy=) f(�) = 1Z�1 1Z�1 exp�� x22�2w � y22�2e� sin(kfx) sin [ks (x 
os � + y sin �)℄ (4.3)The rather 
ounterintuitive 
hoi
e of Cartesian, instead of polar, 
oordinates is ne
es-sary, sin
e the �lter kernel is not polar separable; 
onsequently, the resultant integralsin the angular and radial variable would be virtually intra
table.Expanding the sinusoid yields:sin [ks (x 
os � + y sin �)℄ = sin(ksx 
os �) 
os(ksy sin �) + 
os(ksx 
os �) sin(ksy sin �)Hen
e, separation of integrations in x and y is straightforward:
f(�) = 1Z�1 exp�� x22�2w� sin(kfx) sin[ksx 
os �℄ dx 1Z�1 exp�� y22�2e� 
os[ksy sin �℄ dy+ 1Z�1 exp�� x22�2w� sin(kfx) 
os[ksx 
os �℄ dx 1Z�1 exp�� y22�2e� sin[ksy sin �℄ dy(4.4)The se
ond double integral vanishes due to the y-integration of an odd-symmetri
alfun
tion. In Gradstein and Ryshik (1981), the following integrals (No. 3.898 1. and3896 4.) are given:
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1Z�1 e��x2 sin(ax) sin(bx) dx = 12r�� �exp��(a� b)24� �� exp��(a + b)24� ��1Z�1 e��y2 
os(by) dy = r�� exp�� b24�� ; for ab > 0 ; � > 0 :This yields:f(�) = 1Z�1 exp�� x22�2w� sin(kfx) sin[ksx 
os �℄ dx 1Z�1 exp�� y22�2e� 
os[ksy sin �℄ dy= 12p2��2w�exp��(kf � ks 
os �)22�2w4 �� exp��(kf + ks 
os �)22�2w4 ���p2��2e exp��2k2s sin2� �2e4 �
= ��w�e�exp���2w2 [kf � ks 
os �℄2 � �2e2 [ks sin �℄2�� exp���2w2 [kf + ks 
os �℄2 � �2e2 [ks sin �℄2��If the aspe
t ratio of the �lter is set to one, i.e., �e = �w, this simpli�es to:f(�) = ��2e �exp��k2f�2e2 + kfks�2e 
os � � k2s�2e2 �� exp��k2f�2e2 � kfks�2e 
os � � k2s�2e2 ��
= ��2e exp�� �k2f�2e2 + k2s�2e2 ���exp �kfks�2e 
os ��� exp ��kfks�2e 
os ��	= 2��2e exp���2e2 �k2f + k2s��| {z }f̂ sinh0�kfks�2e| {z }�0 
os �1A
= f̂ sinh[�0 
os �℄ 84



The parameter �0 is a so-
alled 
on
entration parameter. Its re
ipro
al value is re-lated to the angular varian
e, and therefore 
ontrols the orientation tuning width (seeFig.4.2). �0 depends on the two known �lter properties kf = 2�=�f and �e as wellas the unknown quantity ks = 2�=�s, whi
h is inverse proportional to the dominantwavelength, �s, in the input signal.In the following derivations it will be assumed that the tuning fun
tions of all �ltersare normalised and identi
al, apart from an angular shift,  , indi
ating their preferredorientation. Hen
e: f(�;  ) = C sinh[�0 
os(� �  )℄ ; (4.5)where C = 1= sinh(�0) is a normalisation 
onstant, so that f(�;  ) 2 [�1; 1℄. WhileC is the normalisation 
onstant for the theoreti
al tuning 
urve (4.5), the a
tual �lterresponses have to be be s
aled by C=f̂ . Let n be the number of �lters.r� 7! r� Ĉf ; where � = f1; : : : ; ngThe orientation tuning fun
tions of 
orti
al neurons have been shown to be of vonMises type (Swindale, 1998), i.e., of the formf(�) / e� 
os(�� ) :This is 
onsistent with eqn.(4.5), in the sense that for realisti
 tuning widths (where �is not too small)
e� 
os(�� ) � e� 
os(�� ) � e�� 
os(�� ) = 2 sinh(� 
os(� �  )) ; for� �2 < � �  < �2 ;and 
onsidering the fa
t that, unlike Gabor �lter responses, 
orti
al neural �ring ratesare, of 
ourse, positive. (In a real neural network the negative part of the tuning85



fun
tion would be signalled by means of a se
ond neuron sensitive to opposite 
ontrastsign.) Figure 4.3 illustrates the similarity of both fun
tions.
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Figure 4.2: Orientation tuning fun
tion of an odd-symmetri
 Gabor �lter for three di�erentvalues of the 
on
entration parameter. The larger � is, the smaller the tuning width.
4.2 Theory of Probabilisti
 Population Coding withGabor FiltersThe Gabor �lter bank is an ensemble of orientation sensitive units resembling thepopulation of simple 
ells in a hyper
olumn of primary visual 
ortex. The view of thisthesis is that su
h an ensemble of orientation sensitive units 
an 
apture one- as wellas two-dimensional intensity features, rendering spe
i�
 
orner or jun
tion dete
torsunne
essary. A probabilisti
 population 
oding framework 
an, therefore, 
onstitute ageneralised edge dete
tor by de
oding a potentially multi-modal probability density oflo
al orientation.Based on the prin
iple of linear superposition (dis
ussed in se
tion 4.1), the un-derlying probability density of lo
al edge orientation 
an be modelled by a mixture86
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Figure 4.3: Orientation tuning fun
tion of an odd-symmetri
 Gabor �lter (� = 12;  = �2 )
ompared with the 
orresponding von Mises fun
tion whi
h �ts many neural orientationtuning 
urves. Within the range � 2 [ � �2 ;  + �2 ℄ the di�eren
e is negligible.distribution. In the 
ase of non-linear �lters, a mu
h more 
ompli
ated model, interms of a joint density of orientations, would have to be employed. Moreover, thetuning 
urve would have a more 
ompli
ated stru
ture wherein the absolute 
ontrastof stimuli would play a 
ru
ial role.4.2.1 Expe
tation values of �lter responsesLet f(�) be the orientation tuning fun
tion, and let  be the preferred orientation of a�lter. Assuming superposition holds, the expe
tation value of the response pro�le foran arbitrary pdf of the stimulus orientation, p(�), is given by (Zemel et al., 1998):�r( ) = 2�Z0 f(� �  )p(�) d� : (4.6)For symmetri
al tuning 
urves, i.e., f(� �  ) = f( � �), the integral in (4.6) 
an berewritten as the 
onvolution of tuning fun
tion and orientation pdf:87



�r( ) = 2�Z0 f( � �)p(�) d� : (4.7)These equations des
ribe the pro
ess of en
oding the pdf p(�) in the expe
ted responsefun
tion �r, whi
h is 
ontinuous in  . The set of average ensemble a
tivities (the averageresponse pro�le), denoted by f�r( �)g, is a sample of this fun
tion for a dis
rete set of�lter orientations  �.Thus the de
oding of the pdf p(�) is a de
onvolution (Wilson and L�udtke, 2000),whi
h is, in general, an ill-posed problem (Press et al., 1989) likely to require some kindof regularisation. To a

ount for this, a smoothness prior is used by Zemel et al. (1998).In the following se
tions, a parametri
 model of the expe
ted �lter responses will bederived based on the orientation tuning fun
tion and a mixture model of p(�). Withinthis framework, regularisation is a
hieved in an impli
it fashion as a 
onsequen
e oflow model 
omplexity.4.2.2 A mixture model of lo
al orientationThe en
oding equation (4.7) is general, in the sense that it does not restri
t p(�) tounimodality. Based on the assumption of superposition, the probability density ofthe stimulus orientation is modelled as a mixture of von Mises distributions (Mardia,1972), in order to allow a

urate representation of ambiguous lo
al orientation (
orners,jun
tions, et
.):p(�) = 12� mXi=1 P (i)I0(�i)e�i 
os(����i); with mXi=1 P (i) = 1 : (4.8)Here I0 is the modi�ed Bessel fun
tion of the �rst kind and order zero, and the term1=2�I0(�i) serves as a normalisation fa
tor of the i-th mixture 
omponent. Eqn.(4.8)
an be 
onsidered a 
ir
ular analogue of the Gaussian mixture density, where the �i
orrespond to the 1=�i, the ��i to the �i, and the P (i) are the mixing 
oeÆ
ients.88
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Figure 4.4: Plot of the von Mises distribution.Figure 4.4 shows a plot of the von Mises distribution for di�erent 
on
entrationparameters. The number of mixture 
omponents, m, will be limited to two or at mostthree, des
ribing all essential 
ases of multiple edge orientation.Inserting equations (4.5) and (4.8) in (4.7) yields the expe
tation value of the re-sponse pro�le as a fun
tion of the tuning width and the pdf parameters (the hyperboli
sine is written in exponential form):
�r( ) = C4� mXi=1 0� P (i)I0(�i) 2�Z0 �e�0 
os(�� ) � e��0 
os(�� )� e�i 
os(����i) d�1A : (4.9)Therefore, it is ne
essary to solve integrals of the type2�Z0 e��0 
os(�� )+�i 
os(����i) d� : (4.10)By means of the substitution 
os(� � �) = 
os(�) 
os(�) + sin(�) sin(�) and after89



rearranging terms, the exponent with positive sign in the integral be
omes:�0 
os(� �  ) + �i 
os(� � ��i)= �0 
os(�) 
os( ) + �0 sin(�) sin( ) + �i 
os(�) 
os(��i) + �i sin(�) sin(��i)= 
os(�) ��0 
os( ) + �i 
os(��i)�| {z }=:�i +sin(�) ��0 sin( ) + �i sin(��i)�| {z }=:�i (4.11)Analogously, let for ��0:~� := ��0 
os( ) + �i 
os(��i) and ~� := ��0 sin( ) + �i sin(��i)This yields:�r( ) = C4� mXi=1 0� P (i)I0(�i) 2�Z0 e�i 
os(�)+�i sin(�) � e ~�i 
os(�)+ ~�i sin(�) d�1A : (4.12)Using the more general integral No. 3.937 in Gradstein and Ryshik (1981), it followsthat 2�Z0 ep 
os x+q sinx dx = 2�I0(pp2 + q2); (4.13)where I0 is again the modi�ed Bessel fun
tion of �rst kind and order zero. Beforeapplying this result to solve the integrals in (4.12), the terms �2i + �2i and ~�i2 + ~�i2need to be simpli�ed. With (4.11) one obtains:�2i + �2i = ��0 
os( ) + �i 
os(��i)�2 + ��0 sin( ) + �i sin(��i)�2= �20 + �2i + 2�0�i �
os( ) 
os(��i) + sin( ) sin(��i)�= �20 + �2i + 2�0�i 
os( � ��i) : (4.14)90



Analogously, for ~�i and ~�i one obtains a similar expression (ex
ept for the negativesign): ~�i2 + ~�i2 = �20 + �2i � 2�0�i 
os( � ��i) : (4.15)Next, substituting (4.14) and (4.15), respe
tively, in (4.13) and inserting the results in(4.12) yields the average response pro�le:�r( ) = C2 mXi=1 P (i)I0(�i) �I0�q�20 + �2i + 2�0�i 
os( � ��i)��I0�q�20 + �2i � 2�0�i 
os( � ��i)�� (4.16)4.2.3 The likelihood of the response pro�leIn the previous se
tion, the expe
ted response pro�le, �r( ), has been derived as anexpe
tation value of the tuning fun
tion, given a parti
ular set of model parameters ofthe underlying pdf of the input variable �:�r( ) = 2�Z0 f(� �  ) p(�) d� : (4.17)Alternatively, the expe
ted response pro�le 
an also be thought of as the result ofaveraging the �lter responses. Let p(r; ) be the probability density over the responsevalue of a �lter of preferred orientation  . Then, the expe
ted (
ontinuous) responsepro�le is given by �r( ) = 1Z�1 r p(r; ) dr : (4.18)The �lter responses r�, obtained at a parti
ular lo
ation in an image, are instan
esof sto
hasti
 variables, even though the �ltering per se is a deterministi
 operation.The randomness of the responses is 
reated solely by the sto
hasti
 nature of theinput variable, whi
h is fundamentally di�erent from standard biologi
al models of91



population 
oding, where neural �ring rates are usually random variables following aPoisson statisti
s (Zemel et al., 1998) or a related probabilisti
 model (Itti et al., 1998).Maximum likelihood estimationOne method of estimating the parameter0s of the mixture model p(�) is through amaximum likelihood estimation. Let� = �P (1); : : : ; P (m); ��1; : : : ; ��m; �1; : : : ; �m	denote a set of mixture parameters. Then, the optimal parameters �opt are given by�opt = arg max Lfr1 : : : rnj�; �0g :�Therefore, it is essential to know the likelihood of the individual �lter responses, giventheir preferred orientations  � and the parameters � and �0, i.e., p(r�; �;�; �0), inorder to be able to 
al
ulate the total likelihood of a given response pro�le. Regardingthe responses as independent sto
hasti
 variables yields:Lfr1 : : : rnj�; �0g = nY�=1 p(r�; � ;�; �0) :The likelihood fun
tion, L, depends on the parameters of the mixture pdf p(�), to-gether with the parameter �0 spe
ifying the tuning fun
tion. The maximum likelihoodestimation for the mixture parameters 
an be performed using standard te
hniques,su
h as the EM algorithm. The remaining tuning parameter �0 
an be obtained:a) from an initial measurement on a straight edge,b) together with the mixture parameters in the same MLE pro
ess.Method b) 
ould have interesting impli
ations in a situation where lateral intera
tionsbetween neighbouring �lters are present. In su
h a situation, the 
ontext dependent92




hange of the tuning width 
ould be observed, i.e., the e�e
tive tuning width. In thisthesis, however, �0 will be determined a

ording to a).4.2.4 The probability distribution of responsesThe task now is to �nd the pdf of a fun
tion of a random variable, sin
e the �lterstransform the stimulus orientation, �, into responses via their tuning fun
tion, givenby (4.5). A

ording to the general theorem for the probability density of a fun
tion ofa random variable (Papoulis, 2002, p.130), the pdf of the response pro�le (preferredorientation  ) is given by p(r; ) = p(�1)jf 0(�1; )j + p(�2)jf 0(�2; )j : (4.19)Here f 0 is the derivative of the tuning fun
tion with respe
t to �, and �1;2 are the two
orresponding angles of the response value r in the interval [ � �2 ;  + �2 ℄, given bythe inverse of the tuning fun
tion. Thus �1;2 are the solutions of the equationr = f(�1;2; ) ; �1;2 2 [ � �2 ;  + �2 ℄ : (4.20)Inverting the tuning fun
tion, eqn.(4.5), yields:r = C sinh[�0 
os(� �  )℄rC = sinh[�0 
os(� �  )℄1�0 sinh�1 � rC� = 
os(� �  )ar

