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Abstract

This dissertation presents a novel, biologically inspired approach to edge detection and
perceptual organisation, based on a synthesis of the well-known Gabor filters with the
concept of population coding from computational neuroscience.

A Gabor filter bank is regarded as an ensemble of orientation sensitive units that
encode local contour orientation in a distributed fashion, somewhat akin to the “simple
cells” in the mammalian primary visual cortex. From the filter ensemble, a probability
density function (pdf) of local contour orientation is decoded by taking into account
the orientation tuning function of the filters and assuming a von Mises mixture model
for the contour angle. The parameters of the pdf are estimated using an expectation
maximisation (EM) algorithm.

Whereas conventional edge detection schemes tend to reduce the set of filter re-
sponses in each pixel to a single quantity, e.g. a local tangent angle, this dissertation
takes a different approach, aiming to maintain a distributed representation. The ben-
efits of the resulting analytically derived probabilistic population decoding algorithm
is that points with multiple orientations, such as corner points or junctions, can be ac-
commodated within the same framework by means of multimodal probability densities.

Another important aspect of distributed coding is the notion of certainty, charac-
terised by the spread of activity across the filter bank or the entropy of the orientation
pdf. It is demonstrated that the availability of local feature certainty prior to percep-
tual organisation is beneficial for feature localisation. Selecting features by means of
their certainty, rather than by thresholding filter responses, renders the feature extrac-
tion contrast independent and more robust against noise.

In the subsequent grouping step, small curved contour segments are generated
through spline interpolation between pairs of locally extracted tangent elements. The

grouping process involves a revision of the local orientation measurements, controlled



by their certainty values and the overall curvature of the connecting spline. This is pos-
sible only because certainty has become a measured quantity determined at the stage
of local feature extraction. In most other grouping schemes, certainty is either not
considered, or, as in probabilistic relaxation labeling, inferred after feature extraction
during the optimisation of probability density parameters representing local features.

While not claiming to present a model of biological visual processing, this thesis
provides some new insight into the initial problems that both artificial and neural
visual systems are confronted with: the extraction and representation of local features
following sensory acquisition, and the subsequent grouping of such locally extracted

features into larger, more complex entities.
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Chapter 1

Introduction

The first step after data acquisition in many computer vision tasks is the extraction of
local image features, such as edge orientation, texture, colour or shading flow. Their
detection is notoriously ambiguous and error prone due to sensor noise and digitisation.
Furthermore, they usually are strongly affected by clutter or change in illumination.
Any efficient general purpose visual system should therefore represent the inherent
uncertainty and ambiguity of sensory information at an early level, in order to avoid
premature commitment to unreliable information. Local uncertainties should be re-
solved at later stages by relating local information to its context. This is clearly a
non-trivial task since the number of possible combinations of features can easily lead
to a “combinatorial explosion”, where the search space becomes intractable. Thus two

fundamental questions arise:

e How can local information be organised into robust global structures?

e How should local information be represented in order to support global organi-

sation?

The objective of this thesis is to approach these complex problems from a biologically

inspired point of view and to provide suggestions for overcoming them. Essentially

19



the novel contributions are the establishment of a theoretical link between the notion
of population coding (a ubiquitous principle of distributed information representation
in the brain) and the technical problem of object boundary detection, as well as a
resultant algorithm that combines the detection of edges, corners and junctions into a

unified probabilistic framework.

1.1 Perceptual Organisation and Gestalt
Psychology

The idea that perception is a holistic process in which parts are linked according to
their contextual relations was formulated during the 1920s by Wertheimer, Koffka,
Kohler and other psychologists (Ellis, 1967) as part of “Gestalt” theory, whereby they
established a number of “laws” of perception (see Figure 1.1) based on psychophysical
investigations since the late 19th century.

The “Gestalt laws” are principles of perceptual organisation, a phenomenological
description of the inbuilt bias in human vision by which local image elements are
grouped and ambiguities are resolved. For instance, in Figure 1.1 (d) the scene is
interpreted as two overlapping shapes with smooth boundaries. The alternative inter-
pretation, two adjacent objects with more complicated outlines, is rejected despite both
interpretations being a priori equally probable. In our natural environment, we are
usually unaware of the active nature of our visual sense. However, specially designed
artificial images, such as those in Figures 1.2 and 1.1, reveal that contour perception
is more than a merely passive recording of sensory input (Kanizsa, 1979). It involves
the binding of local features into perceptually salient groups (“pop-out”), completion
of disrupted contours (“filling-in”) and, as a result, segmentation. The optical illusions

(Fig. 1.2) also illustrate that the perception of object outlines is not based on local
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edge contrast alone, or else one would not see illusory or “amodal” contours (Kanizsa,
1979) where no actual intensity gradient (edge contrast) is present.

While it is often assumed that completion of large-scale gaps caused by occluding
objects and “filling-in” of local contour disruptions resulting from low signal-to-noise-
ratio can be accomplished within the same computational framework, it is important
to distinguish between the two, since they actually require fundamentally different
processing strategies (August and Zucker, 2000). Closing the large gaps in contours
fragmented by an occluding object may even involve representing the occluder, requir-
ing a more global degree of perceptual grouping.

This thesis will focus on short-range “filling-in” and contour grouping based on the
Gestalt principles of “good continuation” and the closely related “good form” (Fig. 1.1
(c) and (d)). Though Gestalt psychology provides a merely descriptive theory with no
direct clues as to how the computer scientist might incorporate perceptual organisation
into an artificial vision system, principles such as “good continuation” can be expressed
in geometrical terms (Kellman and Shipley, 1991), as will be explained in the literature
review. Additional insight is provided by recent biological studies that have begun to
shed light on the underlying physiological mechanisms of perceptual organisation at

the single cell level.

1.2 Biological Fundamentals of Perceptual Organi-
sation in Early Vision

In visual neurobiology, the concept of local feature detectors as elements of contour
perception applies only to a simple isolated stimulus, such as an oriented bar. The
response behaviour of so-called “simple cells” in striate cortex (V1), discovered by

Hubel and Wiesel (1962), has been found to be less strictly linear than was origi-
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Figure 1.1: Examples of Gestalt principles.

a) Proximity b) Similarity

¢) Good Continuation

d) Good Form

(a) Dot patterns are grouped with respect

to proximity. (b) If the distance between dots is constant, elements are grouped with re-

spect to other cues—in this case contrast. (c) The linear pattern tends to be interpreted as

two smooth, intersecting curves rather than adjacent curves with tangential discontinuities.

(d) The upper right interpretation-two adjacent forms with complicated outlines-is rejected

in favour of the lower—two overlapping forms with simple and consistent boundaries—-though

both interpretations are a priori equally probable. Examples (¢) and (d) are closely related,

and both reveal a perceptual bias in favour of overlapping, rather than adjacent, structures.
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Figure 1.2: Examples of illusory contours. (a) Ehrenstein-illusion. In the centre a circle
can be seen which appears brighter than the white of the background. (b) Modified Kanizsa-
triangle. Instead of three “pacmen” and three line segments, a triangular shaped object seems
to occlude three black disks and a linear structure in the middle. Again the object in the
“foreground” appears brighter. (c) Gratings of abutting lines create the illusion of a curved
smooth edge. (d) A bright white bar seems to overlap two disks and a circle. As in (a) and

(b), there is no actual difference in brightness in the image.

nally assumed. For instance, neural firing rates saturate as stimulus contrast increases,
a process which can be understood as a normalisation of neural responses within a
hypercolumn (Heeger et al., 1996). Also, when stimuli of greater complexity are pre-
sented that exceed the size of the receptive field of an individual cell, neighbouring cells
respond as a consequence of their retinotopic arrangement.

Due to various lateral connections between cells, different parts of a complex stimu-
lus act as contextual surround for one another, and the principle of linear superposition
is invalidated. The surrounding context can either facilitate or suppress neural re-
sponses, depending on relative contrast and orientation between centre and surround
(Polat et al., 1998), and can even change the preferred orientation (Gilbert and Wiesel,
1990), perhaps explaining the Zdllner/“tilt” illusion (Fig. 2.2 in the next chapter).

Using stimuli such as those in Figure 1.2, neurons at early stages (V1 and V2) of

visual processing have been found that respond to illusory contours (von der Heydt
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and Peterhans, 1989a; von der Heydt and Peterhans, 1989b; Grosof et al., 1993). The
conclusion of these experiments is that the perception of real and illusory contours is
performed in the same area of the visual cortex at a low functional level.

