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Abstract

Statistical shape models have wide application in biomedical image analysis –
both for image segmentation and morphometry. This thesis addresses an im-
portant issue in shape modelling, that of establishing correspondence between
a set of shapes. Current methods involve either manual annotation of the data
(the current ‘gold standard’) or establishing correspondences in an essentially
arbitrary manner. The thesis establishes a principled framework for establishing
correspondences completely automatically by treating this as part of the learning
process. Ideas from information theory are used to develop an objective function
that measures the utility of a model, based on the minimum description length
principle. Model-building can then be posed as the problem of finding the set of
correspondences that optimise the objective function. Efficient methods are pre-
sented for manipulating correspondences via re-parameterisation and for opti-
mising the objective function. Practical results are presented for both 2D and 3D
training sets of shapes from medical images. A quantitative evaluation shows
that the resulting models have better compactness, generalisation ability and
specificity than those obtained using existing methods. A 3D model is used in
a practical application to explore the possibility of using 3D magnetic resonance
images to detect differences in shape between the hippocampi of schizophrenic
patients and normal controls. A more significant effect is demonstrated using
the new method than that obtained using the best previous approach.
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“Cell and tissue, shell and bone, leaf and flower, are so many portions of matter, and it is in obedi-

ence to the laws of physics that their particles have been moved, moulded and conformed. They

are no exceptions to the rule that God always geometrizes. Their problems of form are in the first

instance mathematical problems, their problems of growth are essentially physical problems,

and the morphologist is, ipso facto, a student of physical science.”

– D’Arcy Thompson [102].
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Chapter 1

Introduction

“An ounce of action is worth a ton of theory.”

– Friedrich Engels.

This thesis describes a principled approach to constructing ‘optimal’ models
of shape variation. The work is motivated by applications in image segmen-

tation and morphological analysis. Although the approach is generic, the thesis
concentrates on biomedical applications – first in 2D, then in 3D. The aim is to
show that, by treating model construction as an optimisation problem, the pro-
cess can be automated and the effectiveness of the resulting models guaranteed.

1.1 Model-based Image Segmentation

Segmentation is a fundamental step in computer-based image interpretation. It
involves labelling an image so that the labels correspond to real world objects.
For example, figure 1.1 shows a magnetic resonance image (MRI) of a brain that
has been segmented to label some of the subcortical structures.

Segmentation can be performed manually by tracing the outline of the object of
interest, but this requires expert knowledge and reproducible results are difficult
to achieve. Manual segmentation is also a time-consuming and tedious process
that is prone to operator bias and fatigue.

Low-level methods, such as edge detection and region growing (see [93] for a re-
view), are often used on their own or to aid manual segmentation. These can
provide plausible segmentations of simple images but the presence of noise, oc-
clusion and structural complexity may lead to incomplete segmentation and/or

9



1. INTRODUCTION

Figure 1.1. A magnetic resonance image (MRI) of a brain.

Segmentation key: CN – Caudate Nucleus; LN – Lentiform Nucleus; V –

Ventricle.

erroneous labelling. Intensive user intervention is often required to correct the
resulting segmentation.

A promising approach to segmentation - and that followed in this thesis – is to
incorporate a priori knowledge in a model of the class of objects of interest, en-
coding high-level information such as expected size, position, shape and appear-
ance. This information allows examples of the object to be segmented even in the
face of noise, occlusion and structural complexity.

1.2 Models for Morphological Analysis

Morphology is the study of biological form and structure. There are many exam-
ples where a connection has been suggested between abnormal structure and
function (e.g. the shape of the hippocampus in schizophrenia [69]). Morpho-
logical analysis can give a quantitative description of shape differences between
the anatomy of normal and affected patients providing invaluable insight into
the disease process and a basis for diagnosis. For example, figure 1.2 shows
the result of a morphological analysis of the hippocampal shape of healthy and
schizophrenic patients. The figure shows the shape variation that discriminates

10



1. INTRODUCTION

Figure 1.2. The shape variation that discriminates between the hip-

pocampal shape of a group of healthy (−) and schizophrenic (+) pa-

tients. The main effect is a lengthening and narrowing of the ‘tail’.

between the hippocampi of a group of healthy and schizophrenic patients1.

Although many morphological tools exist (see [32] for an overview), apart from
some recent advances (e.g. [7] and pp 307–311 of [32]), they are mainly applica-
ble to sets of ‘landmark points’ manually annotated on ‘important features’. We
wish to extend this work by analysing the shape of the entire object as this should
provide more complete information. Although this is a relatively new area of
research, promising results have already been reported (e.g. [40, 41]). Closely re-
lated is deformation-based morphometry which analyses ‘warp’ fields between
different shape instances [45, 103]. Also related is voxel-based morphometry,
which analyses the spatial occupancy of different tissues [2].

1.3 Approach to Constructing Models

The modelling approach followed in this thesis involves ‘learning’ the shape vari-
ation of a class of objects from a set of training examples. If the model is con-
structed correctly, it can generalise to unseen instances of the class. A key is-
sue in constructing a shape model is establishing the correct correspondence

1The method used to calculate this shape difference is described in detail in chapter 13.
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1. INTRODUCTION

between different instances of the class of shapes. In previous work, correspon-
dence has often been established using manual ‘landmarks’, but this is a tedious,
time-consuming and error-prone process that becomes impractical for 3D ob-
jects. Although several approaches have been proposed for automatic model-
building, the resulting correspondences are essentially arbitrary. This thesis de-
scribes an approach to model-building based on the idea of selecting the set of
correspondences that build the ‘best’ model. In other words, model-building is
posed as an optimisation problem in which the correspondences are manipu-
lated so as to optimise an objective function. This involves the following compo-
nents:

A method of manipulating correspondence : based on re-parameterising each
training example; this allows arbitrary patterns of correspondence whilst
ensuring that the resulting model is valid.

An objective function : based on the minimum description length (MDL) prin-
ciple [82], that directly promotes desirable properties of the model.

A method of optimisation : to build the ‘best’ model by finding the set of re-
parameterisations of the training shapes that minimises the objective func-
tion.

The proposed method is evaluated on synthetic and biomedical objects, show-
ing that it produces models with substantially better specificity, generalisation
ability and compactness than models built using alternative methods.

To illustrate its use, the approach is applied to modelling the hippocampus in a
set of control and schizophrenic patients. Discriminant analysis is applied and
the MDL model is shown to capture more significant shape differences than a
model built using a widely recognised alternative approach.

1.4 Thesis Organisation

The remainder of the thesis is organised as follows:

Chapter 2 reviews methods of constructing deformable models of variable ob-
jects.

Chapter 3 describes how a statistical shape model can be constructed from a
training set of shapes.

12



1. INTRODUCTION

Chapter 4 demonstrates the importance of choosing an appropriate set of cor-
respondences and reviews previous attempts to define correspondences for
a set of shapes automatically.

Chapter 5 outlines the chosen model-building approach and gives an overview
of the work in chapters 6 to 9.

Chapter 6 reviews previous work on measuring model ‘quality’ and gives a de-
tailed derivation of the MDL objective function.

Chapter 7 defines a piecewise linear representation of re-parameterisation and
shows how the set of training shapes can be re-parameterised to optimise
the MDL objective function.

Chapter 8 describes an improved representation of re-parameterisation and shows
how it can be employed in a multiresolution scheme to optimise the objec-
tive function.

Chapter 9 investigates various approaches to improving the optimisation pro-
cess, leading to better shape models.

Chapter 10 presents the results of applying the proposed method to a number
of 2D sets of training data.

Chapter 11 shows how the proposed method can be extended to build 3D shape
models by re-parameterising sets of closed surfaces.

Chapter 12 presents the results of applying the 3D method to several sets of
training data.

Chapter 13 demonstrates the value of the method in a practical application, com-
paring shape discrimination results with those obtained using a competing
method of model-building.

Chapter 14 draws conclusions, presents ideas for future work and summarises
the contribution of the thesis.

13



Chapter 2

Deformable Models

“The purpose of models is not to fit the data but to sharpen the questions.”

– Samuel Karlin.

Deformable models have been used extensively as a basis for segmenting med-
ical images and performing morphological analysis. This chapter reviews

the most important approaches and compares their properties to those of an
ideal model. A more detailed (but rather dated) survey can be found in [71].

2.1 Ideal Properties of a Model

The utility of a model depends on its ability to characterise the class of objects
modelled. Ideally, a model should be:

• General – able to represent any instance of the class.

• Specific – only capable of representing legal instances of the class.

• Compact – with as few parameters as possible.

Of these, specificity is particularly important, especially for segmentation where
it determines the extent to which prior knowledge of expected structure can be
applied to achieve robust results. From a practical point of view, it is also im-
portant that the approach selected should be computationally tractable using a
desktop computer.

14



2. DEFORMABLE MODELS

2.2 Snakes

The use of deformable models in image segmentation was popularised by Kass et
al. [54]. They describe an active contour model, or ‘snake’, that deforms inside an
image. The snake’s deformation is governed by a combination of forces: an im-
age force, an internal force and an external force. The image force is minimised
when the snake matches some image evidence (e.g. edges); the internal forces
ensure that the snake maintains a smooth shape; and the external forces can be
controlled by a human operator to attract the snake to particular image features.
The snake converges when the forces achieve equilibrium.

Although many enhancements have been proposed to the method (e.g. adding
a ‘balloon’ force [18] and allowing topological changes [70]), a snake lacks speci-
ficity as it has no a priori knowledge of the domain. It can consequently deform
to match any smooth contour. The method is of limited use in morphology since
it provides no convenient parameterisation; it is best suited to aid in manual seg-
mentation.

2.3 Object-specific Models

Many deformable models are custom built for the task at hand (e.g. [110], [64],
[47] and [68]) . Yuille et al [110], for example, build a model of an eye for video
image segmentation. Object-specific parameters, such as the radius of the iris,
are used to deform the model. Although this approach works for structures with
obvious modes of deformation, many classes of objects cannot be parameterised
so simply. The expense of hand-crafting a new model for each class of object is
also overly restrictive.

2.4 Physical Models

Physical models incorporate a priori knowledge about the expected ‘physical’
variation of an object. A single example is analysed to construct a parametric
shape basis.

Pentland and Sclaroff [76] and Nastar and Ayache [75] describe a method of build-
ing shape models from a prototype represented by a set of nodes attached to
each other by springs. The mass of each node and the stiffness of each spring are
specified by two matrices. These matrices are used to solve a generalised eigen-
problem to obtain the ‘modes of vibration’ of the structure.

15



2. DEFORMABLE MODELS

Terzopulos and Metaxas [101] describe ‘deformable superquadric’ models that
change shape according to physical properties. Deformable superquadrics com-
bine the global shape properties of a superquadric ellipsoid with the local shape
properties of a spline. The superquadric ellipsoid has six global variables: one
scaling parameter, three parameters to define the aspect ratios and two parame-
ters that control the model’s ‘squareness’. The spline represents free form defor-
mations to accommodate for local changes that cannot be adequately described
by the superquadric ellipsoid. The models are used in segmentation by deform-
ing the model to match image evidence (e.g. edges) in a manner constrained by
physical properties.

Although physical modelling techniques seem intuitive and exploit a convenient
mathematical framework, the resulting models are unlikely to provide an accu-
rate representation of true shape variation leading to non-specific models that
can represent invalid instances of the class of objects.

2.5 Statistical Shape Models

Statistical models attempt to capture the actual patterns of variability found in a
class of objects, rather than making arbitrary assumptions. The basic idea is to
estimate the population statistics from a set of examples instead of using a single
prototype.

Staib and Duncan [95] use a Fourier decomposition to form an orthogonal shape
basis for a training set of closed contours. Normalisation is performed to achieve
invariance to similarity transformations and starting point. The Fourier coeffi-
cients are recorded over the training set and modelled using a set of distributions.
New examples are generated by sampling independently from the distributions
and reconstructing the shape. In practice, different coefficients are often corre-
lated over the training set, so independent sampling from the individual distribu-
tions can lead to illegal examples – the model is non-specific. Also, there may be
important information in the boundary over a large range of frequencies, leading
to a non-compact model.

Cootes et al. [24] construct ‘point distribution models’ (PDMs) from training sets
of 2D boundaries. A discrete number of points are sampled on each boundary
and their coordinates are concatenated to form a shape vector. Correspond-
ing points are chosen to lie at equivalent positions on different instances of the
shape. By registering the shapes to a common co-ordinate frame, the varia-
tion can be represented by a multivariate Gaussian model. Principal component
analysis is used to define a coordinate frame aligned to the principal axes of the
data. New shapes are generated by sampling independently from the distribu-
tion along each axis (these are, by definition, linearly independent) and recon-
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2. DEFORMABLE MODELS

structing using the principal vectors. Thus the models are specific. As the posi-
tions of the points tend to be highly correlated, and only components with sig-
nificant variance need be retained, the resulting models can be quite compact.
More details are given in chapter 3.

2.6 Deformable Atlases

An alternative approach to modelling shape boundaries is to consider the space
in which they are embedded. Models constructed from this representation can
be regarded as ‘atlases’ that deform to match a target image. By labelling (i.e.
segmenting) the atlas, the labels can be transferred onto the target image after
matching.

Bajcsy and Kovacic [3] propose a physics-based deformable atlas. A multiresolu-
tion approach is used to deform the atlas to match a target image. The model is
deformed according to elastic properties ensuring that the atlas does not ‘tear’.
Christensen et al. [15] describe a similar framework where a two-step process
is used to register a source image (the atlas) onto a target image. First, the atlas
deforms according to elastic properties. This is followed by a non-linear defor-
mation, based on the properties of a viscous fluid that accommodates for finer
deformations. The application of these physics-based models is limited to im-
ages that are similar to the prototype. Like the physical boundary and surface
models, the deformations allowed by such models are unlikely to reflect the true
variation in the class of objects.

Several atlas-based methods have been described specifically for face images,
but are equally applicable to medical images. Sirovich and Kirby [91] describe a
statistical approach to atlas building. ‘Eigenfaces’ are constructed by performing
a statistical analysis on a set of rigidly registered face images. A model is con-
structed by performing principal component analysis on the spatially-corresponding
intensity values of a training set of images. Because rigid registration does not
generally align individual features, deformation is treated as a spatially varying
intensity change, leading to non-specific models. Craw and Cameron [26] es-
tablish spatial correspondence by warping each training image into a shape-
normalised frame. Principal component analysis is performed on these shape-
normalised images to obtain a model of grey-level variation. Edwards et al. [34]
build a combined appearance model that describes the correlated variation of
shape and intensity. A grey-level model is constructed from a set of annotated
images using the method of Craw and Cameron and combined with a point dis-
tribution model (see above) of the annotated points. A further statistical analysis
is performed to eliminate any correlation between the shape and grey-levels pa-
rameters.

17



2. DEFORMABLE MODELS

Although atlas-based models can sometimes be used to achieve robust segmen-
tation [20], they are sensitive to imaging modality and image acquisition param-
eters. A shape boundary model, on the other hand, can be used with any medical
imaging modality. For example, a model could be trained on a set of segmented
magnetic resonance images and used to segment ultrasound images.

2.7 Conclusions

Although there are pros and cons for all the deformable model approaches out-
lined above, the point distribution models of Cootes et al. [24] satisfy the criteria
set out in section 2.1 (general, specific, compact) most closely and can be used
in both boundary-only [21] and deformable atlas representations [34]. Efficient
algorithms already exist to apply these models in image segmentation [25, 19].

PDMs are, however, difficult to construct. The problem of corresponding a large
number of ‘equivalent’ points on all the examples in a training set is ill-defined
and often solved, in practice, by manual annotation. This is subjective and labour
intensive for 2D images and impractical in 3D. The main contribution of this the-
sis is to solve the problem of constructing models automatically from a training
set of pre-segmented contours (in 2D) or surfaces (in 3D).
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Chapter 3

Learning Shape

“Science is always wrong. It never solves a problem without creating ten more”

– George Bernard Shaw.

The automated approach to learning shape developed in this thesis builds
on the statistical shape models of Cootes et al. [24]. This chapter outlines

their approach, which is based on representing each shape by a set of boundary
points, and presents an illustrative example of building a model from a set of 2D
training shapes. The method is extended to deal with continuous boundaries in
2D and surfaces in 3D, allowing it to work directly from the training data. The
importance of choosing appropriate correspondences between the members of
the training set is discussed and demonstrated using the illustrative example.

3.1 Constructing Statistical Shape Models

3.1.1 Representing Shapes

A statistical shape model is constructed from a training set of ns shapes, aligned
to a common coordinate frame. Each shape, Si (i = 1, . . . ns), can – without loss of
generality – be represented by a dense set of n points, sampled on each example
boundary. The way these points are sampled is important and is discussed later
in this chapter (§3.2). By concatenating the (Cartesian) coordinates of the sample
points, each example can be represented by an np-dimensional shape vector xi.
For example, in 2D:
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3. LEARNING SHAPE

xi = (xi1, xi2, . . . , xin, yi1, yi2, . . . , yin)
T , (3.1)

and in 3D:

xi = (xi1, xi2, . . . , xin, yi1, yi2, . . . , yin, zi1, zi2, . . . , zin)
T . (3.2)

3.1.2 Statistical Analysis

Following the approach of Cootes et al. [24], the set of shape vectors can be
modelled by a multivariate Gaussian distribution1. Principal Component Analy-
sis (PCA) is performed to define a set of axes that are aligned with the principal
directions of the data. The approach can be summarised as follows:

1. calculate the mean shape:

x̄ =
1

ns

ns
∑

i=1

xi; (3.3)

2. calculate the normalised covariance matrix:

D =
1

nsnp

ns
∑

i=1

(xi − x̄)(xi − x̄)T ; (3.4)

3. solve for the eigenvalues {λm} and unit eigenvectors P = {pm} of D:

Dpm = λmpm. (3.5)

The eigenvalues (and corresponding eigenvectors) are sorted in descending or-
der and scaled such that:

λm → npλ
m. (3.6)

λm now gives the variance of the training data in the mth principal direction, pm.

1If there is an intrinsic non-linearity in the variation of shape, a more complex model may
be required [23] but for the remainder of this thesis, we will assume that a single multivariate
Gaussian is sufficient to model the data.
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3. LEARNING SHAPE

3.1.3 Modelling Shape

Following the statistical analysis described above, a shape vector xi can be de-
scribed by a linear model of the form:

xi = x̄ + Pbi = x̄ +
∑

m

pmbmi , (3.7)

where the unit eigenvectors {pm} represent a set of axes that define the new co-
ordinate system and b = {bm} are shape parameters. A change in shape (often
referred to as a ‘mode’ of shape variation) can be induced by independently vary-
ing one of the shape parameters.