os� 1�0 sinh�1 � rC�� = �(� �  )=) �1;2(r; ) = � ar

os� 1�0 sinh�1 � rC��+  : (4.21)The derivative of the tuning fun
tion is given by:93



f 0(�; ) = df(�; )d� = �C�0 sin(� �  ) 
osh[�0 
os(� �  )℄ : (4.22)Inserting (4.21) into the angular pdf (4.8) yields:p(�1;2) = 12� mXi=1 P (i)I0(�i) exp ��i 
os�� ar

os� 1�0 sinh�1 � rC��+  � ��i�� : (4.23)Applying the addition theorem of the 
osine and using sin(ar

os x) = �p1� x2, oneobtains:p(�1;2) = 12� mXi=1 P (i)I0(�i) exp ��i�0 sinh�1 � rC� 
os( � ��i)��is1� � 1�0 sinh�1 � rC��2 sin( � ��i)� : (4.24)The se
ond ingredient of theorem (4.19), i.e., jf 0(�1;2; )j, is obtained by inserting (4.21)into (4.22):jf 0(�1;2; )j = �����C�0 sin�� ar

os� 1�0 sinh�1 � rC��+  �  � �
osh ��0 
os�� ar

os� 1�0 sinh�1 � rC��+  �  ������ :Using sin(ar

os x) = �p1� x2 again and 
osh( sinh�1x) = p1 + x2, this simpli�esto: jf 0(�1;2; )j = C�0 r1 + � rC�2 s1� � 1�0 sinh�1 � rC��2 : (4.25)Thus using (4.24) and (4.25) along with ex + e�x = 2 
osh x, the pdf of the responsep(r; ) 
an be obtained a

ording to theorem (4.19):
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p(r; ) = 1�C�0 mXi=1 P (i)I0(�i) exp h �i�0 sinh�1 � rC � 
os( � ��i)iq1 + � rC �2 r1� h 1�0 sinh�1 � rC �i2 �
� 
osh0��is1� � 1�0 sinh�1 � rC��2 sin( � ��i)1A : (4.26)This density is, again, a mixture model. However, the mixture 
omponents are highlynon-Gaussian, making it diÆ
ult, though not impossible, to �nd the parameters. Thea
tual range of the normalised responses is the open interval (-1,1), as the density hassingularities in r = �1.It is important to note that, due to the stru
ture of p(r; ), the most likely responsepro�le for a given set of parameters di�ers from the average pro�le f�r( �)g given byeqn. (4.16). The two would only equal if the responses 
u
tuated around their meanvalues following Gaussian distributions. However, the mere fa
t that response valuesare bounded, to be more pre
ise r 2 (�1; 1), implies that the response pdfs 
annot beGaussian. For this reason, maximum likelihood estimation is the appropriate methodof parameter estimation, rather than �tting the response data with the fun
tion �r( )and minimising the squared error,E = nX�=1 hr� � �r( �)i2 :Proof of NormalisationThough theorem (4.19) implies that the result is a pdf, and therefore normalised, itshall be proved that eqn.(4.26) is, indeed, normalised, i.e.,1Z�1 p(r; ) dr = 1 : (4.27)95



Sin
e p(�1; ) =1, the integral is to be understood in the sense of the limit1Z�1 p(r; ) dr = lim�!0 1��Z�1+� p(r; ) dr = 1 :In order to show that (4.27) is satis�ed, the following substitution is introdu
ed:�(r) := 1�0 sinh�1 � rC� =) d� = drC�0q1 + � rC �2 :With C = 1= sinh(�0) the limits of the integration then be
ome:�1 = �(�1) = 1�0 sinh�1��1C � = 1�0 sinh�1 (� sinh(�0)) = �1and, 
onsequently,�2 = �(+1) = 1 :Thus the integral simpli�es to:1Z�1 p(r; ) dr = 1� mXi=1 P (i)I0(�i) 1Z�1 e�i� 
os( ���i)p1� �2 
osh��i sin( � ��i)p1� �2� d� ;whi
h 
an be further simpli�ed by means of the trigonometri
 substitution � =: sin �,d� = 
os � d�, eventually resolving the problem of singular boundaries. Thus the limitsof integration are: �1 = �(�1) = ar
sin(�1) = ��=2 ;�2 = �(1) = ar
sin(1) = �=2 :and the integral be
omes:
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1Z�1 p(r; ) dr = 1� mXi=1 P (i)I0(�i) �=2Z��=2 e�i sin � 
os( ���i)
os � 
osh ��i sin( � ��i) 
os �� 
os � d�= 12� mXi=1 P (i)I0(�i) �=2Z��=2 e�i sin � 
os( ���i) �e�i sin( ���i) 
os � + e��i sin( ���i) 
os �� d�= 12� mXi=1 P (i)I0(�i)0B� �=2Z��=2 e�i[sin � 
os( ���i)+
os � sin( ���i)℄ d�+ �=2Z��=2 e�i[sin � 
os( ���i)�
os � sin( ���i)℄ d�1CA
= 12� mXi=1 P (i)I0(�i)0B� �=2Z��=2 e�i sin[�+ ���i℄ d� + �=2Z��=2 e�i sin[�� ( ���i)℄ d�1CA= 12� mXi=1 P (i)I0(�i)0� �Z0 e�i 
os[�+ ���i℄ d� + �Z0 e�i 
os[�� ( ���i)℄ d�1A= 12� mXi=1 P (i)I0(�i)0� �Z0 e�i 
os[�+ ���i℄ d� + 0Z�� e�i 
os[�+( ���i)℄ d�1A= 12� mXi=1 P (i)I0(�i) �Z�� e�i 
os[�+ ���i℄ d�| {z }=2�I0(�i)= mXi=1 P (i) = 1 2Aside from the phase shift  � ��i, whi
h 
an be negle
ted due to 2�-periodi
ity, theintegral in the se
ond to the last step is, basi
ally, the integral de�nition of the modi�edBessel fun
tion of the �rst kind and order zero (Abramowitz and Stegun, 1970).97



4.2.5 Pdf parameter estimation via the EM-algorithmHaving derived the pdf of responses from the pdf of the lo
al orientation, it is possibleto obtain the model parameters by means of a maximum likelihood estimation usingthe EM-algorithm (Dempster et al., 1977). Due to the 
omplexity of the response pdf,however, the log-likelihood does not lead to signi�
ant simpli�
ation, as in the Gaus-sian 
ase. Instead, the update equations are trans
endental and require a numeri
alpro
edure to solve them for the new parameter values.Adopting the notation used in Bishop (1995, p.65), the quantity to minimise is~Q = � nX�=1 mXi=1 P old(ijr�) ln fP new(i) pnew(r�ji)g : (4.28)Here pnew(r�ji) is the i-th mixture 
omponent of (4.26) for  =  � . A

ording to Bayestheorem, the \old" posterior probabilities P old(ijr�), des
ribing the label assignment ofdata points to individual mixture 
omponents, are given by (Bishop, 1995):P old(ijr�) = pold(r�ji)P old(i)pold(r�) ; (4.29)where pold(r�) = pold(r; �) is given by (4.26). Equation (4.29) is the expe
tation step.In the maximisation step, the update equations for the mixture parameters areobtained by di�erentiating (4.28) with respe
t to these parameters and setting thederivative to zero.In the 
ase of the mixing 
oeÆ
ients P new(i), the update equation has to be derivedunder the 
onstraintPmi=1 P new(i) = 1 by means of a Lagrange multiplier, as des
ribedin Bishop (1995), leading to P new(i) = 1n nX�=1 P old(ijr�) : (4.30)Let �i be the remaining mixture parameters. In order to obtain their update equations,it is ne
essary to take the derivative of ~Q with respe
t to the �newi ,98



� ~Q��newi = � nX�=1 mXk=1 P old(kjr�) ���newi ln pnew(r� jk) : (4.31)However, the derivative with respe
t to �newi is only non-vanishing if k = i. Thus thegeneral form of the update equation for �i be
omes:� nX�=1 P old(ijr�) ���newi ln pnew(r�ji) = 0 : (4.32)A

ording to (4.26), the logarithm of the i-th mixture 
omponent for response r� is:ln pnew(r�ji) = � ln f�C�0I0(�newi )g � 12 ln(1� � 1�0 sinh�1 �r�C ��2)+�newi�0 
os( � � �� newi ) sinh�1 nr�C o� 12 ln�1 + �r�C �2�+ ln 
osh0��newi s1� � 1�0 sinh�1 �r�C ��2 sin( � � �� newi )1A :(4.33)With the abbreviation �� = 1�0 sinh�1 �r�C � for the frequently o

urring \data term",eqn.(4.33) be
omes:
ln pnew(r�ji) = � ln f�C�0I0(�newi )g � 12 lnf1� � 2� g+�newi �� 
os( � � �� newi )� 12 lnn1 + �r�C �2o+ ln 
osh ��newi p1� � 2� sin( � � �� newi )� : (4.34)Inserting (4.34) into (4.32) yields the derivative of ~Q with respe
t to the angular modes��i:
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� ~Q��� newi = nX�=1 P old(ijr�)(�newi �� sin( � � �� newi )��newi p1� � 2� 
os( � � �� newi ) tanh��newi p1� � 2� sin( � � �� newi )�) != 0 :Dividing by �newi and thereby ex
luding the irrelevant solution �newi = 0 (i.e. uniformangular distribution/no dire
tional stru
ture) yields a trans
endental update equationin �� newi and �newi :
0 = nX�=1 P old(ijr�)(�� sin( � � �� newi )�p1� � 2� 
os( � � �� newi ) tanh��newi p1� � 2� sin( � � �� newi )�) : (4.35)Using ddxI0(x) = I1(x) (Abramowitz and Stegun, 1970), the derivative of (4.34) withrespe
t to �newi is:���newi ln pnew(r�ji) = �I1(�newi )I0(�newi ) + �� 
os( � � �� newi )+p1� � 2� sin( � � �� newi ) tanh��newi p1� � 2� sin( � � �� newi )� :Hen
e, the se
ond update equation is:� ~Q��newi = nX�=1 P old(ijr�)(I1(�newi )I0(�newi ) � �� 
os( � � �� newi )�p1� � 2� sin( � � �� newi ) tanh��newi p1� � 2� sin( � � �� newi )�) = 0 :(4.36)100



Sin
e �newi appears as the argument of modi�ed Bessel fun
tions and the hyperboli
tangent, the update equation is again trans
endental. Thus for ea
h mixture 
ompo-nent, (4.35) and (4.36) form a system of trans
endental update equations whi
h haveto be solved numeri
ally for the pair (�� newi ; �newi ) of new parameter values within ea
hmaximisation step, e.g., using a Newton-Raphson algorithm.In the following se
tion it will be shown how the 
omputational 
ost of ea
h max-imisation step 
an be signi�
antly redu
ed by introdu
ing 
losed form approximationsof the update equations.4.2.6 An approximation for 
losed form update equationsThe trans
endental nature of the update equations (4.35) and (4.36) stems from thefa
t that parameters appear inside a hyperboli
 tangent and a ratio of Bessel fun
tions,respe
tively. Therefore, it would be desirable to substitute these expressions by suitableapproximations.For pra
ti
al purposes, the ratio of modi�ed Bessel fun
tions,I1(�newi )I0(�newi ) ;
an be repla
ed by its asymptoti
 approximation (Mardia, 1972),I1(�)I0(�) � 1� 12� : (4.37)Figure (4.5) shows a 
omparison of the exa
t ratio vs. the asymptoti
 approximation.In fa
t, the approximation is rather \benign" (a

ura
y better than 1% for � > 4:5) andturns out to be very suitable for the range of � values found in real images (� 2 [5; 40℄).The terms with the hyperboli
 tangent in equation (4.35) 
an be simpli�ed byrepla
ing the new parameter values by their values from the previous update step, i.e.,
101
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Figure 4.5: Graph of the ratio I1(�)=I0(�) (resultant length) and its asymptoti
 approxima-tion a

ording to eqn.(4.37). For � > 4:5 the a

ura
y is better than 1%. One must, however,ensure that � > 1. For all pra
ti
al purposes, this is no serious limitation.
tanh��newi p1� � 2� sin( � � �� newi )� � tanh��oldi p1� � 2� sin( � � �� oldi )�| {z }D� :One justi�
ation for su
h an approximation might be the fa
t that the hyperboli
tangent is a \squashing fun
tion" that saturates for arguments greater than one andsuppresses small arguments. Thus the term D� is basi
ally robust with respe
t to theexa
t value of �oldi and �� oldi , as long as the whole argument of the hyperboli
 tangentis greater than one. In this 
ase, D� � 1.If, on the other hand, the argument is small, then D� � 1, and the 
ontribution ofthe entire se
ond term in equation (4.35) is small. Again, the error introdu
ed by \old"102



parameter values in D� is negligible. An error results only in the few 
ases when theargument is in the quasi-linear range of the hyperboli
 tangent. The approximation isappropriate if the erroneous terms in the summation over � are in the minority, whi
hdepends on the number of data points, n, i.e., the size of the �lter population.Using the abbreviation D� for these now purely data-dependent terms, the updateequation for �� newi be
omes:0 = nX�=1 P old(ijr�)(�� sin( � � �� newi )�p1� � 2� 
os( � � �� newi )D�) :Expanding the trigonometri
 terms allows solving for �� newi :0 = nX�=1 P old(ijr�)( ��h sin � 
os(�� newi )� 
os � sin(�� newi )i�D� p1� � 2� h 
os � 
os(�� newi ) + sin � sin(�� newi )i )= 
os(�� newi ) nX�=1 P old(ijr�)( �� sin � � D�p1� � 2� 
os � )� sin(�� newi ) nX�=1 P old(ijr�)( �� 
os � + D� p1� � 2� sin � )
=) tan(�� newi ) = Pn�=1 P old(ijr�)n �� sin � � D�p1� � 2� 
os � oPn�=1 P old(ijr�)n �� 
os � + D�p1� � 2� sin � o : (4.38)Now, there are only data and \old" parameter values on the right hand side.The simpli�
ation of the update equation for the �newi is a
hieved in a similarmanner, but now �� newi is known and 
an be used to de�ne:103