In summary, cortical contour processing is very intricate and, despite the vast
amount of known details, a concise physiological theory of perceptual grouping remains

elusive.

1.3 Perceptual Organisation in Computer Vision

Perceptual organization in human and animal vision is a consequence of an adaptation
to the natural environment. Erroneous perception of artificial images, such as the
Zollner illusion (Figure 2.2), is the price for enhanced performance in the processing of
natural images (a mere subset of all possible images), which have particular statistical
properties (Field, 1987; Kriiger, 1998) that can be exploited in order to overcome the
uncertainties of local image features.

Such features, which form the basis of natural and artificial vision, often have a small
signal-to-noise-ratio, especially in “cluttered scenes”, where object-background contrast
is low. Nonetheless animals and humans cope amazingly well with such local distortions
and their recognition capabilities are barely affected. It is difficult to imagine how an
artificial system could yield comparable performance without incorporating some kind
of technical equivalent to the Gestalt laws.

To overcome local distortions in machine vision, numerous authors (e.g., Lowe, 1985;
Sha’ashua and Ullman, 1988; Heitger and von der Heydt, 1993; Sarkar and Boyer, 1994;
Elder and Zucker, 1996; Guy and Medioni, 1996) have therefore proposed incorporat-
ing contextual relations among local features by combining responses of neighbouring

feature detectors into a globalised and consequently more robust processing.
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1.4 Biological Plausibility of Computer Vision Al-
gorithms

“Biological plausibility” will here refer to the drawing of functional analogies between
information processing in biological and technical systems, not to biological modelling.

In attempting to implement a biologically plausible machine vision system, the
researcher combines methodologies from science and engineering, since the goal is to
identify fundamental principles of perception relevant for both natural and artificial
vision, and to separate them from computationally irrelevant physiological details.

The functional architecture of the visual cortex is, basically, determined by two
factors: the statistics of the sensory input and the constraints imposed by the physico-
chemical properties of cortical tissue. For instance, neurons in the central nervous
system are mortal without the possibility of re-growth. They are also very noisy and,
as a result of membrane capacities, have large time constants compared to electronic
components. (The time scale of neural processing is within the range of milliseconds,
whereas in electronics it is within nanoseconds.) Consequently, neural information
processing must be highly parallel and robust against the failure of single neurons. In
fact, a gradual decrease in performance, due to loss of neurons or signal distortions, has
been identified as a key feature of distributed neural processing and is often referred
to as the principle of graceful degradation (Rumelhart et al., 1986).

In computer vision, only those aspects of cortical information processing that are
a consequence of adaptation to the structure of visual input (and the structure of the
world), not physico-chemical constraints of biological neurons, need to influence tech-
nical implementation. It is argued in this thesis that the distributed nature of neural
processing is not simply a necessary compensation for the shortcomings of individual
neurons, but also an efficient coding strategy for local feature extraction in general.

Throughout this thesis, feature extraction will be performed by means of a bank
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of Gabor filters, clearly a considerable abstraction from the ensembles of “simple”
and “complex” cells in mammalian visual hypercolumns. No attempt will be made
to capture the intricacies of intra-columnar connectivity in real cortical hypercolumns.
Instead, a purely linear model of local feature extraction will be used that accurately

describes the response behaviour of a linear Gabor filter bank.

1.5 Distributed Coding: a Paradigm for Local Fea-
ture Extraction in Machine Vision?

As previously mentioned, perceptual organisation of local information requires some
flexibility in the representation of locally extracted features in order to avoid premature
commitments at an early stage. A principal intention of this thesis is to demonstrate
that distributed coding, a concept now generally accepted in neuroscience (Georgopou-
los et al., 1986; Vogels, 1990; Young and Yamane, 1992; Wilson and McNaughton, 1993;
Lehky and Sejnowski, 1990), is perfectly suited for this purpose, and can also be ap-
plied in artificial visual systems (in this case, to a bank of oriented filters). Neither the
neural ensemble in a hypercolumn, nor the filter bank, represent the local orientation
of a stimulus through the activity of a single element, but rather through an activity
profile of the population as a whole.

Even the unresponsive units characterise the stimulus, in the sense that the con-
centration of activity in the population (loosely speaking the ratio of responsive to
unresponsive units) describes the certainty of the encoded information. Expressed in
more precise mathematical terms, a quantitative description of certainty yields a valu-
able additional piece of information for the selection of fiducial features, as will be
demonstrated. It will also be shown that, in a perceptual grouping framework, the

certainty of a local edge feature can be used to control the degree to which it is allowed
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to be modified, during an updating step, in order to increase mutual consistency with

neighbouring features.

1.6 Outline of the Thesis

Chapter 2 provides an overview of relevant literature on population coding and per-
ceptual grouping focusing on edge/line continuation.

In Chapter 3, the population vector concept is applied to the problem of edge and
line detection with Gabor filters. Also, the notion of certainty in population coding
is explained and its role in the decision about the presence or absence of features is
discussed.

The population vector algorithm is extended, in Chapter 4, to a probabilistic pop-
ulation coding approach. Edge detection is performed within a statistical framework
based on an analytical model of the filter responses. By means of a version of the EM-
algorithm (Dempster et al., 1977), a parametric model probability density function of
local edge orientation is decoded from the Gabor filter bank.

In Chapter 5, the local population codes of tangent orientation, derived in Chapter
4, are combined in order to determine the parameters of splines interpolating between
pairs of feature points, thus establishing a form of perceptual organisation in the sense
of the Gestalt principle of “good continuation”.

Chapter 6 summarises the results of the thesis and provides suggestions for future

work.
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Chapter 2

Literature Review

The purpose of this chapter is to review the relevant literature on population coding
and perceptual grouping of contour segments, as separate fields of research. A synthesis
of the population coding paradigm with the problem of contour detection is achieved
through a novel method of contour detection, which will be introduced in the main

body of the dissertation.
Part I: Population Coding

Through biological studies of various brain regions, it became evident during the 1980s
that sensory, as well as motor, variables are represented by neural ensembles, rather
than individual neurons, as had been postulated by Barlow (1972). The distributed
coding strategy is often referred to as “population coding”.

Typically, a neural population encoding one or several parameters consists of neu-
rons exhibiting a rather broad tuning (Fig. 2.1). Consequently, a single neuron provides
merely a course estimate of the encoded variable(s). However, by combining the outputs
of ensemble members, the population as a whole is capable of accomplishing a substan-
tially higher degree of representational accuracy. Due to its intrinsic redundancy, such

a distributed code is also robust against neural noise and failure of individual units.
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Figure 2.1: A set of bell-shaped, overlapping tuning curves covering a range of orientations
create a redundant code that is robust against failure of individual units and noise. How can

a precise orientation estimate be obtained from a population of such broadly tuned units?

Georgopoulos and colleagues (1986) have demonstrated that the direction of arm
movements can be decoded from neural firing rates in the motor cortex of monkeys.
Wilson and McNaughton (1993) have shown that the position of rats in their envi-
ronment is encoded in populations of hippocampal neurons. Recording from these
so-called “place cells”, the authors were able to predict the position of the animals.
Moreover, evidence has been provided by Young and Yamane (1992) of a face-encoding
population in a region within the infero-temporal cortex, a brain area assumed to be in-
volved in visual processing at an intermediate level between simple features and object
representations. In the vision domain, population coding has also been linked to the
perception of stereo disparity (Lehky and Sejnowski, 1990) and orientation estimation
(Paradiso, 1988; Gilbert and Wiesel, 1990; Vogels, 1990).

Population coding has thus emerged as an essential paradigm in computational neu-

roscience. It is increasingly studied among theorists in the neural network community,
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where research is mainly concerned with modelling biological information processing,
rather than technical applications such as machine vision.

One principal issue in the computational neuroscience literature is coding accuracy
and its dependence on the intrinsic noise in a neural network, as well as on the shape of
neural tuning curves (e.g., Baldi and Heiligenberg, 1988; Zhang and Sejnowski, 1999),
the number of neurons, and their distribution in parameter space (Vogels, 1990).

Paradiso (1988) was one of the first theorists to analyse the performance of a model
hypercolumn of broadly tuned neurons by means of statistical estimation theory. His
model offers an explanation for the high accuracy of discrimination in various sen-
sory modalities, known as hyperacuity. For instance, the “just noticeable differences”
observed in psychophysical orientation discrimination tasks are up to two orders of
magnitude smaller than the orientation tuning widths of individual neurons (Vogels,
1990).