Figure 3.1. A training set of hand outlines.

New examples from the class of shapes can be generated by selecting different
values of {bm}. One can ensure that the model can only represent ‘valid’ in-
stances by constraining the values of {bm} to be similar to those found in the
training set (e.g. bm = ±3

√
λm). For example, figure 3.3 shows a model con-

structed from the training set of hand outlines shown in figure 3.1. The figure
shows the first three modes of variation by independently varying the values of
the first three shape parameters, (bm,m = 1 . . . 3) in (3.7), by ±2

√
λm. The bound-

aries were sampled manually by placing a number of ‘landmarks’ on the salient
features of each shape (such as the tips of the fingers) as shown in figure 3.2. A
fixed number of points were equally-spaced in between the landmarks resulting
in n = 400 sample points. The examples were aligned into a common co-ordinate
frame by minimising the squared distance between corresponding points (as de-
scribed in [24]). The re-aligned points were concatenated into a shape vector
and the model was built as described above. It can be seen in figure 3.3 that the
model captures considerable variability (is general) but only reconstructs ‘legal’
examples of hands (is specific). Five parameters are required to capture 96% of
the variation of the training set (is compact).
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3. LEARNING SHAPE

Figure 3.2. How manual landmarks were placed on the training

boundaries.

Figure 3.3. The first three modes of variation of the manually con-

structed hand outline model. Each parameter (bm, m = 1 . . . 3) is varied

independently by ±2
√

λm.

3.1.4 Modelling Continuous Shapes

In this work, we wish to construct shape models directly from the training data
which are in the form of continuous boundaries or surfaces. Thus we are inter-
ested in the limit np → ∞, which leads to an infinitely large covariance matrix.
We note, however, that there can be at most ns − 1 non-zero eigenvalues hence
the index m in (3.7) has an upper limit of ns − 1.
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3. LEARNING SHAPE

If we construct an np × ns data matrix W from the set of vectors {(xi − x̄) : i =
1, . . . ns}; the np × np covariance matrix in (3.4) can be written as D = 1

npns
WWT

with eigenvectors and eigenvalues {pm, λm}:

Dpm = λmpm. (3.8)

If we define the ns×ns matrix, D′ = 1
npns

WTW with eigenvalues and eigenvectors

{p′m, λ′m, } then:

D′p′m = λ′
m

p′m,

From (3.8) : Dpm = λmpm,

⇒ 1

npns
WWTpm = λmpm, (3.9)

pre-multiplying by WT gives:

⇒ D′(WTp
m

) = λm(WTp
m

),

Similarly: D(Wp′m) = λ′m(Wp′m). (3.10)

Therefore, for all λm 6= 0, we can assign indices such that:

λm = λ′m and pm = Wp′m. (3.11)

Hence, all ns−1 eigenvalues of D can be obtained directly from D′, and the eigen-
vectors are a weighted sum of the training shapes. It is clear how D′ can be calcu-
lated when np is very large, but not in the limit that {S} is continuous (np → ∞).

We choose to represent the training examples parametrically2:

S = S(u) = (Sx(u), Sy(u), Sz(u))T (3.12)

where u is a parameterisation of the shape (u = u in 2D and u = (u, v) in 3D) and
Sx(u), Sy(u), Sz(u) are the Cartesian coordinates of the boundary/surface at u.
The mean of a set of shapes, S̄(u) = 1

ns

∑

i Si(u), is also defined. It can be shown
[58] that S(u) forms an infinite dimensional vector space.

The summation over all the boundary/surface points, implicit in (3.9) now be-
comes an integral and the ijth element of D′ can be calculated from:

2We describe how this can be achieved practically in later chapters.
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3. LEARNING SHAPE

Figure 3.4. The first mode of variation of models A and B. The first

parameter (b1) is varied by ±3
√

λm.

D′

ij =

∫

du(Si(u) − S̄(u))T (Sj(u) − S̄(u)), (3.13)

which is the inner product (Si(u)− S̄(u)) · (Si(u)− S̄(u)) of shapes i and j relative
to the mean. Where for shapes ψ and ϕ, the inner product is defined as:

ψ · ϕ =

∫

du ψx(u)ϕx(u) + ψy(u)ϕy(u), in 2D,

and:

ψ · ϕ =

∫

du ψx(u)ϕx(u) + ψy(u)ϕy(u) + ψz(u)ϕz(u), in 3D. (3.14)

In practice the integrals can be calculated by numerical integration.

3.2 The Correspondence Problem

We now demonstrate the importance of selecting a suitable set of correspon-
dences. Figure 3.4 shows two models,A andB, constructed from the same train-
ing set of 10 hand outlines (shown in figure 3.1) but with different correspon-
dences. Model A was constructed as before using manual landmarks; model B
used a single manual landmark with the remaining points equally spaced around
the boundary. All the example shapes generated by model A (using values of
{bm} within the range found in the training set) are ‘legal’ examples of hands,
whilst model B generates implausible examples. Model B is thus a non-specific
model with limited utility for imposing shape constraints. It is also less compact:
the variances of the first three modes are (2.23, 2.01, 0.49) and (4.64, 2.19, 1.21) for
models A and B respectively. This demonstrates that the problem of establish-
ing the ‘correct’ correspondences is fundamental to the idea of learning shape.
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Previous attempts at solving this correspondence problem are reviewed in the
following chapter.
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Chapter 4

Solving the Correspondence Problem

“I have not failed. I’ve just found 10,000 ways that won’t work.”

– Thomas Edison.

The previous chapter outlined an approach to building deformable models
based on statistical learning. It was demonstrated that good results may

be obtained but that this depends critically on the way that correspondences
are established between members of the training set. This chapter reviews pre-
vious approaches to establishing correspondence between a set of shapes and
discusses their limitations. Although application-specific solutions have been
proposed (e.g. [13, 50]), we confine our attention to generic approaches. Some
methods deal only with correspondences between pairs of shapes rather than
the whole training set, but these can be used in a binary tree to establish a full set
of correspondences [48].

4.1 Manual Landmarking

Cootes et al. [21] define correspondence with manual landmarks placed on points
of anatomical significance as in the hand example presented in figure 3.2 (§3.1.3).
Although manual landmarking often leads to acceptable results, it is a subjective,
error-prone, and time-consuming process that cannot be guaranteed to produce
good models. For many applications specialist knowledge is required to place the
landmarks in the correct place which might be argued to be an advantage, since
the specialist knowledge is captured by the model but, in practice, further com-
plicates the process of model building. In 3D, these problems are exacerbated
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4. SOLVING THE CORRESPONDENCE PROBLEM

and visualisation difficulties make manual landmarking an impractical approach
for selecting correspondences.

4.2 Bootstrapping

‘Bootstrapping’ is a semi-automatic technique that uses an existing model in a
data-driven search to find instances of the class of object in unseen images. The
resulting segmentation is manually refined and added to the model. Although
this approach can save time (when compared to manual landmarking), the re-
sulting correspondence are arbitrary. During the early stages, the model will
be under-trained and be unable to represent new examples. Although the con-
straints on the model can be relaxed [21, 22], this leads to a model that can rep-
resent invalid instances of the class of object.

Baumberg and Hogg [5] use a bootstrapping approach to build statistical shape
models. They construct an initial model by equally-spacing B-spline control
points around a set of training boundaries. The model is then used in a data-
driven image search to optimise an image-based objective function. During the
search, points are allowed to move normal to the curve so as to better match the
image evidence but there is no mechanism that will lead to their redistribution
around the boundary – the key to modifying correspondences.

4.3 Correspondence by Parameterisation

The simplest approach to defining correspondence is to select a starting point on
each example and equally space a number of points on each boundary. As shown
above, this will generally result in a poor model. A similar scheme is advocated
by Baumberg and Hogg [4] who equally space spline control points around 2D
contours.

Kelemen et al. describe a method of building shape models from a set of closed
3D surfaces by defining correspondence through the parameterisation of each
shape [55, 56, 98]. We describe the method in some detail since it is used for com-
parison purposes later in the thesis. An initial parameterisation of each shape is
found using the method of Brechbühler et al. [8, 9], which poses surface param-
eterisation as an optimisation problem by finding the mapping from the surface
to a sphere that minimises area distortion (this is discussed in further detail in
chapter 11). Using the parameterisation, each shape is represented by its expan-
sion into a sum of spherical harmonics. The shapes are aligned so that the axes
of their first spherical harmonics (which are ellipsoidal) coincide and principal
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4. SOLVING THE CORRESPONDENCE PROBLEM

component analysis is performed on the coefficients of the expansion. Since the
expansion to spherical harmonics is a linear process involving integration over
the surface, the net effect is the continuous equivalent of equally spacing points
over the surface (according to its parameterisation). This, as was shown earlier,
tends to build poor models.

4.4 Distance-based Correspondences

A relatively straightforward automated approach to selecting correspondences is
to find points that will be close to each other when the shapes have been suitably
aligned.

Besl and MacKay [6] describe the iterative closest point (ICP) algorithm to regis-
ter a pair of shapes and define point correspondences between them. An itera-
tive method is used to find the correspondences and similarity transformations
that minimise the squared distance between pairs of points. An initial corre-
spondence is established by matching each point on one shape to the closest
points on the other. Given these correspondences the similarity transformation
is found that minimises the sum of squared distances between the shapes. The
correspondences are then re-established and the process is repeated until con-
vergence. The basic ICP method has been extended by several authors. For ex-
ample, Rangarajan et al. [79] describe the ‘softassign Procrustes matching’ algo-
rithm which deals with outliers. All these algorithms have no notion of connec-
tivity, invalid correspondences can ensue leading to illegal reconstructions of the
original shapes.

Duta et al. [33] use a similar approach to ICP but explicitly constrain the corre-
spondence between shapes to be ‘valid’. A clustering algorithm is used to dis-
card shapes that are thought to be outliers. Although this leads to more aesthetic
models and implicitly deals with erroneous segmentations, the excluded shape
instances could be valid and should be included in the model.

Leventon et al. [63] and Golland et al. [43] use “distance maps” as shape descrip-
tors. A distance transform is applied to a binary image of the segmentation so
that the values in the resulting image give the distance of each pixel/voxel to the
nearest boundary/surface point. A model is constructed by performing a statis-
tical analysis on a rigidly aligned set of distance maps. When distance maps are
combined, however, they can represent invalid instances of the modelled object
leading to a non-specific model.

The general difficulty with distance-based approaches is that the relative posi-
tion of equivalent points may vary considerably over the training set, invalidating
proximity as a satisfactory basis for establishing correspondence.
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4.5 Physically-based Correspondences

Scott and Longuett-Higgins [88] perform a singular value decomposition on a
(Gaussian-weighted) proximity matrix to correspond two sets of features on dif-
ferent examples. Shapiro and Brady [90] extend this work by also considering
the proximity of features on the same shape. An affinity matrix is constructed
for both shapes. The eigenvectors of the affinity matrix form an orthogonal ba-
sis and capture the ‘modes of vibration’ of the shape. They describe a technique
called ‘modal matching’ to define correspondences using the orthogonal bases.

Sclaroff and Pentland [87] define correspondences between pairs of shapes based
on their ‘physical’ modes of variation. An orthogonal basis is constructed for
each training shape using their earlier work on physical modelling [76] (see §2.4)
and the modal matching method of Shapiro and Brady [90] is used to define cor-
respondences from the pair of bases.

Bookstein [7] describes a method of optimising the positions of corresponding
points by allowing them to slide along a 2D shape boundary. The points slide to
minimise the bending energy required to place one pointset on top of the other.

Lorenz et al. [65] use a small number of manual landmark points to align a tem-
plate to a training set of surfaces. An elastic relaxation is performed to fit the
template to each training shape. The correspondence defined through the tem-
plate is used to perform a statistical analysis.

All these approaches tend to be reasonably stable but the resulting correspon-
dences are essentially arbitrary.

4.6 Shape-based Correspondence

A common approach to establishing pair-wise correspondence is to correspond
points of similar local shape. Curvature-based correspondences are often em-
ployed for non-rigid contour tracking (e.g. [17]). Wang et al. use a curvature-
based criteria to construct 3D shape models [106]. Although this ties in with
human intuition, equivalent points may not in practice lie on regions of similar
curvature.

Hill et al. [49] describe a method of defining correspondences between pairs of
closed contours. The critical point detection decimation algorithm [111] is used
to obtain a sparse representation of the source shape. The decimation algorithm
produces a set of points that lie on regions of high curvature. An initial corre-
spondence is established between the sparse source shape and the dense target
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shape using arc-length parameterisation. An arbitrary objective function – based
on the representation error of the two shapes – is employed to improve this cor-
respondence.

Brett and Taylor [12, 11] extend the work of Hill et al. [49] to build shape models
from sets of surfaces. The decimation algorithm of Schroder et al. [86] is used to
obtain a sparse set of points that lie on regions of high curvature on the source
shape. A variant of the ICP algorithm aligns the sparse source shape with the
dense target shape and creates a sparse correspondence between them. Both
surface are tessellated (to generate the same graph) using geodesic paths to es-
tablish a dense correspondence. The method, however, allows invalid correspon-
dences between the examples. The authors overcome this in [10] by flattening
the surfaces before establishing correspondence. The resulting correspondences
are still completely arbitrary.

Tagare [100] guarantees valid correspondences between pairs of 2D curves by
constraining each pairwise mapping (that defines the correspondence) to be bi-
morphic. Correspondences are found using a curvature-based objective func-
tion.

4.7 Image-based Correspondence

So far, all methods that have been reviewed find correspondences on shape bound-
aries (i.e. curves or surfaces). An alternative approach is to define correspon-
dence in the space that embeds the shapes. The approach is closely related to
the deformable atlases described in section 2.6. The basic idea is to deform the
space of one object onto the other in order to optimise some similarity crite-
rion between the images. A shape model can then be built from the resulting
deformation field. The deformation of a specific structure can be obtained by
segmenting it in one of the images and characterising the movement of the cor-
responding points. Any non-rigid registration algorithm can potentially be used
to define a spatial correspondence, providing the topology is preserved (a com-
prehensive review of image registration methods can be found in [104], [44] and
[66]).

Fleute and Lavallee [37] use the registration method of Szeliski and Lavallee [99]
to build statistical shape models of the femur. Shapes are registered by deforming
a hierarchical spline representation of the surrounding volume so as to minimise
the squared distance between examples.

Frangi et al. [38] represent a training set of pre-segmented surfaces as binary
(volume) images. Each example is iteratively registered to a reference ‘atlas’ by
optimising a normalised measure of mutual information [97]. The registration
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is performed in two stages. First, a rigid (affine) registration is performed using
the method of Studholme et al. [96]. This is optimised using the non-rigid reg-
istration of Rueckert et al. [84] by manipulating a B-spline representation of the
volume.

Rueckert et al. [83] extend this method to model unsegmented magnetic reso-
nance images. It is not clear, however, that there is enough ‘information’ in a set
of unsegmented images to construct accurate shape models.

Although non-rigid image registration methods produce plausible results, the re-
sulting correspondences are essentially arbitrary. There are infinitely many non-
rigid deformations that could match the intensities in two images and those cho-
sen are, in effect, a side-effect of the optimisation process employed.

4.8 Finessing the Correspondence Problem

An alternative approach worthy of discussion is to bypass the correspondence
problem rather than solve it. The basic idea is that all possible configurations
of correspondences lie on a non-linear manifold in a high-dimensional space. A
practical approach would be to consider correspondences obtained by equally
spacing points, leaving the origin as a free parameter. This means that each
shape is represented by a manifold (1D for 2D shapes and 2D for 3D shapes). The
set of training manifolds can then be modelled using a non-linear representation
(e.g. principal curves/surfaces [53] or non-linear principal component analysis
[60]) .

There are, however, serious drawbacks to this approach. First is the computa-
tional complexity of constructing the non-linear model. More important is the
increased number of parameters needed to estimate the non-linear model, in-
creasing the risk, for a given size of training set, of overfitting and thus poor gen-
eralisation. In practice, linear models are of wide application, providing appro-
priate correspondences are chosen, and that is the approach that we choose to
adopt.

4.9 Correspondence as Optimisation

A more principled approach than those considered so far is to treat correspon-
dence as an optimisation problem, choosing correspondences to optimise an ex-
plicit objective function. This allows models with well-defined properties to be
created.
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Meier and Fisher [72] describe an optimisation approach to finding correspon-
dences on pairs of shapes. They follow the work of Kelemen et al. [55] by repre-
senting each shape using spherical harmonics. The coefficients of the spherical
harmonics of the source shape are manipulated in order to optimise a measure
of similarity to corresponding points on the target shape. The similarity mea-
sure consists of an arbitrary weighting of Euclidian distance, normal directions
and curvature. Although plausible results are reported, the method can generate
invalid correspondences between shapes and although spherical harmonics pro-
vide a continuous, hierarchical representation, they can only define the shapes
to a given accuracy.

Hill and Taylor [48] use a curvature matching dynamic programming algorithm
to obtain an initial correspondence and optimise it to minimise an objective
function. The objective function is the trace of the model covariance matrix plus
a correction term that penalises points for moving off the original shape bound-
ary. Correspondences are optimised by manipulating the parameters of the cur-
rent model. There are two major drawbacks to this approach. First, as points can
move off the boundary, illegal reconstructions of the shapes can ensue. Second,
it is not entirely clear that manipulating the parameters of the current model al-
ways allows movement towards the ‘optimal’ solution.

Kotcheff and Taylor [59] use the determinant of the model covariance matrix as
an objective function. The determinant effectively measures the volume that the
training set occupies in shape space so minimising this should lead to more com-
pact models. As we will show later (chapter 6), this objective function has degen-
erate minima and thus requires an arbitrary parameter to keep it well defined.
This arbitrary parameter affects the convergence properties of the method. Cor-
respondences are manipulated by explicitly re-parameterising each shape in the
training set using a piecewise-linear function (this is described in further detail
in chapter 7). Explicit constraints are enforced on the re-parameterisation func-
tions to ensure that the resulting correspondences are valid. The representation
of re-parameterisation cannot, however, be extended to deal with surfaces so as
to build 3D statistical shape models. A genetic algorithm (GA) is used to optimise
the objective function by manipulating the re-parameterisation function of each
training example. Although some encouraging results are reported for small sets
of simple shapes, the method takes many hours to converge and cannot cope
with complex objects or large datasets.