~D� := tanh��oldi p1� � 2� sin( � � �� newi )� :With the asymptoti
 approximation (4.37) equation (4.36) be
omes:
0 = nX�=1 P old(ijr�)(�1� 12�newi �� �� 
os( � � �� newi )�p1� � 2� sin( � � �� newi ) ~D�)12�newi = nX�=1 P old(ijr�)(1� �� 
os( � � �� newi )�p1� � 2� sin( � � �� newi ) ~D� )

�newi = 12 Pn�=1 P old(ijr�)Pn�=1 P old(ijr�)n1� �� 
os( � � �� newi )�p1� � 2� sin( � � �� newi ) ~D� o(4.39)The approximation sets a lower bound for the value of �i, meaning that the angularwidth of the mixture 
omponents must not be too broad. A lower bound for �i is,however, in agreement with the requirements for separability of modes in the mixturedistribution. In other words, the approximation is most a

urate when the multiplevalues for lo
al orientation 
an be 
learly distinguished, i.e., when the 
ertainties ofthe orientation measurement are suÆ
iently high.Table 4.1 shows parameter sets obtained through numeri
al solutions of the full setof trans
endental update equations, 
ompared with the results from the approximation.For reasonably high 
ertainty, the approximation is ex
ellent.
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a) straight edge, �0 = 28:14 P (1) P (2) ��1 ��2 �1 �2full trans
endental 1.0 - 5:53Æ - 35.91 -
losed form approximation 1.0 - 5:53Æ - 35.60 -b) 
orner, �0 = 28:14full trans
endental 0.54 0.46 11:99Æ �68:05Æ 17.69 20.37
losed form approximation 0.54 0.46 11:89Æ �67:96Æ 17.16 19.86Table 4.1: Comparison of parameters 
al
ulated using both the full trans
endental updateequations and their 
losed form approximations. The di�eren
es are so small that the approx-imation seems well justi�ed. As expe
ted, the approximation is slightly better for a higher�.4.3 Numeri
al Issues with the EM-algorithmEven though the EM-algorithm is by no means limited to Gaussian or other standardprobability densities, its appli
ation to a pdf as unusual as (4.26) requires some 
aution.The response pdf, p(r; ), has two problemati
 ranges of values where numeri
al diÆ-
ulties are expe
ted to o

ur. One is, obviously, the neighbourhood of the singularitiesat r = �1.However, the responses never a
tually rea
h the values �1, unless p(�) is a deltafun
tion. In pra
ti
e, jrj < 1, due to the e�e
t of the 
onvolution (eqn. 4.7). The like-lihood rapidly de
reases to \moderate" values in the neighbourhood of the singularity.In fa
t, in none of the examples studied for this thesis, arti�
ial or natural images, didthe responses ever approa
h the 
riti
al neighbourhood of the poles.A mu
h more severe, but less obviously dangerous, situation arises for responsesaround value zero, whi
h will be illustrated using the �lter responses obtained on aperfe
t straight edge (� = 0Æ) in an arti�
ial image. Figure 4.6 (a) shows the responsedata from this experiment plotted as points (r; logL[r; ℄). The plot reveals one 
riti
al105



data point (0, 25.14) whi
h has a response value zero (within the numeri
al pre
ision)and a log-likelihood mu
h higher than the remaining data. This data point, therefore,
ontributes a substantial part of the total data log-likelihood (the sum of all the indi-vidual log-likelihoods). Any potential (numeri
al) error in its log-likelihood value willintrodu
e a signi�
ant error in the total data likelihood and the parameter estimationbased on it.The numeri
al instability of the log-likelihood fun
tion at near zero response be-
omes more obvious in Figure 4.6 (b), whi
h shows the response log-likelihood for theparti
ular �lter (orientation  = 90Æ) 
orresponding to the 
riti
al data point in Figure4.6 (a). The log-likelihood fun
tion a
ts like an ampli�er with a strong gain, sin
e thederivative d logL[r; ℄=dr takes high values around jrj = 0. Su
h a system is highlysensitive even to smallest perturbations. The responses are of limited pre
ision due to�nite numeri
al resolution and digitisation, i.e., any response r is given only with apre
ision r ��r. Even if �r� 1, the resultant 
hange in the log-likelihood,�(logL) = d logL[r; ℄dr �r ;
an be extreme. Thus the 
riti
al data point is not an \out-lier" in the sense of afalse measurement, but rather a measurement with a minute error ampli�ed by theresultant log-likelihood fun
tion. It is the �nite numeri
al pre
ision that makes itdiÆ
ult to pro
ess this data point and leads to an error in the total likelihood, and
onsequently an in
orre
t parameter estimation.4.3.1 Avoiding 
riti
al data pointsThe easiest solution is to dis
ard those data points where jrj � 0, whi
h 
an be a
-
omplished through a modi�
ation of the expe
tation step (see se
tion.4.2.5) in theEM-algorithm, during whi
h the posterior probabilities are 
al
ulated as106
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(b)Figure 4.6: (a) The response data from an arti�
ial step edge (orientation � = 0Æ) plotted aspoints (r; logL[r; ℄). There is one 
riti
al data point (0, 25.14) whi
h has a response valuezero (within the numeri
al pre
ision) and a log-likelihood mu
h higher than the remainingdata. Therefore, this data point dominates the total data likelihood, and any potential(numeri
al) error in its likelihood value will have a strong impa
t on the total data likelihoodand the parameter estimation based upon it. (b) Graph of the response log-likelihood forthe �lter (orientation  = 90Æ) 
orresponding to the 
riti
al response in (a). Not only isthe log-likelihood high around r = 0 but also the derivative d logL[r; ℄=dr. Thus any smallerror in r (e.g., due to �nite numeri
al pre
ision) is ampli�ed, and the resultant error of thelog-likelihood 
an be severe. The graph suggests dis
arding responses within a small intervalaround zero in order to avoid numeri
al diÆ
ulties.
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P old(ijr�) = pold(r�ji)P old(i)pold(r�) :In the update equations (4.30), (4.35) and (4.36), the P old(ijr�) a
t as weights for the
ontributions of the n data points. In order to omit the problemati
 responses withjrj � 0, the 
orresponding weight is set to zero and, at the same time, the e�e
tivenumber of data points taken into a

ount is redu
ed. Let k be the number of datadis
arded. Then the e�e
tive number of data used for the updating, ~n, is simply givenby: ~n = n� k :The de
ision to dis
ard data is based on a thresholding, and the redu
ed set of �lterresponses ~R is given by: ~R = nr� j r� > rmin; � 2 [1; n℄o ;where rmin is the response threshold (e.g., rmin = 0:01) . The weighted summations overall data points, nX�=1 P old(ijr�) : : : ; are repla
ed by Xr�2 ~RP old(ijr�) : : :For instan
e, the update equation of the priors be
omes:P new(i) = 1~n Xr�2 ~RP old(ijr�) :4.3.2 InitialisationThe initial values for the angular means �� (0)i are obtained by a peak sear
h in thea
tivity pro�le of the �lter bank, using a 5-neighbourhood; i.e., a parti
ular responser� is a peak (lo
al minimum or maximum) if the 
onditionr� = max(r��2; r��1; r�; r�+1; r�+2) (4.40)108



or r� = min(r��2; r��1; r�; r�+1; r�+2) ; (4.41)
respe
tively, is satis�ed. Thus the number of dete
ted peaks determines the initialnumber of mixture 
omponents, m, whi
h 
an be modi�ed later during the iterationsof the parameter estimation. The �lter orientations 
over only the range [0Æ;  = 180Æ℄.The responses for the higher angles  > 180Æ are given by the antisymmetry relationr( + �) = �r( ) ; (4.42)whi
h is a 
onsequen
e of the sensitivity to 
ontrast sign. In order to 
he
k the 
on-ditions (4.40) and (4.41) at the \ends" of the �lter bank (i.e., responses r1, r2, rn andrn�1), one must 
ompute responses r�1, r�2, rn+1 and rn+2, whi
h are not part of the�lter bank, by means of (4.42). For a reasonably high number of �lters (n > 16), thisyields an initialisation quite 
lose to the true modes of p(�). Let  max;i be the �lterorientation 
orresponding to the i-th peak response. Then,�� (0)i =  max;i :The mixing 
oeÆ
ients P (i) are initialised with the response values at the dete
tedpeaks, whi
h have to be normalised by the sum over all response peaks:P (i)(0) = rmax;iPmi rmax;i :Sin
e there is no easy way of obtaining a �rst guess for the 
on
entration parameters,they are simply initialised by values similar to those typi
ally obtained from real images,e.g., �(0)i = 20.Sometimes during the iterations of the EM-algorithm mixture, 
omponents \
on-tra
t" in the sense that their 
on
entration parameters steadily in
rease beyond any109



reasonable value. To avoid su
h situations, it is useful to impose an upper bound forthe 
on
entration parameter and to eliminate a mixture 
omponent on
e that limitis ex
eeded. The 
hoi
e of the \
on
entration threshold" is, of 
ourse, heuristi
, but,in pra
ti
e, �nding an empiri
al value that does not erroneously dis
ard ne
essary
omponents, but whi
h simultaneously limits model 
omplexity, is fairly easy (e.g.,�max = 100).4.4 Measures of Certainty in Probabilisti
 Popula-tion CodingThe probabilisti
 approa
h yields not only an estimate for the di�erent edge orienta-tions present in the neighbourhood of the 
onsidered point (x; y), but also informationabout the quality or 
ertainty of these measurements through the 
on
entration param-eters of the mixture, the �i. A 
ertainty measure, denoted by 
, should be a fun
tionof the varian
e of the angular estimate. Also, it is desirable that the 
ertainty measurebe normalised and positive; i.e., 0 � 
 � 1.However, unlike the 
ase of a Gaussian pdf, where the parameter �2 is the varian
e,the 
orresponding values 1=�1; : : : ; 1=�m in the von Mises mixture 
annot themselvesbe interpreted as angular varian
es. In fa
t, the 
on
epts of mean and varian
e 
annotbe uniquely extended to 
ir
ular statisti
s; instead they have to be rede�ned with some
are. For an angular variable, the 
ir
ular varian
e, V0, is de�ned as (see e.g., Mardia,1972): V0 = 1� Ef
os(� � ��)g ; (4.43)where Ef:g denotes the expe
tation value and �� the mean dire
tion. The 
ir
ularvarian
e is bounded, and 0 � V0 � 1, sin
e the probability mass is 
on
entrated in theinterval [��� �2 ; ��+ �2 ℄. Furthermore, V0 is invariant with respe
t to a shift of the mean110



dire
tion, as one would expe
t from a varian
e. A 
onvenient 
hoi
e for a 
ertaintymeasure is � = 1� V0 = Ef
os(� � ��)g ; (4.44)whi
h is also referred to as the resultant length (Mardia, 1972). � inherits the propertyof shift invarian
e with respe
t to the mean dire
tion, and also ful�lls 0 � � � 1.For a von Mises distribution, one obtains:
� = Ef
os(�� ��)g = 2�Z0 p(�) 
os(�� ��) d� = 12�I0(�) 2�Z0 e� 
os(����) 
os(�� ��) d� ; (4.45)where the integral is essentially the modi�ed Bessel fun
tion of the �rst kind and �rstorder, I1(�) (Mardia, 1972). A

ordingly,� = I1(�)I0(�) ; (4.46)a measure proposed by Zemel and 
olleagues within the framework of the \dire
tional-unit Boltzmann ma
hine" (Zemel et al., 1995).4.4.1 Relation to information-theoreti
 quantitiesInformation theory provides another important measure of 
ertainty, the Shannon en-tropy, h = 2�Z0 p(�) ln p(�) d� ;whi
h des
ribes the mean information 
ontent of a random variable. In statisti
alestimation theory, the Fisher information,I = 2�Z0 �dp(�)d� �2�p(�) d� ;111



determines the varian
e of an eÆ
ient estimator through the Cram�er-Rao (in)equality.However, neither measure is normalised, and the Shannon entropy 
an even have neg-ative values. The 
ertainty measure � introdu
ed in eqn. (4.46) is 
losely related tothe Fisher information, as well as to the Shannon entropy.For a von Mises distribution, the Fis
her information equates to (see appendix A)I(�) = 12 I1(�)I0(�)� :Consequently, � is, essentially, the Fis
her information s
aled by the 
on
entrationparameter: � = 2 I� :The Shannon entropy of the von Mises distribution is given by (see appendix A):h(�) = ln[2�I0(�)℄� I1(�)I0(�)� : (4.47)Thus � is related to the entropy by:� = ln[2�I0(�)℄� h(�)�4.4.2 A normalised 
ertainty measure based on entropyThough the resultant length, used by Zemel and 
o-workers (eqn. 4.46), is a valid
ertainty measure, it turns out not to be parti
ularly useful for the pra
ti
al purposeof dis
riminating lo
al features sin
e it assigns an almost equally high 
ertainty to
on
entrations � > 10. The relevant range of 
on
entration parameters for real imagesis, however, 5 < � < 40.As mentioned in the previous se
tion, 
ertainty may also be de�ned in terms of theShannon entropy, but, be
ause the entropy 
an be negative (for 
ontinuous probability112
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Figure 4.7: Graph of the Shannon entropy of a von Mises distribution as a fun
tion of the
on
entration parameter �. The maximum hmax = ln(2�) is rea
hed for � = 0 when thedistribution be
omes uniform. Note that, unlike for dis
rete probability distributions, theentropy be
omes negative for larger �-values and has no lower bound. The relative entropy,however, is always positive.densities), it is unsuitable for pra
ti
al purposes. In order to derive a positive 
ertaintymeasure from entropy, it is advantageous to 
onsider the Kullba
k-Leibler divergen
e ofa 
omponent density pi(�) from the distribution of maximum entropy, i.e., the uniformdistribution, q(�) = 1=2�. Sin
e the uniform distribution is, by de�nition, a 
onstant,this is equivalent to taking the di�eren
e between the maximum entropy (
orrespondingto � = 0) and the entropy for a given � = �i, whi
h always results in a positive quantity(see Fig.4.7). Therefore, the Kullba
k-Leibler divergen
e,K(p; q) = 2�Z0 p(�) ln �p(�)q(�)� d� ; (4.48)is also 
alled the relative entropy. With the densities given by113



p(�) = 12�I0(�)e� 
os(����) and q(�) = 12�and, sin
e q is a 
onstant, this yields:K(pi; 12� ) = 2�Z0 pi(�) [ln pi(�) + ln(2�)℄ d� = �h(p) + ln(2�) = h � 12��� h(p) :With the entropy given by eqn.(4.47), this equates to:K(pi; 12� ) = I1(�i)I0(�i)�i � ln[2�I0(�i)℄ + ln[2�℄= I1(�i)I0(�i)�i � ln[I0(�i)℄ : (4.49)Normalisation 
an be a
hieved through a squashing fun
tion, su
h as a variation of thefamiliar logisti
 sigmoid fun
tiong(x) = 21 + e�x � 1 :The resultant 
ertainty measure is
 = g[K(pi; 12� )℄ = 21 + I0(�) exp[��I1(�)=I0(�)℄ � 1 : (4.50)Fig.(4.8) shows a plot of the two 
ertainty measures, the squashed Kullba
k-Leiblerdivergen
e, 
, and the resultant length, �. Compared to the resultant length, thismeasure is more suitable for dis
riminating measurements by 
ertainty, as it approa
hesits asymptote of absolute 
ertainty slowly for a very large 
on
entration parameter.The resultant length rapidly approa
hes the asymptote, already assigning a 
ertaintyof � � 1 to �-values above 10. However, the entropy-based 
ertainty measure allowsbetter judgement of the reliability of orientation measurements in the range relevantfor real images, i.e., 5 < � < 40. 114
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ertaintymeasure by Zemel and 
olleagues (Zemel et al., 1995), with the 
ertainty measure 
 basedon relative entropy (Kullba
k-Leibler divergen
e) given by eqn.(4.50). The resultant length(dashed 
urve) \saturates" too soon whereas 
 (solid 
urve) is more suitable to dis
riminatebetween di�erent 
ertainties in the range of 5 < � < 40 whi
h is important for featuresele
tion in real images.4.4.3 Average 
ertaintyIn order to des
ribe the 
ertainty of a mixture distribution, it makes sense to 
al
ulatea weighted average of the 
ertainties of the m mixture 
omponents, where the weightsare given by the mixing 
oeÆ
ients (priors), P (i), whi
h, by de�nition, are normalised.This leads to the de�nition �
 = mXi=1 P (i)
i : (4.51)115