Population coding has also recently been extended to extracting probability densi-
ties from ensemble activities (Zemel et al., 1998), opening up the possibility of a more
“holistic” processing of the information encoded in a population. In contrast to “re-
ductionist” methods, which aim to extract single quantities, the probabilistic approach

preserves the distributed nature of the code and provides additional information about

the certainty of the encoded variable(s).

2.1 Population Vector Coding

There are several methods of decoding a population code. One is the so-called popula-
tion vector or “centre-of-gravity decoding”, a concept introduced by Georgopoulos and
associates to describe, as mentioned, the representation of limb movements by direction
sensitive neurons in the motor cortex (Georgopoulos et al., 1986). The basic idea is as

follows.
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Given a population of n neurons, each neuron is assigned a component vector with
a magnitude proportional to the strength of its response, r; (spike frequency), and
a direction according to its preferred direction, denoted by the component vector (_);
The vector components are then added, and the resultant vector sum is the population
vector. Thus the population vector is a response-weighted average of n component

vectors, b;, pointing in the neurons’ preferred directions:

n
i=1
If a vector ¥ is properly encoded by the population, then

—

pP==z.

It has been shown (Sanger, 1994; Sanger, 1996) that this equality implies cosine-tuning;

i.e., responses are given by the dot product

—

which can be seen by inserting equation (2.2) in (2.1) and assuming the equality p'= Z:

This yields the following condition for the outer product of component vectors:
d hib” =1, (2.3)
i=1

where 1 denotes the unit matrix. The requirement (2.3) is always fulfilled with or-
thogonal basis vectors, i.e., when the component vectors are simply the Euclidean unit
vectors, €1,..., €,, but it imposes a severe restriction in the general case of an overcom-

plete basis {l;l - (;n} Any uneven distribution of preferred directions can easily violate
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condition (2.3) and introduce a stimulus dependent bias to the population vector esti-
mate (Salinas and Abbott, 1994; Sanger, 1996; Snippe, 1996). Though important for
biological systems, such a bias is not a serious concern in a technical system, where

one has complete control over the positioning of tuning curves in the parameter space.

2.1.1 Vector coding in biological and artificial vision

Vogels (1990) examined population vector coding of visual stimulus orientation in a
model of striate cortical cells. The model is able to explain just noticeable differences
of orientation discrimination in primate vision. Employing a sufficiently high number
of units (several hundred), the obtained coding accuracy is less than 1°, even using
tuning widths of up to 80°.

Gilbert and Wiesel (1990) used a very similar approach to explain the context
dependence of orientation measurements and related it to physiological data and to
the psychophysical phenomenon of “tilt illusion” (see Fig. 2.2). They investigated
how a population vector estimate is affected by modifications of the ensemble activity
profile induced by surrounding stimuli via long-range interactions between neighbouring
populations. Such complicated lateral interactions not only alter the weighting of
individual neurons but can even change their orientation tuning.

Expressed in the notation of the previous section, lateral interactions cause an
alteration of the responses, r;, which act as weights in equation (2.1), as well as a
modification of the basis vectors EZ Since the task is merely to estimate the direction

of the stimulus & (requirement p'||Z instead of 7 = &), condition (2.3) changes to:

n

i=1

Even this more relaxed constraint on the basis vectors can be violated by long-range

interactions, which cause erroneous orientation estimates in certain geometric arrange-
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Figure 2.2: The Z6llner illusion (“tilt” illusion). The long lines are parallel but appear tilted.
The small line segments influence the perception of orientation, which, according to Gilbert
and Wiesel (1990), can be explained by the altered activities in the hypercolumnar ensembles

caused by long range interactions between neighbouring orientation sensitive cells.

ments of linear stimuli, such as in Figure 2.2.

In computer vision, Granlund and Knutsson (1995) have defined a vector represen-
tation of local edge orientation, which the authors call “double angle representation”.
Based on a fixed set of four fundamental orientations (horizontal, vertical and the
two diagonal orientations), a vector sum is computed. However, no connection with

population vector coding has been established.

2.2 Maximum Likelihood Decoding

An alternative to vector decoding is maximum likelihood estimation (MLE). Based on
Gaussian tuning functions and neural activities r; governed by a Poisson distribution,
a conditional density, p(x|r;), in the encoded variable is obtained using Bayes’ law

(Sanger, 1996). Assuming independent neural firing rates, the total likelihood of the
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encoded parameter value is given by the product of the individual conditional densities:

L(z)r) = Hp(xm) . (2.4)

Sanger (1996) has shown that equation (2.4) is essentially a product of tuning curves.
Consequently, the likelihood function can be very sharply tuned, even for broad tuning
curves.

MLE is effectively a form of template matching. The response data are matched
with a template derived from the average population activity (Pouget et al., 2000).
Since the method makes explicit use of the tuning function, it is not restricted to
cosine-tuning implicitly assumed in the population vector approach (Oram et al., 1998).
Theoretically, maximum likelihood is an optimal estimator; i.e., it is unbiased (“correct
on average”) and has the lowest possible variance, as determined by the Cramer-Rao
bound (Deco and Obdradovic, 1996).

Though MLE may seem biologically implausible, Pouget and colleagues have shown
that it can be closely approximated by recurrent biological networks (Deneve et al.,

1999) for a wide range of tuning widths and input contrast values.

2.3 Extracting Probability Densities

The methods described previously aim to extract a unique value of the encoded quan-
tity. However, the aforementioned MLE method proposed by Sanger (1996) actually
provides an entire conditional distribution, p(z|r) = L(x|r), in the encoded variable
x, given the “vector” of responses, r. (The response vector r, i.e., the vector of en-
semble activities, must not be confused with the population vector p, which is the
result of vectorial averaging of activities; see Section 2.1). Recovering a probability
density is desirable because it maintains a distributed information representation, thus

avoiding a premature commitment to local features that often have a high degree of
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uncertainty. Additionally, a probability density can quantitatively characterise such
inherent uncertainty of the estimate through its variance or a function thereof.

Zemel and colleagues (1998) have shown, however, that Sanger’s “standard Poisson
model” is incapable of representing densities broader than the tuning curve, a conse-
quence of the multiplication of tuning curves described in Section 2.2. Moreover, since
in Sanger’s model p(z|r) is always unimodal, it is impossible to represent ambiguity in
x.

Both limitations in representational capacity are overcome in a recently developed,
more refined probabilistic model by Zemel and co-workers that is able to decode mul-
timodal distributions of arbitrary width. Their distributional population coding ap-
proach, the “extended Poisson model”, is a non-parametric method which aims to
recover the encoded probability density as a set of sampling points. The discrete val-
ues of the probability density are themselves treated as stochastic variables and are
determined by maximising the data likelihood function. Thus the algorithm performs
an approximated form of maximum a posteriori estimation in distributions over distri-
butions.

As in Sanger’s model, a neural response r; to a stimulus z is governed by a Poisson
distribution p(r) around a mean determined by the corresponding tuning curve f;(x).
If the encoded variable is governed by a probability density p(x), the average neural
activities are given by:

Fo = / fi(x) p(a) da (2.5)

which is the fundamental encoding equation. However, in order to incorporate arbitrary
probability distribtions of the stimulus, p(x), both the p(x) and the tuning function
are approximated by piecewise constant histograms. Let ¢2j be the value of the pdf
p(x) in the interval (z;, z;41] and f;; the value of the i-th tuning function in (x;, ,41].

The average ensemble activities are then expressed by a discrete approximation of the
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encoding equation (2.5):
M ~
= [ f@)pe)de = 3 s
X j=1

The unknown sampling points d3j of the wanted pdf p(x) are themselves treated as
random variables. The task is then to perform maximum a posteriori (MAP) estimation
in order to find the ¢2j, i.e., to maximise

M
{Tl}} under the constraint Z ¢;=1.

J=1

log p[{éj}

The number of sampling points (“histogram bins”), M, exceeds the size of the popula-
tion, and regularisation is accomplished by means of a smoothness prior that restricts
the change $j+1 — ¢2j of the pdf in neighbouring points.

One possible means to estimate the ngSj is simple gradient descent. In fact, Zemel
and colleagues reformulate the MAP estimation as a maximum likelihood estimation
by interpreting Zj\il fi]-q;j as a mixture model where the d3j play the role of mixing
coefficients. A version of the EM-algorithm is then used to determine the MAP values

of the d%-.

