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AbstratThis dissertation presents a novel, biologially inspired approah to edge detetion andpereptual organisation, based on a synthesis of the well-known Gabor �lters with theonept of population oding from omputational neurosiene.A Gabor �lter bank is regarded as an ensemble of orientation sensitive units thatenode loal ontour orientation in a distributed fashion, somewhat akin to the \simpleells" in the mammalian primary visual ortex. From the �lter ensemble, a probabilitydensity funtion (pdf) of loal ontour orientation is deoded by taking into aountthe orientation tuning funtion of the �lters and assuming a von Mises mixture modelfor the ontour angle. The parameters of the pdf are estimated using an expetationmaximisation (EM) algorithm.Whereas onventional edge detetion shemes tend to redue the set of �lter re-sponses in eah pixel to a single quantity, e.g. a loal tangent angle, this dissertationtakes a di�erent approah, aiming to maintain a distributed representation. The ben-e�ts of the resulting analytially derived probabilisti population deoding algorithmis that points with multiple orientations, suh as orner points or juntions, an be a-ommodated within the same framework by means of multimodal probability densities.Another important aspet of distributed oding is the notion of ertainty, hara-terised by the spread of ativity aross the �lter bank or the entropy of the orientationpdf. It is demonstrated that the availability of loal feature ertainty prior to perep-tual organisation is bene�ial for feature loalisation. Seleting features by means oftheir ertainty, rather than by thresholding �lter responses, renders the feature extra-tion ontrast independent and more robust against noise.In the subsequent grouping step, small urved ontour segments are generatedthrough spline interpolation between pairs of loally extrated tangent elements. Thegrouping proess involves a revision of the loal orientation measurements, ontrolled2



by their ertainty values and the overall urvature of the onneting spline. This is pos-sible only beause ertainty has beome a measured quantity determined at the stageof loal feature extration. In most other grouping shemes, ertainty is either notonsidered, or, as in probabilisti relaxation labeling, inferred after feature extrationduring the optimisation of probability density parameters representing loal features.While not laiming to present a model of biologial visual proessing, this thesisprovides some new insight into the initial problems that both arti�ial and neuralvisual systems are onfronted with: the extration and representation of loal featuresfollowing sensory aquisition, and the subsequent grouping of suh loally extratedfeatures into larger, more omplex entities.
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Chapter 1
Introdution
The �rst step after data aquisition in many omputer vision tasks is the extration ofloal image features, suh as edge orientation, texture, olour or shading ow. Theirdetetion is notoriously ambiguous and error prone due to sensor noise and digitisation.Furthermore, they usually are strongly a�eted by lutter or hange in illumination.Any eÆient general purpose visual system should therefore represent the inherentunertainty and ambiguity of sensory information at an early level, in order to avoidpremature ommitment to unreliable information. Loal unertainties should be re-solved at later stages by relating loal information to its ontext. This is learly anon-trivial task sine the number of possible ombinations of features an easily leadto a \ombinatorial explosion", where the searh spae beomes intratable. Thus twofundamental questions arise:� How an loal information be organised into robust global strutures?� How should loal information be represented in order to support global organi-sation?The objetive of this thesis is to approah these omplex problems from a biologiallyinspired point of view and to provide suggestions for overoming them. Essentially19



the novel ontributions are the establishment of a theoretial link between the notionof population oding (a ubiquitous priniple of distributed information representationin the brain) and the tehnial problem of objet boundary detetion, as well as aresultant algorithm that ombines the detetion of edges, orners and juntions into auni�ed probabilisti framework.1.1 Pereptual Organisation and GestaltPsyhologyThe idea that pereption is a holisti proess in whih parts are linked aording totheir ontextual relations was formulated during the 1920s by Wertheimer, Ko�ka,K�ohler and other psyhologists (Ellis, 1967) as part of \Gestalt" theory, whereby theyestablished a number of \laws" of pereption (see Figure 1.1) based on psyhophysialinvestigations sine the late 19th entury.The \Gestalt laws" are priniples of pereptual organisation, a phenomenologialdesription of the inbuilt bias in human vision by whih loal image elements aregrouped and ambiguities are resolved. For instane, in Figure 1.1 (d) the sene isinterpreted as two overlapping shapes with smooth boundaries. The alternative inter-pretation, two adjaent objets with more ompliated outlines, is rejeted despite bothinterpretations being a priori equally probable. In our natural environment, we areusually unaware of the ative nature of our visual sense. However, speially designedarti�ial images, suh as those in Figures 1.2 and 1.1, reveal that ontour pereptionis more than a merely passive reording of sensory input (Kanizsa, 1979). It involvesthe binding of loal features into pereptually salient groups (\pop-out"), ompletionof disrupted ontours (\�lling-in") and, as a result, segmentation. The optial illusions(Fig. 1.2) also illustrate that the pereption of objet outlines is not based on loal20



edge ontrast alone, or else one would not see illusory or \amodal" ontours (Kanizsa,1979) where no atual intensity gradient (edge ontrast) is present.While it is often assumed that ompletion of large-sale gaps aused by oludingobjets and \�lling-in" of loal ontour disruptions resulting from low signal-to-noise-ratio an be aomplished within the same omputational framework, it is importantto distinguish between the two, sine they atually require fundamentally di�erentproessing strategies (August and Zuker, 2000). Closing the large gaps in ontoursfragmented by an oluding objet may even involve representing the oluder, requir-ing a more global degree of pereptual grouping.This thesis will fous on short-range \�lling-in" and ontour grouping based on theGestalt priniples of \good ontinuation" and the losely related \good form" (Fig. 1.1() and (d)). Though Gestalt psyhology provides a merely desriptive theory with nodiret lues as to how the omputer sientist might inorporate pereptual organisationinto an arti�ial vision system, priniples suh as \good ontinuation" an be expressedin geometrial terms (Kellman and Shipley, 1991), as will be explained in the literaturereview. Additional insight is provided by reent biologial studies that have begun toshed light on the underlying physiologial mehanisms of pereptual organisation atthe single ell level.1.2 Biologial Fundamentals of Pereptual Organi-sation in Early VisionIn visual neurobiology, the onept of loal feature detetors as elements of ontourpereption applies only to a simple isolated stimulus, suh as an oriented bar. Theresponse behaviour of so-alled \simple ells" in striate ortex (V1), disovered byHubel and Wiesel (1962), has been found to be less stritly linear than was origi-21



d) Good Formc) Good Continuation

b) Similaritya) Proximity

Figure 1.1: Examples of Gestalt priniples. (a) Dot patterns are grouped with respetto proximity. (b) If the distane between dots is onstant, elements are grouped with re-spet to other ues{in this ase ontrast. () The linear pattern tends to be interpreted astwo smooth, interseting urves rather than adjaent urves with tangential disontinuities.(d) The upper right interpretation{two adjaent forms with ompliated outlines{is rejetedin favour of the lower{two overlapping forms with simple and onsistent boundaries{thoughboth interpretations are a priori equally probable. Examples () and (d) are losely related,and both reveal a pereptual bias in favour of overlapping, rather than adjaent, strutures.
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c) d)b)a)Figure 1.2: Examples of illusory ontours. (a) Ehrenstein-illusion. In the entre a irlean be seen whih appears brighter than the white of the bakground. (b) Modi�ed Kanizsa-triangle. Instead of three \pamen" and three line segments, a triangular shaped objet seemsto olude three blak disks and a linear struture in the middle. Again the objet in the\foreground" appears brighter. () Gratings of abutting lines reate the illusion of a urvedsmooth edge. (d) A bright white bar seems to overlap two disks and a irle. As in (a) and(b), there is no atual di�erene in brightness in the image.nally assumed. For instane, neural �ring rates saturate as stimulus ontrast inreases,a proess whih an be understood as a normalisation of neural responses within ahyperolumn (Heeger et al., 1996). Also, when stimuli of greater omplexity are pre-sented that exeed the size of the reeptive �eld of an individual ell, neighbouring ellsrespond as a onsequene of their retinotopi arrangement.Due to various lateral onnetions between ells, di�erent parts of a omplex stimu-lus at as ontextual surround for one another, and the priniple of linear superpositionis invalidated. The surrounding ontext an either failitate or suppress neural re-sponses, depending on relative ontrast and orientation between entre and surround(Polat et al., 1998), and an even hange the preferred orientation (Gilbert and Wiesel,1990), perhaps explaining the Z�ollner/\tilt" illusion (Fig. 2.2 in the next hapter).Using stimuli suh as those in Figure 1.2, neurons at early stages (V1 and V2) ofvisual proessing have been found that respond to illusory ontours (von der Heydt23



and Peterhans, 1989a; von der Heydt and Peterhans, 1989b; Grosof et al., 1993). Theonlusion of these experiments is that the pereption of real and illusory ontours isperformed in the same area of the visual ortex at a low funtional level.In summary, ortial ontour proessing is very intriate and, despite the vastamount of known details, a onise physiologial theory of pereptual grouping remainselusive.1.3 Pereptual Organisation in Computer VisionPereptual organization in human and animal vision is a onsequene of an adaptationto the natural environment. Erroneous pereption of arti�ial images, suh as theZ�ollner illusion (Figure 2.2), is the prie for enhaned performane in the proessing ofnatural images (a mere subset of all possible images), whih have partiular statistialproperties (Field, 1987; Kr�uger, 1998) that an be exploited in order to overome theunertainties of loal image features.Suh features, whih form the basis of natural and arti�ial vision, often have a smallsignal-to-noise-ratio, espeially in \luttered senes", where objet-bakground ontrastis low. Nonetheless animals and humans ope amazingly well with suh loal distortionsand their reognition apabilities are barely a�eted. It is diÆult to imagine how anarti�ial system ould yield omparable performane without inorporating some kindof tehnial equivalent to the Gestalt laws.To overome loal distortions in mahine vision, numerous authors (e.g., Lowe, 1985;Sha'ashua and Ullman, 1988; Heitger and von der Heydt, 1993; Sarkar and Boyer, 1994;Elder and Zuker, 1996; Guy and Medioni, 1996) have therefore proposed inorporat-ing ontextual relations among loal features by ombining responses of neighbouringfeature detetors into a globalised and onsequently more robust proessing.
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1.4 Biologial Plausibility of Computer Vision Al-gorithms\Biologial plausibility" will here refer to the drawing of funtional analogies betweeninformation proessing in biologial and tehnial systems, not to biologial modelling.In attempting to implement a biologially plausible mahine vision system, theresearher ombines methodologies from siene and engineering, sine the goal is toidentify fundamental priniples of pereption relevant for both natural and arti�ialvision, and to separate them from omputationally irrelevant physiologial details.The funtional arhiteture of the visual ortex is, basially, determined by twofators: the statistis of the sensory input and the onstraints imposed by the physio-hemial properties of ortial tissue. For instane, neurons in the entral nervoussystem are mortal without the possibility of re-growth. They are also very noisy and,as a result of membrane apaities, have large time onstants ompared to eletroniomponents. (The time sale of neural proessing is within the range of milliseonds,whereas in eletronis it is within nanoseonds.) Consequently, neural informationproessing must be highly parallel and robust against the failure of single neurons. Infat, a gradual derease in performane, due to loss of neurons or signal distortions, hasbeen identi�ed as a key feature of distributed neural proessing and is often referredto as the priniple of graeful degradation (Rumelhart et al., 1986).In omputer vision, only those aspets of ortial information proessing that area onsequene of adaptation to the struture of visual input (and the struture of theworld), not physio-hemial onstraints of biologial neurons, need to inuene teh-nial implementation. It is argued in this thesis that the distributed nature of neuralproessing is not simply a neessary ompensation for the shortomings of individualneurons, but also an eÆient oding strategy for loal feature extration in general.Throughout this thesis, feature extration will be performed by means of a bank25



of Gabor �lters, learly a onsiderable abstration from the ensembles of \simple"and \omplex" ells in mammalian visual hyperolumns. No attempt will be madeto apture the intriaies of intra-olumnar onnetivity in real ortial hyperolumns.Instead, a purely linear model of loal feature extration will be used that auratelydesribes the response behaviour of a linear Gabor �lter bank.1.5 Distributed Coding: a Paradigm for Loal Fea-ture Extration in Mahine Vision?As previously mentioned, pereptual organisation of loal information requires someexibility in the representation of loally extrated features in order to avoid prematureommitments at an early stage. A prinipal intention of this thesis is to demonstratethat distributed oding, a onept now generally aepted in neurosiene (Georgopou-los et al., 1986; Vogels, 1990; Young and Yamane, 1992; Wilson and MNaughton, 1993;Lehky and Sejnowski, 1990), is perfetly suited for this purpose, and an also be ap-plied in arti�ial visual systems (in this ase, to a bank of oriented �lters). Neither theneural ensemble in a hyperolumn, nor the �lter bank, represent the loal orientationof a stimulus through the ativity of a single element, but rather through an ativitypro�le of the population as a whole.Even the unresponsive units haraterise the stimulus, in the sense that the on-entration of ativity in the population (loosely speaking the ratio of responsive tounresponsive units) desribes the ertainty of the enoded information. Expressed inmore preise mathematial terms, a quantitative desription of ertainty yields a valu-able additional piee of information for the seletion of �duial features, as will bedemonstrated. It will also be shown that, in a pereptual grouping framework, theertainty of a loal edge feature an be used to ontrol the degree to whih it is allowed26



to be modi�ed, during an updating step, in order to inrease mutual onsisteny withneighbouring features.1.6 Outline of the ThesisChapter 2 provides an overview of relevant literature on population oding and per-eptual grouping fousing on edge/line ontinuation.In Chapter 3, the population vetor onept is applied to the problem of edge andline detetion with Gabor �lters. Also, the notion of ertainty in population odingis explained and its role in the deision about the presene or absene of features isdisussed.The population vetor algorithm is extended, in Chapter 4, to a probabilisti pop-ulation oding approah. Edge detetion is performed within a statistial frameworkbased on an analytial model of the �lter responses. By means of a version of the EM-algorithm (Dempster et al., 1977), a parametri model probability density funtion ofloal edge orientation is deoded from the Gabor �lter bank.In Chapter 5, the loal population odes of tangent orientation, derived in Chapter4, are ombined in order to determine the parameters of splines interpolating betweenpairs of feature points, thus establishing a form of pereptual organisation in the senseof the Gestalt priniple of \good ontinuation".Chapter 6 summarises the results of the thesis and provides suggestions for futurework.
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Chapter 2
Literature Review
The purpose of this hapter is to review the relevant literature on population odingand pereptual grouping of ontour segments, as separate �elds of researh. A synthesisof the population oding paradigm with the problem of ontour detetion is ahievedthrough a novel method of ontour detetion, whih will be introdued in the mainbody of the dissertation.Part I: Population CodingThrough biologial studies of various brain regions, it beame evident during the 1980sthat sensory, as well as motor, variables are represented by neural ensembles, ratherthan individual neurons, as had been postulated by Barlow (1972). The distributedoding strategy is often referred to as \population oding".Typially, a neural population enoding one or several parameters onsists of neu-rons exhibiting a rather broad tuning (Fig. 2.1). Consequently, a single neuron providesmerely a ourse estimate of the enoded variable(s). However, by ombining the outputsof ensemble members, the population as a whole is apable of aomplishing a substan-tially higher degree of representational auray. Due to its intrinsi redundany, suha distributed ode is also robust against neural noise and failure of individual units.28
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Figure 2.1: A set of bell-shaped, overlapping tuning urves overing a range of orientationsreate a redundant ode that is robust against failure of individual units and noise. How ana preise orientation estimate be obtained from a population of suh broadly tuned units?Georgopoulos and olleagues (1986) have demonstrated that the diretion of armmovements an be deoded from neural �ring rates in the motor ortex of monkeys.Wilson and MNaughton (1993) have shown that the position of rats in their envi-ronment is enoded in populations of hippoampal neurons. Reording from theseso-alled \plae ells", the authors were able to predit the position of the animals.Moreover, evidene has been provided by Young and Yamane (1992) of a fae-enodingpopulation in a region within the infero-temporal ortex, a brain area assumed to be in-volved in visual proessing at an intermediate level between simple features and objetrepresentations. In the vision domain, population oding has also been linked to thepereption of stereo disparity (Lehky and Sejnowski, 1990) and orientation estimation(Paradiso, 1988; Gilbert and Wiesel, 1990; Vogels, 1990).Population oding has thus emerged as an essential paradigm in omputational neu-rosiene. It is inreasingly studied among theorists in the neural network ommunity,29



where researh is mainly onerned with modelling biologial information proessing,rather than tehnial appliations suh as mahine vision.One prinipal issue in the omputational neurosiene literature is oding aurayand its dependene on the intrinsi noise in a neural network, as well as on the shape ofneural tuning urves (e.g., Baldi and Heiligenberg, 1988; Zhang and Sejnowski, 1999),the number of neurons, and their distribution in parameter spae (Vogels, 1990).Paradiso (1988) was one of the �rst theorists to analyse the performane of a modelhyperolumn of broadly tuned neurons by means of statistial estimation theory. Hismodel o�ers an explanation for the high auray of disrimination in various sen-sory modalities, known as hyperauity. For instane, the \just notieable di�erenes"observed in psyhophysial orientation disrimination tasks are up to two orders ofmagnitude smaller than the orientation tuning widths of individual neurons (Vogels,1990).Population oding has also reently been extended to extrating probability densi-ties from ensemble ativities (Zemel et al., 1998), opening up the possibility of a more\holisti" proessing of the information enoded in a population. In ontrast to \re-dutionist" methods, whih aim to extrat single quantities, the probabilisti approahpreserves the distributed nature of the ode and provides additional information aboutthe ertainty of the enoded variable(s).2.1 Population Vetor CodingThere are several methods of deoding a population ode. One is the so-alled popula-tion vetor or \entre-of-gravity deoding", a onept introdued by Georgopoulos andassoiates to desribe, as mentioned, the representation of limb movements by diretionsensitive neurons in the motor ortex (Georgopoulos et al., 1986). The basi idea is asfollows. 30



Given a population of n neurons, eah neuron is assigned a omponent vetor witha magnitude proportional to the strength of its response, ri (spike frequeny), anda diretion aording to its preferred diretion, denoted by the omponent vetor ~bi.The vetor omponents are then added, and the resultant vetor sum is the populationvetor. Thus the population vetor is a response-weighted average of n omponentvetors, ~bi, pointing in the neurons' preferred diretions:~p = nXi=1 ri~bi : (2.1)If a vetor ~x is properly enoded by the population, then~p = ~x :It has been shown (Sanger, 1994; Sanger, 1996) that this equality implies osine-tuning;i.e., responses are given by the dot produtri = ~x �~bi ; (2.2)whih an be seen by inserting equation (2.2) in (2.1) and assuming the equality ~p = ~x:~p = nXi=1 (~x �~bi)~bi = ~x nXi=1 ~bi~b Ti ! != ~x :This yields the following ondition for the outer produt of omponent vetors:nXi=1 ~bi~b Ti = 1 ; (2.3)where 1 denotes the unit matrix. The requirement (2.3) is always ful�lled with or-thogonal basis vetors, i.e., when the omponent vetors are simply the Eulidean unitvetors, ~e1; : : : ; ~en, but it imposes a severe restrition in the general ase of an overom-plete basis f~bi : : :~bng. Any uneven distribution of preferred diretions an easily violate31



ondition (2.3) and introdue a stimulus dependent bias to the population vetor esti-mate (Salinas and Abbott, 1994; Sanger, 1996; Snippe, 1996). Though important forbiologial systems, suh a bias is not a serious onern in a tehnial system, whereone has omplete ontrol over the positioning of tuning urves in the parameter spae.2.1.1 Vetor oding in biologial and arti�ial visionVogels (1990) examined population vetor oding of visual stimulus orientation in amodel of striate ortial ells. The model is able to explain just notieable di�erenesof orientation disrimination in primate vision. Employing a suÆiently high numberof units (several hundred), the obtained oding auray is less than 1Æ, even usingtuning widths of up to 80Æ.Gilbert and Wiesel (1990) used a very similar approah to explain the ontextdependene of orientation measurements and related it to physiologial data and tothe psyhophysial phenomenon of \tilt illusion" (see Fig. 2.2). They investigatedhow a population vetor estimate is a�eted by modi�ations of the ensemble ativitypro�le indued by surrounding stimuli via long-range interations between neighbouringpopulations. Suh ompliated lateral interations not only alter the weighting ofindividual neurons but an even hange their orientation tuning.Expressed in the notation of the previous setion, lateral interations ause analteration of the responses, ri, whih at as weights in equation (2.1), as well as amodi�ation of the basis vetors ~bi. Sine the task is merely to estimate the diretionof the stimulus ~x (requirement ~p k~x instead of ~p = ~x), ondition (2.3) hanges to:nXi=1 ~bi~b Ti / 1 :Even this more relaxed onstraint on the basis vetors an be violated by long-rangeinterations, whih ause erroneous orientation estimates in ertain geometri arrange-32