The parameter extra
tion pro
edure is interpreted as m independent measurementsof lo
al orientation, ��1; : : : ; ��m. Sin
e the average 
ertainty is, by de�nition, indepen-dent of the number of mixture 
omponents, it allows 
omparison between image points,regardless of their orientational stru
ture. A 
lear 
orner point, for example, may havea better 
ertainty value than a blurry or noisy edge.4.5 Experiments on Syntheti
 and Natural ImagesFigure 4.9 shows an image of three obje
ts generating a number of di�erent edge
on�gurations, in
luding straight edges, 
urved edges, 
orners and T-jun
tions. TheEM-algorithm des
ribed in the previous se
tions has been applied to a number ofkey points in this image. For better visualisation, the pdf is displayed as a polarplot; the angle represents � and the radius, p(�). Ea
h von Mises mixture 
omponentprodu
es a 
lub-shaped plot oriented in the same way as the the 
orresponding dete
tedorientation. The dire
tion of the \
lub" depends on the sign of the 
ontrast. In this
ase, a bright-dark transition (
ounter 
lo
k-wise) yields an angle � 2 [0Æ; 180Æ) and adark-bright transition an angle [180Æ; 360Æ).Figure 4.10 shows the original �lter bank response from point (1). The pdf of theorientation angle, whi
h results from the EM-algorithm, is shown in Figure 4.11. Point(1) is a 
orner point. As expe
ted, two well pronoun
ed and roughly perpendi
ular
omponents are found (
ertainties 
1 = 0:73 and 
2 = 0:75).The se
ond set of results (Figures 4.12 and 4.13) is from point (2), whi
h is astraight edge. The EM-algorithm �nds a strong 
omponent (
ertainty 
 = 0:8) in thedire
tion of the edge.Finally, Figures 4.14 and 4.15 have been obtained at point (5), whi
h is a T-jun
tion
reated by an o

luding edge. This edge is also 
urved, but be
ause the edge is o
-
luding, there are only two prin
ipal edge dire
tions. Consequently, the pdf 
ontains116



a large 
omponent (
ertainty 
 = 0:74) for the 
urved edge and a smaller 
omponentwith a slightly higher 
ertainty for the weaker, se
ondary, edge (
ertainty 
 = 0:75).
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4.5.1 Experiments with varying �lter bank sizeAn important issue in population 
oding 
on
erns the way in whi
h the estimationerror depends on the size of the population. In Figures 4.16 and 4.17, the pdf of lo
alorientation is extra
ted at points (2) and (5), employing di�erent numbers of �lters.The ground truth is represented by dark lines of \manually" determined orientation.Copies of these lines, shifted in parallel, are superimposed with the polar plot of theextra
ted orientation pdf to enable dire
t 
omparison.The quality of the parameter extra
tion seems to be a�e
ted by the number of �ltersthat are ina
tive, in the sense that the preferred �lter orientation is very di�erent fromany lo
al orientation present in the obje
t(s). Nevertheless, ina
tive �lters will pi
kup noise from the image and 
ontribute this spurious information to the parameterestimation pro
edure. As illustrated in Se
tion 4.3, the data likelihood 
an amplify thenoise present in small responses. Despite the fa
t that some pre
autions are taken inorder to dis
ard 
riti
al data points, there remains a 
ertain degree of noise introdu
edby responses that are just above the threshold and that are, therefore, taken intoa

ount.For this reason, at the T-jun
tion the number of �lters is not as important as in the
ase of the straight edge. However, in both 
ases the varian
e estimate of the angulardistribution is strongly dependent on the number of data points (�lters).
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Figure 4.16: The extra
ted pdf at point (2) for di�erent numbers of �lters. Comparisonwith the ground truth, represented by the dark line, reveals that the orientation estimate ismost pre
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Figure 4.17: The extra
ted pdf in at point (5) for di�erent numbers of �lters. Compared tothe ground truth the orientation of the o

luded edge is not estimated as pre
isely as thatof the 
urved edge. Overall, the a

ura
y of the orientation estimate does not depend verymu
h on the number of �lters.
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4.5.2 Experiments with noiseIn order to study the e�e
t of noise on the 
ertainty measure, it is useful to testthe algorithm on an arti�
ial image. A perfe
t straight edge has been superimposedwith Gaussian noise (additive noise) of di�erent varian
e (Fig. 4.18). The noise level(standard deviation) is given in per
ent of the maximum 
ontrast. The result for theestimated 
on
entration parameter and the 
orresponding 
ertainty value is shown inFigure 4.19 for two di�erent �lter wavelengths. Both 
on
entration parameter and
ertainty gradually de
rease with in
reasing noise level. However, for the �lter bankwith smaller wavelength the performan
e de
reases abruptly at a parti
ular noise level(about 65%, 
f. Fig. 4.18 (
)), indi
ating that the parameter estimation pro
edure
an, at some point, only in
orporate the in
reasing number of response \outliers" by
hoosing a very large varian
e (small �).

(a) (b) (
)Figure 4.18: (a) An arti�
ial step edge. (b) with added Gaussian noise (20%). (
) with 65%noise, the \breakdown" level of �lter bank with � = 10 pixels in Fig. 4.19E�e
t on multiple orientation estimatesFigure 4.20 shows the in
uen
e of Gaussian noise added to the natural image 4.9 onthe performan
e of orientation estimation in the 
orner point (3).123



 
 

Legend

5

10

15

20

25

30

35

0 20 40 60 80 100

noise (%)

κ

λ = 10
λ = 12

 
 

Legend

0.4

0.5

0.6

0.7

0.8

0 20 40 60 80 100

noise (%)λ = 10
λ = 12

γ

Figure 4.19: An Experiment with Gaussian noise added to an arti�
ial step edge. Theplot shows the 
on
entration parameter (left) and the 
ertainty (right) as a fun
tion ofthe noise level (varian
e in per
ent of maximum 
ontrast) for two �lter wavelengths. Both
on
entration parameter and 
ertainty gradually de
rease with growing noise level. The�lter of smaller wavelength shows an abrupt drop at about 65% noise level. A similar suddenbreakdown of performan
e is expe
ted for the larger wavelength at a higher noise level.For moderate noise the orientation estimates are reasonably a

urate, 
onsideringthe fa
t that they are lo
al measurements. However, above 5% noise level the perfor-man
e deteriorates until the estimates virtually \merge" at about 30% noise. However,it is important to note that the strength of the population 
oding method is not thenoise robustness of the lo
al orientation measurement itself, but rather the ability toa

ept or dis
ard lo
al measurements based on their 
ertainty. In the following 
hapter,it will be demonstrated that by in
orporating 
ertainty at the lo
al level and at theper
eptual grouping level, the noise robustness of 
ontour dete
tion 
an be improvedas well as the robustness against variations in edge 
ontrast.
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Figure 4.20: An experiment where Gaussian noise was added to a natural image (Fig. 4.9) .The plot shows the mean orientation estimates from the 
orner point (3) and the 
orrespond-ing errors. For moderate noise the orientation estimates are reasonably a

urate, 
onsideringthe fa
t that they are lo
al measurements. However, above 5% noise level the performan
edeteriorates until the estimates virtually \merge" at about 30% noise.
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4.5.3 \Neural" noiseIn another experiment, Gaussian noise was added to the �lter responses after 
onvo-lution with the image, resembling the situation in a biologi
al neural network, whereneural �ring rates are sto
hasti
 variables. Su
h an additional noise 
omponent is nota

ounted for by the model, and one 
annot expe
t the system to be very robust againstit. Figure 4.21 shows the in
uen
e of additive Gaussian noise on the the mean orienta-tion estimates, obtained by averaging over several hundred trials. The noise standarddeviation is given in per
ent of the maximum response, whi
h in this 
ase is the peakof the stronger 
omponent in the response pro�le in Fig. 4.15:noise level = �noisermax :The noise level 
an be transformed into the signal to noise ratio (SNR) in de
ibel(dB) by means of SNR [dB℄ = �20 log(noise level) :The estimate �2 
orresponds to the weaker 
omponent and is, as expe
ted, more a�e
tedby the noise than the other 
omponent. Obviously, the angular estimators are biased.The mean orientation estimates are roughly stable up to a noise level of 20%, wherethey start shifting away from their original values. At a noise level of about 40% (SNR� 8 dB) of the maximum response, when the noise standard deviation is roughly ofthe same amplitude as the weaker 
omponent (estimate �2), the value of h�2i saturates,indi
ating that orientation estimation is no longer fun
tioning.Similar results are obtained when an orientation estimate is extra
ted at the straightedge (point 2). Figure 4.22 shows a measured orientation shifting with in
reasing noiselevel. The orientation estimate shifts more rapidly with a unimodal response pro�le126



sin
e there are more ina
tive �lters 
ontributing only noise.In the 
ase of the 
orner point (1), the response pro�le 
onsists of two peaks ofsimilar height, though the 
omponent with a peak at� 7Æ has a wider \tail" (Fig. 4.10).As in the example of the T-jun
tion, the angular estimates are stable up to about 20%noise level (SNR � 14 dB). For higher noise level the estimates, again, shift until themean estimate for the wider 
omponent approa
hes that of the other 
omponent above40% noise level (SNR � 8 dB, Figure 4.23).
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Figure 4.21: An Experiment with Gaussian noise added to the �lter responses after 
onvo-lution with the image. The plot shows the mean values of the two orientation estimates,h�1iand h�2i, in the T-jun
tion (point 5) from image 4.9 averaged over several hundred trials,as a fun
tion of the noise level (noise standard deviation in per
ent of the maximum �lterresponse). For 
omparison, the ground truth is denoted by the dotted straight lines.
4.6 Con
lusions and Dis
ussionIn this 
hapter, a framework has been developed that applies the 
on
ept of proba-bilisti
 population 
oding to lo
al edge orientation estimation using a bank of odd-127
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Figure 4.22: An Experiment with Gaussian noise added to the �lter responses after 
onvo-lution with the image. This plot shows the mean value of the orientation estimate, h�1i, forthe straight edge (point 2) from image 4.9 as a fun
tion of the noise level (noise standarddeviation in per
ent of the maximum �lter response).symmetri
 Gabor �lters. Based on the assumption that lo
al edge orientation followsa von Mises distribution, edges as well as points of multiple orientation, su
h as 
ornerpoints and T-jun
tions, 
an be modelled by a von Mises mixture distribution. Giventhe �lter responses at a parti
ular lo
ation, the parameters of this angular distributionare estimated by means of an EM-algorithm. The linearity of the applied �lters, whi
hensures that responses at two-dimensional edge 
on�gurations follow the prin
iple oflinear superposition, is essential to the validity of the mixture model.The fundamental di�eren
e of the method presented from the approa
h of Zemeland 
olleagues (Zemel et al., 1998) is that the sto
hasti
 input variable � is des
ribed128



in terms of a parametri
 model density p(�). Moreover, the en
oding of the sto
hasti
input variable, �, is expressed as a transformation of its probability density, p(�), intothe pdf of the �lter responses, p(r; �), whi
h is analyti
ally derived, providing thebasis for maximum likelihood estimation of the mixture parameters.The probabilisti
 population 
oding method presented herein 
onstitutes a generalfeature dete
tor that is 
apable of representing one- as well as two-dimensional intensitystru
ture using on a set of linear �lters. The fundamental diÆ
ulties of 
ombined lineardete
tors for two-dimensional intensity features, identi�ed by Zetzs
he and Barth (1990;
f. Se
tion 2.4), do not arise, due to the multipli
ative non-linearity of the likelihoodfun
tion. Thus the likelihood fun
tion realizes the non-linear, \and"-like operationspostulated by the said authors.The von Mises model 
annot a

urately represent 
ertainty in regions with strong
urvature, sin
e the \
attened" response pro�les obtained in su
h lo
ations 
orrespondto platykurti
 probability densities inherently di�erent from von Mises distributions.As a result, the angular varian
e is overestimated and 
onsequently the 
ertainty un-derestimated.This a

ords well with the view held by Zu
ker and 
o-workers, who 
onsider 
ur-vature to be an additional pie
e of information requiring a separate me
hanism ofdete
tion, su
h as \end-stopped" operators (Dobbins et al., 1987). However, in
orpo-rating su
h an elaborate 
urvature dete
tor would be beyond the s
ope of this thesis.Curvature will be in
orporated in another way in the following 
hapter, whi
h dealswith the grouping of lo
al features by means of interpolating splines.
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Figure 4.23: An Experiment with Gaussian noise added to the �lter responses after 
onvo-lution with the image. This plot shows the mean value of the orientation estimates h�1i andh�2i for the 
orner (point 1) from image 4.9 as a fun
tion of the noise level (noise standarddeviation in per
ent of the maximum �lter response). The bias with respe
t to the groundtruth (dotted lines) is stronger due to the in
uen
e of shadows.
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Chapter 5
Contour Segments from SplineInterpolation
Having developed a probabilisti
 representation of lo
al tangent orientation, it is pos-sible to make a transition from lo
ally identi�ed key points to 
ontour segments by
ombining the probability densities from pairs of points to determine the parametersof interpolating splines.Su
h per
eptual organisation is very mu
h in the spirit of Shipley's and Kellman's(1991) psy
hophysi
ally motivated theory of visual interpolation. Although their 
ri-terion of edge relatability (see Se
tion 2.7.2 of the literature review) provides a usefultest for 
o-
urvilinearity, the geometri
al 
on�gurations of dete
ted edge segments arein pra
ti
e often not as pre
ise as required, due to noise. Instead, edge segments wouldoften be erroneously dismissed as \unrelatable" (see Fig. 5.1), parti
ularly on straight
ontours. Thus orientation estimates will often have to be revised in order to yield\relatable" and more a

urate tangent 
on�gurations. The revision will be based onmutual 
onsisten
y, as well as on the quality of agreement between the resultant 
urvesegment and the Gabor transform of the given image. In an abstra
t sense, the modi-�
ation of initial orientation estimates 
an be related to the lateral intera
tions among131
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parallel ?!

