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Abstract

This thesis investigates methods for comparing models of different complexity, using
the Minimum Description Length (MDL) method. Some applications to Computer
Vision are described. The data are sequences of filmed images, and the models are
vehicles and their trajectories. In the MDL approach, a model is favoured if it can be
used to obtain good compression of the data.

A major problem in Computer Vision is the choice of adequate model complex-
ity. Simple models might not capture the essential properties of the data, whereas
complex models might be strongly affected by noise, resulting in overfitting. Model
Selection methods such as Maximum Likelihood are biased towards complex models.
Such overfitting can be avoided by carefully weighting the models according to their
complexity.

MDL overcomes the problem of overfitting by considering models as Turing ma-
chines, and assigning to each model a prior probability. Models are favoured if they
have a low prior probability and if they achieve a good compression of the data.

The MDL method is presented, from a combinatorial point of view, as an enumer-
ation of the leaves of a binary tree. This binary tree corresponds to the input language
of a Universal Turing machine. Since the enumeration, and with it the MDL method,
is not computable, computable approximations to it are devised. A software package
written in the language Mathematica is used to facilitate the development of these
computable approximations to MDL.

The computable approximations to MDL have been tested with experiments in ve-
hicle tracking and trajectory modelling and estimation. Entire image sequences are
compressed using 3D models for vehicle shapes and trajectories. In separate experi-
ments, trajectory data are compressed using a dynamics-based model for trajectories.
The experiments show that the length after compression is the basis of a reliable method
for choosing between trajectory models.

In addition, vehicle trajectories produced by a vehicle tracker are segmented and
labelled using a Hidden Markov Model. Experimental results illustrate that a simple
model is able to filter out noise and produce a simple segmentation of the trajectory
based on the driver’s actions.

The conclusion is that it is possible to compare models according to their ability to
compress data. The data compression can be carried out with the aid of generic and
standard algorithms, such as the Lempel-Ziv-Welch (LZW) compression algorithm or
the logstar code.
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Chapter 1

Introduction

1.1 Computer Vision

Images are available from a variety of sources, many of them in digital form. Some im-
ages have a purely informative purpose. This is the case of the images from surveillance
cameras. An example is shown in Figure [Tl

Figure 1.1: A view from a surveillance camera (Courtesy of BBC London
www.bbc.co.uk /london and Transport for London)

Digital images, considered as arrays of numbers, can convey a large amount of
information captured with minimal effort. For example the image of Figure [Ll shows
the presence and position of vehicles on the road and, if a sequence of images is available,
it is possible to visually estimate the motions of the vehicles.

Image understanding is the activity of extracting information from images. For
example, faced with an image or a sequence of images, the Human Vision System is
able to answer questions such as:

e Is object X in the image?
e What is the position of object X in the image?
e What is the motion of object X7

In the particular case of images from traffic surveillance cameras, a human operator is
able to answer more specific questions about an image sequence:

e Is there a vehicle in lane n?
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camera

vehicle

ground plane

10

Figure 1.2: Vehicle surveillance from a fixed, calibrated camera, and a facet model of
the shape of the vehicle.

e Has a vehicle followed the path or trajectory t?
e Has an accident occurred?
e [s there a traffic jam?

Image Understanding can be described formally by a function V' that maps elements
from the set of data, D, which can be images or image sequences, into the set of models,
M, which are explanations of the data or answers to the questions above.

V:D—M

We will refer to such a function as a Vision Function.

Computer Vision is a research area motivated by the need for automatic methods
of image understanding that can achieve performance levels similar to those of the
Human Vision System. A Vision Function V is identified with a computer program that
implements it. The purpose of this research is to study how to define and implement
instances of Vision Functions.

1.2 Model-based vision

A fundamental question in Image Understanding is the quality and quantity of prior
knowledge. A human observer often has far more prior information than an automatic
vision system. For example, a security guard watching a surveillance image sequence
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has prior knowledge of the shape of a double-decker bus, a car, the marks on the ground
plane, etc.

Does the human observer have a detailed “model” of the shape of vehicles in mind,
and uses it to recognise moving vehicles? Or is it only necessary to have a rough
“model” of objects in motion? Let us consider the case of understanding images of
vehicles in motion:

e A detailed vehicle model would be a rigid object with constant shape which moves
in a highly predictable trajectory on the road.

e A less detailed and more general model would include changes in shape and a
wider range of motion trajectories.

This prior knowledge is represented by models. For example, images taken from a
typical traffic surveillance camera, as shown in Figure [L2] can be modelled using prior
knowledge in the form of:

e a shape model describes the shape of a vehicle,
e a trajectory model describes the motion of the vehicle on the ground plane and

e an error model describes the pixel-by-pixel difference between the projection of
the shape on the image plane and the actual pixel values.

The complexity of a model is the quantity of prior knowledge it embodies (not to
be confused with the computational cost of evaluating V'). A choice in the amount of
prior knowledge for a Vision Function

V:D—M

implies a choice of the complexity of the models in M.

1.3 Computer programs as models

A formal definition of the term model is required in order to give meaning to the notion
of model complexity, which is studied throughout this thesis. We also need to formalise
how a model is used to describe data, and how to assign a cost or measure of the fit of
a model to the data.

Let us define model and description. Assume that the data is a binary string d.
Let M be a “computer program” or Turing machine[Tur36l, Gar90] (not necessarily
a Universal Turing machine). The Turing machine M can be considered as a partial
function defined on a subset of the set of binary strings. For some choice of Turing
machine M, it is possible that M can output the data d given appropriate input e. Let
us denote this fact as

d= M{(e) (1.1)

In this case we will say that the Turing machine M is a model of the data d, and e as
a description of the data d under M. The description e might not be unique, or, for
some choice of Turing machine M, might not exist.

Turing machines are useful as models for two reasons:
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e They include a wide range of models as particular cases

— Vehicle shapes and trajectories can be modelled as computer programs that
generate them given their parameters.

— Probability distributions can be modelled by data compression algorithms.

e There is a prior probability in the space of Turing machines that can be used
as a prior probability for statistical inference. This fact is a surprisingly useful
application of the assumption that data has been produced by computation.

1.4 Model Selection

Define cost of a model M given the data d as the length of the shortest description e of
d under M. This cost is a measure of the fit of the model to the data in the following
sense:

e Ifthere is a short description e for the data d under M, then we can intuitively say
that M provides a good fit, because the model does not require many additional
bits to produce the data.

e If otherwise, all possible descriptions e of the data are long, then M needs many
additional bits to generate the data, and therefore provides a bad fit.

From this point of view it seems reasonable to use the length, in bits, of the shortest
description e as cost or measure of how well the model M fits the data d = M (e). Given
two models for d, M; and M, and their respective shortest descriptions e; and e,,

d = M(e1) = Ms(es) (1.2)

the preferred model M; is the one for which e; is the shortest. In fact, Maximum
Likelihood method of Model Selection is a particular case of this approach [LV97].

cost[M] = length(e)
——
€rror

But so far we have not taken into account the complexity of each model. It might be
the case that model M; is much more complex than model M,, and, by most standards,
model M; is much more unlikely than model Ms. For example, it could be the case that
M is a vehicle moving with constant velocity along the road, and Ms is an elephant
moving at a slow pace across the street. Under the assumption that data corresponds
to a traffic surveillance camera, the model M, is more likely, and should be preferred
against M, even in cases when ey, the fit of the elephant model to the data, is shorter
than eq, the fit of the vehicle model to the data.

A Bayesian approach to statistical inference makes assumptions about the prior
probability of the models, and selects a model according to Bayes’ formula. In this
case, the prior knowledge about the complexity of a model can be translated as a prior
probability: A more complex model has a lower probability. The problem is that this
prior probability might be difficult to estimate.
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It has been argued [Edw9?2] that, in general, it makes no sense to decide about
a prior probability in the space of models. (That is, no one can decide about the
probability of an elephant crossing the street). This is the frequentist approach to
probabilistic inference, embodied in the principle of Maximum Likelihood, under which
all information provided by a model is given by its fit to the data. This approach fails
when we need to take the model complexity into account. A dramatic case is the
example above, in which a model for the vehicle and the elephant are compared. A
more mundane failure occurs when training data is given to fit the model, and the
model preferred by the Model Selection method not only describes the (predictable)
source of data, but also the (unpredictable) noise [Die95]. As a consequence, a model
of higher complexity than necessary is used, and the ability to predict future data is
diminished.

Providing a solution to this type of problems of Model Selection requires, in essence,
assigning a cost to each model, according to its complexity, and add this cost to the
measure of the error between the model and the data.

cost[M] = complexity[M] + length(e)
—_—  ~Y—
cost of the model error

In this way, a cost is obtained for each model, that avoids fitting unnecessarily complex
models to the data.

Now the problem is which cost to assign to the model complexity. For this purpose,
we will use the fact that models are Turing machines, and therefore can be represented
as binary strings themselves.

1.5 The Minimum Description Length method (MDL)

Our initial definition of cost of a model M; was the description length of the data d
under M;, the length of e; in Equation (C2). But we need to take model complexity
into account. A weight needs to be assigned to each model according to its complexity.

The model M is a computer program that runs in some language interpreter U.
The program M with input e is the same as the language interpreter U with input
me, where me is the concatenation of the strings m and e. We can compare between
models by choosing a language interpreter U that can interpret all models.

Define the cost of model M as the length of the shortest description of the data
d under language interpreter U, with the condition that the description includes the
model M. This cost takes the complexity of the model into account.

A description of the data d in the language U is the binary string me.

d= M(e) = U(me)

And the length of the description of d in U is

cost[M] = length(m) +length(e) (1.3)
N—_—— N—_——— N—_——
description length  cost of the model error

The cost of the model M, is the length of the binary string m: shorter binary
strings correspond to simpler models.
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The MDL method of Model Selection chooses the model that minimises the sum
of:

e The length of a description m of the model M, in U.
e The length of a description e of the data d, in M.
Or, in other words, choosing the model M that minimises
e The length of a description of d in U, that begins with a description of M.

There is an alternative interpretation of the MDL method in terms of data com-
pression. Consider that we want to transmit data d between two points, and we have
a choice of models My, ..., M,. Assume a protocol for the transmission of the models,
and that each model is a protocol for the transmission of the data. The MDL method
states that one should choose the model that allows the transmission of the data in the
least number of bits.

e To compress a binary string d using a model M, is the problem of finding the
shortest string e such that d = M(e).

e To decompress the binary string e, using the model M, is simply the evaluation
of M(e) to obtain d.

1.6 Applying the MDL method to Vision problems

Unfortunately the MDL method is not computable in general. There is no computer
program that, given data d and an arbitrary family of models M, ..., M,, can return
the shortest description of the data that uses one of the models. This is a consequence
of the Halting problem.

The solution to the non-computability problem is to restrict the family of models,
and to consider only approximations of the shortest descriptions strings m and e.

The MDL method is usually stated in the form of Equation (3), or an approxi-
mation of it, barring notational changes [Ris83| [LVO2, [LV97]. This equation is valid so
long as a single model is used to compress the data.

In practice, data and models are compound data structures, which need to be
decomposed into individual elements before compression. That is, both models and
data have structure. This is the case of Chapters Bl Bl and Bl of this thesis. We will see
in Chapter Pl a generalisation of Equation ().

The application of the MDL method to define a Vision Function for vehicle surveil-
lance is conceptually straightforward. The Vision Function uses

e a compression algorithm that takes all data available (namely, each image of an
image sequence) and

e as models, the shapes and trajectories of vehicles.

All prior knowledge is contained in the compression algorithm. The cost of the shape
and trajectory models is the size of the compressed data, using those models. That is,
the cost is the minimal description length available. The Vision Function selects the
models that yield better compression.
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1.7 Contributions and Structure of the thesis

The contributions of this thesis can be summarised in two:
e Derivation of the MDL method from first principles.

e A framework for the use of the MDL method in solving Computer Vision prob-
lems.

Chapter B Presents the MDL method avoiding the usual assumptions found in the
literature. Combinatorial and probabilistic interpretations of the MDL method
are provided.

Chapter Bl A simple implementation of the MDL method is used to define a cost
function for vehicle tracking. Shape and trajectory models, together with a 3D
graphics renderer, are used to create a synthetic version of the data. An off-the-
self data compression program [Wel84, [GA0?] is used to compress the data using
the models.

Chapter H A simple yet powerful framework for developing computable approxima-
tions to the MDL method is presented in the form of a reusable software package
written in the computer language Mathematica.

Chapter Bl A dynamics-based trajectory model is developed, and a compression al-
gorithm based on it, using the software package of Chapter Bl Experiments test
the usefulness of the trajectory model.

Chapter Bl A method for vehicle trajectory analysis is presented. A low curvature
approximation of the trajectory is found by minimising a functional, and a Hidden
Markov Model is used to model the driver’s actions.

Figure shows the areas of research covered by each chapter. Chapter P deals
with the foundations of the MDL method. Chapter Bl uses preliminary computable
approximations to the MDL method and uses them to define Vision Functions that are
tested with experimental data. Chapter Hl covers the area between the MDL method
and software that can be used to solve real-world problems. Chapters bl and Bl contain
experimental results.
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Figure 1.3: Structure of this thesis



Chapter 2

The Minimum Description Length
method

2.1 Introduction

A model, in the context of Computer Vision, is an abstraction of a real world object
which represents some information of interest. Such information can be about the
shape of the object, or some statistical property concerning the object.

For solving a Computer Vision problem, in many cases, we are required to choose
a model which captures best the relevant properties of data; for example, in vehicle
tracking, a shape model retains the right information about a shape and ignores all
other information about the vehicle. It may be required that the model be parametric.
In this case, the number and the type of parameters determine the complexity of the
model, and Model Selection is the problem of choosing a parametric model and the
number and the type of parameters. A parametric model denotes a family of models.
Once the parameters are instantiated with their values, we obtain a Model instance.
We would like to consider the choice of number of parameters, their types and their
values, all at the same time. Henceforth, by a model we will mean a model instance,
and by Model Selection the choice of the number, the type and also the value of the
parameters.

A central problem in Model Selection is overfitting, i.e. the tendency to choose a
model with a large number of parameters. A common instance of overfitting happens
when models are fit to a training dataset. Since it is common that model families
with a large number of parameters fit the data better, the result is a model that also
describes the noise and therefore is overly complex [Die95]. One solution to the problem
of overfitting is the Minimum Description Length (MDL) method [Ris83, [LVI7].

The MDL method assumes that the model itself is a computer program. This
computer program can be viewed as a Turing Machine. Any data can be represented
by a finite binary string. A description of data d is a Turing machine M that outputs
d given some input e. This Turing machine itself can be represented by a binary string
m and hence it can have a definite length. The MDL method is about choosing the
model M whose description of data, (m,e) is shorter.

In order to elucidate the notion of MDL, let us consider the example of transmitting
a picture over a communication channel. We are given the picture and a range of
formats to choose from. The formats are GIF, JPEG or PostScript which play the role
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of models. The corresponding Turing machines are the decoders for those formats. A
description of the picture consists of the data format M (i.e. the model) together with
the encoding of the picture in that format, e. The MDL method chooses the model
that allows the transmission of the picture (i.e. the description consisting of (m,¢e)) in
fewer bits.

The main contributions of this chapter are:

e A new approach to the MDL method, which does not rely on probability distri-
butions as existing approaches do.

e An ordering relationship is defined over Model Selection methods. It is conjec-
tured that the MDL method is a minimal Model Selection method in relation to
this ordering. This approach avoids the axiom that “shorter is better”.

The MDL method of Model Selection has combinatorial and probabilistic interpreta-
tions, which are discussed in Sections EZ4] and Finally, we review two alternative
methods of Model Selection, Akaike’s AIC and Schwarz’s BIC in Section 26l

2.2 Modelling the output of computations

In order to define the MDL method of Model Selection, we need to define models and
data in such way that they are comparable. We will use models and data which can be
represented as binary strings, and use the length of the binary strings as an estimate
of its complexity. For this purpose, models will be identified with Turing machines,
and data will be the output of the Turing machines. The existence of Universal Turing
machines means that models can also be represented as binary strings.

Turing machines are a formalisation of the notion of computation. Each binary
string can be represented by an integer. There exist Turing machines U that, given
the index of a Turing machine 7', simulate T in the sense that U maps the same input
to the same output as 7" does. Universal Turing machines are a formalisation of this
idea.

The Turing machines that we will use in this chapter are functions defined between
sets of binary strings, with the following properties:

e Their input (argument) and output (value) are binary strings

e Their input is a prefix-free set. This is a set of binary strings in which no element
is a prefix of another element.

e As a consequence, the domain of the Turing machines is a binary tree.

Using Turing machines whose domain is a prefix-free set has several properties that
are important for the foundations of the Minimum Description Length method. Those
properties are discussed in [LVI7, Chapter 3]. Prefix-free sets correspond to binary
trees, which provide an intuitive way to understand the properties of the domains of
our Turing machines. We will use this fact thorough the current chapter. Besides, a
probabilistic distribution can be defined that a Turing machine T" outputs a string d,
thanks to the fact that the domain of T is a prefix-free set.

10



2.2. MODELLING THE OUTPUT OF COMPUTATIONS

2.2.1 Computation

Definition 2.1 TURING MACHINE A Turing machine is a triplet (S,3,7T) where

States S is a finite set of states, one of them chosen to be the initial state, another
one chosen to be the final state.

Alphabet A is a finite alphabet.

Transition 7' is a partial function
T:5xA—-8SxAxM
where M = {~, |, ~}.

This should be interpreted as follows: the machine consists of a head that can move
step by step on a tape of cells. At each step, the head reads a symbol from the tape,
modifies its internal state, and executes a movement. The machine’s internal state is
an element of S. The symbol read from the tape is an element of A. At each step,
according to the transition function 7', the machine changes state, prints a new symbol
on the tape, and its head either moves to the left, moves to the right or remains where
it is on the tape. The machine halts when it reaches the final state. (This definition is
adapted from [Pra76l page 476]).

Example 2.2 SUCCESSOR A Turing machine that computes the successor function is
illustrated in Figure 21l The figure shows the table of transition rules and an example
of execution. The input is a natural number n encoded on the tape as n ones followed
by a blank. In this example A = {blank, 1}, M is the transition table represented in
the figure, and S is the set of states S (for Start, the initial state), F (for Forward), B
(for Backward), and E (for End, the final state). The example shows the computation
of the successor of 2. [J

The Turing machine is said to accept a string of symbols from the alphabet A,
x € A*, when, being x the content of the input tape at the beginning of the execution,
the machine eventually reaches the final state. The output for x is the contents y € A*
of the tape when the machine halts. It is then said that the machine computes y given
input . A machine defines a partial function in the space of input tapes. (A machine
that halts with input x can only read a finite number of symbols of z, therefore we can
assume z is a finite string).

Definition 2.3 COMPUTABLE FUNCTION A partial function F' defined between sets
of binary strings, is said to be computable when there is a Turing machine that halts
only for input x which are elements of the domain of F', and the output of the machine
for x is F(x). We will denote with the same letter, F', both the machine and the
computable function.

We will assume that the functions considered are partial functions.
The domain and range of a computable function are defined as follows:

Domain The set of binary strings for which F' is defined, denoted by H . This is the
set, of inputs for which the corresponding Turing machine F' halts.

11



2.2. MODELLING THE OUTPUT OF COMPUTATIONS

Range The set of all possible outputs of the Turing machine F'.

A machine cycle is each of the steps in which the execution of the Turing machine
is divided. A computation takes a finite number of machine cycles before it halts. We
will use this fact when enumerating the domain of Turing machines in Section P24

Turing machines represent the notion of computation in its most general
sense [Turd6]. Trivially, everything we expect to run on a computer needs to be
computable. Moreover, restricting ourselves to modelling computable functions still
includes common probabilistic models [Grii98, page 33]. The restriction from general
functions to functions which are computable by a Turing machine is very useful, be-
cause we can represent computable functions using finite binary strings. We will use
this property below, when a universal Turing machine is defined and chosen.

12



2.2. MODELLING THE OUTPUT OF COMPUTATIONS

Table of transitions Example of execution

Figure 2.1: Turing machine that computes the successor function for natural numbers.
Input and output are encoded in unary form: n +— 1 01 followed by a blank.

(Modified from [Mae(0])

13



2.2. MODELLING THE OUTPUT OF COMPUTATIONS

2.2.2 Prefix-free sets

According to Definition £l a Turing machine can read its input in any direction,
alternating movements to the left and right if necessary. But we will consider only
Turing machines that read their input from left to right. The example of Figure EZT]
read its input from left to right. For example, computer files are most frequently read
in one direction (which we can assume to be from left to right, as in English text),
and computer languages are designed to be read from in one direction too, at least at
a first approach. The key advantage of writing strings only in one direction is that
it simplifies storing in the string itself where the string ends. This takes the form of
a length, which is the case of a computer file in a typical filesystem, or a character
terminator, as the character “\0” for strings of characters. The critical property is
that the input of the machine is uniquely decodable, that is, the string itself is all that
is required to read the input with no ambiguity (and not, for example, an initial state
of the machine and position of the head).

Notation. Let B = {0,1}. Let B* be the set of finite binary strings. Given a string x,
formed by the bits x, xs,...,x, we will say x = 2125 - - - x,,. In general, let xy denote
the concatenation of two finite strings x and y. Let us denote finite binary strings as
just strings. Capital letters such as H denote functions. Lowercase letters such as h,
x and p denote strings. Calligraphic letters such as D and S denote sets.

It is clear that a uniquely decodable set of binary strings which is read from left to
right is a prefix-free set according to the following definition:

Definition 2.4 PREFIX-FREE SET A prefix-free set of strings S € B* is a set such
that no element z of § is a prefix of any other element of S distinct from z. In other
words, for any strings x and v,

r, 2y €S = =21y

An example of a prefix-free set, with decimal digits instead of bits, is the set of
valid phone numbers that can be dialled from any particular telephone.

A prefix-free function is a function whose domain is a prefix-free set. All computable
functions we are going to consider are prefix-free.

2.2.3 A reference prefix-free universal Turing machine

We will need to represent Turing machines themselves as binary strings. For this
purpose, we will define a special type of Turing machine that can “simulate” other
Turing machines, which can be identified as binary strings. This special Turing machine
is not unique, but its domain is a binary tree which is unique in a sense.

Let us consider Turing machines whose domains are prefix-free sets, and we shall call
them prefix-free Turing machines. This corresponds to a modification of the original
definition of Turing machines, in which the machine works with three tapes:

e an input tape in which the head can only move to the right,
e a working tape in which the head can move either to the right or to the left,

e an output tape in which the head can only move to the right.

14
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Turing machine

K N 7 A
‘head

; Y| X| Z1| X ? Two-way tape

Binary Turing machine

KT N 7 A

‘head

0 1 1 0 1 Two—-way tape

Prefix—free Turing machine

O(11/!1 1011 One-way input tape

; ? Two-way working tape
|

A

9

O/1111/011 ? One-way output tape

Figure 2.2: A Turing machine is usually defined with a head that can move in both
directions on a tape that contains symbols from an alphabet (top). The alphabet can be
assumed to be binary, without loss of generality (centre). A prefix-free Turing machine
contains one-way input and output tapes, and a two-way working tape (bottom). The
domain is a prefix-free set.
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2.2. MODELLING THE OUTPUT OF COMPUTATIONS

This idea is illustrated in Figure
The input of the Turing machines are binary strings. We can also represent the
Turing machines themselves as binary strings:

Proposition 2.5 UNIVERSAL TURING MACHINE There exists a Turing machine U
such that, for each Turing machine T, there is a string ¢ with the property

Utz) =T(x)
for all z in the domain of T' [Tur36l [LVI7].

This means that each Turing machine can be identified by a binary string, or a
program for it:

Definition 2.6 PROGRAM FOR A TURING MACHINE Given a Turing machine 7" and

a Universal Turing machine U, the program for T under U is the string ¢ such that
U(tx) = T(z) for all z in the domain of 7.

The domain is not computable. Let Hy be the domain of the Turing machine
U. The characteristic function H of the set Hy is not computable. This is known as
the Halting Problem. Several unsolvability results from computer science and other
areas have been rephrased in terms of the unsolvability of the Halting Problem [Mel76l
page 232]. The Halting Problem ultimately leads to the non-computability of the MDL
method of Model Selection.

2.2.4 Data, models and descriptions

In order to model data, we need a definition of model and description. Essentially, a
description of data d is Turing machine, that outputs d reading no additional input.
A model is a Turing machine that can output d if appropriate input is provided. By
using an appropriate Universal Turing machines, models can be identified with prefix
of descriptions.

Models

A formal definition of model is needed before defining Model Selection method. The
term “model” has very different meanings depending on the context, even within the
areas covered by this thesis. A formal definition will solve this ambiguity:

Definition 2.7 MODEL A model M of data d is a Turing machine for which there is

a binary string e such that
d= M{(e)

That is, data d is in the range of the Turing machine M.

Common usage of the term “model” in Computer Vision is covered by Definition X7
Two main classes of models are geometric models and probabilistic models.
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2.3. THE MDL METHOD

Geometric models. The geometric model of a 3D object d is a Turing machine M
that can produce the object d given parameters e. For example, a cuboid floating in the
space requires nine parameters to represents its dimensions, position and orientation.
A program M that takes those nine parameters and produces an image of the cuboid
is a model of the shape of the cuboid.

Probabilistic models. Most useful random variables used to model the data can be
generated transforming fair random coin flips using a simple algorithm. And this algo-
rithm corresponds to a binary tree whose leaves (or, equivalently, paths) are labelled
with the elements of the event space, or “symbols”. Given a binary string produced by
fair coin flips, we divide the string in paths of the tree, and replace each substring by
the corresponding symbol. This fact is discussed, for example, in [CT91l Section 5.21].

Therefore models can typically be represented either by parametric shapes or by
binary trees that correspond to probability distributions. In practice, we will use a
combination of both.

Description length

The notion of description and description length will be derived from Definition [Z7]
of model. But, first of all, let us set a common ground in which all models can be
compared. Since models are computer programs (Turing machines), let us agree on a
language in which those computer programs are written (Universal Turing machine).

Let U be a prefix Universal Turing machine as defined in Section The machine
U can simulate any other Turing machine 7" by means of a string ¢ such that

T(x) = Ultx) (2.1)

for all z in the domain of T', as we have seen in Proposition
This leads to the following definition:

Definition 2.8 DESCRIPTION A description or program for a string d under a Turing
machine 7' is a string p such that
T(p)=d

We wanted to assign a cost to the model, so that simpler models have a lower cost,
and complex models have a higher cost. The key is to consider the length of the string
me.

length(me) = length(m) + length(e)

This is the description length of the data d using the model m.

2.3 The MDL method

Let us first state the MDL method of Model Selection in informal terms. Given a
family of models My, M5, ..., and data d, the model preferred by the MDL method is

the one that allows coding the data in fewer bits, when the data is coded as

e a binary string that identifies the model M (“description length of the model
M?”), followed by

17
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e a binary string that identifies the data d given the model M (“description length
of the data d given the model M”).