Figure 2.2: The Z�ollner illusion (\tilt" illusion). The long lines are parallel but appear tilted.The small line segments inuene the pereption of orientation, whih, aording to Gilbertand Wiesel (1990), an be explained by the altered ativities in the hyperolumnar ensemblesaused by long range interations between neighbouring orientation sensitive ells.ments of linear stimuli, suh as in Figure 2.2.In omputer vision, Granlund and Knutsson (1995) have de�ned a vetor represen-tation of loal edge orientation, whih the authors all \double angle representation".Based on a �xed set of four fundamental orientations (horizontal, vertial and thetwo diagonal orientations), a vetor sum is omputed. However, no onnetion withpopulation vetor oding has been established.2.2 Maximum Likelihood DeodingAn alternative to vetor deoding is maximum likelihood estimation (MLE). Based onGaussian tuning funtions and neural ativities ri governed by a Poisson distribution,a onditional density, p(xjri), in the enoded variable is obtained using Bayes' law(Sanger, 1996). Assuming independent neural �ring rates, the total likelihood of the
33



enoded parameter value is given by the produt of the individual onditional densities:L(xjr) =Yi p(xjri) : (2.4)Sanger (1996) has shown that equation (2.4) is essentially a produt of tuning urves.Consequently, the likelihood funtion an be very sharply tuned, even for broad tuningurves.MLE is e�etively a form of template mathing. The response data are mathedwith a template derived from the average population ativity (Pouget et al., 2000).Sine the method makes expliit use of the tuning funtion, it is not restrited toosine-tuning impliitly assumed in the population vetor approah (Oram et al., 1998).Theoretially, maximum likelihood is an optimal estimator; i.e., it is unbiased (\orreton average") and has the lowest possible variane, as determined by the Cramer-Raobound (Deo and Obdradovi, 1996).Though MLE may seem biologially implausible, Pouget and olleagues have shownthat it an be losely approximated by reurrent biologial networks (Deneve et al.,1999) for a wide range of tuning widths and input ontrast values.2.3 Extrating Probability DensitiesThe methods desribed previously aim to extrat a unique value of the enoded quan-tity. However, the aforementioned MLE method proposed by Sanger (1996) atuallyprovides an entire onditional distribution, p(xjr) = L(xjr), in the enoded variablex, given the \vetor" of responses, r. (The response vetor r, i.e., the vetor of en-semble ativities, must not be onfused with the population vetor ~p, whih is theresult of vetorial averaging of ativities; see Setion 2.1). Reovering a probabilitydensity is desirable beause it maintains a distributed information representation, thusavoiding a premature ommitment to loal features that often have a high degree of34



unertainty. Additionally, a probability density an quantitatively haraterise suhinherent unertainty of the estimate through its variane or a funtion thereof.Zemel and olleagues (1998) have shown, however, that Sanger's \standard Poissonmodel" is inapable of representing densities broader than the tuning urve, a onse-quene of the multipliation of tuning urves desribed in Setion 2.2. Moreover, sinein Sanger's model p(xjr) is always unimodal, it is impossible to represent ambiguity inx. Both limitations in representational apaity are overome in a reently developed,more re�ned probabilisti model by Zemel and o-workers that is able to deode mul-timodal distributions of arbitrary width. Their distributional population oding ap-proah, the \extended Poisson model", is a non-parametri method whih aims toreover the enoded probability density as a set of sampling points. The disrete val-ues of the probability density are themselves treated as stohasti variables and aredetermined by maximising the data likelihood funtion. Thus the algorithm performsan approximated form of maximum a posteriori estimation in distributions over distri-butions.As in Sanger's model, a neural response ri to a stimulus x is governed by a Poissondistribution p(r) around a mean determined by the orresponding tuning urve fi(x).If the enoded variable is governed by a probability density p(x), the average neuralativities are given by: �ri = ZX fi(x) p(x) dx ; (2.5)whih is the fundamental enoding equation. However, in order to inorporate arbitraryprobability distribtions of the stimulus, p(x), both the p(x) and the tuning funtionare approximated by pieewise onstant histograms. Let �̂j be the value of the pdfp(x) in the interval (xj; xj+1℄ and fij the value of the i-th tuning funtion in (xj; xj+1℄.The average ensemble ativities are then expressed by a disrete approximation of the35



enoding equation (2.5): �ri = ZX fi(x) p(x) dx � MXj=1 fij�̂j :The unknown sampling points �̂j of the wanted pdf p(x) are themselves treated asrandom variables. The task is then to perform maximum a posteriori (MAP) estimationin order to �nd the �̂j, i.e., to maximiselog phf�̂jg��� frigi under the onstraint MXj=1 �̂j = 1 :The number of sampling points (\histogram bins"), M , exeeds the size of the popula-tion, and regularisation is aomplished by means of a smoothness prior that restritsthe hange �̂j+1 � �̂j of the pdf in neighbouring points.One possible means to estimate the �̂j is simple gradient desent. In fat, Zemeland olleagues reformulate the MAP estimation as a maximum likelihood estimationby interpreting PMj=1 fij�̂j as a mixture model where the �̂j play the role of mixingoeÆients. A version of the EM-algorithm is then used to determine the MAP valuesof the �̂j.2.4 Complex Feature DetetorsAn issue mentioned only briey in the population vetor model of Gilbert and Wiesel(1990) is omplex stimuli within the lassial reeptive �eld. Two-dimensional stru-tures with multiple orientation reate multimodal response ativity pro�les in the hy-perolumnar ensemble. How the brain proesses suh stimuli is unlear, sine experi-mental data is sare.This matter is also highly relevant in mahine vision, where an analogous situ-ation arises when, in addition to regular edges, orner points and juntions are tobe deteted. In the presene of two-dimensional intensity features, lassial gradient36



based edge detetion shemes are ineÆient sine intensity gradient is ill-de�ned and,even when orners are somewhat rounded, detetor responses tend to be minute. Theusual strategy is to employ speially designed orner detetors. However, the biologialplausibility of suh detetors is strongly debated.While some researhers (Heitger et al., 1992) regard the so-alled end-stopped ellsas detetors of olusion points (T-juntions), their assumption has been questioneddue to the varying and often very limited degree of end-stopping that suh ells atuallyexhibit. For example, Zuker and o-workers interpret end-stopped ells as urvaturedetetors (Dobbins et al., 1987).Zetzshe and Barth (1990) have identi�ed fundamental limitations of linear �ltersoperating on two-dimensional intensity features. Typially, a linear �lter designed todetet 2D-features involves a ombination of responses from linear omponents. Forsignal-theoreti reasons, Zetzshe and Barth argue that any suh �lters will inevitablyshow false-positive responses to ertain one-dimensional stimuli. The response am-biguity annot be overome by suessive non-linear operations, suh as thresholdingor reti�ation. In order to avoid false-positive responses, intrinsi non-linearities inthe form of logial and-operations are neessary, by whih the linear omponents areombined.In aordane with Zuker's viewpoint, it is argued in this thesis that a hyper-olumnar ensemble, respetively a �lter bank, is apable of representing omplex loalintensity struture, exepting urvature, and that no additional orner detetor is re-quired.Using their distributional population oding model, Zemel, Dayan, and o-workershave shown how multiple motions (Zemel and Dayan, 1999) and multiple orientations(Zemel and Pillow, 2000) an be deoded from biologial neural networks. Referring toZemel and olleagues, the problem of representing points of multiple edge orientationwill be addressed in Chapter 4 as a prinipal short oming of the population vetor37



approah, and a solution will be o�ered within a framework of probabilisti populationoding adapted to mahine vision. The issue of response ambiguities, raised by Zetzsheand Barth (1990), will also be resolved in this ontext, sine probabilisti populationdeoding involves non-linear operations in the form of produts of funtions of ensembleativities.2.5 Combining and Transforming PopulationCodesAnother topi in the literature is the transformation and ombination of populationodes in order to enode omplex quantities that transend the sensory and/or motorvariables enoded by the original populations.One example of a transformed population ode is olour vision. As pointed outby Lehky and Sejnowski (1998), the retinal olour population ode onsists of neuronstuned to optial wavelength, but the ombined neural ativities an represent the per-ept \white", whih itself is not a wavelength. Combined neural populations an spanabstrat representational spaes omprising dimensions that, though derived from sen-sory and motor inputs, have no diret physial ounterpart in the outside world (Zemeland Dayan, 1997; Deneve et al., 2001).In vision, the information of neural populations with highly loalised reeptive �elds,suh as the simple and omplex ells in V1, is ombined to form neural populations atan intermediate level in the visual pathway that are responsive to omplex stimuli oflarge spatial extent, as observed in the inferotemporal ortex (Tanaka, 1996).
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2.6 ConlusionThe main population oding onepts from omputational neurosiene have been re-viewed and their advantages and drawbaks have been disussed. The ubiquity ofpopulation oding in highly eÆient biologial sensory systems provides the motiva-tion to investigate the appliation of population oding in image proessing pursuedin this dissertation. The relation to onrete appliations in edge detetion will besubstantiated in hapters 3 and 4. In hapter 5 it will be shown how a ombinationof loal population odes of edge orientation an lead to pereptual organisation ofontour segments.The essential feature of population oding is its great exibility and representationalapaity. For the purpose of this thesis, the probabilisti approah provides the meansto aurately represent loal ontour orientation and to haraterise the reliability oforientation estimates through the inherent unertainty enoded by the orrespondingangular probability density.
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Literature Review Part II:Pereptual Grouping
Sine the literature on pereptual organization is extensive, it is beyond the sope ofthis thesis to over all the existing methods. Therefore the purpose of the followingsetions is to review some important papers representative of di�erent approahes topereptual organization of ontour features, and to desribe the performane of thesealgorithms on real images.2.7 Contour Integration And Pereptual SalienyAn important funtion of pereptual grouping is the restoration of ontours, sineedge information extrated by means of loal operators is inevitably fragmented. Eahfeature gives a loal value of on�dene that an edge segment is present, and possiblyadditional information about its orientation and urvature. Sometimes, due to noiseand lutter, the edge ontrast is very poor or varies strongly along a ontour. Thetask of a data driven grouping algorithm is then to relate edge fragments and to enablemutual support between individual loal features based on their diretional onsisteny,thus enabling the transition from loal to global features, i.e, from edge segments tostraight lines or smooth urves. The proess is losely related to �nding and enhaningregions that are pereptually salient; i.e., a tehnial analogue of the \pop-out" e�et40



in psyhophysis.2.7.1 The Salieny Network of Sha'ashua and UllmanSha'ashua and Ullman (1988) de�ned a measure of pereptual salieny of a urve, basedon geometri properties. The salieny measure inreases monotonially with the lengthof the evaluated urve and dereases with its total squared urvature. Additionally, thedegree of fragmentation, expressed in terms of the number of gaps and total gap length,is penalised. Using the salieny funtion, a \salieny map" is de�ned as an image inwhih the intensity enodes the salieny value of the most salient urve emanatingfrom the point under onsideration. The network performs a relaxation proedure tomaximise the salieny measure.In their ritial assessment, Alter and Basri (1998) show that the salieny net-work has some shortomings, produing a number of results that di�er from humanpereption:� A urve with one large gap is onsidered more salient than one with a few smallgaps of equal total length.� The network has diÆulties representing more than the most salient urve.� The salieny measure is not invariant with respet to uniform saling of the image.� Erroneous binding an our through the merging of ontour segments belongingto di�erent objets.2.7.2 Kellman and Shipley's Theory of Visual InterpolationKellman and Shipley (1991) developed a theory of visual interpolation based on psy-hophysial evidene. By introduing a geometrial de�nition of edge segment \relata-bility", they provide a preise mathematial desription of the Gestalt law of \good41



ontinuation". Figure 2.3 shows a geometri onstrution of the onept of \relatabil-ity", whih aurately desribes the bias in human pereption towards smooth ontoursand whih an be diretly implemented in a mahine vision system. Two edge segments(tangent segments) entred around points P1 and P2 are \relatable" if, and only if, theangle Æ at the point of intersetion of the edge extensions is aute, orresponding to aninterpolating urve with a moderate degree of bending and without inetion points.In pratie, however, the geometrial on�gurations of edge segments obtained froman edge detetor are often not as preise as required, due to noise. As a result, twoedge segments belonging to the same ontour an appear \unrelatable", even if theirorientations deviate only slightly from the true values. This is expeted to happenfrequently with straight ontours, sine image noise reates an angular \jitter" in thetangent orientations measured along the ontour.
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2.7.3 Global Contour Grouping: The Extension FieldGuy and Medioni (1996) devised an algorithm for ontour grouping based on theGestalt priniples of o-urvilinearity (\good ontinuation") and proximity. After ap-plying an edge detetor, a onvolution is performed on the edge map using a speialmask alled extension �eld, a vetor �eld enoding the likelihood and orientation ofpossible ontinuations from an edge segment at its entre to all other points in theimage. Thereby a large number of smooth urves are represented simultaneously. Thediretion of the extension �eld at a point (x; y) equals the tangent angle of the mostlikely urve onneting (x; y) with the edge segment at the entre of the extension�eld. The magnitude of the vetor �eld in (x; y) is the likelihood of the existene ofthe onneting urve.Referring to Sha'ashua and Ullman (see Setion 2.7.1), the extension �eld is de�nedunder the assumptions that human ontour grouping favours urves of minimum totalurvature and that the ompletion of fragmented ontours is aomplished in terms ofonstant urvature. Therefore the tangent orientation at a partiular point is hosento be that of the osulating irle onneting the point and the entral edge segment.By superposition of extension �elds emanating from all edge loations, every pixelreeives a number of vetor \votes". This proess is a vetor onvolution resulting ina two-dimensional ovariane matrix for eah point. Then the prinipal axis of all theorientation votes is taken as the edge orientation. The eigenvalues are interpreted asthe axes of an ellipse, the eentriity of whih desribes the degree of \agreement"among orientation votes, i.e., a measure of ertainty. Multipliation of eentriity bythe strongest eigenvalue, whih depends on the edge ontrast, yields a salienymeasure.Sine the extension �eld ombines votes from all edge loations in the image, itis an impliitly global grouping sheme that di�ers from many previously developedtehniques that use loal operators to infer global strutures. The system an operate43



on tokens with di�erent degrees of orientational ertainty, from line segments witha preise orientation to points (omplete unertainty of orientation). A number ofvisual illusions an be reprodued, suh as the Ehrenstein irle (see Fig.1.2 a) anda Kanizsa-type �gure (see Fig.1.2b), but the performane on natural images is notdemonstrated.2.8 Algorithms Modelling Biologial DataBased on the neurophysiologial experiments of von der Heydt and Peterhans (1989a,1989b), Heitger and assoiates (1992, 1998) developed a model of illusory ontourpereption in mammalian visual systems fousing on the lose relationship betweenillusory ontours (suh as in Fig. 1.2) and olusion.The essential ingredients are models of neurons found in areae V1 and V2 of thevisual ortex. Complex ells are modelled as the moduli of omplex Gabor �ltersand referred to as C-operators. The so-alled \end-stopped ells" (ells respondingto sudden terminations of ontours, interrupted ontours or orners) are modelled asombinations of two or three C-operators.A ombination of end-stopped operators then serves as a tool to �nd the \keypoints" of olusion, i.e., loations where ontours terminate due to olusion. Beauseof the speial geometri arrangement of operators, orner points an be exluded.One the key points of olusion are found, the map of end-stopped operator re-sponses at key points is onvolved with a \grouping �eld", an oriented lub-shapedkernel. The result of the onvolution is added to the C-operator responses, wherebyontours of weak or vanishing ontrast are restored.The authors de�ne two types of grouping, \ortho-grouping" and \para-grouping",meaning that the restored ontour and the endpoint termination are either orthogo-nal or aligned, respetively. Due to the arrangement of end-stopped operators in the44



ortho- and para-grouping sheme, it is possible to infer some information about theforeground/bakground struture of the overlapping ontours in the image.The model seems to perform well on natural images, apart from some ambiguitiesin foreground/bakground segregation and oasional erroneous �lling-in. The authorsonlude (Heitger and von der Heydt, 1993) that these problems an only be overomeat higher stages of proessing. The robustness against noise is not disussed.2.8.1 Li's V1-Model of Contour IntegrationZhaoping Li's neural model of ontour integration (1998) tries to explain the dete-tion of pereptually important strutures based only on elements of the primary visualortex (V1). The model inorporates osillating neurons sensitive to loal stimulus ori-entation and inhibitory interneurons. Interating via lateral intra-ortial onnetions,neurons of similar orientation preferene an exite and synhronise one another's a-tivity, or inhibit one another through interneurons. The model also seems to reproduethe e�et of pop-out of ontours from a noisy bakground, whih aords with reentbiologial �ndings on the relation between lateral onnetions in the visual ortex andontrast dependent failitation, or suppression, of oriented stimuli by their surround-ing ontext (Stemmler et al., 1995). Stemmler and assoiates have suggested thatneural responses orresponding to an unrelated or noisy bakground an suppress oneanother due to their lak of mutual onsisteny. The responses produed by smoothobjet ontours are muh more onsistent, enabling mutual enhanement, and thussegregating �gure and bakground. However, Li's model onsiderably simpli�es theompliated dependenies of ontextual failitation and suppression between stimulion relative ontrast and orientation.Though the model presents a pre-attentive mehanism, it also addresses the possiblerole of top-down feedbak as an additional, though not neessary, element for the45



purpose of ontour integration. The possible feedbak is not expliitly modelled, butit is shown how higher levels might ontrol ontour proessing via projetions on theinhibitory interneurons (negative feedbak). A more diret inuene of feedbak signalson the exitatory diretion sensitive neurons themselves is not onsidered. The reasonfor suh a restrition is simpliity of proessing in terms of stability, and the ongoingdebate about the atual target neurons of feedbak projetions.The model an enhane ontour elements of weak ontrast, but it does not explainillusory ontours (vanishing edge ontrast), as it relies exlusively on V1 elements. It isargued that, as opposed to ontour enhanement, at least V2 and possibly even higherlevels, as well as the feedbak from these areae, are neessary to model the pereptionof illusory ontours. The algorithm is tested on arti�ial images (line drawings) andone natural image, where it emphasises ontours and redues bakground noise.2.9 Computing Contour ClosureElder and Zuker (1996) address the problem of omputing losed bounding ontours.Their approah is motivated by psyhophysial �ndings that losure seems to be avery important grouping ue whih an override those of regional texture (Fig. 2.4).Therefore, no restritions are plaed on the type or shape of the bounded strutures,taking into aount the often highly inhomogeneous appearane of objets in naturalimages.A multi-sale edge detetion algorithm yields information about edge position andtangent orientation from whih a sparsely onneted tangent graph is onstruted. Eahnode is assigned with the tangent information and, aording to a Bayesian model oftangent linking, eah ar is labelled with the likelihood that the orresponding tangentpair forms a ontiguous omponent of the same ontour. Eah node is onneted toonly a small number of neighbours (usually six), aording to the most likely pairings.46



The goal of losure grouping is then to �nd the maximum likelihood yles for everytangent in the graph. Thus the grouping task is redued to a shortest path problem,whih an be solved by means of standard tehniques within a reasonable amount oftime.The performane of the algorithm is tested on natural images. Sine no restritionson type and shape of the bounded struture have been made, the algorithm is able to�nd boundaries of pereptually meaningful, but very heterogeneous, parts of an image.The result is an improvement over many other approahes that either fail to identifylosed boundaries, sine they fous on smoothness only, or, in the ase of texture basedsegmentation, deompose objets into piees, due to their inner heterogeneity. As withother data-driven algorithms, oasional binding errors annot be avoided.
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Figure 2.4: A syntheti image in whih human observers pereive two overlapping objets.Region based grouping, however, would segment six disjoint parts. Sine there are only \non-sense" objets, human segmentation annot be based on familiarity. Elder and Zuker (1996)onlude that it is the geometry of the boundaries whih guides our pereption (illustrationafter Elder and Zuker).
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2.10 Spline RepresentationsBeause of their properties of smoothness, splines have been widely used for the repre-sentation of urvilinear objet boundaries in omputer aided design (CAD) for deades.Various types have been developed (Farin, 1988). While in CAD-appliations the splineontrol points are usually determined by the user, a omputer vision system should beable to �nd them automatially, based on an initial feature detetion proedure, a prob-lem addressed by Zuker et al. (1988), Cham and Cipolla (1996), Leite and Hanok(1997) and others.Closely related forms of urves for deteting losed boundaries are the well-known\snakes", whih are energy minimising splines that serve as a exible ontour template(Kass et al., 1988). The \snakes" realise a trade-o� between smoothness onstraintand mathing of intensity features, suh as edge segments. In pratie, however, theirinitialisation proves diÆult and often requires manual intervention. Another obstaleis the often highly omplex topology of the intensity gradient in natural images, whihmakes it diÆult to detet global ontour features.2.10.1 The Role of Curvature in Computer Vision.In the ontext of splines as a means for ontour representation, the question of the roleof urvature arises. There is an old debate over the pereptual signi�ane of urvaturein pereption. It has been argued (Attneave, 1954) that loal extrema of urvature arethe most pereptually important points on objet ontours, whih in turn motivatedPerez de la Blana and assoiates to develop a spline-based algorithm for ontourrepresentation in a graph with landmarks at points of maximum loal urvature (Perezde la Blana et al., 1993). The points of highest urvature are found iteratively.By ontrast, Lowe (1985) argued that the pereptual signi�ane of loal extrema ofurvature is ommonly overestimated. Firstly, when three-dimensional urves are pro-48



Figure 2.5: Two drawings derived from the same piture of a at. (a) was reated byonneting the points of loal maximum urvature with straight lines; (b) by onnetingpoints between those of maximum urvature (leaving line terminations at the same plae).Both drawings are pereptually similar and easily reognisable, though the points in (b) areas far removed from those in (a) as possible, leading to the onlusion that the points ofmaximum urvature are not neessarily more pereptually signi�ant (illustration from Lowe[1985℄).jeted onto a two-dimensional image, the urvature maxima are not invariant, unlikeurvature inetion points, disontinuities in tangent orientation and urve termina-tions. Seondly, it an be shown (Fig. 2.5) that in an \abstrat" line drawing reatedfrom a piture by seleting ertain points and onneting them with straight lines, theontent is equally well represented, whether or not the points are urvature extremaor plaed elsewhere on the ontour.Parent and Zuker pointed out that loal ambiguities in ontour detetion an beresolved by means of urvature onsisteny, even though the measurement of urvatureis more prone to error than that of loal orientation (Parent and Zuker, 1989). Theonsisteny of urvature seems to be more relevant than the exat value at spei�loations (Zuker et al., 1989).Kr�uger introdued a novel kind of wavelet-type �lter as a generalisation of Gabor �l-ters (Kr�uger and Peters, 1997). The sinusoidal part of the �lter kernel and its Gaussian49



envelope are both bent parabolially, rendering it sensitive to urved stimuli. Beauseof their urved shape, they have been given the humorous name \banana wavelets".The features are organised in a metri spae whih ontains the normal Gaborwavelets as the subspae of vanishing urvature. By means of the metri, a lusteringof features is performed in order to extrat the �duial features from a training setof images showing examples of a ertain lass of objets (Kr�uger and L�udtke, 1998).The result is a symboli representation of the objet lass (Fig.2.6). However, theurvature tuning of the wavelets is rather broad (Kr�uger personal ommuniation),allowing only a oarse measurement of urvature.