2.4 Complex Feature Detectors

An issue mentioned only briefly in the population vector model of Gilbert and Wiesel
(1990) is complex stimuli within the classical receptive field. Two-dimensional struc-
tures with multiple orientation create multimodal response activity profiles in the hy-
percolumnar ensemble. How the brain processes such stimuli is unclear, since experi-
mental data is scarce.

This matter is also highly relevant in machine vision, where an analogous situ-
ation arises when, in addition to regular edges, corner points and junctions are to

be detected. In the presence of two-dimensional intensity features, classical gradient
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based edge detection schemes are inefficient since intensity gradient is ill-defined and,
even when corners are somewhat rounded, detector responses tend to be minute. The
usual strategy is to employ specially designed corner detectors. However, the biological
plausibility of such detectors is strongly debated.

While some researchers (Heitger et al., 1992) regard the so-called end-stopped cells
as detectors of occlusion points (T-junctions), their assumption has been questioned
due to the varying and often very limited degree of end-stopping that such cells actually
exhibit. For example, Zucker and co-workers interpret end-stopped cells as curvature
detectors (Dobbins et al., 1987).

Zetzsche and Barth (1990) have identified fundamental limitations of linear filters
operating on two-dimensional intensity features. Typically, a linear filter designed to
detect 2D-features involves a combination of responses from linear components. For
signal-theoretic reasons, Zetzsche and Barth argue that any such filters will inevitably
show false-positive responses to certain one-dimensional stimuli. The response am-
biguity cannot be overcome by successive non-linear operations, such as thresholding
or rectification. In order to avoid false-positive responses, intrinsic non-linearities in
the form of logical and-operations are necessary, by which the linear components are
combined.

In accordance with Zucker’s viewpoint, it is argued in this thesis that a hyper-
columnar ensemble, respectively a filter bank, is capable of representing complex local
intensity structure, excepting curvature, and that no additional corner detector is re-
quired.

Using their distributional population coding model, Zemel, Dayan, and co-workers
have shown how multiple motions (Zemel and Dayan, 1999) and multiple orientations
(Zemel and Pillow, 2000) can be decoded from biological neural networks. Referring to
Zemel and colleagues, the problem of representing points of multiple edge orientation

will be addressed in Chapter 4 as a principal short coming of the population vector
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approach, and a solution will be offered within a framework of probabilistic population
coding adapted to machine vision. The issue of response ambiguities, raised by Zetzsche
and Barth (1990), will also be resolved in this context, since probabilistic population
decoding involves non-linear operations in the form of products of functions of ensemble

activities.

2.5 Combining and Transforming Population

Codes

Another topic in the literature is the transformation and combination of population
codes in order to encode complex quantities that transcend the sensory and/or motor
variables encoded by the original populations.

One example of a transformed population code is colour vision. As pointed out
by Lehky and Sejnowski (1998), the retinal colour population code consists of neurons
tuned to optical wavelength, but the combined neural activities can represent the per-
cept “white”, which itself is not a wavelength. Combined neural populations can span
abstract representational spaces comprising dimensions that, though derived from sen-
sory and motor inputs, have no direct physical counterpart in the outside world (Zemel
and Dayan, 1997; Deneve et al., 2001).

In vision, the information of neural populations with highly localised receptive fields,
such as the simple and complex cells in V1, is combined to form neural populations at
an intermediate level in the visual pathway that are responsive to complex stimuli of

large spatial extent, as observed in the inferotemporal cortex (Tanaka, 1996).
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2.6 Conclusion

The main population coding concepts from computational neuroscience have been re-
viewed and their advantages and drawbacks have been discussed. The ubiquity of
population coding in highly efficient biological sensory systems provides the motiva-
tion to investigate the application of population coding in image processing pursued
in this dissertation. The relation to concrete applications in edge detection will be
substantiated in chapters 3 and 4. In chapter 5 it will be shown how a combination
of local population codes of edge orientation can lead to perceptual organisation of
contour segments.

The essential feature of population coding is its great flexibility and representational
capacity. For the purpose of this thesis, the probabilistic approach provides the means
to accurately represent local contour orientation and to characterise the reliability of
orientation estimates through the inherent uncertainty encoded by the corresponding

angular probability density.
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Literature Review Part II:

Perceptual Grouping

Since the literature on perceptual organization is extensive, it is beyond the scope of
this thesis to cover all the existing methods. Therefore the purpose of the following
sections is to review some important papers representative of different approaches to
perceptual organization of contour features, and to describe the performance of these

algorithms on real images.

2.7 Contour Integration And Perceptual Saliency

An important function of perceptual grouping is the restoration of contours, since
edge information extracted by means of local operators is inevitably fragmented. Each
feature gives a local value of confidence that an edge segment is present, and possibly
additional information about its orientation and curvature. Sometimes, due to noise
and clutter, the edge contrast is very poor or varies strongly along a contour. The
task of a data driven grouping algorithm is then to relate edge fragments and to enable
mutual support between individual local features based on their directional consistency,
thus enabling the transition from local to global features, i.e, from edge segments to
straight lines or smooth curves. The process is closely related to finding and enhancing

regions that are perceptually salient; i.e., a technical analogue of the “pop-out” effect
g Yy g
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in psychophysics.

2.7.1 The Saliency Network of Sha’ashua and Ullman

Sha’ashua and Ullman (1988) defined a measure of perceptual saliency of a curve, based
on geometric properties. The saliency measure increases monotonically with the length
of the evaluated curve and decreases with its total squared curvature. Additionally, the
degree of fragmentation, expressed in terms of the number of gaps and total gap length,
is penalised. Using the saliency function, a “saliency map” is defined as an image in
which the intensity encodes the saliency value of the most salient curve emanating
from the point under consideration. The network performs a relaxation procedure to
maximise the saliency measure.

In their critical assessment, Alter and Basri (1998) show that the saliency net-
work has some shortcomings, producing a number of results that differ from human

perception:

e A curve with one large gap is considered more salient than one with a few small

gaps of equal total length.

The network has difficulties representing more than the most salient curve.

e The saliency measure is not invariant with respect to uniform scaling of the image.

Erroneous binding can occur through the merging of contour segments belonging

to different objects.

2.7.2 Kellman and Shipley’s Theory of Visual Interpolation

Kellman and Shipley (1991) developed a theory of visual interpolation based on psy-
chophysical evidence. By introducing a geometrical definition of edge segment “relata-

bility”, they provide a precise mathematical description of the Gestalt law of “good
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continuation”. Figure 2.3 shows a geometric construction of the concept of “relatabil-
ity”, which accurately describes the bias in human perception towards smooth contours
and which can be directly implemented in a machine vision system. Two edge segments
(tangent segments) centred around points P; and P, are “relatable” if, and only if, the
angle 0 at the point of intersection of the edge extensions is acute, corresponding to an
interpolating curve with a moderate degree of bending and without inflection points.
In practice, however, the geometrical configurations of edge segments obtained from
an edge detector are often not as precise as required, due to noise. As a result, two
edge segments belonging to the same contour can appear “unrelatable”, even if their
orientations deviate only slightly from the true values. This is expected to happen
frequently with straight contours, since image noise creates an angular “jitter” in the

tangent orientations measured along the contour.

~
ao’
Figure 2.3: A construction defining the concept of “relatability” according to Kellman and
Shipley (1991). Two edge segments are relatable, if and only if, 0 < Rcosd < r. Conse-
quently, 0 < § < /2, which excludes interpolation between edge segments that are parallel

or require a connecting curve with sharp bending (R cos d§ < 0).
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2.7.3 Global Contour Grouping: The Extension Field

Guy and Medioni (1996) devised an algorithm for contour grouping based on the
Gestalt principles of co-curvilinearity (“good continuation”) and proximity. After ap-
plying an edge detector, a convolution is performed on the edge map using a special
mask called extension field, a vector field encoding the likelihood and orientation of
possible continuations from an edge segment at its centre to all other points in the
image. Thereby a large number of smooth curves are represented simultaneously. The
direction of the extension field at a point (z,y) equals the tangent angle of the most
likely curve connecting (z,y) with the edge segment at the centre of the extension
field. The magnitude of the vector field in (z,y) is the likelihood of the existence of
the connecting curve.

