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AAbbssttrraacctt  
This thesis investigates the principal local-window noise-removal techniques in the 

spatial domain using linear and non-linear filters for a variety of colour image 

representations and general and specialized image classes. 

The thesis starts by describing the nature of colour, general image processing 

capture and storage techniques, and the manner in which image contamination can 

occur. A software framework was designed and implemented in which the image 

filtering algorithms were developed: its architecture and capabilities are outlined. 

After a review of the current state-of-the-art in the field of vector filtering, 

performance comparisons of well known nonlinear and hybrid filters are achieved 

using established noise metrics; the validity and efficacy of these noise metrics are 

also debated. A number of new filters based on the vector median filter are 

introduced with a discussion of their relative merits. The new distance-weighted 

median filter is shown to be superior in its noise suppression performance 

characteristics using the NMSE criterion. 

Particular regard is given to an extension of the truncated-median filter of Davies 

(1988), so that it can cope with colour images, with a discussion on its performance 

with highly contaminated images and a comparison of the distortions introduced by 

the new filter and those of the vector median filter. The new version of the truncated 

median filter is shown to be quite remarkable in its capability for extraction of 

partially hidden patterns in colour images. 

The performance of the vector median filter and the variants described are 

contrasted with the capabilities of artificial neural networks (ANNs), in particular 

the multilayer perceptron, and the applicability of ANNs to colour image filtering is 

compared with previously published work on their use in greylevel images. 

The thesis contains a considerable amount of review of previous work in the subject 

area, together with a substantial list of references. 
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CChhaapptteerr  11::  IInnttrroodduuccttiioonn  

11..11  IINNTTRROODDUUCCTTIIOONN  TTOO  MMAACCHHIINNEE  VVIISSIIOONN  

Digital image processing is still a relatively young area of physics that has become 

possible, and indeed advanced, with the development of digital computers. Images 

had been coded digitally as early as 1921 using telegraph printers with special 

typefaces to reproduce pictures with up to five distinguishable levels of brightness. 

However, it was not until the 1960’s that image processing became a science in its 

own right, and the needs of the NASA space program required that serious work be 

done on methods to enhance received picture data from early space probes.1 

Since then, huge advances in computer technology have made more complex 

algorithms feasible in practice, and applications for image processing techniques 

have been found in a wide variety of fields, such as facial recognition, satellite 

imagery, fingerprint identification, food inspection, car speed measurement, X-ray 

enhancement, aircraft identification and tracking, and astronomy. The list is almost 

endless. 

In fact, it is difficult to think of any discipline that involves visual representation of 

information which would not benefit from image processing in one way or another. 

Thus it has rapidly become a highly important subject area, and although extensive 

research has been done in the last quarter century, there is still much scope to 

develop more advanced processing techniques for applications old and new. 

One of the recent new areas for investigation has been the field of colour image 

processing. The following sections enlarge on the basis of colour imaging and its 

application to the field of machine vision. 
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11..22  TTHHEE  PPHHEENNOOMMEENNOONN  OOFF  CCOOLLOOUURR  ((HHUUMMAANN  VVIISSUUAALL  SSYYSSTTEEMM))  

The eye is a highly evolved organ; the detection of the presence or absence of light 

is essential for virtually all animals. The structure of the eye may vary between 

species according to specific needs, but the common requirement to find food, seek 

shelter, or avoid danger through analyzing the surroundings remains the same. In 

those species where accurate spatial location is highly important (e.g. predatory 

birds such as eagles), both eyes have evolved to be forward-facing to permit 

excellent depth/distance judgment. 

One common factor across all species is the discrimination of light change and 

variation, regardless of the wavelength. In the human vision system, the “rod” 

receptors (so-called because of their shape) react to changes in light intensity but not 

wavelength, and are therefore not involved in colour vision. They are sensitive to 

low levels of illumination, and are thus suited to night vision. There are some 75 to 

150 million rods in the eye, but because several rods are usually connected to a 

single nerve ending, detail resolution is poor. The other class of receptor found in 

the human eye is the “cone”, and there are three different types – S-,M-, and L-

cones, classed according to their spectral sensitivities (Short, Medium and Long 

wavelengths). There are six to seven million cones in the eye, primarily located in 

the fovea (the central part of the retina) where our vision is best. Cones are highly 

sensitive to chromatic changes, and with them humans are capable of picking out 

fine detail, largely because each cone has its own nerve connection. 1 

The spectral coverage of the S-, M- and L-cones broadly corresponds to the 

sensations of red, green and blue hues (Fig. 1.2a).4 Mean values for the wavelengths 

of maximal absorption are 426nm for the blue pigment, 530nm for the green 

pigment, and 552 nm and 557nm for two polymorphic variants of the red pigment.2 

The human eye has a spectral response ranging from approximately 380nm to 

710nm, shown in Figure 1.1. 

Trichromacy (that is, having three photoreceptors with different spectral 

characteristics) is a physical attribute we share only with other primates. Other 
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mammals including New World monkeys are dichromats, having an S pigment and a 

single shared L/M pigment.3 Separate L and M pigments have evolved fairly 

recently, in the order of 30 million years ago, as a result of a duplication on the X 

chromosome. This is borne out by the fact that the L and M genes lie next to each 

other on the X chromosome, and are 96% identical.4 One can see the extensive 

overlap between the two cone types in Figure 1.2a, and it is thought that this second 

colour subsystem may have evolved to allow differentiation between reddish and 

greenish colours, to allow distinction between fruit and foliage.5 

Figure 1.2b gives the normalized excitations for the L and M cones, showing that 

although the peak sensitivities are only about 30nm apart (Figure 1.2a), the ratio of 

excitation in this region provides unambiguous information for distinguishing 

between two lights even of similar wavelength, enabling us to be extremely 

discriminatory with respect to both chrominance and luminance information in this 

frequency band. Conversely, because the peak sensitivity of the S-cones is at a much 

shorter wavelength than that of the M- or L-cones, coupled with the fact that S-cones 

comprise less than 10% of the total number of cones in the eye, it has been shown 

that they primarily contribute chromatic information.4,6 

Figure 1.2c shows the excitation space of all three cones, and any viewable light 

source can be represented as a point within this space. 

Figure 1.1. Frequency range of the human visual system (www.photo.net). 



–––––  Chapter 1: Introduction  ––––– 

–––  Page 12  ––– 

It is important to note that having only three cone types restricts our perception of 

colour to only three colour dimensions, and if any two lights are matched to produce 

equivalent photon absorption, any information about their difference is lost, 

regardless of any post-processing.4 

However, it is precisely this limitation which allows us to record or reproduce full-

colour images artificially (e.g. television) using only three primary light sources of 

different wavelengths, with the restriction that no primary can be reproduced by any 

combination of the other two. It has been shown that specific values for red, green 

and blue frequencies can give a greater range of discernible colours that no other 

Figure 1.2a. Sensitivities of the different 
types of cone in the human eye (Webster, 

1996). 

Figure 1.2b. Normalized excitations of M and 
L cones (Webster, 1996). 

Figure 1.2c. Excitation space and sensitivity of the three cone types (Webster, 1996). 
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combination can.7 Due to the eye’s non-linear perception of colour, this does not 

mean that all colours can be obtained from a combination of these primaries. 

11..33  MMOOTTIIVVAATTIIOONN  FFOORR  CCOOLLOOUURR  UUSSAAGGEE  IINN  MMAACCHHIINNEE  VVIISSIIOONN  

Opinion is divided on whether chrominance information is especially useful or even 

necessary compared to luminance when processing or interpreting images. As has 

been stated previously, many species do not have the ability to discriminate colours, 

so can colour be that vital? 

Several psychophysical studies suggest that colour is unimportant or not discernible 

for a wide range of human visual activities, ranging from detecting the colour of a 

moving object8, obtaining shape from shading, or illusory contours,9,10,11 and that 

moving chromatic stimuli produce the same response as low-contrast luminance 

stimuli.12 McIlhagga et al. found little difference in chrominance and luminance 

perception when varying the contrasts between the two during experiments with low 

spatial frequency textures.13 

On the contrary, Healey and Slater have found that the performance of feature 

matching algorithms improves when using colour because it increases the amount of 

information available for a given region, and is thus highly important for the 

recognition of small objects.24 

It is worth emphasizing that all mammals have a chrominance component to their 

vision, so it must be useful in some respect; it is probably no coincidence that certain 

animals have developed coloured coatings to take advantage of this, such as the 

distinctive yellows of bees and wasps, and the reds of butterflies, beetles and 

ladybirds, to warn off predators. It would seem that colour vision is a continuing 

evolution of an already complex visual system designed to extract the maximum 

information from a scene if there is sufficient computational power to process it. 

Indeed, the great majority of image processing and machine vision papers published 

refer only to binary or grey-level images, as some workers have noted.14,15,16 The 

most obvious reason for this is the great expense, both in terms of equipment needed 
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to acquire and display images, and the additional processing required, when dealing 

with colour information.17,18 

Whilst this was perhaps true five or ten years ago, hardware capable of capturing 

and displaying full 24-bit colour images has dramatically fallen in price, and 

similarly computational power has vastly increased. For example, the MMX and 

SSE capabilities of recent AMD and Intel processors were designed with signal 

processing operations in mind, and the instruction sets have been optimized for fast 

addition, multiplication and matrix operations.25,26,27 

With the onus on use of minimum memory and simple, fast algorithms somewhat 

relaxed as a result, more research has been focused on applications that necessitate 

colour discrimination. Areas include vegetable ripeness and/or toxicity16,19, leaf 

decay16, geological classification20, natural scene classification15,21, computer aided 

fashion design22, and bruise detection on fruit.23 

One discipline in particular in which colour image processing and analysis is of 

prime importance is that of medical physics, ranging from pharmaceutical blister 

pack inspection31, wound metrics28,29 to traditional Chinese medicine30. It has been 

shown in these publications that accurate colour information is vital in this area, and 

it is expected that considerable advances in colour image analysis will be made in 

this field. 

On a more commercial level, the great boom in electronic publishing (especially on 

the World Wide Web) has spawned a multitude of methods for image compression 

and image registration, and the availability of a plethora of low-cost colour imaging 

devices such as scanners and digital cameras means that colour image processing 

techniques are used by a greater number of people – notably more home users – than 

ever before. 
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In summary: just as nature has evolved colour vision, so the evolution of 

computational hardware enables full-colour image acquisition and display. As the 

availability of such hardware has increased, new and varied applications have 

rapidly been found which necessitate some form of post-processing – and so a 

worthwhile area for research has opened for more widespread scrutiny and 

investigation. 

11..44  IIMMAAGGEE  CCAAPPTTUURREE  

All modern capture equipment, be it scanner, camera, or specialized device, can be 

considered to consist of five components, as shown in Fig 1.3. 

The mechanics of the sensor array will clearly differ according to the application, 

but high quality and wide availability of CCD (Charge-Coupled Device) sensors 

make them the most commonly found acquisition devices for visible light images. A 

CCD consists of an array or matrix of metal oxide semiconductor material made up 

from tessellating elements, such as hexagons or squares. Charge is generated in each 

element when light falls upon it, proportionate to the level of incident radiation. The 

discrete element approach of the CCD has an inherent advantage over line-scan 

cameras, in that the entire image can be sampled at once rather than in a raster scan 

fashion; this eliminates any discrepancies due to scene motion over the time taken to 

acquire the image, and means the captured image is already spatially quantized. 

However, the output is still an analogue signal which requires digitization before 

transfer to image processing hardware. A further advantage in using CCDs is the 

high sensitivity of modern units; even single photons may be detected. 

Figure 1.3. Schematic diagram showing image capture path. 
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To acquire colour images, CCDs may be employed in two different ways. The first 

configuration only utilizes one CCD matrix, in front of which a colour filter grid is 

placed. The colour of an individual element is calculated from the averaged response 

of it and its neighbours. The pattern most often used is G-R-G-B, called the Bayer 

pattern after Bryce Bayer of Kodak, shown in Figure 1.4a. It is biased toward 

producing accurate green colours because the eye is more sensitive to those 

wavelengths. Half the CCD elements measure green, while a quarter measure red, 

and the other quarter measure blue. Another pattern used is a vertical arrangement of 

red, green and blue striped filters, much like a shadowmask in a colour television 

CRT (Cathode Ray Tube). All pixels, taken in order, are used for luminance. Every 

third pixel represents red, green or blue, depending on where sampling begins. The 

fact that the luminance signal is sequential RGB samples rather than a true 

monochrome signal in addition to the fact that any single colour only has one-third 

of the luminance resolution limits the colour quality of single chip devices. A more 

subtle problem is that any one primary colour is not sensed over the entire surface of 

the CCD, like looking at the subject through a vertical Venetian blind. A subject 

with vertical bands of color may have significant chromatic distortion. 

Other patterns are sometimes used, and Canon has developed a filter pattern of cyan, 

yellow, green and magenta (for their still digital cameras). 

The other configuration is three separate CCDs producing a proper tristimulus 

output, with red, green and blue filters in front of each respective CCD (Figure 

Figure 1.4. Colour image capture using 1- and 3-CCD arrangements. 
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1.4b). The incoming light is separated by dichroic mirrors (M1 and M2) which 

according to their thickness pass the light to the appropriate filter. Since each CCD 

produces only one colour, all components of the signal are at full system resolution; 

also, little light is lost, resulting in truer hues and greater sensitivity. The penalty is 

cost, size, and weight. 

CCDs in domestic still and video cameras have areas in the region of a few square 

centimetres, giving a resolution in the low millions of pixels. CCDs used in 

professional applications can be somewhat larger, with tens of thousands of 

elements along each dimension. Figure 1.5 shows a CCD used for astronomical 

image capture at the MIT Lincoln Laboratories. 

11..55  IIMMAAGGEE  EENNCCOODDIINNGG  

Images are represented as a square array of elements, known as a pixels, with the 

horizontal and vertical axes represented by x and y. It is arbitrary whether the y 

origin is at the top or bottom of the image, but in this text the convention of y 

originating at the top is adopted. A digitized image can therefore be considered as a 

two dimensional function f(x,y). Greyscale images simply encode intensity, and thus 

consist of only scalar quantities; colour images are represented by a number of 

Figure 1.5. Example of 2048 × 4096 resolution CCD, actual size 3.5cm by 7.0cm (MIT Lincoln 
Laboratories). 
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discrete components, so each pixel contains a vector corresponding to its position in 

the particular colour mapping scheme used. Whatever colour mapping system is 

used, the final display unit output is characterized in terms of intensities of red, 

green and blue phosphors. The amount of storage required per pixel depends on the 

resolution of the analogue-to-digital converter (ADC) used when acquiring the 

image; commonly, 8 bits per colour channel are used, or 24 bits per pixel, allowing 

up to 224 (16.7 million) different colours to be displayed. Although the eye is only 

capable of discriminating between some seven million different hues, its response is 

highly nonlinear, and only 8 bits per channel can lead in some cases to coarsely 

represented images. In professional applications 48 bit (16 bits per channel) formats 

are becoming more common.32 

It can easily be deduced from this that colour image storage requirements are quite 

significant for any application requiring greater than a medium-resolution image. 

For instance, the storage required for a 1024 × 1024, 24 bit image is well over 3MB. 

Unless storage or transmission bandwidth is not an issue, some form of compression 

is employed to encode the image more efficiently. 

11..55..11  LLOOSSSSLLEESSSS  CCOOMMPPRREESSSSIIOONN  

Lossless compression schemes exploit the data redundancy present in the image, but 

retain all the informational content of the original image. Repeated encoding and 

decoding cycles do not result in degeneration. Lossless compression methods yield 

typical compression ratios in the order of 2:1. Many different schemes have arisen, 

for instance: 

RRUUNN--LLEENNGGTTHH  CCOODDIINNGG  

It is common to find groups of pixels of the same value occurring contiguously; 

instead of representing each pixel value discretely, a component pair encodes the 

number of pixels to be repeated and their group value. This scheme is generally used 
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with coarsely quantized, low spatial frequency images; otherwise the storage penalty 

may well be higher than the raw 24-bit representation. 

DDIICCTTIIOONNAARRYY  CCOODDIINNGG  

The premise of dictionary coding is the assignment of fixed length codes to variable 

lengths of pixels. Each dictionary entry may refer to other dictionary codes already 

encoded. Originally invented in 1977 by Ziv and Lempel, with later improvements 

by Welch, typical compression ratios of 33% are achieved. The completed 

dictionary is stored with the coded data. Encoding only requires one pass over the 

data; it requires no prior statistics. It is commonly used in the encoding of TIFF 

(Tagged Image File Format) images.28,127,128,129  

EENNTTRROOPPYY  CCOODDIINNGG  

As a result of Shannon’s work on communications theory, it is well known that for a 

given communication channel the lower bound on the average bit rate of a sequence 

cannot be less than its entropy H, defined as33: 

1
log

n

i i
i

H K p p
=

= − ∑  (1.1) 

Where pi is the probability of an occurrence of symbol i. K is an arbitrary scaling 

constant. Entropy coders seek to get close to this Shannon limit by exploiting the 

statistical nature of the pixels to be encoded; commonly occurring values are given 

shorter codes. Clearly this method works best when the input symbol probability 

distribution is non-uniform. Unlike dictionary coding and run-length coding, this 

method requires two passes over the data set; one to ascertain the symbol 

probabilities, the other to encode the data. The source and receiver may both use 

predefined code tables (such as in facsimile transmission), or separate code tables 

may be transmitted for each image. The former saves on transmission bandwidth but 

the coding efficiency may be sub-optimal as the particular code probabilities of each 
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image are not exploited; the converse is true for the latter. Huffman and Gray 

encoding are well-known methods of entropy coding. 

11..55..22  LLOOSSSSYY  CCOOMMPPRREESSSSIIOONN  

As the term implies, lossy compression involves discarding information from the 

image irreversibly. Generally, the way in which the removal of data occurs is 

decided according to psycho-visual principles to minimize the apparent loss of 

visual quality. The reconstructed image after decompression is thus an 

approximation of the original image. Lossy compression schemes involve 

transformation of the data into different domains with subsequent quantization 

and/or thresholding of the resulting data. 

Lossy schemes can achieve much greater data reduction than lossless schemes, 

typically in the order of 100:1. 

PPRRIINNCCIIPPAALL  TTRRAANNSSFFOORRMMAATTIIOONNSS  

The most well known transform from the spatial domain in digital image processing 

is possibly the Discrete Fourier Transform (DFT), given in two dimensions by: 

1 1
2 / 2 /

, ,
0 0

M N
ikm M iln N

n m l k
k l

H h e eπ π
− −

= =

≡ ∑∑  (1.2) 

Whilst having been proven effective for texture analysis36, its properties are less than 

ideal for energy compaction; the non-zero transform coefficients are widely spread. 

However, by transforming from the spatial domain using only cosine components 

using the DCT (Discrete Cosine Transform), over 90% of the signal energy is 

concentrated in only a few coefficients; the contribution of the higher frequency 

components is negligible; Figure 1.6 shows a typical signal and the first 32 

coefficients of the resulting DFT and DCT. As Figure 1.7 shows, the reconstruction 

error using truncated coefficients is far lower for the DCT than for the DFT. The 

energy compaction and sparse representation properties of the DCT are very close to 
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those of the optimal Karhunen-Loeve Transform (KLT), also known as principal 

components analysis17, without the need for computationally expensive data analysis 

and matrix diagonalization for individual images. 

The two dimensional DCT is given by: 

Figure 1.6. Typical sinusoidal digital signal (a) with the first 32 real (b) and imaginary (c) DFT 
coefficients compared to (d) first 32 DCT coefficients (Oppenheim & Schafer, 1999). 
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where 
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z
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The DCT is used as the transform kernel in both JPEG still image compression and 

MPEG moving picture compression. In both cases the source image (or frame) is 

subdivided into 8 × 8 blocks and the first K transform coefficients are quantized and 

Huffman coded. K is dependent on the level of compression required. The image 

subdivision approach and the bias toward keeping only low-frequency components 

can lead to poor performance at object edges, and a distinct “blockiness” to 

reconstructed images. 

One of the deficiencies of the DFT and DCT is their lack of space-frequency 

resolution; they operate on the basis that the signal or image to be analyzed is 

periodic. To combat this problem the notion of ‘windowing’ was introduced; 

however this has it own problems with ringing and discontinuities at the edge of the 

support. An alternative transform method which addresses the space-frequency 

Figure 1.7. Comparison of truncation errors for DFT and DCT (Oppenheim & Schafer, 1999). 
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resolution problem, and which underpins the new JPEG2000 standard35, is the 

Discrete Wavelet Transform (DWT). 

The DWT uses two orthonormal wavelet bases with compact support to decompose 

an image into low- and high-frequency filtered versions. The wavelet bases in 

discrete form are essentially FIR (Finite Impulse Response) filters. The high-

frequency information is stored, and the low-frequency result is decimated by two 

before the DWT is reapplied. This process is then repeated until the data to be 

processed is of length 1. The process may be viewed as a binary tree in which only 

one node at any branch has children. A generalization of the DWT is the Wavelet 

Packet Transform, in which many decomposition tree variations are permitted. This 

approach has the advantage that either detailed frequency or phase information may 

be extracted from a given frequency sub-band depending to what depth the 

decomposition tree is traversed. Conversely, the DFT or DCT only allow detailed 

time resolution at the expense of frequency, and vice versa – hence the block-based 

approach of the JPEG compression method. 

The DWT or WPT, able to be applied to the image as a whole, do not suffer as badly 

from impulse ringing and block discontinuities: visually, a wavelet-compressed 

image is of higher quality, and thus a higher compression ratio can be achieved for a 

similar visual standard to the original JPEG. 

The subject of image compression using wavelets is thoroughly discussed in a recent 

thesis by Strømme.35 

PPRRIINNCCIIPPAALL  QQUUAANNTTIIZZAATTIIOONN  MMEETTHHOODDSS  

As has already been discussed, quantization of transformed image coefficients 

improves the data reduction. However, it may be desirable in some situations to 

quantize image pixels directly. For instance, it is likely that an image will only 

contain a small proportion of the whole gamut of colours available for display – by 

limiting the number of possible symbols, more efficient entropy coding can be 
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employed. Or, there may be a requirement to display a reduced-palette image on 

video devices unable to show the original full range of hues. 

Simple scalar quantization (SQ) merely reduces the number of bits available for 

each colour channel. Whilst computationally inexpensive, this can lead to false 

contouring and severe loss of detail in small objects. 

A more effective approach is vector quantization (VQ). In this way, the colourspace 

of the image is subdivided into volumes of non-uniform size, and each pixel in that 

volume is mapped to a mean value. A palette codebook, similar to the Ziv-Lempel 

dictionary, is stored with the image after processing. 

Many different image palette VQ techniques have been developed, and space 

precludes their discussion, but most notable are the k-means algorithm first 

developed by McQueen63, Heckbert’s median cut54, the octree method67, and a 

recent promising system using a Kohonen, or self-organizing map, neural network68. 

The reader is directed to the references for a full treatment of the various merits of 

each system. 

11..66  IIMMAAGGEE  CCOONNTTAAMMIINNAATTIIOONN  

Noise and other unwanted artifacts in images can arise for a variety of reasons. 

Contamination may be introduced at any of the stages in Figure 1.3. In the analog 

section, noise may occur in the form of photon noise or dark current in the CCD, but 

these difficulties are easily avoided by increasing the capture integration time for the 

former, and Peltier cooling for the latter. Of more concern is generation of noise by 

the amplifier section prior to digitization. Amplifier noise is characterized as a 

Gaussian process, independent of the signal and additive. For a colour signal the 

noisy signal g is given by: 
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( , ) ( , ) ( , )

( , ) ( , ) ( , )

r r r

g g g

b b b

g x y f x y n x y
g x y f x y n x y
g x y f x y n x y

= +
= +

= +

 (1.4) 
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where f is the original signal and n the additive Gaussian noise. The level of noise is 

given in terms of its statistical variance σ2. 

Signal-to-noise ratio (SNR) is unavoidably lowered in the digitization stage, by both 

the discrete spatial sampling and signal level quantization. The maximum SNR for a 

given sample point for a (N+1)–bit quantizer is37: 

SNR = (6.02N +10.8) dB (1.5) 

In general, digital signals have better noise immunity than analog signals; however, 

once in the digital domain, artifacts may be introduced by an unreliable transmission 

channel. Should a single bit of a particular sample value be transmitted incorrectly 

the error in output value may be as high as 50%. This type of noise is entirely 

random and can be only typified in terms of the likelihood of correct transmission by 

the communications channel; the image contamination itself is characterized as 

impulsive noise in the midst of correct pixel values. The observation equation for 

impulsive noise can be written as73: 

(1 )
(1 )

(1 )

r r r

g g g

b b b

g ef e z
g ef e z
g ef e z

= + −
= + −

= + −

 (1.6) 

where g is the noisy signal, e indicates a random binomial variable taking the value 

1 with a probability p (absence of noise) and a value of zero with a probability of 1-p 

(presence of noise), and z is an independent random variable. The original image 

pixel frgb is replaced by the random colour pixel zrgb with a probability 1-p. 

Other noise models may be described as Poisson, Cauchy, exponential, or uniform. 

11..77  RREEQQUUIIRREEMMEENNTT  FFOORR  IIMMAAGGEE  FFIILLTTEERRIINNGG  

The presence of noise in an image can be disruptive to a wide variety of image 

processing methods; for compression it may alter the selection of coefficients, or 

increase their number to obtain a lower error metric; it may lead to false detection of 
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edges, and as edge detection is the premise for operations such as object recognition 

and region segmentation the ramifications may extend to a wide range of medium 

level techniques. In colour quantization, the erroneous data introduced by noise may 

lead to sub-optimal codebook or palette generation. In fact, any processing technique 

which relies on image statistics may be skewed by noise artifacts in the image. 

In addition to removing the type of noise it was designed for, an ideal noise removal 

or enhancement filter should have the following characteristics: 

• It should retain edges in the image without spatial shifting. 

• It should not remove image detail or cause blurring. 

• It should not introduce any chrominance or luminance distortion. 

In practice this is not the case, and the filter must be chosen carefully depending on 

the noise model, the generality of its usage, and the salient information which will 

ultimately be extracted from the processed image. 

11..88  AAIIMM  OOFF  TTHHEESSIISS  

This thesis investigates principal noise-removal techniques in the spatial domain 

using linear and non-linear filters for a variety of colour image representations and 

general and specialized image classes. After comprehensive study of the current 

state-of-the-art in the field, performance of well-known non-linear and hybrid filters 

are thoroughly considered using established and recently developed noise metrics; 

the validity and efficacy of these noise metrics are also discussed. A number of new 

filters are introduced with a discussion of their relative merits. In the final chapter, 

previous work using neural networks in scalar-valued images is extended to their use 

in colour images and compared to the filters already considered. 

Transform-based and morphological operators are not discussed, and are subjects 

worthy of study in their own right. 
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11..99  TTHHEESSIISS  SSTTRRUUCCTTUURREE  

Chapter 1 introduces the subject of colour image processing and its relevance to 

modern analysis and storage methods. 

Chapter 2 outlines the various colour image representations in popular use, their 

evolution and their advantages and applications. 

Chapter 3 discusses the software package developed to implement the algorithms, 

along with a discussion for the need of an independent environment for assessment 

of these methods. Also detailed are the images used in this thesis and the reasons for 

their choice. 

Chapter 4 is a treatment of contemporary non-linear and hybrid filtering algorithms 

using local window methods, and also the noise metrics used to ascertain their 

efficacy and characteristics. 

It also introduces the subject of neural networks and their application to image 

filtering. 

Chapter 5 establishes a number of original extensions made to the vector median 

filter with comparisons to other well-known filters, along with a method for reduced 

complexity calculation. 

Chapter 6 describes an extension based on the truncated-median filter of Davies, 

developed in a novel manner, with a discussion on the nature of highly contaminated 

images and an examination of the distortions introduced by the new filter and those 

of the vector median filter. 

Chapter 7 presents original work using artificial neural networks applied to colour 

images. Again, results are presented and discussed in the light of filters treated in 

earlier chapters. 

Chapter 8 discusses the work presented with concluding remarks, including possible 

areas for future work and enhancement. 
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CChhaapptteerr  22::  CCoolloouurr  IImmaaggee  
RReepprreesseennttaattiioonn  

22..11  WWHHAATT  IISS  AA  CCOOLLOOUURRSSPPAACCEE??  

A colourspace is a representation by which colours can be specified and created 

using parameters of discrete value. As colour is a purely sensory phenomenon the 

specification and measurement of colour is a highly complex subject: difficulties 

stem from the fact that the brain analyzes colour in a different manner than the eye 

cone response would indicate: we are not aware of colour as a mixture of multiple 

stimuli.  

As there are three separate receptors in the eye, in general colourspaces similarly 

have three degrees of freedom. Two dimensional colourspaces have been used; 

results are adequate but are noticeably visually inferior38. 

The gamut is the range of colours visible in the colourspace, and is usually the 

region bounded by the vertices of the primaries used. 

Many colourspaces have been developed, arising from the different requirements of 

a given objective. Whilst it is not intended to give an exhaustive account of all 

methods currently in use, a broad selection of popular colourspaces is discussed with 

their application to colour image processing. 

It should be noted that only digital colourspaces are described. Analogue television 

colourspaces are often used because of the ease of digitization of each channel direct 

from the capture camera. However, these colourspaces are pre-corrected for the non-

linear transfer characteristics of the CRT and are tailored to analogue transmission 

and bandwidth limitations; in the interests of strict accuracy these should not be used 

for colour digital image processing. For the sake of completeness, a brief discussion 

and common transforms of television colourspaces are given in Appendix A2. 
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Due to the perceptual nature of colour, the CIE (Commission Internationale de 

l’Éclairage – International Commission on Illumination) has introduced strict 

definitions describing colour sensations with respect to physically measurable 

quantities. These definitions are given in Appendix A1. 

22..22  RRGGBB  

The RGB colourspace is the most well-known; each encoded channel corresponds to 

the output intensity of the red, green and blue display phosphors respectively. As 

many applications keep image data in native display format, the majority of 

conversions in the literature involve this colourspace. 

The RGB gamut forms a cube with red, green and blue as orthogonal axes and the 

achromatic black-white axis as the lead cube diagonal, as shown in Figure 2.1. Black 

is given by R = G = B = 0, and white is R = G = B = 2N-1, when N is the bit depth. A 

monotonic increase in a given channel is matched by a linear increase in applied 

output.  

The advantage of a display-based colourspace such as RGB is that all colours in the 

gamut are visible; there are no singularities or out-of-gamut colours. As a capture 

colourspace, RGB also has the advantage that any input noise will be uniformly 

Figure 2.1. The RGB colour cube. 
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distributed and thus operations will be more robust48. However, there are a number 

of disadvantages: 

• There is high correlation between the channels for natural images – an 

increase in colour brightness without a change in hue produces a 

corresponding rise across all three channels, i.e. intensity is a common factor. 

• It is difficult to intuitively specify colour in terms of amounts of red, green 

and blue. Similarly, it is difficult to discern the overall hue of a pixel in this 

colourspace. 

• Linear differences in between any RGB vector pair do not correspond to a 

linear perceptual difference. 

• It is device-dependent – in other words, the same RGB encoded image may 

not look identical on two different displays. 

With regard to the last point, recommended red, green and blue phosphor values 

have been specified by major standards organizations to permit somewhat more 

accurate conversion between RGB and other colourspaces. These bodies include the 

European Broadcasting Union (EBU), the Society of Motion Picture and Television 

Experts (SMPTE) and the International Television Union (ITU). Transforms 

between the common RGB colourspaces are given in Appendix A3. 