a) b) c) Figure 2.6: a) A Banana wavelet. b) The symboli analogue, a urved line segment. ) Asymboli representation of the objet lass \fae", from Kr�uger and L�udtke (1998).
2.10.2 Token Based Grouping With SplinesDolan and Riseman (1992) developed an algorithm for pereptual grouping of tokenssuh as straight line segments, orners, inetions, et., represented by oni splines,whih are urves in the form of oni setions, inluding hyperbolae and ellipses, inaddition to the usual parabolae (Farin, 1988). The ontour segments are assigned tonodes in a so-alled link graph, and the ars are labelled with the result of a binary om-patibility relation among neighbouring tokens. The ompatibility depends on distane,50



di�erene of tangent orientation at the end points of tokens (angular ompatibility),and the degree of overlap among tokens.In an iterative proedure, tokens of suÆient ompatibility an be replaed by alarger token, in suh a way that the information about the onstituting smaller tokens isnot erased, resulting in a hierarhial ontour representation aross di�erent sales thatan be traed bak to the lowest level. The parameters determining the ompatibilityfuntion hange with respet to sale, preserving high frequeny strutures (suh asorners) on the �ne sale, and reduing noisy utuations on larger sales by morerigorous smoothing.2.11 ConlusionAfter introduing the basi onepts of population oding, a number of pereptualgrouping tehniques have been reviewed. Though the two topis have thus far beendealt with separately, some relations between population oding and pereptual organ-isation have already beome apparent. For instane, the population vetor model ofGilbert and Wiesel (1990) investigates the inuene of horizontal onnetions betweenloal populations on the enoding of stimulus orientation. This interpretation of per-eptual organisation as a ombination of loal population odes will provide the linkbetween population oding and pereptual grouping in the thesis.In many grouping algorithms the notion of ertainty is neither made expliit, norquantitatively represented. Con�dene in the presene of a partiular intensity featureis ommonly identi�ed with the response magnitude of a orresponding detetor. Inthe ase of edge detetion, ertainty of an edge orientation estimate is therefore loselylinked with edge ontrast (magnitude of the intensity gradient). Guy and Medioni'salgorithm is the only reviewed method that treats ertainty as a ontrast independentquantity, though only at the grouping level.51



Throughout this thesis, ertainty will be onsidered at the level of loal featureextration. It will be demonstrated that, in the ontext of distributed oding, ertaintyan play a more distint role when de�ned in terms of the spread of ativity aross thefeature detetor ensemble. For unimodal ativity pro�les, a measurement (in this ase aloal orientation estimate) is the �rst moment/mean of the ensemble ativities, and theertainty of that measurement an be assoiated with the seond moment/variane ora funtion thereof. A generalisation of this onept to multimodal response pro�les willbe provided within a probabilisti population oding sheme that deodes a mixturedistribution from ensemble ativities.The ombination of the overall strength of detetor responses and the orrespondingertainty an help level out the loal variations of responses on ontours and renderloal feature detetion more robust against noise.
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Chapter 3
Population Vetor Coding
This hapter addresses the problem of loal orientation seletion (tangent �eld estima-tion). The intention is to demonstrate the pratial appliability of population vetoroding for this purpose and to relate omputer vision experiments to the theoretialresults in the omputational neurosiene literature, as well as to ompare the per-formane of the population vetor to other methods of tangent �eld extration andorientation estimation.Following the work of Heitger, von der Heydt and assoiates (Heitger et al., 1992)and Lades et. al (1993), Gabor �lters are employed as a simple mathematial model oforientation sensitive ells in the ortial hyperolumn. Adopting the biologial oneptof population vetor deoding (Georgopoulos et al., 1986; Vogels, 1990), a ontinuousorientation estimate is extrated from the disrete set of responses in the Gabor �lterbank by performing vetorial ombination of the broadly orientation-tuned �lter out-puts. The result is a population vetor, the orientation of whih gives a preise androbust estimate of the loal ontour orientation. The auray and noise robustnessof orientation measurement and ontour detetion is also investigated, as well as therelationship between the ertainty of the orientation estimate and the shape of theresponse pro�le (ensemble ativity) of the �lter bank. Comparison with alternative53



methods of orientation estimation reveals that the tangent �elds resulting from thepopulation vetor tehnique provide a more pereptually meaningful representation ofontour diretion and shading ow.3.1 Properties of Gabor �ltersGabor Filters have been proposed as a model of orientation seletive ells (\simpleells") in the striate ortex (Marelja, 1980; Daugman, 1985) and have found numer-ous appliations in omputer vision, inluding edge detetion (Shustorovih, 1994),detetion of line orientation and width (Buse et al., 1996), texture analysis and objetreognition (Lades et al., 1993).In the above-mentioned analogy to biologial information proessing, the real (o-sine) part of a omplex Gabor �lter orresponds to simple ells of even symmetry andthe imaginary (sine), to simple ells of odd symmetry.3.1.1 Filter KernelsA general omplex Gabor �lter of wavelength � and preferred orientation � is de�nedas
G(x̂; ŷ; �; �) = 12��w�e�2 exp�� 12�2 � x̂2�2w + ŷ2�2e ��| {z }Gaussian envelope ( exp�2�� x̂ i�| {z }sinusoid � exp ��2��2w�| {z }mean-orretion) ;(3.1)where x̂ and ŷ are the oordinates of an image point in the oordinate system rotatedby the angle �: x̂ = x os � + y sin � and ŷ = �x sin � + y os � :54



In (3.1), �w and �e are the width parameters of the Gaussian envelope in units of thewavelength, de�ned by the sale invariant expressions�w = �x� and �e = �y� :The index w stands for \wave", sine �w determines the size of the envelope in thediretion of the sinusoidal osillation, and �e (as in "edge") denotes the width in thepreferred orientation of the �lter. Following Lades (Lades et al., 1993), the termexp(�2��2w) in equation (3.1) is subtrated, in order to obtain a �lter of zero mean,ensuring independene of mean intensity. Heitger and assoiates (Heitger et al., 1992)have proposed frequeny modulation to ahieve independene of mean intensity, butthe omputation of the kernels then beomes more ompliated.Furthermore, it is useful to onsider the modulus of the onvolution of an inputimage I with the omplex Gabor �lter G, i.e., the Pythagorean sum of even-symmetriand odd-symmetri �lter responses, whih will be denoted by G for simpliity:G = jG � Ij :The square of G is often referred to as loal energy (Adelson and Bergen, 1985; Mor-rone and Owens, 1987). The properties of Gabor response moduli resemble those of\omplex ells", sine they do not distinguish ontrast polarity (edges vs. lines) andare robust against small stimulus translations within the reeptive �eld (Heitger et al.,1992; Lades et al., 1993; Heitger et al., 1998). The robustness of the response modulushas been suessfully utilised in arti�ial fae and objet reognition, e.g., by Lades etal. (1993).Throughout this hapter, only Gabor moduli will be onsidered. Additionally, all�lters will have radial symmetry, i.e., �e=�w = 1.
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3.1.2 Orientation Tuning of Gabor FiltersThe essential element in the analysis of a population ode is the tuning urve, in thisase the orientation tuning urve, whih desribes the relation between �lter responseand the orientation of the loal edge/line struture. The quantity that haraterisesthe shape of the tuning urve is the tuning half width, w (i.e., the half-width at halfheight of the tuning urve), and it is important to know how w depends on the �lterparameters.Like simple and omplex ells in striate ortex, Gabor �lters have rather broadorientation tuning, whih depends on an essential ontrol parameter for the shape ofthe �lter kernels, the width of the Gaussian envelope, denoted by �e. Though, inpriniple, the �lter mask extends aross the entire image, a value of three times �e anbe onsidered the e�etive radius of the \reeptive �eld" (radius of the �lter mask),sine the Gaussian envelope virtually vanishes at greater distanes from the entre.To determine the tuning urve and to examine the inuene of the �lter envelopewidth on the tuning width, syntheti images of straight lines were used as test stimuli.The line thikness in all experiments was one pixel, and orientations ranged from 0Æto 170Æ at 10Æ intervals. Figure 3.1 shows the tuning urves for three �lters with apreferred orientation  = 90Æ, a wavelength � = 8 pixels, and envelope widths �e = 0.6(4.8 pixels), 1.0 (8 pixels) and 2.0 (16 pixels), respetively. The estimated half-widths ofthe tuning urves are w = 17:2Æ, 9:7Æ and 5:2Æ. The �rst value is omparable to typialorientation tuning half-widths of striate ortial ells (Vogels, 1990). Interestingly,as will be demonstrated later, this proves to be the most suitable tuning width fororientation measurement.The responses in Figure 3.1 are �tted with a model orientation tuning funtion.Here the von Mises funtion (Mardia, 1972) is used, sine it is appropriate to angularvariables and onsistent with biologial studies (Swindale, 1998). The normalised form56
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3.2 Loal Orientation Estimation by Population Ve-tor DeodingThe onept of a population vetor was originally introdued by Georgopoulos andolleagues to desribe the representation of limb movements in the motor ortex (Geor-gopoulos et al., 1986). Adapting the authors' de�nition to a bank of n Gabor �lters,the population vetor is omputed as follows. The �lter bank onsists of pairs of �lterswith even symmetry (osine part) and odd symmetry (sine part), also alled quadraturepairs. Consider a wavelength �. Let G(x; y; i; �) be the response modulus (\energy")of the quadrature pair of Gabor �lters of orientation  i. Let ~ei = (os i ; sin i)T bethe unit vetor in the diretion  i. Then the population vetor ~p is de�ned as~p(x; y) = nXi=1 G(x; y; i; �) ~ei ; (3.3)whih means that eah �lter is represented by a two-dimensional omponent vetor.The vetor orientation and magnitude are given by the preferred orientation  i andthe response magnitude (modulus) G(x; y; i) of the �lter at loation (x; y), and thepopulation vetor is the sum of the n �lter vetors.However, equation (3.3) annot diretly be applied, sine the �lters are only sensi-tive to orientation, rather than diretion; i.e., there is a 180Æ-ambiguity. Consequently,the population vetor is omputed using the sheme in Figure 3.4. The orientationvariable is deoded by determining the angle of the population vetor �pop, whih isgiven by: �pop(x; y) = artan�py(x; y)px(x; y)� : (3.4)The magnitude of the population vetor, k~p(x; y)k, is related to the response \energy"of the �lter bank at position (x; y). If evaluated at ontour loations, i.e., loal maximaof k~pk, �pop gives an estimate of the loal tangent angle. Theoretially, the oding59
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Figure 3.4: Vetor oding of orientations. Orientations are restrited to the range 0Æ� 180Æ.Therefore, the vetor omponents are omputed with respet to a symmetry axis, in thisase the orientation of maximum response. Components outside the �90Æ range around theaxis have to be \ipped" bak into that range to enfore a symmetrial arrangement. Aomponent perpendiular to the symmetry axis (i.e., on the dashed line) would e�etivelyanel itself out and an thus be ignored.3.3 Mathed Filtering and the Extration of Ori-ented EnergySteerable �lters have been introdued by Freeman and Adelson (1991) to redue theomputational ost of ontour representation. Instead of applying a large number of�lters to over the full range of orientations, only a small set of basis �lters is used,from whih the response of a �lter of arbitrary orientation an be synthesised. Theapproah is feasible for Gaussian derivatives, but Gabor �lters are known to be onlyapproximately steerable (Shustorovih, 1994).In this setion, it is shown how the Gabor �lter bank an be made steerable, in thesense that the orientational energy an be approximated by means of the magnitudeof the population vetor. To aomplish this, it is neessary to move beyond the linearvetor population oding and to make expliit use of the orientation tuning urve.61



Originally, the population vetor was used to extrat a vetorial quantity, e.g., theposition ~x of a limb in three-dimensional spae (Georgopoulos et al., 1986). Here thepopulation vetor ~p an diretly represent the position vetor, i.e.,~p = ~x :The population vetor and the enoded position vetor are expeted to be equal indiretion and magnitude. The response, ri, of a single diretion enoding motor neuronis modelled as a projetion of the population vetor onto the orresponding unit vetor:ri = ~p � ~ei :The situation with ontour representation using Gabor �lters is di�erent. There aretwo separate quantities, orientation and �lter response energy, to be merged into aontour representing vetor. Its orientation should be equal to the loal harateristiorientation of the ontour (tangent angle), whih is, of ourse, only well de�ned if thereis unimodal anisotropy in the neighbourhood of the onsidered loation. The degree ofanisotropy an, however, be judged from the distribution of �lter responses by meansof a reliability riterion of the orientation measurement derived in setion 3.5.The magnitude of the ontour representing vetor shall here be de�ned as theresponse of the Gabor �lter tuned to the very tangent orientation, �, of the ontour,Gmax. In the literature on steerable �lters, this is usually referred to as the \mathed�lter" (Perona, 1992). The ontour vetor at a partiular point (x; y) is then~ = Gmax(x; y;�)~e ;where ~e is the unit vetor in the diretion of the ontour. Gmax is the orientationalenergy and therefore a measure of the ontour ontrast. The question is how theontour vetor an be deoded from the �lter \population".62



The orientation an easily be obtained from equation (3.4). However, as Gabor�lters (and visual ortial neurons) have non-osinusoidal orientation tuning (setion3.1.2, (Swindale, 1998)), the relationship between the magnitudes of the ontour ve-tor and the population vetor is more ompliated than in Georgopoulos' approah(Georgopoulos et al., 1986). The magnitude of the population vetor does not equalthe orientational energy, as one would expet in linear vetor oding, sine the �lterresponses annot be desribed as dot-produts between the ontour vetor and the�lter omponent vetor. In order to derive the oriented energy, the population vetorhas to be modelled by means of the tuning urves.The response of a �lter of orientation  to an input image with loal ontourorientation � at (x; y) an be desribed by Gmax and the normalised tuning funtionsf given by equation (3.2):G(x; y; ; �) = Gmax(x; y;�)f(�; ) : (3.5)Assuming that the population angle �pop (the measured orientation) is lose to the trueontour orientation (� � �pop), a model population vetor ~m is alulated from thenormalised tuning funtions: ~m = nXi=1 f(�pop; i)~ei : (3.6)Inserting the response model (3.5) into the de�nition of the population vetor (3.3)and omparing the result with (3.6) yieldsGmax = j~pjj~mj : (3.7)Sine Gmax and the tuning properties are known, steerability has been ahieved in thoseimage regions where the degree of anisotropy is high enough, i.e., where the responsepro�le of the �lter outputs losely resembles the tuning urve. The �lter response forany orientation an thus be alulated from equation 3.5.63



3.4 Performane of Orientation EstimationIn this setion, the auray of the orientation estimate is investigated, as well as itsdependene on tuning width and noise level. The algorithm is tested on arti�ial im-ages using �lter-banks of di�erent sizes. The test images and the �lter wavelengthare the same as those previously desribed in Setion 3.1.2. The �lter banks onsistof 8, 16 and 32 Gabor �lters. Figure 3.5 shows the root mean square (rms) error ofthe population angle hÆ�popirms as a funtion of the tuning half-width of the appliedGabor �lters. The error inreases when, given the number of �lters, the tuning widthis too small to guarantee suÆient �lter overlap to over the entire range of 180 de-grees. In the experiments, this limit is not reahed with 32 �lters. The error seemsto ontinuously derease further for dereasing tuning width. However, aording tothe orresponding unertainty relation, the tuning width dereases at the expense ofan inreasing reeptive �eld size and, onsequently, a lower spatial resolution.For large tuning widths the envelope parameter is so small that the entire reeptive�eld onsists of only a few pixels, and disretisation errors beome notieable.In onlusion, eight �lters an be onsidered suÆient for pratial purposes, sinethe omputational ost is signi�antly lower and the preision only slightly smallerthan with 16 �lters.Compared to the tuning width of a single Gabor �lter, the population vetor esti-mate of stimulus orientation is very aurate. The resulting rms-deviation of the angleof the population vetor from the ground truth value of the stimulus orientation is onlyhÆ�popirms � 1Æ, whih should be ompared with the half-width of the tuning urve forthe most suitable �lter (w � 17Æ). The error of the population oded orientation esti-mate onsists of two omponents: the oding error due to the limited number of �ltersand the disretisation error aused by the pixelation of digital images. Moreover, themeasured rms-error is onsistent with simulations by Vogels (1990).64
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3.4.1 Noise robustnessIn another experiment, sensitivity to additive Gaussian noise was investigated. The-oretially, there are two essential weaknesses of the population vetor method in thepresene of noise: the problem of noise ontributions from unstimulated units and thepotentially small ratio of tuning width to sensor array extent (Snippe, 1996). How-ever, in the ontext of orientation estimation with a �lter bank, neither are of muhonern. The range of orientations [0; �℄ (extent of the sensor array) is �xed and aneasily be overed by a relatively small number of �lters. Moreover, unlike with a linearvariable, the irular topology of the sensor array implies that tuning urves loatedat the ends of the interval [0; �℄ do overlap. Consequently, there are few unresponsiveunits, unless a small tuning width is hosen, whih is disadvantageous even withoutnoise (see setion 3.4).Figure 3.6 shows the rms-error as a funtion of the noise variane for di�erentnumbers of �lters (8,16 and 32). The dependene is roughly linear for all three �lterbanks, with no signi�ant di�erene in noise sensitivity.3.4.2 Comparison to Other Methods in the LiteratureBuse and assoiates (Buse et al., 1996) have developed a method for simultaneous mea-surement of orientation and length of straight lines. Using the real parts (osine part)of a bank of Gabor �lters, they ompute an orientation estimate from an interpolationof �lter responses at the line end points. Sine they use 256� 256 grey-sale images ofsingle lines, their data are diretly omparable to the results obtained by populationoding.Sine Buse and assoiates do not report the number of �lters involved, their resultshave to be ompared with �lter banks of di�erent sizes. It seems likely, however, that agood interpolation result requires a number of �lters similar to that used for population66
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3.5 The Unertainty of Orientation InformationThe response pro�le of the �lter bank, i.e., the angular distribution of �lter outputsat a given point in the input image, ontains valuable information of the loal ontourstruture. Zemel and olleagues proposed to represent ertainty of loal information interms of the sum of responses (Zemel et al., 1998). In the notation used in this thesis,C(x; y) = nXi=1 Gi(x; y)� nXi=1 Gi!max ; (3.8)where the denominator is some global maximum of the summed responses. However,this measure only depends on response energy (ontour ontrast) and annot disrim-inate between low ontrast ontours and intense noise. Also, points of multimodalanisotropy, suh as orners (points of high urvature) and juntions, an produe highresponses in the �lter bank, though loal tangent orientation is ill-de�ned.It is argued in this thesis that the \sharpness" of the response pro�le is moresuitable to haraterise the reliability of the loal orientation estimate, as it is ontrastindependent. Thus ontour ontrast and ertainty are treated as two separate pieesof information. In fat, there is evidene that pereived ontrast and the appearaneof ontours is not so losely linked as is ommonly assumed (Hess et al., 1998).Figure 3.7 shows the response pro�le of the �lter bank at a number of di�erentpoints in a natural image. Despite the fat that the response pro�les are normalised,the quality of the edge (degree of anisotropy), and thus the expeted reliability oforientation measurement, is well-reeted in the width of the pro�le. Aordingly,ertainty should be measured in terms of the angular onentration of the responseenergy around the population vetor orientation. At a ontour, the response energyof the �lter bank an be assumed to be lustered around the ontour orientation.Therefore the average of the osines of orientation di�erenes is used, weighted by theresponses: 68
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C(x; y) = Pni=1Gi(x; y) os ��2 � j�2 �� ij �Pni=1Gi(x; y)� i = j i � �popj ; (3.9)where  i is the �lter orientation and �pop, the population oded ontour angle. Theertainty measure is related to the resultant length in diretional statistis (Mardia,1972), a measure of onentration of a set of random samples around its mean diretion,de�ned by the following expetation value:� = En os(� � h�i)o :In this expression, the osine of the di�erene between mean diretion h�i and a randomsample � is analogous to the squared di�erene (x � hxi)2. The ertainty measuree�etively has an upper bound less than unity, sine the maximum degree of responselustering is limited by the tuning width. Additionally, every ertainty value below 0.5signals total unreliability, sine C = 0:5 orresponds to 45Æ, and any response lusteringfurther than 45Æ away from the measured orientation �pop simply indiates that thereis a multimodal distribution. The ertainty measure ould be normalised by dividingit by the largest ertainty value deteted.3.6 Tangent FieldsIn this setion, the population oding tehniques for the measurement of orientation,response energy and ertainty are ombined to obtain tangent �elds. The results arepromising not only for the purpose of ontour detetion, but also with respet to therepresentation of tangent ow �elds. 70



Figure 3.8: An Infra-red aerial image of Luton airport (512 � 512 pixels).Figure 3.9 shows a detail from the tangent ow �eld orresponding to an infra-red aerial image obtained with di�erent methods of orientation measurement. Theomparison inludes Zuker's method, whih uses seond Gaussian derivatives, (Zukeret al., 1988), seletion of tangent orientation from S-Gabor �lters (Leite and Hanok,1997), and population vetor oding.Note that the population vetor approah is able to reover some �ne details inthe ow. The ow �eld follows even small strutures in the intensity pattern, suhas the \vortex" in the upper left, that have been lost by the other algorithms due tosmoothing.
71



Figure 3.9: Magni�ed detail (roundabout) of Fig. 3.8. Eah grey square represents a pixel.(a) original, (b) with overlaid tangent �eld following (Zuker et al., 1988), () tangent�eld obtained by seleting the strongest response from 8 S-Gabor �lters, (d) tangent �eldfrom population vetor oding with 8 Gabor �lters (� = 3 pixels). The population vetorapproah preserves some �ne details in the ow �eld that are lost with the other methods asa onsequene of insuÆient angular resolution or over-smoothing. Images (a)-() after Leiteand Hanok (1997). 72



3.6.1 Contour Representation: Tangent seletion in naturalimagesIn order to represent ontours by means of loal line segments from the tangent �eld,it is neessary to selet those line segments on the rest lines of the response energylandsape given by the magnitude of the population vetor. In the terminology ofParent and Zuker, this problem is referred to as the searh for lateral maxima (Parentand Zuker, 1989).In a nutshell, the feature seletion algorithm used in this hapter �rst performs theloal maximum searh on the produt of ertainty and response energy, j~p(x; y)jC(x; y),rather than energy j~p(x; y)j alone. Thus points of high urvature or juntions, wherethe orientation measurement is not well-de�ned, are exluded, as well as noisy regionswhere virtually no orientational struture is present. In a subsequent step, spuriousparallels in the ontour neighbourhood are eliminated through ompetition amongneighbouring parallel line segments. The remaining points undergo thresholding. As aresult, only points of high ontrast and high ertainty \survive".