4.10 Conclusions

We have reviewed previous work on defining correspondences between shapes.
Although some of these produce plausible results, they all suffer from one or
more of the following problems:
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• the resulting correspondences are arbitrary;

• invalid reconstructions of the original shapes are possible;

• correspondences are considered for pairs of shapes rather than the entire
training set;

• assumptions are made (e.g. a consistent direction of the principal axis)
about the class of object;

• the method cannot be extended to deal with surfaces in 3D.

The method of Kotcheff and Taylor [59] comes closest to avoiding these pitfalls,
but is far from an ideal solution. The objective function has an intuitive appeal,
but has no rigorous justification. The genetic algorithm search is slow to con-
verge and sometimes fails; in any case it scales poorly and is only practical for
small training sets. Finally the method does not extend to surfaces in 3D, be-
cause it depends on imposing an ordering constraint around the boundary. The
following chapters describe a method based on the idea of group-wise optimisa-
tion that deals with the limitations of the method of Kotcheff and Taylor.
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Chapter 5

A Principled Approach to Learning
Shape

“Nature uses as little as possible of anything.”

– Johannes Kepler.

This chapter provides an overview of a new approach to learning shape, that
integrates the problem of establishing the correct correspondences into the

learning process. A general framework is established – details and alternative
implementations are given in subsequent chapters. For ease of exposition, the
approach is explained fully in 2D before the extension to 3D is described, al-
though all the methods considered extend to 3D. The chapter also establishes
objective criteria that can be used to compare models built in different ways and
introduces training sets and benchmark models used in subsequent evaluations.

5.1 Summary of Goals

Our aim is to develop a method of solving the correspondence problem by treat-
ing it as an integrated part of the shape learning process. We seek an approach
with the following properties:

• uses a principled criterion for defining correspondence;

• can guarantee that the resulting correspondences are valid;

• considers the entire training set when defining correspondence;
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• can scale easily to cope with large training sets;

• extends to surfaces in 3D.

Although model-building is a one-off, off-line process, the method should also
converge in reasonable time (preferably in minutes, not days).

5.2 Overview of Approach

The approach adopted is to select the set of correspondences that build the ‘best’
model, treating model building as an optimisation task. This requires a frame-
work involving a method of manipulating correspondences, an objective func-
tion to assess the ‘quality’ of the model built from a given set of correspondences,
and a method of optimising the objective function with respect to the set of cor-
respondences. Each component is discussed briefly below and a roadmap is pro-
vided to the detailed treatment in subsequent chapters.

5.2.1 Manipulating Correspondence

The proposed approach requires an efficient method for manipulating corre-
spondences, that guarantees only valid correspondences will be generated.

One possible approach would be to place n points on each of the training shapes
and manipulate them directly. It is, however, difficult to ensure the legality of
the resulting correspondences using this approach. For 2D shapes, legal corre-
spondences are those that preserve the ordering of points around the boundary.
If this is not respected, the resulting model will generate non-realisable shapes.
The situation becomes more complicated in 3D.

We choose instead to follow Kotcheff and Taylor [59] by treating the problem of
corresponding continuous curves/surfaces as one of re-parameterisation. A dif-
ferent re-parameterisation function φi(u) is defined for each shape Si(u) allow-
ing points to be moved around on the boundary/surface. The idea is illustrated
in figure 5.1 where a set of points are sampled from a path-length parameterisa-
tion and a re-parameterisation of a shape. For correspondences to be legal, φi(u)
must be a diffeomorphic mapping – that is, φi must not cause folds or tears. In
2D, we can use the following notation:

Si(u) → Si(u
′), u′ = φi(u), φi : [0, 1] → [0, 1], (5.1)
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u

φ(
u

)

Figure 5.1. Left: a re-parameterisation function. The blue (dashed)

line represents the original (path-length) parameterisation (u) and

the (solid) red line represents the re-parameterisation function (φ(u)).

Right: a shape outline. The blue circles are sampled according to the

original parameterisation and the red squares are sampled according

to the re-parameterisation function. The diamond represents the ori-

gin of the shape/parameterisation.

where φ is a diffeomorphism of the line (for open curves Si(0) 6= Si(1)) or the
circle (for closed curves Si(0) = Si(1)) onto itself.

Two different representations of φ have been investigated: chapter 7 describes
a recursive, piecewise-linear representation which is related to but extends the
work of Kotcheff and Taylor [59]; chapter 8 describes an improved, smooth (dif-
ferentiable) representation of re-parameterisation constructed from a set of ker-
nel functions. Both representations have straightforward extensions to 3D, which
are described in chapter 11.

5.2.2 Objective Function

A key assumption is that we can measure the ‘quality’ of a model with a suitable
objective function. The approach that has been taken is based on the idea that
a good model should allow a concise description of the members of the training
set. As in any branch of science, this is the essential role of a model – to account
for a possibly large number of observations as manifestations of some underlying
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pattern which is itself described as simply as possible. This idea is formalised by
using concepts from information theory to derive a minimum description length
(MDL) objective function. The detailed derivation is given in chapter 6.

5.2.3 Optimisation

Several strategies are described for optimising the MDL objective function by
manipulating the re-parameterisations of the training shapes. The first attempt
uses a genetic algorithm to optimise the piecewise-linear representation of re-
parameterisation. This is extended to allow the use of a local optimisation al-
gorithm, leading to faster and more robust convergence. Both methods are de-
scribed in chapter 7. Chapter 8 describes how the smooth representation of re-
parameterisation can be optimised using a multi-resolution local optimisation
approach. This last approach is chosen as the basis for a more detailed investi-
gation of the speed, accuracy and robustness of convergence, the results of which
are presented in chapter 9.

5.3 Evaluating the Methods

During the development of the methods outlined above it was important to use a
consistent and objective basis for comparing different approaches. This section
describes the evaluation methodology and provides ‘benchmark’ results for two
training sets used in the comparisons.

5.3.1 Evaluation Criteria

In chapter 2 we identified the properties we would ideally require of a model:
generalisation ability, compactness and specificity. The following paragraphs
describe how each of these may be measured objectively. All the measures de-
scribed allow meaningful comparisons between different models constructed
using the same training set, but not across different training sets. In practice,
the computational effort required to build a model is also important and is nor-
mally quoted either in terms of run-time on a certain machine (where different
methods of optimising the same objective function are compared) or in terms of
the number of objective function evaluations performed.
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Generalisation Ability

The generalisation ability of a model measures its capability to represent unseen
instances of the class of object modelled. This is a fundamental property as it al-
lows a model to learn the characteristics of a class of object from a limited train-
ing set. If a model is overfitted to the training set, it will be unable to generalise
to unseen examples.

The generalisation ability of each model is measured from the training set using
leave-one-out reconstruction. A model is built using all but one member of the
training set and then fitted to the excluded example. The accuracy to which the
model can describe the unseen example is measured and the process is repeated
excluding each example in turn. The approximation error is averaged over the
complete set of trials.

Ideally, the set of correspondences used to build the models and to calculate
the approximation error between the model and each excluded example should
be obtained independently. Unfortunately this would make some of the experi-
ments impractical. In practice, the correspondences obtained by considering all
of the training shapes have been used. This tends to overestimate the absolute
error, but allows an unbiased comparison of different models. The generalisation
ability is measured as a function of the number of shape parameters, M , used in
the reconstructions. More formally:

I for M = 1 . . . ns − 2

I for i = 1 . . . ns,

I build the model (x̄i,Pi = {pm : m = 1 . . .M}) from the training set,

with xi removed;

I estimate the model parameters for shape i:
bi = PT

i (xi − x̄i);

I reconstruct the unseen shape using M shape parameters:

x′
i(M) = x̄i +

∑M
m=1 pmi bmi ;

I calculate the sum of squares approximation error:

ε2i (M) = |xi − x′
i(M)|2

I calculate the mean squared error:

G(M) = 1
ns

∑ns

i=1 ε2i (M)

If for two methods A and B, GA(M) ≤ GB(M) for all M and GA(M) < GB(M) for
some M , we can conclude that the generalisation ability of method A is better
than that of method B.

In order to reason about the significance of differences we need to estimate the
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likely error in G(M). The standard error, of G(M) derived from the sampling
distribution for a mean [94] is defined as:

σG(M) =
σ√
ns − 1

, (5.2)

where σ is the sample standard deviation of G(M).

Specificity

A specific model should only generate instances of the object class that are simi-
lar to those in the training set. It is useful to assess this qualitatively by generating
a population of instances using the model and comparing them to the members
of the training set. We also define a quantitative measure of specificity (again as
a function of M) using:

S(M) =
1

N

N
∑

j=1

|xj(M) − x′

j|2, (5.3)

where xj are shape examples generated by the model (by choosing values of b

in (3.7) in the range over the training set) and x′
j is the nearest member of the

training set to xj. As with the measure of generalisation, we can say that model
A is more specific if SA(M) ≤ SB(M)for all M and SA(M) < SB(M) for some M .
The standard error of S(M) is given by:

σS(M) =
σ√
N − 1

, (5.4)

where σ is the sample standard deviation of S(M) and N is the number of sam-
ples. A value of N = 10000 was used to obtain the results reported in this thesis.

Compactness

A compact model is one that has as little variance as possible and requires as few
parameters as possible to define an instance. This suggests that the important
information is captured in a plot of cumulative variance:

C(M) =
M
∑

m=1

λm, (5.5)
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where λm is the mth eigenvalue (that measures the variance of the data in the
mth direction) and C(M) is the cumulative variance of the M th mode. Similar
comments apply to comparing CA(M) and CB(M) for two models A and B as for
generalisation and specificity.

In order to reason about the significance of differences we need to estimate the
likely error in C(M). The standard deviation of the sampling distribution of the
variance of the mth mode is given by [94]:

σλm =

√

2

ns
λm, (5.6)

where λm is themth largest eigenvalue of the covariance matrix. Using error prop-
agation, the standard error of C(M) can be obtained from:

σC(M) =
M
∑

m=1

√

2

ns
λm. (5.7)

Units of Performance Measures

G(M) and S(M) are derived from distances on the training shapes but the units
are arbitrary because shape alignment involves scaling each shape vector to unit
norm, By keeping track of these scaling factors the results can be rescaled (using
the average scale factor) to units of squared pixels/voxels in the original image
frame where the training data were obtained. This allows comparison with the
annotation error, which is assumed to be of the order of one pixel/voxel.

5.3.2 Benchmark Models

The performance of different model building methods will be compared using
a training set of 10 hand outlines. The results are typical of those obtained us-
ing other training sets and the fact that patterns of variation are easily grasped
makes the data ideal for illustrating the steps in development. A second, syn-
thetic, training set, for which the ideal correspondences are known, is also used
– particularly to illustrate the behaviour of different objective functions. Results
for other training sets obtained using the fully developed method are presented
in chapters 10 (2D) and 12 (3D).
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Hand Model

The training set for the Hand model is shown in figure 5.2. Each hand is repre-
sented by a polygon with 400 sides of equal length. Using this data, two bench-
mark models were built: one with equally spaced points on the boundary – the
simplest scheme; and one with manually positioned landmarks – the current
gold standard. The equally spaced model was constructed by choosing one cor-
responding point on each shape (as shown in figure 5.2) and corresponding the
remaining vertices of the polygons. The shapes were aligned using a similarity
transformation to minimise the sum of squared distances between correspond-
ing points [24]. Figure 5.3 shows the aligned boundaries and a subset of the cor-
respondences.

The manual landmark model was generated by placing landmarks on easily dis-
tinguished points (such as the tips of the fingers) as shown in figure 5.4. A total
of 400 points were sampled by equally spacing points along the boundaries be-
tween the landmarks. The shapes were aligned using the same method as for the
arc-length models [24] – the aligned shapes are shown in figure 5.4.

The first two modes of variation for the equally spaced and manual models are
shown in figures 5.5 and 5.6 respectively. The generalisation, specificity and com-
pactness are plotted in figure 5.7. The error bars indicate one standard error on
either side of the measured value. If the error bars do not overlap we can con-
clude that the difference is statistically significant. If the error bars do overlap,
the difference is probably not significant in a statistical sense. The results show
that – for this particular training set – manual landmarking results in a better
model than that obtained by equally spacing points on the boundary, though the
results for compactness are barely significant.

Bump Model

The training set for the Bump model is shown in figure 5.8. The examples are
generated from a synthetic object that exhibits a single mode of shape varia-
tion where the ‘bump’ moves along the top of the box. Given an appropriate
set of correspondences, it should be possible to describe the variation with a sin-
gle parameter. An ideal model is obtained if the landmarks shown in figure 5.9
are corresponded and intermediate correspondences are established by equally
spacing points along the boundary giving 300 points in total. The model has one
non-zero1 eigenvalue of 13665 – the corresponding mode of variation correctly
captures the known behaviour, as shown in figure 5.10.

An equally spaced points model was created by setting the origin to the top left

1To the limits of numerical accuracy.
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Figure 5.2. The training set of 10 hand outlines used for the evalua-

tions. The circles represent the manual landmarks that define the start-

ing point of each parameterisation.

Figure 5.3. A subset of the ocr-

respondences and the alignment

used to build the equally spaced

Hand model.

Figure 5.4. The manual landmarks

and alignment used to build the

manual Hand model.

hand corner of each example and equally spacing 300 points around the bound-
ary. The first three eigenvalues of the resulting models are (5663,1347,155) – the
corresponding modes of variation are shown in figure 5.11. The figure shows
clearly that the model can generate invalid instances of the object. Graphs of
generalisation ability, specificity and compactness are shown in figure 5.12. The
plots show that, as expected, the manual model has significantly better generali-
sation and specificity properties than the equally spaced model for all number of
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Figure 5.5. The first two modes of variation of the model built by

the equally spaced model of the Hand training set. The figure show

the effect of independently varying the first two modes of variation by

±2[standard deviations found over the training set].

Figure 5.6. The first two modes of variation of the manual landmark

model for the Hand training set. The figure show the effect of indepen-

dently varying the first two modes of variation by ±2[standard devia-

tions found over the training set]

modes. It is interesting to note, however, that the equally spaced model is more
compact than the ideal model. This is discussed in more detail in §6.1.1.
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Figure 5.7. The compactness, generalisation and specificity for the

equally spaced and ideal model of the Hand data. M is the number

of modes used.
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Figure 5.8. The synthetic training set for the Bump model.

Figure 5.9. The correspondences required to construct the ideal Bump

model.

Figure 5.10. The first and only

mode of variation of the ideal

model built using manual land-

marks.

Figure 5.11. The first three modes

of variation of the equally-spaced

Bump model.
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equally spaced and ideal model of the Bump data.
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Chapter 6

The Objective Function

“Pluralitas non est ponenda sine neccesitate”

– William of Ockham

A key component of the proposed approach is an objective function to assess
the ‘quality’ of a model constructed from a given set of correspondences.

This chapter begins by considering objective functions that have been proposed
previously and illustrates their behaviour using synthetic data. This is followed
by a detailed derivation of a new objective function, based on ideas from infor-
mation theory, that measures model utility in a principled way.

6.1 Previous Work

6.1.1 The Trace of the Model Covariance

Several authors (e.g [6, 48, 79, 5]) have proposed optimising correspondences by
minimising the trace of the covariance matrix, D, of the training data:

FT = Tr(D) =
∑

m

λm, (6.1)

where {λm} are the eigenvalues of D.

FT measures the sum of squared point-to-point distances between each train-
ing shape and the mean. Note that this is the same as the compactness measure
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Figure 6.1. The behaviour of FT when the correspondences of the ideal

Bump model are perturbed by Gaussian random noise of increasing

standard deviation. The plot shows the value of FT averaged over 1, 000
realisations of noise. The graph on the right is a blow-up of the region

close to the origin.

defined in (5.5). By minimising FT , points are moved as close as possible to the
mean, directly minimising the total variance of the model. The behaviour of FT
close to the optimum can be investigated using the Bump training set (see §5.3.2)
by perturbing the correct correspondences using Gaussian random noise of in-
creasing standard deviation, as shown in figure 6.1. The graph show that FT has
many local minima and the smallest value is not at zero displacement (i.e. the
ideal model).

The value of FT for the equally spaced points and ideal models are 7240 and 13665
respectively. Thus the equally spaced points model is preferred even though we
have already seen (see figure 5.12) that it is less specific.

6.1.2 The Determinant of the Model Covariance

Kotcheff and Taylor [59] propose using the determinant of the covariance matrix,
D, as an objective function:

FD = log(det(D)) = log

(

∏

m

λm

)

=
∑

m

log(λm), (6.2)

where {λm} are the eigenvalues of D; the log is taken to stop roundoff errors dom-
inating the calculation. FD effectively measures the ‘volume’ that the training
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set occupies in shape space which tends to favour compact models. Inspection
of (6.2) shows that the objective function has a degenerate minimum when any
eigenvalue approaches zero. To overcome this, Kotcheff and Taylor add a small
regularisation constant ε:

FD = log(det(D + Iε)) =
∑

m

log(λm + ε), (6.3)

where I is the identity matrix. They argue that an appropriate value of ε can be
chosen with reference to the noise on the training shapes. Figures 6.2 and 6.3
show the behaviour of FD as the correspondences of the ideal Bump model are
displaced with Gaussian noise of increasing standard deviation, for two values of
ε – one calculated as suggested by Kotcheff and Taylor and one several orders of
magnitude larger. Both plots show a minimum value forFD at zero displacement,
though the behaviour away from the minimum is quite different. The value of FD
for the equally spaced points model and ideal model are 37.22 and 9.71 respec-
tively (for ε = 0.01).

In summary, FD seems to display appropriate behaviour, but there is no rigor-
ous justification for its choice. It explicitly favours compact models (in a certain
sense) but there is no particular reason to suppose that it will favour models with
good specificity and generalisation properties.
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Figure 6.2. The behaviour of FD (ε = 0.01) when the correspondences

of the ideal Bump model are perturbed by Gaussian random noise of

increasing standard deviation. The plot shows the value of FD averaged

over 1, 000 realisations of noise.
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Figure 6.3. The behaviour of FD (ε = 10) when the correspondences

of the ideal Bump model are perturbed by Gaussian random noise of

increasing standard deviation. The plot shows the value of FD averaged

over 1, 000 realisations of noise.

6.2 An Information Theoretic Objective Function

We seek a principled basis for choosing an objective function that will directly
favour models with good generalisation ability, specificity and compactness. The
ability of a model to generalise whilst being specific depends on its ability to inter-
polate and, to some extent, extrapolate the training set. In order to achieve these
properties, we apply the principle of Occam’s razor, which can be paraphrased
as: “the simplest description of the training set will interpolate/extrapolate best”.