(See [LVIT)
Note that this definition of the MDL method has two distinctive characteristics,
compared to what is usually considered as a Model Selection method:

1. It is independent of the problem to solve; no assumption has been made about
the models or the data.

2. It depends on the way the programs are implemented. This breaks the rule of
clearly separating the definition of a method or algorithm from its implementation
as a computer program.

In this section we will see how the MDL method has both characteristics at the
cost of not being computable:

Data source The main assumption is that data has been produced by a Turing ma-
chine.

Universality Although its definition relies on the way models are implemented on the
computer, it is independent of the choice of implementation.

First of all we need to define what we mean by compression, and what would be
optimal compression.

Definition 2.9 COMPRESSION FUNCTION Let M be a Turing machine. A compression
function C}; is a 1-1 function
B* — B*
with the property
M(Cy(b) =0 (2.2)

for any string b in the range of M. If the description of b given by C}, is always shorter
than any other description x of b,

length(C) (b)) < length(x)
then C); is an optimal compression function and is denoted as C,;.

(In some cases, for simplicity, we will talk about compression functions C' and C
without explicit reference to a particular Turing machine). One way to look at the
value of Cy/(d) is as an error between the model M and the data d. The length of
the error, length(Cy,(d)) is an upper estimate of length(Cy;(d)). In other words, when
C)s is computable, it will be treated as a computable approximation of Cj;. The term
compression is used for the function Cj; (and C' = Cp) because it carries an intention
of finding short descriptions for some strings. Note that the inverse function of C},
the decompressor, is M.

Now we are ready to define Kolmogorov Complexity of a binary string, which is a
measure of the individual complexity of the binary string.

18
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Definition 2.10 KoLMOGOROV COMPLEXITY The Kolmogorov Complexity of a bi-
nary string x is the length of any of the shortest descriptions of z.

Ky(x) = length(Cy(z))

We will use the same idea to define complexity of a model, and complexity of data
given the model.

Kolmogorov Complexity is a measure of the information content of individual binary
strings. This is in contrast with Shannon’s Information Theory [Sha4§]. Shannon’s
information (or entropy) is defined for a set of possible messages, whereas Kolmogorov
Complexity measures the information of a single string. Both notions are somehow
equivalent: the Kolmogorov Complexity of a realisation x of a random variable X is
approximately equal to the entropy of X [CT91].

2.3.1 Minimise description length

Let us try to formalise the MDL method using the notion of Kolmogorov Complexity.
For any given data d, there exists a string Cy (d) with minimal length that describes
d. We are given models My, Ms, ..., which correspond to binary strings mi, ms, ...,
and we have to make a choice of model. One initial suggestion for the MDL method
would be to estimate the Kolmogorov Complexity of the data, but only considering
those descriptions which begin with some m;. The model M whose string m prefixes
the shortest such description would then be the preferred one.

But the problem of using the length of mC;(d) in order to compare between models
is that we might choose a particularly long string m to represent the model M. For
example, both m and um correspond to the same model M, but they differ in size by
length(u) bits (where u is the program that corresponds to the Turing machine U).
The same applies to uum, vuum and so on.

The solution to the problem of unnecessarily long models m is to apply the function
C also to the model, and, in this way, we will obtain a formal statement of the Minimum
Description Length method.

Definition 2.11 THE MDL METHOD OF MODEL SELECTION Given a set of models
M C B*, and data d € B*, choose the model M that minimises

argmin,, (length(Cy (m)C,,(d))) (2.3)

where m is a program for M. This definition does not depend on which m has been
chosen for M.

Formula (23) is usually split into
argmin,, (length(Cy (m)) + length(C,,(d)))

which corresponds to the intuitive definition of MDL given at the beginning of the
current section.
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2.3.2 Universality of the MDL method

The choice of model by the MDL method depends on the choice of Universal Turing
machine U. This choice affects the length of Cy(m), the shortest program for a model
m. Thus, the MDL method might yield different results for different Universal Turing
machines. For example, it is possible that, given models m and n, and Universal Turing
machines U and V', the following inequalities hold:

length(Cy(m)) < length(Cy(n))
length(Cy(m)) > length(Cy(n))

while length(C,,(d)) = length(C,,(d)) for some data d. The implication is that the
MDL method prefers to model d using m rather than n when U is the Universal
Turing machine, but prefers n to m when V is the Universal Turing machine,

length(Cy(m)C,,(d)) < length(Cy(n)C,(d))
length(Cy (m)Cy(d)) > length(Cy(n)C,(d)).

Clearly this is not a desirable situation. Let us study how the choice of model using a
particular Universal Turing machine can still be useful.

Since both U and V are Universal Turing machines, they can simulate each other.
Consider v, the program of V under U. The shortest program that describes a string
x under V', Cy(z), can be run by U if we prefix it with v. So vCy (z) is a description
of d under U, which means that

length(Cy(z)) < length(v) + length(Cy (x))

Note that the length of v does not depend on z, but only on V and U. Swapping
U by V we obtain a similar result, albeit with a different constant, and therefore the
difference of lengths of Cy(x) and Cy (z) is bounded by a constant 7 > 0.

| length(Cy (z)) — length(Cy (x)) |< r

Let us now define the n > 0 most preferred models by the MDL method, given
a family of models, as the preferred model m together with the n — 1 most preferred
models when m is removed from the model family. In other words, the n most preferred
models are those that yield shortest description length of the data.

The consequence of U and V leading to minimal description lengths which are
bounded by r, is that the MDL method produces consistent results across different
Universal Turing machines, “modulus” a finite number r of models. This means that,
given a family of models, the preferred model found using U is among the r most
preferred models found using V', and r does not depend on the models or the data.
In this sense the MDL method can be considered independent of the Universal Turing
machine.

2.3.3 Using a fixed-point Universal Turing machine

The Minimum Description Length method is often stated in informal terms as: “Choose
the model that gives the shortest description of the data” [LV92, [LVI7 HY(OT]. But
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[com | [ou@]|

|CU(n)| |CN((7U(M))|

(a) A two-part description
of d using model M. (b) A multi-part description
of d using models M and N.

Figure 2.3: The description of data can be decomposed in many parts. The models M
and N are represented by strings m and n respectively.

the Expression (23) in Definition EZTT] does not output d when the Universal Turing
machine U is applied to it. In general, the string

Cy(m)Ch(d) (2.4)

is never a description of d under the Universal Turing machine U, a fact which will
be proven below. Still, the length of the string (Z2]) is meaningful as the description
length of d under another Universal Turing machine V.

One way to understand the role of Expression 24 is to find out if the expression
is enough to transmit data d between two points, assuming that no additional infor-
mation, other than U, is shared between the sender and the receiver. The diagrams
of Figure show how a description can be reconstructed collapsing the leaves of a
tree into binary strings until only one node remains. The actual transmission are the
leaves of the tree, in prefix order [Knu98]. Each node is reconstructed at the receiving
end by applying U to each subnode. The transmitted data is obtained by applying U
to the root node. For example, for transmitted binary strings a and b, ¢ = U(a)U(b),
d="U(c).

Transmitting expression (Z4)) allows the receiver to reconstruct d when the receiver
knows that d is formed by two parts: a description of the model Cy;(m), and a descrip-
tion of the data given the model Cy,(d). (FigureR.3(a)). The problem arises when the
model M can be modelled by another model N, as illustrated in Figure and
the receiver does not know how many parts are needed to reconstruct the final data d.

For example, the data d could be the description of a valid Turing machine under
U. Should the receiver expect more data and then treat the received data as a model
for further data, or should assume that the transmission has stopped? Real-world
instances of this problem are dealt with in Chapter

What is not a description

Before proving that Expression (4] is not a description of d in U, we need to look at
the way Turing machines read their input.
Let T be a Turing machine, x € Hr, and y is any binary string. Then

T(rvy) = (Tw)y = T(x) (2.5)
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That is, T" will only read the bits up to the end of x and discard the rest. This is a
consequence of the Turing machine reading their data from left to right. But when a
Turing machine 7' is being simulated by another machine @), and x € Hy, the unread
bits of the input are not discarded.

Q(T(zy)) = Q((Tx)y) (2.6)
which means that the unused bits of T'(xy), which are y, can still be used by Q.
Proposition 2.12 The string (E4) is not, in general, a description of d in U.
Proof. Let us apply U to Expression (24))
U(Cy(m)Cu(d)) = (U(Cy(m)))Cun(d) by @3)
= U(Cy(m)) by @2

= m

and, in general, m # d. O

A fixed-point Universal Turing machine

Now we will find a Universal Turing machine V' so that Expression (2] is a description
of d under V.

A fixed-point of a Turing machine T is a string x such that T'(x) = z. A consequence
is that, by iterating T, the output does not change. Define the Universal Turing
machine V' to compute the fixed-points of U as

V(z) = V(U(x))ifU(z) #x (2.7)
= zifU(z) =2 (2.8)

V' is defined in the domain of U.
Expression (7)) is a description of d under V', as shown in Proposition

Proposition 2.13 Expression (24 is a description of d under V'
V(Cy(m)Cu(d)) =d

for any string d in the range of V.

Proof.

V(Cy(m)Cu(d)) =V
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Data for IV must be fixed-point for U

Note that the range of the Universal Turing machine V' is not B*, but the subset of it
formed by the fixed points of U.
U(d)=d

(which is not empty because there are programs that print themselves out). This con-
straint is necessary so that we can distinguish fixed points of V' (data) from everything
else (executable programs).

This constraint on the strings that can be data is not very restrictive, although it
implies that both data and programs form a prefix-free set. Most data structures in
modern computer languages are elements of prefix-free sets.

2.3.4 Computable approximations

In general the MDL method is not computable because the function Cy is not com-
putable. This fact is ultimately a consequence of the Halting problem, the inability to
compute whether a Turing machine halts or not.
As a consequence, it is not possible in general to know how close the difference
between C and C' is,
length(Cr(z)) — length(Cr(z))

because it would be equivalent to knowing C for Turing machine 7" and binary string
.

In practice we will be looking for computable approximations to C. Most of the
reasoning used in this chapter only requires C' to be a compression function, not an
optimal compression function C. The consequence is that most results hold while C' is
not the optimal compressor, but an approximation to C. In Chapter Bl we will develop
computable approximations to C.

2.4 Combinatorial interpretation of MDL

Once the MDL method has been formalised, it needs to be interpreted in the context
of other Model Selection methods. In this section Model Selection methods are defined
as enumerations of the leaves of a binary tree. It is shown that the MDL method is
minimal, in a sense, among those enumerations.

2.4.1 Prefix-free subsets of B* are binary trees

An important property of prefix-free sets of binary strings is that they can be visualised
as the leaves of a binary tree. A particular example is H, the domain of a prefix-free
Universal Turing machine U.

Definition 2.14 BINARY TREE A binary tree is a finite set of nodes that is either
empty or is formed by two disjoint binary trees, and a root. The disjoint binary trees
L and R are called the left and right subtrees of the root [Knu97].

A node is said to be the parent of the roots of its subtrees. A leaf of a binary tree
is an empty node, that is, a node with no subtrees. The path of a leaf L is defined
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Figure 2.4: A binary tree. Each leaf is labelled with its path. Digit 0 corresponds to a
left branch, digit 1 corresponds to a right branch.

recursively as the path of its parent (which is the empty set if it has no parent), followed
by the digit 0 if £ is the root of the left subtree of its parent, or the digit 1 if £ is the
root of the right subtree of its parent.

Proposition 2.15 PREFIX-FREE SETS AND BINARY TREES There is a 1-1 correspon-
dence between prefix-free sets and binary trees.

Proof. A tree can be identified with the set of paths of its leaves. These paths form a
prefix-free set:

Let S be a prefix-free set. In order to define a tree for S, let us consider the set
of nodes formed by all elements of S and their prefixes. These are the nodes that will
form the tree.

For each node b, let S, be the strings that contain b as a prefix. Define left subtree
of b as the set Sy (where b0 indicates the binary string b followed by the digit 0).
Similarly, the right subtree of b is the set Sp;.

The leaves of this tree are the sets S, with only one element. In fact, the path of
the leaf &, is the binary string b. The prefix-free property guarantees that for each
element b of S the set S, has only one element, and therefore it is a leaf.

We have just defined a map b — &, for b in §. The inverse of this map is the
function that maps each leaf to its path. Since the path of one leaf cannot be a prefix
of the path of another leaf, the resulting set is prefix-free. O

Figure P24l shows an example of tree leaves and their paths.

2.4.2 Hy as a tree

The domain of U and the notions of model, description, and description length have a
simple interpretation in terms of binary trees.

The set Hy corresponds to a tree, according to Proposition We can identify
the prefix-free set Hy with the binary tree, and use Hy to refer either to the prefix-free
set or the tree.

The tree Hy is infinite. Let u be a program for U under U. For all z that halts U
we have

U(uz) =U(x)

The subtree hanging from w is equal to Hy. Therefore Hy contains itself as a subtree,
and therefore it is infinite. This is illustrated in Figure
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Figure 2.6: Example of Hy. Models m; = 10 and my = 110 and descriptions mie; =
100, mgey = 1101 of a binary string d = U(mye;) = U(maes).

In fact, the domain of U is, in a sense, independent of the choice of U, because
Universal Turing machines can simulate each other. Therefore, a choice of U is just a
choice of root node. A consequence is that the path length of each leaf is independent
of the choice of root node (or Universal Turing machine U).

Descriptions are leaves of H; Let the string  be a description of a string d, such
that d = U(x). The string x, which is an element of H;, corresponds to a leaf of
the binary tree.

Models are nodes of Hy Any description of the form z = me is a leaf of the subtree
whose root is the node m. We have seen that a Turing machine M is simulated
in U by using a string m, so that M(e) = U(me). The Turing machine M
corresponds to the node m.

Description length The length of a description z = zy25 -2, in U, where x; €
B,1 <1 < n, is n, the length of the path defined by = in the tree Hy. When a
description is of the form x = me, the lengths of m and e are added up.

These ideas are illustrated in Figure For given data d, and models M; and M,
with programs m; = 10 and my = 110, the descriptions of d are mie; and mye,.
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2.4.3 Model Selection as enumeration of the tree Hy

We now proceed to define Model Selection method and compare it with the Maximum
Likelihood method using an example.

An enumeration of Hy is defined as a 1-1 map between Hy and the set of natural
numbers N. We are now defining Model Selection methods as enumerations of Hy.

Let M be a class of models, and D a set of all possible data, for example, all
possible outcomes of an experiment. A Model Selection method is a correspondence
that maps a subset {M;, Ms, ...} of M and an element d of D to an element M of
the subset {M;, Ms,...}. We will say that M, the preferred model among the models
{Ml, MQ, .. }

(Power(M) —0) x D — M (2.9)

(Where Power(X) is the power set of X.) In order to be useful, a Model Selection
method needs to have the following property:

Minimal model For any finite or infinite family of models, there is a model which is
preferred to any other model.

This property is necessary to avoid the situation when, for given data d and three
models A, B and C, a Model Selection method prefers A to B, prefers B to C', and
prefers C' to A. As a consequence, a Model Selection method can be considered as an
enumeration of all models that can model the data.

Model Selection as enumeration of models. A Model Selection method implies
an enumeration of models that can model given data d. This is a consequence of the
existence of a minimal model M which will be mapped into the natural number 1.
The rest of the models has another minimal element, which is mapped into the natural
number 2, and so on.

Let us recall that models are prefix of descriptions. Descriptions are leaves of
a binary tree Hy. If we have an enumeration of Hy, we will be able to derive an
enumeration of models, as explained below.

Model Selection as enumeration of descriptions. We can assume that a Model
Selection method is an enumeration of descriptions of data d. Consider an enumeration
¢ of the descriptions of d. Given a model M and a description of d, such that d = M(e),
take the binary string m that implements M such that me is preferred under the
enumeration ¢. Given two descriptions of d, d = Mj(e;) and d = Ms(ey), and the
binary strings m; and msy, such that mqe; is preferred to mse; under the enumeration
©, then we can say that the model M, is preferred to the model M,.

Two questions arise in mapping an enumeration of descriptions of d to an enumer-
ation of models of d:

e A model M can produce two different descriptions of the data, d = M(e;) =
M (ez). In this case we can ignore the description M (e;) (j = 1 or 2) with higher
index in the enumeration of descriptions.

e Different models M; and M, can derive the same description. This is the case
when there is a description of the data for which both M; and M, are a prefix.
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2.4. COMBINATORIAL INTERPRETATION OF MDL

We will avoid this situation by considering families of models such that those
families are prefix-free sets.

The following definition embodies and simplifies these ideas.

Definition 2.16 MODEL SELECTION METHOD An enumeration of H;, or a subset of
Hy.

As we have just seen, from an enumeration of #;; we can obtain an enumeration of
a prefix-free set of models which conforms to the requirement of equation (29).

The subset of Hy to be considered depends on the data and the models. It can
be arbitrarily small but, the larger the subset, the more general the Model Selection
method is because it covers more cases (more models, and more descriptions). The
Model Selection method presented in this chapter is an enumeration of the whole H .

Note that Definition EZT6l implies an enumeration of a subset of descriptions of each
data d. Conversely, the enumerations of a set of descriptions of different data dy, do, . ..
can be collated into a single enumeration of a subset of Hy using Cantor’s diagonal
method. Consider an enumeration of the binary strings, di, ds,.... Then take the first
model for d;, the first model for d, and the second model for d;, and so on, at each
step n take the first model for d,,, the second model for d,,_1, etc.

Example 2.17 MAXIMUM LIKELIHOOD As an example of Model Selection method as
an enumeration of Hy, consider a Maximum Likelihood method [Edw92]. A likelihood
function L(M | d) is defined for model M given data d as a function proportional to
the probability P of the data conditional to the model.

L(M | d)  P(d| M)

where P is a “rational measure of belief” that the data would be d [Edw92]. Assume
that the value of —log(P(d)) is an integer (consider all logarithms in base 2). Each of
the models is a Turing machine M represented by a binary string m. For each model
M, there is a string ey, such that d = M(ey,) and

length(ey ) = —log P(d | M)

which can be obtained using Huffman encoding based on P [Knu97]. The function
that assigns a cost to the model M, —log L(M | d) gives us an order among models,
in which the models with lower cost come first. When the cost of two models is the
same, we can set an arbitrary order among them.

When all models m have the same length, the enumeration of the models according
to —log L(M | d) is the same as the enumeration of the models according to the
description length of d under U,

length(mey,)

Therefore maximum likelihood corresponds to minimal length of the description mey,
when all models m have the same length. [

Example 2.18 LEAST SQUARES The Least Squares method is a particular case of
Maximum Likelihood. Let E be an encoding of integers into binary strings such that,

for a natural number n,
length(E(n)) = n?
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Figure 2.7: An enumeration of H assigns an index to each leaf.

The Least Squares method for a single parameter which is a natural number consists
of using a model M such that d = M (E(n)). The encoding E can be easily generalised
to several parameters F(nq,na,...) and for other types of numbers.

O

2.4.4 Comparing Model Selection methods

Model Selection methods can be compared. This idea might seem counterintuitive
since Model Selection methods are usually chosen according to the models, the data,
the relation between both, and the application. But it is conceivable that, given two
Model Selection methods o and 3, and any two models, the choice of model by the
method « is a good estimate of the choice of model by the method 3, but not the other
way around. We now proceed to formalise this idea.

It is possible to define an order relation between enumerations of H, and therefore
an order relation among Model Selection methods. Let o be an enumeration of Hy, or
a subset of it. Each leaf of Hy has an index given by the enumeration «, as shown in
Figure Z71 Let x be an element of Hy. Denote with index,z the index of the binary
string x under the enumeration .

Two enumerations o and [ can be compared in the way they assign an index to
each element of Hy. For example, for an element z for which both « and [ are defined,
either index,z < indexgx or index,x > indexgx.

Definition 2.19 ORDER OF ENUMERATIONS Let o and 3 be two partial enumerations
of Hy. Say that a <  when there is a natural number k£ such that

index,z < indexgx + k
for all z in Hy for which index,z and indexgz are both defined.

This order can intuitively be interpreted as follows: the Model Selection « of Def-
inition will give a choice of model similar or better than the choice of model j3,
when comparing models.

From this point of view, the MDL method will be useful so long as it is minimal by
the ordering <, compared to other Model Selection methods.

2.4.5 A minimal enumeration under <

The MDL method can be expressed as an enumeration of Hy. The key idea is that each
element b of Hy corresponds to an integer whose binary expansion is b. The relevance
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2.4. COMBINATORIAL INTERPRETATION OF MDL

(a) An enumeration of the tree (b) The MDL-enumeration of
the tree

Figure 2.8: Enumerations of the leaves of a binary tree

of this enumeration depends on its comparison with other enumerations using the order
<. Unfortunately, there is no Turing machine that computes this enumeration, and
therefore it cannot be used directly for solving Model Selection problems by computer.

Recall that, given a model M and the Universal Turing machine U, there is a binary
string m with the property that M(z) = U(max) for all z.

Definition 2.20 MDL-ENUMERATION AND MDL METHOD Let d be data and M a
family of models of d. Each model M € M is given as a binary string m. For each
model M, let e); denote the description of d under the model M, so that

d= M(ep) = U(mey)

Sort models according to the integer whose binary expansion is mej;. The result is
the MDL-enumeration of the models of M. The MDL method consists in selecting the
model with lower index under the MDL-enumeration.

Figure illustrates the MDL-enumeration.

Enumerating the leaves of Hy using the MDL-enumeration is traversing the tree
completing each level before moving to the level below, starting from the root. In this
way, the first description of the data d found is the shortest.

Conjecture 2.21 MDL 1s MINIMAL UNDER <. The enumeration of Hy implied by
the MDL method is minimal under the order <, for the enumerations which can be
computed.

Thus, if we wanted to choose a universal Model Selection method under the as-
sumption that the data has been produced by a Turing machine, MDL is the best
choice.

The Halting Problem, reviewed in Section L2 guarantees that there is no Turing
machine that states whether a binary string is an element of Hy. As a consequence,
there is no Turing machine that can compute the MDL-enumeration.
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Other non-computable enumerations. It is important to note that the conjecture
applies only for computable enumerations, while the MDL-enumeration (the minimal
element) is not computable.

One could think of refuting the conjecture by constructing an enumeration a based
on the MDL enumeration, in such a way that the MDL-enumeration is not a minimal
enumeration for any set that contains a.

For example, a candidate for a could be computed from the MDL enumeration by
reversing the sequence in which programs of the same length are enumerated.

But in this case, a would not be computable either, because computing it would
imply knowing which are all the programs of a given length, and that would lead to a
computable solution of the halting problem.

In general, we should keep in mind that it is the set of computable enumerations
for which we are trying to find a minimal element under <.

2.4.6 Interpretation of the conjecture

In the same way that models and descriptions correspond to nodes in a binary tree,
enumerations of Hy correspond to enumeration of the leaves of a binary tree. But we
need a less static way to represent the enumerations of Hy.

Let us represent the non-computable MDL-based enumeration, and a computable
alternative, using a Cartesian table, so we can compare their properties.

In the remaining of this section, we will draw a table such that

e Rows contain programs of length I, {p € Hy | length(p) = I}

e Columns contain programs that run for ¢ cycles before halting, {p € Hy |
longevity, (p) = t}

where longevity of a program p in a Turing machine U,

longevity, (p)

is the number of cycles before the Turing machine halts. We will now consider both
the MDL-enumeration and a computable approximation to the MDL-enumeration.

The MDL-enumeration

Let £; be the programs of length [,
Ly ={p € H | length(p) = I}

The MDL-enumeration of Definition is an enumeration of the elements of L,
then an enumeration of the elements of L5, ...and so on, up to an enumeration of H.
Figure shows the table. Row [ contains the elements of L.

The enumeration restricted to each L; is in general not computable due to the
halting problem: there are programs that do not halt and there is no computable way
to find out.

Informally, the MDL-enumeration jumps from a leaf to the next shortest leaf avail-
able.
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g | 0 1] 2] 3
1 Li| Ly | Ly | L4
2 Lo | Lo | Lo
3 £3 £3
4 £3
Figure 2.9: Enumeration £, £,,.... Column ¢ contains the programs that halt after ¢

cycles. Row [ contains the programs that are [ bits long. U;L; = Hy.

e | 0] 1] 2|3
1 N | T | T3 | Ta
2 | DB | T | T
3 | Tz |
4 | T
Figure 2.10: Enumeration of J;, Js,.... Column ¢ contains the programs that halt

after t cycles. Row [ contains the programs that are [ bits long. U, 7, = Hyp.

A computable approximation

The enumeration we are going to define now is an approximation of the MDL-
enumeration, replacing the sets L, L, ... by sets J;, Ja, ..., with the constraint that
the enumeration of each subset 7; is computable.

Let J, be the programs of length [ that stop at time r — [,

J» = {p € J | length(p) + longevity(p) = r}

An enumeration of Hy that runs each program of length [ =1,2,...,ruptot=r—1
cycles is certainly computable. Figure ELT0 shows the table. The elements of each set
J, are spread along a diagonal of the table.

This is an enumeration of the whole set Hy because every program p that halts
has a definite length length(p) and halts at time longevity(¢), therefore p belongs to

u7length(p) +longevity(p)-

2.5 Probabilistic interpretation of MDL

Although we have defined and interpreted the MDL method from a combinatorial point
of view, it is subject to a direct interpretation in terms of probabilities. This should not
surprise us since a link between data compression and probability distribution of the
data source has been established in Information Theory [CT9T]. From the Bayesian
point of view, the MDL method provides a prior for models.
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2.5.1 The universal prior

We are going to see that the probability that a string = is a halting program for the
Universal Turing Machine U, can be used as a drop-in replacement for any computable
prior in Bayes’ theorem.

Let T be a Turing machine. The probability of producing a given element e of Hr,

using a string of length(e) random coin flips, is 27'ensth(e),

Pr(e) = 2 lensth(e) (2.10)

This is the probability that, when a binary string is fed into the Turing machine T,
the program e is executed. The fact that Hr is a binary tree guarantees that Pr is a
probability. In other words, this is the probability of the input.

A different issue is the probability of the output. The probability of obtaining an
output d is the sum of the probabilities of each of its descriptions:

QT(d) — Z 271ength(e)

e|T(e)=d

The function Q7 is a probability measure defined in the union of Hr and the binary
strings for which T does not halt [LV97]. When the binary tree #Hr is formed by the
paths 0 and 1, the corresponding sum 27! + 271 is 1. If one of the paths is missing, for
example if T" does not halt with input 0, the sum is less than one. When the binary
tree is deeper, the same argument applies to each branch, with the depth [ increased
by one. By recursion, it can be proven that

Z Qr(d) <1

deHT

and the sum is equal to one if the programs that do not halt are included (see Kraft’s
Inequality in [CT9I] and the discussion on probability measures in [LVI7, p. 244] for
more details).