22..33  OOHHTTAA  

This colourspace was developed by Ohta38 as a result of investigating effective 

colour features for image segmentation. The goal was to find colour axes which 

gave the largest discriminant power in feature selection, i.e. axes which had the 

greatest variance. This was achieved by applying the Karhunen-Loeve 

transformation to a set of natural colour images (originally encoded in RGB) and 

considering the resulting eigenvectors. The method for this is as follows: 

Let S be the image to be segmented, S ∈  RGB. 

Let Λ be the covariance matrix of the distributions of R, G and B in S. 
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Let λ1, λ2, and λ3 be the eigenvalues of Λ such that λ1≥λ2≥λ3. 

Let wi = (wRi wGi wBi)t be the eigenvectors of Λ corresponding to λi for i = 1, 2 and 3. 

The set of decorrelated colour features for a given image are obtained by: 

1 1 1 1

2 2 2 2

3 3 3 3

R G B

R G B

R G B

X w w w R
X w w w G
X w w w B

     
     =     
          

 (2.1) 

In Ohta’s experiments, X1 has the largest variance (between 75% and 97% of the 

combined variance), X2 is the next best among features orthogonal to X1 (variance 

between 3% and 23% of the combined variance). X3 accounts for less than 4% of the 

combined variance, but its omission results in clear degradation in some areas of 

reconstructed images, as Ohta found in experiments using only the first two spectral 

features. 

When Ohta examined the eigenvectors of Λ for each of the experimental images, it 

was found that each wi is characterized by similar vectors across the entire set. Ohta 

found that w1 is approximately (1/3 1/3 1/3)t, w2 either (1/2 0 -1/2)t or (-1/2 0 1/2)t, 

and w3 is (-1/4 1/2 -1/4)t.  

This equates to three orthogonal colour features given by: 

1 3
R G BO + +

=  (2.2) 

2  or 
2 2

R B B RO − −
=  (2.3) 

3
2

4
G R BO − −

=  (2.4) 

or the following matrix transformation: 
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1
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1 102 2
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O R
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∓  (2.5) 

In this work we shall assume usage of the first variant of O2. The predominance of 

feature O1 shows that intensity is the most important feature even in colour image 

processing. To convert back to RGB, the following matrix may be used: 

1

2

3

21 1 3
41 0 3
21 1 3

R O
G O
B O

 −
    
    =    
       − −  

 (2.6) 

The Ohta colourspace is advantageous in that the decorrelated components are 

useful for efficient encoding, and as Ohta demonstrated, well-suited to colour region 

segmentation. The transform from RGB is computationally efficient with 

implementation needing only a few multiplication and/or bit-shifting steps. 

Incidentally, a colourspace developed by Tan and Kittler using the same method 

produced almost identical results; the only difference being an inversion of the O3 

vector of the Ohta colourspace.44  

22..44  HHSSII--TTYYPPEE  CCOOLLOOUURRSSPPAACCEESS  

There is a wealth of colourspaces based on the intuitive notion of specifying a colour 

by its hue, saturation and intensity. The concept of hue and saturation is most easily 

seen by rotating the RGB colour cube in Figure 2.1 and viewing the R = G = B axis 

as the z-axis through the page (Figure 2.2a). Hue can be specified as the angle 

around the centre where pure, fully saturated hues exist on the perimeter, and 

saturation is the distance from the centre. Overall intensity is the vertical axis 

(Figure 2.2b). 



–––––  Chapter 2: Colour Image Representation  ––––– 

–––  Page 33  ––– 

The hue value ranges from 0° to 360°, and is calculated by the method of Gonzalez 

and Woods39: 

1
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 (2.7) 

To obtain the saturation component, first the minimum value of the RGB triplet 

must be found: 

min( , , )1 3 R G BS
R G B

= −
+ +

 (2.8) 

If S = 0 then H is undefined. Intensity may be specified in the same fashion as the 

Ohta space, as the mean of the RGB triplet: 

3
R G BI + +

=  (2.9) 

An alternative method of obtaining an HSI-type definition is given by Travis40, 

called HSV (Hue, Saturation, Value). 

Figure 2.2. HSI colourspace hexcone. 
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Minimum and maximum values from the RGB triplet must be found first. The Value 

component is set to the maximum, and the saturation is defined as the fractional 

difference between the maximum and minimum values: 

(max min )
max

max

RGB RGB

RGB

RGB

S

V

−
=

=
 (2.10) 

To calculate the hue, first fractional components of the RGB triplets are computed: 
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 (2.11) 

Again, if S = 0 the resulting colour is monochrome and H is undefined, otherwise: 
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 (2.12) 

S and V have ranges from 0 to 1 and H, when multiplied by 60, is expressed in 

degrees. It can be seen there are number of condition-testing steps to set the hue in 

this method, but this alleviates the need to use trigonometric functions or look-up 



–––––  Chapter 2: Colour Image Representation  ––––– 

–––  Page 35  ––– 

tables to generate values. Foley and van Dam list alternatives for HSI-type 

colourspaces.47 

Although intuitive, and ideal as a means of colour specification for computer graphic 

artists, the non-linear transform from RGB causes a number of problems; hue is 

unstable for low intensity and saturation values, and spurious modes in the hue 

histogram arise due to the disjoint nature of the calculation.41 

However, HSI-type colourspaces have been used with some success by a number of 

workers for colour segmentation applications.19,41,44,46 It is also often used for 

histogram equalization of colour images, where only the I channel is 

considered.28,43,54 

22..55  YYCCBBCCRR  

The YCbCr colourspace is an international standard for digital video broadcast and is 

also used in the JPEG and MPEG image formats.49 The chrominance channels Cb 

and Cr and luminance channel Y are well decorrelated. In the JPEG standard and 

other DCT-based coding systems greater image compression is achieved by coarser 

quantization of the chrominance components than for that of the luminance.62 

Although a standard digital format, YCbCr does not specify any reference primaries; 

thus, no colour consistency can be guaranteed across display devices. To convert 

from RGB the following matrix is used: 

0.299 0.587 0.114
0.169 0.331 0.500

0.500 0.419 0.081
b

r

Y R
C G
C B

     
     = − −     
     −     

 (2.13) 

A further standard was developed in 1988 which specifies system primaries and 

white point, but this is not yet recommended for use.50 
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22..66  CCIIEE  XXYYZZ  

As stated in Chapter 1, there is a combination of three visible primaries which can 

display a greater range of colours than any other, but it is not possible to reproduce 

the entire colour gamut visible to humans with these primaries. 

In 1931, the CIE introduced the XYZ colourspace to address this problem51; the 

three primaries X, Y and Z can be used to match any visible colour using only 

positive weights. The use of only positive weights means that the primaries 

themselves are outside the visible range. Conversely, not all XYZ vectors are 

reproducible in other colourspaces and display devices. 

The X and Z primaries specify chromaticity and the Y primary is intentionally 

defined to roughly match the human perception of luminance. The XYZ vector 

weights are typically normalized in the following manner: 

If C is the colour to be reproduced, let C = XX + YY + ZZ where X, Y and Z are all 

positive. Let new co-ordinates x, y and z be defined such that x + y + z = 1 (in this 

way only x and y need defining): 

X Yx y
X Y Z X Y Z

= =
+ + + +

 (2.14) 

Normalizing against X + Y + Z allows the chromaticity to be specified independently 

of the total luminous energy; colours are specified according to their chrominance xy 

and luminance Y. The CIE xy chromaticity diagram is shown in Figure 2.3. This 

colourspace is highly non-linear, but has the advantage that all colours visible to the 

human eye are represented. The reverse relations to recover XYZ co-ordinates are: 

1x x yX Y Z Y Y Y
y y

− −
= = =  (2.15) 

To convert to XYZ from the EBU RGB space the following matrix is used28: 
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0.430 0.342 0.178
0.222 0.707 0.071
0.020 0.130 0.939

EBU
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 (2.16) 

And to obtain XYZ co-ordinates from RGB: 

3.078 1.415 0.477
0.971 1.878 0.042

0.048 0.190 1.070

EBU

EBU

EBU

R X
G Y
B Z

− −     
     = −     
     −     

 (2.17) 

Figure 2.3. CIE (1931) Chromaticity diagram (www.efg2.com). 
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Any XYZ co-ordinate that is out of the RGB gamut will produce a negative value. 

The XYZ colourspace is the basis for a variety of other CIE colourspaces which 

attempt to achieve perceptual uniformity, in which equal vector distances in 

colourspace are perceived as equal by a human observer. Other modifications have 

also been made to these colourspaces to permit more intuitive colour selection. A 

full discussion of the set of CIE colourspaces is beyond the scope of this thesis, but 

two of the most common examples used in colour image processing are described 

below. 

22..77  CCIIEE  LLUUVV  

In 1976 as part of the evolving need to perceptually linearize the CIE colourspace 

the LUV (sometimes denoted L*u*v*) colourspace was developed, with primary 

application to emitted (additive) colour light sources, such as computer displays. The 

conversion from XYZ is non-linear but reversible, as follows: 
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This colourspace must have the white point X0Y0Z0 defined. 
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22..88  CCIIEE  LLAABB  

The LAB space (sometimes denoted L*a*b*) is another attempt at a perceptually 

uniform colourspace with the emphasis on accuracy for reflected light sources. As 

with LUV, the X0Y0Z0 vector represents reference white. 

The orthogonal vectors a and b are opponent axes, with a representing the red–green 

axis and b the yellow–blue axis (Figure 2.4). The LAB components are: 
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where f(t) is defined in Eq. 2.20. Both the LAB and LUV colourspaces are 

frequently employed for a variety of machine vision applications; their popularity is 

Figure 2.4. The LAB colour model (www.cs.sfu.ca).  
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exemplified by the number of publications in which they have been 

used.20,55,56,57,58,59,60,61,63,65,66 

22..99  CCOONNCCLLUUDDIINNGG  RREEMMAARRKKSS  

In this chapter, the concept of a colourspace has been defined, along with 

descriptions of some important colourspaces relevant to colour machine vision. The 

properties of these colourspaces have been discussed with comparison of their 

features relative to one another, namely: 

• Perceptual accuracy 

• Interchannel correlation 

• Computational load 

• Device consistency 

• Conversion issues 

• Typical applications 

The discussion of these factors highlights the suitability of a given type of 

colourspace to a particular task. 



–––  Page 41  ––– 

CChhaapptteerr  33::  TThhee  CCoolloouurr  IImmaaggee  
PPrroocceessssiinngg  EEnnvviirroonnmmeenntt  

33..11  IIMMAAGGEE  PPRROOCCEESSSSIINNGG  EENNVVIIRROONNMMEENNTT  RREEQQUUIIRREEMMEENNTTSS  

Necessarily, the environment in which algorithms are tested must fulfill a number of 

predefined requirements. First, these requirements are discussed and then compared 

with the functionality and specification of currently available software. Finally, 

details of the chosen implementation are given. 

33..11..11  UUSSEE  OOFF  RREESSOOUURRCCEESS  

The experimental framework should attempt to minimize use of system resources. It 

should not consume any more CPU resources than necessary to enable accurate 

evaluation of the algorithms under test. Excessive RAM usage leads to a slowdown 

of performance on multi-tasking systems and reduces available space for images. It 

should also be able to fit on common storage media to facilitate easy transfer 

between computers should an experiment necessitate comparisons to be made 

between different machines or should an experiment require the processing 

resources to be split between two or more CPUs. 

33..11..22  MMUULLTTIIPPLLEE  IIMMAAGGEE  DDIISSPPLLAAYY  

The system should be able to display multiple full colour images simultaneously to 

permit comparison of images between various processing stages. 
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33..11..33  SSTTOORRAAGGEE  FFOORRMMAATT  CCOOMMPPAATTIIBBIILLIITTYY  

The image processing environment should be able to read and write image data in at 

least one common image format to permit viewing or comparison in other software 

packages. 

33..11..44  IIMMAAGGEE  SSIIZZEE  

The framework should be able to work with images of arbitrary size and only be 

limited by available resources. 

33..11..55  OOPPEERRAABBIILLIITTYY  

The user interface of the system should not hamper algorithm development or 

testing. An interface that is easy to navigate and does not require complex 

interaction is therefore relatively important. 

33..11..66  RREEAALL--TTIIMMEE  AAPPPPLLIICCAABBIILLIITTYY  

Although not of prime importance, it should be possible to draw useful conclusions 

from performance in the test environment about an algorithm’s suitability in a real-

time and/or embedded environment. The test framework should therefore not 

include any optimizations that cannot be easily implemented on other platforms, or 

indeed, contain any peculiar performance constraints. 

33..22  AAVVAAIILLAABBLLEE  SSOOFFTTWWAARREE  

Whilst a real-time operating system would be desirable to obtain accurate 

performance measurement, the wide adoption of the Microsoft Windows operating 

system makes it a natural choice as an operating platform. Although there is an 

abundance of consumer-quality image processing software for Windows, there is a 
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paucity of semi-professional software which allows extra functionality to be added 

by the user. At the time of writing, only Photoshop by Adobe Systems Inc. and 

Matlab by The Mathworks Inc. allow the use of user-written functions. However, 

neither of these packages are a suitable solution: Photoshop’s provision for 

additional functions (‘plug-ins’) must be written using a specialist API (Application 

Programming Interface) and the lack of GUI (Graphical User Interface) and 

comprehensive image manipulation functions in Matlab preclude them from serious 

consideration as colour image processing environments for the experiments 

undertaken in this thesis. 

33..33  IIMMPPLLEEMMEENNTTAATTIIOONN  

After the commercially available software was considered and discarded on the 

merits discussed above, the decision was taken to design and implement a bespoke 

colour image processing system. 

The prevalence of the desktop PC and the Microsoft Windows operating system 

meant this combination was the obvious choice upon which to implement the image 

processing framework. For reasons of speed, flexibility and ability to perform low-

level manipulation of data, the C programming language was used to develop the 

software. 

To accommodate any number of images of differing sizes, a standard MDI (Multiple 

Document Interface) layout was employed; each image is contained within its own 

window (referred to as the child window) which may be moved or resized within the 

main application frame.152 

At the heart of each Windows application is the ‘message pump’ which receives and 

translates messages generated by itself, the OS and other applications. For instance, 

each child window must be able to respond to options selected in the main 

application frame menu bar, and mouse clicks and movement within their respective 

child window areas. Once the basic framework has been constructed, i.e. the frame 

window creation and the standard code to handle messages, it is a fairly simple 
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matter to quickly and easily add functionality by adding a menu item and handler 

code. For instance, the following C code shows simple example message handling 

code for a child window: 

LRESULT CALLBACK ChildWindowProc (HWND hwnd, UINT iMsg, WPARAM wParam, 
LPARAM lParam) 
/* message parameters sent to child window handler include the unique 
identifier handle of the window, the message type and two auxiliary 
parameters to carry further message information */ 
{ 
  switch (iMsg) 
  { 
    case WM_COMMAND : 
      // handle menu messages 
      switch (wParam) 
      { 
        case MENU_ITEM_1 : 
          // do menu action 
        case MENU_ITEM_2 : 
          // do other menu action, etc. 
      } 
    case WM_MOUSEMOVE : 
      // handle mouse movements 
    case WM_SIZE : 
      // handle window resizing 
    case WM_LBUTTONDBLCLK : 
      // handle mouse left button double click (used for zooming in) 
    case WM_RBUTTONDBLCLK : 
      // handle mouse right button double click (used for zooming 

// out) 
    case WM_MDIACTIVATE : 
      // message received when focus changes to different child  
      // window 
    case WM_etc... 
  } 
} 
 

Each child window contains an extended data area; for this application this is used to 

store a pointer to an image information structure, defined as: 

typedef struct tagIMAGEDATA 
{ 
  BOOL bNeedSave;  // check if image requires saving 
  PSTR pImageTitle;  // window title of image 
  int iImageVer;  // how many operations done 
  LONG iXsize;  // horizontal image size 
  LONG iYsize;  // vertical image size 
  POINT pScrPos;  // current scroll offset 
  RGBTRIPLE *RGBdata; // pointer to RGB display data 
  POINT pScrMax;  // current scroll limits 
  int iZoom;   // current image zoom factor 
} IMAGEDATA, *LPIMAGEDATA ; 
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Each time an action is performed on a child window, a new child window is created 

with the result of the operation. This leaves the original image untouched and allows 

for easy comparison. 

The image processing framework is designed to work with TrueColour (i.e. 24-bit) 

images; thus display adapter modes of both 24- and 32-bits per pixel are supported. 

33..33..11  FFUUNNCCTTIIOONNAALLIITTYY  

Two native file formats are supported for loading and saving images: raw RGB or 

greyscale byte data and the standard windows BMP file format (to ensure 

compatibility and to facilitate easy transfer to and from other Windows software 

packages). An example screen shot of IPS with some opened image files 

demonstrating the MDI layout is shown in Figure 3.1. 

Figure 3.1. Example screenshot of image processing system. 
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As well as providing a simple framework in which processing functions can be 

written, the image processing system (‘IPS’) contains a number of other useful 

features: 

• Image zooming and cropping 

• Copy and paste images via the windows clipboard direct from other 

applications 

• ‘Notepad’-style text window for data output 

• Real-time display of pixel position and RGB values at mouse cursor position 

• Graphic display of image RGB and HSI histograms 

• Export image data and histogram as marker separated variables (suitable for 

Microsoft Excel or Matlab, for instance) 

Each image manipulation function in IPS follows a basic format; an example 

function is shown below: 

 
LPIMAGEDATA Subroutine(HWND hwnd, LPIMAGEDATA source) 
{ 
 LPIMAGEDATA dest; 
 int ix,iy,x,y; 
 RGBTRIPLE *s, *d; 
  
 ix=source->iXsize; 
 iy=source->iYsize; 
 
 // Create new image for child window of same size 
 if ((dest=MakeImage(hwnd,ix,iy))==NULL) return 0; 
 
 s=source->RGBdata; // Let s represent source image data 
 d=dest->RGBdata; // Let d represent source image data 
 
 // Typically will raster scan through image 
 for(y=0;y<iy;y++) { 
  for(x=0;x<ix;x++) { 
   // Put your code here 

// For instance, swap red and blue channels 
d[x+y*ix].rgbtRed   = s[x+y*ix].rgbtBlue; 
d[x+y*ix].rgbtBlue  = s[x+y*ix].rgbtRed; 
d[x+y*ix].rgbtGreen = s[x+y*ix].rgbtGreen; 

  } 
 } 
 // Clean up 
 dest->bNeedSave=TRUE; // Image has changed, needs saving 
 strcpy(dest->pImageTitle, source->pImageTitle); // Update title 
 dest->iImageVer=source->iImageVer+1; // Increase op. count 
 return dest; // return new image data 
} 
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33..44  TTEESSTT  IIMMAAGGEESS  UUSSEEDD  IINN  TTHHIISS  TTHHEESSIISS  

To permit comparison with published work, the eight colour images from the 

Waterloo Repertoire Colorset from the University of Waterloo151 have been 

employed in this thesis. The set contains both natural and ‘computer-art’ images 

depicting typical and pathological spatio-chromatic characteristics, providing 

comprehensive test data for machine vision researchers. 

Where experimentation or further testing has required more images, an additional 

eight images selected to represent typical characteristics in natural scenes, industrial 

inspection and computer art have been chosen. 

In experiments which require images to have similar statistical characteristics, two 

larger image sets of 32 images each have been used; one depicting plastic 

component pieces and the other showing confectionery pieces. 

Both sets have features common to industrial inspection images; the confectionery 

image set contains simple objects: items of similar size and shape with a limited 

number of primary hues present. However, these properties are made more complex 

with the addition of specular and diffuse reflections, occlusions, shadows and 

damaged pieces. 

The plastic component image set exhibits the same characteristics, but the items are 

of a more complex nature with a variety of shapes and sizes with a rich set of edge 

orientations and details. 

Figure 3.2a-h shows the standard images from the Waterloo Repertoire Colorset, 

Figure 3.3a-h shows the additional eight images and Figures 3.4a-h and 3.5a-h show 

the first eight images of the plastic component and confectionery image sets. 
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Figure 3.2a. ‘Clegg’ image. 

 

Figure 3.2b. ‘Frymire’ image. 

  

 

Figure 3.2c. ‘Lena’ image. 

 

Figure 3.2d. ‘Monarch’ image. 
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Figure 3.2e. ‘Peppers’ image. 

 

Figure 3.2f. ‘Sail’ image. 

  

 

Figure 3.2g. ‘Serrano’ image. 

 

Figure 3.2h. ‘Tulips’ image. 
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Figure 3.3a. ‘Bion001’ image. 

 

Figure 3.3b. ‘Hands’ image. 

  

 

Figure 3.3c. ‘Italy03’ image. 

 

Figure 3.3d. ‘Italy22’ image. 
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Figure 3.3e. ‘Jgdn2’ image. 

 

Figure 3.3f. ‘MMs01’ image. 

  

 

Figure 3.3g. ‘Phgdn1’ image. 

 

Figure 3.3h. ‘Sunflower’ image. 
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Figure 3.4a. ‘Bion001’ image. 

 

Figure 3.4b. ‘Bion002’ image. 

  

 

Figure 3.4c. ‘Bion003’ image. 

 

Figure 3.4d. ‘Bion004’ image. 
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Figure 3.4e. ‘Bion005’ image. 

 

Figure 3.4f. ‘Bion006’ image. 

  

 

Figure 3.4g. ‘Bion007’ image. 

 

Figure 3.4h. ‘Bion008’ image. 
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Figure 3.5a. ‘MMs01’ image 

 

Figure 3.5b. ‘MMs02’ image  

  

 

Figure 3.5c. ‘MMs03’ image 

 

Figure 3.5d. ‘MMs04’ image 
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Figure 3.5e. ‘MMs05’ image 

 

Figure 3.5f. ‘MMs06’ image  

  

 

Figure 3.5g. ‘MMs07’ image 

 

Figure 3.5h. ‘MMs08’ image 
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33..55  CCOONNCCLLUUDDIINNGG  RREEMMAARRKKSS  

This chapter has outlined the requirements and basic implementation details of the 

image processing system used to execute the algorithms described in this thesis, and 

the images used and the rationale for their selection. 

The program framework has proved to be ideally suited to the task and has been 

used successfully for modifying images, making quantitative and timing 

measurements and outputting data in formats suitable for importing into other 

software packages. 

The program code containing the program framework and functions is included in 

Appendix B. 
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CChhaapptteerr  44::  LLooccaall  WWiinnddooww  
MMeetthhooddss  ooff  NNooiissee  RReemmoovvaall  

44..11  DDEEFFIINNIITTIIOONN  OOFF  TTHHEE  LLOOCCAALL  WWIINNDDOOWW  

The local window is defined as all the pixels within a specified distance of a given 

pixel f(x,y). As the vast majority of image geometry is Cartesian, it is natural to 

consider the local window as bounded by a square or rectangle. Although two-

dimensional, for ease of notation the local window structure is generally considered 

as a 1-D array with the f(x,y) origin denoted W(0); this is given either as the top-left 

pixel with the index monotonically increasing in raster fashion (Figure 4.1a) or as 

the central pixel with the index increasing in a counter-clockwise spiral (Figure 

4.1b). In this way each W(n) corresponds to an image location f(x+ni,y+nj). Clearly, 

for pixels on or near the perimeter of the image, some values of n will indicate pixels 

which do not exist in the image. For these pixels the support of the window W 

should be curtailed or processing of the window abandoned entirely. Changing the 

window size dynamically clearly leads to different results for pixels near the edge 

than one would expect for the standard operator for the rest of the image. For this 

reason, processing of edge pixels is ignored in this thesis; for instance, if work is 

conducted with operators of maximum width 2R+1, only pixels within distance R of 

the perimeter of the image are processed and subjected to scrutiny. 

Local window noise removal methods replace or alter certain pixels within the 

window after considering the local image statistics; as most filtering techniques 

involve replacing the central pixel, local window sizes are generally of odd order 

(commonly from 3 × 3 up to approximately 21 × 21). 
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For this same reason, the second window number ordering convention (Figure 4.1b) 

is employed in this thesis, as the index and relative location of the central pixel does 

not change with the operator size. 

Rectangular or square local windows can be specified quite conveniently as shown 

above, but their support is anisotropic due to their geometry; more distance is 

covered by the diagonal than the horizontal or vertical. This may be useful for some 

applications; for instance, modern graphics cards include anisotropic filters with 

greater horizontal support than vertical for increased image quality or to produce 

effects such as motion blur.71 However, anisotropic support is not desirable when 

measuring the efficacy of processing methods requiring accurate metrics; the effect 

of any technique should produce equal results in all directions, i.e. be invariant to 

image rotation.17,69 

It is easy enough to specify pseudo-circular operators by only including sub-window 

elements which fall within a certain radius, although checking for this introduces an 

extra algorithmic delay which is unwelcome for time-critical applications. To this 

end octagonal windows can be employed which provide a useful trade-off between 

isotropic action and computational speed.70 

Figure 4.1. Two common forms of image sub-window notation. 
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44..22  CCOONNVVOOLLUUTTIIOONN  OOPPEERRAATTOORRSS  

Low-pass filtering an image is a common method of removing or attenuating noise. 

Such filtering operations require that the image be transformed into the frequency 

domain, multiplied by the filter transfer function and then transformed back into the 

spatial domain. 

However, it is well-known that a multiplication in the frequency domain is 

equivalent to a convolution in the time domain, and vice versa:1 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

S T s x t x
S T s x t x
Ω Ω ⇔ ∗
Ω ∗ Ω ⇔

 (4.1) 

where S and T are the forward Fourier transforms of the spatial variables s and t 

respectively. In this way much of the computational overhead of transforming to and 

from the frequency domain can be eliminated by calculating the appropriate 

convolution mask from the filter frequency response for all but the largest masks. 

The convolution of two functions f(x) and g(x) is defined as: 

( ) ( ) ( ) ( )df x g x f u g x u u
∞

−∞
∗ = −∫  (4.2) 

For application to 2-D digital images the discrete form is given by: 

( , ) ( , ) ( , ) ( , ) ( , )
i j

F x y f x y g x y f i j g x i y j= ∗ = − −∑∑  (4.3) 

To keep with the windowing notation and for a more intuitive understanding of the 

process of convolution, it is necessary to pre-invert the spatial convolution mask g: 

( , ) ( , )h x y g x y= − −  (4.4) 

( , ) ( , ) ( , )
i j

F x y f x i x j h i j= + +∑∑  (4.5) 



–––––  Chapter 4: Local Window Methods of Noise Removal  ––––– 

–––  Page 60  ––– 

In the literature, convolution masks are described in this pre-inverted form. It is 

common for the sum of the elements in the convolution mask to be unity so that 

there is no overall increase or decrease in image energy. 

44..22..11  TTHHEE  MMEEAANN  FFIILLTTEERR  

The mean filter is the most basic of convolution masks to construct: each mask 

element contributes 1/N2 to the output pixel for a mask of size N×N. For instance, 

the mask for a 3 × 3 operator is given by: 

1 1 1
1 1 1 1
9

1 1 1
meanM

 
 =  
  

 

Using the windowing convention in Fig. 4.1b, the output corresponds to the central 

pixel, W(0). 

As the output of the mean filter contains an equal proportion of all pixels in the 

window, the consequence is to distribute the noise present throughout the 

neighbourhood, effectively suppressing it. Indeed, it is well known that the mean 

filter is the minimum mean-squared error estimator for an unvarying signal 

contaminated with zero-mean Gaussian noise.72, 74 

Unfortunately severe blurring occurs as adjacent pixels are mixed to produce the 

new central pixel value. This effect can be seen more clearly by considering Figure 

4.2, which shows the intensity profile of a typical step edge after application of the 

mean filter: image detail is merely ‘averaged’ in. It naturally leads from this that the 

mean filter will perform poorly at removing impulsive (long-tailed) noise which 

exhibits similar high spatial-frequency characteristics to edge detail. The result is 

that the error introduced by the impulse will be spread out rather than eliminated, as 

previously noise-free pixels are averaged with the noisy ones. 
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Selecting a convolution mask with a Gaussian or binomial profile ameliorates the 

difficulty somewhat (as well as approximating a circular symmetric operator) but is 

still far short of optimal: 

1 2 1
1 2 4 2

16
1 2 1

binomialM
 
 =  
  

 

Being a linear operation, the mean for colour image data can be obtained by simple 

component-wise application of the filter, for example: 
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 (4.6) 

such that m is the mean vector of all xi. 

44..33  TTHHEE  MMEEDDIIAANN  FFIILLTTEERR  

From the discussion above it is apparent that the mean filter is somewhat ineffective 

against impulsive noise; the median filter provides a simple and effective solution to 

Figure 4.2. Blurring effect of the mean filter: the solid line is the original step-edge intensity profile. 
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the problem. First brought to popular attention by Tukey,75 the median filter belongs 

to the class of non-linear filters and operates over the local window in a manner 

similar to the mean filter, where the central pixel value is replaced by the median of 

the data set. 

The advantage of the median filter is that its impulse response is zero, whilst step 

and ramp inputs pass through unchanged; this suppresses impulse noise extremely 

effectively without destroying image detail excessively; images tend to be slightly 

‘softened’ which is considered more acceptable than the blurring which occurs with 

the mean filter. 

For a continuous signal, the median xmed can be defined as the value which satisfies 

the following equation: 

max

min

  0med

med

x x

x x
x dx x dx− =∫ ∫  (4.7) 

where xmin and xmax represent the range of values over which x lies. 

In greyscale image processing the median of a local set of N pixels can be calculated 

simply by sorting the pixels according to intensity and selecting the pixel in the 

middle of the range, at position N/2. This is a unique pixel value if one constrains 

the median to be one of the original pixels in the distribution and ensures that N is 

odd. 

As the median generally lies close to the mean except for certain pathological cases 

(ordering of the averages is discussed further in Chapter 6; see also Davies (1988)134 

for a further discussion), median filtering also has some success in curbing heavy 

Gaussian noise but is suboptimal in comparison to the mean;80 with its excellent 

impulse rejection capability its relative popularity in suppressing noise when the 

noise and data characteristics are unknown can be understood. 

However, due to its nonlinear operation, applying the median filter to colour images 

cannot be realized by simply extending its operation to each channel individually as 

with linear operators such as the mean filter. Such a method fails to take into 

account the interdependency of image components. Consider Figure 4.3a which 



–––––  Chapter 4: Local Window Methods of Noise Removal  ––––– 

–––  Page 63  ––– 

shows a step edge from a small horizontal slice of a colour image, contaminated by a 

nearby impulse in the red channel. When this is filtered in a component-wise manner 

by a 5-element median filter (shown in Figure 4.3b) it can be seen that although the 

noise point is removed, it has caused the edge to move by one pixel; this is known as 

edge jitter. In this case the component-wise application of the scalar median filter 

has not truly succeeded in eliminating the noisy pixel; it has merely moved it. Also 

undesirable is that the output vector may not consist of one of the original input 

vectors for more complex examples. To overcome this problem, a vector median 

method utilizing the inter-channel correlation has been developed. 

44..44  TTHHEE  VVEECCTTOORR  MMEEDDIIAANN  FFIILLTTEERR  

When designing a well-behaved (i.e. non-oscillatory) filter it is necessary to consider 

certain criteria. Before proceeding with definitions for the vector median filter, let us 

regard these criteria: 

• The existence of root signals, i.e. those which are invariant to the application 

of the filter, must be assured to ensure the filter’s stability. Root signals are 

important in the analysis of a filter’s behaviour, as essentially they define the 

filter passband. 

Figure 4.3. Application of  5-element median filter to colour pixel sequence. 
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• In the 1D case, a vector filter should produce identical output to that of the 

scalar version, i.e. select the same output value. 

• As with the scalar filter, the output of a vector filter should be one of the 

original input vectors (thus ameliorating the problem of edge jitter, or colour-

bleeding). 