The notion of the ‘simplest description’ can be formalised using ideas from in-
formation theory – in particular, by applying the minimum description length
(MDL) principle [81, 82]. The basic idea is to minimise the length of a message
required to transmit a full description of the training set, using the model to en-
code the data. As the message is encoded, the receiver must know the encoding
model in order to fully reconstruct the original data, making it necessary to mea-
sure the description length of the encoding model as well as the encoded data.

6.2.1 The Encoding Model

Our training data are a set of np-dimensional shape vectors {xi : i = 1 . . . ns}.
These are coded with a multivariate Gaussian model. Principal component anal-
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ysis is used to find a co-ordinate system aligned with the principal directions of
the data, giving the linear model defined earlier (3.7):

xi = x̄ +
ns−1
∑

m=1

pmbmi , (6.4)

where {pm : m = 1 . . . ns − 1} are eigenvectors that define the principal axes of
the data. The eigenvectors are normalised to have unit length. Each eigenvec-
tor has a corresponding eigenvalue λm that gives the variance of the data in the
mth direction. The eigenvalues (and corresponding eigenvectors) are sorted by
descending value.

The set of eigenvectors, {pm}, define an (ns − 1)-dimensional “shape space” in
which the mth coordinate of the ith shape, xi, is given by:

ymi = (xi − x̄)Tpm. (6.5)

The description length of the mean shape x̄ and the eigenvectors {pm} are as-
sumed to be constant for a given training set1 thus only the description length of
the shape space coordinates {ymi : i = 1 . . . ns,m = 1 . . . ns − 1} that describe the
training shapes need to be calculated.

As the eigenvectors are mutually orthornormal, the total description length can
be decomposed to a sum over the (ns − 1) dimensions of shape space:

LTotal =
ns−1
∑

m=1

Lm. (6.6)

Hence we only require an expression for the description length of the 1D datasets,
Y m = {ymi : i = 1 . . . ns}. Since the data, Y m, in each principle direction has a
mean of zero we use a set of one-parameter Gaussian models to encode the data:

ρ(ym;σm) =
1

σm
√

2π
exp

(

− (ym)2

2(σm)2

)

. (6.7)

6.2.2 Calculating Description Length1

1For continuous shapes (np → ∞), both the mean shape and the eigenvectors have an infinite
description length.

1The author was responsible for developing the MDL framework. The original derivation of
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Given a value, α̂, encoded using a probabilistic model,P (α̂), its description length
can be calculated using Shannon’s codeword length [89]:

L = − logP (α̂), (6.8)

all logarithms are calculated to base 2, giving the message lengths in units of bits.
To utilise this expression, the values must be quantised and the range of the data
must be known2.

Quantisation

Describing a real number to an arbitrary accuracy requires an infinite amount of
information, leading to an incalculable description length. In practice, each data
value, ymi , must be quantised to some accuracy ∆:

ymi → ŷmi , ŷ
m
i = n∆, n ∈ Z, (6.9)

where the notation ŷ is used to represent the quantised value of y. The value of
∆ should be related to the expected noise on the training shapes (typically one
pixel/voxel in the original images from which they were annotated).

Data Range

The range of the data can be calculated in the original space so that:

−r
2
≤ xiα ≤ r

2
for all α = 1, . . . np, i = 1, . . . ns, (6.10)

and transformed to give the range of the data, R, in shape space:

R = r
√
np, so that |ymi | ≤ R for all i,m. (6.11)

this form of objective function was due to Dr. C J Twining.
2The range and accuracy of the data can be agreed prior to transmission hence they can be

excluded from the calculation of the total description length.
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6.2.3 The Description Length of a 1D Gaussian Model

We have established that the total description length of the training data can be
calculated independently for each principle direction, m. To utilise this result,
we require an expression that gives the description length of a 1D dataset Y =
{yi : i = 1 . . . ns} using a Gaussian model (6.7). Using a two part coding scheme
[82], the description length can be decomposed to:

L = LParameters + LData. (6.12)

Coding the Parameters

LParameters is the description length for sending the σ parameter, calculated from
the quantised values of Y :

σ =

√

√

√

√

1

ns

ns
∑

i=1

ŷ2
i . (6.13)

σ must be quantised to some accuracy δ:

σ̂ = nδ, n ε N, (6.14)

where σ̂ is chosen to be the closest possible value to the unquantised value of
σ (6.13). Although a simple modelling choice could be made by coding σ to an
accuracy δ = ∆ (the same as the data), a more precise estimate of the description
length can be obtained by optimising the value of δ analytically. It will be shown
later that the value of σ̂ is bounded such that:

σmin ≤ σ̂ ≤ σmax. (6.15)

In the absence of any prior knowledge, σ̂ is assumed to follow a uniform distri-
bution over [σmin, σmax] hence the description length of σ̂ becomes:

Lσ̂ = − log (P (σ̂)) ,

= log

(

σmax − σmin

δ

)

. (6.16)
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In order to decode the message, the receiver must know the accuracy, δ. Rissanen
[82] gives an exact calculation for the description length of such a value but the
expression uses a computationally expensive recursive function. Alternatively, if
δ is of the form:

δ = 2±k, (6.17)

the description length can be calculated from:

Lδ = 1 + | log δ|. (6.18)

From (6.16) and (6.18), the description length of the parameters is given by:

LParameters = Lσ̂ + Lδ
= log

(

σmax − σmin

δ

)

+ 1 + | log δ|. (6.19)

Coding the Data

Using the Gaussian model in (6.7), the probability, P (ŷ), of a value lying in the
range ŷ ± ∆

2
is:

P (ŷ) =

ŷ+∆

2
∫

ŷ−∆

2

dk ρ(k; σ̂), (6.20)

this can be approximated to first order by:

P (ŷ) ≈ ∆

σ̂
√

2π
exp

(

− ŷ2

2σ̂2

)

. (6.21)

For all values σ̂ ≥ 2∆, the approximation has a mean fractional error of < 1% ±
0.8% hence σmin = 2∆ is chosen as a lower bound. Without prior knowledge, σ̂
is assumed to have the same range as the data, hence σmax = R

2
is chosen as an

upper bound.

If σ falls below σmin, the approximation in (6.21) does not hold hence an alterna-
tive scheme must be used to code the data, Y . The case where all data, Y , has the
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same quantised value (i.e. the range of Y ≤ ∆) must also be addressed, giving
three different coding schemes:

• Case 1: If σ > σmin: explicitly code the data.

• Case 2: If σ ≤ σmin: estimate σ with σmin.

• Case 3: If the range of Y ≤ ∆ .

Each case is now considered in more detail.

Case 1: σ > σmin

Using (6.21), the code length for the data is:

Ldata = −
ns
∑

i=1

logP (ŷi)

= −ns log ∆ +
ns

2
log(2πσ̂2) +

1

2σ̂2

ns
∑

i=1

ŷ2
i . (6.22)

We must now decide on the accuracy, δ, to which to describe σ. The real value of
σ can vary from the quantised value, σ̂, by ± δ

2
. Assuming a uniform distribution

over this range, the expectation value of σ̂ can be obtained by averaging over the
interval:

〈

1

σ̂2

〉

=
1

δ

∫ σ̂+δ/2

σ̂−δ/2

dy
1

y2
= −4

(

−4σ2 + δ2
)−1 ≈ 1

σ2

(

1 +
δ2

4σ2

)

, (6.23)

〈

log(σ̂2)
〉

=
1

δ

∫ σ̂+δ/2

σ̂−δ/2

dy log(y2) ≈ log σ2 − δ2

12σ2
. (6.24)

Substituting (6.23), (6.24) into (6.22) and using (6.13):

Ldata = −ns log ∆ +
ns

2
log(2πσ2) +

ns

2
+
nsδ

2

12σ2
. (6.25)

Substituting (6.25) and (6.19) into (6.12):
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L = log

(

σmax − σmin

δ

)

+ 1 + | log δ|

−ns log ∆ +
ns

2
log(2πσ2) +

ns

2
+
nsδ

2

12σ2
. (6.26)

The optimal accuracy of σ can be found by differentiating Ltotal with respect to δ
and setting the derivative to zero, giving:

δ∗(σ, ns) = min

(

1, σ

√

12

ns

)

, (6.27)

where δ∗ is the optimum value of δ. Substituting δ in (6.26) with δ∗ yields the
description length of Y using the first coding scheme (σ > σmin):

L(1) = log

(

σmax − σmin

δ∗

)

+ 1 + | log δ∗|

−ns log ∆ +
ns

2
log(2πσ2) +

ns

2
+
nsδ

∗2

12σ2
. (6.28)

Case 2: σ ≤ σmin

If σ ≤ σmin, the value of δ cannot be optimised and the substitution
∑

ŷ2 → nsσ
2

cannot be made.

Although the approximation in (6.21) is inaccurate, it can still be used as it is al-
ways overestimates the description length. The value of δ is chosen using δ∗(σmin, ns)
in (6.27) to find the optimum value at σmin. Given this, the total description
length, L(2), for the second case (σ ≤ σmin) can be obtained from (6.22) and (6.16):

L(2) = log

(

σmax − σmin

δ∗

)

+ 1 + | log δ∗|

−ns log ∆ +
ns

2
log(2πσ2

min) +
1

2σ2
min

ns
∑

i=1

ŷ2
i . (6.29)
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Case 3: The Range of Y ≤ ∆

The final case is when the range of Y ≤ ∆ where only the position of the data
(i.e. the mean) needs to be sent. As the mean is always zero, it costs nothing to
describe hence:

L(3) = 0. (6.30)

6.2.4 The Total Description Length

From (6.6), (6.28), (6.29) and (6.30) we have the following expression for the total
description length for the training set:

Ltotal(∆) =
ns−1
∑

m=1

Lm, (6.31)

where:

Lm =















































log
(

σmax−σmin

δ∗

)

+ 1 + | log δ∗| − ns log ∆

+ns

2
log(2π(σm)2) + ns

2
+ nsδ∗2

12(σm)2
if σm > σmin

log
(

σmax−σmin

δ∗

)

+ 1 + | log δ∗| − ns log ∆

+ns

2
log(2πσ2

min) + 1
2σ2

min

ns
∑

i=1

(ŷmi )2 if σm ≤ σmin

0 if the range of Y m ≤ ∆
(6.32)

Although this level of complexity is necessary to deal with the general case, fur-
ther insight can be gained if we consider an appropriate limiting case.

If the number of shapes is sufficiently large, then from (6.27):

δ∗ → σm
√

12

ns
. (6.33)

In the limit ∆ → 0, the quantised values approach the original values:

57



6. THE OBJECTIVE FUNCTION

ŷm → ym and (σ̂m)2 → 1

ns

ns
∑

i=1

(ymi )2. (6.34)

Using these results:

L(1)(σm, ns, R,∆) = log (σmax − σmin) + 1 − 2 log

(
√

12

ns

)

−ns log ∆ +
ns

2
log(2π) +

ns

2
−2 log(σm) + ns log(σm), (6.35)

and:

L(2)(σm, ns, R,∆) = log (σmax − σmin) + 1 − 2 log

(
√

12

ns

)

−ns log ∆ +
ns

2
log(2π) − 2 log(σmin)

+
ns

2
log(σ2

min) +
ns

2

(

σm

σmin

)2

. (6.36)

Substituting (6.35) and (6.36) into (6.31) gives:

Ltotal(∆) =
∑ng

p=1 f(ns, R,∆) + (ns − 2) log(σp) +
ns

2
(6.37)

+
∑ng+1+nmin

q=ng+1 f(ns, R,∆) + (ns − 2) log(σmin) +
ns

2

(

σq

σmin

)2

,

where ng is the number of directions where the first case (σm > σmin) holds,
nmin is the number of directions where the second case (σm ≤ σmin) holds and
f(ns, R,∆) is a function that is constant for a given training set.

In this limit, the first term is used to explicitly encode the data, ensuring that
the model fits well to the data. The second term approximates the data using a
simpler model. Thus the MDL objective function uses the two cases to trade off
the model complexity against its ability to fit to the data.

Inspection of (6.37) reveals that the log(σ) terms dominate the expression. This is
similar to the determinant-based objective function used by Kotcheff and Taylor
[59] (

∑

m 2 log(σm + ε)) but the more complete treatment shows that other terms
are also important.
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Figure 6.4. The behaviour FMDL (∆ = 0.1 pixels) when the correspon-

dences of the ideal Bump model are perturbed by Gaussian random

noise of increasing standard deviation. The plot shows the value of

FMDL averaged over 1, 000 realisations of noise.

6.2.5 The MDL Objective Function

From (6.31), we can define an objective function that measures the description
length of the training set using a given encoding model.

FMDL = Ltotal(∆). (6.38)

This expresses the notion that the model which most efficiently (simply) encodes
the training set is likely to interpolate/extrapolate the training data most reli-
ably. Figure 6.4 shows the behaviour ofFMDL as the correspondences on the ideal
Bump model are displaced with Gaussian noise of increasing standard deviation.
A value of ∆ = 0.1 pixels was assumed.

Although Davies et al. have previously shown that using FMDL as an objective
function produces good shape models [31, 30, 29], switching between the cases
in (6.32) causes significant discontinuities. The point at which switching occurs
depends on the choice of ∆, which should be comparable with the noise of the
training data. Rather than choosing a single value of ∆, it is more realistic to
assume a distribution of values. AveragingFMDL over the distribution of ∆ results
in an objective function with more continuous behaviour close to convergence.
In the experiments reported below a uniform distribution for ∆ over the range
∆min to ∆max is assumed.
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over 1, 000 realisations of noise.

F =

∫ ∆max

∆min

d∆Ltotal(∆). (6.39)

The integral can be solved by numerical integration (e.g. by using Simpson’s rule
[77]). We have used ∆min = 0.01 and ∆max = 2 pixels for the results reported
in this thesis. The behaviour of F is shown in figure 6.5 by perturbing the ideal
correspondences of the Bump model using Gaussian random noise of increasing
standard deviation. The plot shows that F has a clear minimum with a reason-
ably large capture range. The numerical integration is computationally expen-
sive to perform but the determinant-based objective function (6.3) can be used
to obtain a good initial approximation to the optimum. The full objective func-
tion can then be used to refine the correspondences.

6.3 Summary

We have derived an objective function that favours simple models that are likely
to interpolate/extrapolate well from the training set. For synthetic data, the ob-
jective function behaves appropriately in the region of the ideal solution. It has
one parameter, ∆, which has a clear interpretation in terms of the noise (or noise
distribution) on the training data.
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6. THE OBJECTIVE FUNCTION

In the dual limit (ns → ∞, ∆ → 0), the objective function is similar to the
determinant-based function proposed by Kotcheff and Taylor [59]. We have found
in practice that the two objective functions produce very similar results given a
suitable value of ε in (6.3), but the MDL function is well-defined under all cir-
cumstances. As the determinant-based function is computationally simpler (it
does not require numerical integration or data quantisation), we use it to obtain
an initial estimate of the MDL solution.
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Chapter 7

Building Models Using Piecewise
Linear Re-parameterisation

“Order and simplification are the first steps toward mastery of a subject - the actual enemy is the
unknown.”

– Thomas Mann.

This chapter shows how the MDL objective function can be combined with
a parameterised representation of correspondence to build optimal shape

models. Correspondences are manipulated using a piecewise linear (PL) repre-
sentation of re-parameterisation that straightforwardly extends to 3D. Two meth-
ods are investigated for optimising the objective function with respect to the re-
parameterisations of the training examples. The resulting models are evaluated
using the methods described in chapter 5.

7.1 Representing Re-parameterisation

Chapter 5 introduced the idea of manipulating correspondence in 2D by re-parameterising
each example using a monotonic function, φi. This section reviews the piecewise-
linear representation of re-parameterisation used previously by Kotcheff and Tay-
lor [59] before describing an improved representation with a straightforward ex-
tension to 3D.
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7.1.1 A PL Representation of Re-parameterisation

Kotcheff and Taylor [59] define a piecewise-linear representation ofφ for 2D shapes
using a set of nodes {pi}. Linear interpolation is used to evaluate φ in between
nodes to give a continuous representation (see figure 7.1):

φ(u) = φ(ui) + (φ(ui+1) − φ(ui))
u− ui

ui+1 − ui
, ui ≤ u ≤ ui+1, (7.1)

where ui and φ(ui) are the path-length parameterisation and re-parameterisation
of node pi respectively.

Figure 7.1. A piecewise-linear representation of φ(u) using three nodes

(p1, p2, p3). Each node is allowed to move vertically.

To ensure that φ(u) is diffeomorphic 1, both ui and φ(ui) must be ordered by in-
creasing value:

0 ≤ ui ≤ ui+1 . . . ≤ un ≤ 1,

0 ≤ φ(ui) ≤ φ(ui+1) . . . ≤ φ(un) ≤ 1. (7.2)

Kotcheff and Taylor impose this constraint directly by explicitly ordering their
nodes, but this does not extend in any obvious way to 3D.

1φ(u) is not differentiable at the control points hence it is not diffeomorphic in a strict sense
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7.1.2 A Recursive Definition of Re-parameterisation

For the representation of φ to be extendable to 3D, we need to impose an implicit
rather than explicit ordering on the nodes {pi}. This can be achieved by defining
a recursive representation of the re-parameterisation function by inserting nodes
between those already present. In 2D, the position of each new node is coded
as its fractional distance τij between its two parent nodes pi and pj. Thus, by
constraining the positions of new nodes to lie in the range [0,1] (where the node
has a value of 0 if it is positioned on its left parent, 1 on its right parent and 0.5 in
the centre) we can enforce an implicit ordering. This is illustrated in figure 7.2.

Figure 7.2. The recursive representation of re-parameterisation. The

circles represent child nodes and squares represent parent nodes. The

brackets show the range that each node is allowed to move. The node

has a value of 0 at the bottom of the bracket, 1 at the top and 0.5 in the

middle. The parameter values (fractional distances) for this example

are: φ(0.65(0.65(0.8, 0.4), 0.7(0.2, 0.5)).

As the representation of re-parameterisation does not use an explicit ordering,
it can be straightforwardly extended to represent surface re-parameterisation, as
described in chapter 11.

7.2 Optimising the Correspondences

Two methods of optimising F with respect to the re-parameterisation function
of the training set have been investigated – one global, the other local. The per-
formance of the two methods is compared using the hand training set. The re-
parameterisation functions were defined using three levels of recursion giving 7
(1+2+3) free parameters for each example:

φ(τ11(τ21(τ31, τ32), τ22(τ33, τ34))). (7.3)

In order for the optimisation to be well defined, a ‘reference shape’ must be se-
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lected whose re-parameterisation is fixed for the entire optimisation. For now,
the first example is used but it will be shown later how the selection can be auto-
mated.