Referring to Sha’ashua and Ullman (see Section 2.7.1), the extension field is defined
under the assumptions that human contour grouping favours curves of minimum total
curvature and that the completion of fragmented contours is accomplished in terms of
constant curvature. Therefore the tangent orientation at a particular point is chosen
to be that of the osculating circle connecting the point and the central edge segment.
By superposition of extension fields emanating from all edge locations, every pixel
receives a number of vector “votes”. This process is a vector convolution resulting in
a two-dimensional covariance matrix for each point. Then the principal axis of all the
orientation votes is taken as the edge orientation. The eigenvalues are interpreted as
the axes of an ellipse, the eccentricity of which describes the degree of “agreement”
among orientation votes, i.e., a measure of certainty. Multiplication of eccentricity by
the strongest eigenvalue, which depends on the edge contrast, yields a saliency measure.

Since the extension field combines votes from all edge locations in the image, it
is an implicitly global grouping scheme that differs from many previously developed

techniques that use local operators to infer global structures. The system can operate
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on tokens with different degrees of orientational certainty, from line segments with
a precise orientation to points (complete uncertainty of orientation). A number of
visual illusions can be reproduced, such as the Ehrenstein circle (see Fig.1.2 a) and
a Kanizsa-type figure (see Fig.1.2b), but the performance on natural images is not

demonstrated.

2.8 Algorithms Modelling Biological Data

Based on the neurophysiological experiments of von der Heydt and Peterhans (1989a,
1989b), Heitger and associates (1992, 1998) developed a model of illusory contour
perception in mammalian visual systems focusing on the close relationship between
illusory contours (such as in Fig. 1.2) and occlusion.

The essential ingredients are models of neurons found in areae V1 and V2 of the
visual cortex. Complex cells are modelled as the moduli of complex Gabor filters
and referred to as C-operators. The so-called “end-stopped cells” (cells responding
to sudden terminations of contours, interrupted contours or corners) are modelled as
combinations of two or three C-operators.

A combination of end-stopped operators then serves as a tool to find the “key
points” of occlusion, i.e., locations where contours terminate due to occlusion. Because
of the special geometric arrangement of operators, corner points can be excluded.

Once the key points of occlusion are found, the map of end-stopped operator re-
sponses at key points is convolved with a “grouping field’, an oriented club-shaped
kernel. The result of the convolution is added to the C-operator responses, whereby
contours of weak or vanishing contrast are restored.

The authors define two types of grouping, “ortho-grouping” and “para-grouping”,
meaning that the restored contour and the endpoint termination are either orthogo-

nal or aligned, respectively. Due to the arrangement of end-stopped operators in the
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ortho- and para-grouping scheme, it is possible to infer some information about the
foreground /background structure of the overlapping contours in the image.

The model seems to perform well on natural images, apart from some ambiguities
in foreground/background segregation and occasional erroneous filling-in. The authors
conclude (Heitger and von der Heydt, 1993) that these problems can only be overcome

at higher stages of processing. The robustness against noise is not discussed.

2.8.1 Li’s V1-Model of Contour Integration

Zhaoping Li’s neural model of contour integration (1998) tries to explain the detec-
tion of perceptually important structures based only on elements of the primary visual
cortex (V1). The model incorporates oscillating neurons sensitive to local stimulus ori-
entation and inhibitory interneurons. Interacting via lateral intra-cortical connections,
neurons of similar orientation preference can excite and synchronise one another’s ac-
tivity, or inhibit one another through interneurons. The model also seems to reproduce
the effect of pop-out of contours from a noisy background, which accords with recent
biological findings on the relation between lateral connections in the visual cortex and
contrast dependent facilitation, or suppression, of oriented stimuli by their surround-
ing context (Stemmler et al., 1995). Stemmler and associates have suggested that
neural responses corresponding to an unrelated or noisy background can suppress one
another due to their lack of mutual consistency. The responses produced by smooth
object contours are much more consistent, enabling mutual enhancement, and thus
segregating figure and background. However, Li’s model considerably simplifies the
complicated dependencies of contextual facilitation and suppression between stimuli
on relative contrast and orientation.

Though the model presents a pre-attentive mechanism, it also addresses the possible

role of top-down feedback as an additional, though not necessary, element for the
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purpose of contour integration. The possible feedback is not explicitly modelled, but
it is shown how higher levels might control contour processing via projections on the
inhibitory interneurons (negative feedback). A more direct influence of feedback signals
on the excitatory direction sensitive neurons themselves is not considered. The reason
for such a restriction is simplicity of processing in terms of stability, and the ongoing
debate about the actual target neurons of feedback projections.

The model can enhance contour elements of weak contrast, but it does not explain
illusory contours (vanishing edge contrast), as it relies exclusively on V1 elements. It is
argued that, as opposed to contour enhancement, at least V2 and possibly even higher
levels, as well as the feedback from these areae, are necessary to model the perception
of illusory contours. The algorithm is tested on artificial images (line drawings) and

one natural image, where it emphasises contours and reduces background noise.

2.9 Computing Contour Closure

Elder and Zucker (1996) address the problem of computing closed bounding contours.
Their approach is motivated by psychophysical findings that closure seems to be a
very important grouping cue which can override those of regional texture (Fig. 2.4).
Therefore, no restrictions are placed on the type or shape of the bounded structures,
taking into account the often highly inhomogeneous appearance of objects in natural
images.

A multi-scale edge detection algorithm yields information about edge position and
tangent orientation from which a sparsely connected tangent graph is constructed. Each
node is assigned with the tangent information and, according to a Bayesian model of
tangent linking, each arc is labelled with the likelihood that the corresponding tangent
pair forms a contiguous component of the same contour. Each node is connected to

only a small number of neighbours (usually six), according to the most likely pairings.
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The goal of closure grouping is then to find the maximum likelihood cycles for every
tangent in the graph. Thus the grouping task is reduced to a shortest path problem,
which can be solved by means of standard techniques within a reasonable amount of
time.

The performance of the algorithm is tested on natural images. Since no restrictions
on type and shape of the bounded structure have been made, the algorithm is able to
find boundaries of perceptually meaningful, but very heterogeneous, parts of an image.
The result is an improvement over many other approaches that either fail to identify
closed boundaries, since they focus on smoothness only, or, in the case of texture based
segmentation, decompose objects into pieces, due to their inner heterogeneity. As with

other data-driven algorithms, occasional binding errors cannot be avoided.

Frasscan

Figure 2.4: A synthetic image in which human observers perceive two overlapping objects.
Region based grouping, however, would segment six disjoint parts. Since there are only “non-
sense” objects, human segmentation cannot be based on familiarity. Elder and Zucker (1996)
conclude that it is the geometry of the boundaries which guides our perception (illustration

after Elder and Zucker).
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2.10 Spline Representations

Because of their properties of smoothness, splines have been widely used for the repre-
sentation of curvilinear object boundaries in computer aided design (CAD) for decades.
Various types have been developed (Farin, 1988). While in CAD-applications the spline
control points are usually determined by the user, a computer vision system should be
able to find them automatically, based on an initial feature detection procedure, a prob-
lem addressed by Zucker et al. (1988), Cham and Cipolla (1996), Leite and Hancock
(1997) and others.

Closely related forms of curves for detecting closed boundaries are the well-known
“snakes”, which are energy minimising splines that serve as a flexible contour template
(Kass et al., 1988). The “snakes” realise a trade-off between smoothness constraint
and matching of intensity features, such as edge segments. In practice, however, their
initialisation proves difficult and often requires manual intervention. Another obstacle
is the often highly complex topology of the intensity gradient in natural images, which

makes it difficult to detect global contour features.

2.10.1 The Role of Curvature in Computer Vision.

In the context of splines as a means for contour representation, the question of the role
of curvature arises. There is an old debate over the perceptual significance of curvature
in perception. It has been argued (Attneave, 1954) that local extrema of curvature are
the most perceptually important points on object contours, which in turn motivated
Perez de la Blanca and associates to develop a spline-based algorithm for contour
representation in a graph with landmarks at points of maximum local curvature (Perez
de la Blanca et al., 1993). The points of highest curvature are found iteratively.