(a) (b)Figure 3.10: Contour representation from population oded tangent �elds. (a) the orienta-tional energy map. (b) the ontour tangent �eld of a natural image (human hand, see Fig.3.7 a). The tangents in Image (b) represent the loal orientation at \key points", i.e., loalmaxima of the produt of diretional energy and ertainty.73



In order to obtain suh an initial set of key points, a grid is plaed on the mapof the produt j~p(x; y)jC(x; y). Within eah segment a loal maximum is determined.Interpreting the map of magnitude� ertainty as a landsape with the edges formingridges, this is a searh for the highest point on the ridge within eah grid segment.However, the grid disretisation an produe artifats if the ridge is just outside theboundary of the onsidered grid segment. The loal maximum will then be only a pointon the slope (the real loal maximum is loated in a neighbouring segment). In orderto avoid suh false maxima, every andidate must be veri�ed by heking for a loalmaximum in a new neighbourhood entred around the andidate. If the andidate isstill found to be a loal maximum, it is aepted as a key point; otherwise, it is erased.One these \key points" of reliable ontour information and the orrespondingtangent angles are determined, they provide a symboli representation in terms of loalline segments (Figure 3.10 and 3.11 ). Moreover, they ould serve as an initialisationof nodes in a graph representation and be further updated by more global onstraints.Figure 3.12 shows eah of the di�erent steps in the proedure of ontour tangent�eld extration. The left ontour of the triangular blok, denoted by an arrow, appearsvery faint in the map of the population vetor magnitude. However, it is learly visiblein the ertainty map, sine response pro�les along the entire length of the ontour tendto luster tightly around the edge orientation, despite the low intensity gradient. Eventhough the information about the weak ontour is, in priniple, present in the energymap (Fig.3.12 b), it is muh easier to establish a general threshold for the produt ofertainty and magnitude than for magnitude alone.
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(a)
(2)

(1)

(b)Figure 3.11: (a) An image with several polyhedra (256 �256 pixels). (b) The orrespondingontour tangent �eld extrated with �=8 pixels. Only extremely faint ontours are notrepresented, suh as the short edge (1). Additionally, the reetions on the table surfaereate some additional line segments. Note that orner points and juntions are left blank.
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(a) (b)

() (d)Figure 3.12: (a) Another image (512 �512 pixels). (b) The magnitude of the populationvetor. The weak left ontour of the triangular blok (arrow) is almost lost. () The ertaintymap. As expeted for a seond order measure, more noise is present. The weak ontour islearly visible, sine response pro�les all along the ontour tend to luster tightly around theedge orientation, despite the low intensity gradient. (d) In the ontour tangent �eld the weakedge has been reovered without amplifying noise.76



3.7 ConlusionsIs has been shown that population vetor oding with Gabor �lters an be used toaurately estimate the orientation of edges and lines in grey-sale images. Moreover,based on an analysis of loal �lter response pro�les, a ertainty measure has beende�ned in terms of the distribution of response energy around the population vetor.The ertainty measure is, by de�nition, ontrast independent, and therefore provides anadditional piee of information that signals the presene of an edge/line. The ertaintymeasure also helps to avoid the alulation of wrong orientation estimates in unsuitableloations, suh as orner points and juntions.An important issue is the biologial plausibility of the population vetor approah.The fat that a population vetor interpretation allows read-out of the informationenoded by a neural ensemble through the experimenter (Georgopoulos et al., 1986)does not mean that suh deoding is atually performed in the brain (Pouget andZhang, 97; Oram et al., 1998; Lehky and Sejnowski, 1998). It is more likely thatdistributed oding is maintained to seure robustness against noise and loss of neurons(Snippe, 1996).It is not laimed that the algorithm models aspets of the ortial proessing oforientation information. However, all the operations neessary for omputing a pop-ulation vetor ould easily be realized by ortial neural networks. Also, it turns outthat the optimal performane of orientation estimation by the system is reahed whenthe tuning width of the �lters resembles that of striate ortial ells.Another ritiism stems from statistial estimation theory. Due to the non-osineorientation tuning urves, the population vetor is not an eÆient estimator, i.e., itdoes not attain the Cram�er-Rao bound (Snippe, 1996). This means that the angularmeasurement is not optimal in the sense that it does not have the lowest (irular)variane and, onsequently, minimal root mean square error. The optimal rms-error77



would be ahieved within a maximum likelihood framework that takes into aount theatual shape of the tuning urve (Sanger, 1996; Oram et al., 1998).A serious limitation is the fat that regions of multiple orientations, suh as ornerpoints, annot be aurately desribed in terms of a single population vetor. Inthe next hapter, the population oding approah is therefore extended towards aprobabilisti interpretation of population oding, in order to reover full probabilitydistributions over loal orientation.
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Chapter 4
Probabilisti Population Coding
Probabilisti population deoding of sensory input data is onerned with the extra-tion of a probability density funtion from the responses of a set/population of �l-ters/neurons tuned to a stimulus property. A major advantage of the probabilistiapproah over other methods is that it is not restrited to the deoding of a uniquevalue, sine it an represent unertainty and ambiguity in the enoded variable througha multi-modal distribution.Substantial theoretial ontributions in probabilisti population oding have beenmade by Sanger (1996) as well as Zemel, Dayan and olleagues (Zemel et al., 1998;Zemel and Pillow, 2000; Zemel and Dayan, 1999; Zemel et al., 1995), whih are mainlyonerned with modelling biologial information proessing, partiularly the pereptionof motion and orientation.In this hapter, probabilisti population oding is applied to the detetion andrepresentation of loal edge orientation. The ability to represent ambiguous inputs isused to extrat multiple orientations in orner points and juntions. Thus it is possibleto overome the restritions of the population vetor approah, whih only allows theextration of tangent �elds from unimodal response pro�les.Unlike neurons in biologial models of population oding, where �ring rates are79



regarded as random variables following Poisson statistis (Zemel et al., 1998), or arelated probabilisti model (Itti et al., 1998), the �lters are treated as deterministioperators fed with a stohasti visual input. Even though the �ltering proess is deter-ministi per se, the responses themselves beome stohasti, sine they are funtionsof a random variable: the loal ontour orientation �.In order to reover the whole pdf of the loal orientation, p(�), representing theunertainty and ambiguity of �, the pdf parameters have to be estimated from the givenset of �lter responses, whih an be ahieved indiretly via the pdf of the responses.Based on an empirially and theoretially motivated model of the tuning funtion ofGabor �lters and the assumption of a von Mises mixture distribution of the angularinput variable (loal ontour orientation), the orresponding pdf of the responses an bederived and the mixture parameters an determined so that the given �lter responsesare most likely. The pdf of the input variable is thus deoded from the populationativities (�lter outputs).4.1 Gabor Filter Response Pro�les at Loations ofMultiple OrientationThe response pro�le of a bank of Gabor �lters extrated at loations of multiple ori-entation ontains several peaks, whih are more or less separated, depending on thetuning width of the �lters applied. An adequate hoie of �lter parameters allows thedisrimination of at least two response extrema orresponding to the di�erent orienta-tions of the edges meeting or overlapping at the onsidered point. Figure 4.1 (b) showsthe response pro�le extrated at point (5) in Figure 4.1 (a).Only odd symmetri Gabor �lters (\edge detetors") are onsidered throughoutthis hapter, but a similar analysis an be made for the even-symmetri ounterpart80
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(b)Figure 4.1: (a) A real image (256� 256 Pixels) with several intensity features, suh asedges, orners and T-juntions. (b) The response pro�le of the Gabor �lter bank at aT-juntion (point 5). The ensemble ativities reet the two prinipal orientations.(\line detetor"). The reason for returning to the omponents of the quadrature pair,rather than ontinuing with magnitudes, is that a linear �lter is required. If the �ltersare stritly linear, one an assume that the priniple of superposition holds, whihimplies that the response pro�le for omplex intensity struture where several edgesoinide (e.g., at orner points) is a linear ombination of the response ativities for theindividual edge omponents. This assumption is ruial for the following derivations.It is ertainly valid for Gabor �lters with even or odd symmetry but already is vio-lated with Gabor moduli, sine the magnitude of a omplex �lter response is alulatedby a Pythagorean sum, whih is a non-linear operation.
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4.1.1 The tuning funtion of odd-symmetri Gabor �ltersThe tuning funtion of an odd-symmetrial Gabor �lter an be derived analytially fora sinusoidal grating of arbitrary orientation. The result is of general relevane, sine anyfully anisotropi input an be expanded into a Fourier series of sinusoids with di�erentwavelengths but equal orientation. Real images are likely to ontain edges subjetto some degree of blur that, therefore, have a dominant spatial ground frequeny intheir spetrum, while higher frequeny omponents are omparatively weak. Thisharateristi spatial frequeny of an edge's intensity struture at a partiular loationinuenes the tuning width of the �lter responses. For moderately urved stimuli, theabove argument is still valid within the e�etive range of the �lter mask (i.e., wherethe Gaussian envelope is signi�antly above value zero).Aordingly, the \input image" used to alulate the tuning funtion is a sinusoidof in�nite extent. (In pratie, this is to be understood in the sense of periodi ontin-uation applied during the subsequent fast Fourier Transform.) For pratial purposes,the orresponding wavelength �s (in pixels) will be used, rather than the frequeny.The sinusoid's orientation � is de�ned in terms of the orientation of its wave vetor,the magnitude of whih will be denoted by ks = 2�=�s. Hene, the sinusoid is writtenas S(x; y) = sin [ks (x os � + y sin �)℄ (4.1)For simpliity, and without loss of generality, a Gabor �lter is hosen with wavelength�f and vertial orientation. Additionally, the quantity kf = 2�=�f is introdued. ThusGodd(x; y) = exp�� x22�2w � y22�2e� sin(kfx) : (4.2)The orientation tuning funtion f(�) is the onvolution of the �lter with the sinusoid,at the origin (0; 0). 82



f(�) = (Godd � S)(0; 0)= 1Z�1 1Z�1 Godd(x; y)S(x; y; �) dx dy=) f(�) = 1Z�1 1Z�1 exp�� x22�2w � y22�2e� sin(kfx) sin [ks (x os � + y sin �)℄ (4.3)The rather ounterintuitive hoie of Cartesian, instead of polar, oordinates is nees-sary, sine the �lter kernel is not polar separable; onsequently, the resultant integralsin the angular and radial variable would be virtually intratable.Expanding the sinusoid yields:sin [ks (x os � + y sin �)℄ = sin(ksx os �) os(ksy sin �) + os(ksx os �) sin(ksy sin �)Hene, separation of integrations in x and y is straightforward:
f(�) = 1Z�1 exp�� x22�2w� sin(kfx) sin[ksx os �℄ dx 1Z�1 exp�� y22�2e� os[ksy sin �℄ dy+ 1Z�1 exp�� x22�2w� sin(kfx) os[ksx os �℄ dx 1Z�1 exp�� y22�2e� sin[ksy sin �℄ dy(4.4)The seond double integral vanishes due to the y-integration of an odd-symmetrialfuntion. In Gradstein and Ryshik (1981), the following integrals (No. 3.898 1. and3896 4.) are given:
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1Z�1 e��x2 sin(ax) sin(bx) dx = 12r�� �exp��(a� b)24� �� exp��(a + b)24� ��1Z�1 e��y2 os(by) dy = r�� exp�� b24�� ; for ab > 0 ; � > 0 :This yields:f(�) = 1Z�1 exp�� x22�2w� sin(kfx) sin[ksx os �℄ dx 1Z�1 exp�� y22�2e� os[ksy sin �℄ dy= 12p2��2w�exp��(kf � ks os �)22�2w4 �� exp��(kf + ks os �)22�2w4 ���p2��2e exp��2k2s sin2� �2e4 �
= ��w�e�exp���2w2 [kf � ks os �℄2 � �2e2 [ks sin �℄2�� exp���2w2 [kf + ks os �℄2 � �2e2 [ks sin �℄2��If the aspet ratio of the �lter is set to one, i.e., �e = �w, this simpli�es to:f(�) = ��2e �exp��k2f�2e2 + kfks�2e os � � k2s�2e2 �� exp��k2f�2e2 � kfks�2e os � � k2s�2e2 ��
= ��2e exp�� �k2f�2e2 + k2s�2e2 ���exp �kfks�2e os ��� exp ��kfks�2e os ��	= 2��2e exp���2e2 �k2f + k2s��| {z }f̂ sinh0�kfks�2e| {z }�0 os �1A
= f̂ sinh[�0 os �℄ 84



The parameter �0 is a so-alled onentration parameter. Its reiproal value is re-lated to the angular variane, and therefore ontrols the orientation tuning width (seeFig.4.2). �0 depends on the two known �lter properties kf = 2�=�f and �e as wellas the unknown quantity ks = 2�=�s, whih is inverse proportional to the dominantwavelength, �s, in the input signal.In the following derivations it will be assumed that the tuning funtions of all �ltersare normalised and idential, apart from an angular shift,  , indiating their preferredorientation. Hene: f(�;  ) = C sinh[�0 os(� �  )℄ ; (4.5)where C = 1= sinh(�0) is a normalisation onstant, so that f(�;  ) 2 [�1; 1℄. WhileC is the normalisation onstant for the theoretial tuning urve (4.5), the atual �lterresponses have to be be saled by C=f̂ . Let n be the number of �lters.r� 7! r� Ĉf ; where � = f1; : : : ; ngThe orientation tuning funtions of ortial neurons have been shown to be of vonMises type (Swindale, 1998), i.e., of the formf(�) / e� os(�� ) :This is onsistent with eqn.(4.5), in the sense that for realisti tuning widths (where �is not too small)
e� os(�� ) � e� os(�� ) � e�� os(�� ) = 2 sinh(� os(� �  )) ; for� �2 < � �  < �2 ;and onsidering the fat that, unlike Gabor �lter responses, ortial neural �ring ratesare, of ourse, positive. (In a real neural network the negative part of the tuning85



funtion would be signalled by means of a seond neuron sensitive to opposite ontrastsign.) Figure 4.3 illustrates the similarity of both funtions.
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Figure 4.2: Orientation tuning funtion of an odd-symmetri Gabor �lter for three di�erentvalues of the onentration parameter. The larger � is, the smaller the tuning width.
4.2 Theory of Probabilisti Population Coding withGabor FiltersThe Gabor �lter bank is an ensemble of orientation sensitive units resembling thepopulation of simple ells in a hyperolumn of primary visual ortex. The view of thisthesis is that suh an ensemble of orientation sensitive units an apture one- as wellas two-dimensional intensity features, rendering spei� orner or juntion detetorsunneessary. A probabilisti population oding framework an, therefore, onstitute ageneralised edge detetor by deoding a potentially multi-modal probability density ofloal orientation.Based on the priniple of linear superposition (disussed in setion 4.1), the un-derlying probability density of loal edge orientation an be modelled by a mixture86
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�r( ) = 2�Z0 f( � �)p(�) d� : (4.7)These equations desribe the proess of enoding the pdf p(�) in the expeted responsefuntion �r, whih is ontinuous in  . The set of average ensemble ativities (the averageresponse pro�le), denoted by f�r( �)g, is a sample of this funtion for a disrete set of�lter orientations  �.Thus the deoding of the pdf p(�) is a deonvolution (Wilson and L�udtke, 2000),whih is, in general, an ill-posed problem (Press et al., 1989) likely to require some kindof regularisation. To aount for this, a smoothness prior is used by Zemel et al. (1998).In the following setions, a parametri model of the expeted �lter responses will bederived based on the orientation tuning funtion and a mixture model of p(�). Withinthis framework, regularisation is ahieved in an impliit fashion as a onsequene oflow model omplexity.4.2.2 A mixture model of loal orientationThe enoding equation (4.7) is general, in the sense that it does not restrit p(�) tounimodality. Based on the assumption of superposition, the probability density ofthe stimulus orientation is modelled as a mixture of von Mises distributions (Mardia,1972), in order to allow aurate representation of ambiguous loal orientation (orners,juntions, et.):p(�) = 12� mXi=1 P (i)I0(�i)e�i os(����i); with mXi=1 P (i) = 1 : (4.8)Here I0 is the modi�ed Bessel funtion of the �rst kind and order zero, and the term1=2�I0(�i) serves as a normalisation fator of the i-th mixture omponent. Eqn.(4.8)an be onsidered a irular analogue of the Gaussian mixture density, where the �iorrespond to the 1=�i, the ��i to the �i, and the P (i) are the mixing oeÆients.88
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�r( ) = C4� mXi=1 0� P (i)I0(�i) 2�Z0 �e�0 os(�� ) � e��0 os(�� )� e�i os(����i) d�1A : (4.9)Therefore, it is neessary to solve integrals of the type2�Z0 e��0 os(�� )+�i os(����i) d� : (4.10)By means of the substitution os(� � �) = os(�) os(�) + sin(�) sin(�) and after89



rearranging terms, the exponent with positive sign in the integral beomes:�0 os(� �  ) + �i os(� � ��i)= �0 os(�) os( ) + �0 sin(�) sin( ) + �i os(�) os(��i) + �i sin(�) sin(��i)= os(�) ��0 os( ) + �i os(��i)�| {z }=:�i +sin(�) ��0 sin( ) + �i sin(��i)�| {z }=:�i (4.11)Analogously, let for ��0:~� := ��0 os( ) + �i os(��i) and ~� := ��0 sin( ) + �i sin(��i)This yields:�r( ) = C4� mXi=1 0� P (i)I0(�i) 2�Z0 e�i os(�)+�i sin(�) � e ~�i os(�)+ ~�i sin(�) d�1A : (4.12)Using the more general integral No. 3.937 in Gradstein and Ryshik (1981), it followsthat 2�Z0 ep os x+q sinx dx = 2�I0(pp2 + q2); (4.13)where I0 is again the modi�ed Bessel funtion of �rst kind and order zero. Beforeapplying this result to solve the integrals in (4.12), the terms �2i + �2i and ~�i2 + ~�i2need to be simpli�ed. With (4.11) one obtains:�2i + �2i = ��0 os( ) + �i os(��i)�2 + ��0 sin( ) + �i sin(��i)�2= �20 + �2i + 2�0�i �os( ) os(��i) + sin( ) sin(��i)�= �20 + �2i + 2�0�i os( � ��i) : (4.14)90



Analogously, for ~�i and ~�i one obtains a similar expression (exept for the negativesign): ~�i2 + ~�i2 = �20 + �2i � 2�0�i os( � ��i) : (4.15)Next, substituting (4.14) and (4.15), respetively, in (4.13) and inserting the results in(4.12) yields the average response pro�le:�r( ) = C2 mXi=1 P (i)I0(�i) �I0�q�20 + �2i + 2�0�i os( � ��i)��I0�q�20 + �2i � 2�0�i os( � ��i)�� (4.16)4.2.3 The likelihood of the response pro�leIn the previous setion, the expeted response pro�le, �r( ), has been derived as anexpetation value of the tuning funtion, given a partiular set of model parameters ofthe underlying pdf of the input variable �:�r( ) = 2�Z0 f(� �  ) p(�) d� : (4.17)Alternatively, the expeted response pro�le an also be thought of as the result ofaveraging the �lter responses. Let p(r; ) be the probability density over the responsevalue of a �lter of preferred orientation  . Then, the expeted (ontinuous) responsepro�le is given by �r( ) = 1Z�1 r p(r; ) dr : (4.18)The �lter responses r�, obtained at a partiular loation in an image, are instanesof stohasti variables, even though the �ltering per se is a deterministi operation.The randomness of the responses is reated solely by the stohasti nature of theinput variable, whih is fundamentally di�erent from standard biologial models of91



population oding, where neural �ring rates are usually random variables following aPoisson statistis (Zemel et al., 1998) or a related probabilisti model (Itti et al., 1998).Maximum likelihood estimationOne method of estimating the parameter0s of the mixture model p(�) is through amaximum likelihood estimation. Let� = �P (1); : : : ; P (m); ��1; : : : ; ��m; �1; : : : ; �m	denote a set of mixture parameters. Then, the optimal parameters �opt are given by�opt = arg max Lfr1 : : : rnj�; �0g :�Therefore, it is essential to know the likelihood of the individual �lter responses, giventheir preferred orientations  � and the parameters � and �0, i.e., p(r�; �;�; �0), inorder to be able to alulate the total likelihood of a given response pro�le. Regardingthe responses as independent stohasti variables yields:Lfr1 : : : rnj�; �0g = nY�=1 p(r�; � ;�; �0) :The likelihood funtion, L, depends on the parameters of the mixture pdf p(�), to-gether with the parameter �0 speifying the tuning funtion. The maximum likelihoodestimation for the mixture parameters an be performed using standard tehniques,suh as the EM algorithm. The remaining tuning parameter �0 an be obtained:a) from an initial measurement on a straight edge,b) together with the mixture parameters in the same MLE proess.Method b) ould have interesting impliations in a situation where lateral interationsbetween neighbouring �lters are present. In suh a situation, the ontext dependent92



hange of the tuning width ould be observed, i.e., the e�etive tuning width. In thisthesis, however, �0 will be determined aording to a).4.2.4 The probability distribution of responsesThe task now is to �nd the pdf of a funtion of a random variable, sine the �lterstransform the stimulus orientation, �, into responses via their tuning funtion, givenby (4.5). Aording to the general theorem for the probability density of a funtion ofa random variable (Papoulis, 2002, p.130), the pdf of the response pro�le (preferredorientation  ) is given by p(r; ) = p(�1)jf 0(�1; )j + p(�2)jf 0(�2; )j : (4.19)Here f 0 is the derivative of the tuning funtion with respet to �, and �1;2 are the twoorresponding angles of the response value r in the interval [ � �2 ;  + �2 ℄, given bythe inverse of the tuning funtion. Thus �1;2 are the solutions of the equationr = f(�1;2; ) ; �1;2 2 [ � �2 ;  + �2 ℄ : (4.20)Inverting the tuning funtion, eqn.(4.5), yields:r = C sinh[�0 os(� �  )℄rC = sinh[�0 os(� �  )℄1�0 sinh�1 � rC� = os(� �  )aros� 1�0 sinh�1 � rC�� = �(� �  )=) �1;2(r; ) = � aros� 1�0 sinh�1 � rC��+  : (4.21)The derivative of the tuning funtion is given by:93



f 0(�; ) = df(�; )d� = �C�0 sin(� �  ) osh[�0 os(� �  )℄ : (4.22)Inserting (4.21) into the angular pdf (4.8) yields:p(�1;2) = 12� mXi=1 P (i)I0(�i) exp ��i os�� aros� 1�0 sinh�1 � rC��+  � ��i�� : (4.23)Applying the addition theorem of the osine and using sin(aros x) = �p1� x2, oneobtains:p(�1;2) = 12� mXi=1 P (i)I0(�i) exp ��i�0 sinh�1 � rC� os( � ��i)��is1� � 1�0 sinh�1 � rC��2 sin( � ��i)� : (4.24)The seond ingredient of theorem (4.19), i.e., jf 0(�1;2; )j, is obtained by inserting (4.21)into (4.22):jf 0(�1;2; )j = �����C�0 sin�� aros� 1�0 sinh�1 � rC��+  �  � �osh ��0 os�� aros� 1�0 sinh�1 � rC��+  �  ������ :Using sin(aros x) = �p1� x2 again and osh( sinh�1x) = p1 + x2, this simpli�esto: jf 0(�1;2; )j = C�0 r1 + � rC�2 s1� � 1�0 sinh�1 � rC��2 : (4.25)Thus using (4.24) and (4.25) along with ex + e�x = 2 osh x, the pdf of the responsep(r; ) an be obtained aording to theorem (4.19):
94



p(r; ) = 1�C�0 mXi=1 P (i)I0(�i) exp h �i�0 sinh�1 � rC � os( � ��i)iq1 + � rC �2 r1� h 1�0 sinh�1 � rC �i2 �
� osh0��is1� � 1�0 sinh�1 � rC��2 sin( � ��i)1A : (4.26)This density is, again, a mixture model. However, the mixture omponents are highlynon-Gaussian, making it diÆult, though not impossible, to �nd the parameters. Theatual range of the normalised responses is the open interval (-1,1), as the density hassingularities in r = �1.It is important to note that, due to the struture of p(r; ), the most likely responsepro�le for a given set of parameters di�ers from the average pro�le f�r( �)g given byeqn. (4.16). The two would only equal if the responses utuated around their meanvalues following Gaussian distributions. However, the mere fat that response valuesare bounded, to be more preise r 2 (�1; 1), implies that the response pdfs annot beGaussian. For this reason, maximum likelihood estimation is the appropriate methodof parameter estimation, rather than �tting the response data with the funtion �r( )and minimising the squared error,E = nX�=1 hr� � �r( �)i2 :Proof of NormalisationThough theorem (4.19) implies that the result is a pdf, and therefore normalised, itshall be proved that eqn.(4.26) is, indeed, normalised, i.e.,1Z�1 p(r; ) dr = 1 : (4.27)95