7.2.1 Global Optimisation

If k levels of recursion are used to represent each re-parameterisation function,
the resulting optimisation space is (2k − 1)(ns − 1) - dimensional. This space is
likely to contain many local minima leading us to prefer a stochastic, global op-
timisation method such as genetic algorithm search (GA) [42] or simulated an-
nealing [57]. For the results reported below, a GA was used (see appendix A for a
full description) with each chromosome encoding the (2k−1)(ns−1) parameters.
The following settings were used for the GA search2:

• Crossover operator: single point.

• Crossover rate: 100%.

• Mutation operator: single point.

• Mutation probability: 0.01%.

• Selection: roulette wheel, sigma scaling, non-elitist.

For the Hand data set, the algorithm converged after 243 iterations of the genetic
algorithm which required 108896 evaluations of the genetic algorithm.

The behaviour of the resulting model is shown in figure 7.3 by varying the first
two modes of variation by ±2

√
λm. The modes of variation reflect the variation

we would expect of the hand outlines observed in the training set. Quantitative
results are shown in figure 7.4. These show that the GA model has better gener-
alisation ability, specificity and compactness properties than the equally spaced
model but there is no significant improvement on the manual model.

These results are encouraging but this method of optimisation takes many hours
to converge and scales very poorly with the number of training examples.

7.2.2 Local Search

Although stochastic algorithms can find the (approximately) global optimum in a
high-dimensional search space, they are very inefficient and require many func-

2The implementation of the genetic algorithm was based on the freeware MATLAB implemen-
tation described in [51]
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Figure 7.3. The first two modes of variation of the model built by ge-

netic algorithm optimisation of 10 Hand data.

tion evaluations. More efficient algorithms exist that search for an optimum so-
lution in a local region around a starting estimate. This approach has also been
investigated.

The local optimisation algorithm used here (and for the remainder of the the-
sis) is the Nelder-Mead downhill simplex method (using the default parameters
employed in [77]) which has some ability to avoid local minima. Although the
concept is simple, the algorithm is complex and will not be described here. The
reader is referred to [77] for an introduction and to [61] for a more detailed anal-
ysis. The value of the current parameterisation (initially the identity) is used as
a starting estimate for each iteration ensuring that correspondences can only be
improved.

The number of parameters used in the previous section was found to be too large
for the local optimiser to converge reliably. To overcome this, the number of
parameters optimised concurrently must be reduced. This can be achieved by
using a greedy algorithm to optimise the parameters at each level of recursion
before moving on to the next, giving (ns − 1)2k−1 parameters to optimise on the
kth iteration. The algorithm is as follows:
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Figure 7.4. The compactness, generalisation and specificity for the

equally-spaced, manual and GA models of the Hand data. M is the

number of modes used.

67



7. BUILDING MODELS USING PIECEWISE LINEAR RE-PARAMETERISATION

I Begin with a single free parameter, τ11, for each example and set the re-

mainder to 0.5 (i.e. the original parameterisation):

φ(τ11(0.5(0.5, 0.5), 0.5(0.5, 0.5))).

Use the optimisation algorithm to find the values of {τ11} that minimise

the objective function. The optimal values of {τ11} are fixed for the re-

maining iterations.

I At each subsequent iteration, k, the parameters at the kth level of the hi-

erarchy are optimised. e.g., for k = 2:

φ(τ11(τ21(0.5, 0.5), τ22(0.5, 0.5)))

For the hand data, this algorithm takes 6172 objective function evaluations to
converge, which is substantially less than the number required by the genetic
algorithm (108896).

If the first two modes are viewed by eye, there is no obvious difference to those
produced by the GA but the quantitative results plotted in figure 7.5 show that the
method produces models with superior specificity than both the GA and manual
models and significantly better generalisation than the manual model. There is
no statistically significant difference in the compactness measure.

Although this optimisation method is substantially quicker and produces better
models than the GA search, the scheme is not entirely satisfactory: its greedy
nature means that once nodes are optimised, the correspondences they induce
are fixed and cannot be altered. This may lead to sub-optimal solutions.

7.3 Summary

This chapter has described a piecewise linear representation of re-parameterisation
and has shown how it can be manipulated to minimise the MDL objective func-
tion. Models for the Hand data that are better than the equally spaced model and
as good as the manual models were produced automatically using two different
optimisation methods. These experiments have established the feasibility of the
approach outlined in chapter 5. There are, however, limitations: the piece-wise
linear re-parameterisation scheme introduces discontinuities in the derivative of
the re-parameterisation function which is likely to inhibit reliable convergence;
the GA optimisation approach scales poorly to large training sets (and finds sub-
optimal solutions). The local optimisation scheme is more efficient, but adopts
a greedy strategy that is also likely to lead to sub-optimal solutions. These prob-
lems are addressed in subsequent chapters.
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Chapter 8

Building Models using an Improved
Representation

“Success is the ability to go from failure to failure without losing your enthusiasm.”

– Winston Churchill.

The previous chapter demonstrated the feasibility of the proposed approach
to automatic model-building, but highlighted some weaknesses of the ini-

tial implementation. This chapter introduces a compact multi-resolution repre-
sentation of re-parameterisation that is differentiable. This is coupled with an
efficient and robust scheme for optimising the MDL objective function with re-
spect to the re-parameterisations. The results are compared to those obtained
earlier.

8.1 Representing Re-parameterisation

The piecewise-linear representation of re-parameterisation described in the pre-
vious chapter has the disadvantage that it is not differentiable and thus less than
ideal for use in an optimisation framework. This section describes a new, dif-
ferentiable representation of re-parameterisation. The main insight is that the
monotonic reparameterisation function required for each 2D shape can be rep-
resented by the cumulative distribution function of some normalised, positive-
definite density function ρ(x):

φ(u) =

∫ u

0

ρ(x)ds. (8.1)
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The following sections present a formulation of φ(u) for both open and closed
curves. It is shown in chapter 11 that the method extends naturally to surfaces in
3D.

8.1.1 Open Curves

We choose to represent ρ(x) as a sum of Cauchy distribution functions because
there is an analytical form of the integral required to calculate the cumulative
distribution function. The Cauchy kernel [67] is a unimodal, symmetric function
of the form:

f(x) =
1

π

w

w2 + (x− a)2
, −∞ < x <∞, w ≥ 0, (8.2)

wherew is the width of the Cauchy and a is the position of the centre. The integral
of the function is:

g(u) =

∫ u

0

dxf(x) =
1

π
arctan

(

a− u

w

)

. (8.3)

To represent ρ(x) for open curves (S(0) 6= S(1)), we take a sum of Cauchy kernels
and a constant term:

ρ(x) = 1 +
∑

k

Ak

π

wk

w2
k + (x− ak)2

, 0 ≤ x ≤ 1, (8.4)

where Ak is the magnitude of the kth kernel. Any arbitrary distribution can be
approximated to a given accuracy by a sum of Cauchies with different positions
and widths. We can obtain φ(u) by taking its integral:

φ(u) =

∫ u

0

dxρ(x), 0 ≤ x ≤ 1

= u−
∑

k

Ak

π
arctan

(

ak − u

wk

)

. (8.5)

To normalise φ(u) to lie in the range [0,1], two normalisation constants, c and b,
must be introduced:
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φ(u) = c

[

u+ b−
∑

k

Ak

π
arctan

(

ak − u

wk

)

]

, (8.6)

where

b =
∑

k

Ak

π
arctan

(

ak

wk

)

,

c−1 =

[

1 + b−
∑

k

Ak

π
arctan

(

ak − 1

wk

)

]

+ b. (8.7)

The constant term ensures that φ(u) = u when all Aks are set to zero.

8.1.2 Closed Curves

For closed curves (S(0) ≡ S(1)), φ(u) must be a diffeomorphism of the unit circle.
Although the formulation in the previous section could be used by treating closed
curves as open curves that are ‘joined’ at (u = 0, 1), φ(u) would not, in general, be
differentiable or smooth at this point. This can be addressed by ‘wrapping’ the
Cauchy function around a circle [36]:

f(θ) =
1

2π

1 − ω2

1 + ω2 − 2ω cos θ
, 0 ≤ θ ≤ 2π

where: 0 ≤ ω ≤ 1 → ω = e−w, w ≥ 0, (8.8)

and w is the width of the kernel. The kernel has a closed-form indefinite integral
[67], which gives the cumulative distribution for a Cauchy centred at θ = 0:

g(θ, w, 0) =
1

2π
arccos

(

(1 + ω2) cos θ − 2ω

1 + ω2 − 2ω cos θ

)

, 0 ≤ θ ≤ π, 0 ≤ g ≤ 1. (8.9)

This can be re-written to be valid for (0 ≤ θ ≤ 2π)1:

g(θ, w, 0) =
1

2π
arctan

(

(1 − ω2) sin θ

(1 + ω2) cos θ − 2ω

)

, 0 ≤ g ≤ 1, (8.10)
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where the inverse tangent is defined from 0 to 2π. From (8.10), the cumulative
distribution for a Cauchy function centred at ak is1:

g(θ, ωk, ak) = g(ak, ωk, 0) + g(θ − ak, ωk, 0) − 1

2
[1 − sign(θ − ak)], (8.11)

where:

sign(x) =

{

−1 if x < 1,
1 otherwise.

(8.12)

To represent ρ(θ), we use a set of Cauchy kernels and a constant term:

ρ(θ) = 1 +
∑

k

Ak

2π

1 − ω2

1 + ω2 − 2ω cos θ
, 0 ≤ θ ≤ 2π, (8.13)

where Ak is the magnitude of the kth kernel. We can obtain φ(u) by integrating
ρ(θ):

φ(u) =

∫ u

0

dxρ(θ)

= u+
∑

k

Ak g(2πu, ωk, ak), 0 ≤ θ ≤ 1. (8.14)

A normalisation constant, c is included to normalise φ(u) to lie in the range [0,1]:

φ(u) = c

[

u+
∑

k

Akg(2πu, ωk, ak)

]

where c−1 = 1 +
∑

k

Ak. (8.15)

Note that, for closed curves, the position of the origin, φ(0), is a free parameter.

8.1.3 Examples of Re-parameterisation

Figure 8.1.3 shows a monotonic function formed from a set of Cauchy kernels
and demonstrates how such a set of functions can be used to re-parameterise a
shape. The re-parameterisation can be manipulated by varying the coefficients
of the Cauchy functions (i.e. A,w, a). Figure 8.2 shows the effect of varying the
magnitude of a single kernel.

1Personal communication, Carole Twining, University of Manchester.
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Figure 8.1. An example re-parameterisation. Left Column: The original

parameterisation. Right Column: A re-parameterisation using Cauchy

kernels with parameters A = {3.5, 4, 0.84}, w = {0.1, 0.4, 0.02}, a =
{0.25, 0.5, 0.75}. Top row: The kernels; second row: ρ(x), the sum of the

kernels, third row: the parameterisation, φ(u); bottom row: the result

of uniformly sampling the parameterisation on a hand outline.
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Figure 8.2. An illustration to show the affect of changing the height of a

single Cauchy kernel. As the magnitude of the red kernel is increased,

points are moved around the boundary.
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Figure 8.3. How a multi-resolution basis is formed: at each level of

recursion, new kernels (solid lines) are introduced in-between the cur-

rent ones (dashed lines). The widths of the new kernels are halved on

each level of recursion.

8.1.4 Advantages of the Representation

The representation using Cauchy kernels allows the construction of arbitrary
continuous, differentiable re-parameterisation functions with parameters
{Ak, wk, ak}. Because kernels of variable width are used, the method naturally
supports a coarse-to-fine representation of re-parameterisation, which proves
useful during optimisation. In the limit of zero width the kernels become Dirac
delta functions which, if there are infinitely many of them, can clearly represent
any given re-parameterisation function. In practice, any desired re-parameterisation
can be represented to a given accuracy by choosing a finite number of kernels
with appropriate widths and positions.

Other functions could have been used to represent ρ(θ) (e.g. Von Misses, Car-
dioid, Gaussian [67]). The Cauchy kernel was chosen because it has a relatively
simple integral. Davies et al. describe a similar representation of re-parameterisation
based on a set of Gaussian kernels [29, 28]. To calculate the integral of a Gaussian,
however, requires the evaluation of the error function, which is computationally
expensive. The Cauchy-based formulation presented here can be evaluated in
significantly less time.

8.2 A Multi-resolution Approach to Optimisation

The ability to build a coarse-to-fine representation of reparameterisation using
kernels of different widths allows a multi-resolution approach to optimising the
objective function. This is similar in spirit to the recursive splitting method with
local optimisation described in the previous chapter, but without the disadvan-
tage of fixing some correspondences prematurely. The basic idea is to begin with
a coarse representation of re-parameterisation using a single wide kernel which
is successively refined by recursively introducing narrower ones in-between, as
illustrated in figure 8.3.

The optimisation algorithm is as follows:
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8. BUILDING MODELS USING AN IMPROVED REPRESENTATION

I For each re-parameterisation function φi, begin with a single kernel of

width w1, centred at a1 = 1
2 . The height, A1i, of the kernel on each ex-

ample is initialised to zero (equivalent to the original parameterisation).

A local optimisation algorithm (Nelder-Mead simplex algorithm is used

again) is used to find the set of magnitudes {A1i} that minimise F .

I At each level of recursion, k, add an additional 2k−1 kernels of width (w1

2 )k.

The new kernels are positioned halfway between the kernels added at the

previous level of recursion. Local optimisation is used to find the best

height for the set of new kernels.

The convergence of the algorithm is quite robust to the selected value of w1; a
value of w1 = 0.25 was used to obtain the results reported below.

8.3 Results

The method described above was applied to the Hand training set. The algorithm
was run for three levels of recursion, giving the same number of free parameters
as used for the local piecewise linear scheme described in the previous chapter.
The results are shown in figure 8.4. Qualitatively, the modes of variation found
are indistinguishable from those found previously. Although the optimisation
finds a smaller value of F than the previous method, the specificity is worse. The
algorithm requires 9145 evaluations of the objective function to converge, which
is ∼ 50% more than required for the piecewise linear scheme.

8.4 Conclusions

The methods introduced in this chapter provide a practical framework for auto-
matic model building. The multi-resolution scheme for representing re-parameterisation
using Cauchy kernels is well behaved and provides a basis for robustly optimis-
ing the MDL objective function. Although the results are worse than the previous
method, we show how the speed and robustness of convergence can be improved
in the following chapter.
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Figure 8.4. The compactness, generalisation and specificity for the

manual, local search (piecewise linear) and multi-resolution models

of the hand data. M is the number of modes used.
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Chapter 9

Refining the Optimisation Strategy

“An undefined problem has an infinite number of solutions. ”

– Robert A. Humphrey .

The previous chapter showed how a kernel-based representation of re-parameterisation
could be combined with a multi-resolution optimisation method to con-

struct shape models automatically. The method produces good models, but it is
not clear that it finds the global optimum or that the search is as efficient as pos-
sible. This chapter investigates several methods of improving the optimisation
strategy. The final algorithm – described in section 9.5 – is capable of routinely
constructing shape models directly from sets of training shapes. It is invariant to
the starting point of the initial parameterisation of each shape and to the initial
alignment of the training examples. All the experiments are performed using the
Hand training set (§5.3.2), except when indicated otherwise.

9.1 A More Flexible Multi-scale Approach

In the multi-resolution optimisation scheme described in the previous chapter
only a limited number of kernel widths and positions are used. Nevertheless, the
number of parameters to be optimised simultaneously grows exponentially with
the number of recursion levels and linearly with the number of shapes. Thus
application of the method is limited to small training sets of relatively simple ob-
jects. Another disadvantage is that the scheme requires an optimisation sched-
ule (number of recursion levels, iterations for each level, etc.). The optimisation
may also fail to find the best solution, since the parameters of the wider kernels
are fixed at an early stage in the process.
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9. REFINING THE OPTIMISATION STRATEGY

These problems can be overcome by selecting values for {ak} and {wk} stochasti-
cally and only optimising a single kernel for each example simultaneously giving
ns−1 parameters to optimise at each iteration. The values for a are selected from
a uniform distribution over the range [0, 1]. The widths of the kernels, w, are cho-
sen from the positive half of a Gaussian distribution with zero mean and standard
deviation σG. The kernel magnitudes, A, are once again used as the parameters
of the optimisation.

The algorithm is as follows:

I repeat

I randomly assign values {ai} and {wi} for all examples i except the ref-

erence example;

I use the Simplex algorithm to find the values of {Ai} that minimise F .

I until convergence.

The convergence of the algorithm is relatively insensitive to the value of σG. A
value of σG = 1

32
is used in the experiments reported below.

As an initial experiment, the algorithm was run until the objective function had
been evaluated 9145 times. This is the same number of evaluations used in the
multi-resolution scheme. The value of F was 740.12, an improvement when
compared to 745.19 for the multi-resolution scheme.

The algorithm was then run to convergence. This took 106441 iterations. The
quantitative results in figure 9.1 show that the method produces a model with
significantly better generalisation ability and specificity than the manual and
multi-resolution schemes.

9.2 Manipulating the Origin

For closed curves, the position of the origin is a free parameter. In all previous
experiments, this was fixed using a manually positioned landmark. This section
investigates allowing the position of the origin to vary.

If the origin positions are included directly as parameters in the optimisation,
they have a global effect that can disrupt any existing locally optimised corre-
spondences. Instead, before each iteration, the position of the origin on each
example is randomly placed along the length of the curve, with a uniform dis-
tribution, and fixed for that iteration, allowing every point on the boundary to
move at some stage.
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Figure 9.1. A quantitative comparison of the multi-resolution, manual

and random scheme. The plots show the compactness, generalisation

and specificity of the models as a function of M , the number of modes

used.
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Figure 9.2. The convergence properties of two alternative optimisation

schemes for the Bump data: fixing the origin and allowing the origin to

vary.

The modified algorithm is:

I repeat

I randomly assign values {ai}, {wi} and {φi(0)} for all examples i except

the reference example;

I use the Simplex algorithm to find the values of {Ai} that minimise F .

I until convergence

The algorithm takes 332806 iterations to converge for the Hand data – almost
three times as many as required when the origins are fixed. The quantitative
results in figure 9.3 show that, overall, the resulting model is an improvement on
the fixed origin scheme.

