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Abstract

Recent technological advances in hardware have resulted in a rapid increase in the use of
pictorial data. Successful utilisation of these vast volumes of information requires effective
ways of retrieval. Content-Based Image Retrieval (CBIR) was proposed as a solution to
this, utilising different image aspects directly for the retrieval of relevant images from a
database without the need of human involvement. These aspects are typically low-level
features (colour, texture, shape etc.) extracted automatically from images.

The major part of this thesis is related to methods for extracting image features that
result in histograms. A number of novel histogram methods based on texture, shape and
spatial information (and some hybrid) of images are presented. The motivation of this
approach is due to the level of robustness and effectiveness of histogram methods proposed
during the early stages of CBIR.

One of the main problems of histogram methods is the limitation to capture of the
semantic content from images. In this thesis BEKAS is proposed as an approach to this
limitation. In BEKAS histograms are utilised on local image regions and associated to
semantic terms. These terms are the link to a structure that consists of a concept hierarchy
and spatial templates, allowing active use of semantic (and spatial) information extracted
from images to be used to query an image database.

Performance evaluation is another major issue in CBIR research, as initial attempts
were tested on small scale. A framework is presented in this thesis that allowed evaluation
of the presented histogram methods and their combinations. Multiple datasets are used to
study the methods in isolation (e.g. tolerance to transformations), and within the context
of CBIR (e.g. recall and precision of retrieval). The results are encouraging indicating

significant increase in performance when multiple histograms are combined.
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Chapter 1

Introduction

1.1 Motivation

Advances in electronics and information technologies progressed dramatically over the last
decade. Availability of vast storage capacities and processing power is now a fact in our
everyday life. This has enabled generation and storage of enormous amounts of image data
in a broad range of activities. In medicine, radiologists generate millions of images every
year. In remote sensing, satellites constantly photograph the earth. News photographers
generate equally large quantities of photographs over the time. These vast quantities of
images need to be stored and retrieved on demand. Other general applications exist that
apply to a huge range of concerns. Stock control is one such application in which its users
(art galleries, museums, shops, manufacturers etc.) might like to keep pictorial records of
their products.

The benefits of keeping all this information digitally are obvious but of little use unless
it is accessed in an intelligent and effective manner. Manual search is possible but becomes
impractical as the number of images gets beyond a few hundred.

In early image retrieval, images are annotated by keywords. These are stored and used
as retrieval keys in a traditional Relational Data Base Management System (RDBMS).
Manual annotation of images suffers from two problems that render such a solution in-
effective, specially as the number of images increases. The first is the effort required for
the annotation of the images. The second, and more severe, is the difficulty to express
the image content with a restricted number of terms. Even if the selection of annotation

terms is broadened the process suffers from human subjectivity, misinterpretation is pos-
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sible especially when dealing with complex images. This intensified the need to automate
the process of image retrieval.

A solution to this is to quantify image similarity. A straight forward method is to mea-
sure the pixel differences between two images. Although simple to grasp and implement,
this method is only useful on very specific applications (e.g. medical imaging, remote sens-
ing etc.). Because this approach is very sensitive to subtle differences (e.g. due to noise
or object occlusion) it is impractical for general image retrieval. Also, the computational
effort required for comparing images is such that extension of the method to large image
collections is impractical. This led to the search for alternative methods.

In the early 1990s Content Based Image Retrieval (CBIR) was proposed as a solution.
Initial CBIR techniques are focused on the use of low level image features and queries by
example. An overview of this methodology is illustrated in Figure 1.1. While new images
are added to the collection their features are extracted and stored to a repository. Later,
a user can do a search by providing an example image (as a sketch or a file location).
Features are extracted from the example image and then compared to the stored ones. A
list of the top matches is then passed on to the retrieval module, to load and display the
results of the search. Multiple areas of research interest exist in the above system, such
as the query methodology, feature comparison and retrieval techniques. Early research on
CBIR was mainly focused on the extraction of features and comparison methods (distance

measures) to quantify image similarity.

New
Image
Featu_re Feature Image
Extraction ) - Image
Representation Features
Repog tory Collection
Example
Image
Feature |Representation Image| Data
Feature
Extraction
Feature i
’ Feature Comparison Top Matches Retrieval
Representation

Figure 1.1: Overview of automatic CBIR by example.
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Low level image features can be domain specific, such as biometrical features (like fin-
gerprints, faces etc.), or general such as colour, shape, texture etc. The latter attracted
attention in CBIR because of their robust behaviour over a broader range of images. One
of the first features attempted in CBIR is colour and in particular the colour histogram rep-
resentation [114]. The colour histogram captures the overall colour proportions of images,
expected to be similar for images with similar content.

By using low level features a lot of information is ignored while enough is kept to
potentially summarise the image content. This approach tends to be less sensitive to noise
and transformations, while it is computationally cheaper than pixel based comparisons.
For the same reason, as the size of image databases increases the discriminatory power of
low level representation weakens, resulting in false retrievals. Thus, browsing and searching
through semantic image categories is a more desirable and useful approach [13].

An alternative solution would be that where the system could automatically extract and
identify all the objects that appear in images. Labels could then be attached and comparing
two images would be a matter of comparing the attached labels, similar to the traditional
keyword approach. Since the amount of information used for the comparison is minimal
(compared to the size of the image) this solution can easily be extended to searching
through larger collections. Such a system would require a mechanism capable of meaningful
segmentation that would provide recognisable regions. Unfortunately, segmentation is
as yet an unsolved problem for still images therefore such a direct approach would be
unrealistic.

Although there is no single histogram feature capable to providing a desired level
of CBIR functionality, we are attempting a compromise. We insist on using histogram
features, mainly due to computational conveniency and robustness of these methods. A
range of feature histogram methods (colour, shape, texture and hybrid) are implemented
and their use in CBIR applications is studied when used independently or in combinations.
Statistical analysis of the results showed a significant performance improvement over the
colour histogram.

As low level histogram representations contain no explicit semantic content, it is difficult
for the user of a CBIR system, based on such methods, to manage the search process.
Trying to avoid this alienation of the user from the system we identified a second line of

approach. We localised histogram features in an attempt to use this information to classify
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areas of images and attach semantic labels.

In the following sections of this chapter a brief background summary is given, related
to CBIR and the context of this project. Then the project goals are introduced along with
essential assumptions and limitations, followed by the contributions made by this study.

The chapter concludes with the outline of the structure of the remaining thesis.

1.2 Background

The research work of this thesis falls into three different categories:

e Low level feature extraction
e The semantic gap between low-level and high-level features, and

e Performance evaluation in CBIR

1.2.1 Low level features

In [114], Swain and Ballard calculated global histograms describing the colour distribution
of images. A similarity-based framework for retrieval is established by utilising histograms
to describe image content. The result of this is that retrieval can be performed directly by
a computer without human involvement. This approach became very popular due to its

advantages:

e Robustness. The colour histogram is invariant to rotation of the image on the view
axis, and changes in small steps when rotated otherwise or scaled [114]. It is also

insensitive to changes in image and histogram resolution and occlusion.

e FEffectiveness. There is high percentage of relevance between the query image and

the extracted matching images.

e Implementation simplicity. The construction of the colour histogram requires a sim-
ple scan of the image, to get the colour values, and discretisation of the colour values

so they fit into the resolution of the histogram.

e Computational simplicity. The histogram computation is only bound to the size of
the image and not its actual content complexity while the computational complexity

of histogram comparison depends on the resolution of the histogram.
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e Low storage requirements. The colour histogram size can be significantly smaller

than the image itself, assuming colour quantisation.
There do remain some problems with the colour histogram:

e Different images may have similar or identical colour histograms. For instance, as
an extreme case, randomly scrambling the positions of pixels in an image leaves its

histogram unaffected despite massive changes in the image content.

e Images taken under different ambient lighting may produce different histograms. This

has been partly addressed by applying colour constancy normalisation [27].

In the intervening years many more sophisticated methods have been developed. Forsyth
et al [34] attempted to drive the matching process by trying to identify objects (e.g.
people, horses, trees). However, this is extremely difficult, requiring large systems that
have specialised algorithms for identifying each type of object (e.g. tree identifiers with
sub-algorithms necessary for different types of trees). Thus with the current state of the
art such an approach is not general purpose or easily extensible without significant scaling
problems.

More practical approaches are still rooted in low level feature extraction and description.
Shape is potentially an extremely useful and powerful feature, but shape-based image
systems generally run into two problems. First, they mostly require the image to be
partitioned into regions from which shape descriptors can then be extracted. Unless the
segmentation is directed by the user (e.g. [72]) segmentation algorithms are prone to fail,
especially when new situations due to different imaging modality or object type are present
[45]. Second, determining effective shape descriptors for complex natural objects is still an
active area of research [29][81].

Given the inherent difficulties of methods requiring segmentation some authors have
built in a spatial component into CBIR by splitting the image up based on a fixed grid.
Standard analysis techniques (e.g. colour histograms) can then be performed in each cell.
However, even if the cells are not regular (e.g. Stricker and Dimai’s fuzzy oval [112]) this

approach is still static and does not adapt to the image content.
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1.2.2 Semantic Gap

In Figure 1.1, a common model used in CBIR is illustrated. Images in collections are
processed and described by a set of feature representations. These are computed off-line
and typically represent one or more aspects of the image e.g. colour [114][2], texture [47],
shape [1][64] etc. When a query is submitted, distances between the example image and
images in the collection are computed, using some similarity measure, applied to the feature
vectors, to retrieve the top-N images.

Such a scheme is too simplified to represent human perception. This makes CBIR
systems potentially unreliable for real life use - for instance two dogs may look rather
dissimilar despite the fact that they belong to the same high level group. To overcome this
several approaches have been proposed, roughly categorised as follows.

More feature vectors. Multiple feature representations are combined together to con-
struct the image signature, which was proved to be beneficial [106]. In some cases more
active use of spatial information in the images [112] showed further improvement.

Relevance feedback and iterative image querying. In such systems, the user directs the
system and effectively the system is used as a navigation tool. Typically the user starts
with a simple query or a random selection of images. The relevance of retrieved images is
given to the system over a series of queries. Navigation eventually stops when the user is
satisfied with the retrieved images.

Perceptual feature vectors. Two different trends have been noticed in this group. Sys-
tems using transformations of the images to a perceptually acceptable space, like in [101]
and [78]. Alternatively, the feature space is partitioned with each partition representing
some semantic property or attribute [21].

Regardless such improvements, such approaches typically target only one side of the
problem. CBIR systems are therefore limited by the restrictions posed by the used features
or similarity measures. Such systems could be improved by more active use of semantic
content.

Semantic image analysis has always been attractive to CBIR community. Ultimately,
semantic level features would replace the features based only on mathematical or com-
putational convenience rather than their perceptual plausibility, and constitute a tool for
efficient and perceptually accurate image retrieval.

In [57] Leow and Miikkulainen presented VISOR, a visual schema based system for
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object recognition and scene analysis. The emphasis is on methods for representing and
learning visual schemas using neural networks and its application was simplified by sim-
ulated input. Clinque et al [19] extract regions of semantic importance based on the
size/position of the region, while no actual association with semantic level info is used.
Similarly Martinez and Serra [62] associated semantic labels to objects and experimented
with hierarchical structures to access the images using semantic labels, without the need
of low level features.

Tao and Grosky [118] proposed the point feature map representation and attached
semantic labels to objects for retrieval. In that work the spatial relationships between
objects in an image is recognised. More recently Grosky and Zhao [44] expanded the
feature maps method using semantic level information. Lexical data is integrated with
local and global colour features, improving system performance.

Tansley et al, in [115], discuss one of they key points of their system (MAVIS 2) on
automatic linking of content with concepts following a two phase approach. First, meta-
data available for some media object are associated with concept class descriptions. That
knowledge is then used to classify media objects without meta-data. This is done using
low-level feature similarities to media objects classified during the first phase.

Santini et al, in [99], followed a different direction based on the meaning of the image
and organisation of the database. The user starts by organising the images returned by
the system (initially random) and the system is trying to figure out the meaning of the
image in question, which evolves over time as the user proceeds.

Activity towards semantic image analysis for CBIR is obvious, but none of the proposed
approaches is balanced. Although, there are attempts to bridge the semantic gap (between
high and low level features), focus is typically biased toward one side (semantic or low-

level).

1.2.3 Performance Evaluation

Early performance evaluation in CBIR was often minimal and limited to show results of
one or more example queries [33]. As systems evolved, and more feature methods were
proposed, the CBIR community started to get more serious about performance evalua-
tion. In [125] a survey on performance measures is conducted and in [73] guidelines for

constructing performance measures are given.
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The realisation of the common ground between CBIR and Information Retrieval (IR),
and the advances of performance evaluation in that area (IR) was the main reason that
automatic performance evaluation of CBIR systems became a requirement. Such a task in
CBIR is difficult due to high subjectivity involved in evaluating similarity between images.
Researchers tried to approach a solution to this problem in two different ways.

One was to exclude human factors by assigning a ground-truth to the test dataset(s).
The COIL-100 [76] dataset provides instances of rotated objects and has been used exten-
sively for performance evaluation in CBIR. In [65], an alternative automatic ground-truth
method is proposed, that provides more application oriented test datasets, that is sampling
images from video sequences. In both cases enough change in the image content is evident,
resulting in disjoint image classes. These are used as the ground-truth to quantify the
performance of feature methods, without any human intervention.

The other approach was to use human subjects to provide the ground-truth of the test
dataset. Human subjects either describe images (e.g. [5]) or separate them into groups.
This way human subjectivity is accounted, through the different descriptions or groupings
of the same images but the process is generally slow and impractical for large datasets.

Although convenient when it comes to calculating numbers, in reality classes sometimes
overlap in content making the process of automatic performance evaluation unreliable. In
an attempt to overcome this, the method of subjective grouping was coupled with the
grouping provided by the machine using the image features, and using learning techniques
reorganise the image database, [66][67] and later in [111].

Recent work on automatic performance evaluation includes [68] where a positive and
negative feedback loop is involved. The automation of the process is achieved by the rele-
vance information extracted by the image descriptions. This approach provides a powerful
tool for evaluation and comparison of CBIR systems. Though we believe that the basis
of the system, the relevance of images and eventually their grouping, can be ill defined
(subjective), making the process potentially unreliable.

Extensive subjective evaluation would be the ideal solution to this problem. But due
to difficulties (even when it comes to narrow down the application area, subjectivity is a
major difficulty [59]), time consumption and inability to be reliably repeatable, subjective
evaluation should be left for the last stage of the CBIR system development.

In testing low level computer vision algorithms it often appears that an author jumps to
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a higher level, using the algorithm in some application context. This application essentially
provides the means to quantify the performance of a proposed method. An example of
such an approach appears in [89] for the assessment of polygonal approximation of curves.
In CBIR this kind of approach is not really feasible. This is because CBIR comprises
an application by itself. Trying to use applications for CBIR targeting evaluation pro-
motes simplification (e.g. the scene cut detection problem can be attacked with simpler
than multi-feature extraction methods) and possibly divergence from the main problem,
compromising the evaluation process.

In [98], Santini mentions the three different modalities of evaluation of a perceptual and
interactive system physical performance, contextual and de-contextual evaluation. While
the focus is on the decontextual evaluation, the complexity of the evaluation process is

discussed.

1.3 Project Objectives

In the pursuit to completion of this project a number of objectives were set and categorised

as follows.

1.3.1 Feature Extraction

Implementation of a basic CBIR system.  This step is essential so we could gain
valuable knowledge on basic CBIR issues (feature extraction, distance measures etc.) and
system architecture. This was to be achieved by implementation of a histogram based CBIR
system following the architecture of Figure 1.1. The first version involved implementation
of existing methods for extracting and comparing histograms, and perform queries-by-
example using single histograms. The focus of the implementation was on scalability, in

terms of adding more feature extraction methods, and easy acquisition of results.

Implementation of new histogram methods.  Expansion of the basic system was
necessary to understand and contribute to the research area. The target was to implement
more histogram methods and modify the basic system to allow combinations of histograms
to be used for image retrieval. This involved implementation of novel histogram methods

and simple methods to combine multiple histograms for querying.
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Issues regarding computational and storage efficiency (retrieval speed, histogram size)

may be of great interest but are not discussed in this study.

1.3.2 Concept Oriented Image Retrieval

Implementation of a concept oriented CBIR system. Active use of semantic
information is a desired direction in CBIR. In achieving this, we propose BEKAS. Low-
level features are extracted in the form of histograms, and associated to semantic labels
through a learning process. This way semantic labels can be attached to localised areas
of new, unknown to the system, images. Using the knowledge on the spatial constraints
between semantic labels in images we can achieve a link from low-level features to a concept-
level hierarchy. This way the hierarchical knowledge can be extend, e.g. a thesaurus, to
support more complex terms (like describing events or moods).

CBIR methodologies exist using content descriptors in forms other than histograms.

In the scope of this thesis, however, we are using only histogram methods.

1.3.3 Testing

Establishment of a histogram based CBIR evaluation framework. Methodical
and easily repeatable testing methods are a necessity to test and assess the potential of
histogram methods for use in CBIR. We need to established an evaluation framework that
is based on both qualitative and quantitative methods. The basis of the framework is the
collection of images. These are separated into two sets i) controlled environment, and
i1) case studies. Images in (i) are used to test individual histogram methods under basic
transformations (rotation, translation and scale), and so to assess the tolerance of the
methods. Case study image sets are used to test the histogram methods in the context of
CBIR application, and the acquisition of quantitative performance values.

The quantitative testing methods are automatic and require no supervision. Qualitative
methods are mainly based on the generation of graphs and plots, and require minimal
attention, mainly for assessment.

Some of these methods may have been used by researchers but we have found no records

of their use in a framework for systematic testing in the context of CBIR.
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1.4 Contributions to Knowledge

This section describes the contributions to learning made by this thesis, roughly categorised
into most and least important. This classification is, of course, subjective and merely
represents the author’s current opinion.

The author has chosen to use the pronoun “we” to represent himself in order to avoid
both the jarring effect of “I” and the awkwardness of the passive tense. Nevertheless, all

the original research presented here is the work of the sole author.

1.4.1 Most Important

1. We developed a number of new histograms for use in CBIR (see Chapter 3). This
demonstrates the capability of histograms to be generated using a variety of image
aspects, other than just colour. Therefore, enabling querying to be more responsive

to the shape, texture or spatial content of images [38][39].

2. We proposed BEKAS, a concept based CBIR system (see Chapter 4). A three-
level knowledge structure is proposed to allow use of information of different levels
(low-level features, semantic labels, spatial arrangements, concepts etc.) to perform
queries to image databases. At the top level of the knowledge structure a concept
hierarchy is utilised, which can potentially outperform a thesaurus, as higher level

terms (like events, moods etc.) can be used.

3. We developed a framework for assessing histogram for use in CBIR systems (see
Chapter 5). The framework is composed of a series of qualitative and quantitative

methods allowing easily repeatable tests to be performed.

4. We experimentally compared histogram features and their combinations (see Chap-
ter 7). Analysis is not limited to average performance values but on more elaborate
assessment, including test of statistical significance of the performance differences
[38][39]. We used a variety of datasets, allowing testing of histogram methods (indi-

vidual or combinations) within and outside the context of CBIR.

5. We demonstrated that combining histograms can improve CBIR performance (see

Chapter 7). A peaking phenomenon starts to appear as we add more features, which
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means that the performance improvement rate is reduced as more methods are com-
bined. The peak point depends on the test dataset, and after it is reached perfor-

mance reduces.

1.4.2 Least Important

1. We experimentally used histogram features to generate image database visualisation
(see Chapter 5). This may be extended for use as an image database navigation tool

[40][18][16][17]

2. We experimentally compared different distance measures (see Chapter 6). His-
tograms can be used to summarise, categorical, ordinal or angular information. A
distance measure that takes that information into account may result to better per-

formance.

3. We propose a method for automatic association of semantic labels to images (see
Chapter 4). In BEKAS we propose localised histograms to associate semantic labels
to images. Spatial information is extracted and can be used to improve the labelling

process of new images.

4. We proposed the spatial dependency matrix (see Chapter 4). This constitutes a
representation of spatial relationships of semantic labels within images. The spatial
dependency matrix can be used for single images or as a template to a group of

images.

1.5 Thesis Outline

The remainder of this thesis is organised as follows:

In Chapter 2, background theory related to CBIR that is useful for the subsequent
chapters, is exposed in more detail. The histogram is introduced in the context of CBIR
and discussed along with issues related to combining and comparing histograms. The
discussion follows with a brief survey on the research literature related to CBIR. Emphasis
is on principles and methods used for CBIR, establishing the state of the art. Comments
about related problems or specific benefits are also stated there.

The histogram methods implemented for the CBIR prototype system is the focus of
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Chapter 3. The methods are grouped by the type of feature they represent. Three main
types of features are considered Colour, Shape and Texture. An attempt to use spatial
information into histograms and hybrid methods, that combine more than one different
types of features, are discussed.

BEKAS is introduced in Chapter 4. BEKAS is a proposed system that utilises a three-
level knowledge structure to allow use of different levels of information to perform image
retrieval queries. The architecture of the system is discussed with respect to training
and how queries are executed. Details about implementation decisions and issues are also
discussed.

In Chapter 5, a framework used to evaluate the implemented histogram methods is
presented. The discussion is separated into two main parts discussing i) qualitative, and
i1) quantitative evaluation methods. The exploitation of histograms for image database
visualisation is also discussed in Chapter 5.

The results of experiments are presented and discussed in Chapter 6, followed by the

conclusions of this thesis and discussion for future research, in Chapter 7.



Chapter 2

About Content Based Image

Retrieval

In this section we list ideas, algorithms and formulae in order to establish a framework
for content based image retrieval. Furthermore we establish the state of the art in areas
related to the objectives of this thesis (Section 1.3). None of these are new, and where no

citation is given, it indicates that the idea is either well-known or obvious.

2.1 Preliminaries

2.1.1 What is an Image

In its simplest form an image is a 2-dimensional signal of light intensity. It can be repre-
sented as a function f(z,y), with the (z,y) coordinates representing the spatial location
of a point. The value of f(z,y) represent the the light intensity (also called grey level)
of that point. Images can be classified to continuous and discrete. A continuous image
is a function that takes values in a continuum, e.g. a photograph. A discrete image is a
function of two variables that take values over a discrete set, e.g. an M x N integer grid.
A discrete image can therefore be represented as 2-dimensional matrix I[z,y]. The range
of the z and y values define the resolution of the image, e.g. [0..M] and [0..N], or just
M x N. A point of a discrete image is called pixel. This discrete form is preferred in the
digital world to store pictures.

Images can also be multi-dimensional. A typical example is the RGB images, where

each pixel is represented by a three dimensional vector where each component is mapped to

14
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a colour (red, green and blue). Effectively, each pixel represents a point in a 3-dimensional
space which is known as the colour space. Other colour spaces do exist, like the Hue-

Saturation-Value (HSV), with properties useful to particular applications.

2.1.2 What is a Histogram

A histogram is a graphic depiction of a sample of values for an attribute, usually as fre-
quency of occurrence. In its most common form the independent variable can attain only
a finite number of discrete values (bins) along the horizontal axis, while the dependent can

span a continuous range along the vertical axis. A histogram H is defined formally as:

n
H ={(h,ha,...,hn)|hi >0, (1 <i<m), Y hi =N} (2.1)

i=1

Histograms can also be normalised so each bin represents a probability of occurrence,

n

H' = {(h1;hg, -, h)[hi > 0, (1 < <), 30 b =1}

4 2
i . = 22
whereh! = 3, and N = ) h;
i=1
Histograms have found application in various areas such as segmentation, remote sens-
ing and image enhancement to name a few. In the majority of these problems raw pixel

values are histogrammed and then decisions are based on the shape of the histogram. The

vector like nature of the histograms allows comparisons between extracted features.

2.1.3 Images, Histograms and CBIR

Content-based image retrieval can be considered as an image similarity problem. A straight
forward approach would be to compare the two images directly at pixel level. Having two
images A and B, of M x N dimensions, their similarity can be quantified by the summation

of the Euclidean distance of their corresponding pixels.

MXxXN
Dap=,| Y. (Ai - B)? (2.3)

i=1
This direct approach is problematic since it can be easily affected by ) different dimen-
sions of images, or i) slight changes at pixel level (illumination change, noise, viewpoint

change etc.). Also, the computational effort involved is prohibitive, even when considering
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Figure 2.1: Histograms of different resolution.

a handful of images. In [114], Swain and Ballard proposed the use of the histograms to
describe the distribution of colour in images, and use these colour histograms as the means
to perform image similarity comparisons for CBIR.

In the CBIR context the histogram can be redefined as the graphical depiction of the
distribution of values of a particular characteristic in an image. In [114], the colour charac-
teristic is used with success, but it is suggested that alternative characteristics may also be
used (e.g. local texture, gradient magnitude etc.). Therefore, we need to extend the defini-
tion of the image to accommodate these potential characteristics, to I(z,y, f), with f € S.
The parameters  and y are the coordinates of a pixel and f is a function, from a set of
functions S, that returns a value corresponding to an image characteristic at a given pixel
location (z,y).

We also need to redefine the histogram for use in CBIR, as

n
H' = {(h1, hy, -, b)) B > 0, (1 <7 < m), Zlhé=1}
1=
where ! = & N =S b, (2.4)
=1

and hi(110;) = #(I(z,y, f)|I(z,y, f) € Oy)

As it is not expected to always handle images of the same size (width and height), it is
logical to use the probability of occurrence form of the histogram. The difference is that h;
is now a function that counts the number of pixels where the value of f is within a range
of values defined by O;.

Essentially the range of possible values of f is quantised to allow histogramming. The
coarseness of this quantisation affects the resolution of the histogram (see Figure 2.1). In
[122], the choice of histogram parameters, with emphasis on the resolution (bin size), is
discussed by Wand.

Histograms can be classified, with respect to the histogramming function, into three
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different types, i) nominal type i) ordinal type, and i) modulo type. The bins in nominal
type histograms represent different classes of values (e.g. colour references), that are not
necessarily in any particular order. However, bins in ordinal type histograms are typically
ordered (e.g. pixel intensities) have a start (1** bin) and an end, so a distance between two
bins can be defined by d;; = |i — j|. The bins in modulo type histograms are distributed on
a circle, and they used for densities of angular data (e.g. hue angles). Because of this the
distance between two bins is always less or equal to =, that is &, (with » number of bins).
For the case of modulo type histograms the distance between two bins can be defined by
the function
i—gl  iffi-j <5

dij = (2.5)
n—|i—j| otherwise

This distinction of the histogram types is important otherwise measuring histogram

similarity may return misleading results.

2.1.4 Comparing Histograms

Similarity of histograms can be quantified using statistical tests, as well as vector norms
(also referred to as similarity, dissimilarity or distance measures). Note however that
for statistical test based methods, non-parametric tests are required, this is due to non-
availability of a-priori knowledge about the shape of the densities. Furthermore, within
the CBIR context the significance associated to the test is not required, the statistic value
itself is used. In all cases of similarity measures the comparison results are normalised to a
convenient range (typically [0...1]), with low values representing similar histograms and
high values different ones.

Following is a non-comprehensive list of distance measures, assuming compatible his-
tograms (of the same resolution):

L1 Norm. This method is also known as histogram intersection, and is defined as:

n
Doy =Y | — il (2.6)
=1

Lo Norm. Also known as the Euclidean distance.
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2.7)

The above methods are not for direct use on modulo type histograms. As a counter
measure Jain and Vailaya proposed to perform multiple rotations of one of the two his-
tograms until the best match is found and used a similarity value [52].

A variant of the Fuclidean distance uses the cumulative distributions. That is to reduce
the effects of noise due to sparse population of the histograms. We have not found any

evidence that this method could be used for modulo type histograms. It is defined as:

Day = 4| D > o~ I;yk)? (2.8)

i=1 k=1
Edit Distance. The edit distance is effectively the same as the earth mover’s distance
([49] and [93]) when applied on 1D histograms. The similarity of two histograms is related
to the work required in moving “amounts of earth”, from the first histogram, to fill “holes”,

located in the second histogram. The edit distance is defined as

n—11| 1<

Doy =Y D (=5 - yy) (2.9)

=1 |j=1

For modulo type histograms, Cha et al proposed a different version of the edit distance
in [11] and later in [12].

Statistical tests have also been used for histogram comparisons in CBIR, a short list
includes:

Chi-square Test.

~ (i — i)
Dy, = 222: L 2.10
zy — X — i + i ( )
Kolmogorov-Smirnov Test.
Dyy = dgs(w,y) = max (|z; — %) (2.11)
1<i<n

Kuiper Test. This is an improvement of the Kolmogorov-Smirnov test at the tail of the

histograms. This makes this method usable with modulo type histograms.
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Dwy = Dz_y + Da—:'—y (2.12)
Dy, maxicica (1 — Gil) (2.13)
Dyy = maxicicn([9i — i) (2.14)

Pearson’s Product Moment Correlation.

D _ Z .75 . i
i \/ SzeSyy
n
where Sz, = % (z; — )2 (2.15)
=1
n
and Sy, = % le(yz - ?7)2
1=

The result of the Pearson’s product moment correlation test need to be mapped to the
[0...1] range.

Similarity measures is an ongoing research area, and more sophisticated techniques
are also considered. In [84], Puzicha et al non-parametric statistical tests are studied for
texture classification and texture based segmentation.

Aksoy and Haralick performed comparative tests between probabilistic and geomet-
ric similarity measures, in [4]. They concluded that the probabilistic methods performed
consistently better than the geometric methods (for normalised and non-normalised distri-
butions).

In [110], human subjects provided information about the similarity / dissimilarity of
pairs of images. The frequencies of these judgements were used to cluster the images used
by the subjects, and measure an agreement factor against the default ground truth. Then
they attempted to generalise the agreement using learning techniques, and use it as a

similarity measure for CBIR, with promising results.

2.1.5 Combining Histograms

In [114], limitations of the colour histogram were identified. In this thesis we attempt to
use multiple histograms for CBIR as a measure to limit weaknesses of individual methods.
In order to achieve this we need a method to fuse the distances of individual histogram

methods to a single similarity value. We have identified two widely used methods:
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Weighted Sum. Each method is assigned a weight, that denotes the contribution of the

individual method to the final similarity value.

) P — (2.16)

The existence of the weights allows dynamic changes of method contributions, which
makes the weighted sum and ideal method for interactive CBIR systems, allowing the user
to modify the behaviour of the system.

Geometric Mean. An alternative method to the weighted sum, is the geometric mean.

The advantage is no requirement for the discovery or tuning of any weights.

D= Y/dds...dy (2.17)

2.2 TImage Features in CBIR

A wide variety of low level features have been considered for image retrieval. The range
covers from general purpose CBIR, to domain specific image retrieval applications. These

features can roughly be classified as follows:

Colour. Including colour features with or without spatial constraints.

Texture. Features used in texture analysis have also been successfully applied for

CBIR.

Shape. As more difficult to extract from images, shape features are used mainly for

domain specific CBIR.

Combinations. Multiple features combined together to form a single image index.

Spatial. Use of spatial information to drive the extraction of features.

The remainder of this section follows the above classification, where a selection of research
work is briefly presented. The scope of this is to help the reader form a picture about the

advances on feature extraction in the area of CBIR during the last decade of its active life.
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2.2.1 Colour in CBIR

Colour was first used for CBIR by [114]| and ever since has been a very popular feature
within the CBIR community. As a result, a plethora of CBIR methods have been developed
utilising colour in various configurations. These can roughly be categorised into i) global,
and ii) spatial methods. Before we move to the discussion of the methods themselves it is
important to introduce (briefly) the two main parameters related to colour based methods

for CBIR, the choice and quantisation of the colour space.