The measure )y, for a Universal Turing machine U, is in a sense independent of
the choice of U. Since the path lengths between different Universal Turing machines
only differ by an additive constant, the Universal Measure according to different Turing
machines only differs by a multiplicative constant [LVO7]. Therefore we can refer to
Qu as the Universal Measure.

The measure Qi can be used as prior probability when there is no information
available about the “true” prior on the space of models, or when the existence of such
“true” prior is debatable.

An important theorem links )iy and Kolmogorov Complexity. The proof, which is
included in the more general “coding theorem” is given in [LVI7, page 253]

Proposition 2.22 UNIVERSAL MEASURE AND KOLMOGOROV COMPLEXITY There
is a constant r such that, for any string =z,

| —logQu(x) — K(z) |<r

Recall that the Kolmogorov Complexity of z is the length of the shortest description
of x,

Ky(x) = length(Cy (z))
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The consequence is that length(Cy(z)) can be used to approximate — log Qu(z).

Proposition has established the relation between the Universal Measure Qp
and the Kolmogorov Complexity K. Now we proceed to study the use of ()i as a prior
in Bayes’ theorem.

2.5.2 Bayes

MDL corresponds to using the measure )iy as prior probability in Bayes’ rule. It can
be used as long as the data is “typical” of each model.

In practice, this means that we can use (Qy as a prior in Bayes rule, instead of
any other computable prior (see [LV97, Theorem 5.2.1] for an upper boundary of the
difference in predictions). This would release us from the burden of having to find an
adequate prior for a particular problem, but at the cost of computability.

Since computability is essential, and we must deal with computable approximations,
what we obtain is that the posterior calculated with ()i converges towards the posterior
calculated with more accurate priors, but only in the large data limit [CT9T].

The consequence is that the MDL method provides a prior for Bayesian inference,
but only useful when there is a large amount of data from which to “learn” the prior.

The Bayesian cost of a model M given data d is the probability of a model M
conditional to data d, P(M | d). If the prior probability of a model P(M) is available,
and we could calculate the probability that a model M produces data d, P(d | M),
then we could use Bayes’ rule

P(M) P(d | M)
P(D)

P(M | d) =

and choose the model M that minimises

P(M) P(d| M) x P(M | d) (2.11)
which is equivalent to minimising the expression

—log P(M) —log P(d | M)

To obtain the Minimum Description Length principle, we need to replace the prob-
abilities P(M) and P(d | M) by the measures Qp and @y, ,

—log Qu(M) —log Qu(d)

For further details about the conditions under which replacement can take place see
[LV97, Section 5.5.1]. The log-probability — log P(M) is replaced by — log Qu (M), and
—log P(d | M) is replaced by —log Qs (d).

Expression (I2)) becomes, applying Proposition with any kind of Turing ma-
chine,

length(Cy(m)) + length(Cj(d)) = length(Cp(m)Cy(d))
for any program m of the model M. Finding the M that minimises the value of
Expression (Z5.2) is the same as Definition PZTT of the Minimum Description Length
method.

The Universal Probability effectively includes a mixture of all computable prob-
ability distributions [CT91]. For models drawn from a computable distribution, the
posterior calculated with the Universal Probability converges to the posterior calcu-
lated using the computable prior.
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2.5.3 Maximum Likelihood

Given model M and data d, the Likelihood function is proportional to P(d | M), where
P is a probability defined on the space of data, and the constant of proportionality
arbitrary [Edw92]. The Maximum Likelihood method prefers the model with higher
Likelihood. The Likelihood function is not a probability on the models: when consid-
ering P(d | M) as a probability, the data d is the variable and the model M is constant.
But, for the Likelihood function, the data d is the constant and the model M is the
variable, and the sum of P(d | M) for all models does not need to be 1.

A disadvantage of the Maximum Likelihood method is that it does not take into
account the intrinsic differences between models, and therefore it is subject to the
problem of overfitting, as we have seen in page For this reason, the Maximum
Likelihood requires that the models being compared have been chosen carefully.

The MDL method explicitly uses a “population of models” (the binary strings that
correspond to Turing machines given a Universal Turing machine U), and therefore
goes beyond Maximum Likelihood in making a choice among the models on account of
their intrinsic properties. In fact the MDL method includes the Maximum Likelihood
method as a special case [LV97, 370], namely when all models of a family M have the
same minimal description length, that is, for every M € M, Cy(M) is the same, and

P(d | M) — 27length(CM(d))‘

In practice, even though models might not all have the same description length,
the differences in their description length might be small compared to the minimal
description length of the data. Thus the description length of the data,

length(Cy (M)Ca (d))

is dominated by the binary string Cj;(d), which is the one that really makes a differ-
ence. In this situation, the MDL method is also equivalent to the Maximum Likelihood
method and the cost of the model is practically not taken into account.

2.6 Alternatives to MDL

2.6.1 Minimum Message Length

A similar method to MDL is the Minimum Message Length (MML) method of model
selection developed by Wallace et al. [WB68, WID99)]. For most practical purposes the
MML method is equivalent to the MDL method: use models to encode data into a
binary string, then add the length of that binary string to the length of each model to
obtain a cost function for each model.

The main difference between the MML and MDL methods is that MML explicitly
uses priors about the data [vR99]. In practice both MDL and MML yield similar results
because the choice of set of models to compare is generally very restricted, for practical
reasons, and it is the dominant factor in the encoding of the models.

In the context of this thesis, the equivalent of the MML method would lie near the
point at which we make a choice of particular Universal Turing machine, in Chapter @l
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2.6.2 AIC and BIC

Let us now consider two alternatives to the MDL method, the information criteria of
Akaike (AIC) and Schwarz (BIC). The setting for these criteria is usually different from
the one chosen in this chapter for MDL. Usually a Model Selection method is not a
choice of individual model, based on a measure of the model complexity, but a choice
of a family of models or “parametric-model”, based on the dimension of its parameter
space. Let us first define what we consider by parametric-model and its dimension.
A parametric-model is a family of models M which are indexed by n parameters
Pis...,Pp, for n > 0. A parametric-model has a dimension d which is the number of
statistically independent parameters. The problem of parametric-model selection is,
given data and a family of parametric-models M1, My, ..., to choose which M, better
describes the data. This decision is based on

1. the best fit M; € M; to the data and,
2. the dimension of the model class M;.

Finding the best fit M; within a parametric-model M; can be done using a standard
model fitting method, such as Maximum Likelihood, for each i. The next step would
be to compare the best fits My, Ms,.... But comparing them on the same grounds, as
if they were elements of the same parametric-model, leads to the problem of overfitting,
as we have seen in page [l because the model complexity, in this case, the dimension
of each parametric-model, has not been taken into account.

Akaike’s AIC method, and Schwarz’s BIC method are two popular methods for
selecting parametric-models [HYOT, NT97]. Both provide a correction factor « to the
Likelihood function that depends on the dimension of the parametric-model. When
the log-likelihood is maximised, the correction takes the form of an additive term.

Akaike’s AIC. Akaike’s method [Aka74] consists in choosing for each parametric-
model M;, = = 1,2,..., the parameters that yield maximum likelihood L;. The pre-
ferred parametric-model M; is the one that maximises

where d; is the dimension of the parametric-model M;.

Akaike’s method was initially devised as an alternative to Hypothesis Testing when
selecting models for time series analysis [Aka74]. Formula (I2) is derived from an
unbiased estimate of the mutual information between the model M and the “true”
probability distribution that produced the data [CR99].

Schwarz’s BIC. Schwarz’s method [Sch78] is a modification of AIC in which the
function to maximise is

1
log L; — §di log n;. (2.13)

The BIC method is based on the idea that, for a given dimension, Bayesian estima-
tors tend to Maximum Likelihood estimators as the size of the data increases, regardless
of which is the prior distribution (as long as it is not zero at any point) [Sch78]. For-
mula (2T3)) is derived as an approximation to the limit Likelihood function.
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The AIC and BIC methods differ when the number of observations increases [Sch78].
Schwarz’s method is more biased towards small models than Akaike’s method because
the difference in the second term of Equations (12) (ZI3) is

1
3 log n;

Both AIC and BIC provide a way to assign a weight or cost to the dimensionality of a
model M with respect to the fit of M to the data. (The letters IC of the acronyms stand
for “Information Criterion”, whereas “A” and “B” are index letters which accidentally
correspond to “Akaike” and “Bayesian” [Aka74]). In this chapter we have presented
the MDL method with a similar purpose, but in different terms:

e Instead of selecting a parametric-model M; (in practice, a dimension d;), we
are using MDL to select a particular model M. The comparison is not between
classes of models, but between individual models.

e Instead of considering the dimension of a parametric-model M;, the MDL method
weights in the complexity of the model M.

In general, our definition of the MDL method is intended to make a choice between
individual models, whereas AIC, BIC and other parametric-model selection methods
are designed to provide a choice between model classes, given that additional methods
are successful at choosing a model within a given class.

The main problem of the AIC and BIC methods is the assumption that the dimen-
sion d of a model is known. A common approach in practice [NT97] is to consider as
dimension d the number of parameters n, but then it is easy to see that, by modifying
the parameter space (e.g. mapping 1-1 two parameters into one) the result of the cri-
teria is different while the models are essentially equivalent. The dimension d coincides
with the number of parameters n when the parameters are statistically independent.

The MDL method can be applied to parametric-models, because each model within
a parametric-model has a well defined description length. When the model complexity
is considered the same for all models, MDL reduces to Maximum Likelihood, and is
equivalent to Bayes with a uniform prior in the space of models. When the model
complexity varies across parametric-models, but is the same within each parametric-
model, the cost of a model M is a function of the parametric-model M; to which it
belongs. The weight that the MDL method assigns to each model M, length(Cy (M)),
depends on the way the model is mapped into a binary string. For some families of
models, and for some computable approximations to C, we might obtain the same cost
for a model as in formulas (Z12) and [ZI3]). For this reason computable approximations
to the MDL method contain AIC and BIC as particular cases [Ris&3, [HY0T].

2.7 Conclusion

We have used the MDL method of Model Selection to avoid the problem of overfitting,
and choose between models of different complexity taking not only their fit to the data,
but also their complexity, into account. Overfitting occurs when complex models are
systematically preferred to simpler models, and is a symptom that model complexity
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is not taken into account. In our development of the MDL method, we have considered
models as Turing machines, and their complexity is defined as their description length.

The MDL method, which is usually introduced from the probabilistic point of view,
admits also an interpretation in terms of enumerations of the domain of the Universal
Turing machine U. It has been conjectured that, under an order among enumera-
tions, the MDL-based enumeration is minimal. It falls outside the set of computable
enumerations, although it can be approximated by a computable enumeration.

Applying the MDL method has been reduced to a problem of data compression.
Compression is performed by the function C(d), that finds the shortest description
of d under the Turing machine M. The MDL method, in a first approach, consists in
choosing the model M that minimises the length of the binary string

Cy(m)Cu(d)

where m is a program for M.

In other words, the MDL method states that the models that better explain the
data, are the ones that compress the data more.

The compression function Cy is not computable for any Universal Turing machine
U. Computable approximations Cj; and Cy to C,; and Cy are needed. Chapters BlH]
and Bl use computable approximations to the MDL method.

The MDL method has been compared to the alternative AIC and BIC information
criteria for parametric-models. The MDL method is, in a sense, a generalisation of AIC,
BIC and Maximum Likelihood methods, according to which particular approximation
C' is used to the optimal compression C. The MDL method has also been derived
within a Bayesian framework.

The next step is to produce computable approximations to the MDL method that
can be used to solve Computer Vision problems. Chapter Bl brings us to the first
experiments with MDL, by taking a simpler yet well founded approach to vehicle
tracking. The data d is an image sequence, the models M are vehicle trajectories, and
the compression function C)(d) is an off-the-shelf data compression algorithm with a
computer graphics engine.
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Chapter 3

Trajectory estimation from image
sequences

Two approaches are taken in this thesis to define computable approximations to the
optimal compression function C:

1. The experimental way is to define a data compressor using all information avail-
able, tailored to the application, and refine it according to the results of the
experiments. This is the approach taken in the current chapter.

2. A more thorough approach is to write a software package of reusable code. Sepa-
ration between the general MDL method and the particular approximation of C
used in an application is crucial for the code to be reusable. This approach will
be taken in Chapter H

This chapter describes an application of the MDL method to a real-world problem of
Model Selection in Computer Vision. In this application, images are compressed using
geometric and dynamic models for the shapes and trajectories of the objects being
modelled. Experiments fit 2D and 3D vehicle models and simple trajectory models
to traffic image sequences. This approach is valuable because it provides information
about the performance of the MDL method.

3.1 Introduction

Visual surveillance. The traffic of many cities and major roads is routinely mon-
itored by a network of cameras connected to central stations (see Figure BIl). The
information that can be obtained from traffic surveillance cameras [Fer()2] ranges
from estimates of traffic volume and speed, to the detection of unusual trajecto-
ries at intersections, estimation of vehicle occupancy, vehicle classification, detec-
tion of accidents, monitoring the effects of roadworks, detection of vehicles outside
the lanes or in the wrong lane, detection of obstructions on the road, etc. Most
of these applications require monitoring the trajectories of individual vehicles, or
tracking. 'Tracking is one of the main applications of research in Computer Vi-
sion [[EE99, [GL96, RMFBIS, MRWT04] [CLKF00].

38



3.1. INTRODUCTION
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Figure 3.1: Images from traffic surveillance cameras. Top images and bottom left
image courtesy of BBC London (www.bbc.co.uk/london) and Transport for London.
Bottom right image courtesy of the Welsh Assembly Government’s traffic information
centre (www.traffic-wales.com). Images reproduced by kind permission.

39



3.1. INTRODUCTION

Vehicle tracking. Let us denote by tracking the problem of finding the position and
orientation of a vehicle, in coordinates on the ground plane, at regular intervals of time.
The simplest trackers model the image of the vehicle by a “blob” or connected region
of pixels. Differences in pixel values are detected from one image to the next. This
method can be adequate provided the camera is placed high enough to avoid occlu-
sions [KWM94]. Tracking in 2D is not sufficient when trying to recover more detailed
information needed for accurate monitoring and control of traffic. This information
can only be obtained visually by taking into account the 3D nature of the scene. For
example, the trackers described in [KN95, Sul92, Sul94] obtain a time sequence of mea-
surements of the 3D position of a vehicle by matching wire-frame models against the
images.

Top-down vision. Consider a Vision Function that maps data to models that rep-
resent understanding of the data.
D— M

When the Vision Function is just the verification or matching of models against data
(or a representation of it), it is said to be a top-down Vision Function.

In some cases models are matched against data by comparing properties of image
pixel values with values predicted by the models. For example [Sul92] matched 3D
wire-frame models of vehicles against the images. A boolean test is used to detect the
presence of an edge at one of the bounding edges of the wire-frame. The matches for
each bounding edges of the model are combined to form a cost assigned to each model.
Let ¢(M) be the cost of model M.

The Vision Function finds the model M, which minimises the cost ¢. Defining and
implementing a Vision Function requires two steps:

1. Define a cost function ¢ which assigns a lower cost to models which provide better
understanding of the data under some criterion.

2. Define an optimisation algorithm that finds the minimum of ¢.

For example, when the model is a wire-frame vehicle and the data is an image, the cost
function could be a likelihood function of pixel values in the proximity of wire-frame
edges [Sul92].

This chapter is solely concerned with Step 1, defining a cost function ¢. Optimisa-
tion, Step 2, should be designed according to the properties of the cost function.

Edge-based cost function. The areas of an image that correspond to the projection
of edges of artificial objects are usually associated with large difference of intensity
between pixels. This principle has been used for detecting edges [Mar82, [Can86] in
bottom-up vision, and for matching edges against the data, in top-down vision

An example of vehicle tracking by matching projected edges is given by Brisdon’s
edge matching function [Bri90]. In [Sul92], the edge matching function is used to
match 3D models against images, by projecting the 3D models, as wire-frames, into
the image plane. The cost of a model depends on the number of projected edges that
match perceived edges in the image, and the quality of each match. Thus a very small
amount of data from the original image is used, in fact only a few pixels around the
projected edges, and very few and simple arithmetic operations are performed.
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e The main advantage of reducing the number of pixels being considered is the
increase in speed of computation, but

e the main problem is that a good initial estimate of the vehicle’s position in the
image needs is needed.

The problems of edge-based methods. While edge based methods have the ad-
vantage of requiring a very small number of pixels for the matching of the model with
the image, they have two main disadvantages:

e Edge models need to fit well to the data. This requires a thorough search of the
space of shape models since it is not possible to know a priori the shape of a new
vehicle being tracked. Work by [FWSB97] has taken this direction.

e Edges in the image may not be numerous enough to validate a match. This is
the case when the scene contains any of the following:

— highlights in the vehicle surface
— overlapping vehicles

— overlapping unmodeled objects

In order to avoid these problems, simplify the method, and provide a better solution
than arbitrary weighting of models, we will not only model pixel values around edges,
but also pixel values of the whole image. For this purpose, we will use the MDL method
of model selection.

Alternative: An MDL-based cost function. The alternative suggested in this
chapter is the comparison of different models according to their ability to compress
image sequences, using the MDL method of Model Selection.

The procedure is to describe the data using each model in turn. The description
consists of the model and the difference between the model and the data. The cost is
the length in bits of that description.

Consider the case of detecting whether a vehicle is stationary or not in a given
image sequence d. Let A be the model of a vehicle moving on a straight line, and let
B be the model of a vehicle stopped in the middle of the road. In order to compare
both models, let us compress the image sequence with each of them.

e Compressing the image sequence d using model A assumes that the image se-
quence is essentially static but for a small region of pixels translating across it.

e Compressing the image sequence d using model B assumes that all the images in
d are identical.

Let C4(d) and Cg(d) be, in the notation of Chapter B the binary strings that result

from each compression. If the image sequence d shows a vehicle moving on the trajec-

tory assumed by model A, C'4(d) will be shorter than Cg(d). Conversely, if a vehicle

is present and is stopped (or is not present) then Cg(d) will be shorter than C4(d).
From Definition ZTT] of the MDL method, each model M is assigned a cost

©(M) = length(Cy (M)) + length(Cy,(d))
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where Cr(y) is the shortest description of y under model T, and U is a reference
Universal Turing machine.

Note that, in the example above, there is no way to distinguish between a vehicle
that is stopped and no vehicle at all. Or even between those and a traffic jam. This is
both a problem and an advantage

Problem If we wanted to distinguish between no vehicle, one vehicle and traffic jam
we need to increase the size of the data (that is, to use a longer image sequence),
that includes vehicles in motion, and the amount of models, which will include
each of those cases.

Advantage If we do not want to distinguish between those three cases, then we do
not need to model them. This is a fundamental difference from an edge-based
model matching system, in which additional tests are required to estimate the
number of vehicles in the scene.

We will use this advantage for the detection of events in a roundabout in Section
in cluttered images.

In addition, an MDL approach has the potential to overcome the problems of edge-
based methods:

e This approach relies on very few assumptions on the data. The main assumption
is that the data is the output of a Turing machine which is given random input.

e All data available is used, namely all pixel values of the image, and not only pixel
values around predicted edges.

Using all data available. The purpose is to compress, with the help of the model,
all data available. When the data is a single image, as it is the case for edge-based
cost functions, each of the pixel values of the image will be compressed. But, in our
application to vehicle surveillance, more than a single image can be made available.
The data, will be a sequence of consecutive images in time.

The models used in this chapter will describe not only the objects in a single image,
but also how those objects move. In particular, the models will not only be the shape
of the vehicle, but also the trajectory.

Advantages: simplicity. A main advantage of the method proposed in this chapter
is its simplicity. The software used for the experiments of this chapter is written in
about 4000 lines of C code. Most of the computing resources used by the software are
spent on generation of 3D graphics from geometric models, and the lossless compression
of image sequences. Alternative implementations of these algorithms could be obtained
from standard libraries or even off-the-shelf hardware.

Advantages: The universal probability. A consequence of using the MDL prin-
ciple, as in Chapter Bl is that the error between the model and the data is modelled
using a computable approximation to the universal probability. The consequence of
this is that if we only assume that the data has been produced by a Turing machine,
and make no further assumptions, the universal probability is our best bet for a prior
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distribution of that data. Of course, in practice, we do not assume that the data has
been produced by a generic Turing machine, but we have a large mount of prior infor-
mation about the data, and the effort is directed towards including all that information
in the compression algorithm.

Previous applications of the MDL method to Computer Vision were oriented to-
wards low-level image processing problems such as region growing [ZY96] or object
segmentation [ZB95]. In [EM99bl IMEOTL [FMOT] the author studied the compression
of static images, and the models described physical properties of objects in the im-
ages, such as position and rugosity. The current chapter is based on, and extends,
the methods for modelling image sequences using shapes and trajectories presented
in [FM00a, FNMO0H.

Contents of this chapter. A method to compress image sequences using geometric
models for the shape and the trajectories of objects is presented in this chapter. Par-
ticular issues arising with 2D and 3D geometric models for the shape are discussed.
Experiments for each case are presented.

2D models. Very different trajectories are compared. These trajectories correspond
to the motion of vehicles on different areas of a roundabout (Section B3)).

3D models. Similar trajectories are compared. These trajectories correspond to alter-
ations in the motion of a vehicle with a time scale of 4 or 5 seconds (Section B).

Before discussing compression using 2D and 3D models, a generic procedure is pre-
sented, which is common for both.

3.2 Two-part compression of traffic image sequences

This section describes a general procedure for compressing image sequences using a
geometric model of the scene. The procedure is outlined in Figure The geometric
model consists of the shapes of the vehicles and their trajectories on the ground plane.
This method does not depend on the particular type of geometric model being used.
Two types of models will be considered in this chapter:

e The case of a 2D model of vehicles in the image is covered in Section
e The case of a 3D model of vehicles in the space is covered in Section B4l

The compression method, outlined in Figure B2 consists of encoding or represent-
ing the data as a binary string formed by two main parts:

e The geometric shape model, the trajectory model, and the first and last images of
the image sequence (reference images). This is used to create an approximation
of the original data. Figure illustrates the reference images and the way a
shape model is projected on each image according to the trajectory.

e The error, pixel by pixel, between the original data and the approximation.
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Figure 3.2: Two-part compression of traffic image sequences
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last image

first image

Figure 3.3: The reference images in an image sequence.

Both components together form a two-part description of the image sequence data.
The shape, trajectory, reference images and the pixel-by-pixel errors are enough to
reconstruct the original image sequence exactly.

The procedure described in Figure consists of the following sequence of steps.
Given the data and the shape and trajectory models, named together as model:

1. Take part of the original data for reference, reference. In this chapter it is
assumed that the reference images are the first and last images of the image
sequence, as in Figure These two images should include between them all
regions visible in the sequence. For example, in the case of a 3D model of a vehicle
turning, those images should include all the sides of the vehicle which are visible at
any time during the sequence. The pixels in the reference images will be projected
later on in other parts of the image. In computer graphics, these pixels are
called the pixel textures. Following the notation used in Mathematica in which
a function f applied to = takes the form f[z], textures = reference[ data ]

2. Render a synthetic version of the original data by using the shape and trajectory
models, and the reference data. The result is a sequence of images of similar
dimensions than the data. synthetic = render[ model, textures ]

3. Subtract the synthetic data from the original, to obtain difference images. If
the model is correct, then the difference images should contain small values.
difference = subtract[ data, synthetic ]

4. Compress the difference images, assuming they contain small values. A
general purpose data compressor is used for this purpose. description =
compress[ model, texture, difference ]

5. Measure the size in bits of the compressed description of the data, consisting of:
the shape and trajectory models, the reference images, the compressed difference
image. cost = size[ description ]

This is a summary of the steps, decomposing model into shape and trajectory:

1. textures = referencel data ]
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2. synthetic = render[ {shape, trajectory}, textures ]

3. difference = subtract[ data, synthetic ]

4. description = compress[ {shape, trajectory}, texture, difference ]
5. cost = size[ description ]

Note that just using description it is possible to reconstruct the original data. This
is the reason why we are compressing the entire images, and not just parts of them.
The first parts of the description, shape and trajectory contain the useful infor-
mation about the scene, namely the shape and the trajectory of the object. The lower
the value for cost, the better shape and trajectory describe data.
Sections and B4l give details of the implementations and performance for the
2D and 3D shape and trajectory models.

3.3 2D shape and trajectory models

In this section a simple type of 2D shape model is used for an implementation of the
method of Section It is applied to the detection of events in a roundabout.

One of the simplest shape models we could choose are rectangles in the image plane,
aligned with the image axes. Taken together with an image, such a rectangle defines
a texture or array of pixels taken from the image. The rectangle, together with the
texture, is what we call a sprite [How| according to tradition in computer graphics.

Sprites are not only simple, but also fast to implement, and correspond to the
intuitive idea of motion of an object in the image, in the sense that, roughly, it should
be possible to cut and paste from one image to generate the next. This “cut and
paste” procedure will not produce realistic synthetic images when the apparent size of
the vehicle changes due to variations in the distance from the vehicle to the camera. If
a full calibration of the camera is available then the problem can be solved by scaling
the sprites to represent the change in size according to the distance.

Since the shape models are not very accurate, we do not expect to obtain an accurate
estimate of the vehicle trajectory. The purpose of this section is to compare very
different trajectories, and see if the cost function can discriminate between them. Each
of those trajectories corresponds to what we will call a “traffic event” or just “event”.

Therefore the models used in this section are:

Shape: rectangles in the image plane, parallel to the image axis, that can be subject
to translation and scaling.

Trajectory: a sequence of points, defined by hand on the ground plane, corresponding
to the events we want to detect in the image sequence.

Below is an explanation of how to implement the function render, and experiments
using the resulting cost function to detect events.
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3.3.1 Compressing a sequence of images using 2D models

We need to define the function render of Section B2l when the shape models are sprites.
The function render has the following prototype:

synthetic = render [ model, textures ]

where model is a sprite, and the trajectory is a sequence of points on the ground plane.
The textures is the first and last images of the image sequence from which pixel values
will be cut and pasted to the rest of the images.

The output of render is the sequence of images synthetic. The pixel values of
synthetic are computed as follows.

Let p; be the sequence of positions on the ground plane of the sprite at time ¢,
for t = 1,2,.... Let rq be the original sprite. The frame of reference of the sprite is
defined as follows: the origin is the bottom left corner. The unit vector (1,0) is the
horizontal side of the sprite, from left to right. The unit vector (0,1) is the vertical
side of the sprite, from bottom to top. A pixel is located inside the sprite if and only
if its coordinates are between 0 and 1 in the frame of reference of the sprite.

1. Using the camera calibration [EvDFHI0, WSB94], calculate the projection of the
position p; on the image plane, ¢;, and the scaling factor s, according to the
distance between p; and the camera.

2. Calculate r; by scaling rq by s;, and translating it in the image plane so that the
centre point of the base of the sprite r; is ¢;.