Figure 5.1: Illustration of lo
al orientation \jitter" due to noise. The thin long straight linesymbolises a 
ontour, and the thi
ker short lines are visualisations of extra
ted lo
al edgeorientation. The orientational deviations from the true 
ontour are exaggerated for 
larity.Edge segments a and b appear \unrelatable", sin
e their orientation deviates from the true
ontour orientation. Even though 
 and d 
an be 
onne
ted by a 
urve, they do not ful�llthe \relatability" 
riterion, and the interpolating spline (dashed 
urve) has no resemblan
eto the a
tual 
ontour. Angular smoothing is required to make the edge segments \relatable"and to assign them to one and the same 
ontour. Modi�
ation of initial orientation estimatesis only justi�ed if the resultant splines provide an improved 
ontour representation.hyper
olumns in the brain, where lo
al orientation sensitivity is altered by the presen
eof 
ontextual stimuli (
f. Se
tion 2.1.1).Within the population 
oding framework, mutual 
onsisten
y of 
ontour key points
an be expressed in terms of a spline likelihood, 
omprising the joint density of theorientation pdfs and an additional bending 
onstraint. Thus the per
eptual groupingstep 
onsists of a 
ombination of lo
al population 
odes.The spline 
hosen for interpolation is of quadrati
 Hermite-type. Its parametersare fully determined by the positions and tangent orientations of the end points, whi
h132



is pre
isely the information provided by the population-
oding-based feature dete
tionpro
edure developed in the previous 
hapter.As a 
onsequen
e of the probabilisti
 orientation estimation, tangent angles aregoverned by probability densities, and the un
ertainty of tangent orientations is trans-formed into the system's un
ertainty regarding the 
onne
ting spline.An important feature of the per
eptual grouping framework presented in this 
hap-ter is that the degree of un
ertainty in the orientation determines the \inertia" of alo
al tangent estimate, i.e., how easily an initial orientation measurement (given by amode in the 
orresponding pdf) 
an be modi�ed during 
onsisten
y optimisation.In this role of 
ertainty lies a 
on
eptual di�eren
e to other grouping s
hemes. Usu-ally, the 
oarseness of the initial lo
al orientation measurements is expressed in terms ofthe likelihood of potential 
ontinuations at the grouping level, 
hara
terised, for exam-ple, by a \support fun
tion" in relaxation labelling (Parent and Zu
ker, 1989; Han
o
kand Kittler, 1990) or by orientation \votes" propagated through an \extension �eld"(Guy and Medioni, 1996). The initial 
ertainty of the lo
al measurement, however, isnot modeled.In the grouping approa
h presented in this 
hapter, lo
al 
ertainties are measuredquantities serving as 
onstraints during per
eptual organisation. Thus by exploiting allthe information provided by the extra
ted probability densities, the algorithm bene�tsfrom the ri
hness of the distributed representation of edge orientation.5.1 Dete
tion of Control PointsAny spline is determined by a set of 
ontrol points lo
ated either on or outside of the
urve. Sin
e lo
al orientation is 
hara
terised by the extra
ted probability density atany point on a 
ontour with good a

ura
y, it is advantageous to pla
e 
ontrol pointson the spline. The algorithm then performs spline interpolation based on 
ontrol point133



positions and tangent angles. Points with multiple orientation are assigned more thanone tangent angle, and 
onsequently multiple 
onne
tions to other neighbouring points
an be established.5.1.1 Lo
alisation of edge segmentsThe pro
edure to obtain an initial set of key points (
ontrol points) is an extension ofthe method of feature sele
tion des
ribed in Se
tion 3.6.1.In order to 
ir
umvent the un
ertainty relation between pre
ise edge lo
alisationand a

urate tangent orientation estimation, two Gabor transforms are performed.Firstly, a �lter of higher spatial frequen
y is 
hosen to determine response magnitudesfor lo
alisation. Se
ondly, the image is 
onvolved with a low-frequen
y kernel, provid-ing the basis for population de
oding of tangent orientation and the 
omputation of
ertainty values. While in Chapter 3 (Se
tion 3.6.1) key points are lo
ated at lateral lo-
al maxima of the produ
t of 
ertainty and the sum of response magnitudes,Pni=1 jrij,a di�erent intera
tion between 
ertainty and response magnitude will be introdu
ed inthe following se
tion.5.1.2 Certainty-
ontrolled normalisationThe fundamental obsta
le in trying to segregate genuine 
ontours from noise is theoften very poor edge 
ontrast. One means of over
oming the strong variations of lo
aledge 
ontrast is normalising the response value in ea
h pixel by dividing it by thesum of the responses within a small neighbourhood (e.g., 7 � 7 pixels). However, toavoid an ampli�
ation of noise, su
h a normalisation should be guided by stru
tural
onstraints that require the presen
e of an edge-like response pro�le to a
tivate thenormalisation pro
ess. The 
riterion for the de
ision to a
tivate the normalisation isthat the 
ertainty 
 ex
eeds a threshold 
min (e.g., 
min = 0:5, 
f. Fig. 4.8). If the134




ertainty remains below the threshold, the �lter response is suppressed. Let R be thesum of responses a
ross the �lter bank; i.e.,R = nXi=1 jrij :Consider a neighbourhood, N , 
onsisting of n � n pixels. Then, R undergoes thefollowing transformation:R 7! 8>>><>>>: RPj2N Rj if 
 � 
minRn2 if 
 < 
min ; (5.1)where the upper row e�e
tively enhan
es weak 
ontours by levelling out the variationsof edge 
ontrast, while the lower, suppresses responses in regions where the responsepro�le does not resemble that of an edge. This fa
ilitative, respe
tively, suppressivee�e
t of the normalisation in
reases the signal to noise ratio of the response map.Normalisation has also been suggested as a biologi
al me
hanism within 
orti
alhyper
olumns by Heeger and 
olleagues (1996), though in a quite di�erent form andwithout any referen
e to 
ertainty. Therefore, the 
ertainty-
ontrolled normalisation isonly loosely inspired by their approa
h.The 
hoi
e of the 
ertainty threshold in (5.1) is of general validity, sin
e the typi
alrange of 
ertainties 
orresponding to obje
t 
ontours in real images is essentially thesame for all images, unlike 
ontour 
ontrast, whi
h 
an be arbitrarily small.Figure 5.2 illustrates the improved performan
e of the 
ertainty-
ontrolled nor-malisation 
ompared to an overall normalisation. Although the desired redu
tion ofresponse variability is a
hieved without amplifying noise, the normalisation pro
ess alsoenhan
es spurious 
ontours in Figure 5.2 (
) that are 
aused by re
e
tion on the surfa
eof the table. However, re
e
tions of edges are valid stru
ture, sin
e they are regionsof genuine \non-a

idental" intensity gradient, and a distin
tion between re
e
ted and\real" edges 
annot be made at this level of pro
essing.135



(a) (b)

(
) (d)Figure 5.2: Comparison of a general, \
ontour-blind" normalisation of the response sum withthe more sophisti
ated, 
ertainty-
ontrolled normalisation. (a) Original image. (b) The sumof responses (� = 8; � = 0:3) shows strong variations. (
) The response sum, normalised inea
h pixel (mask size 7 � 7 pixels). Though responses are levelled out, the signal to noiseratio has be
ome very small. (d) The 
ertainty-guided normalisation avoids the extremeampli�
ation of noise that (
) exhibits, by suppressing responses where 
ertainty is low.
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5.1.3 Lo
alisation of 
orner points and jun
tionsA high-frequen
y Gabor transform is not suitable for lo
alising points with multiple ori-entation, sin
e �lter responses tend to be less prominent in su
h lo
ations and strongerin the immediate vi
inity. Instead, a measure of multimodality 
an be derived from thedistribution of �lter responses with respe
t to the orientation of the population ve
tordes
ribed in Chapter 3.For this purpose, two new quantities are introdu
ed, whi
h will be referred to as\parallel response integral", Gk, and \perpendi
ular response integral", G?. Theyare 
al
ulated by summing up response moduli within the interval of �45Æ around thepopulation ve
tor and within the interval of �45Æ around the orientation perpendi
ularto the population ve
tor. Figure 5.3 illustrates the two angular ranges, using a bimodalresponse pro�le.Let �pop be the orientation of the population ve
tor (mean orientation), and letG( ) be the response pro�le, i.e., the �lter response modulus as a fun
tion of thekernel orientation  . Then the parallel response integral is de�ned as:Gk = �pop+�4Z�pop��4 G( ) d : (5.2)Analogously, the perpendi
ular response integral is de�ned as:G? = �pop+ 34�Z�pop+�4 G( ) d : (5.3)In pra
ti
e, the 
ontinuous de�nitions (5.2) and (5.3) have to be repla
ed by dis
reteapproximations:
137



Gk = Xi2Ik Gi ; where Ik = ni j  i 2 ��pop � �4 ; �pop + �4 � ; i = 1; : : : ; no : (5.4)G? = Xi2I? Gi ; where I? = ni j  i 2 ��pop + �4 ; �pop + 34�� ; i = 1; : : : ; no :(5.5)One might be in
lined to 
hose the the ratio of the two, G?=Gk, as a measure ofmultimodality and thus an indi
ator for the presen
e of a 
orner points or a jun
tion.The above ratio is, however, very sensitive to noise, parti
ularly if responses are small.In theory G? � Gk, whi
h follows immediately from the de�nition of G? and Gk:sin
e Gk is based on the mean orientation �pop (orientation of the population ve
tor),at least 50% of the response integral must be 
on
entrated around �pop. However,the numerator Gk 
an in fa
t be
ome larger than the denominator, as a result ofdigitisation. A more robust measure is obtained when the ratio is multiplied by thesum of response magnitudes. Let G be the sum of the magnitudes of all responses inthe �lter bank, G = nXi=1 Gi :Then, the degree of multimodality, �, shall be de�ned as:� = G?Gk G : (5.6)As Figure 5.4 illustrates, � provides a 
oarse lo
alisation of 
orner points and jun
tions.In parti
ular, the measure is useful to dis
ard 
ertain systemati
 erroneous 
ornerpoints 
reated by the interse
tions of \ripples" in the odd-symmetri
 Gabor transform(
f. Fig. 5.4 (
)). The rippling e�e
t is quite prominent due to the 
hoi
e of �lterparameters required for good orientation tuning, i.e., relatively large wavelength andsize of �lter mask. 138
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Figure 5.3: Polar plot of a response pro�le and the 
orresponding population ve
tor ~p(mean orientation) as well as its perpendi
ular 
ounterpart ~p?. Due to the bimodality ofthe pro�le, there is a signi�
ant amount of response energy within the �45Æ range aroundthe orientation of ~p?. With a unimodal a
tivity pro�le almost all the energy would be
on
entrated around the population ve
tor, unless the tuning 
urves were extremely wide. Ameasure of multimodality 
an be derived from the ratio of the sums of responses around ~pand around ~p?.The multimodality measure only peaks strongly on the 
ontours, sin
e it is 
om-puted from phase-insensitive Gabor moduli. An additional fo
using e�e
t 
an bea
hieved if the response sum G is 
al
ulated using the high frequen
y (lo
alising)Gabor transform.5.1.4 The un
ertainty of key pointsThe key points are the result of lo
al measurements. Even though they are lo
atedon the ridges in the \
on�den
e lands
ape", de�ned either by the produ
t of responsemagnitude and 
ertainty or by 
ertainty-
ontrolled normalisation of response magni-tude, there is still a degree of un
ertainty, parti
ularly in the tangent orientation,whi
h is 
ru
ial, sin
e the orientations measured at the key points will determine the139



(a) (b)
"false corners"