Issues

The common targets of CBIR methods using colour features are:

e Perceptual similarity. The distance between the colour values of different pixels

approximates their perceptual difference.

e Computational and storage efficiency. The colour spaces are typically quantised to
reduce the size of the feature vector. This also means lower computational effort

while searching.

e Robustness. Changes in the image conditions (e.g. illumination variance, transfor-

mations etc.) should not have any effect on the accuracy of the retrieval.

e Scalability. The size of the image database should have little (if not at all) effect on

the retrieval accuracy.

Choice of a suitable colour space. A variety of colour spaces exists, that can be
classified into machine dependent and human oriented. Machine dependent colour spaces
are based on the trichromatic theory (proposed by Young and Helmholtz!), and include
the RGB, CMY etc. Human oriented colour spaces are based on the three human percepts
of colour, that is hue, saturation and brightness and include the HLS, HSV, HSB, MTM,
CIE*LAB, CIE*LUV etc. More details about colour and colour spaces can be found in
[82] and [41]. Regardless of this variety of colour spaces, we have not yet found a single

perceptual colour space that yields the best retrieval results.

'The Young-Helmholtz trichromatic theory suggests that, in our retina we have three different types
of cones. Each one of these is maximally sensitive to a particular range of wavelengths, corresponding to
Red, Green or Blue.
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Human oriented colour spaces attracted attention as they can provide the means for
perceptual similarity. A short list of studies include, Flickner et al and the Munsell space
for QBIC [33], Pass and Zabih used the CIE¥*LAB space in [78], Tao and Grosky used the
HSI in [118], HVC was used by Rao et al in [85].

The choice of colour space is also important in terms of achieving a reasonable level of
robustness. As most of the methods typically use the distribution of colour to describe, they
are not very sensitive to transformations and occlusion. Illumination variance remains as
the main problem for robustness. In the early stages of CBIR, Swain and Ballard suggested
the possibility of preprocessing the images with colour constancy algorithms [114]. In [35],
Funt et al showed that current machine colour constancy algorithms are not really capable
of increasing the robustness of the colour histogram method.

Alternative methods using illumination-independent colour representations (e.g., rel-
ative colour instead of absolute colour [32] or moment-based representations of colour
histograms [48]) have been used to reduce the illumination problem and increase robust-

ness.

Colour space quantisation. Making a successful choice of a colour space may provide
the means for improved robustness but we also need to account for computational and
storage efficiency. This way the usability of the CBIR system is improved. This can
be achieved by quantisation of the colour space, which is reflected by a shorter feature
representation.

The choice of quantisation method and resolution depends heavily on the target of the
application the information is used. A short list of methods and the quantisation method

used, includes:

e Keep a low number of the most significant bits for each of the colour components, in

[113] and [50] they kept only 2 bits for each component of the RGB colour space.

e Fixed partitioning of the colour space, in [107] the HSV colour space is split into 166
partitions, emphasising the hue more by assigning 16 partitions, while the saturation

and value had only three partitions each.

e Reference colours, in [101], Seaborn et al partitioned the Munsell colour space using

fuzzy logic, so each partition could map colour labels as defined in [6] by Berlin and
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e Colour sets were introduced by Smith and Chang, in [107|, where after partitioning

of the colour space, every partition is represented by a single bit in a binary string.

Colour features

In the pioneering work of Swain and Ballard [114], the RGB colour space is quantised into
16 x 16 x 16 blocks (16 levels for each colour channel) and then mapped to a histogram.
The similarity of two images is quantified by comparing their corresponding histograms
using the L; metric. The use of alternative colour spaces is studied further by Ma and
Zhang in [58]. Other approaches, diverting little from the original colour histogram, were
developed towards improved retrieval performance.

In [33], Faloutsos et al presented QBIC where the k-element colour histogram is in-
troduced. The variable k is user defined and related to the number of bins of the colour
histogram. The RGB space is partitioned into 4096 blocks (16 levels for each channel).
Then, the coordinates of the centre of each block are mapped onto the Munsell colour
space. Greedy minimum sum of square clustering is performed to obtain the final k-super
cells, mapped onto the k-element histogram. For the comparison of the histograms they
used the Lo-related metric. This way similarities between similar but not identical colour
are taken into account. Later, in [93], Rubner et al introduced the earth mover’s distance
(EMD), as a metric between two distributions. The most important property of the EMD
is that it can match perceptual similarity of colour better than other distance measures.

Mandal et al took a different approach to this matter, in [60], proposing the use of
orthogonal Legendre moments to represent the histogram. The benefits of using the or-
thogonal Legendre moments is two-fold. First, differences between histograms due to noise
have little effect, and second the computational efficiency is much improved.

A more recent attempt on global colour for CBIR is the ratio-based colour indexing
by Adjeroh and Lee [2]. The basis of the method is that colour is treated using localised
operations that consider the colour response at any point of an object, with respect to the
colour of its neighbours. Images are transformed using these operators to the, so called,
ratio 1mage. The values of the ratio image pixels are used to calculated the colour ratio
histogram.

While global histograms can capture the distribution of colour in images, all the spa-
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tial information is thrown away during the histogramming process. This lack of spatial
information is the main reason of false positive retrievals, images of different content but
very similar colour distribution are retrieved. The next step towards improving CBIR
performance is to incorporate spatial information into the analysis.

Pass and Zabih [78] try to improve the performance of the colour histogram using a
histogram refinement scheme named colour coherence vector. Each histogram bin is essen-
tially subdivided into groups based on a coherence measure, injecting spatial information
into the histogram. Coherent pixels are part of sizable continuous region, while incoherent
are not. The concept of refinement is then extended to subdivide the bins of the his-
togram using additional features. In both cases histogram refinement resulted to improved
performance.

The colour correlogram is introduced by Huang et al in [50]. Spatial information
is extracted in the form of local spatial correlation of colour. The colour correlogram
captures the change of spatial correlation of colour pairs over a distance d. It is noticed,
that the choice of d affects the performance of the method in terms of retrieval accuracy
and computational complexity. With respect to this they propose adaptive choice of d,
with smaller values to be preferred. This way computational complexity remains low, while
the more important local spatial correlation of colour is captured.

Rao et al, proposed the geometric histogram in [85] and then in [86]. By this term
basically they established a framework where geometric configurations of pixels are used,
along with their colour properties, to generate histograms. Each geometric configuration
essentially represents a spatial relationship between the pixels involved. For instance, a
configuration of a single pixel would give the same results as the colour histogram. The

focus is on configurations of a sequence of isosceles right triangles of different side lengths.

2.2.2 Shape in CBIR

Shape methods in CBIR can be classified into two distinct categories, with respect to their
input, i) boundary, and i) region methods. Boundary methods work on shape contour
extracted from images, ignoring whatever is enclosed by the boundaries. On the other
hand, region based methods take internal (to the boundary) properties into account (e.g.
holes, pixel colours).

Shape methods can be further classified into two categories, with respect to the method-



CHAPTER 2. ABOUT CONTENT BASED IMAGE RETRIEVAL 25

ology, 1) measurement, and 4i) transformation based methods. Measurement based meth-
ods range from simple calculations of shape primitives (e.g. area, circularity etc.) to more
sophisticated methods, such as moment invariants. Transformation based methods range
from functional transformations, such as Fourier descriptors, to structural transformations,
such as chain codes.

A small sample of shape methods (falling into the above categories) follows. This list
is by no means complete, but is long enough to demonstrate the trend of using shape in
CBIR. A survey on shape matching is presented by Veltkamp and Hagedoorn in [121],
while comparative studies on shape methods in the context of CBIR have been published
by Mehtre et al [64], and later by Safar et al [95].

Paulik et al in [80] introduced a spatially variant circular autoregressive (SVCAR)
model for the analysis and classification of closed shape boundaries. The parameters of
the SVCAR model are used directly as a feature vector for shape matching. The method
is invariant to object scale, rotation and translation, while an optimal feature matching
algorithm is proposed to compensate for parameter changes due to different starting points.
Application of the SVCAR model in CBIR may be possible, though the requirement for
closed curves may be a limiting factor.

In [23], Daudi and Matusiak attempted CBIR using the multiscale description of user
sketches. The curvature scale space (CSS) description is extracted from closed boundaries
over multiple scales. These boundaries are then described and compared by the location of
CSS contour maxima. Strong properties that allow this method to be used in CBIR include:
tolerance to translation, rotation and scale, and robustness under small distortions. Again,
the requirement for closed curves may be a limiting factor for general CBIR.

Berretti et al 7], proposed a shape similarity method based on local shape descriptors
for CBIR. Shapes are partitioned into tokens at the points of minima of the curvature
function. A set of perceptually salient attributes are used to model each token. The to-
kens are arranged into an M-Tree index structure to allow efficient comparisons. Similarity
between two shapes is quantified by the use of token and shape measures modelling percep-
tual similarity. The method is not limited to closed contours, and allows partial matching
of shapes. Experimental results showed tolerance to slight shape differences and partial
occlusions.

Kim et al proposed a method invariant to translation, rotation and scale for similarity
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based image retrieval, in [55]. A modified form of the Zernike moment descriptors applied
in such a way to take the perceptual qualities of the shape into account. The modification
is based on the separation of the shape into inner and outer regions, with respect to
the distance of pixels from the centre of mass of the shape. Zernike moment descriptors
are calculated as normal for the two regions. During shape comparison the perceptual
importance of the outer form of shape is taken into account by assigning a greater weight
to the similarity of the outer Zernike moment descriptors. The way shape is treated by this
method suggests suitability for single object images (that makes it suitable for applications
such as trademark retrieval).

The image shape spectrum (ISS) is introduced by Nastar in [75]. Images are first
transformed to the XYT space (X and Y the location of a pixel and I its intensity). Then
the local shape of the intensity surface is calculated (called image shape indez) for each
pixel of the image as a function of the principle curvatures. The ISS is then generated by
histogramming the image shape index values. ISS is fully invariant to in-plane translation
and rotation of the image. That is due to use of the principal curvatures and the nature
of the image. Application of the ISS in image retrieval is demonstrated in [75], while
successful use of ISS in face recognition is demonstrated in [74]. Experimentation was
performed on collections of relatively simple images (single objects) and so, performance
on more realistic images is not known.

Local principal curvatures have also been used by Ravela and Manmatha in [87]. To
compensate for the loss of spatial orientation information, when constructing histograms of
curvature only, they also histogram the local phase. Calculating local curvature and phase
at multiple scale improved the performance of the method. Experiments were conducted
using a broader range than in [75] and [74], supporting the capability of the methods for
more general CBIR.

In [118], Tao and Grosky proposed the point feature map representation. Images are
partitioned to M x N non overlapping windows. Each window is then abstracted as a
unique point in terms of its spatial location, dominant hue and dominant saturation. A
Delaunay triangulation is then generated using groups of points with the same hue or
saturation. The angles of the generated triangles are histogrammed over all the possible
groups, resulting in the feature point histogram. Experiments showed promising results

mainly addressed to the incorporated spatial information.
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In [102] Sebastian et al attempt matching of shape outlines. Their method relies on
finding an optimal correspondence between two curves. That is achieved by comparing
the length and curvature of the curves. The notion of the alignment curve is introduced
in the context of ensuring a symmetric treatment of the curves been matched. The basic
assumption is that the goodness of the optimal correspondence can be expressed as the
summation of goodness of matching subsegments. This allowed the authors to treat the
search for the optimal correspondence as an energy minimisation problem, allowing them
to use an efficient dynamic-programming algorithm to find a solution. Application in CBIR
may be possible after some of the shortcomings of the method are addressed. Specifically,
sensitivity to occlusion and spatial arrangement.

In [71], Mori et al propose the shape contest. First edges are extracted from the image,
and number of points are selected (roughly uniformly sampled) from the contours. Then
the distribution of the distances to the remaining points is calculated, which constitutes
the shape context. Shapes are matched by means of calculating the cost of finding the best
correspondences of points between two shapes. Experiments were performed with image
datasets and synthetic data, concluding that performance is robust under occlusion and

intraclass variation.

2.2.3 Texture in CBIR

In a digital image, texture is defined by the spatial interrelationships between (and/or
spatial arrangement of ) the image pixels. Texture feature extraction can be classified into,
i) statistical, and 1) structural methods [42]. In statistical approaches texture is modelled
by statistical distributions in the spatial or in a transform (e.g. Fourier, wavelets etc.)
domain. Structural methods are based on the assumption that texture is composed of
primitives with different properties appearing in particular arrangements.

The most popular set of texture features are based on Haralick’s cooccurrence matrix
of gray levels [46]. Texture features calculated from the cooccurrence matrix have been
extensively used for texture classification, while in [3] such features are used for CBIR with
success.

In [61], Marie-Julie and Essafi use the fractal transform for CBIR. Images are com-
pressed using a fractal compression. This is done by applying the fractal compression in

windows, so a collection of local transformations is obtained. The similarity between two
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images is calculated by comparing the parameters of the local transformations. The main
attraction of the method is that the local transformation parameters can be used to recon-
struct an approximate version of the original image. A multi-scale version is also proposed,
that allows (by multiple sets of local transformations) a richer signature, allowing some
degree of scale and rotation tolerance.

In [24], Dimai proposes a rotation invariant descriptor for image retrieval. The method
is a two phase process. First, Gabor filters are used to extract non-invariant texture
descriptor. Then, using the framework of the general moment invariants, a rotation in-
variant descriptor is extracted. The rotation invariant feature was tested using a variety

of datasets, and was found to perform better than the non-invariant version.

2.2.4 Spatial Information

Regardless to how effective is the use of the colour histogram for CBIR, any spatial informa-
tion is ignored when only the distribution of colour is considered. Methods for combining

colour along with spatial information can be separated into two categories, base on:

e Predefined partitioning. Images are partitioned using a fixed configuration. and

colour properties are calculated for each partition.

e Segmentation. Images are segmented and the resulting regions are used to generate,

typically, a graph representation that includes the colour properties of each region.

In [103], Sethi et al present Color-WISE, where fixed partitioning of 8 x 8 overlapping
windows is used. For each partition a histogram is calculated for the hue, saturation and
intensity. The histograms are then reduced in size by finding the peak areas. This reduction
also acts as a filter to reduce the effects of noise, due to small amounts of isolated colour.
Matas et al introduced the colour adjacency graph (CAG) in [63]. Each node in the
graph represents a single colour component. That is defined by a set of pixels forming a
unimodal cluster in the chromatic histogram. Edges of the CAG represent the adjacency
attributes of the colour components. The CAG therefore includes information, not only
about the modes of the colour histogram, but also spatial information about the image.
In [105], Sinclair is also using colour regions to form a graph for CBIR. The main
focus is on the segmentation of the image. Starting from a set of more reliable edges, they

propose a multiscale edge detection. A series of Voronoi peaks are generated from the
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edge image. Pixels are then grouped by the distance to the closest peak. The edges act as
region limits, so pixels are not assigned to a Voronoi peak past an edge. A merging step
is then used to join regions not separated by an edge. Each region is then used as a node
in a graph, with the mean colour as an attribute. Although, this method is presented for
CBIR no evidence of its application is shown.

n [10], Carson et al present the blobworld representation, for region based image re-
trieval. A colour and texture descriptor is calculated for each pixel, constited of six values
(3 for colour and 3 for texture). Each descriptor is treated as a point (6D vector) in a 6D
space. The EM algorithm is then used to cluster these points. The resulting clustering is
used to label the pixels of the image where regions are expected to be formed. Spatial (the
centroid) and shape (scatter matrix) properties are extracted from each region and used
(along with colour and texture descriptors) as the signature of the image. Comparing the

images is just a matter of comparing their corresponding blobs.

2.2.5 Summary

The pioneering study of Swain and Ballard kick started the research interest on CBIR.
Colour has been the most popular approach, that is mainly due to simple computational
requirements and the easier understanding of its properties. Soon it was realised that other
features (shape, texture etc.) may be of equal importance. This is why research headed
towards adopting more and more methods from the image processing and machine vision
literature, in an attempt to improve CBIR performance over the colour histogram.

The most common approach to this is combining multiple low-level features. This way
authors attempt to reduce the limitations of one feature by combination with another fea-
ture that overcomes such limitations (transformation, occlusion etc). In some methods,
features are extracted independently of each other, and they are combined using methods
similar to those mentioned in section 2.1.5. Pass and Zabih for instance, in [79], attempt
four combinations of colour, edge density, texturedness, gradient magnitude and rank fea-
tures. On the other hand, multiple features can be combined implicitly, and treated as a
single signature. The geometric histogram [86] can be considered such a combination of
features exploiting of colour and texture.

Low-level features have been used successfully in CBIR applications. Regardless to

this, they still fail to capture true semantic content. Queries, such as “get me images of
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Everest” can not be served by systems based purely on low-level features. This inability

directed the research closer to more semantic sensitive systems.

2.3 Semantic CBIR

Human perception can not easily be represented by a simple scheme such as the one
presented in Section 1.1. To overcome this several techniques evolved in the research com-
munity of CBIR, roughly categorised as follows: ) using more feature vectors [79][106][38],
it) utilising relevance feedback techniques [22][119][94], or i) perceptual feature vectors
[101][78][21].

Regardless to the achieved improvements, no semantic knowledge is extracted or used
explicitly by such methods. Semantic image analysis is a very active area of research
in CBIR. Ultimately, semantic level features would replace the features based only on
mathematical or computational convenience rather than their perceptual plausibility and
constitute a tool for efficient and perceptually accurate image retrieval. Current advances
in CBIR include methods towards that direction and a small sample of that follows.

In [57] Leow and Miikkulainen describe VISOR, a visual schema based system for
object recognition and scene analysis. The main focus of that work is on methods for
representing and learning visual schemas in neural networks. The approach was simplified
by using simulated input. Clinque et al [19] extract regions of semantic importance based
on the size/position of the region. Though there is no actual association with semantic
level info, assuming that size and position of a region are enough for image retrieval.
Similarly Martinez and Serra [62] associated semantic labels to objects and experimented
with hierarchical structures to access the images using semantic labels, without the need
of low level features. Although they assume that all of their images have at least one focus
of attention (potential object) they avoid images that have many areas of attention as it
is not realistic for their system to analyse them. In all cases accurate and complete object
extraction from the input images was avoided, an indication that a solution is not yet
possible.

Tao and Grosky [117] proposed the point feature map representation and attached se-
mantic labels to objects for retrieval. In that work another aspect in image retrieval is

addressed, the spatial relationships between the objects in the image. However, they as-
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sumed that all the objects in the image are extracted, which implies a perfect segmentation
that is not realistic yet. In another piece of work Grosky and Zhao [44] expanded the feature
maps method using semantic level information. They integrated lexical data along with
local and global colour features. This resulted in improved system performance. However,
the lexical information was passively used, no extra information about the relationships of
different labels was used, and the annotation of the images was manual.

Dupplaw and Lewis, in [30], attempt CBIR using scale space object trees. Their method
is based on the sieve. Images are decomposed through scale space using their morphology
to form a tree. Each, node represents a region of the image that was removed at each
scale of the sieve. Trees generated from real-life images are far too complicated for direct
application to CBIR. A simplification of the tree is possible (and still under research) by
merging similar sub-trees or eliminating redandunt sub-trees. Sub-trees in scale space may
represent objects. With respect to CBIR, matching can be performed in two phases. First,
graph matching enables identification of similar objects, then further matching based on
low level features can take place for more specific object matching.

Tansley et al, in [116], discuss one of the key points of their system (MAVIS 2) on auto-
matic linking of content with concepts following a two phase approach. In phase one they
associate meta-data available for some media object with concept class descriptions. Then,
in phase two, they use the above knowledge to classify media objects without meta-data
through their similarity to media objects classified in phase one. The actual classification
of the un-tagged images relies on a system that uses low level features only.

Santini et al, in [99], followed a different direction based on the meaning of the image
and organisation of the database. The user starts by organising the images returned by
the system (initially random) and the system tries to figure out the meaning of the image
in question, which evolves over time as the user proceeds.

Activity towards semantic image analysis for CBIR is obvious, though it seems that

most of the proposed approaches address only part of the problem, ignoring essential issues.

2.4 Performance Evaluation in CBIR

Standard methods from the area of document retrieval have also been used in performance

evaluation in CBIR. The most common are the pair of recall R and precision P. Applied
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to the CBIR context, suppose an image database contains N, relevant images. Given a
query, B is the set of retrieved images, and A the set of relevant retrieved images (A C B).

The above mentioned measures are defined as follows:

e Precision. Measures the ability of the system to present only the relevant items from
the database.

P #{A} _ number of relevant images retrieved

= = 2.18
#{B} number of retrievedimages (2.18)

e Recall. Measures the ability of the system to retrieve all the relevant images in the

database.

_ #{A} _ number of relevantimages retrieved

R (2.19)

N, number of relevant images

A common representation for precision and recall is the recall-precision graph, in which
precision values are plotted against recall values.

Although these of methods allow automatic performance evaluation were available, for
the first CBIR systems testing was often minimal and limited to results of a number of
example queries [33]. As the community matured performance evaluation became a more
serious issue. In [125] a survey on performance measures is conducted and in [73] guidelines
for constructing performance measures are given.

The advances in performance evaluation in Information Retrieval (IR) and the reali-
sation of the common ground with CBIR, triggered the necessity for more elaborate and
automatic performance evaluation of CBIR systems. While in theory such methods may
be applicable almost without change, in practice it is not as easy. That is mainly due to
human subjectivity factors involved in the whole process (similarity between two images
is conceived differently by different people).

Researchers tried to approach a solution to this problem in two different ways.

e Fully automatic approach. Human factors are excluded from the process, by the
use of a carefully selected datasets. The COIL-100 [76] dataset provides instances
of 100 rotated objects and has been used extensively for performance evaluation
in CBIR. In [65], an alternative automatic ground-truth method is proposed, that
provides more “real life” oriented test datasets through sampling images from video
sequences. In both cases enough change in the image content was evident to test the

feature methods, and disjoint image classes that were used as the ground-truth.
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e One-off use of human subjects. Human subjects provide the ground-truth of the
dataset. This is achieved usually by 4) manual grouping of images, or i) image
descriptions. In the first case, the resulting grouping is based purely on semantic
reasoning, although, there are potential bottlenecks when more than one human
subjects are contributing to the grouping. The alternative approach is to assign
descriptions to the images independently (e.g. [5]). A set of predefined terms is used
(similarly to text annotation), and multiple terms are assigned to images. Grouping

can then be achieved by means of common terms.

In both cases, human subjectivity is taken into account. On the downside the lack of
scalability of the methods, specially as the datasets increase in size, makes the process of
groundtruthing potentially impractical.

An alternative method to increasing scalability could be to apply and test CBIR meth-
ods on more specific domains of image retrieval. This approach often appears in computer
vision, an example of such approach appears in [89] for the assessment of polygonal ap-
proximation of curves. Unfortunately, CBIR comprises an application by itself, and there
is not much (if any) space of elevating the methodologies to a higher level. On the contrary,
such approaches may oversimplify (e.g. use of CBIR methods for scene cut detection, a
problem that can be approached with simpler than multi-feature extraction methods) and
possibly diverge from the main problem of CBIR.

The difficulties posed against subjective evaluation (even when it comes to narrow
down the application area, subjectivity is a major difficulty [59]) led researchers to prefer
automatic (or semi-automatic) methods.

In [25], Dimai presents a new evaluation measure, based on rank-difference trend anal-
ysis. A target set (or more) need to be established first (that can be obtained by human
subjects). The definition of the the target set depends on the aspect that is targeted by
the evaluation. Two definitions are presented i) Stability (under transformation or noise),
and #1) Discrimination (how relevant are the retrieved images). Rankings obtained by the
CBIR system (or methods) are then compared against the target by means of statistical
trend analysis. The methodology is shown to be scalable allowing easily repeatable testing.
That is mainly due to the reusability of the target sets.

Current work on automatic performance evaluation includes [68] where a positive/negative

feedback loop is involved. The automation of the process is achieved by the relevance in-
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formation extracted by the image descriptions. This approach provides a powerful tool for
evaluation and comparison of CBIR systems. However, we believe that the basis of the
system, the relevance of images and eventually their grouping, can be ill defined, making
the process potentially unreliable, mainly due to the subjectivity of the image description
process.

A more recent attempt to improve performance evaluation of CBIR is The Benchathlon
Network (http://www.benchathlon.net/), which started as an idea of a contest for CBIR
systems. The idea is based on a common dataset and researchers to provide the mechanism
to extract and compare image features. A number of different performance measures
(mainly based on recall and precision) are used for performance evaluation.

While performance evaluation in CBIR has attracted some attention, it remains a

difficult and still an unsolved problem, a recent survey is presented by Muller et al in [69].



Chapter 3

Feature Histograms for CBIR

Introduction

The main components of a histogram based CBIR system are 4) the feature extraction and
histogramming mechanism, and 4i) the similarity measure (or measures). Both parts share
similar importance in the performance of the final system. In this chapter we discuss a
number of histogram methods focusing on the feature extraction and the histogramming
process. This is related towards the completion of the first project objective (Section 1.3.1),
in particular, part of understanding of CBIR methods. The second part of the primary
objective, related to new histogram methods for CBIR, is also addressed, as a number of
original features (covering a broad range of image aspects) are implemented.

The discussion of each method starts with a brief description of the idea(s) it is based
on. Then the process of feature extraction is described, followed by notes that we have
identified regarding the pros and cons of the method. Finally the discussion concludes with
the illustration of histograms extracted by three test images and any conclusion drawn after
a very brief visual inspection of these histograms.

The choice of the three images is such that, two of them are similar, picturing the same
scene from slightly different angle, while the third pictures a completely different scene.
Using these images as a rule we try to identify issues on the discriminatory attributes of
each method.

The implemented methods are organised with respect to the main feature they are based
on. More specifically, we start with colour based histograms. Then in Section 3.2, the shape

histograms are discussed, followed by the texture histograms, Section 3.3. The discussion
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on the major features concludes with an attempt to incorporate spatial information into
histograms, Section 3.4. Discussion continues with methods combining multiple features
(e.g. colour and texture) into single histograms, Section 3.5. The discussion on histogram
methods finishes with some hybrid methods, Section 3.6. In this Chapter we do not discuss
details on combining the implemented histograms.

All the methods discussed in this chapter are based on established techniques applied
in various areas in computer vision. Some of the methods (Sections 3.1.1, 3.1.2, 3.3.1) have
already been implemented and used in CBIR systems. Their inclusion in this chapter is
in the basis of completeness, regarding the features used in the prototype CBIR system.
The methods discussed in Sections 3.2.4 and 3.3.2 have been used in CBIR, but not in
the form of our implementation, while the remaining methods (Sections 3.2.1, 3.2.2, 3.2.3,
3.2.5, 3.2.6, 3.4, 3.5.1, 3.5.2, 3.5.3, 3.6.1, 3.6.2 ) have not been implemented for use in
CBIR. These variant and original methods to CBIR comprise the main contribution of

this chapter.

3.1 Colour

Colour, been the most popular feature in CBIR, was the first implemented for the prototype
systems. Two different approaches were considered a) diverting little from the original
approach of Swain and Ballard, based on opponent colour space [114], we implemented the
hue histogram, and b) based on the work of [101] we experimented with the colour labels
histogram. The main reason for experimenting so briefly with colour features is mainly the
popularity of colour features in CBIR. This fact encouraged us to experiment more with

other image features.

3.1.1 Hue Histogram

The basis of this method is the Hue-Saturation-Luminosity (HSL) colour space. Colours
specified in the HSL coordinates are thought to correspond more closely to human colour
intuition than spaces such as the RGB. In HSL one vector component is used to specify
the luminance or lightness, and two, hue and saturation, to specify the chrominance. Hue
is expressed by an angle and saturation by a fraction. The HSL space can be imagined

as a cone where the height represents the luminosity, the distance from the centre the
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saturation and the angle around the vertical axis represents the hue. A partition of a HSL

cone is illustrated in Figure 3.1.

[

Figure 3.1: Portion of the HSL cone and a Hue stripe at a Saturation=1 and Luminosity=1.

The main initiative of using this method is the simplicity of extracting the colour
information from the image. After transformation to the HSL colour space, just the hue
component is retained. Then the hue values are used directly to generate the histogram

representation of colour.

Advantages

e (Colour representation is closer to human intuition than RGB.

e Keeping only the hue result in a single dimensional histogram representation. The
resolution of the histogram can then be adjusted to meet any storage requirements.

For our experiments we used hue histograms of 256 bins.

Disadvantages

e The grayscale is not represented by the hue histogram. That could easily be solved by
incorporating quantised intensity values into the histograms. Regardless of this fact,

we experimented without incorporating the grayscale information into the histogram.

e The hue histogram is not illumination invariant. At the same time, most of the colour
based methods are not illumination invariant. Colour constancy may be a solution

to this and constitutes a research area by itself.
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e Still, images with different content may have similar hue histograms. Since no extra

information is used but colour we expect this problem to be apparent.

While each bin of the histogram represents a different range of hues, the actual perceptual
value of adjacent bins is similar. Therefore, the choice of distance measure should be
such that it takes that fact into account. For example, the earth mover’s distance |93]
may be more appropriate than the Euclidean. Furthermore, since the the bins represent
angular values, one can say that the circularity of the histogram should be taken into
account. Because of potential illumination variance between images we do not expect
linear distortion, so a simple histogram shift would not solve the problem. The root of the
problem is colour constancy which is out of the scope of this work.

Examples of hue histograms are illustrated in Figure 3.2. Overall, the shape of all the
three histograms could be considered similar. The shape of the first histogram is not as
smooth, differing to the second histogram. This is due to the appearance of the human
figure. Closer visual inspection showed that the top two histograms share more similarities

than the third one. Notice the shape of the large peak and the range of populated bins.

3.1.2 Colour Labels

Berlin and Kay studied colour terms in 100 different languages [6] (see [101] for a recent
application). The result of that anthropological study was that even over a wide range of
cultural backgrounds the colour space could be partitioned into a maximum of 11 “uni-
versal” categories. These can be subdivided into achromatic (Black, White, Gray) and
chromatic (Red, Green, Blue, Purple, Orange, Pink and Brown) labels, distributed on the
Munsell space, shown in the following Figure 3.3. For the generation of the colour labels
histogram, the RGB pixel values of the image are mapped to the 11 Berlin and Kay colour
terms and then histogrammed.

The process of mapping from RGB to Berlin and Kay colour terms is not straight
forward. That is mainly due to uncertain areas of the Munsell space which could easily
fall into more than one colour term. In the scope of our work we restricted the label
mapping to crisp values, using a translation map provided by the authors of [101], where

the mapping scheme is further refined by the use of fuzzy logic.
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Figure 3.3: Berlin & Kay colour labels overlayed on the Munsell space.

Advantages

e The colour representation is even closer to human perception than hue.
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e The resulting histogram representation is very compact, while gray scale are also

incorporated.

e The method is less sensitive to illumination changes, while the problem is not elimi-

nated.

Disadvantages

e The labelling process is not straight forward that may result to poor labelling. More
accurate labelling is possible but the resulting solution may overly increase the com-

plexity of the system.

e Images with different content may still have similar hue histograms.

Since each bin of the histogram comprises a disjoint class of colour, the choice of distance
measure is not expected to influence the performance of the method significantly.

Brief experiments showed the colour labels histogram to give a better response than
the hue histogram, when inspected visually. This is illustrated in figure 3.4. The histogram
of the top two images show a greater similarity than in the case of the hue histograms. At
the same time the histogram of the third image shows greater difference from the top two

histograms.

3.2 Shape

An obvious approach to extract shape features from images for use in CBIR is as follows.
Segmentation is performed on the image, then it is straightforward to measure region
shape as well as determining spatial inter-relationships between regions. Segmentation is
inherently such a difficult task that the performance of current algorithms falls far short
of being able to provide an adequate input to such schemes [45][20]. In some contexts this
may not be such a problem. For instance, in region-based classification it is acceptable
to over-segment the image since the fragmentation does not disadvantage the classifier.
However, for CBIR the region sizes, shapes, and positions are just as relevant as their
underlying colour, intensity, and texture. Therefore the assumption made in many region
based CBIR schemes on high quality segmentation is unrealistic [14], while more recent

approaches that minimise their dependency on good segmentation are limited in scope
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Figure 3.4: Colour labels histogram examples.