By contrast, Lowe (1985) argued that the perceptual significance of local extrema of

curvature is commonly overestimated. Firstly, when three-dimensional curves are pro-
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a) b)

Figure 2.5: Two drawings derived from the same picture of a cat. (a) was created by
connecting the points of local maximum curvature with straight lines; (b) by connecting
points between those of maximum curvature (leaving line terminations at the same place).
Both drawings are perceptually similar and easily recognisable, though the points in (b) are
as far removed from those in (a) as possible, leading to the conclusion that the points of

maximum curvature are not necessarily more perceptually significant (illustration from Lowe

1985]).

jected onto a two-dimensional image, the curvature maxima are not invariant, unlike
curvature inflection points, discontinuities in tangent orientation and curve termina-
tions. Secondly, it can be shown (Fig. 2.5) that in an “abstract” line drawing created
from a picture by selecting certain points and connecting them with straight lines, the
content is equally well represented, whether or not the points are curvature extrema
or placed elsewhere on the contour.

Parent and Zucker pointed out that local ambiguities in contour detection can be
resolved by means of curvature consistency, even though the measurement of curvature
is more prone to error than that of local orientation (Parent and Zucker, 1989). The
consistency of curvature seems to be more relevant than the exact value at specific
locations (Zucker et al., 1989).

Kriiger introduced a novel kind of wavelet-type filter as a generalisation of Gabor fil-

ters (Kriiger and Peters, 1997). The sinusoidal part of the filter kernel and its Gaussian
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envelope are both bent parabolically, rendering it sensitive to curved stimuli. Because
of their curved shape, they have been given the humorous name “banana wavelets”.
The features are organised in a metric space which contains the normal Gabor
wavelets as the subspace of vanishing curvature. By means of the metric, a clustering
of features is performed in order to extract the fiducial features from a training set
of images showing examples of a certain class of objects (Kriiger and Liidtke, 1998).
The result is a symbolic representation of the object class (Fig.2.6¢). However, the
curvature tuning of the wavelets is rather broad (Kriiger personal communication),

allowing only a coarse measurement of curvature.

a) b) C)

Figure 2.6: a) A Banana wavelet. b) The symbolic analogue, a curved line segment. c¢) A

symbolic representation of the object class “face”, from Kriiger and Lidtke (1998).

2.10.2 Token Based Grouping With Splines

Dolan and Riseman (1992) developed an algorithm for perceptual grouping of tokens
such as straight line segments, corners, inflections, etc., represented by conic splines,
which are curves in the form of conic sections, including hyperbolae and ellipses, in
addition to the usual parabolae (Farin, 1988). The contour segments are assigned to
nodes in a so-called link graph, and the arcs are labelled with the result of a binary com-

patibility relation among neighbouring tokens. The compatibility depends on distance,
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difference of tangent orientation at the end points of tokens (angular compatibility),
and the degree of overlap among tokens.

In an iterative procedure, tokens of sufficient compatibility can be replaced by a
larger token, in such a way that the information about the constituting smaller tokens is
not erased, resulting in a hierarchical contour representation across different scales that
can be traced back to the lowest level. The parameters determining the compatibility
function change with respect to scale, preserving high frequency structures (such as
corners) on the fine scale, and reducing noisy fluctuations on larger scales by more

rigorous smoothing.

2.11 Conclusion

After introducing the basic concepts of population coding, a number of perceptual
grouping techniques have been reviewed. Though the two topics have thus far been
dealt with separately, some relations between population coding and perceptual organ-
isation have already become apparent. For instance, the population vector model of
Gilbert and Wiesel (1990) investigates the influence of horizontal connections between
local populations on the encoding of stimulus orientation. This interpretation of per-
ceptual organisation as a combination of local population codes will provide the link
between population coding and perceptual grouping in the thesis.

In many grouping algorithms the notion of certainty is neither made explicit, nor
quantitatively represented. Confidence in the presence of a particular intensity feature
is commonly identified with the response magnitude of a corresponding detector. In
the case of edge detection, certainty of an edge orientation estimate is therefore closely
linked with edge contrast (magnitude of the intensity gradient). Guy and Medioni’s
algorithm is the only reviewed method that treats certainty as a contrast independent

quantity, though only at the grouping level.
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Throughout this thesis, certainty will be considered at the level of local feature
extraction. It will be demonstrated that, in the context of distributed coding, certainty
can play a more distinct role when defined in terms of the spread of activity across the
feature detector ensemble. For unimodal activity profiles, a measurement (in this case a
local orientation estimate) is the first moment /mean of the ensemble activities, and the
certainty of that measurement can be associated with the second moment/variance or
a function thereof. A generalisation of this concept to multimodal response profiles will
be provided within a probabilistic population coding scheme that decodes a mixture
distribution from ensemble activities.

The combination of the overall strength of detector responses and the corresponding
certainty can help level out the local variations of responses on contours and render

local feature detection more robust against noise.
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Chapter 3

Population Vector Coding

This chapter addresses the problem of local orientation selection (tangent field estima-
tion). The intention is to demonstrate the practical applicability of population vector
coding for this purpose and to relate computer vision experiments to the theoretical
results in the computational neuroscience literature, as well as to compare the per-
formance of the population vector to other methods of tangent field extraction and
orientation estimation.

Following the work of Heitger, von der Heydt and associates (Heitger et al., 1992)
and Lades et. al (1993), Gabor filters are employed as a simple mathematical model of
orientation sensitive cells in the cortical hypercolumn. Adopting the biological concept
of population vector decoding (Georgopoulos et al., 1986; Vogels, 1990), a continuous
orientation estimate is extracted from the discrete set of responses in the Gabor filter
bank by performing vectorial combination of the broadly orientation-tuned filter out-
puts. The result is a population vector, the orientation of which gives a precise and
robust estimate of the local contour orientation. The accuracy and noise robustness
of orientation measurement and contour detection is also investigated, as well as the
relationship between the certainty of the orientation estimate and the shape of the

response profile (ensemble activity) of the filter bank. Comparison with alternative
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methods of orientation estimation reveals that the tangent fields resulting from the
population vector technique provide a more perceptually meaningful representation of

contour direction and shading flow.

3.1 Properties of Gabor filters

Gabor Filters have been proposed as a model of orientation selective cells (“simple
cells”) in the striate cortex (Marcelja, 1980; Daugman, 1985) and have found numer-
ous applications in computer vision, including edge detection (Shustorovich, 1994),
detection of line orientation and width (Buse et al., 1996), texture analysis and object
recognition (Lades et al., 1993).

In the above-mentioned analogy to biological information processing, the real (co-
sine) part of a complex Gabor filter corresponds to simple cells of even symmetry and

the imaginary (sine), to simple cells of odd symmetry.

3.1.1 Filter Kernels

A general complex Gabor filter of wavelength \ and preferred orientation 6 is defined

as

. 1 1 [#2 ¢ o ,
g(x,y, 0, )\) = Wexp <—2—)\2 [g + 0__2:|> {exp (TZC Z> — exp (—27T0'w)

G 7 " ~———~—"—" mean-correction
Gaussian envelope sinusoid
(3.1)

where  and g are the coordinates of an image point in the coordinate system rotated

by the angle 6:

T =wxcosf + ysinf and y= —xsinf +ycosh.
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In (3.1), 0, and o, are the width parameters of the Gaussian envelope in units of the

wavelength, defined by the scale invariant expressions

The index w stands for “wave”, since o, determines the size of the envelope in the
direction of the sinusoidal oscillation, and o, (as in "edge”) denotes the width in the
preferred orientation of the filter. Following Lades (Lades et al., 1993), the term
exp(—27c?2) in equation (3.1) is subtracted, in order to obtain a filter of zero mean,
ensuring independence of mean intensity. Heitger and associates (Heitger et al., 1992)
have proposed frequency modulation to achieve independence of mean intensity, but
the computation of the kernels then becomes more complicated.

Furthermore, it is useful to consider the modulus of the convolution of an input
image I with the complex Gabor filter G, i.e., the Pythagorean sum of even-symmetric

and odd-symmetric filter responses, which will be denoted by G for simplicity:

G=1G=«I|.

The square of G is often referred to as local energy (Adelson and Bergen, 1985; Mor-
rone and Owens, 1987). The properties of Gabor response moduli resemble those of
“complex cells”, since they do not distinguish contrast polarity (edges vs. lines) and
are robust against small stimulus translations within the receptive field (Heitger et al.,
1992; Lades et al., 1993; Heitger et al., 1998). The robustness of the response modulus
has been successfully utilised in artificial face and object recognition, e.g., by Lades et
al. (1993).