Sine p(�1; ) =1, the integral is to be understood in the sense of the limit1Z�1 p(r; ) dr = lim�!0 1��Z�1+� p(r; ) dr = 1 :In order to show that (4.27) is satis�ed, the following substitution is introdued:�(r) := 1�0 sinh�1 � rC� =) d� = drC�0q1 + � rC �2 :With C = 1= sinh(�0) the limits of the integration then beome:�1 = �(�1) = 1�0 sinh�1��1C � = 1�0 sinh�1 (� sinh(�0)) = �1and, onsequently,�2 = �(+1) = 1 :Thus the integral simpli�es to:1Z�1 p(r; ) dr = 1� mXi=1 P (i)I0(�i) 1Z�1 e�i� os( ���i)p1� �2 osh��i sin( � ��i)p1� �2� d� ;whih an be further simpli�ed by means of the trigonometri substitution � =: sin �,d� = os � d�, eventually resolving the problem of singular boundaries. Thus the limitsof integration are: �1 = �(�1) = arsin(�1) = ��=2 ;�2 = �(1) = arsin(1) = �=2 :and the integral beomes:
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1Z�1 p(r; ) dr = 1� mXi=1 P (i)I0(�i) �=2Z��=2 e�i sin � os( ���i)os � osh ��i sin( � ��i) os �� os � d�= 12� mXi=1 P (i)I0(�i) �=2Z��=2 e�i sin � os( ���i) �e�i sin( ���i) os � + e��i sin( ���i) os �� d�= 12� mXi=1 P (i)I0(�i)0B� �=2Z��=2 e�i[sin � os( ���i)+os � sin( ���i)℄ d�+ �=2Z��=2 e�i[sin � os( ���i)�os � sin( ���i)℄ d�1CA
= 12� mXi=1 P (i)I0(�i)0B� �=2Z��=2 e�i sin[�+ ���i℄ d� + �=2Z��=2 e�i sin[�� ( ���i)℄ d�1CA= 12� mXi=1 P (i)I0(�i)0� �Z0 e�i os[�+ ���i℄ d� + �Z0 e�i os[�� ( ���i)℄ d�1A= 12� mXi=1 P (i)I0(�i)0� �Z0 e�i os[�+ ���i℄ d� + 0Z�� e�i os[�+( ���i)℄ d�1A= 12� mXi=1 P (i)I0(�i) �Z�� e�i os[�+ ���i℄ d�| {z }=2�I0(�i)= mXi=1 P (i) = 1 2Aside from the phase shift  � ��i, whih an be negleted due to 2�-periodiity, theintegral in the seond to the last step is, basially, the integral de�nition of the modi�edBessel funtion of the �rst kind and order zero (Abramowitz and Stegun, 1970).97



4.2.5 Pdf parameter estimation via the EM-algorithmHaving derived the pdf of responses from the pdf of the loal orientation, it is possibleto obtain the model parameters by means of a maximum likelihood estimation usingthe EM-algorithm (Dempster et al., 1977). Due to the omplexity of the response pdf,however, the log-likelihood does not lead to signi�ant simpli�ation, as in the Gaus-sian ase. Instead, the update equations are transendental and require a numerialproedure to solve them for the new parameter values.Adopting the notation used in Bishop (1995, p.65), the quantity to minimise is~Q = � nX�=1 mXi=1 P old(ijr�) ln fP new(i) pnew(r�ji)g : (4.28)Here pnew(r�ji) is the i-th mixture omponent of (4.26) for  =  � . Aording to Bayestheorem, the \old" posterior probabilities P old(ijr�), desribing the label assignment ofdata points to individual mixture omponents, are given by (Bishop, 1995):P old(ijr�) = pold(r�ji)P old(i)pold(r�) ; (4.29)where pold(r�) = pold(r; �) is given by (4.26). Equation (4.29) is the expetation step.In the maximisation step, the update equations for the mixture parameters areobtained by di�erentiating (4.28) with respet to these parameters and setting thederivative to zero.In the ase of the mixing oeÆients P new(i), the update equation has to be derivedunder the onstraintPmi=1 P new(i) = 1 by means of a Lagrange multiplier, as desribedin Bishop (1995), leading to P new(i) = 1n nX�=1 P old(ijr�) : (4.30)Let �i be the remaining mixture parameters. In order to obtain their update equations,it is neessary to take the derivative of ~Q with respet to the �newi ,98



� ~Q��newi = � nX�=1 mXk=1 P old(kjr�) ���newi ln pnew(r� jk) : (4.31)However, the derivative with respet to �newi is only non-vanishing if k = i. Thus thegeneral form of the update equation for �i beomes:� nX�=1 P old(ijr�) ���newi ln pnew(r�ji) = 0 : (4.32)Aording to (4.26), the logarithm of the i-th mixture omponent for response r� is:ln pnew(r�ji) = � ln f�C�0I0(�newi )g � 12 ln(1� � 1�0 sinh�1 �r�C ��2)+�newi�0 os( � � �� newi ) sinh�1 nr�C o� 12 ln�1 + �r�C �2�+ ln osh0��newi s1� � 1�0 sinh�1 �r�C ��2 sin( � � �� newi )1A :(4.33)With the abbreviation �� = 1�0 sinh�1 �r�C � for the frequently ourring \data term",eqn.(4.33) beomes:
ln pnew(r�ji) = � ln f�C�0I0(�newi )g � 12 lnf1� � 2� g+�newi �� os( � � �� newi )� 12 lnn1 + �r�C �2o+ ln osh ��newi p1� � 2� sin( � � �� newi )� : (4.34)Inserting (4.34) into (4.32) yields the derivative of ~Q with respet to the angular modes��i:
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� ~Q��� newi = nX�=1 P old(ijr�)(�newi �� sin( � � �� newi )��newi p1� � 2� os( � � �� newi ) tanh��newi p1� � 2� sin( � � �� newi )�) != 0 :Dividing by �newi and thereby exluding the irrelevant solution �newi = 0 (i.e. uniformangular distribution/no diretional struture) yields a transendental update equationin �� newi and �newi :
0 = nX�=1 P old(ijr�)(�� sin( � � �� newi )�p1� � 2� os( � � �� newi ) tanh��newi p1� � 2� sin( � � �� newi )�) : (4.35)Using ddxI0(x) = I1(x) (Abramowitz and Stegun, 1970), the derivative of (4.34) withrespet to �newi is:���newi ln pnew(r�ji) = �I1(�newi )I0(�newi ) + �� os( � � �� newi )+p1� � 2� sin( � � �� newi ) tanh��newi p1� � 2� sin( � � �� newi )� :Hene, the seond update equation is:� ~Q��newi = nX�=1 P old(ijr�)(I1(�newi )I0(�newi ) � �� os( � � �� newi )�p1� � 2� sin( � � �� newi ) tanh��newi p1� � 2� sin( � � �� newi )�) = 0 :(4.36)100



Sine �newi appears as the argument of modi�ed Bessel funtions and the hyperbolitangent, the update equation is again transendental. Thus for eah mixture ompo-nent, (4.35) and (4.36) form a system of transendental update equations whih haveto be solved numerially for the pair (�� newi ; �newi ) of new parameter values within eahmaximisation step, e.g., using a Newton-Raphson algorithm.In the following setion it will be shown how the omputational ost of eah max-imisation step an be signi�antly redued by introduing losed form approximationsof the update equations.4.2.6 An approximation for losed form update equationsThe transendental nature of the update equations (4.35) and (4.36) stems from thefat that parameters appear inside a hyperboli tangent and a ratio of Bessel funtions,respetively. Therefore, it would be desirable to substitute these expressions by suitableapproximations.For pratial purposes, the ratio of modi�ed Bessel funtions,I1(�newi )I0(�newi ) ;an be replaed by its asymptoti approximation (Mardia, 1972),I1(�)I0(�) � 1� 12� : (4.37)Figure (4.5) shows a omparison of the exat ratio vs. the asymptoti approximation.In fat, the approximation is rather \benign" (auray better than 1% for � > 4:5) andturns out to be very suitable for the range of � values found in real images (� 2 [5; 40℄).The terms with the hyperboli tangent in equation (4.35) an be simpli�ed byreplaing the new parameter values by their values from the previous update step, i.e.,
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Figure 4.5: Graph of the ratio I1(�)=I0(�) (resultant length) and its asymptoti approxima-tion aording to eqn.(4.37). For � > 4:5 the auray is better than 1%. One must, however,ensure that � > 1. For all pratial purposes, this is no serious limitation.
tanh��newi p1� � 2� sin( � � �� newi )� � tanh��oldi p1� � 2� sin( � � �� oldi )�| {z }D� :One justi�ation for suh an approximation might be the fat that the hyperbolitangent is a \squashing funtion" that saturates for arguments greater than one andsuppresses small arguments. Thus the term D� is basially robust with respet to theexat value of �oldi and �� oldi , as long as the whole argument of the hyperboli tangentis greater than one. In this ase, D� � 1.If, on the other hand, the argument is small, then D� � 1, and the ontribution ofthe entire seond term in equation (4.35) is small. Again, the error introdued by \old"102



parameter values in D� is negligible. An error results only in the few ases when theargument is in the quasi-linear range of the hyperboli tangent. The approximation isappropriate if the erroneous terms in the summation over � are in the minority, whihdepends on the number of data points, n, i.e., the size of the �lter population.Using the abbreviation D� for these now purely data-dependent terms, the updateequation for �� newi beomes:0 = nX�=1 P old(ijr�)(�� sin( � � �� newi )�p1� � 2� os( � � �� newi )D�) :Expanding the trigonometri terms allows solving for �� newi :0 = nX�=1 P old(ijr�)( ��h sin � os(�� newi )� os � sin(�� newi )i�D� p1� � 2� h os � os(�� newi ) + sin � sin(�� newi )i )= os(�� newi ) nX�=1 P old(ijr�)( �� sin � � D�p1� � 2� os � )� sin(�� newi ) nX�=1 P old(ijr�)( �� os � + D� p1� � 2� sin � )
=) tan(�� newi ) = Pn�=1 P old(ijr�)n �� sin � � D�p1� � 2� os � oPn�=1 P old(ijr�)n �� os � + D�p1� � 2� sin � o : (4.38)Now, there are only data and \old" parameter values on the right hand side.The simpli�ation of the update equation for the �newi is ahieved in a similarmanner, but now �� newi is known and an be used to de�ne:103



~D� := tanh��oldi p1� � 2� sin( � � �� newi )� :With the asymptoti approximation (4.37) equation (4.36) beomes:
0 = nX�=1 P old(ijr�)(�1� 12�newi �� �� os( � � �� newi )�p1� � 2� sin( � � �� newi ) ~D�)12�newi = nX�=1 P old(ijr�)(1� �� os( � � �� newi )�p1� � 2� sin( � � �� newi ) ~D� )

�newi = 12 Pn�=1 P old(ijr�)Pn�=1 P old(ijr�)n1� �� os( � � �� newi )�p1� � 2� sin( � � �� newi ) ~D� o(4.39)The approximation sets a lower bound for the value of �i, meaning that the angularwidth of the mixture omponents must not be too broad. A lower bound for �i is,however, in agreement with the requirements for separability of modes in the mixturedistribution. In other words, the approximation is most aurate when the multiplevalues for loal orientation an be learly distinguished, i.e., when the ertainties ofthe orientation measurement are suÆiently high.Table 4.1 shows parameter sets obtained through numerial solutions of the full setof transendental update equations, ompared with the results from the approximation.For reasonably high ertainty, the approximation is exellent.
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a) straight edge, �0 = 28:14 P (1) P (2) ��1 ��2 �1 �2full transendental 1.0 - 5:53Æ - 35.91 -losed form approximation 1.0 - 5:53Æ - 35.60 -b) orner, �0 = 28:14full transendental 0.54 0.46 11:99Æ �68:05Æ 17.69 20.37losed form approximation 0.54 0.46 11:89Æ �67:96Æ 17.16 19.86Table 4.1: Comparison of parameters alulated using both the full transendental updateequations and their losed form approximations. The di�erenes are so small that the approx-imation seems well justi�ed. As expeted, the approximation is slightly better for a higher�.4.3 Numerial Issues with the EM-algorithmEven though the EM-algorithm is by no means limited to Gaussian or other standardprobability densities, its appliation to a pdf as unusual as (4.26) requires some aution.The response pdf, p(r; ), has two problemati ranges of values where numerial diÆ-ulties are expeted to our. One is, obviously, the neighbourhood of the singularitiesat r = �1.However, the responses never atually reah the values �1, unless p(�) is a deltafuntion. In pratie, jrj < 1, due to the e�et of the onvolution (eqn. 4.7). The like-lihood rapidly dereases to \moderate" values in the neighbourhood of the singularity.In fat, in none of the examples studied for this thesis, arti�ial or natural images, didthe responses ever approah the ritial neighbourhood of the poles.A muh more severe, but less obviously dangerous, situation arises for responsesaround value zero, whih will be illustrated using the �lter responses obtained on aperfet straight edge (� = 0Æ) in an arti�ial image. Figure 4.6 (a) shows the responsedata from this experiment plotted as points (r; logL[r; ℄). The plot reveals one ritial105



data point (0, 25.14) whih has a response value zero (within the numerial preision)and a log-likelihood muh higher than the remaining data. This data point, therefore,ontributes a substantial part of the total data log-likelihood (the sum of all the indi-vidual log-likelihoods). Any potential (numerial) error in its log-likelihood value willintrodue a signi�ant error in the total data likelihood and the parameter estimationbased on it.The numerial instability of the log-likelihood funtion at near zero response be-omes more obvious in Figure 4.6 (b), whih shows the response log-likelihood for thepartiular �lter (orientation  = 90Æ) orresponding to the ritial data point in Figure4.6 (a). The log-likelihood funtion ats like an ampli�er with a strong gain, sine thederivative d logL[r; ℄=dr takes high values around jrj = 0. Suh a system is highlysensitive even to smallest perturbations. The responses are of limited preision due to�nite numerial resolution and digitisation, i.e., any response r is given only with apreision r ��r. Even if �r� 1, the resultant hange in the log-likelihood,�(logL) = d logL[r; ℄dr �r ;an be extreme. Thus the ritial data point is not an \out-lier" in the sense of afalse measurement, but rather a measurement with a minute error ampli�ed by theresultant log-likelihood funtion. It is the �nite numerial preision that makes itdiÆult to proess this data point and leads to an error in the total likelihood, andonsequently an inorret parameter estimation.4.3.1 Avoiding ritial data pointsThe easiest solution is to disard those data points where jrj � 0, whih an be a-omplished through a modi�ation of the expetation step (see setion.4.2.5) in theEM-algorithm, during whih the posterior probabilities are alulated as106
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(b)Figure 4.6: (a) The response data from an arti�ial step edge (orientation � = 0Æ) plotted aspoints (r; logL[r; ℄). There is one ritial data point (0, 25.14) whih has a response valuezero (within the numerial preision) and a log-likelihood muh higher than the remainingdata. Therefore, this data point dominates the total data likelihood, and any potential(numerial) error in its likelihood value will have a strong impat on the total data likelihoodand the parameter estimation based upon it. (b) Graph of the response log-likelihood forthe �lter (orientation  = 90Æ) orresponding to the ritial response in (a). Not only isthe log-likelihood high around r = 0 but also the derivative d logL[r; ℄=dr. Thus any smallerror in r (e.g., due to �nite numerial preision) is ampli�ed, and the resultant error of thelog-likelihood an be severe. The graph suggests disarding responses within a small intervalaround zero in order to avoid numerial diÆulties.
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P old(ijr�) = pold(r�ji)P old(i)pold(r�) :In the update equations (4.30), (4.35) and (4.36), the P old(ijr�) at as weights for theontributions of the n data points. In order to omit the problemati responses withjrj � 0, the orresponding weight is set to zero and, at the same time, the e�etivenumber of data points taken into aount is redued. Let k be the number of datadisarded. Then the e�etive number of data used for the updating, ~n, is simply givenby: ~n = n� k :The deision to disard data is based on a thresholding, and the redued set of �lterresponses ~R is given by: ~R = nr� j r� > rmin; � 2 [1; n℄o ;where rmin is the response threshold (e.g., rmin = 0:01) . The weighted summations overall data points, nX�=1 P old(ijr�) : : : ; are replaed by Xr�2 ~RP old(ijr�) : : :For instane, the update equation of the priors beomes:P new(i) = 1~n Xr�2 ~RP old(ijr�) :4.3.2 InitialisationThe initial values for the angular means �� (0)i are obtained by a peak searh in theativity pro�le of the �lter bank, using a 5-neighbourhood; i.e., a partiular responser� is a peak (loal minimum or maximum) if the onditionr� = max(r��2; r��1; r�; r�+1; r�+2) (4.40)108



or r� = min(r��2; r��1; r�; r�+1; r�+2) ; (4.41)
respetively, is satis�ed. Thus the number of deteted peaks determines the initialnumber of mixture omponents, m, whih an be modi�ed later during the iterationsof the parameter estimation. The �lter orientations over only the range [0Æ;  = 180Æ℄.The responses for the higher angles  > 180Æ are given by the antisymmetry relationr( + �) = �r( ) ; (4.42)whih is a onsequene of the sensitivity to ontrast sign. In order to hek the on-ditions (4.40) and (4.41) at the \ends" of the �lter bank (i.e., responses r1, r2, rn andrn�1), one must ompute responses r�1, r�2, rn+1 and rn+2, whih are not part of the�lter bank, by means of (4.42). For a reasonably high number of �lters (n > 16), thisyields an initialisation quite lose to the true modes of p(�). Let  max;i be the �lterorientation orresponding to the i-th peak response. Then,�� (0)i =  max;i :The mixing oeÆients P (i) are initialised with the response values at the detetedpeaks, whih have to be normalised by the sum over all response peaks:P (i)(0) = rmax;iPmi rmax;i :Sine there is no easy way of obtaining a �rst guess for the onentration parameters,they are simply initialised by values similar to those typially obtained from real images,e.g., �(0)i = 20.Sometimes during the iterations of the EM-algorithm mixture, omponents \on-trat" in the sense that their onentration parameters steadily inrease beyond any109



reasonable value. To avoid suh situations, it is useful to impose an upper bound forthe onentration parameter and to eliminate a mixture omponent one that limitis exeeded. The hoie of the \onentration threshold" is, of ourse, heuristi, but,in pratie, �nding an empirial value that does not erroneously disard neessaryomponents, but whih simultaneously limits model omplexity, is fairly easy (e.g.,�max = 100).4.4 Measures of Certainty in Probabilisti Popula-tion CodingThe probabilisti approah yields not only an estimate for the di�erent edge orienta-tions present in the neighbourhood of the onsidered point (x; y), but also informationabout the quality or ertainty of these measurements through the onentration param-eters of the mixture, the �i. A ertainty measure, denoted by , should be a funtionof the variane of the angular estimate. Also, it is desirable that the ertainty measurebe normalised and positive; i.e., 0 �  � 1.However, unlike the ase of a Gaussian pdf, where the parameter �2 is the variane,the orresponding values 1=�1; : : : ; 1=�m in the von Mises mixture annot themselvesbe interpreted as angular varianes. In fat, the onepts of mean and variane annotbe uniquely extended to irular statistis; instead they have to be rede�ned with someare. For an angular variable, the irular variane, V0, is de�ned as (see e.g., Mardia,1972): V0 = 1� Efos(� � ��)g ; (4.43)where Ef:g denotes the expetation value and �� the mean diretion. The irularvariane is bounded, and 0 � V0 � 1, sine the probability mass is onentrated in theinterval [��� �2 ; ��+ �2 ℄. Furthermore, V0 is invariant with respet to a shift of the mean110



diretion, as one would expet from a variane. A onvenient hoie for a ertaintymeasure is � = 1� V0 = Efos(� � ��)g ; (4.44)whih is also referred to as the resultant length (Mardia, 1972). � inherits the propertyof shift invariane with respet to the mean diretion, and also ful�lls 0 � � � 1.For a von Mises distribution, one obtains:
� = Efos(�� ��)g = 2�Z0 p(�) os(�� ��) d� = 12�I0(�) 2�Z0 e� os(����) os(�� ��) d� ; (4.45)where the integral is essentially the modi�ed Bessel funtion of the �rst kind and �rstorder, I1(�) (Mardia, 1972). Aordingly,� = I1(�)I0(�) ; (4.46)a measure proposed by Zemel and olleagues within the framework of the \diretional-unit Boltzmann mahine" (Zemel et al., 1995).4.4.1 Relation to information-theoreti quantitiesInformation theory provides another important measure of ertainty, the Shannon en-tropy, h = 2�Z0 p(�) ln p(�) d� ;whih desribes the mean information ontent of a random variable. In statistialestimation theory, the Fisher information,I = 2�Z0 �dp(�)d� �2�p(�) d� ;111



determines the variane of an eÆient estimator through the Cram�er-Rao (in)equality.However, neither measure is normalised, and the Shannon entropy an even have neg-ative values. The ertainty measure � introdued in eqn. (4.46) is losely related tothe Fisher information, as well as to the Shannon entropy.For a von Mises distribution, the Fisher information equates to (see appendix A)I(�) = 12 I1(�)I0(�)� :Consequently, � is, essentially, the Fisher information saled by the onentrationparameter: � = 2 I� :The Shannon entropy of the von Mises distribution is given by (see appendix A):h(�) = ln[2�I0(�)℄� I1(�)I0(�)� : (4.47)Thus � is related to the entropy by:� = ln[2�I0(�)℄� h(�)�4.4.2 A normalised ertainty measure based on entropyThough the resultant length, used by Zemel and o-workers (eqn. 4.46), is a validertainty measure, it turns out not to be partiularly useful for the pratial purposeof disriminating loal features sine it assigns an almost equally high ertainty toonentrations � > 10. The relevant range of onentration parameters for real imagesis, however, 5 < � < 40.As mentioned in the previous setion, ertainty may also be de�ned in terms of theShannon entropy, but, beause the entropy an be negative (for ontinuous probability112