With these properties defined, the vector median may be identified either using 

robust ordering statistics or as a maximum likelihood estimator. 

44..44..11  DDEEFFIINNIITTIIOONN  11::  DDEERRIIVVIINNGG  TTHHEE  VVEECCTTOORR  MMEEDDIIAANN  UUSSIINNGG  RRAANNKK  OORRDDEERR  
SSTTAATTIISSTTIICCSS  

As there is no natural concept of ordering vector-valued quantities, some method 

must be employed by which one may rank order the values to obtain the ‘median’ 

for a multivariate data set. To extend scalar processing to vector data, four distinct 

ordering techniques are commonly used: conditional ordering (C-ordering), marginal 

ordering (M-ordering), partial ordering (P-ordering) and reduced ordering (R-

ordering).76 

In C-ordering, the data are ranked according to one component only; this may 

conceivably be employed for images encoded in certain colourspaces whereby one 

component is more statistically significant (see Chapter 2) but cannot be considered 

suitable for general colour image processing use as it fails to take into account inter-

component correlation. However, at least one filtering method has been developed 

using C-ordering in the HSV colourspace.77 In M-ordering, ranking is performed for 

each component independently; obtaining the median by component-wise 

processing is unsuitable for the reasons described in Section 4.3. In P-ordering, the 

convex hull of the data set is found and all samples on the boundary are assigned 

rank 1 and then discarded. A new convex hull is found and samples assigned rank 2 

before being discarded. This continues until all the data have been classified. P-

ordering does not distinguish between samples which have been assigned the same 

rank and calculating the convex hull for M-dimensional distributions is complicated 



–––––  Chapter 4: Local Window Methods of Noise Removal  ––––– 

–––  Page 65  ––– 

and computationally expensive for M≥3. In R-ordering each vector is assigned a 

scalar value according to a pre-specified dissimilarity or distance metric D: 

1
( , )

N

j i j
i

d D
=

=∑ x x  (4.8) 

The vector which has the lowest distance d is assigned rank 1, the second lowest 

rank 2, and so on, such that: 

1 2 ... N≤ ≤ ≤x x x  

corresponds to: 

1 2 ... Nd d d≤ ≤ ≤  

The R-ordering approach has the advantages that each sample generally has unique 

rank and the distance criterion can be chosen according to application. It is probable 

that for these reasons a great many publications utilize a form of the R-ordering rank 

statistic in colour image processing.28,72,73,74,77,78,79 

Simple analysis of the scalar median filter shows that for a signal x of length N, the 

median filter output xmed satisfies the following equation: 

1 1
 

N N

med i j i j
i i

x x x x x
= =

− ≤ − ∀∑ ∑  (4.9) 

It follows that a definition of the VMF may be obtained by modifying Eq. 4.9 to 

employ an Lp norm metric as the R-ordering measure: 

1
1

min  ( )
N

med i j j medpi=
= − ∀ ≡∑x x x x x x  (4.10) 

where the Lp norm is denoted by .
p
which for M-dimensional vectors is defined as: 
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1

1
L ( , )

p pM

p i i
i

u v u v
=

 
= −  
 
∑  (4.11) 

Popular Lp norms are the L1, L2 and L∞ metrics (the city-block, Euclidean and 

chessboard distances, respectively). Using an Lp metric as the R-ordering statistic 

means that vectors which diverge greatly from the sample population are found at 

the higher indexes; outlier rejection is inherent in its performance. The L1 norm 

approximates the component-wise application of the scalar median filter (Eq. 4.9) 

and the L2 norm, selecting the vector closest to the centre of the distribution, is more 

an approximation of the mean filter.81 The L1 norm can expect to perform well in 

rejecting impulse noise, but less favourably in comparison to the L2 norm in a 

Gaussian environment (at the expensive of greater softening).81,82,83 

44..44..22  DDEEFFIINNIITTIIOONN  22::  DDEERRIIVVIINNGG  TTHHEE  VVEECCTTOORR  MMEEDDIIAANN  AASS  AA  MMAAXXIIMMUUMM  
LLIIKKEELLIIHHOOOODD  EESSTTIIMMAATTOORR  

Consider a M-dimensional sample set in which the noise in the components is 

dependent and symmetrically distributed biexponentially:83 

2( ) i

if e
α

γ
− −

=
x β

x  (4.12) 

where α and γ are scaling factors and β  is the location parameter of the distribution. 

The maximum likelihood estimator �β  for β  maximizes the function: 

2

1

( ) i
N

i

L e
α

γ
− −

=

=∏
x β

β  (4.13) 

By taking the logarithm of Eq. 4.13, maximizing L(β ) reduces to minimizing the 

equation:74 

21

N

i
i=

−∑ x β  (4.14) 
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Astola et al note that there is no closed solution to the above equation unless �β  is 

constrained to be one of the set x, in which case one arrives at equation 4.10 using 

the L2 norm.74 

Similarly, they show that the L1 norm may be derived by considering a sample 

distribution in which the noise is independent in the M components: 

1

( )
2

i i i
M

xi

i

f e α βα − −

=

=∏x  (4.15) 

where αi are the scaling factors. The expression to be minimized then becomes: 

1 1

N M

d id d
i d

xα β
= =

−∑∑  (4.16) 

where xid and βd are the d’th components of xi and β  respectively. 

With the constraint that the maximum likelihood estimate �β  be one of xi and that 

1 2 Mα α α= = ="  one arrives at the definition of the L1 norm VMF: 

1

min  
N

med i j j
i=

= − ∀∑x x x x  (4.17) 

With these definitions of the VMF it is possible that xmed is not unique. In this case 

additional consideration must be given to candidate vector selection. In this work 

pixels are calculated in window number order (shown in Figure 4.1b) and thus of 

those xi which exhibit the lowest distance the one nearest the central pixel is 

favoured. 

44..55  OOTTHHEERR  VVEECCTTOORR  FFIILLTTEERRSS  

The class of filters based on order statistics is rich, and although the VMF as 

discussed is a powerful noise removal tool that may be applied when the source and 

noise characteristics are not known a priori, it is likely that filtering according to 
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other priorities or properties of colour images is desirable. Here follow descriptions 

of a number of well-known non-linear and hybrid vector filters and their rationales. 

44..55..11  TTHHEE  αα--TTRRIIMMMMEEDD  VVEECCTTOORR  MMEEDDIIAANN  FFIILLTTEERR  ((ααVVMMFF))  

As already noted in Sections 4.2.1 and 4.4.1 the excellent performance of the VMF 

against long-tailed or impulsive noise cannot approach that of the Arithmetic (linear) 

Mean Filter (AMF) for short-tailed (i.e. Gaussian) noise. This filter attempts to 

combine the effectiveness of the AMF for Gaussian contamination with the edge-

preserving and impulse rejection properties of the VMF by passing the n(1-2α) 

vectors closest to the vector median to an averaging filter block (Plataniotis & 

Venetsanopoulos, Chapter 10, The Image Processing Handbook).28 

Assuming the input samples have already been sorted by Lp norm 

( 1 2 ... N≤ ≤ ≤x x x ), the α-trimmed VMF can be described thus: 

(1 2 )

1

1
(1 2 )

n

VMF i
i n

α

α α

−

=

=
−∑x x  (4.18) 

where α ≤ 0.5 and nα ∈ ℵ.84,85 The efficacy of this filter against the other filters 

described is discussed in Section 4.7. 

44..55..22  TTHHEE  BBAASSIICC  VVEECCTTOORR  DDIIRREECCTTIIOONNAALL  FFIILLTTEERR  ((BBVVDDFF))  

The VMF is concerned with the differences in vector lengths, i.e. the aggregate 

vector intensity, and although it is well known that humans are more sensitive to 

errors in the luminance channel than the chrominance channel, it should not be 

forgotten that colour integrity is important when considering colour images, and thus 

the vector directional filter was developed in an attempt to eliminate those vectors 

inside the processing window which exhibit atypical directions, i.e. those which are 

of a clearly different colour to the surrounding pixels. 
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The basic vector directional filter (BVDF) uses the same R-ordering statistic, but 

instead of selecting the target pixel as that which minimizes the sum of the vector 

lengths, it picks the vector which minimizes the sum of the angles with the other 

vectors, ai. 

1
( , )

n

i i j
j

a A
=

= ∑ x x  (4.19) 

where 

1( , ) cos i j
i j

i j

A −
 
 =
 
 

x x
x x

x x
i

  

It is clear that this filter is only of use when preserving only the chromaticity of the 

image is important; as a preprocessing step before segmentation, or when it is 

known a priori that the luminance information is uncorrupted, for instance. 

Otherwise a subsequent magnitude processing operation should be implemented, as 

described in the more generalized filter structure described below. 

44..55..33  TTHHEE  GGEENNEERRAALLIIZZEEDD  VVEECCTTOORR  DDIIRREECCTTIIOONN  FFIILLTTEERR  ((GGVVDDFF))  

The GVDF combines the directional or chromatic filtering property of the BVDF 

with the length or intensity filtering property of the VMF by passing the set of r 

smallest sum-of-angles vectors obtained from the BVDF to an intensity processing 

structure. It should be noted that any type of magnitude processing may be 

implemented; Trahanias and Venetsanopoulos employ α-trimmed mean and 

multistage max/median as secondary filters.86 

Selection of r may be fixed or determined adaptively. The extreme cases r = 1 

corresponds to the output of BVDF only, and r = N corresponds to no directional 

filtering at all. In the experiment conducted in Section 4.7 the standard L2 norm 

metric is used for the magnitude processing, with r fixed at 12
N +  as suggested by 

Trahanias et al.87 
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44..55..44  TTHHEE  DDIIRREECCTTIIOONNAALL  DDIISSTTAANNCCEE  FFIILLTTEERR  ((DDDDFF))  

The DDF adopts an approach similar to the GVDF with regard to combined filtering 

of intensity and chromaticity, but rather than using a two-tier filter structure a new 

distance criterion is defined for the R-ordered VMF:88 

1

1 1 1 1
min cos

n n n n
i j

out i j
i j i ji j

−

= = = =

    
  = −       
∑∑ ∑∑

x x
x x x

x x
i

 (4.20) 

This is a combination of the BVDF and VMF; the first part of Eq. 4.20 accounts for 

differences in vector angle and the latter in terms of magnitude. 

44..55..55  TTHHEE  DDIIRREECCTTIIOONNAALL  MMAAGGNNIITTUUDDEE  VVEECCTTOORR  FFIILLTTEERR  ((DDMMVVFF))  

Another filter which modifies the distance criterion of Eq. 4.8 is the DMVF.82 Based 

on the ‘content model’ proposed by Ekman,89 a distance criterion is derived which 

measures the similarity between vector pairs. This is expressed as the ratio between 

the factors that they share to that of their combined total:  

( )
22

22

2 cos
,

2 cos

i j i j

i j

i j i j

D
θ

θ

+ −
=

+ +

x x x x
x x

x x x x
 (4.21) 

It can be seen that Eq. 4.21 considers both vector angle and length differences as 

with the DDF and GVDF. Plataniotis et al give results which shows the DMVF 

outperforms the other vector filters described so far (VMF, BVDF, GVDF and DDF) 

for both Gaussian and impulsive noise.82 

44..55..66  AADDAAPPTTIIVVEE  VVEECCTTOORR  FFIILLTTEERRSS  

All the filters discussed so far have been derived from particular viewpoint or 

constraints, or developed with specific applications in mind, and thus may perform 
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poorly in conditions other than those in which they were originally designed to 

operate. The construction of an adaptive filter structure which performs well for 

different image classes and noise models is therefore highly desirable. A general 

form of adaptive filter put forward by Plataniotis et al90 is given as the nonlinear 

weighted average of the input samples: 

1

1

1

ˆ

N

i iN
i

i i N
i

i
i

w
w

w

=

=

=

′= =
∑

∑
∑

x
y x  (4.22) 

where ŷ  is the filter output, 0iw ′ ≥  and 
1

1
N

i
i

w
=

′ =∑ . 

The weights are determined adaptively according to a distance criterion in the same 

way that the other vector filters rank their input vectors, and a membership function 

which, based on the distance criterion, ensures that the input vector with the 

minimum distance is assigned the maximum weight iw ′ . 

From this premise is it possible to construct a plethora of filters utilizing different 

membership functions and distance criteria. Arguably, one of the most successful of 

this type of filter is the Adaptive Nearest Neighbour Multichannel Filter (ANNMF), 

in which weights are assigned according to the nearest neighbour rule: 

max

max min

i
i

d dw
d d

−
=

−
 (4.23) 

where the di are calculated as: 

1

1 1
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N i ji j
i

j i j i j

d
=

   −
  = − −

    
∑

x xx x
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 (4.23) 

In tests against other vector filters, adaptive vector filters (and in particular the 

ANNMF) produce consistently lower error scores than the traditional vector filters.28 
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44..66  NNOOIISSEE  MMEEAASSUURREEMMEENNTT  MMEETTRRIICCSS  

To evaluate the efficacy of a given filter, objective error measures are required. 

Classic error metrics used in greyscale image processing are the mean squared error 

(MSE), root mean squared error (RMSE) and signal-to-noise ratio (SNR): 

( )2

1 1

( , ) ( , )
N M

x y

f x y f x y
MSE

NM
= =

′−
=
∑∑

 (4.24) 
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 (4.26) 

where N and M are the image width and height, and ( , )f x y  and ( , )f x y′  are the 

original and post-filtered noisy image pixels, respectively. 

In colour image processing, two metrics are generally used: the normalized mean 

square error (NMSE), and the mean chromaticity error (MCRE). The normalized 

mean square error for vector images is defined as:86 
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N M
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x y x y
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= =

= =
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f f

f
 (4.27) 

The mean chromaticity error is generally calculated as the distance between the 

intersection points of two vectors on the Maxwell triangle (plane of constant 

intensity), as shown in Figure 4.4. The Maxwell triangle is defined as the plane 

1 0x y z+ + − = , or in the RGB cube 255 0R G B+ + − =  for images utilizing 8-bits 

per channel. 
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The MCRE is thus defined as:86 

( ) ( ) ( )22 2

1 1
1

N M

xy xy xy xy xy xy
x y

r r g g b b
MCRE

NM
= =

− + − + −
=
∑∑

 (4.28) 

Where r, g and b are the normalized RGB values of a given pixel i: 

i i i
i i i

i i i i i i i i i

R G Br g b
R G B R G B R G B

= = =
+ + + + + +

 

Some workers utilize a slightly different method of calculating the MCRE which 

involves measuring the Euclidean distance between two points on the unit sphere 

( 2 2 2 1 0x y z+ + − = ), rather than the unit plane:91 
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= =

−

=
∑∑ f f

ff
 (4.29) 

If the definition of the MCRE in Eq. 4.29 is used in preference to Eq. 4.28, vectors 

with atypical directions will return a similar distance measure, whereas the distance 

measured for similar vectors will increase. As the intersection points are calculated 

on the unit sphere but the distance measured is Euclidean, there is an inherent non-

linearity in this method. 

Figure 4.4. The Maxwell triangle. 
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The author has determined that a third definition of the MCRE may be given: the 

distance between two points across the surface of the unit sphere. This is calculated 

simply as: 

1
3 cos i j

i j

MCRE −
 
 =
 
 

x x
x x

 (4.30) 

where the arccosine returns an angle in radians. Figure 4.5 shows the three different 

MCRE metrics for two example 2D vectors. 

To prevent confusion, in this work the MCRE employed is as given by Trahanias 

and Venetsanopoulos (Eq. 4.28).86 

For images which are ultimately intended for human viewing, the CIELAB 

perceptual error metric is employed. Transforming the vector pair under 

consideration to LAB space (Section 2.8) the error is measured as the Euclidean 

distance between the two points: 

1 1

( , )
N M

x y

E x y
LABE

NM
= =

∆
=
∑∑

 (4.31) 

where 

Figure 4.5. The three representations of the mean chromaticity error metric. 
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( ) ( ) ( )22 2* * * * * *E L L a a b b∆ = − + − + −  (4.32) 

Although there is some computational overhead in converting vectors from RGB to 

LAB, this method has the benefit of being a closer measure to the error perceived by 

the human eye than the other error metrics described. The LAB colourspace is 

preferred over LUV because in general machine vision techniques are concerned 

with comparison between off-camera images, i.e. reflected light sources. If the 

performance of a filter is based on screen appearance a more appropriate 

colourspace would be LUV, suitable for emitted light (Chapter 2). 

A recent error measure introduced by Sangwine and Bardos91 estimates noise in 

images using a pixel classification method based on the VMF. Given that a local 

window of pixels are rank-ordered using Eq. 4.8 and the L2 norm such that 

1 2 ... N≤ ≤ ≤x x x , if the pixel under consideration is xN it is labelled as noisy. The 

total noise measure is given as a percentage: 

1 1 100

N M

xy
x y

SB

S
Err

NM
= == ⋅
∑∑

 (4.33) 

where Sxy =1 if classed as noisy, Sxy =0 otherwise. 

Whilst this measure may be applied to only a single image to ascertain how ‘noisy’ 

it is, without comparison between filtered and original images it cannot be 

considered a reasonable method of measuring a filter’s efficacy. It is only really a 

measure of an image’s smoothness; for instance an image with high spatial-

frequency characteristics (such as one containing many edges) would return a high 

error score with this metric. Furthermore, it would not be able to detect the presence 

of Gaussian contamination, and as such can only be considered a useful measure for 

detecting noise which generates significant outliers. 

Due to its popular usage in the literature, the NMSE is utilized as the primary error 

metric in this work, with the MCRE and LAB error included in places for 

comparative purposes. 
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44..77  PPEERRFFOORRMMAANNCCEE  OOFF  DDIISSCCUUSSSSEEDD  FFIILLTTEERRSS  

To test the efficacy of the filters eight standard colour images from the Waterloo 

Repertoire image database were contaminated with noise in six different ways; 2% 

random impulse noise, 5% random impulse noise, Gaussian noise of variance 100, 

Gaussian noise of variance 1000 and two of mixed mode (2% impulse plus Gaussian 

variance 100 and 5% impulse plus Gaussian variance 1000). These levels and types 

of noise are used to permit comparison with established research which employs 

similar types and amounts of contamination. In the interests of brevity, and in view 

of the relatively low noise levels, results for only 3 × 3 filter window sizes are given. 

44..77..11  EEXXPPEERRIIMMEENNTT  11::    22%%  RRAANNDDOOMM  IIMMPPUULLSSEE  NNOOIISSEE  

Regarding the graphic results of this first experiment, some interesting observations 

may be made concerning the variation between the images, filters and noise metric 

used. First, let us consider the error measured for the unprocessed, contaminated 

images. For the NMSE results (Figure 4.6a) there is a marked difference between the 

images of the noise level measured; under 0.01 for ‘Clegg’ and ‘Serrano’ and over 

three times higher at nearly 0.03 for ‘Sail’, contrary to what one would expect for 

images contaminated with the same amount and type of noise. For the MCRE and 

LAB error results (Figures 4.6b and Figure 4.6c respectively) much more uniform 

variations are seen (less than 1 and 3 for the MCRE and LAB error respectively) 

compared to the errors observed for the filters. For the MCRE and LAB metrics, it 

would appear all of the filters tested worsen the error score, rather than improve it. 

Qualitative observations support this; the level of contamination is relatively low so 

the distortion introduced by application of a filter is visually worse than the presence 

of the original noise. 
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Figure 4.6a. NMSE for 2% impulse noise contamination. 
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Figure 4.6b. MCRE for 2% impulse noise contamination. 
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Figure 4.6c. LAB error for 2% impulse noise contamination. 
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 Average error scores for 2% impulse noise contamination to 5 significant 
figures. 

Filter NMSE MCRE LAB 

VMF (L1) 0.010409 8.4138 27.954 

VMF (L2) 0.010191 8.3257 26.999 

AMF 0.016255 14.484 51.859 

αVMF 0.010422 10.004 31.073 

BVDF 0.018273 9.7380 30.088 

GDVF 0.016048 9.5293 30.784 

DDF 0.010950 8.2239 26.226 

DMVF 0.014082 9.6329 32.057 

ANNMF 0.011147 11.095 35.028 

Table 4.1. Average error scores for 2% impulse noise contamination. The best scores are shown 
in bold. 

It is clear from all three figures that the performance of the filters varies more 

greatly between the test images than between the filters themselves; the worst 

performing being those, as expected, that have a large amount of high-frequency 

detail, especially the ‘Frymire’ image containing many edges. 

No one filter clearly outperforms any other, but in general the averaging-type and 

directional filters perform poorly against the standard L1 and L2 norm VMF. The 

αVMF performs consistently, but the DDF has the best average MCRE and LAB 

error scores, only trailing the standard VMF and αVMF for the NMSE (Table 4.1). 
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 Average error scores for 5% impulse noise contamination to 5 significant 
figures 

Filter NMSE MCRE LAB 

VMF (L1) 0.011266 8.8226 29.541 

VMF (L2) 0.011042 8.7448 28.579 

AMF 0.020190 16.487 64.902 

αVMF 0.010948 10.270 32.052 

BVDF 0.019699 10.128 31.814 

GDVF 0.016913 9.7988 32.001 

DDF 0.011595 8.6133 27.709 

DMVF 0.015322 10.029 33.724 

ANNMF 0.011986 11.595 37.619 

Table 4.2 Average error scores for 5% impulse noise contamination. The best scores are shown 
in bold. 

44..77..22  EEXXPPEERRIIMMEENNTT  22::  55%%  RRAANNDDOOMM  IIMMPPUULLSSEE  NNOOIISSEE  

The results of this experiment (shown in Figure 4.7a-c) show an almost identical 

trend to Expt. 1. All the filters continue to worsen the error score for the MCRE, but 

for the majority of the natural colour images (‘Lena’, ‘Monarch’, ‘Peppers’ and 

‘Tulips’) all filters but the AMF improve the score for the LAB error. 

As in Expt. 1, the DDF gives the best average error score with respect to the MCRE 

and LAB metrics (Table 4.2), followed closely by the standard VMF. For the 

average NMSE error the αVMF has the lowest score, but the difference between this 

and the L2 norm VMF is very small (9.4 × 10-6) 
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Figure 4.7a. NMSE for 5% impulse noise contamination. 
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Figure 4.7b. MCRE for 5% impulse noise contamination. 
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Figure 4.7c. LAB error for 5% impulse noise contamination. 
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44..77..33  EEXXPPEERRIIMMEENNTT  33::  LLIIGGHHTT  GGAAUUSSSSIIAANN  NNOOIISSEE  ((σσ22==110000))  

The results of each metric in this experiment are quite different to Expts. 1 and 2. 

The measured error for the original noise contaminated image is fairly uniform for 

the NMSE (Figure 4.8a) unlike the MCRE and LAB error (Figures 4.8b-c), contrary 

to the observation for Expts. 1 and 2. It can also be seen that the majority of the 

filters worsen the error score for the NMSE but not the MCRE or LAB error, 

dissimilar to the case for Expts. 1 and 2. 

Also for this experiment the performance of the filters relative to each other is in 

agreement across the three error metrics; once more the BVDF and GVDF are the 

worst performing filters for the great majority of measurements, but the best 

performing are the averaging-type hybrid filters (ANNMF and αVMF) as would be 

expected for Gaussian-type noise. The AMF also performs well for the natural 

images with the MCRE and LAB metrics, but somewhat poorly for the images of 

artificial origin with high-frequency content (‘Clegg’, ‘Frymire’ and ‘Serrano’). 

The standard VMF is a solid middle-performer, but again the DDF offers an 

improvement due to its chromaticity preserving component; these filters seem 

especially suited to those images with high-frequency content when considering the 

NMSE and MCRE metrics. 

The average error scores given in Table 4.3 support these observations; the BVDF 

and GVDF are clearly the worst performers, and the αVMF and ANNMF are 

evidently the best filters for this type of noise. 
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Figure 4.8a. NMSE for σ2=100 Gaussian noise contamination. 

5

10

15

20

25

30

35

Clegg Frymire Lena Monarch Peppers Sail Serrano Tulips

M
C

R
E

Test image

Noisy original
VMF L1
VMF L2

AMF
a-Trimmed VMF

BVDF
GVDF

DDF
DMVF

ANNMF

 

Figure 4.8b. MCRE for σ2=100 Gaussian noise contamination. 
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Figure 4.8c. LAB error for σ2=100 Gaussian noise contamination. 
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 Average error scores for σ2=100 Gaussian  noise contamination to 5 
significant figures 

Filter NMSE MCRE LAB 

VMF (L1) 0.013244 15.394 62.723 

VMF (L2) 0.012916 15.331 61.167 

AMF 0.014944 15.231 55.744 

αVMF 0.011704 14.409 52.499 

BVDF 0.036402 18.557 64.964 

GDVF 0.025337 16.858 66.144 

DDF 0.014254 15.122 58.046 

DMVF 0.015854 15.631 63.720 

ANNMF 0.012531 14.219 51.617 

Table 4.3. Average error scores for σ2=100 Gaussian noise contamination. The best scores are 
shown in bold. 

44..77..44  EEXXPPEERRIIMMEENNTT  44::  MMOODDEERRAATTEE  GGAAUUSSSSIIAANN  NNOOIISSEE  ((σσ22==11000000))  

The results of Expt. 4 (Figure 4.9a-c) show a similar trend for the measured error of 

the original noise-contaminated image across the three metrics, particularly high for 

the ‘Monarch’ and ‘Sail’ images. For the MCRE and LAB results, all the filters 

show an improvement over the basic error score with the exception of the BVDF, 

once more the worst performing filter; the GVDF also returns poor results, but the 

standard VMF is now amongst the poorest as well, using the MCRE and LAB 

metrics. 

As far as the best performing filters are concerned, the measurements of the three 

metrics are in broad agreement; the AMF is the leader under heavy Gaussian 

contamination, as discussed in Section 4.2.1, followed by the ANNMF and αVMF. 

This is corroborated by the average errors given in Table 4.4. 
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Figure 4.9a. NMSE for σ2=1000 Gaussian noise contamination. 
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Figure 4.9b. MCRE for σ2=1000 Gaussian noise contamination. 
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Figure 4.9c. LAB error for σ2=1000 Gaussian noise contamination. 
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 Average error scores for σ2=1000 Gaussian  noise contamination to 5 
significant figures 

Filter NMSE MCRE LAB 

VMF (L1) 0.035556 26.950 139.83 

VMF (L2) 0.034262 26.355 135.78 

AMF 0.022740 20.635 94.878 

αVMF 0.025557 23.143 111.24 

BVDF 0.080212 30.239 133.58 

GDVF 0.054102 27.902 144.35 

DDF 0.037206 26.264 129.15 

DMVF 0.042650 26.128 138.65 

ANNMF 0.025019 21.566 99.739 

Table 4.4. Average error scores for σ2=1000 Gaussian noise contamination. The best scores are 
shown in bold. 

44..77..55  EEXXPPEERRIIMMEENNTT  55::  LLIIGGHHTT  MMIIXXEEDD  NNOOIISSEE  ((22%%  ++  σσ22==110000))  

As the 2% impulse noise affects only a small proportion of pixels as opposed the 

Gaussian contamination which changes every pixel to some degree, it is to be 

expected that the error curves for Expt. 5 (Figure 4.10a-c) show more similarity to 

Expt. 3 than to Expt. 1. With the exception of the AMF whose performance 

deteriorates with the addition of the 2% impulse noise, all the filters perform almost 

identically to Expt. 3. The averaging-type filters perform the best, only bettered by 

the DDF for some images. Looking at the average scores in Table 4.5 the best filters 

across all metrics are the ANNMF and αVMF. 
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Figure 4.10a. NMSE for 2% impulse and σ2=100 Gaussian noise contamination. 
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Figure 4.10b. MCRE for 2% impulse and σ2=100 Gaussian noise contamination. 
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Figure 4.10c. LAB error 2% impulse and for σ2=100 Gaussian noise contamination. 
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 Average error scores for 2% impulse plus σ2=100 Gaussian  noise 
contamination to 5 significant figures 

Filter NMSE MCRE LAB 

VMF (L1) 0.013791 15.543 63.764 

VMF (L2) 0.013412 15.427 62.105 

AMF 0.017253 16.313 63.552 

αVMF 0.012025 14.499 53.127 

BVDF 0.038557 18.772 66.275 

GDVF 0.025772 16.915 67.005 

DDF 0.014747 15.328 59.023 

DMVF 0.016651 15.815 64.784 

ANNMF 0.013106 14.341 52.636 

Table 4.5. Average error scores for 2% impulse plus σ2=100 Gaussian noise contamination. The 
best scores are shown in bold. 

44..77..66  EEXXPPEERRIIMMEENNTT  66::  MMOODDEERRAATTEE  MMIIXXEEDD  NNOOIISSEE  ((55%%  ++  σσ22==11000000))  

As one would expect with heavier Gaussian contamination, the AMF performs 

better in this experiment than in Expt.5 as can be seen from Figures 4.11a-c. Overall, 

the best performing filter is the ANNMF, seconded by the AMF and αVMF in all 

metrics but the NMSE where the αVMF scores most highly, illustrated by the 

average error in Table 4.6. The DDF is a consistent middle performer along with the 

L2 VMF. The worst filters are once again the direction-based algorithms, with the 

notable exception of the BVDF for the LAB metric where it returns a similar score 

to the L2 VMF. Qualitative judgment is difficult to make; detail and features eroded 

by one filter are present in the other and vice versa; situations such as this highlight 

one reason to use different metrics to ascertain a filter’s performance. 
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Figure 4.11a. NMSE for 5% impulse and σ2=1000 Gaussian noise contamination. 
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Figure 4.11b. MCRE for 5% impulse and σ2=1000 Gaussian noise contamination. 
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Figure 4.11c. LAB error 5% impulse and for σ2=1000 Gaussian noise contamination. 



–––––  Chapter 4: Local Window Methods of Noise Removal  ––––– 

–––  Page 89  ––– 

 

 Average error scores for 5% impulse plus σ2=1000 Gaussian  noise 
contamination to 5 significant figures 

Filter NMSE MCRE LAB 

VMF (L1) 0.038349 27.206 143.05 

VMF (L2) 0.036926 26.597 138.86 

AMF 0.029612 22.334 107.31 

αVMF 0.026936 23.317 113.04 

BVDF 0.100482 31.059 138.75 

GDVF 0.058075 28.285 147.32 

DDF 0.040299 26.659 132.32 

DMVF 0.047019 26.687 142.11 

ANNMF 0.027775 22.039 102.72 

Table 4.6. Average error scores for 5% impulse plus σ2=1000 Gaussian noise contamination. 
The best scores are shown in bold. 

44..77..77  DDIISSCCUUSSSSIIOONN  

Two observations are immediately clear when considering the results of these 

experiments; firstly that the results of a given metric do not necessarily correspond 

to a qualitative judgment and that when dealing with multivariate data it is important 

not to rely on one metric alone. Secondly, the class of image has a significant 

bearing on the performance of the filter; natural images require a different approach 

to those that are of artificial origin or otherwise have different statistics; images 

captured for industrial applications for instance.  

The poor performance of the directional-type filters (BVDF, GVDF, DMVF) 

illustrates that intensity (vector length) is a more important feature than chromaticity 

(vector angle) in local areas. The BVDF was shown to be especially bad for 

Gaussian-contaminated images, due to pixels of similar low saturation colour but 
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different intensities all displaying entirely atypical directions after contamination; 

BVDF local window pixel selection then becomes virtually random. 

Venetsanopoulos and Trahanias found that BVDF outperformed the VMF for the 

MCRE but not the NMSE as one would expect.86 However, these results are quite 

contrary to those shown here where the BVDF performs poorly in the MCRE metric 

for all noise models studied. 