[108]. In specific applications such as trademark retrieval it is feasible to reliably extract
objects as a simple segmentation method such as thresholding is often sufficient, and then
a host of shape measures can be applied [64].

Rather than perform region segmentation some researchers attempted the use of inter-
est points to localise the processing to significant image windows. Properties, preferably
invariant to intensity scaling, rotation, etc. can then be extracted, and used for retrieval
within a voting scheme [100] or by histogram matching [124]|. Corner detection and other
interest operators are typically unreliable since they are looking for relatively complex
features based on small windows of information.

This suggests edge detection as a more reliable approach (somewhere in between regions
and interest operators). It is true that edges are detected using local window operators
just like corners. However, the standard linking phase to generate connected edge curves
provides a level of noise suppression, and easily enables isolated insignificant edges to be

eliminated. Nevertheless, although edge detection may be more tractable than region or
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corner detection it is still prone to many errors such as mislocalisation, false edges, drop-
out, incorrect linking, and so on, and therefore edge based CBIR techniques must be able
to cope with these difficulties.

Since both extracting shapes and describing them is problematic we implemented meth-
ods to incorporate shape into histograms i) directly (Sections 3.2.2, 3.2.3, 3.5) and i)
indirectly eliminating the need for any meaningful segmentation or very accurate edge ex-
traction (Sections 3.2.1, 3.2.5, 3.2.6). By indirect shape we mean that, although edges are
the primary input, histograms are generated based on local characteristics of the image
with respect to the edges, rather than explicit geometric calculations on the edges. In all

cases where edge detection is required, edges were extracted as described in Appendix A.

3.2.1 K-Cos Edge Curvature

The k-cos is a computationally efficient method for estimation of curvature. It is derived
from work by Rosenfeld and Johnston [88] and calculated as follows.

First we need to define two vectors, a and . These vectors are directed from an edge
point 7y, to points k pixels ahead and k pixels behind, respectively. Clearly, the angle 0,
enclosed by a and S, is closely related to the curvature at point v on the edge. This angle
0 (or rather its cosine) is obtained from the dot product of the two vectors, a and . The
value of cos 0 is calculated by the vector cross product of @ and 3, and is within the [—1..1]
range, representing positive and negative curvature.

Note that k is a scale parameter. If k is too small the noisiness of the edge is measured
rather than true curvature due to shape. Larger values of k provide curvature values due
to shape, while too large k values result to essentially curvature values of a smoothed edge.

An example of the k-cos calculation for a single edge point is illustrated in Figure 3.5.

Figure 3.5: k-cos at an edge point, k = 7.
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The k-cos histogram is calculated as follows. The images is transformed to grayscale
that is used for edge detection. The resulting edge pixels are then linked and short edges
are eliminated (we choose a threshold of 10 pixels). Curvature values are calculated for the
pixels of the linked edges and then histogrammed. The effect of surviving spurious edges

is limited by weighting the histogram votes by w = ZLmi, where 0 < m; < 1 is the edge

magnitude at pixel ¢, and L the length of the edge in pixels.

Advantages

e High order shape information is incorporated into the histogram.

e Because curvature is invariant to change and orientation it is expected that the

histogram inherits these properties as well.

Disadvantages

e Because of various problems that may arise while in the edge detection process (false
edges, drop-out, incorrect linking and so on) the k-cos curvature histogram may

perform poorly.

e As the scale k can have a great effect on the resulting curvature values, it may be

important to use an adaptive scale.

Although an adaptive mechanism for choosing the scale variable & may be desirable, it
is out of the scope of this project. We experimented with a range of k values and we
found that for £ = 7 we got the best response. The experimentation was based on visual
inspection of histograms extracted from a small number of images.

Visual inspection of the histograms extracted from three images, as shown in Figure
3.6, showed subtle differences between the three cases. Although, parts of the histograms
showed greater similarity for the top two images, the overall shape of the three histograms
can be considered as visually similar. Therefore, conclusions cannot be drawn before further

quantitative tests are performed.

3.2.2 Circular Arcs Histogram

Attempting to incorporate more direct shape to a histogram, we tried the arcs histogram.

The basis of the arcs histogram is the work of Rosin and West [123] and [91]. Assuming
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Figure 3.6: Edge curvature histogram examples.

that the edges of the image have already been extracted, the edge curves are segmented
into circular arcs. Then the radii of the circular arcs are histogrammed.
Advantages

e Translation and Rotation invariance is inherited by the process of the circular arcs.

e Sensitivity to spurious edges is reduced by weighting the contribution of each circular

arc (similarly to the edges for the k-cos histogram) by w = Z%, where 0 <m; <1

is the edge magnitude at pixel 4, and L the length of the edge in pixels.

Disadvantages

e The scheme is not scale invariant, as the radius the circular arc is determined by the

size of the edge.

e The circular arcs histogram is sensitive to the edge detection and linking process.
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The algorithm of the circular arcs operates on the curves in a sequential manner.

Disrupted edges may have a severe effect on the histograms of similar images.

During initial testing we noticed that the range of radius values was such that the upper
limit was very large and the resulting histograms were very sparse. A solution to this was
to histogram the logarithm of the radii. When applied to the three test images (Figure
3.7) we noticed that a relatively small number of bins (about 20-25) were populated. The
histograms of the top two images showed greater similarity than the histogram of the third

image, note the positions of the peaks.
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Figure 3.7: Circular arcs histograms.

3.2.3 Region Shape Histograms

So far, in Sections 3.2.2 and 3.2.3, histograms describe the distribution of abstract shape
properties. These features are not related implicitly to the image content at a higher

semantic level (e.g. natural or man-made scene). In this section we try to tackle this
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limitation by extracting more explicit shape information from images.

The first step is to split the image into regions, a meaningful segmentation would be
the ideal tool. Because we want to keep complexity at low levels we preferred to use a
simpler form of segmentation, binary thresholding. We expect that if the thresholding is
robust enough, similar regions are to be extracted from similar images. For thresholding
we used the method proposed by Tsai [120]. The choice of the particular algorithm was
based on testing as described in Section 3.4.

After thresholding, majority filter is applied (with a mask size of 5 x 5 pixels) to elim-
inate very small regions. Then the edges of the black and white regions are extracted.
Shape properties of those are then calculated and histogrammed for each region. A his-
togram is created for every property independently. We considered four different shape
properties, as described in [90], namely, i) convezity, ii) circularity, i) ellipticity and
) rectangularity. In Figure 3.8, the above process is illustrated. The original images are
shown in column (a) followed by the direct output of the thresholding algorithm, column
(b). In columns (¢) and (d) the filtered binary image is shown, with the extracted regions

highlighted in black for both cases.

Advantages
e The extracted features are 2D rotation, scale and translation invariant.
e Meaningful segmentation is not necessary.

e The extracted properties can be related directly to higher level meanings. Having
the man-made vs natural scene example in mind. For example a large number of
concave regions suggest a natural area, e.g. a tree, while stronger geometrical shapes

circular, elliptic or rectangular, are expected in man-made scenes, e.g. a building.

Disadvantages

e The resulting quality of the histograms is closely related to the quality of the seg-
mentation. Although, meaningful regions are not a necessity, robustness is required

so similar regions are extracted from similar images.

Initial testing, as illustrated in Figure 3.9, showed that in all cases of the mentioned region

histograms performance was poor. We address this to the dependence of the features on
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(a) RGB (b) Binary (c) White (d) Black

Figure 3.8: Thresholded and filtered test images.

the segmentation method. Even slight thresholding differences between similar images

propagated to greater differences in the related histograms.
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Figure 3.9: Region shape histograms of the three test images.



CHAPTER 3. FEATURE HISTOGRAMS FOR CBIR 48

3.2.4 Orientation Histogram

Diverting from the above methods we tried to extract indirect shape from images. The
implementation of the orientation histogram is a variant of the method proposed by Jain
and Vailaya in [52]. In [52] the edge orientation histogram is used along with a colour
histogram for image retrieval. The edge orientation histogram encodes some aspects of
shape information, enabling querying to be more responsive to the shape content of the
images. Moreover to extract the shape information only standard edge detection is required
(e.g. Canny’s algorithm [9]).

In the original form the edge orientation histogram was used against trademark logos.
The simplicity of the images makes the edge extraction more reliable than in the case of
more natural images. Because the prototype CBIR system is not purposed for a specific
application we are expecting the edge extraction to be less reliable. For this reason we
decided not to rely on arbitrarily thresholded edges, but to try and use as much available
edge information as possible.

The by-products of the edge detection algorithm are, the results of the first order

!

vertical and horizontal differentiation (X’ and Y’ maps), and the edge magnitude map.

From the X’ and Y’ maps pixel orientations (f = arctan %ﬁi) can be derived, while the
zy

edge magnitude map can be used as a weighting factor. For the orientation histograms we

use the direction values for all the pixels. During histogramming the votes are weighted by

the corresponding magnitude values. This emphasises pixels close to the area of the real

edges, while pixels away from the edge areas have little or no effect.

Advantages

e Some aspects of shape information are encoded, enabling querying to be more re-

sponsive to the shape content of images.

e Avoiding edge thresholding reduces the reliability problems of the edges, which is
directly related to the resolution of the histogram [52]. In the original version low
resolution histograms would produce inaccurate results, while high resolution ones

require a higher degree of accuracy of edge detection.

e The scheme is translation invariant and can also be orientation invariant, through

histogram shift.
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Disadvantages

e Regardless of the abovementioned measures for rotation invariance, the orientation
histogram suffers for partial rotation, that is, one or more objects in the image are

rotated at various orientations.

e Although the dependency to the edge detection is reduced, it is not eliminated.

Spurious strong edges due to noise will affect the performance.

e Because no spatial information is included into the histogram we expect to see similar

histograms for different images.

Brief visual inspection, Figure 3.10, showed a good response for the three test images.
Peaks appear at close positions for the two top images, while an extra peak is apparent
for the image with the human figure. The shape of the third image appears to be different

from the other two, which is a desired behaviour.
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Figure 3.10: Edge orientation histograms.
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Although, the reduced dependency to an accurate edge detection, the histograms ap-
pear to be noisy. In [52], smoothing of the histogram is achieved by treating the histogram
as a 1-Dimensional signal:

i+k ]
> 1]
_ j=i—k

Ii[i] = o1 (3.1)

3.2.5 Salience Distance Histogram

Another approach to extracting indirect shape is based on the distance transform (DT).
The DT is a method for taking a binary image of feature (edges) and non-feature pixels and
calculating at every pixel in the image the distance to the closest feature (edge). Although
this is a potentially expensive operation, efficient algorithms have been developed that only
require two passes through the image [8]. Just as edge thresholding poses a limitation for
Jain and Vailaya’s [52] approach, it also causes problems for distance transforms. Varying
the threshold even slightly sometimes can generate large changes in the resulting edge
image. To improve stability Rosin and West [92] developed a weighted version called
the salience distance transform (SDT). Rather than propagating out Euclidean (or quasi-
Euclidean) distances from edges, the distances are weighted by the saliency of the edge.
The effect of this was to downplay the effect of spurious edges by soft assignment while
avoiding the sensitivity problems of thresholding.

Once the SDT has been performed the distance values are histogrammed. It can
be seen that the histograms will respond differently to different types of shapes. First
there is the crude distinction between cluttered, complex scenes and simple sparse scenes,
which will result in different ends of the histogram being heavily populated. In that
respect the distance histograms area provide an indication of image complexity, along the
lines of Kawaguchi and Taniguchi’s [54]. However, rather than return a single complexity
measurement the shape of the histogram will indicate more subtle distinctions between

shapes.

Advantages

e The method is rotation and translation invariant.

e In this implementation, the effect of spurious edges is reduced by the ageing process

of the edge detection.
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e Spatial information, with respect to intensity changes, are also captured.

Disadvantages

e The quality of the resulting map is related to the quality of the edge detection, and

the choice of threshold.

In Figure 3.11, salience distance histograms of the three test images are shown. The top
two histograms show a greater similarity than when compared with the third histogram.
The main differences from the third histogram are on i) the range of populated bins, and

i1) on the scale of the histograms.
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Figure 3.11: Multi-scale salience distance transform histogram examples.

3.2.6 Triangulation Histograms

In an attempt to extract alternative forms of shape from images we experimented with the

Delaunay triangulation [83] of edge points. In [118] and [117], Tao and Grosky used the
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Delaunay triangulation for image indexing. In [118] the scheme required isolated objects
while in [117] rigid image content is assumed. While the proposed method is invariant to
scale and rotation it does not perform very well when objects are rearranged.

Unlike Tao and Grosky, we did not try to extract any points of interest from the image
edges. Instead, we used a subset of the edge pixels, avoiding introduction of more possible
errors from the extra required operations. Additionally, our scheme does not exploit any
object extraction methods and we do not try to capture any spatial dependencies explicitly.
We also want to note that while this method uses similar tools with [118], it was conceived
and implemented independently and in parallel.

Edge detection and linking is first carried out, as in Appendix A, which enables us
to reduce spurious and short edges. The remainder edges are sub-sampled and Delaunay
triangulation is applied on the selected edge pixels. Then we can histogram properties of

the resulting triangles.

Advantages

e Delaunay triangulation is invariant to rotation and translation.

e Delaunay triangulation is fairly robust and small changes (missing or mispositioned

pixels) have little effect on the resulting triangulation.

e The triangulation is not dependent on connectivity and therefore can cope with edge

linking errors.

Disadvantages

e The selection of the edge pixels for triangulation is sensitive to the starting point
of the sampling. Severely disrupted edges may be excluded from the sub-sampling
process. This could be solved by post-processing of the extracted edges trying detect
and connect such disruptions. In this implementation we did not make such an
attempt avoiding the introduced complexity and the possibility of further problems

related to such process.

e Fixed step sampling poses another limitation to this method, resulting to an increased
sensitivity to scale. (e.g. As edges may get longer as scale increases, sampling will

result to more edge pixels and eventually to more triangles). In this implementation
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we sub-sampled the edges by a factor of 10 (every 10 pixel). This value was selected

after visual inspection of experimental triangulations.

We calculated and histogrammed three different triangle properties over the complete tri-
angulation, 7) the area of each triangle, ii) The ratio of the longest to the shortest edge of
each triangle, and iii) the lengths of the triangle edges. In Figure 3.12, histograms of the
three different triangle properties, extracted from the three test images are illustrated.
Initial testing showed only subtle similarities between the two similar images for all
three histogram methods. Differences from the third image were also subtle, therefore

further testing was required for assessment.

o5 - o

s s
o
') o © 0
3 3 3
I 3 I
> > >
o5
s s
, ‘ ‘ A {
) i ) b [) 1] i ) i
Bin Number Bin Number Bin Number
o w s
s o
o,
o v o 0
2 3 2
@ i @
> > o >
o
) n ) ;] @ x‘n ) 1
Bin Number Bin Number Bin Number
P . o
s s
o
'] o © 0
3 3 3
I 3 I
> > > o
o5
s s
) 1 ) b ) 1] i ) 1
Bin Number Bin Number Bin Number
(a) Area (b) Ratio (c) Length

Figure 3.12: Histograms of triangle features.

3.3 Texture

A common extension to colour CBIR systems is to add textural information. There are
many texture analysis methods available, and these can be applied either to perform seg-
mentation of the image, or to extract texture properties from segmented regions or the
whole image. In keeping with our general approach we use the standard co-occurrence

method that produces a matrix analogous to a histogram.



CHAPTER 3. FEATURE HISTOGRAMS FOR CBIR 54

3.3.1 Texture Spectrum

In [47] He and Wang proposed the texture spectrum. The first step is to analyse each pixel
within its 3 x 3 neighbourhood. The vector V = {V, Vi, ..., Vg} is constructed, where V/ is
the intensity of the pixel at the centre of the 3 x 3 neighbourhood, and V; the intensities
of the neighbour pixels. V is then transformed to a texture unit TU = {E, ..., Eg}, with
FE; defined as

0, if Vi <Ve
Ei=4q 1, ifV;=Vec (3.2)
2, ifVi>V,

Each texture unit is then mapped onto a unique integer, the texture unit number, by

8
Npy = Z 3E; (33)
i=1

The frequencies of texture units form the texture spectrum, which is then treated as
a texture histogram. In our implementation we used a simplified form of 3.2 and 3.3, as

follows:

0, if Vi <V,
g Vs (3.4
L, ifVi>2V,
8 .
Nry =) 27'E; (3.5)
=1

The effect of this modification was a reduction of the number of unique texture unit
numbers from 6561 to 256. An example of a texture unit utilising 3.4 is shown in Figure

3.13.

Vo | V1| V2 12 | 43 | 64

V7 Ve V3 45 35 23 TU: {0, 1’ 1,0’0,0’ 1, 1}
and
Nry =042+440+40+04+644128 =198

Ve | Vs | Va || 45| 23| 6

Neighborhood Map Intensities Map

Figure 3.13: T-Unit example.
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Advantages

e Simple and efficient way to describe image texture.

Disadvantages

e Sensitivity to rotation. This is mainly because the texture unit number is dependent

to the sequence of comparisons of the texture unit.

e Sensitivity to scale. Because the process of calculating the texture unit is very lo-

calised slight changes to scale may result to different texture unit numbers.

Initial testing, Figure 3.14, did not show any promising performance in CBIR. Differences
between the histogram of the dissimilar images were subtle, while little visual difference

was evidence. This is why we abandoned further study of the method.
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Figure 3.14: Texture spectrum examples.
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3.3.2 Co-occurrence Histogram

The cooccurrence matrix was proposed by Haralick et al. in [46], as a method to represent
the spatial distribution dependence of gray levels within an area. The cooccurrence matrix
offers a very accurate tool for describing image characteristics and especially texture.
Starting from a point ¢ = [z, y] and intensity I(c) we define a digital circle of radius d
obtaining a set of intensity pairs. This process is repeated for the centre located at each
pixel in the image, Figure 3.15. These intensity pairs are then histogrammed to produce

the co-occurrence matrix, as shown below

C(i, jld) = #([c, pllI(c) = 4, I(p) = j;p = ¢ + d(cos 0, sin 0)) (3.6)

The marked pixels define the digital circle.
The intensities of the pixels (at the point
c and on te digital circle) are quantised
and used as indexes to the matrix. The
quatisation is performed to reduce the res-
olution of the histogram to a practical size.

O~NO U, WNEFO

Figure 3.15: Digital circle.

In the original study the authors mention that, for practical reasons only some angles
0 should be considered while maintaining the usefulness of the method. In our implemen-
tation we consider all the fs for the digital circle instead of just the two or so angles more
commonly used. We think that this redundancy is useful as the pixels close to the image
border are also considered.

The standard co-occurrence method produces a matrix that is analogous to a histogram.
To maintain simplicity and consistency throughout the system we treated the matrix as a

one-dimensional histogram.

Advantages

e Reduced sensitivity to rotation. Because we take into account all the angles when

calculating the co-occurrence matrix,

e Reduces sensitivity to scale. The parameter d, controlling the radius of the digital

circle can be used to compensate for scale changes.
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Disadvantages

e Sensitivity to scale is not eliminated. Although d can be adjusted, in this implemen-

tation it is fixed. A multiscale solution may help to overcome this problem.

The results of the initial testing on the three images were promising, Figure 3.16. The
difference between the histograms of the top two similar images and the third image showed

greater visual difference than many of the methods in previous sections.
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(a) RGB (b) Matrix (c) Histogram
Figure 3.16: Co-occurrence histograms of intensities.

The circular cooccurrence matrix method was also applied on hue images in an attempt
to extract the dependences of hues within an area. Examples of histogram obtained from

hue maps are illustrated in Figure 3.17.

3.4 Spatial Information by Soft-Thresholding

We previously stated that reliable segmentation is currently not possible. Therefore we do

not attempt to perform true segmentation into meaningful regions. Instead the simplest
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Figure 3.17: Co-occurrence histograms of hue.

possible sort of segmentation is carried out, namely binary thresholding. While binarisation
can produce meaningful regions for well-defined bimodal images it is unlikely to do so for
less constrained, more naturalistic images. However, this is not our goal. All that is
required is a reliable spatial partitioning of the image; the regions formed may be purely
arbitrary in terms of their correspondence with objects in the scene.

The segmentation performs the same function as the partitioning based approach by
Dimai and Stricker [112]|. Spatial information is injected into the analysis so that standard
feature based (e.g. mnon-spatial) methods can then be applied within each region. In
fact we only consider each of the two classes black and white as single composite regions
rather than treat each individual region separately. Not only does this avoid the need
for component labelling but it also reduces sensitivity to variations in the thresholding
process. The advantage of using thresholding to provide the image partitioning is that it
is adaptive to the image content unlike proposed rigid grid methods.

There has been considerable work carried out on thresholding methods [96]. To ensure
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that the method used was reliable and repeatable tests were carried out to compare several
thresholding algorithms. We compared three representative types of algorithm, based on
entropy [53], statistics [77] and moments [120]. The test was performed using 5 images from
which we extracted patches of random size and position. The size of each patche was in
the range of 10% to 90% of the original image size in terms of number of pixels. The patch
size range was quantised to 9 steps and for each step we extracted at least 100 patches
from each image. Then we applied the thresholding algorithms to all the patches and
images. As a robustness measure we calculated the difference between the binary patches
and the related area of the thresholded image, i.e. the percentage of thresholded pixels
that differed due to the differences in the global statistics. In Figure 3.18, the curves of
the average thresholding performance for the three algorithms are shown. Tsai’s moments

based method worked best, and so it was selected for all future experiments.
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Figure 3.18: Thresholding algorithm comparison.

A potential drawback is that the process can sometimes be sensitive such that small
changes in the threshold value produce large changes in the resulting binary images. To
overcome this we introduced a soft threshold. Starting from the binary threshold value (ob-
tained by the thresholding algorithm) the transition between black and white is fuzzified,

Figure 3.19.

0 1 2 3! 4 5 6 255

Figure 3.19: Soft thresholding ranges when n = 6.

Let T be the original threshold point and s the step size. Then we want to centralise

T to a range of size s to offset the effect of threshold to the limits of the range rather
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than the threshold point. Thus we define a new point 7 = T' — 5. Then for pixels with
intensities close to the original threshold value the soft threshold maps (SMp and SMy)

for the two classes is calculated as

SMy(i, j|T"; s) = 4

ot W
. S,
- =
~ N
\'N\.N
oL .
m m
N
+
CIJ
5
+
DN
2,
w
-

SMy (i,5) =6 — SMp(1, )

The resulting soft threshold map is used to weight the contribution of a feature at
a specific point. For simplicity only two steps were used on either side resulting in six
possible weight values, Figure 3.19. Informal experimentation showed that a practical
range of values for the step (s) constant for real images to be s € [5...10]. Otherwise, the
fuzzy range is not large enough to be useful, or if the original threshold is very close to the
intensity limits (usually for images with very high or very low illumination) the range is
not symmetric on both sides of the binary threshold. In Figures 3.20 and 3.21 the effect
of different values of n and s are illustrated. Adaptive selection of s may result in more

accurate maps but was not implemented.

(a) s=5 (b) s=10 (c) s=15 (d) s =20 (e) s =25

Figure 3.20: Effect of step size s on soft thresholding (n = 6).
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Figure 3.21: Effect of number of steps n on soft thresholding (s = 5).

Advantages

e The process is rotation scale and translation invariant
e Spatial information is injected into the analysis.
e Soft-thresholding improves the robustness of the segmentation.

e Although some weaknesses of histogram methods used along with soft-thresholding
are inherited, the ones related to spatial information are expected to have reduces

effect.

Disadvantages

e Suffers from illumination variance.

e Spatial information is not explicit, and therefore information about individual entitie

(e.g. a vehicle, the sky etc.) cannot be extracted from the histograms.

e The weakness of the histogram methods used along with soft-thresholding, not di-

rectly related to spatial information still remain.

Soft-thresholding was used along with four histogram methods, namely, 7) hue, 4i)colour
labels, iii)texture spectrum, and 7v)cooccurrence histogram. Related figures are located
at the end of this chapter.

Spatial Hue Histogram. Visual inspection of the spatial hue histograms, Figure 3.30,
showed better discrimination than the single hue histogram. While the shapes of the SMp

region resembled similar behaviour as in the case of the single hue histogram, the picture
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was not the same for the histograms of the SMy region. The histograms of the top two
images showed greater similarity than the third histogram.

Spatial Colour Labels. A similar improvement was also noticed for the case of the
spatial colour labels, Figure 3.31.

Spatial Texture Spectrum. For the case of the spatial texture spectrum we did not
notice any improvement, Figure 3.32. Therefore we stick with our decision not to do any
further tests.

Spatial Cooccurrence Maitriz. Similarly, for the case of the spatial cooccurrence matrix

(on intensities), Figure 3.33, we did not notice any visual improvement.

3.5 Colour and Distance Histograms

In Section 3.2.5 we introduced the distance histogram as a method to capture indirect shape
from images. In this section we are attempting to extend the method to include information
related to colour. The basis of the extension is a form of colour based segmentation.
Similarly to Section 3.4, we do not try to extract meaningful regions from the image, but
segment images into colour regions. Assuming a level of robustness, we expect regions or
similar colour content to be treated the same way by the segmentation algorithm. We do
not try to extract any particular properties of the regions, like in Section 3.2.3, but use
the colour content to direct the analysis.

For segmentation we used the colour labels method, as described in Section 3.1.2. The
main reasons for this are i) the low number of labels, and ii) the colour labels are very close
to human perception. To reduce the effect of noise we used Gaussian smoothing on the
image, prior to labelling. Furthermore to eliminate very small colour regions we applied a

median filter on the resulting colour label map.

3.5.1 Distance of Colour Region Boundaries

Our first attempt was to apply the distance transform to the boundaries of the colour
regions, followed by histogramming of the intensities of the distance map. An example of

the process from image smoothing to the distance map is illustrated in Figure 3.22.
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Figure 3.22: Processing stages to obtain the distances of colour region boundaries.

Advantages

e Colour and shape features are combined in a single histogram.
e Both features are invariant to rotation and translation.

e Spurious colour regions are reduced by applying Gaussian smoothing (o = 2.4) of
the original image and filtering of the resulting colour label map (we used a 5 x 5

mask for the median filter).

e The resulting distance maps are normalised so the intensities are in the range of

[0..255] so the effect of scale is reduced.

Disadvantages

e The performance of the method is closely related to the performance of the segmen-

tation algorithm.

e Edges are not weighted, so spurious edges that were not eliminated have a greater

effect than in the case of the salience distance histogram.

e The current implementation is not multiscale. While spurious regions are reduced
by filtering, they are not eliminated. A multi scale approach could result to a better
segmentation, but so would an alternative colour based segmentation algorithm. This

is why we did not attempt to implement a multiscale version.

Initial testing and visual inspection of the resulting histograms showed a similar behaviour

as in the case of the salience distance histogram. Similarity between the top two histograms
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was greater than when compared to the histogram of the third (dissimilar) image. We also
noticed a sparser histogram population than in the case of the salience distance histogram.

That is due to the quantisation of the intensities of the distance map.

A ]
A" ﬂAMMMAﬂMAAAAAAAAAAAAAAAAAA/L
— b 0 50 ) )
Bin Number

ﬂAMMM/\ﬂMAMMA Do Dosbon e L ‘ ‘

’ Bin Number v ”
MAM AM Amﬁ NI , : ‘
’ B Bin Numhe]?c . .
(a) Labelled (b) Dis- (c) Histogram

tances

Figure 3.23: Colour region boundary distance histogram.

3.5.2 Colour Labels vs Colour Region Boundary Distance

Trying to use colour in a more active way we expanded the process by using the pixel
values of the colour and shape maps as indexes to a matrix. This way we formed a two
dimensional histogram. In this histogram each bin represents the frequency of occurrence

of a colour at some distance from a feature (based on the colour region boundaries).

Advantages

e Both colour and shape information is used directly.
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Disadvantages

e The performance of the method is still closely related to the performance of the

colour labelling algorithm.
e Spurious edges may still cause a problem as their effect is not eliminated.

e Greater storage requirements for the histogram.

The histograms of the top two images showed greater similarity than when compared to
the third histogram. Overall the population of the histogram bins showed a domination
of the colour information. This suggests that coarser bins may be used for the shape
dimension. In Figure 3.24, the three examples are illustrated, note that the 2D version of
the histogram is gamma corrected to improve visibility, and it is shown just as a reference.

For the experiments we used the 1D version where the rows are concatenated.
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Figure 3.24: Examples of colour labels vs colour region boundary distance histograms.
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3.5.3 Colour Labels vs Edge Multiscale Salience Distance

As an extension of the colour labels vs colour region boundary distance histogram we
combined the colour information from the labelling process with the distance map obtained

by the multiscale version of the salience distance transform.

Advantages

e Both colour and shape information is used directly.

e The shape information comes from a more reliable source. As the multiscale version
of the salience distance transform algorithm is used, the effect of spurious edges is

reduced.

Disadvantages

e The performance of the method is still closely related to the performance of the

colour labelling algorithm.

e The histogram storage requirements are the same as in colour labels vs colour region

boundary distance histogram.

The performance of colour labels vs edge multiscale salience distance histogram was similar
to the colour labels vs colour region boundary distance histogram in terms of discrimination
between the three test images. In Figure 3.25, the three examples are illustrated, note that
the 2D version of the histogram is gamma corrected to improve visibility, and it is shown
just as a reference. For the experiments we used the 1D version where the rows are

concatenated.

3.6 Other Hybrid Methods

3.6.1 Hue Entropy Histogram

In an attempt to involve more colour in the feature histograms we calculated entropy in
local windows over the hue map of the image. As a first step we transformed the image
to HSV keeping only the hue channel, throwing away the rest of the information (as we

are interested only on the plain colour aspect of the image). Then we define a set of
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Figure 3.25: Examples of colour labels vs edge multiscale salience distance histograms.

N x N overlapped windows. For each window, cantered at position (x,y), we generate
the histogram of the hues and then calculate the entropy (Em,, = — > p;logyp;) of the
histogram. The desired image signature is then obtained by simply histogramming the
entropy values over all the windows.

The size of the hue histogram affects the calculation of the colour entropy. We exper-
imented with static and dynamic histogram sizes, and we found an optimal performance
with dynamically sized histograms of size = min(w?,256) bins' with w being the width

of the window.

3.6.2 Local vs Global Difference Histogram

We used Tsai’s moment preserving thresholding in order to capture local low-level differ-
ences on the image. The overall process is similar to the process used to test the robustness

of the thresholding algorithms, in Section 3.4.

!This approach to dinamically choose the bin size of a histogram is also suggested by Wand in[122].
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Figure 3.26: Hue entropy histogram examples.

First we defined a set of N x N windows. Then we applied thresholding to the whole
image and obtained a binary image. The next step was to extract from the original
RGB image the patches corresponding to the defined N x N windows and apply Tsai’s
thresholding on them. The last step is to measure the differences (at pixel level) between
the binary patches, extracted from the RGB image, against their corresponding positions
on the global binary image. Two instances of the process are illustrated in Figure 3.27.

By using this method we wish to capture similarities or differences of the local statistics
of small windows against the corresponding global statistics. This can be considered as

capturing information about global texture from images.

Advantages

e Because we do only try to capture differences and any kind of structural information

the method is invariant to rotation and translation.
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(a) RGB patch (b) Global (c) Local
threshold threshold

Figure 3.27: Examples of thresholding patches. (b) is a patch from the global binary image,
while patch (c) is the result of thresholding of the RGB patch (a).

Disadvantages
e Spurious edges may still cause a problem as their effect is not eliminated.
e Greater storage requirements for the histogram.

We used the same parameters as in the case of the hue entropy window size.

Thresholding is applied both globally to the image and locally to the individual win-
dows. Then the percentage of pixels in the window that have different values according
the two thresholds is histogrammed.