0

0.5

1

1.5

 

5 10 15 20 25 30

κ

relative
entropy

uniform
distribution

decoded
distribution

S
h

a
n

n
o

n
 e

n
tr

o
p

y

Figure 4.7: Graph of the Shannon entropy of a von Mises distribution as a funtion of theonentration parameter �. The maximum hmax = ln(2�) is reahed for � = 0 when thedistribution beomes uniform. Note that, unlike for disrete probability distributions, theentropy beomes negative for larger �-values and has no lower bound. The relative entropy,however, is always positive.densities), it is unsuitable for pratial purposes. In order to derive a positive ertaintymeasure from entropy, it is advantageous to onsider the Kullbak-Leibler divergene ofa omponent density pi(�) from the distribution of maximum entropy, i.e., the uniformdistribution, q(�) = 1=2�. Sine the uniform distribution is, by de�nition, a onstant,this is equivalent to taking the di�erene between the maximum entropy (orrespondingto � = 0) and the entropy for a given � = �i, whih always results in a positive quantity(see Fig.4.7). Therefore, the Kullbak-Leibler divergene,K(p; q) = 2�Z0 p(�) ln �p(�)q(�)� d� ; (4.48)is also alled the relative entropy. With the densities given by113



p(�) = 12�I0(�)e� os(����) and q(�) = 12�and, sine q is a onstant, this yields:K(pi; 12� ) = 2�Z0 pi(�) [ln pi(�) + ln(2�)℄ d� = �h(p) + ln(2�) = h � 12��� h(p) :With the entropy given by eqn.(4.47), this equates to:K(pi; 12� ) = I1(�i)I0(�i)�i � ln[2�I0(�i)℄ + ln[2�℄= I1(�i)I0(�i)�i � ln[I0(�i)℄ : (4.49)Normalisation an be ahieved through a squashing funtion, suh as a variation of thefamiliar logisti sigmoid funtiong(x) = 21 + e�x � 1 :The resultant ertainty measure is = g[K(pi; 12� )℄ = 21 + I0(�) exp[��I1(�)=I0(�)℄ � 1 : (4.50)Fig.(4.8) shows a plot of the two ertainty measures, the squashed Kullbak-Leiblerdivergene, , and the resultant length, �. Compared to the resultant length, thismeasure is more suitable for disriminating measurements by ertainty, as it approahesits asymptote of absolute ertainty slowly for a very large onentration parameter.The resultant length rapidly approahes the asymptote, already assigning a ertaintyof � � 1 to �-values above 10. However, the entropy-based ertainty measure allowsbetter judgement of the reliability of orientation measurements in the range relevantfor real images, i.e., 5 < � < 40. 114
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Figure 4.8: Comparison of the resultant length � = I1(�)=I0(�), proposed as a ertaintymeasure by Zemel and olleagues (Zemel et al., 1995), with the ertainty measure  basedon relative entropy (Kullbak-Leibler divergene) given by eqn.(4.50). The resultant length(dashed urve) \saturates" too soon whereas  (solid urve) is more suitable to disriminatebetween di�erent ertainties in the range of 5 < � < 40 whih is important for featureseletion in real images.4.4.3 Average ertaintyIn order to desribe the ertainty of a mixture distribution, it makes sense to alulatea weighted average of the ertainties of the m mixture omponents, where the weightsare given by the mixing oeÆients (priors), P (i), whih, by de�nition, are normalised.This leads to the de�nition � = mXi=1 P (i)i : (4.51)115



The parameter extration proedure is interpreted as m independent measurementsof loal orientation, ��1; : : : ; ��m. Sine the average ertainty is, by de�nition, indepen-dent of the number of mixture omponents, it allows omparison between image points,regardless of their orientational struture. A lear orner point, for example, may havea better ertainty value than a blurry or noisy edge.4.5 Experiments on Syntheti and Natural ImagesFigure 4.9 shows an image of three objets generating a number of di�erent edgeon�gurations, inluding straight edges, urved edges, orners and T-juntions. TheEM-algorithm desribed in the previous setions has been applied to a number ofkey points in this image. For better visualisation, the pdf is displayed as a polarplot; the angle represents � and the radius, p(�). Eah von Mises mixture omponentprodues a lub-shaped plot oriented in the same way as the the orresponding detetedorientation. The diretion of the \lub" depends on the sign of the ontrast. In thisase, a bright-dark transition (ounter lok-wise) yields an angle � 2 [0Æ; 180Æ) and adark-bright transition an angle [180Æ; 360Æ).Figure 4.10 shows the original �lter bank response from point (1). The pdf of theorientation angle, whih results from the EM-algorithm, is shown in Figure 4.11. Point(1) is a orner point. As expeted, two well pronouned and roughly perpendiularomponents are found (ertainties 1 = 0:73 and 2 = 0:75).The seond set of results (Figures 4.12 and 4.13) is from point (2), whih is astraight edge. The EM-algorithm �nds a strong omponent (ertainty  = 0:8) in thediretion of the edge.Finally, Figures 4.14 and 4.15 have been obtained at point (5), whih is a T-juntionreated by an oluding edge. This edge is also urved, but beause the edge is o-luding, there are only two prinipal edge diretions. Consequently, the pdf ontains116



a large omponent (ertainty  = 0:74) for the urved edge and a smaller omponentwith a slightly higher ertainty for the weaker, seondary, edge (ertainty  = 0:75).
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Figure 4.10: Response pro�le at ornerpoint (1).
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Figure 4.11: Extrated pdf. of loal edgeorientation in in orner point (1).118
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Figure 4.14: Response pro�le at a T-juntion (point 5).
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Figure 4.15: Extrated pdf. of loal edgeorientation in in T-juntion (5).119



4.5.1 Experiments with varying �lter bank sizeAn important issue in population oding onerns the way in whih the estimationerror depends on the size of the population. In Figures 4.16 and 4.17, the pdf of loalorientation is extrated at points (2) and (5), employing di�erent numbers of �lters.The ground truth is represented by dark lines of \manually" determined orientation.Copies of these lines, shifted in parallel, are superimposed with the polar plot of theextrated orientation pdf to enable diret omparison.The quality of the parameter extration seems to be a�eted by the number of �ltersthat are inative, in the sense that the preferred �lter orientation is very di�erent fromany loal orientation present in the objet(s). Nevertheless, inative �lters will pikup noise from the image and ontribute this spurious information to the parameterestimation proedure. As illustrated in Setion 4.3, the data likelihood an amplify thenoise present in small responses. Despite the fat that some preautions are taken inorder to disard ritial data points, there remains a ertain degree of noise introduedby responses that are just above the threshold and that are, therefore, taken intoaount.For this reason, at the T-juntion the number of �lters is not as important as in thease of the straight edge. However, in both ases the variane estimate of the angulardistribution is strongly dependent on the number of data points (�lters).
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Figure 4.16: The extrated pdf at point (2) for di�erent numbers of �lters. Comparisonwith the ground truth, represented by the dark line, reveals that the orientation estimate ismost preise when 16 �lters are employed.
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4.5.2 Experiments with noiseIn order to study the e�et of noise on the ertainty measure, it is useful to testthe algorithm on an arti�ial image. A perfet straight edge has been superimposedwith Gaussian noise (additive noise) of di�erent variane (Fig. 4.18). The noise level(standard deviation) is given in perent of the maximum ontrast. The result for theestimated onentration parameter and the orresponding ertainty value is shown inFigure 4.19 for two di�erent �lter wavelengths. Both onentration parameter andertainty gradually derease with inreasing noise level. However, for the �lter bankwith smaller wavelength the performane dereases abruptly at a partiular noise level(about 65%, f. Fig. 4.18 ()), indiating that the parameter estimation proedurean, at some point, only inorporate the inreasing number of response \outliers" byhoosing a very large variane (small �).

(a) (b) ()Figure 4.18: (a) An arti�ial step edge. (b) with added Gaussian noise (20%). () with 65%noise, the \breakdown" level of �lter bank with � = 10 pixels in Fig. 4.19E�et on multiple orientation estimatesFigure 4.20 shows the inuene of Gaussian noise added to the natural image 4.9 onthe performane of orientation estimation in the orner point (3).123
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Figure 4.19: An Experiment with Gaussian noise added to an arti�ial step edge. Theplot shows the onentration parameter (left) and the ertainty (right) as a funtion ofthe noise level (variane in perent of maximum ontrast) for two �lter wavelengths. Bothonentration parameter and ertainty gradually derease with growing noise level. The�lter of smaller wavelength shows an abrupt drop at about 65% noise level. A similar suddenbreakdown of performane is expeted for the larger wavelength at a higher noise level.For moderate noise the orientation estimates are reasonably aurate, onsideringthe fat that they are loal measurements. However, above 5% noise level the perfor-mane deteriorates until the estimates virtually \merge" at about 30% noise. However,it is important to note that the strength of the population oding method is not thenoise robustness of the loal orientation measurement itself, but rather the ability toaept or disard loal measurements based on their ertainty. In the following hapter,it will be demonstrated that by inorporating ertainty at the loal level and at thepereptual grouping level, the noise robustness of ontour detetion an be improvedas well as the robustness against variations in edge ontrast.
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Figure 4.20: An experiment where Gaussian noise was added to a natural image (Fig. 4.9) .The plot shows the mean orientation estimates from the orner point (3) and the orrespond-ing errors. For moderate noise the orientation estimates are reasonably aurate, onsideringthe fat that they are loal measurements. However, above 5% noise level the performanedeteriorates until the estimates virtually \merge" at about 30% noise.
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4.5.3 \Neural" noiseIn another experiment, Gaussian noise was added to the �lter responses after onvo-lution with the image, resembling the situation in a biologial neural network, whereneural �ring rates are stohasti variables. Suh an additional noise omponent is notaounted for by the model, and one annot expet the system to be very robust againstit. Figure 4.21 shows the inuene of additive Gaussian noise on the the mean orienta-tion estimates, obtained by averaging over several hundred trials. The noise standarddeviation is given in perent of the maximum response, whih in this ase is the peakof the stronger omponent in the response pro�le in Fig. 4.15:noise level = �noisermax :The noise level an be transformed into the signal to noise ratio (SNR) in deibel(dB) by means of SNR [dB℄ = �20 log(noise level) :The estimate �2 orresponds to the weaker omponent and is, as expeted, more a�etedby the noise than the other omponent. Obviously, the angular estimators are biased.The mean orientation estimates are roughly stable up to a noise level of 20%, wherethey start shifting away from their original values. At a noise level of about 40% (SNR� 8 dB) of the maximum response, when the noise standard deviation is roughly ofthe same amplitude as the weaker omponent (estimate �2), the value of h�2i saturates,indiating that orientation estimation is no longer funtioning.Similar results are obtained when an orientation estimate is extrated at the straightedge (point 2). Figure 4.22 shows a measured orientation shifting with inreasing noiselevel. The orientation estimate shifts more rapidly with a unimodal response pro�le126



sine there are more inative �lters ontributing only noise.In the ase of the orner point (1), the response pro�le onsists of two peaks ofsimilar height, though the omponent with a peak at� 7Æ has a wider \tail" (Fig. 4.10).As in the example of the T-juntion, the angular estimates are stable up to about 20%noise level (SNR � 14 dB). For higher noise level the estimates, again, shift until themean estimate for the wider omponent approahes that of the other omponent above40% noise level (SNR � 8 dB, Figure 4.23).
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Figure 4.21: An Experiment with Gaussian noise added to the �lter responses after onvo-lution with the image. The plot shows the mean values of the two orientation estimates,h�1iand h�2i, in the T-juntion (point 5) from image 4.9 averaged over several hundred trials,as a funtion of the noise level (noise standard deviation in perent of the maximum �lterresponse). For omparison, the ground truth is denoted by the dotted straight lines.
4.6 Conlusions and DisussionIn this hapter, a framework has been developed that applies the onept of proba-bilisti population oding to loal edge orientation estimation using a bank of odd-127
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Figure 4.22: An Experiment with Gaussian noise added to the �lter responses after onvo-lution with the image. This plot shows the mean value of the orientation estimate, h�1i, forthe straight edge (point 2) from image 4.9 as a funtion of the noise level (noise standarddeviation in perent of the maximum �lter response).symmetri Gabor �lters. Based on the assumption that loal edge orientation followsa von Mises distribution, edges as well as points of multiple orientation, suh as ornerpoints and T-juntions, an be modelled by a von Mises mixture distribution. Giventhe �lter responses at a partiular loation, the parameters of this angular distributionare estimated by means of an EM-algorithm. The linearity of the applied �lters, whihensures that responses at two-dimensional edge on�gurations follow the priniple oflinear superposition, is essential to the validity of the mixture model.The fundamental di�erene of the method presented from the approah of Zemeland olleagues (Zemel et al., 1998) is that the stohasti input variable � is desribed128



in terms of a parametri model density p(�). Moreover, the enoding of the stohastiinput variable, �, is expressed as a transformation of its probability density, p(�), intothe pdf of the �lter responses, p(r; �), whih is analytially derived, providing thebasis for maximum likelihood estimation of the mixture parameters.The probabilisti population oding method presented herein onstitutes a generalfeature detetor that is apable of representing one- as well as two-dimensional intensitystruture using on a set of linear �lters. The fundamental diÆulties of ombined lineardetetors for two-dimensional intensity features, identi�ed by Zetzshe and Barth (1990;f. Setion 2.4), do not arise, due to the multipliative non-linearity of the likelihoodfuntion. Thus the likelihood funtion realizes the non-linear, \and"-like operationspostulated by the said authors.The von Mises model annot aurately represent ertainty in regions with strongurvature, sine the \attened" response pro�les obtained in suh loations orrespondto platykurti probability densities inherently di�erent from von Mises distributions.As a result, the angular variane is overestimated and onsequently the ertainty un-derestimated.This aords well with the view held by Zuker and o-workers, who onsider ur-vature to be an additional piee of information requiring a separate mehanism ofdetetion, suh as \end-stopped" operators (Dobbins et al., 1987). However, inorpo-rating suh an elaborate urvature detetor would be beyond the sope of this thesis.Curvature will be inorporated in another way in the following hapter, whih dealswith the grouping of loal features by means of interpolating splines.
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Figure 4.23: An Experiment with Gaussian noise added to the �lter responses after onvo-lution with the image. This plot shows the mean value of the orientation estimates h�1i andh�2i for the orner (point 1) from image 4.9 as a funtion of the noise level (noise standarddeviation in perent of the maximum �lter response). The bias with respet to the groundtruth (dotted lines) is stronger due to the inuene of shadows.
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Chapter 5
Contour Segments from SplineInterpolation
Having developed a probabilisti representation of loal tangent orientation, it is pos-sible to make a transition from loally identi�ed key points to ontour segments byombining the probability densities from pairs of points to determine the parametersof interpolating splines.Suh pereptual organisation is very muh in the spirit of Shipley's and Kellman's(1991) psyhophysially motivated theory of visual interpolation. Although their ri-terion of edge relatability (see Setion 2.7.2 of the literature review) provides a usefultest for o-urvilinearity, the geometrial on�gurations of deteted edge segments arein pratie often not as preise as required, due to noise. Instead, edge segments wouldoften be erroneously dismissed as \unrelatable" (see Fig. 5.1), partiularly on straightontours. Thus orientation estimates will often have to be revised in order to yield\relatable" and more aurate tangent on�gurations. The revision will be based onmutual onsisteny, as well as on the quality of agreement between the resultant urvesegment and the Gabor transform of the given image. In an abstrat sense, the modi-�ation of initial orientation estimates an be related to the lateral interations among131
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Figure 5.1: Illustration of loal orientation \jitter" due to noise. The thin long straight linesymbolises a ontour, and the thiker short lines are visualisations of extrated loal edgeorientation. The orientational deviations from the true ontour are exaggerated for larity.Edge segments a and b appear \unrelatable", sine their orientation deviates from the trueontour orientation. Even though  and d an be onneted by a urve, they do not ful�llthe \relatability" riterion, and the interpolating spline (dashed urve) has no resemblaneto the atual ontour. Angular smoothing is required to make the edge segments \relatable"and to assign them to one and the same ontour. Modi�ation of initial orientation estimatesis only justi�ed if the resultant splines provide an improved ontour representation.hyperolumns in the brain, where loal orientation sensitivity is altered by the preseneof ontextual stimuli (f. Setion 2.1.1).Within the population oding framework, mutual onsisteny of ontour key pointsan be expressed in terms of a spline likelihood, omprising the joint density of theorientation pdfs and an additional bending onstraint. Thus the pereptual groupingstep onsists of a ombination of loal population odes.The spline hosen for interpolation is of quadrati Hermite-type. Its parametersare fully determined by the positions and tangent orientations of the end points, whih132



is preisely the information provided by the population-oding-based feature detetionproedure developed in the previous hapter.As a onsequene of the probabilisti orientation estimation, tangent angles aregoverned by probability densities, and the unertainty of tangent orientations is trans-formed into the system's unertainty regarding the onneting spline.An important feature of the pereptual grouping framework presented in this hap-ter is that the degree of unertainty in the orientation determines the \inertia" of aloal tangent estimate, i.e., how easily an initial orientation measurement (given by amode in the orresponding pdf) an be modi�ed during onsisteny optimisation.In this role of ertainty lies a oneptual di�erene to other grouping shemes. Usu-ally, the oarseness of the initial loal orientation measurements is expressed in terms ofthe likelihood of potential ontinuations at the grouping level, haraterised, for exam-ple, by a \support funtion" in relaxation labelling (Parent and Zuker, 1989; Hanokand Kittler, 1990) or by orientation \votes" propagated through an \extension �eld"(Guy and Medioni, 1996). The initial ertainty of the loal measurement, however, isnot modeled.In the grouping approah presented in this hapter, loal ertainties are measuredquantities serving as onstraints during pereptual organisation. Thus by exploiting allthe information provided by the extrated probability densities, the algorithm bene�tsfrom the rihness of the distributed representation of edge orientation.5.1 Detetion of Control PointsAny spline is determined by a set of ontrol points loated either on or outside of theurve. Sine loal orientation is haraterised by the extrated probability density atany point on a ontour with good auray, it is advantageous to plae ontrol pointson the spline. The algorithm then performs spline interpolation based on ontrol point133



positions and tangent angles. Points with multiple orientation are assigned more thanone tangent angle, and onsequently multiple onnetions to other neighbouring pointsan be established.5.1.1 Loalisation of edge segmentsThe proedure to obtain an initial set of key points (ontrol points) is an extension ofthe method of feature seletion desribed in Setion 3.6.1.In order to irumvent the unertainty relation between preise edge loalisationand aurate tangent orientation estimation, two Gabor transforms are performed.Firstly, a �lter of higher spatial frequeny is hosen to determine response magnitudesfor loalisation. Seondly, the image is onvolved with a low-frequeny kernel, provid-ing the basis for population deoding of tangent orientation and the omputation ofertainty values. While in Chapter 3 (Setion 3.6.1) key points are loated at lateral lo-al maxima of the produt of ertainty and the sum of response magnitudes,Pni=1 jrij,a di�erent interation between ertainty and response magnitude will be introdued inthe following setion.5.1.2 Certainty-ontrolled normalisationThe fundamental obstale in trying to segregate genuine ontours from noise is theoften very poor edge ontrast. One means of overoming the strong variations of loaledge ontrast is normalising the response value in eah pixel by dividing it by thesum of the responses within a small neighbourhood (e.g., 7 � 7 pixels). However, toavoid an ampli�ation of noise, suh a normalisation should be guided by struturalonstraints that require the presene of an edge-like response pro�le to ativate thenormalisation proess. The riterion for the deision to ativate the normalisation isthat the ertainty  exeeds a threshold min (e.g., min = 0:5, f. Fig. 4.8). If the134



ertainty remains below the threshold, the �lter response is suppressed. Let R be thesum of responses aross the �lter bank; i.e.,R = nXi=1 jrij :Consider a neighbourhood, N , onsisting of n � n pixels. Then, R undergoes thefollowing transformation:R 7! 8>>><>>>: RPj2N Rj if  � minRn2 if  < min ; (5.1)where the upper row e�etively enhanes weak ontours by levelling out the variationsof edge ontrast, while the lower, suppresses responses in regions where the responsepro�le does not resemble that of an edge. This failitative, respetively, suppressivee�et of the normalisation inreases the signal to noise ratio of the response map.Normalisation has also been suggested as a biologial mehanism within ortialhyperolumns by Heeger and olleagues (1996), though in a quite di�erent form andwithout any referene to ertainty. Therefore, the ertainty-ontrolled normalisation isonly loosely inspired by their approah.The hoie of the ertainty threshold in (5.1) is of general validity, sine the typialrange of ertainties orresponding to objet ontours in real images is essentially thesame for all images, unlike ontour ontrast, whih an be arbitrarily small.Figure 5.2 illustrates the improved performane of the ertainty-ontrolled nor-malisation ompared to an overall normalisation. Although the desired redution ofresponse variability is ahieved without amplifying noise, the normalisation proess alsoenhanes spurious ontours in Figure 5.2 () that are aused by reetion on the surfaeof the table. However, reetions of edges are valid struture, sine they are regionsof genuine \non-aidental" intensity gradient, and a distintion between reeted and\real" edges annot be made at this level of proessing.135