(
)Figure 5.4: An image (a) and its \multimodality map" (b) 
al
ulated a

ording to equation(5.6), for a �lter wavelength � = 10 pixels. The multimodality map, obtained from Gabormoduli, is useful to support the lo
alisation of 
orners and jun
tion points. (
) The map of theodd-symmetri
al responses summed over all orientations (� = 10 pixels, � = 0:6�) 
ontains\ripples", 
reating \false 
orners", whi
h 
an be eliminated by means of the multimodalitymap.parameters and 
onsequently the shape of the 
onne
ting splines. Therefore, the keypoints are only preliminary and have to be updated a

ording to smoothness and data
onsisten
y 
onstraints. Moreover, spurious key points 
aused by noise 
an pass themagnitude-
ertainty threshold, 
reating false positives, whi
h 
an only be identi�ed bytheir la
k of 
o-
urvilinearity with their neighbours at the feature grouping stage.5.2 Spline InterpolationAn important problem is whi
h type of spline to 
hoose for interpolation betweendete
ted key points. B-splines, for example, have be
ome very popular in 
omputergraphi
s and ma
hine vision, be
ause they are C2 
ontinuous and naturally representsmoothly 
urved 
ontours. The C2 
ontinuity, however, tends to smooth out abrupt140




hanges of tangent orientation or 
urvature. An a

urate representation of 
orners istherefore diÆ
ult. A B-spline is usually determined only by a set of external 
ontrolpoints, from whi
h approximate tangent orientations are obtained.The situation after low-level pro
essing in the population 
oding approa
h is dif-ferent: in addition to the positions of the 
ontrol points, the 
orresponding tangentorientations are also known, and points with multiple orientations are identi�ed assu
h. Therefore, pie
ewise Hermite spline interpolation provides a very straightfor-ward means of 
onne
ting su
h 
ontrol points.Hermite splines are a linear 
ombination of a parti
ular type of blending fun
tions,the Hermite polynomials. The blending 
oeÆ
ients are the x- and y-
oordinates ofthe 
ontrol points and the x- and y-
omponents of the 
orresponding tangent ve
tors.In the grouping framework presented, the 
onstraint of C2 and C1 
ontinuity at the
ontrol points will not be imposed. Instead, left and right limits of tangent orientationare introdu
ed, whereby smooth and polygonal 
urves 
an be represented equally well(Gavrila, 1996). As a result, the algorithm is 
apable of representing tangent dis
on-tinuities suggested by feature asso
iations, in addition to the lo
ally dete
ted pointswith multiple orientations.5.3 Hermite SplinesOn
e key points and the 
orresponding probability densities of lo
al edge orientationare available, the parameters of splines interpolating between pairs of key-points 
anbe determined. It is important to note that Hermite splines require the full tangentve
tor at ea
h 
ontrol point, i.e., the ve
tor of the derivatives of spline 
oordinateswith respe
t to the spline parameter t. From the orientation pdf, however, only thetangent angle is known, not the magnitude of the tangent ve
tor. For the simplestform, the quadrati
 Hermite spline, the parameters are fully determined by the end141



point positions and the tangent ve
tor in one end point. In this 
ase, however, theunknown magnitude of the tangent ve
tor 
an be expressed in terms of the tangentorientations in both endpoints. Another motivation for the 
hoi
e of a quadrati
 splineis the fa
t that it has no in
e
tion points, whi
h is in a

ordan
e with the 
on
eptof \relatability" of 
urve segments, in parti
ular the \monotoni
ity 
onstraint" (seeFig. 5.5 (e) and (f)) introdu
ed by Kellman and Shipley (1991).As a 
onsequen
e, the in
e
tion points of a 
ontour have to 
oin
ide with keypoints, whi
h is not a demanding requirement, sin
e in
e
tion points are rare andhave, by de�nition, zero 
urvature and should therefore have a higher 
ertainty thanneighbouring points, making them key point 
andidates a priori.Though the quadrati
 spline already restri
ts the possible type of 
urves, there areambiguous edge 
on�gurations, su
h as Figure 5.5 (d), where a quadrati
 spline 
onne
-tion does exist, but the required high degree of bending suggests a dis
ontinuity as analternative. Human per
eption tends to de
ide against strongly 
urved 
ontinuationswhen alternatives with a lesser degree of bending are available (Fig. 5.6).5.3.1 The quadrati
 Hermite splineLet t 2 [0; 1℄ be the spline parameter, and let s(t) denote a position on the spline, i.e.,s(t) = [x(t); y(t)℄T . Then the quadrati
 spline is de�ned as:s : [0; 1℄ �! R2 ;s(t) = at2 + bt+ 
 ; with a;b; 
 2 R2 : (5.7)Here a;b and 
 are the ve
tor-valued spline 
oeÆ
ients. Sin
e these quantities are notgeometri
ally meaningful, it is preferable to have the spline de�ned in terms of endpointpositions and the 
orresponding tangent angles obtained from population de
oding. In142
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(a) (b) (c) (d) (e) (f)Figure 5.5: A variety of edge 
on�gurations. Clearly, (a),(b) and (
) 
an be 
onne
ted bysmooth 
urves. Example (d) is ambiguous in the sense that a smooth 
onne
ting 
urve doesexist, but the required high degree of bending suggests a dis
ontinuity as an alternative, whi
htends to be preferred by human per
eption. Con�gurations (e) and (f) are intuitively not\relatable", whi
h is re
e
ted in the fa
t that they would require an interpolating 
urve withan in
e
tion point. In the terminology of Kellman and Shipley, this is situation is referredto as a violation of the \monotoni
ity 
onstraint" for interpolating 
urves.matrix notation, the spline equation 
an be written as:
s(t) = [t2; t; 1℄ � 266664 ab


377775 : (5.8)A

ordingly, the �rst derivative with respe
t to the parameter t is given by:_s(t) = [2t; 1; 0℄ � 266664 ab

377775 : (5.9)Let the position ve
tors of the endpoints be denoted by r1 and r2, and let the tangentve
tor in endpoint (1) be 
alled _r1. These three quantities set the boundary 
onditions
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DA

B

Figure 5.6: Several 
urved lines with a disrupted (or o

luded) 
entre. Possible asso
iationsof line segments are subje
t to interpretation, but the ambiguity is resolved a

ording to theGestalt law of \good 
ontinuation". Despite the fa
t that the ends of lines A and B are
loser to one another, human per
eption tends to de
ide in favour of asso
iating A with Cand B with D, avoiding a
ute angles and strong 
urvature that would result from any other
ombination.of the spline: r1 = [x1; y1℄T = s(0) ; (5.10)r2 = [x2; y2℄T = s(1) ; (5.11)_r1 = [ _x1; _y1℄T = _s(0) ; (5.12)through whi
h the spline 
oeÆ
ients are 
ompletely determined. In matrix notation,this 
an be expressed as a system of three equations using (5.8) for t = 0 and t = 1, aswell as (5.9) for t = 0: 266664 r1r2_r1
377775 = 266664 0 0 11 1 10 1 0

377775 � 266664 ab

377775 : (5.13)144



This system 
an be solved for the 
oeÆ
ients:266664 ab

377775 = 266664 �1 1 �10 0 11 0 0

377775| {z }MH �266664 r1r2_r1
377775 : (5.14)

By means of MH , the so-
alled Hermite matrix, the 
oeÆ
ients 
an now be expressedin terms of the positions of the end points and the tangent ve
tor. Inserting (5.14) intothe spline equation (5.8) yields:s(t) = [t2; t; 1℄ �MH � 266664 r1r2_r1
377775 : (5.15)Expanding the matrix equation gives the spline in the typi
al form as a linear 
om-bination of r1; r2 and _r1, where the 
orresponding 
oeÆ
ients are given by a set ofso-
alled blending fun
tions. In the 
ase of a 
ubi
 spline, the blending fun
tions aremembers of the family of Hermite polynomials, and the spline is therefore referred toas the Hermite spline. Throughout this thesis, the name Hermite spline is adoptedfor the quadrati
 spline as well, even though the blending fun
tions are not Hermitepolynomials. Hen
e, s(t) = (�t2 + 1) r1 + t2 r2 + (�t2 + t) _r1 : (5.16)A

ordingly, the �rst derivative with respe
t to t is given by:_s(t) = (�2t) r1 + (2t) r2 + (�2t + 1) _r1 : (5.17)5.3.2 The magnitude of the tangent ve
torEquation (5.16) is a 
onvenient expression of the quadrati
 spline. However, as men-tioned above, the magnitude of _r1 is not expli
itly given by the probability densities of145



θ1
1 1(x  ,y  ) 

Y

X

θ2

d

φ
∆

∆
y

x

(x  ,y  ) 22

Figure 5.7: A quadrati
 Hermite spline 
onne
ting two points with given tangent ori-entations �1 and �2.orientation obtained from the Gabor �lter population 
ode. This la
k of information
an be 
ompensated by the knowledge of the tangent orientation in the se
ond endpoint, whi
h is not used in (5.16).Inserting the additional boundary 
ondition _r2 = _s(1) into equation (5.17) yields:_r2 = �2r1 + 2r2 � _r1 = 2�r� _r1 :This ve
tor equation 
an be written as two equations in the x and y 
omponents:_r2 
os �2 = 2�x� _r1 
os �1 : (5.18)_r2 sin �2 = 2�y � _r1 sin �1 : (5.19)Here �1 and �2 are the tangent angles in the end points, and _r1 and _r2 denote themagnitudes of the tangent ve
tors. Dividing equation (5.18) by (5.19) eliminates theunknown magnitude _r2 and leads to an expression of _r1 as a fun
tion of �1 and �2:146




os �2sin �2 = 2�x� _r1 
os �12�y � _r1 sin �1
os �2(2�y � _r1 sin �1) = (2�x� _r1 
os �1) sin �22�y 
os �2 � 2�x sin �2 = _r1(sin �1 
os �2 � 
os �1 sin �2)=) _r1 = 2 �y 
os �2 ��x sin �2sin(�1 � �2) : (5.20)Introdu
ing the distan
e between the end points,d =p(x2 � x1)2 + (y2 � y1)2 ;and � = ar
tan��y�x� ;whi
h is the angle of the straight line 
onne
ting them, one 
an write:�x = d 
os� and �y = d sin� ;whi
h leads to a more 
ompa
t expression for _r1:_r1(�1; �2) = 2d sin(�� �2)sin(�1 � �2) : (5.21)The above equation immediately elu
idates two fa
ts: �rstly, _r1 depends on the distan
ed between the end points, i.e., the Hermite spline is not s
ale invariant. Se
ondly, _r1be
omes singular for �1 = �2. For arbitrary �, this geometri
 arrangement of tangentve
tors and end points would require an in
e
tion point on the spline. Equality of �1and �2 is only permissible if simultaneously �1 = �2 = �. In this 
ase, the spline is astraight line to whi
h _r1 and _r2 are 
ollinear. However, equation (5.21) still remains147



ill-de�ned. In order to resolve the dis
ontinuity, it is ne
essary to 
hoose the analyti
al
ontinuation _r1(�; �) = 2d based on the limitlim�1;�2!� sin(�� �2)sin(�1 � �2) = 1 ;whi
h follows from de l'Hopital's rule and results in a meaningful spline (a straightline).5.4 Optimisation of Spline ParametersAs mentioned, the tangent orientation estimates in the end points, given by the meanorientations of the lo
al mixture 
omponents, ��i, are a�e
ted by noise, and the relatabil-ity 
riterion should therefore not be applied to su
h \raw" initial tangent estimates, inorder to avoid false negative de
isions (see Fig. 5.1). However, the de
oded probabilitydensities of tangent orientation represent a range of possible orientations often in
lud-ing a variety of relatable tangent 
on�gurations (�1; �2), even if the initial 
on�guration(��1; ��2) is not relatable.By virtue of (5.21), ea
h pair (p(�1); p(�2)) of two lo
ally extra
ted orientation den-sities impli
itly represent a density p( _r1j �1) in the tangent magnitude _r1 of the spline,thus des
ribing a \bundle" of possible quadrati
 splines passing through the �xed endpoints. There is no need to a
tually 
ompute p( _r1j �1). Instead, the optimisation isperformed with respe
t to the tangent angles �1 and �2, and the 
orresponding optimal_r1 is 
al
ulated afterwards.In order to enfor
e smoothness of 
ontours, it is ne
essary to impose a shape 
on-straint on the 
onne
ting spline bundle that penalises a high degree of bending. Thenew tangent angles are then found by means of a maximum likelihood estimation pro-
edure, whi
h results in a trade-o� between 
loseness to initial lo
al measurements andsmoothness 
onstraint. The �nal de
ision about the relatability of a pair of key points148



is made after this optimisation.5.4.1 The spline likelihood fun
tionIn general terms, the total likelihood of a pair of tangent angles (�1, �2) is given bythe produ
t of the joint density of that pair, obtained from population de
oding, and aprobability density that depends on the degree of bending of the 
orresponding spline:L(�1; �2) = ppop(�1; �2) pbend(�1; �2) : (5.22)The quantity that des
ribes the bending of the spline is the magnitude of the se
ondderivative with respe
t to the parameter t, denoted by �s(t). For a quadrati
 spline�s is a 
onstant determined by the boundary 
onditions. Thus for ea
h end point
on�guration (r1; r2; �1; �2) there is a 
orresponding �s. During an optimisation of theangular estimate the end points are kept �xed, leaving the degree of bending a fun
tionof the tangent angles alone: �s = �s(�1; �2) :The \bending probability", whi
h a
ts as a penalty term in the likelihood fun
tion(5.22), 
an be de�ned as a Gaussian distribution in the s
ale invariant quantity �s=d:pbend(�1; �2) = p(�s(�1; �2)) = 1p2��b exp���s 2(�1; �2)2d2�2b � : (5.23)The varian
e �2b determines how strongly bending is penalised and is to be optimisedtogether with �1 and �2.In order to �nd �s(�1; �2), equation (5.17) is di�erentiated on
e again with respe
tto t, yielding: �s = �2r1 + 2r2 � 2_r1 = 2�r� 2_r1 :149



Inserting the de�nitions (see Fig. 5.7)�r = d (
os�; sin�)T and _r1 = _r1(
os �1; sin �1)T ;the square of the magnitude 
an be written as:�s2 = 4(�r� _r1)2 = 4d2 � 8 d _r1 
os(�� �1) + 4 _r21 :Inserting _r1(�1; �2) given by eqn. (5.21) results in:�s2(�1; �2) = 4d2 � 16d2 sin(�� �2) 
os(�� �1)sin(�1 � �2) + 16d2 sin2(�� �2)sin2(�1 � �2) : (5.24)Sin
e the tangent angles �1 and �2 are independent sto
hasti
 variables, their jointdensity is simply the produ
t of the individual densities. Interpreting an extra
ted vonMises mixture distribution as a set of superposed measurements ea
h mixture 
ompo-nent is treated separately. Consequently, for any pair of points (r1; r2), the possiblespline 
on�gurations are des
ribed in terms of asso
iations of individual mixture 
om-ponents. The joint probability density of a pair of tangent angles (�1; �2) using mixture
omponent i from p(�1) and mixture 
omponent j from p(�2) is then given by:ppop(�1; �2j i; j) = p(�1j i) p(�2j j) = 14�2I0(�i) I0(�j) e�i 
os(�1���i)+�j 
os(�2���j) : (5.25)In most 
ases both points are on an edge, and 
onsequently i = 1 and j = 1. Onlyin 
orner points or jun
tions several possible asso
iations (i; j) have to be 
onsidered.Inserting (5.23) and (5.25) in (5.22) the spline log-likelihood be
omes:lnL(�1; �2; i; j) = � ln[4�2I0(�i) I0(�j)℄ + �i 
os(�1 � ��i) + �j 
os(�2 � ��j)�12 ln[2�℄� ln�b � �s 2(�1; �2)2d2�2b : (5.26)150