Additionally, we histogrammed the amount of blackness found in the window content
after thresholding.

In both methods 2.2 and 2.3 we used overlapping windows. The difference caused by the
amount of overlap was found to be negligible. So for our experiments we used an overlap
of 25% of the window size in each direction. In Figure 3.29 an example of thresholding for

measuring the difference is illustrated.

3.7 Summary

Feature extraction is the first step in CBIR, when new images are added in to a collection,
and when queries-by-example are performed. In this chapter a number of existing and new

histogram methods for CBIR were discussed. We demonstrated that a histogram is capable
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Figure 3.28: Local black histogram examples.

of summarising characteristics of image features. We also illustrated example histograms
extracted from three test images and discussed their discriminatory characteristics based
on their visual appearance.

Experiment results of the methods (and combinations) presented in this chapter are

compiled in Chapter 6, using the evaluation framework presented in Chapter 5.
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Figure 3.29: Local difference histogram examples.
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Figure 3.30: Soft thresholding and the hue histogram.
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Figure 3.31: Soft thresholding and the colour labels histogram.
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Figure 3.32: Soft thresholding and the T-unit histogram.
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Figure 3.33: Soft thresholding and the cooccurrence histogram.



Chapter 4

BEKAS - Closing the Gap

Introduction

One of the main challenges in CBIR is to extract and use semantic level information.
For over a decade histograms of image features served CBIR applications. This CBIR
model is based on the assumption that, if there is a similarity between low level features
of two images, chances are that the images are of similar content. Despite the success of
this model, histograms fail to extract image content in any meaningful form (e.g. people,
animals etc.). Histograms provide just an indication of the low level similarity of images,
without any explicit association to higher level terms.

Histograms, based purely on low level features (even for the cases of perceptually correct
features), do not have a particular high level meaning unless they are given one. Under
this condition a fully automated CBIR system would not be feasible, as the vast amount
of information required to make it high level conscious would require infinite time. In an
attempt to overcome that disability, early techniques were based on i) relevance feedback
and iterative image querying, and i) perceptually correct feature vectors. In the first case
there is no use of high level content, while in the later, although higher level information
is utilised, its use is passive limiting the potential of such knowledge.

Attempts at more active use of semantic content are evident, such as the VISOR, by
Leow and Miikkulainen [57], the rich region descriptor by Clinque et al. [19], or the use of
the focus of attention to associate sematic labels to objects, by Martinez and Serra [62].
Most of these techniques though, approach the problem partially (e.g. by simulated input)

by using limiting assumptions (e.g. positioning of the semantically rich regions, or simple

76
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images with only one or two objects).

On the other hand, positive results while making use of semantic content have been
reported. In [43] by Tao and Grosky, reported improved performance when they integrated
lexical data along with their low-level techniques. Tansley et al, in [116], discuss the
possibility of automatic tagging of images by the means of low level similarities with already
tagged images, with positive results.

We think that one of the main bottlenecks to a more semantic sensitive CBIR system
is to achieve associations between high and low-level features. We propose to approach
this problem as a straight forward classification problem. We extract localised low level
features (in the form of histograms) and using user input, we generate associations to
semantic labels by the means of a classification algorithm. Furthermore, we use spatial
relationships of labels (setups) as a link to a higher level concept hierarchy. The relationship
between setups and concepts, allows retrieval based not only on classes of objects, but also
on events.

In this chapter we present BEKAS!, a CBIR architecture that combines low-level fea-
tures, spatial information and semantic labels, along with a concept hierarchy. BEKAS is
related with the completion of our second objective (Section 1.3.2). Compared to existing
related work, in BEKAS i) an algorithm for meaningful segmentation is not required, 1)
a concept hierarchy can be used to support high level knowledge, 4ii) local histograms
are used to attach semantic labels to images, and iv) the Spatial Dependency matrix is
proposed to represent spatial relationships in images or groups of images.

In the following Section (4.1) we define a number of targets, with respect to the features
that we intend to use in the process of image similarity, along with a short overview of the
system. In Section 4.2, the knowledge structure is presented, with respect to what kind of
information is stored, and how. In Sections 4.3 and 4.4 we discuss the problems of training
and use of the system. Training is regarded as the generation of the actual structures and
their population, while use is concerned with how queries are formed and executed by the
system, along with now the images are retrieved.

The Chapter concludes in Section 4.5, where we discuss issues regarding the implemen-

tation of BEKAS, and the effects of possible errors at different levels of the process.

! Bekas is the name of a famous character in a Greek 80’s TV series. He was a very capable investigator
that eventually solved the mystery of the series.
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4.1 BEKAS: Targets and Overview

4.1.1 Targets

Before anything was attempted towards implementing BEKAS a set of architecture targets,
with respect to exploited technologies, were set as follows:

Use of histogram features. It has been shown in the literature [106] that histograms
are capable enough of capturing low level image content of different aspects, while mod-
erate combination of features has been proven beneficial (as showin in Chapters 3 and
6 respectively) [38]. Experiments with the COIL library showed from the early steps of
CBIR that histograms can cope quite well with images of individual objects. Additionally,
histograms have been used on image partitions to extract localised features with some
success [112][103].

When the histogram analysis is focused on small windows, the amount of information
used to generate a histogram is reduced. This can be translated to potentially more distinct
histograms (assuming that the complexity of the pictorial data remains low). Effectively,
the localisation of the histogram analysis is potentially reflected by a more distinct feature
space. In addition to this, we have implemented a number of histogram features that may
capture positive localisation behaviour, and therefore we want to use as many of these
features as possible.

Active use of spatial information. Different spatial arrangements of the same objects
put images to different contexts (not only describing places but also events). It is therefore,
important to extract and use spatial information. In Chapter 3, we introduced a method
to include spatial information into histograms. We think that such a technique is not
capable of providing spatial information, explicit enough, to differentiate between different
contexts. A different approach should be used to achieve that goal.

Active use of semantic information. This target can be broken down into two steps, as

follows:

e Association of semantic information to images. This effectively means that we need to
classify regions of the image and attach semantic labels. A method is needed to break
down the image into regions before the classification takes place. Although, methods
to perform automatic (and potentially meaningful) segmentation to a reasonable

degree currently exist, their robustness or their specialisation is such that it is out of
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the scope of use in BEKAS. We attempt this by partitioning the images to rectangular

windows and treating each one individually.

e Use of a concept hierarchy. Using semantic labels attached to images is not much
different than using keywords to perform CBIR. A dynamic structure can be used to
place these labels into a semantic space. This way similarity can be extended from
low level features and spatial information to the semantic level. The benefits of such

an approach are discussed by Tansley et al. in [115] and later in Dobie et al. in [26].

4.1.2 Overview

If we ignore the actual image database, BEKAS counsists of three main components i) a
training module, i) the knowledge structure, and i) the query module, (as illustrated
in Figure 4.1). The training module is in charge of i) gathering knowledge to enable
associations between semantic labels and low level features, and i) to collect knowledge
about the spatial arrangements of semantic labels. The information generated by the
training module is stored in the knowledge structure, in a predefined arrangement, so it
is linked to a concept hierarchy. The information in the knowledge structure is used by
the query module to process queries at a semantic level. The dashed arrow that goes back
from the query module to the training module denotes a possible feedback loop, where the

training modules update the knowledge structure.

Knowledge
Structure

Training < Query
Module Module
Image
Database

Figure 4.1: Bekas overview.
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4.2 BEKAS: Knowledge Structure

The knowledge structure has three levels of information (Figure 4.2). Semantic labels
comprise the lowest entry level to the knowledge structure, and they are associated with
low-level features (histograms). In the middle layer, spatial arrangements are used to
store semantic label configuration details and are used as a link to the higher level of the

knowledge structure, the concept hierarchy.

Figure 4.2: Levels of the knowledge structure.

In this section we discuss the top two levels of the knowledge structure. Discussion of

this section is limited to their role in the knowledge structure.

4.2.1 Concept Hierarchy

Concept hierarchies are used to organise data and concepts in a hierarchical form or some
specific partial order. This way knowledge and data relationships can be expressed using
high level terms. Therefore, concept hierarchies play an important role in the process of
knowledge discovery.

At the bottom end of the concept hierarchy (as used in BEKAS, Figure 4.3a.) a
label composition is attached to the concept leaves. This way a link between the concept
hierarchy and images is achieved, using the semantic labels attached to the images, Figure
4.3b.

The benefits of using the concept hierarchy are two-fold:
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(a) Concept hierarchy example. (b) Concept composition.

Figure 4.3: Instances of two parts of the knowledge structure.

e Similarity between images can be quantified at a semantic level, using the semantic
relationships of concepts. The use of the more general term concept (instead of just
object?) means that the structure can be more flexible with respect to the nature of
stored semantic content (e.g. nodes can represent events). The information we intend
to use for identification of such concepts in the hierarchy, is the spatial information

of semantic labels in images.

e Flexibility of the search is increased while reducing restrictions of user queries, and
the system can be enabled to handle inaccurate user queries. That can be achieved

by expanding the concept hierarchy to include synonyms.

As the concept hierarchy comprises a dynamic structure, it can be updated or rearranged as
desired, to accommodate more semantic information and to expand its label specification.

There has been already a great volume of research on the area of concept hierarchies.
Additionally, similar structures, have been used for CBIR [115]. For these reasons we
present the concept hierarchy as a means to store incompatible semantic information (e.g.

object name, event, season etc.).

4.2.2 Spatial Arrangement (Setup)

Spatial information can be extracted from images and has been used in the literature as an
extra feature for indexing. Two different approaches are common. Through partitioning
and histogramming [38][112][117], the spatial information is implicitly extracted along
with other features. This approach allows passive use of the extracted spatial information,

while no explicit access to this information is available. Alternative methods, represent

?In this context object is the semantic label attached to an image region (e.g. sky, snow, ball, car etc.).
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the spatial relationships of objects or regions as graphs (region adjacency graphs [109]).
Graph matching techniques are used to quantify similarity, while the explicit use of spatial
information allows variable degrees of matching tolerance (more flexibility).

Spatial arrangements of objects (setup) in an image is important so one can put the
image into a context. Relationships between sets of labels and concepts are made stronger,
so ambiguities due to relationships of multiple concepts to a single labels set can be reduced

or resolved. The spatial relationships can also help identify variations of a single concept,

Doncept Concept
leaf

Setup Setup

2 4

if that is desired.

Figure 4.4: Setups.

The concept composition in the knowledge structure (Figure 4.3h) can be updated so
spatial arrangement of labels are represented, Figure 4.4. This change allows the knowledge
structure multiple means for creating relations to high level concepts (by arrangement

and/or by composition).

4.3 Teaching BEKAS

The starting point of building the basis of BEKAS is the construction of the knowledge
structure. At the lowest level of the structure semantic labels are associated to histograms.
At the highest level, a concept hierarchy provides relationships between various concepts
and/or contexts. The lifecycle of BEKAS starts with a training process that is expected
to lead to a usable knowledge structure. This training process is split into three phases,
each one related to a different level in the knowledge structure. Discussion in the section

is focused on the methodology used to achieve the target functionality of each level.

4.3.1 Semantic Labels

With a meaningful segmentation one could extract all the objects from an image to compose

a desired semantic label set for that image. Meaningful segmentation is not realistic [45],
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so extracting all the objects from an image is not a viable approach. Our approach is
inspired by the work of Feldman and Yakimovsky [31] where the segmentation assumption
is replaced by a region labelling process that is based on a priori knowledge. Our aim is
to model a mapping between histogram features and a predefined set of semantic labels.
This problem falls into the category of classification and, given availability of a priori
knowledge, it can be tackled in an automated fashion.

The training process starts with a set of training images. These images are given to
human subjects for segmentation. Multiple segmentations are used so the classification is
not biased by the judgement of a single person. To average the segmentations we used

majority voting.

(a) Original. (b) Segmentation. (c) Label map.

Figure 4.5: Example of going from image to partition map.

Then the images, and their corresponding segmentations are partitioned to M x N
rectangular sub-images (or windows), Figure 4.5. Histograms are generated from each
image window, while a single semantic label is assigned to each segmentation partitions
(by majority voting at the corresponding segmentation window). These M x N semantic
labels form what we call the label map which is also used at a later process.

Each histogram generated from the training window pixels is associated with the corre-
sponding single target semantic label. The collection of histograms and the target semantic

labels, is passed to the classification module for learning, Figure 4.3.
Feature

\ / Extraction

Module
Classification
Partitioning
- / Module

Figure 4.6: Overview of the semantic label learning process.

_—
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Two issues are obvious in this process:

e Partition size and type of histograms: The required quality expected from histograms
useful in this process is good localisation potential. The choice of partition size is
also important and it should be such that usable histograms can be extracted, that

is, the histogram space can be discrete.

e How the training data s fed to the classifier: The number of histogram bins plays
a major role in the complexity of the classification process. By summarising the
histogram data the classification process is simplified, with some loss of accuracy.
One method is to store a finite number of histogram moments [48]. The first five

moments should be enough and capable of describing the originating histogram.

4.3.2 Spatial Arrangement

The different regions of a segmentation can be enumerated and the relative positioning
recorded to generate a graph. In Fig.4.7, an example of this process is illustrated. The
nodes of the graph, Fig.4.7c, can represent the various region properties (e.g. label, size
etc.) and the arcs represent the spatial properties between the nodes (e.g. relative posi-

tioning).

(a) Original. (b) Segmentation. (c) Label map and
graph.

Figure 4.7: Example of going from image to partition map.

In BEKAS spatial arrangements of labels are extracted from the label map of the
training images. We preferred an alternative representation to the a graph, that we call
the spatial dependency matriz (SDM).

A spatial dependency matrix is essentially a two-dimensional histogram where the

frequencies of label pairs positioned at a given orientation are registered,
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C(i,jl¢,d) = #([c, pl|L(c) =i, L(p) = j, p = ¢ + d(cos ¢, sin ¢)) (4.1)

where ¢ and p are points in the label map. Given an orientation the p points at d
(where 1 < d < vVw? + h2) are considered. L(x) returns the underlying label at a point x.
Spatial dependency matrices at orientation ¢ = {0°,45°,90°,135°,180°,225°,270°,315°}
are calculated to collect spatial information for the eight major connectivity types. In
fact, only the first four (¢ = {0°,45°,90°,135°}) are needed, due to symmetry. The range
of distance d is quantised at four levels to increase the level of detail. SDMs calculated
for every combination of distance d and angle ¢, (4 x 4) are combined producing a setup

representation. In Figure 4.8, an example of a setup representation of a training image is

(a) Region Look-up. (b) Spatial Dependency Map.

illustrated.

Figure 4.8: Instances of tracing for the generation of a spatial dependency matrix. In (b)
4 orientations (left-to-right) and 4 distances (top-to-bottom) are shown.

Spatial dependency matrices of multiple images can be combined and normalised. If
this normalised form of the SDM originates from similar images, representing a single
concept, they can be used as setup templates.

To compare single SDMs, any similarity measure mentioned in Chapter 2 can be
adopted. Similarly, to compare the setup of an image against a setup template, we just
need take only the matching semantic labels into account. For the current implementation

of BEKAS we use the Euclidean distance, as follows



CHAPTER 4. BEKAS - CLOSING THE GAP 86

n

¢ d
>0 2o 20 (Rkji — Tzi)?

k=1j=1\ i=1
N4

Dyt =n (4.2)

where xj;; and Tyj; are the values of the SDMs for the matching semantic labels, N is
is the total number of semantic labels in the setup template, d is the number of distance

levels, ¢ the number of different angle steps, and n the number of matching labels.

4.3.3 Concept Hierarchy

Concept hierarchies can be provided by knowledge engineers, domain experts (or users),
or derived automatically from data relations. While automatic generation of concept hier-
archies is possible [28], it is outside the scope of this approach.

For the purpose of this study a concept hierarchy had to be generated manually and
specifically in the context of BEKAS and CBIR. The aim is to initially generate a very
simple concept hierarchy, using the theme of natural scenes (Figure 4.9), which later can

be expanded.

Figure 4.9: A simple concept hierarchy uses with BEKAS.

The leaves of the concept hierarchy are associated with setup templates representing
two weather characteristics, ¢) clear sky, and i) sky with clouds (that is wherever we have

provided example images).

4.3.4 Teaching, Summarised

In the previous Section (4.2) we discussed the function of the knowledge structure in

BEKAS, and in this section we presented how this structure is populated with information.

The process of teaching BEKAS consisted of semi-automatic and manual sub processes.
The generation of i) the low-level semantic knowledge, and i) the spatial dependency

matrix is a semi-automatic process as the needed segmentations are provided by human
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subjects. After training is finished, the same modules can also be used to generate label
maps and SDMs from images not exposed to the system before, and for cases where a
segmentation is not available (e.g. query-by-example). In such cases the modules’ function
is fully automatic. An overview of the process is shown in Figure 4.10, where the sharing

of resources is illustrated.
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Figure 4.10: Overview of image decoding and generation of the SDM templates. Solid
arrows indicate the typical data flow while the dotted arrows indicate the data flow required
while training.

The process of creating the concept hierarchy and the linking of the SDM templates
is manual, although we believe that it may be automated. Algorithms exist for automatic
generation of concept hierarchies, therefore the remaining bottleneck is on the association
with the SDM templates. Currently we do not have any evidence of an automatic method
to link spatial configurations of images to a concept hierarchy, though it may be possible in
the future. One possibility may be to use the spatial information along with the semantic

relation data in the process of generating the concept hierarchy.

4.4 Questioning BEKAS

In the previous sections we showed how knowledge is stored in BEKAS using the three-layer
knowledge structure. In this section we show how this structure is exploited to perform
queries in BEKAS.

First the search process is outlined, followed by a more detailed discussion of the
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possibilities of query types that can be supported by BEKAS.

4.4.1

Searching

Performing a query with BEKAS involves a sequence of steps, as follows:

Query analysis. The information submitted by a query is analysed to extract infor-

mation compatible to the knowledge structure.

Starting point of search. Depending on the information provided by the query, one

or more points are selected in the knowledge structure, to initiate multiple searches.

Search paths. For each starting point searching is performed, in terms of reaching
the lowest part of the knowledge structure. If necessary, the search is also directed
towards the root of the concept hierarchy, to search similarities at a higher level.
Eventually, a set of paths (from a starting point to a spatial arrangement setup) is
generated and sorted by their depth (number of steps). The depth of a path defines

the similarity to the submitted query.

Define image sets. The destination of each path (that is the leaves of the knowledge
structure) contain information about the configuration of the related images. This
information is used to define image sets, that are retrieved for each path (starting
from the shortest path). In the current implementation, images are assigned to only

one image set, it may be desired to retrieve all images though.

Image retrieval. The user initiates image retrieval by browsing the image sets defined
in the previous step. The images of each set can be sorted using any available

resources (similarity to semantic label composition, arrangement, proportions etc.).

In essence, searching is nothing more that traversing the knowledge structure. Because

the structure is composed of high level concepts, they also comprise the driving force of

the search. Therefore, the user is exposed to images grouped based on their semantic

prope

rties. The process of questioning BEKAS is illustrated in Figure 4.11.

4.4.2 Query Types

The architecture of BEKAS allows exploitation of two kinds of queries, simple and com-

posite

. Simple type queries target a single layer in the knowledge structure, to find the
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Figure 4.11: Query processing.

starting point(s) of the search. On the other hand, composite queries comprise an exten-
sion of the simple queries, by using information related to more than one of the levels of
the knowledge structure. The information in composite queries can be used in such a way
that a query language is possible (e.g. exclusion of semantic labels or configurations using
logical operators). The focus of this section is on the execution of simple queries.

Query by Example. The expected input for queries of this type, is an example image
(existing file or user sketch). This image where it is partitioned and the features of each
partition are extracted, compressed and passed to the classifier. A semantic label map is
generated and an image signature is calculated (SDM and label proportions). One starting
search point (or more if desired) is defined by finding the SDM template that matches best
the SDM derived by the example image. Then the search process continues as described
in the previous section.

A simple example of the search process, from the point we have found a starting point
(at the setup level) is illustrated in Figure 4.12. In this example the starting point is node
(h), that will be used as a path of zero depth. Then, the search is directed up to the parent
node (¢) and then down to the remaining children of that node (g) and (7). Then the search
is directed up again, so the children of the parent node (a) are visited. The resulting path
set from this particular example would be in the following order P = {h, g, i, e, f, j, k}.

For cases with multiple starting nodes, a solution would be to score the starting points
by how much the query SDM matches the SDM template of the starting point (the closer
the matching the higher the score). Then the search can progress for all the nodes as
normal, until a conflict occurs. In the case of a conflict the progress of the path that

started from the node with the least score is terminated. When the search progress of all
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Figure 4.12: Query by Example or Spatial setup.

the paths is finished the process continues as described in the previous section.

Query by Spatial Setup. In this case the input can be given in two forms either by
example, where the user provides a drawing similar to a segmentation (from which a label
map is produced), or by access to the knowledge structure (e.g. selecting a setup from a
list, exposing the knowledge structure to the user). The remaining of the search process is
identical to the case of query by example.

Query by Concept. In such a type of query the BEKAS expects a concept name as
an input. The starting point is defined by a lookup in the hierarchy. Then the search
is directed towards the setup level first, and then up to a higher level concept. A simple
example of a query by concept is illustrated in Figure 4.13. Starting from the concept node
(c) the search is directed to nodes (g), (k) and and (é). Then is directed up to the parent
node (a) for further search. The resulting path set from this particular example would be
in the following order P = {g, h, i, e, f, j, k}.

Concept
Level

Figure 4.13: Query by Concept.

Query by Label(s). One or more labels are given to the system, without any spatial
information (An alternative form of input could be an example image, that is treated as a

single partition). This type of query results in potentially more than one starting points.
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That is because all the setups of the knowledge structure that include the given labels are
used as starting search points. From that point the search progresses as in the previous
types of queries. An example of such a query type is illustrated in Figure 4.14. Starting
from two labels (L3 and L4), the resulting path set is P = {g, h, 4, f, e, j, k}. If the query
is restricted to return images that contain only the labels included in the query the path

set would be P = {g, h, i, f}.

Concept
Level

 Setup
Level
Label
Level

Figure 4.14: Query by Label(s)

4.4.3 Summary

In this section we presented in more detail the types of queries that can be supported by
the BEKAS architecture and we showed examples of how these queries can be generated.

The main feature of query processing in BEKAS is that the distance measure is based
on semantic information, rather than computationally convenient features. Furthermore,
the semantic information is used to generate groups of images sharing the same semantic
properties. The significance of ranking of images within a single group is not defined by
the developer of the system, but by the user of BEKAS (depending on the amount of detail
in a submitted query).

While the illustrated examples show very simple concept hierarchies, it is possible to use
the same techniques for deeper structures. A natural extension of the knowledge structure
would be to include synonyms of concepts, while the ultimate goal is the use of a thesaurus,

in a similar manner as in [115].
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4.5 Implementation Issues

In this section we discuss implementation issues of various components of BEKAS as well

as the possible impact of error at different stages of training and query processing.

4.5.1 Semantic Labels

In this section we discuss issues regarding decisions taken with respect to the choice of
the classification algorithm and the choice of parameters. Additionally we discuss the

implications of errors at this level, and possible approaches to remedy these errors.

Choice of classification algorithm and parameters. Two methods were at-
tempted, i) Decision Trees, and 4i) Multi-Layer Perceptron (MLP) and error back-propagation
learning. Preliminary testing showed that both methods performed very similarly for this
type of problem. The MLP method was preferred due to implementation conveniency.

Before feeding the training data to the classification module we applied majority filter-
ing to each partition. This way slight segmentation errors are filtered, while a confidence
level can be established to decide which partitions are suitable for training. Additionally,
an amount of overlap is added to the partitioning algorithm to fuzzify the process. We
choose a 75% coverage as the confidence level, and 10% overlap between partitions.

After testing the system with a range of MLPs of different structures, we found that
the best accuracy performance we could achieve for labelling was in the range of 60-
70% successful classifications of partitions. A reason for this may be the nature of the
information used by the classifier, which may be improved by using a higher level summary

of that information.

Effects of erroneous classification. Misclassification of partitions, result in errors
in semantic label maps. Semantic label maps are used ) to generate spatial dependency
matrices, and i) to calculate the proportions of semantic labels in an image. Therefore,
errors in the semantic label map would potentially affect the setup-templates stored in
the knowledge structure, and the SDMs generated for images submitted for queries-by-
example.

There are two cases we need to discuss, when the classification of the semantic label

maps used for the generation of the setup-templates, i) had errors (the classification module
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was used to update the setup-templates), and i) had no errors (only hand segmented
images were used). In the first case, the impact of mis-classifications, would be severe, to
a degree that the system could not be used with confidence. That is because errors would
affect both the existing setup-templates, and the semantic label maps generated for query
and new images.

In the second case, the system would only be affected when generating semantic label
images, and the process of comparing the SDMs of an image against the setup-templates.
Two possibilities exist, i) the assigned erroneous semantic label that exists in the setup-
template, and i) when the assigned erroneous semantic label does not exist in the setup-
template. Assuming that these errors are isolated and small in number we expect to
have little effect. That is because the distance measure takes into account the distance
and direction characteristics, as well as the membership of a semantic label in the setup
template. In addition to this, queries that do not use the classification mechanism would

not be affected.

Possible remedies. We have considered two possible remedies, i) simplify the clas-
sification problem, and ii) post process the classification results.

Simplification of the classification problems may be achieved with the use of a different
method for summarising the histogram features. In [70], Mojsilovic and Rogowich exper-
iment with mapping of features to semantic categories. By exploiting a similar method
more distinct variables may be possible, therefore making the process of classification more
accurate.

Alternatively, relaxation techniques [109] may be used to post-process the classification
results. An additional processing step of the setup-templates can be used as a priori
knowledge to the relaxation labelling. That is to summarise and normalise the setup-
template to a single structure, from which we can retrieve the probability of label pairs to

be positioned at a given orientation and distance (Figure 4.15).

4.5.2 Representation of Spatial Relationships

Another decision had to be taken with respect to representing the spatial relationships
of semantic labels. Initially we experimented with a graph representation and the Bron-

Kerbosch clique finding algorithm to compare the spatial relationships of two images.
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(a) Global setup-template (b) SDM of a sigle image.

Figure 4.15: Example of a global template in contrast to SDMs of a single image.

We found difficulties implementing the algorithm so to allow comparisons of graphs
from images against template-graphs. The basic comparison algorithm returns only the
matching pairs of nodes (between two graphs). The result of this was the spatial depen-
dency matrix as is introduced in Section 4.3.2.

The process of generating SDMs is simpler than the graph method, while the main
advantage is the method used to compare SDMs. The main advantage is that more infor-
mation is accounted for the comparison process, rather than just matching information.
Furthermore, the process of comparing SDMs is also simple as a wider choice of distance
measures can be adopted and used to experiment.

The proposed representation of the spatial dependency matrix is not expected to scale
very well for hundreds or thousands of semantic labels. In such cases alternative methods

should be considered (e.g. sparse matrix representations).

4.5.3 Query Processing

On the weak side, the process of generating the search paths is heavily dependent on the

structure used to represent the relationships of semantic knowledge.

Errors in selecting start search point(s). There are three possible starting points

in the knowledge structure, that is, from top to bottom:

e Concept. The effects of errors at this level depend on 4) the depth of the concept
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hierarchy, and i) the source of the concept hierarchy. In the first case, the error
mainly depends on the distance between the mis-selected concept and the correct
concept. The error is amplified by the depth of the concept hierarchy. Small errors
at high levels in the hierarchy should have a greater impact in performance. In the
second case, errors may be due to incorrect connectivity (relationships) in the concept
structures. These errors are introduced when the structure is composed, and their
effect in performance is more or less unpredictable. In this implementation, we are
not concerned about such errors for two reasons, a) the search is a straight forward

lookup through the structure, and b) the size and structure is simple.

e Setup. A erroneous selection of a setup is expected to have the same effect as in
case (i) for errors in concept selection. The reasons for such errors to occur are 7)
misclassification in the labelling process, and ) capacity limitations of the setup-
template. In the first case, errors may be reduced by improving the classification
process, while in the second case, the template may be over-generalised and a split
may be required. Errors of the latter kind do not concern the current implementation,

as the number of possible setups is limited.

e Label. Errors at this level are expected to appear during the classification process.

Their effect and possible remedies are discussed in the previous Section 4.5.1.

Dependency to concept hierarchy representation structure. In thisimplemen-
tation of BEKAS we choose a tree structure to store the concept hierarchy. Scaling of
the concept hierarchy to accommodate more information and more complex relationships,
would require, redesign of the query processing methods. In particular, the selection of
start search points for query-by-concept, and the path generation process would require

changes.

Ranking of images within the returned image sets. As we mentioned, the
query process returns a number of image sets, that the user can browse through. Depend-
ing on the type of query, the amount of information about the desired target image is
different. The method used to rank the images within a return image set, depends on that

information. A list with the method used for each type of query follows:
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e Queries-by-example and -by-spatial setup, are the most information rich types of
queries. From the input the system can extract information about semantic label
membership, proportions and spatial relationships. The same information is used to
generate SDMs. Therefore, we used the SDM distance measure to rank the images

within the returned image sets.

e For the cases of queries-by-label, the system is only provided with semantic label
membership information. This exact information is used to sort the images within
the returned image sets. So images which include more semantic labels from the
query are ranked first. It is expected to get ties, and as no further information is

available to the system the images are returned in random order.

e Queries-by-concept do not provide any semantic label membership information. In

this case images are again ranked randomly.

4.5.4 Testing

BEKAS provides a more complex approach compared to a system extracting and using
features using the methods presented in Chapter 3. Because of this the performance
evaluation framework presented in Chapter 5 cannot be applied directly. Testing BEKAS
poses a challenge to CBIR as multiple aspects of the system need to be tested.

In this Chapter we have presented the idea of BEKAS. All the modules have been
implemented and tested individually and not as a complete CBIR system. This would
require further data collection (related to the composition of the concept hierarchy, training
sets for the labeling module and the setup templates) and application development (design

and implementation of a user interface) which would be outside the scope of this thesis.



Chapter 5

Evaluation Framework

The main objective of a CBIR system is to ease the process of image retrieval in order to
increase productivity. Therefore, it is essential to quantify the effectiveness of a system as
a measure to assess its usability. This is a challenging task in CBIR, due to the subjectivity
factors involved in the process.

Extensive subjective evaluation would be the perfect solution to this problem. But due
to difficulties (even when it comes to narrow down the application area, subjectivity is a
major difficulty [59]), time consumption and inability to be reliably repeatable, subjective
evaluation should be left for the last stage of the CBIR system development.

In testing low level computer vision algorithms it often appears that an author jumps
to a higher level, using an application, in order to evaluate objectively the performance
of the proposed method (e.g. [89]). As CBIR is an application by itself, it is not easy to
follow such an approach without promoting simplification and possibly diverge from the
main problem.

n [98], Santini mentions the three different modalities of evaluation of a perceptual
and interactive system physical performance, contextual and decontextual evaluation, while
emphasis is on decontextual evaluation. The nature of a histogram based CBIR system
and parts of the above work was the main motivation towards experimenting on different
aspects of the implemented prototype system. The goal is to identify methods for automatic
and easily repeatable testing and validation of histogram methods for CBIR.

Our experimentation leads to a collection of qualitative and quantitative methods that
can be used to evaluate various aspects of histogram methods for CBIR. In this chapter

we have organised these methods to form an evaluation framework. This framework al-

97
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lows methodical and easily repeatable testing, which satisfies the testing objective (1.3.3).
Although some of the methods may sound self-intuitive we did not find any reference to
their use in CBIR evaluation.

Discussion starts with an overview (Section 5.1) of the testing framework where the
information flow between parts of the framework is illustrated. Discussion continues on
the acquisition of groundtruth and the use of multiple datasets.