Throughout this chapter, only Gabor moduli will be considered. Additionally, all

filters will have radial symmetry, i.e., o./0, = 1.
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3.1.2 Orientation Tuning of Gabor Filters

The essential element in the analysis of a population code is the tuning curve, in this
case the orientation tuning curve, which describes the relation between filter response
and the orientation of the local edge/line structure. The quantity that characterises
the shape of the tuning curve is the tuning half width, w (i.e., the half-width at half
height of the tuning curve), and it is important to know how w depends on the filter
parameters.

Like simple and complex cells in striate cortex, Gabor filters have rather broad
orientation tuning, which depends on an essential control parameter for the shape of
the filter kernels, the width of the Gaussian envelope, denoted by o.. Though, in
principle, the filter mask extends across the entire image, a value of three times o, can
be considered the effective radius of the “receptive field” (radius of the filter mask),
since the Gaussian envelope virtually vanishes at greater distances from the centre.

To determine the tuning curve and to examine the influence of the filter envelope
width on the tuning width, synthetic images of straight lines were used as test stimuli.
The line thickness in all experiments was one pixel, and orientations ranged from 0°
to 170° at 10° intervals. Figure 3.1 shows the tuning curves for three filters with a
preferred orientation v» = 90°, a wavelength A = 8 pixels, and envelope widths o, = 0.6
(4.8 pixels), 1.0 (8 pixels) and 2.0 (16 pixels), respectively. The estimated half-widths of
the tuning curves are w = 17.2°, 9.7° and 5.2°. The first value is comparable to typical
orientation tuning half-widths of striate cortical cells (Vogels, 1990). Interestingly,
as will be demonstrated later, this proves to be the most suitable tuning width for
orientation measurement.

The responses in Figure 3.1 are fitted with a model orientation tuning function.
Here the von Mises function (Mardia, 1972) is used, since it is appropriate to angular

variables and consistent with biological studies (Swindale, 1998). The normalised form
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Figure 3.1: Normalised empirical tuning curve for the moduli of three Gabor filters (A = 8

pixels, vertical orientation). The “stimuli” are single straight lines in 256 x 256 grey-scale

images. Response magnitude is averaged over several points on the line, avoiding the region

close to the end points. The half-widths are w = 17.2°, 9.7° and 5.2°. Responses are fitted

with von Mises functions (see equation 3.2).

of the tuning function is:

FO;0) = (F=te) exes PO — () + £, (3:2)

where 9 is the preferred orientation of the filter, s is the so-called concentration pa-
rameter, playing a similar role as the inverse of the width o of a Gaussian, and the
offset fy is a “mean activity”, modelling the effect of discretisation noise.

The function e#<s2(0-¥) i5 always greater than zero. To ensure that f, is the total
offset along the ordinate, the term (1 — fy)/(e*® — 1) is subtracted. Consequently, the
tuning function has values in the range [fy, 1]. Thus &, ¢ and f; serve as independent
control parameters of the normalised model tuning function.

In Figure 3.2 the tuning width is plotted as a function of the kernel width o.. The

two quantities are inversely proportional to one another due to the general uncertainty
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Figure 3.2: Log-log-plot of the tuning half-width as a function of the kernel width illustrates

the uncertainty relation between tuning width and spatial width: w o< (o¢) 1.

relation between orientational bandwidth (i.e., the tuning width w) and spatial width
(0¢). In fact, Gabor filters have been shown to minimise the quantity w o, (Daugman,
1985).

The main conclusion to be drawn is that Gabor filter banks provide rather coarse
estimates of feature orientation, unless the full range of orientations is sampled with
a large number of filters, which would obviously be highly inefficient. In the next
section it will be demonstrated that, when population vector coding is used to combine
the responses of the filter bank, only a small number of filters are required in order
to achieve an accuracy of orientation estimation considerably higher than that of an

individual filter.
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3.2 Local Orientation Estimation by Population Vec-
tor Decoding

The concept of a population vector was originally introduced by Georgopoulos and
colleagues to describe the representation of limb movements in the motor cortex (Geor-
gopoulos et al., 1986). Adapting the authors’ definition to a bank of n Gabor filters,
the population vector is computed as follows. The filter bank consists of pairs of filters
with even symmetry (cosine part) and odd symmetry (sine part), also called quadrature
pairs. Consider a wavelength A. Let G(xz,y;1;, A) be the response modulus (“energy”)
of the quadrature pair of Gabor filters of orientation ¢;. Let & = (cos; ,sin1;)7 be

the unit vector in the direction ;. Then the population vector p'is defined as

n
Play) = G,y \) &, (3.3)
i=1
which means that each filter is represented by a two-dimensional component vector.
The vector orientation and magnitude are given by the preferred orientation ; and
the response magnitude (modulus) G(z,y; ;) of the filter at location (z,y), and the
population vector is the sum of the n filter vectors.

However, equation (3.3) cannot directly be applied, since the filters are only sensi-
tive to orientation, rather than direction; i.e., there is a 180°-ambiguity. Consequently,
the population vector is computed using the scheme in Figure 3.4. The orientation
variable is decoded by determining the angle of the population vector 6,,,, which is

given by:

0,00 (2, y) = arctan (ﬁigi z;) | (3.4)

The magnitude of the population vector, ||p(x,y)||, is related to the response “energy”
of the filter bank at position (z,y). If evaluated at contour locations, i.e., local maxima

of ||p]], 6,0p gives an estimate of the local tangent angle. Theoretically, the coding
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Figure 3.3: General scheme for population coding with a bank of Gabor filters. Each filter

local tangent angle

is represented by a component vector. The vector orientation and magnitude are given by
the preferred orientation and the response magnitude of the filter. The population vector is
the vector sum of the components. Its orientation gives an estimate of the local orientation
at the considered position. The magnitude characterises the overall response strength of the

ensemble.

error can be made as small as desired by applying a larger number of filters. However,
computational cost and discretisation errors in digital images limit the optimal number

of filters, in practice.
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Figure 3.4: Vector coding of orientations. Orientations are restricted to the range 0° — 180°.
Therefore, the vector components are computed with respect to a symmetry axis, in this
case the orientation of maximum response. Components outside the £90° range around the
axis have to be “flipped” back into that range to enforce a symmetrical arrangement. A
component perpendicular to the symmetry axis (i.e., on the dashed line) would effectively

cancel itself out and can thus be ignored.

3.3 Matched Filtering and the Extraction of Ori-
ented Energy

Steerable filters have been introduced by Freeman and Adelson (1991) to reduce the
computational cost of contour representation. Instead of applying a large number of
filters to cover the full range of orientations, only a small set of basis filters is used,
from which the response of a filter of arbitrary orientation can be synthesised. The
approach is feasible for Gaussian derivatives, but Gabor filters are known to be only
approzimately steerable (Shustorovich, 1994).

In this section, it is shown how the Gabor filter bank can be made steerable, in the
sense that the orientational energy can be approximated by means of the magnitude
of the population vector. To accomplish this, it is necessary to move beyond the linear

vector population coding and to make explicit use of the orientation tuning curve.
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Originally, the population vector was used to extract a vectorial quantity, e.g., the
position 7 of a limb in three-dimensional space (Georgopoulos et al., 1986). Here the
population vector p’ can directly represent the position vector, i.e.,

—

p=27.

The population vector and the encoded position vector are expected to be equal in
direction and magnitude. The response, r;, of a single direction encoding motor neuron
is modelled as a projection of the population vector onto the corresponding unit vector:
ri=p-€.

The situation with contour representation using Gabor filters is different. There are
two separate quantities, orientation and filter response energy, to be merged into a
contour representing vector. Its orientation should be equal to the local characteristic
orientation of the contour (tangent angle), which is, of course, only well defined if there
is unimodal anisotropy in the neighbourhood of the considered location. The degree of
anisotropy can, however, be judged from the distribution of filter responses by means
of a reliability criterion of the orientation measurement derived in section 3.5.

The magnitude of the contour representing vector shall here be defined as the
response of the Gabor filter tuned to the very tangent orientation, 6., of the contour,
Gmaz- In the literature on steerable filters, this is usually referred to as the “matched

filter” (Perona, 1992). The contour vector at a particular point (z,y) is then

where €, is the unit vector in the direction of the contour. G,,.. is the orientational
energy and therefore a measure of the contour contrast. The question is how the

contour vector can be decoded from the filter “population”.
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The orientation can easily be obtained from equation (3.4). However, as Gabor
filters (and visual cortical neurons) have non-cosinusoidal orientation tuning (section
3.1.2, (Swindale, 1998)), the relationship between the magnitudes of the contour vec-
tor and the population vector is more complicated than in Georgopoulos’ approach
(Georgopoulos et al., 1986). The magnitude of the population vector does not equal
the orientational energy, as one would expect in linear vector coding, since the filter
responses cannot be described as dot-products between the contour vector and the
filter component vector. In order to derive the oriented energy, the population vector
has to be modelled by means of the tuning curves.