Plataniotis et al give results which show the DMVF outperforms the other vector 

filters described so far (VMF, BVDF, GVDF and DDF) for both Gaussian and 

impulsive noise using the ‘Lena’ test image.82 At best the DMVF performs closely 

to the standard VMF but does not exceed it for any of the tests with the ‘Lena’ 

image, even though the noise models used by Plataniotis et al are practically 

identical to those employed here. It is difficult to reconcile why there is such a 

marked difference between the published work and that presented here. 

The DDF performed well by comparison, especially for impulse contamination, so 

vector angle preservation clearly needs to be taken into account; however, the angle 

component of Eq. 4.20 is small compared to the intensity component, thus vector 

length is still the most important feature in this equation. Vardoulia et al found that 

the DDF performed poorly against the VMF in all their tests,77 again disagreeing 

with the results shown here, although their work agrees that the BVDF is indeed a 

poor filter for generalized work. This highlights again that the context in which 

filters are tested should be carefully examined. 

In all cases the L2 VMF outperformed the L1 VMF showing that in practice the L2 

norm is effective against both types of noise, impulsive and Gaussian, at the expense 

of higher computational complexity. The αVMF also shows itself to be worthwhile 

filter to employ when the noise characteristics may not be known, working 

effectively in both types of noise and performing especially in the mixed noise 

environment. 

Although the ANNMF is not as effective at suppressing impulse-only noise as 

published results indicate28, its performance in Gaussian and mixed-noise 
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environments is obvious, without the extensive blurring associated with the AMF. 

Weighted filtering is clearly an avenue worthy of further study. 

44..88  AARRTTIIFFIICCIIAALL  NNEEUURRAALL  NNEETTWWOORRKKSS  

Artificial neural networks (ANNs) are generally described as mathematical models 

which attempt to mimic, to a greater or lesser extent, the massively parallel 

architecture of the brain. The human brain consists of roughly one hundred billion 

(1011) relatively simple processing units each with connections to ten thousand 

neighbouring neurons, an architecture which thus has over 1015 information 

pathways. Each neuron’s output depends on the weighted sum of its inputs; coupled 

with suitable learning rules to adjust connection weights and an appropriate simple 

output processing function, networks capable of highly complex non-linear 

decisions are possible using a topology of highly interconnected basic processing 

units similar to that found in the mammalian brain. 

44..88..11  AAPPPPLLIICCAATTIIOONN  TTOO  NNOOIISSEE  RREEMMOOVVAALL  

ANNs have been applied with great success to a number of areas in machine vision; 

edge detection,96,97 image segmentation / texture analysis,60,98,99,100,101 feature 

recognition,103,104,105,106 image compression107,108 and colour palette quantization.68 

Recently ANNs have been applied to the problem of greyscale image restoration109 

and noise removal.110 Noise removal was carried out by feeding local window pixel 

data into a trained ANN which subsequently specified the value of the centre output 

pixel. It was found that the ANN was able to reject noise, both impulsive and 

Gaussian, to a greater extent than traditional averaging or median-type filters. The 

network topology used was a feedforward multilayer perceptron with error 

backpropagation, described overleaf. This serves as an introduction to the 

background of work undertaken in Chapter 7, where it is investigated whether this 

type of ANN may also be successfully applied to the problem of noise removal in 

vector-valued images. 
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44..88..11  TTHHEE  PPEERRCCEEPPTTRROONN  

Pioneering work by McCulloch and Pitts in 194392 and later by Rosenblatt93,94 lead 

to a mathematical definition of a neuron as a linear binary classifier, called a 

‘perceptron’. The perceptron applied the weighted sum of its inputs to a threshold 

based classifier, usually a Heaviside step function: 

1

0

n

i i
i

y w x θ
−

=

= −∑  (4.34) 

where x is the input vector, w is the weight vector, y is the perceptron output and θ is 

the threshold bias. Generally θ is described as an additional perceptron input β fixed 

at 1 with a weight wβ: 

1

0

n

i i
i

y w x wβ β
−

=

= +∑  (4.35) 

In this way the perceptron is able to classify a given input vector into one of two 

classes. This configuration is shown in Figure 4.12. 

Training the perceptron is possible by moving the linear decision plane until there is 

no misclassification of input vectors. A simple weight update rule may be employed 

to alter the position of the linear discriminant plane by iterating through the training 

patterns: 

Figure 4.12. A simple perceptron. 
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where k represents the current iteration, Y represents the desired classification and η 

is a scaling factor. In other words, if the input vector is misclassified, the weight 

vector is altered in the direction of the correct classification. 

However, the perceptron is only able to form a linear decision boundary which is 

clearly of little use in solving problems which require non-linear classification. By 

combining arrays of perceptrons into layers (see Figure 4.13) much more complex 

discriminant boundaries are possible, but the problem of systematic weight updating 

across the layers became a complex issue, and the development of artificial neural 

networks foundered for nearly two decades. 

44..88..22  TTHHEE  MMUULLTTIILLAAYYEERR  BBAACCKK--PPRROOPPAAGGAATTIIOONN  PPEERRCCEEPPTTRROONN  

Rumelhart et al found that the key to training multi-layer perceptrons (MLPs) was to 

utilize a continuous function rather than the traditional Heaviside step function.95 A 

continuous function is necessary because it is the derivative which is used to update 

the weights of the neurons in the hidden layers; it is the rate of change of the neurons 

at their outputs which determines how their weights should be adapted. By far the 

most common function used is the sigmoid function, given by: 

Figure 4.13. Example MLP architecture. 
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1( )
1 xf x

e−=
+

 (4.37) 

or: 

( ) tanhf x x=  (4.38) 

The first squashing function is used when neuron output should be clamped between 

0 and 1, the second when the output should be between -1 and 1. 

As well as conveniently limiting neuron output, these equations retain similarity to 

the original hard-limiting threshold function (see Figure 4.14) and have relatively 

simple derivative functions. 

Given that the output of a neuron can be described as a function of its input 

( )o f i= , the error of a neuron at the output layer is calculated as: 

( )( )k k k kf i t oδ ′= −  (4.39) 

where ok is the actual output of the neuron and tk is the desired output target. 

The derivative of the sigmoid function in Eq. 4.37 is simply: 

1 1( ) 1
1 1x xf x

e e− −

 ′ = − + + 
 (4.40) 

so Eq. 4.39 becomes: 

Figure 4.14. Sigmoid transfer function. 
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( ) (1 )k k k k kt o o oδ = − −  (4.41) 

This error is propagated back to the hidden layer by adjusting the connection 

weights between the neurons in the hidden layer j and output layer k: 

kj kj k jw w oηδ= +
JJG

 (4.42) 

where kjw
JJG

 is the updated weight and η is between 0 and 1, defined as the learning 

coefficient. 

The error term for a neuron in the hidden layer is: 

0
(1 )

kn

j j j kj k
k

o o wδ δ
=

= − ∑  (4.43) 

where the output neurons are labelled 0 to nk-1 and the nkth neuron is the bias (or 

threshold) neuron. 

The weight change for the connections between the input layer and hidden layer are 

calculated the same way as in Eq. 4.42: 

ji ji j iw w oηδ= +
JJG

 (4.44) 

It is often the case that a weight w becomes stuck in a local minimum of the error 

surface; that is, any further small change in weight increases the error, although a 

somewhat larger increase in weight may decrease the error. For this reason a 

momentum term is often added to the weight update rule; for instance Eq. 4.42 

becomes: 

kj kj k j kjw w o wηδ α= + + ∆
JJG

 (4.45) 

where w∆  represent the previous weight change and α  is the momentum 

coefficient between 0 and 1. This addition makes it much more likely that local 

minima will be ignored and that the globally optimum solution will be reached. 
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It is important that neither η orα  is made too large, or the network will spend time 

oscillating around the minimum. 

The overall fitness of the network is calculated as the sum-squared error of each 

training vector p: 

1
2

0

1 ( )
2

kn

p pk pk
k

E t o
−

=

= −∑  (4.46) 

44..88..33  OOTTHHEERR  NNEETTWWOORRKK  TTOOPPOOLLOOGGIIEESS  

The MLP falls into a class of ANN which requires supervised training. Many other 

network architectures are possible, such as Hopfield’s autoassociative net111 (often 

used as an example of content-addressable memory), Kohonen’s self-organizing 

map112 (popular in applications requiring unsupervised training), and Carpenter and 

Grossberg’s Adaptive Resonance Theory113,114 (viewed as powerful research 

models). The reader is directed to the references for further information on ANNs. 

44..99  CCOONNCCLLUUDDIINNGG  RREEMMAARRKKSS  

This chapter has introduced the concept of noise removal using the local window, 

the traditional mean and median scalar filters and described the derivation of the 

vector median filter. 

Popular extensions to the vector median have also been described, along with the 

metrics used to measure their efficacy, with a comprehensive comparison based on 

different noise models, metrics, and images, describing the advantages and 

disadvantages of each filter’s design. Such a study has hitherto not been performed 

and provides details of each filter’s strengths and weaknesses for a variety of image 

types not often apparent in the literature. 

Finally, an introduction has been given to the subject of artificial neural networks 

and their application to image processing. 
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CChhaapptteerr  55::  EExxtteennssiioonnss  ttoo  tthhee  
VVeeccttoorr  MMeeddiiaann  FFiilltteerr  

55..11  EEXXPPEERRIIMMEENNTTSS  UUNNDDEERRTTAAKKEENN  

This chapter describes three original extensions to the vector median filter, the 

applicability of converting images to different colourspaces before processing, and a 

method for fast calculation of the VMF. 

55..22  VVEECCTTOORR  MMEEDDIIAANN  FFIILLTTEERRIINNGG  IINN  OOTTHHEERR  CCOOLLOOUURRSSPPAACCEESS  

As discussed in Chapter 2, a number of workers have used alternative colourspaces 

to facilitate or improve the results of their experiments in texture analysis and/or 

image segmentation. With the exception of the work by Vardavoulia et al77, no 

investigations into noise filtering using alternative colourspaces are known to have 

been performed. Vardavoulia’s filter was designed with special regard for the HSV 

colourspace; the experiments done here investigate whether transformation of image 

data to other colourspaces aid the performance of the standard VMF. 

The colourspaces used are Ohta’s and LAB. The Ohta space was chosen as 

representative of colourspaces which decorrelate the image colour channels, and 

LAB space was used as an example of a colourspace attempting to mimic human 

colour perception. 

As the VMF is recognized as a poor performer in Gaussian environments, 

experiments are restricted to images contaminated only with random impulsive 

noise. The level of contamination ranges from moderate to heavy (5% to 30% of 

total image pixels). The experiments were performed on the standard images from 

the Waterloo Repertoire Colorset image database. Each image was transformed to 
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the respective colourspace for application of the VMF before the consequent inverse 

colourspace transform; the noise measurements are conducted in RGB space. 

55..22..11  RREESSUULLTTSS  

The results using 3 × 3 windows are given in Table 5.1a-d. The lowest error scores 

for each of the two metrics are shown in bold. 

It can be seen that the transformation to either the Ohta or LAB colourspace 

improves the error score in all instances barring the ‘Clegg’ image in the 5% and 

30%. However, it can also be seen that where one alternative colourspace gives a 

lower error score than RGB, the other colourspace returns a worse score in a number 

of instances. It should perhaps be expected the lowest scores given by the LAB error 

metric are for the LAB colourspace; the only exception being the ‘Serrano’ image in 

all experiments. 

It should be noted that although the differences between the three colourspaces 

become more distinguished as the amount of noise increases, the improvement 

offered by performing the VMF in an alternative colourspace cannot be considered 

particularly significant; in general the improvement is of the order of a few percent, 

with the greatest improvement only 14% (the ‘Sail’ image in Table 5.1d) using the 

NMSE metric in the LAB colourspace. The processed ‘Sail’ images of Table 5.1d 

are shown in Figure 5.1, indicating the qualitative difference between processing in 

the RGB and LAB colourspaces. 
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 NMSE (× 10-2) CIE LAB 

Image No filter RGB Ohta LAB No filter RGB Ohta LAB 

Clegg 2.286 1.483 1.485 1.579 26.966 62.34 62.163 61.790 

Frymire 3.497 3.046 3.021 3.029 31.421 62.868 62.487 60.458 

Lena 4.479 0.350 0.348 0.359 24.966 16.714 16.608 16.474 

Monarch 6.604 1.200 1.191 1.169 24.964 17.056 16.813 15.749 

Peppers 2.977 0.230 0.228 0.215 27.554 15.239 15.077 13.920 

Sail 7.693 1.684 1.676 1.619 24.314 24.980 24.732 23.533 

Serrano 2.396 0.415 0.411 0.440 27.437 20.562 20.403 20.604 

Tulips 3.376 0.444 0.434 0.409 25.182 17.691 17.374 15.670 

Table 5.1a. Error scores for 5% impulse noise contamination in alternative colourspaces. 

 

 

 NMSE (× 10-2) CIE LAB 

Image No filter RGB Ohta LAB No filter RGB Ohta LAB 

Clegg 4.666 1.581 1.580 1.676 54.755 65.615 65.508 64.852 

Frymire 7.152 3.459 3.425 3.483 63.554 70.039 69.454 67.877 

Lena 9.140 0.420 0.415 0.424 50.725 18.167 18.045 17.836 

Monarch 13.355 1.408 1.396 1.372 50.319 18.905 18.614 17.427 

Peppers 5.955 0.293 0.290 0.280 55.257 17.368 17.198 16.044 

Sail 15.231 1.844 1.825 1.763 48.960 26.476 26.174 24.926 

Serrano 4.730 0.520 0.512 0.559 54.918 24.087 23.880 24.489 

Tulips 6.768 0.565 0.551 0.511 50.712 20.200 19.861 18.131 

Table 5.1b. Error scores for 10% impulse noise contamination in alternative colourspaces. 
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 NMSE (× 10-2) CIE LAB 

Image No filter RGB Ohta LAB No filter RGB Ohta LAB 

Clegg 9.228 1.894 1.892 2.001 108.380 73.745 73.661 73.076 

Frymire 14.137 4.612 4.546 4.715 125.724 87.678 86.442 84.875 

Lena 18.053 0.679 0.660 0.692 100.631 22.220 21.923 21.542 

Monarch 26.786 2.157 2.116 2.007 101.153 23.869 23.421 21.851 

Peppers 12.052 0.576 0.566 0.589 111.531 23.532 23.232 22.167 

Sail 30.601 2.451 2.395 2.234 97.417 30.753 30.270 28.448 

Serrano 9.482 0.855 0.837 0.903 109.996 33.105 32.643 33.433 

Tulips 13.686 0.938 0.921 0.839 101.390 26.057 25.686 23.660 

Table 5.1c. Error scores for 20% impulse noise contamination in alternative colourspaces. 

 

 

 NMSE (× 10-2) CIE LAB 

Image No filter RGB Ohta LAB No filter RGB Ohta LAB 

Clegg 13.853 2.448 2.452 2.626 162.868 84.676 84.721 84.573 

Frymire 21.568 6.393 6.307 6.972 190.735 111.693 110.144 110.122 

Lena 27.335 1.278 1.195 1.268 150.891 28.366 27.520 26.503 

Monarch 40.138 3.489 3.344 3.145 151.239 31.736 30.693 27.714 

Peppers 18.062 1.055 1.041 1.238 167.523 32.079 31.770 31.387 

Sail 46.179 3.734 3.551 3.259 146.667 37.416 36.373 33.458 

Serrano 14.347 1.502 1.472 1.611 165.214 46.256 45.496 46.033 

Tulips 20.614 1.642 1.596 1.509 152.622 34.916 34.356 31.602 

Table 5.1d. Error scores for 30% impulse noise contamination in alternative colourspaces. 
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Figure 5.1a. Original ‘Sail’ image. 

 

Figure 5.1b. ‘Sail’ with 30% impulse noise. 

 

Figure 5.1c. VMF in RGB colourspace. 

 

Figure 5.1d. VMF in LAB colourspace. 
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The merits bestowed by the alternative colourspace processing are significantly 

outweighed by the additional computational overhead in the examples studied here 

using the standard VMF and thus is not an effective preprocessing step in improving 

the efficacy of the VMF. However, this does not necessarily mean that utilizing 

other colourspaces should be discounted for future work as an aid in the field of 

colour image noise filtering. 
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55..33  HHYYBBRRIIDD  MMEEAANN  MMEEDDIIAANN  FFIILLTTEERR  ((HHMMMMFF))  

The experiments in Chapter 4 highlight the effectiveness of the α-trimmed VMF for 

all noise types and can therefore be considered a good choice of general filter when 

the noise contamination is not known. As the αVMF undergoes a rank order 

selection process before averaging it does not perform as well as the AMF due to the 

reduced data set passed to the averaging block. Conversely this method preserves 

more detail than the AMF for the same reason; less data smoothing occurs because 

the outliers have been rejected. The hybrid mean-median filter described here was 

designed for the same reason; good rejection of Gaussian noise whilst retaining 

image detail, and also acceptable performance in rejecting impulsive noise. The 

filter is defined as: 

1 2(1 ) 0 1out κ κ κ= + − ≤ ≤x x x  (5.1) 

where 1x  is the output vector of the AMF and 2x  is the output of the VMF. The 

parameter κ is chosen according to application and may be fixed or determined 

adaptively, by analyzing local image statistics for instance. By considering all 

vectors the HMMF will be able to smooth Gaussian noise more effectively than the 

αVMF, but at the expense of preserving detail will not perform as well as the AMF 

if a mid-value of κ is chosen. In purely random impulse noise environments the 

HMMF will perform poorly against the VMF and αVMF but will be superior to the 

AMF if again κ = 0.5. Clearly, if both types of noise are present and the rough 

quantities of each are known, κ can be tuned fairly intuitively; κ < 0.5 produces a 

more favourable response when impulse noise is dominant, κ > 0.5 when the noise is 

predominantly Gaussian. 
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Figure 5.2a. NMSE for 2% impulse noise contamination. 
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Figure 5.2b. NMSE for 5% impulse noise contamination. 
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Figure 5.2c. NMSE for σ2=100 Gaussian noise contamination. 
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Figure 5.2d. NMSE for σ2=1000 Gaussian noise contamination. 
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Figure 5.2e. NMSE for 2% impulse and σ2=100 noise contamination. 
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Figure 5.2f. NMSE for 5% impulse and σ2=1000 Gaussian noise contamination. 
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To illustrate this, experiments comparing the L2 VMF, AMF, αVMF and the new 

HMMF were performed using the same noise models as Chapter 4. The parameter κ 

is fixed at 0.5. Again, for brevity only the results for the 3 × 3 operator using the 

NMSE metric are shown (Figures 5.2a-f). 

55..33..22  CCOONNCCLLUUDDIINNGG  RREEMMAARRKKSS  

As expected, the performance of the HMMF far surpasses that of the AMF in the 

mild impulsive noise tests (Figures 5.2a-b) but lags slightly behind the VMF and 

αVMF. For light Gaussian noise (σ2 = 100) its performance is on par or only slightly 

lagging behind the αVMF, illustrating its detail-preserving characteristics whilst 

suppressing Gaussian noise. In the light mixed noise experiment (Figure 5.3e) it 

performs similarly to the standard VMF, but in the heavy Gaussian noise and mixed 

noise experiments (Figures 5.2d and 5.2f) its effectiveness is clear, being the best 

performing filter in a number of instances. 

The HMMF can be considered an alternative to the αVMF and can be seen to 

provide an improvement in Gaussian contaminated environments; the ability to tune 

its capability adds to its versatility. It also shows some gains in computational speed 

over the αVMF – there is no need to perform expensive sorting operations on the 

sum-of-distances of each vector. However, as with experiments carried out in 

Chapter 4, the strength of the αVMF in all noise environments is evident. 
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55..44  SSEELLEECCTTIIVVEE  RRAANNKK  OORRDDEERR  FFIILLTTEERR  ((SSRROOFF))  

When one considers the nature of impulse noise contamination, a pixel is either 

unchanged or assumes a random value that is probably an outlier when the local 

statistics are analyzed.  The median filter suppresses impulse noise effectively, but 

does not discriminate between noisy and noise-free pixels; this results in a 

‘softening’ of the image in noise-free areas.17 

A better solution would be to leave a pixel unchanged unless local statistics show it 

is an outlier and therefore likely to be noisy. The filter described here is a 

modification of the VMF which examines the rank order of the pixel under 

consideration to decide if replacement is merited. The pixels in the local window are 

ordered in the same way as the standard VMF using an appropriate Lp norm distance 

metric such that pixels are labelled as described in Section 4.4.1. The output of the 

filter is then as follows: 

1

1 for any ,
2

otherwise

C C n n
C

Nn n+ = < ∈= 


x x x x
x

x

`
 (5.2) 

Where N is the number of pixels in the local window (assumed to be odd), Cx  is the 

pixel under consideration and 1x  is the pixel with the minimum output from the Lp 

norm metric, i.e. the vector median. Thus the pixel is left unchanged if it exists in 

the lower half of the rank order or replaced with the vector median if not; in this way 

outliers should be effectively rejected but noise-free pixels should be left as they are.  

55..44..11  RREESSUULLTTSS  

To demonstrate this filter’s effectiveness, results of experiments with very light to 

moderately heavy impulse noise (2% to 20% of total image pixels) are given. The 

inclusion of the αVMF and DDF is to permit comparison with good impulse noise 

rejecting filters other than the VMF. Having been designed in mind to specifically 
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deal with impulse noise whilst retaining detail, this filter’s performance with 

Gaussian noise is at best similar to that of the VMF; for this reason only results with 

impulse noise are shown, in Table 5.2a-f with the best figures emboldened. 

55..44..22  CCOONNCCLLUUDDIINNGG  RREEMMAARRKKSS  

It is clear from the results that the new SROF demonstrates a clear advantage over 

all the other well-known impulse noise rejecting filters using the 3 × 3 operator. This 

is true all of all levels of contamination investigated which confirms its versatility 

for impulsive noise in general. 

The efficacy of this filter is especially illustrated by the retention of much of the fine 

detail present in the artificial image ‘Frymire’, shown in Figure 5.3a-d. 

This filter works by effectively ‘ignoring’ pixels if they fall on the lower end of the 

rank order; an alternative scheme could weight the vectors according to a heuristic 

or rule – such a scheme is described next in Section 5.5 
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 NMSE (× 10-2) CIE LAB 

Image VMF DDF αVMF SROF VMF DDF αVMF SROF 

Clegg 1.447 1.475 1.388 1.121 60.843 59.786 64.354 37.064 

Frymire 2.83 3.275 2.900 2.156 59.073 56.634 67.980 34.147 

Lena 0.323 0.328 0.34 0.247 15.863 15.790 18.166 9.282 

Monarch 1.060 1.156 1.155 0.757 15.938 15.979 19.370 8.710 

Peppers 0.200 0.190 0.209 0.136 14.058 13.361 18.095 6.538 

Sail 1.569 1.608 1.556 1.277 23.912 22.707 25.420 16.191 

Serrano 0.348 0.352 0.397 0.245 18.189 18.144 24.809 10.371 

Tulips 0.394 0.391 0.409 0.261 16.367 15.371 20.294 8.380 

Table 5.2a. Error scores for 2% impulse noise contamination for the SROF using 3 × 3 window. 

 

 

 NMSE (× 10-2) CIE LAB 

Image VMF DDF αVMF SROF VMF DDF αVMF SROF 

Clegg 1.483 1.524 1.405 1.149 62.340 61.404 65.251 38.365 

Frymire 3.046 3.341 3.024 2.285 62.869 59.829 70.754 36.541 

Lena 0.351 0.353 0.358 0.260 16.715 16.511 18.671 9.742 

Monarch 1.200 1.283 1.242 0.849 17.056 16.898 19.979 9.434 

Peppers 0.231 0.216 0.235 0.155 15.239 14.522 18.827 7.297 

Sail 1.684 1.704 1.634 1.346 24.980 23.710 26.097 16.816 

Serrano 0.416 0.417 0.434 0.282 20.563 20.445 26.129 11.488 

Tulips 0.444 0.445 0.447 0.285 17.692 16.634 21.013 9.042 

Table 5.2b. Error scores for 5% impulse noise contamination for the SROF using 3 × 3 window. 
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 NMSE (× 10-2) CIE LAB 

Image VMF DDF αVMF SROF VMF DDF αVMF SROF 

Clegg 1.581 1.607 1.473 1.217 65.615 64.498 67.402 40.862 

Frymire 3.459 3.645 3.272 2.597 70.040 66.316 76.065 41.971 

Lena 0.421 0.418 0.401 0.305 18.167 17.867 19.697 10.727 

Monarch 1.408 1.468 1.360 0.999 18.906 18.410 21.164 10.782 

Peppers 0.293 0.277 0.279 0.196 17.368 16.597 20.067 8.668 

Sail 1.845 1.831 1.742 1.458 26.476 25.028 27.113 17.867 

Serrano 0.521 0.516 0.495 0.352 24.088 23.887 28.738 13.701 

Tulips 0.565 0.548 0.517 0.365 20.201 18.974 22.387 10.743 

Table 5.2c. Error scores for 10% impulse noise contamination for the SROF using 3 × 3 window. 

 

 

 NMSE (× 10-2) CIE LAB 

Image VMF DDF αVMF SROF VMF DDF αVMF SROF 

Clegg 1.894 1.909 1.649 1.487 73.746 72.335 72.593 47.988 

Frymire 4.613 4.646 4.060 3.626 87.679 81.504 91.580 56.620 

Lena 0.679 0.639 0.562 0.525 22.220 21.263 23.420 14.090 

Monarch 2.157 2.089 1.830 1.653 23.870 22.605 25.529 15.049 

Peppers 0.576 0.587 0.444 0.427 23.532 23.033 24.703 13.487 

Sail 2.451 2.325 2.083 1.982 30.754 28.587 30.789 21.305 

Serrano 0.856 0.835 0.711 0.632 33.105 32.610 36.531 20.527 

Tulips 0.938 0.869 0.763 0.655 26.058 24.158 26.924 15.220 

Table 5.2d. Error scores for 20% impulse noise contamination for the SROF using 3 × 3 window. 
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Figure 5.3a. Original ‘Frymire’ image. 

 

Figure 5.3b. ‘Frymire’ with 10% impulse 
noise. 

 

Figure 5.3c. Application of standard VMF. 

 

Figure 5.3d. Application of new SROF. 
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55..55  DDIISSTTAANNCCEE  WWEEIIGGHHTTEEDD  VVEECCTTOORR  MMEEDDIIAANN  FFIILLTTEERR  ((DDWWVVMMFF))  

The concept of weighted median filters is well established115 and a number of 

workers have given much attention to the development of weighted filters for colour 

image noise removal and enhancement28,78,115,116 and also for applications such as 

image sequence coding.117 

In one definition116, the weighting is achieved by duplication of samples inside the 

filter, such that with input sample set X = [x1, x2, … xn] and corresponding weights 

w = [w1, w2, … wn], the output of the filter y is: 

1 1 2 2 = median [   ,    ,     ]n nw w w◊ ◊ ◊y x x x…  (5.3) 

where ◊ denotes weighting: 

 times

, ...
k

k ◊ =x x x

����

 (5.4) 

Clearly, in this case the wi are necessarily integral.  

In contrast, the weighted distances are defined by Fotopoulos et al and Plataniotis et 

al respectively as:78,118 

min i i ij
j

w d i j= ≠∑y  (5.5) 

and 

1j j j
j j

w w= =∑ ∑y x  (5.6) 

where dij is the definition of distance given in Eq. 4.8 and there is no necessity for 

the weights wi to be integral. 

Here a variant filter is presented which modifies Eq. 5.5 by introducing a weighting 

function f(ri) dependent on the Euclidean distance ri between pixel i in the current 
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window and the pixel under consideration; it should be noted this occurs in the 

image plane, not in colour space. 

In the next section the rationale of the new filter is described. Then in Section 5.5.2 

results obtained are presented. In Section 5.5.3 the rationale is discussed in a wider 

context, and in Section 5.5.4 the value of the new technique is summarized. 

55..55..11  TTHHEE  RRAATTIIOONNAALLEE  OOFF  TTHHEE  NNEEWW  FFIILLTTEERR  

It was stated in the previous section that a variant filter is introduced which 

incorporates a weighting function.  In particular, Eq. 5.5 is modified by introducing 

a weighting function f(ri) dependent on the Euclidean distance ri between the spatial 

location of on-screen pixel i in the current window: 

min ( )i i ij
j

f r d i j= ≠∑y  (5.7) 

( ) ( )2 2
0 0i i ir x x y y= − + −  (5.8) 

where 0x  and 0y  represent the location of the centre pixel and f(r) is the weighting 

function chosen according to application. Possible choices include linear, piecewise 

linear and exponential, as shown in Figure 5.4. 

The nonlinear example shown in Figure 5.4d exhibits unit weighting for distances 

up to a1, and weighting proportional to distance from the centre up to a maximum 

value of a2. This type of weighting might be expected to help with discretisation 

errors such as those which become apparent on measuring the shifts introduced by 

median filters119, though this prediction has not been checked explicitly here. 
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One point about the weighting functions used in this work should be made clear. 

These are necessarily increasing functions which are largest at large distances. This 

is useful for continuity reasons, so that the limitations of the window support region 

do not have too great an effect on the properties of the operation: indeed, if the 

function value went to infinity at the boundary of the support region, increasing the 

size of the window would give no observable effect. (It is of course necessary to 

remember that the most relevant function values are those for small ri, as Eq. 5.7 

takes the minimum value as the output value.) 

Clearly the type of weighting function used and the amount of weighting applied 

will vary with the type of application and desired results, but here it is shown that 

even in its basic form, this variant on the weighted median filter combines the detail-

preserving properties of a small operator with the greater noise-averaging properties 

of a large operator. 

Figure 5.4. Examples of weighting functions. 
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It is intended that this should be achieved by making use of the increased generality 

of the new filter, which involves weights wi that depend on the position of pixel i 

within the window (albeit pixels which have equal separation distances from the 

centre will have equal weights). In particular, pixels which are closer together 

should match each other’s intensity and colour more closely, and in a general sense 

should be more relevant and able to preserve the detailed structure of the original 

picture. Indeed, the power spectra of natural images have been shown to follow a 

1/f2 slope,121 and it has also been noted that correlation between pixel pairs falls as 

the distance between them increases.122 

On the other hand, when there is considerable noise in the image, local averaging 

must be instituted over a greater region, and it then becomes useful to apply a 

weighting effect which brings in more pixels, so the functional value has to be 

decreased at larger distances, again in accordance with Eq. 5.7. 

At this point we must recognise that there is a tradeoff between improved noise 

averaging capability and fidelity to the detail of the original image. This tradeoff can 

be adjusted by varying the weighting function. The question then becomes one of 

finding the optimum weighting function, and what criterion to use in order to 

achieve this. The weighting functions that seemed most basic and worthy of testing 

were the simple piecewise linear one of Figure 5.4b, and the square law function of 

Figure 5.4c, represented by Eq. 5.9 and Eq. 5.10, respectively: 

α
rrf += 1)(  (5.9) 

β
rrf

2

1)( +=  (5.10) 

where r is defined in Eq. 5.8 and α, β are arbitrarily chosen constants. 

The criterion function that we adopted was the commonly used NMSE function. 

This would clearly give high values if too little weight were given to widely 

separated pixels (too little averaging to reduce noise) or too much weight were given 

to widely separated pixels (too little fidelity to the original image signal). 
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Figure 5.5a. Natural colour scene 1. 

 
Figure 5.5b. Natural colour scene 2. 

 

Clearly, if the right functional form is adopted, a central minimum should be 

observable in the variation of NMSE with pixel separation weight. 