The remainder of the chapter is separated into qualitative and quantitative evaluation
methods for CBIR. In Section 5.2, we present a number of methods, consisting of graphs and
plots, whose role is to assist qualitative assessment of histogram methods for CBIR, in terms
of potential performance behaviour and sensitivity to noise and image transformations.
Then, in Section 5.3 we present the quantitative methods we used in this framework.

The discussion finishes with Section 5.4, where the Pathfinder networks are introduced
for use in image dataset visualisation and CBIR system evaluation. The work involved in

Chapter 5.4 was a joint effort and is included in this thesis for completeness.

5.1 Overview

The scope of the testing framework is to provide the means for qualitative and quanti-
tative evaluation for histogram methods for CBIR, an overview of which is illustrated in
Figure 5.1. Starting from a pool of extracted histograms and the associated groundtruth,
various quantities are calculated (distance / similarity measure and performance measure).
These values are then used to generate graphs and visualisations for qualitative analysis.
Resulting values are also used for further quantitative analysis (statistical significance). In
Figure 5.1, the main information flow between the components of the framework is also
illustrated.

The focus of this section is on the input to the feature extraction methods, the im-
ages, and the associated groundtruth. More details on the remaining components of the

framework are discussed in later sections.

5.1.1 Groundtruth

A collection of information about an image comprises the groundtruth for that image. This

information may describe various aspects of the image at various levels. A set of tags may
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Figure 5.1: Obtaining results overview.

describe the content of the image while higher level concepts may be associated to the
image. At lower level tags may be used to describe low level aspects of the image, e.g. a
segmentation, and possibly an association layer that provides a spatial connection of the
two levels.

In a collection of images intended for traditional CBIR (using keywords) this informa-
tion is used to determine relationships between images. In modern CBIR such information
is collected and used as part of the evaluation process of a method or system. The rela-
tionships between images can be summarised into classes of images, which may be disjoint
or overlapping. These summaries can then be used to ease the calculation of performance
measures such as recall and precision. The initial part of the process (tagging) is usually
performed by human subjects, usually experts, while the image classes can be calculated
automatically by using programs.

Fully automatic classification of images for groundtruth can also be achieved. Milanese
(in [65]) used the fact that images belonging to the same scene to put images into classes.
The relationships between images of different classes, although possible, are not captured
by such a method. Still this kind of groundtruth may be used as a reference to determine
relative performance between different methods for CBIR.

Recent research activity is noticed towards automatic labelling [116]. A hybrid system
is built that uses feature extraction methods and the labels attached to a groundtruthed
set. The low level feature similarity between the groundtruth and the new images is used
to attach labels to these new images. Such interpolated groundtruth should not be used
for the evaluation of CBIR systems as the accuracy error introduced by the automation

may compromise the results.
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As the whole process of groundtruthing is very subjective and the accuracy of the
groundtruth is questionable (no matter how strict the tagging process is), we think that
testing based on such groundtruth should be used only for reference performance evaluation
and not as a tool for assessing the usability of a CBIR system. A full scale subjective test
is more suitable of capturing the usability characteristics of a CBIR system.

A variable number of image datasets is important in testing a CBIR system. This way
the system can be tested in various scenarios and so evaluate the behaviour under specific

circumstances.

5.1.2 TImages Sets

Collections of images of various content and associated groundtruth comprise the usual tool
of a testing framework. Having different datasets with different levels of complexity allows
isolation of the system (individual components or as a whole) to specific scenarios. In
this framework, four different image sets are used. The classes were automatically created
(apart from one case) by information of different semantic levels. In all cases the classes

are disjoint.

Video Scene Samples We recorded scenes from broadcasted TV! programs on video
tapes. Then we took 9 frames from each scene. A total of 43 scenes were stored giving a
total of 387 images. The content continuity over a scene and the fact that each group of
samples comes from a different scene provides a sound automatic ground-truth, similarly

to [65]. Example images are shown in Figure 5.2.

Figure 5.2: Example images from the video scene samples.

Chen Collection A total of 279 images were collected from the Internet and then
grouped by human subjects. The groundtruth was used as granted and we are not aware

about any further details related to the method used to summarise the subjects’ groupings.

!The sequences were recorded under the permission of CRETA channel in Crete, Greece.
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Example images are shown in Figure 5.3.

Figure 5.3: Example images from the Chen collection.

Co0il-100 This particular dataset comes from [76]. It has been used extensively in the
CBIR community and its inclusion in this framework was to provide a point of reference
for the testing. The dataset includes 20 instances of 100 different objects, rotated around

the Y axis. Example images are shown in Figure 5.4.

Figure 5.4: Example images from the Chen collection.

Artchive A collection of painting photographs (grouped by artist) was provided by the
Patron Program of the Artchive (http://www.artchive.com/). The original grouping by
artist was used directly as the groundtruth. The task of image retrieval on such a dataset
with such abstract information is expected to be very difficult. It is expected that pictures
from a single artist vary in content. Some aspects of the artist’s style are expected to
remain the same, while there is expectation to vary in time. Example images are shown in

Figure 5.5.

Figure 5.5: Example images from the Chen collection.
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5.1.3 Transformation Sequences

It is important during the development of a CBIR system (new methods, tuning exist-
ing methods etc.) to investigate the behaviour of a method under controlled conditions.
Typically we are interested to study the tolerance of histogram methods under specific
transformations, rotation, translation and scale.

For this purpose we set up a camera that could follow a predefined path. This enabled
us to capture sequences of the desired transformations. Each sequence consisted of about
600 to 900 images. A smaller number would probably be enough to perform experiments.

We choose a higher sample rate to enable us to control the amount of change by sub-

sampling the sequences. Sample images are illustrated in Figures 5.6, 5.7 and 5.8.

Figure 5.8: Rotation on the z axis.

5.2 Qualitative Methods

Decontextual evaluation is defined as performing tests on a system outside a specific con-
text. It is desirable to study the behaviour of a method (a low level feature extraction
routine) before its integration to a greater system.

In the CBIR context, various components, like feature extraction methods, distance

measures or combinations of histograms can be considered for decontextual evaluation. Our
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objective is to study histogram methods with respect to their strengths and weaknesses.
In the following sections a series of tests and visualisations are described as part of the

decontextual evaluation in this framework.

5.2.1 Histogram Plots

The objective of this method is to generate a visualisation of the histograms generated
from a image data set using a single histograms. The values of each bin in a histogram are
translated to pixel intensities (Figure 5.9a). These strips of pixels are generated for each
extracted histogram and then used as columns to construct an image, Figure 5.95. The

illustrated histogram plots are post-processed for better viewing.
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Figure 5.9: Histogram plot example, using the video scene samples set.

The use of this visualisation is separated into two different sections, when generated

from i) grouped image collections, and 1) video sequences (controlled transformations).

Image Collections?. When investigating the histogram plots generated from the grouped

image collections, we are looking for the following cases:

Global Level Uniformity. When very little changes across the whole range of the image
collection the expectations for the particular method should be low. This uniformity
denotes a limited discrimination power.

Narrow Band Bin-Population. When a small part of the histogram bin area is popu-
lated, through the whole range of the image collection, Figure 5.11a. Methods resulting
to such histogram plots are not expected to show good performance, specially if there is
very little variation of the populated bin range. Changing the bin membership function
or rescaling the histograms may be a solution to reduce the negative effects of narrow

banding. This solution may not show any improvement in cases of very noisy histograms.

2White lines in the illustrations of this section, are used to highlight the limits of image groups.
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Noise. Regardless of similarity of bin range population within or between image groups,
noisy histograms are not desirable. The source of the problem may be the bin membership
function. In such case tuning, more advanced histogramming methods (like [56]) or distance
measures may be beneficial. Generally, methods that exhibit noisy histogram plots are not
expected to perform.

Dithering Effect. Slight errors are expected into histograms caused by the chosen
histogram resolution (number of bins). This is a similar case as with noise; the difference
is less noise. A possible fix for this is to use a distance measure that is not very sensitive
to subtle differences (like the Kolmogorov-Smirnov test). An other alternative may be to

just smooth the histogram. The effect of smoothing is illustrated in Figure 5.10.
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(a) Original histograms. (b) Smoothed histograms.

Figure 5.10: Example of dithering effect in a histogram plot.

Global Level Variation. This is the kind of histogram plot expected from top performing
features. Histogram differences within groups are very small while the differences between
different groups are greater. Such an example is illustrated in Figure 5.11b. In the same
figure, the histogram bins are also sparsely populated. A more complex bin membership

function could be used to minimise this effect and essentially compress the histograms.

Although, such a technique may be beneficial for CBIR, it is not investigated further.
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(a) Narrow banding. (b) Global level variation.

Figure 5.11: Histogram plots of two methods, using the video scene samples set.
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Image sequences. In the case of the image sequences, histogram plots can be used to
visualise how a feature histogram tolerates or gets affected by a transformation. We have
identified three main behaviour cases:

Noisy. The histogram plots of this kind can be further classified into two general cases.
In the first case a general noisy histogram plot is noticed, while the overall visual difference
changes smoothly (Figure 5.12a). This is similar to the noisy histogram plots of image sets.
In the second case histogram plots have a large proportion of the plot very similar or even
the same, while difference is noticed on a narrow band of the histogram (Figures 5.12d,
5.11a). Such behaviour suggests that the method fails to capture the image differences.
The narrow banding also suggests a low discriminative power of the method.

Shift. A shape of the histogram plot follows some trend (Figure 5.12b), e.g. shifts on
some direction. This suggests that the similarity of the images can be captured but extra
effort is required. This is when the distance between images is calculated so to compensate
for this trend. (e.g. the best match euclidian, where shifting the histograms to match is
involved)

Smooth or Minimal Change. This is the ideal behaviour of a histogram plot. De-
pending on the transformation in question different conclusions can be drawn. For all
transformation cases this would mean invariance to the transformation. Also, for the case
of the zoom-in sequence, this would also mean high localisation potential. An example of

a histogram plot using the rotation sequence is illustrated in Figure 5.12c.

5.2.2 Similarity at Distance D

The initiative on the use of the image sequence data sets is to control the amount of
change when comparing the features of two images. The objective is to generate a graph
where we can view the differences of features. These differences are calculated using a
distance/similarity measure while we progress through the histograms of sequence frames.
The variable D controls the amount of change between the compared a sequence of frames.
So, if H; is the first histogram of the comparison the H;; p is the second. Histograms are
compared in synch with the original sequence.

Using this graph we can also visualise the effectiveness of alternative distance/similarity
measures when trying to compensate for sensitivity to a particular transformation or a

negative behaviour of a method (e.g. dithering effect in histogram plots and the effect of
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Figure 5.12: Examples of histogram plots using video sequences.

histogram smoothing). Examples of similarity plots are illustrated in Figure 5.13, using

histograms of transformation sequences for two different D values.
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Figure 5.13: Similarity graphs of transformation sequences.

Although the use of the similarity plot makes more sense for video sequences we also
experimented with the video scene samples. We used the lowest distance value D =1 and
as the images are grouped we compared the images in synch with the image groups and
how the sequence they are stored in the groups. For histogram methods to be used in

CBIR our expectations are:

e High distance values at the limits of the groups (when comparing the last image of

a group with the first of the next group).

e Small distance values in between the limits of the groups (as the images are of similar
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content).

Similarity plots fitting to the above description (Figure 5.14a) may be used as an indication
of potential use of the histogram methods in CBIR. A case of a similarity plot not fitting
to the above description is shown in Figure 5.14b. Note that similarity plots are used with
grouped images only to get quick indication. As the method is based on a very small

number of comparisons the result is not expected to be of a similar level of accuracy.
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Figure 5.14: Examples of similarity graphs using the video samples.

5.2.3 Distance Matrix

The distance matrix is used to generate a visual summary of distance values between
images. The distance matrix is used along with grouped images sets. All the distances
between image pairs are calculated and stored in a matrix, where the column and row
indexes point to the compared images. The groundtruth is used to arrange the column
and row indexes in such a way that images of the same group are adjacent. The values of
the matrix are then translated to intensities to form an image. Higher intensities indicate
greater similarity.

Assuming disjoint classes, this visualisation is capable of summarising the between
classes (inter-class) and within classes (intra-class) similarities in one dataset. The intra-
class similarities are arranged close to the diagonal while the inter-class similarities occupy
the remaining area.

The expected behaviour of a good performing method is to produce high similarity
values for the intra-class comparisons and lower values for the inter-class comparisons.
This translates to a distance matrix with high intensities close to the diagonal and lower
in the remaining area. An example is illustrated in Figure 5.15a.

Otherwise, high intensities in the inter-class area (and low intensities in the intra-class)
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Figure 5.15: Distance matrix of a good performing method.
indicate:

e The groundtruth was not properly defined which is not likely to happen (the pre-
rformance is such cases can be compared to that obtained by experimenting with

randomly classified images).

e The method fails to approach the ground-truth for the used dataset. This may be
due to the high level of information used for the classification, which the feature(s)

fail to pick up from the images, or

e The method fails to extract any useful information out of the image.

An example of such a method is illustrated in Figure 5.16a.
The above distance matrix can be summarised to a single value, indicating overall

performance, as:

ioc ch
2 a2 i lifi > j
M = === fi=
2 0:Qc 0ifi < j (5.1)
Q. = N —ng Oc:w with n, > 2, and n. < N

where, N the total number of images in the dataset, n. the number of images in class ¢
and k the number of classes.
As an additional indication we can plot the calculated similarities, in descending order,

Figures 5.15b and 5.16b. The vertical line acts as a separator between the intra-class and
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Similarity

Figure 5.16: Distance matrix of a bad performing method.

inter-class similarity values. The two dashed lines indicate the median similarity values of
the two classes, while the dotted line indicates the mean value of the two medians. The
closer the two medians the worse the performance. An ideal solution would result in a plot
very close to a step curve.

As the distance matrix is composed of similarity values, it can be used on either single

histogram methods or even combinations.

5.2.4 Noise Dependency

The fact that the images of the datasets were collected from various sources (possible
variable quality) suggests that variable noise levels are to be expected in images. It is
important to know if the existence of noise affects the behaviour of a method. In particular
we want to see if there is any dependency between performance and noise (does a method
capture the underlying feature, or the noise?).

In [51] the standard deviation of the grey-scale map is computed using the fast noise
variance estimation. Testing for correlations between the observed noise and performance
levels (using Pearson, Spearman or Kendal) can show potential dependencies to noise.
Two instances of recall and noise observation curves are illustrated in Figure 5.17 (using
the results from a single histogram method). In Figure 5.17a, the observations are sorted
in the same order as the images are stored in the database. Similarity of the noise level
within single image groups is apparent. In Figure 5.17b, the observations are sorted by

performance (ascending order). With this graph a possible correlation between the two
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curves would be visible. We also used the Pearson product moment correlation coefficient
to quantify a possible correlation between the two curves.In this particular example no ob-
vious correlation between performance and noise level exist, suggesting that this particular

method does not suffer from any dependency on noise.
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Figure 5.17: Noise dependency graphs Pearson product moment correlation coefficient
P =0.1009

As an alternative to Figure 5.17 we use a scatter plot of the observation, as shown in
Figure 5.18. Clusters on the grayed area of 5.18a would signify a dependency. An example
of the actual scatter plot of recall and noise observations is illustrated in 5.185b.

We expect this graph to be more beneficial when used with the video scene samples
image set. This is because the noise levels vary between groups, while remaining almost

the same within groups.

5.3 Quantitative Measures

The evaluation methods presented in this section are intended to provide quantitative

results of the evaluation:
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Figure 5.18: Performance vs Noise scatter plot.

¢ Comparing the results of various techniques (distance measures, single or combina-
tions of histogram features) with a groundtruth (automatic or obtained by human

subjects) to derive a quantitative measure of agreement.

e A statistical analysis is performed over a group of such measurements to find out if

the detected differences are of any significance.

The abovementioned operations are performed using standard techniques.

5.3.1 Query Effectiveness

Having the query-by-example paradigm in mind, an example image is shown to the system.
Low-level image processing techniques are used to extract several aspects from the image.
These are summarised by histograms, which comprise the signature of the image. That
signature is compared against the signatures previously extracted and stored in a database.
The resulting distances are used to quantify the similarity between the query image and
those stored in the database. Then the distances are sorted to associate a ranking to the
images in the database. A rank of 1 is assigned to the most similar image while a rank
of N is assigned to the least similar image. A performance measure can then be used to
judge the performance of the query.

Standard methodology from the area of document retrieval have been used also in
evaluating the performance of various image retrieval applications. The most common has
been the pair of recall R and precision P. Applied to the CBIR context, suppose an image

database containing N, relevant images, B as the set of retrieved images at a time and A
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as the set of relevant retrieved images at that time (A C B).
Although recall and precision are objective measures and easy to compute, they suffer

from certain shortcomings when used in evaluation of a CBIR system:

e Image Relevance. The process of defining the relevance between images is ill defined.

e Sensitivity to a threshold. CBIR systems are generally based on ranked lists of
retrieved images and the recall /precision values are calculated based on a threshold
(cutoff) chosen by the operator of the system. Unfortunately, these measures are

very sensitive to the choice of that threshold.

Salton, in [97], proposed normalised forms of recall and precision to eliminate the need of

a threshold and any problems bound to that.
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Figure 5.19: Construction of normalised (@) Recall and () precision. The upper thin solid
curves represent the ideal case. The thick solid curves represent a typical case while the
lower thin curves represent the worst case.

Both measures represent the area between the ideal case and the observed case curves

and they are calculated as follows:

n

n
IS
=1

Rnorm = 1- Zznl(N — ;) (5.2)
n n
> logr; — > logi

Pnorm = 1- = =1 (5.3)

g [

The normalised recall and precision can be interpreted as approximation to the average
standard recall and precision measures over all the possible cutoff levels. A schematic

example is shown in figure 5.19.
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Salton also suggests the value € to summarise the recall and precision measures into a
single number,
1

e=1-— , where0 < a <1 5.4
at+(1—a)% -7 (5.4)

the factor « is used as balancing weight between recall and precision. As « gets closer
to 1 precision the contribution to the value of € is greater than the contribution of the
recall. The opposite holds when a gets close to 0.

Alternative methods based on statistical tests have been proposed (e.g. [25]) but im-
provements are due to independence of a threshold and while the problem of image rele-
vance, remains.

Such performance measures work well in document retrieval mainly due to the large
amount of textual information in the documents’ content. When it comes to images such
information is non-existent. Keywords are extracted based on subjective interpretation of
the image content. That makes the whole process of groundtruthing ill-defined. Although,
precision and recall can still be used as a reference and not as a panacea of testing.

This evaluation framework does not dependend on any particular performance mea-
sures. The abovementioned measures were arbitrarily chosen and alternative measures can
be used without any fundamental changes.

For our initial experiments and published results we used a different, single value,
performance measure. We called that method, the weighted class expansion, and it is

calculated using the formula,

B Cr\ Ck
P = (1 - N) i (5.5)

where, k is the class the query image belong to, and Cj the number of images in that
class. Ly is the rank of the last retrieved image of class k, and N the total number of
images in the dataset. The advantages of the weighted class expansion are 7) a single value
is generated, and 4i) the resulting values are not biased by the size of the image classes.
On the downside, we found that it may can be sensitive to outliers, (e.g. if the majority of
images of class k are clustered and with a good ranking, a single, poorly ranked image will
result in a low score, the opposite is also possible). For this reason and for consistency with

the research community we switched to the normalised recall /precision, and the epsilon
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value as proposed by Salton [97].

5.3.2 Statistical Analysis (does the difference make any difference?)

Experiments, usually, consist of a number of trials and every trial, quite expectedly, will
give different results. Assume two trials using two different histogram feature combinations
F; and F5. The resulting rankings of the two methods are compared with the given ground
truth, resulting in a performance result P, and P, respectively. We cannot generalise and
say with a certain confidence that method Fj is better than F5. A naive expansion of the
above case would be a comparison of the average scores obtained by the the methods. Still
that does not tell anything about the performance variance of a single method or between
the two methods.

Performance values almost invariably differ somewhat between different histogram fea-
ture methods. The question is whether the difference among the samples signify genuine
population differences or whether they represent merely random variations beyond the
control of the experimenter. This type of question can be treated as a significance test (or
hypothesis test) problem.

Statistical analysis provides a large pool of techniques for significance testing. These are
generally grouped into two categories, the parametric and the non-parametric (or distribu-
tion free) tests. In parametric tests assumption is made about the population distribution
having the characteristics of a normal distribution while in non-parametric tests such an
assumption is not made.

Before going any further it is mandatory, for consistency, to put down the associations
of the terms used in CBIR with the appropriate statistical terms. The result (performance
value(s)) of a single query is the observation while the result of a set of queries comprises
a sample.

Since there is not a priori knowledge about the shape of the distributions of the ex-
pected samples a non-parametric test is preferred. Additionally, since the samples under
test are independent and contain ordinal observations three tests are suggested in the lit-
erature [104] the extension of the median test, the Kruskal-Wallis (KW) one-way analysis
of variance by ranks and the Jonckheere test (J) for ordered alternatives.

The median test can be useful for testing but the Kruskal-Wallis test is preferred as

more information from the samples are used. The Jonckheere test is not suitable for this
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test as the point of interest is if the difference of the samples makes any difference.

The Kruskal-Wallis one-way analysis of variance by ranks tests the hypothesis that k&
independent groups or samples are the same against the alternative hypothesis that one
or more of the samples differ from the others. Following, the description of the KW test
as derived from [104].

The null hypothesis and its alternative are specified as:

Hy: 91 =92 =..=19; and

H, : 9; # 9, for some groups/methods 7 and j

with 19; the median for the j* group. That is, if the alternative hypothesis is true, at
least one pair of groups has different medians. Under the null hypothesis, the test assumes
that the variables under study have the same underlying continuous distribution; thus it
requires at least ordinal measurement of that variable.

In applying the Kruskal-Wallis one-way analysis of variance by ranks, the data are cast
into a two-way table with each column representing each successive sample group. For

simplicity, equally populated samples are assumed.

Group 1 2 e k
Value
1 X | Xig | | X
2 Xo1 | Xog | - | Xog
n an Xn2 e Xnk
Table 5.1: Data arrangement in a two-way table, assuming n = nl =n2 = ... = nk.

In the computation of the Kruskal-Wallis test, each of the N observations is replaced
by ranks. That is, all of the scores from all the k samples are combined and ranked in
a single series. The smallest score is replaced by rank 1, the next smallest by rank 2,
and the largest score is replaced by rank N, where IV is the total number of independent
observations in the k samples.

When this is done, the sum of the ranks in each sample (column) is found. From these
sums the average rank for each sample or group can be computed. Now, if the samples
are from the same identical populations with different medians the average ranks should

differ. The Kruskal-Wallis test assesses the differences among average ranks to determine
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whether they are so disparate that they are not likely to have come from samples which
were drawn from the same population.

Two forms for the computation of the Kruskal-Wallis statistic are as follows:

= =\2
KW = N(]1\72+1) '21 nj (Rj — R)
J:
ko9
or KW = |y 2 nily| —3(N +1)
7j=1
k
with N = Z .
j=1
k
or N = > nfor equally sized samples
1 (5.6)
where k = number of samples or groups

= number of cases in thei*” sample
= number of observations in the combined sample

average of the ranks in the j** sample or group

o &S =z 3
[l

= K—EN; U — the average of the ranks in the combined sample

If the k samples actually are drawn from the same population or from identical popula-
tions (Hp is true) then the sampling distribution of the statistic KW can be calculated and
the probability of observing different values of KW can be tabled. However, when there
are more than £ = 3 groups and when the number of observations in each group exceeds
five, the sampling distribution of KW is well-approximated by the x? distribution with
df = k — 1 degrees of freedom. This approximation gets better as the number of groups,
k, and the number of observations in each group, n;, increase.

Tied observations are expected in the performance results. When ties occur between
two or more scores (regardless of group), each score is given the mean of the ranks for
which it is tied.

Since the variance of the sampling distribution of KW is influenced by ties, one may
wish to correct for ties in the calculation of KW. This correction factor is computed as

follows:
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g
P GED)
f=1-S=x
whereg = number of groupings of different tied ranks (5.7)
t; = number of tied ranks in thei*” groupping
N = number of observations in the combined sample

The general expression of the KW statistic including the correction factor for ties is:

k
—2
[N(Z{/—%}—l) > nil; | —3(N +1)
, KW j=1
f (8 —t:)
1 _i=1
NN

When the result of the Kruskal-Wallis invalidates the null hypothesis, it indicates that
at least one of the methods is different from at least one of the others. It is therefore
more important to investigate further, to find which are the groups that have a significant

difference. That is, we need to test the hypothesis

H() : ’l?u = ’191, and

H, : ¥, # 9, for some groups/methods v and v
In this case one could perform another non-parametric test like the Wilcoxon signed ranks
test, but for computational conveniency a simple method due to Dunn is preferred. The

rank differences |R_u — R_v‘of all the pairs of groups are calculated. Then the significance

of these pairs can be tested by the following inequality:

N(N +1 1 1
o] > Za/k(k—l)\/% (— + —> (5.9)

Ny Ty

7 -

=)

The value of z,/p(x—1) is the abscissa value from the unit normal distribution above which
lies a/k(k — 1) percent of the distribution.

The Kruskal-Wallis statistic along with Dunn’s method are capable of indicating signif-
icant difference. Sometimes it is useful to investigate how distinct two methods (samples)
are. Spearman’s rs; rank-order correlation coefficient provides a measure of association
between two variables.

Suppose two samples X = {z1,%2,...,2,} and Y = {y1,¥2,...,yn}. The observations

of the two samples are ranked independently. The disparity between the ranks of two
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observations is d; = z; — y;. The Spearman rank-order correlation coefficient is then

calculated by the formula:

DD e 510
SN SED o

which does not require any correction for ties. Then the significance of an obtained r;

under the null hypothesis (for samples of N > 50) may be tested by the statistic
z=rsVN —1 (5.11)

For large N, the value of z is approximately normally distributed with mean 0 and

standard deviation 1.

5.4 Pathfinder Networks for CBIR Evaluation

Pathfinder network scaling is a structural modelling technique originally developed for the
analysis of proximity data in psychology [15]. This modelling technique is adapted to
simplify and visualise the strongest interrelationships in proximity data. The triangular
inequality condition is used to eliminate redundant or counter-intuitive links. The networks
resulted from this process are called Pathfinder networks (PFNETS).

The topology of a PFNET is determined by two parameters r and gq. The weight of
the path is defined based on Minkowski metric with the r-parameter. The g¢-parameter
specifies that the triangle inequality must be maintained against all the alternative paths

with up to ¢ links connecting nodes n; and ny:

1
k—1 T
Wnyn, < (Z w,qu) VE=2,3,...q (5.12)
=1

Image similarity data, calculated by histogram methods (or combinations) described in
Chapter 3, are passed to the Pathfinder network scaling technique. This process is similar
to asking the CBIR system to group the images into classes. The resulting PFNETs are
then rendered as virtual reality models in VRML. This allows navigation through the
image classes created by the system. Furthermore it allows one to interrogate the image
associations and verify their validity, Figure 5.20.

Further information about generalised similarity analysis can be found in [15], while

more details on using PFNETs and CBIR methods can be found in [40][17][16][18].
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(a) Overview

(b) Close-up to an image class

Figure 5.20: Example of a PFNET VRML rendering.



Chapter 6

Obtained Results

The work involved in this chapter is related to the objective that is discussed in Chapter
1.3.3, related to the performance evaluation framework. We present the results of ex-
periments using the methodology discussed in Chapter 3 and the evaluation framework
presented in Chapter 5. Discussion is focused on the obtained results, while a critique on
the evaluation framework is included along the discussion.

The chapter starts with qualitative and quantitative analysis of individual histogram
methods, Sections 6.1 and 6.2, respectively. The chapter concludes with the results of

experiments with combination of histograms, in Section 6.3.

6.1 Qualitative Analysis of Individual Histograms

In this section we summarise our observations on the histogram plots and similarity graphs
of the individual histogram methods.
Histogram plots generated from images of the grouped datasets are used to visualise

the discriminatory potential. In particular we are looking at:

e Narrow band bin population. We want to see how the histogram bins are populated,
through a range of grouped images. The greater the range of populated bins the

better.

e Variation or Uniformity. We are interested to find methods with histogram shapes

of high global variation (that is, between groups) and similarity within groups.

e Dithering effect or Noise. We are also interested to see if the histogram shapes

120
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| Label | Method | Label | Method
HUE Hue HUE-SP Spatial Hue
CL Colour Labels CL-SP Spatial Colour Labels
TU Texture Unit TU-SP Spatial Texture Unit
COOC Cooccurrence Matrix HCC Hue Cooccurrence Matrix
CC-SP Spatial Cooccurence Matric KCOS K-Cos Curvature
CIRC Circularity ELIP Elipticity
RECT Rectancularity CONV Convexity
MSSDT Edge Distance CLSH Colour Region Distance
BKDT | Colour Lavels vs Boundary Distance | BKDT2D | Colour Labels vs Edge Distance
ORNT Orientation TARE Triangle Area
TRAT Triangle Ratio TLEN Triangle Length
CARC Circular Arcs HENT Hue Entropy
LDIFF Local Difference LBLK Local Black

Table 6.1: Histogram methods.

through the range of grouped images are noisy. Also, we want to see is there are
cases of methods with subtle differences between histograms (the histogram plots

exhibit a dithering effect).

Furthermore, we generated histogram plots using three transformation video sequences
(translation, rotation and scale). This way we can visualise the effects of the transformation
to the shape of histograms, and the possible tolerance to the transformations.

In addition to the histogram plots we use the similarity graphs (Section 5.2.2) (gener-
ated from image sequences using the Euclidean distance) as another view of assessing the
tolerance to the transformations.

In the Table 6.1, the methods along with their corresponding abbreviation are listed,

for reference.

6.1.1 Hue Histogram (HUE)

The hue histogram plots (Figure B.1) show no particular problems with the bin population
range for the Video samples and COIL-100 datasets. A limited range is noticed with the
Artchive and even more with the Chen collection. This is due to the limited colour range
and larger flat areas (similar if not the same colour) in the images of these two collections.

In terms of variation, the histogram plots from the Video samples and COIL-100
datasets show a healthier behaviour, with better group separation (between group dif-
ference), and within group similarities. For the case of the Artchive, we noticed more
subtle differences between image groups. For the case of the Chen collection, we noticed

sub-groups within the groups defined by the ground truth.
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Overall, we did not notice noisy behaviour or dithering effects in the histogram plots.

The histogram plots from the transformation sequences showed smooth and subtle
transitions. In the case of the zoom-in (scale) sequence, the transition is due to the changes
in the range of hues. For the cases of the translation and rotation, it is due to changes in
the actual content.

The similarity graphs (Figure C.1) confirmed this tolerance for the translation and
rotation sequences, with the majority of distance values to be less than 0.01. Increasing
the d parameter had little effect for the two transformations. The similarity graph of the
Zoom-in sequence showed greater sensitivity.

The distance matrix using the video sequence (Figure D.16a) shows a highlighted di-
agonal (area comparing images within the same group), which indicates good recall poten-
tial, while the intensity of the remaining pixels (area comparing images between different
groups) is lower than the diagonal, indicating good precision performance. The distance
matrix using the Chen collection (Figure D.16b) showed a difficulty of the system to high-

light the diagonal area, and therefore, low performance is expected.

6.1.2 Spatial Hue (HUE-SP)

The spatial hue histogram plots share the same characteristics as the hue histogram plots.
A similar trend is also observed in the similarity graphs, with an increase of the distance
values, closing the 0.02 — 0.03 range, for the translation and rotation sequences. A smaller
distance increase is noticed for the zoom-in sequence (close to the value of 0.1 for d = 50).

The distance matrices (Figure D.18) of the HUE-SP method we similar to HUE. For
the case of the non diagonal area on the matrix of the video sequence, we noticed lower

variation, indicating possible performance increase from HUE.