3. For each pixel (z,y) at image time ¢,

e If (z,y) is outside 4, then the value of (x,y,t) is the value of the pixel with
same coordinates in the first image (z,y,0), but for the exception below.

o If (x,y) is inside r4, let (2/,y') be the coordinates of (z,y) in the frame of
reference of r;. The value of (z,y,t) is interpolated from the pixel of the
first image with coordinates (z',y") with respect to 7.

e An exception takes place when (z,y) is outside r; but inside ry. In that
case, the value of (x,y,t) is the value of (x,%) in the last image. This is the
reason why both the first and last images are taken for reference. If this
special case was not considered, a vehicle would appear twice in each image,
both at r¢ and at r;.

3.3.2 Experiments

In order to illustrate the ability to work in cluttered scenes, the cost function has been
used to test which “event”, from a family of events, was taking place. The family of
events consists of very different trajectories that vehicles can follow in a roundabout.
It includes the event “nothing is happening”.
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Figure 3.4: (Left) An image of the original image sequence. The sprite is marked with
a rectangle. (Middle) An image of the synthetic sequence. The vehicle has been cut,
scaled and pasted from the first image of the sequence. (Right) The difference image.

Events

An “event” is a trajectory defined as a sequence of points on the ground plane, cor-
responding to a situation we would like to detect. Seven events were defined; six
correspond to trajectories of vehicles moving on a road, plus another that represents
“nothing is happening”.

Upper A vehicle is taking the upper exit

Left A vehicle is moving around the roundabout on the left lane (left from the point
of view of the camera)

Right A vehicle is moving around the roundabout, on the right lane (right from the
point of view of the camera)

Crossing A vehicle is crossing the white lines near the camera

Enter A vehicle is entering the roundabout from the left hand side of the image
Changing A vehicle is changing lane around the centre of the image

Nothing None of the above is happening

The label attached to each “event” is only descriptive. Each event is intended to
represent the trajectories which are similar to the trajectory given to the system under
that label. The measure of similarity will be given by the compression achieved, using
the MDL method. Figure displays the events as points on the ground plane, as
viewed from above. The homography between the ground plane and the image plane
has been used to draw the background image (for illustrative purpose). Each point of
the trajectory is labelled with its index in the sequence.

Data

Each dataset is a sequence of images labelled 00000, 00207 and 00620, according to
the timestamp of the first image. Each image was 256 x 256 pixels in size and 8 bit
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(e) Enter (f) Changing

Figure 3.5: The point-per-point specification of each event as seen from above.
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doiasert | Nothing Upper Left Right Crossing Enter Changing
00000 | 1 842 487 | 1 848 341 | 1 838 036 | 1 842 489 | 1 862 883 | 1 837 519 | 1 844 196
00207 | 1 806 240 | 1 818 605 | 1 814 821 | 1 805 441 | 1821 152 | 1 818 174 | 1 815 395
00620 | 1 890 579 | 1 887 861 | 1 894 487 | 1 891 545 | 1 897 233 | 1 922 693 | 1 893 229
Table 3.1: Cost in bits of each image sequence, given each event. Each column is a

event. Each row is a dataset. The test is positive for a particular event and dataset
when its cost is below the cost of the event Nothing with the same dataset. Correct
positives are underlined, false negatives are overlined. All other entries are correct
negatives. The size of each image sequence, under no compression, when the image
size is already known, is 5 242 880 bits. The size after Huffman compression, which is
optimal under the simplistic assumption that all pixel values are independent, is 5 068
984, 5 107 232 and 5 222 056 bits respectively.

monochrome. The images were filmed and converted to video. Each sequence consists
of 10 images, taken in steps of 0.24 seconds, that is, one frame out of six of a typical
25 frames/second video sequence.

The camera calibration was provided with the data. It was obtained using a method
similar to the calibration described in page b4l

Test of events

A variety of events as described above can occur in a particular data set. The events
are tested by comparing their cost to the cost of the event Nothing. If the cost of the
event is higher or equal than the cost of Nothing, the test is negative. Otherwise, the
test is positive. For example, testing the event Crossing with the dataset 00000 gives
higher cost than the event Nothing with the same dataset, therefore the test is negative.

Performance

The performance of the event detector is shown on Table Bl Each row contains the
results for an image sequence. Each column is an event. A human observer established
the ground truth, namely, which events happened in each sequence. Underlined entries
are correct positives, that is, their cost is below the cost of the event Nothing, and they
were detected by the human observer. The overlined entry is a false negative, that is,
its cost is above the cost of the event Nothing, and therefore the test is negative, but
the human observer detected the event. There are no false positives. The rest of the
entries are correct negatives.

Compression algorithm

The general purpose compression method used to compress the difference images
is the program gzip [[GA02], which implements the Lempel-Ziv-Welch (LZW)
method [LZ76, [ZL77, [Wel4]. This compression method is used in wide variety of
compression applications, including text, source code, log files, etc. LZW is the com-
pression method used in the GIF image format.

The LZW compression method has been used in these experiments because it makes
very few assumptions on the data, namely that it is composed by repeated strings of
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symbols of arbitrary length. This choice contrasts with a compression in the frequency
domain, such as JPEG, designed for lossless compression of natural images. The dif-
ferences in compression achieved with gzip are enough to successfully choose between
the models used in these experiments.

3.3.3 Discussion of 2D models

The method presented uses models composed by

e two dimensional models for vehicles on the image plane,
e a rough camera calibration, and

e trajectories defined point by point on the ground plane.

This method is fast, simple, and can cope with occlusions. Although it uses all
grey levels, the only transformations on pixel values are translation and scaling on the
image plane. Occlusions are handled by the use of camera calibration, so that the base
of each vehicle rectangle or sprite is located on the ground plane.

An advantage of this method with respect to bottom-up approaches is that a single
events can be detected from a mixture of events. For example, considering events A,
B and N (the null event), given an image sequence in which the events A and B take
place, the test for event B will be positive, even if the event A is not being considered
(and the cost function for the event A not evaluated),

p(B) < ¢(N)

where ¢ is the cost function.

For example, this method can give a positive test for more than one event if both
events have a cost lower than the null event. That would be the case for the events A
and B above,

e(4) < ¢(N) (3.1)
¢(B) < @(N) (3.2)

We have so far implemented the function render of Figure for 2D models.
The resulting cost function has been used to detect simple events. Next section will
implement render for 3D shape models and more detailed trajectories.

3.4 3D shape and trajectory models

This section presents an algorithm for the render function specified in Section B2 that
uses 3D models for the shape of vehicles. The shape models are facets in the 3D space.
For each image, the trajectory model, which consists of a position and orientation of
the object, induces a rotation and translation on the shape model. The result is a set of
facets located in the space for each image. There is a 1-1 map between the projection
of the facets on two different images.

The main questions in the design of this function is which geometric shape to choose
for the facets, and how to use the contents of the facets in order to create the synthetic
image sequence.
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Figure 3.7:

3.4.1 Compressing a sequence of images using 3D models

Let us remember that the central idea of this chapter is to describe the data with
the information included in the model, and use the description length as a cost. The
more information the model contains about the data, the smaller the error between
the model and the data.

The models being considered consist of the shape of the vehicle and the trajectory
of the vehicle over time, given as the position and orientation of the vehicle on the
ground plane, image by image. Therefore the models are geometric: a model induces
a geometric description of the scene for each image. An additional consequence is that
it is possible to create, using computer graphics methods, a synthetic version of the
original image sequence, using only the model.

A simple description of the image sequence, data, consists of the model and the
difference, pixel by pixel, between the synthetic image sequence, generated with the
model, and the original image sequence, data. This difference can be considered as
the error between the model and the data. The model, and that error, are enough to
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reconstruct the original image sequence, data.

But a simple wire-frame geometric model (consisting only of edge segments but no
intensity values, as in [Sul94]), is not enough to produce a realistic synthetic version of
the data that can be subtracted from the original data. More information is needed,
namely, an approximation to the facet intensity levels that form the texture of the
geometric model.

The method proposed here is to take the texture from the first and last images of the
image sequence. It is expected, as it happens in the data used for the experiments of
this chapter, that all facets visible at any point of the image sequence can be obtained
from the first and last images. Therefore, the first and last images become additional
information used to create the synthetic image sequence.

Figure displays a projective transformation between two quadrilaterals, corre-
sponding to the same facet of the same model, but in different positions on the ground
plane, in different images.

Now the question is which shape to choose for the facets of the 3D shape. The
simplest shapes are triangles, extensively used in computer graphics. Another option
is to use quadrilaterals.

Since the projective transformations between the images are, in general, homogra-
phies [SK52] [EvDEHI0], it seems reasonable to choose as facet something that can be
mapped using homographies easily into any other facet. Quadrilaterals have the prop-
erty that, given two quadrilaterals p and ¢ (as an ordered list of vertices) in different
images, in the image plane, there is a single homography that maps each pixel of ¢ into
a pixel of p. This is valid either in 3D coordinates, or in the image plane.

The shape model s is a list of quadrilaterals {qi,...,¢,}, in the 3D space. The
centre of rotation of the object defined by the quadrilaterals should be located at
(0,0,0), so that rotation does not require a previous translation. In particular, the
centre of gravity of the shape model of a vehicle is be located at (0,0, 0).

The trajectory model is a list of pairs (position, orientation), (p, 6;), for each image
t =1,...,r. Each p; is the position of the vehicle on the ground plane. FEach 6,
specifies the orientation of the vehicle in the ground plane. Let M (p,6) be the matrix
that corresponds to the rotation 6 followed by the translation p. The matrix M (p, 6)
represents a rigid motion.

The following steps yield the synthetic image sequence.

1. Apply M(p;,0;) to each corner of the shape s for ¢t = 1,...,r. The result is
the 3D shape s;, moved to its 3D location at time ¢. To do so, represent each
quadrilateral ¢; as matrix whose column vectors are the quadrilateral’s corners
in the 3D space, then let ¢;; = M(p;, 6;) - g; for each quadrilateral j =1,...,n.

2. Let q;; be the projection of quadrilateral ¢;; on the image plane, calculated using
the camera calibration, for each time step ¢ = 1,...,r and each quadrilateral
g=1...,n.

3. Calculate the visibility maps Vi, ..., V,. Each pixel in image V; is the number of
quadrilateral visible at the same pixel coordinates in image ¢, which is calculated
according to the distance from the quadrilaterals to the camera. The visibility
maps Vi, ..., V, will be used to handle occlusions.
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4. Calculate the homography Hj,; from ¢;; to q;, and the homography Hj,; from
q; to qp;. These are the pixel-by-pixel correspondences between image ¢ and the

reference images 1 and 7.

5. Now we are ready to calculate the synthetic image sequence pixel by pixel. For
each framet=2,...,r—1

e For each pixel p

(a) Let ¢; be the quadrilateral of s to which p belongs and that is visible in
frame t. That is, j is the value of the pixel p in the visibility map V.

(b) Let p; = Hj,; - p for i = 1,7 be the coordinates of the pixels that
correspond to p in the reference frames. We want to extract the value

of p from the values of p; and p,.

(c) Consider the list of two elements L = {p;,p,}. Both p; and p, belong
to the respective projections of ¢; in their frames. But they might not
be visible. This is the case when the value of p; in the visibility map
V; is not j. In that case remove element p; from L. We will interpolate
the value of p from the remaining elements in the list L.

(d) For each remaining element p; in the list L do the following: The coordi-
nates of p; are not integers, therefore use bilinear interpolation between
the integer neighbours of the pixel with coordinates p; to estimate the
value of the pixel p; in the reference frame 7.

(e) Interpolate from the values of the pixels in L.

In this way the pixel values are projected from the reference images 1 and r to each
imaget=2,...,7r — 1.

This definition of the function render together with the function cost of Figure
was implemented in C' in order to run the following experiments.

3.4.2 Experiments

The purpose of the experiments is to evaluate the MDL-based cost function cost. The
trajectories used are relatively similar to each other: they all have the same starting
point, and their end points are within a range of a few meters on the ground plane.

Setup

The data used in this experiments consist of short image sequences in which several
vehicles are moving at the same time. The scenario is a car park. The camera is fixed
on a building overlooking the car park. The camera was fully calibrated.

Camera calibration. Full camera calibration was obtained from measurements on
site. The camera was fixed and the focal length constant, therefore the calibration was
constant. The camera is modelled as a pinhole ( [SHB9Y, page 456],[FvDEHI0, [Fan93]).
Anecdotal evidence shows no need for a more complex model that includes radial
distortion, or any accounting for a difference between the centre of projection and the
centre of the image.
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(a) The calibration marks: four cali- (b) The homography between the ground
bration points forming a rectangle, an plane and the image plane is computed.
additional point with known position,

and a vertical line

Figure 3.8: Camera calibration using measurements on the road.

The camera calibration was obtained using the software described in [WSB94]. This
software has a visual interface to help find the transformation from world coordinates
to image coordinates. The primary calibration data are

e the positions of four points on the ground plane, forming a rectangle, and
e the image of a line known to be vertical to the ground plane.

Additional calibration data were the height of the camera and the position of a fifth
point on the ground plane, used for redundancy checks. Figure illustrates these
measurements. The user of the calibration software described in [WSB94] can display
different grids overlaid on the calibration image, and move the grids in ways that
correspond to changes in the projective transformation. The measurement unit is
the centimetre. A consequence is that measurements are integer numbers, which will
facilitate the encoding of the measurements on the ground plane in the remaining
chapters of this thesis. The origin of coordinates of the world reference frame, together
with the first two axes, form the ground plane in which vehicles move. In particular,
the homography between the ground plane and the image plane was obtained (See

Figure 3.8(b)).

Dataset. The images used for the experiments presented here are those of the
PETS2001 dataset [Fer(f]. These image sequences consist of 25 images per second
of colour video at PAL resolution (768 x 576 pixels) encoded using JPEG lossy com-
pression. The image sequences were filmed using a Canon MV1 digital camera. For the
following experiments, the images were converted into eight bit greyscale and reduced
to a quarter size (384x288 pixels) using the library PBMPlus [Pos02]. Thus, each
image occupies 110592 bytes, assuming known image size and one byte per pixel.
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Software. The software used for this experiment consists of 4000 lines of code written

by the author in object oriented C, plus a library for numerical computations together
with standard UNIX tools.

The shape model. The shape model is a cuboid, as shown in Figure Although
the software can render complex shapes made up of quadrangular facets, there are
several reasons for using a simple cuboid model:

e Most image pixels belonging to the moving vehicle are included in the projection
of the cuboid.

e The number of parameters of a cuboid is small (three integers: width, length,
height) as opposed to a more detailed model such as those used by Ferryman and
others [FWSB97], which requires six parameters even after Principal Component
Analysis reduction of the number of parameters.

e There is no need to fit closely an edge model to the vehicle, as it is required
in [FWSB97| and other methods based on wire-frame models.

(In [EM99a] the author studied the feasibility of extracting shape models from images
displaying a vehicle in different positions. An estimate of the height of each vertex
above the ground plane was used, in combination with the camera calibration, to
obtain the 3D position of each vertex. Vertexes were combined into facets to produce
the shape model which could be displayed, and corrected, in different positions on
the ground plane. The images were separate frames of the image sequence. But the
increased model complexity, in terms of number of facets, was not considered necessary,
and therefore this method has not been used to produce the models of the following
experiments).

The trajectory model. The trajectory is the variable in these experiments. In a
first approach, a trajectory is defined as a sequence of points on the ground plane, one
per step of the image sequence. For the purpose of these experiments, a trajectory
is defined by giving the starting point in the first step and the end point in the last
step. The points on the trajectory in the intermediate images are calculated under the
assumption that the velocity is constant. The orientation at each step is interpolated
from the orientation in the first and last steps.

Visualising the cost. Plots like Figure show the cost function evaluated in
an array of parameters. Instead of plotting the value of the cost function p(z,vy), its
negative —p(z, y) is displayed. Therefore a minimum in ¢ is displayed as a maximum of
—, in the plot. This transformation is motivated by the fact that, viewed from above,
maxima are easier to see than minima due to better contrast against the background.

The compression algorithm. The difference images are compressed using the
Lempel-Ziv-Welch (LZW) method, which was discussed on page
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Figure 3.9: An image from the data of Experiment 1: Two vehicles moving with
constant velocity in the same direction. The white van moves from s to e.

Experiment 1: Vehicles with constant velocity

In order to show that the cost function reaches a minimum at the correct trajectory, a
family of trajectories was defined for a fixed constant starting point s = (s,, s,) and a
variable end point e = (e, + id, e, + j6) where § corresponds to one metre, and 7 and
j take the values —5, -4, -3, —-2,—1,0,1,2, 3,4, 5.

eij = (6m + ’L(S, €y -+ ](5) (33)

The data of the experiments is a sequence that, to the human eye, shows a vehicle
moving with constant velocity in straight line along the road, and this trajectory (s, eg)
is included in the set of models under consideration. The experiments are successful
in that the minimum of the cost function is attained for the model very close to the
trajectory (s, eq).

The first image sequence, consists of ten images with timestamp increments of 7/25
seconds. It contains two vehicles moving with constant velocity, in the same direction.
An image of the sequence is shown in Figure where the ground truth for the white
van’s trajectory is a straight line.

Fitting. The cost function is evaluated for each of the 11x11=121 trajectories defined
between the start point s in Figure B9 and the end points {eij}?’j:%. The trajectory
with lowest cost is displayed in Figure BTl

The surface formed by the cost function on the 121 trajectories is shown in Fig-

ure 10
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Figure 3.10: The (negative of the) cost function. The best trajectory (maximum in
this plot) is displayed in Figure Bl

Experiment 2: when initialisation is wrong

A common measure of the error between two sequences of points on the plane pq,...,p,
and ¢q,...,q, is the sum of the square of their distances,
T
dolpi—al’
i=1
for a norm || - ||. This error measure can easily be affected by outliers [Rou84]. The

presence of outliers can be modelled be either a vehicle moving nearby, or by a wrong
initialisation.

This experiment is performed with the same image sequence as Experiment 1. The
parameters are also the same, except that a wrong starting point w is used instead of
s as shown in Figure

The main consequence of using the wrong starting point is that the ground truth
trajectory is not in the search space.

Before looking at the results of the experiment, let us consider which could be the
possible outcomes:

1. Either the correct end point e = eqq is found, that is, the trajectory found with
this method, and the ground truth, cross at their end points, trajectory joining
w and e in Figure B12, or

2. the trajectory found crosses (s, eqy) at some point. For example, the trajectory
joining w and d in Figure B12 or

3. the trajectory found does not cross the ground truth (s, eg).
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Figure 3.11: Sequence of images showing two vehicles moving on the same direction
with constant velocity. The cuboid model represents the best fit according to the cost
function. (Excerpts from the original images)
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Figure 3.12: An image of the data of Experiment 2: The wrong starting point w.
Trajectory (w,d) crosses the ground truth. Trajectory (w,e) ends at the same point
as the ground truth.

For the current application the first case (1) is preferable since it would convey most
useful information about the real trajectory, namely its approximate direction and end
point, thus allowing for an iterative algorithm to catch up with the moving vehicle,
and recover from the initialisation error.

The result of the experiment is in fact case 1 (as above), the end point with minimal
cost is the same as for the ground truth. Figure B13 shows the cost function evaluated
in the area. Figure BT shows the trajectory corresponding to the minimum cost.

Experiment 3: Curved trajectories

Curved trajectories, for this experiment, are modelled as trajectories with constant
speed in which the orientation of the shape model, at each point, is linearly interpolated
between the orientation in the first point and the last point of the trajectory. Chapter
will discuss a more realistic trajectory model.

The consequences of using linear interpolation for the orientation are:

e the interpolation algorithm is the same as for the positions of the vehicle in the
first images

e the resulting trajectory assumes that the vehicle slides sideways, at this scale, a
minor deviation from the physics that govern the motion of the vehicle.

Figure BT shows the trajectories of the two vehicles reversing and rotating at the
same time.
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X -12000
- 10000

Figure 3.13: The (negative of the) cost function. The best trajectory (maximum in this
plot) is displayed in Figure BTl The maximum of this plot is located in the centre.

The image sequence, called T, consists of 10 images, in which one image was taken
out of 15 from the original image sequence. Thus, approximately 1.7 images per second
were used.

The models are 121 trajectories (s, e;;) for i, j = —5,—4,...,4,5 (see Equation B3)).
Again the points e;; and e;;; are separated by one metre.

Figure is the cost function. The trajectory with lowest cost is pictured in
Figure B17

Discussion. The relevance of a cost function for trajectories is in the location of the
minimum, and how easy is to reach it. This limited set of experiments is enough to
illustrate the shape of the cost function, which shows a clear minimum near the ground
truth (the centre of the grid in each plot). The shape of the cost function is smooth.

This method is not comparable to a working vehicle tracker since it does not operate
in an image-by-image basis, and does not include the optimisation algorithm. Dynamic
trajectory models, such as the Kalman Filter [Ger99], which is the standard model for
vehicle tracking, are usually incorporated as part of the minimisation algorithm. We
will include vehicle dynamics in the model in Chapter
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Figure 3.14: Sequence of images showing the trajectory with lowest cost in Figure B3
(Excerpts from the original images)
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Figure 3.15: Sequence T'. Two vehicles are moving at the same time. The vehicle
on the left hand side is parking, while the vehicle on the right hand side is leaving a
parking slot.

Figure 3.16: The (negative of the) cost function The best trajectory (maximum in this
plot) is displayed in Figure B17
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Figure 3.17:  Sequence of images showing the trajectory with lowest cost in Fig-
ure BT6l (Excerpts from the original images)
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3.5 Conclusion

Application to 3D tracking. An application of the MDL method to vehicle track-
ing has been presented. The approach proposed is conceptually simple, albeit slow in
its current implementation. Its main characteristics are:

e A 3D graphics engine has been used to interpolate a synthetic image sequence
from part of the sequence.

e The error model implied is an approximation of the universal measure of Chap-
ter Pl since it is an application of the MDL method.

e The compression algorithm makes few assumptions about the data. The general
purpose data compression algorithm gzip compresses the difference between the
synthetic image sequence and the original data. It is based on the LZW method,
the de facto standard in general purpose data compression.

Alternative methods in this area of research typically use fast but conceptually complex
algorithms. In particular, among model-based approaches, models based on edges
depend on arbitrary thresholds and rely on exact matches. The method presented in
this chapter does not require an exact match between the model and the image.

Application to 2D event detection. Besides, simple event detector, based on the
same principle and 2D models, has been used to successfully discriminate between
different vehicle trajectories in a roundabout.

In both 2D and 3D cases a simple shape model was good enough for the application.
The trajectory models were overly simple, and did not contain prior knowledge about
the dynamics of vehicles in motion.

The next step is to develop a more realistic trajectory model. We will do this in
Chapter Bl within an application of the MDL method. But, before that, we will take
in Chapter Hl a closer look at the way computable approximations to the MDL method
can be defined.
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Chapter 4

Computable approximations to MDL

4.1 Introduction

In the previous chapters we have seen how a problem in Computer Vision can be solved
using data compression. The models that better explain the image data are the models
that help compress the data more.

In Chapter Pl we saw that the optimal compression function C of Definition 29
which is used by the MDL method, is not computable. We need to define computable
approximations to C. In Chapter Bla hands-on approach with models and experimental
data was taken to define computer approximations C, tailored to a particular class of
models and data, but based on a standard data compression algorithm.

This chapter defines a compression function Compress that approximates the opti-
mal compression function C. The function Compress is grouped together with other
useful functions in a package called Thesis‘Compress‘. These additional functions
perform decompression, verification, and extend the definition of Compress for differ-
ent data types.

Defining a computable approximation to C consists in constructing a computer
program. This chapter presents a definition of Compress general enough to include the
non-computable functions used in the MDL method, together with a wide variety of
computable approximations; this is done in Sections and L4l Then, in Section L5
the function Compress is defined for some basic data types such as natural numbers,
integers, lists and vectors.

A general procedure to define other computable approximations Compress is given
in Section

The implementation presented in this chapter is written in the computer language
Mathematica. We start with an introduction to this computer language in the following
Section.

4.2 The programming language

The computer language used in this chapter is Mathematica. In this section the lan-
guage is introduced. Further details of Mathematica can be found in the language
manual Wolfram [Wol99] and in [Mae89, [Mae96]. A critique of some features of the
language can be found in [Faf92].
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The name Mathematica is used commercially to refer to both a system for scientific
computation and the programming language that supports it. In this chapter we will
use the term Mathematica to mean the programming language. Mathematica has a
simple syntax to represent a variety of data structures and other mathematical objects
as symbolic expressions, and the relations between them as rewrite rules.

Symbolic expressions or simply “expressions”, are Lisp-style lists [Knu9§| in which
the first element or “head” has a special meaning. The head is used, for example, to
identify a function, or tag a data structure. Expressions in Mathematica either are

atoms or have the form
b= bg[bl, bg, ey bn]

where each b; is an expression, a subexpression of b. The head of bg[....] is by. An
atom is identified by having the head Symbol, and is distinguished by not having
subexpressions.

Rewrite rules. Programs are transformation rules defined for expressions. Exe-
cution of a program or expression is called evaluation, and consists of applying the
transformation rules until the expression does not change [[D.J90]. The final expression
is said to be reduced. This is similar to the notion of graph reduction for functional
languages [Jon8&7].

There is an interesting similarity between reduction of expressions, and reducing
the size of a description as we have done in Chapter Pl Both uses of the term reduce
are different, but we make them coincide when a compression function is implemented
as a set of rewrite rules.

The implementation described in this chapter uses special features foreign to pop-
ular imperative languages such as C and C++. This section describes the subset of
Mathematica’s syntax and semantics that we will need in this chapter. There follows a
discussion on the convenience of using Mathematica expression syntax to represent data
and models. The section concludes with a summary of the advantages of Mathematica
for the implementation of computable approximations to the MDL compression func-
tion C.

Notation for the program examples. The examples of this chapter have been
generated directly by Mathematica, in order to guarantee correctness. The typed text
of this thesis contains only the lines beginning with In[...].

In[line number] := input expression

A Mathematica interpreter added the output of each evaluation, the lines beginning
with Qut[...].

Out [line number]= output expression

4.2.1 Language properties
Mathematica implements several programming paradigms, including [Fat92l [Mae96]

e Functional programming, like Miranda.
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Figure 4.1: The tree {{a,b},c}.

e Imperative programming, like C, C++4, Java and Pascal.

e List processing, like Lisp.

e Term rewriting or rule-based programming [D.I90].

Some properties of Mathematica make it particularly useful for our application:

e Use of symbolic expressions to represent both data and programs. Facilities for
higher order functions (functions whose parameters are other functions).

e Weakly typed, in the sense that data types are not enforced by the syntax. At
most, the head of an expression is used to represent its contents. We will use
heads to store models.

e Polymorphism, as a consequence of weak types and higher order functions. This
will facilitate code reuse.

e It is very simple to cache the result of computations, therefore speeding up com-
putations which are repeated many times for the same input.

A function is polymorphic when a single definition works with parameters of differ-
ent types [Jon&7]. For example, an addition function P1lus can be defined for numbers,
and then for a vector space defined on those numbers. The function P1lus would then
be polymorphic. Both instances of the definition share, for example, the property of
commutativity.