55..55..22  RREESSUULLTTSS  

To demonstrate the efficacy of the new filter, the two natural test images (Figure 

5.5) were contaminated with light to heavy noise (10%, 20%, 30% and 40% 

impulsive noise) and a comparison made between the standard L2 norm VMF and 

Distance Weighted VMF (DWVMF) for window sizes 3 × 3 to 9 × 9 pixels. 

‘Circular’ windows were used for both operators, and the metric used for noise 

removal was the normalised mean square error measure (NMSE); this has the 

advantage of permitting comparison with earlier published material.28 

In the trials simple linear and quadratic weighting functions f were employed, 

defined as in Eq. 5.9 and Eq. 5.10. These functions were chosen because of their 

computational simplicity, and they ensure values above unity for all the pixel 

weights. First the distance weighted VMF with linear weighting function f is 

considered. It can be seen that the noise rejection capability is bounded by two 

values; as α → 0 the filter has no appreciable effect, and as α → ∞ the filter 

approximates to the response of the normal VMF. In practice α does not have to 

become very large before this occurs (Figure 5.6a–b). The trade-off is essentially 

between effective noise rejection and retention of detail. 
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Figure 5.6a. Results of 5 × 5 application of DWVMF filter for a range of parameter values using 
linear weighting function. NMSE of noisy image and 5 × 5 standard vector median filtered 

image are shown for comparison. 
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Figure 5.6b. Results of 5 × 5 application of DWVMF filter for a range of parameter values 
using square law weighting function. NMSE of noisy image and 5 × 5 standard vector median 

filtered image are shown for comparison. 
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Optimum values of α were ascertained by taking the piecewise derivative of the 

NMSE results with respect to α. The optimum results obtained for each noise model 

and window size are shown in the tables in Tables 5.3 – 5.10. The best results are 

shown in bold. For brevity only the results for the linear operator are shown in these 

tables, but both weighting functions are compared in Tables 5.11 – 5.12. 

In each case, the linear DWVMF produces a significantly better NMSE than the 

standard VMF; in general, the size of operator that gives the optimum results 

increases with the amount of noise contamination, as indeed does the value of α or 

β. This is to be expected, as at higher noise levels the influence of the larger 

neighbourhood should be emphasised to increase noise rejection. 

Considering Figures 5.7 and 5.8, it is interesting to note that when the DWVMF is 

employed using smaller windows (Figures 5.7c–d, 5.8c–d) a reasonable level of 

high-frequency detail is still present at the expense of some smoothing and some 

clusters of noisy pixels which failed to be removed, whereas the larger operators 

(Figures 5.7e–f, 5.8e–f) preserved the high-frequency information much better and 

removed the noise more effectively in areas exhibiting similar features, such as the 

trees, bushes and grass areas, but performed very poorly at object boundaries and 

highly detailed areas, such as the facial features and clothing of the figures in the 

foreground in both test images. This is due to a lack of a representative dataset at 

those portions of the image which have highly varying statistics, i.e. at object 

boundaries which will have rapidly changing intensity and chromatic properties. 

Note that in all cases the retention of original image detail is better than for the 

standard VMF images (Figure 5.7b, 5.8b). 

The case is somewhat different for the square law DWVMF. For images with low 

noise contamination, results are similar to the linear law weighting function; indeed 

for the least noisy images (10% impulse noise) they are better, with the exception of 

the 3 × 3 operator. However, for experiments on noisier images, the linear law 

weighting function was definitely superior – in fact, the square law DWVMF returns 

a worse noise rejection measure than the standard VMF. 
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10% impulse noise, NMSE = 8.440 × 10–2 

 NMSE  

Window size Standard VMF DWVMF α 

3 × 3 1.624 × 10–2 8.019 × 10–3 1.6 

5 × 5 2.573 × 10–2 9.258 × 10–3 1.2 

7 × 7 3.175 × 10–2 1.036 × 10–2 1.0 

9 × 9 3.910 × 10–2 1.186 × 10–2 1.0 

 

Table 5.3. Optimum value of α for the DWVMF against the standard VMF for Figure 2(a) 
contaminated with 10% impulse noise. The best value is shown in bold. 

 
 
 
 

10% impulse noise, NMSE = 6.680 × 10–2 

 NMSE  

Window size Standard VMF DWVMF α 

3 × 3 1.103 × 10–2 5.047 × 10–3 1.7 

5 × 5 1.788 × 10–2 5.811 × 10–3 1.3 

7 × 7 2.297 × 10–2 6.865 × 10–3 1.2 

9 × 9 3.061 × 10–2 8.574 × 10–3 1.2 

 

Table 5.4. Optimum value of α for the DWVMF against the standard VMF for Figure 2(b) 
contaminated with 10% impulse noise. The best value is shown in bold. 
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20% impulse noise, NMSE = 1.691 × 10–1 

 NMSE  

Window size Standard VMF DWVMF α 

3 × 3 1.943 × 10–2 1.321 × 10–2 3.1 

5 × 5 2.735 × 10–2 1.456 × 10–2 2.1 

7 × 7 3.291 × 10–2 1.544 × 10–2 1.7 

9 × 9 3.973 × 10–2 1.745 × 10–2 1.6 

 

Table 5.5. Optimum value of α for the DWVMF against the standard VMF for Figure 2(a) 
contaminated with 20% impulse noise. The best value is shown in bold. 

 
 
 
 

20% impulse noise, NMSE = 1.322 × 10–1 

 NMSE  

Window size Standard VMF DWVMF α 

3 × 3 1.403 × 10–2 9.233 × 10–3 3.7 

5 × 5 1.980 × 10–2 9.849 × 10–3 2.3 

7 × 7 2.471 × 10–2 1.083 × 10–2 2.0 

9 × 9 3.215 × 10–2 1.339 × 10–2 1.9 

 

Table 5.6. Optimum value of α for the DWVMF against the standard VMF for Figure 2(b) 
contaminated with 20% impulse noise. The best value is shown in bold. 
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30% impulse noise, NMSE = 2.511 × 10–1 

 NMSE  

Window size Standard VMF DWVMF α 

3 × 3 2.637 × 10–2 2.186 × 10–2 6.1 

5 × 5 2.970 × 10–2 1.960 × 10–2 3.1 

7 × 7 3.509 × 10–2 2.075 × 10–2 2.9 

9 × 9 4.167 × 10–2 2.322 × 10–2 2.6 

 

Table 5.7. Optimum value of α for the DWVMF against the standard VMF for Figure 2(a) 
contaminated with 30% impulse noise. The best value is shown in bold. 

 
 
 
 

30% impulse noise, NMSE = 1.977 × 10–1 

 NMSE  

Window size Standard VMF DWVMF α 

3 × 3 1.920 × 10–2 1.544 × 10–2 6.8 

5 × 5 2.237 × 10–2 1.409 × 10–2 3.6 

7 × 7 2.693 × 10–2 1.503 × 10–2 3.2 

9 × 9 3.471 × 10–2 1.784 × 10–2 2.7 

 

Table 5.8. Optimum value of α for the DWVMF against the standard VMF for Figure 2(b) 
contaminated with 30% impulse noise. The best value is shown in bold. 
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40% impulse noise, NMSE = 3.337 × 10–1 

 NMSE  

Window size Standard VMF DWVMF α 

3 × 3 4.319 × 10–2 3.979 × 10–2 8.4 

5 × 5 3.580 × 10–2 2.767 × 10–2 5.4 

7 × 7 3.930 × 10–2 2.704 × 10–2 4.6 

9 × 9 4.572 × 10–2 2.882 × 10–2 3.9 

 

Table 5.9. Optimum value of α for the DWVMF against the standard VMF for Figure 2(a) 
contaminated with 40% impulse noise. The best value is shown in bold. 

 
 
 
 

40% impulse noise, NMSE = 2.646 × 10–1 

 NMSE  

Window size Standard VMF DWVMF α 

3 × 3 3.094 × 10–2 2.760 × 10–2 8.7 

5 × 5 2.795 × 10–2 2.071 × 10–2 5.4 

7 × 7 3.201 × 10–2 2.103 × 10–2 4.6 

9 × 9 3.938 × 10–2 2.380 × 10–2 4.3 

 

Table 5.10. Optimum value of α for the DWVMF against the standard VMF for Figure 2(b) 
contaminated with 40% impulse noise. The best value is shown in bold. 
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 10% noise 20% noise 

Window Size Weighting Function NMSE α, β NMSE α, β 

Linear 8.019 × 10–3 1.6 1.321 × 10–2 3.1 
3 × 3 

Square 8.654 × 10–3 1.7 1.759 × 10–2 3.8 

Linear 9.258 × 10–3 1.2 1.456 × 10–2 2.1 
5 × 5 

Square 9.136 × 10–3 1.1 1.621 × 10–2 2.2 

Linear 1.036 × 10–2 1.0 1.544 × 10–2 1.7 
7 × 7 

Square 1.022 × 10–2 0.9 1.649 × 10–2 2.1 

Linear 1.186 × 10–2 1.0 1.745 × 10–2 1.6 
9 × 9 

Square 1.116 × 10–2 0.7 1.736 × 10–2 1.9 

Table 5.11a. Optimum performance of the linear and square law DWVMF for Figure 5.5a. for 
10% and 20% impulse noise. The best value is shown in bold. For the linear case, the relevant 

parameter is α, while for the square law case the relevant parameter is β. 

 30% noise 40% noise 

Window Size Weighting Function NMSE α, β NMSE α, β 

Linear 2.186 × 10–2 6.1 3.979 × 10–2 8.4 
3 × 3 

Square 3.293 × 10–2 8.9 6.291 × 10–2 14.3 

Linear 1.960 × 10–2 3.1 2.767 × 10–2 5.4 
5 × 5 

Square 2.622 × 10–2 7.1 4.014 × 10–2 17.2 

Linear 2.075 × 10–2 2.9 2.704 × 10–2 4.6 
7 × 7 

Square 2.435 × 10–2 6.7 3.370 × 10–2 16.0 

Linear 2.322 × 10–2 2.6 2.882 × 10–2 3.9 
9 × 9 

Square 2.671 × 10–2 4.6 3.431 × 10–2 14.5 

Table 5.11b. Optimum performance of the linear and square law DWVMF for Figure 5.5a. for 
30% and 40% impulse noise. The best value is shown in bold. For the linear case, the relevant 

parameter is α, while for the square law case the relevant parameter is β. 
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 10% noise 20% noise 

Window Size Weighting Function NMSE α, β NMSE α, β 

Linear 5.047 × 10–3 1.7 9.233 × 10–3 3.7 
3 × 3 

Square 5.255 × 10–3 2.0 1.135 × 10–2 4.1 

Linear 5.811 × 10–3 1.3 9.849 × 10–3 2.3 
5 × 5 

Square 5.746 × 10–3 1.5 1.059 × 10–2 2.7 

Linear 6.865 × 10–3 1.2 1.083 × 10–2 2.0 
7 × 7 

Square 6.425 × 10–3 1.4 1.103 × 10–2 2.5 

Linear 8.574 × 10–3 1.2 1.339 × 10–2 1.9 
9 × 9 

Square 7.825 × 10–3 1.4 1.253 × 10–2 2.7 

Table 5.12a. Optimum performance of the linear and square law DWVMF for Figure 5.5b. for 
10% and 20% impulse noise. The best value is shown in bold. For the linear case, the relevant 

parameter is α, while for the square law case the relevant parameter is β. 

 30% noise 40% noise 

Window Size Weighting Function NMSE α, β NMSE α, β 

Linear 1.544 × 10–2 6.8 2.760 × 10–2 8.7 
3 × 3 

Square 1.919 × 10–2 11.1 4.468 × 10–2 14.2 

Linear 1.409 × 10–2 3.6 2.071 × 10–2 5.4 
5 × 5 

Square 1.751 × 10–2 6.9 2.858 × 10–2 14.8 

Linear 1.503 × 10–2 3.2 2.103 × 10–2 4.6 
7 × 7 

Square 1.699 × 10–2 6.6 2.415 × 10–2 17.1 

Linear 1.784 × 10–2 2.7 2.380 × 10–2 4.3 
9 × 9 

Square 1.909 × 10–2 6.4 2.601 × 10–2 14.6 

Table 5.12b. Optimum performance of the linear and square law DWVMF for Figure 5.5b. for 
30% and 40% impulse noise. The best value is shown in bold. For the linear case, the relevant 

parameter is α, while for the square law case the relevant parameter is β. 
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e f 

Figure 5.7a. Figure 5.5a contaminated with 30% impulse noise. Figure 5.7b. Application of 
standard VMF with window size 3 × 3 to Figure 5.7a. Figure 5.7c–f. Application of DWVMF with 

window sizes 3 × 3 to 9 × 9 respectively with optimum values of α to Figure 5.7a. 
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d e 

Figure 5.8a. Figure 5.5b contaminated with 30% impulse noise. Figure 5.8b. Application of 
standard VMF with window size 3 × 3 to Figure 5.7a. Figure 5.8c–f. Application of DWVMF with 

window sizes 3 × 3 to 9 × 9 respectively with optimum values of α to Figure 5.7a. 
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55..55..33  DDIISSCCUUSSSSIIOONN  

It seems relevant to recall that, in general, real-world sampled images exhibit a 

greater abundance of low-frequency information than high-frequency information. 

Indeed, the majority of modern day image compression algorithms exploit this 

tendency by attaching greater importance to low-frequency coefficients with respect 

to quantization and storage. High frequency information in images is usually due to: 

• Object edges 

• Complex textures 

• Impulse noise 

It seems clear from this list that algorithms used to minimise impulse noise may also 

destroy edge information and texture detail, due to their similarities in spatial 

frequency. It is well known that the noise removal efficacy of a sub-image window 

filter improves as the area of the operator increases (for a mean filter the signal to 

noise ratio increases as the root of the number of elements under consideration), 

though the simultaneous increase in area exacerbates the problems of blurring and 

edge-shifts.120 

In the filter presented here, it is assumed that as low frequencies are predominant, 

the immediate neighbourhood surrounding a given pixel will have little variation or 

will be changing monotonically. Should the central pixel in the neighbourhood be 

noisy, the hypothesis is that a noise-free point physically close to the central pixel 

will be closer in value to the original, uncorrupted value than a point further away – 

with the exception of areas of homogeneous texture with a texel size significantly 

smaller than the neighbourhood under consideration. 

However, as noted above, small neighbourhoods are poor at suppressing more than 

minor amounts of noise. Hence the idea of distance weighting is introduced; in this 

manner the advantages of a small neighbourhood are retained, together with the 

superior noise rejection capability of large neighbourhoods. 
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To demonstrate this, two examples of natural colour, real-world images (Figure 5.5) 

were examined; the first order statistics of varying size sub-image neighbourhoods at 

ten random points were analyzed, and the positions of the mean and median vectors, 

and their respective distances from the original, central pixel were noted. 

Although the variance might be expected to increase as the neighbourhood enlarges 

(Figure 5.9), it should be noted that unless the variance increases isotropically the 

position of the mean and median will be affected (Figures 5.10 and 5.11). It can be 

seen that, whilst the results are highly nonlinear, the measurements show a general 

increase in the Euclidean distance between the median vector and the original pixel 

vector as the neighbourhood size increases. However, in some instances the distance 

is reduced; examining the actual pixel values here show these areas to be regions of 

characteristically similar texture, and as such the increase in neighbourhood size 

makes the distribution more symmetrical around that pixel, reducing its Euclidean 

distance to the calculated median vector. 

Having shown by way of image statistics the motivation of using smaller 

neighbourhoods for obtaining a filtered image remaining close to the original, the 

results of the experiments bear out the hypothesis developed. As already noted, the 

optimal choice of weighting function clearly depends on the type of image under 

consideration and its statistics; the experiments show the linear law DWVMF to be 

appropriate (but possibly sub-optimal) for processing natural colour images, whereas 

the square law weighting function used in the second set of experiments is clearly 

inappropriate. 

55..55..44  CCOONNCCLLUUDDIINNGG  RREEMMAARRKKSS  

A new filter based on weighted median filters which are already well-known has 

been introduced, and the rationale for a filter based on the spatial properties of local 

properties has been discussed.  In addition, its use on natural colour test images has 

been demonstrated. 
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Figure 5.9a. Variance of test images for neighbourhood sizes 3 × 3 to 15 × 15 at ten random 
positions in Figure 5.7a. 
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Figure 5.9b. Variance of test images for neighbourhood sizes 3 × 3 to 15 × 15 at ten random 
positions in Figure 5.7b. 
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Figure 5.10a. Euclidean RGB distance of mean from original pixel in test images for 
neighbourhood sizes 3 × 3 to 15 × 15 at ten random positions in Figure 5.7a. 
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Figure 5.10b. Euclidean RGB distance of mean from original pixel in test images for 
neighbourhood sizes 3 × 3 to 15 × 15 at ten random positions in Figure 5.7b. 
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Figure 5.11a. Euclidean RGB distance of median from original pixel in test images for 
neighbourhood sizes 3 × 3 to 15 × 15 at ten random positions in Figure 5.7a. 
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Figure 5.11b. Euclidean RGB distance of median from original pixel in test images for 
neighbourhood sizes 3 × 3 to 15 × 15 at ten random positions in Figure 5.7b. 
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The effectiveness against the well-known vector median filter has been shown and 

the relative trade-offs discussed. With simple adjustment of weighting function and 

given parameters, this filter may be utilised with known degree of efficacy against 

classes of image and noise models known a priori; as the optimum value of α 

increases with the level of noise, a preset value may be used when the noise level is 

known. To improve the response of the filter, an adaptive weighting system may be 

employed in future work based on the analysis of local image statistics to reject 

noise at object boundaries more effectively, again with the goal of retaining as much 

of the original, uncorrupted image detail as possible. For instance, recent work by 

Eng and Ma153 describes methodologies for contamination estimation and operator 

size switching; this may be utilized to calculate both the appropriate value of α and 

the correct window size to use in a localized area. 

55..66  FFAASSTT  CCAALLCCUULLAATTIIOONN  OOFF  TTHHEE  VVMMFF  

Although the rationale for preferring a vector method of obtaining the median of a 

multivariate dataset over component-wise application of the scalar median filter was 

discussed in Chapter 4, it is clear that the vector median filter is far more 

computationally expensive than the scalar median filter. 

When employing the L2-norm as the distance measure for a sample set consisting of 

M-dimensional vectors, dij is calculated as: 

( )∑
=

−
M

k
kk ji

1

2  (5.11) 

For a sample set containing N vectors (discounting i = j pixel pairs), a basic 

implementation of the VMF requires N(N-1) distances to be evaluated. Clearly, this 

can be a time-consuming task for large N, approximating to O(N4) – particularly as 

the square root operation is relatively slow on many processors. Clearly, any method 

which minimizes processing time will be welcome. In fact, fast versions of the 

vector median filter have already been developed by Barni et al by approximating 
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the ‘city-block’ (L1) and Euclidean-squared norms. A first approximation of the L1 

norm filter is achieved by component-wise application of the scalar median filter 

resulting in an output vector xa. The vector in the dataset which minimizes the 

distance to xa then approximates the output of the L1-norm VMF.81 This fast method 

can be improved to properly obtain the L1-norm by integrating along the path 

between xa and the true L1 median.123 

The fast Euclidean-squared norm is obtained by finding the vector which minimizes 

the distance to the centroid of the dataset, i.e. the arithmetic mean.81 This has also 

been used in conventional scalar image filtering to good effect.80 

No fast algorithm for true calculation of L2-norm vector median operator has been 

proposed so far, only a fast method which approximates the Euclidean distance 

between vectors.124 

The fast method presented here requires only 0.5N(N-1) operations – half the 

amount of computation of calculating each pixel pair distance, and it should be 

noted that it does not rely on making approximations. However, storage for a look-

up table of 0.5N(N-1) elements is required. This method works by exploiting a 

redundancy in distance calculations, namely that dij = dji. 

Figure 5.12. Array allocation for vector distance look-up table. 
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Firstly, memory is allocated for N-1 arrays; the first array contains N-1 elements, the 

second N-2, and so on, as shown in Figure 5.12. 

The ith element in the jth array contains the Euclidean RGB distance dij. As dij = dji, 

the way in which the look-up table is accessed is quite simple – min(i,j) provides the 

array to be accessed, and max(i,j) gives the offset into that array. 

The table layout corresponds to the number of calculations required to complete the 

sum-of-distances for each successive sample; i.e. when the last sample is visited all 

but one of the inter-sample distances have already been calculated, and can be 

obtained from a fast access into the look-up table. 

This method of using a look-up table is especially useful when one realizes that a 

w × w square sub-image window only admits w new samples when it is shifted one 

element across – with this method only w(N-w) + 0.5w(w-1) new distances must be 

calculated, as the rest are already present in the look-up table. Such a ‘running 

median’ filter is discussed in Pitas, 1993.125 The use of octagonal windows to 

implement running medians has also been discussed.70 

55..66..11  IIMMPPLLEEMMEENNTTAATTIIOONN  

The introduced technique was implemented on an Intel Pentium III-class PC running 

at 700MHz under Windows 98, and tested on two 24-bit images, of size 128 × 128 

and 256 × 256. Initial tests showed little or no improvement over the standard 

L2-norm VMF; it was deduced that this null result stemmed from memory page 

faults incurred by non-linear access to the memory, causing stalls and on-processor 

cache RAM misses. A comparative table of operation and access timings is given in 

McConnell, 1993.126 

The method was recoded to use a contiguous section of memory, with a revised 

access scheme. A single block of memory of size 0.5N(N-1) was allocated, and 

again as dij = dji, the way in which the array is accessed is quite simple, using the 

following relation: 
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, ( )( 1) 1
, ( )2

m j o N i i jm me mN o
m i o N j i j

= = − >+ = − + −   = = − <  
 (5.12) 

where e is the array element to be accessed to give dij, assuming the array index 

starts at zero. The simple C language equivalent is given in the section of code in 

Table 5.13. 

55..66..22  RREESSUULLTTSS  AANNDD  DDIISSCCUUSSSSIIOONN  

Once recoded in this manner, significant reduction in computation was observed, 

shown in Table 5.14. 

It is apparent from the table that time savings of approximately 30% are achievable, 

but not the 50% suggested by the algorithm initially. This is due to the overhead 

involved in managing the memory allocation and performing the array access. 

Naturally, this technique may also be used for other Lp-norm metrics, although in 

general only the L1, L2 and L∞ norms are employed.28 

Table 5.13. C language code to select correct array element.  
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128x128, time in seconds 256x256, time in seconds 
Window size (N) 

Original VMF Optimized VMF Original VMF Optimized VMF 

3x3 (9) 0.22 0.16 0.93 0.61 

5x5 (25) 1.48 0.99 6.26 4.01 

7x7 (49) 6.28 3.35 26.42 14.28 

9x9 (81) 16.48 10.16 70.58 43.94 

11x11 (121) 30.64 20.15 132.31 86.68 

13x13 (169) 58.88 38.11 260.62 170.05 

15x15 (225) 100.68 66.88 452.42 303.74 

Table 5.14. Computation time for original and optimised vector filters, carried out on AMD 
Athlon 700MHz with 256Mb RAM running Windows 98. 

As already noted, the memory management takes up a significant proportion of the 

algorithm’s time, and as the computational burden is not as great for the L1 and L∞ 

norms as for the L2-norm the performance advantage of the new method presented 

here is somewhat lessened and may be negated completely in some systems due to 

the time needed for the array set-up and the subsequent look-up. 

55..77  CCOONNCCLLUUDDIINNGG  RREEMMAARRKKSS  

This chapter has introduced a number of new results for and extensions to the vector 

median filter, namely: 

• The measurement of the efficacy of the standard VMF in alternative 

colourspaces. 

• A description and implementation of a hybrid mean-median vector filter as 

an alternative to the αVMF. 
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• A description and implementation of a rank-order filter with a hard decision 

boundary to preserve details while removing noise. 

• A weighting regime based on the statistics of natural images to improve 

detail-preservation while removing impulse noise. 

• An algorithmic adaptation of the distance calculations necessary for rank 

order filtering to improve computational efficiency. 

These extensions have been discussed and compared with the standard VMF in a 

context that may be compared with the filters discussed in the last chapter, and the 

improvements gained in performance are clear. 
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CChhaapptteerr  66::  MMooddee  FFiilltteerriinngg  

66..11  IINNTTRROODDUUCCTTIIOONN  TTOO  MMOODDEE  FFIILLTTEERRIINNGG  AANNDD  TTHHEE  TTRRUUNNCCAATTEEDD  
VVEECCTTOORR  MMEEDDIIAANN  FFIILLTTEERR  

It was discussed in Chapter 4 that the median sample maximizes the likelihood 

function in a double exponential input distribution, and is well suited for impulse 

noise removal.74 Similarly, for a symmetric Gaussian distribution, it is known that 

the mean of the distribution is the optimal estimate of the maximum likelihood 

location parameter.80 

However, for data sets whose distributions are not symmetric Gaussian or 

exponential, it is evident that the mode should be selected, as this represents the 

most probable value. In spite of this the mode filter is used relatively rarely; notable 

exceptions are Coleman and Andrews (1979),132 and Evans and Nixon (1995).133 

This rare incidence of use must be partly because of implementation difficulties. 

Indeed, it was pointed out some time ago that, while it is trivial to find the highest 

point in the intensity histogram, it is far from easy to find the underlying mode in an 

intensity histogram.134 Furthermore, the specification problem is less 

straightforward, and this must also contribute substantially to the relative lack of 

application of this type of filter. These facts are evidenced by the paucity of papers 

on the subject. 

In spite of these difficulties, the mode filter was developed in a form known as the 

‘truncated median filter’, and was found to be highly effective for enhancing grey-

scale images.134 Since then the method has been applied to the accurate, robust 

location of Hough transform peaks.135 In addition, some of its properties have been 

studied in more detail. In particular, analysis has shown that the mode filter acts in 

the same way as the median filter in shifting curved edges, so in this respect the 

mode filter appears to offer no special advantage.119,136 
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This chapter is aimed at further understanding of the operation of the mode filter, 

and particularly at finding whether it can be adapted to enhance colour images. In 

principle there could be problems in achieving this, as histogram-based processing 

methods can run into trouble if they involve ordering. This is because colour spaces 

are 3-D rather than 1-D, and thus ordering is, a priori, a meaningless concept. 

However, it is shown that the 1-D histogram processing method adopted by 

Davies134 can be extended to permit mode filtering based on the truncated median 

filter concept. In fact the performance of the technique is shown to be impressive, 

not only for image enhancement but also for noise elimination. 

Section 6.2 outlines the problems involved in mode filtering, and shows how the 

truncated median filter operates on a standard grey-scale intensity histogram. 

Section 6.3 develops the methodology for applying the technique to colour images. 

Section 6.4 describes its performance on colour images and offers various insights 

into its effectiveness both for enhancement and for noise elimination. Section 6.5 

examines the edge shifting characteristics of the mode filter, and discusses the 

significance of the results. Section 6.6 presents a finite edge width model which 

leads to numerical estimates of breakpoints between the various regions on the edge 

shift graphs. Section 6.7 summarises the situation and gives further motivation for 

the use of mode filters. 

66..22  PPRROOBBLLEEMMSS  OOFF  MMOODDEE  FFIILLTTEERRIINNGG  AANNDD  AA  SSOOLLUUTTIIOONN  

Before considering the problems involved in designing and implementing a mode 

filter, it is worth considering briefly the properties it is likely to have. By definition, 

the mode filter will take the intensity distribution in any neighbourhood and will 

return the most probable value corresponding to the highest point in the distribution. 

At a location in the middle of a plain (non-textured) object the main effect will be to 

eliminate noise: indeed, if the noise is taken to be Gaussian, and thus to have a 

symmetrical intensity distribution, the mean, median and mode will be coincident, 

and all these types of filter will give similar responses. The same will happen in a 

plain background region. On the other hand, very near the edge of an object, the 
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intensity will be slowly varying, and the mode filter will take a majority decision on 

the intensity value, with the result that it will tend to maintain the object intensity 

right up to the edge. Similarly, in the background region, the background intensity 

will be maintained right up to the edge. This means that the transition from dark to 

light will become significantly more sudden and pronounced. This makes it clear 

that the mode filter will have a strong effect on edges, ‘crispening’ the image and 

enhancing contrast, while well away from edges, the effect will be mainly to 

eliminate noise. Note that the performance in the presence of impulse noise should 

be better than that for a mean filter (in the sense that the noise will be ignored rather 

than averaged in): in this respect the performance should approach that attained by a 

median filter. 

Unfortunately, a tedious problem arises as soon as we attempt to apply this idea. The 

local intensity distribution is bound to be rather sparsely populated for the window 

sizes normally used for image filtering. As a result, it will generally be multi-modal 

and far from smooth. Hence the highest point may well be at a rather arbitrary 

location and may not indicate the position of the underlying mode (Figure 6.1). This 

means that the distribution will need to be smoothed out considerably before the 

mode can be computed. However, the width of the distribution may vary widely 

from region to region (e.g. from close to zero to close to 256), so it will be difficult 

to specify the amount of smoothing needed in any instance. This means that it will 

be better to choose an indirect measure of the position of the mode rather than 

attempt to measure it directly. These caveats preclude the use of a density gradient 

estimator,139,140 which as well as being computationally intensive relies on 

significantly sized sample sets to obtain the mode; for instance this technique has 

recently been used to segment colour images.141 

Figure 6.1. Example of difference between the highest point and the underlying mode in the sparse 
local intensity histogram of a 3 × 3 neighbourhood. 
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An alternative method of tackling these problems is to estimate the position of the 

mode from various other statistics of the local intensity distribution. In particular, it 

is widely known for large smoothly varying distributions that the separations 

between the mean, median and mode are related by the formula:134 

3.0( )mean mode mean median− −  (6.1) 

However, it has been shown that for the bimodal distributions that arise at the edges 

of objects, this formula gives erroneous estimates of the mode position and is not 

practically useful.134 This implies that a special strategy will have to be adopted for 

coping with bimodal distributions in this sort of application. Specifically, the 

concept is to eliminate the smaller peak, thus leaving the large peak intact, so that its 

exact position can be estimated accurately without interference. To achieve this, it 

was noted by Davies that the median provides a robust estimate somewhere between 

the larger and smaller peaks, though closer to the larger peak position.134 

Figure 6.2. Method of truncating the local distribution. The diagram shows the ordering of the three 
means for a bimodal distribution. It also shows how the intensity histogram is truncated at a specified 

distance from the median. The rationale for this procedure is indicated by the idealised situation which 
would exist if the position of the mode were known initially. 
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repeat  // as many passes over image as necessary 

 repeat  // for each pixel 
  compute local intensity distribution; 

  repeat  // iterate to improve estimate of mode 

   find minimum, median and maximum intensity values; 

   decide from which end local intensity distribution should be truncated; 

   deduce where local intensity distribution should be truncated; 

   truncate local intensity distribution; 

   find median of truncated local intensity distribution; 

  until median sufficiently close to mode of local distribution; 

  transfer estimate of mode to output image space; 

 until all pixels processed; 

until sufficient enhancement of image; 

 

Comments : 

(i) The outermost and innermost loops can normally be omitted (i.e. they need to 
be executed once only). 

(ii) The final estimate of the position of the mode can be performed by simple 
averaging instead of computing the median: this has been found to save 
computation with negligible loss of accuracy. 

(iii) Instead of the minimum and maximum intensity values, the positions of the 
outermost octiles (for example) may be used to give more stable estimates of the 
extremes of the local intensity distribution. 

 

Table 6.1. Truncated median filter algorithm. 