6.1.3 Colour Labels (CL)

The bin population of the colour label histogram shows no narrow banding, for all the
grouped datasets (Figure B.2). This is mainly due to the categorisation of the colour space.
Variation between the image groups is evident for the Video samples and the COIL-100
datasets, while similarities within the groups seem greater. For the case of the Artchive
and the Chen collection, we noticed a noisy behaviour, with sub-groups for the case of the

Chen collection.
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Tolerance to transformation is expected to be high (higher than the Hue histogram),
as we noticed more stable histogram plots for the transformation sequences.

The similarity graphs (Figure C.3) showed similar behaviour as in the case of the hue
histogram. The majority of distances are lower than 0.04 for the translation and rotation
sequences. Again, the distances obtained from the zoom-in sequence are higher.

The distance matrix using the video sequence (Figure D.1a) shows a highlighted diago-
nal, which indicates good recall potential, while the intensity of the remaining pixels seem
to be high, indicating possible low precision performance. The distance matrix using the
Chen collection (Figure D.1b) showed a difficulty of the system to highlight the diagonal

area, and therefore, low performance is expected.

6.1.4 Spatial Colour Labels (CL-SP)

The spatial version (Figure B.18) of the colour labels histogram showed a very similar
behaviour as in the case of the colour labels histogram. An increase of the distance values
is noticed in the similarity graphs C.4, while the majority is well below 0.1.

The distance matrices of CL-SP (Figure D.2) were similar to CL, with a slight increase

to the intensities of the non-diagonal area, indicating lower performance than CL.

6.1.5 Texture Unit (TU)

We did not notice any problems related to the bin population for all the histogram plots
(Figure B.14) of the grouped image datasets. Evident of variation between the histograms
of different image groups was noticed. Although, that was little compared to the overall
uniformity over the range of the histogram plots. We also noticed noisy behaviour in the
case of the Chen collection.

The histogram plots of the transformation sequences, showed stable behaviour, which is
further confirmed by the range of distance values in the similarity graphs (Figure C.5) which
was less than 0.02 for the majority of the comparisons for d = 50. We noticed a fluctuation
at the similarity graph of the rotation sequence, which requires further investigation, to
conclude on the tolerance of the T-Unit histogram under rotation.

The distance matrix using the video sequence (Figure D.21a) shows a highlighted di-
agonal, which indicates good recall potential, while the intensity of the remaining pixels

seem to be high (indicating possible low precision) but with low variability (which indicates



CHAPTER 6. OBTAINED RESULTS 124

otherwise). The distance matrix using the Chen collection (Figure D.21b) showed (again)

characteristics of possible low performance.

6.1.6 Spatial Texture Unit (TU-SP)

The spatial version of the T-Unit histogram showed very similar behaviour across all the
histogram plots (Figure B.19) and similarity graphs (Figure C.6), with a slightly elevated
distance value range. The fluctuation was again evidence for the rotation sequence.

The distance matrices of TU-SP (Figure D.22) were similar to TUNIT.

6.1.7 Cooccurrence Matrix (COOC)

The bin population of the histogram plots (Figure B.15) showed no problems throughout
the range of grouped image datasets. We noticed a trend of peaks appearing on the diagonal
of the 2D matrix, which was also evident as peaks in the 1D representation. It may be
possible to use this information to derive a more compact version of the method.

Closer examination of the histogram plots showed strong similarities of the histograms
within groups, while there was great variation between the image groups. The same cannot
be said for the case of the Chen collection where we noticed sub-groups, less within group
similarities. Overall we did not notice dithering of noisy behaviour.

The overall picture of the histogram plots from the video sequences was that the method
shows tolerance to translation and rotation transformation. A gradual change of the his-
togram bin population is noticed for the zoom-in sequence, which we find to be normal as
the amount of texture reduces as the sequence progresses. The similarity graphs (Figure
C.7) confirmed this finding with distance values raising to over 0.3 for d = 50 towards
the end of the zoom-in sequence. This sensitivity to scale may be reduced by considering
multiple scales.

We also noticed some fluctuation in the similarity graph of the rotation sequence. We
do not think that it is very important as the curve is close to a noisy behaviour, rather
than a trend (as in the case of the T-Unit histogram, Figure C.5).

The distance matrix using the video sequence (Figure D.3a) shows a highlighted diag-
onal indicating good recall potential, while the intensity of the remaining pixels is lower
than the diagonal, indicating good precision performance. The distance matrix using the

Chen collection (Figure D.3b) showed a difficulty of the system to highlight the diagonal
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area, and therefore, low performance is expected.

6.1.8 Spatial Cooccurrence Matrix (CC-SP)

The histogram plots of the spatial version of the cooccurrence matrix (Figure B.20) vary
very little. At least, that is the case for the grouped images sets. The picture is different
for the sequences histogram plots, where more distortion is evident. We address this to the
thresholding process, which may not be as reliable as we expected. This lower tolerance to
transformations, compared to the non-spatial version, is confirmed by the similarity graphs
(Figure C.9), where higher distance values are noticed.

The distance matrices of CC-SP (Figure D.20) were similar to CC.

6.1.9 Hue Cooccurrence Matrix (HCC)

When we applied the cooccurrence matrix to hue, we noticed slightly greater variation in
the shape of the histogram plots (Figure B.16). Variations between image groups seem to
be greater for the Video samples and the COIL-100 datasets. The picture remained almost
the same (as in the case of intensity cooccurrence matrix) for the Chen and Artchive
datasets. Histogram plots using the video sequences showed a similar level of tolerance to
images transformations, as in the case of the intensity version.

The similarity graphs showed showed, again, similar distance values. The main differ-
ence was a greater fluctuation of distance values for the zoom-in and translation sequences
(Figures C.8¢ and f). This suggest a possible greater sensitivity to these transformation
in comparison to the intensity version.

Again, the distance matrices of HCC (Figure D.17) were similar to CC.

6.1.10 K-Cos Edge Curvature (KCOS)

The range of histogram bin population is noticed to be low for the K-Cos histogram plots
(Figure B.3). Between group differences are not as distinct, as in previous methods, for
most of the grouped datasets, with the histogram plots of the Artchive (Figure B.3d) being
the worst case. The picture is better for the COIL-100 dataset.

The histogram plots of the video sequences were not particularly helpful. We noticed
a noisy behaviour, with occasional peaks, possibly caused by the quantisation of the cur-

vature values.
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The similarity graphs (Figure C.10) showed the majority of the distance values to be
at low levels, below 0.05, while fluctuations of the distance values are noticed. In all cases,
these fluctuations do not follow a particular trend, and considering the behaviour of the
method on the grouped image sets, we can not really conclude about the tolerance on
image transformations.

The distance matrices of KCOS (Figure D.19) showed very little difference between the

intensities of the two areas, indicating low performance.

6.1.11 Boundary Shape Histograms

This section includes the histogram plots of region boundary, Circularity (CIRC) (Figure
B.6), Ellipticity (ELIP) (Figure B.7), Convexity (CONV) (Figure B.5) and Rectangularity
(RECT) (Figure B.8). In all cases, the histogram plots showed sparse bin population
and they were very noisy, suggesting poor performance. With a closer inspection of the
histogram plots we noticed subtle variation between image groups and subtle similarities
within image groups. This suggests that a careful selection of distance measure may
improve the methods potential. The sparse population of the histograms was more evident
for the COIL-100 (and less for the Video samples) dataset where images are simple with
potentially small number of regions. More complex images from the artchive and Chen
collection resulted to more densely populated histograms.

The histogram plots of the sequences were relatively stable but with noisy behaviour,
not enabling us to comment any further before further examination. . The similarity graphs
(Figures C.11, C.12, C.14 and C.13) confirmed the noisy behaviour of the histogram plots.
The recorded distances for the same sequences were in a higher range 0.1 — 0.2, while very
high distances were noticed towards the end of the zoom-in sequence (over 0.4).

In all cases of boundary shape histograms (Figures D.26, D.24, D.25 and D.23), the
distance matrices showed similar characteristics. Overall the intensities of the two areas

were low, with very little difference.

6.1.12 Edge Distance (MSSDT)

While the range of bin population of the edge distance histogram plots (Figure B.10) is
covering the whole range of the histogram bins, a domination of the lower numbered bins is

evident. Although, we noticed between group variations (mainly due to differences in the
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bin population range) for the Video samples and Coil datasets. Less variation is noticed
for the Artchive dataset, while for the Chen collection poor within group similarity is
noticed. The histogram plots using the video sequences showed only subtle changes for the
translation and rotation sequences. A greater change is noticed in the zoom-in sequence,
which is attributed to distortions caused by the digital zoom of the camera.

Low distance values were recorded in the similarity graphs (Figure C.15), ranging
between 0.01 and 0.02, suggesting possible tolerance to the applied transformations.

The diagonal area on the distance matrix of the Video samples (Figure D.4a) showed
higher intensities, but little difference from the remaining area. For the case of the Chen

collection (Figure D.4b), low differentiation between the two areas is more apparent.

6.1.13 Colour Region Distance (CLSH)

Limited bin population is noticed in the colour region distance histogram plots (Figure
B.21), that is due to the use of the colour label information during the histogramming
process. If the histogram is split into sections (each corresponding to a colour label) a
behaviour similar to the MSSDT histogram plots is noticed for each histogram section.

Variation between image groups is mainly due to the use of the colour information.
Similarities within groups are strong (for the Video samples and COIL-100 dataset), again
due to the colour information, while slight variations are evident due to the shape informa-
tion. Within group variations are not as subtle for the Artchive histogram plots, while they
get even greater for the Chen collection. We attribute this to the high level information
used for to group the images.

Histogram plots of the video sequences showed smooth transition for the cases the
translation and rotation transformations. The behaviour of the zoom-in sequence is not as
smooth, indicating possible sensitivity to scale.

The range of distances in the similarity graphs (Figure C.16) is low, within the range
of 0.01 and 0.02 for the translation and rotations sequences, confirming the tolerance to
the transformations. The range is greater for the zoom-in sequence (0.01 to 0.04).

The distance matrix of CLSH using the Video samples (Figure D.7a) showed a bet-
ter differentiation than in MSSDT, indicating better performance potential. The picture

remained the same for the case of the Chen collection (Figure D.7b).
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6.1.14 Colour Labels and Boundary Distance (BKDT)

The colour labels and boundary distance histogram plots (Figure B.22), show a similar
behaviour as in the case of the MSSDT histogram plot for all the histogram plots.

Furthermore a sparser population of the histograms is noticed, due to the different
quantisation of the distance map (from the case of the MSSDT). Since the colour label
boundaries are not weighted, more strong edges are expected in the edge map. This results
in a shorter range of distances in the distance map.

A greater range of fluctuating distances is noticed in the similarity graphs (Figure C.17)
suggesting poor tolerance to transformations.

The distance matrix of BKDT using Video samples(Figure D.10b), confirmed the pos-
sibility of poor performance. Indications of a possible fix are evident, as in some areas on
the diagonal area are of higher intensity.

We think that this method may benefit from a lower histogram resolution.

6.1.15 Colour Labels and Edge Distance (BKDT2D)

The colour labels and edge distance histogram plots (FigureB.23) share (again) similar
behaviour to the MSSDT histogram plots. Initial examination showed the histogram plots
of the transformation video sequences to be sparsely populated as in the case of BKDT.
Closer examination showed that it is not the case. That was further supported by the
significantly lower distances in the similarity graphs (Figure C.18) that are about ten times
lower than in the case of BKDT. This supports the view that the BKDT2D histograms
are potentially tolerant to transformations.

The distance matrices of BKDT2D using Video samples(Figure D.11), show similar

symptoms as in the case of BKDT.

6.1.16 Orientation (ORNT)

In the orientation histogram plots (Figure B.9) we did not notice any problems regarding
the range of histogram bin population. We noticed three dominating peaks throughout all
the histogram plots. Differences between histograms were reflected by the change on the
peak (intensity and spread). For the Video samples and the COIL-100 datasets we see that
great variation between the image groups is evident, while similarities within image groups

are noticed. Narrower peaks are noticed in the histogram plots of the Archive dataset.
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For the case of the Chen collection, variation is great throughout the range of the images,
while we noticed very little similarity within groups.

The histogram plots of the translation and zoom-in video sequences suggest tolerance to
the corresponding translations. That is confirmed by the corresponding similarity graphs
(Figure C.19), showing low distance values and fluctuations. For the case of the rotation
sequence, we noticed a change that followed a trend as the sequence progresses. This
confirms the sensitivity of the method to rotation.

The distance matrix of ORNT using the Video samples (Figure D.5a) shows a high-
lighted diagonal area. While there is a difference between the intensities of the two areas,

it is not great, indicating possible low precision performance.

6.1.17 Triangle Properties

The histogram plots of the triangle properties histograms (Figures B.11, B.12 and B.13)
exhibited almost identical behaviour. Overall, noisy behaviour is noticed, with subtle
similarities between the histograms within image groups. Variation between image groups
is mainly due to difference in the bin range population.

In the histogram plots of the transformation video sequences we observed a number
of peaks that remained stable throughout the sequence, while other peaks appeared to
change following some trend, which may have a negative effect to the tolerance to image
transformations.

In the similarity graphs (Figures C.20, C.22 and C.21) we observed low distance values
(with the triangle area, the lowest), with low fluctuations.

The distance matrices of triangle property histograms (Figures D.12, D.14 and D.13)

indicated poor performance as the intensity difference of the diagonal area was very small.

6.1.18 Circular Arcs (CARC)

The circular arc histogram plots (Figure B.4) showed a noisy behaviour, indicating low
performance potential. This noisy behaviour was also noticed in the histogram plots of
the transformation video sequences. We were not able to find any variations, similarities
or transformation tolerance, by visual inspection.

Furthermore, the similarity graphs (Figure C.23) showed large fluctuations of distance

values, close to the range between 0.1 to 0.4. This further supported the possibility for
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poor performance of the method.
The distance matrices of CARC (Figure D.15) also supported the possibility for poor
performance, as there was no clear differentiation between the diagonal and the remaining

region.

6.1.19 Hue Entropy (HENT)

A limited range of the histogram bins was populated in the case of the hue entropy his-
togram plots, mainly the lower half of the histogram range (Figure B.24). While some noise
is noticed, similarities within the image groups and variation between image groups are
also noticed. That is stronger in the cases of the Video samples and COIL-100 collections.

The histogram plots of the transformation sequences are also noisy, but a general
stability is noticed, at least for the cases of rotation and translation. For the case of the
zoom-in sequence we noticed a change to the histogram shape. The hue entropy histogram
seems to have some tolerance to rotation and translation, while a sensitivity to scale is
evident.

Low distance values were recorder in the similarity graphs (Figure C.24), with small
fluctuations. This may suggest tolerance to the image transformations, but considering
the noisy histogram plots, we need to investigate further.

The distance matrix of HENT using the Video samples (Figure D.6a), shows the diag-

onal area to be of slightly higher intensity than the remaining area.

6.1.20 Local vs Global Difference (LBLK & LDIFF)

The histogram plots of the local difference (Figure B.25) and local black histograms (Figure
B.26) exhibit very similar characteristics to the hue entropy histogram. The difference is
on the range of the histograms, with the local black histogram showing the greater range
of the three.

Regardless to the noisy behaviour, low distance values were recorder in the similarity
graphs (Figures C.25 and C.26), with small fluctuations.

The distance matrices in both cases of LBLK and LDIFF, using the Video samples
(Figures D.8a and D.9a), show very little difference between the two areas. In the plot of
the distance though, we noticed that the distances in the between groups region, are very

similar and slightly lower than those in the within group distances. The case of LDIFF
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was slightly better than LBLK.

6.1.21 Summary

We presented the results obtained from histogram methods presented in Chapter 3, using
qualitative methods presented in Chapter 5. In this section we summarise our observations

as follows:

Features. Shape features are the most difficult to extract. This is supported by the poor
histogram characteristics exhibited by most of the shape features (compared to the rest
of the presented features). Colour remains the best performing feature, while methods

combining colour and texture showed similarly good characteristics.

Transformations. Most of the methods that showed good histogram characteristics,
also showed some tolerance to image transformations. Out of the three transformations,
scale seem to be the most difficult to cope with. Most of the methods showed increased
distance values under scaling. A possible solution to this may be to consider multiple scales

during the histogramming process.

Spatial Information. With the introduction of spatial information we noticed and in-
crease to the distance values of the similarity graphs. This extra information resulted to
an expansion of the histogram space, therefore it is expected to see greater distance val-
ues. This expansion of the histogram space may be of interest when combining multiple

histogram methods.

Dependency to Noise. In Appendix E, the scatter plots of noise level vs performance
are illustrated. Over all the tested methods we did not find any strong correlation to noise.
Therefore it is safe to say that the methods do not capture the noise level of images, but

the features they are designed to capture.

Histogram Resolution. The number of bins in a histogram define its resolution. In
the case of the colour and shape histogram 6.1.13 we noticed a sparse population of the
histogram, which can potentially reduce the discriminatory power of the histogram. Subtle

differences can be reduced by applying a different resolution, essentially filling the gaps that
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cause the problem. In Section 6.1.7, a number of peaks are noticed to be located at almost
fixed areas in the histogram. A similar strategy to reducing the histogram resolution may

be possible to be applied.

Datasets and Expectations. The initiative of using multiple datasets of grouped im-
ages is to test the histogram methods under a variable level of difficulty. As the level
of information used to group the images gets higher, we have lower expectations. This
was noticed for the Chen collection and the Artchive datasets, where most of the meth-
ods showed poor characteristics. This was further supported by the distance matrices,
where the overlap between the two regions of the matrix are evident in the majority of the

histogram methods using the Chen collection and Artchive datasets.

Qualitative Methods. We used the histogram plots, successfully, to get a feel about
the shape of histograms and identify noisy or sparse behaviour. Also, we managed to
visualise similarities and differences between images (within and between groups). At last,
we used the histogram plots for assessment of histogram methods regarding their tolerance
to various transformations. On the negative side, we often had to manipulate the histogram
plot images, in order to pick certain features.

We used the similarity graphs, successfully, to support observations made on the his-
togram plots. We were also able to visualise potential trends, with respect to transforma-
tion tolerance.

Distance matrices were also useful, in particular the ones generated from Video samples
and COIL-100 datasets. That is because the group size was the same for all groups making
the limits of the diagonal area better defined. The only problem we encountered while
using distance matrices was handling large datasets. This is because the dimensions of the
distance matrix image are such that we had to scroll though the matrix. This also posed a
typesetting problem, which is the reason we only included distance matrices of the Video

samples and Chen collection datasets.

6.2 Quantitative Analysis of Individual Histograms

In this section we use the individual methods to perform image retrieval queries and extract

performance values. We tested the individual methods using the four grouped datasets,
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| ID | Method
do Euclidean
d1 Cumulative Euclidean
d2 x?
d3 Kolmogorov-Smirnov
d4 Kuiper
d5 | Pearson Product Moment Correlation
dé Edit Distance

Table 6.2: Distance measures.

and 7 different distance measures (listed in Table 6.2). In particular, we wish to answer

the following two questions:

e Which features perform best for each dataset?

e Is there any performance benefit by using different distance measures?

Furthermore, we applied statistical analysis tests on the obtained results, to verify that

any detected performance differences are significant.

6.2.1 Single method performance

Video Samples. The colour feature histograms are the top performing methods. Fol-
lowing, the T-Unit histogram competes with the Colour Labels. The texture features
dominate the low end of the top 10 performing features, while the hybrid method CLSH
manages to reach the top 10. The spatial variants (HUE-SP, CL-SP and COOC-SP) out-
perform their non-spatial counterparts in the majority of cases. The performance values of
the methods, using the 7 distance measures, are listed in Table 6.3, their ranking is listed

in Table 6.12.

COIL-100. Again the colour features dominated the top ranks, CL. and HUE variants in
particular. The CLSH method got a higher rank this time, followed by the texture feature
methods, with COOC outperforming the TU variants. We also noticed the HENT and
BKDT2D methods at the low end of the top 10. The raw performance values are listed in
Table 6.4, and the method ranking in Table 6.13.

Chen Collection. Colour is again the top performing feature (HUE variants). The

colour label methods seem to compete with texture for four positions. The remainder of
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[ Feature [ d0 | dlI [ d2 [ d3 [ d4 [ d5 [ d6 |
CL 0.959 0.9562 0.9729 0.9541 0.9612 0.9518 0.9554
CL-SP 0.9481 0.951 0.9656 0.9418 0.9409 0.944 0.9572
cOoocC 0.9579 0.9308 0.9744 0.9381 0.9532 0.9607 0.9277
MSSDT 0.6563 0.5858 0.6355 0.5922 0.6181 0.6711 0.5817
ORNT 0.8704 0.8588 0.9143 0.8533 0.8888 0.8567 0.8478
HENT 0.8912 0.9097 0.9049 0.9065 0.9253 0.8799 0.909
CLSH 0.92 0.9333 0.9481 0.9223 0.9376 0.9284 0.9307
LBLK 0.7592 0.8574 0.7748 0.8384 0.8472 0.7191 0.8644
LDIFF 0.722 0.8303 0.7327 0.8127 0.8278 0.6732 0.8361
BKDT 0.577 0.6906 0.5561 0.6691 0.7379 0.5893 0.6843
BKDT2D 0.6812 0.8218 0.7046 0.8332 0.8471 0.6573 0.818
TARE 0.6178 0.6521 0.5773 0.6419 0.6663 0.5972 0.6552
TRAT 0.5397 0.6724 0.5609 0.6668 0.6767 0.5416 0.6739
TLEN 0.607 0.6475 0.6203 0.6516 0.675 0.5958 0.6382
CARC 0.5344 0.6245 0.5426 0.5855 0.5697 0.5412 0.6387
HUE 0.9815 0.9614 0.9887 0.9692 0.9761 0.9838 0.9556
HCC 0.9701 0.9593 0.9865 0.9674 0.9743 0.9671 0.9532
HUE-SP 0.9834 0.967 0.9899 | 0.9692 | 0.9775 | 0.9853 | 0.9636
KCOS 0.6551 0.6442 0.6924 0.6511 0.6621 0.6536 0.6296
COOC-SpP 0.9591 0.9385 0.9718 0.9425 0.9522 0.9627 0.9368
TU 0.9601 0.9253 0.9786 0.9467 0.9594 0.9658 0.9179
TU-SP 0.9611 0.9309 0.9775 0.9373 0.9481 0.9652 0.9301
CIRC 0.5101 0.5888 0.5142 0.54 0.539 0.5025 0.5954
CONV 0.4571 0.5579 0.4956 0.5309 0.5224 0.4817 0.5784
ELIP 0.4937 0.6341 0.5798 0.6198 0.6345 0.5434 0.6297
RECT 0.4435 0.5726 0.4933 0.5326 0.5234 0.4734 0.5987

Table 6.3: Single histogram performance VIDEO.

the top 10 is occupied by more colour and texture methods. The raw performance values

are listed in Table 6.5, and the method ranking in Table 6.14.

Artchive. While colour again dominates the high end of the top ten, CLSH manages to
reach the fourth position. Overall the top ten is dominated by colour and texture features.

Raw performance values are listed in Table 6.6, and the method ranking in Table 6.15.

Distance Measure. Throughout the range of datasets and we observed differences in
performance when using different distance measures. Looking at the raw scores, (Tables
6.3 - 6.6), we counted how many times each distance appeared to perform best. The top
three distance measures that appeared consistently throughout the testing were, i) the x?
test, i) the Kuiper test, and i) the edit distance. We did not notice any correlation

between types of features and distance measures.

6.2.2 Statistical Test of Significance

The obtained results showed that performance differences exist i) when using different his-
togram methods, and %) when using different distance measures with the same histogram

feature. In this section we want to find out if these differences are significant. For this
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| Feature | do | di d2 d3 da | d5 dé
CL 0.874 | 0.8403 | 0.9324 | 0.8541 | 0.8826 | 0.8744 | 0.8369
CL-SP 0.9175 | 0.9095 | 0.9475 | 0.9042 | 0.914 | 0.9141 | 0.9121
COOC 0.7475 | 0.7675 | 0.8661 | 0.7663 | 0.7965 | 0.7653 | 0.7761
MSSDT | 0.5487 | 0.4854 | 0.5372 | 0.495 | 0.5275 | 0.5403 | 0.483
ORNT 0.5646 | 0.6287 | 0.6166 | 0.5887 | 0.6351 | 0.6231 | 0.6223
HENT 0.6354 | 0.6724 | 0.652 | 0.6671 | 0.6807 | 0.5657 | 0.6734
CLSH 0.8431 | 0.797 | 0.8686 | 0.7975 | 0.8298 | 0.842 | 0.7948
LBLK 0.5874 | 0.6329 | 0.5862 | 0.6317 | 0.6485 | 0.5269 | 0.6301
LDIFF 0.5971 | 0.6355 | 0.5869 | 0.6323 | 0.643 | 0.5288 | 0.6329
BKDT 0.4938 | 0.5833 | 0.4915 | 0.5605 | 0.611 | 0.5124 | 0.5815
BKDT2D | 0.4883 | 0.6683 | 0.4793 | 0.6814 | 0.6959 | 0.5014 | 0.6641
TARE 0.4363 | 0.4888 | 0.4583 | 0.465 0.488 | 0.4417 | 0.4934
TRAT 0.4168 | 0.501 | 0.4554 | 0.4746 | 0.4839 | 0.4426 | 0.503
TLEN 0.445 0.496 | 0.4791 | 0.4794 | 0.4935 | 0.4618 | 0.4913
CARC 0.4412 | 0.462 | 0.4446 | 0.4451 | 0.4532 | 0.4379 | 0.4647
HUE 0.8255 | 0.8637 | 0.9584 | 0.8741 | 0.9148 | 0.8856 | 0.8497
HCC 0.8547 | 0.8482 | 0.9336 | 0.8494 | 0.8834 | 0.8569 | 0.8403
HUE-SP | 0.7886 | 0.8129 | 0.8975 | 0.7088 | 0.742 | 0.8336 | 0.8118
KCOS 0.5324 | 0.5578 | 0.5519 | 0.547 | 0.5539 | 0.5183 | 0.5477
COOC-SP | 0.7492 | 0.7623 | 0.8165 | 0.744 | 0.7702 | 0.7647 | 0.7717
TU 0.6995 | 0.6642 | 0.8032 | 0.6835 | 0.7114 | 0.7472 | 0.6573
TU-SP 0.6761 | 0.6502 | 0.7525 | 0.5866 | 0.6055 | 0.6945 | 0.6479
CIRC 0.3949 | 0.4903 | 0.4104 | 0.4098 | 0.4144 | 0.3875 | 0.4922
CONV 0.3874 | 0.5247 | 0.4072 | 0.4255 | 0.4153 | 0.3834 | 0.5333
ELIP 0.4045 | 0.542 | 0.4274 | 0.4064 | 0.4424 | 0.404 | 0.5387
RECT 0.3847 | 0.5236 | 0.4029 | 0.4029 | 0.4022 | 0.3799 | 0.5416

Table 6.4: Single histogram performance COIL.

[ Feature | do | di d2 d3 dd | d5 dé
CL 0.6581 | 0.6526 | 0.6693 | 0.6658 | 0.6752 | 0.6242 | 0.6412
CL-SP 0.6353 | 0.6326 | 0.6388 | 0.6372 | 0.6218 | 0.6116 | 0.6293
COOC 0.6067 | 0.6449 | 0.6313 | 0.6282 | 0.6311 | 0.6067 | 0.6485
MSSDT | 0.4751 | 0.4656 | 0.4749 | 0.468 | 0.4727 | 0.4752 | 0.4643
ORNT 0.5324 | 0.543 | 0.5569 | 0.536 | 0.5382 | 0.5358 | 0.5435
HENT 0.5509 | 0.5476 | 0.5553 | 0.548 | 0.5539 | 0.532 | 0.5433
CLSH 0.632 | 0.6415 | 0.6541 | 0.6491 | 0.6562 | 0.6345 | 0.6323
LBLK 0.5599 | 0.5937 | 0.5877 | 0.5873 | 0.5845 | 0.5537 | 0.5966
LDIFF 0.5285 | 0.5408 | 0.535 | 0.5357 | 0.5305 | 0.5198 | 0.543
BKDT 0.5079 | 0.5069 | 0.5026 | 0.5222 | 0.5409 | 0.502 0.501
BKDT2D | 0.5606 | 0.5602 | 0.5618 | 0.576 0.579 | 0.5753 | 0.5526
TARE 0.5286 | 0.5078 | 0.5157 | 0.5084 | 0.5099 | 0.5293 | 0.5082
TRAT 0.4984 | 0.4964 | 0.5021 | 0.4971 | 0.5078 | 0.513 | 0.4968
TLEN 0.511 | 0.5062 | 0.5072 | 0.5058 | 0.5138 | 0.5008 | 0.5058
CARC 0.5072 | 0.5129 | 0.5208 | 0.5167 | 0.5221 | 0.5173 | 0.5113
HUE 0.4877 0.4874 0.4975 0.4847 0.488 0.4921 0.4871
HCC 0.4858 | 0.4857 | 0.4929 | 0.4837 | 0.4882 | 0.4882 | 0.4859
HUE-SP | 0.4884 | 0.4875 | 0.4969 | 0.4841 | 0.4862 | 0.4923 | 0.4881
KCOS 0.5007 | 0.5072 | 0.5212 | 0.5029 | 0.5063 | 0.5022 | 0.506
COOC-SP | 0.4822 | 0.4752 | 0.492 0.479 | 0.4864 | 0.4904 | 0.4741
TU 0.502 | 0.5041 | 0.5322 | 0.5023 | 0.5038 | 0.5171 | 0.5039
TU-SP 0.5021 | 0.5046 | 0.5319 | 0.5006 | 0.5031 | 0.5132 | 0.5044
CIRC 0.4621 | 0.4519 | 0.4588 | 0.4532 | 0.4553 | 0.4606 | 0.4516
CONV 0.456 | 0.4524 | 0.4595 | 0.4567 | 0.4597 | 0.4592 | 0.4526
ELIP 0.47 | 04708 | 0.4716 | 0.4725 | 0.471 | 0.4772 | 0.4694
RECT 0.4565 | 0.4593 | 0.4664 | 0.4573 | 0.4625 | 0.4665 | 0.4607

Table 6.5: Single histogram performance CHEN.

135
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| Feature | d0 | dI | d2 | d3 | d4 | d5 | dé6 |
CL 0.4372 0.4193 0.4524 0.4244 0.4283 0.4313 0.4162
CL-SP 0.4391 | 0.4278 0.4526 0.4233 0.4283 0.4376 0.4291
CcOooC 0.4243 0.4124 0.4542 0.413 0.4215 0.4325 0.4136
MSSDT 0.3587 0.3537 0.3584 0.3555 0.359 0.3602 0.3523
ORNT 0.406 0.4007 0.4225 0.3998 0.4104 0.3913 0.3985
HENT 0.3869 0.3933 0.3956 0.3903 0.3928 0.3862 0.3952
CLSH 0.4313 0.4136 0.4497 0.4197 0.4246 0.4409 0.4107
LBLK 0.389 0.4003 0.3981 0.3959 0.4027 0.3754 0.4032
LDIFF 0.3826 0.3937 0.3882 0.3887 0.3983 0.3736 0.3966
BKDT 0.3495 0.3636 0.3525 0.3648 0.3758 0.3489 0.3643
BKDT2D 0.3968 0.3975 0.4102 0.4016 0.4051 0.3823 0.3963
TARE 0.4078 0.3925 0.3983 0.3942 0.4026 0.4033 0.3928
TRAT 0.3898 0.3869 0.3868 0.3887 0.3957 0.3936 0.3859
TLEN 0.3953 0.3948 0.3964 0.3944 0.3999 0.3933 0.3944
CARC 0.3904 0.3983 0.4003 0.3967 0.4031 0.395 0.3978
HUE 0.3872 0.382 0.4085 0.3824 0.3903 0.3899 0.3815
HCC 0.3876 0.381 0.406 0.3843 0.3913 0.3844 0.3808
HUE-SP 0.3862 0.3824 0.4081 0.3816 0.3897 0.3896 0.3823
KCOS 0.3921 0.3899 0.4071 0.3911 0.3954 0.4009 0.3857
COOC-SpP 0.4182 0.4125 0.443 0.4102 0.4173 0.4267 0.4142
TU 0.4117 0.4009 0.4236 0.4077 0.4045 0.4169 0.3989
TU-SP 0.4121 0.4019 0.4234 0.4071 0.4036 0.417 0.4004
CIRC 0.3654 0.3751 0.368 0.3714 0.3742 0.3687 0.3735
CONV 0.3398 0.3787 0.3643 0.3669 0.3686 0.3562 0.3811
ELIP 0.3412 0.3668 0.364 0.3616 0.3677 0.3536 0.3666
RECT 0.3403 0.3803 0.3614 0.3663 0.3676 0.3557 0.3842

Table 6.6: Single histogram performance ART.

reason we performed the Kruskall-Wallis statistical test using o = 0.005. The value of the
statistic gives only an indication if there s or is not a significant difference between the
tested samples. Then, we applied the Dunn multiple comparisons to find which pairs of

methods (or distance measures) are significantly different.