4.2.2 Expressions

Expressions can be used to represent a wide range of data structures, functions,
operands, etc. Section 2.2.1 of [Wol99] describes how a symbolic expression can be
used to represent functions, commands, operators and object types, according to the
meaning of the expression’s head. Our main uses are

Function for example, f [x] is used to represent the function f applied to the param-
eter x.

Data structure for example, RGBColor[.2, .2, .5] means the colour with given com-
ponents red, green and blue, and, in this chapter, Vector[x, y, z] means the
vector with components x, y, z. A tree can be represented as nested lists, such
as List[ List[ a, b ], c], also written as {{a,b},c}, as in Figure BTl

Data type for example Natural[n] in this chapter means a natural number n> 0.

There is a special function, Head, that returns the head of a symbolic expression.
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4.2.3 Functions

We can identify evaluation with computation. The value of an expression « is the
expression that results from the evaluation of o. Mathematica processes expressions
by applying transformation rules to parts of the expressions. In Mathematica syntax,
a function definition

In[1]:= f[x_] = x + 1;

is in fact a rewrite rule which, when evaluated, will transform any expression of the
form f[a] into e+ 1, and, if « is a number, will evaluate o + 1.

In[2]:= fl[a]
OQut[2]=1 + a
In[3]:= f[3]
Out[3]= 4

The underscore _ in x_ means that x is a variable, in the usual interpretation of
functions, or a pattern to match, in Mathematica’s way of understanding function
application. The symbol := is used for function definition, as in a:=4. It can also be
interpreted as a delayed rule, a rule that is applied only when an expression is found

that matches the left hand side «.

4.2.4 Models are heads of expressions

Data, descriptions, models. In Chapter Pl we fixed a reference Universal Turing
Machine U and defined description of data d as any program p that outputs d (Defini-
tion Z]):

d="U(p)

A model was defined as any Turing machine M that, given suitable input e, would
generate d (Definition EZT)):
d= M(e)

Since U was universal, there is a string m such that M(z) = U(mz), for any string =,

and therefore
d=U(me)

Conversely U(m) is a Turing machine for any string m. Therefore a model of d is any
prefix of any description of d.
Now the question is how to implement models in terms of symbolic expressions. The

proposed answer is to identify a model with the head by of an expression by[by, by, . . ., by].
The identification between heads of expressions and models is natural. In
Mathematica, as in Lisp, a function f with arguments bq,...,b, is represented by

an expression with head f and body b,...,b,. Thus, thinking of f and b;, for all
J, as binary strings, the concatenation of those binary strings yields a model as in
Definition X711

A consequence is that concatenation of binary strings translates into composition
of symbolic expressions. Thus, in the notation of Chapter Pl a binary string d with
description me where m is a model of d, corresponds to a symbolic expression d, with
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a description m[e] (a program that, when executed, outputs d). Again, the model m is
the head of the expression m[e].

The left hand side pattern x_ in a function definition can be a single variable such
as

flx_] :=x+1
or a compound expression with several variables. For example, the function
In[4]:= £[(x_) [y_1]1 := x + y;

is defined for two variables, the head x and the body y.

In[5]:= £[3[4]]
Out[5]= 7
In[6]:= flalbl]

Qut[6]= a + b

so long as a and b are left undefined. The MDL method in Section L4 provides an
example in which integer numbers are modelled with other integer numbers.

4.2.5 Advantages

The advantages of using Mathematica for the implementation in this chapter and
Chapter Bl are summarised here:

e Conciseness: the most important definitions fit in one or two lines.

e Models are heads of expressions: the head of an expression can be interpreted as
the model of the rest of the expression, or as a function that applies to the rest of
the expression. This corresponds to the definition of model given in Chapter

e Polymorphism: a definition can be given in abstract terms, relying only on certain
properties of the data, but not on the data type. Thus the same definition can
be used in different contexts.

4.2.6 Summary of Mathematica’'s notation

Although ultimately everything in Mathematica can be represented as an expression,
the notation used can be very idiosyncratic and topped with a large amount syntactic
sugar (which is notation intended to make the language more readable for human
beings [How|). Most of the Mathematica expressions used in this chapter are one-
liners. The following list summarises the prerequisites to understand them:

e Square brackets are used to separate the name of a function (the head) from its
arguments, as in Sin[x] and the type of a data structure (the head, again), from
its components, as in BinaryString[0,1,1,0].

b

e A function is defined using “:=”". The arguments are denoted on the left hand
side by variable names followed by underscore, as in f[x_]:=x+1. The value
replaces the variable name on the right hand side.

70



4.3. THE COST FUNCTION

e The function Head[a] returns the head of the expression a.
e The command Needs is used to load software packages.

e Other operators and functions are explained wherever they appear in the text.

4.3 The cost function

Our purpose is to implement the MDL method by defining computable approxima-
tions to the function C, not in the domain of binary strings, but in the domain of
Mathematica’s expressions. In this section we will define a cost function for an expres-
sion, named Cost. The value of Cost[a] will be an approximation of the Kolmogorov
Complexity of the expression «, defined as the Kolmogorov Complexity of a binary
string that encodes a.

The objective is to implement a cost function Cost that depends on a compression
function Compress. The function Compress corresponds to a compression function C
of Chapter Pl When Compress is the non-computable optimal compressor C, then the
cost will be the Kolmogorov Complexity. But, since Compress must be computable,
the Cost will be a computable approximation of the Kolmogorov Complexity. The
intention is to allow Compress to get arbitrarily close to the optimal compressor, so
that the cost function can be arbitrarily close to the Kolmogorov Complexity given
enough computational effort. The following definition provides the initial “frame” to
which detail will be added in the following sections.

Definition 4.1 CosT FUNCTION The cost function is defined, for an expression «, as
the size, in bits, of the output by a function Compress[a].

Cost[ a_ ] := Size[ Compress[ a ] 1
The function Compress must have the following properties:

e There exists a Universal Turing Machine Decompress so that Compress is the
inverse of Decompress in its domain.

e The function Size is defined in the domain of the Universal Turing Ma-
chine Decompress (which by definition coincides with the range of the function
Compress).

Note that the requirements in the functions Compress and Size are not very re-
strictive.

At this point we could define Decompress to be the Mathematica function
Evaluate, which implements a Universal Turing Machine, and the function Size could
be based on the Mathematica function ByteCount, which returns an upper estimate of
the number of bits needed to store a particular expression.

But, seeking a closer control on the algorithms being used and the possibility to
repeat experiments, and keeping the similarities with Chapter Bl we rather define
Decompress and Size for binary strings instead of general expressions.
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Binary strings. Let us consider expressions that represent binary strings. For this
purpose, the head BinaryString will be used. Such expressions have the form

BinaryStringl[b,, by, ..., 0,]

where b; is a binary digit. The Universal Turing Machine U takes expressions of the
form BinaryString[...] as input, and outputs expressions of any kind, not only
expressions of the form BinaryStringl[...].

Size. The Size function is defined as the length of the binary string. In Mathematica
this can be implemented as

Size[expr_]:=Length[expr]

where Length is a built-in function that returns n given an expression of the form
bo[b1, b, ..., by

If Compress[a] is defined to yield the shortest program that computes «, then
Cost [a] is the Kolmogorov Complexity of a.

Since no computable definition of Compress will produce the shortest description
of all expressions for any specific reference Universal Turing Machine, the value of the
cost function will only be an upper bound of the Kolmogorov Complexity.

The degree in which Cost is a computable approximation to the Kolmogorov Com-
plexity depends on how Compress is defined. From the point of view of program
construction, we have so far defined the function Cost and we still have to define
Compress; the possibilities include functions that give results arbitrarily close to the
Kolmogorov Complexity.

4.4 The compression function

We have seen that the value of Cost[a] is an upper bound of the Kolmogorov Com-
plexity of the expression «. By improving the function Compress to produce shorter
descriptions, the upper bound is lowered towards the Kolmogorov Complexity.

We are free to define Compress in whichever way we like, so long as it holds the re-
quirements of Definition LTl These requirements are that, when the reference Universal
Turing machine is given Compress[a], the output should be a.

The Minimum Description Length method, as we have seen in Definition EZTT]
consists in defining the function Compress in two steps: first, compress the model,
then compress the data given the model. In practice, this amounts to compressing the
pair (model, data) in a way that, in a first step, decompression will yield the model,
and further decompression, given the model, will yield the data.

This section proposes a definition of the function Compress following the two steps
of the MDL method. The resulting compression function is a similar to the two-part de-
scriptions used in Chapter Bl This section also specifies how the function Decompress,
which is the reference Universal Turing Machine, should be defined, and how it relates
to Compress.
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4.4.1 Preliminaries
Use of Expressions

In Chapter [l we have seen how our programs and data are binary strings that can be
concatenated. The evaluation of program x, given a reference Universal machine U,
with input y, is represented by U(zy), that is, U applied to the concatenation of x and
Y.

In this chapter the building blocks are not binary strings, but expressions. Thus
we need an equivalent operation to the concatenation of binary strings.

Definition 4.2 COMPOSITION OF EXPRESSIONS In the space of expressions
BinaryString[...], the composition of expressions is equivalent to the concatenation
of the corresponding binary strings. The rule is written in Mathematica as follows:

BinaryString[a___][ BinaryString[b___] ] :=
BinaryString[a] "Join~“BinaryString[b]
]

Conditional description

In Chapter Pl we saw that the functions Cr are defined for any Turing machine 7', not
only for Universal Turing machines. Thus, if d = T'(e) for binary strings d and e, e is
a description of d under T

There is an equivalent notion of description for expressions. Let data be any ex-
pression, which corresponds to the binary string d, and model be the binary string m,
which is of the form BinaryString[...]. A description of data under model is an
expression of the form model[error] where error is an expression also of the form
BinaryStringl[...].

model [error] = BinaryStringl[...][BinaryString[...]]

which, by the rule of Definition EE2] becomes a single binary string.

Now we are ready for the definition of compression as an encoding of expressions
into binary strings. First, the model is mapped to a binary string . Then, the data
is mapped to a binary string error, that when evaluated using Decompress, prefixed
by b, produces the data. Both the map of the model into a binary string, and the map
of the data into a binary string need to be injective (no two elements have the same
image) and prefix-free, that is, their range must be a prefix-free set.

4.4.2 Compression and decompression

The functions Compress and Decompress are paired: when Compress maps an expres-
sion « into a binary string b, the function Decompress maps any binary string of the
form bx into the expression « and the remaining bits z.

One instance of the function Compress is, in the notation of Chapter Bl the function
Cy that returns the shortest description of its argument z, so that Cy(z) is the shortest
description of x under U.

The function Decompress corresponds to the reference Universal Turing Ma-
chine U of Chapter The input of Decompress is an expression of the form
BinaryStringl[...] and the output is an expression, not restricted to binary strings.
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Compression

We are now ready to define the compression function based on Definition EZT1] (in
page [[J) of the MDL method.

Definition 4.3 CoMPRESS Compression of a non-atomic expression a =aglaq] is
defined as the compression of the head g, which is the model, concatenated to the
compression of the body a; using ay

Compress[a.] := Compress[ Head[al ] [ Compress[a, KnownModel] 1]

The function Compress[a]l must have an inverse, and the function Compress[a,
KnownModel] must have an inverse when the head of « is known.

In other words, the function Compress returns the compressed head concatenated
with the compressed expression assuming the head is known.

The fact that Compress must have an inverse, and that the binary string
Compress[a] will be decompressed from left to right, implies that the range of
Compress needs to be a prefix-free set.

The compression function is recursive. For each expression a the function Compress
is called again on the head of a. The recursion ends when the model is a symbol, which
in Mathematica has a head Symbol. A special instance of the function Compress is
defined when the model is a symbol.

The function Compress[a[], KnownModel] is defined for each particular model
or head . Examples of Compress for given models are given in Section

Decompression

The counterpart of Compress is Decompress. The function Decompress takes a binary
string and produces the corresponding expression. It is not exactly the inverse of
Compress because Decompress returns also the remaining part of the input which has
not been decoded, so that it can be applied recursively.

The definition of Decompress[a], for a BinaryString «, is elegantly short in
Mathematica.

Decompress[b_] := FixedPoint[Decompress @@ # &, {b, Symbol}];

which means that the output is a fixed-point of the function Decompress. This def-
inition needs Decompress being defined for each specific data type. The function
FixedPoint [ar, (] evaluates a[5], a[a[5]], ...and so on until a fixed-point of « is
obtained. It corresponds to the evaluation of the fixed-point Universal Turing machine
V in Chapter

Note that we have implemented Decompress wusing explicitly the built-in
FixedPoint function of Mathematica, and it corresponds to Definition EZTTl in Chap-
ter @ in which the expression Cy(m)Cy(d) is a description of d under a fixed-point
Universal Turing machine V. The Universal Turing machine V' is a fixed-point function
in the same way that the function Decompress is a fixed-point function. This is neces-
sary in this chapter in order to justify the recursive compression (and decompression)
of the models.
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!

|C0rrpr ess[ head[ body] ] |
T

|Corrpr ess[ head[ body], KnownMbdel ]|

|Oonpress[ Li st [ body], KnownModel ] J Conpress[Vector[...], Knownhbdel ]

|C0rrpress[ Real [...], KnownMbdel] | </

|Oorrpress[ Integer[...], KnownModel ]% >?—{Oonpress[ Synmbol [...], KnownModel]

|Corrpress[ Natural[...], KnownModel ]|

Figure 4.2: Function calls for compression of basic data types.

The computation of Decompress [a] is recursive. At each step of the recursion, the
head of the resulting object is extracted, by decoding the leftmost part of the remaining
binary string. The first head is extracted assuming it is a symbol.

The recursion in the definition of Decompress ends when a fixed point is reached.

Decompress[b_, expr_] := {b, expr};

This definition means that the function Decompress, in any undefined case, is the
identity.

4.5 Compressing specific data types

The definitions of Compress for some basic data types are given below, thus fill-
ing in the gaps to in the definition of the Cost function. These definitions are
illustrated in Figure EE2 In this diagram, the entry point is the function call
Compress [a[5]1] where « is the head of the input expression and [ is the body.
This function calls either Compress([a], if the model is not an atom or symbol, or
Compress [Symbol[...], KnownModel] if the model is a symbol, & =Symbol[...],
which marks the end of the recursion.

4.5.1 Natural numbers
Let us define natural numbers as integers strictly greater than zero.
N={1,2,...}

The head Natural will identify natural numbers such as Natural[1], Natural[2],
etc. Note that the language Mathematica does not have natural numbers as a in-built
type. Therefore Natural[5] is actually the Integer 5 “wrapped” by Naturall ].
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bits
100 |

80 +

60 +

40 +

20 +

natural

20 40 60 80
Figure 4.3: Code length for unary encoding of natural numbers.

Recall that the domain of the function Decompress needs to be a prefix-free set for
the same reasons that the reference Turing machine U of Chapter P needed a prefix-
free domain. In this way the argument of Decompress, a binary string, can be decoded
from left to right.

We need to define the function Compress to map natural numbers into short binary
strings which form a prefix-free set, so they can be decoded by a function Decompress.

The number of finite strings with length [ is finite, for any [ > 0. Therefore Compress
needs to map the integers to binary strings of different lengths. In Section such an
map or encoding was linked to a probability distribution. Choosing such an encoding is
equivalent to deciding about a prior probability for the natural numbers. The question
is now which encoding to use.

Unary encoding

If we map the natural number n to the binary string of n ones followed by zero,

n)
11---10

and plot the length of the binary string corresponding to each natural number, the
result is Figure

It is clear that this encoding will not very good at compressing data, in the sense
that the binary tree that forms the input language of the Turing machine that decodes
the integers will be unnecessarily sparse.

Squares encoding

Let us encode a natural number n with n? ones followed by zero,

n?)

11---10

and plot the corresponding lengths, as in Figure L4
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bits
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Figure 4.4: Code length for squares encoding of natural numbers.

bits
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Figure 4.5: Number of bits required to encode natural numbers using log*.
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Note that least squares fitting consists in minimising this cost function, where m;
are components of the model, d; are components of the data,

LS((my,my ... omp) | (di,do,... dy)) = (m; — d;)’
j=1
and where (m; — d;)? is the same as Cost [Natural [Abs [m;-d;11].

The probability distribution implied by this encoding, which is —log of the plot
of Figure Bl assigns higher probability to zero, and produces with extremely low
probability numbers away from zero. This is the reason why the least squares model
fitting method is so sensitive to outliers.

Compared to the unary encoding, this encoding wastes even more leaves of the
binary tree in which each codeword is a leaf.

Logstar encoding

We have so far considered encoding each natural number n using sequences like

n) n?)

11---10 and 11---10
Since we are usually interested in short binary strings, it seems reasonable to avoid the
waste of bits involved in these encodings. We need a more compact encoding.

When we are given a finite set of natural numbers {n,,...,n,}, Huffman encod-
ing [Knu98] provides an optimal encoding that minimises the total size, computed from
the frequency each natural number appears in the set. But in our case we do not have
a set of integers to play the role of “training set”, but only the prior knowledge that
those integers have been produced by a Turing machine. Note that there is no upper
bound in the value of the natural numbers we need to encode.

It might seem odd that from the sole assumption that the numbers are produced
by a Turing machine it is possible to obtain an encoding which is optimal in any way.
But, for this purpose, Rissanen [Ris83] proposed the following encoding:

Definition 4.4 LOGSTAR ENCODING The function log* between natural numbers and
binary strings is defined as

log*(n) = logg(n)-0 (4.1)

logr(l) = & (the empty string) (4.2)

logg(n) = digits(n) if n =2,3 (4.3)

logp(n) = logg(length(digits(n)) — 1) - digits(n) if n > 3 (4.4)

(4.5)

where log, denotes the recursive part of the definition of log*, the binary string digits(n)

is the binary expansion of the integer n, and a dot - is used to emphasise string con-
catenation.

The final 0 is added to ensure that the image set of the function log* is a prefix-free
set, so the function can be inverted by reading the binary string from left to right.

Since log* maps the natural numbers into a prefix-free set of binary strings, it implies
a probability distribution on the natural numbers, as we have seen in Section
Rissanen [Ris83] used the function n +— 271°8"(™) as an approximation to the Universal
Measure defined on the natural numbers.
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Interpretation. Jaynes [Jay906] suggested to use 1/n as prior for integers in the range
[1,n]. This prior is based on the Maximum Entropy principle. Of course 1/n is not a
probability, because the sum

i 1

n=1 n

does not converge. (In terms of codes, there is no code which assigns a string of length
2-w to each integer n).

The log* code is one possible extension of Jaynes’ approach, to an infinite set. It is
not possible to assign the same probability to all integers, but it is possible to assign
the same probability to all integers in the interval I, = [281 28 — 1] for each k > 0,
which is what the log* code does. The binary tree of the log* code is built up by
“descending” in the tree until there are enough leaves to allocate the elements of the
interval I,,.

Figure shows the code length for natural numbers. Note how the function has
a clear minimum at 1, and the slope tends to zero as n increases.

The function Compress can now be defined for natural numbers:

Compress [Natural[n_ ], KnownModel] :=log*[Natural[n]];

Note that the second argument, KnownModel, is an undefined symbol that serves as a
tag to state that the head Natural has already been encoded, and should be already
known by the decoder when it reaches the encoded binary string. When the function
Compress/[...] is evaluated, the chain of transformed expressions is

Compress[...] — Compress[..., KnownModel] — BinaryStringl...]

Therefore we are ready to approximate the cost of an integer.

Example

The following sequence of commands are a real session with the language interpreter.
Let us first load the packages Cost and Compress

In[7]:= Needs["Thesis‘Cost‘"];
Let us compute the cost of an natural number.

In[8]:= Cost[Naturall[5]]
Out[8]= 9

This cost is the length of the binary string in which Natural[5] is encoded. Note that
we use the function Compress which calls

In[9]:= b = Compress[Naturall[5]]
Out [9]= BinaryString[1, 1, 0, 1, 0, 1, 0, 1, 0]

The function Decompress will give us the remaining string (an empty binary string),
together with the original expression.

In[10]:
Out[10]

Decompress[b]
{BinaryString[], Natural[5]}
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The function CompressVerify, also defined in the package Compress, computes the
compression—decompression cycle and returns True only if the functions are inverse of
each other at a particular argument, when no additional input is given.

In[11]:= CompressVerify[Natural[5]]
Out[11]= True

4.5.2 Integers

The definition of Compress for integers can be derived from the definition for natural
numbers by means of a simple 1-1 map between integers z and natural numbers n

. 2z ifz>0
& 9z 41 ifz<0

The head used by Mathematica is Integer. Thus, for example, the integer 3 has head
Integer

In[12] := Head[3]
Out[12]= Integer

Let us encode the integer 3 assuming the head is known, and also encode the
Natural[6], also assuming the head is known. Both binary strings are the same
because the integer 3 is mapped into the natural number 6:

In[13] := Compress[3, KnownModell]
Out[13]= BinaryString[1l, 0, 1, 1, 0, 0]
In[14]:= Compress[Natural[6], KnownModel]

Out[14]= BinaryString[1, 0, 1, 1, 0, 0]

But, since their models Integer and Natural are encoded in different ways,

In[15] := Compress[Integer]
Out [15]= BinaryStringl[0]
In[16]:= Compress[Natural]

Out[16]= BinaryString[1, 1, O]

when the model will not be known in advance to the decoder, and therefore it has to
be encoded with the number, the encoded integer 3 and natural 6 differ in the prefix

In[17] := Compress[3]

Out[17]= BinaryString[O, 1, 0, 1, 1, 0, 0]
In[18] := Compress[Naturall[6]]

Out[18]= BinaryString[i, 1, 0, 1, 0, 1, 1, 0, O]

Figure shows the cost of each integer using log* encoding.
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bits

: : : integer
- 100 - 50 50

Figure 4.6: Number of bits required to encode integers using the log* code

4.5.3 Vectors and Lists of any type

Vector. A vector is a sequence of n expressions with the same Head or type. We will
use the head Vector to group them up. A vector has the form

Vectorle;, €y, ..., €,]

where the expressions e; have the same head h.
These are the steps required to compress the vector:

1. encode the common head h, using Compress[h].

2. encode the number of elements in the vector. This number is a natural n, using
Compress [Natural[n]].

3. encode each of the expressions e;, assuming the head h is known, using
Compress[e;, KnownModel].

List. A list is a sequence of n expressions. They do not need to have the same Head or
type, and therefore we cannot compress them as a vector. The language Mathematica
has a built in type List, and therefore we do not need to define one. A list has the
form

Listle;, e, ..., e,]
These are the steps to compress the list:
1. encode the number of elements in the list, n, using Compress [Natural[n]].

2. encode each of the expressions e;, assuming their heads are not known, using
Compress[e;].

Compare the last step when encoding a vector and a list. When encoding a vector,
the head of each expression that forms the vector is already given in the first step,
thus it is only necessary to compress each expression and not its head. Therefore the
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last step of encoding a vector calls the function Compress[e;, KnownModel]. However,
when encoding a list each expression e; is compressed assuming the model is not known,
therefore encoding a list calls the function Compressl[e;] for the last step.

For example, let us compress a vector of two integers

In[19]:= Compress[Vector[1, 2]]
Out[19]= BinaryString[l, 0, 1, 1, O, O, O, 1, 0, O, 1, O,
0, 1, 0, 1, 0, 0, 0]

Both numbers 1 and 2 have the head Integer. Since they have the same head we
could compress them as a vector. But we could also compress them as a list of two
elements.

In[20] := Compress[{1, 2}]
Out[20]= BinaryString[l, 0, O, 1, O, O, O, 1, 0, O, O, 1,
0, 1, 0, 0, 0]

Note that not only the prefix of the string is different, but each element is compressed
in a different way.

4.5.4 Real numbers

We now proceed to define the compression function for approximations of real numbers,
which will be required, for example, by the trajectory models of Chapter

Physical measurements are usually real numbers. The representation of real num-
bers in the computer is an approximation. The way this approximation is done is
relevant here, since different approximations of the same number will give different
sizes in bits. Let us consider three ways to approximate real numbers:

Floating point Numbers of the form m10° where m is the mantissa and e is the
exponent. Both m and e are integers. This approximation is useful to represent
numbers over a wide range of orders of magnitude.

Fixed point Numbers of the form m10* for some constant k£ and an integer man-
tissa m. This representation is equivalent to a change of scale to convert the
measurements to integers.

Fraction Numbers of the form a/b, where a and b are integers. This representation is
useful when algebraic simplifications are possible.

Examples of each representation of real numbers abound, such as the modern use
of decimal measurements for currency (fixed point) versus the deprecated division in
thirds, halves, quarters and fifths (fractional). Rissanen [Ris83|] uses the fractional
representation to encode errors between models and data. The approach taken in
Chapter Blis to use fixed point numbers. This is a consequence of choosing centimetres
as the unit for the camera calibration in Chapter

The function Compress for numbers of types Real and Rational is defined in the
package Thesis ‘Compress‘. The type Real is built into Mathematica as a floating
point type with variable size (of mantissa and exponent), and Rational as a fraction.
For our purposes, it is enough to approximate Rational with a floating point Real.
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In the package Thesis‘Compress‘, a floating point number r, with Real is first
truncated to 4 decimal digits, then multiplied by 10, and then encoded as an integer.
For example,

In[21]:= r = 3.49827

Out[21]= 3.49827

In[22] := Head[r]

Out [22]= Real

In[23]:= b = Compress[r]

Out [23]= BinaryString[il, 0, 1, 0, 1, 0, 1, 0, 1, 0, O, 1,
o, 0, 0, 0, 1, 0, 0, 0, 1, O, O, O, 1, O, 1, O, O, 1,
1, 0, 0, 0]

Since no special head such as FixedPointNumber was created for the approximation
of real numbers, the function Decompress is not the exact inverse of Compress, note
that the last digit is lost by the four-decimal rounding included in Compress

In[24]:
Out [24]

Decompress [b]
{BinaryString[], 3.4982}

and therefore CompressVerify returns False.

In[25] := CompressVerify[r]
Out [25]= False

The function Compress is used with numbers of type Real in Chapter Bl If we want
Decompress to be able to recover the original data, then we should define the new type
FixedPointNumber and define Compress and Decompress for that type, instead of the
type Real. It was not considered necessary for this application since CompressVerify
is only used for test purposes.

4.6 General procedure

This section explains, step by step, how to define Compress for a new data type. An
example is given, using an integer number to model other integer numbers.

4.6.1 Defining new data types

A data type is identified by an expression head which must be an atom (that is, have the
head Symbol). Examples of built-in data types are Integer, List, Real and Rational.
Other data types used in Section are Natural and Vector.

Each new data type needs to be “loaded” in a list, called AcceptedTypes, which
allows the functions Compress and Decompress respectively to encode and decode the
symbol. Let us look at the list of currently accepted types and the encoding of each
type as a binary string.