Thus measuring from the median to the closer end of the distribution, and then 

moving an equal distance to the other side of the median provides a useful indicator 

of that portion of the distribution which can be eliminated (Figure 6.2). Repetition of 

this procedure will progressively eliminate the smaller peak and leave the larger 

peak intact, so that any convenient averaging process can be used to provide an 

estimate of the mode position. In practice, however, it was found unnecessary to 

repeat the process – substantial edge enhancement was achievable with a single 
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truncation. The result was called the ‘truncated median filter’ (Table 6.1).134 The 

theoretical justification for this procedure is that if the position of the mode were 

known, the small peak elimination procedure would be essentially exact for a 

bimodal distribution. However, as the median is known to lie further from the mode 

(the main peak) it is somewhat less effective at removing the minor peak 

(Figure 6.2): i.e. this is a ‘cautious’ algorithm which errs on the side of safety: it 

cannot eliminate too much of the original distribution and thereby destroy necessary 

information. 

The effectiveness of this algorithm was amply demonstrated for grey-scale images134 

(examples of this will be shown below). In what follows the algorithm is extended 

for application to colour images. 

66..33  MMEETTHHOODDOOLLOOGGYY  FFOORR  AAPPPPLLYYIINNGG  MMOODDEE  FFIILLTTEERRIINNGG  TTOO  CCOOLLOOUURR  
IIMMAAGGEESS  

To extend the truncated median filter concept to colour, it must be made applicable 

in the 3-D colour space. In fact, by considering a distribution in 2-D, it is shown 

how to extend the filter to the 3-D case: it will also be important to confirm that the 

new algorithm gives identical results to the scalar version when reverting to 1-D. 

First, note that the distribution of pixel intensities in 1-D is given as an intensity 

histogram or ordered list of values, and the median is calculated as the value at the 

middle of this range. However, as remarked in Section 4.4, the ordering concept is 

meaningless in a multi-dimensional space, and instead the property of the median is 

that it is the vector which minimises the sum of the absolute distances |dij| to the 

other data points must be used to generalise to higher dimensional situations. 

min i ij
j

median d= ∑  (6.2) 

Or, repeating Equation 4.17: 
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1
min  

N

med i j j
i=

= − ∀∑x x x x  

 (For convenience, the result of this type of calculation shall be continued to be 

called the median.) 

It can be seen in the 2-D case (Figure 6.3a) that although the median M1 lies close to 

the centroid of those input vectors which are normally distributed, the presence of 

outliers skews the overall distribution, and neither the median nor the mode is well 

approximated by the centroid. As in the 1-D case (Section 6.2), we seek to address 

this by removing the outliers from the calculation: this will have to be achieved by 

truncating the input vector distribution appropriately. 

In the sample distribution shown in Figure 6.3a, contaminated by two outliers, the 

enclosing ellipsoid is egg-shaped, with the centroid located nearer the broad end. 

However, if the outliers are removed the distribution becomes normally distributed 

with an approximately uniform circular deviation (Figure 6.3b). In that case the 

centroid will move towards the broad end of the distribution – approximately in the 

direction of the vector N2 → M1. 

Since the position of the mode is not known a priori, the truncation must be 

performed in a safe manner, i.e. care must taken not to truncate too much of the 

distribution but still move the centroid closer to the underlying mode. The technique 

that we have designed to accomplish this in multi-dimensional cases works as 

follows: 

1. Determine the median M1 of the input distribution according to Equation 6.2. 

2. Find the furthest outlier O of the distribution, i.e. the input vector which 

maximises the sum-of-distances cost function (this is also used for certain 

noise metrics91). 

3. Calculate the vector v from M1 to O and move from M1 through a distance 

-v. Mark this position as reference point P (Figure 6.3c). P will now be 

outside the input distribution, and will also be further away from the most 

distant outlier than any of the other inputs. 
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Figure 6.3. Method of truncating the local distribution in 2 dimensions, extendible to higher 
dimensional spaces. (a) shows complete input distribution with median vector M1 selected by 
VMF and ideal median M2. (b) shows the truncated input distribution with ideal median M2 
selected. (c)–(e) demonstrate the method used to truncate the local distribution. Noise vectors 

are removed from consideration by locating a point P equidistant and diametrically opposite to 
the median from the furthest outliers. The truncation occurs at a radius from the median 

determined by the input vector closest to P. (f) shows the new local distribution from which a 
more accurate estimate of the centroid is calculated. 
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4. Find the input vector T closest to P (Figure 6.3c). 

5. Determine the distance r from M1 to T (Figure 6.3d). 

6. Truncate the distribution at distance r from M1 (Figure 6.3e). 

7. Find the median M2 of the new distribution (Figure 6.3f). 

8. If M1 = M2, terminate the procedure (i.e. root signal has been found and no 

further truncation is possible): otherwise go to step 2. 

In step 7, if O is the only outlier, this will now be removed from consideration and 

the ideal centroid position can be calculated. If any other outliers lie at a significant 

distance from the original centroid, these will also be removed. If, however, there is 

an outlier on the side of the distribution opposite to O, this will probably be selected 

as the input vector closest to P. In this case the filter behaviour will be sub-optimal 

because the input distribution will not be truncated sufficiently, although the 

centroid will have been moved towards the mode. Thus, like the scalar truncated 

median filter, this filter falls in to the category of a ‘cautious’ algorithm (see Section 

6.2). It can be seen from the example distribution in Figure 6.3 that repeated 

application of the new filter to the truncated data set does not merely result in a new 

estimate for the median position. Whilst the above procedure may seem 

computationally intensive, it has already been noted by Davies that one pass of such 

a filter is sufficient for most applications.134 

Finally, it should be noted that if more than one pass is conducted and the resulting 

distribution has an even population, the operator works in a similarly ‘safe’ manner 

as discussed in Section 6.2. Normally if a distribution has an even population, the 

average of the two median values is taken, and this would introduce a vector that is 

not part of the initial distribution. For this reason, when two median values arise in 

the present application, the one that is closest to the old median is selected. Clearly 

this applies to both scalar and vector versions of the truncated median filter. 
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66..44  AAPPPPLLIICCAATTIIOONN  OOFF  MMOODDEE  FFIILLTTEERRSS  TTOO  CCOOLLOOUURR  IIMMAAGGEESS  

66..44..11  QQUUAALLIITTAATTIIVVEE  RREESSUULLTTSS  

To demonstrate the characteristics of the new filter, three original (uncompressed) 

digitised images were taken: these were selected to give a variety of spatial and 

chromatic characteristics (Figures 6.4a–c). Figures 6.4d–f show the 5 × 5 median 

filtered images and Figures 6.4g–i show the 5 × 5 truncated vector-median (‘mode’) 

filtered images (TVMF). 

The mode-filtered examples are seen to give objects a more well-defined edge 

outline, in line with the findings of Davies.134 However, fine detail is lost within 

object boundaries, as one would expect from a filter selecting the mode of a 

distribution. It should be noted that the median-filtered images experience a similar 

loss of detail (this loss of detail is sometimes described as ‘softening’ to distinguish 

it from the blurring characteristic of mean filters). 

For comparison, Figures 6.5a–c show the effects of component-wise filtering using 

the 1-D truncated median filter (TMF). The results show virtually identical 

characteristics to those for the truncated vector median filtered images, but with 

significant haloes and ‘colour bleeding’ around some object boundaries as a result of 

the component-wise filtering. 

Colour bleeding is by now well known74 and takes the form of edge-jitter which 

occurs when the median values from the processed channels do not correspond to a 

member of the input distribution when they are recombined to produce an output 

colour vector. This may happen when only one or two channels contain outliers, or 

when the input vectors show distinct clustering – as sometimes happens in the 

presence of noise or edges. Clearly, the effect is more noticeable the further the 

resultant vector is from the closest data point in the original distribution. 
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Figure 6.4a. Original image (128 × 128). 

 
Figure 6.4d. Figure 6.4a after 5 × 5 VMF. 

 
Figure 6.4b. Original image (128 × 128). 

 
Figure 6.4e. Figure 6.4b after 5 × 5 VMF. 

 
Figure 6.4c. Original image (128 × 128). 

 
Figure 6.4f. Figure 6.4c after 5 × 5 VMF. 
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Figure 6.4g. Figure 6.4a after 5 × 5 TVMF. 

 
Figure 6.5a. Figure 6.4a after 5 × 5 TMF. 

 
Figure 6.4h. Figure 6.4b after 5 × 5 TVMF. 

 
Figure 6.5b. Figure 6.4b after 5 × 5 TMF. 

 
Figure 6.4i Figure 6.4c after 5 × 5 TVMF. 

 
Figure 6.5c Figure 6.4c after 5 × 5 TMF. 
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66..44..22  EEDDGGEE  EENNHHAANNCCEEMMEENNTT  

The relative edge strengths of the median and mode filtered images were measured 

using a Sobel 3 × 3 edge-detection operator on each of the three colour channels. 

Figures 6.6a–c and Figures 6.7a–c show the Sobel edge components of the median- 

and mode-filtered images for the original images of Figures 6.4a–c: edge definition 

can be seen to be significantly stronger for the mode-filtered images. 

By tabulating the pixel edge responses into ten 10% ranges and plotting the results 

graphically (Figures 6.8a–c), it can be seen that the mode filter does not tend to 

produce significant edges in the lower percentile ranges, but gives stronger 

responses than the median filter on object boundaries: this is indicated by the 

increase in intensity at the upper end of the percentile range. 

66..44..33  LLOOCCAATTIIOONN  OOFF  MMOODDEE    

To demonstrate that the new filter does indeed perform well in estimating the mode 

of a given discrete distribution, note first that the mode and the mean usually lie on 

opposite sides of the median for a skewed distribution, and thus in general the 

Euclidean distance between the mode and the mean will be greater than that between 

the median and the mean. 

A 5 × 5 mean-filtered version of each original image was compared with the 

median- and mode-filtered images to test this hypothesis (Table 6.2), and it was 

found that in three cases, representing a variety of types of image, the above 

statement was valid (the respective numbers of pixels for which it applied were 

91.7%, 88.1% and 86.6% of the image pixels). Of course, some distributions may be 

multi-modal, or may be contaminated with noise, or may appear random (a) because 

of the small number of elements within them and (b) because of discretely sampling 

the data. Clearly, in these cases the ordering of the means will not be normal,134 and 

this seems to account for the small proportion of the pixels in the example images 

for which the hypothesis is found to be invalid. 
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Figure 6.6a. Figure 6.4d after 3 × 3 Sobel. 

 
Figure 6.7a. Figure 6.4g after 3 × 3 Sobel. 

 
Figure 6.6b. Figure 6.4e after 3 × 3 Sobel. 

 
Figure 6.7b. Figure 6.4h after 3 × 3 Sobel. 

 
Figure 6.6c. Figure 6.4f after 3 × 3 Sobel. 

 
Figure 6.7c. Figure 6.4i after 3 × 3 Sobel. 
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Figure 6.8a. Relative edge strengths for Figures 6.6a and 6.7a respectively. 
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Figure 6.8b. Relative edge strengths for Figures 6.6b and 6.7b respectively. 
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Figure 6.8c. Relative edge strengths for Figures 6.6c and 6.7c respectively. 
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Total number of pixels scrutinised (ignoring edge pixels due to 5 × 5 windows) 15376 

No. of pixels for which Mode → Mean longer than Median → Mean 14096 

Percentage 91.68% 

No. of pixels for which Mode classified on opposite of plane normal to Median → Mean 8382 

Percentage 54.51% 

Table 6.2a. Pixel classification statistics for ‘Flowers’ image (original in Figure 6.4a). 

Total number of pixels scrutinised (ignoring edge pixels due to 5 × 5 windows) 15376 

No. of pixels for which Mode → Mean longer than Median → Mean 13552 

Percentage 88.14% 

No. of pixels for which Mode classified on opposite of plane normal to Median � Mean 7932 

Percentage 51.59% 

Table 6.2b. Pixel classification statistics for ‘Flowers’ image (original in Figure 6.4b). 

Total number of pixels scrutinised (ignoring edge pixels due to 5 × 5 windows) 15376 

No. of pixels for which Mode → Mean longer than Median → Mean 13318 

Percentage 86.62% 

No. of pixels for which Mode classified on opposite of plane normal to Median → Mean 10661 

Percentage 69.34% 

Table 6.2c. Pixel classification statistics for ‘Flowers’ image (original in Figure 6.4c). 

For between 54.5% and 69.3% of the total number of pixels, the angle between the 

median → mode vector was more than 90° from the median → mean vector, i.e. the 

modal value lies on the other side of the plane passing through the median and 

normal to the median → mean vector (Figure 6.9). This confirms that in the majority 

of cases the ordering of the means is as expected with the mean and mode vectors 

being on opposite sides of the median. 
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Table 6.3 shows similar results which were obtained for five 128 × 128 control 

images (Figures 6.10a–e respectively). Of these images, two were basically 

homogeneous grey-level background images, with an intensity offset to prevent 

coincidence of the means within the intensity range 0–255 ( 205R G B= = = ); two 

were basically homogeneous grey-level background images seated on the mean 

( 128R G B= = = ); and one was composed entirely of random input vectors – 

constituting essentially 100% impulse noise. The first four images were 

contaminated in various ways with Gaussian noise ( 2 250,1000σ = ) and 70% 

impulse noise (see the caption to Figure 6.10). The two impulse noise examples – 

Figures 6.10d and 6.10e – illustrate respectively distributions that have an 

underlying mode in the midst of noise, and those that are truly random. 

Gaussian noise experiments with larger variance at grey-level 205 were not possible 

because of errors introduced by truncation at the upper end of the intensity range, 

and impulse noise experiments were not conducted at grey-level 128 because of the 

greater probability of coincidence of the means, which would have hindered 

analysis. 

The impulse noise results clearly show a decrease in the number of occurrences 

where the mode to mean distance exceeds that of the mode to median. This is 

expected for random distributions where the ordering of the means is more likely to 

be non-normal. 

Figure 6.9. Relative positions of the three means and connecting vectors in 3-D. 
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Figure 6.10a. Background intensity = 205, 

contaminated with Gaussian noise σ2 = 250. 

 
Figure 6.10b. Background intensity = 128, 

contaminated with Gaussian noise σ2 = 250. 

 
Figure 6.10c. Background intensity = 128, 

contaminated with Gaussian noise σ2 = 1000. 

 
Figure 6.10d. Background intensity = 205, 

contaminated with 70% impulse noise. 

 
Figure 6.10e. Entire image composed of random colour vectors 

(essentially 100% impulse noise). 
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Total number of pixels scrutinised (ignoring edge pixels due 5 × 5 windows) 15376 

No. of pixels for which Mode → Mean longer than Median → Mean 15234 

Percentage 99.08% 

No. of pixels for which Mode classified on opposite of plane normal to Median → Mean 8495 

Percentage 55.25% 

Table 6.3a. Pixel classification statistics for noisy image Control 1 (Gaussian noise, σ2 =250, 
Intensity 205). 

 

Total number of pixels scrutinised (ignoring edge pixels due 5 × 5 windows) 15376 

No. of pixels for which Mode → Mean longer than Median → Mean 15221 

Percentage 98.99% 

No. of pixels for which Mode classified on opposite of plane normal to Median → Mean 9021 

Percentage 58.66% 

Table 6.3b. Pixel classification statistics for noisy image Control 2 (Gaussian noise, σ2 =250, 
Intensity 128). 

 

Total number of pixels scrutinised (ignoring edge pixels due 5 × 5 windows) 15376 

No. of pixels for which Mode → Mean longer than Median → Mean 15241 

Percentage 99.12% 

No. of pixels for which Mode classified on opposite of plane normal to Median → Mean 8729 

Percentage 56.77% 

Table 6.3c. Pixel classification statistics for noisy image Control 3 (Gaussian noise, σ2 =1000, 
Intensity 128). 
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Total number of pixels scrutinised (ignoring edge pixels due 5 × 5 windows) 15376 

No. of pixels for which Mode → Mean longer than Median → Mean 14686 

Percentage 95.51% 

No. of pixels for which Mode classified on opposite of plane normal to Median → Mean 12800 

Percentage 83.24% 

Table 6.3d. Pixel classification statistics for noisy image Control 4 (Impulse noise,  Intensity 
205). 

Total number of pixels scrutinised (ignoring edge pixels due 5 × 5 windows) 15376 

No. of pixels for which Mode → Mean longer than Median → Mean 12952 

Percentage 84.24% 

No. of pixels for which Mode classified on opposite of plane normal to Median → Mean 8705 

Percentage 56.61% 

Table 6.3e. Pixel classification statistics for noisy image Control 5 (Impulse noise 100%). 

66..44..44  NNOOIISSEE  RREEMMOOVVAALL  

As stated earlier, it is well known that the mean provides an optimal estimate of a 

signal which is subject to a Gaussian noise distribution, while the median maximises 

the likelihood function for a double exponential noise distribution:74 this gives the 

median better performance than the mean under impulse noise conditions. On the 

other hand, for noise distributions that are not Gaussian or double exponential, this 

simple analysis breaks down. However, it seems that the mode should be preferable 

in such cases, as it represents the most probable value of any distribution: 

specifically, when the form of the distribution is dictated more by the systematic 

variations in the underlying signal than by noise, the mode would be expected to be 

the best available estimator of the true signal level. 
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Perhaps the most widely used method of testing the efficacy of noise removal 

algorithms is to measure the normalised mean square error (NMSE) between the 

original and output images. However, it would be misleading and uninformative to 

compare the NMSE results for the median- and mode-filtered natural images already 

shown: as the mode filter takes the majority vote of a distribution it has the effect of 

removing fine detail and smoothing image irregularities. This cumulative effect of 

many small errors might appear to imply that the new filter will not be effective at 

removing noise spikes and should be regarded more as an image enhancement tool. 

However, the action of the mode filter is such that it can eliminate any number of 

outliers at either end of a distribution, so it should actually be more effective at 

removing noise than the median filter, which can remove a maximum of 50% of 

points at either end of a distribution. 

We have found that for low to moderate noise, the median filter performs quite 

adequately and similarly to the mode filter, and deviates less from the original 

image. However, when the filter window contains two or more noisy pixels that are 

not positioned symmetrically in the distribution, the position of the median will 

move and thus the output will be sub-optimal, as already shown in Figure 6.4a. To 

show this effect and to provide quantitative results avoiding the problems mentioned 

above, Figure 6.10d is utilised once more. A constant-level image is used to discount 

the detail-smoothing effects of both types of filter and allow examination solely of 

the noise removal properties. The results of applying the median and mode filters to 

this image are shown in Table 6.4, and depicted in Figures 6.11a–d and 6.12a–d 

respectively. Both filters show a decrease in noise level as the filter window size 

increases, but the advantage of a large mode filter window in the presence of 

extremely high noise levels (i.e. those that exceed 50% of the filter window input) 

becomes absolutely obvious (see especially the last line in Table 6.4).  

It is now clear that although the median filter returns better noise figures as the 

window size increases, there is a distinct trade-off between the per-pixel magnitude 

difference and the size of the resultant noise patch, whereas the mode filter replaces 

the noisy pixel in a more thoroughgoing fashion. 



–––––  Chapter 6: Mode Filtering  ––––– 

–––  Page 158  ––– 

 
Figure 6.11a. Figure 6.10d after 5 × 5 VMF. 

 
Figure 6.11b. Figure 6.10d after 7 × 7 VMF. 

 
Figure 6.11c. Figure 6.10d after 9 × 9 VMF. 

 
Figure 6.11d. Figure 6.10d after 11 × 11 VMF. 
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Figure 6.12a. Figure 6.10d after 5 × 5 TVMF. 

 
Figure 6.12b. Figure 6.10d after 7 × 7 TVMF. 

 
Figure 6.12c. Figure 6.10d after 9 × 9 TVMF. 

 
Figure 6.12d. Figure 6.10d after 11 × 11 TVMF.

 

Normalised Mean Square Error Window size 
(square neighbourhood) 

Median Mode 

5 × 5 4.9385 × 10-2 4.1776 × 10-2 

7 × 7 4.1601 × 10-2 2.3517 × 10-2 

9 × 9 3.8960 × 10-2 1.3059 × 10-2 

11 × 11 3.7758 × 10-2 6.962 × 10-3 

Table 6.4. Normalized errors for various window sizes for Figure 6.10d. 
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For qualitative comparison, Figures 6.4a–c were also contaminated with 70% 

impulse noise and processed using 9 × 9 median and mode filters, as shown in 

Figures 6.13a–i. 

The claim is not that the new mode filter restores noisy images more closely to the 

original than the median; rather, it is that in cases of high contamination, salient 

image features such as object boundaries, base colours or intensity can still be 

picked out with greater success with the new algorithm than with the basic vector 

median filter. The above examples amply demonstrate this. 

66..55  EEDDGGEE  SSHHIIFFTTIINNGG  CCHHAARRAACCTTEERRIISSTTIICCSS  OOFF  MMOODDEE  FFIILLTTEERRSS  

As mentioned in Section 4.4, Section 6.3 above and noted by Astola et al,74 a 

multidimensional filter should produce the same results as the corresponding scalar 

filter when applied to a 1-D signal. It can be seen that for a line of any orientation in 

a representative 3-D colourspace along which lie the data points of interest (a 1-D 

signal), the described vector method of truncating according to radius and location is 

analogous to rank-ordering and truncating according to position in one dimension, as 

given in the method of Davies.134 To confirm this experimentally, we use two 

approaches. 

First, the ‘Peppers’ test image was converted to 1-D greyscale (by averaging the R, 

G, B values), then subsequently converted back to the RGB colourspace (with R = G 

= B), and the results of the scalar mode compared with the vector mode. Testing on a 

pixel-by-pixel basis revealed an exact correspondence between the pixel intensities, 

and the two images can be seen to produce identical characteristics when compared 

with the original (Figure 6.14a–c). 

Second, previous experimental work by Davies was extended to determine the 

greyscale edge shift introduced by both the scalar and vector truncated median 

filters.69,119,136 It is shown that the edge shift introduced by the vector filter is the 

same as that of the scalar, demonstrating the exact correspondence between the two 

operators in 1-D. 



–––––  Chapter 6: Mode Filtering  ––––– 

–––  Page 161  ––– 

 
Figure 6.13a. Figure 6.4a contaminated with 70% impulse noise. 

 
Figure 6.13b. Figure 6.4b contaminated with 70% impulse noise. 

 
Figure 6.13c. Figure 6.4c contaminated with 70% impulse noise. 
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Figure 6.13d. Figure 6.13a after 9 × 9 VMF. 

 
Figure 6.13g. Figure 6.13a after 9 × 9 TVMF. 

 
Figure 6.13e. Figure 6.13b after 9 × 9 VMF. 

 
Figure 6.13h. Figure 6.13b after 9 × 9 TVMF. 

 
Figure 6.13f. Figure 6.13c after 9 × 9 VMF. 

 
Figure 6.13i. Figure 6.13c after 9 × 9 TVMF. 
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Figure 6.14a. ‘Peppers’ image converted from RGB to greyscale. 

 
Figure 6.14b. Figure 6.14a after 5 × 5 TMF. 

 
Figure 6.14c. Figure 6.14a after 5 × 5 TVMF. 

 

To achieve this, a number of greyscale circles of varying curvature were taken and 

both types of truncated median filter were applied in nearly circular windows and 

the differences in area before and after filtering were measured. The circles are 

generated at sub-pixel accuracy, each pixel being divided into a further 5 × 5 array, 

and the proportion of those within the circle is used to give a mean greyscale value 

for the whole pixel. To further improve accuracy additional measurements were 

taken at all possible subpixel positions of the circle centres on a 0.2 × 0.2 pixel 

lattice so that 25 results are obtained for each generated circle, and average the 

results. 
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A typical generated circle (inverted here for ease of scrutiny) takes the form: 

 

Note that the method of measuring the sizes of the processed circles is to measure 

their integrated intensities, and thus deduce the new effective radius values.  

Figure 6.15a–e shows the application of the scalar and vector truncated median 

filters to circles of curvature 0.1 to 0.9 for 5 × 5 to 13 × 13 circular filters 

respectively. For comparison, each graph includes the edge shift results for scalar 

and vector median filters. Notice that the asymptotic shift (equal to 1/Cc) 

corresponds exactly to the value of the circle radius. 

As already discussed in Chapter 4, the vector median filter produces identical results 

to those for the scalar algorithm, and as predicted, application of the vector ‘mode’ 

filter on a 1-D data set produces the same results as for the scalar truncated median 

filter. 

The results obtained for the various edge curvatures and filter window sizes show 

three main regions of interest: 

1. a region where the mode operator closely tracks the median, 

2. a region where the mode departs markedly from the median, and 

3. a region of asymptotic decline from the maximum edge shift. 

These results will be dealt with in order as Cases 1–3 overleaf; a minor perturbation 

will also be pointed out under the heading Case 4. First, we note the results of 

previous theoretical work which predicted the edge shifts that will be introduced by 

mean, median and mode filters:69,119,136,137 these results are summarised in Table 6.5. 
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Figure 6.15a. Application of the scalar and vector truncated median filters to circles of 
curvature 0.1 to 0.9 in 0.1 steps for 5 × 5 circular filter, against results obtained from scalar and 

vector median filters (note identical results for scalar and vector versions of each filter). 
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Figure 6.15b. Application of the scalar and vector truncated median filters to circles of 
curvature 0.1 to 0.9 in 0.1 steps for 7 × 7 circular filter, against results obtained from scalar and 

vector median filters. 
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Figure 6.15c. Application of the scalar and vector truncated median filters to circles of 
curvature 0.1 to 0.9 in 0.1 steps for 9 × 9 circular filter, against results obtained from scalar and 

vector median filters. 
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Figure 6.15d. Application of the scalar and vector truncated median filters to circles of 
curvature 0.1 to 0.9 in 0.1 steps for 11 × 11 circular filter, against results obtained from scalar 

and vector median filters. 
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Figure 6.15e. Application of the scalar and vector truncated median filters to circles of 
curvature 0.1 to 0.9 in 0.1 steps for 13 × 13 circular filter, against results obtained from scalar 

and vector median filters. 

 
 
 
 
 

Filter Edge type 

Mean Median Mode 

Step 1/6Cca2 1/6Cca2 1/6Cca2 

Intermediate ≈1/7Cca2 1/6Cca2 1/2Cca2 

Linear slant 1/8Cca2 1/6Cca2 1/2Cca2 

Table 6.5. Summary of previous edge shift calculations. In this table, Cc is the curvature of the 
edge being examined, and a is the radius of the operator window. 
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66..55..11  CCAASSEE  11  

When the object curvature is low, i.e. when the filter window is small compared 

with the circle, the numbers of background and foreground pixels are large 

compared with those on the edge. In this case the contents of the operator window 

can be taken to approximate a step edge and results similar to those for the median 

are obtained.136 As the mode operator tends to maintain the background or 

foreground intensity right up to the edge, more intermediate-valued boundary pixels 

are removed than may be the case with the median filter, so a slightly greater shift 

occurs. (This factor will be considered in more detail in Section 6.6.) It is clear from 

Figure 6.15 that both the median and mode filter follow the 
6
1 Cca2 rule quite well up 

to the point of departure for the mode (see Case 2 below). 

To proceed further, it was found that greater accuracy was required, and the 

experiments were repeated in the region of interest for the five operator window 

sizes, as shown in Figure 6.16. 

66..55..22  CCAASSEE  22  

The rapid increase in mean edge shift (departing from that of the median) represents 

the transition from a step edge to a slant edge; thus the edge shift increases from 

6
1 Cca2 to a maximum of 

2
1 Cca2 (Table 6.5). The curvature at which this occurs 

depends very much on the relative curvatures Cc, Cw (= 1/a) of the circle and 

operator window. However, it is clear that rapid change will occur when the 

curvature of the object under scrutiny is similar to, or greater than, that of the 

operator window. 
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Figure 6.16a. Application of the scalar and vector truncated median filters to circles of 
curvature 0.1 to 0.9 in 0.01 steps for 5 × 5 circular filter, against results obtained from scalar 

and vector median filters. 
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Figure 6.16b. Application of the scalar and vector truncated median filters to circles of 
curvature 0.1 to 0.9 in 0.01 steps for 7 × 7 circular filter, against results obtained from scalar 

and vector median filters. 
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Figure 6.16c. Application of the scalar and vector truncated median filters to circles of 
curvature 0.1 to 0.9 in 0.01 steps for 9 × 9 circular filter, against results obtained from scalar 

and vector median filters. 
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Figure 6.16d. Application of the scalar and vector truncated median filters to circles of 
curvature 0.1 to 0.9 in 0.01 steps for 11 × 11 circular filter, against results obtained from scalar 

and vector median filters. 
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Figure 6.16e. Application of the scalar and vector truncated median filters to circles of 
curvature 0.1 to 0.9 in 0.01 steps for 13 × 13 circular filter, against results obtained from scalar 

and vector median filters. 

 

 

 

 

 

Step- to Intermediate-edge transition Window size 
(circular neighbourhood) 

Cw Cc Ratio Cc/Cw 

5 × 5 0.400 0.50 1.250 

7 × 7 0.286 0.40 1.400 

9 × 9 0.222 0.30 1.350 

11 × 11 0.182 0.25 1.375 

13 × 13 0.154 0.212 1.378 

Table 6.6. Characterization of rapid onset of mode changes. 
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Table 6.6 shows the values of Cc for which the mode filter begins its rapid increase 

in edge shift, the critical threshold being taken as 10% difference relative to the 

median value*. To proceed, the ratio Cc/Cw is calculated: taking the mean of the 

results, the transition is characterised when the object curvature Cc is approximately 

35% greater than that of the window. Discrepancies arise because of the discrete 

nature of the data; for instance a circular 5 × 5 operator derived by truncating border 

pixels has an area of 21 pixels as opposed to the continuous operator which has an 

area of 19.2 pixels. Thus an increase in the accuracy of the sub-pixel measurement 

method, and weighting operator window pixels to more closely reflect an ideal 

continuous operator, would be expected to yield slightly more consistent results. 

However, an exact theory would have to relate to the digitised nature of the lattice – 

e.g. see Davies (1999).119 

66..55..33  CCAASSEE  33  

As the edge shift acts towards the origin of curvature, the action of the mode 

operator is characterised by the steady removal of boundary pixels until a point is 

reached where the entire object is eliminated. This occurs when the ratio of 

background pixels to foreground pixels excluding boundary pixels of intermediate 

grey-level (which the mode filter will largely ignore) is greater than unity. At this 

point, any object of up to half the area of the operator window will be wholly 

removed. This is borne out by the close match to the empirical results of 

Figure 6.16, as shown in Table 6.7. Circles of higher curvature (smaller area) are of 

course also removed, as indicated by the asymptotic maximum (for which the shift 

equals the circle radius) in Figure 6.16. Note that these effects are essentially 

identical for the mode and median: this is made clear by the close agreement that 

occurs at the high curvature regions of Figures 6.16c–e. However, this model is 

rather simplistic in that it does not consider the intensity gradient at the  

                                                 
* While 10% is arbitrary, it gives a useful indication of when a significant change has occurred: 
smaller variations would be subject to noise; larger variations would give greater shift and would 
erode the quantity that we are aiming to measure. 
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Point at which total object removal occurs 
(area in pixels) 

Window size 
(circular neighbourhood) 

Expected Measured (curvature) 

5 × 5 9.82 9.02 (0.59) 

7 × 7 19.24 16.23 (0.44) 

9 × 9 31.81 30.68 (0.32) 

11 × 11 47.52 43.09 (0.27) 

13 × 13 66.37 64.91 (0.22) 

Table 6.7. Object removal measurements. 

circumference of the generated test circles. A more rigorous treatment is given 

below in Section 6.6.  