Although the improvement is relatively small for the Hand data, the global opti-
mum for the Bump data described in section 5.3.2 can only be found if the origin
is allowed to vary. This is demonstrated in figure 9.2 where the value of the objec-
tive function is plotted against the number of function evaluations. The scheme
works because, if the origins are fixed, it is difficult for correspondences close to
the origin to change significantly. The new scheme allows all correspondences to
be modified freely whilst maintaining the localised behaviour of the optimisation
process.
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Figure 9.3. A quantitative comparison of the manual, fixed origin and

variable origin schemes. The plots show the compactness, generalisa-

tion and specificity of the models as a function of M , the number of

modes used.
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9.3 Optimising One Example at a Time

All the optimisation methods proposed so far scale poorly with the number of
training examples. For larger training sets (& 100 examples) the number of pa-
rameters to be optimised simultaneously prevents the local optimisation algo-
rithm from converging reliably. It is also not well suited to an iterative model-
building scheme where examples are segmented and added one by one.

This section investigates the effect of optimising the parameterisation of one ex-
ample at a time. This is achieved by cycling through the training set, optimising
the current re-parameterisation of each example before moving on to the next
iteration. Note that we are still considering the entire training set (i.e. the model
is built using the current parameterisations of all examples) but the parameter-
isation of each example is optimised independently. To remove any bias, the
ordering of the training set is permutated at random before each iteration. The
algorithm is a direct extension of that described in the previous section and can
be summarised as follows:

I repeat

I randomise the ordering of the training set;

I for each example, i (except the reference example):

I randomly assign values to ai, wi and φi(0)

I use the Simplex algorithm to find the value of Ai that minimises F .

I until convergence.

As only one free parameter is optimised at a time, we could use a simpler optimi-
sation algorithm (such as golden section search [77]). For the sake of consistency,
however, we continue to use the Simplex method.

The quantitative results in figure 9.5 show that, for the Hand data, optimising
one example at a time produces similar results to those produced by optimising
all examples simultaneously. The algorithm takes 771866 function evaluations
which is almost double the number required when optimising all examples con-
currently.

The experiment was repeated using a set of 30 Hand examples. The convergence
properties are illustrated in figure 9.4 where the value of the objective function
is plotted against the number of function evaluations. The plots show that, for
large numbers of training examples, optimising one example at a time is at least
as efficient as optimising all examples simultaneously. The implementation of
the method for very large training sets is much more tractable.
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Figure 9.4. The convergence properties of two alternative optimisa-

tion schemes for the Hand data: optimising one example at a time and

optimising all examples simultaneously.

9.4 Including Pose Parameters

The positions of corresponding points depend on the rigid pose parameters of
each example as well as the shape re-parameterisation. This is easily illustrated
if we view the full expansion of the inner product defined earlier (3.14):

D′

ij =
(

(siRiSi(φi(u)) − di − S̄(u)) · (sjRiSj(φj(u)) − dj − S̄(u))
)

, (9.1)

where Si is a continuous, parameterised representation of the ith shape, S̄ =
1
ns

∑

Si is the mean shape, d is a translation, s is a rigid scaling and R is a ro-
tation matrix.

All the results presented so far were obtained by performing Procrustes analysis
[32] on the training set, which is equivalent to minimising the squared distance
between each shape and the mean, then leaving the alignment fixed during op-
timisation. Since we have already seen that the mean squared error is not a good
objective function (§6.1.1), it seems worthwhile to explore the effect of allowing
the pose of each training example to vary during optimisation. It is important
to note that the optimal pose parameters depend on the parameterisation of
the shape and must therefore be included in the iterative process. In practice,
translation can be dealt with directly by setting the centre of gravity of each re-
parameterised shape to the origin. Scale and rotation must be included in the
optimisation.

One way of minimising the objective function is to simply reduce the size of the
training examples by a scaling, i.e. F → sF, s < 1. To prevent the optimisation
algorithm from doing this, the size of the mean should be constrained to have
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constant size; unfortunately this can only be achieved if all examples are opti-
mised concurrently. Since we wish to optimise one example at a time we must
use an alternative approach where the mean is restricted to varying by ±5% of its
initial size.

The algorithm is as follows:

I repeat

I Randomise the ordering of the training set

I for each example, i (except the reference example):

I randomly assign values to ai, wi and φi(0)

I use the Simplex algorithm to find the value of Ai that minimises F .

I transform the re-parameterised pointset to the centre of gravity

I use the Simplex algorithm to find the values of si and Ri that min-

imises F .

I until convergence

9.4.1 Results and Discussion

The algorithm takes 1000031 function evaluations to converge. Including pose
parameters therefore slows down the convergence of the algorithm, but the re-
sults in figure 9.6 show that the resulting model has significantly better specificity
properties than the model built using the previous scheme. The compactness
and generalisation measures are also better, but the difference is not statistically
significant.

9.5 Summary of Method

This section provides a more complete summary of the algorithm that produces
the best results. This is the method that is used to generate the results reported
in the following chapter.

To obtain an initial estimate for the optimal values of {φi, si,Ri,di}:
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Figure 9.6. A quantitative comparison of the manual, fixed pose and

variable pose optimisation schemes. The plots show the compactness,

generalisation and specificity of the models as a function of M , the

number of modes used.
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I set φ(u) = u for all examples

I for each example, i (except the first):

I do

I select a position for the origin

I use a Procrustes transformation to align it to the first shape

I calculate the squared distance between the re-aligned shape and

the first shape

I until the squared distance to the first shape is minimised.

The following algorithm is used to optimise the value of F with respect to a set of
re-parameterisation functions {φi} and pose parameters {si,Ri}:

I for i = 1 . . . ns

I S′
i = siRiSi(φi)

I build the model from {S′
i}

I evaluate the model using F

Given this, F can be optimised with respect to {φi, si,Ri}:

I repeat

I randomise the ordering of the training set

I for each example, i (except the reference example):

I randomly assign values to ai, wi and φi(0)

I optimise the value of F wrt Ai using the Simplex algorithm

I transform the re-parameterised pointset to the centre of gravity

I optimise the value of F wrt si and Ri using the Simplex algorithm

I until convergence

9.6 Conclusions

This chapter has described an algorithm that can construct optimal statistical
shape models directly from a set of pre-segmented example outlines. The algo-
rithm needs no manual intervention, has no arbitrary parameters and can scale
to cope with large training sets of examples. The following chapter employs the
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algorithm described in §9.5 to automatically construct shape models of a num-
ber of biomedical objects.

All the optimisation methods reported in this chapter offer a significant improve-
ment over the manually landmarked model – the current gold standard. Find-
ing the optimum value of F , however, requires many function evaluations. The
convergence properties of the algorithm are shown in figure 9.6 where the value
of the objective function is plotted against the number of function evaluations.
Although running the method until convergence takes over 1000000 objective
function evaluations, the manual model is improved upon after only 1389 itera-
tions. This suggests that satisfactory models could be obtained by stopping the
optimisation prematurely.

We should also note that the termination criterion used is rather ad hoc. Due
to the stochastic nature of the optimisation, halting the algorithm when the im-
provement is less than some given threshold is likely to result in premature con-
vergence. In practice, we have chosen to terminate the algorithm manually by
viewing a plot such as the one in figure 9.7. Limited emphasis should therefore
be placed on the number of function evaluations required to reach convergence
as this is likely to be an imprecise estimate.
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Chapter 10

2D Results

“I do not fear computers, I fear the lack of them.”

– Isaac Asimov.

The preceding chapters have described the development of a method for au-
tomatically constructing minimum description length (MDL) shape mod-

els. This chapter presents the results of applying the method to several 2D train-
ing sets. In each case the MDL model is compared to models obtained by equally
spacing points and manual landmarking – the current gold standard. Using the
objective criteria described in chapter 5, the MDL models are shown to be signif-
icantly better.

10.1 The 2D Experiments

For each training set, three different models were produced, each using the same
number of boundary points. An MDL model was constructed using the algo-
rithm described previously in §9.5. Manual models were built by annotating
points on salient features (such as regions of high curvature) on each training
outline and using path-length parameterisation to equally space points in be-
tween. Equally spaced models were constructed using a single manual landmark
and equally spacing the rest around the boundaries. The manual and equally
spaced models were aligned into a common co-ordinate frame using Procrustes
analysis [32].

Quantitative results are reported by evaluating the models using the criteria de-
scribed in §5.3 (generalisation, specificity and compactness) and by calculating
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the MDL objective function value for each model. Qualitative results are pre-
sented by showing the first three modes of shape variation by independently
varying the parameters by ±2[standard deviations over the training shapes].

Results are reported for six training sets of pre-segmented 2D objects: 10 syn-
thetic ‘Bump’ shapes, 33 heart ventricles, 17 hand outlines, 45 hip prostheses, 16
knee cartilages and 21 prostates. The details of the datasets with signposts to the
compendium of results are set out below.

Synthetic Bumps

The first test set was the synthetic ‘Bump’ example introduced in chapter 5; the
training set is shown in figure 10.1. The ‘ideal’ correspondences were labelled by
manual landmarks as shown in figure 10.7a. Qualitative and quantitative com-
parisons of the resulting models are shown in figures 10.8 (page 99) and 10.14
(page 105) respectively.

Heart Ventricles

A set of 33 transcostal, long-axis echocardiograms of the left ventricle of the heart
were acquired in a series of routine investigations and manually segmented by
a cardiologist. The training set is shown in figure 10.2. The manual landmark
model was created by annotating the points shown in figure 10.7b. Qualitative
and quantitative comparisons of the resulting models are shown in figures 10.9
(page 100) and 10.15 (page 106) respectively.

Hands

The outlines of 17 hands were segmented from video images. Unlike the training
set used in previous chapters, the outlines are represented as open curves requir-
ing the representation of re-parameterisation described in 8.1.1 to be used. The
training set is shown in figure 10.3 and the positions of the landmarks of the man-
ual model are shown in figure 10.7c. Qualitative and quantitative comparisons of
the resulting models are shown in figures 10.10 (page 101) and 10.16 (page 107)
respectively.
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Hip Prostheses

A set of 45 outlines of hip prostheses were segmented from clinical plane-film
radiographs of subjects who had undergone total hip replacement [80]. The x-
ray beam was centred on the symphysis pubis so that the radiograph captured
the full pelvis and contralateral hip. The training set is shown in figure 10.4 and
the positions of the landmarks used to build the manual model are shown in
figure 10.7d. Qualitative and quantitative comparisons of the resulting models
are shown in figures 10.11 (page 102) and 10.17 (page 108) respectively.

Knee Cartilage

3D images of the articular cartilage of the lateral femoral condyle were acquired
from asymptomatic human subjects using T1-weighted MRI and segmented as
described previously [92]. For each 3D image, a single sagittal slice was chosen
from the centre of the lateral femoral condyle. As the width of the femur varies
from subject to subject, comparable slices were identified by selecting the slices
halfway between the first evidence of the lateral aspect of the meniscal horn and
the full extent of the posterior cruciate ligament. The 15 outlines shown in figure
10.5 were used for this study. Only two significantly salient features exist on the
outline; these were used as landmarks to build the manual model as shown in
figure 10.7e. Qualitative and quantitative comparisons of the resulting models
are shown in figures 10.12 (page 103) and 10.18 (page 109) respectively.

Prostate

Sixty ultrasound images were collected during routine ultrasound examinations
of sixty different patients presenting symptoms of benign prostatic hyperplasia.
The images were acquired using a 7.5 MHz transrectal ultrasound probe con-
taining a mechanically spun transducer providing a 3500 polar image around the
probe. Images were acquired in transverse mode. Each image was captured at
the mid-gland portion of the prostate – the probe position was chosen to be the
image that contained the largest cross-sectional area of the prostate. 21 of the
ultrasound images were randomly selected and segmented by a trained urologist
who marked a number of points around the outline of the prostate. Spline in-
terpolation was used to create a closed curve. The manual landmark model was
created by annotating the outlines as shown in figure 10.7f. Qualitative and quan-
titative comparisons of the resulting models are shown in figures 10.13 (page 104)
and 10.19 (page 110) respectively.
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Figure 10.1. The ‘Bump’ training set.

Figure 10.2. The heart ventricle training set.

Figure 10.3. The Hand training set.
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Figure 10.4. The hip prosthesis training set

Figure 10.5. The knee cartilage training set

Figure 10.6. The prostate training set
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a: The Bump. b: The heart ventricle.

c: The hand. d: The hip prosthesis.

e: The knee cartliage. f: The prostate.

Figure 10.7. The manual landmarks chosen for each dataset.

10.2 Discussion of Results

A very similar pattern of results is found for all the cases studied, though there are
some exceptions that merit discussion. It is thus efficient to identify the general
trends and note the exceptions.

96



10. 2D RESULTS

Qualitative Results. Figures 10.8 to 10.13

Generally, the qualitative results demonstrate that it is possible to generate su-
perficially plausible results using any of the three methods of establishing corre-
spondences. For the Bumps (figure 10.8) and Hands (figure 10.10) it is clear that
the equal spaced model is non-specific, whereas this is not obvious for all mod-
els. In all cases, the differences between the manual and MDL models are subtle
but, as we shall see shortly, important.

Compactness. Figures 10.14a to 10.19a

For all but the Bump data (figure 10.14a), the MDL model is the most compact.
The difference is significant for three of the datasets but not for the Hand (fig-
ure 10.16a) or Knee Cartilage (figure 10.18a) where the limited size of the training
sets leads to large standard errors. As was already noted in §5.3.2 and §6.1.1, the
Bump data illustrates the point that, although desirable, compactness alone is
not, in general, a reliable measure of model utility. The manual models are more
compact than the equally spaced models except for the hip prosthesis (figure
10.17a) and prostate data (figure 10.19a) where errors in the placement of man-
ual landmarks are captured as statistical variation. For the prostates, there are
no obvious stable features hence correspondences are difficult to landmark con-
sistently. Although there are many distinct features on the hip prosthesis, the
qualitative results show that the total variation is small hence positional errors
introduced by manual landmarking swamp the genuine shape variation.

Generalisation ability Figures 10.14b to 10.19b

For all datasets, the MDL model has the best (or equal best) generalisation ability.
In every case there is a statistically significant difference between the MDL model
and at least one of the other models, but which is the worst model depends en-
tirely on the dataset. For the ventricle, prostate and, arguably the knee cartilage
datasets the MDL model is significantly better that both the equally spaced and
manual models.

Specificity Figures 10.14c to 10.19c

The specificity results show that, even when it is not obvious from the qualitative
results, there are very significant differences between the specificity of the mod-
els obtained using different methods. For all datasets, the MDL model has the
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best (or equal best) specificity. There is a statistically significant difference be-
tween the MDL model and both of the others for all datasets expect the Hands,
Knee Cartilage and Bumps where manual landmarking produces an equally good
model. Manual landmarking is effective in these cases because there are obvious
and consistent landmarks – such as the tips of the fingers on the hand outlines
and the ideal correspondences for the Bumps.

General Observations

Overall, the MDL models are substantially better than the equally spaced and
manual models in terms of specificity, generalisation ability and compactness.
This is also reflected in the values of the objective function. Although manual
landmarking produces plausible models when there are obvious features that
are easy to annotate (such as on the hands and knee cartilage), equally spacing
points leads to better models either when there is little variation (hence equally
spaced points suffice) or where the shapes have no distinct features. Figure 10.20
shows examples of the correspondences found by the MDL method for the Hand
data. This shows that the correspondences are very similar to what would have
been obtained by manual landmarking.
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a: MDL model.

b: Equally spaced model.

c: Manual model.

Figure 10.8. A qualitative comparison of the Bump models.
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a: MDL model.

b: Equally spaced model.

c: Manual model.

Figure 10.9. A qualitative comparison of the Heart Ventricle models.
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a: MDL model.

b: Equally spaced model.

c: Manual model.

Figure 10.10. A qualitative comparison of the Hand models.
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a: MDL model.

b: Equally spaced model.

c: Manual model.

Figure 10.11. A qualitative comparison of the Hip Prosthesis models.

102



10. 2D RESULTS

a: MDL model.

b: Equally spaced model.

c: Manual model.

Figure 10.12. A qualitative comparison of the Knee Cartilage models.

103



10. 2D RESULTS

a: MDL model.

b: Equally spaced model.

c: Manual model.

Figure 10.13. A qualitative comparison of the Prostate models.
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c: Specificity.

Figure 10.14. A quantitative comparison of the Bump models.
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c: Specificity.

Figure 10.15. A quantitative comparison of the Heart Ventricle models.
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Figure 10.16. A quantitative comparison of the Hand models.
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Figure 10.17. A quantitative comparison of the Hip Prosthesis models.
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Figure 10.18. A quantitative comparison of the Knee Cartilage models.
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Figure 10.19. A quantitative comparison of the Prostate models.
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Figure 10.20. The correspondences found by the MDL method for the

Hand data. Points of the same colur correspond. Top: a continuous

correspondence. Bottom: the correspondence of salient points.
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Chapter 11

Extension to 3D

“Everything should be as simple as it is, but not simpler. ”

– Albert Einstein.

This chapter shows how the 2D methods presented in previous chapters can
be extended to 3D. The approach is similar, but there is an additional step

since the initial parameterisation, which was straightforward in 2D, is non-trivial
in 3D. The problem is solved by mapping each training shape onto the surface
of a unit sphere. Given an initial parameterisation, we show how both the piece-
wise linear and Cauchy kernel representations of re-parameterisation can be ex-
tended to 3D though, following the experience gained in 2D, more emphasis is
placed on the kernel-based approach. Finally, a practical optimisation scheme
is described, that is a direct extension of the 2D method described in chapter 9.
The whole process is summarised diagrammatically in figure 11.1.
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11. EXTENSION TO 3D

Figure 11.2. A typical training ex-

ample of the anterior horn of a lat-

eral ventricle. The example is rep-

resented by a stack of parallel con-

tours, pre-segmented from a 3D

MR image.

Figure 11.3. A simple triangulation

of the brain ventricle data in figure

11.2.

11.1 Parameterising the Training Set

11.1.1 Building the Surfaces

In chapter 12 we present results for several different training sets. In each case
the training data was a set of contour stacks manually segmented from parallel
slices of 3D magnetic resonance (MR) images. Figure 11.2 shows a typical seg-
mentation obtained from a 3D image of a brain. For all the examples we consid-
ered, the topology of each slice was the same (a single closed curve). This allowed
the use of a simple triangulation algorithm to interpolate between the slices. If
the topology had varied between slices, a general surface construction algorithm
such as ‘NUAGES’ [39] could have been used (see [73] for a survey on surface
construction methods).