In[26] := AcceptedTypes
Out[26]= {Integer, List, Natural, Rational, Real, Vector}
In[27] := Compress[Integer]
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Out [27]= BinaryStringl[0]

In[28]:= Compress[Natural]

Out [28]= BinaryString[1, 1, O]

In[29] := Compress[Vector]

Out[29]= BinaryString[1, 0, 1, 1, 0, 0]

Each type is encoded using log* for natural numbers. The natural number correspond-
ing to each type is its position in the list of accepted types.

4.6.2 The procedure

The sequence of steps needed to define and use Compress with a new data type are:

1. Choose a name for the new data type, a. This should be a symbol not used
already in the system.

2. Add the data type « to the list of accepted types. This is done by the function
CompressedTypeAppend [a].

3. Define the function Compress[a[3], KnownModel] for our new type «, that
returns a description of # when the head « is known.

4. If decompression is required, define Decompress[/3, ol where 8 = (3,53, is an
expression with head BinaryString formed by prefix 3, and suffix 3. This
function should return a pair {8, v} where 7 is the original, decompressed
expression corresponding to 3,, which has head «, and f; is the remaining binary
string.

If Decompress[/3, a] is defined, then CompressVerify should return True for expres-
sions of our new type.

4.6.3 Example: integer models

A simple way to show the general procedure describe above is to use the MDL method
to find the “best” integer that models other integers, according to our computable
approximation of the MDL method. An integer z, or a vector of integers (21, 29, - . . , 2),
can be modelled by another integer m by considering the differences between m and
either z or each z;.

For this purpose, we should add a definition of Compress that evaluates, for exam-
ple, Compress[5[8]]. But given the integer 5, there is no way to know whether it is
an integer on its own, or whether we want to use it as a model for another integer.
Thus we need to define a new type, IntegerModel, which “wraps” the number.

Thus, we have two new models:

e IntegerModel will be the type or model of m.
e IntegerModel[m] will be the type or model of the data.

and we need to define the function Compress for each of them.
Therefore we will be compressing
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IntegerModel [m] [2]
and
IntegerModel[m] [Vector[z;, 29, ..., 2,11

The description of the integer z given by m will be the difference m — 2, which is
an integer. The description of the vector of integers v = (21, 29, ..., 2,) given by m will
be the vector (m — 2y, m — 29,...,m — 2,), of integer components. That is, the data is
represented by the model and the difference between the model and the data.

Let us first define an auxiliary function subtract first for integers

In[30]:= subtract[a_Integer, b_Integer] := a - b;
then for vectors, in which m is subtracted from each component z;.
In[31]:= subtract[v_Vector, m_Integer] := (m - #1 & ) /Q v

Now, let us follow the steps in the list of page First of all, we need to append
the type IntegerModel to the list of accepted types.

In[32] := CompressedTypeAppend[IntegerModell
Out [32]= {Integer, IntegerModel, List, Natural, Rational,
Real, Vector}

Then we need to define Compress[IntegerModel[m], KnownModell

In[33]:= Compress[IntegerModel[m_], KnownModel] :=
Compress[m, KnownModel]

Now we need to define Compress [IntegerModel [m] [3], KnownModel] where [3 is
anything for which subtract[f, 2] is defined (i.e. an integer or a vector of integers).
Essentially, the problem reduces to compressing the arithmetic difference between the
model and the data.

In[34] := Compress[IntegerModel[m_] [expr_], KnownModel] :=
Compress [subtract [expr, m]]
Modelling an integer

Let us see how Compress works when modelling the integer 3 by another integer. Note
that the cost increases with the difference.

In[35]:= Cost[IntegerModel[3][3]]

Out[35]= 11
In[36]:= Cost[IntegerModel[4][3]]
Out [36]= 14
In[37]:= Cost[IntegerModel[5][3]]
Out [37]= 17
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Figure 4.7: Additional function calls for the compression of integer models (compare
with Figure E2).

|Oorrpr ess[| ntegerMdel|[...], KnownMbddel ]|

bits
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Figure 4.8: Description length of the integer —100 when compressed using the models
ranging between —200 and 100. See also Figure

The relation between IntegerModel and the functions defined before is illus-
trated in Figure EE7l where the arrows correspond to function calls. The function
Compress [IntegerModel[a] [3], KnownModel] calls Compress[a — 3;,KnownModel]
for each component [; of the vector f.

Figure is the cost of compressing the integer —100 when the models range
between -200 and 100. Two features are noticeable:

e The two minima: one for the “real” model, —100, another one for the simplest
model 0. This is an example of MDL’s tradeoff between model size and fitness.
We will discuss this fact in Section .1

e The similarity between the shape of this cost function and the cost function for
individual integers, in Figure

Modelling a vector

Let us calculate the cost of the vector of integers (3,4,5) when modelled by single
integers
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Figure 4.9: Description length of the integer —100 when compressed using the models
ranging between —200 and 100. The red portion of the bar is the description length
of each model. The blue portion of the bar is the description length of the data given
each model. The total height is the same value as in Figure L8 and is the description
length of the data. Note the local minima at the simplest model (0) (minimum on the
right) and at the “true” model (-100) (minimum on the left).

bits

models

In[38]:
Out [38]

Cost[IntegerModel[3] [Vector[3, 4, 5]]]
29

The cost is higher when the model is further away from 4

In[39]:= Cost[IntegerModel[4] [Vector[3, 4, 5111
Out[39]= 27
In[40] := Cost[IntegerModel[5] [Vector[3, 4, 5111
Out[40]= 30
In[41] := Cost[IntegerModel[6] [Vector[3, 4, 5]]]
Out[41]= 35

The cost of a more complex vector, when modelled by integers, is displayed in
Figure ET0L A set of random integers drawn from a uniform random variable in the
interval [200,220],

Vector[220, 205, 206, 216, 204, 214, 212, 212, 215, 202]

is modelled by each integer in the range [-100,500]. The two minima are at 0 and 210.

More complex data can be obtaining by drawing integers from a random distribution
in two different intervals of the same width. Ten integers are drawn from the interval
[200, 220], and five integers from the interval [350, 370]

In[42]:= Vector[220, 205, 206, 216, 204, 214, 212, 212,
215, 202, 354, 358, 355, 366, 366]

Out [42]= Vector[220, 205, 206, 216, 204, 214, 212, 212,
215, 202, 354, 358, 355, 366, 366]
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Figure 4.10: Cost function when the model is an integer in the range [-100, 500}, and

the data is a vector of ten integers drawn from a uniform random variable in the interval
[200,220].

The cost for integer models in the range [-100, 500] is displayed in Figure LTIl There
are two distinctive local minima, corresponding to the two clusters. The lower minium
corresponds to the cluster of ten elements, in the interval [200, 220]. The non-absolute
minimum is in the cluster of five elements.

4.7 Discussion

This section discusses the properties of the MDL method, under the light of examples
with integers.

4.7.1 Shape of the cost function

Using the functions described in Section L3 it is possible to display examples of the
cost function for simple data formed by integer numbers, and illustrate their properties.

The cost function is simply a function that maps natural numbers into binary strings
and returns the length of the binary string. Other data types, such as ordered sets of
integers, can be mapped to integers and then to natural numbers.

The minimum. The cost of a single integer 2 is the number of bits required to repre-
sent it. Using the log* to encode integers, the cost function is displayed in Figure
Note the symmetric shape, the sharp minimum at zero, and the fact that the cost
function can be approximated by a horizontal line as z tends to infinity or to minus
infinity. A similar shape is displayed in Figure

These properties affect the optimisation of the cost function and the influence that
large values have in the cost:

1. Optimisation near the minimum is easier because the difference in cost between
consecutive models is high. In other words, a continuous approximation has a
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high derivative near the minimum. On the other hand, optimisation that starts
away from the minimum is difficult because the approximated slope is near zero.

2. Optimisation far away from the minimum is much harder, because the slope of the
cost function is low. But the influence of outliers is also small: the cost function
z + log*(z) is, in the limit, below any nonzero polynomial [Ris&3]. Compare
with the cost implied by the least squares method, z + 22 which is polynomial.

The log* method is more robust against outliers than the least squares method
because the log* cost of an outlier is a low-valued function of the distance to the
minimum, and the influence of outliers in the shape of the cost function is local (see
paragraph Handling of outliers, below).

Tradeoff between model and data. The cost of an integer d when modelled by
another integer M is given as a stacked bar chart in Figure In this case there is
a clear tradeoff between model size and error size. The heights of the lower bars are
model sizes. The heights of the upper bars are error sizes, which is the number of bits
added to the model in order to describe the data; in other words, it is the description
length of the data given the model

length(Cy(d))

The total cost is the sum of the model size and the error size, or the description length
of the data

length(Cy (M)Ch(d)) = length(Cy (M) + length(Chr(d))

The model “0” is particularly interesting in that it shows minimal model complexity.
In this case, when the “true” model is a small integer, say -100, the model “0” is
comparable to the “true” model (the number -100) which has higher model complexity
but lower error. As the amount of data increases in relation to the model size, the size
of the model becomes irrelevant and thus the method degenerates into a Maximum
Likelihood method. This is the case when modelling sets of integers using a single
integer, as in the following examples (See Figure ELT2).

Adaptability. The shape of the cost function adapts to the data. For example, when
there are two valid models, the cost function displays two local minima. The plot in
Figure EETTl shows such minima about the centre of the two sets of random points used
as data. The breakup between model and error size is shown in Figure This
property was used in Section B33 to choose an event for a traffic image sequence when
the image sequence is formed by the combination of various events.

Handling of outliers. All values have an approximately local influence on the shape
of the cost function, as illustrated in Figure EETTl This means that adding an outlier
to the data does not change much the shape of the cost function, except in the region
near the outlier. This is a consequence of the cost function z — log*(z) having a low
value away from the minimum, and that the total cost is the sum of the cost of each
integer.
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: ‘ ‘ ‘ ‘ integer
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Figure 4.11: Description length when the model is a single integer varying from -
100 to 500, and the data consists of two fixed sets of integers drawn from uniform
distributions. The first set is the same as in Figure EET0l ten integers drawn from

the interval [200,220]. The second set consists of five integers drawn from the interval
[350,370].

bits

COCoooooo oo oo CCO OO ooooniiD odels

Figure 4.12: Breakup of description length corresponding to model and data in the
plot of Figure ELTT] for models between -100 (left) and 500 (right). The lower part of
each bar is the description length of each model. The upper part is the description
length of the data given each model. Note the model with shortest description length
(shorter red bar) is 0 whereas the model that yields shortest data description length is
near 200.
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Figure 4.13: The same model and data as in Figure EETT] but with the least squares
error function as cost function.

Universal Measure

The log* function has a probabilistic interpretation. The correspondence between
prefix-free sets and probability distributions of Section can be used to assign a
probability to the log* encoding. This probability is a computable approximation to
the universal measure as defined in Chapter B [Ris83]. The universal measure, in this
context, gives the probability of obtaining log*(z) by producing strings of the form
BinaryStringl[...] choosing each bit using coin flips.

General principle includes others as particular cases

Least squares. A common alternative way to fit models to data samples, in the
Euclidean space, is the least squares method. This method is optimal under the as-
sumption that the data contains additive Gaussian errors with respect to the model.
In practice, the least squares method is used because of its simplicity. Its drawbacks
are its sensitivity to outliers (which is a low probability assigned to large errors) and
the fact that sometimes the error cannot be modelled properly as an additive Gaussian
distribution.

We have seen in Figure LTI how the cost function has two minima roughly at the
centre of the clusters of data. Figure shows the least squares cost function, often
called error function, which has a completely different minimum.

Least Squares gives us a single minimum and a high gradient to guide the search
for the minimum. In contrast, our Cost function, which is the log* description length,
adapts to the data and shows different minima for different plausible explanations, but
its optimisation is difficult because of the small gradient far from each local minimum.

Maximum Likelihood. The Least Squares method is a particular case of Maximum
Likelihood [Edw92] method. Maximum Likelihood methods are a particular case of
MDL when the model size is not taken into account [Ris&3l [LV97].

A Maximum Likelihood method is therefore a method in which only the upper part
of the bars in Figures and is considered as the cost value. As we have seen,
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this is the situation when the difference between model sizes are negligible, such as the
case of a single integer modelling a large vector of integers.

4.7.2 Simplification

Rissanen [Ris83] gives a formula which approximates the value of the cost function,
the length after compression, and does not require the evaluation of the compression
function. The package provided here can serve as a testbed for such approximations.
The meaning of the function Compress can be redefined for different data types, and
in different ways, thus allowing approximations arbitrarily close to ideal MDL, for
Compress, and Kolmogorov Complexity, for Cost.

The evaluation time of Cost can be reduced by avoiding the evaluation of the
function Compress. This evaluation might be lengthy in time, or require a lot of
memory.

Simplification rules are implemented as transformations that are applied automat-
ically whenever a pattern is found. For example, when we considered unary encoding
of integers

n)
11---10
we could have defined the function Compress, for a natural number n, to produce the
output:

n)

BinaryString[1, 1, .1, 0]

By adding the following definition, which just adds up the square of the differences
between n and each component of v, the computation of Cost is simplified to adding
up integers.

Cost[IntegerModel[n_][v_]] :=
Plus @@ (Map[(n - #)°2 &, v])

Which means that the cost of data vector v with model n is the sum of the square of
the difference between each component of v and n. No encoding (as evaluation of the
function Compress) is necessary in this case. The resulting cost function is the least
squares cost function. No further changes need to be made, since the interpreter of
Mathematica will use this rule instead of evaluating its arguments and computing the
expression

Cost[ Size [Compress[...] 1 1]

This simplification of the function Cost is feasible when there is an “analytic” or
“closed-form” formula for the cost, as in the case of the Least Squares method.

4.8 Conclusion

In this chapter we have defined a cost function Cost, which is based on the Mini-
mum Description Length method for model selection. The implementation of Cost
in Mathematica reflects the ideas behind the Minimum Description Length principle,
namely, that estimating the cost of a model given the data is the cost of the model
plus the cost of the data given the model (Definition ZZTTI).
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Contributions

Short implementations. The description length cost function has been imple-
mented in one line

Cost[expr_]:=Size[Compress [expr]]

When Compress is the non-computable optimal compressor C, the function Cost is
the Kolmogorov Complexity.

The Minimum Description Length principle is spelled out in a few lines of
Mathematica. Encoding in two-parts is explicitly done in Definition

Compress[model_[data_]]:=Compress[model] [
Compress [model[datal, KnownModell
]

Use of symbolic expressions. While Chapter Pl developed the theory using binary
strings, this chapter uses symbolic expressions, albeit a subset that maps into binary
strings. Symbolic expressions have the crucial property of being human-readable. Fur-
thermore, there is a large amount of programming constructs and languages available
to manipulate symbolic expressions.

Preliminary examples of MDL. Examples have been given of a working software

package. These examples illustrate

e the ability of the MDL method to choose between models of different complexity,
and

e the potential to fit models that represent only part of the data sources, with high
tolerance to influence from the other sources (low sensitivity to outliers).

In order to ensure the examples are correct, the outputs have been computed by
a Mathematica interpreter: the source document of this chapter was given to the
Mathematica interpreter, which evaluated the expressions and added the output.

Future work

The implementation of the functions Compress presented in this chapter can be subject
to a variety of optimisations in order to reduce the computation time.

e The compression algorithms can be improved by including, when appropriate,
assumptions about the data, such as correlation between consecutive values.

e Additional assumptions can be laid down as simplification rules that the inter-
preter automatically uses to avoid further computation.

The next chapter uses the package Thesis ‘Compress‘ to apply the MDL method
to compress vehicle trajectories using prior knowledge about vehicle dynamics.
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Chapter 5

Selection of trajectories by
compression

This chapter provides a class of models for trajectories based on vehicle dynamics, and
a definition of the function Compress for those models. The performance of the MDL
method in choosing among trajectory models of different complexity is examined with
experiments.

5.1 Introduction

Vehicles have a constant mass, and the motion of vehicles on the ground plane is regu-
lated by specific laws describing how forces, applied to that mass, affect the acceleration
and, as a consequence, the position of the vehicle over time. The forces depend on the
actions performed by the driver, especially the way the steering wheel and the pedals
are used [MWS96a, MWS96H]. A prior probability on the force, e.g. that it is min-
imal, induces a prior probability on the trajectories that a vehicle might follow. The
fact that cars are easier to drive in a straight line with constant velocity rather than
turning with changes in the pedals means that acceleration tends to be minimised, and
therefore the force is minimised. Thus, a higher probability is assigned to a trajectory
in a straight line with constant speed, and the probability decreases with changes in
acceleration and as curvature increases.

In this chapter the package Thesis‘Compress‘ is extended to compression of tra-
jectories, based on the assumption that the trajectories are measurements of a vehicle’s
motion. The data are points on the ground plane. The resulting cost, which is a func-
tion of the models, is used to compare models with different complexities, according to
their relative complexity and fit to the data. This complexity is related to the number
of parameters required to identify the model within the model class.

The advantage of this approach is that the complexity of the trajectory models is
taken into account when selecting the trajectory model that best explains the data.
This is a departure from methods that only consider the fit of each model to the
data [Ger99]. The consequence, as we have seen in Chapter Bl is a method that
can potentially avoid overfitting. In particular, when data has been produced by a
combination of sources, such as the vehicle dynamics and noise, deciding which part
of the model is noise and which part is measurement amounts to choosing the model
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complexity. The balance between model complexity and the fit is provided by the MDL
method.

This chapter addresses the problem of defining realistic trajectory models, the com-
pression functions derived from those models, and an optimisation algorithm to select
models. In order to do so, we need the following elements:

A realistic model for trajectories in which more probable trajectories have
shorter descriptions (Section B3).

A simpler cost function that uses points on the plane instead of images (Sec-

tion 0.4)).
An optimisation algorithm within the class of trajectory models (Section B.7).

Experimental results illustrate the ability of the MDL cost function to find the best
model in the presence of noise and occlusions.

5.2 A simpler dataset

Before we proceed to define the class of trajectory models, we need to decide to which
type of data are we going to fit our trajectory models. Data in Chapter B were image
sequences. These were very large datasets compared to the size of the trajectory
models, and the cost function is influenced by many factors other than the trajectory.
This section justifies the use of a simpler dataset that facilitates the study of the MDL
method.

5.2.1 Points on the ground plane

The trajectory models will be tested with a cost function that compresses points on the
plane. Implementing and testing the realistic trajectory models with the cost function
of Chapter Bl would have two disadvantages.

e Using images would add difficulty to the study the properties of the trajectory
models, because additional factors would influence the final outcome of the ex-
periments. The main factor is that the size in bits of the image data is very large
compared to the size in bits of the trajectory models.

e The computation of the cost function with image sequences is very slow.

There is another reason for the use of a cost function based on points on the ground
plane. An optimisation algorithm that works for the cost function used in the current
chapter will be a useful starting point for an optimisation algorithm for the cost function
of Chapter Bl with the trajectory models of Section B23, because the parameter spaces
are the same.

Therefore the data considered in this chapter will be a list of points on the ground
plane, one per time step. Trajectories on the ground plane will be represented as the
list of points, joined by segments, which are not part of the trajectory, but indicate
which is the next point in the sequence.
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5.2.2 A cost function based on points on the plane

We have seen in Chapter @lthat the cost function Cost depends entirely on the definition
of the function Compress.

Note that this cost function which is defined for sequences of points on the ground
plane is not the same as the cost function for image sequences of Chapter The
underlying principle is the same, though: create a synthetic version of the data that
can be compared to the data point per point.

e pixel by pixel, in the case of image sequences, Chapter Bl
e point per point, in the case of trajectories on the ground plane.

then differences are stored assuming they are small (i.e. assuming they are drawn from
a specific probability distribution that assigns high probability to small values) and the
final size in bits is measured.

5.3 A class of models for vehicle trajectories

In this section we will define a class of trajectory models based on vehicle dynamics.
The basic idea is to minimise the number of parameters by using prior knowledge about
the physical properties of the motion of a vehicle.

The function Compress will be defined for trajectory models and data. The Cost
function of Chapter Bl will be used to assign a cost to each trajectory model.

5.3.1 Realistic trajectory models

The trajectories of vehicles as they move on the road are not random (See Figure B.TJ).
There are definite restrictions regulating the way a vehicle moves [MWS96bh]. The main
factors are:

e Limited manoeuvrability of a typical vehicle.

e Regulations governing road traffic.

e Driver’s preference for minimum effort.

e Dangers of making sudden changes in motion when speed is high.

These constraints can be approximated and summarised by requiring that the position
at time ¢ is a function of the position at some initial time ¢4 and the acceleration values
in the interval (¢y,t). The acceleration changes according to the driver’s actions on
the pedals and the steering wheel. Therefore we will also require that the changes in
acceleration are small.

The key to defining a cost function is to use a parameter space in which realistic
trajectories require shorter descriptions, while less realistic trajectories require longer
descriptions. Trajectories described in such a parameter space will be referred to as
compressed trajectories (regardless of whether the size of the data has actually been
reduced or not with respect to some other parameter space).
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(a) A low probability trajectory: random (b) High probability trajectories.
walk.

Figure 5.1: Probability of trajectories. The trajectory is the sequence of points on the
ground plane. The segments link consecutive points. The units are arbitrary.

For example, if we know that the position of a vehicle over time, p(t), depends on
the second derivative, p, then we should use, as model parameter, the second derivative.
The first derivative, p and the position p can be computed from the second derivative
and the initial conditions (p(1),p(1),5(1)). When using discrete approximations, the
representation of the motion in terms of the initial conditions together with an ap-
proximation of p is more compact, for realistic trajectories, than the finite sequence of
points on the ground plane (p(1),p(2),...).

5.3.2 Parametric trajectories

Let us consider the problem of finding an adequate parameter space for vehicle trajec-
tories, in discrete form. The alternatives considered here are, for a given length of the
trajectory in time:

e Sequences of points (or positions) on the ground plane, a ground plane positions
model.

e An initial point and a final point. The rest of the positions can be obtained by
linear interpolation. This is the constant velocity model.

e A sequences of changes in the acceleration, together with the initial state of the
vehicle. This is a driver’s actions model.

Ground plane positions model

In a first approach, a vehicle trajectory is a set of points on the ground plane

(p(1),....p(n)),
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where p(t) is the position of the vehicle at time step ¢. The sequence (p(1),...,p(n)) can
be thought as a vector of parameters of the trajectory. We will refer to this parameter
space as ground plane positions. This representation of trajectories is general enough
to cover all possible types of motion. But the number of parameters to describe such
a trajectory is large: two integers per time step. Therefore we can claim that this
representation is too general.

Probability of each trajectory. Since the number of bits required to represent
a trajectory x depends only on its length in time, size(z), the probability of each

trajectory, defined as .
P({B) = 27s1ze(m)

(where p is a normalisation factor) is the same for all trajectories. For example, the
same probability would be assigned to all the trajectories of Figure L.l if they were the
same length, regardless of whether they correspond to realistic trajectories or not. We
would ignore the prior knowledge available about the likely motions of an object with
mass. Therefore, these are the properties of trajectory models formed by ground plane
positions:

Distribution The probability distribution implied in the space of trajectories of size
[ is the uniform distribution.

Optimisation The number of parameters is very high, therefore optimisation will be
difficult.

Constant velocity model

The number of parameters can be reduced if only trajectories with constant velocity are
considered. Such a trajectory needs only a start point and an end point as parameters.
This model class was used in the experiments of Chapter Bl It does not include a set
of trajectories wide enough to be useful in complex cases.

Distribution Only trajectories with constant velocity have nonzero probability.

Optimisation The number of parameters is very low, which should make optimisation
easy.

Driver’s actions model

A realistic model class for trajectories is one that gives a high probability to straight line
trajectories, and lower, but nonzero, probabilities to trajectories with low curvature.
This model class is somewhere between the generality of the points on the ground plane
models and the constant velocity models. It will be based on the driver’s preference for
low changes in acceleration. We will refer to models of this class as a driver’s actions
model.

In order to define this model class, we will devise a compression algorithm that
encodes in fewer bits the trajectories with lower curvature. The properties of these
trajectory models that take into account vehicle dynamics are:
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(a) Ground plane (b) Constant ve- (¢) Driver’s ac-
positions locity tions

probability
probability
probability

Figure 5.2: Different trajectory model classes correspond to different prior probabilities.
The top row is an iconic representation of an example in each model class, on the ground
plane (data in black, models in grey). The bottom row is a sketch of the probability
distribution associated to each model class.

Distribution Trajectories which involve low changes in acceleration have higher prob-
ability.

Optimisation The optimisation algorithm needs to consider a models with different
complexity.

Comparing the three model classes

Figure illustrates the three trajectory model classes.

e A ground plane positions model associates a uniform probability distribution for
the trajectories of given length (Figure .2(a)).

e The constant velocity model class contains only trajectories in a straight line,
any other trajectory has zero probability (Figure [.2(b))).

e A driver’s actions model encodes the driver’s actions (accelerate, turn left, etc.).
This class assigns a higher probability to actions that require smaller changes
in acceleration. We will develop this model class in the current chapter (Fig-
ure [.2(c))).

The problem is how to define the driver’s actions model class, using the prior
knowledge we have about vehicle motion. Later on we will define an optimisation
algorithm for these realistic trajectory models.

5.3.3 Reducing the number of parameters

Each piece of prior knowledge can be used to reduce the number of parameters required
to represent a trajectory. Let us derive the properties of vehicle trajectories that we
will use to compress the data.
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The physical model

Let us consider again the trajectories as the position of a vehicle on the ground plane
over time. But, for a moment, assume that p(¢) is continuous. Our development will
be based on the following properties [I'L.02]:

Properties 5.1 Let p(t) be the position of the vehicle as a continuous function of time
t.

1. The state of the vehicle at a given instant is entirely defined by the position p(t)
and its derivatives p(¢) and j(t).

2. Acceleration j is piecewise constant.

3. Changes in the acceleration are small.

A linear model

The state of the vehicle at a given point is defined by the position p, velocity v = p
and acceleration a = p,

p
v | €RS
a
The model is linear,
v
0] a

and acceleration a is left unspecified.

But in fact we are not working with continuous functions, but just with discrete
quantities. Therefore, as an approximation, we need to use a system of finite difference
equations to model the dynamics [[L1.92].

Given the state at time ¢, (p(t),v(t),a(t)), the position and the velocity at time
t + 1 are calculated as follows

p(t+1) = p(t)+o(t)
v(t+1) = v(t)+alt)

assuming that the acceleration a(t) is given for all ¢. This is a linear transformation

() - (5 1)

which is implemented in the function MotionModel. This function generates the list of
states of the vehicle given the initial state of the vehicle and a list of accelerations.

MotionModel[ initial_, acceleration_ ]:=
FoldList[
(LinearModel .#1) ~Join~ #2 &,
initial ~“Join~ {Firstl[acceleration]},
Dropl[acceleration,1]

]
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110
011

The function MotionModel essentially iterates over each time step and multiplies
LinearModel by the previous state. In a sense, this function decompresses a com-
pressed description of the trajectory.