66..55..44  CCAASSEE  44  

It is also interesting to note the behaviour around the point where the curvature of 

the operator window is the same as that of the circle: for filters greater than 5 × 5, 

the mode filter exhibits very slightly lower mean edge shift than for the median. This 

appears to be due to a number of factors: first, recall the ‘edge-crispening’ effect 

noted by Davies,17 which has the effect of tending to maintain the dominant object 

intensity closer to the boundary than for the median filter; second, the truncated 

median filter always errs on the ‘safe’ side, truncating if anything fewer of the 

intensity values than would be the case for an idealised continuum intensity 

distribution. Indeed, as described in Section 6.3, when the filter is applied to an even 

symmetric distribution it selects the vector closest to the old median: on the 

circumference of a circle, where the edge shift acts towards the origin of curvature, 

the old median must necessarily have been a point inside the circle, thus acting 

further to minimise the apparent edge shift. Examination of the generated test circles 

show very many cases where such even symmetric distributions arise. 
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Finally, the method by which the edge shift is calculated also has some bearing on 

the results obtained: Figure 6.17 shows an example of two of the generated circles 

and the results of applying median and mode filters to each of them; it can be seen 

that although the radius of the median-filtered circle is greater than that of the mode-

filtered circle, the pixels at the circumference are of various intermediate grey-

levels. When integrating the circle pixel intensity it thus appears that the mode-

filtered circle exhibits a lower mean edge shift because the circle pixel intensity is 

maintained right to the edge, thus leading to a higher aggregate intensity. 

In summary, this measured effect occurs because of a combination of the designed 

characteristics of the filter, the symmetry and the discrete nature of the artificially 

generated test data, and the method by which the edge shift is measured; in other 

words it is a pathological effect obtained due to the nature of the experiment and is 

unlikely to be observable in normal machine vision applications. 

66..66  FFIINNIITTEE  EEDDGGEE  WWIIDDTTHH  MMOODDEELL::  CCAALLCCUULLAATTIIOONN  OOFF  BBRREEAAKKPPOOIINNTTSS  

It will be clear from the discussions in the previous section that a rather complicated 

situation exists and that a thoroughgoing discrete model would be required before 

the performance of the mode filter could be evaluated exactly. Nevertheless, Section 

6.5 brought out a number of relevant points, some of which related to a continuum 

approximation. In this section we try to make these points more concrete by 

observing that the variations shown in Figures 6.15 and 6.16 can be regarded as 

being comprised of significant regions separated by 'breakpoints'. For the present 

purpose we identify three breakpoints: the lowest is the point (bp1) where the mode 

curve separates from the median curve and takes a sharp turn upwards; the second is 

the point (bp2) where the mode curve stops rising and starts falling steadily; the 

third is the point (bp3) where the median curve stops rising and starts falling 

steadily. 

We have found that we can explain these breakpoints qualitatively, and to a 

satisfactory extent quantitatively, by modelling the intensity profiles of the circular  
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Figure 6.17a. 

 
Figure 6.17d. 

 
Figure 6.17b. 

 
Figure 6.17e. 

 
Figure 6.17c. 

 
Figure 6.17f. 

Figure 6.17. Two examples of generated test circles to measure mean edge shift. (a) Generated 
circle of curvature 0.3, with a horizontal offset of 4 sub-pixels and a vertical offset of 5 sub-

pixels. (b) Application of 5 × 5 circular median filter. (c) Application of 5 × 5 circular truncated 
median filter. (d) Generated circle of curvature 0.22, with zero horizontal and vertical offset. 

(e) Application of 9 × 9 circular median filter. (f) Application of 9 × 9 circular truncated median 
filter. 
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objects as having linear slopes bounded by constant background and foreground 

regions (Figure 6.18a). Because of the discrete nature of the lattice and the limited 

number of available grey levels, and the necessarily narrow width of the edge region 

(which a priori must be around 1–2 pixels), such a model can only be an 

approximation. Nevertheless, it immediately leads to some useful conclusions when 

examined in conjunction with the experimental results. 

The first such conclusion is that, when applying a median filter in practice, the 

circles will not disappear until a significantly higher curvature has been reached than 

would a priori have been imagined. This is because the smaller radius b actually 

leads to a higher outer radius value bmed (Figure 6.18a) because of the linear 

intensity profile, and it is this value that must be inserted as the limiting value into 

the formula for the limiting size of circle before the circle finally disappears: 

2 2 2
med medb a bπ π π= −  (6.3) 

2med
ab∴ =  (6.4) 

Taking the overall width of the intensity gradient at the edge as t, we obtain the 

following relations for the inner and outer edge radii, bmod
 and bmed respectively: 

2mod
tb b= −  (6.5) 

2med
tb b= +  (6.6) 

We can now use the experimentally observed median breakpoint value bp3 to 

estimate t: 

2 2
t a b= −  (6.7) 
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Figure 6.18. Situation pertaining at the three breakpoints. Each diagram shows the window 
(the circle of largest radius a) and a circular object of basic radius b, with inner (bmod) and 

outer (bmed) radii reflecting the width t of the linear sloped edge region. The shading represents 
the local intensity (e.g darkest = 0, lightest = 255). In (a) an overhead view is shown. In (b), the 

object is about to disappear under the action of a median filter, the area within the outer radius 
(bmed) being exactly half the area of the window. In (c) the object is about to disappear under 
the action of a mode filter, the area within the inner radius (bmod) being exactly equal to that 

outside the outer radius (bmed). In (d) the innermost and outermost regions are again the same 
area. These diagrams lead to estimation of breakpoints bp3, bp2, bp1 respectively (see text). 
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If the model is a useful one, the values of t obtained from the five curves will be 

consistent: otherwise the opposite will be true. Taking the effective radii calculated 

from the pixel areas of the different sized operators and inserting them into Equation 

6.7, we obtain a narrow range of values (Table 6.8) with a mean of 1.45 and a 

remarkably low standard deviation of 0.041. With this degree of reliability we can 

go on to use this edge model to estimate the breakpoints for the mode filter. 

The upper mode breakpoint (bp2) is relatively easy to calculate, using the following 

formula: 

2 2 2
mod medb a bπ π π= −  (6.8) 

which reflects the fact that the region in the window outside the outer edge must 

equal the region within the inner edge, at the point when the mode filter is about to 

eliminate the whole circular object (Figure 6.18b). 

Substituting for bmed and bmod leads to the formula: 

2
2 2 2 22

2med mod
ta b b b= + = +  (6.9) 

from which we can deduce bp2 as given by: 

2 2

2 4
a tb = −  (6.10) 

Finally, bp1 is estimated as follows: it is the point at which the whole of the inner 

edge of the circular object lies just within the window, while at the same time the 

area within the inner edge must equal the area outside the outer edge (Figure 6.18c). 

Unfortunately, the latter area cannot be written down in the form of a simple 

formula, and has to be estimated numerically. Table 6.9 gives the values of bp1 

obtained in this way, and also shows the values obtained from the mode curves in 

Figure 6.16. It also shows the corresponding results for bp2. 
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Window 
size 

Number of active 
pixels* 

Effective radius 
a† 

bp3 curvature (radius b) t 

5 × 5 21 2.585 0.895 (1.117) 1.422 

7 × 7 37 3.432 0.595 (1.681) 1.492 

9 × 9 69 4.687 0.385 (2.597) 1.433 

11 × 11 97 5.557 0.310 (3.226) 1.407 

13 × 13 137 6.604 0.255 (3.922) 1.496 

 
* The corners of the windows were truncated to make them approximate more closely to circles. 
† The effective radii were calculated from the active areas of the windows. 

Table 6.8. Calculation of finite edge width t. 

bp1 bp2 bp2 – bp1 window 

observed estimated observed estimated observed estimated 

5 × 5 0.50 0.49 0.59 0.60 0.09 0.11 

7 × 7 0.40 0.38 0.45 0.43 0.05 0.05 

9 × 9 0.30 0.29 0.32 0.31 0.02 0.02 

11 × 11 0.25 0.24 0.27 0.26 0.02 0.02 

13 × 13 0.212 0.207 0.220 0.217 0.008 0.010 

Table 6.9. Breakpoints for the mode filter. 

In view of the crudeness of the model (limitation to linear slope, continuum 

approximation to a discrete lattice, and so on* – as indicated above), the degree of 

agreement between estimated and observed values is good, while that for the 

differences between the two breakpoint values (last two columns in Table 6.9) is 

even better – presumably because any errors in the estimation of t and in the 

meaningfulness of the model as a whole tend to cancel in the latter case. Finally, 

note that, for the mode filter at least, this represents a zero parameter fit – i.e. the 

                                                 
* Recall also the simple 10% criterion used in obtaining the observed values of bp1, as discussed 
earlier in relation to Table 6. 
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only assumptions made are those relating to linearity of the edge profile (including 

disregard of discrete pixel effects): the single parameter that is adjusted relates to 

fitting the median rather than the mode. 

These observations confirm that the behaviour of the mode filter is understood both 

qualitatively and, to a good degree, quantitatively, and make it clear that 

significantly more accurate assessment of the situation must await detailed discrete 

calculations – as in the case of the median filter. 

66..77  CCOONNCCLLUUDDIINNGG  RREEMMAARRKKSS  

This section has examined the properties of the truncated median filter cited in 

earlier work as providing a useful implementation of the mode filter.134 It has 

confirmed the value of this type of filter for providing an enhancement capability 

when applied to grey-scale images, and it has also examined the possibility of 

extending the concept to the processing of colour images. A procedure has been 

developed – the ‘truncated vector median filter’ (TVMF) – based on vector median 

filtering, which leads to a highly effective image enhancement capability for colour 

images. The procedure, which like the vector median filter is able to resist colour 

bleeding problems, reduces exactly to the truncated median filter for grey-scale 

images, thereby lending support to its validity. Further support comes from the 

excellent noise-suppression capability of the extended filter, which is able to cope 

with well over 50% outlier noise – thereby considerably exceeding the 50% limit of 

the widely used median and vector median types of filter.17 

The edge shifting properties of the TVMF filter have also been explored and 

compared with those of the vector median filter. For low boundary curvatures it 

appears that the TVMF filter follows the vector median filter very closely, whereas 

above a certain curvature level the TVMF filter introduces a substantially higher 

level of edge shift, though this is in line with the edge shift theory of Davies.119,136 

At high curvature levels the mode shifts again merge with those for the vector 

median filter – ultimately because the small objects leading to these high curvatures 
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are progressively eliminated when they lie largely inside the filter window. It is 

important to note that these properties of the mode filter are due to the fundamental 

nature of a mode filter, namely that it should take most account of the majority 

intensity within the window, even if this means shrinking objects around their 

periphery: this is expected behaviour rather than the result of ad hoc programming. 

Indeed, far from the mode filter corresponding to ad hoc programming, it represents 

a highly important type of algorithm that is considerably more robust (in an outlier 

suppression sense) than more widely used types of filter.  

Clearly, if filters with particularly low edge shifts are required, mode filters should 

not be used as their specification is quite different; in such circumstances it is in any 

case known that median filters should be replaced by specially designed variants, 

such as hybrid median135 or neural based filters110 that have been specially tailored 

to the task. 
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CChhaapptteerr  77::  AApppplliiccaattiioonn  ooff  
NNeeuurraall  NNeettwwoorrkkss  ttoo  CCoolloouurr  
IImmaaggee  FFiilltteerriinngg  

77..11  AAPPPPLLIICCAATTIIOONN  TTOO  GGRREEYYSSCCAALLEE  IIMMAAGGEESS  

The subject of artificial neural networks was introduced in Chapter 4 and an outline 

given of the wide range of machine vision applications to which they have been 

applied successfully. Particular emphasis was given to the multilayer perceptron 

with error backpropagation (MLP), the architecture employed by Davies and 

Greenhill110 with great efficacy on noisy greyscale images. Noise filtering of images 

using neural networks is also discussed in Greenhill,142 Nightingale and 

Hutchinson,143  Weber et al,144 Klimasauskas145 and Pham and Bayro-Corrochano.146 

Here the work of Greenhill is extended to investigate how well the MLP performs in 

the domain of colour images contaminated using the same noise models used in 

Chapter 4. 

It should be noted that although Greenhill demonstrated the usefulness of neural 

networks at removing noise, the results presented suffered from some significant 

drawbacks. Firstly, the training set consisted of only two images, namely 

overlapping runner beans on a homogeneous background; the majority of 

presentations to the neural network will have been either bean texture or background 

texture and thus these images represent a rather specialized image class. Secondly, 

although three noise models were used, the use of ‘salt and pepper’ noise (i.e. where 

a noisy pixel n=0 or n=255 for an 8-bit greyscale image) is not particularly useful; 

this type of noise can be easily rejected without removing a great deal of image 

detail by using an extremum-type filter for noise levels of less than 20% or so. Of 

the two remaining noise models, the impulse noise was only represented by 7.6% 
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contamination (random value between 0 and 255), and the Gaussian model only 

used a variance of 100. Thirdly, although the testing set included a more general 

natural image, the ANN’s performance on this image was marginally better than a 3 

× 3 median filter, as distinct from the obviously superior performance on the images 

of runner beans. This is no doubt due to the discrepancy between the classes of 

training and testing image, the network having ‘learnt’ how to represent bean 

textures free of noise, but not that of the tree in the natural image. Finally, only two 

local window sizes were the subject of the experiments (3 × 3 and 5 × 5), possibly 

restricting the performance of the ANN. 

The aim of this chapter is to establish that ANNs, specifically MLPs, are effective at 

removing noise from colour images and that their employment may be considered a 

viable alternative to the time-consuming task of traditional filter design. This is 

demonstrated by considering a number of factors discussed below. 

77..22  AARRCCHHIITTEECCTTUURREE  OOFF  MMLLPP  

The values of the pixels in the local window are first normalized by dividing by 255, 

then each value in each colour channel is fed to a separate neuron in the input layer; 

thus experiments with 3 × 3 square windows would have 27 input neurons, 5 × 5 

square windows would have 75 neurons, etc. Pixel pre-processing is kept to a 

minimum to observe how the neural network performs when presented with the raw 

image data. In all experiments there are three output neurons, representing the 

replacement image vector at the centre of the sub-image window. 

Greenhill utilized a network with two hidden layers; whilst this may speed 

convergence and aid the solving of certain problems,17 a single hidden layer is 

capable of achieving any desired modelling error criterion.147 For this reason only 

one hidden layer is used here, although the number of neurons is varied in the 

experiments, corresponding to sub-image windows of different sizes. 
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Window Size Pixels in Window Input Neurons Hidden Neurons Output Neurons 

3 × 3 9 27 6 3 

5 × 5 21 63 8 3 

7 × 7 37 111 11 3 

9 × 9 69 207 15 3 

11 × 11 97 291 17 3 

Table 7.1. Number of neurons in each layer for respective sub-image window sizes. 

Setting the number of hidden neurons is often quite arbitrary; too few neurons and it 

is unlikely that the network will produce acceptable results, too many and the 

network will have difficulty generalizing beyond the training set.148 Setting the 

number of hidden neurons to approximately the square root of the number of input 

neurons is often used as a starting point.148,149 

In a paper by Ciftcioglu and Türkcan which presents a model for deriving the 

number of hidden neurons using statistical tests, the anecdotal example they give 

produced best results with between n  and 0.5n for n input neurons.150 

The action of the ANN should ideally be isotropic; to this end circular windows 

were employed by excluding corner pixels. Each sub-image window should be 

presented to the ANN in all possible orientations but in the first instance this would 

significantly increase the computational burden. Two of the training sets were 

selected for their variety of edge types and orientations to ameliorate this omission. 

Initial experiments showed setting the learning rate η to 0.2, momentum parameter α 

to 0.1 (see Eq. 4.45, Section 4.8.2) and the number of hidden neurons to n  for n 

input neurons to be reasonable compromise between convergence rate and minimum 

error. Table 7.1 shows the network sizes used in the experiments. In all cases the 

weights were initialized to random values between -0.3 and 0.3 before training 

commenced. 
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The hypothesis is that the performance of the ANN will increase with respect to the 

size of the input window; should this not be the case the use of larger windows will 

not decrease the ANN’s effectiveness as non-contributory pixels will have their 

weights set to zero, though this may increase training time. 

77..33  TTRRAAIINNIINNGG  SSEETT  

The ANN must be presented with a representative training set of the images on 

which it is ultimately to be employed; if the network is trained on natural images 

with a predominance of certain spatial and chromatic characteristics its final trained 

weights will reflect this. Its noise rejection performance on artificial or industrially 

derived images may be sub-optimal or indeed detrimental – this is perhaps most 

clearly illustrated by an example in which the network was trained to remove noise 

from the ‘Lena’ training image (Figures 7.1a), and the trained network subsequently 

applied to remove noise from the ‘Peppers’ test image (Figure 7.1b). The result 

(Figure 7.1c) shows that trained network weights reflect the predominance of low 

saturation colours and skin tones; the similarity in colour characteristics between the 

images in Figures 7.1a and 7.1c is obvious. 

Clearly, chromatic distortion such as this is undesirable, more so than the removal of 

noise. To combat this, either the network must be: 

• trained on a disparate set of images so that it may generalize, 

or 

• be restricted to use on particular image class to work with a select set of 

spatial and chromatic qualities. 

The latter may in fact be beneficial for industrial inspection, for instance. 

With this in mind, three different training and testing sets were determined to 

investigate these observations; the aim is to demonstrate that training sets which 

belong to a definite image class will elicit better results from the ANN than a 

disparate image set.  For all image sets, images were contrast-stretched prior to use. 
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77..33..11  SSTTAANNDDAARRDD  IIMMAAGGEESS  

The well-known Waterloo Repertoire Colorset image database151 was chosen as a 

class of dissimilar training images for the ANN. Unlike the other two training sets, 

there are only eight images in the Waterloo Repertoire Colorset; thus the testing set 

also contains eight different images to test the generalization ability of the ANN. It 

is expected that the ANN will perform poorly at this task, so the difference in the 

Figure 7.1. Effect of training neural network on a specialized image: (a) shows the training image, (b) 
shows the test image and (c) the resultant output. 
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number of training and testing images compared to the other experimental datasets 

will have little effect on demonstrating this. The dissimilar nature of the images is 

given in Figure 7.2a-c showing RGB scattergrams of the first three images in the set, 

‘Clegg’, ‘Frymire’ and ‘Lena’. 

77..33..22  PPLLAASSTTIICC  CCOOMMPPOONNEENNTT  IIMMAAGGEESS  

The plastic toy image set was chosen for its similarity to mechanical parts involved 

in industrial inspection containing diverse features, namely: 

• Reflections 

• Shadows 

• Holes 

• Corners 

• Different orientations 

• Limited range of colours 

• Transparent portions 

Sixteen images were used for training and sixteen for testing. RGB scattergrams of 

three of the training images are shown in Figure 7.3a-c. 
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Figure 7.2a. RGB scattergram of ‘Clegg’ image. 
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Figure 7.2b. RGB scattergram of ‘Frymire’ image. 
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Figure 7.2c. RGB scattergram of ‘Lena’ image. 
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Figure 7.3a. RGB scattergram of plastic component training image 6. 
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Figure 7.3b. RGB scattergram of plastic component training image 7. 
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Figure 7.3c. RGB scattergram of plastic component training image 8. 
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77..33..33  CCOONNFFEECCTTIIOONNEERRYY  IIMMAAGGEESS  

This image set has comparable qualities to those described above, but the images are 

somewhat more self-similar. The pieces of confectionery are all the same size, the 

edges are predominantly circular and there is less chromatic variance. This is clearly 

illustrated by the scattergrams in Figure 7.4a-c. 

77..44  EEXXPPEERRIIMMEENNTTAALL  RREESSUULLTTSS  

It can be seen from Figures 7.2 – 7.4 that all the images (with the exception of the 

artificially generated images, ‘Clegg’, ‘Frymire’ and ‘Serrano’) are strongly 

correlated with intensity which is to be expected (see Chapter 2). In view of this, 

experiments were also conducted in the Ohta and LAB colourspaces to investigate 

whether training the ANN in a decorrelated or a more perceptually accurate 

colourspace affected the training or performance of the network. As with 

experiments carried out in Chapter 4 and Chapter 5, the networks were trained on 

two impulse, two Gaussian and two mixed-noise types of contamination. As 

experiments regarding the efficacy of ANNs for noise removal have not been 

previously carried out for colour images, it is not known how long training may be 

expected to take to achievable acceptable results; a secondary aim of this work is to 

determine how much training is necessary. Therefore, it was decided for each 

network that training was concluded after 50 complete passes of each image set, 

corresponding to approximately 26 million presentations for the standard image set 

and 52 million for the two others. 



–––––  Chapter 7: Application of Neural Networks to Colour Image Filtering  ––––– 

–––  Page 191  ––– 

0

64

128

192

256

0

64

128

192

256
0

64

128

192

256

RedGreen

B
lu

e

 
Figure 7.4a. RGB scattergram of confectionery training image 1. 
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Figure 7.4b. RGB scattergram of confectionery training image 2. 
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Figure 7.4c. RGB scattergram of confectionery training image 3 
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77..44..11  TTRRAAIINNIINNGG  

For each noise type, the total squared error over all the training images for each pass 

was measured. The results show broadly similar traits; in the interests of brevity, 

only a few example sets of results are shown here. The complete set of training 

results may be found in Appendix C1. 

SSTTAANNDDAARRDD  IIMMAAGGEESS  

For the standard image noise experiments, the choice of colourspace has the most 

significant effect on the training error, followed by the window size used.  The RGB 

colourspace is the worst performer in all cases with the exception of the 2% impulse 

noise experiment where the RGB 9 × 9 and 11 × 11 operators return an error 

between the Ohta 3 × 3 and 5 × 5 operators at their respective minimums. The 

difference between the Ohta and LAB operators is not so great, with the LAB 11 × 

11 operator giving the lowest final training error for the impulse noise experiments 

and the Ohta 9 × 9 and 11 × 11 giving best scores for all the other training noise 

types. 

The training error becomes fairly static after the first 20 passes for the poorer 

performing networks; they have either become trapped in local error minima 

(unlikely across all experiments) or they have converged on the best solution for 

their respective parameters. For the best performing networks, the error is still 

decreasing; further training may increase their efficacy. The training error for the 5% 

impulse experiment is shown in Figure 7.5. 

PPLLAASSTTIICC  CCOOMMPPOONNEENNTT  IIMMAAGGEESS  

As with the standard image set, the choice of colourspace has the most significant 

effect on the training error, followed by the window size used.  For the impulse 

noise experiments the RGB colourspace returns the greatest error, and the LAB and 

Ohta colourspace errors are close for all window sizes, barring the Ohta 3 × 3 
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network. No RGB network was able to match the low training errors achieved by the 

other colourspaces. The network with the lowest training error for 2% impulse 

contamination was the Ohta 11 × 11, and the Ohta 9 × 9 for the 5% impulse noise 

case. 

For the Gaussian noise experiments there is greater variation between the window 

size and colourspace used, but again the RGB colourspace is outperformed by both 

Ohta and LAB for all window sizes in both experiments. The largest Ohta windows 

give the lowest training error overall. 

For the mixed noise cases, the Ohta colourspace gives the lowest error for the light 

mixed noise experiment with negligible difference between the 7 × 7, 9 × 9, and 

11 × 11. For the moderate mixed noise experiment, the Ohta and LAB networks 

perform comparably for a given operator size, the 11 × 11 performing the best. 

Similar observations to the standard image set may be made regarding the rate of 

error decrease; static after approximately 20 passes for the majority of networks but 

still decreasing for the better performers. Figure 7.6 shows the training errors for the 

heavy Gaussian noise experiment. 

CCOONNFFEECCTTIIOONNEERRYY  IIMMAAGGEESS  

The training errors for the confectionery images show similar trends to those already 

discussed above.  

For the impulse noise experiments, the difference between the Ohta and LAB 

colourspaces is negligible, but the lowest error is given by the LAB 9 × 9 network; 

the Ohta colourspace gives the best results for the Gaussian and mixed noise cases 

(11 × 11 operator); Figure 7.7 shows the training error for the heavy mixed noise 

experiment. The RGB colourspace once more displays the greatest training error. 
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Figure 7.5. Training error for 5% impulse noise, standard image set. 
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Figure 7.6. Training error for σ2=1000 Gaussian noise, plastic component image set. 
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Figure 7.7. Training error for 5% and σ2=1000 mixed noise, confectionery image set. 



–––––  Chapter 7: Application of Neural Networks to Colour Image Filtering  ––––– 

–––  Page 195  ––– 

77..44..22  TTEESSTTIINNGG  

Testing was conducted by converting each noisy image to the appropriate 

colourspace, applying the neural network, then converting back to RGB and 

obtaining a NMSE measure. A second set of images for each image set was used to 

confirm each network’s ability to generalize within an image class. 

During training, the state of each network was saved every five passes over each 

image set; this ensures that during testing the ‘best’ set of weights can be identified. 

For each noise type, the optimum performance is determined by measuring the 

NMSE summed over all the training and testing images for each saved network. For 

brevity, the same selected example for the training results is shown for each image 

set; the full results are given in Appendix C2. 

Tables 7.2 – 7.4 list the best performing networks by noise type for each image set. 

It is interesting to note that in general the best performance is obtained from the final 

testing pass for the majority of cases; this indicates that further training may well 

lead to increased noise rejection performance. The conspicuous exceptions to this 

are the heavy Gaussian noise experiments, in which the best performance is obtained 

after only 5 or 10 passes. It was noted in Chapter 4 that the optimal operator in a 

Gaussian environment is the simple arithmetic mean filter – for the ANN to 

converge so quickly it is evident that the network is more closely operating as a 

complex linear filter rather than a non-linear classifier (in which training is 

necessarily longer to obtain the best classification boundary). 

SSTTAANNDDAARRDD  IIMMAAGGEESS  

It is immediately apparent when considering Table 7.2 that the testing results differ 

markedly from what one is led to expect from the discussion in Section 7.4.1. Rather 

than the RGB ANNs being the poor performers, the LAB ANNs return the higher 

error scores; this is true for all noise models. 
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As Table 7.2 shows, it is the Ohta colourspace using the smaller windows which 

produces the best results, the notable exception being the 2% impulse noise model in 

which the RGB ANNs perform the best. Figure 7.8 shows the testing results of the 

5% impulse noise experiment. 

PPLLAASSTTIICC  CCOOMMPPOONNEENNTT  IIMMAAGGEESS  

The testing results for the plastic component images are somewhat more mixed with 

Ohta and RGB networks performing similarly. The LAB networks again performed 

poorly compared to the larger operators in the other colourspaces. With the 

exception of the heavy mixed noise model, the RGB networks gave the best error 

scores (Table 7.3). Figure 7.9 shows the testing results of the heavy Gaussian noise 

experiment. 

CCOONNFFEECCTTIIOONNEERRYY  IIMMAAGGEESS  

The observations made regarding the plastic component images apply to the 

confectionery testing results also: the poorest performing are again the LAB and the 

smaller 3 × 3 and 5 × 5 window RGB ANNs, and the best performing are the larger 

window Ohta and RGB networks. The similarity in results between Table 7.3 and 

Table 7.4 is clear, with 9 × 9 and 11 × 11 window RGB ANNs dominating. Figure 

7.10 shows the testing results of the heavy mixed noise experiment. 

77..44..33  CCOOMMMMEENNTT  OONN  CCOOLLOOUURRSSPPAACCEE  SSUUIITTAABBIILLIITTYY  

Some comment should be made regarding the differences between the error scores 

of the three colourspaces obtaining during training and those obtained during the 

testing. Necessarily, the training and testing error results are measured in different 

ways; recall Eq. 4.46 which measures the training error as the sum-squared 

difference between the network output and the target output. For each colourspace 

this is done natively, i.e. no conversion is done back to RGB space at this stage. 
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Noise Model ANN Colourspace Window Size Best Training Pass 

2% impulse RGB 7 × 7 50 

5% impulse Ohta 7 × 7 50 

σ2=100 Gaussian Ohta 3 × 3 50 

σ2=1000 Gaussian Ohta 5 × 5 10 

2% and σ2=100 mixed Ohta 7 × 7 50 

5% and σ2=1000 mixed Ohta 7 × 7 50 

Table 7.2. Best performing neural networks on standard image set. 

Noise Model ANN Colourspace Window Size Best Training Pass 

2% impulse RGB 9 × 9 50 

5% impulse RGB 11 × 11 30 

σ2=100 Gaussian RGB 9 × 9 45 

σ2=1000 Gaussian RGB 9 × 9 5 

2% and σ2=100 mixed RGB 9 × 9 50 

5% and σ2=1000 mixed Ohta 9 × 9 30 

Table 7.3. Best performing neural networks on plastic component image set. 

Noise Model ANN Colourspace Window Size Best Training Pass 

2% impulse RGB 9 × 9 20 

5% impulse RGB 11 × 11 45 

σ2=100 Gaussian RGB 11 × 11 50 

σ2=1000 Gaussian Ohta 11 × 11 5 

2% and σ2=100 mixed RGB 9 × 9 50 

5% and σ2=1000 mixed Ohta 9 × 9 30 

Table 7.4. Best performing neural networks on confectionery image set. 
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Figure 7.8. Testing error for 5% impulse noise, standard image set. 
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Figure 7.9. Testing error for σ2=1000 Gaussian noise, plastic component image set. 
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Figure 7.10. Testing error for 5% and σ2=1000 mixed noise, confectionery image set. 
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Compare this to the NMSE metric used for testing (Eq. 4.27) which is used when the 

images are converted back to their original RGB colourspace. This leads to the 

possibility that a relatively minor error in a given colourspace may give rise to a 

significantly larger error in the RGB colourspace after conversion, identified by the 

NMSE metric. 

These observations are particularly relevant for the LAB colourspace for two 

reasons: firstly, the LAB space attempts to minimize perceptual errors so a small 

difference between LAB vectors can produce a considerable difference between 

RGB vectors. 

Secondly, the neural network inputs and outputs are normalized, and the RGB gamut 

in LAB space occupies a wide dynamic range. However, typical RGB values will 

only occupy a restricted part of this range but the normalization factors must be 

constant to keep the input and output ranges between 0 and 1. 

This leads to small neuron values which, due to limited floating point number 

support, can have significant truncation errors. It is mainly for this reason why the 

LAB space displayed seemingly inconsistent low training errors and high testing 

errors. 

It is also interesting to note that the Ohta colourspace has greater success than RGB 

for images which have large variance, i.e. the standard images and images corrupted 

with the heaviest Gaussian noise; images with a dominant intensity component (the 

component and confectionery image sets contaminated with impulse or light 

Gaussian noise) are better suited to the RGB colourspace it would appear. This is 

almost certainly due to the impulse noise being added in the RGB gamut, leading to 

a more even distribution for that colourspace and thus easier to distinguish when 

analyzing an image correlated along the leading diagonal of the colour cube. 
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77..44..44  CCOOMMPPAARRIISSOONN  WWIITTHH  CCOONNVVEENNTTIIOONNAALL  FFIILLTTEERRSS  

To evaluate the efficacy of using a neural network to remove noise from colour 

images, the saved networks which performed the best (listed in Tables 7.1 – 7.3) are 

compared with an appropriate conventional filter, selected from the best performing 

of the standard VMF, AMF or αVMF with circular operator sizes between 3 × 3 and 

11 × 11. The comparison is done on an image-by-image basis, with the complete 

results listed in Appendix C3. A summary of the overall performance is given by 

calculating the average NMSE scores for the best ANN and conventional filters, 

shown in Tables 7.5 – 7.7. 

SSTTAANNDDAARRDD  IIMMAAGGEESS  

The results for the ANNs are broadly similar across all experiments: the ANN 

performs better on the training set than on the testing set, but the improvement over 

the conventional filter is only apparent on half the training images; Figure 7.11 

shows the results from the 5% impulse noise experiment. The ANN has clearly had 

some difficulty in generalizing its function with the different classes of image, 

lending weight to the hypothesis that ANNs will have greater success at learning to 

remove noise from images with similar spatial and spectral characteristics. However, 

considering the overall view given by Table 7.5, the ANN does return considerably 

better noise figures than for the best conventional filter for all noise types. 