A triangulated mesh was constructed by connecting neighbouring slices. Corre-
spondence was established between the slices using arc-length parameterisation
with the closest point of approach between the slices chosen as the origin. Cor-
responding points were sampled and connected to produce triangles as shown
in figure 11.4. The resulting triangulated mesh was represented by a set of trian-
gles {tk} that index a set of vertices {vj}; va(tk),v

b(tk),v
c(tk) are the vertices of

triangle tk. Figure 11.3 shows an example of running the triangulation method
on the brain ventricle data shown in figure 11.2.
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Figure 11.4. A simple triangulation of two parallel slices. The squares

represent corresponding points.

11.1.2 Parameterising the Surfaces

We wish to represent each surface, S, in the training set parametrically. The
classes of objects studied (and many others of practical interest) had spherical
topology, so it is convenient to use a spherical polar parameterisation:

S(u) =





Sx(u)
Sy(u)
Sz(u)



 , (11.1)

where u = (θ, ψ) are spherical polar coordinates. Ideally, the parameterisation
should be unique and isometric (distance-preserving); that is, ‘moving’ a dis-
tance d in parameter space (i.e. on the sphere) should produce a proportional
displacement on the surface. In 2D, an arc-length parameterisation was used
to produce an isometric mapping from the curve onto the line / circle. In 3D,
finding a suitable parameterisation is more difficult and the subject of much re-
search (e.g. [1, 52, 8]). Since we intend to find an optimal re-parameterisations
for each example, the final result should not depend significantly on this initial
parameterisation.

The problem of defining a parameterisation of a closed surface, Si (Si ∈ R
3), can

be posed as that of finding a continuous mapping, Ωi, from the surface to the
surface of a unit sphere (S2). For a triangulated mesh, ({vj}, {tk}), this can be
split into two parts: assigning a parameter value uj ∈ S

2 to each node vj , and
interpolating the values of u in between the nodes.

Parameterising the Discrete Mesh

To find {uj}, we modified the first stage of the method described by Brechbühler
et al. [8, 9]. Only a brief overview is given here, a more detailed description –
including psuedocode – can be found in [8].

The method finds a diffeomorphic mapping, Ω0, by solving Laplace’s equation on
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the surface:

∂2θ

∂x2
+
∂2θ

∂y2
+
∂2θ

∂z2
= 0,

∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
= 0, (11.2)

where (x, y, z) are Cartesian coordinates and (θ, ψ) are spherical polar coordi-
nates.

For a discrete mesh ({vj}, {tk}), (11.2) is satisfied when:

uj =
∑

k∈N

wkuk
∑

k∈N

wk = 1, (11.3)

where k indexes the connected neighbours of {vj} and {wk} are a set of weights
which are functions of the distance |vj − vk|. In our implementation these dis-
tances are all approximately equal so the weights, wk, are assumed equal. (11.3)
defines a set of linear equations, one for each node, that can be solved for {uj}.
To obtain a unique solution boundary conditions are required.

The latitude values (θ) can be fixed by imposing the (Dirichlet) boundary condi-
tions θNP = 0 and θSP = π, where NP is the node at the north pole and SP is the
node at the south pole. We choose NP and SP to be the nodes in {vj} with max-
imum and minimum z-coordinate value respectively. The longitude parameter
(ψ) is more difficult as it is periodic such that ψ(t) = ψ(t+ 2π). We accommodate
this by defining a ‘dateline’ where the value of ψ jumps from 2π to 0. Dijkstra’s
algorithm is used to define the dateline as the shortest path from NP to SP and
the condition ψk = 0 is imposed for the path. Neighbours whose connections
cross the ‘date line’ have 2π added to or subtracted from this value depending on
the direction of the crossing.

As stated earlier, we would like the parameterisation to be an isometry (be dis-
tance preserving). For any surface with variable Gaussian curvature, finding an
exact isometric mapping is impossible hence the resulting parameterisation will
be distorted. Due to the nature of our surfaces, the method described above pro-
vides a parameterisation with very little distortion. If, however, there is much
distortion, the optimisation step of Brechbühler [8, 9] or Quicken [78] may be
used to provide a unique, area-preserving mapping.
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11.1.3 Defining a Continuous Parameterisation

Assigning a parameter value uj to every node vj in triangulation ({vj}, {tk}) cre-
ates a triangulation ({uj}, {tk}) of identical connectivity on the unit sphere. Given
any point v ∈ R

3 on surface S, we can compute its parameterisation u ∈ S
2 by in-

terpolation. We define (αk, βk, γk), the barycentric co-ordinates of v with respect
to triangle tk:

αk =
Area(vvb(tk)v

c(tk))

Area(va(tk)vb(tk)vc(tk))

βk =
Area(va(tk)vvc(tk))

Area(va(tk)vb(tk)vc(tk))

γk =
Area(va(tk)v

b(tk)v)

Area(va(tk)vb(tk)vc(tk))
, (11.4)

where Area(ABC) is the area of triangle ABC.

Triangle tk contains v if αk ≥ 0, βk ≥ 0, γk ≥ 0 and αk + βk + γk = 1. Having found
the triangle that contains v, the barycentric co-ordinates can be use to define the
corresponding point u ∈ S

2 in the corresponding triangle on the sphere:

u = αku
a(tk) + βku

b(tk) + γku
c(tk) = Ω(v). (11.5)

The inverse transformation Ω−1 can be defined analogously:

v = Ω−1u. (11.6)

An example of a continuous parameterisation is shown in figure 11.5.

11.2 Representing Re-parameterisation

As in 2D, correspondence is manipulated by re-parameterising each training ex-
ample, Si, using a function φi:

Si(θ, ψ) → Si(θ
′, ψ′), θ′ = φθi (θ, ψ), ψ′ = φ

ψ
i (θ, ψ). (11.7)
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Figure 11.5. An example parameterisation of the anterior horn of

a brain ventricle. The colours denote the parameter values on the

sphere.

To ensure that the correspondences are valid each φi must be a diffeomorphism
of a sphere. This can be achieved by extending to 3D either the piecewise linear
or Cauchy kernel methods we defined for 2D shapes.

11.2.1 Piecewise-linear Re-parameterisation

Re-parameterisation can be achieved by extending the recursive, piecewise-linear
representation of φ defined earlier in section 8.1.2.

The construction is initialised by selecting four nodes on the sphere; these form
the initial mesh of four spherical triangles. At a given level of recursion, each
spherical triangle in the mesh is subdivided into three smaller triangles by adding
a new child node that is constrained to lie inside the spherical triangle defined
by the three parent nodes. If ra, rb and rc are the position vectors (w.r.t. the centre
of the sphere) of the parent nodes at the vertices of the spherical triangle ABC, a
child node can be represented by:

rd = αra + βrb + γrc, (11.8)

see figure 11.6 for details.

The constraint that rd lies within the planar triangle formed by ra, rb and rc can
be satisfied by:
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Figure 11.6. How a triangle is subdivide in three. The position of the

new node, rd is constrained to lie inside the spherical triangle ABC
formed by its parent nodes.

α = 1 − β − γ, and α ≥ 0, β ≥ 0, γ ≥ 0, (11.9)

which gives two degrees of freedom for each new node. The position of the child
node is then projected onto the sphere:

rd →
rd

‖rd‖
. (11.10)

The mesh is recursively subdivided in this manner until φ is defined to some de-
sired accuracy.

11.2.2 Cauchy Kernel Re-parameterisation

The kernel-based method described in §8.1.2 can also be extended to re-param-
eterising the sphere. The basic idea is to draw a great circle between any point
u and a ‘fixed’ point m on the sphere see figure 11.7. A smooth, diffeomorphic
re-parameterisation of the sphere can now be achieved by applying the same re-
parameterisation1 to each great circle using the approach described in section
8.1. For now, we will assume that m corresponds to the point θ = 0. It will be

1Personal communication, Carole Twining, University of Manchester.
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Figure 11.7. How a sphere is re-parameterised. For any point uj on the

sphere, a great circle is drawn through it and a fixed point m (the centre

of the kernel). Each great circle can now be re-parameterised using the

same function to give a symmetric sphere re-parameterisation.

shown later that this can be generalised to allow m to lie anywhere on the sphere
surface.

To re-parameterise the latitude (θ) coordinate (θ → g(θ)), g(θ) must be valid for
(0 ≤ θ ≤ π). This can be achieved by using the formulation introduced in (8.9):

g(θ) = c−1

[

θ + A arccos

(

(1 + ω2) cos θ − 2ω

1 + ω2 − 2ω cos θ

)]

, 0 ≤ θ ≤ π, 0 ≤ g ≤ π, (11.11)

where c is a normalisation term: c = 1 + A.

We must now adapt this formulation to apply to any kernel position, m. For any
point u, we wish to apply the transformation so that u → u′, where m,u and u′

are all unit vectors since they lie on the surface of the unit sphere. First, we define
a unit vector n that is in the same plane as m and u and orthogonal to m:

m · n = 0, (11.12)

u · m = cos(θ), (11.13)

u · n = sin(θ). (11.14)

The position of u′ can now be written as a linear combination of m and u, see
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figure 11.8:

u′ = βm + αu. (11.15)

Figure 11.8. The relationship between m,q,n and u′.

We must now find the values of β and α:

u′ · m = β + αu · m = cos(g(θ)), (11.16)

u′ · n = αu · n = sin(g(θ)), (11.17)

where g(θ) is the angle between m and u′ as defined in (11.11). Rearranging and
substituting in (11.13) and (11.14):

α =
u′ · n
u · n =

sin(g(θ))

sin(θ)
, (11.18)

β = u′ · m − αu · m = cos(g(θ)) − sin(g(θ))

sin(θ)
cos(θ). (11.19)

We can now write:
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u → u′, (11.20)

u → βm + αu, (11.21)

u → sin(g(θ))

sin(θ)
m + u

(

cos(g(θ)) − sin(g(θ))

sin(θ)
cos(θ)

)

, (11.22)

u → sin(g(θ))

sin(arccos(m · u))
m

+u

(

cos(g(θ)) − sin(g(θ))

sin(arccos(m · u))
m · u

)

. (11.23)

This formulation allows us to find the re-parameterised position of any point, u,
given an arbitrary kernel position m.

Figure 11.9 shows how the smooth representation of φ can re-parameterise a sur-
face. The figure shows that points near the centre of the kernel are ‘spread’ over
the sphere (hence spreading corresponding points on the surface). The bigger
the kernel, the more the points are spread.

11.2.3 Further Extensions

The method described above has proved sufficient for all the practical experi-
ments presented in the remainder of the thesis. This section considers more gen-
eral sets of transformations and possible extensions to non-spherical topologies.

More General Transformations

Although the symmetric transformation described above provides considerable
representational power it is interesting to consider a more general set of func-
tions. For example, we can create an asymmetric transformation by making the
amplitude of the Cauchy kernel a smooth, periodic function of the longitude pa-
rameter:

A→ A(ψ), A(2π + ψ) = A(ψ). (11.24)

We can also accomplish a shearing about an axis by using a transformation of the
form:

ψ → ψ + f(θ). (11.25)
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Figure 11.9. A demonstration of a symmetric theta transformation of

a parameterised closed surface. Left: the distribution on the sphere;

middle: the parameterisation on the sphere; right: the parameterised

points on the surface (the colours denote the correspondence). The

magnitude, A, of the Cauchy is 0 in the top row, 0.5 in the middle and 1
at the bottom. Points near the ‘bump’ get spread around on the sphere

(hence spreading points on the surface).

These transformations have been described in more detail elsewhere [30] and
implemented, but the symmetric theta transformations proved sufficiently gen-
eral for all objects modelled in this thesis.

Other Topologies

The treatment so far has considered only objects of spherical topology. Although
this was appropriate for all classes of objects studied, it is interesting to consider
how we could treat other topologies. Section 8.1 of chapter 8 described how a
1D circle (S1) or 1D line (R1) could be re-parameterised. We can therefore re-
parameterise any surface whose product space is a combination of (S1) and (R1).
For example, if we represent the cylinder as the product space of R

1 × S
1, we
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can re-parameterise either S
1 or R

1. Similar treatments can applied to the torus
(S1 × S

1) or the plane (R1 × R
1).

11.3 Optimisation in 3D

We now consider how the Cauchy kernel representation of re-parameterisation
can be used to construct optimal 3D statistical shape models. The optimisa-
tion method is a direct extension of the 2D version described in chapter 9. A
schematic giving an overview of the method is shown in figure 11.1.

We obtain an initial approximation to the optimal values of {si,Ri,di} by align-
ing the training examples by hand although an automated method such as the
iterative closest point (ICP) [6] algorithm could also be used.

As in 2D, the origin of each parameterisation is a free parameter. Moving the po-
sition of the origin is equivalent to rotating the parameterisation (i.e. the sphere).
We can obtain an initial estimate of the origin as follows:

I assign a ‘reference’ example (we choose the most ‘typical’ example by

hand a).

I for each example i (except the reference example):

I do

select a rotation for the parameterisation (i.e. the sphere) of the ex-

ample.

I uniformly sample n points on the sphere (i.e. the parameterisation),

see appendix B for details.

I project the sampled points onto the surface using Ω−1
i .

I measure the point-to-point squared distance between the current

example and the reference example.

I until the squared distance to the first reference shape is minimised.

aAlthough we could choose any example, an abnormal reference shape will slow
the convergence of the optimisation.

The following algorithm is used to optimise the value of F with respect to a set of
re-parameterisation functions {φi} and pose parameters {si, Ri}:
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I for i = 1 . . . ns

I S′
i = siRiSi(φi)

I build the model from {S′
i}

I evaluate the model using F

Given this and starting from the estimate given above, F is optimised with re-
spect to {φi, si,Ri,di}:

I repeat

I Randomise the ordering of the examples

I for each example i (except the reference example):

I randomly place a kernel on the sphere, see appendix C for details.

I randomly select a width for the kernel from the positive half of a

Gaussian distribution with standard deviation σG = 1/2.

I optimise the value of Ai, the amplitude of the kernel, using the Sim-

plex algorithm

I transform the re-parameterised points to the centre of gravity

I optimise the values of si and Ri

I optimise the position of the origin (i.e. the rotation of the parame-

terisation)

I until convergence.

11.4 Summary

This chapter has shown that the methods of representing re-parameterisation
developed in 2D can be extended to 3D. Given the experience gained in 2D, most
attention has been paid to the method based on the use of the Cauchy kernels.
There is only on free parameter – the width of the distribution from which the
widths of Cauchy kernels are drawn. Results of applying the method to 3D train-
ing data are presented in the following two chapters.
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Chapter 12

3D Results

“I didn’t think; I experimented. .”

– Wilhelm Roentgen.

The previous chapter showed how the method of automatic model-building
developed in 2D can be extended to deal with training sets of 3D shapes.

This chapter presents the results of applying the method to four different 3D
datasets. A quantitative evaluation shows that the proposed method constructs
significantly better models than those built using alternative approaches.

12.1 The 3D Experiments

For each dataset, an MDL model was constructed using the algorithm described
previously in §11.3 and compared to a model built using the SPHARM (spheri-
cal harmonic) method of Kelemen, Gerig et al. [55], which is arguably the best
published approach to defining correspondence between sets of closed surfaces.
It was shown in §4.3, that the method essentially spaces points over the surface
according to the parameterisation, hence we have replicated a good approxima-
tion to the method by equally spacing points over the training surfaces. For the
final dataset, (the hippocampus), Gerig et al. have kindly given us the model
produced by their method, allowing a direct comparison to the MDL model. To
distinguish between the two implementations, we refer to them as the Uniform
and SPHARM models.

Quantitative comparisons of the models are reported by evaluating the mod-
els using the criteria described in §5.3 (generalisation, specificity and compact-
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ness) and calculating the objective function value of each model. Qualitative re-
sults are presented by showing the first three modes of variation, independently
varying the shape parameters by ±2[standard deviations found over the training
shapes].

Results are presented for four training sets of pre-segmented 3D objects: 23 in-
duced stroke shapes, 8 brain ventricles (the anterior horn), 16 rat kidneys and 82
hippocampi. The details of the datasets with signposts to the compendium of
results are set out below.

Stroke Model

Permanent focal cerebral ischaemia was induced in rats, and multi-slice T2-weighted
magnetic resonance imaging (MRI) was performed in vivo, as described previ-
ously [107]. For the 23 examples used in this study, the shape of the infarct rep-
resents the territory of the middle cerebral artery. Qualitative and quantitative
comparisons of the resulting models are shown in figures 12.1 (page 129) and
12.6 (page 134) respectively.

Brain Ventricle

T1-weighted magnetic resonance volume images of the brain were acquired for
eight normal volunteers on a 0.5T GE Vectra scanner. For each image, the ante-
rior horn of the right ventricle was segmented by a neuroradiologist. Qualitative
and quantitative comparisons of the resulting models are shown in figures 12.2
(page 130) and 12.7 (page 135) respectively.

Rat Kidney

Wistar, Sprague-Dawley, and Fisher rats were imaged using a 4.7T Varian Inova
MRI system. Multi-slice T2-weighted MRI was performed in the transverse plane
with repetition time (TR) 2 sec; echo time (TE) 20 msec and slice thickness 1
mm, with 41 contiguous slices. Images were acquired with a 64 x 64 mm field
of view and a 256 x 256 x 41 image matrix. Sixteen segmentations of the right
kidney were used in this study. Since the manual segmentations were noisy, each
example was smoothed, following triangulation, using Laplacian smoothing [85]
(λ=0.1, 20 iterations) and decimated to reduce the number of triangles by 80%.
Qualitative and quantitative comparisons of the resulting models are shown in
figures 12.3 (page 131) and 12.8 (page 136) respectively.
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Hippocampus

1Magnetic resonance images (MRI) of the brain were acquired on a GE Sigma
Advantage 1.5T scanner (D IR Prepped Axial Spoiled Gradient; Fast SPGR Axial
plane, 3D Acquisition TE min full; TR=15ms; flip angle=200; FOC = 24cm; Band-
width =16KHZ; resolution = 256×256×124; slice thickness = 1.5mm) as described
previously [14, 40]. The hippocampus (hippocampus proper, subiculum, fimbria
and subsplenal gyrus) was segmented as described in [14] and smoothed and
parameterised using the method described in [8]. The data comprised 56 hip-
pocampi of schizophrenic patients and 26 of age-matched control subjects. The
two groups were combined to form a training set of 82 examples. A quantitative
comparison of the resulting models are shown in figure 12.9 (page 137). The first
three modes of the SPHARM and MDL models are shown in figures 12.4 (page
132) and 12.5 (page 133) respectively. These models are used in a shape discrim-
ination experiment in the next chapter.