But we can still squeeze more bits out of the acceleration, by making use of Prop-
erties 2l and Bl in page

where LinearModel is the matrix

Run-length encoding the acceleration

Property B in page is that the acceleration a is piecewise constant. When the
constant intervals are long enough, a run-length encoding will provide a compressed
representation of the data.

Run length encoding of a string consists in replacing repeated consecutive elements

n

a,a- -+, by the element itself and the number of repetitions, («,n). For example,
in the following sequence the symbol « is repeated three times consecutively, and the
symbol f is repeated four times.

aaaBBBBa > (o, 3)(6,4)(a, 1)

The function MotionModel that we have just defined, takes as second parameter
the list of accelerations a(0),a(1),.... The following function run-length decodes its
arguments to a list of accelerations that can be given to MotionModel. It replaces each
occurrence (a,n) by the symbol « repeated n times.

DecodeRunLength[code_] :=
Map [
Table[#[[2]1], {#[[111}] &,
code

]

The run-length encoder does not need to be implemented for this application. The
search for the best model, if we were satisfied with this representation, would take place
in the space of run-length encoded trajectories. But, again, the properties in page [[00
allow us to compress more the parameter space.

Changes in acceleration are small: incremental encoding

Property Blin page [[00is that changes in consecutive runs of the acceleration are small.
That is, given the run-length encoded accelerations,

(alanl)a (a27n2): s

the quantity | @; — ;41 | is a small number, for j > 1. Therefore we can compress
the parameters even further, by storing them as differences between two consecutive
acceleration vectors. In this way shorter descriptions correspond to trajectories with
low acceleration, which is what we want to favour.
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When mapping parameters into binary strings we do not need the encoder, but the
decoder. The following function takes as argument a list of pairs («,n) similar to the
argument of DecodeRunLength, but interprets the second element, n as an increment
over the previous value.

DecodeIncremental[ code_ ] :=

FoldList[ {#2[[11]1, #1[[2]]1 + #2[[2]]1} &,
First[ code ],
Drop[ code, 1 ]

]

The functions DecodeIncremental, DecodeRunLength and MotionModel can be com-
bined to produce a trajectory as a list of points on the ground plane from a compact
description of the accelerations and initial conditions p(0) and p(0).

The final trajectory model

Given the initial condition and the incremental run length encoded trajectory, the
function MotionStates will compute the state of the vehicle (position, velocity and
acceleration) at each time step.

MotionStates[ {initial_, incrRunLengthEncoded_} ] :=
MotionModel[

initial,

Flatten[

DecodeRunLength[

DecodeIncremental[ incrRunLengthEncoded ]

1, 1

]
]

The trajectory of points on the ground plane is the sequence of positions over time,
computed by TrajectoryPositions:

TrajectoryPositions[compressed_Trajectory] :=
PositionsOnly[ TrajectoryStates[compressed] ]

where PositionOnly extracts the first component of each state vector.

Example

Let us consider the example of Figure The compressed parameters of a trajectory
are given in Figure (left). The rows of the left hand side array

(01)
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are the initial position and orientation. The rows of the right hand side array

10 (0,0)
10 (0,0.1)
5 (0.1,—0.1)
10 (0,0)
20 (0,-0.1)
10 (—0.4,0.2)

are the run-length encoded changes in the acceleration, starting from the initial accel-
eration. For example, the row

(5(0.1,—0.1))

is interpreted by the function TrajectoryPositions as “add the vector (0.1, —0.1) to
the acceleration during 5 consecutive time steps”.

The corresponding trajectory (Figure i3] right) consists of the list of points on the
ground plane produced by the function TrajectoryPositions.

Bit size. Let us now use the Mathematica interpreter to calculate the size in bits
of the compressed form of the trajectory (the realistic trajectory model), and the
trajectory as ground plane positions

First of all, we need to load the generic packages defined in Chapter ll and examine
for which models or types the function Compress is defined.

In[43]:= Needs["Thesis‘Cost‘"]
In[44] := Needs["Thesis‘Compress ‘"]
In[45] := AcceptedTypes

Out [45]= {Integer, IntegerModel, List, Natural, Rational,
Real, Vector}

Now we need to include the package Thesis‘TrajectoryCompress‘, which adds
two new types to the list of accepted types: GroundPlanePositions to represent
ground plane positions, and Trajectory to represent compressed trajectory models.

In[46] := Needs["Thesis‘TrajectoryCompress‘"]
In[47] := Needs["Thesis‘Trajectory‘"]
In[48] := AcceptedTypes

Out [48]= {GroundPlanePositions, Integer, IntegerModel,
List, Natural, Rational, Real, Trajectory,
TrajectoryModel, Vector}

Let us assign to ¢ the compressed trajectory of Figure

In[49] := ¢ = TrajectoryModel[{{0, 0}, {0, 1}}, {{10, {0,
0}}, {10, {0, 0.1}}, {5, {0.1, -0.1}}, {10, {0, 0}},
{20, {0, -0.1}}, {10, {-0.4, 0.2}}}];

In[50]:= g = TrajectoryPositions[Trajectory @@ c];

The expression c¢ is the compressed model. The expression g is the list of
points on the ground plane that correspond to c, calculated using the function
TrajectoryPositions which we just defined.
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Figure 5.3: (Left) the parameters of a trajectory model. (Right) The trajectory on the
ground plane.

Now we can compare the size in bits of both ¢ and g. For simplicity, the function
Cost as defined in the package Thesis ‘Cost‘ only accepts a restricted set of expressions
that does not include c. But we can just use Size and Compress to calculate the cost
of ¢ in bits.

In[51]:= Size[Compress[c]]
Out[51]= 427

which is the number of bits required to represent the trajectory using the compressed
model. Compare with the representation size of the trajectory as ground plane posi-
tions.

In[52]:
Out [52]

Size[Compress[g]]
1668

5.4 A cost function and its optimisation

We have a function, TrajectoryPositions, that takes a compressed trajectory and re-
turns a sequence of positions on the ground plane. In this sense, TrajectoryPositions
plays the role of a decompressor.

So far we have studied the properties of the model, but no experiments in fitting the
models to real data have been performed. For that purpose, we need to put together
the function TrajectoryPositions, the cost function of Chapter Hl which is the size
after compression, and an optimisation algorithm.

5.4.1 The cost function

The function Cost is defined in the package Thesis ‘Cost‘ of Chapter @l In order to
be of any practical use, the function Compress needs to be defined for trajectories.
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Figure 5.4: Additional function calls for the compression of trajectory models (com-
pare with Figure in Chapter H).

According to the list of steps to extend the definition of Compress, given in page B3
we need to define:

e The function Compress for the model
e The function Compress for the data, given the model

In Section the data type TrajectoryModel was used to represent compressed
trajectory models. To compress a TrajectoryModel we just need to convert it into a
binary string using the function Compress as defined for the data type List.

The compression of the data given the model consists in storing the difference,
point per point, between the data and the trajectory on the ground plane defined by
the model. The trajectory on the ground plane can be calculated from the model using
the function TrajectoryPositions defined above in Section The differences, as
usual, can be compressed as small integers. In this way the function Compress is
extended, in the package Thesis‘TrajectoryCompress‘, to compress trajectory data.
Figure B4 illustrates the additional function call within Compress which is necessary
to compress data whose model is TrajectoryModell...].

The trajectory cost function Cost that we have obtained is designed to be equivalent
to the following definition:

Definition 5.2 TRAJECTORY COST FUNCTION The cost of a set of points on the
plane py, po, . .., pp, given the model m(t) is defined as

c({p1,p2; .-, pn} | m) = length(log*(n)) + Z length(log*(m(t) — p;))

where the log* function for encoding integers of Definition 4]

Let us consider a dataset consisting of the position of an object at three time steps.
Three points are too few for a realistic trajectory, but in this case it helps to see a
dataset of size comparable to the model. In Section we will see more complex
examples. The data are

In[53] := data = GroundPlanePositions[{0, 0}, {92, 115},
{304, 193}]1;

which is displayed in Figure The model family depends on a single parameter, a
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Figure 5.5: Example data.
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Figure 5.6: (Left) the parametric family of models that depends on the number a.
(Right) example for parameter a=100.

In[54] := modell[a_] := TrajectoryModel[{{0, 0}, {100, 100}},
{{3, {a, 0}}}]

An example trajectory is displayed in Figure The model reads as:
e The trajectory starts at (0, 0)
e The initial velocity is (100, 100)
e The initial acceleration is (a,0)

e At each time step, the acceleration increases by (a,0). There are three points in
this trajectory.

The cost of the data for each parameter value is displayed in Figure 71 The two
minima are at a = 0, which is the simplest model, and a = 100, which is the model
that best fits the data. This is similar to the example of integers modelling integers of
Chapter @l The fact that the dataset is so small (just three points) makes the simplest
model (parameter a = () feasible, and thus it has a low cost.

Let us compute the cost of the simplest model (a = 0), the model that best fits the
data (a = 100), and a model at an intermediate value (a = 50).

In[55] := Cost[model[0] [data]]
Out[55]= 194

In[56] := Cost[model[100] [datall
OQut[56]= 200

In[57] := Cost[model[50] [data]]
Out[57]= 205
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Figure 5.7: The cost of the models for —150 < a < 200.

Note that, although Figure B shows a clear double minima, the differences between
the values are small. This also happened in the experiments of Chapter Bl and the
reason might be the same, that the models provide similar explanations for most of the
data, and only differ in a small “portion” of the data, which, nonetheless, is enough to
discriminate between models.

5.4.2 Optimisation

Let us now estimate the minimum of the cost function. Given that the number of
parameters is still high, we need an optimisation algorithm.

The idea is to fit trajectories to data incrementally in the number of points: a
trajectory that approximates the first n points with low cost will be prolonged, in
different ways, to fit the first n 4+ 1 points.

The trajectory is prolonged by adding an extra row to the “increments” part of the
model (right hand matrix of Figures and B.6)). Some prolongations are illustrated
in Figure and B9

The optimisation function, named CheapestTrajectory, defined in the pack-
age Thesis‘TrajectoryOptimization® is implemented as three recursive functions
that call each other. One of them, TrajectoryCandidate, produces prolongations
of a trajectory which will be used as candidates for the next step. The functions
BestTrajectoryModel and BestTrajectoryParameters search exhaustively for the
absolute minima among the set of candidates.

In the interactive examples of this chapter, the function wused is
CheapestIteratorArray, which is simply an exhaustive search for the minimum. The
syntax is:

CheapestIteratorArrayl f, {{&, Qmin, Qmax> Qstep}s {5, ---} ... } ]

which means that the function f is evaluated for parameters a,,... in the given
intervals. The function CheapestTrajectory uses CheapestIteratorArray, and will
be used in Section to fit trajectories to synthetic and experimental data.
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Figure 5.8: Trajectories defined in the interval [1,10] for « = —1,0, 1.
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Figure 5.9: Prolongation of the trajectory of Figure Bii8 from the interval [1, 10s] to the
interval [1,20], by adding rows to the list of run-length encoded accelerations (right
hand side matrix). The three longest trajectories in the plot are the displayed model

with parameters a = —1,0, 1.
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Figure 5.10: The range of models with variable initial angle, on the ground plane.

5.4.3 Example: a straight line

Let us see the algorithm working with a simple example, that will also allow us to
compare the model and data size.

The models in the following family produce of 65 points with given initial speed
and angle:

In[58] := model[speed_, angle_] :=
TrajectoryModel[speed*{{0, 0}, {Cosl[anglel],
Sin[anglel}}, {{65, {0, 0}}}1;

Each of those models is a trajectory in straight line. Figure BI0 shows the family of
trajectories when the speed is 1 and the angle ranges between 0° and 90° in steps of
5°.
The data are the points produced by the model when speed is 1 and angle is 45°.
In[59]:= data = TrajectoryPositions[Trajectory @@ model[1,
45xDegreel] ;

The cost of model[1] [angle] is given in Figure BETIl For clarity, the scales are
omitted. Note that the model used to produce the data is included in the family, and
corresponds to the minimum.

The minimum is found at 45°.

In[60] := Needs["Thesis‘IteratorArray‘"];

In[61] := Needs["Thesis‘TrajectoryOptimization‘"];
In[62] := CheapestIteratorArray[Hold[Cost[model[l.,
angle] [datall]l, {{angle, O0*Degree, 90*Degree,

5*xDegreel}}]
Out [62]= {angle -> 45%Degree}

The cost of model[1.1] [angle] is given in Figure The models are slightly
faster than the trajectory, and there are two local minima, one at 40 degree, and
another at 50 degree. The optimisation function only returns the last minimum.

In[63] := CheapestIteratorArray[Hold[Cost[model[1.1,
angle] [datall], {{angle, O0*Degree, 90*Degree,
5*xDegreel}}]

Out [63]= {angle -> 50*Degree}
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Figure 5.11: The cost in bits of the models with constant velocity and varying initial
angle. The minimum is at the cost that generated the data.
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Figure 5.12: The cost in bits of the models with constant velocity and varying initial
angle. The true speed is slightly higher than the estimated speed of the data.
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- 100 - 50 50 100 150
Figure 5.13: A family of trajectories with three parameters, on the ground plane.

5.4.4 Example: complex model and optimisation

Let us consider the trajectory of Figure A family of three parameters is defined as
follows for parameters a, b and c:

In[64]:= modella_, b_, c_] := TrajectoryModel[{{0, 0}, {0,
13}, {{25, {a, 03}, {20, {0, b}}, {20, {c, 0}}}1;

In[65] := Needs["Thesis‘TrajectoryExperiments‘"];

In[66] := data = TrajectoryPositions[TrajectoryExampleDatal;

The range of trajectories included in this family with three parameters is displayed in
Figure
Let us compute which model has minimum cost.

In[67] := CheapestIteratorArray[Hold[Cost[model[aa, bb,
cc][datalll, {{aa, -0.1, 0.1, 0.05}, {bb, -0.05, 0.15,
0.01}, {cc, 0.5, 0.7, 0.05}1}]

OQut[67]= {aa -> 0., bb -> 0.03, cc -> 0.65}

The model with minimum cost is displayed with the original data in Figure T4l Note
that, although the fit is not exact, the “best model” is significantly simpler than the
“model” used to generate the data, in Figure
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Figure 5.14: The data (black) and the best model (grey) on the ground plane.

5.5 Experiments

In this section the cost function and the optimisation method of Section B4 are used
to select the models with minimum cost for synthetic and real trajectories.

The MDL method can be used to choose between models of different complexity,
and one of its applications is in the discrimination of the best fit even in the presence
of noise (which might have an effect in the model complexity). In these experiments
we will fit models to data with and without noise and compare the optimal model
complexity in each case.

Further, we would like to know that, if the compression ratio is useful in discrimi-
nating between models for the same data, could we use it to compare between fits for
different data?

e Which is the relation between compression and quality of the fit. In particular,

— Can we use compression to compare between different models mq, mo, ...
that describe the same data d?

— Given datasets dy, ds, . . ., let m; be the cheapest model for dataset d;, for i =
1,2,.... Can we use set a threshold r so that if the compression ratio
size(d;) /size(m;) > r then the fit of model m; to data d; is considered good
in any sense?

e The robustness of the fitting method in the presence of occlusions and noise in
the data.

e The ability of the method to strike a balance between model complexity and
goodness of the fit of the model to the data.

The first experiments use synthetic data, in which a simple but irregular dataset is
modelled, and occlusions and noise are added.

112



5.5. EXPERIMENTS

These tests are followed by experiments with 21 real trajectories of vehicles on a
ground plane, as produced by a prototype car tracker [Sul94] from real image sequences.
Models of different complexities are fitted to the data.

5.5.1 Setup of the experiments

The software used for these experiments includes the functions Compress, Cost,
Cheapest and CheapestTrajectory and additional functions for display, verification,
data generation and debugging. The functions are written in Mathematica version
4.0, and run on a Sun workstation at 450 MHz. Each evaluation of the Cost function
takes a few seconds. Each optimisation takes between ten minutes and half an hour
depending on the model complexity.

The data consists of points on the ground plane given by pairs of coordinates.
When the data are experimental measurements on the ground plane, the spatial units
are centimetres, and therefore integers are used for the coordinates on the ground plane.

5.5.2 Synthetic data

The main question to ask is under which circumstances the method described in the
previous sections strikes a balance between model and data complexity.

In particular, we are interested in seeing if the cost function assigns higher, values
to trajectories under the effect of noise on the data.

The family of models is divided into classes. The models within each class have
similar complexity. The complexity of a model is given by the number s of rows in the
run-length encoded acceleration matrix

air a2 .
<a21 Cl22)7 . (,)
n

The parameter n is the step size. The total number of points in the trajectory is sn.
Since all trajectories have the same length, 32, the step size n is 32/s. Higher step size
n corresponds to lower complexity s.

The simplest models have one row n = 1, s = 32, and the model is a vehicle with
constant velocity. The most complex models have eight rows, n = 8,s = 4. The
experiments consist in finding the model m,, with complexity n that yields lowest cost,
forn =1,2,.... Then the cost of the models my, mo, ... are compared to see which is
the optimal complexity for the data.

A typical trajectory is shown in Figure Each point is an element of the
trajectory, and the lines join segments in sequence. In the case of synthetic data, the
trajectory begins at (0,0), the bottom-left corner of the plot.

In the following experiments only the step size n (and therefore, the number of
iterations s needed to cover the entire trajectory) varies from one experiment to the
next.
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Figure 5.15: Dataset Hand: A simple trajectory obtained by clicking on the screen.
The units are arbitrary.

Simple trajectory

Synthetic data can be created by clicking on the screen and converting each point to a
pair of coordinates on the ground plane. The dataset Hand, displayed in Figure BTl
was created in this way. It is sufficiently simple to illustrate the basic properties of the
method. In the next section we will use trajectories obtained experimentally.

First of all, we run the algorithm that finds the cheapest trajectory on the dataset
Hand, using a different step size. The step size that yields the best compression is
considered the best one.

Then we create the datasets Occlusions and Noisy from Hand and run the optimi-
sation algorithm again. The comparison between minima at different step sizes, allows
us to estimate the extent to which the distorted datasets affect the performance of the
algorithm.

The optimisation algorithm has the following parameters:

e The initial speed is in the range [50, 100] which is searched in steps of one unit.
e The initial angle is in the range (0°, 360°), which is searched in steps of 15°.

e The increment intervals, both for the x and y variables, are in the range [-40, 40]
which is searched in steps of one unit.

Note that the spatial units are the same as in the plots.

The results for different step sizes are displayed in Figure T8 which shows the
model with lowest cost when the step size n is a constant, for n = 4, 8,16, 32. The data
is displayed in black, and the model is displayed in grey.

Comparing the minima for each step size n, the minimum is attained at n = 16.
Therefore, a model of medium complexity produces the shortest description of the
data. The model with higher complexity s = 4 gives a close fit to the data, whereas
the model with lower complexity s = 1 is the simplest. The lowest cost is reached in
between, avoiding the use of an overly complex model.
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Figure 5.16: Dataset Hand. Best fits for varying model complexity s.
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Figure 5.17: Datasets derived from Hand

Simulating occlusions

Occlusions consist of the total or partial disappearance of the object being tracked,
because other objects come between it and the camera. This situation is typical of
busy traffic scenes. For this reason, 3D models for tracking are often chosen on the
basis that they can help to overcome occlusion.

Occlusions are simulated in the dataset Hand by modifying the position of points on
the plane for a range of points in time. Instead of replacing points by a “null” symbol
that would represent the existence of no measurement, the points in the occluded range
are displaced to random locations. The underlying assumption is that a measurement
is always given for the position of the vehicle at those images, even if it is wrong. The
result is the dataset Occlusions in Figure |5.17(a)

Running the same optimisation algorithm as above, with the same parameters,
yields the cost values of Figure The optimal number of segments is 2 (step 16).
Similar to the case for the dataset Hand, a balance is reached between model complexity
and closeness to the data.

The large errors in the data do not prevent finding a good model for the trajectory,
which illustrates that the fitting method is not easily influenced by outliers.

Simulating noise

Let us now consider the case when the data just has additive noise. Noise in the
data can be simulated by simply adding small random values to the coordinates of the
ground plane positions.

In the case of these experiments, uniformly random displacements (in the interval
[0, 200] for each coordinate) are applied to each of the ground plane positions that form
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Figure 5.18: Dataset Occlusions. Best fits for varying model complexity s.
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the data, to create a noisy version of the trajectory. The result is the dataset Noisy as
displayed in Figure

The optimisation algorithm, with the same parameters as for the datasets Hand
and Occlusions, gives the cost values of Figure The cheapest model is the one
with lowest complexity (step size n = 32). Note that this complexity is lower than the
complexity of the cheapest models for the datasets Hand and Occlusions.
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Figure 5.20: The car park scene. The trajectories begin and end at the points A, B or
C.

5.5.3 Experimental data

Let us now examine the performance of the cost function with data obtained from
measured vehicle trajectories.

The dataset consists of 21 trajectories produced by a car tracker [Sul94]. The data
was produced by a vehicle moving on a car park between the points A, B and C of
Figure The trajectories are labelled with the format a/Sn where « is the starting
point, 3 is the end point, and n is an index to distinguish between different trajectories.

In order to evaluate how the method handles different model complexities, the
experiments consist in optimising using different step size n. This means that the data
is divided into contiguous segments of n points. At each iteration in the optimisation,
a segment of n points is added to the data being modelled. This corresponds to the
leftmost index in the run-length encoded description of the trajectory. For example,
the step size in Figure is 10.

This is similar to what we have seen with synthetic trajectories. A difference
between these experiments and the experiments with synthetic data, described in
page [[T3 is that now the datasets have different lengths, and therefore there is a
variation in the number of steps required to cover each dataset.

The optimisation algorithm is applied to find the cheapest model that fits each
of the trajectories. There are 21 trajectories, and 9 different step sizes n =
4,5,6,7,8,9,10,11,12.

In a first approximation, a visual comparison by human perception has been done
between the model and the data, and a rank between 0 and 4 was assigned. The
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Table 5.1: Rough estimate of the quality of the fit for each trajectory and each step
size.

purpose is to have an overview of the performance of the fitting algorithm, so that we
know which model complexity (as step size n) and trajectory are worth looking at.
The results for varying dataset and model complexity are displayed on Table BIl This
table is used as a guide for the properties we want to look at.

Understanding Table B.Il The scores are produced by a subjective classification
according to the following rank:

mmm model fits most of the data and ends at the same location.
mm model fits most of the data, but ends at a different location.

mm— model fits about half of the data.

o the first few points of model and data coincide. This corresponds to a successful

search for the initial angle.

—— the trajectory given by the model is completely different to the data

Best model complexity. We can see in Table Bl that the best results are obtained
for step size of around 10. Let us look more closely at the results for step size 10.
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The fitting method applied to 21 experimental trajectories, with n = 10.

The compression ratio of each best fit is given at the bottom-right table.
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Figure B2l shows the trajectories, their models, and the compression ratio achieved
when the model is used to compress the data. As usual, the gray lines correspond
to the model, the black lines are the data. Each model is the best fit found by the
optimisation algorithm.

Optimisation parameters. The parameters for the optimisation are:

e The data were taken in non-overlapping sequences of 10 images. That is, the best
trajectory for the first ten points was found. Then it was prolonged in different
ways to include the next 10 points. The best one was chosen, and so on.

e The initialisation intervals were

— Speed between 0 and 1000 centimetres per 4 images in steps of 50, which
is between 0 and 250 cm. per image in steps of 50. Thus the maximum
speed is 62.5 metres per second or equivalently 225 kilometres per hour,
well beyond the speed limit.

— Angle between 0° and 360° in steps of 5 degrees.

e The acceleration increment intervals were the same along each axis, between -40
and 40 in steps of 5 units. The acceleration units are cm/s?.

Compression ratio as a measure of quality of the fit. When examining how

the method works with different datasets we will not be able to compare the value of

the cost function, which is the size after compression. This is a consequence of the

trajectories having different lengths. For example, a model fit to a short trajectory will

almost always have a low cost value, independently of whether the fit is good or bad.
A better metric might be the compression ratio [Say00]

size before compression

size after compression

as an attempt to make the comparison independent of the size of the data. It is
expected that a high compression ratio will correspond to a good fit, but this is not
true across different datasets. as will be discussed in Section The compression
ratio of each best fit is included in Figure B2211

5.6 Discussion

The experiments of Section have been produced by combining
e A computable approximation to the model selection method.

e A realistic model for vehicle trajectories based on the driver’s sequence of actions
over time.

e An optimisation method.

The following four issues are discussed below:
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5.6. DISCUSSION

Tradeoff. The main property of the method is that it strikes a balance between
model complexity and accuracy of the fit to the data.

Optimisation. The experiments illustrate the fact that, by choosing a model based
on the physical properties of objects in motion, we can reduce the number of parameters
of the model class. This makes optimisation easier.

Compression. Using a model class based on the physical properties of the motion
of the vehicle, we have achieved compression of the trajectories. At the same time,
the compression ratio can be used to choose between models for a particular dataset
d. But, the question now is, can the compression ratio be used to compare the match
of models across different datasets dy,ds,...7

5.6.1 Tradeoff using different model complexities

The main motivation behind the experiments with the synthetic datasets was to com-
pare models with different complexity.

The question is whether one can expect the model fitting method to choose a model
with intermediate complexity, that adjusts to the properties of the data. For example,
given datasets d and d’, where d’ is d plus noise, one would expect a simpler model to
be best fit for d’ than d, because there is less useful information in d’ than in d.

As it can be seen from Figure LT0l the preferred model for the dataset Hand was
made of segments of eight points, n = 8. Under the same conditions, the preferred
models for the same dataset but affected by occlusions, Occlusions, were both the
models that divided the trajectory in segments of 8 and 16 points (Figure BIX). When
random noise was added to each point, dataset TrajectoryNoise, the preferred model
was the simplest one that considered the trajectory as a straight line with constant
speed, Figure

We can interpret the choice of a simpler model when the data has noise added,
to the loss of information that the data has suffered. The model is not describing the
same data in Hand and Noisy. The model describes a smaller portion of the information
conveyed by the data in the later case.

As a consequence, we can expect this model fitting method to fail gracefully as the
amount of noise increases.

5.6.2 Optimisation and additional knowledge

A model class and a cost function that assigns a cost according to the data, is of no
use without a way to find the model with minimum cost.

The problem encountered when deciding about which trajectories to consider in
Chapter Bl was to avoid a high number of parameters. The solution at that point was
to restrict the family of trajectories to those that describe trajectories with constant
velocity. In this way the optimisation became a search on two parameters.

The solution proposed in this chapter has a higher number of parameters, and
therefore an optimisation algorithm benefits from additional knowledge. This addi-
tional knowledge is fact that the trajectory model is somehow local: the state of the
vehicle at time ¢ only depends on the previous four time steps. As a consequence, the
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prolongation of the best fit for kn points, for integers £ and n, is a good estimation of
the best fit for (k + 1)n points.