Histogram Methods. The hypothesis is that all the methods perform similarly. This is
translated to “The distributions of the performance values of different histogram methods,
using a single distance measure, are the same”. We performed the KS test for all the
methods, for all the datasets, for all the distance measures. In all cases the hypothesis is
rejected, indicating significant difference in the samples. The tables of the Dunn multiple

comparisons are located in Appendix F.

Distance Measure. In this case the hypothesis is that the performance of a histogram
method, using different distance measures, is the same. This is translated to “The distri-
butions of the performance values of a single histogram method, using different distance
measures, are the same”. The results of the test on the four datasets, are listed in Table 6.7.
The symbol “y/” indicates that the hypothesis is rejected, while the symbol “x” indicates

otherwise.
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| Feature | Video | COIL | Chen | Artchive | Feature | Video | COIL | Chen | Artchive |

CL vV V4 X v TLEN Vv v X X
CL-SP Vi Vi X v CARC v v X X
COOC v/ v/ X V/ HUE Y V/ X V/

MSSDT Vi IV X N HCC v N X v
ORNT v v X v HUE-SP v v X v
HENT Vi v X X KCOS v vV X Vv
CLSH V V X V] COOC-SP Y/ Y/ x YV
LBLK v v N v TU v v Y v
LDIFF N Vv X v TU-SP Vv v v Vv
BKDT Vv Vi N v CIRC Vv v X V4
BKDT2D Vv Vv x Y CONV Vv Y x Vv
TARE v v X v ELIP v v X v
TRAT v v X X RECT Vv Vv X v

Table 6.7: Does a different distance measure make any difference?
6.3 Histogram Combinations

In this section we present the results obtained by combining histogram methods. As an ex-

226 possible histogram combinations to evaluate), we

haustive search would be unrealistic (
used a sequential forward search strategy. While the resulting solutions using this method
may be sub-optimal, the search process is more reliable than combining the histograms
in terms of their individual performance. In the previous section we found that the x?
goodness of fitness test performed best for the majority of the tests, but in this section we
use the Euclidean distance since we wanted to use a more standard method to CBIR.

In the previous section we noticed cases of competition between spatial histogram
methods and their non-spatial counterparts. Because of this, we performed more tests by

excluding (in turn) the spatial and non-spatial versions. This allows us to investigate if

the combination sequence changes and which of the two variants performs better.

6.3.1 Sequential Forward Search

The results obtain from the methods selected by the sequential forward search (SFS) are
presented in tables 6.8, 6.9, 6.10 and 6.11. We run three experiments for each dataset, one
that included all the methods presented in Chapter 3, and two using different subsets of
histogram methods. In particular we want to see if there is any difference in performance

contribution between the spatial and non-spatial versions.

6.3.2 Statistical Test of Significance

Video Samples. The Kruscal-Wallis test showed that there is no significant difference

between the performance of the histogram combinations using the video samples dataset.
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| Features | All € Spatial | € | Non-Spatial | € |

2 HUE-SP + COOC 0.9856 HUE-SP + CC-SP | 0.9869 | HUE + COOC 0.9867
3 HENT 0.9874 CLSH 0.9883 CLSH 0.9882
4 BKDT2D 0.9875 BKDT2D 0.9888 BKDT2D 0.9884
5 CLSH 0.9887 LDIFF 0.9892 HENT 0.9896
6 LDIFF 0.9889 HCC 0.9896 LDIFF 0.9898
7 HUE 0.9895 TU-SP 0.9904 TARE 0.9899
8 ELIP 0.9894 BKDT 0.9901 TU 0.9909
9 TARE 0.9893 TARE 0.9902 ELIP 0.9909
10 CC-SP 0.9895 ELIP 0.9901 HCC 0.9908
11 CONV 0.9892 CIRC 0.9899 CL 0.9907
12 TU 0.9900 HENT 0.9900 BKDT 0.9906
13 HCC 0.9898 CONV 0.9899 CONV 0.9908
14 CL 0.9904 RECT 0.9894 CIRC 0.9906
15 BKDT 0.9898 TRAT 0.9891 RECT 0.9903
16 CIRC 0.9903 KCOS 0.9883 CARC 0.9900
17 RECT 0.9901 CARC 0.9878 TLEN 0.9894
18 KCOS 0.9899 ORNT 0.9867 KCOS 0.9892
19 TLEN 0.9900 TLEN 0.9864 LBLK 0.9887
20 TU-SP 0.9899 CL-SP 0.9851 ORNT 0.9886
21 LBLK 0.9895 MSSDT 0.9843 MSSDT 0.9880
22 ORNT 0.9893 LBLK 0.9815 TRAT 0.9870
23 CL-SP 0.9885

24 MSSDT 0.9882

25 CARC 0.9878

26 TRAT 0.9860

Table 6.8: Performance of combinations of histograms using the Video samples of image

dataset.
| Features | All € Spatial | € | Non-Spatial | € |

2 CL-SP + CLSH | 0.9281 | CL-SP + CLSH | 0.9324 CL + CLSH 0.8980
3 ONRNT 0.9300 ORNT 0.9342 HCC 0.9125
4 HCC 0.9369 HCC 0.9411 BKDT2D 0.9132
5 BKDT2D 0.9361 BKDT2D 0.9403 CONV 0.9091
6 CONV 0.9316 CONV 0.9359 ORNT 0.9101
7 TRAT 0.9301 TRAT 0.9346 TRAT 0.9089
8 RECT 0.9265 RECT 0.9312 RECT 0.9058
9 CARC 0.9235 CARC 0.9285 BKDT 0.8989
10 BKDT 0.9166 TLEN 0.9253 CARC 0.8969
11 TLEN 0.9136 ELIP 0.917 RLIP 0.8897
12 ELIP 0.9056 TARE 0.9125 TLEN 0.887
13 KCOS 0.9039 KCOS 0.9103 KCOS 0.8869
14 TARE 0.902 BKDT 0.9047 HENT 0.8848
15 HUE 0.8988 CC-CP 0.9029 HUE 0.8847
16 CIRC 0.8835 CIRC 0.8875 TARE 0.8856
17 HENT 0.879 MSSDT 0.8806 CIRC 0.8688
18 CC-SP 0.8753 HDIFF 0.8765 LBLK 0.8581
19 COOC 0.8681 LBLK 0.8609 TU 0.8539
20 MSSDT 0.8555 HENT 0.8392 LDIFF 0.8325
21 LDIFF 0.8581 HCC-SP 0.8384 CO0C 0.8232
22 TU 0.8533 TU-SP 0.8293 MSSDT 0.819
23 LBLK 0.8339

24 CL 0.825

25 HUE-SP 0.8207

26 TU-SP 0.8122

Table 6.9: Performance of combinations of histograms using the COIL-100 of image dataset.
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| Features | All | € | Spatial | 5 | Non-Spatial | 5 |

2 CL + TARE 0.6479 CL-SP + CLSH 0.6303 CL + TARE 0.479
3 CO0OC 0.6498 TLEN 0.6408 BKDT 0.6507
4 BKDT 0.6598 HENT 0.6424 CLSH 0.6565
5 CC-SP 0.6643 BKDT 0.6503 HENT 0.6600
6 HENT 0.6696 CC-CP 0.6567 TU 0.6636
7 CLSH 0.6732 BKDT2D 0.6568 COO0C 0.6659
8 TLEN 0.6754 TARE 0.6559 TLEN 0.6752
9 CL-SP 0.6775 ORNT 0.6578 BKDT2D 0.6755
10 TU-SP 0.6799 TU-SP 0.6554 ELIP 0.6761
11 BKDT2D 0.6813 LBLK 0.6557 CARC 0.6751
12 ELIP 0.6811 CONV 0.655 RECT 0.6733
13 CARC 0.6804 CARC 0.6523 TRAT 0.6691
14 RECT 0.6783 ELIP 0.6497 CONV 0.6659
15 ONRNT 0.6752 RECT 0.6453 CIRC 0.6609
16 TRAT 0.6746 CIRC 0.6399 HUE 0.6566
17 CONV 0.6714 KCOS 0.6363 KCOS 0.6488
18 CIRC 0.6677 HCC 0.6279 LDIFF 0.6348
19 HUE-SP 0.6615 HDIFF 0.6214 HCC 0.6419
20 KCOS 0.6621 TRAT 0.6216 MSSDT 0.6384
21 HCC 0.6514 HCC-SP 0.6208 ORNT 0.6344
22 TU 0.648 MSSDT 0.6072 LBLK 0.6295
23 LBLK 0.6405

24 MSSDT 0.6405

25 HUE 0.6367

26 LDIFF 0.6284

Table 6.10: Performance of combinations of histograms using the Chen collection of images.

| Features | All | € | Spatial | € | Non-Spatial | € |

2 CL-SP - TARE 0.4303 CL-SP + TARE 0.4303 CL - TARE 0.4301
3 BKDT2D 0.4348 BKDT2D 0.4348 TU 0.4454
4 TU 0.4508 TU-SP 0.4506 BKDT2D 0.4501
5 CLSH 0.4555 CLSH 0.4551 HENT 0.4539
6 HENT 0.4589 CARC 0.4582 CARC 0.4568
7 CARC 0.4619 HDIFF 0.4598 LDIFF 0.4582
8 LDIFF 0.4632 TLEN 0.46 CIRC 0.4573
9 TLEN 0.4634 CC-CP 0.4616 LBLK 0.4562
10 CL 0.4636 HCC 0.4618 TLEN 0.4573
11 TU-SP 0.4667 KCOS 0.4613 [e]0]0]@) 0.458
12 KCOS 0.4666 CIRC 0.46 HCC 0.4602
13 CC-SP 0.4683 ELIP 0.4591 KCOS 0.4597
14 HCC 0.4688 CONV 0.4574 CLSH 0.4601
15 LBLK 0.4681 HCC-SP 0.4557 BKDT 0.4616
16 CIRC 0.4676 RECT 0.4538 ORNT 0.4636
17 CONV 0.467 ORNT 0.4531 CONV 0.4631
18 ELIP 0.4659 LBLK 0.4535 RECT 0.4621
19 RECT 0.4644 HENT 0.4502 ELIP 0.4605
20 ONRNT 0.4627 BKDT 0.4511 HUE 0.4598
21 HUE-SP 0.4633 MSSDT 0.4526 TRAT 0.4553
22 CcoocC 0.4627 TRAT 0.4498 MSSDT 0.4476
23 TRAT 0.4612

24 HUE 0.4592

25 BKDT 0.4565

26 MSSDT 0.4557

Table 6.11: Performance of combinations of histograms using the Artchive collection of
images.
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The hypothesis was not rejected for all the cases (including the Spatial only, and Non-

Spatial only, experiments).

COIL-100. In the case of the performance values obtained using the COIL-100 dataset,
the Kruskall-Wallis found significant differences. The Dunn multiple comparisons showed

significant differences throughout the range of methods, for all three cases.

Chen Collection. Significant differences were also found with the Chen collection dataset.
For the case where all the histograms were considered for combinations (Figure F.4), the
majority of significant differences were found between methods utilising 5 to 20 histograms
and 22 to 26 histograms. For the case where spatial only histograms are considered (Figure
F.6), the majority of significant differences were found between methods utilising 6 to 14
histograms and 18 to 22 histograms. For the case where the non-spatial only histogram
are considered (Figure F.5), the majority of significant differences were found between

methods utilising 3 to 16 histograms and 19 to 22 histograms.

Artchive. Again, we found significant differences with the Artchive dataset. For the
case where all the histograms were considered for combinations (Figure F.7), the majority
of significant differences were found between methods utilising up to 5 histograms. For the
case where spatial only histograms are considered (Figure F.9), the majority of significant
differences were found between methods utilising 13 to 15 histograms and 25 histograms.
For the case where the non-spatial only histogram are considered (Figure F.8), the majority
of significant differences were found between methods utilising 11 to 17 histograms and 26

histograms.

6.3.3 Summary

We noticed that different feature sequences were returned by the sequential forward search
for the four different datasets. This confirms the strong relationship between the perfor-
mance of a histogram method and a dataset. We believe that this relationship is not only
influenced by how well the features are extracted from the images, but also, on how the
ground truth is established.

For the Video samples and the COIL-100 datasets the groundtruth is very distinctive.

The groups of images are very well defined and their overlap is very limited. On the other
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Figure 6.1: Number of combined histograms and performance.

side, for the Chen collection and the Artchive a high level approach was used to establish
the groundtruth. For the case of the Chen collection, image subjects grouped the images.
The similarity between images of a group is based on high level information, that does not
necessarily reflect the similarities/dissimilarities of their low-level features. For the case of
the Artchive images, grouping was based solely on the name of the artist that painted the
picture. The use of such small amount of information (of high semantic value) makes the
possible association between low level feature similarity and image grouping even harder.
The levels of performance of the histogram combinations, reflect the above points.

When we tested the individual histogram methods we noticed that the colour and
texture based features dominated the Top-10 performing ranks. When we tested combi-
nations of histograms the variety of methods appearing early in the search, increased. We
also observed histograms that performed poorly (in the individual tests), to be members
of the best performing combinations (e.g. TARE). While searching through combinations
and adding more histograms, the amount of information for image comparisons increases.
This extra information typically improved the performance. Of course we can not add
features indefinetly, as after some point in the search this extra information becomes coun-
terproductive. This peaking phenomenon is illustrated in Figure 6.1, where the numbers
of histograms vs performance is plotted, for the three group of histogram methods and the

four datasets.
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[ Rank | do dl d2 d3 d4 d5 dé
1 HUE-SP HUE-SP HUE-SP HUE-SP HUE-SP HUE-SP HUE-SP
2 HUE HUE HUE HUE HUE HUE CL-SP
3 HCC HCC HCC HCC HCC HCC HUE
4 TU-SP CL TU CL CL TU CL
5 TU CL-SP TU-SP TU TU TU-SP HCC
6 COOC-SP | COOC-SP COOC COOC-SP COOC COOC-SP | COOC-SP
7 CL CLSH CL CL-SP COOC-SP COOC CLSH
8 COOC TU-SP COOC-SP COOC TU-SP CL TU-SP
9 CL-SP COOC CL-SP TU-SP CL-SP CL-SP COOC
10 CLSH TU CLSH CLSH CLSH CLSH TU
11 HENT HENT ORNT HENT HENT HENT HENT
12 ORNT ORNT HENT ORNT ORNT ORNT LBLK
13 LBLK LBLK LBLK LBLK LBLK LBLK ORNT
14 LDIFF LDIFF LDIFF BKDT2D BKDT2D LDIFF LDIFF
15 BKDT2D BKDT2D BKDT2D LDIFF LDIFF MSSDT BKDT2D
16 MSSDT BKDT KCOS BKDT BKDT BKDT2D BKDT
17 KCOS TRAT MSSDT TRAT TRAT KCOS TRAT
18 TARE TARE TLEN TLEN TLEN TARE TARE
19 TLEN TLEN ELIP KCOS TARE TLEN CARC
20 BKDT KCOS TARE TARE KCOS BKDT TLEN
21 TRAT ELIP TRAT ELIP ELIP ELIP ELIP
22 CARC CARC BKDT MSSDT MSSDT TRAT KCOS
23 CIRC CIRC CARC CARC CARC CARC RECT
24 ELIP MSSDT CIRC CIRC CIRC CIRC CIRC
25 CONV RECT CONV RECT RECT CONV MSSDT
26 RECT CONV RECT CONV CONV RECT CONV

Table 6.12: Method ranking based on performance values using the Video

[ Rank | do d1 d2 d3 d4 ds dé
1 CL-SP CL-SP HUE CL-SP HUE CL-SP CL-SP
2 CL HUE CL-SP HUE CL-SP HUE HUE
3 HCC HCC HCC CL HCC CL HCC
4 CLSH CL CL HCC CL HCC CL
5 HUE HUE-SP HUE-SP CLSH CLSH CLSH HUE-SP
6 HUE-SP CLSH CLSH CO0C CO0C HUE-SP CLSH
7 COOC-sP | COOC COOC | COOC-SP | COOC-SP | COOC Co0C
8 COOC | COOC-SP | COOC-SP | HUE-SP HUE-SP | COOC-SP | COOC-SP
9 TU HENT TU TU TU TU HENT
10 TU-SP BKDT2D TU-SP BKDT2D | BKDT2D TU-SP BKDT2D
11 HENT TU HENT HENT HENT ORNT TU
12 LDIFF TU-SP ORNT LDIFF LBLK HENT TU-SP
13 LBLK LDIFF LDIFF LBLK LDIFF MSSDT LDIFF
14 ORNT LBLK LBLK ORNT ORNT LDIFF LBLK
15 MSSDT ORNT KCOS TU-SP BKDT LBLK ORNT
16 KCOs BKDT MSSDT BKDT TU-SP KCOs BKDT
17 BKDT KCOs BKDT KCOs KCOs BKDT KCOS
18 BKDT2D ELIP BKDT2D | MSSDT MSSDT | BKDT2D RECT
19 TLEN CONV TLEN TLEN TLEN TLEN ELIP
20 CARC RECT TARE TRAT TARE TRAT CONV
21 TARE TRAT TRAT TARE TRAT TARE TRAT
22 TRAT TLEN CARC CARC CARC CARC TARE
23 ELIP CIRC ELIP CONV ELIP ELIP CIRC
24 CIRC TARE CIRC CIRC CONV CIRC TLEN
25 CONV MSSDT CONV ELIP CIRC CONV MSSDT
26 RECT CARC RECT RECT RECT RECT CARC
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samples dataset.

Table 6.13: Method ranking based on performance values using the Coil-100 dataset.
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[ Rank | do dl d2 d3 d4 d5 dé
1 HUE-SP HUE-SP HUE-SP HUE-SP HUE-SP HUE-SP HUE-SP
2 HUE HUE HUE HUE HUE HUE CL-SP
3 HCC HCC HCC HCC HCC HCC HUE
4 TU-SP CL TU CL CL TU CL
5 TU CL-SP TU-SP TU TU TU-SP HCC
6 COOC-SP | COOC-SP COOC COOC-SP COOC COOC-SP | COOC-SP
7 CL CLSH CL CL-SP COOC-SP COOC CLSH
8 COOC TU-SP COOC-SP COOC TU-SP CL TU-SP
9 CL-SP COOC CL-SP TU-SP CL-SP CL-SP COOC
10 CLSH TU CLSH CLSH CLSH CLSH TU
11 HENT HENT ORNT HENT HENT HENT HENT
12 ORNT ORNT HENT ORNT ORNT ORNT LBLK
13 LBLK LBLK LBLK LBLK LBLK LBLK ORNT
14 LDIFF LDIFF LDIFF BKDT2D BKDT2D LDIFF LDIFF
15 BKDT2D BKDT2D BKDT2D LDIFF LDIFF MSSDT BKDT2D
16 MSSDT BKDT KCOS BKDT BKDT BKDT2D BKDT
17 KCOS TRAT MSSDT TRAT TRAT KCOS TRAT
18 TARE TARE TLEN TLEN TLEN TARE TARE
19 TLEN TLEN ELIP KCOS TARE TLEN CARC
20 BKDT KCOS TARE TARE KCOS BKDT TLEN
21 TRAT ELIP TRAT ELIP ELIP ELIP ELIP
22 CARC CARC BKDT MSSDT MSSDT TRAT KCOS
23 CIRC CIRC CARC CARC CARC CARC RECT
24 ELIP MSSDT CIRC CIRC CIRC CIRC CIRC
25 CONV RECT CONV RECT RECT CONV MSSDT
26 RECT CONV RECT CONV CONV RECT CONV

Table 6.14: Method ranking based on performance values using the Chen dataset.

[ Rank | do d1 d2 d3 d4 ds dé
1 CL-SP CL-SP C00C CL CL CLSH CL-SP
2 CL CL CL-SP CL-SP CL-SP CL-SP CL
3 CLSH CLSH CL CLSH CLSH COOC | COOC-SP
4 COOC | COOC-SP CLSH COO0C C00C CL CO0C
5 COOC-sP | COOC | COOC-SP | COOC-SP | COOC-SP | COOC-SP CLSH
6 TU-SP TU-SP TU TU ORNT TU-SP LBLK
7 TU TU TU-SP TU-SP BKDT2D TU TU-SP
8 TARE ORNT ORNT BKDT2D TU TARE TU
9 ORNT LBLK BKDT2D ORNT TU-SP KCOS ORNT
10 BKDT2D CARC HUE CARC CARC CARC CARC
11 TLEN BKDT2D | HUE-SP LBLK LBLK TRAT LDIFF
12 KCOS TLEN KCOS TLEN TARE TLEN BKDT2D
13 CARC LDIFF HCC TARE TLEN ORNT HENT
14 TRAT HENT CARC KCOS LDIFF HUE TLEN
15 LBLK TARE TARE HENT TRAT HUE-SP TARE
16 HCC KCOs LBLK LDIFF KCOs HENT TRAT
17 HUE TRAT TLEN TRAT HENT HCC KCOs
18 HENT HUE-SP HENT HCC HCC BKDT2D RECT
19 HUE-SP HUE LDIFF HUE HUE LBLK HUE-SP
20 LDIFF HCC TRAT HUE-SP HUE-SP LDIFF HUE
21 CIRC RECT CIRC CIRC BKDT CIRC CONV
22 MSSDT CONV CONV CONV CIRC MSSDT HCC
23 BKDT CIRC ELIP RECT CONV CONV CIRC
24 ELIP ELIP RECT BKDT ELIP RECT ELIP
25 RECT BKDT MSSDT ELIP RECT ELIP BKDT
26 CONV MSSDT BKDT MSSDT MSSDT BKDT MSSDT

143

Table 6.15: Method ranking based on performance values using the Artchive dataset.
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Figure 6.2: Performance levels of distance measures using the Video samples.
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Figure 6.3: Performance levels of distance measures using the COIL-100 Library.
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Figure 6.4: Performance levels of distance measures using the Chen collection.
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Figure 6.5: Performance levels of distance measures using the Artchive.



Chapter 7

Conclusions

In this chapter we draw conclusions from the results presented in the preceeding Chapters
and we discuss the possibilities for future work.

The ideas presented in each of the Chapters 3, 4 and 5 advance the state of the art.
In two cases, specific histogram methods for extracting shape from images have led to
published conference [36] and later in journal [38] publication, some of the remaining
shape histogram methods have been published in a conference paper [37] and later, with
the addition of parts of the evaluation framework in a journal paper[39]. Furthermore, the
use of CBIR methods with Pathfinder networks, presented in Section 5.4, is published as a
conference paper [40], which led to a series of further conference publications [18][16][17].

Using the three main objectives as a ruler, in the following sections we summarise the
drawn conclusions, i)Low level feature extraction (Section 7.1), i7) Concept-based image
retrieval (Section 7.2), and i) Performance evaluation (Section 7.3). The thesis closes

with some brief considerations about future work (Section 7.4).

7.1 Low level Features

The majority of the methods presented in Chapter 3 advance the state of the art. The
histograms presented in Sections 3.2.4 and 3.3.2 have been used in CBIR (but not in the
form presented in this thesis), while the histograms in Sections 3.2.1, 3.2.2, 3.2.3, 3.2.5,
3.2.6, 3.4, 3.5.1, 3.5.2, 3.5.3, 3.6.1, 3.6.2 are original in CBIR.

Evaluation of the obtained results led to the following conclusions:

e Histograms can be used with some success to summarise aspects of texture and shape
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from images, and then utilised for CBIR.

e Experiments of individual histograms showed that colour features were the best per-
forming features. Overall, texture histograms performed better than shape histogram
in the majority of the experiments. Promising performance was noticed by colour
and distance (Section) and hybrid histogram methods (Section) outperforming plain
shape and in some cases texture histogram methods. While the observed mean
performance differences were small (in some cases 1%), statistical analysis using

non-parametric tests indicated that the differences were significant in many cases.

e Experimentation of the individual histograms using different distance measures showed
that the Euclidean distance (a more standard method in CBIR) was outperformed
by the x2?, Kuiper, and the edit distance. We did not notice any strong correlation
between these distance measures and the feature aspects (colour, texture, shape etc.)

captured by the histograms.

e The majority of the histogram methods showed tolerance to transformations, par-
ticularly to translation and less to rotation, while the majority of the histograms

showed increased sensitivity to scale.

e Combining histograms resulted in improved performance. We used a sequential for-
ward search (SFS) to find the best performing combinations. While the solutions
may be sub-optimal, SFS is a better approach than arbitrary selection of histogram
combinations, while a fully exhaustive search would be impractical. A peaking phe-
nomenon is noticed in CBIR performance as the number of combined histograms
increases, with the optimum performance in the range of 4 to 14 histograms. Statis-
tically significant differences were noticed when combining a small (2-4) or a medium

(6-12) number of histograms.

e Individual histograms incorporating spatial information by soft-thresholding did not
outperform their non-spatial versions. The outcome was reversed when in the many
cases the spatial versions showed greater contribution to performance of histogram

combinations.

e A performance difference was noticed when we used different image datasets. That

was expected as the groundtruth of each dataset was defined using information of
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different levels of abstraction. While performance was better when the groundtruth
was automatically generated (Video samples and COIL-100), the weakness of the
histogram approach to extract semantic features became apparent with the other

two datasets (Chen Collection and Artchive).

7.2 Concept-Based Image Retrieval

BEKAS is proposed as an approach to overcome the deficiency of the histogram methods
(presented in Chapter 3), to extract semantic features. The advances to the state of the
art are due to, i) an algorithm for meaningful segmentation is not required, and i) the
use of the knowledge structure.

Study of the implemented modules of BEKAS led to the following conclusions:

e Histograms can be used along with a learning technique to assign semantic labels to
regions in images. With our experimental dataset successful assignments of labels
in the range of 60%-70% were achieved, using ¢) Decision Trees, and %) Multi-Layer

Perceptron.

e The spatial dependency matrix (SPD) is essentially a histogram that counts the
instances of labels at a given direction (multiple SPDs are used to cover a range of
directions) and distance range. Multiple SPD sets can be combined together to form

a memory, that allows use of SPDs as templates.

7.3 Performance Evaluation

In Chapter 5 we discuss about a performance evaluation framework for histogram based
CBIR systems. The framework is of the form of a compilation of methods rather than a
strict testing protocol. The methodology presented advances the state of the art, in pro-
viding a broader range of methodologies that allows a more thorough testing of histogram
based CBIR methods (while part of the methodology may be adopted to non-histogram
based CBIR methods).

Evaluation of the obtained results led to the following conclusions, with respect to the

usefulness of the methodologies included in the framework:



CHAPTER 7. CONCLUSIONS 151

e Groundtruth. The quality of the groundtruth plays a major role, mainly, in quan-
titative performance evaluation. Subjective grouping, if done poorly, may lead to
unreliable results, while automatic groundtruth methods my be misleading if over-
simplified (very strong similarities between images of the same group). On the other
hand, automatic groundtruth allows use of image sets of greater volume, as the time
required to establish such groundtruth, is substantially lower than manual methods

(subjective grouping).

e Image sets. A variety of image sets allowed us to test the histogram methods within
different scenarios in the CBIR context. This way we obtained a broader picture of

performance.

o Transformation sequences. The use of transformation sequences enabled us to ex-
tract from the system information about the tolerance of histogram methods to a
number of image transformations (translation, rotation and scale). (Could be better
if the sequences were selected more carefully, like specific shapes, various levels of

complexity etc.)

e Histogram plots were more useful when created from the grouped image sets. This
way we managed to get a feel about the histogram bin range occupancy, and visu-
alise differences or similarities between histograms within single groups, or between
different groups. Histogram plots using transformation sequences enabled us to vi-
sualise the tolerance of the histogram shape under different transformations. The
whole process of assessment was not very easy, specially for the transformation se-
quences. Often, the only way to get enough information was to apply numerous

image enhancing techniques.

o Similarity Graph. In some cases it was easier to pick up information about tolerance
to transformations from the distance graphs (e.g. rotation sensitivity was related to
a 'wave’ like curve). Generating similarity graphs from grouped image sets did not

provide much useful information with respect to CBIR.

e The Distance matriz provided a better picture of system performance when generated
from grouped images. Occasionally a distance matrix of a method would suffer from

poor visibility. While some image enhancement helped, in many cases the plot of
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the two sets of distances (within and between groups) provided extra information,

reducing the need for image enhancement.

e The Noise Dependency scatter plots were useful as we verified that the histograms

were not summarising the noise aspects of images.

e Query Effectiveness. We favoured average performance values (E-measure) as it

allowed us easier comparisons between the different histogram methods we developed.

e Statistical analysis, proved to be a very useful tool in verifying the differences in
performance of methods. In particular the Kruskal-Wallis test allowed very easy
comparisons of multiple methods in single runs of a program. Furthermore, if a sig-
nificant difference between the methods was identified, pair-wise tests (Dunn multiple

comparisons) allowed us to find the pairs of methods with significant differences.

e Pathfinder networks. The generation of PFNETs allowed us to “walk” through image

datasets as they were grouped by the CBIR system.

Overall, it is important to test CBIR methods from as many angles as possible, using both

qualitative and quantitative methods.

7.4 Future Work

In this thesis we presented a number of histogram features for use in CBIR, covering a
broad spectrum of image aspects. Some issues outside the scope of this thesis still remain
(related to histogram resolution, binning process, etc.), but we think that interest on these
issues is more application related rather than research related.

Research in CBIR shows a trend towards semantic sensitive CBIR. We think that
BEKAS is a step towards that direction. At its current state we have identified several

issues, which suggest lines for future research:

e Erroneous classification of semantic labels may affect the performance of the sys-
tem. Classification accuracy may be improved by reducing the dimensionality of the
histogram. In this thesis we used the first five moments to achieve that. Alterna-
tive ways are also possible using some perceptual mapping (association of histogram

characteristics to simple, coarsely categorised, semantic terms [70]). Furthermore,
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post processing techniques (e.g. relaxation labelling) may improve the performance

of classification.

e Training of the semantic labelling module is a step that currently requires training
data segmented by human subjects. It may be possible to avoid manual segmenta-
tion by developing novel data collection techniques that target individual images to

specific semantic labels.

e The process of generating the concept hierarchy is manual, while fully automated
techniques for generating concept hierarchies do exist. A possible improvement on
the latter would be to generate concept hierarchies specific to CBIR. Still the task

of associating SPD setup templates to the concept hierarchy remains manual.

e The performance evaluation framework presented in Chapter 5 provided a broad
range of beneficial information regarding the performance characteristics of histogram
methods. However, new techniques need to be developed for the evaluation of more

complex systems, such as BEKAS.

e Scalability is another essential characteristic in CBIR systems. BEKAS is composed
of a number of technologies that may pose as bottlenecks regarding scalability. This

area would be a starting point for further work.

e The performance evaluation methods presented in this thesis required little human
involvement. That is because the main objective related to performance evaluation
is methods with high repeatability. A possible next step would be towards more
active human involvement, targeting a mechanism which would generalise a small
amount of information provided by human subject, thus allowing subjective tests on

a greater scale and (after training) in a fully automatic fashion.