(a) (b)

() (d)Figure 5.2: Comparison of a general, \ontour-blind" normalisation of the response sum withthe more sophistiated, ertainty-ontrolled normalisation. (a) Original image. (b) The sumof responses (� = 8; � = 0:3) shows strong variations. () The response sum, normalised ineah pixel (mask size 7 � 7 pixels). Though responses are levelled out, the signal to noiseratio has beome very small. (d) The ertainty-guided normalisation avoids the extremeampli�ation of noise that () exhibits, by suppressing responses where ertainty is low.
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5.1.3 Loalisation of orner points and juntionsA high-frequeny Gabor transform is not suitable for loalising points with multiple ori-entation, sine �lter responses tend to be less prominent in suh loations and strongerin the immediate viinity. Instead, a measure of multimodality an be derived from thedistribution of �lter responses with respet to the orientation of the population vetordesribed in Chapter 3.For this purpose, two new quantities are introdued, whih will be referred to as\parallel response integral", Gk, and \perpendiular response integral", G?. Theyare alulated by summing up response moduli within the interval of �45Æ around thepopulation vetor and within the interval of �45Æ around the orientation perpendiularto the population vetor. Figure 5.3 illustrates the two angular ranges, using a bimodalresponse pro�le.Let �pop be the orientation of the population vetor (mean orientation), and letG( ) be the response pro�le, i.e., the �lter response modulus as a funtion of thekernel orientation  . Then the parallel response integral is de�ned as:Gk = �pop+�4Z�pop��4 G( ) d : (5.2)Analogously, the perpendiular response integral is de�ned as:G? = �pop+ 34�Z�pop+�4 G( ) d : (5.3)In pratie, the ontinuous de�nitions (5.2) and (5.3) have to be replaed by disreteapproximations:
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Gk = Xi2Ik Gi ; where Ik = ni j  i 2 ��pop � �4 ; �pop + �4 � ; i = 1; : : : ; no : (5.4)G? = Xi2I? Gi ; where I? = ni j  i 2 ��pop + �4 ; �pop + 34�� ; i = 1; : : : ; no :(5.5)One might be inlined to hose the the ratio of the two, G?=Gk, as a measure ofmultimodality and thus an indiator for the presene of a orner points or a juntion.The above ratio is, however, very sensitive to noise, partiularly if responses are small.In theory G? � Gk, whih follows immediately from the de�nition of G? and Gk:sine Gk is based on the mean orientation �pop (orientation of the population vetor),at least 50% of the response integral must be onentrated around �pop. However,the numerator Gk an in fat beome larger than the denominator, as a result ofdigitisation. A more robust measure is obtained when the ratio is multiplied by thesum of response magnitudes. Let G be the sum of the magnitudes of all responses inthe �lter bank, G = nXi=1 Gi :Then, the degree of multimodality, �, shall be de�ned as:� = G?Gk G : (5.6)As Figure 5.4 illustrates, � provides a oarse loalisation of orner points and juntions.In partiular, the measure is useful to disard ertain systemati erroneous ornerpoints reated by the intersetions of \ripples" in the odd-symmetri Gabor transform(f. Fig. 5.4 ()). The rippling e�et is quite prominent due to the hoie of �lterparameters required for good orientation tuning, i.e., relatively large wavelength andsize of �lter mask. 138
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Figure 5.3: Polar plot of a response pro�le and the orresponding population vetor ~p(mean orientation) as well as its perpendiular ounterpart ~p?. Due to the bimodality ofthe pro�le, there is a signi�ant amount of response energy within the �45Æ range aroundthe orientation of ~p?. With a unimodal ativity pro�le almost all the energy would beonentrated around the population vetor, unless the tuning urves were extremely wide. Ameasure of multimodality an be derived from the ratio of the sums of responses around ~pand around ~p?.The multimodality measure only peaks strongly on the ontours, sine it is om-puted from phase-insensitive Gabor moduli. An additional fousing e�et an beahieved if the response sum G is alulated using the high frequeny (loalising)Gabor transform.5.1.4 The unertainty of key pointsThe key points are the result of loal measurements. Even though they are loatedon the ridges in the \on�dene landsape", de�ned either by the produt of responsemagnitude and ertainty or by ertainty-ontrolled normalisation of response magni-tude, there is still a degree of unertainty, partiularly in the tangent orientation,whih is ruial, sine the orientations measured at the key points will determine the139



(a) (b)
"false corners"

()Figure 5.4: An image (a) and its \multimodality map" (b) alulated aording to equation(5.6), for a �lter wavelength � = 10 pixels. The multimodality map, obtained from Gabormoduli, is useful to support the loalisation of orners and juntion points. () The map of theodd-symmetrial responses summed over all orientations (� = 10 pixels, � = 0:6�) ontains\ripples", reating \false orners", whih an be eliminated by means of the multimodalitymap.parameters and onsequently the shape of the onneting splines. Therefore, the keypoints are only preliminary and have to be updated aording to smoothness and dataonsisteny onstraints. Moreover, spurious key points aused by noise an pass themagnitude-ertainty threshold, reating false positives, whih an only be identi�ed bytheir lak of o-urvilinearity with their neighbours at the feature grouping stage.5.2 Spline InterpolationAn important problem is whih type of spline to hoose for interpolation betweendeteted key points. B-splines, for example, have beome very popular in omputergraphis and mahine vision, beause they are C2 ontinuous and naturally representsmoothly urved ontours. The C2 ontinuity, however, tends to smooth out abrupt140



hanges of tangent orientation or urvature. An aurate representation of orners istherefore diÆult. A B-spline is usually determined only by a set of external ontrolpoints, from whih approximate tangent orientations are obtained.The situation after low-level proessing in the population oding approah is dif-ferent: in addition to the positions of the ontrol points, the orresponding tangentorientations are also known, and points with multiple orientations are identi�ed assuh. Therefore, pieewise Hermite spline interpolation provides a very straightfor-ward means of onneting suh ontrol points.Hermite splines are a linear ombination of a partiular type of blending funtions,the Hermite polynomials. The blending oeÆients are the x- and y-oordinates ofthe ontrol points and the x- and y-omponents of the orresponding tangent vetors.In the grouping framework presented, the onstraint of C2 and C1 ontinuity at theontrol points will not be imposed. Instead, left and right limits of tangent orientationare introdued, whereby smooth and polygonal urves an be represented equally well(Gavrila, 1996). As a result, the algorithm is apable of representing tangent dison-tinuities suggested by feature assoiations, in addition to the loally deteted pointswith multiple orientations.5.3 Hermite SplinesOne key points and the orresponding probability densities of loal edge orientationare available, the parameters of splines interpolating between pairs of key-points anbe determined. It is important to note that Hermite splines require the full tangentvetor at eah ontrol point, i.e., the vetor of the derivatives of spline oordinateswith respet to the spline parameter t. From the orientation pdf, however, only thetangent angle is known, not the magnitude of the tangent vetor. For the simplestform, the quadrati Hermite spline, the parameters are fully determined by the end141



point positions and the tangent vetor in one end point. In this ase, however, theunknown magnitude of the tangent vetor an be expressed in terms of the tangentorientations in both endpoints. Another motivation for the hoie of a quadrati splineis the fat that it has no inetion points, whih is in aordane with the oneptof \relatability" of urve segments, in partiular the \monotoniity onstraint" (seeFig. 5.5 (e) and (f)) introdued by Kellman and Shipley (1991).As a onsequene, the inetion points of a ontour have to oinide with keypoints, whih is not a demanding requirement, sine inetion points are rare andhave, by de�nition, zero urvature and should therefore have a higher ertainty thanneighbouring points, making them key point andidates a priori.Though the quadrati spline already restrits the possible type of urves, there areambiguous edge on�gurations, suh as Figure 5.5 (d), where a quadrati spline onne-tion does exist, but the required high degree of bending suggests a disontinuity as analternative. Human pereption tends to deide against strongly urved ontinuationswhen alternatives with a lesser degree of bending are available (Fig. 5.6).5.3.1 The quadrati Hermite splineLet t 2 [0; 1℄ be the spline parameter, and let s(t) denote a position on the spline, i.e.,s(t) = [x(t); y(t)℄T . Then the quadrati spline is de�ned as:s : [0; 1℄ �! R2 ;s(t) = at2 + bt+  ; with a;b;  2 R2 : (5.7)Here a;b and  are the vetor-valued spline oeÆients. Sine these quantities are notgeometrially meaningful, it is preferable to have the spline de�ned in terms of endpointpositions and the orresponding tangent angles obtained from population deoding. In142
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(a) (b) (c) (d) (e) (f)Figure 5.5: A variety of edge on�gurations. Clearly, (a),(b) and () an be onneted bysmooth urves. Example (d) is ambiguous in the sense that a smooth onneting urve doesexist, but the required high degree of bending suggests a disontinuity as an alternative, whihtends to be preferred by human pereption. Con�gurations (e) and (f) are intuitively not\relatable", whih is reeted in the fat that they would require an interpolating urve withan inetion point. In the terminology of Kellman and Shipley, this is situation is referredto as a violation of the \monotoniity onstraint" for interpolating urves.matrix notation, the spline equation an be written as:
s(t) = [t2; t; 1℄ � 266664 ab

377775 : (5.8)Aordingly, the �rst derivative with respet to the parameter t is given by:_s(t) = [2t; 1; 0℄ � 266664 ab
377775 : (5.9)Let the position vetors of the endpoints be denoted by r1 and r2, and let the tangentvetor in endpoint (1) be alled _r1. These three quantities set the boundary onditions
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Figure 5.6: Several urved lines with a disrupted (or oluded) entre. Possible assoiationsof line segments are subjet to interpretation, but the ambiguity is resolved aording to theGestalt law of \good ontinuation". Despite the fat that the ends of lines A and B areloser to one another, human pereption tends to deide in favour of assoiating A with Cand B with D, avoiding aute angles and strong urvature that would result from any otherombination.of the spline: r1 = [x1; y1℄T = s(0) ; (5.10)r2 = [x2; y2℄T = s(1) ; (5.11)_r1 = [ _x1; _y1℄T = _s(0) ; (5.12)through whih the spline oeÆients are ompletely determined. In matrix notation,this an be expressed as a system of three equations using (5.8) for t = 0 and t = 1, aswell as (5.9) for t = 0: 266664 r1r2_r1
377775 = 266664 0 0 11 1 10 1 0

377775 � 266664 ab
377775 : (5.13)144



This system an be solved for the oeÆients:266664 ab
377775 = 266664 �1 1 �10 0 11 0 0

377775| {z }MH �266664 r1r2_r1
377775 : (5.14)

By means of MH , the so-alled Hermite matrix, the oeÆients an now be expressedin terms of the positions of the end points and the tangent vetor. Inserting (5.14) intothe spline equation (5.8) yields:s(t) = [t2; t; 1℄ �MH � 266664 r1r2_r1
377775 : (5.15)Expanding the matrix equation gives the spline in the typial form as a linear om-bination of r1; r2 and _r1, where the orresponding oeÆients are given by a set ofso-alled blending funtions. In the ase of a ubi spline, the blending funtions aremembers of the family of Hermite polynomials, and the spline is therefore referred toas the Hermite spline. Throughout this thesis, the name Hermite spline is adoptedfor the quadrati spline as well, even though the blending funtions are not Hermitepolynomials. Hene, s(t) = (�t2 + 1) r1 + t2 r2 + (�t2 + t) _r1 : (5.16)Aordingly, the �rst derivative with respet to t is given by:_s(t) = (�2t) r1 + (2t) r2 + (�2t + 1) _r1 : (5.17)5.3.2 The magnitude of the tangent vetorEquation (5.16) is a onvenient expression of the quadrati spline. However, as men-tioned above, the magnitude of _r1 is not expliitly given by the probability densities of145
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Figure 5.7: A quadrati Hermite spline onneting two points with given tangent ori-entations �1 and �2.orientation obtained from the Gabor �lter population ode. This lak of informationan be ompensated by the knowledge of the tangent orientation in the seond endpoint, whih is not used in (5.16).Inserting the additional boundary ondition _r2 = _s(1) into equation (5.17) yields:_r2 = �2r1 + 2r2 � _r1 = 2�r� _r1 :This vetor equation an be written as two equations in the x and y omponents:_r2 os �2 = 2�x� _r1 os �1 : (5.18)_r2 sin �2 = 2�y � _r1 sin �1 : (5.19)Here �1 and �2 are the tangent angles in the end points, and _r1 and _r2 denote themagnitudes of the tangent vetors. Dividing equation (5.18) by (5.19) eliminates theunknown magnitude _r2 and leads to an expression of _r1 as a funtion of �1 and �2:146



os �2sin �2 = 2�x� _r1 os �12�y � _r1 sin �1os �2(2�y � _r1 sin �1) = (2�x� _r1 os �1) sin �22�y os �2 � 2�x sin �2 = _r1(sin �1 os �2 � os �1 sin �2)=) _r1 = 2 �y os �2 ��x sin �2sin(�1 � �2) : (5.20)Introduing the distane between the end points,d =p(x2 � x1)2 + (y2 � y1)2 ;and � = artan��y�x� ;whih is the angle of the straight line onneting them, one an write:�x = d os� and �y = d sin� ;whih leads to a more ompat expression for _r1:_r1(�1; �2) = 2d sin(�� �2)sin(�1 � �2) : (5.21)The above equation immediately eluidates two fats: �rstly, _r1 depends on the distaned between the end points, i.e., the Hermite spline is not sale invariant. Seondly, _r1beomes singular for �1 = �2. For arbitrary �, this geometri arrangement of tangentvetors and end points would require an inetion point on the spline. Equality of �1and �2 is only permissible if simultaneously �1 = �2 = �. In this ase, the spline is astraight line to whih _r1 and _r2 are ollinear. However, equation (5.21) still remains147



ill-de�ned. In order to resolve the disontinuity, it is neessary to hoose the analytialontinuation _r1(�; �) = 2d based on the limitlim�1;�2!� sin(�� �2)sin(�1 � �2) = 1 ;whih follows from de l'Hopital's rule and results in a meaningful spline (a straightline).5.4 Optimisation of Spline ParametersAs mentioned, the tangent orientation estimates in the end points, given by the meanorientations of the loal mixture omponents, ��i, are a�eted by noise, and the relatabil-ity riterion should therefore not be applied to suh \raw" initial tangent estimates, inorder to avoid false negative deisions (see Fig. 5.1). However, the deoded probabilitydensities of tangent orientation represent a range of possible orientations often inlud-ing a variety of relatable tangent on�gurations (�1; �2), even if the initial on�guration(��1; ��2) is not relatable.By virtue of (5.21), eah pair (p(�1); p(�2)) of two loally extrated orientation den-sities impliitly represent a density p( _r1j �1) in the tangent magnitude _r1 of the spline,thus desribing a \bundle" of possible quadrati splines passing through the �xed endpoints. There is no need to atually ompute p( _r1j �1). Instead, the optimisation isperformed with respet to the tangent angles �1 and �2, and the orresponding optimal_r1 is alulated afterwards.In order to enfore smoothness of ontours, it is neessary to impose a shape on-straint on the onneting spline bundle that penalises a high degree of bending. Thenew tangent angles are then found by means of a maximum likelihood estimation pro-edure, whih results in a trade-o� between loseness to initial loal measurements andsmoothness onstraint. The �nal deision about the relatability of a pair of key points148



is made after this optimisation.5.4.1 The spline likelihood funtionIn general terms, the total likelihood of a pair of tangent angles (�1, �2) is given bythe produt of the joint density of that pair, obtained from population deoding, and aprobability density that depends on the degree of bending of the orresponding spline:L(�1; �2) = ppop(�1; �2) pbend(�1; �2) : (5.22)The quantity that desribes the bending of the spline is the magnitude of the seondderivative with respet to the parameter t, denoted by �s(t). For a quadrati spline�s is a onstant determined by the boundary onditions. Thus for eah end pointon�guration (r1; r2; �1; �2) there is a orresponding �s. During an optimisation of theangular estimate the end points are kept �xed, leaving the degree of bending a funtionof the tangent angles alone: �s = �s(�1; �2) :The \bending probability", whih ats as a penalty term in the likelihood funtion(5.22), an be de�ned as a Gaussian distribution in the sale invariant quantity �s=d:pbend(�1; �2) = p(�s(�1; �2)) = 1p2��b exp���s 2(�1; �2)2d2�2b � : (5.23)The variane �2b determines how strongly bending is penalised and is to be optimisedtogether with �1 and �2.In order to �nd �s(�1; �2), equation (5.17) is di�erentiated one again with respetto t, yielding: �s = �2r1 + 2r2 � 2_r1 = 2�r� 2_r1 :149



Inserting the de�nitions (see Fig. 5.7)�r = d (os�; sin�)T and _r1 = _r1(os �1; sin �1)T ;the square of the magnitude an be written as:�s2 = 4(�r� _r1)2 = 4d2 � 8 d _r1 os(�� �1) + 4 _r21 :Inserting _r1(�1; �2) given by eqn. (5.21) results in:�s2(�1; �2) = 4d2 � 16d2 sin(�� �2) os(�� �1)sin(�1 � �2) + 16d2 sin2(�� �2)sin2(�1 � �2) : (5.24)Sine the tangent angles �1 and �2 are independent stohasti variables, their jointdensity is simply the produt of the individual densities. Interpreting an extrated vonMises mixture distribution as a set of superposed measurements eah mixture ompo-nent is treated separately. Consequently, for any pair of points (r1; r2), the possiblespline on�gurations are desribed in terms of assoiations of individual mixture om-ponents. The joint probability density of a pair of tangent angles (�1; �2) using mixtureomponent i from p(�1) and mixture omponent j from p(�2) is then given by:ppop(�1; �2j i; j) = p(�1j i) p(�2j j) = 14�2I0(�i) I0(�j) e�i os(�1���i)+�j os(�2���j) : (5.25)In most ases both points are on an edge, and onsequently i = 1 and j = 1. Onlyin orner points or juntions several possible assoiations (i; j) have to be onsidered.Inserting (5.23) and (5.25) in (5.22) the spline log-likelihood beomes:lnL(�1; �2; i; j) = � ln[4�2I0(�i) I0(�j)℄ + �i os(�1 � ��i) + �j os(�2 � ��j)�12 ln[2�℄� ln�b � �s 2(�1; �2)2d2�2b : (5.26)150



The optimal value of �b an be determined by taking the derivative of (5.26) withrespet to �b and setting it to zero:���b lnL = � 1�b + �s2d2�3b = 0 ;=) �2b = �s2d2 : (5.27)Analogously, setting the derivatives of the log-likelihood with respet to the angles �1and �2 to zero results in a set of two transendental equations for the optimal angles(For larity, �s2 and its derivatives have not been substituted yet):���1 lnL = ��i sin(�1 � ��i)� 12d2�2b ���1 �s2 != 0 : (5.28)���2 lnL = ��j sin(�2 � ��j)� 12d2�2b ���2 �s2 != 0 : (5.29)By inserting equation (5.27) the unknown �2b an be expressed in terms of �s2. Beforesubstitution, equations (5.28) and (5.29) are multiplied by �2b . The result is a systemof equations only in �1 and �2 whih has to be solved numerially:�i sin(�1 � ��i) �s2(�1; �2)d2 + 12d2 ���1 �s2(�1; �2) = 0 : (5.30)�j sin(�2 � ��j) �s2(�1; �2)d2 + 12d2 ���2 �s2(�1; �2) = 0 : (5.31)The bending quantity �s2(�1; �2) is given by equation (5.24), and its derivatives withrespet to the angles are:
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���1 �s2 = 16d2 sin(�� �2) os(�� �2) sin(�1 � �2)� 32d2 sin2(�� �2) os(�1 � �2)sin3(�1 � �2) :(5.32)���2 �s2 = �16d2 os(�� �1) sin(�� �1) sin(�1 � �2) + 32d2 sin(�� �2) sin(�� �1)sin3(�1 � �2) :(5.33)As an alternative to solving the system (5.30) and (5.31) by means of a Newton-Raphson algorithm, a simple gradient desent an be applied to �nd a a pair of anglesthat maximises the log-likelihood funtion. A straightforward initialisation of the an-gles is given by the modes ��i and ��j of the extrated densities:�1(0) = ��i and �2(0) = ��j :In most ases these initial values are lose to the optimal solution so that onver-gene of the gradient desent is unproblemati. However, due to the denominators inequations (5.32) and (5.32), numerial problems are expeted when the tangent angles�1 and �2 are very similar. This orresponds to the situation disussed earlier in Setion5.3.2, where the spline takes the form of a straight line.When numerially large values do not anel eah other out in equations (5.32) and(5.33), the derivatives are omputed inorretly and so is the gradient of the likelihoodgiven by equations (5.28) and (5.29). As a result, the gradient desent proedure tendsto move away from the initial point and from the global maximum, and onverges to adistant loal maximum, whih usually is not an improvement over the initial degree ofbending. In other words, the optimal straight-line-solution (�1 = �2 = �) is surroundedand shielded by a \numerially impenetrable barrier", whih prevents the algorithmfrom onverging towards it. 152