Failure with high model complexity

In Table Bl we can see an almost total failure to fit models of low step size n. The bad
performance of the fitting method for high model complexity (step size n = 4) might
be for either of the following reasons:

e the parameters of the search were set for trajectories with longer step size n.
Thus, a trajectory with step size 4 tends to swing around the data, always with
higher acceleration (as in Figures and BT9 both bottom right), or

e a small step size n needs a higher number of steps s, each of them corresponding
to three more parameters. Thus the size of the model increases more than the
benefits of using a more accurate model.

The plots for the fits with step size n = 4 show that the “best fit” tends to be a
straight line. Therefore we can conclude that we do not need to refine the parameter
set, but simply that the model complexity increases too much.
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Figure 5.22: The fitting method applied to some of the 21 real trajectories, when
each data iteration processes n = 4 points. It fails in most cases. The compression
ratio of each best fit is given at the bottom-right table. Note that in most cases the
compression ratio is lower than one (no compression achieved).

- 15000

AB1 AB2 AB3 AB4 1.08 0.96 1.06 0.96
AC1 0.86

5.6.3 Compression ratio as measure of understanding

The cost function of models has been used to compare the way different models

mi, Mo, ... describe the data d. The best model is the shortest one m;. In terms
of data compression, this is also the model with highest compression ratio
length(d)

= length(m;)
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It seems reasonable to take the MDL-based method one step further and question
whether the compression ratio conveys any additional information. The answer can
only be positive when datasets of different sizes are considered. For example, we might
want to compare different model classes {m;};7~, with different data sets {d;};_,. Can
a family of models be considered better just by achieving a higher compression ratio?

One idea would be to choose a threshold, and only take as a good fit the trajectories
that achieve a compression ratio above the threshold.

But the experiments show this would not work. Trajectories AB3, BA1, and BA2
of Figure 2Tl have the highest compression ratios of the whole dataset while their fit
is particularly bad. And, otherwise, there are particularly good fits, such as the one
for trajectory AC2, with a low compression ratio.

The reason behind these differences between compression ratios might in that the
best fits to the trajectories AB3, BA1 and BA2 can still model a large portion of the
data, while the best fit to the trajectory AC2, although correct from the point of view
of an observer, is only explaining a smaller part of it, and considering the rest of it
noise. The conclusion is that different datasets, albeit produced by the same source,
contain different amounts of noise.

5.7 Conclusion

This chapter illustrates two points:
e The MDL principle at work when choosing between models of different complexity

e A class of trajectory models that can be used with the cost function of Chapter
for vehicle tracking.

5.7.1 MDL at work

We have used the MDL method of Model Selection to choose a trajectory model among
a family of trajectory models with different complexities. Vehicle trajectories were
defined as models which represent the trajectory in a number s of segments. Model
complexity is approximately the number of segments. In fitting trajectory models to
data, a tradeoff needed to be established between the complexity of the model, and
the quality of the approximation it provides to the data. The MDIL-based method
presented in this chapter provides a solution for those cases.

Generalisation to image sequences. The method presented in this chapter uses
the information provided by the data points only to evaluate the cost function. The
data, which currently is a sequence of points on the plane, could be replaced by a
sequence of images. The cost function, instead of taking points on the plane as data,
would take the image sequence as data, and such a cost function has been presented
in Chapter Bl The MDL principle is applied iteratively in order to obtain the model
trajectory which yields the shortest description of the data. This would work the same
way if the data consisted of points on the plane or a sequence of images.
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5.7. CONCLUSION

5.7.2 The trajectory models

The trajectory models used in this chapter correspond to data (de)compressors op-
timised for the trajectories of vehicles, according to the physical properties of their
motion.

The state of the vehicle at each time step is a function of the initial conditions
(position, velocity, acceleration), together with the increments in acceleration. The
acceleration is a piecewise constant function of time, corresponding to the drivers’
pressing of the pedals and turning of the steering wheel.

This representation of the trajectory in terms of initial conditions and the accel-
erations, can be used to produce compact descriptions of the trajectories with higher
probability.

Better compression is achieved when the model is a more accurate description of the
data. Experiments are used to find good fits to synthetic and experimental trajectories.

The method is also robust against noise and occlusions. The presence of noise and
occlusions makes the method prefer simpler models.
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Chapter 6

Trajectory analysis

This chapter presents a method for the analysis of vehicle trajectories produced by a
vehicle tracker. The input is a list of points on the ground plane. The output is a
labelling of the trajectory according to four possible actions of the driver: accelerate,
break, turn left and turn right.

points on the ground plane

Vehicle tracker > Trajectory analysis

The contents of this chapter have been published in [FM98|]. The techniques used in
this chapter are a departure from the MDL method used in the rest of the thesis.

6.1 Introduction

We are given a vehicle trajectory as points on the ground plane, typically the output
of a vehicle tracker. This trajectory is a list of ground plane positions, p(1),...,p(n),
taken at regular time steps. Each position at time step 1 < ¢ < n is a pair of coordinates
p(t) = (z(t),y(t)) on the ground plane. Our purpose is to label the trajectory of the
vehicle with a sequence of labels, one per time step, that roughly describes the purpose
of the driver at each time step.

One way to approach this problem is to approximate the ground plane positions
with a continuous function of time, f(¢), and classify the vehicle’s motion according to
the values of the derivatives of f. For example, a vehicle is accelerating at instant ¢
when the norm of f (t) is above a threshold. This approach has two problems.

e The continuous approximation f should take into account that the data corre-
sponds to the motion of a vehicle. In particular, approximating the data with a
generic family of polynomials will require taking into account that many poly-
nomials do not correspond to a realistic vehicle trajectory. Thus, a polynomial
f could approximate p(t) for continuous ¢, but the values of the derivatives f(t)
and f(t) might be very different.

e Even when the position, velocity and acceleration of f are similar to the original
source of the data, and therefore f,f are good estimates of the velocity and
acceleration of the vehicle, the vehicle’s states are not necessarily a good measure
of the driver’s actions. For example, the vehicle might be moving momentarily to
the left even though the driver is turning to the right, or the tracked trajectories
might contain errors that need to be filtered out.
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6.2. LOW CURVATURE TRAJECTORY APPROXIMATION

Those two problems will be addressed in this chapter. In particular,

e A trajectory model is fit to data produced by a vehicle tracker. This trajectory
model is a low degree and low curvature polynomial.

e A method for the analysis of trajectories and their labelling is proposed. It is
based on a Hidden Markov Model with four internal and observed states.

The low curvature approximation of trajectories uses the least squares error model,
together with a problem statement that allows a solution in closed form. Hidden
Markov Models are used to model the driver’s actions over time with four simple inter-
nal states and four observed states. The observed states are obtained using thresholds
in the derivatives of the low curvature approximation to the trajectory. Viterbi’s al-
gorithm is used for finding the most probable sequence of internal states. A Hidden
Markov Model is trained with frequencies from a dataset of 21 trajectories. The per-
formance of the model for labelling of trajectories is illustrated with experiments.

6.2 Low curvature trajectory approximation

In this section a continuous approximation of a trajectory is defined. The approx-
imating function is designed to be both close to the original data and to have low
curvature.

The approximation is defined as the parameter for a particular cost function that
minimises at the same time

e the distance between the approximation and the given measurements and,
e the curvature of the approximation.
We will divide the problem in two steps:

e Polynomial approximation: the data is first approximated using a polynomial,
which might have high degree. This polynomial serves as continuous approxima-
tion to the data.

e Variational problem: the variational equation is solved under the constraint that
the solution is a low degree polynomial that might not fit the data, but approxi-
mates it.

Let us first define the cost function as a functional. Later on we will study how to

minimise the functional.

6.2.1 Definition of the cost function

Input. We are given a list of n points on the ground plane, p(1),...,p(n), which are
produced by a vehicle tracker at equal time intervals. These are the measurements
that will be used in the low curvature approximation.
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6.2. LOW CURVATURE TRAJECTORY APPROXIMATION

Output. The purpose is to find a smooth approximation f to the measurements,
with the property that the curvature of f should be reduced, as it corresponds to the
motion of a moving vehicle. In [MWS96bl, MW97] vehicle motion on the ground plane
is modelled by stochastic differential equations involving the speed and the steering
angle. The constraints in the equations are realistic in not allowing vehicles to slip
sideways: the velocity vector is always directed along the axis of the car.

The cost function. The motion model assigns to each possible trajectory f of the car
a cost CurvatureCost(f), which is high if f has a high acceleration or rapidly changing
curvature. An additional cost ApproximationCost(f) depends on the compatibility
between the trajectory f and the measurements. The total cost is a weighted sum of
CurvatureCost and ApproximationCost. The most likely trajectory is estimated by
minimising the weighted sum over a suitable space of trajectories. An expression for
that cost appears in [MW97]. The alternative proposed here consists in splitting the
problem in two steps:

1. Approximate the data, which are discrete points on the ground plane, using a
low degree polynomial f that fits the data closely, even though f might have high
curvature. The polynomial f is a continuous approximation to the data.

2. Approximate f by a function f with low curvature.

In order to choose an approximation f to f , let us define a cost for f as a measure
of how close is f to f, and the curvature of f:

TotalCost(f) = y - CurvatureCost(f) + ApproximationCost (f, f)

where p will be chosen experimentally. Note that TotalCost is a functional of the
function f [Bol61]. The cost functions are defined as follows:

ApproximationCost measures the way a function f approximates the polynomial f .

A

ApproximationCost(f, f) = /1n(f(t) — f(t)%dt

CurvatureCost measures the curvature of the approximating function f The
CurvatureCost is lower when f has small second order derivative, which is the
acceleration.

n d2f
CurvatureCost(f) = / (== )%dt
| dt?
In practice, these are the steps to follow, given the data as points on the ground
plane, in order to produce the low curvature approximation.

1. Take a short segment of the data (in our case, 10 points)

2. For each component j, calculate fj, a low degree polynomial that approximates
the data

3. For each component j, use the closed form solution of the minimisation problem
for the functional, in which the approximating polynomial f; has been replaced,
to obtain the low curvature approximation.
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6.2. LOW CURVATURE TRAJECTORY APPROXIMATION

The data are points on the plane, with two components, x and y. Let us work
independently on each component, in order to find approximations f, and f, with low
cost. The final low curvature function will be (f,, f,). In the following formulas we
will assume that the components we are using are the numbers p(1),...,p(n).

6.2.2 Analytic optimisation of the cost function

The direct estimation of the minimum cost trajectory would be difficult because
TotalCost(f) is a highly non-linear function of f. But it is possible to obtain a
closed form solution for the functional TotalCost [BolG1].

Polynomial approximation

Let us fit a polynomial f to the data. Let f(s) = fo + fis + fas? be the degree two
polynomial that minimises the least squares error with the samples,

n

S () - pt))?

t=1

Note that a higher degree polynomial may be needed in applications where n is large
and the underlying trajectory is complicated. In the current application degree two
is sufficient. The function f fits closely to the measurements, but in general f has
high second order derivatives, which result in high curvatures for the ground plane
trajectory.

Variational equation

The polynomial f must now be replaced by a function which fits the measurements
closely and which has a low second order derivative.

The low curvature approximation is the global minimum of the functional
TotalCost,

TotalCost(f) = pu-ApproximationCost(f)+ CurvatureCost(f)
tn N tn d2
= [T joras [ (6.1)
t1 t1 dt
el}'or Cur\:a'ture

where f is the low degree polynomial used to approximate the data as a continuous
function, and the constant A is defined as p=% = \ to simplify the formula of the
solution.
Analytic solution of the variational equation
The Euler-Lagrange equation [Bol61] for TotalCost is linear,

d*f

o + X =M (6.2)
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The polynomial f has degree two, thus f = f is one solution of Equation The
general solution f,, to B2 is [Bur6§]

i = e (G5) oo () < (35)

ron () (o) e (32) 16

where aq,...,a4 are arbitrary real numbers. The expression TotalCost(f,) is a
quadratic polynomial in aq,...,a4. The values aq,...,as at which the minimum of
TotalCost(f,) is attained, can be replaced into f,, to obtain f.

The process described above yields each of the two components (f, f,) of the low
curvature approximation.

6.3 Hidden Markov models for trajectory labelling

In this section we will use a method for labelling measurements from vehicle trajectories,
based on the low curvature approximation produced in the previous section.

6.3.1 Motivation

Given the measurements as a sequence of positions of a vehicle on the ground plane
at regular time steps, it is possible to find a piecewise continuous approximation that
both approximates those measurements and keeps a low curvature, as explained in
Section B2l Now each of the segments can be labelled as an observed action, according
to a function related to the curvature of the vehicle. Let us consider the following low
level four states for the driver,

Ahead [ the vehicle is moving with approximate constant velocity
Left [l the vehicle is turning left
Right 2] the vehicle is turning right

Stop Xl the vehicle stops suddenly, the motion is characterised by second derivatives
above a threshold

Each of these actions is understood to be chosen by the driver at each point. The list
of actions is kept simple and general. Later on they can be grouped up to obtain a
simplified description of the trajectory.

By assigning a label to each segment depending on the acceleration and curvature
we may still not obtain the sequence of actions taken by the driver. Errors of the vehicle
tracker as well as spurious movements, which are not relevant for our application, would
produce segments that would be labelled wrongly. In order to estimate the actions
decided by the driver, let us use a Hidden Markov Model [RLS83] [R.I86].

A Hidden Markov Model is a model used to describe a sequence of states such that

e the transition between one state and the next is decided by a random variable
(Markov Chain of first order). This is the state transition probability.
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e at each time step, an observation is a random variable that depends on the state.
This is the observation probability.

The result is a Markov Chain in which we might not determine the internal states from
the observations at each element of the chain, but in which we can assign probabilities
to each sequence of states.

Once we have defined the Hidden Markov Model, Viterbi’s algorithm can be used
to calculate the most likely sequence of actions taken by the driver. But before that we
need the parameters of the Hidden Markov Model: the transition probabilities between
actions, and the probabilities that relate the actual actions with the observed ones.

6.3.2 Initial labelling of segments

The sequence of labels that will be input in the HMM has yet to be computed from
the continuous approx1mat10n to the data. We will see now how to label each segment
with the observations {\1} 7% %} to each segment. Later on the HMM will be used
to compute the most probable sequence of driver’s actions, or internal states, that
correspond to those observations.

The label for each segment depends on functions of the continuous approximation to
the segment. Let f(t) = (x4, ;) be the smooth approximation obtained in Section G2
where ¢ belongs to the time interval [1,n] of data that f approximates.

The following estimates refer to the interval of data that f approximates. The least
speed u of the car is estimated by

uw=min{\/z? + 9} |1 <t <n}

Let s be the time at which the curvature of the trajectory attains its maximum absolute
value and let w be the wheelbase of the car. The greatest steering angle 6,,,, of the
car is estimated by

’L.

gmax = w gsj:s - ji'sys
(22 — §2)%2
The quantity ® = u €., /w is an estimate of the greatest rate of change of orientation.
The segment is classified as one of {T, 0 o] X} according to table

class condition
-1/2<60<1/2

1/2 <6

______ 0<—-1/2

X ] u < 100

Table 6.1: Classification of a measurement segment depending on the greatest rate of
change of orientation 6, and acceleration u. The unit of € is radian/s, and the unit of
u is cm/s.

The list of segments for the entire trajectory is thus reduced to a string of labels

drawn from the set i} 2} 2] i2f The next step is computing the sequence of internal
states from the sequence of observations.
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(a) Markov Chain (b) Observations from
internal states

Figure 6.1: Hidden Markov Model of the four internal states and four possible obser-
vations.

internal ‘ observed

accelerate

left
right i
stop {xi

Table 6.2: Internal states and observed labels.

6.3.3 Hidden Markov Models

A Hidden Markov Model [R.I86], is used to model a sequence of observations with four
internal states. The internal states form a Markov Chain. Each state of the chain
produces an observation according to some probability distribution. The model has
two main components:

State transition The probability that an internal state i is followed by another in-
ternal state j in the sequence is given by the entry at (7, j) in a transition matrix
A with rows and columns indexed by states.

Observation of state The probability that a state 7 is observed as label j is the entry
(1,7) of an observation matrix B, with rows indexed by the states and columns
indexed by the observation labels.

Initialisation The probability that the initial state of the sequence is 7.

If the system is in state 7, then the probability of a transition to state j is A;;. If the
system makes a transition to state j then the probability of the observation k is Bjy.
The distribution of the initial state is given by a vector 7 indexed by the states.

The proposed model is illustrated in Figures .1l and B2, and contains four internal
states which are labelled {, [2] [~], } These are the true states of the car, corre-
sponding to the actions ahead, turning left, turning right, stopped. The are also to be
inferred from the measurements. The HMM has four output labels, {1} £ i ix}.
These are the labels obtained from the measurement segments as described above.
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Estimating the model parameters. The model has a large number of parameters.
Fortunately, it is possible to estimate these parameters given a training set. This
training set consists of a sequence of states together with the sequence of corresponding
observations.

e From the frequency in which state i is followed by state 7, it is possible to estimate
entry (7, ) of the transition matrix.

e From the frequency in which state ¢ lead to observation 7, it is possible to infer
the entry (4, j) of the observation matrix.

Therefore the matrices A and B are learnt from a training set of trajectories, segmented
by hand.

Estimating the states with highest probability. Given data in the form of a
sequence of observations, it is possible to calculate the probability of each sequence of
internal states that could have produced those observations. This can be done by a
linear combination of the probability that each sequence of internal states produced the
data (which can be calculated with the help of the observations matrix). The weights
of this linear combination are the probability of each sequence of internal states (which
can be calculated with the help of the transition matrix and the initialisation vector).

But it is not necessary to perform those calculations. Viterbi’s algorithm [R.I86]
produces the sequence of states that has higher probability, and yields its probability
as a result. And the algorithm does so in linear time with respect to the number of
internal states and the length of the sequence.

Viterbi’s algorithm will be used in the following experiments to derive a sequence
of internal states from the observed labels, therefore providing the last step to obtain
a sequence of driver’s actions (which are the internal states) from a trajectory given
by a vehicle tracker (which is a sequence of points on the plane).

6.4 Experiments

So far we have studied a method to obtain continuous measurements from a discrete
trajectory, in the form of a low curvature approximation, and a method to model those
measurements in terms of internal states of the vehicle. Now we proceed to use this
method with trajectories obtained from a car tracker.

6.4.1 Setup

The trajectory labelling algorithm has been tested on a set of 21 image sequences
displaying a vehicle moving across a car park. The images were taken by a digital
video camera looking through a second floor window. A typical image is shown in
Figure

The car had a known geometric model, and the same car was used for all the
sequences. The wheelbase was w = 250 cm. The camera was calibrated using the
method described in page B4l and measurements were obtained using the model-based
vehicle tracker described in [Sul94]. The tracker measures the position (z,y) of the

135



6.4. EXPERIMENTS

Figure 6.2: A typical image

centre of the rear axle and the orientation 6 of the vehicle. In these experiments
only the (z,y) measurement was used. The angle measurements were discarded. The
calibration included the determination of the ground plane position relative to the
camera. The tracker was initialised by hand in the first image of each sequence.

6.4.2 Parameters

The sequence of measurements for each trajectory was divided into overlapping seg-
ments, each containing 10 measurements. Each pair of adjacent segments overlapped
by 9 measurements. The time between the first measurement in a segment and the
last measurement was 1.6 seconds, which corresponds to using an image of each four.
Experiments showed that the performance of the algorithm was degraded if the overlap
between adjacent segments was reduced.

The matrices A, B and the initial state vector = are

111/121 5/121 3/121 2/121
1/32  31/32 0 0

A= 5/69 0 64/69 0
2/63  2/63 3/63 56/63
114/132 6/132 10/132 2/132

s | 931 24/31 1731 0

28/73  1/73 42/73 2/73
0 0 0 1

(121 3 5\
T=\21"21" 21" 21

Although the diagonal entries of B are large (for example, if the state of the car
is , then there is a high probability, 114/132 > 0.86, of observing the label T) they
are not equal to 1, because there is a small probability that the observed label will not
correspond to the true state of the car.

The probabilities in the matrices A, B, and the vector m were obtained by the hand
segmentation of 21 training sequences showing the motions of a car in a car park.
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observed states [ i'i'i'i'ilili

internal states |T|T|T|T|T|T|T|

Figure 6.3: A left turn

For each trajectory, the list of segments was reduced to a sequence of labels using
the method described in Section Viterbi’s algorithm was applied to this sequence
to produce the sequence with highest probability according to the Hidden Markov
Model.

Example 6.1 A LEFT TURN A typical trajectory of the car is shown in The
car moves from bottom right to top left. The arrow represents the normal to the
trajectory, drawn as if the driver were extending the right arm out of the window.
The base points of the arrows are the coordinates of the vehicle on each sample. The
sequence of extracted labels and the most likely sequence of states, as identified by
Viterbi’s algorithm, are shown in Figure

Now how the trajectory is effectively divided in two regions: the first one, in which
the vehicle is moving forward, and the second one, when the vehicle turns to the left.
The small portions of trajectory, during the turn, in which the vehicle seems not turning
are filtered out. [J

Example 6.2 A STOP AND A RIGHT TURN A more complex trajectory is shown in
Figure The trajectory begins at the top left and then turns right. First, the
vehicle stops (at the crossroad), then it moves ahead and turns right. The sequence
of estimated internal states is divided in two segments. The first half are a stop, as it
corresponds to the first half of the sequence in time which the car arrives to a halt and
waits. In the second half the short measurements that indicate that the vehicle might
not be turning are filtered out.
which means that the driver stops, and then turns to the right. [J

Example 6.3 A COMPLEX TRAJECTORY Another trajectory is shown in Figure
The car moves from bottom left to top right. In this case the final turn in the trajectory
of the vehicle is not filtered out, but the spurious observations in the middle of the
trajectory disappear. The trajectory is effectively divided in four parts.
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X

observed states

internal states XXX XD XD X DX [ DX X DX [ JATATA AR AR AR AR A AR A AR A AT

Figure 6.4: A stop and a right turn

observed states

internal states | T | 1 [~~]~]

Figure 6.5: A more complex trajectory
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O

6.5 Conclusion

A method to label tracked vehicle trajectories has been presented. This method approx-
imates discrete measurements with a low curvature continuous function, and processes
it in order to obtain a labelling of the trajectory. A label has been assigned to each
original measurement. This label is intended to represent the driver’s action rather
than the instant physical motion of the vehicle at that point.

In order to label the trajectory, which was given in discrete form, we have first
approximated the trajectory with a low curvature polynomial. This polynomial was
obtained as a minimisation of a functional which combined a cost in terms of goodness-
of-fit, and a cost in terms of curvature. Therefore, the polynomial is expected to have
both an appropriate fit to the data, and a low curvature, which would not be the case
with standard polynomial approximation.

We have then suggested a way to label those segments into observed actions, using
simple thresholds on the derivatives of the approximation.

Then, a HMM estimated the actual actions taken by the driver of the car, in terms
of moving ahead, turning, or stopping. The low curvature approximations have been
used only for short segments, but the approximation method can be extended to longer
and more complex trajectories.

Overall, the method is characterised by the following properties:

Closed-form solution The solution is given in closed-form: solving an equation sym-
bolically produces the low curvature approximation. This contrasts with the op-
timisation methods used in the rest of this thesis that require the computation
of the cost function for particular parameters.

Low number of labels For the trajectories considered in these experiments, four
states are enough to represent the action of the driver, and subject to filtering by
the Hidden Markov Model. The result is a simple segmentation of the trajectories
into repeated labels.

It can be suggested with these results that HMMs can be the basis of fast algorithms
which analyse trajectories. The sequence of labels produced by the method presented in
this chapter can be used to identify trajectories with low probability, which correspond
to abnormal driver behaviour.
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Chapter 7

Conclusion

This thesis presents contributions to research in Model Selection for Computer Vision.
In particular, this thesis studies the MDL method of Model Selection and its application
to vehicle trajectory detection from images.

The MDL method. The MDL method of Model Selection is usually studied as
a probabilistic method. In this thesis the MDL method has been presented from a
combinatorial point of view, as an optimal method of Model Selection. The originality
of this approach is in the lack of assumptions about prior probability distributions, and
the intuitive appeal of translating the properties of the MDL method into properties
of binary trees whose leaves are the computer programs that halt. Furthermore, while
the standard approach to MDL starts from the axiom that description length should
be minimised, in this thesis the MDL method is obtained as a minimal element for an
order relation among Model Selection methods.

This interpretation of the MDL model selection method provides a more straight-
forward correspondence between the definition of the method and its implementation
as a computer program.

The theory of MDL can potentially be extended from computers that handle binary
strings to rule-based systems that manipulate generic symbolic expressions. This use of
human-readable expressions together with the expressive power of rule-based systems
will probably increase the role of automatic simplifications in the implementations of
the MDL method, and therefore increase its execution speed.

Computer Vision. A computable approximation of the MDL method is used to de-
tect the motion of vehicles in traffic sequences. The aim is a vehicle tracking and event
detection system. The main consequence is that the MDL method is able to choose
an appropriate model complexity in the presence of noise and occlusions. Besides, its
implementation is conceptually simple.

We have illustrated how Computer Vision algorithms can be developed as data
compression algorithms. Data compression is used to match geometric models against
images, and also to match trajectory models against trajectory data. In particular, the
following ideas have been developed:

e An ad-hoc implementation of MDL applied to vehicle tracking (Chapter Bl). This
served to guide further development towards a proper derivation of the MDL
from first principles.
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— 3D shapes are used to model the vehicles, using a purpose-built 3D rendered
that features projective mapping of image bitmaps.

— It uses an off-the-shelf data compressor.

— Experiments assessing the validity of the approach.

e A software package Thesis‘Compress‘ that facilitates the definition of com-
putable approximations to MDL (Chapter Hl), whose main attributes are:

— Abstract functions that include non-computable MDL and computable ap-
proximations.

— Separation of the definition of MDL and its computable approximations.
— Reusable code.

— Provides a framework for the comparison of different computable approxi-
mations to MDL, which includes model selection methods such as Maximum
Likelihood.

e An application of the software package Thesis‘Compress‘ to trajectory mod-
elling and analysis (Chapter Bl). Experiments provided an interpretation of mo-
tion modelling close to information theory, in which the error model was not
Gaussian, as in the standard approach with Kalman filters, but the Universal
Measure. Our work included

— translation of vehicle dynamics into a compression algorithm, and

— experiments assessing the robustness of MDL against noise and occlusions
with synthetic and experimental data.

Trajectory analysis. Besides, an alternative method for trajectory analysis is pre-
sented (Chapter ). It combines a low-curvature polynomial approximation to the
trajectory with a Hidden Markov Model to model the driver’s actions. Experiments
show that this method can be used to segment noisy vehicle trajectories, corresponding
to simple driver actions.

Choice of computer language. The Model Selection methods used in this thesis
can be generalised to any other model classes so long as it is possible to implement the
corresponding compression algorithms. The choice of computer language, or Universal
Turing machine, is crucial because the language should facilitate minimising the de-
scription length, and at the same time must be comfortable for humans. Improvements
in the choice of Universal Turing machine will provide better measures of complexity.
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