Appendix A

Multiscale Edge Detection

For the extraction of edges we used a multiscale variant of the Canny edge detector. The
image we want to extract edges from, is smoothed using a Gaussian kernel, over a range of
o, and gradient maps are generated for each scale. The gradients maps are then averaged,
to create a single map, on which we then apply non-maximal suppression. An example of
this process is illustrated in Figure A.1.

The multiscale process (Figure A.2), acts as an ageing factor. Gaussian smoothing
deteriorates the edge information gradually, so stronger edges are expected to survive to

greater scales o.
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(b) Average Gradient (c) Extracted Edges

Figure A.1: Edge detection example.

(b) 0 =2.0 (c)c =238

Figure A.2: Edge detection example.



Appendix B

Results: Histogram Plots

In this section we have included the histogram plots referenced in Chapter 6. The images
were enhanced for better printing quality and may be distorted. Histogram plots are more

useful when printed in larger dimension of when studied on a computer screen.
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(c) Coil-100

(g) Rotation sequence

Figure B.1: (HUE) Hue Histogram plots.
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Figure B.2: (CL) Berlin and Kay Colour Labels histogram plots.
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(a) Video Samples (b) Chen Collection

(c) Coil-100

(d) Artchive

(e) Zoom sequence

(f) Translation sequence

(g) Rotation sequence

Figure B.3: (KCOS) K-Cos edge curvature histogram plots.
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Figure B.4: (CARC) Circular Arcs histogram plots.
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(a) Video Samples (b) Chen Collection

(c) Coil-100

(d) Artchive

(e) Zoom sequence

(f) Translation sequence

(g) Rotation sequence

Figure B.5: (CONV) Convexity histogram plots.
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(a) Video Samples (b) Chen Collection

(c) Coil-100

(d) Artchive

(e) Zoom sequence

(f) Translation sequence

(g) Rotation sequence

Figure B.6: (CIRC) Circularity histogram plots.
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(a) Video Samples (b) Chen Collection

(c) Coil-100

(d) Artchive

(e) Zoom sequence

(f) Translation sequence

(g) Rotation sequence

Figure B.7: (ELIP) Elipticity histogram plots.
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(a) Video Samples (b) Chen Collection

(c) Coil-100

(d) Artchive

(e) Zoom sequence

(f) Translation sequence

(g) Rotation sequence

Figure B.8: (RECT) Rectangularity histogram plots.
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(a) Video Samples (b) Chen Collection

(e) Zoom sequence

(g) Rotation sequence

Figure B.9: (ORNT) Orientation histogram plots.



APPENDIX B. RESULTS: HISTOGRAM PLOTS 166

ikElgis| Ll Al e i I 1
‘ LB Il (HEEA 1

(a) Video Samples (b) Chen Collection

I‘ ! ’ !
;

(d) Artchive

(e) Zoom sequence

(f) Translation sequence

(g) Rotation sequence

Figure B.10: (MSSDT) Multiscale Salience Distance histogram plots.
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(d) Artchive

(e) Zoom sequence

(f) Translation sequence

(g) Rotation sequence

Figure B.11: (TARE) Triangle Area histogram plots.
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(a) Video Samples (b) Chen Collection

(d) Artchive

(c) Coil-100

(e) Zoom sequence

(f) Translation sequence

(g) Rotation sequence

Figure B.12: (TLEN) Triangle Length histogram plots.
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(a) Video Samples (b) Chen Collection

(c) Coil-100

(d) Artchive

(e) Zoom sequence

(f) Translation sequence

(g) Rotation sequence

Figure B.13: (TRAT) Triangle Ratio histogram plots.
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(a) Video Samples (b) Chen Collection

(c) Coil-100

(d) Artchive

(e) Zoom sequence

(f) Translation sequence

(g) Rotation sequence

Figure B.14: (TU) Texture Unit histogram plots.
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Figure B.15: (COOC) Cooccurrence Matrix (intensity) plots.
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(a) Video Samples (b) Chen Collection

(c) Coil-100

(d) Artchive

(e) Zoom sequence

(f) Translation sequence

(g) Rotation sequence

Figure B.16: (HCC) Cooccurrence matrix (hue) plots.
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Figure B.17: (HUE-SP) Spatial Hue histogram plots.
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(f) Translation sequence

(g) Rotation sequence

Figure B.18: (CL-SP) Spatial Berlin and Kay Colour Labels histogram plots.
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(a) Video Samples (b) Chen Collection

(c) Coil-100

(d) Artchive

(e) Zoom sequence

(f) Translation sequence

(g) Rotation sequence

Figure B.19: (TU-SP) Spatial Texture Unit histogram plots.
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(a) Video Samples (b) Chen Collection
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(d) Artchive
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Figure B.20: (CC-SP) Spatial Cooccurrence Matrix (intensity) plots.
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(a) Video Samples (b) Chen Collection

(c) Coil-100

(d) Artchive
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(g) Rotation sequence

Figure B.21: (CLSH) Distance from Colour Region Boundaries histogram plots.
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(a) Video Samples (b) Chen Collection

(d) Artchive

(e) Zoom sequence

(f) Translation sequence

(g) Rotation sequence

Figure B.22: (BKDT) Colour Labels and Colour Region Boundary distance histogram
plot.
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(a) Video Samples (b) Chen Collection

(c) Coil-100

(e) Zoom sequence

(f) Translation sequence

(g) Rotation sequence

Figure B.23: (BKDT2D) Colour labels and Edge Distance Histogram plot.
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(a) Video Samples (b) Chen Collection

(c) Coil-100

(d) Artchive

(e) Zoom sequence

(f) Translation sequence

(g) Rotation sequence

Figure B.24: (HENT) Hue Entropy histogram plot.
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(a) Video Samples (b) Chen Collection

(c) Coil-100

(d) Artchive

(e) Zoom sequence

(f) Translation sequence

(g) Rotation sequence

Figure B.25: (LDIFF) Local Difference histogram plot.
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(a) Video Samples (b) Chen Collection

(f) Translation sequence

(g) Rotation sequence

Figure B.26: (LBLK) Local Black histogram plot.



Appendix C

Results: Similarity Graphs

In this section we have included the similarity graphs studied in Chapter 6. The similarity
graphs are generated from video sequences of transformations, from top to bottom, trans-
lation, rotation, and scale. We would like to note that at this instance we have used the
Euclidean distance for the calculations. Furthermore, the graphs are not plotted on the

same axis, they are re-scaled to enhance the range of distance values.
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Figure C.1: Similarity graph of the Hue Histogram.
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Figure C.2: Similarity graph of the Spatial Hue Histogram.
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Figure C.3: Similarity graph of the Colour Labels Histogram.
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Figure C.4: Similarity graph of the Spatial Colour Labels Histogram.

185



APPENDIX C. RESULTS: SIMILARITY GRAPHS

oot ] 0006 0006 0006
0006
0004 0004 0004
0.004
0002-|
00024 0002 0002 0002
0000 . . . ! , , : : ; : : : ; : : :
00 20 30 40 o0 20 R0 a0 0 20 0 40 W W0 0 40 W M o a0
0006
0.008+
0006-|
0020
o010
0004 0.006+
0004
0.004+
o5 o010
00027 0002+
0.002
%0 a0 e 80 %o 4o eo o Ao o 6o | 8o Ao 4o o 8o 0 40 o 8o
0015 0040
0040
0020
0010
0020 000
0010
0.005

M 2o w0 400 o 0 40

(b)d =5 (c) d =10

%0 20 0 40

(d) d =20

(e) d =50

Figure C.5: Similarity graph of the Texture Unit Histogram.
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Figure C.6: Similarity graph of the Spatial Texture Unit Histogram.
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: Similarity graph of the Cooccurrence Matrix of Intensities.
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Figure C.8: Similarity graph of the Cooccurrence Matrix of Hue.

187



APPENDIX C. RESULTS: SIMILARITY GRAPHS 188

0040

0.060-

0040
o0 0020
0020

0020

g
g
5§ E B

100 200 a0 40 w0 20 0 40 W 2o 0 a0 W W0 0 40 W M o a0
0020 00wl
00807 00304
0.040+
0020 00204
0,010 0.020
0020
0010 0010
A0 ao e 80 %o 4o eo o Ao o 6o | 8o Ao 4o o 8o 0 40 o 8o
0100 0200]
03004
0100
02004
0050 0100]
0.0504
01004
M 2o w0 400 o 0 40 %0 20 0 40 20 0 400

(b)d =5 (c) d =10 (d) d =20 (€) d = 50

Figure C.9: Similarity graph of the Spatial Cooccurrence Matrix of Intensities.
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Figure C.10: Similarity graph of the K-Cos edge curvature.
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Figure C.11: Similarity graph of the Circularity Histogram.
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Figure C.12: Similarity graph of the Ellipticity Histogram.
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Figure C.13: Similarity graph of the Rectangularity Histogram.
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Figure C.14: Similarity graph of the Convexity Histogram.
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Figure C.15: Similarity graph of the Multiscale Salience Distance Histogram.
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Figure C.16: Similarity graph of the Colour Region Distance Histogram.
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Figure C.17: Similarity graph of the Colour Label & Boundary Distance Histogram.
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Figure C.18: Similarity graph of the Colour Label & Edge Distance Histogram.
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Figure C.19: Similarity graph of the Orientation Histogram.
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Figure C.20: Similarity graph of the Triangle Area Histogram.
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Figure C.21: Similarity graph of the Triangle Ratio Histogram.
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Figure C.22: Similarity graph of the Triangle Length Histogram.
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Figure C.23: Similarity graph of the Circular Arcs Histogram.
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Figure C.24: Similarity graph of the Hue Entropy Histogram.
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Figure C.25: Similarity graph of the Local Difference Histogram.
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Figure C.26: Similarity graph of the Local Black Histogram.



Appendix D

Results: Distance Matrix

In this section we include the Distance matrices used in Chapter 6. As in the case of the
histogram plots we had to post process the images for better printing.
We have also included the graph of the distances and the corresponding summary value,

as presented in Section 5.2.3.
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Figure D.1: Colour Labels (CL)
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Figure D.2: Spatial Colour Labels (CL-SP)
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Figure D.3: Cooccurrence Matrix (intensity) (COOC)
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Figure D.4: Edge Distance (MSSDT)
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Figure D.6: Hue Entropy (HENT)
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Figure D.7: Clsh (CLSH)
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Figure D.8: Local Black (LBLK)
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Figure D.9: Local Difference (LDIFF)
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Figure D.10: HBKDT(HBKDT)
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Figure D.11: HBKDT2D(HBKDT2D)
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Figure D.12: Triangle Area (TARE)
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Figure D.13: Triangle Ratio (TRAT)
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Figure D.15: Circular Arcs (CARC)
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Figure D.16: Hue (HUE)
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Figure D.19: K-Cos Edge Curvature (KCOS)
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Appendix E

Results: Noise vs Performance

In this section we include the Noise vs Performance plots used in Chapter 6. As in the
case of the similarity graphs we have changed the scaling of the graphs to enhance the
boundaries of the clustering. Performance is calculated using the E-measure, proposed by

Salton, as shown in Chapter 5.
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Figure E.4: Edge Distance (MSSDT).
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Appendix F

Results: Statistical Tests Tables

The resulting tables of multiple comparisons, related to the statistical analysis are pre-
sented in this Appendix. The numbers of the first row and column indicate the number of

combined histograms.
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Table F.1: COIL-100. Multiple comparisons of combinations utilising all the histograms.
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2 3 4 ) 6 7 8
2 6.226 5.451 3.298 4.512 3.457 2.468
3 0.775 2.928 1.714 2.769 3.758
4 2.152 0.938 1.993 2.983
) 1.214 0.159 0.831
6 1.055 2.045
7 0.990

9 10 11 12 13 14 15

2 0.684 1.202 3.209 3.743 3.567  3.214 2.101
3 6.910 7.428 9.435 9.969 9.793 9.440 8.327
4 6.135 6.653 8.660 9.194 9.018 8.665 7.551
5 3.982 4.500 6.507 7.042 6.865 6.512 5.399
6 5.196 5.714 7.721 8.256 8.079 7.726 6.613
7 4.141 4.659 6.666 7.201 7.024 6.671 5.558
8 3.152 3.670 5.677  6.211 6.035 5.682 4.569

9 0.518 2.525 3.059 2.883 2.530 1.417
10 2.007 2.541 2.365 2.012 0.899
11 0.534 0.358 0.005 1.108
12 0.176 0.529 1.642
13 0.353 1.466
14 1.113
16 17 18 19 20 21 22

2 1323 7.453 8.838 9.185 12.032 12.948 14.176
3 7.549 13.679 15.064 15.411 18.258 19.174 20.402
4 6.773 12.904 14.289 14.635 17.482 18.399 19.627
5 4.621 10.751 12.136 12.483 15.330 16.247 17.474
6 5.835 11.965 13.350 13.697 16.544 17.461 18.688
7 4.780 10.910 12.295 12.642 15.489 16.406 17.633
8§ 3.790 9.921 11.306 11.652 14.499 15.416 16.644
9 0639 6.769 8.154 8.501 11.348 12.264 13.492
10 0.121 6.251 7.636 7.983 10.830 11.746 12.974
11 1.886 4.244 5.629 5.976 8.823 9.739 10.967
12 2.421 3.710 5.095 5.441 8.289 9.205 10.433
13 2244  3.886 5.271 5.618 8.465 9.381 10.609
14 1891 4.239 5.624 5.971 8.818 9.734 10.962
15 0.778  5.352 6.737 7.084 9.931 10.847 12.075

16 6.130 7.515 7.862 10.709 11.626 12.853
17 1.385 1.732 4.579 5.495 6.723
18 0.347 3.194 4.110 5.338
19 2.847 3.764 4.991
20 0.917 2.144
21 1.228

Table F.2: COIL-100. Multiple comparisons of combinations utilising non-spatial only the
histograms.
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2 3 4 5 6 7 8
2 1.004 4.653 3.509 0.579 0.051 1.244
3 3.649 2.505 0.425 0.953 2.248
4 1.144 4.074 4.601 5.896
5 2.930 3.458 4.753
6 0.528 1.823
7 1.295
9 10 11 12 13 14 15
2 2.347  3.429 6.188 7.610 7.990 10.301 9.265
3 3.351 4.433 7.192 8.614 8.994 11.305 10.269
4 7.000 8.082 10.840 12.263 12.643 14.953 13.918
5 5.856 6.938 9.697 11.119 11.499 13.810 12.774
6 2.926 4.008 6.767  8.189 8.569 10.880 9.844
7 2.398 3.480 6.239 7.661 8.042 10.352 9.316
8 1.103 2.185 4.944 6.366 6.747  9.057  8.021
9 1.082 3.841 5.263 5.643 7.954 6.918
10 2.759 4.181 4.561 6.872 5.836
11 1.422 1.803 4.113 3.077
12 0.380 2.691 1.655
13 2.310 1.275
14 1.036

16 17 18 19 20 21 22
2 15.001 16.720 16.205 18.270 23.013 21.951 21.939
3 16.004 17.724 17.209 19.274 24.016 22.954 22.943
4 19.653 21.372 20.858 22.923 27.665 26.603 26.592
5 18.510 20.229 19.714 21.779 26.522 25.460 25.448
6 15.579 17.299 16.784 18.849 23.591 22.529 22.518
7 15.052 16.771 16.256 18.321 23.064 22.002 21.991
8 13.757 15.476 14.961 17.026 21.769 20.707 20.696
9 12.653 14.373 13.858 15.923 20.665 19.603 19.592
10 11.571 13.291 12.776 14.841 19.583 18.521 18.510
11  8.813 10.532 10.017 12.082 16.825 15.763 15.752
12 7.390 9.110 8.595 10.660 15.402 14.340 14.329
13 7.010 8.730 8.215 10.280 15.022 13.960 13.949
14 4.700 6.419 5.904 7.969 12.712 11.650 11.639
15 5.735 7.455 6.940 9.005 13.747 12.685 12.674

16 1.719 1.205 3.269 8.012 6.950 6.939
17 0.515 1.550 6.293 5.231 5.219
18 2.065 6.807  5.745 5.734
19 4.742 3.681 3.669
20 1.062 1.073
21 0.011

Table F.3: COIL-100. Multiple comparisons of combinations utilising spatial only the
histograms.



APPENDIX F. RESULTS: STATISTICAL TESTS TABLES

© 00~ O Ut LN

23
24
25

Table F.4:

11
2.210
2.147
1.438
1.222
0.843
0.572
0.406
0.281
0.158

20
0.810
0.747
0.038
0.178
0.558
0.829
0.994
1.120
1.242
1.400
1.393
1.345
1.199
0.961
0.901
0.681
0.417
0.027

3
0.063

12
2.203
2.140
1.431
1.215
0.835
0.565
0.399
0.274
0.151
0.007

21
0.106
0.042
0.666
0.882
1.262
1.533
1.698
1.824
1.946
2.105
2.097
2.049
1.903
1.665
1.605
1.385
1.121
0.731
0.704

4
0.772
0.709

13
2.155
2.092
1.383
1.167
0.787
0.517
0.351
0.226
0.103
0.055
0.048

22
0.213
0.276
0.985
1.201
1.581
1.852
2.017
2.143
2.265
2.423
2.416
2.368
2.222
1.984
1.924
1.704
1.440
1.050
1.023
0.319

)
0.988
0.925
0.216

14
2.009
1.946
1.237
1.021
0.641
0.371
0.205
0.080
0.043
0.201
0.194
0.146

23
0.692
0.756
1.465
1.680
2.060
2.331
2.497
2.622
2.744
2.903
2.896
2.848
2.702
2.463
2.404
2.183
1.919
1.529
1.502
0.798
0.479

6
1.368
1.304
0.595
0.380

15
1.771
1.707
0.998
0.783
0.403
0.132
0.033
0.159
0.281
0.440
0.432
0.384
0.239

24
0.680
0.743
1.452
1.668
2.048
2.318
2.484
2.609
2.732
2.890
2.883
2.835
2.689
2.450
2.391
2.171
1.907
1.517
1.490
0.786
0.467
0.013

7
1.639
1.575
0.866
0.651
0.271

16
1.711
1.648
0.939
0.723
0.343
0.073
0.093
0.218
0.341
0.499
0.492
0.444
0.298
0.060

25
0.929
0.992
1.701
1.917
2.207
2.568
2.733
2.859
2.981
3.139
3.132
3.084
2.938
2.700
2.640
2.420
2.156
1.766
1.739
1.035
0.716
0.237
0.249

8
1.804
1.741
1.032
0.816
0.436
0.166

17
1.491
1.428
0.719
0.503
0.123
0.148
0.313
0.439
0.561
0.719
0.712
0.664
0.518
0.280
0.220

26
1.545
1.609
2.318
2.533
2.913
3.184
3.350
3.475
3.598
3.756
3.749
3.701
3.555
3.316
3.257
3.036
2.772
2.382
2.355
1.651
1.332
0.853
0.866
0.616

9
1.930
1.866
1.157
0.942
0.562
0.291
0.125

18
1.227
1.164
0.455
0.239
0.141
0.412
0.577
0.703
0.825
0.983
0.976
0.928
0.782
0.544
0.484
0.264

10
2.052
1.989
1.280
1.064
0.684
0.414
0.248
0.123

19
0.837
0.773
0.065
0.151
0.531
0.802
0.967
1.093
1.215
1.374
1.366
1.318
1.172
0.934
0.874
0.654
0.390

223

CHEN. Multiple comparisons of combinations utilising all the histograms.
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Table F.5: CHEN
histograms.

1.880
1.695
1.257
1.054
0.898
0.806
0.073

16
0.574
0.390
0.049
0.252
0.407
0.499
1.232
1.305
1.359
1.301
1.146
0.849
0.607
0.226

3
0.184

10
1.934
1.749
1.311
1.107
0.952
0.860
0.127
0.054

17
0.062
0.246
0.685
0.888
1.043
1.135
1.868
1.941
1.995
1.937
1.782
1.485
1.243
0.862
0.636

4
0.623
0.439

11
1.875
1.691
1.252
1.049
0.894
0.802
0.069
0.005
0.058

18
0.445
0.630
1.068
1.272
1.427
1.519
2.252
2.325
2.379
2.321
2.165
1.869
1.627
1.246
1.020
0.384

5
0.826
0.642
0.203

12
1.720
1.536
1.097
0.894
0.738
0.647
0.087
0.160
0.214
0.155

19
0.517
0.701
1.140
1.343
1.498
1.590
2.323
2.396
2.450
2.392
2.237
1.940
1.698
1.317
1.091
0.455
0.071

6
0.982
0.797
0.359
0.155

13
1.423
1.239
0.800
0.597
0.442
0.350
0.383
0.456
0.510
0.452
0.297

20
0.777
0.961
1.400
1.603
1.759
1.851
2.584
2.657
2.711
2.652
2.497
2.201
1.958
1.578
1.352
0.716
0.332
0.260

7
1.073
0.889
0.450
0.247
0.092

14
1.181
0.997
0.558
0.355
0.200
0.108
0.626
0.699
0.752
0.694
0.539
0.242

21
1.076
1.261
1.699
1.902
2.058
2.150
2.883
2.956
3.010
2.951
2.796
2.500
2.257
1.877
1.651
1.015
0.631
0.560
0.299

8
1.807
1.622
1.184
0.981
0.825
0.733

15
0.800
0.616
0.177
0.026
0.181
0.273
1.006
1.079
1.133
1.075
0.920
0.623
0.381

22
1.400
1.585
2.023
2.227
2.382
2.474
3.207
3.280
3.334
3.276
3.121
2.824
2.582
2.201
1.975
1.339
0.955
0.884
0.623
0.324
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. Multiple comparisons of combinations utilising non-spatial only the
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2 3 4 5 6 7 8
2 0.843 0.871 1.465 1.837 1901 1.848
3 0.028 0.622 0.994 1.058 1.004
4 0.594 0966 1.030 0.976
5 0.372  0.437 0.383
6 0.064 0.010
7 0.054

9 10 11 12 13 14 15

2 1940 1772 1788 1.752 1.572 1.390 1.051
3 1.097 0928 0945 0909 0.729 0.547 0.208
4 1.069 0900 0917 0.881 0.701 0.519 0.180
5 0475 0307 0323 0.287 0.107 0.075 0414
6 0.103 0.066 0.049 0.08 0.265 0.447 0.786
7 0.039 0.130 0.113 0.150 0329 0.511 0.851
8 0.092 0.076 0.060 0.096 0.275 0.458 0.797

9 0.168 0.152 0.188 0.368 0.550  0.889
10 0.016 0.020 0.199 0.382 0.721
11 0.036 0.216 0.398 0.737
12 0.179 0362 0.701
13 0.182 0.521
14 0.339
16 17 18 19 20 21 22

2 0631 0336 0234 0707 0673 0.690 1.711
3 0212 0.508 1.077 1.550 1.516 1.533 2.554
4 0.240 0.536 1.105 1.578 1.544 1.561 2.582
5 0833 1.129 1.699 2172 2138 2.155 3.176
6 1.206 1.502 2.071 2.544 2.510 2.527 3.548
7 1270 1.566 2.135 2.609 2.574 2.591 3.612
8 1.216 1.512 2.081 2.555 2.520 2.537 3.559
9 1309 1.604 2174 2.647 2.613 2.630 3.651
10 1.140 1.436 2.005 2.479 2.444 2.461 3.483
11 1.157 1.452 2.022 2.495 2.461 2.478 3.499
12 1.120 1.416 1.985 2.459 2.425 2.442 3.463
13 0941 1.237 1.806 2.279 2.245 2.262 3.283
14 0.759 1.0564 1.624 2.097 2.063 2.080 3.101
15 0419 0.715 1.285 1.758 1.724 1.741 2.762

16 0.296 0.865 1339 1.304 1321 2.342
17 0.569 1.043 1.008 1.025 2.047
18 0.473 0439 0.456 1.477
19 0.034 0.017 1.004
20 0.017 1.038
21 1.021

Table F.6: CHEN. Multiple comparisons of combinations utilising spatial only the his-
tograms.
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© 00O Ui Wi

23
24
25

11
9.280
7.420
3.395
2.504
1.592
0.940
0.588
0.641
0.699

20
8.504
6.643
2.618

1.727
0.815
0.163
0.189
0.136
0.078
0.777
0.657
1.047
1.130
1.063
0.919
0.817
0.540
0.208

3
1.861

12
9.161
7.300
3.275
2.384
1.472
0.821
0.468
0.522
0.579
0.120

21
8.540
6.679
2.654

1.763
0.851
0.200
0.153
0.100
0.042
0.741
0.621
1.011
1.094
1.027
0.883
0.781
0.504
0.172
0.036

4
5.886
4.025

13
9.551
7.690
3.665
2.774

1.862
1.210
0.858
0.911
0.969
0.270
0.390

22
8.312
6.451
2.426
1.536
0.623
0.028
0.380
0.327
0.270
0.968
0.849
1.238
1.322
1.255
1.111
1.009
0.732
0.399
0.191
0.228

)
6.776
4.916
0.891

14
9.634
7.773
3.748
2.858

1.945
1.294
0.941
0.995
1.052
0.354
0.473
0.083

23
8.115
6.254
2.229
1.339
0.426
0.225
0.578
0.524
0.467
1.165
1.046
1.436
1.519
1.452
1.308
1.206
0.929
0.596
0.389
0.425
0.197

6
7.689
5.828
1.803
0.912

15
9.567
7.706
3.681
2.791
1.878
1.227
0.874
0.928
0.985
0.286
0.406
0.016
0.067

24
7.707
5.846
1.821
0.930
0.018
0.634
0.986
0.933
0.875
1.574
1.454
1.844
1.927
1.860
1.716
1.614
1.337
1.005
0.797
0.833
0.606
0.408

7
8.340
6.479
2.454

1.564
0.651

16
9.423
7.562
3.537
2.647

1.734
1.083
0.730
0.784
0.841
0.143
0.262
0.128
0.211
0.144

25
7.218
5.358
1.333
0.442
0.470
1.122
1.474
1.421
1.363
2.062
1.943
2.332
2.416
2.349
2.205
2.103
1.825
1.493
1.285
1.321
1.094
0.897
0.488

8
8.693
6.832
2.807

1.916
1.004
0.352

17
9.321
7.460
3.435
2.545

1.632
0.981
0.628
0.682
0.739
0.041
0.160
0.230
0.313
0.246
0.102

26
6.947
5.086

1.061
0.170
0.742
1.394
1.746
1.693
1.635
2.334
2.214
2.604
2.687
2.620
2.476
2.374
2.097
1.765
1.557
1.593
1.366
1.168
0.760
0.272

9
8.639
6.779
2.754

1.863
0.951
0.299
0.053

18
9.044
7.183
3.158
2.267

1.355
0.704
0.351
0.404
0.462
0.237
0.117
0.507
0.590
0.523
0.379
0.277

10
8.582
6.721
2.696
1.805
0.893
0.242
0.111
0.058
19
8.712
6.851
2.826
1.935
1.023
0.371
0.019
0.072
0.130
0.569
0.449
0.839
0.922
0.855
0.711
0.609
0.332
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Table F.7: Artchive. Multiple comparisons of combinations utilising all the histograms.
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7.466
3.432
1.801
0.753
0.139
0.266
0.127

16
8.510
4.475
2.845

1.797
1.183
0.777
0.917
1.044
1.006
0.940
0.479
0.682
0.673
0.380

3
4.034

10
7.504
3.469
1.838
0.790
0.177
0.229
0.089
0.038

17
8.576
4.542
2.911
1.863
1.249
0.844
0.983
1.110
1.072
1.006
0.545
0.748
0.739
0.446
0.066

4
5.665
1.631

11
7.570
3.536
1.905
0.857
0.244
0.162
0.023
0.104
0.067

18
8.359
4.324
2.694

1.646
1.032
0.626
0.766
0.893
0.855
0.789
0.328
0.531
0.522
0.229
0.151
0.217

5
6.713
2.679

1.048

12
8.030
3.996
2.365
1.317
0.704
0.298
0.438
0.565
0.527
0.460

19
8.003
3.969
2.338
1.290
0.677
0.271
0.410
0.537
0.500
0.433
0.027
0.175
0.167
0.127
0.506
0.573
0.355

6
7.327
3.292
1.661
0.613

13
7.828
3.794
2.163
1.115
0.501
0.096
0.235
0.362
0.324
0.258
0.203

20
7.843
3.809
2.178
1.130
0.516
0.111
0.250
0.377
0.339
0.273
0.188
0.015
0.006
0.287
0.667
0.733
0.516
0.160

7
7.732
3.698
2.067
1.019
0.406

14
7.836
3.802
2.171
1.123
0.510
0.104
0.244
0.371
0.333
0.266
0.194
0.008

21
6.776
2.742
1.111
0.063
0.551
0.956
0.817
0.690
0.728
0.794
1.255
1.052
1.061
1.354
1.734
1.800
1.583
1.227
1.067

8
7.593
3.558
1.928
0.880
0.266
0.140
15
8.130
4.096
2.465
1.417
0.803
0.398
0.537
0.664
0.626
0.560
0.099
0.302
0.293
22
5.114
1.080
0.551
1.599
2.212
2.618
2.478
2.351
2.389
2.456
2.916
2.713
2.722
3.015
3.395
3.461
3.244
2.889
2.728
1.661

227

Table F.8: Artchive. Multiple comparisons of combinations utilising spatial only the his-

tograms.
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2 3 4 5 6 7 8
2 1921 5.872 6.742 7.450 7.893 7.785
3 3.951 4.821 5.529 5.973 5.864
4 0.870 1.578 2.022 1.914
) 0.708 1.152 1.044
6 0.444 0.336
7 0.108

9 10 11 12 13 14 15

2 8.146 8.208 8.020 7.722 7.525 7.127 6.767
3 6.225 6.287 6.099 5.801 5.604 5.206 4.846
4 2275 2336 2148 1850 1.653 1.255 0.895
5 1405 1466 1.27v8 0980 0.783 0.385 0.026
6 0697 0.758 0.570 0.272 0.075 0.323 0.682
7 0253 0314 0.126 0.172 0.369 0.766 1.126
8 0361 0422 0.235 0.064 0.261 0.658 1.018

9 0.061 0.126 0.424 0.622 1.019 1.379
10 0.188 0.486 0.683 1.081  1.440
11 0.298 0495 0.893 1.253
12 0.197 0.595 0.955
13 0.398  0.757
14 0.360
16 17 18 19 20 21 22

2 6.327 6.037 6.414 5.694 5.980 6.316 5.634
3 4.406 4.116 4.493 3.773 4.060 4.395 3.713
4 0455 0165 0.542 0.178 0.109 0.444 0.237
5 0415 0.705 0.328 1.048 0.761 0425 1.107
6 1.123 1413 1.036 1.756 1.469 1.134 1.815
7 1567 1.857 1.479 2.200 1913 1.577  2.259
8 1458 1.749 1371 2.091 1.805 1.469 2.151
9 1.819 2110 1.732 2.452 2166 1.830 2.512
10 1.881 2171 1.794 2.514 2227 1.891 2.573
11 1.693 1983 1.606 2.326 2.039 1.704 2.386
12 1395 1.685 1.308 2.028 1.741 1.406 2.087
13 1.198 1488 1.111 1.831 1.544 1.208 1.890
14 0.800 1.090 0.713 1433 1.147 0.811 1.493
15 0440 0.731 0353 1.073 0.787 0.451 1.133

16 0.290 0.087 0.633 0.346 0.011 0.693
17 0.377 0343 0.056 0.280  0.402
18 0.720 0.434 0.098 0.780
19 0.287 0.622 0.060
20 0.336  0.346
21 0.682

Table F.9: Artchive. Multiple comparisons of combinations utilising spatial only the his-
tograms.
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