PPLLAASSTTIICC  CCOOMMPPOONNEENNTT  IIMMAAGGEESS  

With the exception of the moderate impulse noise experiment and the light mixed 

noise experiment the ANNs return better noise figures than the conventional filter 

for all the images in both training and testing sets (Figure 7.12 shows the heavy 

Gaussian noise experimental results). Table 7.6 shows that the ANN performs quite 

poorly in comparison to the standard VMF for the 5% impulse noise experiment, but 
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overall the ANN still outperforms the αVMF for the light mixed noise experiment. 

Training the ANNs for this image set has clearly been successful for the great 

majority of the images, training and testing. 

CCOONNFFEECCTTIIOONNEERRYY  IIMMAAGGEESS  

The experiments on the confectionery images are somewhat more mixed; the ANNs 

perform very poorly on both the impulse noise experiments and the light mixed 

noise experiment (Table 7.7). It is clear that the ANNs have learnt to remove 

Gaussian noise with great success in this image set, displaying much lower error 

scores than the best of the conventional filters but have difficulty in removing 

impulse noise. The problem of removing impulse noise is somewhat more difficult 

to specify, there is no definite rule in correctly classifying a pixel as noisy or 

uncorrupted; one only has to consider the success of non-linear filters versus linear 

filters in this regard. 

Conversely, with Gaussian contamination, every pixel is affected to a lesser or 

greater extent; the ANN can quickly approximate the arithmetic mean filter and then 

specialize according to the training set statistics. 

The lack of detailed features (such as sharp image contours) in this particular image 

set illustrates these characteristics. Figure 7.13 shows the results of the heavy mixed 

noise experiment. 
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Figure 7.11. Filter comparison for 5% impulse noise, standard image set. 
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Figure 7.12. Filter comparison for σ2=1000 Gaussian noise, plastic component image set. 
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Figure 7.13. Filter comparison for 5% and σ2=1000 mixed noise, confectionery image set. 
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 Average NMSE 

Noise type Best performing  ANN Best conventional filter Conventional filter 
type 

2% impulse 3.635 × 10-3 7.467 × 10-3 3 × 3 VMF 

5% impulse 5.594 × 10-3 8.049 × 10-3 3 × 3 VMF 

σ2=100 Gaussian 4.205 × 10-3 9.073 × 10-3 3 × 3 αVMF 

σ2=1000 Gaussian 1.689 × 10-2 1.846 × 10-2 3 × 3 AMF 

2% and σ2=100 mixed 7.528 × 10-3 9.302 × 10-3 3 × 3 αVMF 

5% and σ2=1000 mixed 2.311 × 10-2 2.372 × 10-2 3 × 3 αVMF 

Table 7.5. ANN and conventional filter comparison for standard image set. 

 

 

 

 Average NMSE 

Noise type Best performing  ANN Best conventional filter Conventional filter 
type 

2% impulse 1.370 × 10-3 2.641× 10-3 3 × 3 VMF 

5% impulse 3.502 × 10-3 3.174 × 10-3 3 × 3 VMF 

σ2=100 Gaussian 2.339 × 10-3 4.490 × 10-3 3 × 3 αVMF 

σ2=1000 Gaussian 1.037 × 10-2 1.373 × 10-2 3 × 3 AMF 

2% and σ2=100 mixed 4.154 × 10-3 4.707 × 10-3 3 × 3 αVMF 

5% and σ2=1000 mixed 1.436 × 10-2 1.860 × 10-2 3 × 3 αVMF 

Table 7.6. ANN and conventional filter comparison for plastic component image set. 
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 Average NMSE 

Noise type Best performing  ANN Best conventional filter Conventional filter 
type 

2% impulse 1.796 × 10-3 8.757 × 10-4 3 × 3 VMF 

5% impulse 2.615 × 10-3 1.132 × 10-3 3 × 3 VMF 

σ2=100 Gaussian 1.670 × 10-3 2.637 × 10-3 3 × 3 αVMF 

σ2=1000 Gaussian 6.239 × 10-3 9.636 × 10-3 5 × 5 AMF 

2% and σ2=100 mixed 3.133 × 10-3 2.762 × 10-3 3 × 3 αVMF 

5% and σ2=1000 mixed 8.703 × 10-3 1.142 × 10-2 5 × 5 αVMF 

Table 7.7. ANN and conventional filter comparison for confectionery image set. 

77..44..55  CCOOMMBBIINNIINNGG  NNEEUURRAALL  NNEETTWWOORRKK  WWIITTHH  NNEEAARREESSTT  NNEEIIGGHHBBOOUURR  SSEELLEECCTTIIOONN  

It is clear from the observations above that the ANNs response to Gaussian 

contaminated images is far better than to the impulse noise contaminated images. 

The reason for this is that although the vast majority of pixels in the image are noise-

free, the ANNs distort all pixels to some extent, noisy or not, increasing the NMSE 

score. 

A method for improving this has been developed by adding a further ‘nearest 

neighbour’ module after the ANN. 

After the ANN has produced a tristimulus output, this value is fed to a ‘nearest 

neighbour’ processing stage which determines which of the original local window 

pixels is closest to the ANN’s output and uses this as the replacement pixel value: 

this has the effect of eliminating noisy pixels according to the ANN’s rationale 

whilst still selecting a pixel of colour and intensity present in the original 

distribution in noise-free areas. Note that this will only work on noise types in which 

the majority of pixels are left unchanged. 

The result of applying the ‘nearest neighbour’ module to the impulse noise 

experiments is given in Tables 7.8 – 7.10. 
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It can be seen that the ‘nearest neighbour’ method drastically improves the error 

score in all cases, especially for those with the highest errors. Although this method 

does not improve the error scores for the confectionery image set to surpass the 

conventional filter, it does significantly improve over the VMF for the moderate 

noise case for the confectionery image set. 

 

 Average NMSE 

Noise type Standard ANN ANN with ‘Nearest 
Neighbour’ 

Best conventional filter 
(3 × 3 VMF) 

2% impulse 3.635 × 10-3 3.102 × 10-3 7.467 × 10-3 

5% impulse 5.594 × 10-3 4.578 × 10-3 8.049 × 10-3 

Table 7.8. ANN with ‘nearest neighbour’ and conventional filter comparison for standard 
image set. 

 Average NMSE 

Noise type Standard ANN ANN with ‘Nearest 
Neighbour’ 

Best conventional filter 
(3 × 3 VMF) 

2% impulse 1.370 × 10-3 1.257 × 10-3 2.641× 10-3 

5% impulse 3.502 × 10-3 2.843 × 10-3 3.174 × 10-3 

Table 7.9. ANN with ‘nearest neighbour’ and conventional filter comparison for plastic 
component image set. 

 Average NMSE 

Noise type Standard ANN ANN with ‘Nearest 
Neighbour’ 

Best conventional filter 
(3 × 3 VMF) 

2% impulse 1.796 × 10-3 1.291 × 10-3 8.757 × 10-4 

5% impulse 2.615 × 10-3 1.898 × 10-3 1.132 × 10-3 

Table 7.10. ANN with ‘nearest neighbour’ and conventional filter comparison for confectionery 
image set. 
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77..55  CCOONNCCLLUUDDIINNGG  RREEMMAARRKKSS  

This chapter has investigated the applicability of neural networks to removing noise 

of different types, with the hypothesis that the neural network would train better on 

images exhibiting similar spatial and chromatic characteristics, as opposed to images 

of a distinct nature; this is borne out by the consistency of the results for the plastic 

component and confectionery image sets, as opposed to the somewhat more 

disparate performance on the standard image set, especially on the testing set.  

In general, the ANNs showed a significant improvement over the use of 

conventional filters, although in a qualitative sense this is to a large extent due to the 

retention of detail rather than superior suppression of noise, as shown in the 

examples of ANN processed images in Figure 7.14a-d – Figure 7.16a-d. However, 

as Tables 7.5 – 7.7 have shown, the overall performance gain against the 

conventional filters tested is plain to see. 

In summary, the achievements of this work are as follows: 

• The application of ANNs to the problem of noise removal has been carried 

out, verifying previous researchers’ work (see Davies and Greenhill142). 

• Analysis of ANNs over a larger image set has demonstrated that the 

effectiveness of ANNs at this task is not a spurious result. 

• Their work has been extended by investigating different noise types and their 

combinations, along with different operator sizes. 

• The suitability of using ANNs in the removal of noise in colour images has 

been researched and proven, with discussion and analysis of the ANNs 

behaviour for this application. 

• The suitability of alternative colourspaces has been investigated and proven. 

• The performance of the ANNs has been compared with the best of the 

conventional filters discussed in Chapter 4 and demonstrated to be superior. 
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• A method to improve the retention of the original image characteristics after 

impulse noise filtering has been developed and its efficacy proven. 

In closing, the suitability of ANNs at removing noise from colour images has been 

amply demonstrated and shown to rival well-known conventional filters; the aims 

stated at the beginning of the chapter have been investigated and the hypotheses 

verified; namely, that: 

• MLPs are better suited to removing noise consistently from related rather 

than disparate images. 

• Larger windows improve performance. 

• Training MLPs represent a viable alternative to traditional filter design 

provided sufficient training can be done. 

Indeed, as many filters require O(n2) or O(n3) operations, and the network (once 

trained) requires O(n) operations, the network’s computational load for large 

windows is similar to that for a traditional filter utilizing a smaller window. 

It was also demonstrated that removing noise using ANNs was achievable within 

reasonable training time. 

From these foundations, using ANNs for colour image enhancement, restoration or 

noise removal processes which would otherwise be difficult to model conventionally 

is a viable proposition. 
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Figure 7.14a. Original ‘Monarch’  image. 

 

Figure 7.14b. ‘Monarch’ image with σ2=1000 
Gaussian noise. 

  

 

Figure 7.14c. Figure 7.14b filtered by 
3 × 3 AMF. 

 

Figure 7.14d. Figure 7.14b filtered by 
5 × 5 Ohta ANN. 
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Figure 7.15a. Original plastic component 
image. 

 

Figure 7.15b. Plastic component image with 
5% impulse noise. 

  

 

Figure 7.15c. Figure 7.15b filtered by 
3 × 3 VMF. 

 

Figure 7.15d. Figure 7.15b filtered by 
11 × 11 RGB ANN. 
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Figure 7.16a. Original confectionery image. 

 

Figure 7.16b. Confectionery image with mixed 
5% impulse and σ2=1000 Gaussian noise. 

  

 

Figure 7.16c. Figure 7.16b filtered by 
5 × 5 αVMF. 

 

Figure 7.16d. Figure 7.16b filtered by 
9 × 9 Ohta ANN. 
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CChhaapptteerr  88::  CCoonncclluussiioonnss  

This thesis has examined a range of issues pertinent to the restoration or 

enhancement of digital colour images. The first three chapters provide the necessary 

background information for the reader, the fourth gives a much needed overview and 

discussion of the performance of contemporary filters, and the final three chapters 

extended previous work and developed some original ideas with respect to filtering 

colour images. 

88..11  RREEVVIIEEWW  OOFF  TTHHEESSIISS  

Chapter 1 introduced the subject of digital image processing and the recent field of 

colour image processing. Colour was defined by discussing the phenomenon of 

human colour vision, and an outline given of the necessity of using colour machine 

vision techniques for a range of applications. The requirement for effective colour 

filtering techniques was then described in terms of the characteristics of colour 

image capture equipment, data compression and encoding techniques, display 

restrictions and transmission abnormalities. 

Chapter 2 discussed popular methods of representing colour. Their origins were 

considered, along with their relative merits, shortfalls and applications. Methods for 

converting images between the various representations were also given. 

Chapter 3 described the framework necessary for developing and measuring colour 

image processing algorithms. The requirements were discussed and basic details of 

the implementation given. The reasoning behind the selection of images used in the 

thesis was summarized according to their characteristics and prevalence in the 

published literature. 

Chapter 4 introduced the concept of the local window operator and its association 

with convolution operators. Basic local window methods of noise removal in 
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greyscale images were described before outlining the difficulties of applying these 

operators in a component-wise fashion to multivariate images. The reader was 

introduced to the now well-known vector median filter before embarking on a 

description of alternative, oft-touted ‘superior’ vector filters. Prior to comparing the 

efficacy of these filters, methods for measuring performance were detailed, both for 

greyscale and colour application, and their merits discussed. 

A number of experiments were performed on a range of images contaminated with 

different noise types, leading to the conclusion that the various filters had merits and 

shortcomings that depended greatly on the statistics of the local window on which 

they were used. The achievements of this work may be summarized as: 

• The published capabilities of established filters were challenged by 

subjecting them to rigorous testing. 

• The analysis and discussion of the filter characteristics led to the 

development of extensions to these filters. 

• Differences in the definitions of the MCRE were discovered and led to a new 

definition for the MCRE, although qualitative measurements are yet to be 

carried out (Section 4.6). 

• It was noted that the metrics themselves differed in the manner in which they 

ranked the filters, prompting the reader to be cautious when presented with 

quantitative performance data. 

A brief introduction to artificial neural networks was also given to provide 

background information for Chapter 7. 

Chapter 5 developed and analyzed a number of original extensions based on the 

vector median filter. Briefly, the extensions comprised: 

• An investigation into the applicability of using alternative colourspaces. 

• A hybrid mean-median filter based on the αVMF to cope with unknown or 

mixed noise. 

• A switching rank order filter to retain detail when removing impulse noise. 
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• A novel weighting scheme based on observation of the statistics of natural 

images. 

• An extension to reduce computational overhead for the distance calculations 

often necessary in vector filtering. 

Each of these extensions was found to endow greater performance in one or more 

areas; in reduced computational load or improved retention of detail, for example. 

Chapter 6 presented an improvement on a somewhat more specialized filter: Davies’ 

truncated median filter (commonly known as the ‘mode filter’), well-known for its 

image enhancement properties, was investigated and a novel method developed for 

use on multivariate images. Although highlighting the difficulty in transferring 

scalar techniques into vector domains, the new method was shown to reduce to the 

action of Davies’ filter for greyscale images, and further work performed relating to 

its noise-rejection properties in addition to those of enhancement. For heavy 

contamination, it was proven that the new filter is quite superior to the vector 

median filter. 

Finally, quantitative confirmation of the theoretical work of Davies on the subject of 

edge-shifting was carried out and the model modified to take into account the 

digitized nature of images. 

Chapter 7 investigated the efficacy of filters which learned the noisy characteristics 

of colour images to subsequently remove or suppress the noise. Previous work was 

described and extended to colour images. The same noise types used in the 

comprehensive comparison in Chapter 4 were employed here; as a result important 

observations regarding the behaviour of ANNs could be made, one of which led to 

the development of an improvement in removing impulse noise. The merits and 

shortcomings of ANNs as colour noise-removing filters were discussed, but most 

importantly, the applicability of using ANNs for such a task was clearly shown. 
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88..22  FFUUTTUURREE  WWOORRKK  

From the work in Chapter 4, it is clear that none of the popular metrics give a full 

account of a filter’s performance. We would like to see consideration given to the 

development of a measurement score which, as well as ranking overall distortion, 

will measure the edge-shift, chromatic distortion and perceived quality to provide a 

more balanced view of a filter’s properties. The last item is difficult to rank due to 

the non-linear characteristics of the human visual system, although it would be 

interesting to see if ANNs could be trained with consistent results to match human-

based opinion scores. 

We have also observed the variation of a filter’s performance according to local 

statistics; quite recently, a number of switching techniques have been suggested in 

the literature based on local and global statistics; it would be instructive to see how 

well the proposed extensions integrate into such schemes, or indeed whether they 

may form part of the analysis of an image’s properties. This is especially true for the 

work done on the ANN’s: small networks could be specifically trained for a great 

number of situations with selection of the best ANNs made by a decision-tree type 

algorithm. 

The properties of Davies’ truncated median filter made it ideal both as a pre- and 

post-processing step for different types of segmentation algorithm. We should like to 

investigate whether this is the case for colour segmentation techniques and quantify 

its worth. 

The work on the effectiveness of ANNs at removing noise should also be continued: 

detailed weight analysis may lead to more computationally efficient ‘fixed’ non-

linear or linear filters and the edge distortion should be quantified and isotropic 

action verified. Although each ANN was trained for a specific noise type and image 

set, the performance of each was not cross-checked; although chromatic aberrations 

were demonstrated early in Chapter 7, this does not preclude the possibility of a 

‘general’ filter that one may employ on an unknown image. The distortions 
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introduced by ANNs should also be analyzed; a suitable starting point may be the 

measurement of edge-shifting, similar to that carried out at the end of Chapter 6. 

Finally, only the use of multi-layer perceptrons was investigated; many other types 

of network exist and may well be better suited to the problem of noise removal and 

merit further investigation. 
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AAppppeennddiixx  AA  

AA11  CCIIEE  DDEEFFIINNIITTIIOONNSS  

Due to the perceptual nature of colour, the CIE (Commission Internationale de 

l’Éclairage – the International Commission on Illumination) have introduced strict 

definitions describing colour sensations with respect to physically measurable 

quantities†: 

 

Brightness Brightness is defined by the CIE as the attribute of a visual sensation 

according to which an area appears to exhibit more or less light. 

Luminance Luminance is brightness weighted by a spectral sensitivity curve 

characteristic of human vision, peaking at 555nm. When a spectral 

power density function is integrated using this curve the result is CIE 

Luminance, denoted Y. To compute absolute luminance from linear 

RGB the following equation from Rec. 70950 is used: 

  0.2125   0.7154  0.0721Y R G B= + +  

Lightness The human eye has a roughly logarithmic response to brightness 

changes, much as the ear does to sound pressure changes; a light 

source five times the luminance of a reference source only appears 

twice as bright. This non-linear perception of luminance is CIE 

Lightness, denoted L* and defined as the modified cube root of Y: 

 

1
3

* 116 16; 0.008856 0 * 100
n n

Y YL L
Y Y
 

= − < < < 
 

 

                                                 
† Hunt, R.W.G (1991) Measuring Colour, Ellis Horwood Ltd., Chichester. 
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 * 903.3 ; 0.008856 0 * 100
n n

Y YL L
Y Y
 

= ≥ < < 
 

 

where Yn is the luminance of the white reference and (Y/Yn) is scaled 

from 0 to 1. The asterisk suffix denotes that the quantity has 

undergone a transformation. 

Hue The CIE states that hue is the attribute of a visual sensation 

according to which an area appears to be similar to one of the 

perceived colours, red, yellow, green and blue, or a combination of 

two of them. In other words, a change in hue gives rise to a change in 

the colour perceived. 

Saturation Saturation is the colourfulness of an area judged in proportion to its 

brightness, i.e. saturation is a measure of the purity of the perceived 

colour. A fully desaturated hue exhibits no colour; only the 

luminance component contributes to its output, i.e. it will be purely 

greyscale. 

Red  Pure red is defined as 700nm according to Rec. 709. 

Green  Pure green is defined as 546.1nm according to Rec. 709. 

Blue  Pure blue is defined as 435.8nm according to Rec. 709. 

AA22  TTEELLEEVVIISSIIOONN  CCOOLLOOUURR  SSPPAACCEESS  

European (PAL) Y’U’V’, American (NTSC) Y’I’Q and other associated terrestrial 

broadcast standards are analog, non-linear systems which, although not strictly 

related to digital image coding/processing are worth mentioning because a number 

of workers use television luminance and chrominance relations to derive transforms 

to convert from RGB to other colour spaces suitable for their applications. 

Broadcast systems differ in that they are gamma-corrected. Voltage applied to the 

cathode ray tube is not proportional to intensity, so the transmitted signal is pre-

corrected to compensate for this by a transfer function with a power law denoted by 
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gamma. For accurate colour calculations, this pre-correction must be undone to 

return to linear signals. Signals that are gamma-corrected are usually primed. 

European television (PAL and SECAM) uses Y’U’V’ components, and whilst the 

symbols denote similar types of quantity (Y’ for luminance, U’ and V’ for 

chrominance) they are not related to CIE standards. Y’ is actually referred to as 

luma, to prevent confusion with the CIE definition. U’ and V’ are bipolar signals, 

and therefore assume negative as well as positive values. 

To convert from Y’U’V’ to gamma-corrected R’G’B’, the equations are: 

( )
( )

' 0.299 ' 0.587 ' 0.114 '
' 0.493 ' ' 0.147 ' 0.289 ' 0.436 '

' 0.877 ' ' 0.615 ' 0.515 ' 0.100 '

Y R G B
U B Y R G B

V R Y R G B

= + +

= − = − − +

= − = − −

 

And: 

' ' 1.140 '
' ' 0.396 ' 0.581 '
' ' 2.029 '

R Y V
G Y U V
B Y U

= +
= − −
= +

 

The gamma law is assumed to be 2.8. 

American NTSC coded television uses Y’I’Q’ components, which like PAL, 

represent one luminance- and two chrominance-coded channels, where I’ is the 

inphase chrominance and Q’ is the quadrature chrominance. I’ and Q’ are derived by 

rotating the U’V’ vector by 33 degrees. The gamma law for NTSC is different at 2.2.  

Again, to convert from R’G’B’ to Y’I’Q’ and vice versa, the equations are: 

 ( ) ( )
( ) ( )

' 0.299 ' 0.587 ' 0.114 '
' 0.27 ' ' 0.74 ' ' 0.596 ' 0.274 ' 0.322 '

' 0.41 ' ' 0.48 ' ' 0.212 ' 0.523 ' 0.311 '

Y R G B
I B Y R Y R G B

Q B Y R Y R G B

= + +

= − − + − = − +

= − + − = − −

 

And: 
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' ' 0.956 ' 0.621 '
' ' 0.272 ' 0.647 '
' ' 1.105 ' 1.702 '

R Y I Q
G Y I Q
B Y I Q

= + +
= − −
= − +

 

When the NTSC standard was ratified in 1953, the chromaticity co-ordinates of the 

transmission primaries were quite different to those of the EBU (European 

Broadcasting Union), mainly because of the CRT phosphors in use at the time. Since 

then, the NTSC system has changed its primaries many times, and they are now very 

similar to those of the EBU, making it possible convert between one system and the 

other. To achieve this, the following relations are used: 

0.27 0.74' ' '
0.493 0.877

0.41 0.48' ' '
0.493 0.877

I U V

Q U V

= − +

= − +
 

This can be simplified to: 

 
' 0.547 ' 0.843 '
' 0.831 ' 0.547 '

I U V
Q U V
= − +
= +

 

with the reverse relation: 

' 0.547 ' 0.843 '
' 0.831 ' 0.547 '

U I Q
V I Q

= − +
= +
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AA33  CCOONNVVEERRSSIIOONN  BBEETTWWEEEENN  RRGGBB  SSTTAANNDDAARRDDSS  

To transform from SMPTE 240M (or SMPTE RP-145) RGB primaries to Rec. 709 

the following matrix is used:† 

709 145

709 145

709 145

0.939555 0.050173 0.010272
0.017775 0.965795 0.016430
0.001622 0.004371 1.005993

R R
G G
B B

     
     =     
     − −     

 

and for EBU 3213 primaries the following relation holds: 

709

709

709

1.044036 0.044036 0
0 1 0
0 0.011797 0.988203

EBU

EBU

EBU

R R
G G
B B

−     
     =     
          

 

It should be realized that transforming between different RGB systems may lead to 

out-of-gamut values. 

                                                 
† Benson, K.B.  (1992) Television Engineering Handbook feat. HDTV Systems, McGraw-Hill., New 
York. 
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AAppppeennddiixx  BB  

Please browse the attached CD-ROM for program code and an electronic version of 

this thesis. 
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AAppppeennddiixx  CC  

This appendix contains the full results of the training and testing of the neural 

networks used for noise suppression in Chapter 7. 

CC11  AANNNN  TTRRAAIINNIINNGG  RREESSUULLTTSS  

For each noise type, the total squared error over all the training images in each pass 

is shown in Figures C1.1a-f for the standard image set, Figures C1.2a-f for the 

plastic component image set and Figures C1.3a-f for the confectionery image set. 

CC22  AANNNN  TTEESSTTIINNGG  RREESSUULLTTSS  

Testing was conducted by converting each noisy image to the appropriate 

colourspace, applying the neural network, then converting back to RGB and 

obtaining a NMSE measure. A second set of images for each image set was used to 

confirm each network’s ability to generalize within an image class. 

During training, the state of each network was saved every five passes over each 

image set; this ensures that during testing the ‘best’ set of weights can be identified. 

For each noise type, the NMSE summed over all the training and testing images for 

each saved network is shown in Figures C2.1a-f for the standard image set, Figures 

C2.2a-f for the plastic component image set and Figures C2.3a-f for the 

confectionery image set. 
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Figure C1.1a. Training error for 2% impulse noise, standard image set. 
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Figure C1.1b. Training error for 5% impulse noise, standard image set. 
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Figure C1.1c. Training error for σ2=100 Gaussian noise, standard image set. 
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Figure C1.1d. Training error for σ2=1000 Gaussian noise, standard image set. 
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Figure C1.1e. Training error for 2% and σ2=100 mixed noise, standard image set. 
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Figure C1.1f. Training error for 5% and σ2=1000 mixed noise, standard image set. 
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Figure C1.2a. Training error for 2% impulse noise, plastic component image set. 
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Figure C1.2b. Training error for 5% impulse noise, plastic component image set. 
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Figure C1.2c. Training error for σ2=100 Gaussian noise, plastic component image set. 
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Figure C1.2d. Training error for σ2=1000 Gaussian noise, plastic component image set. 
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Figure C1.2e. Training error for 2% and σ2=100 mixed noise, plastic component image set. 
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Figure C1.2f. Training error for 5% and σ2=1000 mixed noise, plastic component image set. 
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Figure C1.3a. Training error for 2% impulse noise, confectionery image set. 
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Figure C1.3b. Training error for 5% impulse noise, confectionery image set. 
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Figure C1.3c. Training error for σ2=100 Gaussian noise, confectionery image set. 
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Figure C1.3d. Training error for σ2=1000 Gaussian noise, confectionery image set. 
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Figure C1.3e. Training error for 2% and σ2=100 mixed noise, confectionery image set. 
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Figure C1.3f. Training error for 5% and σ2=1000 mixed noise, confectionery image set. 
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Figure C2.1a. Testing error for 2% impulse noise, standard image set. 
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Figure C2.1b. Testing error for 5% impulse noise, standard image set. 
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Figure C2.1c. Testing error for σ2=100 Gaussian noise, standard image set. 
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Figure C2.1d. Testing error for σ2=1000 Gaussian noise, standard image set. 
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Figure C2.1e. Testing error for 2% and σ2=100 mixed noise, standard image set. 
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Figure C2.1f. Testing error for 5% and σ2=1000 mixed noise, standard image set. 
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Figure C2.2a. Testing error for 2% impulse noise, plastic component image set. 
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Figure C2.2b. Testing error for 5% impulse noise, plastic component image set. 
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Figure C2.2c. Testing error for σ2=100 Gaussian noise, plastic component image set. 
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Figure C2.2d. Testing error for σ2=1000 Gaussian noise, plastic component image set. 
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Figure C2.2e. Testing error for 2% and σ2=100 mixed noise, plastic component image set. 
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Figure C2.2f. Testing error for 5% and σ2=1000 mixed noise, plastic component image set. 
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Figure C2.3a. Testing error for 2% impulse noise, confectionery image set. 
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Figure C2.3b. Testing error for 5% impulse noise, confectionery image set. 
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Figure C2.3c. Testing error for σ2=100 Gaussian noise, confectionery image set. 
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Figure C2.3d. Testing error for σ2=1000 Gaussian noise, confectionery image set. 
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Figure C2.3e. Testing error for 2% and σ2=100 mixed noise, confectionery image set. 
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Figure C2.3f. Testing error for 5% and σ2=1000 mixed noise, confectionery image set. 
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CC33  CCOOMMPPAARRIISSOONN  WWIITTHH  CCOONNVVEENNTTIIOONNAALL  FFIILLTTEERRSS  

To evaluate the efficacy of using a neural network to remove noise from colour 

images, the saved networks which performed the best are compared with an 

appropriate conventional filter, selected from the best performing of the standard 

VMF, AMF or αVMF with circular operator sizes between 3 × 3 and 11 × 11. The 

comparison is done on an image-by-image basis, and the results are shown overleaf 

in Figures C3.1a-f for the standard image set, Figures C3.2a-f for the plastic 

component image set and Figures C3.3a-f for the confectionery image set. 
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Figure C3.1a. Filter comparison for 2% impulse noise, standard image set. 
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Figure C3.1b. Filter comparison for 5% impulse noise, standard image set. 
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Figure C3.1c. Filter comparison for σ2=100 Gaussian noise, standard image set. 
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Figure C3.1d. Filter comparison for σ2=1000 Gaussian noise, standard image set. 
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Figure C3.1e. Filter comparison for 2% and σ2=100 mixed noise, standard image set. 
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Figure C3.1f. Filter comparison for 5% and σ2=1000 mixed noise, standard image set. 
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Figure C3.2a. Filter comparison for 2% impulse noise, plastic component image set. 
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Figure C3.2b. Filter comparison for 5% impulse noise, plastic component image set. 
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Figure C3.2c. Filter comparison for σ2=100 Gaussian noise, plastic component image set. 
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Figure C3.2d. Filter comparison for σ2=1000 Gaussian noise, plastic component image set. 
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Figure C3.2e. Filter comparison for 2% and σ2=100 mixed noise, plastic component image set. 
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Figure C3.2f. Filter comparison for 5% and σ2=1000 mixed noise, plastic component image set. 
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Figure C3.3a. Filter comparison for 2% impulse noise, confectionery image set. 
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Figure C3.3b. Filter comparison for 5% impulse noise, confectionery image set. 
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Figure C3.3c. Filter comparison for σ2=100 Gaussian noise, confectionery image set. 
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Figure C3.3d. Filter comparison for σ2=1000 Gaussian noise, confectionery image set. 
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Figure C3.3e. Filter comparison for 2% and σ2=100 mixed noise, confectionery image set. 
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Figure C3.3f. Filter comparison for 5% and σ2=1000 mixed noise, confectionery image set. 
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AAppppeennddiixx  DD  

IINNDDEEXX  OOFF  TTEERRMMSS  

AMF Arithmetic Mean Filter 

ANN Artificial Neural Network 

ANNMF Adaptive Nearest Neighbour 

Multichannel Filter 

αVMF Alpha Trimmed Vector Median Filter 

BVDF Basic Vector Directional Filter 

CCD Charge Coupled Device 

CIE Commission Internationale de 

l’Éclairage 

CPU Central Processing Unit 

CRT Cathode Ray Tube 

DCT Discrete Cosine Transform 

DDF Directional Distance Filter 

DMVF Directional Magnitude Vector Filter 

DWT Discrete Wavelet Transform 

DWVMF Distance Weighted Vector Median Filter 

FFT Fast Fourier Transform 

GVDF Generalized Vector Directional Filter 

HMMF Hybrid Mean-Median Filter 
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HSI Hue Saturation Intensity 

HSV Hue Saturation Value 

KLT Karhunen-Loeve Transform 

MCRE Mean Chromaticity Error 

MLP Multi Layer Perceptron 

(N)MSE (Normalized) Mean Squared Error 

(P)SNR (Peak) Signal to Noise Ratio 

RAM Random Access Memory 

RGB Red Green Blue 

SROF Selective Rank Order Filter 

T(V)MF Truncated (Vector) Median Filter 

VDF Vector Directional Filter 

VMF Vector Median Filter 
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