The optimal value of �b 
an be determined by taking the derivative of (5.26) withrespe
t to �b and setting it to zero:���b lnL = � 1�b + �s2d2�3b = 0 ;=) �2b = �s2d2 : (5.27)Analogously, setting the derivatives of the log-likelihood with respe
t to the angles �1and �2 to zero results in a set of two trans
endental equations for the optimal angles(For 
larity, �s2 and its derivatives have not been substituted yet):���1 lnL = ��i sin(�1 � ��i)� 12d2�2b ���1 �s2 != 0 : (5.28)���2 lnL = ��j sin(�2 � ��j)� 12d2�2b ���2 �s2 != 0 : (5.29)By inserting equation (5.27) the unknown �2b 
an be expressed in terms of �s2. Beforesubstitution, equations (5.28) and (5.29) are multiplied by �2b . The result is a systemof equations only in �1 and �2 whi
h has to be solved numeri
ally:�i sin(�1 � ��i) �s2(�1; �2)d2 + 12d2 ���1 �s2(�1; �2) = 0 : (5.30)�j sin(�2 � ��j) �s2(�1; �2)d2 + 12d2 ���2 �s2(�1; �2) = 0 : (5.31)The bending quantity �s2(�1; �2) is given by equation (5.24), and its derivatives withrespe
t to the angles are:
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���1 �s2 = 16d2 sin(�� �2) 
os(�� �2) sin(�1 � �2)� 32d2 sin2(�� �2) 
os(�1 � �2)sin3(�1 � �2) :(5.32)���2 �s2 = �16d2 
os(�� �1) sin(�� �1) sin(�1 � �2) + 32d2 sin(�� �2) sin(�� �1)sin3(�1 � �2) :(5.33)As an alternative to solving the system (5.30) and (5.31) by means of a Newton-Raphson algorithm, a simple gradient des
ent 
an be applied to �nd a a pair of anglesthat maximises the log-likelihood fun
tion. A straightforward initialisation of the an-gles is given by the modes ��i and ��j of the extra
ted densities:�1(0) = ��i and �2(0) = ��j :In most 
ases these initial values are 
lose to the optimal solution so that 
onver-gen
e of the gradient des
ent is unproblemati
. However, due to the denominators inequations (5.32) and (5.32), numeri
al problems are expe
ted when the tangent angles�1 and �2 are very similar. This 
orresponds to the situation dis
ussed earlier in Se
tion5.3.2, where the spline takes the form of a straight line.When numeri
ally large values do not 
an
el ea
h other out in equations (5.32) and(5.33), the derivatives are 
omputed in
orre
tly and so is the gradient of the likelihoodgiven by equations (5.28) and (5.29). As a result, the gradient des
ent pro
edure tendsto move away from the initial point and from the global maximum, and 
onverges to adistant lo
al maximum, whi
h usually is not an improvement over the initial degree ofbending. In other words, the optimal straight-line-solution (�1 = �2 = �) is surroundedand shielded by a \numeri
ally impenetrable barrier", whi
h prevents the algorithmfrom 
onverging towards it. 152



A good strategy is therefore to 
he
k whether the solution found by the optimisationpro
ess has a
tually led to an improvement and to enfor
e the straight-line-solutionotherwise.5.4.2 The role of 
ertainty during parameter optimisationIt is important to note that in the log-likelihood fun
tion (5.26) the 
on
entrationparameters �i and �j of the pdfs a
t as weights of angular modi�
ations during theoptimisation pro
ess. If a 
on
entration parameter is large, any deviation from theinitial orientation �� will result in a sharp de
rease of the likelihood fun
tion unless theoverall 
urvature is substantially redu
ed simultaneously. In other words, the 
on
en-tration parameters (and thus the 
ertainties, whi
h are monotoni
 fun
tions thereof)determine the \inertia" of orientation estimates, i.e., their \
exibility to 
ompromisefor the sake of mutual 
onsisten
y". Herein lies the essential di�eren
e to other group-ing methods, where measurement of 
ertainty is not an integral part of lo
al featureextra
tion.5.5 Organisation of Lo
al FeaturesAll edge key-points obtained through 
ompetitive feature sele
tion are stored as nodesin a graph. For ea
h key point, only a limited number of its nearest neighbours are
onsidered for grouping, re
e
ting the Gestalt law of proximity. Having optimised theinterpolating splines to the k nearest neighbours, a 
hoi
e has to be made whi
h ofthese possible 
onne
tions to regard as the best representation of the lo
al 
ontoursegment(s).Relatability is only a geometri
 relation between the tangents in the end points ofa 
ontour segment. It does not in
lude any information about the 
onsisten
y with theimage at intermediate points on the interpolating 
urve. The higher the noise level, the153



higher the number of dete
ted false positive key points, and the more likely it be
omesthat pairs of edge segments are \relatable by 
han
e". Therefore, the de
ision toasso
iate two key points and to 
onne
t them with a spline should not merely dependon relatability of endpoint tangents, but also on the 
onsisten
y between the imageintensity distribution and the spline as a whole.5.5.1 Spline 
onsisten
yThe task to evaluate the 
onsisten
y between the di�erent 
ontour hypotheses, providedby the splines from a key point to its k neighbours, and the data from the Gabortransform is equivalent to the sear
h for most per
eptually \salient" 
urves.Cross and Han
o
k (1999) applied a strategy that sums up the response energyalong the spline and divides the result by the 
urve length. Let a point on the splinebe denoted by s(t) and the response value at a parti
ular point, by R[s(t)℄. A

ordingto their de�nition, the spline 
onsisten
y C is then the integral of response energy overthe entire parameter range t 2 [0; 1℄ s
aled by the 
urve length l:C = 1l 1Z0 R[s(t)℄ dt ;whi
h in pra
ti
e is approximated by a dis
rete sum.A drawba
k of this approa
h is that it 
olle
ts response energy regardless of howthe energy in ea
h point is distributed a
ross the �lter bank, i.e., without taking intoa

ount the dire
tional stru
ture of the dete
ted intensity gradient. Consequently, themethod will sum up energy, even if a spline 
rosses a 
ontour or when it simply passesthrough a region with strong noise but no genuine 
ontour. Furthermore, the above
onsisten
y measure is, by de�nition, 
ontrast dependent. Thus a faint 
ontour willyield a smaller sum of energy, even if the spline mat
hes the 
ontour very a

urately.Therefore, it is argued that per
eptual salien
y of an image region should be de�ned154



in a 
ontrast independent manner. A

ording to the philosophy of this thesis, this willbe a

omplished by taking into a

ount the distribution of �lter responses in orientationspa
e, in addition to their distribution in the image plane.Through its parametri
 derivative, a spline provides a tangent orientation in everypoint, whi
h 
an be 
ompared with the a
tual orientation measurement obtained fromprobabilisti
 population 
oding. Instead of merely 
olle
ting response strength alongthe spline, it is more eÆ
ient to 
he
k the tangent 
onsisten
y, i.e., how well the lo
allymeasured orientation pdf a
tually mat
hes the tangent angle of the spline. Hen
e, thenew 
onsisten
y measure sums up the 
osines of the di�eren
e between the tangentorientation �(t) of the spline, given by�(t) = ar
tan �sy(t)sx(t)� ;and the lo
al orientation estimate, ��(t), weighted by the 
orresponding 
ertainty, 
(s):
C = 1R0 
(s) �� 
os ��(s)� ��(s)� �� ds1R0 
(s) ds � NXj 
jj 
os(�j � ��j)jNXj 
j ; (5.34)where the denominator ensures normalised weights and, 
onsequently, independen
e of
urve length.The latter part of equation (5.34) is essentially a modi�ed tangent log-likelihood ofthe spline, given the lo
al von Mises-type orientation pdfs extra
ted on the 
urve:lnL = ln NYj e�j 
os(�j���j) = NXj �jj 
os(�j � ��j)j : (5.35)Apart from the normalisation of weights, the essential di�eren
e to (5.34) is that the
on
entration parameters �j in (5.35) are substituted by the 
ertainties 
j (monotoni
fun
tions of the �j). 155



Thus the spline-data 
onsisten
y measure is an abstra
tion from absolute 
ontour
ontrast, as it only relies on relatability, 
ertainty and orientational 
onsisten
y.As a �nal modi�
ation, equation (5.34) is multiplied by the ratio of the number ofpoints on the spline where the algorithm was unable to dete
t an edge-like responsepro�le, M , to the total number of points on the dis
retised spline, N . Hen
e the
onsisten
y measure be
omes:
C = MN NXj 
jj 
os(�j � ��j)jNXj 
j (5.36)The 
onsisten
y value C of a spline 
onne
ting two key points serves as the edge labelof the 
onne
tion between the 
orresponding nodes in the spline graph representation.Conne
tions with poor 
onsisten
y 
an then be eliminated by setting a threshold, inorder to redu
e the 
onne
tivity of the graph.Another simple \pruning" strategy is the elimination of isolated individual splines
onne
ting pairs of spurious key points. Key points that are 
onne
ted to only onepartner are highly likely to be \false positives" due to noise, and should therefore bedis
arded.5.5.2 The 
ontour representation algorithmAll the ingredients of the 
ontour dete
tion pro
edure have been introdu
ed. In sum-mary, the di�erent steps of the algorithm are:� Gabor �ltering� Extra
tion of orientation pdfs by Probabilisti
 population de
oding� Certainty-
ontrolled response normalisation156



� Compute multimodality map� Dete
t Key-points through feature 
ompetition� Determine the k nearest neighbours to ea
h key point� Che
k Kellman-Shipley-relatability with all k neighbours� Optimise tangent angles to improve mutual feature 
onsisten
y� Again: 
he
k Kellman-Shipley-relatability with all k neighbours� Determine spline 
onsisten
y with image data (before and after angular optimi-sation)� Dis
ard those key points that are not relatable to any neighbour� Apply simple pruning operations (e.g., 
onsisten
y thresholding)� Draw most 
onsistent spline(s)5.6 ExperimentsFigure 5.8 shows an image of part of the s
ulpture of Paolina Borghese by AntonioCanova (1757-1822) and the di�erent steps of 
ontour extra
tion, from Gabor responsesto the tangent elements extra
ted at key points and the result of spline interpolationbetween them. Note that the 
ertainty-
ontrolled normalisation e�e
tively 
ombinesthe 
hara
teristi
 properties of normalised response sum (Fig. 5.8 (b)) and 
ertaintymap (Fig. 5.8 (
)). Nearby edges are more 
learly separated and weak 
ontours areenhan
ed. Some parts of the hair region would, however, require a line dete
tor, ratherthan an edge dete
tor. Thus one 
annot expe
t the system to represent all relevantlinear details. 157



The same image has been used by Iverson and Zu
ker (1995) to demonstrate theperforman
e of their \logi
al/linear operators". Referring to earlier work by Koendrinkand 
o-workers (1982), the authors point out the per
eptual signi�
an
e of bifur
ationsand line terminations in regions, su
h as the folds around the ne
k, whi
h provide vitalinformation about three-dimensional stru
ture. They also demonstrate that the Cannydete
tor (Canny, 1986), like any other essentially linear edge operator, is not 
apableof 
orre
tly representing bifur
ations and tends to smooth out tangent dis
ontinuitiesin 
orner points and T-jun
tions.Both logi
al-linear operators and 
ertainty-
ontrolled normalisation impose stru
-tural 
onstraints that 
an dea
tivate the response of a linear operator. While a logi
al-linear operator requires that 
onditions for the existen
e of an edge or line-like stru
tureare met within its spatial support, 
ertainty 
ontrolled normalisation uses response 
on-sisten
y a
ross the �lter ensemble as the 
riterion for a
tivating the operator. It is therigorous dea
tivation of responses in regions without edge stru
ture that enables abetter distin
tion of nearby 
ontours than with purely linear �ltering te
hniques.Sin
e feature extra
tion with probabilisti
 population 
oding expli
itly representspoints with multiple orientations and orientation dis
ontinuities, the spline interpola-tion algorithm 
an a

urately 
apture most of the essential dis
ontinuities and bifur-
ations (Fig. 5.8 (f)).
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(a) original (b) sum of responses (
) 
ertainty map

(d) 
ertainty-
ontrolled nor-malisation of (b) (e) 
ontour tangent map (f) spline 
ontoursFigure 5.8: Stages of 
ontour extra
tion using a photograph of the s
ulpture \Paolina"(512�512 pixels, from the ar
hive of the Vision group of Pietro Perona at Calte
h). The resultof 
ertainty-
ontrolled normalisation (d) 
ombines the advantages of (b) and (
), namely,good lo
alisation and separation of linear stru
tures, as well as 
ontrast invarian
e. Thespline representation (f) preserves many of the important 
ontour bifur
ations that indi
atethree-dimensional shape.
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5.6.1 The bene�ts of spline parameter optimisation(tangent updating)Figure 5.9 illustrates the e�e
t of the tangent optimisation algorithm on the spline
ontour representation.When applied dire
tly to the tangent orientations given by the modes of the 
orre-sponding (mixture) densities, the \relatability" 
riterion of Kellman and Shipley (1991)reje
ts a number of tangent 
on�gurations, and 
onsequently a lot of 
ontour segmentsare not dete
ted. Also, many splines tend to di�er from the a
tual 
ontours, sin
einexa
t tangent angles tend to 
reate 
urved rather than straight splines. Throughoptimisation, a signi�
ant number of tangent angles 
an be adjusted, in order to yield\relatable" 
on�gurations, many of whi
h prove to be 
onsistent with the intensity gra-dient in the image. As a result, a more 
omplete and a

urate 
ontour representationis obtained.5.6.2 Noise robustnessIn another experiment, the performan
e of the algorithm in the presen
e of additiveGaussian noise has been investigated. Figure 5.10 shows the result of feature dete
tionand subsequent per
eptual grouping for moderate noise.For a moderate noise level (�N < 5%, SNR < 26 dB), there are only few falsepositives in the spline representation, sin
e most erroneous key points form only isolatedsplines that 
an easily be identi�ed and removed.Above a noise value of about 10% (SNR = 20 dB), the density of false positive keypoints rea
hes a level where spurious splines begin to form erroneous 
ontour segmentsof 
onsiderable length whi
h 
ould only be eliminated by per
eptual organisation ofhigher order. At this stage 
urvature 
onsisten
y would be a vital 
onstraint, sin
ethe noise-indu
ed 
ontour segments exhibit frequent, sudden 
hanges in the sign of160




urvature, whi
h rarely o

ur in natural obje
t boundaries and folds. The erroneouslydis
arded key points (false negatives) are small in number but, of 
ourse, mu
h moreobvious, sin
e they lead to gaps in the 
ontour representation.The number of dete
ted features as a fun
tion of the noise level is an indi
ator for theeÆ
ien
y of the feature dete
tion in the presen
e of noise, sin
e the number of additionalkey points 
ompared to the 
ase without noise approximately equals the number of falsepositives. Figure 5.12 shows a plot of this relation for the image in Figure 5.10 (a).Though more and more spurious key points appear with in
reasing noise level, mostof them do not ful�ll the relatability 
riterion, and even after angular optimisation,a potential spline 
onne
tion often la
ks 
onsisten
y with the �lter responses. Thusmany false positives 
an be identi�ed and reje
ted.The maximum number of feature points is not merely limited by the number ofpixels in the image, but rather by the grid stru
ture imposed on the image duringfeature sele
tion, whereby the maximum \feature density" be
omes less than one keypoint per pixel. In addition, nearby parallel key point 
andidates 
ompete with oneanother for lo
al \suprema
y", and many 
andidates are eliminated. Therefore, thenumber of key points stagnates above a parti
ular noise level. Sin
e the per
eptualgrouping algorithm removes a great amount of false positives, their number in
reasesmore slowly.Together, 
ertainty-
ontrolled response normalisation and spline grouping realisea trade-o� between noise suppression and ampli�
ation of weak responses in order topreserve key points on edges with low 
ontrast. As a result, the algorithm is usefulfor typi
al opti
al images but not for images with extreme noise levels, su
h as fromsyntheti
 aperture radar (SAR) or ultra sound sour
es.
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(a) (b)Figure 5.9: The e�e
t of tangent optimisation. In (a), the \relatability" 
riterion of Kellmanand Shipley (1991) is applied dire
tly to the tangent orientations given by the modes of the
orresponding mixture densities. After tangent optimisation, a higher degree of 
onne
tivityis rea
hed and the spline are 
loser to the a
tual obje
t 
ontours, sin
e many tangent angleshave been adjusted in order to yield \relatable" tangent 
on�gurations that prove to be
onsistent with the intensity gradient in the image.
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(a) original (b) 
ontour tangent map (
) spline 
ontours