A good strategy is therefore to hek whether the solution found by the optimisationproess has atually led to an improvement and to enfore the straight-line-solutionotherwise.5.4.2 The role of ertainty during parameter optimisationIt is important to note that in the log-likelihood funtion (5.26) the onentrationparameters �i and �j of the pdfs at as weights of angular modi�ations during theoptimisation proess. If a onentration parameter is large, any deviation from theinitial orientation �� will result in a sharp derease of the likelihood funtion unless theoverall urvature is substantially redued simultaneously. In other words, the onen-tration parameters (and thus the ertainties, whih are monotoni funtions thereof)determine the \inertia" of orientation estimates, i.e., their \exibility to ompromisefor the sake of mutual onsisteny". Herein lies the essential di�erene to other group-ing methods, where measurement of ertainty is not an integral part of loal featureextration.5.5 Organisation of Loal FeaturesAll edge key-points obtained through ompetitive feature seletion are stored as nodesin a graph. For eah key point, only a limited number of its nearest neighbours areonsidered for grouping, reeting the Gestalt law of proximity. Having optimised theinterpolating splines to the k nearest neighbours, a hoie has to be made whih ofthese possible onnetions to regard as the best representation of the loal ontoursegment(s).Relatability is only a geometri relation between the tangents in the end points ofa ontour segment. It does not inlude any information about the onsisteny with theimage at intermediate points on the interpolating urve. The higher the noise level, the153



higher the number of deteted false positive key points, and the more likely it beomesthat pairs of edge segments are \relatable by hane". Therefore, the deision toassoiate two key points and to onnet them with a spline should not merely dependon relatability of endpoint tangents, but also on the onsisteny between the imageintensity distribution and the spline as a whole.5.5.1 Spline onsistenyThe task to evaluate the onsisteny between the di�erent ontour hypotheses, providedby the splines from a key point to its k neighbours, and the data from the Gabortransform is equivalent to the searh for most pereptually \salient" urves.Cross and Hanok (1999) applied a strategy that sums up the response energyalong the spline and divides the result by the urve length. Let a point on the splinebe denoted by s(t) and the response value at a partiular point, by R[s(t)℄. Aordingto their de�nition, the spline onsisteny C is then the integral of response energy overthe entire parameter range t 2 [0; 1℄ saled by the urve length l:C = 1l 1Z0 R[s(t)℄ dt ;whih in pratie is approximated by a disrete sum.A drawbak of this approah is that it ollets response energy regardless of howthe energy in eah point is distributed aross the �lter bank, i.e., without taking intoaount the diretional struture of the deteted intensity gradient. Consequently, themethod will sum up energy, even if a spline rosses a ontour or when it simply passesthrough a region with strong noise but no genuine ontour. Furthermore, the aboveonsisteny measure is, by de�nition, ontrast dependent. Thus a faint ontour willyield a smaller sum of energy, even if the spline mathes the ontour very aurately.Therefore, it is argued that pereptual salieny of an image region should be de�ned154



in a ontrast independent manner. Aording to the philosophy of this thesis, this willbe aomplished by taking into aount the distribution of �lter responses in orientationspae, in addition to their distribution in the image plane.Through its parametri derivative, a spline provides a tangent orientation in everypoint, whih an be ompared with the atual orientation measurement obtained fromprobabilisti population oding. Instead of merely olleting response strength alongthe spline, it is more eÆient to hek the tangent onsisteny, i.e., how well the loallymeasured orientation pdf atually mathes the tangent angle of the spline. Hene, thenew onsisteny measure sums up the osines of the di�erene between the tangentorientation �(t) of the spline, given by�(t) = artan �sy(t)sx(t)� ;and the loal orientation estimate, ��(t), weighted by the orresponding ertainty, (s):
C = 1R0 (s) �� os ��(s)� ��(s)� �� ds1R0 (s) ds � NXj jj os(�j � ��j)jNXj j ; (5.34)where the denominator ensures normalised weights and, onsequently, independene ofurve length.The latter part of equation (5.34) is essentially a modi�ed tangent log-likelihood ofthe spline, given the loal von Mises-type orientation pdfs extrated on the urve:lnL = ln NYj e�j os(�j���j) = NXj �jj os(�j � ��j)j : (5.35)Apart from the normalisation of weights, the essential di�erene to (5.34) is that theonentration parameters �j in (5.35) are substituted by the ertainties j (monotonifuntions of the �j). 155



Thus the spline-data onsisteny measure is an abstration from absolute ontourontrast, as it only relies on relatability, ertainty and orientational onsisteny.As a �nal modi�ation, equation (5.34) is multiplied by the ratio of the number ofpoints on the spline where the algorithm was unable to detet an edge-like responsepro�le, M , to the total number of points on the disretised spline, N . Hene theonsisteny measure beomes:
C = MN NXj jj os(�j � ��j)jNXj j (5.36)The onsisteny value C of a spline onneting two key points serves as the edge labelof the onnetion between the orresponding nodes in the spline graph representation.Connetions with poor onsisteny an then be eliminated by setting a threshold, inorder to redue the onnetivity of the graph.Another simple \pruning" strategy is the elimination of isolated individual splinesonneting pairs of spurious key points. Key points that are onneted to only onepartner are highly likely to be \false positives" due to noise, and should therefore bedisarded.5.5.2 The ontour representation algorithmAll the ingredients of the ontour detetion proedure have been introdued. In sum-mary, the di�erent steps of the algorithm are:� Gabor �ltering� Extration of orientation pdfs by Probabilisti population deoding� Certainty-ontrolled response normalisation156



� Compute multimodality map� Detet Key-points through feature ompetition� Determine the k nearest neighbours to eah key point� Chek Kellman-Shipley-relatability with all k neighbours� Optimise tangent angles to improve mutual feature onsisteny� Again: hek Kellman-Shipley-relatability with all k neighbours� Determine spline onsisteny with image data (before and after angular optimi-sation)� Disard those key points that are not relatable to any neighbour� Apply simple pruning operations (e.g., onsisteny thresholding)� Draw most onsistent spline(s)5.6 ExperimentsFigure 5.8 shows an image of part of the sulpture of Paolina Borghese by AntonioCanova (1757-1822) and the di�erent steps of ontour extration, from Gabor responsesto the tangent elements extrated at key points and the result of spline interpolationbetween them. Note that the ertainty-ontrolled normalisation e�etively ombinesthe harateristi properties of normalised response sum (Fig. 5.8 (b)) and ertaintymap (Fig. 5.8 ()). Nearby edges are more learly separated and weak ontours areenhaned. Some parts of the hair region would, however, require a line detetor, ratherthan an edge detetor. Thus one annot expet the system to represent all relevantlinear details. 157



The same image has been used by Iverson and Zuker (1995) to demonstrate theperformane of their \logial/linear operators". Referring to earlier work by Koendrinkand o-workers (1982), the authors point out the pereptual signi�ane of bifurationsand line terminations in regions, suh as the folds around the nek, whih provide vitalinformation about three-dimensional struture. They also demonstrate that the Cannydetetor (Canny, 1986), like any other essentially linear edge operator, is not apableof orretly representing bifurations and tends to smooth out tangent disontinuitiesin orner points and T-juntions.Both logial-linear operators and ertainty-ontrolled normalisation impose stru-tural onstraints that an deativate the response of a linear operator. While a logial-linear operator requires that onditions for the existene of an edge or line-like strutureare met within its spatial support, ertainty ontrolled normalisation uses response on-sisteny aross the �lter ensemble as the riterion for ativating the operator. It is therigorous deativation of responses in regions without edge struture that enables abetter distintion of nearby ontours than with purely linear �ltering tehniques.Sine feature extration with probabilisti population oding expliitly representspoints with multiple orientations and orientation disontinuities, the spline interpola-tion algorithm an aurately apture most of the essential disontinuities and bifur-ations (Fig. 5.8 (f)).
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(a) original (b) sum of responses () ertainty map

(d) ertainty-ontrolled nor-malisation of (b) (e) ontour tangent map (f) spline ontoursFigure 5.8: Stages of ontour extration using a photograph of the sulpture \Paolina"(512�512 pixels, from the arhive of the Vision group of Pietro Perona at Calteh). The resultof ertainty-ontrolled normalisation (d) ombines the advantages of (b) and (), namely,good loalisation and separation of linear strutures, as well as ontrast invariane. Thespline representation (f) preserves many of the important ontour bifurations that indiatethree-dimensional shape.
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5.6.1 The bene�ts of spline parameter optimisation(tangent updating)Figure 5.9 illustrates the e�et of the tangent optimisation algorithm on the splineontour representation.When applied diretly to the tangent orientations given by the modes of the orre-sponding (mixture) densities, the \relatability" riterion of Kellman and Shipley (1991)rejets a number of tangent on�gurations, and onsequently a lot of ontour segmentsare not deteted. Also, many splines tend to di�er from the atual ontours, sineinexat tangent angles tend to reate urved rather than straight splines. Throughoptimisation, a signi�ant number of tangent angles an be adjusted, in order to yield\relatable" on�gurations, many of whih prove to be onsistent with the intensity gra-dient in the image. As a result, a more omplete and aurate ontour representationis obtained.5.6.2 Noise robustnessIn another experiment, the performane of the algorithm in the presene of additiveGaussian noise has been investigated. Figure 5.10 shows the result of feature detetionand subsequent pereptual grouping for moderate noise.For a moderate noise level (�N < 5%, SNR < 26 dB), there are only few falsepositives in the spline representation, sine most erroneous key points form only isolatedsplines that an easily be identi�ed and removed.Above a noise value of about 10% (SNR = 20 dB), the density of false positive keypoints reahes a level where spurious splines begin to form erroneous ontour segmentsof onsiderable length whih ould only be eliminated by pereptual organisation ofhigher order. At this stage urvature onsisteny would be a vital onstraint, sinethe noise-indued ontour segments exhibit frequent, sudden hanges in the sign of160



urvature, whih rarely our in natural objet boundaries and folds. The erroneouslydisarded key points (false negatives) are small in number but, of ourse, muh moreobvious, sine they lead to gaps in the ontour representation.The number of deteted features as a funtion of the noise level is an indiator for theeÆieny of the feature detetion in the presene of noise, sine the number of additionalkey points ompared to the ase without noise approximately equals the number of falsepositives. Figure 5.12 shows a plot of this relation for the image in Figure 5.10 (a).Though more and more spurious key points appear with inreasing noise level, mostof them do not ful�ll the relatability riterion, and even after angular optimisation,a potential spline onnetion often laks onsisteny with the �lter responses. Thusmany false positives an be identi�ed and rejeted.The maximum number of feature points is not merely limited by the number ofpixels in the image, but rather by the grid struture imposed on the image duringfeature seletion, whereby the maximum \feature density" beomes less than one keypoint per pixel. In addition, nearby parallel key point andidates ompete with oneanother for loal \supremay", and many andidates are eliminated. Therefore, thenumber of key points stagnates above a partiular noise level. Sine the pereptualgrouping algorithm removes a great amount of false positives, their number inreasesmore slowly.Together, ertainty-ontrolled response normalisation and spline grouping realisea trade-o� between noise suppression and ampli�ation of weak responses in order topreserve key points on edges with low ontrast. As a result, the algorithm is usefulfor typial optial images but not for images with extreme noise levels, suh as fromsyntheti aperture radar (SAR) or ultra sound soures.
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(a) (b)Figure 5.9: The e�et of tangent optimisation. In (a), the \relatability" riterion of Kellmanand Shipley (1991) is applied diretly to the tangent orientations given by the modes of theorresponding mixture densities. After tangent optimisation, a higher degree of onnetivityis reahed and the spline are loser to the atual objet ontours, sine many tangent angleshave been adjusted in order to yield \relatable" tangent on�gurations that prove to beonsistent with the intensity gradient in the image.
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(a) original (b) ontour tangent map () spline ontours

(d) �N = 2:5% (34 dB) (e) (f)

(g) �N = 5% (26.0 dB) (h) (i)Figure 5.10: An image with di�erent amounts of additive Gaussian noise. Note the relativelysmall number of false positives in the spline representation.163



(a) �N = 7:5% (22.5 dB) (b) ()

(d) �N = 10% (20 dB) (e) (f)

(g) �N = 15% (16.5 dB) (h) (i)Figure 5.11: Continuation of Fig. 5.10 with higher noise levels. Above a noise value of about10% (SNR = 20 dB), the density of false positive key points reahes a level where hainsof spurious splines begin to form erroneous ontour segments of onsiderable length, whihould only be eliminated by pereptual organisation of higher order.164
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Figure 5.12: The number of key points deteted in Figure 5.10 (a) as a funtion of thenoise level (standard deviation in % of maximum ontrast) before (dashed urve) and afterpereptual organisation (solid urve). Though the number of erroneous key points growsrapidly with inreasing noise level, the grouping algorithm is able to eliminate a substantialnumber of spurious ontour segments, and, onsequently, the number of remaining falsepositives inreases muh more slowly. The noise levels at the data points orrespond toFig. 5.10 and Fig. 5.11. The numbers saturate when an equilibrium is reahed betweennoise-indued key point andidates and ompetitive feature elimination.
165



5.7 ConlusionsThis hapter has introdued a pereptual grouping framework based on spline inter-polation between ontour key-points, obtained from population deoding and featureseletion through ompetition among neighbouring edge segments.From the distributed oding viewpoint, pereptual grouping is interpreted as om-bining loal population odes, aomplished by omputing joint densities from theindividual probability densities of tangent orientation deoded from the �lter ensem-bles. Thus a probabilisti desription of the most suitable interpolating spline arisesquite naturally in terms of the likelihood of a pair of key-point tangent angles. Togetherwith an additional bending onstraint, the initial tangent angles, given by the modesof the loal orientation pdfs, are updated by an MLE-based optimisation algorithm,in order to improve mutual onsisteny and to overome errors in the loal orientationestimates indued by noise. During tangent optimisation, the expliit representation ofloal ertainty is essential, sine the degree of exibility permitted during the updatingof an initial tangent measurement is determined by the onentration parameter of theorresponding pdf, i.e., e�etively by its ertainty.The probabilisti population deoding proedure attempts to math a loal responsemodel to the atual ensemble ativities of the �lter bank at every pixel. The ratio ofmathes and mismathes an help de�ne the onsisteny between a given spline and theimage data (Gabor transform), regardless of the absolute intensity of �lter responses.Together with loal ertainty and the degree of agreement between measured loalorientation and the tangent orientation of the spline, a ontrast independent splineonsisteny measure has been introdued whih tends to reate only few false positiveontour segments in the presene of moderate image noise, while preserving edges withlow ontrast.The spline representation is able to apture pereptually important ontour bifur-166



ations, suh as those arising in regions of self olusion in folds, whih provide vitallues about the 3D shape of the objet under onsideration. Bifurations tend to bemisrepresented by onventional edge detetors like Canny's (1986), sine the responsesof linear �lters at suh points are usually smaller than in their neighbourhood, andtangent disontinuities are often smoothed out.The fat that, unlike B-splines, Hermite splines are not invariant under aÆne trans-formations may be onsidered a disadvantage. However, the spline representation de-sribed in this hapter is to be understood as a �rst grouping proedure, whih wouldrequire subsequent steps to further organise the short quadrati splines into larger on-tour segments. It is at this stage that invariane issues would beome relevant, butthat is beyond the sope of this thesis.
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Chapter 6
Conlusions and Outlook
This thesis has presented a biologially motivated approah to edge detetion with ori-ented �lters. The novel ontribution is the development and appliation of populationoding tehniques for the purpose of ontour detetion in mahine vision, inspired bythe omputational neurosiene literature. This has been aomplished by reonsid-ering the well-established analogy between Gabor �lters and the orientation sensitive\simple ells" in the hyperolumns of mammalian primary visual ortex. Regardinga bank of Gabor �lters as an ensemble that enodes loal edge orientation in a dis-tributed fashion has suggested methods of deoding the orientation variable similar tothe strategies developed in experimental neurobiology and omputational neurosiene,suh as the population vetor and more re�ned probabilisti methods.6.1 Low-level ProessingIn partiular, the population oding analogy has resulted in the development of a uni-�ed probabilisti framework for the detetion of one- as well as two-dimensional edgestruture. Based on the orientation tuning funtion of the �lters and the assumptionthat loal edge orientation in the presene of noise follows a von Mises distribution,168



normal edges and loations with multiple orientations an be modelled by a von Misesmixture distribution, the parameters of whih are estimated via a version of the expe-tation maximisation (EM) algorithm.One harateristi element of the population oding paradigm is the notion of er-tainty, whih is equivalent to the degree of onentration of ativity within the �lterensemble. One a probability density of orientation is available, ertainty an be har-aterised in terms of its angular variane or its entropy.It has been demonstrated that an edge detetor based on population oding anbene�t from utilising the additional information provided by the ertainty measure.Cheking for onsisteny in the �rst and seond moments of ensemble ativities, i.e., theloal orientation measurement itself and its variane (or a funtion thereof), providesa better means of identifying pereptually relevant loal features and segregating themfrom noise.Loalisation of ontour features and their haraterisation in terms of tangent ori-entation are very dissimilar tasks that require di�erent proessing strategies. Whilethe proessing for population oding is kept stritly linear, in order to assure linearsuperposition of �lter responses in the presene of multiple orientations, the featureseletion involves non-linear interations between ertainty and response magnitude, inthe form of multipliation of the two quantities or a ertainty-ontrolled normalisationwithin a loal neighbourhood.6.2 Pereptual GroupingFinally, the information from loal ensembles has been ombined in order to obtain on-tour segments. Computing joint probability densities of tangent orientations from keypoint pairs quite naturally leads to a probabilisti desription of interpolating splinesas an early form of pereptual organisation. With an additional bending onstraint im-169



posed on the onneting spline, an optimisation proedure determines the most likelyspline, thus smoothing the \jitter" in the initial orientation measurements introduedby image noise.Sine geometri riteria for the assoiation of edge segments are well-established,for example in the form of edge \relatability" (Kellman and Shipley, 1991) or similaronepts suh as the \ompatibility" relation (Parent and Zuker, 1989), the essentialoneptual di�erene of the grouping algorithm presented in this thesis, omparedto these and other approahes, lies in the role of ertainty as a onstraint duringthe updating of orientation estimates. Moreover, by means of ertainty and tangentonsisteny, it has been possible to de�ne the onsisteny between spline ontour modeland the atual intensity struture in the image, independent of ontour ontrast. Atthe grouping level, the algorithm again bene�ts from the information provided by loalertainty, whih haraterises the suess of mathing a response template (i.e., the vonMises mixture model) in eah point on a spline. Pereptual \salieny" of a spline isexpressed in terms of the number of suessful mathes ompared to the total numberof points on the disretised urve.The fat that a distributed representation of loal features an be bene�ial forfeature grouping justi�es linking two seemingly unrelated subjets, population odingin neurobiology and pereptual organisation in mahine vision.6.3 Future WorkPossible extensions of the work of the dissertation, at the feature extration level,ould inlude the introdution of additional aspets of biologial visual proessing,suh as a Mexian-hat-type interation within the �lter bank. Due to mutual inhibitionand exitation, �lters in suh an intrinsially onneted ensemble would have sharperorientation tuning and, onsequently, higher angular resolution of the ativity pro�le,170



whih ould be bene�ial for the detetion of orner points and juntions.6.3.1 Alternative tehniques of population odingSine the orientation tuning funtion of Gabor �lters is not independent of spatial fre-queny, the orientation tuning width depends on a free parameter, �0, though its valueis quite stable aross di�erent images, unless ontours exhibit a strongly varying degreeof defous. One ould eliminate the sale-dependent parameter �0 by simultaneouslydeoding orientation and spatial frequeny in a two-dimensional population ode, astrategy somewhat similar to the model proposed by Zohary (1992). Suh a methodwould provide an estimate of loal harateristi sale. However, omputations wouldbeome more elaborate, involving larger �lter banks.As an alternative to the mixture model underlying the work of the thesis, a non-parametri approah ould be hosen; for example, using the Fourier-transform-baseddeoding sheme developed by Wilson (Wilson and L�udtke, 2000).Perhaps strong urvature ould be represented more spei�ally within suh aframework, sine the von Mises model annot aurately desribe the attened re-sponse pro�les aused by edges with a radius of urvature similar to the size of the�lter mask. The degree of deviation of the extrated angular pdf from the von Misesdensity might then be alulated in terms of the kurtosis, yielding a oarse measure ofurvature.6.3.2 Extensions of the grouping algorithmThe pereptual organisation algorithm desribed in the previous hapter is only the�rst stage of loal feature grouping. The relatively short ontour segments representedby quadrati splines ould be merged into larger ontours, perhaps by using a B-spline model. During suh further organisation, the number of ontrol points might be171



redued, leading to a more eonomial representation resembling that in the approahof Cham and Cipolla (1996), who developed a spline ontour framework based on aminimum desription length riterion.Furthermore, the spline interpolation method of Chapter 5 provides a graph rep-resentation of the objet outlines that ould be used for further high-level proessing.For instane, graph-theoreti operations, suh as a \normalised ut" (Shi and Malik,1997), ould be performed on the spline graph to perform segmentation.
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Appendix A
Information Theoreti Measures forthe von Mises Distribution
In this hapter some important information-theoreti quantities shall be derived forthe ase of a single angular random variable with a von Mises distributionp(�) = 12�I0(�)e� os(����) ; (A.1)as they are not given in standard textbooks.A.1 Fisher InformationThe Fisher Information I for a single variable is de�ned as (Frieden, 1998)I = 2�Z0 �dp(�)d� �2�p(�) d� ; (A.2)whih yields for the von Mises distribution:
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I(�) = �22�I0(�) 2�Z0 ��e� os(����) sin(� � ��)�2�e� os(����) d�= �22�I0(�) 2�Z0 e� os(����) sin2(� � ��) d�with integral 3.915 (4.) from (Gradstein and Ryshik, 1981)= �22�I0(�) p� 2� �(112)I1(�)= � I1(�)I0(�) �(112)p� ; where � is the gamma-funtion and �(112) = p�=2
=) I(�) = 12 I1(�)I0(�) � 2A.2 Shannon EntropyThe Shannon entropy is de�ned as (Blahut, 1987)h = � 2�Z0 p(�) ln p(�) d� :Using integrals given in Mardia (1972) or Abramowitz & Stegun (1970) , this yieldsfor the von Mises distribution:
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h(�) = � 12�I0(�) 2�Z0 e� os(����) �� ln[2�I0(�)℄ + � os(� � ��)	 d�= ln[2�I0(�)℄2�I0(�) 2�Z0 e� os(����) d�| {z }2�I0(�) � �2�I0(�) 2�Z0 e� os(����) os(� � ��) d�| {z }2�I1(�)
=) h(�) = ln[2�I0(�)℄� I1(�)I0(�)� : 2
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