12.2 Discussion of Results

The qualitative results show that there are noticeable differences between the
MDL and Uniform/SPHARM models. The quantitative results show that the MDL
models have significantly better generalisation and specificity properties than
the Uniform/SPHARM models for all datasets. The MDL model is also more com-
pact for all datasets but the difference is only statistically significant for the Stroke
(12.6) and Hippocampus data (12.9). The lack of significance for the Kidney and
Ventricle data is probably due to the small sample size.

The 3D optimisation algorithm takes much longer to converge than the 2D ver-
sion; for example, using a MATLAB implementation on a PC (Intel Pentium II –
450KhZ, 256Mb RAM) the ventricles (8 instances) converged after six hours but
the hippocampi (82 examples) took over five days. Although model building is
a one-off, off-line process these convergence times are inconveniently long. If,
however, the algorithm was implemented in a lower-level language (e.g. C++,
FORTRAN) on a modern PC, the convergence time would decrease by some or-
ders of magnitude, allowing a large dataset (≈ 100 examples) to be optimised
overnight.

For the hippocampus data, the MDL model was initialised using the SPHARM
correspondences. This allows a direct comparison of the correspondences, as
shown in figure 12.10. The most substantial differences are on the tail and the
head, this is not surprising as these are the regions of highest curvature and

1The hippocampus data was kindly provided by Guido Gerig and co-workers, University of
North Carolina, Chapel Hill
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a: Uniform

b: MDL

Figure 12.1. A qualitative comparison of the Stroke models.

demonstrate the most variation. Another interesting effect is the ‘skewing’ that
occurs around the middle of the hippocampus body.
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a: Uniform

b: MDL

Figure 12.2. A qualitative comparison of the Brain Ventricle models.
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a: Uniform

b: MDL

Figure 12.3. A qualitative comparison of the Rat Kidney models.
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Figure 12.4. The first three modes of the SPHARM hippocampus

model.
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Figure 12.5. The first three modes of the MDL hippocampus model.
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Figure 12.6. A quantitative comparison of the stroke models.
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Figure 12.7. A quantitative comparison of the brain ventricle models.
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Figure 12.8. A quantitative comparison of the rat kidney models.
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Figure 12.9. A quantitative comparison of the hippocampus models.
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a: Side view.

b: The head. c: The tail.

Figure 12.10. A sparse subset of the SPHARM and MDL correspon-

dences.
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Chapter 13

Application to Shape Discrimination

“To Thales the primary question was not what do we know, but how do we know it.”

– Aristotle.

Previous chapters have shown how optimal statistical shape models may be
constructed from sets of 2D or 3D training shapes. Quantitative criteria were

used to demonstrate that the resulting models were, in a technical sense, better
than those obtained using alternative methods. This leaves the important ques-
tion ‘does the technical superiority translate into a real benefit in practical ap-
plications?’ This question is addressed in this chapter, where an automatically
constructed MDL model is used as a basis for exploring differences in shape be-
tween the hippocampi of schizophrenic and control subjects. The results are
compared to those obtained using a model of the same data generated by an in-
ternationally leading group in the field. We show that the MDL model provides
significantly better discrimination

13.1 Motivation and Overview

There is much evidence to connect altered hippocampal form (e.g. [16, 62, 69,
109]) with schizophrenia. The connection is often studied using volumetric mea-
surements but recent work (e.g. [45, 105, 41]) suggests that shape information
provides better discrimination.

Shape discrimination can be performed by constructing an MDL model of the
hippocampi for schizophrenic and healthy control subjects combined and per-
forming linear discriminant analysis (LDA) on the model parameters of the two
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13. APPLICATION TO SHAPE DISCRIMINATION

groups. The discriminating characteristics can be visualised, statistically anal-
ysed, and compared to those obtained using a SPHARM model [55].

The hippocampus dataset consisted of 56 schizophrenic patients and 26 age-
matched control subjects, segmented from magnetic resonance (MR) images.
The schizophrenic group contains two subgroups: 34 patients with early onset
of schizophrenia (< 5 years) and 22 chronic patients (> 10 years) but in our ex-
periments these were combined to form a single schizophrenic group. The data
was used to construct an MDL shape model of the right hippocampus using the
algorithm described in §11.3. For comparative purposes, a SPHARM model was
also constructed as described in [55]. Only the modes required to capture the
first 95% of the shape variation were retained giving in each case, a set of 33-
dimensional shape vectors: {bi : i = 1 . . . 82}. Following model construction, the
parameter vectors were split into two groups: C = {ci : i = 1 . . . 26} (the control
subjects) and S = {si : i = 1 . . . 56} (the schizophrenic patients).

13.2 Discriminant Analysis

Linear discriminant analysis (LDA – using Fisher’s criterion) was used to discrim-
inate between C and S. Only the two-class case of LDA is discussed here, for a
more general discussion, see [108] or [46].

13.2.1 Linear Discriminant Analysis

Fisher’s criterion is maximised when the between-class separation of two groups
is maximised and the within class separation is minimised. The vector, w, that
maximises Fisher’s criterion can be found as follows:

Construct a scatter matrix for each group:

Tc =
26
∑

i=1

(ci − c̄)(ci − c̄)T , (13.1)

Ts =
56
∑

i=1

(si − s̄)(si − s̄)T , (13.2)

where s̄ = 1
56

∑56
i=1 si and c̄ = 1

26

∑26
i=1 ci are the the mean vectors.

Construct a pooled within-class scatter matrix from (13.1) and (13.2):
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13. APPLICATION TO SHAPE DISCRIMINATION

TW =
1

82 − 2
(26Tc + 56Ts) . (13.3)

For 2 classes, Fisher’s criterion can be written as:

JF =
|wT (s̄ − c̄)|2
wTTWw

. (13.4)

Differentiating JF with respect to w and equating the derivative to zero gives:

wT (s̄ − c̄)

wTTWw

[

2(s̄ − c̄) +

(

wT (s̄ − c̄)

wTTWw

)

TWw

]

= 0. (13.5)

Since w
T (s̄−c̄)

wT TW w
is a scalar, the vector, w, that maximises JF is given by:

w = αT−1
W (s̄ − c̄), (13.6)

where α is a constant that denotes the length of w. For the results reported below,
α was chosen so that w had unit norm: ||w|| = 1.

13.2.2 Visualising the Discriminating Characteristics

LDA was applied to find a discriminating vector of the two groups of shape pa-
rameters of the MDL model. The discriminating characteristics can be visualised
by creating shape parameters that produce a mode of variation along w:

b = b̄ + wd, (13.7)

where d is the shape parameter of the discriminant mode.

Since the elements of b have zero mean, new shape instances can be created
using:

x = x̄ + Pwd. (13.8)

The discriminant mode of variation is shown in figure 13.1 for d varying over the
range [min(wTb),max(wTb)]which is roughly equivalent to ±3 [standard devia-
tions found over the training set]. The main effect, as the discriminant parameter
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Figure 13.1. The discriminant mode of the hippocampal data varied

from − (control) to + (schizophrenic). The most noticeable effect is a

lengthening and narrowing of the ‘tail’.

is moved towards the schizophrenic group, is a thinning and straightening of the
‘tail’.

13.2.3 Statistical Analysis

An unbiased estimate of the separability of the two groups can be obtained using
the following analysis:

142



13. APPLICATION TO SHAPE DISCRIMINATION

I for each shape example j = 1 . . . ns

I create the training set {xi}j with xj excluded

I build the model (x̄j ,Pj) from {xi}j
I find the shape parameters for each member {xi}j :

bi = PT
j (xi − x̄j)

I separate {bj} into {sj} and {cj}.

I find the vector, wi, that maximises Fisher’s criterion for {si} and {ci}.

I estimate the parameters of the excluded example:

bj = PT
j (xi − x̄j);

I project the parameters of xj into discriminant space:

yj = wT
j b′

j

The analysis was first performed using the MDL model. The projected values of
the two groups are shown in figure 13.2. The difference between the means is
statistically significant – a t-test shows that the probability that both means were
sampled from the same underlying population is p = 0.0042, (t = 2.944).

The analysis was repeated using a model constructed by the SPHARM method of
Kelemen et al. [55]. The projected values for the two groups are shown in figure
13.3. A comparison of figures 13.2 and 13.3 suggests that the differences between
the means of the two groups are similar but the within-class variances are smaller
for the MDL model. A t-test shows that the difference between the two groups is
still significant (p = 0.0163, t = 2.454), but with a lower level of significance than
the MDL model. In order to determine whether this implies that the MDL results
are significantly better than the SPHARM results, the sampling distributions of
the t values must be estimated. To achieve this, the Bootstrap method [35] was
used:

I for j = 1 . . . n

I separate {yi} into {si} and {ci}
I let {sji} and {cji} be random subsamples (with replacement) of {si} and

{ci}
I calculate tj , the t-value of the separation between {sji} and {cji}

I estimate the standard deviation of {tj}:

σ =
√

1
n

∑n
j=1[tj − µ]2, µ = 1

n

∑n
j=1 tj

The distribution of t values was obtained for both the MDL and SPHARM models
using n = 1000 bootstrap samples. A t-test shows that the difference between the
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models is highly significant (p ≈ 10−13, t = 7.027). This suggests that structural
noise in the SPHARM model partially conceals the discriminating information
present in the data.

13.3 Discussion

This chapter has shown how the statistical shape models described in this thesis
can be used to characterise and quantify shape differences between two subsets
of a class of objects. The method was applied to discriminating between the hip-
pocampal shape of healthy and schizophrenic subjects. It was shown that the
MDL model provided better discrimination than the SPHARM model of Gerig et
al. – arguably the best existing method of constructing 3D statistical shape mod-
els.

Although the results show that neither model can be used to classify subjects re-
liably on an individual basis, both can be used to discriminate between popula-
tions. This could have important application in disease progression studies and
drug trials. The results show that fewer subjects would be required to achieve a
given level of significance using the MDL model rather than the SPHARM model
(10% fewer subjects for this data), an important practical consideration.

It was assumed that a single multivariate Gaussian model was sufficient to model
both classes of hippocampi. Two separate models could, in principle, have been
used but this introduces the complication of defining a correspondence between
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the two groups. The vectors of the groups would also be of different lengths, mak-
ing comparison between them difficult. We intend that this will be the subject of
future work along with an investigation of alternative discriminating statistics
(e.g. the mean absolute difference to the class mean [41]).

For this study, the two schizophrenic subgroups (early and chronic) were com-
bined to form a single group. A stronger discrimination might be achieved if
the chronic subgroup was compared to the control group. It would also be in-
teresting to investigate the shape differences between the early and chronically
ill patients as this would give the shape variation that characterises the onset of
schizophrenia.
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Chapter 14

Conclusions

“Don’t worry about the world coming to an end today. It’s already tomorrow in Australia”

– Charles Schultz

This thesis has described a practical method of building both 2D and 3D sta-
tistical shape models automatically. This final chapter summarises the con-

tributions and discusses ideas for future work.

14.1 Summary of Contributions

A principled approach to defining correspondences.
A generic optimisation framework has been presented based on the idea of se-
lecting the correspondences that build the best model. The framework has been
applied to automatically construct statistical models of shape.

An efficient method of manipulating correspondences.
It has been shown how correspondences can be manipulated by re-parameterising
each training shape. This approach allows the correspondences to be straight-
forwardly constrained to be legal. Piecewise linear and continuous representa-
tions of re-parameterisation have been developed for both 2D (open and closed
curves) and 3D (closed surfaces) objects.

An objective function that provides a principled measure of model utility.
A minimum description length (MDL) objective function has been derived that
favours models with good specificity, generalisation ability and compactness.

An efficient method of optimisation.
An algorithm has been developed that is capable of routinely constructing shape
models directly from large training sets of pre-segmented examples.
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A demonstration of utility in a practical application.
The method has been applied to the problem of finding shape differences be-
tween the hippocampi of normal and schizophrenic subjects, demonstrating im-
proved discrimination compared to the leading method in the literature.

14.2 Extension: MDL Appearance Models

There are two main limitations of the approach to automatic shape modelling
described in this thesis:

• the topology of the modelled class of objects cannot vary;

• the training images must be segmented.

There are many cases where it is necessary to model objects of variable topol-
ogy. For example, osteoarthritis (OA) causes articulating cartilage of load-bearing
joints to erode thus changing the topology of the examples. To model such ob-
jects, the shape model must be able to accommodate topological changes.

Both limitations could be overcome by combining shape information with image
intensity information to construct MDL appearance models. Appearance mod-
els [19] are normally constructed from a training set of corresponded images as
follows:

• Define a warp function that registers each training image to a shape nor-
malised coordinate frame

• Perform principal component analysis (PCA) on the shape data (i.e. the
warp functions) to create a shape model.

• Perform PCA on the image data (in the shape normalised coordinate frame)
to create an intensity model.

• Perform a further PCA on the shape and appearance parameter vectors1 to
create an appearance model.

The optimisation framework described in this thesis can be extended straight-
forwardly to automatically create such models:

1Finite differencing can be used to adjust the shape and appearance parameters to have the
same units [19].
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• The description length of the combined appearance parameter vectors can
be calculated using (6.39) to give the total description length of the training
set.

• The warp functions can be represented by extending the formulations of
1D curve re-parameterisation derived in §8.1.1 and §8.1.2, as described in
§11.2.3.

• The optimal model can be found by optimising the MDL objective func-
tion with respect to the set of warp functions by extending the approach
described in chapter 9.

14.3 Final Conclusions

This thesis has described a method of constructing optimal shape models di-
rectly from a training set of example shapes. The method has a theoretical ground-
ing in information theory, has no arbitrary parameters and requires no user inter-
vention (although this is easily incorporated if required). The effectiveness of the
method has been evaluated empirically to show that it constructs significantly
better models than alternative approaches.

Statistical shape models have been used widely to model and segment many
classes of object and are now deployed both clinically and commercially. Their
application has, however, been limited mainly to 2D objects, where manually
annotated landmarks are easily obtained. The work presented here should allow
much wider application of shape models, particularly to 3D biomedical objects.
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Appendix A

Genetic Algorithm Optimisation

This appendix provides a brief overview of genetic algorithm (GA) optimisa-
tion as used in the work described in chapter 7. Only the aspects that are

directly relevant to the problem at hand are discussed here, for a more general
treatment see [74] or [42].

A genetic algorithm is a stochastic, global optimisation method based on the
principles of natural selection. Much of terminology is borrowed from biology.
The optimisation variables are called genes and a combination of genes makes
a chromosome. A number of solution hypotheses (chromosomes) are generated
and called a population. An objective function (sometimes called a fitness, or
cost function), which is a function of the optimsation variables, measures the ‘fit-
ness’ of each chromosome. A fitter individual (chromosome) has a higher prob-
ability of survival.

The idea behind GA search is that that when good chromosomes are continually
combined, they will eventually produce the ‘optimal’ chromosome. The genetic
operators repeatedly refine the population until a termination criterion is met.
The following is an example of a simple genetic algorithm:
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Figure A.1. How a crossover operator creates two child chromosomes

from two parent chromosomes. The crossover point is the sixth gene.

I generate the initial population (randomly initialise chromosomes)

I repeat

I calculate the fitness of each chromosome

I build a new population using a selection operator

I randomly select Ncrossover pairs of chromosomes from the population

and use a crossover operator to generate new pairs

I randomly select Nmutation chromosomes and use a mutation operator

to generate new chromosomes

I until convergence

Crossover, mutation and selection are discussed below.

A.1 Crossover Operator

A single crossover operator was used to obtain the results reported in this thesis.
The crossover operator is analogous to the mating process of natural evolution.
It combines the genes of two ‘parent’ chromosomes to produce two new, ‘child’
chromosomes. This is done by randomly selecting a ‘crossover point’ where each
chromosome is split and combined to form two children. This is illustrated in
figure A.1, where the crossover point is the sixth gene.
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Figure A.2. How a mutation operator creates a new chromosome by

replacing the value of a gene. The mutation point is the sixth gene.

A.2 Mutation Operator

The mutation operator ensures that the population remains genetically diverse.
It takes a single chromosome and mutates a gene to produce a new individual.
An example is shown in figure A.2, where the sixth gene is chosen and replaced.

A.3 Selection Operator

As the name suggests, the selection operator selects a number of chromosomes
to build a new population. Because of the high-dimensionality of the solution
space for our problem, the algorithm may converge prematurely unless a large
population is chosen. Premature convergence can be avoided by applying min-
imal ‘selection pressure’. We achieve this by ‘sigma scaling’ the fitness values of
the chromosomes. Sigma scaling adjusts the fitness of the ith chromosome to:

F ′

i =

{

1 + Fi−F̄
2σ

if σ 6= 0;
1 if σ = 0;

(A.1)

where F̄ is the mean fitness and σ is the standard deviation. The chromosomes
of the new population are selected randomly with a probability proportional to
their new fitness values, F ′

i .

151



Appendix B

Uniform Tessellation of a Sphere

It is not strictly possible to position an arbitrary number of equidistant points
on the surface of a sphere. An approximation, that is sufficient for our pur-

poses, can be achieved by recursively subdividing a polyhedron (initially an oc-
tahedron) and projecting the points onto the sphere surface. At each level of re-
cursion, each triangle is divided into 4 smaller triangles by placing 3 new vertices
halfway along each edge and connecting them in a triangle as shown in figure
B.1. Figure B.2 shows the tessellation after 3 iterations of the algorithm – giving
258 vertices and 512 faces.

This approach cannot generate an arbitrary number of points. If an arbitrary
number of points are required, a method such as [27] can be used.

Figure B.1. How each triangle is subdivided. Left: initial triangle, right

the four new triangles.
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B. UNIFORM TESSELLATION OF A SPHERE

Figure B.2. A uniform tessellation of a sphere using three iterations of

the subdivision algorithm.
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Appendix C

Generating Random Points on a
Sphere

We wish to generate random points on the sphere with a uniform probability
over the entire surface. A simple method of doing this, using a unit sphere

and Cartesian coordinates, is as follows1:

• Randomly sample the z coordinate from a uniform distribution of range
[−1, 1]

• Randomly sample t from a uniform distribution of range [0, 2π]

• r =
√

1 − z2

• x = r cos(t)

• y = r sin(t)

1adapted from entry 6.08 of the comp.graphics.algorithms FAQ. Available from
http://www.faqs.org/faqs/graphics/algorithms-faq/
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