(d) �N = 2:5% (34 dB) (e) (f)

(g) �N = 5% (26.0 dB) (h) (i)Figure 5.10: An image with di�erent amounts of additive Gaussian noise. Note the relativelysmall number of false positives in the spline representation.163



(a) �N = 7:5% (22.5 dB) (b) (
)

(d) �N = 10% (20 dB) (e) (f)

(g) �N = 15% (16.5 dB) (h) (i)Figure 5.11: Continuation of Fig. 5.10 with higher noise levels. Above a noise value of about10% (SNR = 20 dB), the density of false positive key points rea
hes a level where 
hainsof spurious splines begin to form erroneous 
ontour segments of 
onsiderable length, whi
h
ould only be eliminated by per
eptual organisation of higher order.164
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Figure 5.12: The number of key points dete
ted in Figure 5.10 (a) as a fun
tion of thenoise level (standard deviation in % of maximum 
ontrast) before (dashed 
urve) and afterper
eptual organisation (solid 
urve). Though the number of erroneous key points growsrapidly with in
reasing noise level, the grouping algorithm is able to eliminate a substantialnumber of spurious 
ontour segments, and, 
onsequently, the number of remaining falsepositives in
reases mu
h more slowly. The noise levels at the data points 
orrespond toFig. 5.10 and Fig. 5.11. The numbers saturate when an equilibrium is rea
hed betweennoise-indu
ed key point 
andidates and 
ompetitive feature elimination.
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5.7 Con
lusionsThis 
hapter has introdu
ed a per
eptual grouping framework based on spline inter-polation between 
ontour key-points, obtained from population de
oding and featuresele
tion through 
ompetition among neighbouring edge segments.From the distributed 
oding viewpoint, per
eptual grouping is interpreted as 
om-bining lo
al population 
odes, a

omplished by 
omputing joint densities from theindividual probability densities of tangent orientation de
oded from the �lter ensem-bles. Thus a probabilisti
 des
ription of the most suitable interpolating spline arisesquite naturally in terms of the likelihood of a pair of key-point tangent angles. Togetherwith an additional bending 
onstraint, the initial tangent angles, given by the modesof the lo
al orientation pdfs, are updated by an MLE-based optimisation algorithm,in order to improve mutual 
onsisten
y and to over
ome errors in the lo
al orientationestimates indu
ed by noise. During tangent optimisation, the expli
it representation oflo
al 
ertainty is essential, sin
e the degree of 
exibility permitted during the updatingof an initial tangent measurement is determined by the 
on
entration parameter of the
orresponding pdf, i.e., e�e
tively by its 
ertainty.The probabilisti
 population de
oding pro
edure attempts to mat
h a lo
al responsemodel to the a
tual ensemble a
tivities of the �lter bank at every pixel. The ratio ofmat
hes and mismat
hes 
an help de�ne the 
onsisten
y between a given spline and theimage data (Gabor transform), regardless of the absolute intensity of �lter responses.Together with lo
al 
ertainty and the degree of agreement between measured lo
alorientation and the tangent orientation of the spline, a 
ontrast independent spline
onsisten
y measure has been introdu
ed whi
h tends to 
reate only few false positive
ontour segments in the presen
e of moderate image noise, while preserving edges withlow 
ontrast.The spline representation is able to 
apture per
eptually important 
ontour bifur-166




ations, su
h as those arising in regions of self o

lusion in folds, whi
h provide vital
lues about the 3D shape of the obje
t under 
onsideration. Bifur
ations tend to bemisrepresented by 
onventional edge dete
tors like Canny's (1986), sin
e the responsesof linear �lters at su
h points are usually smaller than in their neighbourhood, andtangent dis
ontinuities are often smoothed out.The fa
t that, unlike B-splines, Hermite splines are not invariant under aÆne trans-formations may be 
onsidered a disadvantage. However, the spline representation de-s
ribed in this 
hapter is to be understood as a �rst grouping pro
edure, whi
h wouldrequire subsequent steps to further organise the short quadrati
 splines into larger 
on-tour segments. It is at this stage that invarian
e issues would be
ome relevant, butthat is beyond the s
ope of this thesis.
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Chapter 6
Con
lusions and Outlook
This thesis has presented a biologi
ally motivated approa
h to edge dete
tion with ori-ented �lters. The novel 
ontribution is the development and appli
ation of population
oding te
hniques for the purpose of 
ontour dete
tion in ma
hine vision, inspired bythe 
omputational neuros
ien
e literature. This has been a

omplished by re
onsid-ering the well-established analogy between Gabor �lters and the orientation sensitive\simple 
ells" in the hyper
olumns of mammalian primary visual 
ortex. Regardinga bank of Gabor �lters as an ensemble that en
odes lo
al edge orientation in a dis-tributed fashion has suggested methods of de
oding the orientation variable similar tothe strategies developed in experimental neurobiology and 
omputational neuros
ien
e,su
h as the population ve
tor and more re�ned probabilisti
 methods.6.1 Low-level Pro
essingIn parti
ular, the population 
oding analogy has resulted in the development of a uni-�ed probabilisti
 framework for the dete
tion of one- as well as two-dimensional edgestru
ture. Based on the orientation tuning fun
tion of the �lters and the assumptionthat lo
al edge orientation in the presen
e of noise follows a von Mises distribution,168



normal edges and lo
ations with multiple orientations 
an be modelled by a von Misesmixture distribution, the parameters of whi
h are estimated via a version of the expe
-tation maximisation (EM) algorithm.One 
hara
teristi
 element of the population 
oding paradigm is the notion of 
er-tainty, whi
h is equivalent to the degree of 
on
entration of a
tivity within the �lterensemble. On
e a probability density of orientation is available, 
ertainty 
an be 
har-a
terised in terms of its angular varian
e or its entropy.It has been demonstrated that an edge dete
tor based on population 
oding 
anbene�t from utilising the additional information provided by the 
ertainty measure.Che
king for 
onsisten
y in the �rst and se
ond moments of ensemble a
tivities, i.e., thelo
al orientation measurement itself and its varian
e (or a fun
tion thereof), providesa better means of identifying per
eptually relevant lo
al features and segregating themfrom noise.Lo
alisation of 
ontour features and their 
hara
terisation in terms of tangent ori-entation are very dissimilar tasks that require di�erent pro
essing strategies. Whilethe pro
essing for population 
oding is kept stri
tly linear, in order to assure linearsuperposition of �lter responses in the presen
e of multiple orientations, the featuresele
tion involves non-linear intera
tions between 
ertainty and response magnitude, inthe form of multipli
ation of the two quantities or a 
ertainty-
ontrolled normalisationwithin a lo
al neighbourhood.6.2 Per
eptual GroupingFinally, the information from lo
al ensembles has been 
ombined in order to obtain 
on-tour segments. Computing joint probability densities of tangent orientations from keypoint pairs quite naturally leads to a probabilisti
 des
ription of interpolating splinesas an early form of per
eptual organisation. With an additional bending 
onstraint im-169



posed on the 
onne
ting spline, an optimisation pro
edure determines the most likelyspline, thus smoothing the \jitter" in the initial orientation measurements introdu
edby image noise.Sin
e geometri
 
riteria for the asso
iation of edge segments are well-established,for example in the form of edge \relatability" (Kellman and Shipley, 1991) or similar
on
epts su
h as the \
ompatibility" relation (Parent and Zu
ker, 1989), the essential
on
eptual di�eren
e of the grouping algorithm presented in this thesis, 
omparedto these and other approa
hes, lies in the role of 
ertainty as a 
onstraint duringthe updating of orientation estimates. Moreover, by means of 
ertainty and tangent
onsisten
y, it has been possible to de�ne the 
onsisten
y between spline 
ontour modeland the a
tual intensity stru
ture in the image, independent of 
ontour 
ontrast. Atthe grouping level, the algorithm again bene�ts from the information provided by lo
al
ertainty, whi
h 
hara
terises the su

ess of mat
hing a response template (i.e., the vonMises mixture model) in ea
h point on a spline. Per
eptual \salien
y" of a spline isexpressed in terms of the number of su

essful mat
hes 
ompared to the total numberof points on the dis
retised 
urve.The fa
t that a distributed representation of lo
al features 
an be bene�
ial forfeature grouping justi�es linking two seemingly unrelated subje
ts, population 
odingin neurobiology and per
eptual organisation in ma
hine vision.6.3 Future WorkPossible extensions of the work of the dissertation, at the feature extra
tion level,
ould in
lude the introdu
tion of additional aspe
ts of biologi
al visual pro
essing,su
h as a Mexi
an-hat-type intera
tion within the �lter bank. Due to mutual inhibitionand ex
itation, �lters in su
h an intrinsi
ally 
onne
ted ensemble would have sharperorientation tuning and, 
onsequently, higher angular resolution of the a
tivity pro�le,170



whi
h 
ould be bene�
ial for the dete
tion of 
orner points and jun
tions.6.3.1 Alternative te
hniques of population 
odingSin
e the orientation tuning fun
tion of Gabor �lters is not independent of spatial fre-quen
y, the orientation tuning width depends on a free parameter, �0, though its valueis quite stable a
ross di�erent images, unless 
ontours exhibit a strongly varying degreeof defo
us. One 
ould eliminate the s
ale-dependent parameter �0 by simultaneouslyde
oding orientation and spatial frequen
y in a two-dimensional population 
ode, astrategy somewhat similar to the model proposed by Zohary (1992). Su
h a methodwould provide an estimate of lo
al 
hara
teristi
 s
ale. However, 
omputations wouldbe
ome more elaborate, involving larger �lter banks.As an alternative to the mixture model underlying the work of the thesis, a non-parametri
 approa
h 
ould be 
hosen; for example, using the Fourier-transform-basedde
oding s
heme developed by Wilson (Wilson and L�udtke, 2000).Perhaps strong 
urvature 
ould be represented more spe
i�
ally within su
h aframework, sin
e the von Mises model 
annot a

urately des
ribe the 
attened re-sponse pro�les 
aused by edges with a radius of 
urvature similar to the size of the�lter mask. The degree of deviation of the extra
ted angular pdf from the von Misesdensity might then be 
al
ulated in terms of the kurtosis, yielding a 
oarse measure of
urvature.6.3.2 Extensions of the grouping algorithmThe per
eptual organisation algorithm des
ribed in the previous 
hapter is only the�rst stage of lo
al feature grouping. The relatively short 
ontour segments representedby quadrati
 splines 
ould be merged into larger 
ontours, perhaps by using a B-spline model. During su
h further organisation, the number of 
ontrol points might be171



redu
ed, leading to a more e
onomi
al representation resembling that in the approa
hof Cham and Cipolla (1996), who developed a spline 
ontour framework based on aminimum des
ription length 
riterion.Furthermore, the spline interpolation method of Chapter 5 provides a graph rep-resentation of the obje
t outlines that 
ould be used for further high-level pro
essing.For instan
e, graph-theoreti
 operations, su
h as a \normalised 
ut" (Shi and Malik,1997), 
ould be performed on the spline graph to perform segmentation.
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Appendix A
Information Theoreti
 Measures forthe von Mises Distribution
In this 
hapter some important information-theoreti
 quantities shall be derived forthe 
ase of a single angular random variable with a von Mises distributionp(�) = 12�I0(�)e� 
os(����) ; (A.1)as they are not given in standard textbooks.A.1 Fisher InformationThe Fisher Information I for a single variable is de�ned as (Frieden, 1998)I = 2�Z0 �dp(�)d� �2�p(�) d� ; (A.2)whi
h yields for the von Mises distribution:
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I(�) = �22�I0(�) 2�Z0 ��e� 
os(����) sin(� � ��)�2�e� 
os(����) d�= �22�I0(�) 2�Z0 e� 
os(����) sin2(� � ��) d�with integral 3.915 (4.) from (Gradstein and Ryshik, 1981)= �22�I0(�) p� 2� �(112)I1(�)= � I1(�)I0(�) �(112)p� ; where � is the gamma-fun
tion and �(112) = p�=2
=) I(�) = 12 I1(�)I0(�) � 2A.2 Shannon EntropyThe Shannon entropy is de�ned as (Blahut, 1987)h = � 2�Z0 p(�) ln p(�) d� :Using integrals given in Mardia (1972) or Abramowitz & Stegun (1970) , this yieldsfor the von Mises distribution:
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h(�) = � 12�I0(�) 2�Z0 e� 
os(����) �� ln[2�I0(�)℄ + � 
os(� � ��)	 d�= ln[2�I0(�)℄2�I0(�) 2�Z0 e� 
os(����) d�| {z }2�I0(�) � �2�I0(�) 2�Z0 e� 
os(����) 
os(� � ��) d�| {z }2�I1(�)
=) h(�) = ln[2�I0(�)℄� I1(�)I0(�)� : 2
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