The response of a filter of orientation ¢ to an input image with local contour
orientation 6, at (x,y) can be described by G ., and the normalised tuning functions

f given by equation (3.2):

Gz, Y39, A) = Gmao (2,43 \) f (03 ¥) - (3:5)
Assuming that the population angle 6,,, (the measured orientation) is close to the true
contour orientation (6. ~ 6,,,), a model population vector 7 is calculated from the

normalised tuning functions:

m = Z f(epop; wz)é’z . (36)
i=1
Inserting the response model (3.5) into the definition of the population vector (3.3)

and comparing the result with (3.6) yields

=y

Gmam == —| . (37)

Since G4, and the tuning properties are known, steerability has been achieved in those

S

image regions where the degree of anisotropy is high enough, i.e., where the response
profile of the filter outputs closely resembles the tuning curve. The filter response for

any orientation can thus be calculated from equation 3.5.
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3.4 Performance of Orientation Estimation

In this section, the accuracy of the orientation estimate is investigated, as well as its
dependence on tuning width and noise level. The algorithm is tested on artificial im-
ages using filter-banks of different sizes. The test images and the filter wavelength
are the same as those previously described in Section 3.1.2. The filter banks consist
of 8, 16 and 32 Gabor filters. Figure 3.5 shows the root mean square (rms) error of
the population angle (36,0,)rms as a function of the tuning half-width of the applied
Gabor filters. The error increases when, given the number of filters, the tuning width
is too small to guarantee sufficient filter overlap to cover the entire range of 180 de-
grees. In the experiments, this limit is not reached with 32 filters. The error seems
to continuously decrease further for decreasing tuning width. However, according to
the corresponding uncertainty relation, the tuning width decreases at the expense of
an increasing receptive field size and, consequently, a lower spatial resolution.

For large tuning widths the envelope parameter is so small that the entire receptive
field consists of only a few pixels, and discretisation errors become noticeable.

In conclusion, eight filters can be considered sufficient for practical purposes, since
the computational cost is significantly lower and the precision only slightly smaller
than with 16 filters.

Compared to the tuning width of a single Gabor filter, the population vector esti-
mate of stimulus orientation is very accurate. The resulting rms-deviation of the angle
of the population vector from the ground truth value of the stimulus orientation is only
(00p0p) rms = 1°, which should be compared with the half-width of the tuning curve for
the most suitable filter (w & 17°). The error of the population coded orientation esti-
mate consists of two components: the coding error due to the limited number of filters
and the discretisation error caused by the pixelation of digital images. Moreover, the

measured rms-error is consistent with simulations by Vogels (1990).
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Figure 3.5: Dependence of the rms-error of orientation of the population vector on the tuning
half-width for 8, 16 and 32 filters. The wavelength is A = 8 pixels. The rms-error reaches a
minimum at a tuning width similar to that of cells in striate cortex. Note that the abscissa
starts with a tuning half-width of w = 5° rather than w = 0°, due to the inverse proportional
relation between filter size o, and tuning width w, which would require an infinite filter mask
to obtain w = 0°. The practical lower bound for the tuning width is determined by the upper
bound for the mask size, which itself depends on the spatial extent of the structures to be

detected in the input image.
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3.4.1 Noise robustness

In another experiment, sensitivity to additive Gaussian noise was investigated. The-
oretically, there are two essential weaknesses of the population vector method in the
presence of noise: the problem of noise contributions from unstimulated units and the
potentially small ratio of tuning width to sensor array extent (Snippe, 1996). How-
ever, in the context of orientation estimation with a filter bank, neither are of much
concern. The range of orientations [0, 7| (extent of the sensor array) is fixed and can
easily be covered by a relatively small number of filters. Moreover, unlike with a linear
variable, the circular topology of the sensor array implies that tuning curves located
at the ends of the interval [0, 7] do overlap. Consequently, there are few unresponsive
units, unless a small tuning width is chosen, which is disadvantageous even without
noise (see section 3.4).

Figure 3.6 shows the rms-error as a function of the noise variance for different
numbers of filters (8,16 and 32). The dependence is roughly linear for all three filter

banks, with no significant difference in noise sensitivity.

3.4.2 Comparison to Other Methods in the Literature

Buse and associates (Buse et al., 1996) have developed a method for simultaneous mea-
surement of orientation and length of straight lines. Using the real parts (cosine part)
of a bank of Gabor filters, they compute an orientation estimate from an interpolation
of filter responses at the line end points. Since they use 256 x 256 grey-scale images of
single lines, their data are directly comparable to the results obtained by population
coding.

Since Buse and associates do not report the number of filters involved, their results
have to be compared with filter banks of different sizes. It seems likely, however, that a

good interpolation result requires a number of filters similar to that used for population
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Figure 3.6: The rms-error as a function of the noise variance for additive Gaussian noise
using 8, 16 and 32 filters. The method seems to be quite robust. The filter banks show no

significant difference in noise sensitivity.

coding. Unfortunately, the authors do not present a detailed statistical analysis of their
data. No root mean square error nor a similar measure of the accuracy of the orientation
measurement is given, and the limited amount of data given does not allow a reliable
calculation of any mean error.

Because of the limited data given by Buse and Caelli, an exact assessment of the
accuracy in comparison with population vector coding is difficult. An essential disad-
vantage of their algorithm is the restriction to straight lines. The population coding
method can measure local tangent orientation at any point on a curve, provided that
the radius of curvature is larger than the “receptive field” size of the filter. On the
other hand, their method also performs a length measurement by means of different

filter frequencies.
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3.5 The Uncertainty of Orientation Information

The response profile of the filter bank, i.e., the angular distribution of filter outputs
at a given point in the input image, contains valuable information of the local contour
structure. Zemel and colleagues proposed to represent certainty of local information in
terms of the sum of responses (Zemel et al., 1998). In the notation used in this thesis,

C(x,y)zzGi(w,y)/ (ZG) , (3.8)

ar

where the denominator is some global maximum of the summed responses. However,
this measure only depends on response energy (contour contrast) and cannot discrim-
inate between low contrast contours and intense noise. Also, points of multimodal
anisotropy, such as corners (points of high curvature) and junctions, can produce high
responses in the filter bank, though local tangent orientation is ill-defined.

It is argued in this thesis that the “sharpness” of the response profile is more
suitable to characterise the reliability of the local orientation estimate, as it is contrast
independent. Thus contour contrast and certainty are treated as two separate pieces
of information. In fact, there is evidence that perceived contrast and the appearance
of contours is not so closely linked as is commonly assumed (Hess et al., 1998).

Figure 3.7 shows the response profile of the filter bank at a number of different
points in a natural image. Despite the fact that the response profiles are normalised,
the quality of the edge (degree of anisotropy), and thus the expected reliability of
orientation measurement, is well-reflected in the width of the profile. Accordingly,
certainty should be measured in terms of the angular concentration of the response
energy around the population vector orientation. At a contour, the response energy
of the filter bank can be assumed to be clustered around the contour orientation.
Therefore the average of the cosines of orientation differences is used, weighted by the

responses:
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Figure 3.7: Normalised response profiles of the filter bank (16 filters, A\ = 8 pixels, o, =
0.6 x A) at different points in a natural image (a). Note how the distribution of filter responses
reflects the quality of the edge. The width of the response profile allows the distinction of
noisy regions from weak contours, independent of their contrast level. (b) The half-widths at
well pronounced edges (points 1, 2) are very similar to the tuning width of the filter obtained
from synthetic line images. Compare w = 17.2° with w; = 19.8°, wy = 21.5°. (c) Points
with less intensity gradient, such as (6) yield a wider profile. Compare wg = 24.2° with
ws = 21.3°. (d) An even wider profile is obtained in regions with high curvature, such as
point (3); wg = 52.9°. In locations without any orientational structure (point 4), the response

energy is spread irregularly over the entire range of orientations.

69



> i1 Gi(w,y) cos [§ — |5 — Ay |
C =
o >, Gilo.v)
sz = |wz - 9pop| ) (39)

where 1); is the filter 